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Preface

Semiconductor quantum dots are small devices in which carriers exhibit strong three dimen‐
sional confinement and show discrete energy spectrum. Their tunable optical and electronic
properties enable them to be used in several optoelectronic / electronic devices such as
quantum bits, sensors, and lasers among others. In this book, a few theoretical aspects and
applications are included.

The current book is divided in two sections. In the first section, fundamental theories on
excitons, trions, phase decoherence, and charge states are presented. Several applications of
quantum dots are included in the second section.

As the editor of this book project, I would like to thank all the authors for their contributions
and efforts to bring the up-to-date research of their high quality work.

Lastly, I gratefully acknowledge the InTech team for their support during the preparation of
the book.

Dr. Vasilios N. Stavrou
Hellenic Naval Academy

Pireaus, Greece
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Chapter 1

Theory of Excitons and Excitonic Quasimolecules
Formed from Spatially Separated Electrons and Holes in
Quasi-Zero-Dimensional Nanostructures

Sergey I. Pokutnyi and Włodzimierz Salejda

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/60591

Abstract

The theory of an exciton formed from a spatially separated electron and a hole is
developed within the framework of the modified effective mass method. The effect of
significantly increasing the exciton binding energy in quantum dots of zinc selenide,
synthesized in a borosilicate glass matrix and relative to that in a zinc selenide single
crystal is revealed. It is shown that the short-wavelength shift of the peak of the low-
temperature luminescence spectrum of samples containing zinc selenide quantum
dots, observed under experimental conditions, is caused by quantum confinement of
the ground-state energy of the exciton with a spatially separated electron and hole.

A review devoted to the theory of excitonic quasimolecules (biexcitons) (made up of
spatially separated electrons and holes) in a nanosystem that consists of ZnSe
quantum dots synthesized in a borosilicate glass matrix is developed within the
context of the modified effective mass approximation. It is shown that biexciton
(exciton quasimolecule) formation has a threshold character and is possible in a
nanosystem, where the spacing between quantum dots' surfaces is larger than a
certain critical arrangement. An analogy of the spectroscopy of the electronic states
of superatoms (or artificial atoms) and individual alkali metal atoms theoretically
predicted a new artificial atom that was similar to the new alkali metal atom.

Keywords: Excitons, exciton binding energy, quantum dots, excitonic quasimole‐
cules, spatially separated electrons and holes, superatoms

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



1. Introduction

Quasi-zero-dimensional semiconductor nanosystems consisting of spherical semiconductor
nanocrystals, i.e., quantum dots with radii of a =1-10 nm and containing cadmium sulphide
and selenide, gallium arsenide, germanium, silicon, and zinc selenide in their volume, and
synthesized in a borosilicate glass matrix currently attract particular research attention due to
their unique photoluminescent properties, i.e., the ability to efficiently emit light in the visible
or near infrared ranges at room temperature [1-10]. The optical and electro-optical properties
of such quasi-zero dimensional nanosystems are to a large extent controlled by the energy
spectrum of the spatially confined electron-hole pair (exciton) [4-16].

In most theoretical models for calculating the energy spectra of quasiparticles in quantum dots
(QDs), the effective mass approximation is used, which was considered applicable for QDs by
analogy with bulk single crystals [11-13]. However, the problem concerning the applicability
of the effective mass approximation to the description of semiconductor QDs remains un‐
solved [4-18].

In [14], a new modified effective mass method is proposed to describe the exciton energy
spectrum in semiconductor QDs with radii of a ≈ aex (aex is the exciton Bohr radius in the
semiconductor material contained in the QD volume). It was shown that, within a model in
which the QD is represented as an infinitely deep potential well, the effective mass approxi‐
mation can be applied to the description of an exciton in QDs with radii a comparable to the
exciton Bohr radius aex, assuming that the reduced effective exciton mass is a function of the
radius a, μ = μ(a).

In the adiabatic approximation and within the modified effective mass method [14], an
expression for the binding energy of an exciton, whose electron and hole move within the
semiconductor QD volume, was derived in [15]. In [15], the effect of significantly increasing
the exciton binding energy in cadmium selenide and sulphide QDs with radii a, comparable
to the exciton Bohr radii aex and relative to the exciton- binding energy in cadmium selenide
and sulphide single crystals (by factors of 7.4 and 4.5, respectively) was also detected.

In the experimental study [7], it was found that excess electrons produced during interband
excitation of the cadmium sulphide QD had a finite probability of overcoming the potential
barrier and penetrating into the borosilicate glass matrix, into which the QD is immersed. In
experimental studies [10, 19] (as well as in [7]) using glass samples with cadmium-sulphide
and zinc selenide QDs, it was found that the electron can be localized in the polarization well
near the outer QD surface, while the hole moves within the QD volume.

In [10, 19], the optical properties of borosilicate glass samples containing QD zinc selenide
were experimentally studied. The average radii of such QDs were in the range a ≈ 2.0-4.8 nm.
In this case, the values of a are comparable to the exciton Bohr radius aex ≈ 3.7 nm in a ZnSe
single crystal. At low QD concentrations, when the optical properties of the samples are mainly
controlled by those of individual QDs in the borosilicate glass matrix, a shift of the peak of the
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low temperature luminescence spectrum to the short wavelength region (with respect to the
band gap Eg of the zinc selenide-single crystal) was observed. The authors of [10] assumed that
this shift was caused by quantum confinement of the energy spectra of the electron and the
hole localized near the spherical surface of the QD. In this case, the following problem
remained open: the quantum confinement of the state of which electron and hole (the hole
moving in the QD volume and the electron localized at the outer spherical QD-dielectric matrix
interface or the electron and hole localized in the QD volume) caused such a shift in the
luminescence spectrum peak?

The use of semiconductor nanosystems as the active region of nanolasers is prevented by the
low binding energy of the QD exciton [8, 9, 13]. Therefore, studies directed at the search for
nanostructures in which a significant increase in the binding energy of QD excitons can be
observed are of importance.

Currently, the theory of exciton states in quasi- zero- dimensional semiconductor nanosystems
has not been adequately studied. In particular, no theory exists for an exciton with a spatially
separated electron and hole in quasi- zero- dimensional nanosystems. Therefore, in this study,
we developed the theory of an exciton formed from a spatially separated electron and hole
(the hole is in the semiconductor QD volume and the electron is localized at the outer spherical
surface of the QD-dielectric matrix interface) [20-22]. It was shown that the short wavelength
shift of the peak of the low temperature luminescence spectrum of samples containing zinc
selenide QDs, observed under the experimental conditions of [10], was caused by quantum
confinement of the ground state energy of the exciton with a spatially separated electron and
hole. The effect of significantly increasing the binding energy of an exciton (with a spatially
separated electron and hole) in a nanosystem containing zinc selenide QDs, compared with
the binding energy of an exciton in a zinc selenide single crystal (by a factor of 4.1-72.6), was
detected [20-22].

In [10, 19], a shift of the spectral peak of the low temperature luminescence was also observed
for samples with a QD concentrations from x = 0.003-1%. It was noted [10, 19] that at such a
QD content in the samples, the interaction between charge carriers localized above the QD
surfaces must be taken into account. Therefore, in [23, 24], we develop the theory of excitonic
quasimolecules (biexcitons) (formed from spatially separated electrons and holes) in a
nanosystem, which consists of ZnSe QDs synthesized in a borosilicate glass matrix.

2. Spectroscopy of excitons in Quasi - Zero - Dimensional nanosystems

Let us consider the simple model of a quasi-zero-dimensional system, i.e., a neutral spherical
semiconductor QD of the radius a, which contains semiconductor material with the permit‐
tivity ε2 in its volume, surrounded by a dielectric matrix with permittivity ε1. A hole h with
the effective mass mh moves in the QD volume, while an electron e with the effective mass mе

(1)

lies in the matrix (re and rh are the distances from the QD centre to the electron and hole). Let

Theory of Excitons and Excitonic Quasimolecules Formed from Spatially Separated Electrons and Holes in…
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us assume that the QD valence band is parabolic. Let us also assume that there is an infinitely
high potential barrier at the spherical QD-dielectric matrix interface; therefore, the hole h
cannot leave the QD volume and the electron e cannot penetrate into the QD volume in the
model under study [20-22].

The characteristic dimensions of the problem are the quantities:

ah =  ε2ℏ
2 / mh e 2,  aex =  ε2ℏ

2 / µ e 2, ae =ε1ℏ
2 / me

(1)e 2, (1)

where  ah  and  aex  are  the  hole  and  exciton  Bohr  radii  in  the  semiconductor  with  the
permittivity ε2, e  is the elementary charge, μ= mе

(2)  mh  /(mе
(2)+ mh) is the reduced effective

mass of  the exciton,  mе
(2)  is  the effective mass of  an electron in the semiconductor  with

permittivity ε2 and ae is the electron Bohr radius in the dielectric matrix with the permittiv‐
ity ε1. The fact that all characteristic dimensions of the problem are significantly larger than
the interatomic distances a0,

0, , ,e h exa a a a a>>

allows us to consider the electron and hole motion in the quasi-zero-dimensional nanosystem
in the effective mass approximation [11-13].

We analysed the conditions of carrier localization in the vicinity of a spherical dielectric particle
of the radius a with the permittivity ε2 in [25-27]. In this instance, the problem of the field
induced by the carrier near a dielectric particle immersed in a dielectric medium with the
permittivity ε1 was solved in a final analytical form and analytical expressions for the potential
energy of the interaction of the carrier with the spherical interface of two media are presented.

Solving the Poisson equation with usual electrostatic boundary conditions

( )
1 2

( , | , ) ( , ) ,

,( , | , ) ,

|

| |

r a r a

r a r a

r j i j

jj i

f f

ff
e e

¢= ¢=

¢ ¢= =

¢ ¢=

¢¶¢¶
=

¢ ¢¶ ¶

|r r

rr r
r r

(2)

the potential φ(r ', j | r , i)|  at the observation point r' in a medium with the permittivity εj,
induced by the charge e at the point r in a medium with the permittivity εi, can be presented
as a sum of the potentials induced by the image point charge e'(rij |r) at the point rij =(a/r)2rδij

+ r(1 – δij) and the linear distribution with the density ρij(y, r) of the image charge along a
straight line passing through the centre of the dielectric particle with the radius a and the charge
at the point r [25-27]:
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where θ(x) is the Heaviside unit-step function,
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= =
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(4)

Using expressions (3)-(3d), the energy U (re, rh , a) of the polarization interaction of the electron
and hole with the spherical QD-matrix interface at the relative permittivity ε = (ε2/ε1) ≫  1 can
be presented as an algebraic sum of the energies of the interaction of the hole and electron with
self- Vh h ′(rh , a), Vee'(re, a) and “foreign” Veh'(re, rh, a), Vhe'(re, rh, a) images, respectively [15, 16,

26-28]:

( ) ( ) ( ) ( )e h e h e h(r ,r , , ) , , , , r ,r , , r ,r , , ,hh h ee e eh heU a V r a V r a V a V ae e e e e¢ ¢ ¢ ¢= + + + (5)

where
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2 2

' 2 2
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- (8)
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In the studied simple model of a quasi-zero-dimensional nanostructure within the above
approximations and in the effective mass approximation using the triangular coordinate
system [14-16], re = |re|, rh = |rh|, r = |re – rh|, with the origin at the centre of the QD, the exciton
Hamiltonian (with a spatially separated hole moving within the QD volume and an electron
in the dielectric matrix) takes the following form [20-22, 29-32]:

( ) ( )

( ) ( ) ( ) ( )

2 2 22 2 2

e h 21

2 2 22 2 2 2 2

2 2
0

e h

2r ,r ,r,
2

2 2
2 2
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e e e eee

h e

h h h h hh

eh e e h h g

r r rH a
r r r r r rrm

r r r
m r r r r r r r rr r

V U a V r V r E
m

e

æ ö- +¶ ¶ ¶
= - + × + × -ç ÷ç ÷¶ ¶ ¶¶è ø

æ ö æ ö- +¶ ¶ ¶ ¶ ¶
- + × + × - + × +ç ÷ ç ÷ç ÷ç ÷¶ ¶ ¶ ¶¶ ¶è øè ø
+ + + + +

h

h h (10)

where the first three terms are the operators of the electron, hole and exciton kinetic energy,
Eg is the band gap in the semiconductor with the permittivity ε2 and µ0 = me

(1)mh / (me
(1) + mh ) is

the reduced effective mass of the exciton (with a spatially separated hole and electron). In the
exciton Hamiltonian (10), the polarization interaction energy U(re, rh, a, ε) (5) is defined by
formulas (6)-(9) and the electron-hole Coulomb interaction energy Veh(r) is described by the
following formula:

( )
2

1 2

1 1 1
2eh

eV r
re e

æ ö
= - +ç ÷ç ÷

è ø
(11)

In the exciton Hamiltonian (10), the potentials

( )

( )

0,   
,

,   
,   

h
h h

h

e e e

r a
V r

r a
V r r a

ì £ï= í¥ >ïî
= ¥ £

(12)

describe the quasiparticle motion using the models of an infinitely deep potential well.

As the QD radius a increases (so that a ≫aex
0 ), the spherical interface of the two media (QD-

matrix) passes to the plane <semiconductor material with the permittivity>-matrix interface.
In this case, the exciton with the spatially separated electron and hole (the hole moves within
the semiconductor material and the electron lies in the borosilicate glass matrix) becomes two-
dimensional [20-22].
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where the first three terms are the operators of the electron, hole and exciton kinetic energy,
Eg is the band gap in the semiconductor with the permittivity ε2 and µ0 = me

(1)mh / (me
(1) + mh ) is

the reduced effective mass of the exciton (with a spatially separated hole and electron). In the
exciton Hamiltonian (10), the polarization interaction energy U(re, rh, a, ε) (5) is defined by
formulas (6)-(9) and the electron-hole Coulomb interaction energy Veh(r) is described by the
following formula:
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In the exciton Hamiltonian (10), the potentials
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describe the quasiparticle motion using the models of an infinitely deep potential well.

As the QD radius a increases (so that a ≫aex
0 ), the spherical interface of the two media (QD-

matrix) passes to the plane <semiconductor material with the permittivity>-matrix interface.
In this case, the exciton with the spatially separated electron and hole (the hole moves within
the semiconductor material and the electron lies in the borosilicate glass matrix) becomes two-
dimensional [20-22].
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The primary contribution to the potential energy of the Hamiltonian (10) describing exciton
motion in a nanosystem containing a large-radius QD, a ≫aex

0 , is made by the electron-hole
Coulomb interaction energy Veh(r) (11). The energy of the hole and electron interaction with
self- Vhh'(rh, a, ε) (6), Vee'(rh, a) (7) and “foreign” Veh'(re, rh, a) (9), Vhe'(re, rh, a) (8) images make a
significantly smaller contribution to the potential energy of the Hamiltonian (10). In the first
approximation, this contribution can be disregarded. In this case, only the electron-hole
Coulomb interaction energy (11) remains in the potential energy of the Hamiltonian (10)
[20-22]. The Schrodinger equation with such a Hamiltonian describes a two-dimensional
exciton with a spatially separated electron and hole (the electron moves within the matrix, and
the hole lies in the semiconductor material with the permittivity ε2), the energy spectrum of
which takes the following form [33, 34]:
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where n = 0, 1, 2... is the principal quantum number of the exciton and Ry0 = 13.606 eV is the
Rydberg constant. The Bohr radius of such a two-dimensional exciton is described by the
following formula:
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and the binding energy of the ground state of such a two-dimensional exciton, according to
(13), is written as:

0 04ex exE Ry= - (15)

The binding energy (15) of the exciton ground state is understood as the energy required for
bound electron and hole state decay (in a state where n = 0).

To determine the ground-state energy of an exciton (with a spatially separated electron and
hole) in a nanosystem containing QDs of the radius a, we applied the variational method. When
choosing the variational exciton wave function, we used an approach similar to that developed
in [14]. Let us write the variational radial wave function of the exciton ground-state (1s electron
state and 1s hole state) in the nanosystem under study in the following form [20-22]:
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Here, the coefficient A is determined from the condition of normalization of the exciton wave
function (16):
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and the effectively reduced exciton mass μ(a) is the variational parameter.

As the QD radius a increases (so that a ≫aex
0 ), a two-dimensional exciton is formed in the

nanosystem. This leads to the variational exciton wave function (16) containing the Wannier-
Mott two-dimensional exciton wave eigenfunction [33, 34]. Furthermore, the polynomials from
re and rh enter the exciton variational function (16), which make it possible to eliminate
singularities in the functional E0(a,μ(a)) in the final analytical form.

To determine the exciton ground-state energy E0(a, ε) in the nanosystem under study using
the variational method, we wrote the average value of the exciton Hamiltonian (10) in wave
functions (16) as follows:
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The dependence of the energy E0(a) of the exciton ground state (ne = 1, le = me =0; пh = 1, lh = тh=
0) (пе, lе, те and пh, lh, тh are the principal, orbital and magnetic quantum numbers of the electron
and hole, respectively) on the QD radius, a is calculated by minimizing the functional E0(a,
μ(a)) (17):
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¶
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Without writing cumbersome expressions for the first derivative of the functional ∂E0(a, μ(a))/
∂μ(a) =F(μ(a), a), we present the numerical solution to the equation F(μ(a), a) = 0 (18) in tabulated
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∂μ(a) =F(μ(a), a), we present the numerical solution to the equation F(μ(a), a) = 0 (18) in tabulated

Quantum Dots - Theory and Applications10

form. This follows from the table that the solution to this equation is the function μ(a), which
monotonically varies weakly within the limits [20-22]:

( ) 00.304 / 0.359a mm£ £ (19)

as the QD radius a varies within the range

 2.0  29.8 nma£ £ (20)

(m0 is the electron mass in a vacuum). In this case, the reduced exciton effective mass μ(a) (19)
in the nanosystem differs slightly from the effective mass of an exciton (with a spatially
separated hole and electron) μ = 0.304m0 by the value (μ(a) – μ0)/μ0 ≤ 0.18 when the QD radii
vary within the range (20).

Simultaneously substituting the values of the variational parameter μ(a) (19) from Table 1 with
the corresponding QD radii from the range (20) into the functional E0(a, μ(a)) (17), we obtain
the exciton ground-state energy E0(a, ε) (17) as a function of the QD radius a [20-22].

a, nm μ(a)/m0

2.0
3.0
4.0
5.0
6.0
8.0

10.0
15.0
20.0
29.8

0.359
0.352
0.345
0.338
0.331
0.325
0.319
0.313
0.308
0.304

Table 1. Variational parameter μ(a) as a function of the zinc selenide QD radius a.

The results of the variational calculation of the energy of the ground state of an exciton E0(a,
ε) (17) in the nanosystem under study containing zinc selenide QDs of the radius a (20) are
shown in the Figure 1 [20-22]. Here, the values of function μ(a) (19) and the results of the
variational calculation of the exciton ground-state energy E0(a, ε) (17) are obtained for a
nanosystem containing zinc selenide QDs, synthesized in a borosilicate glass matrix, as studied
in the experimental works [10, 19].

In the experimental work [10], borosilicate glass samples doped with zinc selenide with
concentrations ranging from x = 0.003-1%, obtained by the sol-gel method, were studied.
According to X-ray diffraction measurements, the average radii a of ZnSe QDs formed in the
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samples were within a ≈ 2.0-4.8 nm. In this case, the values of ã were comparable to the exciton
Bohr radius aex ≈ 3.7 nm in a zinc selenide single crystal. At low QD concentrations (x = 0.003
and 0.06%), their interaction can be disregarded. The optical properties of such nanosystems
are primarily controlled by the energy spectra of electrons and holes localized near the
spherical surface of individual QDs synthesized in the borosilicate glass matrix.
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0  = 1.5296 eV (15) and
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0 , = 0.573 nm (14) are, respectively, the binding energy of the ground state and the Bohr radius of a two-dimensional

exciton with a spatially separated electron and hole.

In [10, 19], a peak in the low-temperature luminescence spectrum at an energy of E1 ≈ 2.66 eV
was observed at the temperature T = 4.5 K in samples with x = 0.06%; this energy is lower than
the band gap of a zinc selenide single crystal (Eg = 2.823 eV). The shift of the peak of the low-
temperature luminescence spectrum with respect to the band gap of the ZnSe single crystal to
the short-wavelength region is ΔE1 = (E1–Eg) ≈ –165 meV. The authors of [10] assumed that the
shift ΔE1 was caused by quantum confinement of the energy spectra of electrons and holes
localized near the spherical surface of individual QDs, and that it was associated with a
decrease in the average radii a of zinc-selenide QDs at low concentrations (x = 0.06%). In this
case, the problem of the quantum confinement of which electron and hole states (the hole
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In [10, 19], a peak in the low-temperature luminescence spectrum at an energy of E1 ≈ 2.66 eV
was observed at the temperature T = 4.5 K in samples with x = 0.06%; this energy is lower than
the band gap of a zinc selenide single crystal (Eg = 2.823 eV). The shift of the peak of the low-
temperature luminescence spectrum with respect to the band gap of the ZnSe single crystal to
the short-wavelength region is ΔE1 = (E1–Eg) ≈ –165 meV. The authors of [10] assumed that the
shift ΔE1 was caused by quantum confinement of the energy spectra of electrons and holes
localized near the spherical surface of individual QDs, and that it was associated with a
decrease in the average radii a of zinc-selenide QDs at low concentrations (x = 0.06%). In this
case, the problem of the quantum confinement of which electron and hole states (the hole
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moving within the QD volume and the electron localized at the outer spherical QD-dielectric
matrix interface or the electron and hole localized in the QD volume) caused such a shift of the
luminescence-spectrum peak remained open.

Comparing the exciton ground-state energy (E0(a,ε) – Eg) (17) with the energy of the shift in
the luminescence-spectrum peak ΔE1 ≈ –165 meV, we obtained the average zinc selenide QD
radius a1 ≈ 4.22 nm (see Figure 1) [20-22]. The QD radius a1 may be slightly overestimated,
since the variational calculation of the exciton ground-state energy can yield slightly overes‐
timated energies [33, 34]. The determined average QD radius a1 was found to be within the
range of the average radii of zinc selenide QDs (a   ≈ 2.0-4.8 nm) studied under the experimental
conditions of [10, 19].

It should be noted that the average Coulomb interaction energy V̄ eh  (a, ε) =
ψ0(re, rh , r , a)|Veh (r)|ψ0(re, rh , r , a) between the electron and hole primarily contributed to the
ground-state energy (17) of the exciton in the nanosystem containing zinc selenide QDs with
radii a1 comparable to the exciton Bohr radius in a zinc-selenide single crystal (aex ≈ 3.7 nm).
In this case, the average energy of the interaction of the electron and hole with self- and
“foreign” images,
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yielded a significantly smaller contribution to the exciton ground-state energy (17),

( ) ( ) ( ) ( ) ( )' ' ' ' 00.04  ,   ,   ,   , /  ,    0.12 20 22 .ee hh eh heV a V a V a V a E ae e e e e£ + + + £ -é ù é ùë ûë û

Thus, the short-wavelength shift ΔE1 of the low temperature luminescence spectrum peak is
caused by renormalization of the electron-hole Coulomb interaction energy Veh(r) (11), as well
as renormalization of the energy U(re, rh, r, a, ε) (5) of the polarization interaction of the electron
and hole with the spherical QD-dielectric matrix interface, which is associated with spatial
confinement of the quantization region by the QD volume. In this case, the hole moves within
the QD volume and the electron is localized at the outer spherical QD-dielectric matrix
interface.

The binding energy of the ground state of an exciton (with a spatially separated electron and
hole) Eex(a, ε) in a nanosystem containing zinc selenide QDs of the radius a is the solution to
the radial Schrodinger equation with a Hamiltonian containing, in contrast to Hamiltonian
(10), only the terms Vhe'(re,rh, a, ε) (8) and Veh'(re, rh, a, ε) (9) in the polarization interaction energy
U(re, rh, a, ε) (5), which describe the energies of the hole and electron interaction with “foreign”
images, respectively [15, 27, 28]. Therefore, the exciton ground-state binding energy Eex(a, ε)
is defined by the expression [20-22]:
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where the term ψo(re, rh , r , a)| (Vh h ′(rh , a, ε) + Vee ′(re, a, ε))|ψo(re, rh , r , a)  describes the
average energy of hole and electron interaction with self-images.

Since the average energies of the interaction of the hole with its image and the average energies
of the interaction of the electron with its image deliver contributions that take opposing signs
to expression (21), they significantly compensate for each other. Therefore, the binding
energies of the exciton ground state Eex(a, ε) (21) slightly differs from the corresponding total
energies of the exciton ground state E0(a, ε) (17). This difference,

( ( ) ( ) ) ( )0, , / , ,ex exE a E a E ae e eD = -

varies within Δ ≤ 4%, as QD radii a varies within the range 3.84 ≤ a ≤ 8.2 nm (see Figure 1) [20-22].

Figure 1 shows the dependences of the total energy E0(a, ε) (17) and the binding energy Eex(a,
ε) (21) of the ground state of the exciton with a spatially separated electron and hole on the
QD size for a nanosystem containing zinc selenide QDs of the radius a. We can see that the
bound states of electron-hole pairs arise near the spherical surface of the QD, starting from the
QD critical radius a ≥ ac

(1) ≈ 3.84 nm. In this case, the hole is localized near the QD inner surface
and the electron is localized at the outer spherical QD-dielectric matrix interface. Starting from
the QD radius a ≥ ac

(1), the electron-hole pair states are in the region of negative energies
(counted from the top of the band gap Eg for a zinc selenide single crystal), which corresponds
to the electron-hole bound state [20-22, 29-23]. In this case, the electron-hole Coulomb inter‐
action energy Veh(r) (11) and the energy U(re, rh, r, a, ε) (5) of the polarization interaction of the
electron and hole with the spherical QD-dielectric matrix interface dominate the energy of the
quantum confinement of the electron and hole in the nanosystem under study.

The total energy |E0(a, ε)| (17) and the binding energy |Eex(a, ε)| (21) of the ground state of
the exciton with a spatially separated electron and hole increases with QD radius a. In the range
of radii

4.0  2.8nma£ £ (22)

the binding energy |Eex(a, ε)| (21) of the exciton ground state significantly (by a factor of
4.1-76.2) exceeds the exciton binding energy in a zinc selenide single crystal, Eex

0̄  ≈ –21.07 meV.
Starting from the QD radius a ≥ ac

(2)≈ 29.8 nm, the total energies (17) and binding energies (21)
of the exciton ground state asymptotically tend to the value Eex

0  = –1.5296 eV, which charac‐
terizes the binding energy of the ground state of a two-dimensional exciton with a spatially
separated electron and hole (see the figure 1) [20-22, 29-32].
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The obtained values of the total energy E0(a, ε) (17) of the exciton ground state in the nano‐
system satisfy the inequality

( )( )0 ,   ( )gE a E V ae - D= (23)

where ΔV(a) is the potential-well depth for the QD electron. For a large class of II-VI semicon‐
ductors in the region of QD sizes, a ≥  aex

0 , ΔV(a) = 2.3-2.5 eV [7]. Satisfaction of condition (23)
likely makes it possible to disregard the effect of the complex structure of the QD valence band
on the total energy (17) and the binding energy (21) of the exciton ground state in the nano‐
system under study when deriving these quantities.

The effect of a significant increase in the binding energy |Eex(a, ε)| (21) of the exciton ground
state in the nanosystem under study, according to formulas (5) to (9), (11), (13) to (15), (17) and
(21) is controlled by two factors [20-22, 29-32]: (i) a significant increase in the energy of the
electron-hole Coulomb interaction |Veh(r)| (11) and an increase in the energy of the interaction
of the electron and hole with “foreign” images |Veh'(re, rh, r, a, ε)| (9), |Vhe'(re, rh, r, a, ε)| (8) (the
“dielectric enhancement” effect [34]); (ii) spatial confinement of the quantization region by the
QD volume. In this case, as the QD radius a increases, starting from a ≥ac

(2) ≈  52  aex
0  ≈ 29.8 nm,

the exciton becomes two-dimensional, with a ground-state energy of Eex
0  (15), which exceeds

the exciton binding energy Eex in the zinc selenide single crystal by almost two orders of
magnitude:

( )0 0/ 72.6 .ex exE E »

The “dielectric  enhancement”  effect  is  caused by the  following factor.  When the  matrix
permittivity ε1 is significantly smaller than the QD permittivity ε2, the most important role in
the electron-hole interaction in the nanosystem under study is fulfilled by the field induced by
these quasiparticles in the matrix. In this case, electron-hole interaction in the nanosystem
appears to be significantly stronger than in an infinite semiconductor with the permittivity ε2

[34].

In [16], in the nanosystem experimentally studied in [10], an exciton model in which the
electron and hole move within the zinc selenide QD volume was studied. Using the variational
method, within the modified effective mass method, the dependence of the exciton ground-
state energy E0(a, ε) on the QD radius a in the range (20) was obtained in [16] (see Figure 1). It
was shown that, as the QD radius increased, starting from a ≥ ac = 3.90 aex

0̄  = 1.45 nm, a bulk
exciton appeared in the QD; its binding energy,
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was 21.07 meV (μ = 0.132m0 and aex
0̄  = 3.7 nm are the reduced effective mass and Bohr radius of

the exciton in the zinc-selenide forming the QD volume). The bulk exciton in the QD is
understood as an exciton whose structure (reduced mass, Bohr radius and binding energy) in
the QD does not differ from the structure of an exciton in an infinite semiconductor material.
As the QD radius a increases (a ≥ ac), the exciton ground-state energy E0(a) asymptotically
follows the binding energy of the bulk exciton (24) (see Figure 1) [20-22, 29-32].

Thus, using the exciton model, in which an electron and hole move in the QD volume, it is
impossible to interpret the mechanism of the appearance of the nanosystem luminescence-
spectrum peak with the shift ΔE1 ≈ –165 meV, obtained in [10, 19].

A comparison of the dependences of the exciton ground-state energy E0(a) in the nanosystem
[10], obtained using two-exciton models (see Figure 1) (the electron and hole move within the
zinc selenide QD volume [16]) (model I); the hole moves within the zinc selenide QD volume
and the electron is localized in the boron silicate glass matrix near the QD spherical surface
(model II), allowing for the following conclusion. In model I, as the QD radius a increases,
starting from a ≥ ac ≈ 14.5 nm, the exciton ground- state energy E0(a) asymptotically follows the
binding energy of the bulk exciton Eex

0̄  ≈ –21.07 meV (24). In model II, as the QD radius increases,
starting from a ≥   ac

(2) ≈ 29.8 nm, the exciton ground-state energy (17) asymptotically follows
Eex

0  = –1.5296 eV (15) (characterizing the binding energy of the ground state of a two- dimen‐
sional exciton with a spatially separated electron and hole), which is significantly lower than
Eex

0̄  ≈ –21.07 meV [20-22, 29-32].

3. Excitonic quasimolecules formed from spatially separated electrons and
holes

We considered a model nanosystem [23, 24] that consisted of two spherical semiconductor
QDs, A and B, synthesized in a borosilicate glass matrix with the permittivity ε1. Let the QD
radii be a and the spacing between the spherical QD surfaces be D. Each QD is formed from a
semiconductor material with the permittivity ε2. For simplicity, without loss of generality, we
assumed that holes h (A) and h (B) with the effective masses mh were in the QD (A) and QD (B)
centres and the electrons е(1) and е(2) with the effective masses me

(1) were localized near the
spherical QD(A) and QD (B) surfaces, respectively. The above assumption was reasonable,
since the ratio between the effective masses of the electron and hole in the nanosystem was
much smaller that unity: ((me

(1) / mh )≪1). Let us assume that there was an infinitely high
potential barrier at the spherical QD-matrix interface. Therefore, in the nanosystem, holes did
not leave the QD bulk and electrons did not penetrate into the QDs.
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In the context of the adiabatic approximation and effective mass approximation, using the
variational method, we obtained the total energy E0(D̃, ã) and the binding energy Ee(D̃, ã) of
the biexciton singlet ground state (the spinning of the electrons е(1) and е(2) were antiparallel)
in such a system as functions of the spacing between the QD surfaces D and the QD radius a
[23, 24]:

0 , 2 , ,exâE D a E a E D a
æ ö æ öæ ö

= +ç ÷ ç ÷ç ÷
è øè ø è ø

% %% % % (25)

Here, the binding energy Eex(ã) (17) of the ground state of the exciton (formed from an elec‐
tron and a hole spatially separated from the electron) localized above the QD(A) (or QD(B))
surface was determined in [23, 24] (by the parameters ã =(a / aex

0 ) (aex
0 =  3.7 nm and the exciton

Bohr radius in a single crystal ZnSe, D̃ =(D / aex
0 )). For the nanosystem under study, the values

of the binding energies Eex(ã) were calculated in [23, 24] for use in the experimental condi‐
tions of [10, 19].

The results of the variational calculation of the binding energy Eв(D̃, ã)     of the biexciton
singlet ground state in the nanosystem of ZnSe and QDs with an average radii of
ā1 =3.88  nm,, synthesized in a borosilicate glass matrix, are shown in [23, 24]. Such a nanosys‐
tem was experimentally studied in [10, 19]. In [10, 19], the borosilicate glassy samples doped
with ZnSe to the content x from x = 0.003-1% were produced using the sol-gel technique. At a
QD content of x = 0.06 %, one must take into account the interaction of charge carriers localized
above the QD surfaces.

The binding energy Eв(D̃, ã) of the biexciton singlet ground state in the nanosystem of ZnSe
QDs with average radii of ā1 =3.88  nm has a minimum of Eв

(1)(D1,  ā1)≈ −4, 2  meV (at the
spacing D1 ≅3.2 nm) [23, 24]. The value of     Eв

(1) corresponds to the temperature Tc ≈49  K . In
[23, 24], it follows that a biexciton (excitonic quasimolecule) is formed in the nanosystem,
starting from a spacing between the QD surfaces of D ≥ Dc

(1) ≅2, 4   nm.   The formation of such
a excitonic quasimolecule (biexciton) is of the threshold character and possible only in a
nanosystem with QDs with average radii ā1  ,   such that the spacing between the QD surfaces
D exceeds a certain critical spacing Dc

(1). Moreover, the exciton quasimolecule (biexciton) can
exist only at temperatures below a certain critical temperature, i.e., Tс ≈49  K [23, 24].

As follows from the results of variational calculation [23, 24], the binding energy of an exciton
(formed from an electron and a hole spatially separated from the electron) localized above the
surface of the QD(A) (or a QD(B)) with an average radius of ā1 =3, 88  nm is
Eex(ā1)≅ −54  meV . In this case, the energy of the biexciton singlet ground state E0(D̃, ã) (25)
takes the value E0(D̃, ã) = -112meV.

From the results of variational calculation [23, 24], of the biexciton (exciton quasimolecule)
binding energy Ee(D̃, ã), it follows that the major contribution to the binding energy (25) is
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made by the average energy of the exchange interaction of the electrons е(1) and е(2) alongside
holes h (A) and h (B). At the same time, the energy of the Coulomb interaction makes a much
smaller contribution of the biexciton binding energy Ee(D̃, ã) (25).

The major contribution to the exchange is interaction energy, created by the energy of the
exchange interaction of the electron е(1) with the holes h (B), as well as of the electron е(2) with
the holes h (B), and of the electron е(2) with the holes h (A). The major contribution to the
Coulomb is interaction energy, created by the energy of the Coulomb interaction of the electron
е(1) with the holes h (B), as well as of the electron е(2) with the holes h (A) [23, 24].

As the spacing D between the QD(A) and QD(B) surfaces is increased, starting from
 D ≥ Dc

(2) ≅16, 4  nm, the average Coulomb interaction energy substantially decreases. In
addition, because of the decrease in the overlapping of the electron wave function, the average
exchange interaction energy also substantially decreases. Consequently, the average Coulomb
interaction energy and the average energy of the exchange interaction of the electrons е(1) and
е(2) with the holes h (A) and h (B) sharply decrease in comparison with the exciton binding
energy Eex(ã) (17) [23, 24], resulting in decomposition of the biexciton in the nanosystem into
two excitons (formed of spatially separated electrons and holes) localized above the QD(A)
and QD(B) surfaces.

4. Theory of new superatoms — Analogue atoms from the group of alkali
metals

The idea of superatoms (or artificial atoms) is essential for the development of mesoscopic
physics and chemistry [20-22, 29, 30]. Superatoms are nanosized quasi-atomic nanostructures
formed from spatially separated electrons and holes (the hole in the volume of the QD and the
electron is localized on the outer spherical quantum dot matrix dielectric interface) [20-22, 29,
30]. This terminology can be accepted as correct, given the similarities between the spectra of
discrete electronic states of atoms and superatomic atoms, and the similarities in terms of their
chemical activities [20-22, 29, 30].

In [20-22], within the framework of the modified effective mass method [14], the theory of
artificial atoms formed from spatially separated electrons and holes (holes moving in the
volume of a semiconductor (dielectric) QD and an electron localized on the outer spherical
interface between the QD and a dielectric matrix) is developed. The energy spectrum of
superatoms (excitons of spatially separated electrons and holes) from QD radius a ≥ ac (about
4 nm) is fully discrete [20-22, 29, 30]. This is referred to as a hydrogen-superatom and is
localized on the surface of a valence electron QD. The energy spectrum of the superatom
consists of a quantum-dimension of discrete energy levels in the band gap of the dielectric
matrix. Electrons in superatoms are localized in the vicinity of the nucleus (QD). The electrons
move in well-defined atomic orbitals and serve as the nucleus of QD, containing in its volume
semiconductors and insulators. Ionization energy superatoms take on large values (of the
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order of 2.5 eV), which is almost three orders of magnitude higher than the binding energy of
the excitons in semiconductors [20-22, 29, 30].

We will briefly discuss the possible physical and chemical effects that are relevant for the
results of this paper. In our proposed [20-22, 29, 30] model of a hydrogen superatom localized
on the surface of the QD is a valence electron. In quasi-atomic structures of the outer valence,
electrons can participate in a variety of physical and chemical processes, similar to the atomic
valence electrons in atomic structures. Artificial atoms have the ability to connect to the
electron orbitals of electrons N (where N can vary from one to several tens). At the same time,
the number of electrons N can take values of the order of a few tens or even surpass the serial
numbers of all the known elements found in Mendeleev's table [20-22, 29, 30]. This new effect
allows for attaching to the electronic orbitals of artificial atoms N electrons, causing a high
reactivity and opening up new possibilities for superatoms related to their strong oxidizing
properties, increasing the possibility of substantial intensity in photochemical reactions during
catalysis and adsorption, as well as their ability to form many new compounds with unique
properties (in particular, the quasi-molecule and quasicrystals) [24, 29, 30]. Therefore, studies
aimed at the theoretical prediction of the possible existence of artificial new atoms (not listed
in the Mendeleev table) and to their study in terms of experimental conditions are very
relevant.

Quantum discrete states of the individual atoms of alkali metals are determined by the
movement of only one, i.e., the outermost valence electron, around a symmetric atomic core
(containing the nucleus and the remaining electrons) [35]. In the hydrogen superatom formed
quantum-energy spectra of discrete energy levels of the valence electron [20-22, 29, 30]. Thus,
the observed similarity of the spectra of discrete electronic states and individual superatoms
alkali metal atoms, as well as the similarity of their chemical activity [20-22, 29, 30, 35].

In Section 4, on the basis of a spectroscopic analogy of electronic states of artificial atoms and
individual alkali metal atoms, a new artificial atom is theoretically predicted, which is similar
to the new alkali metal atom.

In [20-22, 29, 30], a new model of an superatom is proposed, which is a quasi-zero-dimensional
nanosystem consisting of a spherical QD (nucleus superatom) with radius a and which is
included within its scope as a semiconductor (dielectric) with a dielectric constant ε2, sur‐
rounded by a dielectric matrix with a dielectric constant ε1. A hole h with the effective mass
mh moves in the QD volume, while an electron e with the effective mass mе

(1) lies in the dielectric
matrix. In such a nanostructure, the lowest electronic level is situated in the matrix and the
humble hole level is the volume QD. Large shift of the valence band (about 700 meV) is the
localization of holes in the volume QD. A large shift of the conduction band (about 400 meV)
is a potential barrier for electrons (electrons move in the matrix and do not penetrate into the
volume QD). The Coulomb interaction energy of an electron and a hole, and the energy of the
electron polarization interaction with the surface section (QD-matrix) (since the permittivity
ε2 is far superior to QD permittivity ε1 matrix) cause localization of the electron in the potential
well above the surface of QD [20-22, 29, 30].
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With increasing radius a QD, so that а >> аех
0 (where аех

0 (14) two-dimensional Bohr radius of
the electron) spherical surface section (QD- matrix) transforms into a flat surface section. In
this artificial atom, electrons localized on the surface (QD-matrix) become two-dimensional.
In this case, the potential energy in the Hamiltonian describing the motion of an electron in a
superatom, the main contribution to the energy of the Coulomb interaction Veh(r) (11) between
an electron and a hole [20-22]. Polarization interaction energy of the electron and the hole with
a spherical surface section (QD-matrix) delivers a much smaller contribution to the potential
energy of the Hamiltonian and thus, contributions to a first approximation can be neglected
[20-22]. In this regard, the two-dimensional electron energy spectrum En in the artificial atom
takes the form (13).

Depending on the binding energy Еех(a,ε) of an electron in the ground state superatom (QD
containing zinc-selenide radius a and surrounded by a matrix of borosilicate glass [10]) as
obtained in [20-22] by the variational method, it follows that the bound state of an electron
occurs near the spherical interface (QD-matrix), starting with the value of the critical radius
QD a ≥ ac

(1) = 3.84 nm, when this hole moves in the volume QD and the electron is localized on
the surface of the spherical section (QD-matrix). In this case, the Coulomb interaction energy
Veh(r) (11) between the electron and the hole, and the energy of the polarization interaction of
electrons and holes with a spherical surface section (QD-matrix) prevail over the size quanti‐
zation of the energy of electrons and holes in the artificial atom. Thus, [20-22] found that the
occurrence of superatoms had a threshold and was only possible if the radius of QD КТ а ≥
ас

(1) = 3.84 nm.

With the increasing radius of a QD scan, an increase in the binding energy of the electron in
the ground state superatom was observed. In the range of radii 4.0 ≤ а ≤ 29.8 nm, the binding
energy of the electron in the ground state superatom significantly exceeded (in (4,1-76,2) times)
the value of the exciton binding energy Ẽ0

ex ≈ 21.07 meV in a single crystal of zinc-selenide
[20-22]. Beginning with a radius QD а ≥ ас

(2) = 29.8 nm, the energy of the ground state of an
electron in a superatom asymptotically follow the value E0

ex = -1.5296 eV, which characterized
the energy of the ground state of two-dimensional electrons in an artificial atom (15) [20-22].

The effect of significantly increasing the energy of the ground state of an electron in a supera‐
tom was primarily determined by two factors [20-22]: 1) a significant increase in the Coulomb
interaction energy |Veh(r)| (2) electron-hole (the "dielectric enhancement" [34]); 2) the spatial
limitations on the quantization volume QD, while with an increasing radius of a QD, since the
radius of QD a ≥ ac

(2) = 52a0
ex = 29.8 nm, superatoms became two-dimensional with a binding

energy of the ground state E0
ex (15), the value of which exceeded the exciton binding energy

in a single crystal of zinc-selenide by two orders. The effect of "dielectric enhancement" as a
result of the dielectric constant ε1 of the matrix was much lower than the dielectric constant of
QD ε2, which played an essential role in the interaction between the electron and the hole in
the superatom playing field produced by these quasi-particles in a matrix. Thus, the interaction
between the electron and the hole in the superatom was significantly larger than in a semi‐
conductor permittivity ε2 [34].

Quantum discrete states of the individual atoms of alkali metals were determined by the
movement of only one, the outermost valence electron, around a symmetric atomic core
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(containing the nucleus and the remaining electrons) [35]. Where large distances were the case
between r electron and the nucleus (so that r >> a0, where a0 = 0.053 nm – the Bohr radius of
the electron in a hydrogen atom), the field of the atomic core was described by the Coulomb
field [35]:

( ) ( )2 / , V r Ze r= - (26)

determining the interaction of the valence electron with the atomic core (Z – serial number of
the atom in the periodic table of Mendeleev). The energy spectrum of a single atom of an alkali
metal hydrogen-described spectrum [35] is given as follows:

( )
*

*
2

02*
       ,  *  

n

RyE Ry Z Ry
n

= - = (27)

where n * = (n + y) and effective quantum number (n = 1, 2, 3,... the principal quantum number);
the amendment y depended on the orbital quantum number l. Amendments to y were due to
the fact that the valence electron moved in the Coulomb field of the atomic core, where the
nuclear charge was screened by core electrons. Amendment y corrections were determined by
comparing the spectrum of (6) with its experimental values. The value of y < 0 and was
numerically closer to the atomic core suitable valence electron orbit. The number of possible
orbits of the valence electron in a single alkali metal atom such as a hydrogen atom, and [35].

The  similarity  of  the  individual  series  of  neutral  alkali  metal  atoms with  the  hydrogen
Balmer series suggests that the energy spectra of neutral alkali metal atoms can be labelled
valence electron radiation in transition from higher levels to the level of principal quan‐
tum number n = 2 [35].

In a single atom of an alkali metal valence electron moving in the Coulomb field of the atomic
core (26) having the same functional dependence on r as the Coulomb field (11), in which the
valence electron in hydrogen-like model of artificial atom. This leads to the fact that the energy
spectra of the valence electron in a single atom of an alkali metal (27) and in the artificial atom
(13) describe the spectrum of hydrogen-type. At the same time, the number of possible
quantum states of valence electrons in a hydrogen-like artificial atom model is the same as the
number of quantum states of discrete valence electrons in a single atom of an alkali metal
[20-22, 29, 30].

Table 2 shows the position of the valence electron energy levels in the atoms of alkali metals
(K, Rb, Sc) [35] and the new artificial atom X, as well as the level shifts of the valence electron
(ΔERb

к , ΔESc
Rb, ΔEx

Sc) relative to the adjacent level. Assume that the shift of the energy level Ex

artificial atom X (relative to the energy level Esc of the atom Sc) will be the same as the shift of
the energy level ERb of the atom Rb (relative energy level Esc of the atom Sc), (i.e., ΔEx

Sc =
ΔESc

Rb). In this case, the level of the valence electron artificial atom will be Ex = –593 meV. Using
the dependence of the binding energy Еех(a,ε) of the ground state of an electron in an artificial
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atom [20-22] (QD containing zinc-selenide radius a and surrounded by a matrix of borosilicate
glass [10]), we found the radius QD zinc-selenide a1 = 5.4 nm, which corresponded to the Ex
= – 593 meV. It should be noted that the energy levels of a valence electron in the individual
atoms of alkali metals (K, Rb, Sc) [35] and the new artificial atom X are located in the infrared
spectrum.

Alkali metal atoms selected Valence electron energy levels (meV)
Level shifts of the valence electron

(meV)

K - 7 21.1

Rb - 7 11.2 1 0

Sc - 652 5 9

X - 5 93 5 9

Table 2. Position of energy levels of the valence electron in some alkali metal atoms (K, Rb, Sc) and a new artificial
atom, X. Level shifts of the valence electron (ΔERb

к , ΔESc
Rb, ΔEx

Sc) are relative to the adjacent level.

Thus, we propose a new model of an artificial atom that is a quasi-atomic heterostructure
consisting of a spherical QD (nucleus superatom) radius a and which contains in its scope, zinc-
selenide, surrounded by a matrix of borosilicate glass (in volume QD, h hole effectively moves
mass mh, e and the electron effective mass mв

(1) is located in the matrix), thus allowing for finding
a new artificial atom X (absent in the Mendeleev periodic system), which is similar to a new
single alkali metal atom. This new artificial atom of a valence electron can participate in various
physical [20-22, 29, 30] and chemical [30, 35] processes that are analogous to atomic valence
electrons in atomic systems (in particular, the selected alkali metal atoms [35]). Such process‐
es are unique as a result of the new properties of artificial atoms: strong oxidizing properties
that increases the possibility of substantial intensity in photochemical reactions during catalysis
and adsorption, as well as their ability to form a plurality of the novel compounds with unique
properties (in particular, the quasi-molecule and the quasicrystals [23, 24]).

The application of semiconductor nanoheterostructures as the active region nanolasers
prevents small exciton binding energy in QD. Therefore, studies aimed at finding nanoheter‐
ostructures, which will yield a significant increase in the binding energy of the local electronic
states in QDs, are relevant [20-22]. The effect of significantly increasing the energy of the
electron in a hydrogen superatom [20-22, 29, 30] allows for better experimental detection of
the existence of such superatoms at room temperatures and will stimulate experimental studies
of nanoheterostructures containing superatoms, which can be used as active region nanolasers
when working with optical transitions.

5. Conclusions

The theory of an exciton with a spatially separated electron and hole was developed within
the framework of the modified effective mass method [14], in which the reduced effective
exciton mass is a function of the semiconductor QD radius a. The average zinc-selenide QD
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radius was determined by comparing the dependence of the exciton ground-state energy (17)
on the QD radius, obtained by the variational method within the modified effective mass
method [14] and using the experimental peak of the low-temperature luminescence spectrum
[10, 19]. It was shown that the short-wavelength shift of the peak of the low-temperature
luminescence spectrum of the samples containing zinc selenide QDs, which was observed
under the experimental conditions noted in [10, 19], was caused by renormalization of the
electron-hole Coulomb interaction energy (11), as well as the energy created by the polarization
interaction (5) of the electron and hole with the spherical QD-dielectric matrix interface, related
to spatial confinement of the quantization region by the QD volume. In this case, the hole
moves in the QD volume and the electron is localized at the outer spherical QD-dielectric
matrix interface [20-22, 29-32].

To apply semiconductor nanosystems containing zinc-selenide QDs as the active region of
lasers, it is required that the exciton binding energy |Eex(a, ε)| (21) in the nanosystem be at the
order of several kT0 and at room temperature T0 (k is the Boltzmann constant) [13]. Nanosys‐
tems consisting of zinc-selenide QDs grown in a borosilicate glass matrix can be used as the
active region of semiconductor QD lasers. In the range of zinc selenide QD radii a (22), the
parameter |Eex(a, ε)/kT0| take on significant values ranging from 3.1 to 56 [20-22, 29-32].

The effect of significantly increasing the binding energy (21) of the exciton ground state in a
nanosystem containing zinc selenide QDs with radii a (22) was detected; compared to the
exciton binding energy in a zinc selenide single crystal, the increase factor was 4.1-72.6. [20-22,
29-32]. It was shown that the effect of significantly increasing the binding energy (21) of the
exciton ground state in the nanosystem under study was controlled by two factors [20-22,
29-32]: (i) a substantial increase in the electron-hole Coulomb interaction energy (11) and an
increase in the energy of the interaction of the electron and hole with “foreign” images (8), (9)
(the “dielectric enhancement” effect [34]); (ii) spatial confinement of the quantization region
by the QD volume; in this case, as the QD radius a increased, starting from a ≥ ac

(2) ≈ 29.8 nm,
the exciton became two-dimensional with a ground-state energy (15), which exceeded the
exciton binding energy in a zinc selenide single crystal by almost two orders of magnitude.

A review devoted to the theory of excitonic quasimolecules (biexciton) (made up of spatially
separated electrons and holes) in a nanosystem that consists of ZnSe QDs synthesized in a
borosilicate glass matrix was developed within the context of the modified effective mass
approximation. Using the variational method, we obtained the total energy and the binding
energy of the biexciton singlet ground state in such a system as functions of the spacing
between the QD surfaces and the QD radius. It was established that, in a nanosystem composed
of ZnSe QDs with the average radii ā1, the formation of a biexciton (exciton quasimolecule)
was of the threshold character and possible in a nanosystem where the spacing D between the
QD surfaces is defined by the condition Dc

(1) ≤ D ≤ Dc
(2) [23, 24]. Moreover, the exciton quasimo‐

lecule (biexciton) can exist only at temperatures below a certain critical temperature, i.e.,
Tс ≈49 K [23, 24]. It was established that the spectral shift of the low temperature luminescence
peak [10, 19] in such a nanosystem resulted due to quantum confinement of the energy of the
biexciton singlet ground state.
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Thus, we propose a new model of an artificial atom, which is a quasi-atomic heterostructure
consisting of a spherical QD (nucleus superatom) with radius a and which contains in its scope
zinc selenide, surrounded by a matrix of borosilicate glass (in volume QD moves h hole
effective mass mh, e and the electron effective mass me

(1) is located in the matrix), and which is
allowed to find a new artificial atom X (absent in the Mendeleev periodic system), which is
similar to a new single alkali metal atom. This new artificial atom of valence electron can
participate in various physical [20-22, 29, 30] and chemical [30, 35] processes that are analogous
to atomic valence electrons in atomic systems (in particular, the selected alkali metal atoms
[35]). Such processes are unique due to the new properties of artificial atoms: strong oxidizing
properties that increase the possibility of substantial intensity in photochemical reactions
during catalysis and adsorption, as well as their ability to form plurality among novel
compounds with unique properties (in particular, the quasi-molecule and the quasicrystals
[23, 24]).
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Abstract

We aim from this chapter to declare for the readers, what are the exciton and trions
in quantum dot and we will present complete theoretical discussion for the behavior
of exciton ,its bound state ,binding energy and its stability in quantum dot with
different sizes and different confinement potentials .The charged complex particles as
negative and positive trions will be investigated theoretically using variational
procedure in both strong and weak confinement regime . Good agreement with
experimental data was found and discussed.

Keywords: quantum dot, exciton, trion, binding energy

1. Introduction

During  the  optical  excitation  of  carriers  in  a  semiconductor,  the  minimum  energy  re‐
quired to form free carriers is called the band gap. The energy below that value cannot
excite free carriers. However, low-temperature absorption studies of semiconductors have
shown excitation just below the band gap [1]. This excitation is associated with the formation
of an electron and an electron hole bound to each other, otherwise called an exciton. It is
an electrically  neutral  quasiparticle  like  in  a  hydrogenic  state.  At  low temperatures,  the
bound states are formed and the Coulomb interaction between the electron and the hole
becomes prominent [2].  The negative trion (X-)  is  created due to the additional electron
bound to a pre-existing exciton and if a hole is bound to an exciton, a positive trion (X+) is
created. Both the negative and positive trions are complex electronic excited states of the

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



semiconductors and therefore, the 3-body problem is raised. Although Lampert [3] in 1958
originally and theoretically predicted the negative trion in semiconductors, K.Kheng et al.
experimentally achieved a negative trion in Cd Te/Cd Zn Te quantum well [4].

The rapid progress of semiconductor technology in the recent years has allowed the fabrication
of low dimension electronic nanostructures. Such nanostructures confine charged particles in
all three space dimensions. In low dimensional, especially in quantum dots [5,6] (three
dimension confinement), the picture is different because it is below a nanometer wide, a few
nanometers thick, and in various shapes. The quantum confinement increases highly, and this
quantum confinement leads to more stability of the excitons and trions by increasing their
binding energy. The stability of such particles remains up to room temperature. A proper
identification of the (X-) was not achieved until the early 1990’s in remotely doped, high-quality
quantum-well (QW) structures [7-9]. Since then, extensive work has been carried out on (X-)
inside the two-dimensional (2D) [wide quantum wells [7-11]] and quantum dots, which the
first observations of the QD-confined charged excitons (trions) were performed on ensembles
of the QDs [12]. There are many theoretical studies devoted to excitons [13-15] and trions [16-
25] in quantum dot. Most of such studies have treated and considered the spherical[26-28],
lens shaped [29,30], square flat plated [31,32], and cylindrical [33,34] quantum dots.

In the present chapter, we study the influence of the 3-D quantum confinement on the binding
energy of the exciton (X), negative trion (X-), and the positive trion (X+) in a semiconductor
cylindrical quantum dot manufactured in GaAs surrounded by Ga1-xAlxAs. Using a variational
approach and the effective mass approximation with finite confinement – potential. There have
been concerns as to whether the effective mass approximation could still be valid in the
quantum dot limit when the size of the exciton could be similar to the average lattice constants
of bulk semiconductor [35].

2. Theoretical model

Within the effective mass approximation and non-degenerated band approximation, we can
describe the exciton and trions in the following semiconductor structure: a symmetric cylin‐
drical QD of radius R and height L made of GaAs surrounded by Ga1-xAlxAs. In our model,
the electrons and the holes are placed in the external potential Ve(re, ze) and Vh (rh , zh ),
respectively and coupled via Coulomb potential. We choose the potential in GaAs (well) to be
zero and equals Ve or Vh  in the barrier material.

2.1. Exciton

The Hamiltonian of an exciton confined in cylindrical QD, using the relative coordinate
r = | r̄ e − r̄ h | , can be written as[36]:
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quantum-well (QW) structures [7-9]. Since then, extensive work has been carried out on (X-)
inside the two-dimensional (2D) [wide quantum wells [7-11]] and quantum dots, which the
first observations of the QD-confined charged excitons (trions) were performed on ensembles
of the QDs [12]. There are many theoretical studies devoted to excitons [13-15] and trions [16-
25] in quantum dot. Most of such studies have treated and considered the spherical[26-28],
lens shaped [29,30], square flat plated [31,32], and cylindrical [33,34] quantum dots.

In the present chapter, we study the influence of the 3-D quantum confinement on the binding
energy of the exciton (X), negative trion (X-), and the positive trion (X+) in a semiconductor
cylindrical quantum dot manufactured in GaAs surrounded by Ga1-xAlxAs. Using a variational
approach and the effective mass approximation with finite confinement – potential. There have
been concerns as to whether the effective mass approximation could still be valid in the
quantum dot limit when the size of the exciton could be similar to the average lattice constants
of bulk semiconductor [35].

2. Theoretical model

Within the effective mass approximation and non-degenerated band approximation, we can
describe the exciton and trions in the following semiconductor structure: a symmetric cylin‐
drical QD of radius R and height L made of GaAs surrounded by Ga1-xAlxAs. In our model,
the electrons and the holes are placed in the external potential Ve(re, ze) and Vh (rh , zh ),
respectively and coupled via Coulomb potential. We choose the potential in GaAs (well) to be
zero and equals Ve or Vh  in the barrier material.

2.1. Exciton

The Hamiltonian of an exciton confined in cylindrical QD, using the relative coordinate
r = | r̄ e − r̄ h | , can be written as[36]:
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Where m *
e
 and m *

h
 is the effective mass of the electron and the hole, respectively, μ is the

reduced mass of exciton μ =me mh / me + mh , and (re, ze) and (rh , zh ) are the spatial coordinates
of the electrons and hole in the cylindrical frame, respectively. The first three terms of equation
(1) represent the kinetic energy of the electron, hole, and exaction's center of mass existing in
the structure under consideration. The last three terms represent the confinement potentials
followed by the Coulomb interaction term. ε is the relative static dielectric constant for the
used material and ε0 is the permittivity of free space. We can write the expressions of Ve(re, ze)

and Vh (rh , zh ) as:

i i
i i

o i i

0 r   R and z L 
V (r ,z )

V r   R and  z  L

ì £ £ï= í
> >ïî

(2)

Here the indices i stand for the electron (e) or the hole (h).

The Schrödinger equation for the exciton in the quantum dot is:

( ) ( ), , , , , , , ,e h e h e h e hH r r r z z E r r r z zY = Y (3)

By choosing the following trial wave function, it takes into account the electron–hole correla‐
tion and the Ritz variation principle that are used to solve this equation. Thoroughly, we are
able to determine the exciton ground state (Eex),

( )22( , , , , ) ( ) ( ) ( ) ( )exp ( )e h eh e h e h e h e h e hr r r z z f r f r g z g z r r z zaæ öY = - - + -ç ÷
è ø

(4)

The variation parameter α is determined by minimizing the value of the exciton energy:

( ) / ,exE Ha = Y Y Y Y (5)
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The binding energy of the exciton is given by:

b e h exE E E E= + - (6)

Where f (re) , f (rh ) , g(ze) , g(zh ) and Ee, Eh  are the ground wave functions and energies of both
the electron and the hole [37].

2.2. Negative trion

The negative trion (X-) is created when an additional electron is bound to a pre-existing exciton
(X). The negative trion Hamiltonian in a cylindrical coordinate can be written as:
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The first three terms of equation (7) represent the kinetic energy terms of the three particles
existing in the structure under consideration. The second three terms represent the confine‐
ment potentials followed by the three Coulomb interaction terms. We use equation (2) for
expressions of Ve(re, ze) and Vh (rh , zh ).

The present model is fully three dimensional and is applicable to the confinement potentials
of finite range and depth, i.e., it is adequate for QD nano-crystals embedded in an insulating
medium, e.g. GaAs [38] and InAs [39, 40]. The quantum well potential given above does not
commute with the kinetic energy operator at the center of the mass motion. Therefore, the
Hamiltonian (7) cannot be separated from the center of the mass and Hamiltonians of the
relative motion.

The full three dimension Schrödinger equation for the negative trion in quantum dot is:

( ) ( )1 2 1 2 1 2 1 2
, , , , , , , , , ,

e ee e h e h e e h e hH r r r z z z E r r r z z zY = Y (8)

Hence, the ground state wave function for the negative trion confined in the cylindrical
quantum dot has dependent on the six coordinate parameters appearing in equation (8). Here,
we adopt the variation approach to estimate the ground state of the negative trions (X-), their
binding energy, and their wave functions. We choose the following trial wave function:
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Where, f (re1
), f (re2

), f (rh ), g(ze1
), g(ze2

) and g(zh ) are the single particle eigenfunctions [37],
and the trial wave function ϕ describes the internal motion of the trions (X-) defined as:
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Here β1 , β2 and β3 are the variation parameters. The form of the wave function given in
equation (9) satisfies not only the strong interaction region requirements (such as in a very
narrow quantum dots), but also yields the correct results near the bulk limits (weak interaction
region).

Let χe1
=

re1

R , χe2
=

re2

R , χh =
rh
R and ςe1

=
ze1

L , ςe2
=

ze2

L , ςh =
zh
L ,

where 0≤χi ≤ 1 and −1≤ςi ≤1. Now, we rewrite the arguments of the negative trion wave
functions in terms of χ ,s , and ς ,s and define, χ1 = |χh −χe1

| , χ2 = |χe2
−χh | , χ3 = |χe1

−χe2
|  and

ς1 = (ςh −ςe1
) , ς2 = (ςe2

−ςh 1
) , ς3 = (ςe1

−ςe2
),

By using the new variables, the trial wave function can be expressed as follows:
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The ground state energy of the charged exciton system is given by:

1 2 3( , , ) trion trion
trion

trion trion

H
E

y y
b b b

y y
= (11)

Following some tedious algebra to minimize the above equation with respect to the variational
parameters β1 , β2 and β3, we obtained the ground state energy of the negative trion. The
variational method is used to calculate the ground state of the negative and positive trions.

The integral form of the nominator in the R.H.S of equation (11) is:
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The equation (12) is presented in terms of χ ,s , and ζ ,s as:
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The denominator in the R.H.S (normalization term) of equation (11) is:
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Substituting equations (14) and (15) in equation (11), we get the ground state energy of the
trion (Etrion).

2.3. Positive trion

The positive trion (X+) is created when an additional hole is bound to a pre-existing exciton
(X), the positive Trion Hamiltonian can be obtained from equations (7) and (8) by interchanging
the indices e2 ↔  h and ascribing the indices 1 and 2 to the holes.
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By the same mathematical method that was done with the negative trion, we can have the
energy of a positive trion (Etrion).

The binding energy of the charged exciton (negative or positive trion) is defined as:

b i ex trionE E E E= + - (17)

Where Ei is the ground state energy of the free electron or the free hole [27], Eex is the ground
state energy of the exciton in the quantum dot as presented by equation (5), and Etrion is the
ground state energy of the negative or positive trion calculated from equation (11).
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3. Results and discussion

Applying this methodology for the GaAs cylindrical QD, we consider the following values of
the confinement potential [13]: Vo

e =0.57(1.155x + 0.37x 2)eV  for the electron and
Vo

h =0.43(1.155x + 0.37x 2)eV  for the hole. In our calculation, the Al concentration in the barrier
material AlxGa1-xAs is taken as x. Furthermore, we used the following material parameters [13]:
the relative dielectric constant for GaAs is ε =12.58 and the effective masses are
me

* =0.067mo, m *
h

=0.34mo for the electron and the isotropic hole mass, respectively, where mo

is the mass of the free electron.

Figure (1) shows the calculated the exciton binding energy for the ground state as a function
of the quantum dot radius for three different values of the width L/2 = 4, 7, and 10 nm. The
calculated values show the presence of the well-known peaks of the binding energy curves in
nanostructures, which depend strongly on the QD radius (R values), but its dependence on
the QD width (L/2 values) is not strong. These results are in a good consistence with the
previous data obtained by Le Goff and Stebe [41].
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Fig(1): The binding  energy  of  the  exciton  as  a function  of  R.  The
Three  curves  are  at  different  values  of  QD  disc  width  L (as  indicated).
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Figure 1. The binding energy of the exciton as a function of R. The Three curves are at different values of QD disc
width L (as indicated).

Here, we would like to add that the peak positions of the binding energy as a function of L/2
also occur at almost one value of R = 3nm. We notice the sudden decrease of the exciton binding
energy with the decrease in radius values. When R increases from 7-10nm, the binding energy
changes almost by 10meV, and changes almost by half this value if the disc width L/2 increases
from 7-10nm.
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also occur at almost one value of R = 3nm. We notice the sudden decrease of the exciton binding
energy with the decrease in radius values. When R increases from 7-10nm, the binding energy
changes almost by 10meV, and changes almost by half this value if the disc width L/2 increases
from 7-10nm.
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Figure (2) displays the variation of the exciton binding energy as a function of R, but for two
different values of Al concentration (x= 0.15, 0.4). Here, a right shift of the peak position by
almost 1nm and by 20 meV in height is observed when the quantity of Al increases by a ratio
of 0.25. The height of the peak translated to higher values by increasing the barrier height (large
x), which is due to the more confinement of the particles. Here, the position of the exciton
binding energy peaks can be estimated to occur around L/2 ≅ 4nm and R ≅ 3nm or a diameter
≅ 6nm for the quantum dot disc.
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Fig(2): The  variation  of  the  exciton  binding  energy  with  R,
At  two  different  values  of  Al  concentration,  x = 0.15,  and  0.4.
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Figure 2. The variation of the exciton binding energy with R, At two different values of A1 concentration, x=0.15, and
0.4

It has been shown in reference (35) that there is a scaling rule for circular and square quantum
wires of the form L/2R = 0.9136 such that a square wire of width L is equivalent to a circular
wire of diameter 2R if the ratio of 0.9136 is achieved. Using this scaling rule, the critical
confinement width for a quantum square wire of width L=5.4nm is equivalent to the present
quantum disc with a radius R≅3nm. From the behavior of the binding energy positions
discussed above, we may conclude that the bulk effect sets in along one spatial axis around L/
2 ≅4.5 to 6nm, fairly independently of the confinement conditions. The present results should
be useful for designers of nanoscale devices.

Concerning the discussion above about the quantum size effect, we present in figure (3) the
exciton binding energy (Eb) and the corresponding exciton energy H  as a function of the disc
radius R at two different values of L/2 = 4,7, and 10nm.

In figure (3-a), there is no intersection between the exciton energy and the exciton binding
energy ( H  / Eb >1) all the time so the exciton stability is small. At the intersection point figures
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(3-b and 3-c), we have the binding energy equal to the expectation value of the Hamiltonian
and equal to half the free particles energy (Ee+ Eh). Before the intersection point where H  /Eb

>1, the exciton state directs to annihilation faster than after the intersection point where H  /
Eb<1. The crossover of the binding energy curve with the Hamiltonian curve confirms our
above discussion. In order to obtain a large exciton binding energy, we should choose quantum
dots with radius from 3nm to 10nm. However, if the radii of quantum dots are beyond the
nanostructure scale, the principle of quantum theory is unavailable and the electronic prop‐
erties of dots belong to the region of bulk materials.

One of main goals of this chapter is to estimate the best theoretical model with an available
data to fit, and to clarify the paradoxes about the trion binding energy, which are discussed in
previous researches. Since the available existing experimental data are given in the work of
Backer et al. [42], to match our parameters with theirs we therefore used the anisotropic hole
effective mass (hole effective mass in the z-direction (m *

hz
) is different from its value in the in-

plane direction (m *
hxy), such as: m *

hz
=0.377mo and m *

hxy
=0.112mo). The results of the charged

exciton binding energies as a function of the half-height (L/2) of the QD are shown in Figure
(4) and are evaluated at x = 0.3 with a QD radius (R) equal to 15 nm. The curves with solid
squares and solid circles correspond to our theoretical calculations of the negatively charged
exciton binding energy (Eb−) and positively charged exciton (Eb+), respectively, whereas, the
opened square points and opened circle points indicate the experimental values of the binding
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Fig(4) : The exciton energy (<H>) and  the  exciton binding  energy (Eb)  versus  the  radius  R.
         a) at  L= 4nm, b) at L= 7nm  and  c) L= 10nm.
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Figure 3. The exciton energy (<H>) and the exciton binding energy (Eb) versus the radius R. a) at L=4nm, b) at L=7nm,
c) L=10nm.
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energies [42] of the negative and positive trion, respectively. For each curve, we see that the
binding energy increases as the dot half height decreases, which leads to the trions being more
stable at small QD (strong confinement regime). When the half-height becomes greater than
the effective electron Bohr radius for Ga As (aB=9.9 33 nm), the binding energy of X − decreases
rapidly and reaches values less than the binding energy of X +. At a small QD size, the gain of
the binding energy as a function of the size of QD comes from the Coulomb interaction related
to the distances of the interparticles where the Coulomb interaction between the electrons (Vee)
in X − is larger than the Coulomb interaction between the holes (Vhh) in X +, and the Coulomb
interaction at this size is more effective than the massive localization of the system, so Eb− >
Eb+. Our theoretical values for both trions are shifted approximately by 0.3 meV (7%) from the
experimental value.

Figure 4. Trion binding energy (Eb) as a function of QD half-height (L/2) at radius R=15 nm, for an anisotropic effec‐

tive hole mass. The closed circles and closed squares represent the theoretical results of (Eb+) and (Eb−), respectively.

The experimental data for (Eb+) and (Eb−) are indicated by opened circles and opened squares, respectively.

In table (1), we summarize our theoretical results, compared with the experimental data and
other theoretical data calculated by using the Path Integral Monte Carlo method (PIMC) (Ref
(42)). Table (1-a) and Table (1-b) show the negative and the positive trion data, respectively.

We refer the acceptable agreement between our theoretical and the experimental data to the
following two issues. The first issue is that we considered a theoretical model that solved a full
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3-D confinement of the trions inside the QD; the second issue is the choice of the trial wave
function, which describes correctly the internal motion of the trion. Let us discuss the binding
energy of the charged excitons confined inside a cylindrical QD, with an isotropic hole effective
mass (m *

h
= 0.34 mo).

We have calculated the negatively charged exciton binding energy (E-b solid squares) and the
positively charged exciton binding energy (E+

b solid circles) as a function of the QD half-height.
The results are shown in figure (5) and are calculated at x = 0.3 and R=15nm. Also, we obtained
a more stable negative trion system than the positive trion system at small QD. Besides, E-b

crosses down E+
b at a larger value of the QD half-height (L/2=15nm) than in the case of an

anisotropic hole effective mass (L/2=11nm).

Now, we come to the second goal of our work on trions, which concerns the paradoxes existing
in most of the previous papers. In Refs (42, 43, and 44), the authors obtained a higher binding
energy of the negative trion than the positive one over all of the QD dimensions they examined.
On other hand, the demonstrated data in Refs (18 and 38) showed that the binding energy of
the negative trion is less than the binding energy of the positive trion. In Ref (18), the author
introduced the correlated hyperspherical harmonics as basic functions to solve the hyper
angular equation for negative and positive trions in a harmonic quantum dot. He introduced,
as an approximation of the center of mass coordinates, to reduce the variables and conse‐
quently simplified the calculations. In Ref (38), the authors formulated the Hartree-Fock
approximation using a calculation method, which is based on the quantum adiabatic theorem,
to study the stability of the charged excitons in QD. Again, we see that the standard tools of
the condensed-matter physics, like the many body techniques relying on the Hartree-Fock
approximation, are often not sufficient since the exchange and correlation energies can notare
not negligible [45]. The full three dimensional calculation is introduced by Szafran et al. [23]
for a trion confined in a spherical quantum dot, and the authors found that the binding energy
of the negative trion is less than the binding energy of the positive trion at a large radius and
vice versa at a small radius. Generally, this agrees with our view. The results shown in figure

L/2 (nm) Ours Eb(x-) meV
Exp. (meV)

Ref [42]
Value(%) shift from

Exp.
PIMC meV)

Ref [42]
Value(%) shift from

Exp.

4.5 3.6 3.9 7.69% 2.9 25.6%

5 3.25 3.4 4.41% 2.5 26.47%

(a)

L/2 (nm) Ours Eb(X-) meV
Exp. (meV)

Ref [42]
Value (%) shift from

Exp.
PIMC (meV)

Ref [42]
Value(%) shift from

exp.

4.5 2.27 2.6 12.69% 2.25 13.46%

5 2.22 2.4 7.5% 2.0 8.33%

(b)

Table 1. (a): The negative trion results; (b): The positive trion results.
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(5) coincide with the results given in Refs. 42, 44, and 45. Here, Eb− > Eb+  as long as the QD size
is small. Also, our results are qualitatively similar to those obtained by the authors in Refs. 18
and 38 in the case of a large QD size where they showed that Eb+ > Eb−  as given in figure (6).

Figure 5. The variation of trion binding energy (Eb) calculated as a function of QD half-height (L/2) at a radius of R=15

nm, for an isotropic hole mass. The closed circles correspond to Eb+ of positive trion and the closed squares corre‐

spond to Eb− of negative trion.

The possibility to observe negative or positive trions depends on its stability against dissoci‐
ation into an exciton and free electron or hole. The corresponding sufficient stability condition
for the charged excitons is [38] Eb± ≥0. Concerning the stability of X − and X + in the case of
isotropic and anisotropic hole effective mass, from figures (4) and (5), we observe that the
positive and negative trions are stable, while from figure (6), X- is unstable in a large QD (L >2
aB) and X + is stable even near the bulk limit.

In order to get a physical insight into the stability of X + at large QD size, this can be attributed
to its heavy mass. This heavy mass system becomes more localized and stable even inside large
QDs. As a result, the positive trions binding energy behavior allowed most of experimentalists
to detect X + near room temperature in such large dimensional structures.

At last, a comparison between the ground state energy and the binding energy of the positive
and negative trions and the excitons is shown in figure (7). In figure (7- a), the ground state
energies of the trions X −, X +, and exciton (X ) are plotted as a function of the QD half-height
(L/2) for the isotropic hole mass. Similarly, the binding energies are shown in figure (7-b). From
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this figure, one can see that the neutral exciton has the lowest ground state energy (E X )
compared to that of the trions (X −, X +)(figure7-a).

Figure 7. a) Exciton (X ) and charged excitons (X − and X +) ground state energies as a function of QD half-height L,
at radius R= 15 nm. b) The binding energies of exciton and charged excitons as a function of QD half-height L/2.

Figure 6. The trion binding energy as a function of L/2 at R=25 nm for an isotropic effective hole mass. Closed circles
correspond to the positive trion and closed squares correspond to the negative trion.
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Figure 6. The trion binding energy as a function of L/2 at R=25 nm for an isotropic effective hole mass. Closed circles
correspond to the positive trion and closed squares correspond to the negative trion.
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Also, we notice that it decreases monotonically and not rapidly like the trions ground state
energies. In other words, within the examined range of the QD height, we obtained a drop in
E X  by 14 meV, while E X + decreased by 22meV and E X − decreased by 44meV. By looking at
figure (7-b), one can see that the exciton is the most stable system. For small QDs, this stability
(or the largest binding energy) of X  may be referred as the strong confinement regime of the
QD where the exciton is severely restricted in all spatial directions and the quantum confine‐
ment are at a maximum for this system. Defining the neutral exciton binding energy (Eb X ) in
the same manner as in equation (6) {Eb X = Ee + Eh − E X }, we find that E X  is the lowest but not
comparable to the single particles ground state energy. However, for positive and negative
trions, their ground state energies compete with the single particle, where E X − is larger and
comparable with Ee, but E X + competes with Eh , therefore their binding energy is low compared
to the neutral exciton. Within the examined QD size, we obtained a drop by 45, 4 and 2 meV
in the binding energy of X , X −, and X +, respectively. The decrease of the exciton binding
energy seems dramatic, but compared with the trions it is not. The binding energy of the
negative trion drops by 80% when the QD half-height changes from 4.5nm to 18nm, while Eb X

and Eb+ within the same size range decrease by 70% and 55%, respectively.

4. Conclusion

We have introduced a trial wave function for the positive and negative trions confined in a
cylindrical QD. Using the given wave, we obtained a higher binding energy of negative trions
than the positive trions inside the QD with a half-height less than the effective Bohr radius and
we referred that to the high Coulomb interaction energy between the two electrons compared
to the weak Coulomb interaction between two holes at such small QDs. When the half-height
of the QD increased to values higher than the Bohr radius, the negative trion binding energy
rapidly decreases than the binding energy of the positive trion. An anisotropic hole effective
mass state is demonstrated to compare our model with the experimental results. We obtained
a good agreement with the experimental results up to 0.3 meV (7%). To improve the stability
of the trions (X −, X +), in such structures, it is necessary to operate with a special QD size,
which permits an enhancement of the binding energy.

5. Appendix

We want to prove the formula that given in equation (13)

22
*

2
0

1d d d rdr
r dr drdr

yy y
¥æ ö æ ö

- + =ç ÷ ç ÷ç ÷ è øè ø
ò (18)

Excitons and Trions in Semiconductor Quantum Dots
http://dx.doi.org/10.5772/61177

41



Proof
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where ψ is a real eigenfunction.

From equation (3)
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By using equation 5 and 6 and substituting in equation 4
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This means we can rewrite equation (7) as

2*

0 0

dd dI r dr r dr
dr dr dr
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ò ò (25)

From equation 2, 3, and 8, relation 1 is proven.
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Abstract

The recent huge increase of the interest in the implementation of quantum
information processing (QIP) focused an attention on the semiconductor quantum
dots (QDs) as nano-systems with controllable quantum states both in charge and
spin degrees of freedom. This creates an opportunity for discussing and modeling
of QD-based qubits and quantum-logic gates for prospective quantum computer.
Despite of many efforts in this respect the progress is, however, disappointing
and the barrier of so-called diVincenzo criteria required to be fulfilled for the QIP
technology is not broken and even not approached in any realistic proposal of
using QDs for qubits and quantum gates. The reason of this situation is linked
with unavoidable restrictions imposed on the coherence and the coherent control
of quantum states in QDs, which precludes scalable implementation of qubits and
quantum gates based on QDs. The decoherence of charge and of spin degrees of
freedom in QDs and QD-systems locates inconveniently straight in the middle of the
required six-orders of magnitude diVincenzo window for time scale of the control
in comparison to the decoherence rate. This leads to the so-called ’three-orders
time-limit’ for QIP implementations in QDs. Some advantages of spin degrees
of freedom in QDs can be noticed, however. Even though the time scale of the
decoherence of spin in of particular practical importance magnetic QDs still is
located in the center of six-orders diVincenzo window, the amplitude of the phase
decoherence of spin might be frozen on a small level in proximity of the zero
temperature. Short critical overview of the dephasing restrictions imposed on the
QD technology is the aim of this chapter.

Keywords: quantum dots, quantum information processing (QIP), dephasing

1. Introduction

The notion of a quantum dot [1–3] comprises various nanometre-size semiconductor
structures, manufactured by means of different technologies and resulting in spacial
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limitations on the carrier dynamics (electrons and holes), as well as excitations of
electron-hole pairs (excitons). The Coulomb energy scales withe QD size d as 1/d (and is
of the order of meV for QDs), while kinetic energy scales as 1/d2, which leads to the shell
properties of dots, distinct in comparison to atoms (more complicated Hund-type rules for
QDs), since both energies remain within mutual proportions of d, which favours Coulomb
energy for dots in contrast to atoms [1] at the scale of meV orders. The nanometre-scale
limitations on quantum dynamics result in kinetic energy quantization,

∆E ≥ (∆p)2

2m∗ � h̄2

2m∗d2 �
{

10 meV, d ∼ 10 nm,
1 eV, d ∼ 0.1 nm. (1)

In the case of QDs, quantization energy locates thus within a range accessible for control by
means of external fields (electric and magnetic), in contrast to atoms (for the latter, quantum
state control by means of external fields requires such values that are beyond the reach of
present technologies). This advantage of QDs—which are relatively easy to create due to a
variety of existing technologies in addition to their parameters’ flexibility and the possibility
of immersing them in various media or even creating or modifying them by means of external
fields—makes them very promising objects of new nanotechnologies and spintronic practical
projects.

Various semiconductor materials may be used to create QDs. Note that insulator or
metallic nanoparticles are also manufactured (however, collective electron liquids in metallic
nanoparticles manifest distinct physical properties in comparison with semiconductor QDs,
which explains why metallic nanostructures are not called QDs). For opto-electronic use,
semiconductor dots seem best-suited due to their localization within other nanostructures
(e.g., in quantum wells), with well-established technologies for control over such systems.
Semiconductor QDs may be manufactured by means of etching technologies after a
high-resolution photolithographic process (with the use of an ion or electron beam) has
been applied (ordinary optic lithography with a resolution of up to 200-300 nm is not
sufficient). Other technologies used here include among others the Stransky-Krastanov
dot self-assembling method consisting in the application of epitaxy layers by MBE or
MOCVD [MBE, Molecular Beam Epitaxy; MOCVD, Metal Organic Chemical Vapour Deposition].
Various lattice constants in successive epitaxy layers result in the spontaneous creation of
nanocrystals on the ultra-thin so-called ’wetting layer’. Electrical focusing in a quantum well
[1, 4, 5] consists of yet another promising technique which, despite being at an early stage
(due to a lack of sufficiently precise electrodes), offers the highest dot parameter flexibility
and allows for dots to switch on/off within the working time periods of devices based on
them [1, 4–6].

The possibility of control over the quantum states of carriers in QDs and their coherent
(deterministic, controllable) time evolution are vital for nanotechnological and spintronic
applications (especially where this concerns so-called ’single-electron’ or ’single-photon’
devices) as well as for the quantum processing of information. The absence of decoherence
or its significant reduction up to the lowest possible level, at least within the time periods
of control realization, is essential for all these applications. However, decoherence is
unavoidable due to irreducible dot-environment interactions (there is no means of a dot’s
total isolation). In the case of nanostructures, QDs offer a new class of physical phenomena
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within the decoherence and relaxation range, entirely distinct from analogous processes in
bulk materials or in atomic physics. This is due to the characteristic nanoscale-confinement
energy, reaching values close to the typical energy parameters of crystal collective excitations
(the energy characteristics of band acoustics and optical phonons). This convergence of
energy scales results in resonance effects, which is different from what is observed in atomic
physics where the scale of the atom-confinement energy is three orders of magnitude higher
than the energy of crystal collective excitation, resulting in the weak influence of phonons
on atomic states (included as a very small perturbation only). Specific decoherence effects in
QDs result from a strong (resonance) coupling effect between the carriers trapped in them
and the sea of various types of phonons (as well as with other collective excitations, or with
local degrees of freedom, e.g., related to admixtures). This is why the frequently-used notion
of an ’artificial atom’ in reference to QDs is, to some extent, misleading.

The same reasons are responsible for the fact that QD modeling which does not account
for environment-induced collective degrees of freedom may give rise to false conclusions
since significant hybridization-induced (decoherence) changes of energy levels can reach
up to 10%. This reduces the modeling fidelity if the environmental effects are neglected.
Therefore, the current physics of nanostructures should embrace the recognition of the
complex decoherence and relaxation effects observed in QDs for trapped carriers’ spin and
charge, which are essentially different from what is observed in bulk materials and atoms.

2. Limitations on the quantum processing of information

Unavoidable decoherence—uncontrolled quantum information leakage into the surrounding
environment due to the system’s interaction with the environment—perturbs the ideal
quantum procedures which ensure the running of quantum schemes [7–12]. If, however,
decoherence is kept below a certain threshold, quantum error corrections can be made by
applying so-called ’quantum error correction schemes’ [13], which enables the realization
of any quantum procedures of a quantum computer or any other deterministic quantum
project.

In classical information processing, quantum error correction consists in multiplying classical
information and verifying by comparison the multiplied (redundant) classical registers with
arbitrary frequency, errors which appear from time to time are identified and corrected
immediately. In the quantum case, the multiplication of quantum information is impossible
(No-Cloning theorem) and quantum error correction is based on a different scheme:

• Seeking more decoherence-resistant areas of the Hilbert space (multi-qubit states which,
in a pair of qubits, record symmetrically both "true" and "false" are decoherence-resistant,
e.g., singlet-type qubit states; information (or quantum states) symmetrization requires,
however, the multiplication of quantum registers, which makes decoherence rise
exponentially).

• Attempting the replacement of an information carrier for a more decoherence-resistant
one (e.g., temporarily, a state can be teleported onto a more resistant carrier).

In order to satisfy quantum error correction requirements, DiVincenzo formulated a set
of conditions [7, 14–16] which allow for the possibility of the implementation of quantum
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error correction (the typical decoherence time must be at least of six orders longer than
the typical times of quantum procedures). None of the currently suggested solutions
for quantum computers have satisfied these time restrictions. This situation may follow
from the fact that the same interactions which allow for qubit control (logical operations)
are also responsible for decoherence. The stronger (energetically) the interaction is, the
faster the logical operations can be carried out. However, the same interaction couples
the system with the surrounding environment and produces strong decoherence effects.
In nanotechnological and optical projects involving quantum computers (multi-qubit), the
difference in the time-rate of quantum operations in relation to decoherence still do not
exceed three orders of magnitude.

However, it is expected that further intensive research in this area should result in:

• Finding another method of quantum error correction (despite great efforts, there is still
no relevant solution).

• Finding a combined solution with qubit conversion (between a fast, controlled carrier
and a decoherence-resistant one—unfortunately, qubit conversion is also inconveniently
long-lasting).

• Finding global, topological and thus decoherence-resistant carriers of quantum
information in them.

• Braid groups (and non-Abelian anyons)—herein, the durations of logical operations
are expected to be of 30 orders of magnitude greater than those of decoherence
processes [17] (however, this is still unclear and it is doubtful if it is experimentally
viable).

• It is hoped that superconductive states may satisfy the DiVincenzo conditions as they
have non-local properties to a significant extent.

DiVincenzo criteria, which render a scalable quantum computer project feasible
1 a properly defined qubit—two quantum states separated from the remaining states of the

system (by relatively wide energy gaps or by forbidden transitions), so that quantum
information entered therein does not leak out

2 the possibility of information recording on the defined qubit—i.e., the possibility of
generating any superposition of two qubit states by means of external macroscopically
controlled fields (e.g., by Rabi’s oscillations within a realistic range of fields)

3 designing and implementing a universal two-qubit operation, which may enable the
performance of any logical quantum operation (a CNOT gate, or any other one, may work as
such a universal gate provided there exists an effective means of switching qubit interactions
on and off, i.e., the entanglement of two qubits can be controlled

4 ensuring that the time-rate of the performance of logical operations must be at least six order
faster than the decoherence time-rate

5 ensuring that output information can be read
6 ensuring that the whole system can be reset

DiVincenzo conditions that enable quantum cryptography
1 defining a free information carrier—a mobile qubit (e.g., a photon)
2 enabling the maintaining of the quantum properties of mobile qubits at a constant level over

long distances
3 enabling the identification of a qubit state (measurement)
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In the case of quantum cryptography, equipment requirements [18] are more easily met in
respect to decoherence and this is why this quantum technology (public key distribution
via a quantum channel) has been used in practice in optical systems [fibre-optical ones over
distances of 100 km (up to 1000 km), and outdoors over distances of 2 km].

3. Quantum dots—the prospective technology for quantum gates
The idea of employing quantum evolution for information processing corresponds with
the feasibility of the deterministic control over a quantum system in order to execute a
previously designed quantum algorithm. However, such a deterministic evolution (also
called ’unitary’ or ’coherent’) requires a totally isolated quantum system. Unfortunately,
no quantum system can be totally isolated from the environment. Any quantum system is
susceptible to the environment’s influence. In consequence, unitary or coherent evolution
is perturbed, and quantum information undergoes uncontrollable and irreducible leakage
into the environment. Therefore, the feasibility of the construction of a scalable quantum
computer is seriously hindered due to decoherence phenomena. The better recognition
of decoherence processes in quantum systems may, however, enable the development of
new technologies transcending these limitations and facilitating the attainability of quantum
gates.

Quantum state decoherence progresses along two channels: relaxation, i.e., quantum state
annihilation; and dephasing, i.e., phase relations change within a quantum state description.
Relaxation (or ’amplitude decoherence’) is related to the decrease in time of the diagonal
elements of the quantum state density matrix, whereas dephasing (or ’phase decoherence’)
corresponds to the reduction of the off-diagonal elements of the density matrix. Both types
of decoherence are caused by interaction with the environment and they become more
significant the stronger the interaction is.

Solid-state technology (which is promising for new practical realizations of the quantum
processing of information using nanometre-scale semiconductor QDs) is burdened mostly
with phase decoherence processes. Both the charge (i.e., orbital) and the spin degrees
of freedom of quantum states in QDs undergo dephasing due to their environment
(however, it should be emphasized that the spin degrees of freedom seem to be more
decoherence-resistant than orbital degrees of freedom, since they are less susceptible to
direct crystal phonon-induced interaction; however, spin requires much longer periods of
time-control than orbital degrees of freedom due to weaker interaction with spin).

Below we present a decoherence analysis, in particular the phase decoherence of the charge
(orbital) degrees of freedom and degrees of freedom of spin of excitations localized in QDs,
dealing with the issues associated with limitations on the feasibility of QIP.

In the case of semiconductor QDs, decoherence is unavoidable due to strong dot-environment
interaction (there are no means for the perfect isolation of a dot). In the case of
nanostructures—QDs included—there appears to be a new class of physical phenomena
related to decoherence and relaxation, distinct from analogous processes in bulk materials
and atomic physics. This is due to characteristic meV-scale energy resulting due to nanoscale
confinement, reaching values close to the typical energy parameters of band phonons in the
surrounding medium. This coincidence of energy scales results in resonance effects, which
is different from what is observed in atomic physics. For atoms, the incommensurability of
the atom-confinement energy and phonon energy is of three orders of magnitude, resulting
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in a weak phonon impact on atomic states. Specific decoherence effects in QDs result from
strong and resonant coupling between the carriers trapped in dots and the sea of various
types of collective excitations in the surrounding medium, which highly modifies the QD
states. Hybridization-induced changes of energy levels reach up to 10%. Therefore, the
decoherence and relaxation effects observed in QDs and for trapped carrier spin or charge
(which are essentially different from what is observed in bulk materials and atoms), seem to
be of central importance for any possible QD applications, including QIP.

4. Phase decoherence of orbital degrees of freedom in nanostructures

Orbital degrees of freedom pertain to charge-type excitations, such as electrons and holes
and charge-balanced electron-hole pairs—excitons. As charge carriers, these excitons interact
with the electric field of the electromagnetic wave and so they can be controlled by means
of quantum optics methods. Charge-type excitations can be localized in nanometre-scale
artificial structures manufactured within various semiconductor heterostructures, namely
in QDs. Excitons attract special interest as they can be precisely controlled by an
electromagnetic wave within the visible (or near infrared) light range corresponding to the
typical energy gap separating electron states from hole states in semiconductors (a typical
material is GaAs and QDs will be, e.g., self-assembled structures of GaAs/InAs type).
By accommodating the energy of (incident light) photons with the energy of the exciton,
an exciton state in the Rabi oscillation regime can be created in which the superposition
state of the charge qubit spanned on the states |1 > (no exciton in a QD) and |2 > (one
exciton in a QD) can be selected. The techniques of ultra-high-frequency laser impulses
(measured in femtoseconds) and the resulting application of a high intensity beam allowing
for high-frequency Rabi oscillations [19] has attracted a lot of interest in QIP research.
This interest has been centred on the fact that the lifetime of the excitons in the dots is
measured in nanoseconds (this may suggest a difference of six orders of magnitude between
the control time and the amplitude decoherence time, which is required by DiVincenzo’s
criteria [7, 13–16, 20]).

Nevertheless, in QDs the interaction between the excitons (electrons and holes) and phonons
of the surrounding crystal is unavoidable and must be accounted for in all considerations,
thus diametrically changing this ostensibly convenient situation. Phonons are quanta of
the crystal oscillations; acoustical phonons refer to the oscillations of the density type (all
the atoms in the unit cell oscillate in the same direction) and optical phonons are related
with polarization oscillations (the opposite-sign ions in the unit cell oscillate in the opposite
directions; polarization oscillations in such ionic crystals can be excited by means of light, and
thus they are called ’optical’ phonons). Both types of phonons can interact with charge-type
degrees of freedom in QDs. Phonons can be of transversal or longitudinal polarization, but
these are the longitudinal modes (LO and LA for optical and acoustic phonons, respectively)
that contribute most substantially to the interaction with the electrons/excitons [21].

In polar materials (e.g., GaAs, a weakly polar semiconductor), LO phonon interaction
prevails. The interaction of charges with LO phonons is characterized by means of the
dimensionless Fröhlich constant [21, 22]. The higher the constant value, the stronger that the
interaction is between the charges and the LO phonons, and for the semiconductor GaAs
three-dimensional (bulk) the constant averages out at around 0.06. For QD GaAs/InAs,
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experiments (infrared absorption in a magnetic field and the broadening of the satellite
luminescence peak connected to LO phonons, expressed quantitatively via the so-called
’Huang-Rhys factor’ [23]) show a double value of the constant, which suggests a substantial
increase of the interaction with LO phonons. This phenomenon has been explained [24] with
regard to a certain ambiguity [21] in the definition of LO phonon-electron interactions in
crystals. The interaction between an LO phonon and an electron leads to the polarization
of the crystal lattice by the moving electron. This polarization (i.e., an appropriate packet of
optical phonons) is dynamic and leads to a reverse interaction with the polarization-inducing
electron. It can be thought of as being composed of two components: an inertial one,
which lags behind the moving electron; and a non-inertial one, which accompanies the
moving electron. The latter component should be contained in the total crystal field which
defines the electron itself (the electron in the crystal is not a free particle and includes, by its
definition, the periodic crystal field—thus it can be characterized by the effective mass and
quasi-momentum instead of momentum). The necessity of extracting only the inertial part
of the polarization from the total interaction of the electron and the LO phonons leads to the
above-mentioned ambiguity in the definition of the electron-LO phonon interaction. When
the electron is trapped in a QD, it moves with a quasi-classical velocity [25] which exceeds
the velocity of a free band electron. Thus, it better escapes from the dynamic polarization,
which results in an increase in the inertial part of polarization and the interaction between
the electron and LO phonons in QDs. The more localized the electron in a smaller QD, the
bigger the quasi-classical velocity of the electron and the bigger the increase in the interaction
with LO phonons. The quantitative analysis of the problem agrees well with the experimental
data. It should be emphasized, however, that the marked increase in the value of the Fröhlich
constant in QDs parallels the increase in the decoherence of electron/exciton states in dots
due to the increase in the interaction between the small system of the QD and the sea of LO
phonons in the crystal.

The energy scale corresponding to the nanometre localization of electrons (excitons) in QDs
ranges from a few to several tens of meV. The same energy scale also characterizes the
phonons in crystals, in which the energy of LA phonons ranges from 10 to 20 meV at the
edge of the Brillouin zone and the energy of LO phonons at the centre of the Brillouin zone (a
gap in the LO phonon spectrum at point Γ [21, 22]) reaches 30 meV. Thus, in the case of QDs
we deal with a strong coupling regime for an interaction of QD charge degrees of freedom
with phonons (of all types). The same energy scale of both types of excitations—local in
QDs and collective in the surrounding crystal—results in the strong mutual hybridization of
these excitations or in the dressing of electrons (holes) or excitons with phonons and in the
creation of composite particles (quasi-particles)—polarons [21, 22, 26–29].

The creation of polarons in QDs is a strongly decoherent process (much more than it is in
bulk materials). The dynamics of this process can be investigated by employing the Green
function technique [28]. By means of this technique, the correlation function of the exciton
(electron) in the QD can be expressed, which defines the overlap (the scalar product) of the
state of the carrier gradually dressed by phonons with the initial state of the bare exciton (or
electron) in the dot. Thus, it is possible to quantitatively characterize the leakage of quantum
information (fidelity loss) due to the entanglement (in a quantum sense) of the QD’s charge
with the deformation and polarization degrees of freedom of the whole crystal, which are
entirely beyond our control.

On the ’Three-Orders Time-Limit’ for Phase Decoherence in Quantum Dots
http://dx.doi.org/10.5772/60685

53



8 ime knjige

The inertia of the crystal lattice is so disadvantageous that it makes it impossible to maintain
the coherence of orbital degrees of freedom dynamics (the unitary quantum evolution of the
excitations) within the time periods required by the DiVincenzo conditions. The typical times
of dressing charge-type excitations with phonons are located within the time-range of single
picoseconds, which is the middle of the six-orders time window between the amplitude
decoherence time for excitons in QDs and the time-scale of the quickest techniques for
their excitation. On both sides of this window, there appear windows of three-orders of
magnitude, which precludes the implementation of the quantum error-correction scheme
due to the non-fulfilment of the DiVincenzo conditions.

These strongly unfavourable estimations indicate that it may be impossible to scale a
quantum computer in a QD technology with only by light control unless more effective
quantum error-correction schemes would be proposed [7, 13, 14].

It should be emphasized that LA phonons are of greater importance to the process of dressing
the excitons with phonons (polaron decoherence effects), despite the fact that their interaction
with excitons is energetically much weaker (at least by one or two orders of magnitude)
than in the case of LO phonons. Strong dephasing due to LA phonons corresponds with a
wide linear dispersion of acoustic phonons, which in turn leads to a more immediate and
significant induced change in the wave functions of charge-type excitations in QDs than in
other phonon modes.

LA phonons-induced decoherence (phase decoherence or dephasing, corresponding to the
reduction of the off-diagonal elements of the density matrix [8–12]) is—and as can be shown
by means of a microscopic analysis—a relatively fast process and its time-scale is of the order
of the ratio of the dot diameter and the sound velocity (it is of the order of picoseconds).
Acoustic phonons are especially inconvenient as they are present in any crystal (as well as in
any amorphous material), and this is why the above-presented mechanism of decoherence
is unavoidable by its nature [strong dephasing also exists at a temperature of 0 K due to
phonon emission; at higher temperatures, the dephasing effects are enhanced due to phonon
absorption effects, which become more important with the increase in temperature].

Strong decoherence restrictions on the quantum evolution of the charge degrees of freedom in
QDs encouraged the researchers to concentrate their attention on the spin degrees of freedom
in nanostructures (spin does not interact directly with phonons) instead of pursuing the idea
of constructing an quantum computer based on QDs that is only controlled by light [7, 14, 28].

4.1. Phonon-induced dephasing of excitons localized in quantum dots

An exciton created in a QD by means of an non-adiabatic process (in the sub-picosecond
order) [4, 5, 30] is a bare particle (an electron-hole pair) which is gradually dressed with
phonons until it becomes a polaron. The time within which the polaron is created depends
upon the lattice inertia. It is relatively long and its accurate evaluation is an important task.
The process of the hybridization of a QD-localized exciton with the collective excitations
of the crystal lattice surrounding the QD is, in fact, a time-dependent evolution of a
non-stationary state, which at the initial time (the moment of the excitation’s creation) is
identical with the state of the bare exciton. The bare exciton is not the stationary state
of the whole system, the QD exciton and the sea of phonons in the surrounding crystal
interacting with it (a polaron represents a stationary state of such a complex system). The
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non-stationary initial state (the bare exciton) [the electric field of the e-m wave interacts with
the charge and, in consequence, excites a bare electron from the valence band into the QD;
the resulting hole is also captured by the QD—a bare QD exciton is thus created] undergoes
further non-stationary evolution. In the non-stationary state, the energy is not determined;
however, the mean energy is shared over time between the subsystems, the QD and the
phonon sea. The mean energy of a bare QD exciton is higher in comparison with the polaron
energy (whose energy is lower and therefore the polaron is created by means of interaction
with phonons due to energy minimization). The excess energy of the lattice deformation (for
acoustical phonons) together with the polarization energy (for optical phonons) is carried
outside the QD by the LA and LO phonons, respectively (by their wave packets). A QD
polaron is created—a hybridized state of an exciton dressed with an LA and LO phonon
cloud [actually, the name of the polaron refers to electrons dressed with LO phonons [22]—a
process dominating in strongly polar materials; here, the name refers generally to an electron
or exciton dressed with all types of phonons]. The time-scale of QD polaron creation is of
the same order as the time that a phonon-wave packet needs to leave the QD area. It should
be emphasized that this process is not to be interpreted in terms of Fermi’s golden rule [in
such an approach, quantum phase transitions resulting from a time-dependent perturbation
refer to transitions between stationary states, which is not the case here] [25]. The process
of polaron creation is a non-stationary state evolution, in which the elementary processes of
phonon absorption or emission contribute in the virtual sense (without energy conservation).
Note that the polaron energy is shifted with respect to the bare QD exciton energy by a few
meV [28], while the LO phonons energy has a much greater gap, h̄Ω � 36, 4meV (in GaAs).
The kinetics of polaron creation correspond with the coherent evolution of an entangled state
of two interacting systems, namely a QD exciton and the sea of phonons (of various types),
and this state in non-separable [28].

The exciton-phonon system is represented by the following Hamiltonian:

H = ∑n Ena+n an + ∑q,s h̄ωs(q)c+q,scq,s

+ 1√
N ∑q,n1,n2,s Fs(n1, n2, q)a+n1

an2

(
cq,s + c+−q,s

)
,

(2)

where the LO interaction (s = o) and the LA interaction (s = a) are represented by the
following functions:

Fo(n1, n2, q) = − e
q

√
2πh̄Ω

vε̃

∫
Φ∗

n1
(Re, Rh)

×
(

eiq·Re − eiq·Rh

)
Φn2 (Re, Rh)d3Red3Rh

(3)

and:

Fa(n1, n2, q) = −

√
h̄q

2MCa

∫
Φ∗

n1
(Re, Rh)

×
(

σeeiq·Re − σheiq·Rh

)
Φn2 (Re, Rh)d3Red3Rh.

(4)
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Figure 1. The vertices representing the exciton-phonon interaction; the dotted lines—phonons; the continuous
lines—excitons.

Figure 2. The exciton mass operator (the thick lines represent the full Green functions; the effective vertex of the
exciton-phonon interaction is marked [the shaded vertex]).

Here, c(+)
q,s denote annihilation (creation) boson operators for LO (s = o) and LA (s = a)

phonons with quasi-momentum q; the phonon frequency ωo(q) ≡ Ωq � Ω − βq2 (Ω
represents an energy gap for LO phonons at Γ point) and ωa(q) = Caq, Ca is the sound
velocity (for LA phonons); M represents the mass of ions in the unit cell; σe,h is the
deformation potential constant of an electron and hole, respectively; v is the volume of the
unit cell; N is the number of cell in the crystal; ε̃ = (1/ε∞ − 1/ε0)

−1 is the effective dielectric
constant; Re, Rh represent the coordinates of an electron and hole; Φn(Re, Rh) denotes the

QD exciton (electron) wave function and a(+)
n is the exciton or electron annihilation (creation)

operator in n-th state (of boson type for excitons and of fermion type for electrons). The
interaction between a charge and longitudinal phonon modes is considerably stronger than
with transversal modes, which is why only the first ones are further considered [21, 22].
The interaction between an exciton and phonons from both branches (LO and LA) has
the simplest linear form with respect to the phonon operators (the third element in the
Hamiltonian). It can be represented by means of graphs, as in Fig. 1.

Vertices of this type (as in Fig. 1) result in the mass operators of Green functions, both for
the exciton (electron) and the phonon (note that without the linear term with respect to the
interaction due to the specific form of the vertices); for the exciton, this is illustrated by the
graphs in Fig. 2.

The graphs in Fig. 2 correspond to the complete expressions for the mass operator (thick
lines represent the full Green functions; the effective vertex of the exciton-phonon interaction
is also marked [the shaded vertex]). It is an accurate form of the mass operator. Within
the first approximation, the effective vertex can be replaced with a bare one (it is an
approximation with controlled accuracy—the terms of a higher order than the quadratic
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with respect to the interaction are omitted [subsequent bare vertices enter the effective
vertex]. Given that the charge-phonon interaction is weak, this approximation leads to a
small error. The bare vertices of this interaction (the corresponding functions appearing in
the Hamiltonian) attain the form (which results from the mechanism of interaction between
the charge and LO phonons—by means of polarization, and with LA phonons—by means
of deformation) [21, 22] given by the (3, 4) formulae, with the integrals representing the
overlap integral of the localized exciton states (initial and final) with the phonon plane wave.
These integrals represent the bottleneck effect, typical for QDs [32, 33], resulting from the
absence of the translational invariance of a QD system and leading to the non-conservation
of the momentum (quasi-momentum). The overlap integral with the plane wave favours
the momentum q � h̄

d , where d denotes a QD size. If the exciton is not localized—i.e., is
represented by a plane wave—this integral would yield the law of momentum conservation,
corresponding to the translational invariance of the system in that case. In the case of a
QD-localized exciton, this integral does not become Dirac’s delta but rather defines those
quasi-momenta q of phonons which were involved in the interaction. At the same time, the
law of conservation of energy holds true for each vertex (i.e., for the interaction process),
which results from the unperturbed uniformity of time in the case of QD-localized states.
Due to the above functions, the fact of the selection of the fixed values of quasi-momentum
for QD-localized exciton (electron) states is called ’the bottle neck effect’. The presence of
the above-mentioned integrals results in the elimination of all the phonon modes except for
those found within the range of q � h̄

d (d a QD size, typically of the order of 10 nm); thus,
the range of the significant quasi-momentum of a phonon interacting with a QD charge is of
the order of 1-10% of the Brillouin zone close to its centre (as illustrated in Fig. 3).

The model (variational) ground state exciton wave function in a parabolic QD assumes the
following form (including Coulomb interaction e-h):

Φ0(re, rh) =
1

(π)3/2
1

LeLhLz
exp

[
−

r2
e⊥

2L2
e
−

r2
h⊥

2L2
h
−

z2
e + z2

h
L2

z

]
, (5)

where re,h⊥ denotes the positions of the exciton components (e and h) in the xy plane of
the QD. The numerically estimated parameters for a QD characterized by the values in Tab.
1 are Le = 6.6 nm, Lh = 5.1 nm and Lz = lz (which agrees sufficiently well with a more
accurate numerical calculation and diagonalization [28]). The noticeable difference between
the electron and the hole’s effective lateral dimensions results from the fact that the e-h
Coulomb interaction energy is comparable to the inter-level energy of the heavier holes,
while the energy of the lighter electrons is quantized with greater inter-level gaps.

The above form of the ground state QD exciton wave function yields the following phonon
coupling functions:

|Fo(0, 0, k)|2 � πe2 h̄Ωk2

18vε̃ (L2
e − L2

h)
2e−αk2

= go
k2

k2
m

e−αk2
,

|Fa(0, 0, k)|2 � h̄k
2MCa

(σe − σh)
2e−αk2

= ga
k

km
e−αk2

,
(6)
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Figure 3. Comparison of the interaction form-factors of the exciton-LO phonon (∼ k2e−ak2
) and the exciton-LA phonon

(∼ ke−ak2
) according to the (6) functions for various values of a.

where km = (6π2/v)1/3 denotes the Debye wave vector (� 1.1 · 1010m−1), α = l2/2, l is
the QD size averaged over all directions (this is the averaged ground-state dimension of an
exciton), and the same for e and h (l is significantly smaller than the lateral dimensions
Le(h) but greater than the vertical one Lz). The exponential factor e−αk2

corresponds to
the above-mentioned bottleneck QD effect. These functions are illustrated by the lines
in Fig. 3. Both these functions (often called the ’form-factors’ of the exciton-phonon
interaction) assume non-zero values in the vicinity of point Γ and reach the maximum
for quasi-momentum p � h̄

d (d ∼ l). What matters here is the fact that this behaviour
closely corresponds with the bottleneck effect, which replaces the momentum-conservation
condition for the system without translational invariance [32, 33].

The bottleneck effect (which seems to limit the importance of phonons in nanostructures)
led to an under-evaluation of the phonons’ role in QDs and of their input in the total
interaction in nanostructures [32]. This mistaken view often resulted in the underestimation
of phonon-induced phenomena in many physical processes in QDs. Despite the fact that the
coupling constants (and form-factors including the bottleneck effect) are rather low-valued,
the resonant coincidence (proximity) of the energy levels of the quantum states for carriers
localized in the QDs and bulk phonon energy characteristics results in a strong increase in the
non-perturbative effects of the mutual hybridization of both subsystems (excitons/electrons
and phonons), leading to significant polaron-type effects, both for LA and LO phonons. It is
a vital process in the case of QDs, for which such hybridization effects result in the change of
quantum states by as much as 10% and lead to significant effects regarding time-dependent
processes of amplitude decoherence (relaxation, i.e., a decrease in the diagonal elements
of the density matrix [27, 34, 35]), and phase decoherence (dephasing, i.e., a decrease in
the off-diagonal elements of the density matrix) [8–12]. From the list of parameters for the
GaAs/InAs system (Tab. 1), one can notice that the interaction between the exciton and the
LO phonons is significantly bigger (by one order of magnitude) than with LA phonons (cf.
the values of the parameters g in formulae (6)).

In order to give the description of fidelity loss [8, 13], we will discuss the exciton correlation
function 〈an1 (t)a+n2

(0)〉. For n1 = n2, this corresponds to the overlap of the exciton state at
time t = 0 with this state at the initial moment t = 0 (for n1 = n2 = 0—for the ground
state of the exciton changing into a polaron after being gradually dressed with LA and
LO phonon clouds). The modulus of this correlation function thus gives a measure of
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Figure 3. Comparison of the interaction form-factors of the exciton-LO phonon (∼ k2e−ak2
) and the exciton-LA phonon

(∼ ke−ak2
) according to the (6) functions for various values of a.

where km = (6π2/v)1/3 denotes the Debye wave vector (� 1.1 · 1010m−1), α = l2/2, l is
the QD size averaged over all directions (this is the averaged ground-state dimension of an
exciton), and the same for e and h (l is significantly smaller than the lateral dimensions
Le(h) but greater than the vertical one Lz). The exponential factor e−αk2

corresponds to
the above-mentioned bottleneck QD effect. These functions are illustrated by the lines
in Fig. 3. Both these functions (often called the ’form-factors’ of the exciton-phonon
interaction) assume non-zero values in the vicinity of point Γ and reach the maximum
for quasi-momentum p � h̄

d (d ∼ l). What matters here is the fact that this behaviour
closely corresponds with the bottleneck effect, which replaces the momentum-conservation
condition for the system without translational invariance [32, 33].

The bottleneck effect (which seems to limit the importance of phonons in nanostructures)
led to an under-evaluation of the phonons’ role in QDs and of their input in the total
interaction in nanostructures [32]. This mistaken view often resulted in the underestimation
of phonon-induced phenomena in many physical processes in QDs. Despite the fact that the
coupling constants (and form-factors including the bottleneck effect) are rather low-valued,
the resonant coincidence (proximity) of the energy levels of the quantum states for carriers
localized in the QDs and bulk phonon energy characteristics results in a strong increase in the
non-perturbative effects of the mutual hybridization of both subsystems (excitons/electrons
and phonons), leading to significant polaron-type effects, both for LA and LO phonons. It is
a vital process in the case of QDs, for which such hybridization effects result in the change of
quantum states by as much as 10% and lead to significant effects regarding time-dependent
processes of amplitude decoherence (relaxation, i.e., a decrease in the diagonal elements
of the density matrix [27, 34, 35]), and phase decoherence (dephasing, i.e., a decrease in
the off-diagonal elements of the density matrix) [8–12]. From the list of parameters for the
GaAs/InAs system (Tab. 1), one can notice that the interaction between the exciton and the
LO phonons is significantly bigger (by one order of magnitude) than with LA phonons (cf.
the values of the parameters g in formulae (6)).

In order to give the description of fidelity loss [8, 13], we will discuss the exciton correlation
function 〈an1 (t)a+n2

(0)〉. For n1 = n2, this corresponds to the overlap of the exciton state at
time t = 0 with this state at the initial moment t = 0 (for n1 = n2 = 0—for the ground
state of the exciton changing into a polaron after being gradually dressed with LA and
LO phonon clouds). The modulus of this correlation function thus gives a measure of
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fidelity of the time-dependent (non-stationary) exciton state. The averaging 〈...〉 denotes
the temperature-dependent averaging over the phonon states, assuming the exciton vacuum
state [36]—that is, without a change of state of a bare exciton—which corresponds to the fact
that the great canonical averaging sector without exciton, vacuum, it energetically distant
from the next exciton sectors. The energy separation is here of order of 1 eV.

The Fourier transform of the correlation function is called the ’spectral density’ [37, 38]:

In1,n2 (ω) =
∫ ∞

−∞
〈an1 (t)a+n2

(0)〉eiωtdt, (7)

The spectral density function can be expressed by the imaginary part of the retarded Green
function:

ImGr(n1, n2, ω) = −I(n1, n2, ω)/(2h̄), (8)

where:

Gr(n1, n2, t) = − i
h̄ Θ(t)〈[an1 (t), a+n2

(0)]−〉
= 1

2π

∫ ∞
−∞ Gr(n1, n2, ω)e−iωtdω,

(9)

is the commutation-retarded Green function which describes the linear dielectric response
to the electromagnetic wave coupled to an exciton [in the case of the instant creation of
an exciton, the time-dependent electromagnetic signal is assumed to be Dirac’s delta δ(t)].
In our case, the Green function Gr(n1, n2, t) and the correlation function can be obtained by
including the interaction between the exciton and the LA and LO phonon sea via the standard
temperature-dependent Matsubara-Green function techniques [37, 38]. The advantage of the
Matsubara-Green function approach over the others consists of the derivation of the Dyson
equation with the mass operator and the possibility of its modelling in terms of Feynman
graphs; the causal function technique needs the Tyablikov splitting-type procedures [39]
with a relatively lower level of transparency, even though it is fully equivalent to Matsubara
attitude. Both these methods lead to the Dyson equation with an appropriate mass operator,
which accounts for the interaction of the exciton with the see of phonons.

In the case of weak exciton-phonon coupling (which is the nature of the case currently being
discussed), the mass operator attains the form of [39] as illustrated by the graphs in Fig. 2.
For the QD exciton (similarly as for the bulk semiconductor [40]), with an accuracy up to g2

s
[note that Fs(n1, n2, k) ∼ gs where gs is an exciton-phonon constant], both real and imaginary
parts of the mass operator M are obtained in the following form (for the effective vertex, the
components of a higher-order are omitted, i.e., multi-phonon processes are not included):

∆n(ω) = 1
N ∑k,s,n1

|Fs(n, n1, k)|2[
(1+Nk,s)[h̄ω−En1−∆n1 (ω−ωs(k))−h̄ωs(k)]

[h̄ω−En1−∆n1 (ω−ωs(k))−h̄ωs(k)]2+γ2
n1
(ω−ωs(k))

+
Nk,s [h̄ω−En1−∆n1 (ω+ωs(k))+h̄ωs(k)]

[h̄ω−En1−∆n1 (ω+ωs(k))+h̄ωs(k)]2+γ2
n1
(ω+ωs(k))

] (10)

and:
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γn(ω) = 1
N ∑k,s,n1

|Fs(n, n1, k)|2[
(1+Nk,s)γn1 (ω−ωs(k))

[h̄ω−En1−∆n1 (ω−ωs(k))−h̄ωs(k)]2+γ2
n1
(ω−ωs(k))

+
Nk,sγn1 (ω+ωs(k))

[h̄ω−En1−∆n1 (ω+ωs(k))+h̄ωs(k)]2+γ2
n1
(ω+ωs(k))

]
,

(11)

where: Nk,s is the Bose-Einstein distribution function defining the temperature-dependent
population of the phonon mode k, s, Mn,n(ω) = ∆n(ω) − iγn(ω), Gr(n, n, ω) = [h̄ω −
En − Mn,n(ω) + iε]−1 (for T = 0, Nk,s = 0). The above system of equations enables the
time-dependent analysis of the dressing of the exciton with a cloud of phonons.

For GaAs in the surrounding medium, the material parameters are taken from Ref. [41],
while a InAs/GaAs QD is modelled in terms of parabolic approximation [1] with a curvature

h̄ωe
0 = 20 meV, h̄ωh

0 = 3.5 meV, le =
√

h̄
m∗

e ωe
0
= lh =

√
h̄

m∗
hωh

0
= 7.5 nm, which results in the

identical size of the ground state of the electron and the hole (when the Coulomb interaction

is not accounted for); the QD vertical dimension (the QD is significantly flattened) is le(h)
z � 2

nm (with a suitably adjusted parabolic curvature ω
e(h)
z ) [numerical estimations including

particularities of the QD shape show that they only weakly affect the QD structure and the
polaron characteristics [28].

For exciton-LO phonon interactions, the Fröhlich constant is of importance [21, 22]:

αe =
e2

ε̃

√
m∗

2h̄3Ω
. (12)

Its value grows in nanostructures [24, 26], which significantly influences QD polaron-related
processes.

In equation (10), the first component provides the main contribution—polaron red-shift
resulting from exciton-LO polaron interactions prevails in a polar material (GaAs is a weakly
polar material). Note that equations (10)–(11) contain the full Green function (in accordance
with the graph in Fig. 2). Taking γn(ω) = 0 on the right-hand side of equation (10), the
first-order approximation for the energy shift is:

∆n(ω) =
1
N ∑

k,n1

|Fo(n, n1, k)|2
[

1 + Nk,o

h̄ω − En1 − ∆n1 (ω − Ω)− h̄Ω
(13)

+
Nk,o

h̄ω − En1 − ∆n1 (ω − Ω) + h̄Ω

]

+
1
N ∑

k,n1

|Fa(n, n1, k)|2
[

1 + Nk,a

h̄ω − En1 − ∆n1 (ω − Cak)− h̄Cak

+
Nk,a

h̄ω − En1 − ∆n1 (ω − Cak) + h̄Cak

]
.
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polar material). Note that equations (10)–(11) contain the full Green function (in accordance
with the graph in Fig. 2). Taking γn(ω) = 0 on the right-hand side of equation (10), the
first-order approximation for the energy shift is:

∆n(ω) =
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h̄ω − En1 − ∆n1 (ω − Ω)− h̄Ω
(13)
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As has already been pointed out, the first term of the equation provides the dominating
contribution while the second—of a significantly smaller order of magnitude [due to the
smaller value of the LA phonon coupling constant]—can safely be neglected here. However,
this term—to a greater extent than the first one—contributes substantially to the derivative
d∆/dω|ω=E+∆. The derivative of the first term [∼ F2/(h̄Ω)2] is small due to the gap in
dispersion of the LO phonons, but this derivative is important for estimating the residuum
of the Green function at its pole—in equation (16). Moreover, in the first term of this equation,
the weak dispersion of the LO phonons is neglected due to its insignificant contribution to
the energy shift ∆ (which has been verified via numerical methods) [28]. The numerical
solution of equation (13) for n = 0 yields the polaron energy shift ∆0 ∼ −5 meV (for the
structure parameters listed in Tab. 1).

For the description of the kinetics of polaron creation, i.e., of the process of the dephasing
of an non-adiabatically excited exciton (this is experimentally observed at the picosecond
time-scale [30]), the imaginary part of the mass operator and the out-of-pole form of the
imaginary part of the Green function is of especially importance—it provides complete
information about the spectral intensity (not limited to the poles defining the energy and
lifetime of quasi-particles, here polarons). The Fourier transform of the spectral intensity
yields the unknown correlation function. The imaginary part of the mass operator is given
by Eq. (11). Taking γ = 0 on its right-hand side:

γn(ω) = π
N ∑k,n1

{
|Fo(n, n1, k)|2[

(1 + Nk,o)δ(h̄ω − En1 − ∆n1 − h̄Ωk)
+Nk,oδ(h̄ω − En1 − ∆n1 + h̄Ωk)

]
+|Fa(n, n1, k)|2

[
(1 + Nk,a)δ(h̄ω − En1 − ∆n1 − h̄Cak)

+Nk,aδ(h̄ω − En1 − ∆n1 + h̄Cak)
]}

.

(14)

The first term in equation (14) defines the polarization energy transfer to the LO phonon sea,
while the second one defines the deformation energy transfer (smaller) to the LA phonon sea
during the process of the gradual exciton-dressing with both types of phonon modes. The
term γ can be estimated for the ground state of the exciton (n = 0) [higher excited levels are
neglected]; integrating over k yields:

γ0(ω) � Ax3e
− αx2

h̄2C2
a [Θ(x)(1 + N(x))− Θ(−x)N(−x)] (15)

+B
[

Θ(h̄Ω − x)(h̄Ω − x)3/2e−
α(h̄Ω−x)

h̄β Θ(−0.6h̄Ω + x)(1 + N(x))

+Θ(h̄Ω + x)(h̄Ω + x)3/2e−
α(h̄Ω+x)

h̄β Θ(−0.6h̄Ω − x)N(−x)
]

,

where x = h̄ω − Ẽ0, Ẽ0 = E0 − ∆0 is the energy of an excited polaron, N(x) = (e
x

kB T − 1)−1:
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Figure 4. The spectral intensity versus energy (x = h̄ω − Ẽ′
0) for a QD of a dimension averaged over all directions l = 6

nm (upper); the temperature evolution of the side-band due to the LA phonons (middle) and the satellite peak due
to the LO phonons (bottom). Only the side-band (due to the LA phonons) increases in value as the temperature rises
(within the mentioned range of temperature). LO absorption processes are negligible within this temperature range
(the left-hand satellite peak corresponds to LO phonon absorption and is smaller by several orders of magnitude than
the right-hand one corresponding to emission of LO phonons; the emission contribution becomes more significant for
T > 80 K); the satellite peak that is LO phonon-induced increases significantly with the increase in the value of the
QD’s Fröhlich constant [expressed by the Huang-Rhys factor][23]—Fröhlich constant in bulk (a), in a QD (b).

A =
(σe − σh)

2

4πρh̄3C5
a

, B =
e2h̄Ω(L2

e − L2
h)

2

36ε̃2(h̄β)5/2

(LO phonon dispersion as defined in [31] Ωk = Ω − βk2 and at the Brillouin zone edge,
i.e., for k = km attains the value Ωkm = 0.6Ω). The first term of equation (15) corresponds
to the LA phonon channel of energy dissipation, while the second one corresponds to the
LO phonon dissipation channel. The numerical parameters of this equation for the structure
under investigation (Tab. 1) are listed in Tab. 2.

As γ0 equals 0 at x = 0 [which results from equation (15)], this point is understood as the
the well-defined Green’s function pole (it corresponds to a stable quasi-particle—the polaron,
this is the exciton dressed in phonon clouds [a generalization of an ordinary electron polaron
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0) for a QD of a dimension averaged over all directions l = 6

nm (upper); the temperature evolution of the side-band due to the LA phonons (middle) and the satellite peak due
to the LO phonons (bottom). Only the side-band (due to the LA phonons) increases in value as the temperature rises
(within the mentioned range of temperature). LO absorption processes are negligible within this temperature range
(the left-hand satellite peak corresponds to LO phonon absorption and is smaller by several orders of magnitude than
the right-hand one corresponding to emission of LO phonons; the emission contribution becomes more significant for
T > 80 K); the satellite peak that is LO phonon-induced increases significantly with the increase in the value of the
QD’s Fröhlich constant [expressed by the Huang-Rhys factor][23]—Fröhlich constant in bulk (a), in a QD (b).
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i.e., for k = km attains the value Ωkm = 0.6Ω). The first term of equation (15) corresponds
to the LA phonon channel of energy dissipation, while the second one corresponds to the
LO phonon dissipation channel. The numerical parameters of this equation for the structure
under investigation (Tab. 1) are listed in Tab. 2.

As γ0 equals 0 at x = 0 [which results from equation (15)], this point is understood as the
the well-defined Green’s function pole (it corresponds to a stable quasi-particle—the polaron,
this is the exciton dressed in phonon clouds [a generalization of an ordinary electron polaron
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dressed only in an LO phonon cloud [22, 34]]). The time-dependent evolution of the phonon
dressing is given by the correlation function, corresponding to the Green function in the form
of:

Gr(0, 0, ω) =
1

h̄ω − E0 − ∆(ω) + iγ(ω) + iε
(16)

=
a−1

x + iγ′(x) + iε
,

where:

a = 1 − d∆(ω)
h̄dω |ω=Ẽ′

0

= 1 + 1
N ∑k,s

∣∣∣ Fs(0,0,k)
h̄ωs(k)

∣∣∣2 [1 + 2Ns(k)],
(17)

γ′(x) = γ(x)/a (x = h̄ω − Ẽ′
0, Ẽ′

0 = Ẽ0/a), ε = 0+. The imaginary part of this retarded
Green’s function (16) attains the form:

ImGr(0, 0, ω) = −a−1πδ(x)− a−1γ′(x)/x2

1 + (γ′(x)/x)2 . (18)

The inverse Fourier transform of the spectral intensity (the imaginary part of the retarded
Green’s function) gives the correlation function in the time domain:

I(t) = −2h̄
1

2π

∫ ∞

−∞
dωImGr(0, 0, ω)e−iωt,

(the indices n1 = n2 = 0 of function I are suppressed). The first term in (18) yields:

I(1)(t) = a−1e−i Ẽ0
h̄ t.

Notice that in the second term of equation (18), for temperatures T < 100 K, the second
term in the denominator can be safely neglected for LA phonons (consistently with the
accuracy assumed within the perturbative treatment). This allows us to exchange the order
of integration with respect to ω and k—the inverse Fourier transform can be calculated first
and, simultaneously, Dirac’s delta can be employed in equation (14). Such integration over
frequencies (energy) yields a convenient representation of the correlation function:

I(2)(t) = 1
N ∑k

∣∣∣ Fa(0,0,k)
h̄ωa(k)

∣∣∣2

×
{
[1 + Ns(k)]e−i[Ẽ0/h̄+ωs(k)]t + Ns(k)e−i[Ẽ0/h̄−ωs(k)]t

}
.

(19)
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Figure 5. The evolution of the side band due to acoustic phonons (LA) versus the QD’s dimension and temperature
for T ≥ 0 K (the same temperatures for each QD dimension l = 3, 6, 12 nm).

Notice that, when comparing with Eq. (17), for t = 0 this leads to I(1)(t = 0) = a−1

and I(2)(t = 0) = 1 − a−1, which in effect results in the appropriate normalization of the
correlation function.

The spectral intensity and its reverse Fourier transform (its modulus) are plotted in Figs.
4—9 for various temperatures and QD dimensions. The fact that the numerically calculated
correlation function agrees well with the experimentally obtained data [30]— cf. Fig. 7
(upper), for a small QD and sub-picosecond excitations, may confirm the validity of the
theory developed here. The LA channel (although negligible in terms of energy compared to
the LO channel in GaAs) is the fastest and most effective in the dephasing process. The LO
channel is slower and accompanied by fast oscillations (beats of ∼ 100 fs corresponding to the
existence of the LO gap) [the LO channel of dephasing can be significantly intensified due to
the anharmonic decay of the LO phonons, e.g., for GaAs/InAs up to 10 ps] [42]. Dephasing
produced by LO phonons is significantly weaker than that for LA phonons (contrary to the
energy shift). The inclusion of the LO channel results in the weak modification of strong LA
dephasing—cf. Figs 8 and 9. Figure 9 (right) presents the type of the scaling of the dephasing
time versus a QD dimension—linear for the LA channel and quadratic for the LO channel.
This behaviour agrees well with the simple relationship: dephasing time � l

vg
, vg—phonon

group velocity, l—QD dimension. For LA phonons vg = Ca, which yields a linear function
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Figure 5. The evolution of the side band due to acoustic phonons (LA) versus the QD’s dimension and temperature
for T ≥ 0 K (the same temperatures for each QD dimension l = 3, 6, 12 nm).

Notice that, when comparing with Eq. (17), for t = 0 this leads to I(1)(t = 0) = a−1

and I(2)(t = 0) = 1 − a−1, which in effect results in the appropriate normalization of the
correlation function.

The spectral intensity and its reverse Fourier transform (its modulus) are plotted in Figs.
4—9 for various temperatures and QD dimensions. The fact that the numerically calculated
correlation function agrees well with the experimentally obtained data [30]— cf. Fig. 7
(upper), for a small QD and sub-picosecond excitations, may confirm the validity of the
theory developed here. The LA channel (although negligible in terms of energy compared to
the LO channel in GaAs) is the fastest and most effective in the dephasing process. The LO
channel is slower and accompanied by fast oscillations (beats of ∼ 100 fs corresponding to the
existence of the LO gap) [the LO channel of dephasing can be significantly intensified due to
the anharmonic decay of the LO phonons, e.g., for GaAs/InAs up to 10 ps] [42]. Dephasing
produced by LO phonons is significantly weaker than that for LA phonons (contrary to the
energy shift). The inclusion of the LO channel results in the weak modification of strong LA
dephasing—cf. Figs 8 and 9. Figure 9 (right) presents the type of the scaling of the dephasing
time versus a QD dimension—linear for the LA channel and quadratic for the LO channel.
This behaviour agrees well with the simple relationship: dephasing time � l

vg
, vg—phonon

group velocity, l—QD dimension. For LA phonons vg = Ca, which yields a linear function
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Figure 6. Evolution of the satellite peak (the right-hand one—corresponding to LO phonon emission—versus the QD’s
dimensions; in practical terms, it is not dependent on temperature for T < 80 K.

electron effective mass in GaAs m∗
e 0.067me

hole effective mass (heavy) in GaAs m∗
h 0.38me

dielectric constant in GaAs (static) ε0 12.9
dielectric constant in GaAs (dynamic) ε∞ 10.9
electron deformation potential in GaAs σe 6.7 eV
hole deformation potential in GaAs σh −2.7 eV
LO phonon energy at Γ point in GaAs h̄Ω 36.4 meV
density of GaAs ρ 5.36 g/cm3

sound velocity (LA) in GaAs Ca 4.8 × 105 cm/s
electron confinement energy in a GaAs/InAs dot h̄ωe

0 20 meV
hole confinement energy in a GaAs/InAs dot h̄ωh

0 3.5 meV
lateral dimension of a QD (electron) le =
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e =

e2

ε̃′
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m∗

e
2h̄3Ω

0.15

Table 1. Quantum dot and material parameters for GaAs/InAs

of l, and for LA phonons vg = 2βk ∼ 2β/l, which results in a quadratic dependence on the
QD dimension ∼ l2/(2β). Conclusive proof of this result follows below.

5. The universal rule for the estimation of the dephasing time of
localized excitons in nanostructures

In order to estimate the dephasing time of a QD’s (or other nanostructures) localized
excitation (e.g., an exciton) due to hybridization with collective excitations in the surrounding
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exciton-LA phonon coupling constant A =
(σe−σh )

2

4πρh̄3C5
a
� 0.29 meV−2

exciton-LO phonon coupling constant B =
e2 h̄Ω(L2

e −L2
h )

2

36ε̃2(h̄β)5/2 �
(

l[nm]
6

)4
6.3 × 105 meV−1/2

lateral exciton dimension (electron) Le � 6.6(l[nm]/6) nm
lateral exciton dimension (hole) Lh � 5.1(l[nm]/6) nm
mass operator exponent (LA) α

h̄2C2
a
� (l[nm]/6)21.8 meV−2

mass operator exponent (LO) α
h̄β � (l[nm]/6)2149 meV−1

Table 2. Parameters of exciton-phonon (LA and LO) interaction for a GaAs/InAs dot
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Figure 7. Modulus of the correlation function |〈a(t)a+(0)〉| (the fidelity measure of the ground excitonic state) versus
time for rising temperatures. The three plots correspond to small, medium and large QDs, and contain curves related
to the same set of temperatures as given in the upper plot. For the small QD, the experimentally observed fidelity loss
for a non-adiabatically excited exciton (for 0.2 ps pulse) [30] is reproduced well in the upper figure.

medium (e.g., with band phonons), a phenomenological picture can be applied that is
motivated within the Green function approach [28]. The correlation function:

I(t) =< a0(t)a+0 (0) >= − h̄
π

∫
dωImGre−iωt (20)

[where a(+) denotes the QD exciton annihilation (creation) operator] permits a reasonable
assumption that the characteristic dephasing time parallels the rapid decrease in the value
of its modulus (clearly evident in Figs. 7, 8). The correlation function is an inverse Fourier
transform of spectral intensity (cf. Fig. 4), which is expressed via the imaginary part of the
retarded one-particle commutation of Green function Gr of the exciton [37, 38]. For a short
time-scale (i.e., large values of Fourier frequencies ω), the imaginary part of the retarded
Green function is proportional to the imaginary part of the mass operator (due to Eq. (18)),
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which is expressed (with multi-phonon effects neglected) by the following formula [37, 38]:

γ ∼
∫

dk |F(k)|2 δ(ω − E − ω(k)), (21)

where the interaction vertices assume their general form (the interaction between the QD
localized excitation and the non-localized crystal excitations expressed by means of plane
waves):

F(k) ∼< Ψ0|eikr|Ψ0 >, (22)

where |Ψ0(r) > is a wave function of a QD localized exciton corresponding to its ground
state with energy E (for simplicity of description, a single particle-localized excitation is
considered here, e.g., an electron [one-dimension picture, h̄ = 1]). Thus, the correlation
function:

I(t) ∼ e−iEt
∫

dr |Ψ0(r)|2
∫

dkF∗(k)ei(kr−ω(k)t), (23)

appears to attain the form of a time-dependent overlap of a probability density of a QD
localized particle:

|Ψ0(r)|2 , (24)

with a collective excitation wave packet (phonons) escaping from the QD-space region:

∫
dkF∗(k)ei

(
r− ∂ω(k)

∂k t
)

k (25)

(where k is the centre, k ∼ 1/l, l is the QD diameter due to the above-mentioned QD
bottleneck effect entered here via F(k)]). The wave packet carries off the excess (deformation
or polarization) energy of the particle being dressed to the QD’s surrounding region in
the crystal with the group velocity vg = ∂ω(k)

∂k (for k ∼ 1/l). Thus, the dephasing time
corresponds to the time for the decrease in value of the modulus I(t), which here is of the
order of τ � l

vg
, where l is the QD dimensions averaged over all directions [the QD exciton

state dimension] (as illustrated in Fig. 10).

In this representation, the dephasing time is of the order of the proportion of a QD dimension
l to the phonon group velocity, i.e., the velocity of the phonon packet carrying off the excess
energy from the QD to the surrounding medium (this is the evolution of a non-stationary
QD state of a non-adiabatically excited bare exciton). For LA phonons, the group velocity
remains constant and equals the sound velocity vg = Ca, which results in a linear dependence
of the dephasing time with respect to the QD’s dimension,

τ � l
Ca

;
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time

Figure 8. The typical shape of the modulus of the correlation function of an exciton interacting simultaneously
with LO and LA phonons. The oscillations, corresponding to the gap in the LO phonon spectrum [the frequency is
∼ 1/Ω ∼ 100fs], are significantly stronger for a QD due to the increase in the value of the effective Fröhlich constant
(upper).
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Figure 9. Left: the modulus of the correlation function for, respectively, LA (upper) and LO (lower) phonons only.
Right: the exciton dressing time vs the averaged QD dimensions l for the LA channel (upper), the linear dependence,
and for the LO channel (lower), which is a quadratic dependence on l.

for optical phonons vg = 2βk ∼ 2β/l leading to a quadratic dependence of the dephasing
time on l,

τ � l
vg

= l
(

∂ε

∂p

)−1
=

h̄l
2βk

� h̄l2

2β
,

as k � 1/l (due to the bottleneck effect on the centre of the wave packet in the momentum
space). In the case of LO phonons, the dephasing time-scales quadratically with the dot’s
dimensions, and thus for the state-of-art structures it attains values much larger than the
dephasing time for the LA channel (with the linear scaling) (cf. Fig. 9).
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,

as k � 1/l (due to the bottleneck effect on the centre of the wave packet in the momentum
space). In the case of LO phonons, the dephasing time-scales quadratically with the dot’s
dimensions, and thus for the state-of-art structures it attains values much larger than the
dephasing time for the LA channel (with the linear scaling) (cf. Fig. 9).
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Figure 10. The correlation function’s decrease in value corresponds to the decrease in the overlap of the local
distribution of a QD particle (exciton) with the phonon (LA) wave packet carrying off the excess energy; the correlation
function is the overlap of a QD particle (exciton) probability density, |Ψ(r)|2 (upper left), with the wave packet escaping

from the QD-space region A(r, t) =
∫ ∫

e−ikr′ |Ψ(r′)|2dr′e
i(r± dε(|k|)

d|k| sign(k)t)k
dk (illustrated here as A(r) for a sequence of

times τ—time-scale of dephasing).

6. Decoherence of the degrees of freedom of spin in quantum dots

Spin do not interact directly with with phonons—the spin of the QD excitations interacts
weakly with the lattice oscillations due to their links to orbital (charge) degrees of freedom
via:

• spin-orbit coupling [43],

• specific Hund-like rules for multi-electron QDs [1]—the filling of the subsequent shell in
the multi-electron QD depends upon the total electron (hole) spin of a given shell [the
generalization of singlet and triplet states] which, in effect, link spin and orbital degrees
of freedom.

Weak spin coupling with phonons suggests that the spin of a QD electron constitutes a
well-isolated quantum system (an insignificant spin-orbit interaction results in an extremely
slow spin decoherence, the same is due to weak interaction with nuclear spin) that is suitable
for a qubit’s definition. One can expect that for spin qubits in QDs, DiVincenzo’s conditions
would be satisfied [7, 14, 15]. Due to the minor influence of the surrounding medium,
the QD’s spin coherence is maintained until the time period of order of µs [16]. However,
a difficulty arises when Rabi oscillations are implemented (for single qubit operations).
Because of the low value of the gyromagnetic factor in semiconductors, qubit spin control (a
qubit spanned across two spin orientations in an external constant magnetic field) via Rabi
oscillations is extremely slow and the DiVincenzo conditions are again not satisfied (the Pauli
term, gµBszB, leads to very slight Zeeman splitting of only 0.03 meV/T, in GaAs).
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For two-qubit operations of spin qubits, no such disadvantage exists—there is an effective
procedure for switching spin qubit interactions on and off [15, 16] resulting in qubit
entanglement control at the time-scale of picoseconds. The idea of spin interaction control
follows from the phenomenon of exchange interaction between two spins, being induced by
strong Coulomb interaction [44]. The exchange energy for it is the singlet-triplet energy gap
for the spin pair [44], and consequently it is of (several) meV in magnitude, resulting in a
picoseconds time-scale for the control of the entanglement of qubits. The scheme of this
control relies upon the singlet and triplet states of an electron pair (each electron captured in
an individual QD but located closely enough to maintain their quantum indistinguishability
[their localized wave functions must overlap]) and their relation with the orbital structure of
the corresponding wave functions. Due to the fermionic nature of electrons:

• the singlet state 1√
2
(| ↑>1 ⊗| ↓>2 −| ↓>1 ⊗| ↑>2) ⇐⇒ |0, 0 > corresponds to the

symmetric orbital wave function,

• the triplet states





| ↑>1 ⊗| ↑>2 ⇐⇒ |1,−1 >
1√
2
(| ↑>1 ⊗| ↓>2 +| ↓>1 ⊗| ↑>2) ⇐⇒ |1, 0 >

| ↓>1 ⊗| ↓>2 ⇐⇒ |1, 1 >





correspond to the

antisymmetric orbital wave function,

so that the complete spin-orbital wave function remains antisymmetric, as is required for
fermions. In the absence of a magnetic field, the singlet state is the ground state [44], but as
the field increases in value [i.e., the magnetic field breaks the symmetry of time-reversion],
it becomes less energy-efficient and, finally, the triplet state is preferred (with parallel spin
orientation) [a parallel spin orientation is also preferred due to the Pauli term, which is,
however, of very low value, and its contribution to energy competition is negligible; the triplet
spin state is preferred due to the minimization of the energy of Coulomb interaction by the
antisymmetric orbital state in the presence of the magnetic field breaking the time-reversion
symmetry [44]]. For the critical field (of the order of a few T for QDs), both the singlet and
the triplet states have the same energy, which means that the exchange qubit interactions is
switched off (the exchange interaction constant is expressed via the difference in the energy
value for the singlet and the triplet) [44]. It can be switched on again by varying the value
of the applied external magnetic field and shifting the system out of the degeneracy point.
The exchange interaction equal to the energy gap between the triplet and singlet states is
originated by the relatively strong Coulomb interaction and varies within the range of several
meV or more, which allows for the rapid entanglement of qubits.

Let us also mention that the possibility of using the exchange interaction to implement and
exert control over single-spin qubits has been investigated, which has resulted in:

• a singlet- and a triplet-defined qubit on a two-electron QD of He-type [45],

• a spin qubit defined by the spin states with Sz = ±1/2 for three electrons [16] but
separated energetically by a strong exchange-like interaction—i.e., a qubit defined by
a pair |1/2,−1/2 >s, |1/2, 1/2 >t or a pair |1/2, 1/2 >s, |1/2,−1/2 >t [the spin states
of three electrons can be classified according to the spin addition rule: first, two spins of

1/2 are added, yielding a singlet |0, 0 > and a triplet:





|1,−1 >
|1, 0 >
|1, 1 >



 and then the third
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spin of 1/2 is added yielding eight three-electron spin states:


|1/2,−1/2 >s |1/2, 1/2 >s
|3/2,−3/2 >t |3/2,−1/2 >t |3/2, 1/2 >t |3/2, 3/2 >t
|1/2,−1/2 >t |1/2, 1/2 >t


].

In both cases, however, for the collective qubit’s definition, the number of particles must
be increased, which results in the enhancement of local decoherence ∼ eN (N—number
of qubits). On the other hand, however, it might be conveniently directed towards the
application of collective-global (and thus more robust against decoherence) subspaces of the
Hilbert space for multi-particle systems for QIP [13].

The scheme for the entangled qubits’ control relies upon the symmetry-induced close
connection between spin exchange interaction and the orbital (thus, strong) Coulomb
interaction of electrons (leading to an energy gap between the singlet and triplet states of an
order of magnitude in meV). Due to this strong Coulomb interaction, and following the spin
exchange interaction, the time-rates of double-qubit gate unitary operations are of the order
of picoseconds, which suggests the convenience of spin degrees of freedom for QIP in QDs. A
model of a quantum gate based on the above-mentioned idea was proposed by DiVincenzo
[15, 16, 20]. In his model, a pair of H-type QDs (a single qubit spanned across electron
spin states |1/2,−1/2 >, |1/2, 1/2 >) was analysed for two-qubit operations. However,
for the implementation of a quantum computer, single-qubit operations are necessary as
well, which unfortunately are extremely slow for the defined spin qubit on single-electron
spin states. The idea of accelerating single-qubit operations can be associated with the
enhancement of the gyromagnetic factor in semiconductor environments with magnetic
dopants (as in so-called ’diluted magnetic semiconductors’) [46–50] in a magnetically ordered
phase. In such materials with low concentrations of magnetic ions (of a few percent range),
typically Mn2+ ones, phase transition to a magnetically-ordered phase takes place due to the
mediating role of band holes [49]. Such a phase transition takes place even at temperatures
exceeding 100 K (in Ga(Mn)As) [49, 50] and, additionally, can be controlled via the hole
concentration in the semiconductor [47, 48, 51–53]. The magnetic ordering of the material
produces an extremely strong Weiss-like magnetic field internally, which acts exclusively
on the degrees of freedom of the spin (i.e., it does not act on orbital ones), thus leading
to a significant increase in value of the Pauli term, i.e., in the enhancement of the effective
gyromagnetic factor. This suggests that single-qubit operations could be accelerated up to
the level required by the DiVincenzo criteria in QDs in DMSs (such structures have already
become available).

However, introducing an additional spin subsystem (and such is the magnetic dopant part
of the semiconductor) causes a new problem. Such a subsystem is a source of collective
excitations—spin waves, which interact directly with the qubit spin. In this system, spin
waves (magnons) behave like phonons and produce similar spin decoherence effects (as
presented for phonons and the charges in the previous paragraphs).

A more detailed analysis of the problem (as will be presented below) shows that spin waves
cause harmful decoherence within time-rates of the order of 500-1000 ps, which is a serious
negative side-effect threatening the feasibility of the spin logic gate (again, in the centre
of the six-order time window between the control time and the amplitude decoherence for
spins [54]). It exists, however, the promising opportunity to diminish the amplitude of this
spin dephasing, which is in contrast to the phonon-induced effect in the case of spin waves
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and can be achieved at very low temperatures, as will be demonstrated in the following
paragraphs. The essential elements of the analysis are as follows: (1) the averaging over the
random distribution of magnetic admixtures in a DMS [55] yields a spin waves spectrum in
a Holstein-Primakoff representation [56, 57] [the averaging restores the effective translational
invariance in a randomly doped system [55] and allows for the application of momentum
representation]; (2) the determining of the spin wave dispersion in a DMS with respect to the
hole and the magnetic dopant concentration; (3) analyzing the structure of the interaction
between the spin waves and the spin of a QD exciton. The quadratic dispersion of spin
waves found as the result of this analysis turns out to be crucial for the timing of the phase
decoherence of spin in QDs. The estimation of the time rate of this process is given as the QD
dimension divided by the spin wave group velocity, according to the general rule presented
in the paragraph 5, (vg = ∇ε(p) ∼ p ∼ h̄

d ), τ ∼ d
1/d ∼ d2; the time-rate scales as the square

of the QD dimension (marked as d), similarly as in the case of LO phonons (and similarly
as for LO phonons rapidly increases with the dot dimension growth) and for typical dots of
dimension of about 10 nm reaches values of the order of 500 ps.

6.1. Dephasing induced by the dressing of QD exciton spin with magnons in a
diluted magnetic semiconductor’s surroundings

An interesting question arises with regard to the QD spin in the magnetic surroundings
when the Pauli term causing the Rabi oscillations for spin can be strengthened due to an
increase in the effective gyromagnetic factor. Spin does not interact directly with phonons,
and thus it is free from phonon-induced dephasing. Nevertheless, the dephasing role of
phonons may be played by spin waves in magnetically-ordered media which, on the other
hand, are convenient for accelerating single-qubit QD spin control to the level required
by the DiVincenzo conditions. Spin waves (frequently called ’magnons’) are collective
spin-type excitations in the ferromagnetic or anti-ferromagnetic medium (or in any other
magnetically-ordered spin system), and possess similar band properties to phonons in
crystalline structures. The spin-exchange interaction between the magnons and the local QD
spin (of an exciton trapped in a QD) is relatively strong and causes the dressing of the QD
spin with the magnons in a similar fashion to the dressing of the QD charges with phonons.
The opportunity for the experimental study of such a spin dressing phenomenon may be
linked to the so-called ’diluted magnetic semiconductors’ of the type III-V (e.g., Ga(Mn)As)
or II-VI (e.g. Zn(Mn)Se). In these magnetically and weakly doped semiconductors, some
relatively small part of the cations (usually a few %) is randomly substituted by transition
metal ions (typically of Mn). The admixture spins interact with the spins of band holes and
as a result the ferromagnetic ordering of the admixture spins is observed. The related Weiss
field enhances the effective gyromagnetic factor in the Pauli term, describing the spin action
of the external magnetic field conveniently for the acceleration of the control over the local
QD spin.

6.2. Spin waves in the diluted magnetic semiconductor

To describe the dephasing of QD spin caused by magnons in DMSs quantitatively, the
analytical expression of the spin wave spectrum in the DMS is needed. This can be found
in the paper [64]. For the relevant theoretical description of the spin subsystem of the DMS,
the model of dopant spin exchange mediated by band holes is utilized [58, 59], assuming
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and can be achieved at very low temperatures, as will be demonstrated in the following
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d ), τ ∼ d
1/d ∼ d2; the time-rate scales as the square
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that the p − d exchange between the band holes and the impure magnetic atoms may lead
to the ferromagnetic alignment of the magnetic dopants (Mn). Note that the holes taking
part in the spin exchange with the dopant Mn ions cause an indirect exchange beyond the
weak, direct, short-range and anti-ferromagnetic exchange between the magnetic dopants
[48]. The hole-induced indirect coupling, even for low concentrations of holes xp (lower than
the magnetic dopant concentration x) occurs strong and leads to the ferromagnetic ordering
of Mn spins even at relatively high temperatures, ∼ 110 K in Ga0.947Mn0.053As [58, 60].
Let is be emphasized that, in III(Mn)V DMSs, the Mn atoms of the magnetic dopants are
simultaneously shallow acceptor centres, whereas in II(Mn)VI-type DMSs, the Mn dopants
are not acceptors and the holes must be supplied by additional p doping.

To briefly sketch the derivation of the magnon spectrum in DMSs, let us set out the
Hamiltonian for the DMS system with magnetic dopants Mn2+ (with spin S = 5/2) in the
form:

Ĥ = Ĥs + Ĥp, (26)

where Ĥs describes the spin subsystem of the DMS:

Ĥs = −2
Np

∑
j=1

∑
n

Ap

(
Rj − Rn

)
ŝj · Ŝn, (27)

where ŝj, Rj and Ŝn, Rn are operators for the spin and position of the j-th hole and the
n-th impurity atom (in the lattice point Rn; the interstitial positions of the dopants are not

accounted for); Ap

(
Rj − Rn

)
is the p − d exchange integral; Ap (R) < 0 (antiferromagnetic)

and
∣∣Ap (R)

∣∣ ∼ 1eV; n summation goes over lattice points occupied by magnetic dopants;

hole concentration xp =
Np
N , magnetic dopant concentration x = Ni

N , Np is the number
of band holes which contribute to exchange with the impurity atoms, Ni is the number
of magnetic impurities, N is the number of elementary cells and Ĥp is the fermionic
Hamiltonian of the holes.

The important property of the considered system is the randomness of the distribution of the
magnetic impurity atoms and the acceptors. The averaging over these random distributions
conveniently results, however, in the effective restoring of the translational symmetry broken
at any particular dopant distribution, though it is again present after averaging. This
allows for momentum-representation for collective excitations, which can be utilized in the
diagonalization of the spin part of the Hamiltonian. This procedure is originally presented in
[64] and results in the explicit form for the low-temperature excitation spectrum of the DMS
spin subsystem. This spectrum of magnons in DMSs consists of two branches: the gap-less
branch ε1 (k) and the "optical-type" gapped branch ε2 (k). The value of the gap is given by
the formula ε2 (0) = −Ãp (0)

(
xp + 2Sx

)
(’tilde’ denotes the Fourier picture). The energy of

the magnon branch ε1 (k) grows with increasing k, whereas the energy for the branch ε2 (k)
diminishes with increasing k. Within the long-wave limit, i.e., for small k, the spin wave
energy spectrum can be written as follows [64]:
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{
ε1 (k) = Dk2,
ε2 (k) = D0 − Dk2,

(28)

with: D0 = −Ãp (0)
(
xp + 2Sx

)
, D = −Ãp (0)

2Sxxp
xp+2Sx l2

ex , where lex expresses the
space-range of the exchange interaction.

6.3. Dressing of the QD’s local exciton spin by magnons from the surrounding
DMS

In analogy to the creation of the polaron in a QD by the dressing of the QD exciton with
band phonons, one can observe the formation of the excitonic-magneto-polaron (EMP), i.e.,
of the localized QD exciton spin dressed with magnons in the surrounding DMS (in the case
of the magnetically ordered phase of the DMS at a sufficiently low temperature). Similar
to the ordinary polaron, the dephasing of the spin caused by the magnons expresses the
inertia of the collective spin wave system. For the non-adiabatically and rapidly excited bare
exciton to the QD one deals with a non-stationary state of the whole system of QD with
surrounding DMS. Similarly to the dephasing of the QD charge by phonons, in the case
of step-by step formation of the exciton magneto-polaron (EMP) in QD one deals with the
outflow of an excess energy to the region outside the QD. This excess energy is linked now
with the spin exchange interaction and the carriers for the energy outflow are magnons. The
corresponding quantum evolution of the total system is the evolution of the non-stationary
state (originally at t = 0 defined by the non-stationary initial state of the bare exciton rapidly
excited in the QD). During this evolution, the mean energy is shared between the QD and the
surrounding magnons in the DMS (the spin wave sea). The final EMP localized in QD and
dressed with the cloud of magnons has a lower mean energy than the initial bare exciton.
Together with the magnons escaping from the QD region (these ones remove the excess of
the spin exchange energy outside the QD), the whole system remains in the non-stationary
state, although the local EMP might be treated as the ’stationary’ component of the eventual
state of the system. In order to estimate the time-rate corresponding to the dressing of the
local spin in the QD by magnons resulting in the formation of the EMP, the same rule as that
for the QD charge with phonons can be utilized.

In analogy to phonon dressing, one arrives at the formula for the correlation function,

I(t) ∼ e−iEt
∫

dr |Ψ0(r)|2
∫

dkF∗(k)ei(kr−ε(k)t),

describing the time-dependent evolution of the overlap of the local QD particle distribution,
|Ψ0(r)|2, with the wave-packet of the spin waves escaping the dot region step-by-step,
∫

dkF∗(k)ei
(

r− ∂ε(k)
∂k t

)
k (where k corresponds to the centre of the wave-packet being of the

order of ∼ 1/l, as caused by the QD bottleneck effect similar to that for phonons and which is
visible from the form of F∗(k)). The group velocity of this wave-packet is equal to vg = ∂ε(k)

∂k
(at k ∼ 1/l). Thus, one can conclude that the dephasing time defining the time-scale of the
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Figure 11. The EMP formation time τ = l
vg

(the spin dephasing time-rate) for an exciton localized in a QD
embedded in a DMS versus the dot dimension for various hole-concentration rates xp (x is an Mn admixture rate)
in the Zn0.75Mn0.25Se/CdSe DMS/QD structure; the parabolic scaling with the dot dimension is similar to that for LO
phonons but distinct from LA phonon wave-packet kinetics.

dressing of the QD spin with magnons and expressed by the function I(t) is given by that
according the general rule, τ � l

vg
.

The dressing of the QD exciton spin with magnons is similar to the dressing of the QD
charge with LO phonons, since both LO phonons and magnons have a quadratic dispersion.
Utilizing now the formulae for magnon energies as given by Eqs. (28), we arrive at the
assessment for the time of formation of the EMP in form,

τ � l
vg

= l
(

∂ε

∂k

)−1
=

l
2Dk

� l2

2D
,

k � 1/l because of above-mentioned QD bottleneck. Note that the derived time for dressing
with magnons scales as l2. Therefore, it is relatively lengthy for state-of-the-art QD sizes
(typically of the order of 10 nm for the diameter). The dephasing time of the exciton
spin given by the above estimation depends upon the magnetic admixture and band-hole
concentrations in the DMS because of the concentration-dependence of the factor D. To
illustrate this behaviour, several examples are presented in Fig. 11.

For the experimentally observed QD in the structure Zn(Mn)Se/CdSe with a dimension of
∼ 10 nm and with concentrations of x = 0.25, xp = 0.025, one can estimate using the above
formula the spin dephasing time as being of the order of 150 ps, which agrees with the
timing of the formation of the EMP experimentally observed in Zn0.75Mn0.25Se/CdSe (note
that, for this structure, the time for exciton annihilation is considerably longer, ∼ 600 ps, and
the complete formation of the EMP can thus be observed) [65–67].

On the ’Three-Orders Time-Limit’ for Phase Decoherence in Quantum Dots
http://dx.doi.org/10.5772/60685

75



30 ime knjige

Figure 12. Contribution to the exciton mass operator resulting in the pure dephasing of spin in the state n of an exciton
(continuous lines—exciton Green-Matsubara functions, dashed lines—magnon Green-Matsubara functions).

6.4. Explicit form of the interaction of magnons with QD spin causing the spin
pure dephasing

An important observation might be made that it is a considerable difference between
the phonon- and magnon-assisted dephasing phenomena of charges and spin in QDs,
respectively. To demonstrate this difference, it is necessary to analyse the exchange-spin
interaction of QD excitons with magnetic admixture spin waves. This interaction can be
expressed as follows:

Ĥsd(Re, Rh) = −2β0 ∑
n

Ae(Re − Rn)ŝe · Ŝn − 2β0 ∑
n

Ah(Rh − Rn)ŝh · Ŝn, (29)

where ŝe(h) is the spin operator of the electron (hole) of the exciton in the QD, Rn is
the position of the magnetic dopant (Mn2+), Ŝn is the spin operator of the dopant, and
the n summation goes over the lattice sites occupied by magnetic dopants. The term
Ae(h)(Re(h) − Rn) describes the exchange-spin interaction between the electron (hole) spin
of the QD exciton and the spin of the dopant, whereas an effective coefficient β0 accounts for
the additional decrease of the exchange integrals due to the dot-structure proximity in real
system (β0 is assumed to be 0.1 as estimated from the experimental data [65, 66]).

For the four-fold spin structure of the QD exciton, we use the notation (j, n, sz = ± 1
2 ),

where j = 1, 2 correspond with the anti-parallel and parallel spin alignments of the e-h
pair, respectively, and sz is the spin projection of the electron in the e-h pair. Taking
these representations for e-h pair spins ŝe(h) and the magnon representation (in the
Holstein-Primakoff picture) for dopant spins Ŝn [64], one can rewrite the Hamiltonian (29)
in the manner presented below.

By a(+)
jnsz

, we denote the bosonic annihilation (creation) operator of the exciton in the
(jnsz) state (j = 1, 2 indicates the opposite and the same spin mutual alignment of
electron-hole pair creating an exciton, correspondingly; sz denotes the spin alignment of
the electron in electron-hole pair). One can now rewrite the Hamiltonian (29) in the
basis of these excitonic states, namely, ∑

µ,µ′
< µ|Hsd|µ′ > a+µ aµ′ , where µ = (jnsz).

Taking the Holstein-Primakoff representation [68] for the spins of dopants and averaging

over the dopant random distributions [64] and changing to the magnons—α̂
(+)
i , i = 1, 2
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where ŝe(h) is the spin operator of the electron (hole) of the exciton in the QD, Rn is
the position of the magnetic dopant (Mn2+), Ŝn is the spin operator of the dopant, and
the n summation goes over the lattice sites occupied by magnetic dopants. The term
Ae(h)(Re(h) − Rn) describes the exchange-spin interaction between the electron (hole) spin
of the QD exciton and the spin of the dopant, whereas an effective coefficient β0 accounts for
the additional decrease of the exchange integrals due to the dot-structure proximity in real
system (β0 is assumed to be 0.1 as estimated from the experimental data [65, 66]).

For the four-fold spin structure of the QD exciton, we use the notation (j, n, sz = ± 1
2 ),

where j = 1, 2 correspond with the anti-parallel and parallel spin alignments of the e-h
pair, respectively, and sz is the spin projection of the electron in the e-h pair. Taking
these representations for e-h pair spins ŝe(h) and the magnon representation (in the
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(diagonalization transformation is given explicitly in Ref. 64)—we arrive at the following
form of the exchange Hamiltonian (29) [69]:

Ĥsd = Ĥ1
sd + Ĥ2

sd, (30)

Ĥ1
sd = −

(
v0

(2π)3

)2
2Sxiβ0

∫
d3k1

∫
d3k2

[
vk2 α̂+1 (k2) + uk2 α̂+2 (k2)

]

×
[
vk2+k1 α̂1(k2 + k1) + uk2+k1 α̂2(k2 + k1)

]

× ∑
n,n′

1/2
∑

sz=−1/2
sz

{[
Fe

nn′ (k1)− Fh
nn′ (k1)

]
â+1nsz

â1n′sz

+
[

Fe
nn′ (k1) + Fh

nn′ (k1)
]

â+2nsz
â2n′sz

+
[

Fe
nn′ (k1)â+1nsz

â2n′sz + hc
]
+

[
Fh

nn′ (k1)â+1nsz
â2n′−sz + hc

]}
,

(31)

Ĥ2
sd = −

√
2Sxiβ0

v0
(2π)3

∫
d3k ∑

n,n′
{[vkα̂1(k) + ukα̂2(k)]

×
[

Fe
nn′ (k)

(
â+1n1/2 â1n′−1/2

+â+2n1/2 â2n′−1/2 + â+1n1/2 â2n′−1/2 + â+2n1/2 â1n′−1/2

)

+Fh
nn′ (k)

(
â+1n−1/2 â1n′1/2

+â+2n1/2 â2n′−1/2 + â+1n1/2 â2n′−1/2 + â+2n1/2 â1n′−1/2

)]
+ hc

}
.

(32)

In the first part, Ĥ1
sd, we can identify the term describing the interaction without any change

in the exciton spin (neither the electron nor the hole in the e-h pair). This term thus describes
the interaction channel when the spin of the created (annihilated) magnon has to be cancelled
by an annihilated (created) magnon (spin is conserved—it is different compared to phonons).
It should be emphasized that, in the second part, Ĥ2

sd, the exciton spin-flip processes are
included only with involvement of a single magnon. Therefore, the term, without any change
of the state (the spin state here) and which leads to a pure dephasing of spin, contributes
only to Ĥ1

sd. The Hamiltonian part Ĥ2
sd does not cause any pure dephasing because this part

of the interaction does not conserve the exciton state (spin). The term Ĥ2
sd always causes an

amplitude (diagonal) decoherence as a changing of the exciton spin state.

With the first term in Ĥ1
sd, and significantly for the pure dephasing of the QD exciton spin,

one can associate the vertex which gives an imaginary part of the mass operator, cf. Fig. 12
(leading to the pure dephasing of the exciton ground state). Note that this is different from
that for phonons, cf. Fig. 2.

The imaginary part of the mass operator given by the graph in Fig. 12 can be written as
follows:

γn(ω, T)

= π
2
∑

i,j=1
∑

k1,k2

|V(n, k1, i; n, k2, j)|2[ni(k1) + 1]nj(k2)δ(ω − En − εi(k1) + ε j(k2)),
(33)
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n = 0 comprises here all the exciton ground state quantum numbers (1, 0, 1
2 ), and:

V(n, k1, i; n, k2, j)|n=0 = β02Sxi

[
vk2 vk1 , vk2 uk1

uk2 vk1 , uk2 uk1

] (
Fe

00(k1 − k2)− Fh
00(k1 − k2)

)
,

The matrix is addressed to the magnon branches: {ij} =

[
11, 12
21, 22

]
, ni(k) is Bose-Einstein

distribution for the i-th magnon branch, uk, vk are coefficients of the DMS magnon
diagonalization transformation [64], and

Fe(h)
nn (k) = Ãe(h)(k)

∫
d3Re

∫
d3RhΨ∗

n(Re, Rh)e
ik·Re(h)Ψn(Re, Rh),

Ãe(h)(k) =
1
v0

∫
d3RAe(h)(R)e−ik·R, Ψn(Re, Rh) is the orbital part of n-th exciton state (for the

ground state the trial wave function has been assumed in the form of the Gaussian function,

Φ0 = 1
(π)3/2

1
Le Lh Lz

exp
[
− r2

e⊥
2L2

e
− r2

h⊥
2L2

h
− z2

e+z2
h

L2
z

]
, where re,h⊥ are the positions of the electron and

hole in the xy plane, Le(h) denotes variational parameters introduced in order to account for
e-h Coulomb attraction [64, 70]), Ae(h)(R) = Ae(h)e

−2R/lex with the range of the exchange

lex ∼ a, (a3 = v0), Ãe(h)(k) =
Ãe(h)(0)

[1+k2 l2
ex/4]2

, Ãe(h)(0) =
π2

4
l3
ex
v0

Ae(h).

The imaginary part of the mass operator can be rewritten in the form:

γ0(ω, T) = π ∑
k1,k2

|V(k1 − k2, 0)|2

×
{
[n1(k1) + 1]n1(k2)v2

k2
v2

k1
δ(ω − E0 − ε1(k1) + ε1(k2))

+ [n1(k1) + 1]n2(k2)v2
k2

u2
k1

δ(ω − E0 − ε1(k1) + ε2(k2))

+ [n2(k1) + 1]n1(k2)u2
k2

v2
k1

δ(ω − E0 − ε2(k1) + ε1(k2))

+ [n2(k1) + 1]n2(k2)u2
k2

u2
k1

δ(ω − E0 − ε2(k1) + ε2(k2))
}

,

(34)

with ε1(k) = Dk2, ε2(k) = D0 −Dk2, V(k1 −k2, 0) = β02Sx(Fe
00(k1 −k2)− Fh

00(k1 −k2)) =

f (k1 − k2 = k) = A e−αk2

[1+κk2]2
, A = β02Sx(Ãe(0) − Ãh(0)), κ = l2

ex/4, α = l2/2 (l—the
dimension of the exciton in the ground state averaged over all directions [70]). Finally:

γ0(ω, T) = πA2 ∑
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2
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×
{
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k2
v2
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k2
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1 + k2

2))
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n = 0 comprises here all the exciton ground state quantum numbers (1, 0, 1
2 ), and:

V(n, k1, i; n, k2, j)|n=0 = β02Sxi

[
vk2 vk1 , vk2 uk1

uk2 vk1 , uk2 uk1

] (
Fe

00(k1 − k2)− Fh
00(k1 − k2)

)
,

The matrix is addressed to the magnon branches: {ij} =

[
11, 12
21, 22

]
, ni(k) is Bose-Einstein

distribution for the i-th magnon branch, uk, vk are coefficients of the DMS magnon
diagonalization transformation [64], and

Fe(h)
nn (k) = Ãe(h)(k)

∫
d3Re

∫
d3RhΨ∗

n(Re, Rh)e
ik·Re(h)Ψn(Re, Rh),

Ãe(h)(k) =
1
v0

∫
d3RAe(h)(R)e−ik·R, Ψn(Re, Rh) is the orbital part of n-th exciton state (for the

ground state the trial wave function has been assumed in the form of the Gaussian function,

Φ0 = 1
(π)3/2

1
Le Lh Lz

exp
[
− r2

e⊥
2L2

e
− r2

h⊥
2L2

h
− z2

e+z2
h

L2
z

]
, where re,h⊥ are the positions of the electron and

hole in the xy plane, Le(h) denotes variational parameters introduced in order to account for
e-h Coulomb attraction [64, 70]), Ae(h)(R) = Ae(h)e

−2R/lex with the range of the exchange

lex ∼ a, (a3 = v0), Ãe(h)(k) =
Ãe(h)(0)

[1+k2 l2
ex/4]2

, Ãe(h)(0) =
π2

4
l3
ex
v0

Ae(h).

The imaginary part of the mass operator can be rewritten in the form:
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k2

v2
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k2

u2
k1

δ(ω − E0 − ε2(k1) + ε2(k2))
}

,

(34)
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n1(k) = 1
eDk2/kT−1

, n2(k) = 1
e(D0−Dk2)/kT−1

and (for small k, k/kmax << 1, kmax = π/a) u2
k =

xp
xp+2Sx − Bk2, v2

k = 2Sx
xp+2Sx + Bk2, B =

xp
x

2S−xp/x
(2S+xp/x)3 2Sl2

ex, D0 = −Ãp(0)(xp + 2Sx), D =

−Ãp(0)
2Sxp x

xp+2Sx l2
ex.

The above formula (35) allows for the calculation of the correlation function I(t) and the
estimation of the spin dephasing timing. The results are presented in Fig. 11.

It should be emphasized that due to spin conservation in the vertex, the two magnons
must take part simultaneously in the interaction, which is responsible for the dressing
of the exciton state with the magnon cloud (i.e., this interaction part, which causes
the pure dephasing of the exciton spin). This property leads, however, to the special
temperature-dependent factors [ni(k1) + 1]nj(k2) → 0 (for T → 0) which occur in the
equation for γ0(ω, T). These factors tend towards zero with decreasing temperature and
completely freezes the pure dephasing of the exciton spin at T = 0 (in contrast to the
charge dephasing process by phonons, which is maintained strong even at T = 0—this
is due to the emission factor 1 + n(k) → 1 for T → 0, i.e., a non-zero low temperature
limit for a triangle-type vertex with phonons). Additionally, let us note that for magnons at
low temperatures n1 >> n2, and due to the magnon gap, contribute only the terms with
n1(1 + ni), (i = 1, 2).

7. Magnon-induced versus phonon-induced QD exciton dephasing
Due to the different types of vertex interactions responsible for pure dephasing, namely
exciton-phonon (triangle vertex) and exciton-magnon (quadratic vertex), they lead to
significantly different phenomena. Spin conservation in the vertex (during interaction)
requires the participation of two magnons (the exciton spin state remains unchanged), unlike
phonons, in which case single-photon emission or absorption is feasible with the exciton state
unchanged. For magnons, magnon emission must be accompanied by magnon absorption
(in order to balance the loss of spin in the vertex due to the spin wave emission—equation
(33)). Although factors corresponding to the emission (of type [1 + n]) assume non-zero
values even at T = 0 (this is true for phonons as well), the absorption factor (of type n; the
probability of magnon absorption is proportional to the number of magnons) falls to zero for
T → 0, and this is the reason why exciton spin dephasing by magnons becomes smaller and
smaller (→ 0) as the temperature falls to T = 0 (in the case of phonons, dephasing remains
non-zero even at T = 0 due to only phonon emission, even in a phonon vacuum for T = 0).
Moreover, for magnons, n2 << n1 in the limit T → 0 (due to a magnon gap) and therefore
at low temperatures only terms with factors n1(1 + ni) contribute.

At higher temperatures, when the number of thermodynamic magnons (liable to absorption)
increases sufficiently, magnon-induced spin dephasing is as effective as phonon-induced
charge dephasing. The difference between both effects presented herein emphasizes the
fact that spin is more resistant to DMS-magnon-induced dephasing at low temperatures due
to spin conservation constraints in comparison to phonon-induced charge dephasing (which
is strong even at T = 0).

8. Conclusions
In conclusion, we can state that in the case of QDs we deal with a specific type of
phonon-induced phenomenon, which is essentially distinct from the phonon-induced effects
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in bulk semiconductors. This difference is caused by the compatibility of the energy scale
for carriers trapped in QDs with the band-phonon energy scale. Owing to this energy
coincidence, the coupling of carriers in QDs with phonons always meets its strong regime
limit. This coupling cannot be treated perturbatively, in general, and the resonance effects
are of primary importance, resulting in strong polaron-type modifications of the QD electron
and exciton spectra. The typical energy shift due to the formation of electron-polaron is of
the order of 10%, while for exciton-polaron it is of the order of 5% with respect to the bare
energy levels in QDs treated as separated from the environment. The confinement of carriers,
as in the case of QDs, also causes the significant enhancement of the effective Fröhlich
constant due to non-adiabatic effects, which additionally strengthens the electron-LO phonon
interaction. The dressing of the electrons/holes/excitons in QDs with band phonons from
the surrounding crystal induces the dephasing of charge (orbital degrees of freedom) in
QDs (the off-diagonal decoherence). The typical time-scale of this dressing process in the
case of the formation of an exciton-polaron in QDs turns out to be of the one picosecond
time-scale (for a typical QD of 10 nm diameter). This dephasing is caused by the exciton
dressing with LA phonons. Worth noting is the observation that the dephasing due to
LO phonons is considerably smaller and slower—of the 100 ps scale. This phenomenon
is caused by the relatively weak LO phonon dispersion near the Γ point (in the Brillouin
zone), in contrast to the dispersion of LA phonons. Nevertheless, the outflow of the excess
polarization energy to the space region outside the QD, as a typical process during LO
polaron formation, is eventually accelerated by the anharmonic coupling (LO-TA is the most
important anharmonic channel in GaAs), which results in a few ps time-scale. It is important
to note that these effects of QD-charge dephasing by band phonons refer not only to QDs but
also to all nanostructures in solids, because the carrier localization (the space-confinement of
trapped carriers) plays the essential role here.

We have observed also that in magnetically-ordered media (like in DMSs), magnons (spin
waves)play a similar destructive role to phonons. Spin waves cause the dephasing of the
exciton spin in QDs, in a process of the formation of excitons-magnetos-polarons by the
step-by-step dressing of the local spin of exciton in QD with the magnon cloud from the
surrounding magnetically-ordered medium. By using the Green function technique, we have
estimated the time for the dressing of the local exciton spin with band magnons in the case of
DMSs which surround QDs by analogy to the dressing of QD charge (i.e., QD orbital degrees
of freedom) with band phonons from the surrounding crystal. Nevertheless, the significant
difference between these two phenomena is observed and elucidated, namely, in the case
of spin dressing two magnons are needed (creation and annihilation) owing to the spin
conservation in the interaction vertex, which results in the complete freezing (vanishing) of
the spin pure dephasing at T = 0. This is in contrast to the phonon-induced pure dephasing,
which maintains strong even at T = 0.

The dephasing scheme for the exciton charge and spin in QD structures is important for
the feasibility assessment of QIP implementations in QDs. The picoseconds time-rate for QD
charge dephasing probably precludes the feasibility of the implementation of error-correction
schemes for all optically-controlled gates in QD technologies. The dressing of a localized spin
with magnons in a DMS (i.e., the time corresponding to the formation of EMP in a QD) takes
place at a longer time-scale in comparison to dressing charges with phonons, and the related
time-scale is of the order of 150-200 picoseconds due to the relatively weak quadratic magnon
dispersion, similar to as was the case for LO phonons. Nevertheless, the time-rate for QD
spin dephasing induced by magnons in the surrounding DMS is also inconvenient for QIP
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applications, similarly to the case of the dephasing of QD charges by phonons. The overall
time-scale for QD spin kinetics (QD/DMS-embedded structures) is shifted by three-orders
of magnitude to longer periods in comparison to QDs’ orbital degrees of freedom, though
again with the same inconvenient dephasing time-rate falling right in the middle between
the control-timing and the relaxation-timing (which does not allow the satisfaction of the
DiVincenzo conditions). In this way, the ’three-orders time-limit’ caused by the dephasing
phenomena is repeated for spin in the QD/DMS.

The pure dephasing of spin in QD/DMS structures disappears, however, at T = 0, and is
strongly suppressed in amplitude at low temperatures (in contrast to the charge dephasing),
which supports expectations of some advantages of spin degrees of freedom in QDs for QIP
applications.
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Abstract

We study the charge states in Andreev quantum dot, the metallic quantum dot
coupled to the superconducting ring. We show that breaking the electron-hole
symmetry in a superconductor generates non-integer charge, localized in a metallic
part of the Andreev quantum dot. We demonstrate that this non-integer charge
varies continuously as a result of the electrostatic gating and/or change in the phase
difference between the superconducting banks. We investigate charge fluctuations
associated with the electron-phonon coupling and Coulomb interactions. We
propose a recipe for measuring the charge enabling the design of a sensor for weak
magnetic fields whose working element is the Andreev quantum dot.

Keywords: superconductivity, Andreev quantum dot, non-integer charge

1. Introduction

A relation between the charge and phase of the order parameter in superconductors is one
of the central issues of physics of superconductivity. The nondissipative supercurrent is
related to the gradient of the superconducting phase, in particular, Josephson current is
caused by the phase difference ϕ at the banks of the contacts [1, 2]. The static charges are
intimately connected with the singularities in the phase distribution. The point singularity
associated with the zero of the order parameter, around which the phase, when encircling
singularity, gains 2π are superconducting vortices [3], which can be viewed as filaments
of the normal metal (vortex normal cores) surrounded by encircling supercurrents. The
quasiparticle states that form in the core, so-called Caroli-de Gennes-Matricon or Andreev
states, carry the small excess charge ekF per unite length [4, 5], where e is the electronic
charge and kF is the Fermi wave vector of the underlying normal metal. This excessive charge
stems from the violation of symmetry between electrons and holes. Since Andreev state are
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permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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the base for variety of the emerging superconducting devices, like, for example, Josephson
transistors [6–8], the study of physics of the charge states associated with the Andreev levels
is of prime importance not only from the fundamental science viewpoint but is critical for
applications of superconductors.

We will focus on the charge states associated with the Andreev levels in a so-called Andreev
quantum dot. The latter is a metallic quantum dot coupled via tunneling contacts to a
superconducting ring [9, 10], see Fig. 1, where breaking the symmetry between electrons
and holes gives rise to a localized charge [10, 11]. This charge can be continuously changed
by variation of the phase difference between the superconducting banks ϕ and the gate
voltage Vg, hence the charge is not necessarily an integer. In particular, a singly excited
state (where the number of Bogoliubov quasiparticles is odd) carries an integer charge,
whereas the ground state and a doubly excited states (with the even number of Bogoliubov
quasiparticles) carry non-integer charge.

Condensed matter physics is mostly dealing with the situations where the charges appear as
multiple integers of the electron elemental charge e. Notable examples where fractional
charges appear are fractional Hall effect [12–14] and Luttinger liquid [15–17]. In either
case fractional charge appears due to averaging over time. The charges at the Andreev
dot that we will discuss here also appear due to averaging over time, but do not have
some fixed fractionality and can be altered continuously by tuning external parameters such
as superconducting phase difference and gate voltage. Continuously tunable charges in
mesoscopic systems were discussed, e.g., in Refs. [18, 19]. There, the appearance of the
non-integer charge is ensured by the peculiarity of corresponding wave function partially
localized in the quantum dot; exponentially decaying wave function “tails” comprise the
rest of an integer charge. Here we will discuss the non-integer charge completely localized
in a quantum dot, while the rest is localized far away in the superconducting condensate.
Non-integer charges we will be dealing with, resemble fractional charges associated with the
excitations in superconductors and are discussed in the context of the charge relaxation in
nonequilibrium superconductivity [20, 21]. The examples of measurable manifestations of
the non-integer charge include the telegraph signal arising due to stochastic occupation of
the Andreev levels [9, 10] and the dependence of the charge upon magnetic flux piercing
a superconducting ring. This opens route for designing the Andreev dot-based device for
measuring weak magnetic fields [22].

This chapter is organized as follows: In Sec. 2 we introduce preliminaries relating to the
origin of the fractional charge in the Andreev quantum dot, and in Secs. 3 and 4 turn to the
detailed analysis of the charge and energy states respectively. In Secs. 5–7 we describe the
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∆eiϕ/2

∆e−iϕ/2

flux, Φ
Magnetic

(b)(a)
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Gate
voltage,

Figure 1. (a) Sketch of the Andreev quantum dot: A quantum dot connected to superconducting banks. (b) Andreev
quantum dot driving by magnetic flux Φ = (ϕ/2π)Φ0 threading the superconducting loop and by gate voltage Vg.
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possible sources of the fluctuations of the fractional charge. Section 8 is devoted to effects
of Coulomb interaction. In Sec. 9 we discuss the scalability of the charge. In Sec. 10 we
describe the means for detecting the fractional charge, and in Sec. 11 the possibility of using
the fractional charge in the Andreev quantum dot for detecting weak magnetic fields.

2. The origin of the fractional charge

Andreev reflection is at the heart of the physics of mesoscopic superconducting
structures [23–25]. At the normal metal-superconductor (NS) interface an electron
(hole) incident on the interface from the normal metal (N) at energies E less than the
superconducting energy gap, |E − EF| < ∆ (EF and ∆ are the Fermi energy and the
superconducting gap, respectively), cannot enter the superconductor (S) and is reflected as
a hole (electron) moving in the direction opposite to that of incident electron (hole) into the
normal metal. To form a hole, the electron in the |k〉 state pulls an electron in the |−k〉
state and transmits into the superconductor forming a Cooper pair. Note that at the ideal
NS-interface the reflection of an electron is complete (i.e. the reflection coefficient is unity)
and does not depend on the energy of the incident electron.

In the superconductor-normal metal-superconductor (SNS) contact, an electron impinging on
one of the interfaces is Andreev reflected and converted into a hole moving in the opposite
direction, thus generating a Cooper pair at the interface, and is converted back to an electron,
leading to the destruction of the Cooper pair in the other superconductor, see Fig. 2(a). As
a result of this cycle, a pair of correlated electrons is transferred from one superconductor
to another, creating a supercurrent flow across the junction. The resulting state in a normal
region maintains the electron-hole symmetry hence carrying an integer, if measured in the
electron charge units, charge (we disregard hereafter a slight violation of the electron-hole
symmetry of the order of ∆/EF arising due to finiteness of the Fermi energy).

Adding a normal scatterer to each of the NS-interfaces would form so-called non-ideal
normal metal-insulator-superconductor (NIS) interface, at which the scattering acquires both,
Andreev and normal components, the latter being strongly energy-dependent, see Fig. 2(b).
As a result in an SINIS junction the electron-hole symmetry breaks down. This is easily
understood in terms of electron- and hole lifetimes within the normal region. In SNS contact
these times coincide with the accuracy of ∆/EF. The presence of scattering resonances breaks
this symmetry drastically. Indeed, if the quasiparticle energy, ε, is close to resonance εD (both

Ideal NS boundaries

Electron, ε

Hole, −ε

(a)

Electron, ε

Hole, −ε

Normal scatterers(b)

Normal
resonance
εD,Γ

−∆

∆

S SN S N II S

Figure 2. (a) Andreev reflection in the SNS junction with the ideal NS interfaces. (b) Andreev reflection in the SINIS
junction: the scattering at the INI part is of the resonance character which results in violation of the electron-hole
symmetry. The panel displays electron-like resonance, εD > 0.
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ε and εD are measured from the Fermi level), more precisely, if |ε − εD| < Γ, where Γ is
the resonance half-width, the probability of the normal reflection is appreciably enhanced,
hence so does the time the quasiparticle dwells near the resonance. Shown in Fig. 2(b) is the
electron-like resonance with εD > 0 where a quasiparticle spends the better share of time in
the electron-like rather than in the hole-like state. Inversely, for εD < 0, the quasiparticle is
predominantly a hole-like one.

More insight into Andreev states in a SINIS contact can be gained via the initial study a
corresponding NININ structure where all the superconductors are substitute by normal
metals. In this case every resonance turns into the corresponding Andreev level. Electron-like
resonances above Fermi level, i.e. with ε > 0, correspond to electron-like Andreev states
with the negative excitation charge, while hole-like resonances with ε < 0 correspond to
hole-like Andreev levels with the positive excitation charge. These states can transform one
into another via changing the gate potential Vg or the phase difference ϕ along the contact.

3. A single Andreev level

In this section we discuss a single quantum conducting channel for a spinless particle, i.e. a
single Andreev level. We demonstrate that such a channel can carry a charge Q ∈ [0 . . . 2e].
Hereafter e is the negative charge of the electron, accordingly, −e is the positive charge
of the hole. We focus on the study of the charge Q as a function of the difference of
the superconducting phase ϕ, and the position, εD, of the normal resonance with respect
to the Fermi level. We thus adopt a model where both superconductor and metal are
one-dimensional (1D), which captures all the essentials of SINIS behavior. Accounting
for realistic peculiarity of the massive superconductor/normal metal contact would change
quantitative characteristics of transport across SINIS, but not its qualitative behavior.

In order for only a single Andreev level contributed to a current, only a single resonance
must fall into the superconducting gap energy interval, εD ∈ [−∆ . . . ∆], and accordingly the
resonances spacing, δ, well exceeded the superconducting gap,

δ � ∆. (1)

This condition is equivalent to the requirement that the SINIS junction were short, i.e. that
L � ξ, where L is the length of the normal segment, and ξ = h̄vF/∆ is the coherence
length. Furthermore, the “tails” of the adjacent resonances should not appear within the
[−∆ . . . ∆] interval, therefore, we let also the half-widths of the adjacent resonances which are
approximately the same as that of the resonance involved, Γ, were much less the resonance
spacing, Γ � δ. All these conditions are easily realized in experiment, see Fig. 3.

The Andreev quantum dots can be designed on the basis of single-wall carbon nanotubes [26–
30] or molecule [31–33]. The nanotube can be attached suspending between the two
superconducting leads, or else can be placed on the dielectric substrate, the superconducting
contacts being sputtered on it. The normal scatterers can be realized via two extra gates
that suppress electron density at the predesigned points creating two 1D scatterers with the
transmission amplitudes tL and tR, see Fig. 3. The gates form the Andreev quantum dot at the
nanotube. The main gate of the length of the order of the normal part of the junction creates
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an extra potential Vg in the nanotube which tunes the position of the normal resonance with
respect to the Fermi energy εD.

We start our description of the charge states in SINIS adopting the characteristics (positions
and half-widths) of the resonances in the NININ junction, equivalent to the SINIS one. To
this end let us consider the problem of the eigenvalues of the normal state Hamiltonian
Ĥ0Ψ = EΨ, defined by

Ĥ0 = − h̄2

2m
∂2

∂x2 + U(x)− EF. (2)

The 1D potential describing the NININ junction,

U(x) = Ups,L(x + L/2) + Ups,R(x − L/2) + eVgθ(L/2 − |x|)], (3)

consists of two contributions, Ups,L and Ups,R, from the point scatterers and of the gate
potential Vg, which is taken to be much smaller than the Fermi energy, eVg � EF. The
scatterers are endowed with the transmission and reflection amplitudes t� =

√
T� eχt

� and√
R� eχr

� , respectively; � = L (left), R (right), R� + T� = 1.

In Eq. (3) the Heaviside step function is θ(x) = 0 for x < 0 and θ(x) = 1 for x > 0. The
eigenvalues of this problem are resonance energies

En = εL

(
nπ − χr

L

2
− χr

R

2

)2
, (4)

where εL = h̄2/2mL2is the energy defining the quantization along the contact. The levels (4)
separation (spacing) is

δn =
En+1 − En−1

2
= 2π

√
εLEn ≈ 2En

n
, (5)

Superconductors

SWNT

Additional gates

∆e−iϕ/2 ∆eiϕ/2

tRtL

Figure 3. The Andreev quantum dot can be realized adding two gates to the SINIS structure, which deplete the electron
density at the designed spots and form the effective barriers with the transmission amplitudes tL and tR.
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and have half-widths

Γn =
1 −

√
RLRR

4
√

RLRR

√
εLEn. (6)

If TL, TR � 1 formula (6) reduces to

Γn =
TL + TR

2
√

εLEn =
TL + TR

2
δn

2π
. (7)

Gate potential shifts all the resonances over eVg. Let us denote the position of the n-th
resonance with respect to Fermi level EF as εD = En + eVg − EF. Hereafter, the subscript n
enumerating the resonances we will be omitted.

Now let us return from the ordinary normal quantum dot to the Andreev one, replacing the
normal banks by the superconducting ones. To include the Andreev reflection processes in
the SINIS, we solve Bogoliubov-de Gennes equations choosing the states with εA � 0,

[
Ĥ0(x) ∆̂(x)
∆̂∗(x) −Ĥ0(x)

][
u(x)
v(x)

]
= εA

[
u(x)
v(x)

]
, (8)

with the piecewise smooth superconducting gap

∆̂(x) = ∆
[
θ(−x − L/2)e−iϕ/2 + θ(x − L/2)eiϕ/2]. (9)

Here u(x) and v(x) are the electron- and hole components of the wave function and εA is
an excitation energy for the system, i.e. the energy acquired by the system upon adding
a quasiparticle. The superconducting gap ∆̂(x) describes bulk superconductors having the
phase −ϕ/2 at the left bank and ϕ/2 at the right hand side one.

One can solve Eqs. (8) by matching plane wave solution for the normal and decaying
solutions in a superconductor. We employ, however a more technique approach based on the
scattering matrices approach, which utilizes the fact that the transfer-matrices of the series
of the contacts is merely a product of all the respective sequential matrices corresponding
to individual contact [34]. This is in fact a generalization of the wave functions matching
approach but applied to NS boundaries only and including the characteristics of the normal
part as parameters. Let us denote the amplitudes of transmission and reflection of the INI
part as

√
T eχt

and
√

R eχr
, respectively. In the Andreev approximation we find

cos(S+ − S− − 2α) =
√

R+R− cos β +
√

T+T− cos ϕ. (10)

Here subscripts “±” refer to the probabilities and phases of reflection/transmission
from/through the INI part corresponding to energies ±εA. This parametrization presumes no
electron-hole scattering within INI. The phase α = arccos(εA/∆) is but the Andreev reflection
phase at the ideal NS boundary at ϕ = 0. The phases S± = χt

± + ke/hL stand for the phase
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scattering matrices approach, which utilizes the fact that the transfer-matrices of the series
of the contacts is merely a product of all the respective sequential matrices corresponding
to individual contact [34]. This is in fact a generalization of the wave functions matching
approach but applied to NS boundaries only and including the characteristics of the normal
part as parameters. Let us denote the amplitudes of transmission and reflection of the INI
part as

√
T eχt

and
√

R eχr
, respectively. In the Andreev approximation we find

cos(S+ − S− − 2α) =
√

R+R− cos β +
√

T+T− cos ϕ. (10)

Here subscripts “±” refer to the probabilities and phases of reflection/transmission
from/through the INI part corresponding to energies ±εA. This parametrization presumes no
electron-hole scattering within INI. The phase α = arccos(εA/∆) is but the Andreev reflection
phase at the ideal NS boundary at ϕ = 0. The phases S± = χt

± + ke/hL stand for the phase
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gain of electron and holes in the normal region, where ke/h =
√

2m(EF ± εA)/h̄ are the
respective wave vectors. For symmetric barriers the phase β = (χt

+ − χr
+)− (χt

− − χr
−) and

an integer multiple of π and generates a smooth function
√

R+R− cos β, changing its sign at
each resonance [8, 35].

In the case of the SINIS contact, Eq. (10) acquires a form:

(RL + RR) cos
(

2π
IεA

δ

)
− 4

√
RLRR cos

(
2π

εD

δ

)
sin2 α + TLTR cos ϕ

= cos
(

2α − 2π
εA

δ

)
+ RLRR cos

(
2α + 2π

εA

δ

)
. (11)

The dependence of the Andreev energy εA upon the difference of the superconducting
phases ϕ and the position of the normal resonance (i.e. upon the gate voltage) εD is found
numerically and shown in Fig. 4.

One can analyze Eq. (11) in the following interesting situations. First, if the quantum dot is
far from the resonance conditions, |εD| � ∆, the Andreev energy is given by the expression

εA ≈ ∆
(

1 − Γ2

2ε2
D

)
. (12)

Second, if the resonance falls within the superconducting gap but is apart from the Fermi
energy over than Γ, i.e. if Γ � |εD| � ∆), the Andreev energy depends linearly on the position
of the normal resonance:

εA ≈
(

1 − Γ
∆

)
|εD|. (13)
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Finally, if the resonance approaches to the Fermi level so that |εD| � Γ and Γ � ∆, the
Andreev reflection grows sensitive to the superconducting phase difference ϕ and is given
by

εA =
(

1 − Γ
∆

)√
ε2

D + Γ̃2, (14)

where

Γ̃ = Γ
√

cos2 ϕ

2
+ A2, A =

|TL − TR|
2
√

TLTR

. (15)

The latter case (often referred to as an infinite gap limit) is especially interesting to us as
containing measurable εA(ϕ) dependence. Restricting ourselves to the main order in Γ/∆,
we rewrite formula (14) as

εA =
√

ε2
D + Γ̃2. (16)

In this limit both wave function components, u(x) and v(x), are different from zero solely in
the normal region

[
u(x)
v(x)

]
=




0, |x| > L/2,[
C→

e eikex + C←
e e−ikex

C←
h eikhx + C→

h e−ikhx

]
, |x| < L/2. (17)

with the coefficients governing the relative contributions from the electronwise and holewise
being

C→
e/h = C←

e/h =
√
(1 ± εD/εA)/2L. (18)

Let us discuss at some more length on the conditions under which Eqs. (16) and (17) hold.
We need in fact two of them: (i) A large superconducting gap so that ∆ � Γ, which allows for
disregarding the continuous spectrum and (ii) Small, as compared to the superconducting
coherence length, the length of the contact, L � ξ. Note here that under these conditions the
Andreev energy εA depends strongly upon ϕ in the window |εD| � Γ. Writing down these
conditions via the parameters ordinarily relating to the coherence length hξ = h̄vF/∆ and
the transparency of one of the barriers, one finds for the conditions (i) and (ii), respectively:

Γ
∆

= T1
h̄vF

L∆
� 1, (19)

L
ξ
=

L∆
h̄vF

� 1. (20)

We have taken a symmetric SINIS contact for the sake of simplicity. Both conditions (19)
and (20) are satisfied simultaneously if we take e.g. L/ξ = 0.1 and T = 0.01. One sees
immediately why one can neglect the wave function within the superconductors, see Eq. (17):
the size of the region where the wave function dies out fast grows with ξ/L, whereas the
amplitude square is proportional to Γ/∆. Hence integrating the square of the wave function
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Figure 5. Classification of the energy levels in the SINIS junction.

over the length is proportional to ξ, one gets a quantity which is well less than that coming
out from integrating over the normal region of smaller length.

In the limit of the infinite superconducting gap, we can neglect by the continuous spectrum
and take into account only four states. The ground state is the quasiparticle-free state |0〉
with the energy

E0 = U0, (21)

where U0 is the c-number factor in the Bogoliubov transformation. We count all the energies
from the Fermi energy EF. The first excited state is |1〉 with one Bogoliubov particle is twice
degenerate with respect to the spin (in order to discriminate different spin states we will be
using notations |↑〉 = â†

↑|0〉, |↓〉 = â†
↓|0〉). Its energy is

E1 = U0 + εA, (22)

which is obtained by adding the excitation energy εA to the energy of the ground state E0.
The twice excited state with the two quasiparticles having the opposite spins |2〉 = â†

↑ â†
↓|0〉

has the energy

E2 = U0 + 2εA. (23)

In the limit of the infinite gap, one can express the energy of the ground state via the Andreev
energy:

U0 = εD − εA. (24)

We have omitted the contributions from the resonances that are far below the Fermi level,
since they do not influence the formation of the superconductivity and their contribution into
U0 does not depend upon ϕ. Formulas (21)–(24) show that energies E0/2 = εD ∓ εA depend
on the phase ϕ, while the energy E1 = εD does not. The energy levels are presented in Fig. 5.

4. The charge of the Andreev quantum dot

Now we turn to determining the charges of the ground and the excited states and the
thermodynamic equilibrium charge. The Andreev state carries a non-trivial charge which
can be found as the average of the charge operator in the state |ν〉

Q̂ = e ∑
σ

∫ L/2

−L/2
Ψ̂†

σ(x)Ψ̂σ(x) dx, (25)
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where the operator Ψ̂σ is defined by the Bogoliubov transformations

Ψ̂σ(r) = ∑
ν

{
uν(r)âν,σ + signσ v∗ν(r)â†

ν,−σ

}
. (26)

Correspondingly,

Qν = 〈ν|Q̂|ν〉. (27)

The charge of the state |ν〉 can be also found by differentiating the energy of this state εν

with respect to the gate potential,

Qν =
∂Eν

∂Vg
= e

∂Eν

∂εD
. (28)

Naturally, both approach yield the same. Hence

Q = Q0 = e − Qex, Q1 = e, Q2 = e + Qex, (29)

where Qex is the charge of the single excitation and is equal to the derivative of the Andreev

energy Qex = e ∂εA/∂εD, see Fig. 6.

For the arbitrary (but small as compared to the adjacent resonances spacing δ)values of Γ
and εD, the charge is found by the implicit differentiation of Eq. (11), the resulting formula is
quite cumbersome and will be analyzed in several particular cases.

The thermodynamic charge is determined by the formula

Qeq = e + Qex
[
1 − 2 fT(−εA)

]
= e + Qex

[
fT(εA)− fT(−εA)

]
, (30)

where fT(E) is the Fermi function with the temperature T,

fT(E) =
1

(eE/kBT + 1)
. (31)

All these charges are localized near the quantum dot, mostly in the interval [−L/2 . . . L/2].
The excitation charge Qex is localized solely in this region and does not change upon
expanding integration limits in Eq. (25). The equilibrium charge increases slightly upon
increasing the integrating range over the coherence length ξ. This can be understood
straightforwardly by looking at the times for the quasiparticle to span various parts of the
contact. At the quantum point the quasiparticles dwell the lion share of the time τdot ∼ h̄/Γ,
whereas they spend much smaller time τsc ∼ ξ/vF ∼ h̄/∆ in the adjacent superconductor.
Note that the charge ceases to be localized strictly in a normal region as soon as the Andreev
energy becomes of order of the superconducting gap, εA ≈ ∆.
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Figure 6. Systematics classification of the energy levels in the SINIS contact.
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Figure 7. (a) Andreev energy, εA (the red curve), and Andreev resonances, εA,res (dashed line), in the Andreev dot as
functions of the position of the normal resonance εD. The half-width of the normal resonance is chosen as Γ = 0.1∆ and
symmetric scatterers, A = 0, are adopted. Shown further are normal resonances, |εD| (thin black solid line), hole-wise
with the negative slope, εD < 0, electron-wise, with εD > 0, and in the inset the dependence upon superconducting
phase ϕ along the quantum dot. (b) The excitation charge Qex is the derivative of the energy with respect to εD.

Analogously to the energy, the excitation charge can be analyzed in the different limiting
cases:

Qex ≈




e
εD√

ε2
D + Γ̃2

, εD � Γ,

e sign(εD)
(

1 − Γ
∆

)
, Γ � εD � ∆,

e sign(εD)
Γ2∆
ε3

D

, ∆ � εD.

(32)

The exact behavior of the Q(ϕ) obtained numerically is shown in Fig. 7(b). One sees that
the charge grows linearly with the slope approximately equal to e/Γ cos(ϕ/2). Note that
the dependence becomes the sharp one near ϕ = π, where the resonance gets across the
Fermi level and saturates as e (1 − Γ/∆). As soon as the normal resonance departs from the
interval below the gap, |εD| � ∆, the excitation charge decays ∝ 4Γ2∆/ε3

D. One sees that
the fractional charge arises every time as the normal resonance crosses the Fermi level [10].
Note, furthermore, that in addition to the fractional charges corresponding to the ground
state and doubly excited (paired) state, there appears an integer charge of a singly excited
(unpaired) state Q1 = e. We are going to focus hereafter on the most interesting case out of
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listed in Eq. (32), corresponding εD � Γ, where the charge depends on the ϕ. We present it
in an explicit form as

Qex = e
εD√

ε2
D + Γ2(cos2(ϕ/2) + A2)

. (33)

5. Quantum fluctuations of the charge

All the above nontrivial charges result from the breaking down the electron-hole symmetry,
and are formed as a superposition of electron-wise and hole-wise states with the states
corresponding to integer charges. As such, the charges experience quantum fluctuations
which are characterized by the mean square deviations

δQν =
√
〈ν|Q̂2|ν〉 − 〈ν|Q̂|ν〉2. (34)

An average of Q̂2 is given by 〈ν|Q̂2|ν〉 = ∑ν′ 〈ν|Q̂|ν′〉〈ν′ |Q̂|ν〉, where the ν′-summation goes
over all the states. We concentrate on fluctuations of the ground, |0〉, singly excited, |↑〉, |↓〉,
and doubly-excited, |2〉, states. In the experiment the detector measures the charge during
some time, τ, thus the measured charge is averaged in time Q̄ =

∫ τ
0 (dt/τ)Q(t); implying

that only the matrix elements between the states with the energy difference not exceeding
h̄/τ are to be taken into account. Assuming that the typical measuring frequencies are all
1/τ � ∆/h̄, we can restrict the summation over ν′ to summation over the four states of the
discrete spectrum |0〉, |↑〉, |↓〉, |2〉 (in the limit Γ, |εD| � ∆). In this case these states constitute
the complete basis of the Hilbert space, and the only non-diagonal non-zero matrix element
is Q02, Q02 = 〈0|Q̂|2〉 = e

√
1 − ε2

D/ε2
A. Then fluctuations of the charge corresponding to the

states |0〉 and |2〉, we find

δQ0/2 = e
√

1 − ε2
D/ε2

A =
√

Q0Q2, (35)

and for |0〉 we have

δQ1 = 0. (36)

We see that the charge of the singly-filled state (having an integer charge) does not fluctuate,
while the charges of the ground state and doubly excited state (having a fractional charge)
fluctuate quite a lot. This illustrates graphically the fact that the cause of the fractional charge
in the Andreev dot are fluctuations in the number of particles.

6. Charge fluctuations due to electron-phonon interaction

Now we consider the dynamics of the excitation of the Andreev states stemming from
thermally induced re-population of the energy levels in the quantum dot. The process
of re-population forms a telegraph signal reconfiguring charges in the states |0〉, |1〉, and
|2〉, sketched in Fig. 8. Filling and decay of these states is accompanied by emission
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Figure 8. The structure of the telegraph process due to excitations of Bogoliubov quasiparticles by phonons. Transitions
changing the system state over the even number of quasiparticles, 0 ↔ 2 are fast, whereas the changes over the odd
number of quasiparticles, 0 ↔ 1 and 1 ↔ 2), are slow.

and absorption of phonons [36]. The contribution into re-population comes from two
processes, transitions between the ground and singly excited states with frequencies γ01 and
γ10 = γ01 exp(εA/T), respectively, and transitions between the ground- and twice excited
states with frequencies γ02 and γ20 = γ02 exp(2εA/T), respectively. Note that transitions
0 ↔ 1 and 1 ↔ 2 are equivalent and have same frequencies, γ01 = γ12 and γ10 = γ21.
Transitions 0 ↔ 1 occur via emission of the extra quasiparticle with the energy E belonging
to continuous spectrum, E > ∆.

One can find the frequencies γ01 and γ02 making use of Fermi golden rule with the
Hamiltonian describing electron-phonon interaction

Ĥel−ph = g
∫

dx n̂e(∂xu), (37)

where u is the displacement, ne is the electron density, and g is the electron-phonon coupling
constant typically of order of 1 eV. We will consider 1D electron and phonon modes.The direct
calculation of frequency γ02 due to electron-phonon interaction yields

γ02 ∼ (g2/h̄mvF
2)(a/kphL2)NT(2εA), (38)

where NT(ε) is the Bose function of the phonon states corresponding the temperature T, a
is the lattice constant, kph = 2εA/s is the phono wave vector corresponding to the transition
energy 2εA, and s is the sound velocity. Equation (38) is valid for 1D phonons provided their
wavelength is less than the contact length, and, accordingly, kph � 1/L. In the opposite case,
kph � 1/L one has 0-dimensional situation giving rise to

γ02 ∼ (g2/h̄mvF
2) akph NT(2εA). (39)

Numerical estimate with g ∼ 1 eV, mvF
2 ∼ 1 eV, and L ≈ 500 nm [27] yields γ02 ∼

NT(2εA) 1012 sec−1 for kph ∼ 1/L.

Calculation of the frequency γ01 requires additional summation over the states of the
continuous spectrum with E > ∆. This summation is dominated by the states with energies
E ∼ ∆. Estimating the frequency of simultaneous filling the Andreev level and the state

Charge States in Andreev Quantum Dots
http://dx.doi.org/10.5772/60482

97



14 ime knjige

belonging in the continuous spectrum which is accompanied by absorption of the phonon
and decay of the Cooper pair, we find

γ01 ∼ (g2T1/h̄mvF
2)(as/LvF)

√
kBT/∆ e−∆/kBT [1 + e−εA/kBT ]. (40)

Here kphL ∼ ∆L/h̄s � 1 and T1 is the transparency of a single barrier. We consider here a
symmetric SINIS contact, T1 = T2. Using the typical values kBT ≈ 0.1∆ ≈ 1 K and vF/s ∼ 103,
we estimate γ01 ∼ T1 exp(−∆/kBT) 1010 sec−1.

Three-dimensionality of the phonon modes results in the additional factor

(εA/h̄ωD)
3(L/a) ∼ 10−6, (41)

reducing frequency (38). The frequency (40) is reduced by the factor

(∆/h̄ωD)
3(L/a) ∼ 10−3, (42)

where ωD is Debye frequency and we assume εA/h̄ωD ∼ 10−3.

One sees that the process 0 ↔ 2 is more frequent than the process 0 ↔ 1, since the latter
includes the exponential factor exp(−∆/T), which allows reduction of the frequency γ01, by
lowering the temperature, see Fig. 8.

7. Fluctuations of the gate potential

An additional contribution to re-populating levels comes from the fluctuations of the gate
voltage Vg. These fluctuations are defined by the interaction Hamiltonian Ĥg =

∫
dx en̂eVg.

Making use of the technique analogous to that of the previous sections, one finds the
respective transition frequencies. Transitions Transitions 0 ↔ 2 occur with frequency

γ̃02 ∼ (e2/h̄C)NT(2εA), (43)

where C is the contact capacitance to the gate. Taking C ∼ L = 500 nm, one finds the
frequency of the gate fluctuations γ̃02 ∼ NT(2εA) 1011 sec−1, which compares to the similar
contribution from phonons γ02. Transitions due to gate potential fluctuations accounting
for the continuous spectrum yield frequencies of the transitions in which the quasiparticle
number parity changes

γ̃01 ∼ h̄−1(e2/C)
√

kBT/∆ e−∆/kBT [1 + e−εA/kBT ]. (44)
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Plugging in the typical values of parameters kBT ≈ 0.1∆ ≈ 1 K and C ∼ L, we get γ̃01 ∼
exp(−∆/kBT) 1011 sec−1. Similarly to the case of phonons, we observe that the process 0 ↔ 2
always happens more often than 0 ↔ 1 due to exp(−∆/kBT) factor.

8. Coulomb interaction

To take into account the Coulomb interaction we have to take into account the charge
screening at the quantum dot and mixing of the charge states. The screening due to an
additional charge tunneling into the Andreev quantum dot is determined by the density of
states. The corresponding energy scale is set by the gap between the adjacent resonances
δ since each of them carries the charge 2e. As a result the screening at the quantum dot
is not important provided the Coulomb energy is smaller than the separation between the
resonances, EC � δ. The scale EC ≈ e2/2C can be estimated taking the capacitance of the
quantum dot C = εL, where ε is the dielectric permeability of the medium. On the other
hand, the separation between the adjacent resonances δ = hvF/2L, is inversely proportional
to the normal part length L as well as EC. The key parameter is the dimensionless ratio
δ/EC = hvFε/e2. Taking typical ε ∼ 10 and vF ∼ 106 m/sec, we obtain δ/EC ≈ 30, so we can
order energies as EC � ∆ � δ. The paper [27] addressed the Andreev quantum dot formed
by the nanotube of the length L ≈ 500 nm, corresponding the Coulomb energy EC ∼ 1 K.
Thus the above chain of inequalities is experimentally feasible.

To investigate mixing of the charge states in the limit EC, Γ, |εD| � ∆, we again restrict
ourselves to contribution of the four states: |0〉, |↑〉, |↓〉, and |2〉. The interaction is defined
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by the operator

V̂ = EC
Q̂2

e2 . (45)

In the basis of these for states, the diagonalization can be performed exactly. The non-zero
matrix elements of V̂ are

V00 = EC

Q2
0 + Q2

02
e2 , V11 = EC, V22 = EC

Q2
2 + Q2

02
e2 , V02 = 2EC

Q02
e

. (46)

New energy levels are determined from the consistency condition for the following system
of equations:




ε̃0 − E V02
ε̃1↑ − E

ε̃1↓ − E
V20 ε̃2 − E







D0
D↑
D↓
D2


 = 0, (47)

where we introduced notations ε̃ν = εν +Vνν with ν = 0, ↑, ↓, 2. The energy of the state with
a single Bogoliubov quasiparticle |1〉 sifts over the constant equal the the Coulomb energy

E1 = εD + EC, (48)

and the state itself |1〉 does not mix with the other states and retains its degeneracy with

respect to spin. This state is called Kramers doublet. The ground state |0〉 and twice
degenerate and twice excited |2〉 states do mix due to Coulomb interaction and generate
two new singlet states |−〉 and |+〉. The new states are expressed through the coefficients
D0, D↑, D↓, and D2 in Eq. (47) as follows: |±〉 = D±

0 |0〉+ D±
2 |2〉. The energies of new states

are

E± = εD + 2EC ±
√
(εD + 2EC)2 + Γ̃2. (49)

The energies of the doublet and singlet states depend on the position of the normal resonance
εD and the difference of the superconducting phases ϕ differently, and at some values of εD

and ϕ the situation can occur where E− > E1. Therefore the ground state can be created by
either singlet, |−〉, or doublet, |1〉, states and the state |+〉 always remains doubly excited,
see Fig. 9. If EC < Γ̃, the ground state is always formed by the singlet |−〉. Otherwise, if
EC � Γ̃, the ground state is formed by the doublet |1〉 in the region

− 2EC −
√

E2
C − Γ̃2 < εD < −2EC +

√
E2

C − Γ̃2, (50)
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or, which is the same,

(εD + 2EC)
2 + Γ2 cos2 ϕ

2
+ Γ2 A2 < E2

C (51)

and remains a singlet |−〉 at all other values εD [37]. At the boundary of the region (50) occurs

the transition from the singlet into the doublet state, the charge of the Andreev quantum
dot and the current change abruptly as a jump.The boundary of the doublet region in the
variables (ϕ, εD) is shown in Fig. 10.

The charges of the new states can be calculated as derivatives of the corresponding energies
with respect to the gate voltage Qν = ∂Eν/∂Vg:

Q± = e
(

1 ± εD + 2EC√
(εD + 2EC)2 + Γ̃2

)
, Q1 = e. (52)

Everywhere except for the doublet region the charge of the ground state is equal to Q−, while

in the doublet region the charge is Q1 = e. One can observe from Fig. 11(a) and 11(b), that if
the Coulomb energy exceeds the critical value EC > E∗

C = ΓA, the ground state reconstructs
itself into a doublet one. The charge during this process jumps over Q− − Q1, at finite
temperature the transition is being smoothed, see Fig. 11(c) and 11(d). The thermodynamic
equilibrium charge at finite temperature, T, is

Qeq =
Q−e−E−/kBT + 2Q1e−E1/kBT + Q+e−E+/kBT

e−E−/kBT + 2e−E1/kBT + e−E+/kBT
. (53)

The charge of the Andreev quantum dot exhibits nontrivial dependencies on the difference

of the superconducting phases between the banks. The discussed effects hold high potential
for applications in various nanodevices.
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Figure 11. The equilibrium charge Qeq as function of a difference of superconducting phases ϕ. The plots (a) and (b)
correspond to zero temperature, i.e. Qeq is equal to the charge of the ground state. Plots (c) and (d) correspond to
temperature kBT = 0.1E∗

C, where E∗
C = ΓA. The Coulomb energy is EC = 1.2E∗

C in panels (a) and (c), and EC = 2.0E∗
C in

panels (b) and (d). The asymmetry of the quantum dot A = 0.2. The singularities in the centers of the plots correspond
to the doublet region (50). In panels (c) and (d) the boundary of the doublet region is blurred by temperature T.

9. Scaling of the charge

We were assuming above that there exists a single conducting channel with the spin. Let us
ask how would the charge scale if we had several conducting channels. For example, even
in the case of the single-wall carbon nanotube, there is an orbital degeneracy and, in general,
there are two channels with the spin. In the case of the multi-wall nanotube (or the normal
metal) there may be more than one channel. In this case the Coulomb interaction between the
different channels gives rise to the non-trivial charge states [30]. Here we restrict ourselves
to a more simple case of multiple channels, but neglecting Coulomb effects. We investigate
the SNS contacts endowed with the quadratic and linear dispersions in the normal part,
corresponding to the contact superconductor-graphene-superconductor (SGS) [38].

We have demonstrated above that the phase-dependent part of the SINIS charge with the
strong normal resonance change the sign upon traversing this resonance across the Fermi
level. It is clear that in the absence of the Coulomb effects the contributions from the different
channels are additive. This implies that if the part of the resonances are above Fermi level
and other resonances are below it, then their contributions to the phase-sensitive part of the
charge do compensate one another. As we have already mentioned, the situation where a
group of the resonances appears either only above (or only below) the Fermi level is possible
due to inhomogeneous distribution of the energy levels due to lateral quantization in the
normal part [39].
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in the case of the single-wall carbon nanotube, there is an orbital degeneracy and, in general,
there are two channels with the spin. In the case of the multi-wall nanotube (or the normal
metal) there may be more than one channel. In this case the Coulomb interaction between the
different channels gives rise to the non-trivial charge states [30]. Here we restrict ourselves
to a more simple case of multiple channels, but neglecting Coulomb effects. We investigate
the SNS contacts endowed with the quadratic and linear dispersions in the normal part,
corresponding to the contact superconductor-graphene-superconductor (SGS) [38].

We have demonstrated above that the phase-dependent part of the SINIS charge with the
strong normal resonance change the sign upon traversing this resonance across the Fermi
level. It is clear that in the absence of the Coulomb effects the contributions from the different
channels are additive. This implies that if the part of the resonances are above Fermi level
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Let us consider a short SNS contact (so thatL � ξ )with the ideal NS boundaries without
normal resonances. In the case of the absence of resonances the maximal sensitivity of
a charge per one channel is much less than that in the presence of the resonances. At
resonances the contribution into the charge from a single channel is of order of electron
charge e [10, 22], whereas in the case of the ideal boundaries, it is of order (∆/EF) e ∼
10−4 e [11]. However, the contribution from these channels comes with the like sign, and
there may be many of such channels.

The Andreev levels in the short SNS contact are given by

εA,ν(ϕ, µ) = ∆
√

1 − Tν sin2(ϕ/2), (54)

where Tν is the transparency of the normal region. This formula assumes that Tν remains
constant and does not depend on energy in the interval [µ − ∆ . . . µ + ∆], which is equivalent
to inequality Γν � ∆, where Γν is the half width of the resonance having transparency Tν.
The width of the contact we denote by W. Now, the phase-sensitive part of the charge Q(ϕ, µ)
hybridized in the contact can be calculated by summation over all the channels

Q(ϕ, µ) = −2e
∞

∑
ν=0

∂

∂µ
εA,ν(ϕ, µ). (55)

The factor 2 results from the degeneracy with respect to spin. Note that in Eq. (55)
we perform summation over both, propagating modes (when the energy of the lateral
quantization is less than the Fermi energy and the solutions of the quasi-1D wave equation
has a form of non-decaying waves), and over the dissipative modes (with the energies of the
lateral quantization exceeding the Fermi energy and accordingly, decaying solutions of the
wave equations). In the case of the linear dispersion only the propagation modes appear
relevant.

9.1. Model rectangular potential

To begin with, let us present the distribution of the channels over the energies with the aid
of the set of rectangular potentials

Uν(x) = [EF − µν]Θ(L/2 − |x|) (56)

(see inset in Fig. 12(a)) with the corresponding transparencies.

Tν(µ) =
4EFµν

4EFµν + (EF − µν)2 sin2 [(2mµν/h̄2)1/2L
] , (57)

where EF is the Fermi energy in the bulk superconductor, and µν = µ − π2h̄2ν2/2mW2 is
the effective Fermi level in the normal part for ν-th mode, which one can tune changing
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the gate potential Vg: µ = EF − eVg. Positive µν correspond to the propagating modes,
while the negative µν denote the decaying modes. The number of the propagating modes
N = [

√
2mµνW/πh̄], where square brackets [. . .] denote the integer part of the real

part. Replacing summation over the modes by integration in Eq. (55), introducing the
dimensionless parameters λ = 2mµL2/h̄2, Λ = 2mEF L2/h̄2 and x =

√
|1 − µν/µ| =√

π2h̄2/2mW2|µ| ν, we arrive at the following transparency

T(λ) =
4Λλ̃

4Λλ̃ +
[
Λ − λ̃

]2 sin2 λ̃1/2
, (58)

and charge

Q(ϕ, µ) = −2e
2mLW∆

2πh̄2

∞∫

0

dx√
|λ|

{√
1 − T sin2(ϕ/2)− sin2(ϕ/2)√

1 − T sin2(ϕ/2)
λ

∂T
∂λ

}
, (59)

where λ̃ = λ(1 − x2 sign λ).

The charge determined by the last formula is shown in the Fig. 12(a) for Λ = 102 and 12(b)
for Λ = 104. Non-monotonic dependence upon the position of the gate stems from the
resonances in the transparency (57). In the real experiment the potential is not sharp and its
structure is significantly blurred.

9.2. Parabolic potential

The model that describes qualitatively the electrostatics of the gate results in the parabolic
potential. This potential is universal in a sense that its transparency near the top depends
only on its “curvature" ∂2

xUn(x). In a short contact where one can neglect by the difference
between the mean free times of electrons and holes over the normal part, this universality
maintains for SNS contact with the parabolic potentials inside.
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Figure 12. The phase-sensitive part of the charge Q(ϕ, µ) of the SNS contact as a function of the effective Fermi energy
µ in the normal region at different superconducting phases ϕ = 0, π/2, π. (a) The Fermi energy in a superconductor
EF = 102εL . (b) The Fermi energy EF = 104εL .
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Figure 13. The same as in Fig. 12, but for the effective Fermi energy of a parabolic shape.

Let us consider the parabolic barrier corresponding the the ν-th mode:

Uν(x) =
(

EF − µν −
mΩ2

νx2

2

)
Θ(L/2 − |x|) (60)

with the curvature at the maximum Ων = (4/h̄)
√

εL(EF − µν), see inset in Fig. 13(a). As
before, εL = h̄2/2mL2. The potential is chosen to correspond the condition Uν(±L/2∓ 0) = 0
at NS boundaries. The transparency near the maximum is given by the Kemble formula

Tν(µ) =
1

1 + exp(−2πµν/h̄Ων)
. (61)

Making use the same parametrization as for a rectangular barrier, we find

T(λ) =
1

1 + exp
(
− 2πλ̃/

√
Λ − λ̃

) (62)

(the formula for the charge looks alike). The phase-sensitive part of the charge is shown in
Figs. 13(a) and 13(b). This part of the charge changes sign at µ = 0 and mostly is monotonic as
predicted. The “amplitude” of the phase-dependent part of the charge is expressed through
the coherence length ξ = h̄vF/∆, giving rise to

Q ∼ 2|e|
π

W
ξ

√
EF

εL
=

2|e|
π

W
ξ

. (63)

We see that the part of the charge we are interested in is proportional to the width of the
normal part of the contact W, and that the magnitude of the effect is controlled mostly by
the ratio W/ξ.
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9.3. Graphene stripe with linear dispersion

The contacts of the SGS type are characterized by the linear dispersion. The critical currents
across these contacts was studied theoretically [40, 41] and experimentally [38]. In the case
of graphene we will be solving Dirac-Bogoliubov-de Gennes equations [42], rather than the
usual Bogoliubov-de Gennes ones. For the wide, W � L, and short, L � ξ, rectangular
sheets of graphene (here as well as in the previous subsection, L and W are the length and
the width of the normal region, and ξ = h̄v/∆ is the coherence length in superconductors.),
the Andreev energy is given by Eq. (54) with the new transparency [40]:

Tν(µ) =
µ2

ν

µ2
ν + (µ2 − µ2

ν) sin2[(µν/h̄v)L]
, (64)

where µ2
ν = µ2 − [h̄v(ν+ 1/2)π/W]2. Here the real µν correspond to the propagating modes,

while the imaginary ones, describe the decaying modes. The charge of the dot is given by
the expression

Q̃(ϕ, µ) = −4e
∂

∂µ

∞

∑
ν=0

εA,ν(ϕ, µ). (65)

The prefactor 4 arises in the last three formulas due to a double degeneracy with respect to
spins and volleys in the graphene. We are still interested only by the phase-sensitive part of
the charge. Introducing new variables, x = (ν + 1/2)πh̄v/|µ|W, and λ = µL/h̄v, we find

T(λ) =
λ̃2

λ̃2 + (λ2 − λ̃2) sin2 λ̃
, (66)

where, as before, λ̃ = λ(1 − x2 sign λ). For a wide contact we can replace summation by the
integration to obtain:
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Q̃(ϕ, µ) = −4e
W∆
πh̄v

∞∫

0

dx
∂

∂λ

[
λ

√
1 − T sin2 ϕ

2

]
. (67)

The integral in Eq. (67) diverges, but, since we are interested only by the phase-sensitive part
of the charge, we can extract unity from the integrand to get:

Q(ϕ, µ) = −4e
W∆
πh̄v

∞∫

0

dx
[√

1 − T sin2 ϕ

2
− 1 +

sin2(ϕ/2)

2
√

1 − T sin2(ϕ/2)
λ

∂T
∂λ

]
. (68)

This charge is shown in Fig. 14. One sees that the integral in Eq. (68) varies from zero to
some number of order unity.

Let us compare the factors in front of the integrals in expressions for SNS and SGS contacts.
Both are proportional to the width of the contact W, but in case SNS contact the factor does
not depend on µ. Because of the rectangular graphene sheet we observe oscillations. The
phase-sensitive part of the charge is of order Q ∼ 4|e|W∆/πh̄v. Expressing it through the
superconducting coherence length ξ, we get

Q ∼ 4|e|
π

W
ξ

. (69)

We see that the effect is again proportional to the width W and is controlled by the ratio W/ξ.

10. Measuring of the fractional charge

The charge can be measured by the capacitance technique tying the charge detector, such
as single-electron transistor [21, 43] to the Andreev quantum dot. This approach suffers
some difficulties due to, for example, fluctuations of the charges of substrate and the gate
discussed in the Sec. 7. Another important problem is the such a measurement “feels” not
the total charge Q of the Andreev quantum dot, bit only its fraction αCαSQ.

The geometry factor αC is determined by the detail of the measuring gate. Let the mutual
capacitance of the quantum dot and the measuring contact be Cm, and the mutual capacitance
of the Andreev quantum dot and the rest contacts as Co. Then αC = Cm/(Cm + Co). The
factor αS = αS(Q) is determined by the dynamic feedback from the charge detector. Here we
will assume αC = αS = 1, but bear in mind that the measurement would give us only a part of
the charge. One of the most essential aspects of this work is the fact that the charge depends
on the phase difference at the banks. Thus the important characteristic of the measurements
is the differential sensitivity of the charge with respect to the phase.

S =
2e
h̄

∂Q
∂ϕ

. (70)
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Fluctuations of the charge due to re-population of the levels, generally speaking, interfere
in the observation of the charge of the ground and the excited states, however, in certain
regimes they can be used for the detecting the charge. The signal resolution of the up-to-date
single electron transistors is about ∼ 10−5 |e|/Hz1/2 at frequencies f < 109 Hz [43]; therefore
indeed the telegraph signal due to thermodynamic re-population of the Andreev state can
be resolved, accordingly, the fractional charge due to thermodynamic re-population can be
measured in the Andreev quantum dot. However, the process 0 ↔ 2 can occur too fast, on
the frequencies exceeding the resolution of the single-electron transistors. In this case the two
alternative recipes for measuring the excitation charge can be proposed. One is to measure
the averaged equilibrium charge Qeq first at the temperature exceeding the level spacing and
find Qeq = Q1, then at temperatures below the the level spacing, Qeq = Q0. The difference
between the charges in these two experiments will give the excitation charge we look for
Q1 − Q0, see Eq. (52). As a result we get the fractional charge, depending continuously upon
the external parameter ϕ. The second way to to measure the charge at low temperatures
resolving the slow process 0 ↔ 1 and averaging it with respect the fast 0 ↔ 2, see Fig. 8.
The charge will be measured then in these two states, the state |1〉 and the state which is a
thermodynamic equilibrium between |0〉 and |2〉. Let us calculate the difference between the
average charges in these two states. The probabilities of filling states |0〉, |1〉, and |2〉 are equal
to p0 = [1− fT(εA)]2, p1 = 2 fT(εA)[1− fT(εA)], and p2 = f 2

T(εA), respectively. The averaging
over the rapidly fluctuating regime including states |0〉 and |1〉, yields 〈Q〉0,2 = p0Q0 + p2Q2,
whereas the charge of a single excitation 〈Q〉1 = Q1. Then at low temperatures, where
fT(εA) � 1, we recover again the excitation charge 〈Q〉1 − 〈Q〉0,2 = Qex.

11. Measurement of the flux by the Andreev quantum dot

In this section we will consider the dependence of the fractional charge of the Andreev
quantum dot upon ϕ in some more detail. This dependence can be very sharp, so that one
can think of using the Andreev quantum dot for design of the new type of the magnetometer
of measuring the low magnetic fields. Usually there are superconducting quantum
interferometers, SQUIDs, that are used for that purpose [21, 44–46]. While the SQUIDs utilize
the dependence of the Josephson current upon the difference of superconducting phases ϕ
(hence upon the magnetic magnetic flux Φ), we propose to use the dependence of the charge
of the Andreev quantum dot upon ϕ.

The charge of the Andreev quantum dot can be measured by the sensitive magnetometer,
for example, by the single-electron transistor. The best transistors can resolve the charges of
order 10−5 |e|/Hz1/2 at given frequency, see, e.g. [43]. Simple estimates demonstrate that the
change in the flux δΦ causes the variation of the charge δQ as δQ = (2|e|/Φ0)δΦ, where
Φ0 = 2πh̄/2|e| is the flux quantum. Taking the area of the superconducting loop equal
1 mm2, we obtain the sensitivity 10−14 T/Hz1/2, which favorably compares to the sensitivity
of the best SQUIDs, 10−14 ÷ 10−15 T/Hz1/2 [45–48]. Let us call the sensitivity of the Andreev
quantum dot the ratio δQ/δΦ.

The differential sensitivity of the charge in the thermodynamic equilibrium to the magnetic
flux threading the superconducting ring we define as the modulus of the partial derivative
∂Qeq/∂Φ, taken at given magnitude of the flux Φ: S = ∂Qeq/∂Φ. Note that the sensitivity
of the flux into the charge transformer described here, S = SΦ→Q, exactly coincides with the
sensitivity of the Josephson transistor [8], which converts the gate potential into the current

Quantum Dots - Theory and Applications108



24 ime knjige

Fluctuations of the charge due to re-population of the levels, generally speaking, interfere
in the observation of the charge of the ground and the excited states, however, in certain
regimes they can be used for the detecting the charge. The signal resolution of the up-to-date
single electron transistors is about ∼ 10−5 |e|/Hz1/2 at frequencies f < 109 Hz [43]; therefore
indeed the telegraph signal due to thermodynamic re-population of the Andreev state can
be resolved, accordingly, the fractional charge due to thermodynamic re-population can be
measured in the Andreev quantum dot. However, the process 0 ↔ 2 can occur too fast, on
the frequencies exceeding the resolution of the single-electron transistors. In this case the two
alternative recipes for measuring the excitation charge can be proposed. One is to measure
the averaged equilibrium charge Qeq first at the temperature exceeding the level spacing and
find Qeq = Q1, then at temperatures below the the level spacing, Qeq = Q0. The difference
between the charges in these two experiments will give the excitation charge we look for
Q1 − Q0, see Eq. (52). As a result we get the fractional charge, depending continuously upon
the external parameter ϕ. The second way to to measure the charge at low temperatures
resolving the slow process 0 ↔ 1 and averaging it with respect the fast 0 ↔ 2, see Fig. 8.
The charge will be measured then in these two states, the state |1〉 and the state which is a
thermodynamic equilibrium between |0〉 and |2〉. Let us calculate the difference between the
average charges in these two states. The probabilities of filling states |0〉, |1〉, and |2〉 are equal
to p0 = [1− fT(εA)]2, p1 = 2 fT(εA)[1− fT(εA)], and p2 = f 2

T(εA), respectively. The averaging
over the rapidly fluctuating regime including states |0〉 and |1〉, yields 〈Q〉0,2 = p0Q0 + p2Q2,
whereas the charge of a single excitation 〈Q〉1 = Q1. Then at low temperatures, where
fT(εA) � 1, we recover again the excitation charge 〈Q〉1 − 〈Q〉0,2 = Qex.

11. Measurement of the flux by the Andreev quantum dot

In this section we will consider the dependence of the fractional charge of the Andreev
quantum dot upon ϕ in some more detail. This dependence can be very sharp, so that one
can think of using the Andreev quantum dot for design of the new type of the magnetometer
of measuring the low magnetic fields. Usually there are superconducting quantum
interferometers, SQUIDs, that are used for that purpose [21, 44–46]. While the SQUIDs utilize
the dependence of the Josephson current upon the difference of superconducting phases ϕ
(hence upon the magnetic magnetic flux Φ), we propose to use the dependence of the charge
of the Andreev quantum dot upon ϕ.

The charge of the Andreev quantum dot can be measured by the sensitive magnetometer,
for example, by the single-electron transistor. The best transistors can resolve the charges of
order 10−5 |e|/Hz1/2 at given frequency, see, e.g. [43]. Simple estimates demonstrate that the
change in the flux δΦ causes the variation of the charge δQ as δQ = (2|e|/Φ0)δΦ, where
Φ0 = 2πh̄/2|e| is the flux quantum. Taking the area of the superconducting loop equal
1 mm2, we obtain the sensitivity 10−14 T/Hz1/2, which favorably compares to the sensitivity
of the best SQUIDs, 10−14 ÷ 10−15 T/Hz1/2 [45–48]. Let us call the sensitivity of the Andreev
quantum dot the ratio δQ/δΦ.

The differential sensitivity of the charge in the thermodynamic equilibrium to the magnetic
flux threading the superconducting ring we define as the modulus of the partial derivative
∂Qeq/∂Φ, taken at given magnitude of the flux Φ: S = ∂Qeq/∂Φ. Note that the sensitivity
of the flux into the charge transformer described here, S = SΦ→Q, exactly coincides with the
sensitivity of the Josephson transistor [8], which converts the gate potential into the current

Quantum Dots - Theory and Applications108 Charge States in Andreev Quantum Dots 25

SV→I = ∂Ieq/∂Vg. Making use of the Eq. (53), we obtain

S = FT
∂Q
∂Φ

+ Q
∂FT

∂Φ
, (71)

where Q = (Q+ − Q−)/2, the derivative

∂Q
∂Φ

= e
2π

Φ0

(εD + 2EC)Γ2 sin ϕ

4
[
(εD + 2EC)2 + Γ̃2

]3/2 (72)

defines the sensitivity of the charges of the states |−〉 and |+〉, and the function

FT =
e−E+/kBT − e−E−/kBT

e−E−/kBT + 2e−E1/kBT + e−E+/kBT
. (73)

describes the dependence of the charge upon the temperature and accounts for the the
doublet region (50).

One can see from Fig. 11 there exist two intervals where the dependence of Qeq(ϕ) is sharp.
If ϕ increases from ϕ = 0, the charge increases (decreases) and achieves the maximum
(minimum). In case EC < E∗

C = ΓA the maximum (minimum) of the charge is always at
the point ϕ = π. In this case the whole curve is the interval I. If EC > E∗

C this extremum
splits into two and there appears a dent in between the extrema, which we will be calling the
interval II. The former interval corresponds to a singlet state of the Andreev quantum dot,
while the better part of the latter interval corresponds to a doublet state (in the case of the
zero temperature the whole second interval corresponds to a doublet region).

Let us begin with the description of the first interval. Let us fix the parameters Γ, A and EC

and seek for the maximum of the sensitivity S as function of ϕ and εD. The symmetries of
the function Qeq(ϕ, εD) enable us to narrow the region of the search for maximum down to
0 � ϕ � π, εD + 2EC > 0. After that we analyze maximum as function of EC, keeping A and
Γ constant.

Interval I. In the case EC <
√

3E∗
C and zero temperature, T = 0, the sensitivity is completely

defined by ∂Qex/∂Φ (72). In the limit A � 1 the function |∂Qex/∂Φ| achieves the maximum
at εD + 2EC = Γ cos(ϕ/2) = ΓA, the maximum being

S I
max = |e| 2π

Φ0

1
6
√

3A
. (74)

One sees that the smaller A imply larger sensitivity. In other words, more symmetric
SINIS structure provides higher sensitivity. If kBT � E∗

C , the sensitivity is practically not
temperature-dependent.
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Figure 15. Maximal differential sensitivity in the interval I, S I
max (the dashed line) and in the interval II, S II

max (solid line)
depending on the Coulomb energy EC. The level of asymmetry A = 0.2; the corresponding critical Coulomb energy
E∗

C/Γ = 0.2. The temperature varies from kBT = 0.2E∗
C to kBT = 0.6E∗

C.

In the opposite case, EC >
√

3E∗
C , the doublet region partially absorbs the interval I and

maximum at zero temperature is achieved at the boundary of the doublet region. This yields
the sensitivity

S I
max = |e| 2π

Φ0

Γ2

4E3
C

max
ϕ

{√
E2

C − Γ̃2 sin ϕ
}

. (75)

The result is reduced to

S I
max = |e| 2π

Φ0

Γ2

4E2
C

(76)

in the limit EC � Γ. The maximum is achieved at the point εD + 2EC = EC, ϕ = π/2. Note
that formula (76) gives the correct estimate even in the case EC ≈ Γ.

Interval II. At zero temperature there is a jump in the charge at the boundary of the doublet
region (interval II), therefore the sensitivity at this point is infinite. The finite temperature
would smooth the jump, the sensitivity remaining finite. If Γ � EC � Γ2/kBT, the sensitivity
S achieves its maximum near the point εD + 2EC = EC, ϕ = π/2 and is equal to

S II
max = |e| 2π

Φ0

Γ2

16ECkBT
. (77)

Note that this maximum is shifted at the finite temperature from the point of the phase
transition towards the singlet over the quantity δϕ ∼ ECkBT/4Γ2. For the arbitrary EC the
expression for the S II

max is somewhat cumbersome. We have shown the numerically found
dependence S II

max(EC) in Fig. 15, where we also presented the maximum of sensitivity in the
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interval I. One sees that under the large Coulomb interaction the better sensitivity is achieved
in the interval II.

Therefore the dependence of the charge of the Andreev quantum dot upon the the difference
of the superconducting phases can be used, in principle, for the design of the new type of the
of the quantum magnetometers working according to the scheme “magnetic flux→ charge
of the Andreev dot→ charge detector→ current” instead of the usual scheme of customary
SQUIDs “magnetic flux→ current.”

Let us estimate the sensitivity of the Andreev quantum point-based magnetometer,
comparing them to the existing and widely used SQUIDs that can resolve at best the
flux 10−6 Φ0/Hz1/2 at given frequency. The typical SQUID area is 2 mm2, implying the
resolution of the magnetic field 10−15 T/Hz1/2 at given frequency. Assume the area of
the superconducting ring the same as in SQUIDs and take the resolution of the charge
detector equal to 10−5 |e|/Hz1/2 [43]. In the limit of the small Coulomb interaction, the
sensitivity is determined by the asymmetry of the quantum dot. At A = 0.01 Eq. (74)
gives for the flux 2×10−7 Φ0/Hz1/2 and for the field 2×10−16 T/Hz1/2. Upon increase of
the Coulomb interaction the maximal sensitivity is located at the boundary of the doublet
region and is determined by the magnitude of the Coulomb energy. Plugging in EC = 6Γ,
and using Eq. (76), we find the flux resolution 3×10−4 Φ0/Hz1/2 and the field resolution
3×10−13 T/Hz1/2. The sensitivity that can be achieved upon transition from the singlet
into the doublet region is restricted from above by the temperature of the measurements.
Plugging in kBT = 0.02Γ and EC = 0.2Γ into Eq. (77), we find for the flux 10−7 Φ0/Hz1/2 and
for the field 10−16 T/Hz1/2.

In real devices the Coulomb interaction EC can be less than Γ (see discussion in Refs. [10, 27])
or larger than Γ (see Refs. [28, 29]). The second case can be realized, for example, raising the
Fermi level in the normal region. Nanomechanical effects also can either suppress or enhance
the sensitivity of the Andreev quantum dot with respect to the phase difference [49].

12. Conclusions

We discussed in depth the charge of the Andreev quantum dot. We demonstrated that the
charge is localized in the region of the dot and depends continuously upon the difference
of the phases between the superconductors. We studied charge fluctuations due to both,
electron-phonon interactions and due to fluctuations of the gate potential. We revealed that
Coulomb interaction can cause the reconstruction of the singlet ground state in the doublet
one. While in the singlet state the Josephson current is present and the charge does depend
on the phase, in the doublet state the non-dissipative current is absent and the charge is
integer. Upon increasing the charge energy, the “size" of the doublet region in the (ϕ, εD)
coordinates increases as well.

We discussed a concept of a novel device for measurements of the magnetic flux, utilizing
the Andreev quantum dot as a working element, and investigated its differential sensitivity.
The estimates show that the expected theoretical sensitivity of the Andreev quantum dot
magnetometer compares favorably with the characteristics of the existing SQUIDs.
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Abstract

In this work, we are dealing with the droplet epitaxially prepared quantum dots. This
technology is not only an alternative way of the strain induced technique to prepare
quantum dots, but it allows us to make various shaped nano structures from various
material. The present paper deals not only with the so called conventional shaped
quantum dot but also with the ring shaped dot, with the inverted dot and with dot
molecules as well. Their thechnology, opto-electronical and the structural properties
are also discussed.

Keywords: droplet epitaxy, GaAs, AlGaAs, AlAs, QD, MBE

1. Introduction

The electrons “boxed up” or confined in quantum confinement and the calculation of their
energy levels, which are well known from textbooks, were regarded for decades as idealistic
concepts far from practical reality. The molecular beam epitaxial (MBE) technology, developed
for compound semiconductors, made the introduction of the low-dimension structures into
the everyday scientific research possible. The structures confined in all three dimensions are
called quantum dots (QDs).

For the fabrication of QDs or any zero-dimensional structures, various methods were devel‐
oped. For a long time, the only known method for the production of epitaxially grown zero-
dimensional system was the strain-induced method, based on lattice mismatch. Presently, the

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
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most used technique is the lattice-mismatched technique by the Stranski–Krastanov mode [1–
5]. QDs, such as InAs nanocluster prepared on GaAs surface, are the oldest known system.
The droplet epitaxy (DE), however, is one of the latest methods for QD preparation. This
method of preparation is not only an alternative way to the conventional method but also a
production method for a number of zero-dimensional quantum structures such as ringlike
QDs, double ringlike QDs, inverse QDs (filled nanoholes), or QD molecules. This technique is
also fully compatible with MBE technology.

The subjects of this paper are the technologies used, growth kinetics, and some properties of
the zero-dimensional nanostructures of different shapes, grown by DE. The fundamentals of
DE were first demonstrated by Koguchi and his coworkers in the early 1990s [6–9]. One
advantage is that it is not restricted by mismatch conditions; in addition to that is the possible
fabrication of strain-free QDs and similar nanostructures by DE, against the Stranski–Krasta‐
nov-based growth method. The shape diversity makes it a preferable process for that appli‐
cation. The size, shape, and elementary distribution of the developed structures are dependent
on the developing technology used. It is obvious that the physical parameters of the structures
are important from both the theoretical and practical point of view.

In this paper, QDs grown by DE will be described, selected from III and V class materials. Here,
the QDs are mostly GaAs with the use of AlGaAs as barrier material. This process consists of
the following two basic steps: first, the metallic (e.g., Ga) nanosized droplets are generated on
the surface by the Volmer–Weber growth mode, followed by the second step of droplet
crystallization that is the transformation into GaAs QDs in arsenic atmosphere.

For the control of the process, the kinetics of the growth process knowledge is necessary, which
is so far lacking the full theoretical description.

The DE technology for QD preparation has superiority over the nowadays widely used strain-
induced method. The greatest advantage is that both lattice matched and mismatched can be
used for QD fabrication. At the same time, the size and density of the QD’s can be controlled
independently, and the distribution is more uniform. However, the shapes of the QDs show
a wide spectrum. This spectrum includes the conventionally shaped QDs, ringlike QDs, and
complex multicomponent QD structures [9–13]. To avoid intermixing, low temperature can
be applied at preparation. A wide variety substrate orientation has beneficial effect on the
application.

Although the technique is quite recent, it is already successfully applied in a number of cases.
QDs had significantly improved the general performance of the optoelectronic devices, like
semiconductor lasers and optical amplifiers. DE fabricated QDs introduced further improve‐
ments for the beneficial reasons described previously [10].

Future quantum devices, based on quantum mechanical and electromagnetic interactions,
require lateral QD configurations. With the modified DE method, aligned QD pairs and QD
molecules can be produced without involving lithographic technology [14, 15].
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2. The droplet epitaxial technique

2.1. Technological background and preliminaries of the droplet epitaxial technique

It is well known in our profession that the grown structure can be classified in three growth
modes depending on the interaction among the constituents. These modes are the layer-by-
layer growth or Frank–van der Merve mode, the island growth or Volmer–Weber mode, and
the intermediate mode (layer-plus-island growth) or Stranski–Krastanov mode (Figure 1) [16].
The morphology of the interface is determined by the interplay between deposition, desorp‐
tion, and surface diffusion. If an atom or molecule from the environment arrives at a random
position on the surface, the deposition process bonds with the surface atoms and sticks.

Figure 1. (A) Schematic illustration of the three growth modes. (B) Strain relaxation via QD formation and via genera‐
tion of misfit dislocation.

The process competing with deposition is desorption. During the desorption process, some
atoms deposited on the surface leave the interface. The probability of the desorption depends
on how strongly the atom is bonded to the surface. The strength of the bonds depends either
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on the type of atom or on the local atom arrangement of the surface where the atom sticks. The
desorption can be negligible for many materials under typical MBE conditions. The deposited
atoms diffuse on the crystal surface, searching for the energetically most favorable position.
The diffusion length can be quite large and depends on the temperature and the binding
energies to the substrate (EBv, binding in vertical direction).

In the Frank–van der Merve mode, the interaction between the neighboring atoms (EBl, lateral
directions) in the layer is weaker than that with the substrate atoms (EBv > EBl) [17]. In this
growth mode, islands of monolayer (ML) height coalesce before a new layer can nucleate on
top of them. In the Volmer–Weber mode, the situation is just the opposite, that is, the binding
energy among the deposited atoms is stronger than to the substrate surface (EBl > EBv). In this
case, the growth proceeds to many atomic layers at discrete islands before these islands merge.

In the Stranski–Krastanov mode, the process is initiated in a layer-by-layer fashion, but
islanding commences after the growth of a certain layer thickness. In certain situations, layer-
by-layer growth is desirable because of the need for multilayered structures with exact layer
thickness and flat interfaces. This requires that the nucleation takes place as a single event on
the substrate. In this growth mode, the lattice mismatch between the grown layer and the
substrate material is the most common case.

The deformation takes place by the even layer to match the lattice of the substrate. In this case,
elastic energy is generated in the structure, which deforms mainly the lattice of the grown
layer. When this deformation energy overcomes a critical value, it can be relaxed in two ways.
One possible way is to nucleate nanosized islands on the surface of the even layer, which is
called the wetting layer. The absence of the lateral layer allows the atomic planes to laterally
relax, reducing the elastic energy in the structure. According the first mentioned way, the so-
called strain-induced QD can be grown. The other way is to generate misfit dislocations at the
interface [18–21]. The dislocations in the substrate and at the interface can overgrow into the
grown layer [23–25]. These defects are called threading dislocations.

Figure 1 shows the following two out of three growth modes, Volmer–Weber and Stranski–
Krastanov for nanostructure production. One may ask why only the Stranski–Krastanov
growth mode is widely used for QD production. The answer lies in the development of the
MBE technology. The application of III–V materials opened the way for the production of
heteroepitaxial structures, specifically the GaAs–AlGaAs–AlAs system, for its identical lattice
parameter. The growth of InAs and InGaAs created particular technological difficulties due
to the lattice mismatch. In the early 1990s, the success of InGaAs growth on GaAs, with
differing indium content [26–27], brought about a big advance in this field. Initially, the
thickness of the layers stayed under a critical value, but this limitation was successfully
overcome. The strain-induced QD production has superseded the DE, dominating the field
earlier.

The archetypal system of the clustered nanostructures is the lattice-mismatched system such
as InAs on GaAs, where the strain-induced process leads to the formation of QD. The lattice-
mismatched structure can relax either by the generation of misfit dislocation or by the
nucleation of nanosized islands on the even layer (Figure 1). The essential driving force for
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overcome. The strain-induced QD production has superseded the DE, dominating the field
earlier.

The archetypal system of the clustered nanostructures is the lattice-mismatched system such
as InAs on GaAs, where the strain-induced process leads to the formation of QD. The lattice-
mismatched structure can relax either by the generation of misfit dislocation or by the
nucleation of nanosized islands on the even layer (Figure 1). The essential driving force for
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coherent QD formation, after an under layer formed, is the strain relaxation, whereby the
energy gained from the increase in surface area via QD formation more than compensates the
increase in interfacial free energy. It is generally accepted that one of the essential driving
forces, for coherent lattice-mismatched QD formation, is strain relaxation.

The field of self-organized strain-induced QDs is dominated by two material system, InAs/
GaAs (001) and Ge/Si (001). For instance, the MBE growth of about 1.5 MLs of InAs on GaAs
results in the spontaneous formation of InAs QDs driven by the strain between the deposited
InAs and the GaAs substrate. The driving force for the self-organized QD formation is the
strain energy induced by the lattice mismatch of about 7%, in which the condition restricts the
material choice. Two families of the shape such as pyramids and domes can be created during
the defect-free QD transformations [28].

2.2. Principles of DE

The QD preparation in a self-assembled manner by using the DE technique is an advantageous
alternative and extension to the strain-induced QD creation. The basic idea of the DE originated
from Koguchi and his coworkers [29, 30]. In comparison with the technology of the strain-
induced Stranski–Krastanov QD production, the DE is more flexible regarding the choice of
the QD material and also regarding the shape and distribution of the resulted QDs and other
unconventionally-shaped QD structures. For example, it is possible to create not only InAs QD
on GaAs but also strain-free GaAs QD on AlGaAs surface. Furthermore, this technology of DE
allows us to produce ringlike QD and further special-shaped nanosized structures and
structure complexes [31–35].

In the case of the DE, the clustering on the surface is carried out with the help of Volmer–Weber
like growth mode. The basic idea based on the separation of the III-column and V-column
materials supply during the MBE growth (Figure 2). Here, the QD preparation consists of two
main parts such as the formation of metallic nanosized droplet on the surface and its crystal‐
lization with the help of the non-metallic component of the compound semiconductor. It is
very important to mention that this DE technique is entirely compatible with the MBE
technology. This circumstance allows us to combine the DE method with the other conven‐
tional MBE processes.

Figure 2. (A) First step of DE: generation of metallic droplet on the surface. (B) Second step: crystallization to create
QD.
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First, the III-column elements such as Ga, In, Al, etc., are deposited. These metallic components
form clusters that are nanosized droplets on the substrate surface. At the droplet formation,
the main driving forces are the diffusion, the minimalization of the surface tension, and the
Ostwald ripening [36–42]. The dominance of these driving forces depends on the technological
circumstances. The second step of the DE technique is the crystallization of the metallic cluster
by the molecular beam irradiation of the nonmetallic V-column element. It is important to
suppress or to control the lateral diffusion of the group III elements from the cluster.

2.3. QD engineering

As known, the electronic and optoelectronic properties of the nanostructure depend strongly
on the shape of the nanostructure. The technology used for growth can be controlled by the
size, shape, and elementary distribution of the developing structure. These technological and
physical parameters are very important from both theoretical and practical points of view. In
the DE technique, because of the shape and distribution diversity, the key point is to discover
growth mechanism and its relation with the parameters of the developed structures. Since the
discovery of the DE, several scientific knowledge are gathered. However, until now, no full
theoretical description of the underlying growth kinetic is available.

An interesting correlation between the GaAs QD shapes and their volume was observed by
Heyn and coworkers [43, 44]. As a result of this discovery, they developed the first growth
model for the DE of GaAs QDs [43, 44]. The experiment was carried out with the cystallization
of Ga droplets on AlGaAs surface. Here, growth temperature ranged between 140°C and
300°C. On the arsenic terminated surface, the deposition of Ga with flux 0.025–0.79 ML/s was
executed. It was clearly visible that growth temperature strongly influenced QD density.

The QD density dependence on temperature shows the scaling law [44]. Under 200°C, the slope
of the temperature shows Ea = 0.235 eV. Over 200°C, data did not follow the scaling law, but
QD density decreased. At this temperature, coarsening of the cluster begins. This effect goes
back to the Ostwald ripening, which means the growth of large clusters at the expense of
smaller ones, hence causing a decrease in the total cluster density.

Higher temperature combined with lover arsenic flux will result in a ringlike nanostructure.
At longer waiting time and lower arsenic flux, these rings fall below the original substrate
surface and the encircling surround. After the heat treatment of the sample with the clusters
formed, the total lack of arsenic results in nanoholes. The creation of nanoholes can lead back
to the thermal etching of the substrate by the liquid metallic component. At a typical process
temperature of 570°C, etching starts approximately 20 s later than the beginning of the
annealing step, followed by desorption approximately 100 s after. The depth of the nanoholes
can be found by multiplying the etching time by the etching rate.

These nanoholes can be filled with low band-gap material to create the so-called inverted QD.
Furthermore, the nanoholes can serve as templates for QD preparation. In the utilization of
surface anisotropy, QD pairs can be grown. The nanohole and the nanomound can initialize
QD molecules, where the QD per molecules ranged from two to six. In the case of InAs QDs
on GaAs (001) surface, the number of QDs per GaAs mound can be effectively controlled by
varying InAs ML coverage [45].
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3. Droplet formation

3.1. The initial surface status

During the QD formation, the status of the substrate surface is very important. It is well known
that surface reconstruction influences strongly the growing layer and the forming structure
[16]. Surface reconstruction depends on the temperature and the ambient environment
environment, too. As mentioned before, the DE technique is compatible with the MBE
technology. It means that the growing surface can be continuously monitored with reflection
high-energy electron diffraction (RHEED) to determine the status of the surface, e.g., the
surface reconstruction. During the growth, the RHEED pattern and its specular spot intensity
allows a real-time tracking of the surface status changes. Here, we are using the technological
most important (001) surface orientation. The bipolar (001) surface of GaAs can be terminated
by either Ga or As atoms with rich variety of reconstructions are formed depending on surface
stoichiometries [16].

Before the droplet creation, we have to grow a layer from a wide band-gap material for barrier.
This layer growth happened with a conventional MBE technology, which is carried out in
arsenic ambient pressure. Hence, the initial status of the surface is arsenic terminated. After
the layer growth, we have to change the temperature depending on the planned nanostructure
shape. The deposited MLs are not equal with the droplet volume. Assume that Ga is deposited
on AlGaAs surface at 200°C. Due to the strong binding energy of As to Ga and substrate, the
first Ga ML is consumed for the formation of Ga terminated surface. This first ML volume does
not contribute to the formation of the Ga droplets. It means the coverage of Ga located in the
droplet is Ft-A. The total Ga surface coverage is Θ = Ft, where it is resulted with flux F for a
time t, and A is the incorporated value of ML.

Although no complete phase diagram of GaAs (001) has been mapped, certain surface phases
are generally observed during growth or after growth and annealing. For example, the less
As-rich surface exhibits a (2 × 4) / c(2 × 8) pattern and arises from 0.75 ML of As. This recon‐
struction is normally present during the MBE of GaAs. Areas with (2 × 4) and c(2 × 8) symmetry
can coexist. With larger coverage of As, a c(4 × 4) reconstruction with As coverage of 1.75 ML
is observed [46, 47]. Depending on the substrate temperature and the Ga-to-As ratio during
MBE, the GaAs (001) surface is known to display various surface reconstructions ranging from
the As-rich c(4 × 4)β, c(4 × 4)α, c(2 × 8), and (2 × 4) to the Ga-rich (6 × 6), c(8 × 2), (4 × 6), and (4
× 2) surface. The surface symmetry critically depends on the preparation conditions [46, 47].

In situ investigations of this large set of reconstructions with RHEED are well established.
Using scanning tunneling microscopy (STM), most of these surface reconstructions could also
be imaged in real space, and the structure and the structural models were refined, too. Most
of the previous studies were based on the diffraction techniques and no direct observation for
the (4 × 6) phase exists. The STM study reveals that (4 × 6) symmetry arises from the coexistence
of (2 × 4) and (4 × 2) units [48]. We have seen before that the change in temperature and other
parameters results in the continuous change in surface reconstruction. During the change of
the temperature, not only the reconstruction but also the specular spot intensity changes. The
results show that at lower temperature, the specular spot intensity is high, and at higher
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temperature, the intensity is low. Furthermore, in the up and down and back directions, the
temperature versus intensity function shows hysteretic behavior (Figure 3). The explanation
of this phenomenon can lead us to the understanding of the intricate surface structures [49, 50].

Figure 3. Ga and As stabilized GaAs (001) surface depending on the substrate temperature.

The initial step of the DE is the droplets creation on the surface. It is already well documented
that the droplet nucleation requires Ga-terminated surface, which means that a part of Ga
coverage incorporate into the surface. During the initial stage of Ga deposition, fundamental
change happens in the surface reconstruction, which strongly influences the droplet formation.
Before the Ga deposition, the surface reconstruction can be usually c(4 × 4), (2 × 4), or (4 × 6),
where the values of As coverage are 1.75, 0.75, or 1.12 ML, respectively. The previous para‐
graphs show the complicity of the surface reconstruction and other difficult unsolved prob‐
lems associated with the process. The part from the metallic surface deposition migrating into
the droplet depends largely on the initial state of the surface.

3.2. Size and density of the droplets

The size and the density of the metallic droplets depend on the substrate temperature and on
the deposited MLs. In the case of Ga droplets on AlGaAs surface under 200°C, the cluster
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density versus temperature follows scaling law. Over 200°C, the scaling law is broken. Under
this temperature, the clusters begin to coalesce, which drastically reduce the cluster number.
This decrease of cluster number is governed by the Ostwald ripening [36–42].

The reduction of the cluster number is affected by the diffusion length of the constituents. The
condition required for the coalescence is the overlap of the diffusion length and the mean
distance of the neighboring clusters. It characterized by a local interaction between neighbor‐
ing clusters of slightly different size. The smaller cluster starts to decompose to maintain the
gradient of the radius equilibrium concentration toward the larger cluster due to the Gibbs–
Thomson effect [51]. The appearance of such processes is critically dependent on the initial
conditions.

The Ostwald ripening describes the driving force, which determines the size distribution of
cluster ensemble on the surface [38–40, 42, 52]. This description supposes a driving force that
depends on the mean radius of the islands. It is supposed that atoms detach more readily from
smaller islands and condense rather to larger ones. Therefore, for a given amount of material
on the surface, larger islands grow at the expense of smaller ones. The temporal evolution of
the island radius (r) can be described by a differential equation: dr/dt = b(T) / r2(1/r – 1/rc), where
rc is the critical cluster radius and b(T) is a temperature-dependent parameter.

3.3. Droplet–surface interaction

In this section, we will discuss the interaction between the droplet and the substrate surface.
Here, the dependence of the droplet shape and the so-called thermal etching are discussed. It
is known that the droplet shape is determined by the wettability of the substrate surface, and
this property can be described by contact angle. There are three types of situations: no wetting,
partial wetting, and complete wetting, where these situations correspond somewhat with the
three growth modes. The contact angle depends on some circumstances, such as the status of
the carrier surface, the droplet size, and the temperature. This is because the nuclei may wet
the substrate, strongly changing their geometry. The deposited material will not wet the
substrate because this would be accompanied by an overall increase in free energy of the
system. The liquid deposit will spread out to maximize the area of the interface. For all the
other situations, a partial wetting with a contact angle θ should be considered, that is, γs = γi

+ γecosθ, where γe and γs represent the surface free energies of deposited cluster and substrate,
respectively, and γi is the interfacial free energy (Figure 4) [53].

In our DE case, we have to discuss a further interaction between the droplet and the carrier
surface. This interaction is called thermal etching, droplet etching, or local droplet etching. The
explanation of the process will be discussed with the help of Ga/GaAs/AlGaAs system. Where
Ga droplet forms on AlGaAs surface.

It is known from the liquid phase epitaxy that thermal etching takes place at the interface Ga
melt and AlGaAs surface [54–57]. In the first step in DE technology, Ga droplets are generated
on the surface. Due to thermal etching, this droplet-shaped Ga melt can solve the arsenide
from the substrate material. At the interface, the metallic components of the substrate mix with
the Ga atoms of the droplet. During the QD formation, this thermal etching takes place, too.
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In the initial stage of the QD formation, enough time is available for the mixing of the atoms
at the interface. In the case of GaAs QD on AlGaAs substrate, Al content can be observed in
the GaAs QD. This phenomenon was confirmed by the author and coworkers [58]. This thermal
etching effect can be observed also at evolution of the ringlike QDs.

Our observations show that the middle part of ringlike QDs is below the surface of the substrate
surrounding the QDs. This phenomenon is also the consequence of thermal etching. At slow
crystallization, etching can act longer; therefore, it results in deeper holes in the center. At high
temperature, quite deep nanohole can be achieved [85].

Thermal etching can be utilized also for nanostructure preparation. With the help of droplets
created on the substrate surface, the surface can locally be etched. At higher temperature, this
etching phenomenon is more significant. After the local thermal etching, the remained deep
craters are the so-called nanoholes. During the DE QD fabrication, the Ga deposition temper‐
ature is ranged between 100°C and 350°C typically. These temperatures are very low compared
to usual MBE growth conditions. In this case, the droplet thermal etching is less significant.
At significant higher temperature, the situation is different.

If the temperature ranged between 450°C and 620°C, the local thermal etching under the
droplet is already considerable. After an annealing time, the droplet is replaced in a nanohole

Figure 4. (A) The contact angle dependence on the surface tension and wettability. (B) Localized thermal etching of the
compound semiconductor surface by a metallic droplet.

Quantum Dots - Theory and Applications128



In the initial stage of the QD formation, enough time is available for the mixing of the atoms
at the interface. In the case of GaAs QD on AlGaAs substrate, Al content can be observed in
the GaAs QD. This phenomenon was confirmed by the author and coworkers [58]. This thermal
etching effect can be observed also at evolution of the ringlike QDs.

Our observations show that the middle part of ringlike QDs is below the surface of the substrate
surrounding the QDs. This phenomenon is also the consequence of thermal etching. At slow
crystallization, etching can act longer; therefore, it results in deeper holes in the center. At high
temperature, quite deep nanohole can be achieved [85].

Thermal etching can be utilized also for nanostructure preparation. With the help of droplets
created on the substrate surface, the surface can locally be etched. At higher temperature, this
etching phenomenon is more significant. After the local thermal etching, the remained deep
craters are the so-called nanoholes. During the DE QD fabrication, the Ga deposition temper‐
ature is ranged between 100°C and 350°C typically. These temperatures are very low compared
to usual MBE growth conditions. In this case, the droplet thermal etching is less significant.
At significant higher temperature, the situation is different.

If the temperature ranged between 450°C and 620°C, the local thermal etching under the
droplet is already considerable. After an annealing time, the droplet is replaced in a nanohole

Figure 4. (A) The contact angle dependence on the surface tension and wettability. (B) Localized thermal etching of the
compound semiconductor surface by a metallic droplet.

Quantum Dots - Theory and Applications128

surrounded with lobes. This local droplet etching shows a very promising technique for the
structuring of the substrate surface without any lithographic processes. Furthermore, this
patterning is also fully compatible with the MBE technology. In this way, nanohole was first
presented by Wang and coworkers [59].

This finding opened a new way for the fabrication of another type of QD. This system was
based on the filling of the nanohole, where the fill of the hole is carried out with lower band-
gap material than the substrate. In this way created, nanohole filled inverted QDs are dem‐
onstrated by Heyn and coworkers [60–66]. In the process of nanohole filling, we utilize the Ga
diffusion on the substrate surface. The temperature and orientation dependence of the Ga (and
other metallic component) diffusion can be utilized at further nanostructure preparation.

4. Formation of QD

4.1. Preparation technology

The initialization of the alternatively grown conventionally shaped QD preparation, the basic
idea of DE, originated from Koguchi and his coworkers [6, 30]. In this way, it is possible to
create strain-free GaAs QD on AlGaAs surface. Along this discovery, further unconventionally
shaped QD types were discovered [9, 32–35]. In the following, we will detail the DE-grown
single hump-shaped QD in the case of GaAs/AlGaAs system. As discussed above, this process
consists roughly of two main steps. First, metal (in our case Ga) droplets are generated on the
surface in a Volmer–Weber-like growth mode. In the second step, crystallization takes place.
Under arsenic pressure, the droplets transform into crystalline nanostructures. The shape of
the nanostructures and their distribution depend on the initial droplet size and distribution
and on the further technological parameters such as substrate temperature, arsenic pressure,
waiting time, etc.

Here, typical experimental parameters for conventional QD preparation are described [43].
The GaAs QDs are grown on AlGaAs (001) surface. The growth experiments are performed
in a solid source MBE system equipped with effusion cells for Ga and Al evaporation and
valved cracker cell for arsenic ambient pressure. The evolution of growth front is in situ
monitored with RHEED. First, on GaAs (001) wafer, pure GaAs layer is grown, and it is fol‐
lowed by an AlGaAs layer with Al content of 0.3. After the AlGaAs layer preparation, the
sample is cooled down to 200°C. The θ = 3.75 ML Ga is deposited with the flux of 0.75 ML/s
without any As flux. After the Ga deposition, a 60-s waiting time is performed. The anneal‐
ing is carried out at a temperature of 350°C and at an As pressure of 5 × 10–5 Torr. The
growth process are tracked continuously in the direction of [11̄0] with the help of RHEED
[67]. In this direction, the RHEED pattern is more informative for the status of the QD evolu‐
tion compared with the perpendicular [110] direction. After the growth process, the quan‐
tum objects can be ex situ investigated (AFM and TEM and PL methods), which can provide
us further information to understand the growth kinetics.

During the QD preparation, the sequence of the RHEED pictures in the main growth stages
is depicted in Figure 5. In the initial stage, the RHEED pattern showed sharp streaks (stage
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at t0). After the Ga deposition, the pattern diffused on the RHEED screen (stage at t1). Al‐
most at the same time with the offering of arsenic pressure, the RHEED pattern changed
suddenly from diffused to spotty (stage at t2). During the annealing phase, the pattern
changed slowly (some minutes) from spotty to spots with tails (stage at t3). The density of
QDs is 3.6 × 1010 cm–2. It is shown that the characteristic RHEED pattern of QD is still recog‐
nizable even if the dot density is one order of magnitude less [43].

Figure 5. (A) During the QD evolution, the changing of the RHEED pattern and (B) its temporal evaluation. (C) Inter‐
action of QD and electron beam. (D) AFM picture of DE-grown QDs.

4.2. Geometry and electronic structure of QD

As we demonstrated earlier, the shape of the QDs depends on the volume and also the density
of QDs. According the shape, there are two types of QDs. The larger type of QD is a truncated
pyramid-like shape with side facets of 55°. The smaller QD is a pyramid-like form with a side
facet of 25° [43, 44]. In the following, the geometry of the QD will be discussed in the case of
the smaller type of QD.

The atomic resolution structure of a typical DE-grown QD is shown in Figure 6. (The image
was taken with the electron beam parallel to the [110] zone axis of the AlGaAs single crystal
substrate [43, 67–68].) The typical dimensions of the QD shown in Figure 6 are 54 nm base
width and 5.5 nm height. The steepness of the QD side wall measured by TEM as well as by
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AFM shows about 25°. Figure 6 also shows that all the lattice fringes of the AlGaAs substrate
are continued in the GaAs QD without any distortion. It is well known that the lattice param‐
eters of these two substances are practically the same. No crystal defects were observed within
the QD or at the interface with the host crystal [68, 69].

Figure 6. (A) Cross-sectional TEM image of a DE-grown QD, and (B) its stepped surface. (C) Broadened chevron tails
and (D) their explanation.

The feature mentioned is shown in a darker contrast of the QD, also a few atomic surface layer
of AlGaAs crystal between the QDs. The darker contrast on the AlGaAs surface can be
interpreted as follows. The AlGaAs layer, at low temperature, shows As-rich c(4×4) surface.
Nominally, θ = 3.75 ML Ga is deposited on the surface without arsenic flux. In the duration
the Ga supply, a few ML of Ga is combined with excess arsenic surface atoms. Thus, a thin
GaAs layer forms on the surface while the rest of the Ga forms nanodroplets. During the
crystallization, the droplet and the surface layer go into similar composition. As a result, the
QD and the surface layer shows similar darker contrast compared to the host material [69].
The existence of this GaAs surface layer was predicted earlier from the comparison of the PL
measurement and the energy level calculation [32].

The chevron tails are connected with the faceting of QDs as it was verified in the case of
diverse-shaped DE QDs [10]. In case of DE, it can be shown from the AFM measurement
and from the tilted TEM picture that the shape and size of QDs are very uniform [69], and
their side angle is about 25° [43, 68], which corresponds to the half opening angle of the
chevron tails (Figure 6). Despite the same shape of the QDs, the chevron tails are not sharp
but broad [68]. The observed side angle near to 25° corresponds to the (113) crystallograph‐
ic plane [67, 68].

A cross-sectional TEM image shows that the side of the QD is not a single crystalline plane but
has stepped shape (faceting). The steps consist of planes parallel with interface (parallel with
{002} crystal planes) and planes with 55° to the interface, corresponding to {111} planes. The
envelope curve of the QD cross section is a circle segment with a radius of R = 64 nm [68].
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The electronic structure of the DE-grown GaAs QDs was investigated by PL spectroscopy [70,
71]. Furthermore, lasing was demonstrated in such structure [72]. After postgrown annealing,
improved optical performance was demonstrated [72]. In the case of DE-grown QDs, the better
optical properties compared to strain-induced QDs originated from the technology. The DE-
grown QDs are prepared at very low substrate temperatures, which are unfavorable in view
of the incorporation of undesired background impurities and crystal defects.

4.3. Some aspects to the kinetics of QD growth

The growth kinetic can primarily be investigated by the in situ RHEED tracking. In the
annealing phase of QD production, the diffused RHEED pattern becomes spotty nearly
simultaneously with the opening of arsenic source. The sufficient arsenic quantity and the low
temperature make the build in (infiltration) of As in the Ga phase (i.e., crystallization) possible
[73]. This process of infiltration takes about 2–3 min to the sharp chevron image. A crystallized
shell comes into being on the Ga droplets. The spotty RHEED pattern originates from the
transmission electron diffraction. The electron beam goes through the crystalline GaAs shell
layers over the droplet. If there are crystallite formation or droplets on the surface, It is observed
that bulk scattering of the grazing beam can occur and the RHEED pattern may become
dominated by spots rather than streaks due to transmission electron diffraction (Figure 5) [67].

The scattering from several planes strongly modulates the intensity along the reciprocal lattice
rod. Thus, the streaks observed from two-dimensional surface are not observed when trans‐
mission dominates [67]. For the transmission case, the reciprocal lattice is an array of points
each broadened owing to the finite size of the scattering region. During the annealing, the As
diffuses inside of droplets, while excess As builds in (infiltrates) in the shell [73, 74]. Thus, the
droplet crystallizes slowly. In the given moment, the rounded shell will be broken by the
cornered crystallite grown inside of the structure. At the same time, a chevron-shaped spot
develops on the RHEED screen [43, 48, 67, 68].

The angle between two RHEED streaks starting from same reciprocal lattice point is about 55°,
as shown in final stage of the QD evolution. These so-called chevron tails are attributed
perpendicularly to the facets of the QD [67, 69]. The volume of the QDs is large enough to
receive transmission pattern during the electron scattering. The main lateral expansion LQD

and height HQD of QD – according to the AFM measurement – are 50 and 5 nm, respectively
(see Figure 6). The mean free path of the electrons Λ in GaAs between the crystal planes without
collision at the typical incidence angle of RHEED (about 2°) is less than 20 nm. Thus, in our
case, there are several (ca. 9) lattice planes to receive transmission character [67].

The analytical TEM investigation provides further contribution to the evolution kinetics. In
our TEM investigations, we detected Al content in GaAs QD [48]. Here, this study shows the
high-resolution micrograph of a similar QD together with Ga and Al elemental maps of the
same area. These images clearly show that the QDs contain both Ga and Al. The presence of
Al within the QDs is supported by the explicit protrusion of bright contrast on the Al map at
regions corresponding to the QDs. This feature originated from a dissolution process [67]. This
process is very important for QR production. This phenomenon will be discussed in the next
section.
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On the basis of the measurements, the following kinetics explanation seems plausible [68, 69].
The process of GaAs crystallization starts at the edge of the droplet, initialized by the three-
phase line (TPL) at this point, serving as discontinuity for the seeding [100]. Although in
principle interaction can take place at any point of the droplet, due to the thermal movement,
the species, arriving to the edge, will start the seeding of the crystallization process. The
described mechanism for this process has been accepted by several authors too. [11, 67].
(Otherwise, it would be difficult to explain the formation of the ringlike QD. In the case of a
dot, the seed grows inward, while in the case of ring, it tends to grow outward, which is
maintained by the Ga migration.) Since we are dealing with dot shape, the dominant process
is arsenic diffusion.

The crystal seed grows inward into the droplet, and also upward simultaneously. This process
of growth can only be explained quantitatively because, in the case of nanosizes, the observed
bulk processes and properties like diffusion and binding energy cannot be applied. Although
similar crystallization processes have been observed, no attempt has been made to explain
them until now (see Figure 7) [68]. The growth of the GaAs crystal occurs in direction opposite
to the penetration of Al. The crystallization of GaAs can start only after the opening of arsenic
cell, while the dissolution of AlAs species occurs immediately upon the deposition of droplets.
The process at the surface is quicker than process at the interface. Thus, the process at the
surface is the dominant during the processing time of the QD production.

Figure 7. Explanation of the stepped surface evolution.

We explained the evolution kinetics of the stepped outer surface of the QD [68]. The summary
of the kinetic is as follows. The intersection of the crystal surface with the droplet is the TPL,
which serves as an initial place of crystallization [68]. When a Ga atom of the droplet meets an
arsenic atom, they form a GaAs molecule. These GaAs species, making a Brown-like movement
over the droplet surface, can reach the TPL, where the crystallization starts (Figure 6). The
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crystal seed at the TPL will grow on the account of further arriving arsenic species. The outer
facet angle of the crystallization center at the edge will be the favorable 55° because it has
enough time to find the optimal position (the low index facet). The crystallization seed grows
partly upward and also partly in the direction of the droplet inside. During the process of
solidification, a circular monocrystalline phase is formed at the droplet edge inheriting the
orientation of the perfect substrate. During the process of solidification, the amount of Ga
atoms in the droplets decreases so the droplet size decreases too. The outer side of the QD
consists of steps of few MLs, where the front panel and the terrace of the step are (111) and
(001) planes, respectively.

It is known in fcc crystals that the surface energy of (111) facet is less than that of (001) facet;
thus, the latter grows predominantly during crystallization. This takes place by the lateral shift
of the low energy (111) step facets with the simultaneous areal growth of (001) facets. With the
size decrease of the droplet, its edge moves inward, thus creating a new TPL or crystallization
seed at the new place, and the whole process continues as before with the original droplet and
substrate. The only difference is that the crystallization takes place along a circle of less and
less diameter.

5. Ringlike QD preparation

5.1. Growth technology of ringlike QD

The preparation process responsible for the DE formation of ringlike QDs is described in the
case of GaAs nanostructures on AlGaAs (001) surface. The growth experiments are performed
similarly as described in the previous section, but the technological parameters somewhat
differs. On GaAs (001) wafers, first pure GaAs layer is grown, and it is followed by an AlGaAs
layer with Al content of 0.3.

Then the GaAs sample with AlGaAs layer must be cooled down to 300°C. On the surface,
Ga is deposited as described in former section. Then θ = 3.75 ML gallium is deposited with
the flux of 0.19 ML/s without any arsenic flux. During the annealing, the temperature re‐
mained the same (300 ºC), but the As pressure was 4 × 10–6 Torr. The production of the quan‐
tum objects was tracked continuously in the direction of [11̄0] with the help of RHEED [67].

Further, two types of ringlike nanostructures were generated with different amounts of de‐
posited Ga. One of them was generated at 570°C on AlGaAs (001) surface applying 6.4 ML
Ga. In this case, the AFM measurement shows ringlike QD with deep hole in the middle of
the structure and very large clusters [95]. The other type of the nanostructures was prepared
similarly, but the deposited Ga was less than that in the former case. The Ga coverage was
3.2 ML. In this case, the AFM picture shows special-shaped nanostructure with very deep
crater in the middle surrounded by ringlike bulge formations and also sallow nanocraters,
with plane rims (without bulge) [75, 76].

After the growth process, quantum objects are investigated using the AFM method, and the
first mentioned types of nanostructure are studied with PL technique, too. Temperature-
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dependent PL spectra measured on the GaAs ringlike QD samples are compared with the
conventionally shaped QDs.

The technology can continuously be tracked by RHEED. The initial stage of the surfaces is the
same as in the case of conventional QD. The RHEED pattern of the initial surface shows sharp
streaks (stage t0 on Figure 8). After the Ga deposition, the pattern diffuses on the RHEED screen
similarly as in the case of QDs (stage t1). The deposited Ga is in liquid phase. The disappearance
of the RHEED pattern originates from the appearance of the liquid phase of Ga droplet on the
surface. However, after the Ga deposition, the change of the observed RHEED pattern is quite
different. After the offering of arsenic background of 4 × 10–6 Torr, the RHEED pattern develops
very slowly, over 5 min. Contrary to the case of conventionally shaped QDs, which is almost
at the same time of the arsenic cell opening, the RHEED pattern changed suddenly. The
developed pattern contains in the middle a streak with a small spot and around elongated
larger spots. According the AFM measurement, the density of the ringlike structures is 1.5 ×
109 cm–2. In this case, the effect of open surface on RHEED is larger than in the case of QD [69].
It is shown that the characteristic RHEED pattern of QD is still recognizable even if QD density
is one order of magnitude less [43].

Figure 8. (A) During the evolution of ringlike DE-grown QD, the changing of the RHEED pattern and (B) its temporal
evaluation. (C) Interaction of ringlike QD and electron beam. (D) AFM picture of DE-grown ripened nanostructures.

5.2. Geometry and electronic structure of the ringlike QD

The shapes of ringlike QDs are various. The main parameters are the following: ring-middle
diameter, width of the ring base, and height. As we will show, the facet angle is determined
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by the volume. The further shape parameter is the level of the ring middle. The ring middle
can lie higher or deeper than the original substrate surface. At lower annealing temperature
and at less arsenic ambient pressure, the droplet metamorphosis results in ringlike nanostruc‐
ture with smaller crater in the middle [78–81]. For example, at 4.75 ML Ga deposition, under
1 × 10–5 Torr arsenic pressure and 350°C annealing for 10 min, the resulted structures are ring
with shallow crater [79].

In another case, if the ring center lies deeper [75, 77], the structure is called a nanohole. In this
case, thermal etching is dominant. If the annealing temperature is higher and the arsenic
ambient pressure is smaller, then we receive ring structure with low-lying center. For example,
at 8 ML deposited Ga, at 520°C annealing and under various arsenic pressure, we can get
nanostructures with various deepness in the middle. If the arsenic pressures are 3 × 10–6, 2 ×
10–6, 1 × 10–6, and 1 × 10–7 Torr, then the holes are ca. 3, ca. 7, ca. 8.5, and 9.5 nm deep, respectively
[62, 75, 76, 82].

The electronic structure is strongly governed by the shape of the nanostructure. Here, the
advantages of the ringlike QD compared to the conventionally shaped QD are described using
temperature-dependent PL spectra. Under measurement, the temperature ranges between 4
K and 300 K. The samples are excited by Ar+ ion laser at 488 nm wavelength. The resolution
was better than 0.5 nm [83].

The PL spectra of the uncovered GaAs ringlike QD grown on AlGaAs surface are shown in
Figure 9. At 4 K, the spectrum has five peaks. They can be explained as bound exciton (1.5129
eV), exciton bound to acceptor (1.4892 eV), and its longitudinal optical phonon replica (1.4577
eV). Further on at higher energies, two peaks appear (1.5308 and 1.5602 eV). The PL spectra
were also recorded as a function of temperature. To verify the identification of the peaks, the
temperature dependence of the band-gap energy of GaAs and that of the bound exciton were
compared. At 4 K in the case of conventionally shaped QD with identical volume, three peaks
can only be seen at lower energy range. It is visible that the quantum confinement in ringlike
QD is larger than that in QD at same nanostructure volume. In the following, this phenomenon
will be explained [83].

Figure 9. Temperature-dependent PL spectra of ringlike QD. (B) The explanation, why the ringlike QD has significant‐
ly sharper PL peaks compared to conventionally shaped QD.
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The base diameter of the QD (LQD) investigated is much larger, and its height (HQD) is also larger
but comparable. Thus, here no quantum effects are expected. Therefore, it was impossible to
detect a peak shift or peak broadening for QD. At the same volume, for ringlike structure, the
laterally wide (LQR) nanostructure had a height (HQR) significantly less than 7 nm. Conse‐
quently, the supposition of quantum confinement produces proper result [83].

The PL spectra show characteristic peak width, depending on the temperature and the size
distribution of these structures. At the same temperature, a broader size variation results in a
broader PL peak. Under similar growth conditions, the PL peaks of ringlike structures have
significantly narrower full width at half maximum (FWHM) (less than one third) than that of
the conventionally shaped QDs [78, 84].

The sharper PL peaks can be explained by follows. As it is known, both kinds of QDs is
formed from a gallium droplet.  Assume that  the volume and its  variation of  the initial
droplets are the same in both cases. The facet of the nanostructures is size dependent and
cannot  be  arbitrarily  sized [43].  For  the  QD,  let’s  start  from the  greater  (111)  facet  (the
approx. diameter (2r = LQD) is 100 nm [43]). For the ringlike QD, only the (113) facet can
be taken into account because of the smaller volume (the approximate width (LQR) is 60 nm
[43,  44,  83],  dedicated  to  a  circle  segment).  Due  to  the  crystallographic  constraints,  the
geometry of the formed QDs is determined. The height-to-diameter ratio cannot be arbitrary;
it can be defined by a single parameter.

If r (r = LQD/2) is the radius of the base circle belonging to the initial droplet, the volume of the
developing QD, as a function of r, is given by V = 1.58r3. For the ringlike nanostructure, from
the equality of the volumes, the w (w = LQR) parameter can be calculated as w = 0.71r. (This
means that the nano-object with a parameter of 2r = 100 nm has (111) facets, and the other one
with a parameter of w = 0.71 × 100 ~ 70 nm or less has (113) facets. It corresponds to the above
presented measured data.) It means, that the height of the nanostructure influences commonly
the quantum behavior. The heights of the QD and QR structures can be expressed as a function
of their volumes: mQD = V1/3/1.34 and mQR = V1/3/6.56, respectively. Assuming the same variations
of the volumes, it can be seen that the variation of the height for QR is much smaller than for
QD; consequently, the corresponding FWHM of the PL peak is smaller [83].

5.3. Some aspects to the formation of ringlike nanostructure

The primer information to discover the formation kinetic originates from RHEED tracking [67].
After the deposition of Ga on AlGaAs (001) surface, the RHEED picture is becoming diffused
due to the amorphous nature of the phase present on the surface. The annealing phase begins
after the offering of arsenic component (pAs = 4 × 10–6 Torr, Tsub = 300°C). After releasing the
arsenic, some time is needed for the development of the characteristic sharp pattern, repre‐
sentative of the crystalline structure. This is an indication that the liquid state on the surface
stays longer and that the material transfer processes helps the formation of the ringlike
structures. For detailed technological parameters of the different DE nanostructures, we refer
the readers to the literature [32–35, 43–45, 62].
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After the completion of the growth, the QR structures were investigated with AFM. The per‐
spective AFM image and the top view with line scans are shown in Figure 10. The dimen‐
sions of QRs were determined from individual line scans. The density of the nanostructures
determined from AFM pictures was 1.5 × 109 cm–2. It is visible that the middles of the nano‐
structures are deeper than the original surface level [85]. It can be shown, from the AFM
measurement that although the shapes and sizes of QRs are fairly uniform, we can observe
small deviations from these averages. It is often observed that the smaller diameter rings
have deeper depressions in the center and the larger diameter rings have shallower ones in
the middle. (In the illustrations, the smaller and larger objects are labeled with “S” and “L”,
respectively.) The QRs have slightly elongated shapes due to the different binding proper‐
ties in [110] and [11̄0] directions [86].

Figure 10. (A) Cavity dependence on the droplet size. (B) Functions of melting point and solubility. (C) Temporal eval‐
uation of the smaller and larger ringlike QDs.

These facts are contradictory to the aspect ratios of ringlike QDs, and the explanation can help
to understand the kinetics of the DE quantum structure formation. The explanation to this
extraordinary behavior is as follows [85]. It is an obvious assumption that the larger droplets
are leading to the development of rings of larger diameter and equally the smaller droplets to
smaller rings. The intersection of the crystal surface with the droplet edge is the so-called TPL,
which is the initial place of crystallization [85]. The TPL of larger diameter initiates a larger
droplet, and equally, the smaller diameter forms from a smaller droplet. It is known from the
liquid phase epitaxy that thermal etching takes place at the interface of the Ga melt and AlGaAs
surface. This phenomenon was confirmed by analytical TEM for DE QD [69]. The Ga melt can
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solve the arsenide molecules (e.g., GaAs). These arsenide molecules originate partly from the
thermal etching of the AlGaAs substrate surface and partly from the reaction of the external
(from effusion source) arsenic atoms. (When a Ga atom of the droplet meets an arsenic atom
from the environment, they form a GaAs molecule.) These molecules, due to thermal move‐
ment in the droplet, can reach the TPL, where the crystallization takes place. During the process
of solidification, the material migrates from the middle to the edge of the nanostructure. A
circular crystalline phase is formed at the droplet edge. The proposed kinetics for the formation
is shown schematically in Figure 10.

It is known that the melting point decreases with the reduction of the particle size. The
normalized melting curve versus the diameter of the particle (Figure 10) shows that when the
particle size is less than 50 nm, then the melting point depends very strongly on size. In the
nanorange, this dependence on the size is stronger than for the bulk. What makes it more
complicated is the fact that the melting point depends on the particle shape as well. In this
case, the Ga droplet’s shape is a segment of a sphere. Its width in the middle falls in the range
of 10–20 nm. Here, the change in the melting point is particularly sharp [85].

Around the edges the structure is thin. The experimentally obtained melting curves for near
spherical metal nanoparticles show similarly. We use these curves for the qualitative assess‐
ment. This indicates that the melting point of the large and that of the small Ga droplets can
differ considerably. The solubility curves for different particle sizes (Figure 10) show that at
the same temperature, the larger droplet has lower saturating concentration than the smaller
one. The meaning of this is that crystallization in the larger droplet will take place earlier, at
lower arsenide concentration than in a smaller one. The smaller droplet will crystallize later,
during arsenide concentration.

The temporal evaluation of the smaller and larger ringlike QDs is shown in lower part of the
figure onset (Figure 10) [85]. In other words, in the larger droplets, the probability of the
formation of the crystallization seeds is higher; therefore, the crystallization takes place earlier
so less time is spent on material transportation, causing the development of the depression in
the middle. When the droplets are small, the probability is less, and crystallization starts later,
leaving more time for the formation of deeper depression in the center of the ring. This process
is influenced by other factors as well. The melting temperature of the nanostructure is dropping
with its diminishing size, staying longer in liquid state at the same temperature, spending more
time on the formation of deeper in the center [85].

The above-described finding can be proven by further experiments (in Section 5.1, ringlike
nanostructure production is described where the amounts of the deposited Ga were 3.2 and
6.4 ML, respectively). The explanation is as follows [85, 87, 88]: At a given temperature, there
is a critical droplet size (CDS) under which the solution begins. After the Ga deposition,
droplets form, followed by the growth of the larger droplets at the expense of smaller ones
according the Ostwald ripening. When the droplet is smaller than the CDS, the substrate
solution begins. In the case of Ga 6.4 ML, the formation of small holes and large clusters can
be observed. The sizes of the droplets formed are above the CDS. After the deposition, the
differentiation of the droplets begins. The smaller droplets reach critical size and start solving
the substrate. This state is frozen via opening the arsenic cell.
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When the deposited Ga is 3.2 ML, we can observe shallow holes with plane rims. The explan‐
ation is as follows [85, 87, 88]. In this case, the quantity of the deposited Ga is small. The formed
droplets are under CDS. Therefore, the solution starts under the droplets immediately after
the droplet formation. Under the small droplets, the solution is faster, but the material of liquid
Ga is used up in a short time. The reduction in material is due to, first, the solution and, second,
the migration of materials toward the larger droplets. After a short time, at the smaller droplets,
the solution stops, while it carriers on further under the larger ones. The larger droplets will
not be spent, and therefore the surrounding ring will freeze after the opening of the arsenic
cell.

6. Specular-shaped QDs and complexes

6.1. The inverted QDs

The ringlike QD is an unconventional QD, which has advantages over the conventional QD.
As we have shown, the DE technique is a many-sided tool in this field. It allows us to fabricate
further interesting nanostructures. Here, we will further discuss unconventional-shaped QDs
and their complexes. In the present subsection, we will focus on an alternative QD preparation
technique. This is not only an alternative preparation but the QD with inverted technology can
also have advantages at special application.

A further recent method for the fabrication of strain-free QD is the nanohole filling. The
nanohole is created by localized thermal etching, and it is filled subsequently [95]. This is a
QD with inverted technology. The localized thermal etching takes place at conventional MBE
growth temperatures, and we expect only very low level of crystal defects. The nanoholes are
created in a self-organized fashion by local material removal [89]. For the inverted QD
fabrication, nanoholes are generated using Al droplets on AlAs surface. Subsequently, the
holes are filled with GaAs layer to form QDs of controlled height [ 90]. The nanoholes are filled
with GaAs in pulsed mode.

Here, we show a cross-sectional study of an inverted QD [66]. The technology of this QD is as
follows. The structure is grown on GaAs (001) surface. On the surface, AlGaAs and AlAs layer
sequence is grown. The AlGaAs layer has 0.23 Al content. The AlAs and the AlGaAs layers
are 5.5 and 19.5 nm, respectively. After the growth of every AlAs layer, 3.2 ML Al is deposited
at 650°C without any arsenic flux. The deposited Al MLs form droplets on the surface. This is
followed by an annealing step of 180 s, during which the droplets transform into nanoholes.

Following that, the holes are partially filled by the deposition of 0.6 nm thick GaAs in a growth-
interrupted fashion. During the hole filling, the substrate temperature is 600°C. Depending on
the foreseen high of the QD, some growth of 0.5 s and pause of 30 s sequences are carried out.
Finally, the GaAs QD can be covered with AlGaAs. The scheme and the TEM image of the
inverted QD structure are shown in Figure 11. The above-described pulsed technique allows
us to create not only single QDs but also vertically aligned QD pairs [91].
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The distances on the TEM image correspond with the intended layer thicknesses. The picture
shows GaAs QD embedded in AlGaAs barrier material. Furthermore, the TEM image shows
a thickening of the AlAs layer in the surrounding the nanohole. Elementary maps taken using
electron energy loss spectroscopy confirm that the thickened region consists of AlAs. We
identify the additional AlAs on top of the flat AlAs layer as the wall that surrounds the
nanohole opening. Furthermore, the TEM image on Figure 11 shows that the next AlAs layer
grown on top of the inverted QD layer is bended upward at the location of the QD, resulting
in the formation of a kind of hill [66].

Figure 11. (A) Scheme of the sample with inverted QDs. (B) Cross-sectional TEM image of a GaAs QD embedded in
InGaAs layer.

6.2. The laterally aligned QD pairs

Two semiconductor QDs in close proximity, which can each spatially confine an individual
charge carrier in a discrete energy level, interact quantum mechanically with each other. In
particular, the wave functions of the charge carriers confined in each QDs of the pair begin to
overlap, resulting in an efficient tunneling. Furthermore, the wave functions may become
mixed to develop molecular orbital. Moreover, resonance in the optical range leads to the
formation coupled QD pairs with the help of dipole–dipole interaction. These research leads
toward quantum information processing. The QD pairs and their systems offer, at least
conceptually, the potential of implementing scalable arrays of qubits.

In this part, we are dealing GaAs QD pairs prepared on AlGaAs surface with the usage of the
anisotropy of the (001) oriented surface. We will show two preparational series. One of them
is carried out under lower temperature, at less amount of deposited MLs. The other ones is
prepared under higher temperature at higher amount of deposited Ga.

In the first case, AlGaAs with Al content of 0.27 is grown on the GaAs (001) surface. After this,
Ga droplets are created at 330°C temperature on the substrate. The crystallization happens at
200°C, under accurate control of the arsenic flux [104]. The ripened structure basically consists
of two QDs aligned in the [0 1̄ 1] crystalographic direction. The average base size and height
of each QD are 45 and 10 nm, respectively. The QDs are separated by an average distance of
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39 nm between their apexes, as measured by AFM. The density of the structure is 2 × 108 cm–

2 [104]. For the study of its optical properties, the QD pairs are embedded in AlGaAs barrier
layer.

The second technology is carried out on GaAs surface. First, AlGaAs layer is grown with 0.3
Al amount. At 550°C substrate temperature, a large amount of Ga is deposited to create
droplets on the surface. The structure is “arsenized” by fine control of the flux [99]. The
resulting dots are rather large. The individual pairs have an interdot distance of about 130 nm
and are aligned along the [0 1̄ 1] direction. The dots with a height of 10 nm reside on a shallow
base with a diameter of 300 nm. The density of the structure is 2.3 × 108 cm–2 [99]. For optical
characterization, the QD pairs are buried by the deposition of AlGaAs layer.

Figure 12. QD pairs grown at high substrate temperature with large amounts of Ga MLs. (Illustration originated from
R. Pomraenke et al.; Phys. Rev. B 77 (2008) 075314) [105].) (B) (B) QD pairs grown at low substrate temperature with
low amounts of Ga MLs. (Illustration originated from M. Yamagiwa et al.; Appl. Phys. Lett. 89 (2006) 113115) [104].) (C
and D) Growth of quad- and hexa-QD molecules initiated by GaAs mound. (Illustrations originated from J.H. Lee et
al.; Appl. Phys. Lett. 89 (2006) 202101) [110].)

In the first case, the micro-PL spectra of a single QD pair show the ensemble of emissions,
which may indicate the existence of a tunnel coupling between the members of the pair.
However, it must be mentioned that these emission lines are still not fully understood [104].
At the second experiment, the PL study is performed at a rather larger inter-dot separation.
Here the formation of coherently coupled molecular QD states is suppressed, and excitonic
interactions between neighboring QDs within each members are weak [105]. The process of
the QD pair evolution is also not fully understood. Instead of the hemispherical shape of the
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initial droplet, the ripened structure is anisotropic. The explanation is based on the anisotropic
surface potential of the GaAs (001) surface (Figure 12).

6.3. Configuration of QD ensembles

Until now, the most widely studied system of interacting self-assembled QDs is a vertically
stacked QD molecule. However, this system is limited by its one-dimensional nature and is
not easily scalable. Alternatively, a variety of techniques can be used to modify the substrate
to nucleate laterally coupled QD molecules in two dimensions by MBE technology. Various
shape droplets can subsequently serve as templates for further growth, without the need for
further surface preparation.

The DE-like created nanohole and also the homo-DE-grown island can serve as an initialization
place for the growth of further nanostructures. The nanohole as a template for QD molecules
is demonstrated by Songmuang and coworkers [106]. The nanohole can serve as a template
for QD pair too [107]. Salamo and coworkers proposed a new way for the preparation of QD
molecules [92-94, 110]. They adopt a hybrid growth approach, utilizing both DE and strain-
induced growth to overcome some limitations of the Stranski–Krastanov QD growth mode
alone on a planar GaAs surface [102]. Using MBE, a self-assembled InGaAs QD molecule is
realized around GaAs mound formed by DE on GaAs (001) surface [102].

The number of QDs per GaAs mound can be effectively controlled by varying the InAs ML
coverage. The number of QDs per template ranges from two to six. The technology is as follows.
On GaAs (001) surface, 3 ML Ga is deposited at 500°C without any arsenic flux to form Ga
droplets. Subsequently, 80 s of annealing occurs, and the substrate temperature is decreased
to 150°C. The Ga droplet is crystallized under 1.3 × 10–5 Torr equivalent pressure for 100 s.
During this time, nanoscale GaAs mound forms as template. The substrate temperature is
raised again to 500°C, and InAs deposition follows. If the deposited InAs are 1.4, 1.6, and 2.0
ML, then the created nanostructures are bi-QD molecule, quad-QD molecule, and hexa-QD
molecule [108].

During the QD molecule preparation, the height of the GaAs mound decreases from the
original value, and also the diameter decreases. It appears that the InAs growth started mixing
with the Ga atoms from the GaAs mounds, resulting in InGaAs shoulders on initial templates.
This technique allows to fabricate the so-called quantum-rod pair and lip-shaped structures
too [108]. The technology is extended with incident angle-controlled molecular beam techni‐
que [109].
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Abstract

Photoluminescence, its excitation power dependence, and Raman scattering spectra
have been studied in CdSe/ZnS and CdSeTe/ZnS QDs for the nonconjugated states
and after the QD conjugation to the anti-Interleukin-10, Human papilloma virus and
Pseudo rabies virus antibodies. The QD bioconjugation to charged antibodies
stimulates the “blue” energy shift of PL bands related to exciton emission in the CdSe
or CdSeTe cores. The “blue” energy shift of PL spectrum in bioconjugated CdSe/ZnS
QDs has been attributed to the electronic quantum confined effects stimulated by
decreasing the effective QD size at its bioconjugation to charged antibodies. It was
shown that the attachment of a charge deals with the antibody to the exterior shell of
CdSe/ZnS QDs, leads to blocking away a fraction of core’s volume. The energy band
diagrams of CdSeTe/ZnS QDs in the nonconjugated and bioconjugated states have
been designed, which permit to explain the types of optical transitions in QDs and
their transformations at the QD bioconjugation. It is shown that the change of energy
band profile and the “blue” shift of QD energy levels, owing to the change of potential
barrier at the QD surface, are the dominant reasons of PL spectrum transformation in
the double core CdSeTe/ZnS QDs conjugated to charged antibodies. Better under‐
standing the QD bioconjugation to specific antibodies is expected to produce the major
advances in biology and medicine and can be a powerful technique for early medical
diagnostics.

Keywords: CdTeSe/ZnS quantum dots, CdSe/ZnS quantum dots, emission, biocon‐
jugation
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and reproduction in any medium, provided the original work is properly cited.



1. Introduction

In the last two decades, the colloidal core/shell quantum dots (QDs) of II-VI semiconductors
(CdSe, CdS, CdSeTe, and ZnS) attracted an enormous scientific attention owing to the
fundamental scientific aspects and future promising applications in optoelectronics, photon‐
ics, biology, and medicine. The modern developments in nanotechnology allow numerous
promising applications in the field of biology and medicine, which in the future may bring an
unprecedented effect in nanomedicine [1, 2].

The development of biocompatible nanoparticles for molecular imaging and targeted therapy
is an area of enormous current interest. This novel technique as expected will allow targeted
drug delivery to cells with certain parameters, as well as improvements in diagnostics and
localization of affected tissues in the human body. When conjugated with biomolecular affinity
ligands, such as antibodies, peptides, or small molecules, these nanoparticles can be used to
target malignant specific tumors [3-5].

The key issue for nanoparticles intended for biological use is to ensure their stability, which
suggests the formation of core-shell structures with a certain enveloping layer required to
isolate a nanoparticle [6]. The core defines the main properties of the system—it may be the
material with outstanding luminescence or magnetic properties for the precise detection of
particle’s location inside the body. On the other hand, the core can be used as a reservoir for
the medicine used in targeted drug delivery applications. The application of semiconductor
QDs as luminescent markers in biology and medicine is expected to produce the major
advances in molecular diagnostic [1], gene technology [2], toxin detections [7], drag delivery
[8], at obtaining tissue imaging in vivo etc [3, 9].

Note that luminescent markers usually used earlier, such as organic dyes, fluorescent proteins,
or lanthanide chelates, have some restrictions, such as broad spectrum bands, low photo
bleaching threshold, poor photochemical stability, and degradation [10]. In contrary, the II-VI
semiconductor core/shell QDs are characterized by the high-photoluminescence (PL) quantum
yield (up to 75%) [11-13]. Surface-passivized II-VI QDs are highly stable against photo
bleaching and are characterized by narrow, symmetric emission peaks with the half width
about 25-30 nm [6].

New luminescent markers are needed for the better assessment of treatments for many types
of cancers. The antibodies, which can be found in circulating blood, may help in the early
detection of cancer. The development of a blood test, using the optical methods, which permits
early diagnosis, would be a great advance in the management of cancer disease. Note that the
core/shell CdSeTe/ZnS QDs with near-infrared (IR) emission (780-800 nm) are very interesting
for biological applications owing to the possibility of animal imaging in vivo due to the low
absorption of IR light by an animal tissue [6, 14, 15]. At the same time, the chemical behavior
of Cd/Se/Te components of QDs in the biological system is still unclear. The last question is
very important due to the toxicity of these components for the human body [16-18].

The conjugation of biomolecules with semiconductor core/shell QDs has been achieved using
functional groups (linkers) on the QD surface [19-21], and/or with the help of electrostatic
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interaction between the QDs and the biomolecules [12, 22, 23]. A set of publications, related to
the study of QD bioconjugation using PL spectroscopy, revealed that the emission intensity of
QDs decreased [12, 24, 25] or increased [22, 26] owing to the energy exchange between the QDs
and the biomolecules. Thus, the QD luminescence intensity depends on the concentration of
attached biomolecules, promising the QD application as a protein sensor as well [6]. However,
the limits of biomolecule detection are not very sensitive. Moreover, the influence of biocon‐
jugation processes on QD optical properties and the bioconjugation mechanisms are not yet
completely understood.

It is desirable to have the additional information concerning the conjugation process such as
a spectral shift of QD emission or changing the PL band half width, or using nonlinear optical
phenomena: two-photon-induced fluorescence, second harmonic generation, or sum frequen‐
cy generation [27]. Simultaneously, the other optical methods can be useful for the bioconju‐
gation detection such as the Raman scattering method [28] or coherent anti-Stokes Raman
scattering (CARS) [27]. This chapter presents the study of the transformation of PL and Raman
scattering spectra of the core/shell CdSe/ZnS QDs with visible emission (605 or 655 nm) and
CdSeTe/ZnS QDs with near IR emission (780-800 nm) at the bioconjugation to different types
of antibodies.

2. QD bioconjugation process and experimental details

Core-shell quantum dots (QDs) commercially available covered by the amine (NH2)-derivat‐
ized polyethylene glycol (PEG) polymer were used in a form of colloidal particles diluted in
a phosphate-buffered saline (PBS) with a 1:200 volumetric ratio. CdSe/ZnS QDs with emission
peaked at 605 nm (2.05 eV) and 655 nm (1.89 eV) and CdSeTe/ZnS QDs with emission at 780-800
nm (1.55-1.60 eV) have been investigated. QDs have been studied by means of photolumines‐
cence and Raman scattering methods in nonconjugated states and after the conjugation to
different types of antibodies (Ab). All optical measurements are performed on the dried
droplets of the original solution of nonconjugated and bioconjugated QDs. At the first the PL
spectra of QDs are studied in the nonconjugated state. Then some part of QDs has been
conjugated to the antibodies using the QD conjugation kits [29, 30]. These kits contain amine-
derivatized polymer-coated QDs and the amine-thiol cross-linker SMCC. The samples of QDs
(bioconjugated and nonconjugated) in the form of a 5-mm spot were dried on a surface of
crystalline Si substrates (Figure 1) as described earlier by Torchynska [22] and Vega Macotela
et al. [24].

The types of antibodies (Ab) used for the bioconjugation to the CdSe/ZnS QDs with emission
at 605 nm (2.05 eV) and 655 nm (1.89 eV) are as follows:

i. Mouse monoclonal [8C9] antihuman papilloma virus Ab, HPV 16-E7, bacterially
derived fusion protein containing anti-HPV 16 early protein E7 Ab (Invitrogen,
isotype (IgG1))

ii. Anti-interleukin-10 (IL-10) antibodies (antihuman IL-10, Rt IgG1, stock concentration
of 1 mg/ml, clone JES3-9D7, code RHCIL1000)
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iii. Pseudorabies virus (PRV) Ab, immunoglobulin G antibodies (affinity purified with
Protein G Sepharose from rabbit antiserum to pseudorabies virus, stock concentration
of 1 mg/ml in PBS)

Figure 1. Bioconjugated CdSe/ZnS QDs on the Si substrate.

CdSeTe/ZnS QDs with near IR emission at 780-800 nm (1.59-1.60 eV) have been conjugated to
different types of antibodies as well:

i. Mouse monoclonal [8C9] antihuman papilloma virus Ab, anti-HPV 16-E7, bacterially
derived fusion protein containing anti-HPV 16 early protein E7 Ab (Invitrogen,
isotype (IgG1))

ii. Mouse monoclonal [C1P5] antihuman papilloma virus HPV16 E6 + HPV18 E6 Ab,
HPVE6 (Abcam, ab70, isotypeIgG1, gel-purified HPV18 E6-betagalacto-sidase fusion
protein)

iii. Pseudorabies virus (PRV) Ab, immunoglobulin G antibodies (affinity purified with
Protein G Sepharose from rabbit antiserum to Pseudorabies virus, stock concentration
of 1 mg/ml in PBS)

iv. Anti-IL-10 antibodies (antihuman IL-10, Rt IgG1, stock concentration of 1 mg/ml,
clone JES3-9D7, code RHCIL1000)

The protocol of bioconjugation details can be found in refs. [29, 30]. Bioconjugated CdSe/ZnS
QDs have been called as 605P+IL-10, 655P+IL-10, 605P +HPV E7, 655P +HPV E7, 605P+PRV,
and 655P+PRV, and the bioconjugated CdSeTe/ZnS QDs have been called as (i) 800P+HPV E7,
(ii) 800P+HPV E6, (iii) 800P+PRV, and (iv) 800P+IL-10.

The majority of PL spectra were measured at the excitation by a He-Cd laser with a wavelength
of 325 nm and a beam power of 76 mW at 300 K using a PL setup on a base of spectrometer
SPEX500 described by Torchynska [22] and Vega Macotela et al. [24]. Raman scattering spectra
were measured at 300 K by means of the spectrometer Lab-Raman HR800 Horiba Jovin-Yvon
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in the range of Raman shifts of 100-600 cm-1 at the excitation by a solid-state laser with a
wavelength of 532 nm and a beam power of 20 mW [26, 28].

3. The bioconjugation study of CdSe/ZnS QDs

3.1. CdSe/ZnS QDs bioconjugated to anti-IL-10 Ab

Figures 2 and 3 demonstrate the PL spectra of the three samples of nonconjugated (605N, 655N)
QDs and three samples of bioconjugated (605P, 655P) QDs.
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Figure 2. Normalized PL spectra of three 605P (a) and three 605N (b) QD samples at 300 K. Numbers at the curves (×1,
×1.4, and ×1.8) show the multiplication coefficients used at the normalization of PL spectra.

The PL spectra of CdSe/ZnS QDs are characterized by the Gaussian shape PL band in the
nonconjugated states with the peaks at 2.04 eV (Figure 2) and 1.90 eV (Figure 3) related to
exciton emission in corresponding CdSe cores [31]. At the bioconjugation of studied QDs, the
PL intensity decreases, the emission peak shifts to higher energies, a PL half width increases,
and the shape of PL bands became asymmetric with high-energy tails (Figures 2 and 3). The
PL energy shift at the bioconjugation of QDs to antibodies can be attributed to the following:
(i) the impact of anti-IL-10 Ab or PBS buffer emission excited by UV light, (ii) the oxidation or
degradation of CdSe cores owing to core/shell atom intermixing [32], (iii) the impact of
compressive strains that appears at the bioconjugation [33, 34], or (iv) the emission of excitons
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bound to the QD excited states in QDs [31]. To distinguish between proposed reasons, the PL
spectra of anti-IL-10 Ab and PBS were studied at UV light excitation (Figure 4).
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The PL spectrum of anti-IL-10 Ab is characterized by the PL band with a maximum at 2.21 eV
and a small shoulder in the range 2.4-3.0 eV (Figure 4, curve 1). The PL spectrum of PBS is
shown in Figure 4, curve 2. The PL intensity of PBS in the range 2.2-3.2 eV is 15-fold smaller
than the emission intensity of 2.21 eV PL band related to anti-IL-10 Ab. Simultaneously, the
PL intensity of anti-IL-10 Ab emission (2.21 eV) is 10-fold smaller than the PL band intensity
of CdSe/ZnS QDs at UV excitation. Hence, we can conclude that the “blue” shifts of PL spectra
in bioconjugated QDs (605P and 655P) do not connect with the luminescence of anti-Il-10 Ab
or PBS. However, the emission of anti-IL-10 Ab cans influent on the shape of tails in PL spectra
of bioconjugated QDs.

Raman scattering spectra were investigated with the goal to study the impact of compressive
strains [33, 34] and the oxidation or degradation processes at the QD bioconjugation [32, 35],
as well as to confirm the existence of electric charges in IL-10 Ab. Raman scattering spectra of
605N and 605P CdSe/ZnS QDs present the low-intensity Raman peaks at 211.9, 235.8, 302.8,
345.3, 424.8, 434.6, and 490 cm-1 (Figure 5).
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Figure 5. Raman scattering spectra of nonconjugated (a) and bioconjugated (b) QDs.

The peak at 211.9 cm-1 (and two phonon overtone at 424.8 cm-1) corresponds to LO phonons in
the CdSe core. The shift of LO phonon Raman peak (211.9 cm-1) from its position in the bulk
CdSe crystal (213 cm-1) has related to the phonon confinement effect in small QDs [6, 35]. The
peak at 345.3 cm-1 is due to the LO phonon scattering in the ZnS shell (Figure 5). The shift of
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LO phonon Raman peak (345.3 cm-1) from its position in the bulk ZnS crystal (352 cm-1) is
related to the phonon confinement effect in thin ZnS shell [6, 35, 36]. Raman spectra in the
diapason of 0-500 cm-1 include the peaks related to the Si substrate as well (Figure 1). Raman
scattering spectra of Si present the overtones of acoustic phonons: 235.8, 302.8, 434.6, and 458.6
cm-1 (Figure 5). The peaks at 230, 302, 435, and 469 cm−1 were attributed early to two TA phonon
overtones at the L, X, and Σ critical points of the Si Brillouin zone [36-38].

The Raman study shows that Raman peaks related to LO phonons in the CdSe core (Figure 5)
have not varied at the QD bioconjugation. Meanwhile, if the QD bioconjugation is accompa‐
nied by the compressive strain applied, and by the degradation or oxidation of cores, the
Raman peaks have to change. Finally, we can conclude that the mentioned processes have not
been realized at the QD bioconjugation to anti-IL-10 Ab.

Note that the CdSe core Raman peak intensity increases twofold in bioconjugated QDs as it is
shown in Figure 5. The enhancement of optical field at the surface of bioconjugated QDs and
increasing the Raman peak intensity can be attributed to the surface-enhanced Raman
scattering (SERS) [28,39]. This fact means that anti-IL-10 Abs have the electric charges (dipoles),
which interact with an electric field of excitation light at the SERS effect [39-41].
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FWHMs of main PL bands in PL spectra of 655N (1) and 655P-IL-10 (2) QDs versus excitation light power.

To study the impact of excitons at QD excited states on the emission of bioconjugated QDs,
the PL spectra were measured at different UV light (325nm) excitation intensities. The PL
spectra of 655N QDs kept a Gaussian shape of PL band (1.90 eV) at all excitation intensi‐
ties (Figure 6a). The full width at half maximum (FWHM) of PL band at the first increas‐
es with raising excitation intensities owing to the enlargement of the number of excited
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To study the impact of excitons at QD excited states on the emission of bioconjugated QDs,
the PL spectra were measured at different UV light (325nm) excitation intensities. The PL
spectra of 655N QDs kept a Gaussian shape of PL band (1.90 eV) at all excitation intensi‐
ties (Figure 6a). The full width at half maximum (FWHM) of PL band at the first increas‐
es with raising excitation intensities owing to the enlargement of the number of excited
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QDs and their size distribution. Then the FWHM saturates at higher excitation intensities
(Figure 6c, curve 1).

The PL spectra of bioconjugated QDs represent a set of PL bands: (i) PL band (I) with a peak
at 2.10 eV connected with QD core emission; (ii) PL band (II) at 2.64 eV, apparently, is related
to PBS emission; and (iii) PL band (III) with the peak at 2.78 eV (Figure 6b).

The high-energy PL band III is attributed to a CdSeS alloy appeared at the CdSe/ZnS interface
[31]. The confirmation of the existence of such alloy has been obtained at the Raman scattering
study in CdSe/ZnS QDs (see Figure 5). The formation of high-energy tails of PL band I together
with increasing the PL band II and III intensities have been detected by raising the excitation
light power (Figure 6b). Simultaneously, the intensity of a low-energy part of band I increases
versus excitation power due to the increasing excited QD numbers and QD size distribution,
as it has been seen in nonconjugated QDs. The FWHM of band I in bioconjugated QDs increases
monotonously without saturation versus excitation intensity (Figure 6c, curve 2). This study
has shown that the PL band I intensity increases with excitation power owing to the increasing
emission of excitons localized at the excited states in bioconjugated QDs. The mentioned effect
can explain the asymmetric shape of band I and the increasing FWHM (Figure 6c, curve 2) in
bioconjugated QDs. Note that the exciton emission via excited states cannot explain “blue”
shift (∼200 meV) in the PL band I peak and appearing the PL band III in the PL spectra of QDs
bioconjugated to anti-IL-10 Abs.

3.2. CdSe/ZnS QDs bioconjugated to HPV E7 and PRV Ab

The PL spectra of CdSe/ZnS QDs with emission 605 nm and 655 nm nonconjugated and
bioconjugated to PRV and HPV E7 antibodies have been presented in Figures 7 and 8,
respectively. The PL spectra of QDs in a nonconjugated state are characterized by the one
Gaussian shape PL band peaked at 2.05 eV (Figure 7a) and 1.90 eV (Figures 7b and 8a) and
related to exciton emission in corresponding CdSe cores. The PL spectra of bioconjugated QDs
have changed essentially: the core PL band shifts into the high-energy spectral range (“blue”
shift). Simultaneously, the PL intensity of core emission decreases at the bioconjugation, its
half width increases, and the shape of PL band becomes asymmetric with the essential high-
energy tails (Figures 7 and 8).

As we have shown above, the processes of oxidation, the CdSe material degradation, or the
appearance of elastic strains have been not realized at the bioconjugation of QDs [31, 42]. The
“blue” energy shift of PL bands in bioconjugated QDs can be assigned to the emission of HPV
E7 or PRV antibodies or PBS at high-energy UV excitation and/or the emission of excitons
localized at the excited QD states.

The PL spectra of HPV E7 Ab, PRV Ab, and PBS have been studied at UV excitation as well
(Figure 9). As it is clear from Figure 9, the PL spectra of antibodies and PBS are characterized
by PL bands in the spectral range of 2.0-3.2 eV. The intensity of PL band in the spectral range
2.0-3.2 eV related to PBS is five- or eightfold smaller than the intensity of PL band related to
antibodies. Simultaneously, the intensity of PL band related to the antibodies 10-fold smaller
than the PL intensity of CdSe/ZnS QD emission at the UV excitation. Thus, we can conclude
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as well that the “blue” energy shift of PL spectra in bioconjugated QDs does not connect with
the emission of HPV E7 Ab, PRV Ab or PBS.

To study the role in the emission of excitons, localized at QD excited states in bioconjugated
QDs, the PL spectra were measured at different excitation light intensities (Figure 8a, b). The
PL spectra of nonconjugated 655N QDs kept the Gaussian shape of core PL band (1.90 eV) for
all excitation intensities used (Figure 8a). The FWHM of this PL band at the first increases
versus excitation intensity, due to raising the excited QD numbers and QD size distribution,
and then the FWHM saturates at higher excitation intensities (Figure 8c, curve 1).

The PL band intensity in QDs, bioconjugated to HPV E7 Abs, increases versus excitation light
power together with the formation of high-energy tails (Figure 8b). The PL band intensity at
a low-energy side increases owing to rising the excited QD numbers and QD size distribution
by the same way as in nonconjugated QDs. The FWHM of PL band in bioconjugated QDs
increases monotonously versus excitation intensity without the saturation effect (Figure 8c,
curve 2). Thus, the PL band intensity at a high-energy side increases versus excitation light
power due to raising the role of exciton emission via excited states in bioconjugated QDs. This
effect can explain an asymmetric shape of PL bands and increasing the FWHMs (Figure 8c,
curve 2) in bioconjugated QDs. However, the emission of excitons localized at the excited QD
states cannot explain shifting the main PL peak to higher energy in the PL spectra of biocon‐
jugated CdSe/ZnS QDs.
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Figure 7. (a). Normalized PL spectra of three different 605N (a) and 605P-PRV (b) QD samples measured at 300 K.
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4. Discussion of the CdSe/ZnS QD bioconjugation

The experimental results presented above have shown that the influence of exciton emission
via excited QD states or the emission of antibodies and PBS as well  as the oxidation or
degradation processes in QD cores can be avoided from the consideration as the reasons
of “blue” PL peak shift at the QD bioconjugation. Let us discuss other reasons for the PL
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energy shift at the bioconjugation of QDs to antibodies. These factors could be assigned to
(i)  the quantum-confined Stark effect stimulated by the charge of antibodies [43, 44],  (ii)
the quantum-confined effect related to the shift of QD energy levels and stimulated by the
change of electric potential at the QD surface [45], or (iii) decreasing the effective QD size
in bioconjugated QDs [46].

The Stark effect is shifting and splitting of energy levels in atoms and molecules due to the
presence of external electric field. The Stark shift of energy levels, ∆E, as a function of electric
field, ξ, can be presented as a sum of linear (first order Shark effect) and quadratic (second
order Stark effect) functions of an electric field: ∆E = µQD ξ + 0.5 αQD ξ2 +..., where E is an energy
of optical transition, and µQD and αQD are projections of excited-state dipole and polarizability,
respectively, along the electric field [43, 44]. This relation includes both the polar and polar‐
izable parts of emitting state. Actually, the Stark shift in the emission of QD ensembles was
found earlier to be purely quadratic versus applied electric field [39]. The dependences of the
quantum-confined Stark shift versus QD sizes and electric fields in the CdS, CdSSe, and CdSe
QDs were studied theoretically [44] and experimentally [43] in the early 90th. Only the “red”
Stark energy shift was predicted theoretically for CdS and CdSSe QD ensembles at applying
an external electric field [44]. Thus, we can conclude that the quantum-confined Stark effect
could not explain the observed experimental “blue” energy shift of PL bands at the QD
bioconjugation to studied antibodies.

Another reason for the “blue” shift of PL peak in bioconjugated QDs can be connected with
the change of potential barrier at the surface of QDs bioconjugated to the charged antibodies.
The position of energy levels in QDs for the strong quantum-confined regime depends on the
value of potential barrier [45]. It was shown that the impact of a finite potential barrier on the
electron-hole energy states increases with decreasing the dot radius. The lower potential
barrier reduces and higher potential barrier increases the energy levels and these changes are
more relevant for high-energy states [45]. However, the comparison of the PL spectrum
transformation presented in Figures 2 and 3 or Figure 7a, b has shown that the value of “blue”
PL energy shift at the QD bioconjugation to anti-IL-10 or PRV Abs is more essential for QDs
with the biggest sizes (6.4 nm) and emission at 655 nm. Thus, the “blue” PL band energy shifts
at the CdSe/ZnS QD bioconjugation to antibodies do not connect with the variation of the
potential barrier at the QD surface.

The other reason for the “blue” shift of QD energy levels at the quantum-confined condition,
owing to decreasing the effective QD size in bioconjugated QDs, was considered by Torchyn‐
ska et al. [46]. When QD is bioconjugated, its energy balance changes very much. The energy
variation comes from the fact that the attachment of biomolecules to the external QD surface
will result in the generation of van der Waals forces. The extra charge attached to the exterior
shell will form a blocking electric field, which “truncates” the effective volume of QDs (Figure
10). In this situation, it is natural to expect energy varying of emitted light. At the same time,
the stronger confinement will produce a blue shift of the QD emission spectrum.

The question about the accurate calculation of the truncated volume is a complicated one. For
a point charge, the equipotential surfaces will be spheres, which will make the blocked volume
corresponding to a spherical segment. The remaining effective volume will lose its spherical
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corresponding to a spherical segment. The remaining effective volume will lose its spherical
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shape. We proposed to approximate it with a cylinder with a height c and a circular base of
the diameter a. The Schrödinger equation for such system was solved using the mirror
boundary conditions [46, 47], providing the ground state energy relative to the material band
gap [47]:
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The parameters of a cylinder can be estimated for different strength of the blocking field. We
consider two cases with the blocking field extending for the distance d = 3 and 4 nm from the
charge attached to the protective PEG layer covering nanoparticle (Figure 9). For these cases,
the parameters of the effective cylinder are as follows: a = 1.6 R, c = 1.55 R (for 4 nm blocking
radius) and a = 1.65 R, c = 1.6 R (for 3 nm blocking radius), where R = 3.2 nm is the radius of
the CdSe core of the particle. Using these values, one can obtain the expressions for the ground
state of conjugated nanoparticle with 4 nm blocking [46]:
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and also for conjugated nanoparticle with 3 nm blocking distance [46]:
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In a real system, the absorbed energy that triggered the formation of an exciton can be partially
dissipated, so that the peak of PL spectra will occur at lower energy, producing Stokes shift

Figure 10. A schematic depiction of CdSe/ZnS QD with the 6.4 nm CdSe core, encased in the ZnS and poly-ethylene
glycol (PEG) protective shells. A charge generated upon bioconjugation is shown attached to the PEG shell to the right.
We consider two radii of the blocking sphere of d = 3 and 4 nm, respectively.
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ESt. Therefore, the total blue shift observed in the system can be defined as a ratio between peak
positions of a bioconjugated sample hvc versus nonconjugated sample hv0:
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Using the experimental data shown in Figure 3, one can see that hv0 = 1.89 eV and hvc = 2.08
eV; the typical Stokes shift is ESt = 56.0 meV [48]. Using the band gap Eg = 1.74 eV for the bulk
CdSe at 300 K [49], one can obtain the ratio for the experimental shift equal to 2.16 from equation
(4). The ratios calculated with Eqs. (1), (2), (3), and (4) are 3.30 (for blocking distance d = 4 nm)
and 2.88 (for d = 3 nm), which is considerably close to the experimental value in view of
simplifications made in treating the truncation of nanoparticle’s core volume.

Thus, we have proposed to use the mirror boundary condition for simplifying solution of
the Schrödinger equation for a spherical CdSe/ZnS core/shell QDs. It was shown that the
“blue” shift in the PL spectrum observed in the experiment with bioconjugated QDs can
be explained by the attachment of a charge deals with the antibody to the exterior shell of
QDs, blocking away a fraction of core’s volume. Representing the truncated effective part
of core as a cylinder, we obtained a blue shift values with a considerable accuracy in relation
to the experimental data. Thus, the “blue” energy shift of PL spectrum in the bioconjugat‐
ed CdSe/ZnS QDs has been attributed to the electronic quantum-confined effects stimulat‐
ed by the charged antibodies.

5. The bioconjugation study of CdSeTe/ZnS QDs

5.1. CdSeTe/ZnS QDs bioconjugated to anti-IL-10 Ab

The PL spectra of CdSeTe/ZnS QDs for the nonconjugated (800N) and bioconjugated (800P+
IL-10) states are shown in Figure 11. The PL spectrum of 800N QDs is characterized by Gaussian
shape PL band with a peak at 1.59-1.60 eV (Figure 11, curves 1 and 2) connected with exciton
emission in CdSeTe cores. The PL peak shifts to higher energies (“blue” shift) up to 1.90 eV
(Figure 11, curves 3 and 4), and the shape of PL bands becomes asymmetric with low-energy
shoulders (at 1.75 eV) in the PL spectra of bioconjugated QDs (Figure 11, curves 3 and 4).
Simultaneously, the PL intensity of QDs decreases in the case of the bioconjugation to anti-
IL-10 Ab (Figure 11, curves 3 and 4).

The PL spectra of anti-IL-10 Ab and PBS have been measured at the UV light excitation early
(Figure 4). The PL spectrum of anti-IL-10 Ab is characterized by the PL band with a peak at
2.21 eV and a small PL shoulder in the range 2.3-3.0 eV (Figure 4, curve 1). The intensity of the
PL band related to PBS (Figure 4, curve 2) is 15-fold smaller than the emission intensity of 2.21
eV PL band connected with anti-IL-10 Abs. Note that the 2.21 eV PL band intensity in anti-
IL-10 Abs is 10-fold smaller than the emission intensity of excitons in CdSeTe/ZnS QDs at UV
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light excitation (Figure 11). Thus, the new PL bands peaked at 1.75 and 1.90 eV that appeared
in the PL spectra of bioconjugated QDs do not related to the emission of anti-Il-10 Abs or PBS.

To study the impact of the excitation quanta energy on the shape of PL bands, the PL spectra
of nonconjugated and bioconjugated QDs have been measured using the different excitation
wavelengths of 532 nm, 488 nm, and 325 nm (Figure 12). The difference in PL intensities is
related to the power of lasers used, but the shape of PL bands in the nonconjugated and
bioconjugated QDs is similar. Note that the PL intensity of QD emission is higher at the UV
excitation (325 nm).

The Raman scattering spectra of CdSeTe/ZnS QDs are investigated as well. The Raman
spectrum of nonconjugated CdSeTe/ZnS QDs represents a complex Raman peak of QDs at
202.5 cm-1 and the Raman peak at 519.6 cm-1 connected with the first-order Raman scattering
involving optic phonons in the Si substrate (Figure 13a). The Raman peak of QDs is a super‐
position of two Raman peaks at 191.2 and 202.5 cm-1 (Figure 13a), which correspond to the LO
phonons in the CdSe50Te50 core and CdSe80Te20 core’s cover layer [31, 50]. In addition, the
Raman spectrum represents two peaks at 177.0 and 280 cm-1. The peak at 177.0 cm-1 could be
assigned to a surface phonon (SP) in QD cores [6]. The Raman peak at 280 cm-1 is probably due
to the CdZnSeS alloy that appears at the CdSeTe/ZnS interface at the temperature of ZnS shell
growth [6, 50-52].
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Figure 11. Normalized PL spectra of two 800N (curves 1 and 2) and two 800P+ IL-10 (curves 3 and 4) QD samples at 300 K. PL spectra 
are shifted along y axis to prevent their overlapping. Numbers (x1, x2, x3) indicate the multiplication coefficients used at the 
normalization. Excitation light wavelength is 325 nm. 
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The Raman scattering investigation shows (Figure 13a, b) that the Raman peaks related to the
LO phonons in the double CdSeTe core and in the alloy at the interface did not vary at the QD
bioconjugation. This fact testifies that the “blue” PL energy shift in bioconjugated CdSeTe/ZnS
QDs (Figures 11 and 12) has been not connected with compressive strains or with the degra‐
dation of CdSeTe QD core owing to core/shell intermixing or core oxidation at the QD
bioconjugation.

5.2. CdSeTe/ZnS QDs bioconjugated to the HPV and PRV antibodies

Normalized PL spectra of nonconjugated and bioconjugated CdSeTe/ZnS QDs have been
presented in Figures 14, 15, and 16 for the different antibodies used: (i) mouse monoclonal
anti-HPV E7 Ab, (ii) mouse monoclonal HPV E6 Ab, and (iii) pseudorabies virus (PRV) Ab.

QD emission spectra in nonconjugated state are characterized by the two Gaussian shape PL
bands. The main PL band (I) with a maximum at 1.57-1.60 eV (Figures 14-16, curve 1) is
connected with exciton emission in the CdSeTe core. The small intensity PL band (II) with a
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Figure 12. PL spectra of 800N (a) and 800P+ IL-10 (b) CdSeTe/ZnS QDs measured at 300 K and excited by the light with wavelengths: 
532 nm (1), 488 nm (2), and 325 nm (3). 

The Raman scattering spectra of CdSeTe/ZnS QDs are investigated as well. The Raman spectrum of nonconjugated 
CdSeTe/ZnS QDs represents a complex Raman peak of QDs at 202.5 cm–1 and the Raman peak at 519.6 cm–1 connected 
with the first-order Raman scattering involving optic phonons in the Si substrate (Figure 13a). The Raman peak of QDs is 
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growth [6, 50–52]. 

Figure 12. PL spectra of 800N (a) and 800P+ IL-10 (b) CdSeTe/ZnS QDs measured at 300 K and excited by the light with
wavelengths: 532 nm (1), 488 nm (2), and 325 nm (3).

Quantum Dots - Theory and Applications166



The Raman scattering investigation shows (Figure 13a, b) that the Raman peaks related to the
LO phonons in the double CdSeTe core and in the alloy at the interface did not vary at the QD
bioconjugation. This fact testifies that the “blue” PL energy shift in bioconjugated CdSeTe/ZnS
QDs (Figures 11 and 12) has been not connected with compressive strains or with the degra‐
dation of CdSeTe QD core owing to core/shell intermixing or core oxidation at the QD
bioconjugation.

5.2. CdSeTe/ZnS QDs bioconjugated to the HPV and PRV antibodies

Normalized PL spectra of nonconjugated and bioconjugated CdSeTe/ZnS QDs have been
presented in Figures 14, 15, and 16 for the different antibodies used: (i) mouse monoclonal
anti-HPV E7 Ab, (ii) mouse monoclonal HPV E6 Ab, and (iii) pseudorabies virus (PRV) Ab.

QD emission spectra in nonconjugated state are characterized by the two Gaussian shape PL
bands. The main PL band (I) with a maximum at 1.57-1.60 eV (Figures 14-16, curve 1) is
connected with exciton emission in the CdSeTe core. The small intensity PL band (II) with a

 

1.4 1.6 1.8 2.0 2.2 2.4
0.0

0.5

1.0

ex325nm
ex488nm
ex532nm

P
L

in
te

ns
ity

(a
rb

,u
n)

Emission energy(eV)

800N

x2.5

x1.0
x1.3

a
QDs

0.0

0.5

1.0

x5

x2
x1.7

800P b

IL-10

QDs

 

Figure 12. PL spectra of 800N (a) and 800P+ IL-10 (b) CdSeTe/ZnS QDs measured at 300 K and excited by the light with wavelengths: 
532 nm (1), 488 nm (2), and 325 nm (3). 

The Raman scattering spectra of CdSeTe/ZnS QDs are investigated as well. The Raman spectrum of nonconjugated 
CdSeTe/ZnS QDs represents a complex Raman peak of QDs at 202.5 cm–1 and the Raman peak at 519.6 cm–1 connected 
with the first-order Raman scattering involving optic phonons in the Si substrate (Figure 13a). The Raman peak of QDs is 
a superposition of two Raman peaks at 191.2 and 202.5 cm–1 (Figure 13a), which correspond to the LO phonons in the 
CdSe50Te50 core and CdSe80Te20 core’s cover layer [31, 50]. In addition, the Raman spectrum represents two peaks at 177.0 
and 280 cm–1. The peak at 177.0 cm–1 could be assigned to a surface phonon (SP) in QD cores [6]. The Raman peak at 280 
cm–1 is probably due to the CdZnSeS alloy that appears at the CdSeTe/ZnS interface at the temperature of ZnS shell 
growth [6, 50–52]. 

Figure 12. PL spectra of 800N (a) and 800P+ IL-10 (b) CdSeTe/ZnS QDs measured at 300 K and excited by the light with
wavelengths: 532 nm (1), 488 nm (2), and 325 nm (3).

Quantum Dots - Theory and Applications166

peak at 2.50 eV is attributed to exciton emission in the intermediate alloy CdZnSeS layer at the
core/shell interface [50-52]. This intermediate layer was introduced at the process of QD growth
with the aim to decreasing the mismatch between the CdSeTe and the ZnS crystal lattices. The
PL intensity of 2.50 eV band varies owing to the variation, apparently, a volume of intermediate
alloy layers in the different QD ensembles (Figures 14-16). The small intensity PL band at
2.50-2.90 eV (Figure 15) can be connected with the emission of PBS (see Figures 4 and 9) that
exists in the nonconjugated QD ensembles as well.

The main PL peak (I) shifts to higher energy in the PL spectra of bioconjugated QDs up to:
1.881 eV (Figure 14, curve 2), 1.887 eV (Figure 15, curve 2), or even 1.937 eV (Figure 16, curve
2). Simultaneously, the PL band shape becomes asymmetric with essential low-energy
shoulders. The analysis has revealed that the main PL band in bioconjugated QDs is complex
and can be represented by a superposition of two PL bands (Figure 15, curves 3 and 4): the
low-energy band with a peak at 1.60 eV and the high-energy band centered at 1.887 eV in
Figure 15. At the same time, the PL intensity of main PL band I decreases and the additional
PL band appears in the spectral range 2.2-3.0 eV.
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Figure 13. Raman scattering spectra of 800N (a) and 800P+ IL-10 (b) QDs.
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6. Discussion of the CdSeTe/ZnS QD bioconjugation

Let us discuss again the physical reasons of PL spectrum transformation at the QD bioconju‐
gation to antibodies. As we mentioned above, these reasons can be related to (i) the emission
of antibody molecules or PBS at UV excitation; (ii) the compressive strain applied to QDs at
the bioconjugation [33]; (iii) the compound material degradation owing to core/shell inter‐
mixing [53] or oxidation [32] at the QD bioconjugation; (iv) the quantum-confined Stark effect
[43, 44], stimulated by electric charges of antibodies; (v) the dominated emission of excitons
localized at the excited QD states; (vi) the change of energy band profile at the application of
electric field of charged Abs; and (vi) the quantum-confined effect owing to the shift of QD
energy levels stimulated by the change of potential barrier at the QD surface [45] or by
decreasing the effective QD size in bioconjugated QDs [46]. To make the decision concerning
the most probable physical reasons of the PL transformation in CdSeTe/ZnS QDs, let us analyze
all of these factors in details.

(i) The emission of HPV or PRV antibodies and PBS can be excited together with QD emission
at the PL excitation by UV light (325 nm). The PL spectra of pure HPV and PRV antibodies,
and PBS without QDs have been investigated (Figure 17).

The wide emission bands have been detected in the spectral range 2.0-3.2 eV in PL spectra of
both the antibodies and PBS (Figure 17). The PL intensity of PBS emission is 50-fold smaller,
and the PL intensities of antibody’s emissions are 5- or 10-fold smaller in comparison with the
PL intensity of the main PL bands I in bioconjugated CdSeTe/ZnS QDs. Thus, the emission of

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

ali
ze

d 
PL

 in
te

ns
ity

 (a
rb

.u
n.

)

Emission energy, eV

1 2

1

2

300K

 1-800N
2-800P+HPVE6 Ab

x1.0 x2.5

Figure 14. Normalized PL spectra of nonconjugated 800N (1) and bioconjugated 800P (2) QDs to HPV E6 Ab measured
at 300 K. Numbers at the curves (×1.0 and ×2.5) present the multiplication coefficients used at the normalization of ex‐
perimental PL spectra.
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perimental PL spectra.

Quantum Dots - Theory and Applications168

antibodies or PBS at the high-energy UV light excitation cans influent only on the shape of
high-energy tails in PL spectra of bioconjugated QDs. This impact is seen clearly in Figures
14, 15, and 16 (curve 2), where the high-energy PL band appears in the spectral range 2.2-3.2
eV.

(ii-iii) If the compressive strain appears at QD bioconjugation, the Raman peaks has shift in
Raman spectra in comparison with those for nonconjugated QDs. The Raman scattering
spectrum of nonconjugated CdSeTe/ZnS QDs represents a complex Raman peak of QDs at
202.5 cm-1 and another Raman peak at 519.6 cm-1 related to the Si substrate (Figures 13a and
18a).

The QD peak is a superposition of Raman peaks at 191.2 and 202.5 cm-1 (Figure 18a), which
correspond to Raman scattering involving the LO phonons of the CdSe50Te50 core and
CdSe80Te20 core’s cover layer [31, 50]. The detailed estimations of material compositions in the
double CdSeTe QD core on the base of Raman peak analysis were published earlier by Quintos
Vazquez et al. [31]. The Raman spectrum demonstrates as well the peak at 280 cm-1, which can
be assigned to light scattering by LO phonons in the CdSeZnS intermediate alloy layer. The
Raman peak at 406 cm-1 is related to two-phonon Raman scattering in the CdSeTe core [50].
The intensity of Raman signals in bioconjugated CdSeTe/ZnS QDs increases in comparison
with those in nonconjugated QDs [54]. This effect was attributed early to the surface-enhanced
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Raman scattering (SERS) [22, 39, 54] due to the interaction of the electromagnetic field of
excitation light with the electric charges (dipoles) of antibodies. The realization of the SERS
effect at Raman scattering in bioconjugated QDs testifies that the antibodies have the electric
charges.

The SERS effect is responsible for appearing the low-intensity Raman peaks (463 and 580 cm-1)
in Raman spectra of bioconjugated QDs (Figure 18c). These Raman signals are related to the
Si substrate and were assigned early to scattering involving TO phonons (463 cm-1) and the
combination of TA and TO phonons at the X direction in the Si Brillouin zone [36]. The Raman
scattering study shows (Figure 18b, c) that the positions of Raman peaks in Raman spectra of
the double CdSeTe core and intermediate CdSeZnS layer have not been varied at the CdSeTe/
ZnS QD bioconjugation. Permanent positions of Raman signals in QDs testify that the
bioconjugation process has not connected with the compressive strains to QDs, with the
compound degradation owing to core/shell intermixing or the QD core oxidation at the
bioconjugation.
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(iv) The quantum-confined “red” Stark energy shift was predicted theoretically for emission
in the ensembles of CdS or CdSSe QDs [43, 44]. The quantum-confined Stark effect can be
avoided from our discussion as well because the “blue” PL energy shift is detected in studied
CdSeTe/ZnS QDs at the bioconjugation.

(v) To analyze the role of excitons bounded at the excited states in the CdSeTe core, the
dependence of PL spectrum transformation versus excitation light intensities has been studied
(Figure 19a-c). As it is clear from Figure 19a, the shape of PL bands in nonconjugated CdSeTe/
ZnS QDs (800N) has not changed at varying the excitation light intensities.
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Figure 19. Normalized PL spectra of 
nonconjugated (a) and bioconjugated QDs to 
PRV Ab (b) and to HPV E7 Ab (c) measured 
at different excitation light powers at 300 K. 
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Figure 19. Normalized PL spectra of nonconjugated (a) and bioconjugated QDs to PRV Ab (b) and to HPV E7 Ab (c)
measured at different excitation light powers at 300 K.

Meanwhile, the shape of the PL spectra of bioconjugated QDs varies versus excitation light
power (Figure 19b, c). The PL intensity decreases mainly in the low-energy (1.60 eV) and high-
energy (2.50 eV) ranges that have been seen clearly. The mentioned PL bands do not connect
with the emission of excitons localized at the excited states in the CdSeTe core. Thus, the
emission of excitons localized at the excited states in bioconjugated CdSeTe/ZnS QDs is not
responsible for the transformation of PL spectra versus excitation light power.

(vi) Let us consider the energy band diagram of CdSeTe/ZnS QDs with the aim to analyze the
varying energy band profile at the bioconjugation. The energy diagram of the double core
CdSeTe/ZnS QDs with emission at 800 nm was calculated early by Quintos Vazquez et al. [31].
The band gaps and electronic affinities for the CdSe50Te50, CdSe80Te20, and ZnS bulk crystals
[31, 55] have been represented in Figure 20.
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Figure 19. Normalized PL spectra of nonconjugated (a) and bioconjugated QDs to PRV Ab (b) and to HPV E7 Ab (c)
measured at different excitation light powers at 300 K.

Meanwhile, the shape of the PL spectra of bioconjugated QDs varies versus excitation light
power (Figure 19b, c). The PL intensity decreases mainly in the low-energy (1.60 eV) and high-
energy (2.50 eV) ranges that have been seen clearly. The mentioned PL bands do not connect
with the emission of excitons localized at the excited states in the CdSeTe core. Thus, the
emission of excitons localized at the excited states in bioconjugated CdSeTe/ZnS QDs is not
responsible for the transformation of PL spectra versus excitation light power.

(vi) Let us consider the energy band diagram of CdSeTe/ZnS QDs with the aim to analyze the
varying energy band profile at the bioconjugation. The energy diagram of the double core
CdSeTe/ZnS QDs with emission at 800 nm was calculated early by Quintos Vazquez et al. [31].
The band gaps and electronic affinities for the CdSe50Te50, CdSe80Te20, and ZnS bulk crystals
[31, 55] have been represented in Figure 20.
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Figure 20. Energy band diagram for the CdSeTe alloys and ZnS bulk crystal.

To create the energy diagram of nonconjugated CdSeTe QDs (Figure 21), the variation of
energy band gaps for the CdSe50Te50 core and CdSe80Te20 core cover layer with their sizes is
estimated using the effective mass approximation model [31]. The big size of the double core/
shell CdSeTe/ZnS QDs (emission, 800 nm) permits to apply the effective mass approximation
approach [6].

The ground energy of electron-hole pairs and the energy of the first absorption transition are
estimated as follows [56]:

S S g y
eE E R

2 2 2

1 1 2 1.786 0.248
2
p

eama
= + - -

h
(5)

where Eg is the energy band gap of bulk material, α is a QD radius, μ is the reduced mass,
μ −1 =me

*−1 + mh
*−1, me* and mh* are the effective masses of electrons and holes, and ε is the high-

frequency permittivity. The term e 2

εα  in Eq. (5) describes the electron-hole Coulomb interaction,
and the fourth term is a minor correction.

To analyze the energy band gap, the following parameters have been used for the bulk CdSe:
Eg = 1.730 eV at 300 K, me* = 0.13 mo, mh* = 0.45 mo, and the high-frequency permittivity ε = 8.2
[50, 51]. Using the parameters for the bulk CdTe: Eg = 1.50 eV at 300 K, me* = 0.11mo, and mh* =
0.35mo [50, 57], the values of energy band gaps and effective masses for the bulk CdSe0.8Te0.2

and CdSe0.5Te0.5 alloys have been obtained by the linear interpolation. To estimate the position
of PL excitation peaks connected with the electron-hole ground states in QD, the value of Stokes
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shift is taken in account, which equals 50 meV [6]. Estimated energy band gaps for the
CdSe0.5Te0.5 and CdSe0.8Te0.2 alloys have been used for the design of the energy diagram of the
double core/shell QDs (Figure 21).

Figure 21. The energy band diagram of nonconjugated double core CdSeTe/ZnS QDs.

The energy band diagram of nonconjugated CdSeTe/ZnS QDs (Figure 21) explains the types
of the optical transitions and emission energy of 1.60 eV detected in the PL spectra of noncon‐
jugated QDs. As it is clear from Figure 21, owing to the type II quantum well (CdSe80Te20/
CdSe50Te50/CdSe80Te20) in double core QDs, the wide band gap core and the core’s covered
quantum well layer with the energy band gaps of Eg = 1.93 and 1.88 eV, respectively, enable
to emit IR emission with a PL peak at 1.60 eV in nonconjugated QDs (Figures 11, 14, 15, and
16). This 1.6-eV emission owes to the recombination of electrons, from the CdSe80Te20 conduc‐
tion band, with holes localized in the CdSe50Te50 valence band (Figure 21).

To explain the PL band “blue” shift into the higher energy range (1.88-1.94 eV) in bioconjugated
CdSeTe/ZnS QDs (Figures 11, 14, 15, and 16), let us to consider the transformation of band
diagram at applying the external electric field of charged antibodies. In this case, the energy
band profile varies as it is presented in Figure 22. Actually, in the bioconjugated QDs, the two
types of optical transitions are possible: the recombination of excitons located at the ground
states in the CdSe50Te50 core and/or the recombination of electrons, from the CdSe80Te20

conduction band, with holes localized in the CdSe50Te50 valence band (Figure 22).

The transformation of PL spectra versus excitation light intensities (Figure 19) has confirmed
the proposed QD energy band diagrams. Actually, at low excitation light intensity, the
recombination (1.88 eV) of excitons at the ground CdSe50Te50 core states dominates in the PL
spectrum (Figure 22). At obtaining the last value (1.88 eV), the Stock shift of 50 meV is taken
into account [6, 29, 30]. When excitation intensity increases, the indirect recombination
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transition (electrons from CdSe80Te20 with holes in CdSe50Te50) and exciton emission in the
intermediate CdSeZnS layer can be realized. Hence, the energy band profile variation in the
double core CdSeTe/ZnS QDs at the bioconjugation to charged antibodies permits to explain
the PL spectrum peculiarities of bioconjugated QDs.

(vii) Finally, let us discuss the difference in PL band positions in CdSeTe/ZnS QDs bioconju‐
gated to different antibodies (Figures 14-16, curve 2). The main PL peaks in bioconjugated QDs
are as follows: 1.881 eV for 800P+HPV E6 Ab (Figure 14, curve 2), 1.887 eV for 800P+PRV Ab
(Figure 15, curve 2), and 1.937 eV for 800P+HPV E7 Ab (Figure 16, curve 2). The difference in
PL peaks can be related to the difference in electric potentials (potential barriers) at the surface
of bioconjugated QDs. It is known that the position of energy levels in QDs, for the strong
quantum confinement regime, depends on the value of potential barriers at the surface [45].
The comparison of PL intensities, detected for the pure antibodies (Figure 17), and the
corresponding PL peaks in bioconjugated QDs (Figures 14-16, curve 2) have shown that the
antibody HPV E7 with highest emission intensity (Figure 17, curve 4) stimulates the biggest
PL band shift up to 1.937 eV (Figure 16, curve 2). The PL intensity, measured for the pure
antibodies (Figure 17), depends on their concentrations in PBS. Thus, it is possible to conclude
that the shift of PL spectra depends on a number of charged antibodies bioconjugated to
CdSeTe/ZnS QDs [58]. Moreover, this PL shift increases by enlarging the antibody concentra‐
tion in PBS. The potential barrier increasing at the QD surface has shifted the QD emission into
the higher energy range owing to the shift of QD energy levels [58].

Thus, the PL spectrum transformation of CdSeTe/ZnS QDs, bioconjugated to studied anti‐
bodies, is related to the two effects: (i) the change of energy band profiles and (ii) the quantum-

Figure 22. Energy band diagram of QDs bioconjugated to 800P+HPV E6 Ab.
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confined effect owing to the shift of QD energy levels stimulated by the change of electric
potentials (potential barrier) at the surface of QDs bioconjugated to charged antibodies. The
potential barrier increasing has shifted the QD energy levels and QD emission into the higher
energy range.

7. Conclusion

Photoluminescence, its excitation power dependence, and Raman scattering spectra have been
studied in CdSe/ZnS and CdSeTe/ZnS QDs for the nonconjugated states and after the QD
conjugation to the anti-IL-10, human papilloma virus, and pseudorabies virus antibodies. The
QD bioconjugation to charged antibodies stimulates the “blue” energy shift of PL bands related
to exciton emission in the CdSe or CdSeTe cores.

The “blue” energy shift of PL spectrum in bioconjugated CdSe/ZnS QDs has been attributed
to the electronic quantum-confined effects stimulated by decreasing the effective QD size at
its bioconjugation to charged antibodies. It was shown that the attachment of a charge, deals
with the antibody, to the exterior shell of CdSe/ZnS QDs leads to blocking away a fraction of
core’s volume.

The energy band diagrams of CdSeTe/ZnS QDs in the nonconjugated and bioconjugated states
have been designed, which permit to explain the types of optical transitions in QDs and their
transformations at the QD bioconjugation. It is shown that the change of energy band profile
and the “blue” shift of QD energy levels, owing to the change of potential barrier at the QD
surface, are the dominant reasons of PL spectrum transformation in the double core
CdSeTe/ZnS QDs conjugated to charged antibodies. A better understanding of the QD
bioconjugation to specific antibodies is expected to produce the major advances in biology and
medicine and can be a powerful technique for early medical diagnostics.
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