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Preface

This book endeavors to give the reader a strong base in the advanced theory of electromag‐
netic waves and its applications, while keeping pace with research in various other disci‐
plines that apply electrostatics/electrodynamics theory. The treatment is highly
mathematical, which tends to obscure the principles involved. Hence, the book is designed
for distinguished academics in this field and is by no means easy for the standard student to
assimilate.

An earlier book, Electromagnetic Radiation, was originally published in 2012 by InTech. The
subject of that book was radiation of EM waves or EMC. The present book retains essentially
the same subject matter, in an expanded and modernized change which has taken place in
the past decade.

Special thanks to Ms. Iva Simcic, Publishing Process Manager, and to InTech publishers for
choosing me to be the editor of this book.

Prof. Saad Osman Bashir
International Islamic University

Malaysia





Chapter 1

What Effect does Rounding the Corners have on

Diffraction from Structures with Corners?

Paul D. Smith and Audrey J. Markowskei

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/61152

∗

Abstract

In studying electromagnetic wave diffraction, the choice of an appropriate canonical
structure is significant in elucidating the dominant features of a scattering scenario.
This study was originally motivated by the influence that the corners of buildings
and their surface cladding might have on the wave propagation. When an integral
equation approach is employed as the basis of numerical studies of the scattering
of plane waves by an obstacle, a common technique for dealing with domains with
corners is to round the corners. In order to clarify the effect of such corner rounding,
this work examines the diffraction from cylindrical scatterers which possess corners,
that is, points at which the normal changes discontinuously. Specifically we develop
a numerical method for the scattering of an E- polarised plane wave by such
cylindrical structures. We examine three different boundary conditions: soft, hard
and an impedance loaded boundary condition, each enforced at all points on the
cross-sectional boundary of the cylinder. We quantify the difference between test
structures with corners and similar structures where the corners have been rounded
to assess the impact on near- and far-field scattering, as a function of the radius of
curvature in the vicinity of the rounded corner points.

Keywords: Scattering and diffraction, two-dimensional structures, impedance
boundary condition, integral equations, geometrical theory of diffraction

1. Introduction

Diffraction of electromagnetic waves by canonical shapes and structures of more general and
arbitrary shape is of enduring interest. The choice of an appropriate canonical structure to
model the dominant features of a scattering scenario can be very illuminating. The study in
this paper was originally motivated by the influence that the corners of buildings and their
surface cladding have on electromagnetic wave propagation. A recent publication by Rawlins

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



[1] considered an approximate model relevant to the understanding of signal strength for
phones in this environment. It studied the diffraction of an E-polarised wave by an absorbing
rectangular cylinder, based upon Keller’s method of GTD and its extensions to deal with
multiple diffraction. It utilized the diffraction coefficient derived for the canonical problem
of diffraction by an impedance corner to obtain relatively simple high frequency approximate
expressions for the scattered far-field resulting from a plane wave obliquely incident on an
imperfectly conducting rectangle.

In order to validate the results of [1], Smith and Rawlins [2] undertook a numerical study
of the scattering of an E-polarised plane wave by an infinite cylindrical structure in which
an impedance boundary condition is enforced at all points on the cross-sectional boundary
of the cylinder. It employed the integral equation formulation of Colton and Kress [3] for
the unknown surface distribution comprising a single-layer potential and the adjoint of the
double-layer potential. A Nyström method similar to that expounded by Colton and Kress [4]
for the soft boundary condition was developed to obtain numerical solutions of this integral
equation. The computed scattered far-fields were compared with the results of Rawlins [1]
in order to validate his solutions over the range of impedances and wavenumbers examined.
The study concluded that the approximations developed in [1] provide reasonably accurate
patterns for rectangular structures for the range of wavenumbers and dimensions examined,
but some divergences appear at smaller wavenumbers. There was a limitation to the study
[2]: the method was applicable only to cylindrical cross-sections that are smooth (having a
continuously varying normal vector at each point), and so the exactly rectangular structures
investigated in [1] were treated by a replacing them by an appropriate “super-ellipse” that
approximates the rectangle with rounded corners.

In order to clarify the effect of corner rounding this paper examines the diffraction from
cylindrical scatterers which possess corners, that is, points at which the normal changes
discontinuously. Specifically we develop a numerical method for the scattering of an
E-polarised plane wave by such cylindrical structures. The work in [5] is significantly
extended. We examine three different boundary conditions: soft, hard and an impedance
loaded boundary condition. In each case the boundary condition is enforced at all points on
the cross-sectional boundary of the cylinder. We implement the Nyström method expounded
by Colton and Kress [4] for the soft boundary condition to obtain numerical solutions of
this integral equation. We then develop other Nyström methods similar to [4] for the hard
and impedance boundary conditions to obtain numerical solutions of the respective integral
equations.

We use these numerical methods to examine the difference between a test structure with
a corner and a rounded corner to assess the impact on near and far field scattering, as a
function of the radius of curvature in the vicinity of the rounded corner point. We then
extend the numerical methods developed thus far to examine a test structure with two
corners. We conclude by examining the effect on the scattered field of rounding these corners
as a function of the radius of curvature in the vicinity of the rounded corner points.

2. Formulation

2.1. The Scatterer

We consider an infinitely long cylinder with uniform cross section. Without loss of generality
we may assume that the axis of the cylinder is parallel to the z-axis. The cylinder is
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illuminated by an incident plane wave propagating with direction parallel to the x-y plane.
We will assume that the cross-section D lying in the x-y plane has a closed boundary ∂D that
can be parameterised by

x(t) = (x1(t), x2(t)), t ∈ [0, 2π] . (1)

2.2. The incident and scattered fields

The incident field illuminating the scatterer induces a scattered field. We assume that the
incident and scattered fields are time harmonic with a temporal factor e−iωt. The spatial
component uinc(x, y) of the incident wave travelling in the direction of the unit vector d =
(cos θ0, sin θ0) takes the form

uinc(x, y) = eikx·d, (2)

and satisfies the Helmholtz equation

∆uinc(x, y) + k2uinc(x, y) = 0, (x, y) ∈ R2. (3)

The spatial component usc(x, y) of the scattered field obeys the Helmholtz equation

∆usc(x, y) + k2usc(x, y) = 0, (x, y) ∈ R2, (4)

at all points (x, y) exterior to the body, where k = ω/c is the wavenumber and c the speed of
light in free space; moreover it obeys the two-dimensional form of the Sommerfeld radiation
condition [4]

lim
|x|→∞

√
|x|

(
∂usc(x)

∂x
− ikusc(x)

)
= 0, x ∈ R2\D. (5)

2.3. The boundary conditions

The nature of the scatterer imposes certain conditions that must be satisfied by the total field

utot = uinc + usc, (6)

on the boundary of the scatterer ∂D.

This work considers sound soft scatterers, sound hard scatterers, and impedance loaded
scatterers. All the scatterers induce a scattered acoustic potential. We define the boundary
conditions for the different scatterers below.
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2.3.1. Sound soft scatterers

The total field utot vanishes on the boundary of a sound soft scatterer ∂D. Thus

utot(x) = 0, x ∈ ∂D, (7)

and from (6) we determine

usc(x) = −uinc(x), x ∈ ∂D. (8)

This sound soft boundary condition is a Dirichlet boundary condition.

2.3.2. Sound hard scatterers

The normal derivative of the total field with respect to the unit outward normal n to ∂D,
vanishes on the boundary of a sound hard scatterer ∂D. Thus

∂utot

∂n
(x) = 0, x ∈ ∂D, (9)

and from (6) we determine

∂usc

∂n
(x) = − ∂uinc

∂n
(x), x ∈ ∂D. (10)

This sound hard boundary condition is a Neumann boundary condition.

2.3.3. Impedance loaded scatterers

The impedance boundary value problem is prescribed by the boundary condition

∂utot

∂n
(x) + ikλutot(x) = 0, x ∈ ∂D, (11)

where n(x) is the unit outward normal to the boundary at the point x and λ = λ(x) is a
continuous function of position. From (6) we determine

∂usc

∂n
(x) + ikλusc(x) = − ∂uinc

∂n
(x)− ikλuinc(x), x ∈ ∂D. (12)

The scattered field is uniquely determined by the boundary and radiation conditions,
provided Re(λ) is positive on the boundary ∂D. In this work, λ will be restricted to be a
(complex) constant.
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2.4. Green’s function

As shown in [3], the problem of determining the scattered field may be solved by employing
the single- and double-layer potentials associated with the two dimensional free-space
Green’s function

G(x,y) =
i
4

H(1)
0 k(|x− y|), (13)

where H(1)
0 denotes the Hankel function of first kind and order zero. The Green’s function

satisfies the Helmholtz equation

∆xG(x,y) + k2G(x,y) = 0, (14)

everywhere except at x = y, and satisfies the Sommerfeld radiation condition (5).

For a fixed point y ∈ ∂D, the normal derivative of the Green’s function with respect to the
outward unit normal at y is

∂G(x,y)
∂n(y)

= ∇yG(x,y) ·n(y). (15)

It satisfies the Helmholtz equation (14) except at x = y, and satisfies the Sommerfeld
radiation condition (5).

2.5. Integral operators

We define two operators associated with the single- and double-layer potentials of a
continuous density φ(y) defined on the boundary ∂D,

(Sφ)(x) = 2
∫

∂D

G(x,y)φ(y)ds(y), (16)

(Kφ)(x) = 2
∫

∂D

∂G(x,y)
∂n(y)

φ(y)ds(y); (17)

their normal derivatives are, respectively

(K′φ)(x) = 2
∫

∂D

∂G(x,y)
∂n(x)

φ(y)ds(y), (18)

(T φ)(x) = 2
∂

∂n(x)

∫

∂D

∂G(x,y)
∂n(y)

φ(y)ds(y). (19)
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The integral operators (16), (17), (18) and (19) are compact [3].

The acoustic single-layer potential u with integrable density φ is

u (x) =
1
2
Sφ(x), (20)

and is continuous and bounded throughout R2\∂D and at all points on the boundary ∂D [4].

The double-layer potential v with integrable density φ is

v (x) =
1
2
Kφ(x), (21)

and is continuous and bounded throughout R2\∂D. It is discontinuous at all points on the
boundary ∂D, but can be continuously extended form D to D̄ and from R2\∂D̄ to R2\∂D
with limiting values [4]

v±(x) =
∫

∂D

∂G(x,y)
∂n(y)

φ(y)ds(y)± φ(x)

2
, x ∈ ∂D, (22)

where

v±(x) = lim
h→+0

v(x± hn(x)). (23)

2.6. Integral representations

The solution to the exterior Dirichlet problem for all x ∈ R2\D̄, is based on representing the
scattered field as a combination of the single (20) and double-layer (21) potentials

usc(x) =
∫

∂D

{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
φ(y)ds(y), x ∈ R2\D̄, (24)

where η is a coupling parameter, provided the continuous density φ(x) is a solution to the
following integral equation on ∂D:

Iφ +Kφ − iηSφ = 2g, (25)

where g = −2uinc. This integral equation is uniquely solvable for all wave numbers satisfying
Im k ≥ 0 [3].

Advanced Electromagnetic Waves6
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The single-layer potential (20)

usc(x) =
∫

∂D

G(x,y)φ(y)ds(y), x ∈ R2\D̄, (26)

is a solution to the exterior Neumann problem for all x ∈ R2\D̄, provided that the
continuous density φ(x) is a solution of the following integral equation on ∂D [6]:

φ −K′φ = −2h, (27)

where

h(x) = − ∂uinc

∂n
(x), x ∈ ∂D, (28)

and φ(x) satisfies
∫

∂D

φds = 0. (29)

Further, in R2, the exterior Neumann problem is uniquely solvable if and only if

∫

∂D

hds = 0, (30)

is satisfied [6].

The solution to the exterior impedance problem for all x ∈ R2\D̄, is

usc(x) =
∫

∂D

G(x,y)φ(y)ds(y), x ∈ R2\D̄, (31)

provided φ(x) is a solution to

φ −K′φ − ikλSφ = −2m, (32)

where

m(x) = − ∂uinc

∂n
(x)− ikλuinc(x), x ∈ ∂D. (33)

What Effect does Rounding the Corners have on Diffraction from Structures with Corners?
http://dx.doi.org/10.5772/61152

7



This solution is unique provided that k is not an interior Dirichlet eigenvalue [3]. Uniqueness
is guaranteed by considering a suitable combination of single- and double-layer potentials,
ie the combined potential

usc(x) =
∫

∂D

{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
φ(y)ds(y), x ∈ R2\D̄, (34)

where η �= 0 such that η Re k ≥ 0, solves the exterior impedance problem uniquely provided
that the density φ(x) ∈ ∂D is a solution of the integral equation [3]

(I − iηλ) φ −
(
K′ + iηT + iηλK+ λS

)
φ = −2m. (35)

3. Numerical solution
We use the Nyström method based on weighted trigonometric interpolation quadratures as
the numerical method used to approximate the solution to the integral equations (24), (26)
and (31) with a mesh of 2n points. We parameterize the boundary ∂D as

x(t) = (x1(t), x2(t)) , t ∈ [0, 2π] . (36)

So for x, y ∈ ∂D, we let

x = x(t) = (x1(t), x2(t)) , t ∈ [0, 2π] , (37)

y = x(τ) = (x1(τ), x2(τ)) , τ ∈ [0, 2π] . (38)

The outward pointing unit normal at x(τ) is

n(x(τ)) =

(
x′2 (τ) ,−x′1 (τ)

)
J(τ)

, (39)

where J(τ) is the Jacobian factor

J(τ) =
√(

x′1 (τ)
)2

+
(
x′2 (τ)

)2. (40)

The operators (25), (27) and (32) may then be expressed as

(Kφ)(x(t)) =
2π∫

0

K0(t, τ)φ(τ)dτ, (41)

(Sφ)(x(t)) =
2π∫

0

S0(t, τ)φ(τ)dτ, (42)

(K′φ)(x(t)) =
2π∫

0

K′
0(t, τ)φ(τ)dτ, (43)

Advanced Electromagnetic Waves8
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where η �= 0 such that η Re k ≥ 0, solves the exterior impedance problem uniquely provided
that the density φ(x) ∈ ∂D is a solution of the integral equation [3]

(I − iηλ) φ −
(
K′ + iηT + iηλK+ λS

)
φ = −2m. (35)

3. Numerical solution
We use the Nyström method based on weighted trigonometric interpolation quadratures as
the numerical method used to approximate the solution to the integral equations (24), (26)
and (31) with a mesh of 2n points. We parameterize the boundary ∂D as

x(t) = (x1(t), x2(t)) , t ∈ [0, 2π] . (36)

So for x, y ∈ ∂D, we let

x = x(t) = (x1(t), x2(t)) , t ∈ [0, 2π] , (37)

y = x(τ) = (x1(τ), x2(τ)) , τ ∈ [0, 2π] . (38)

The outward pointing unit normal at x(τ) is

n(x(τ)) =

(
x′2 (τ) ,−x′1 (τ)

)
J(τ)

, (39)

where J(τ) is the Jacobian factor

J(τ) =
√(

x′1 (τ)
)2

+
(
x′2 (τ)

)2. (40)

The operators (25), (27) and (32) may then be expressed as

(Kφ)(x(t)) =
2π∫

0

K0(t, τ)φ(τ)dτ, (41)

(Sφ)(x(t)) =
2π∫

0

S0(t, τ)φ(τ)dτ, (42)

(K′φ)(x(t)) =
2π∫

0

K′
0(t, τ)φ(τ)dτ, (43)
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where φ (τ) = φ (x (τ)), and the associated kernels

S0(t, τ) = 2G(x(t),x(τ))J(τ), (44)

K0(t, τ) = 2
∂G(x(t),x(τ))

∂n (τ)
J(τ), (45)

K′
0(t, τ) = 2

∂G(x(t),x(τ))
∂n (t)

J(τ), (46)

each have a logarithmic singularity at t = τ. Thus we transform the integral operator
formulation (25) of the exterior Dirichlet problem into the parametric form

φ(t) +
2π∫

0

{K0(t, τ)− iηS0(t, τ)} φ(τ)dτ = g(t), 0 ≤ t ≤ 2π, (47)

the integral operator formulation (27) of the exterior Neumann problem into the parametric
form

− φ(t) +
2π∫

0

K′
0(t, τ)φ(τ)dτ = h(t), 0 ≤ t ≤ 2π, (48)

and the integral operator formulation (32) of the exterior impedance problem into the
parametric form

− φ(t) +
2π∫

0

{
K′

0(t, τ) + ikλS0(t, τ)
}

φ(τ)dτ = m(t), 0 ≤ t ≤ 2π. (49)

A method developed by Martensen and Kussmaul [4] for the logarithmic singularities arising
in (41), (42) and (43) was employed. The singular parts of the kernels (44), (45) and (46) are
isolated in the following manner so that

K0(t, τ) = K1(t, τ) ln
(

4 sin2 t − τ

2

)
+ K2(t, τ), (50)

S0(t, τ) = S1(t, τ) ln
(

4 sin2 t − τ

2

)
+ S2(t, τ), (51)

K′
0(t, τ) = K′

1(t, τ) ln
(

4 sin2 t − τ

2

)
+ K′

2(t, τ), (52)

where K1, K2, S1, S2, K′
1, K′

2 are analytic.
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The smooth components of the kernel K0(t, τ) are evaluated using the trapezoidal rule to
approximate

2π∫

0

K2(t, τ)φ(τ)dτ ≈ π

n

2n−1

∑
j=0

K2(t, tj)φ(τj)dt. (53)

An identical rule was applied for

2π∫

0

S2(t, τ)φ(τ)dτ, (54)

and

2π∫

0

K
′
2(t, τ)φ(τ)dτ. (55)

A different quadrature rule is used to estimate the singular part of the kernel K0(t, τ)
which replaces the integrand by its trigonometric interpolation polynomial and integrates
this interpolant exactly. We apply the following quadrature rule

2π∫

0

ln
(

4 sin2 t − τ

2

)
K1(t, τ)φ (τ) dτ ≈

2n−1

∑
j=0

R(n)
j (t)K1(t, tj)φ

(
tj

)
, for 0 ≤ t ≤ 2π, (56)

to approximate the integral of the logarithmic part of the kernel K0(t, τ). The quadrature

weights R(n)
j are given by

R(n)
j (t) = −2π

n

n−1

∑
m=1

1
m

cos m(t − tj)−
π

n2 cos n(t − tj), for j = 0, ..., 2n − 1. (57)

An identical rule was applied for

2π∫

0

ln
(

4 sin2 t − τ

2

)
S1(t, τ)φ (τ) dτ, (58)

and

2π∫

0

ln
(

4 sin2 t − τ

2

)
K

′
1(t, τ)φ (τ) dτ. (59)
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Three different spacings of the 2n mesh points were used. For smooth scatterers we used a
mesh of 2n uniformly spaced points tj =

π j
n , for j = 0, 1, ..., 2n − 1, in the parameterisation

(36). However, for domains with corners, the solutions to (25), (27) and (32) have singularities
in the derivatives in the corners. To deal with these singularities, the uniform mesh is
replaced by a non-uniform graded mesh. This is achieved by substituting a new variable
such that the derivatives of the transformed integrand vanish up to a certain order at the
corners [4]. The previous quadrature rules (Martensen-Kussmaul and trapezoidal) are then
modified as follows. For any function f (t), its definite integral over [0, 2π] is evaluated by
the trapezoidal quadrature rule after the substitution t = w(s) by an appropriately chosen
function w(s):

2π∫

0

f (t) dt =
2π∫

0

f (w (s))w′ (s) ds ≈ π

n

2n−1

∑
j=1

aj f
(

sj

)
, (60)

with weights aj = w′
(

tj

)
and mesh points sj = w

(
tj

)
.

For a domain with a single corner, the scatterer boundary ∂D is defined as having one corner
at the point x0 and ∂D\ {x0} is assumed to be C2 and piecewise analytic. The angle γ at the
corner is assumed to be 0 < γ < 2π. A suitable choice of the function w(s) is [4]

w (s) = 2π
[v (s)]p

[v (s)]p + [v (2π − s)]p
, 0 ≤ s ≤ 2π, (61)

where

v (s) =
(

1
p
− 1

2

)(
π − s

π

)3
+

1
p

s − π

π
+

1
2

, (62)

and the integer p is chosen to be at least 2. The function w (s) is strictly monotonically
increasing and the derivatives at the end points s = 0 and 2π vanish up to order p. This
choice of substitution ensures that approximately half of the quadrature points are uniformly
distributed around the surface of the scatterer and that the other half are concentrated at the
corner end points s = 0 and 2π. In this study we set p = 8. Use of this particular function
w(s) (61) requires that the parameterisation of the surface (36) is such that the corner x0
occurs at t = 0.

The required substitution is applied to the discretization of (41) by setting t = w (s) and
τ = w (σ) to obtain

2π∫

0

K0(t, τ)φ(τ)dτ =

2π∫

0

K0(w (s) , w (σ))φ (w (σ))w′ (σ) dσ, (63)

What Effect does Rounding the Corners have on Diffraction from Structures with Corners?
http://dx.doi.org/10.5772/61152

11



and decomposing

K0 (w (s) , w (σ)) = K1(s, σ) ln
(

4 sin2 s − σ

2

)
+ K2(s, σ), (64)

where

K1(s, σ) = K1(w (s) , w (σ)), (65)

and

K2(s, σ) = K0 (w (s) , w (σ))− K1(s, σ) ln
(

4 sin2 s − σ

2

)
, s �= σ. (66)

The kernels K1(s, σ) and K2(s, σ) are analytic. The operator is now discretized using the

points sj = w
(

tj

)
and weights aj = w′(tj) . Fuller details are in [4]. The same discretization

procedure is applied to discretize (42) and (43).

For a domain with two corners, the scatterer boundary ∂D is defined as having a corner
at the point x0 and a second at the point xπ and ∂D\ {x0 ∪ xπ} is assumed to be C2 and
piecewise analytic. The angle γ at the corners is assumed to satisfy 0 < γ < 2π. Our choice
of the function w(s) is

w (s) = s − 3
4

sin 2s +
3
20

sin 4s − 1
60

sin 6s, 0 ≤ s ≤ 2π. (67)

The function w (s) is strictly monotonically increasing between the corners and the
derivatives at the corner points s = 0, π and 2π vanish. This choice (67) of substitution
ensures that approximately half of the quadrature points are uniformly distributed around
the surface of the scatterer between the two corners and that the other half is concentrated at
the corner end points s = 0, π and 2π. Use of this particular function w(s) (67) requires that
the parameterisation of the surface (36) is such that the corner x0 occurs at t = 0 and that
the corner xπ occurs at t = π.

With any of the above quadrature rules evaluated at the 2n points tj we have obtained a

system of 2n linear equations for the boundary values φ
(

tj

)
for j = 0, 1, ..., 2n − 1 that is a

discretization of the integral equations (25), (27) and (32). The solutions are obtained by the
usual Gaussian elimination procedure.

Implementation of the graded mesh ensures an exponentially fast convergence rate (as a
function of n) for scatterers with one or two corners with the Neumann and impedance
boundary conditions. In the case where these scatterers have a Dirichlet boundary condition
further modifications are necessary to achieve comparable convergence rates. For these
domains the kernel of (24) is no longer weakly singular at the corner.
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The modification for domains with a single corner at x0 and the Dirichlet boundary condition
[4], uses the fundamental solution

G0 (x,y) =
1

2π
ln

1
|x− y| , x �= y, (68)

to the Laplace equation in R2 to subtract a vanishing term. This transforms (24) into

usc(x) =
∫

∂D

{{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
φ(y)− ∂G0(x,y)

∂n(y)
φ(x0)

}
ds(y), x ∈ R2\D̄,

(69)
and the associated boundary equation (25) is reformulated as

φ(x)− φ(x0) + 2
∫

∂D

{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
φ(y)ds(y)

− 2
∫

∂D

∂G0(x,y)
∂n(y)

φ(x0)ds(y) = −2uinc(x), x ∈ ∂D. (70)

An analysis showing the existence of a solution to (70) is provided in [4]. The integral
equation (70) is rewritten in parameterised form

φ (t)− φ (0)−
2π∫

0

K̂(t, τ)φ (τ) dτ

−
2π∫

0

H(t, τ)φ (0) dτ = g (t) , 0 ≤ t ≤ 2π, (71)

where

H (t) =




1
π

x′2(τ)[x1(t)− x1(τ)]− x′1(τ)[x2(t)− x2(τ)]

|x(t)− x(τ)|2 , t �= τ,

1
2π

x′2(t)x′′1 (t)− x′1(t)x′′2 (t)

|x′(t)|2
, t = τ, t �= 0, 2π,

(72)

and

K̂(t, τ) = K(t, τ)− iηS(t, τ), 0 ≤ t ≤ 2π. (73)
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We now apply the substitution (60) to (71) and obtain

2π∫

0

K̂(t, τ)φ (τ) dτ −
2π∫

0

H(t, τ)φ (0) dτ

=

2π∫

0

K̂(w (s) , w (σ))w′ (σ) φ (w (σ)) dσ

−
2π∫

0

H(w (s) , w (σ))w′ (σ) φ (0) dσ. (74)

The logarithmic singularity present in the kernel K̂(t, τ) remains to be accounted for. This is
done in the same manner as (64). Using the quadrature rules (53) and (56) to discretize the
kernel, and the trapezoidal rule to discretize the kernel H(t, τ) and φ0 = φ (0) at the corner
s0 = 0 gives

φi − φ0 +
2n−1

∑
j=1

[R|i−j|(t)
{

K1(w (si) , w(sj))− iηS1(w (si) , w(sj))
}

+
π

n

{
K2(w (si) , w(sj))− iηS2(w (si) , w(sj))

}
]ajφj

−
2n−1

∑
j=1

π

n
H(w (si) , w(sj))ajφ0 = g (w (si)) , for i = 0, ..., 2n − 1.

(75)

We have obtained a system of 2n − 1 linear equations for the boundary values φ
(

tj

)
, for

j = 1, 2, ..., 2n− 1, that is a discretization of the integral equation (70). The solution is obtained
by the usual Gaussian elimination procedure.

The described modification (70) applied to (25) ensures that exponentially fast convergence
is achieved for scatterers with the Dirichlet boundary condition and a single corner on ∂D.

This modification needs to be extended when the scatterer has two corners on ∂D. There
are now two points in the domain with singularities in the derivatives: at t = 0 and t = π.
Each of these singularities have a contributing effect that needs to be accounted for. We use
the fundamental solution to the Laplace equation in R2 (68) to subtract vanishing terms. To
reflect these combined contributions (69) is reformulated as

usc(x) =
∫

∂D

{{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
φ(y)

− cos2 t (x)
2

∂G0(x,y)
∂n(y)

φ(x0)− sin2 t (x)
2

∂G0(x,y)
∂n(y)

φ(xπ)

}
ds(y), x ∈ R2\D̄, (76)
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where x0 and xπ are the two corner points and t(x) denotes the parameter value of point x.
The associated boundary equation (70) is now

φ(x)−
(

cos2 t (x)
2

φ(x0) + sin2 t (x)
2

φ(xπ)

)

+ 2
∫

∂D

{
∂G(x,y)

∂n(y)
− iηG(x,y)

}
φ(y)ds(y)

− 2
∫

∂D

(
cos2 t (x)

2
∂G0(x,y)

∂n(y)
φ(x0) + sin2 t (x)

2
∂G0(x,y)

∂n(y)
φ(xπ)

)
ds(y)

= −2uinc(x), x ∈ ∂D, (77)

which in parameterised form is

φ (t)−
(

cos2 t
2

φ (0) + sin2 t
2

φ (π)

)
−

2π∫

0

K̂(t, τ)φ (τ) dτ

− cos2 t
2

2π∫

0

H(t, τ)φ (0) dτ − sin2 t
2

2π∫

0

H(t, τ)φ (π) dτ = g (t) , 0 ≤ t ≤ 2π, (78)

where H(t) is as (72) except that for t = τ, t �= 0, π, 2π and K̂(t, τ) is as in (73). We then
apply the substitution (60) as in the case for the single corner domain with graded mesh (67)
and discretize in the same fashion.

4. Verification of numerical results

The numerical results discussed in the results section were obtained after implementation
of the above schemes in a MATLAB code. A number of tests were applied to verify its
correctness, including those applied in [5]. Analytical solutions were derived for a circular
scatterer for the three boundary conditions and the Mie series method was used to compute
an actual solution. This enabled comparison of the scattered field computed by the methods
described in this section for a circular scatterer. For all three boundary conditions the
error was in the order of 10−15 which was considered a suitable tolerance. Also, the
condition number of the systems was checked to ensure that uniqueness problems arising
for wavenumbers k near an interior Dirichlet eigenvalue of the scatterer were avoided.

However, there is no analytical expression for the scattered field from a non-circular scatterer
and as such, there is no true solution to which we can compare results. For this study, we
use a significant digit measurement to determine the convergence of the solution.

We choose a point x in the domain external to the scatterer and compute the field. As
the number of quadrature points increases, if the solution is convergent, the number of
significant digits in agreement increases. Thus we measure the number of unchanging digits

What Effect does Rounding the Corners have on Diffraction from Structures with Corners?
http://dx.doi.org/10.5772/61152

15



in the approximate solution as the number of quadrature points N increases, and terminate
the calculation when the truncation of the computed value to a prespecified number of
significant digits does not change as N increases.

Two measures were used determine the convergence of the solutions. Firstly, a near field
measure of the real and imaginary parts of the scattered field usc. This measurement was
taken at a radius r = 10 from the origin in the direction x = (−1, 1).

The second measure employs the far-field. It is measured in a specified direction x̂. For the
Dirichlet boundary condition, the far field pattern is calculated as

u∞ (x̂) =
e−i π

4
√

8πk

∫

∂D

{kn(y) · x̂+ η} e−ikx̂·yφ (y) ds (y) , |x̂| = 1, (79)

and for Neumann and impedance boundary conditions the calculation is

u∞ (x̂) =
e−i π

4
√

8πk

∫

∂D

e−ikx̂·yφ (y) ds (y) , |x̂| = 1. (80)

5. Results and discussion

5.1. Effect of corner rounding on a domain with a single corner

Consider the curve given by the parametric representation (it is half of the so-called
lemniscate of Gerono):

x = x(t) = a
(

2 sin
t
2

,− sin t
)

, t ∈ [0, 2π], (81)

where a is a parameter. It has the corner at t = 0 and with an interior right angle. Henceforth
the parameter a is set equal to 1 length unit.

We will also consider a family of curves in which the corner has been rounded; the family is
parameterized by the quantity ε (0 ≤ ε ≤ 1) :

x = x(t) = a

(
2

√
ε2 + (1 − ε2) sin2 t

2
,− sin t

)
, t ∈ [0, 2π]. (82)

Figure 1 illustrates the two shapes, with a = 1. The radius of curvature ρ at the corner point
t = 0 is 2ε/

(
1 − ε2) .
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in the approximate solution as the number of quadrature points N increases, and terminate
the calculation when the truncation of the computed value to a prespecified number of
significant digits does not change as N increases.

Two measures were used determine the convergence of the solutions. Firstly, a near field
measure of the real and imaginary parts of the scattered field usc. This measurement was
taken at a radius r = 10 from the origin in the direction x = (−1, 1).

The second measure employs the far-field. It is measured in a specified direction x̂. For the
Dirichlet boundary condition, the far field pattern is calculated as

u∞ (x̂) =
e−i π

4
√

8πk

∫

∂D

{kn(y) · x̂+ η} e−ikx̂·yφ (y) ds (y) , |x̂| = 1, (79)

and for Neumann and impedance boundary conditions the calculation is

u∞ (x̂) =
e−i π

4
√

8πk

∫

∂D

e−ikx̂·yφ (y) ds (y) , |x̂| = 1. (80)

5. Results and discussion

5.1. Effect of corner rounding on a domain with a single corner

Consider the curve given by the parametric representation (it is half of the so-called
lemniscate of Gerono):

x = x(t) = a
(

2 sin
t
2

,− sin t
)

, t ∈ [0, 2π], (81)

where a is a parameter. It has the corner at t = 0 and with an interior right angle. Henceforth
the parameter a is set equal to 1 length unit.

We will also consider a family of curves in which the corner has been rounded; the family is
parameterized by the quantity ε (0 ≤ ε ≤ 1) :

x = x(t) = a

(
2

√
ε2 + (1 − ε2) sin2 t

2
,− sin t

)
, t ∈ [0, 2π]. (82)

Figure 1 illustrates the two shapes, with a = 1. The radius of curvature ρ at the corner point
t = 0 is 2ε/

(
1 − ε2) .
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Figure 1. Leminscate (blue). The interior (red) curve with rounded corner has parameter ε = 0.05 (ρ = 0.1).

The near- and far-fields were computed for each of the boundary conditions using the graded
mesh (61) for the lemniscate (81). A variety of angles of incidence were tested and in the case
of the impedance loaded lemniscate a number of impedance parameters were tried. All tests
were performed for ka = 1, 5, 10 and 2π. Colton and Kress [4] have published results for
the Dirichlet boundary condition. We were able to reproduce these results. In all cases an
examination of the convergence rate as a function of N was observed to be exponentially fast
(super-algebraic). Some typical results are as follows. Table 1 shows the scattered near- and
far-field patterns for the lemniscate illuminated by a plane wave incident at angle θ0 = 0
with ka = 2π. For the impedance boundary condition, the impedance parameter shown is
λ = 1 + i.

We then examined the effect of rounding the corner of the lemniscate. The near- and far-fields
were computed for each of the boundary conditions using a uniform mesh tj =

π j
n , for j =

0, 1, ..., 2n − 1, in the parameterisation (36) of the rounded lemniscate (82) and the lemniscate
(81).

A variety of angles of incidence were tested and in the case of the impedance loaded
scatterers a number of impedance parameters were tried. All tests were performed for
ka = 1, 5, 10 and 2π, and radii of curvature ρ = 0.1, 0.08, ..., 0.02, 0.01. The results were
similar in all cases. As expected a decrease in the radius of curvature shows a decrease in
the rate of convergence. For radius of convergence ρ = 0.1 use of a uniform mesh achieves
10 significant digits of agreement and eventually for small radii (ρ < 0.04) the solution fails
to converge (agreement of less than 6 significant digits). The results for the lemniscate, as
expected, exhibit non-convergence.

The same series of experiments were then re-run using the graded mesh (61). In all
cases this discretization method exhibits superior results. Super-algebraic convergence was

What Effect does Rounding the Corners have on Diffraction from Structures with Corners?
http://dx.doi.org/10.5772/61152

17



Lemniscate using graded mesh
N Re usc(x) Im usc(x) Re u∞(d) Im u∞(d)
Dirichlet
32 -0.07494830903628 -0.07116098685594 -1.87242780404153 1.24490326848555
64 -0.07494835562512 -0.07116093299795 -1.87243588474719 1.24489457829233
128 -0.07494835564211 -0.07116093293816 -1.87243588474320 1.24489457829267
256 -0.07494835564212 -0.07116093293813 -1.87243588474320 1.24489457829268
Neumann
32 0.04164120404373 0.03521714231575 1.59458645194898 0.92713146438117
64 0.04164071915392 0.03521722967811 1.59457738453702 0.92713314620758
128 0.04164071916034 0.03521722965359 1.59457738456520 0.92713314620969
256 0.04164071916034 0.03521722965358 1.59457738456522 0.92713314620969
Impedance λ = 1 + i
32 0.00222570467763 -0.04334130654021 1.26634214415129 1.65780088985777
64 0.00222588468293 -0.04334146584422 1.26633733538116 1.65780860014239
128 0.00222588466664 -0.04334146583637 1.26633733538197 1.65780860013947
256 0.00222588466664 -0.04334146583637 1.26633733538197 1.65780860013947

Table 1. Direction of incident plane wave θ0 = 0 with ka = 2π, d = (1, 0) and usc(x) for x = (−1, 1) with kr = 20π.

observed in all cases when examining the convergence rate as a function of N, demonstrating
the advantage of using the graded mesh. In all cases 15 significant digit convergence
was achieved. Of interest is the observation that even though the rounded lemniscate
(82) has a smooth boundary ∂D, as the radius of curvature decreases use of the uniform
mesh for discretization fails to produce a convergent solution for small radii of curvature.
This suggests that the type of discretization method chosen should be decided on a more
sophisticated approach rather than a simplistic smooth versus not smooth criterion.

A set of typical results is provided in Table 2 which shows the values for the near-field using
uniform mesh and then using graded mesh for a scatterer with the impedance boundary
condition with impedance parameter λ = 1+ i, illuminated by a plane wave incident at angle
θ0 = 0 with ka = 2π. Table 3 shows the results of the far-field for the same experiments.

Having established that the graded mesh gives superior results for the rounded lemniscate,
we attempt to answer the concern that rounding the corner will produce significant deviation
from the solution where corners are not rounded. The difference between the actual solution,
uL

∞ (x̂) for x̂ ∈ [0, 2π] , and that produced by rounding, uR
∞ (x̂) , is measured using the L2

norm

∥∥∥uL
∞ − uR

∞

∥∥∥
2
=




2π∫

0

∣∣∣uL
∞ (x̂)− uR

∞ (x̂)
∣∣∣2 dx̂




1
2

, (83)

and L∞ norm
∥∥∥uL

∞ − uR
∞

∥∥∥
∞
= max

x̂∈[0,2π]

∣∣∣uL
∞ (x̂)− uR

∞ (x̂)
∣∣∣ . (84)
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Lemniscate using graded mesh
N Re usc(x) Im usc(x) Re u∞(d) Im u∞(d)
Dirichlet
32 -0.07494830903628 -0.07116098685594 -1.87242780404153 1.24490326848555
64 -0.07494835562512 -0.07116093299795 -1.87243588474719 1.24489457829233
128 -0.07494835564211 -0.07116093293816 -1.87243588474320 1.24489457829267
256 -0.07494835564212 -0.07116093293813 -1.87243588474320 1.24489457829268
Neumann
32 0.04164120404373 0.03521714231575 1.59458645194898 0.92713146438117
64 0.04164071915392 0.03521722967811 1.59457738453702 0.92713314620758
128 0.04164071916034 0.03521722965359 1.59457738456520 0.92713314620969
256 0.04164071916034 0.03521722965358 1.59457738456522 0.92713314620969
Impedance λ = 1 + i
32 0.00222570467763 -0.04334130654021 1.26634214415129 1.65780088985777
64 0.00222588468293 -0.04334146584422 1.26633733538116 1.65780860014239
128 0.00222588466664 -0.04334146583637 1.26633733538197 1.65780860013947
256 0.00222588466664 -0.04334146583637 1.26633733538197 1.65780860013947

Table 1. Direction of incident plane wave θ0 = 0 with ka = 2π, d = (1, 0) and usc(x) for x = (−1, 1) with kr = 20π.

observed in all cases when examining the convergence rate as a function of N, demonstrating
the advantage of using the graded mesh. In all cases 15 significant digit convergence
was achieved. Of interest is the observation that even though the rounded lemniscate
(82) has a smooth boundary ∂D, as the radius of curvature decreases use of the uniform
mesh for discretization fails to produce a convergent solution for small radii of curvature.
This suggests that the type of discretization method chosen should be decided on a more
sophisticated approach rather than a simplistic smooth versus not smooth criterion.

A set of typical results is provided in Table 2 which shows the values for the near-field using
uniform mesh and then using graded mesh for a scatterer with the impedance boundary
condition with impedance parameter λ = 1+ i, illuminated by a plane wave incident at angle
θ0 = 0 with ka = 2π. Table 3 shows the results of the far-field for the same experiments.

Having established that the graded mesh gives superior results for the rounded lemniscate,
we attempt to answer the concern that rounding the corner will produce significant deviation
from the solution where corners are not rounded. The difference between the actual solution,
uL

∞ (x̂) for x̂ ∈ [0, 2π] , and that produced by rounding, uR
∞ (x̂) , is measured using the L2

norm

∥∥∥uL
∞ − uR

∞

∥∥∥
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


2π∫
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and L∞ norm
∥∥∥uL
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Rounded Lemniscate with impedance boundary condition: near field
Uniform Mesh Graded Mesh

N Re usc(x) Im usc(x) Re usc(x) Im usc(x)
ρ = 0.1
16 0.04109806757344 -0.04113428021951 0.03720901114453 -0.04700162395186
32 0.03739551348295 -0.04213065825702 0.03720928577876 -0.04213508567513
64 0.03720998623363 -0.04213533443707 0.03720928577876 -0.04213527920590
128 0.03720928580093 -0.04213527920719 0.03720928577876 -0.04213527920590
256 0.03720928577876 -0.04213527920590 0.03720928577876 -0.04213527920590
ρ = 0.08
16 0.03440987434478 -0.04437085759214 0.02784748818262 -0.05030877964670
32 0.02919063786326 -0.04546211186317 0.02875233753249 -0.04543747633458
64 0.02875717614250 -0.04543850947697 0.02875258961627 -0.04543766502331
128 0.02875259055193 -0.04543766521258 0.02875258961627 -0.04543766502331
256 0.02875258961627 -0.04543766502331 0.02875258961627 -0.04543766502331
ρ = 0.06
16 0.02888124025951 -0.04585721669170 0.01971124100506 -0.05179809647240
32 0.02153837811679 -0.04704805186340 0.02054137736097 -0.04692411913924
64 0.02057080115803 -0.04693227871137 0.02054161007537 -0.04692430220810
128 0.02054165076197 -0.04692431585105 0.02054161007537 -0.04692430220810
256 0.02054161007559 -0.04692430220817 0.02054161007537 -0.04692430220810
ρ = 0.04
16 0.02589808135523 -0.04581451169315 0.01227307156670 -0.05168148653948
32 0.01525268719371 -0.04718855395117 0.01304532463556 -0.04680138096770
64 0.01322014135168 -0.04686099090670 0.01304554495255 -0.04680156017172
128 0.01304736974804 -0.04680236337734 0.01304554495255 -0.04680156017172
256 0.01304554533578 -0.04680156034492 0.01304554495255 -0.04680156017172
ρ = 0.02
16 0.02925003757755 -0.04467314700387 0.00598950684038 -0.05028232677963
32 0.01176640513049 -0.04644167438759 0.00673781449261 -0.04541082809958
64 0.00766782061888 -0.04575605837829 0.00673802661846 -0.04541100344294
128 0.00681329578610 -0.04544795488922 0.00673802661846 -0.04541100344294
256 0.00673882182373 -0.04541144923285 0.00673802661846 -0.04541100344294
ρ = 0.01
16 0.03794586127165 -0.04413616075373 0.00345639312266 -0.04927243930309
32 0.01249317081358 -0.04622574470432 0.00419970408560 -0.04440251423153
64 0.00629912969982 -0.04516736933935 0.00419991683968 -0.04440269063368
128 0.00461128601429 -0.04460062256311 0.00419991683968 -0.04440269063368
256 0.00423419335659 -0.04442201458794 0.00419991683968 -0.04440269063368
Lemniscate
16 -0.01163732525088 -0.03470279075433 0.00148347105834 -0.04820819411950
32 -0.00397500132190 -0.04021321442543 0.00222570467763 -0.04334130654021
64 -0.00040933936032 -0.04209018109850 0.00222588468293 -0.04334146584422
128 0.00114252253408 -0.04283149822654 0.00222588466664 -0.04334146583637
256 0.00178850801274 -0.04313421526217 0.00222588466664 -0.04334146583637

Table 2. Direction of incident plane wave θ0 = 0 with ka = 2π and usc(x) for x = (−1, 1) with kr = 20π. Impedance
paramater λ = 1 + i.
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Rounded Lemniscate with Impedance boundary condition: far field
Uniform Mesh Graded Mesh

N Re u∞(d) Im u∞(d) Re u∞(d) Im u∞(d)
ρ = 0.1
16 1.26738976138034 1.66105526777388 1.25530278020801 1.64198030138557
32 1.26778462660553 1.66045261136046 1.26781160112455 1.66041662811791
64 1.26780743084847 1.66042387986373 1.26780750283287 1.66042376203697
128 1.26780750283088 1.66042376204068 1.26780750283287 1.66042376203697
256 1.26780750283287 1.66042376203697 1.26780750283287 1.66042376203697
ρ = 0.08
16 1.26679319682521 1.66100369319241 1.25514611227298 1.64136408633317
32 1.26723239948607 1.66019266418943 1.26728244518451 1.66011880476277
64 1.26727771729194 1.66012685149464 1.26727812591656 1.66012608299574
128 1.26727812584623 1.66012608315554 1.26727812591656 1.66012608299574
256 1.26727812591656 1.66012608299574 1.26727812591656 1.66012608299574
ρ = 0.06
16 1.26628254876688 1.66094266668662 1.25496277020654 1.64065624538918
32 1.26675739510909 1.65984471852085 1.26684907150266 1.65968759452492
64 1.26684233823722 1.65969990319333 1.26684456821701 1.65969501037167
128 1.26684456565199 1.65969501752357 1.26684456821701 1.65969501037167
256 1.26684456821700 1.65969501037171 1.26684456821701 1.65969501037167
ρ = 0.04
16 1.26581970905186 1.66101371994892 1.25479198100542 1.63987507228103
32 1.26636387623415 1.65947078536106 1.26652994925162 1.65913395755207
64 1.26651395959820 1.65917079145125 1.26652530266827 1.65914149765931
128 1.26652520551250 1.65914182632024 1.26652530266827 1.65914149765931
256 1.26652530265039 1.65914149772878 1.26652530266827 1.65914149765931
ρ = 0.02
16 1.26516216215893 1.66171371564432 1.25467501349357 1.63904489275113
32 1.26602051309766 1.65923831994890 1.26634907227985 1.65848212898845
64 1.26629109761250 1.65864493833610 1.26634432336604 1.65848977294699
128 1.26634078340330 1.65850339846154 1.26634432336604 1.65848977294699
256 1.26634429273403 1.65848992335866 1.26634432336604 1.65848977294699
ρ = 0.01
16 1.26439990092700 1.66296118057458 1.25465229232071 1.63863275250060
32 1.26579068367998 1.65938609457059 1.26632066601268 1.65813602895562
64 1.26619618222096 1.65849076674951 1.26631588055722 1.65814371438451
128 1.26629637930118 1.65821726963456 1.26631588055722 1.65814371438451
256 1.26631455164602 1.65815016944201 1.26631588055722 1.65814371438451
Lemniscate
16 1.26753738579244 1.65531926109144 1.25466535533964 1.63824863702138
32 1.26675455678284 1.65668969319373 1.26634214415129 1.65780088985777
64 1.26649349543064 1.65733861326598 1.26633733538116 1.65780860014239
128 1.26639670753949 1.65761574700699 1.26633733538197 1.65780860013947
256 1.26636023315794 1.65773061188777 1.26633733538197 1.65780860013947

Table 3. Direction of incident plane wave θ0 = 0 with ka = 2π and d = (1, 0). Impedance parameter λ = 1 + i.
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Rounded Lemniscate with Impedance boundary condition: far field
Uniform Mesh Graded Mesh

N Re u∞(d) Im u∞(d) Re u∞(d) Im u∞(d)
ρ = 0.1
16 1.26738976138034 1.66105526777388 1.25530278020801 1.64198030138557
32 1.26778462660553 1.66045261136046 1.26781160112455 1.66041662811791
64 1.26780743084847 1.66042387986373 1.26780750283287 1.66042376203697
128 1.26780750283088 1.66042376204068 1.26780750283287 1.66042376203697
256 1.26780750283287 1.66042376203697 1.26780750283287 1.66042376203697
ρ = 0.08
16 1.26679319682521 1.66100369319241 1.25514611227298 1.64136408633317
32 1.26723239948607 1.66019266418943 1.26728244518451 1.66011880476277
64 1.26727771729194 1.66012685149464 1.26727812591656 1.66012608299574
128 1.26727812584623 1.66012608315554 1.26727812591656 1.66012608299574
256 1.26727812591656 1.66012608299574 1.26727812591656 1.66012608299574
ρ = 0.06
16 1.26628254876688 1.66094266668662 1.25496277020654 1.64065624538918
32 1.26675739510909 1.65984471852085 1.26684907150266 1.65968759452492
64 1.26684233823722 1.65969990319333 1.26684456821701 1.65969501037167
128 1.26684456565199 1.65969501752357 1.26684456821701 1.65969501037167
256 1.26684456821700 1.65969501037171 1.26684456821701 1.65969501037167
ρ = 0.04
16 1.26581970905186 1.66101371994892 1.25479198100542 1.63987507228103
32 1.26636387623415 1.65947078536106 1.26652994925162 1.65913395755207
64 1.26651395959820 1.65917079145125 1.26652530266827 1.65914149765931
128 1.26652520551250 1.65914182632024 1.26652530266827 1.65914149765931
256 1.26652530265039 1.65914149772878 1.26652530266827 1.65914149765931
ρ = 0.02
16 1.26516216215893 1.66171371564432 1.25467501349357 1.63904489275113
32 1.26602051309766 1.65923831994890 1.26634907227985 1.65848212898845
64 1.26629109761250 1.65864493833610 1.26634432336604 1.65848977294699
128 1.26634078340330 1.65850339846154 1.26634432336604 1.65848977294699
256 1.26634429273403 1.65848992335866 1.26634432336604 1.65848977294699
ρ = 0.01
16 1.26439990092700 1.66296118057458 1.25465229232071 1.63863275250060
32 1.26579068367998 1.65938609457059 1.26632066601268 1.65813602895562
64 1.26619618222096 1.65849076674951 1.26631588055722 1.65814371438451
128 1.26629637930118 1.65821726963456 1.26631588055722 1.65814371438451
256 1.26631455164602 1.65815016944201 1.26631588055722 1.65814371438451
Lemniscate
16 1.26753738579244 1.65531926109144 1.25466535533964 1.63824863702138
32 1.26675455678284 1.65668969319373 1.26634214415129 1.65780088985777
64 1.26649349543064 1.65733861326598 1.26633733538116 1.65780860014239
128 1.26639670753949 1.65761574700699 1.26633733538197 1.65780860013947
256 1.26636023315794 1.65773061188777 1.26633733538197 1.65780860013947

Table 3. Direction of incident plane wave θ0 = 0 with ka = 2π and d = (1, 0). Impedance parameter λ = 1 + i.
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These tests were run for all three boundary conditions for ka = 1, 5, 10, and 2π, and radii
of curvature ρ = 0.1, 0.08, ..., 0.02, 0.01 and, in the case of the impedance loaded scatterers, a
number of impedance parameters. The results were similar for all wave numbers and Table 4
presents the results for ka = 2π. The smaller the radius of curvature used for the rounding,
the smaller the measured error. Both the absolute and relative errors were measured. The
relative error is expressed as a percentage of the same norm of the lemniscate far-field. Using
a radius of curvature of ρ = 0.02, using the L2 norm measures an error of 2.4% in the Dirichlet
case, 0.9% in the Neumann case and 1.7% for the impedance boundary condition. Similarly,
the L∞ norm measures an error of 1.4% in the Dirichlet case, 0.4% in the Neumann case and
0.8% for the impedance boundary condition. Using a radius of curvature of ρ = 0.01, using
the L2 norm measures an error of 0.9% in the Dirichlet case, 0.03% in the Neumann case and
0.8% for the impedance boundary condition. Similarly, the L∞ norm measures an error of
0.6% in the Dirichlet case, 0.1% in the Neumann case and 0.4% for the impedance boundary
condition.

Comparison of rounding effect to actual lemniscate
ρ L2 Norm % Difference L∞ Norm % Difference

Dirichlet
0.1 0.0550 20 0.2537 11

0.08 0.0413 15 0.1929 8.6
0.06 0.0284 10 0.1343 6.0
0.05 0.0224 8.1 0.1064 4.7
0.04 0.0167 6.0 0.0799 3.5
0.03 0.0114 4.1 0.0550 2.4
0.02 0.0067 2.4 0.0325 1.4
0.01 0.0026 0.9 0.0130 0.6

Neumann
0.1 0.0315 13 0.1278 6.9

0.08 0.0220 8.8 0.0885 4.8
0.06 0.0137 5.5 0.0547 3.0
0.05 0.0101 4.1 0.0401 2.2
0.04 0.0070 2.8 0.0274 1.5
0.03 0.0042 1.7 0.0167 0.9
0.02 0.0021 0.9 0.0082 0.4
0.01 0.0006 0.3 0.0024 0.1

Impedance λ = 1 + i
0.1 0.0267 12 0.1121 5.4

0.08 0.0203 9.3 0.0863 4.1
0.06 0.0142 6.5 0.0612 2.9
0.05 0.0113 5.2 0.0491 2.4
0.04 0.0087 4.0 0.0376 1.8
0.03 0.0061 2.8 0.0267 1.3
0.02 0.0038 1.7 0.0166 0.8
0.01 0.0017 0.8 0.0076 0.4

Table 4. Direction of incident plane wave θ0 = 0 with ka = 2π.
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5.2. Effect of Corner Rounding on a Domain with Two Corners

Consider the curve given by the parametric representation:

x = x(t) = a
(

cos t
1 + |sin t| ,

sin t
1 + |sin t|

)
, t ∈ [0, 2π], (85)

where a is a parameter. It has the corners at t = 0 and t = π respectively, with interior right
angles. Henceforth the parameter a is set equal to 1 length unit.

We will also consider a family of curves in which the corner has been rounded; the family is
parameterized by the quantity ε (0 ≤ ε ≤ 1):

x = x(t) = a

(
cos t

1 +
√

ε2 + sin2 t
,

sin t

1 +
√

ε2 + sin2 t

)
, t ∈ [0, 2π]. (86)

Figure 2 illustrates the two shapes, with a = 1. The radius of curvature ρ at the corner points
t = 0 and π is

ρ(x) =

∣∣∣∣∣
(
x′1(t)

2 + x′2(t)
2)3/2

x′1(t)x′′2 (t)− x′2(t)x′′1 (t)

∣∣∣∣∣ , t ∈ [0, 2π] . (87)
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Figure 2. Two-corner scatterer (blue). The interior (red) curve with rounded corners has parameter ε = 0.05 (ρ ≈ 0.05).
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)
, t ∈ [0, 2π], (85)

where a is a parameter. It has the corners at t = 0 and t = π respectively, with interior right
angles. Henceforth the parameter a is set equal to 1 length unit.

We will also consider a family of curves in which the corner has been rounded; the family is
parameterized by the quantity ε (0 ≤ ε ≤ 1):

x = x(t) = a

(
cos t

1 +
√

ε2 + sin2 t
,

sin t

1 +
√

ε2 + sin2 t

)
, t ∈ [0, 2π]. (86)

Figure 2 illustrates the two shapes, with a = 1. The radius of curvature ρ at the corner points
t = 0 and π is

ρ(x) =

∣∣∣∣∣
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x′1(t)

2 + x′2(t)
2)3/2
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Figure 2. Two-corner scatterer (blue). The interior (red) curve with rounded corners has parameter ε = 0.05 (ρ ≈ 0.05).
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The near- and far-fields were computed for each of the boundary conditions using the
graded mesh (67) for the two-corner scatterer (85). A variety of angles of incidence were
tested and in the case of the impedance loaded two-corner scatterer a number of impedance
parameters were tried. All tests were performed for ka = 1, 5, 10 and 2π. In all cases an
examination of the convergence rate as a function of N was observed to be exponentially
fast (super-algebraic). We note that unlike the case of the lemniscate (81) we obtained 12
significant digit convergence rather than 15. This is attributed to the choice of function
(67) used for the graded mesh for the two-corner scatterer: the derivatives at the points
s = 0, π, 2π vanish up to order 6 whereas the function (61) used for the lemniscate vanish up
to order 8. Some typical results are as follows. Table 5 shows the scattered near- and far-field
patterns for the two-corner scatterer illuminated by a plane wave incident at angle θ0 = 0
with ka = 2π. For the impedance boundary condition, the impedance parameter shown is
λ = 1 + i.

Two-corner scatterer using graded mesh
N Re usc(x) Im usc(x) Re u∞(d) Im u∞(d)
Dirichlet
32 0.09714066817949 -0.04206954201768 -1.30520131280366 0.52677041231075
64 0.09713891064627 -0.04207166784754 -1.30520131989700 0.52676949835567
128 0.09713890337649 -0.04207167577468 -1.30520131965813 0.52676949545313
256 0.09713890336079 -0.04207167579114 -1.30520131965776 0.52676949544743
Neumann
32 -0.04208998732029 0.03926860763238 0.61684378748988 0.11166701105301
64 -0.04208918412475 0.03926998017758 0.61684312041463 0.11166735322848
128 -0.04208918124931 0.03926998510688 0.61684311922066 0.11166735401338
256 -0.04208918124342 0.03926998511698 0.61684311921824 0.11166735401498
Impedance
32 0.04240217311338 0.01943563484368 0.53623358174525 1.08920867424572
64 0.04240224749500 0.01943484871137 0.53623292759500 1.08920881290892
128 0.04240224762591 0.01943484562635 0.53623292505883 1.08920881334528
256 0.04240224762614 0.01943484561999 0.53623292505360 1.08920881334620

Table 5. Direction of incident plane wave θ0 = 0 with ka = 2π, d = (1, 0) and usc(x) for x = (−1, 1) at kr = 20π.

As in the case of the lemniscate (81), we then examined the effect of rounding the two corners
of the scatterer. The near- and far-fields were computed for each of the boundary conditions
using a uniform mesh tj =

π j
n , for j = 0, 1, ..., 2n − 1, in the parameterisation (36) of the

rounded scatterer (86) and the two-corner scatterer (85).

A variety of angles of incidence were tested and in the case of the impedance loaded
scatterers a number of impedance parameters were tried. All tests were performed for
ka = 1, 5, 10 and 2π, and radii of curvature ρ = 0.1, 0.05, 0.04, ..., 0.01. The results were
similar in all cases. As expected a decrease in the radius of curvature shows a decrease in the
rate of convergence and eventually for small radii (ρ ≤ 0.05) the solution fails to converge.
The results for the two-corner scatterer, as expected, exhibit non-convergence.

The same series of experiments were then re-run using the graded mesh (67). In all cases this
discretization method exhibits superior results. Super-algebraic convergence was observed
in all cases when examining the convergence rate as a function of N, demonstrating the
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Rounded two-corner scatterer with impedance boundary condition: near field
Uniform Mesh Graded Mesh

N Re usc(x) Im usc(x) Re usc(x) Im usc(x)
ρ = 0.05
16 0.03470677457659 0.03798379196971 0.03843618042815 0.03338842573544
32 0.03897149015734 0.03486730759441 0.03940928962261 0.03387147655152
64 0.03939900905631 0.03392160276388 0.03940929911450 0.03387163276154
128 0.03940928308095 0.03387177435745 0.03940929911442 0.03387163276137
256 0.03940929911413 0.03387163276369 0.03940929911442 0.03387163276137
ρ = 0.04
16 0.03481359170705 0.03603686016428 0.03973252285591 0.03005487424932
32 0.04004351467396 0.03216490387031 0.04069913302070 0.03060510102866
64 0.04067397485734 0.03074186288893 0.04069909427737 0.03060516627501
128 0.04069899786205 0.03060639554837 0.04069909427756 0.03060516627559
256 0.04069909426695 0.03060516643891 0.04069909427756 0.03060516627559
ρ = 0.03
16 0.03403888671802 0.03482751799820 0.04067458127216 0.02679979723427
32 0.04063667872250 0.02981632754250 0.04162851228396 0.02737654283524
64 0.04156807903825 0.02773425361138 0.04162851666947 0.02737622783093
128 0.04162795338930 0.02738656204370 0.04162851666923 0.02737622782875
256 0.04162851649254 0.02737623967346 0.04162851666923 0.02737622782875
ρ = 0.02
16 0.03217155484158 0.03507379516897 0.04121333829419 0.02405994803154
32 0.04067690299734 0.02828422652111 0.04216254273554 0.02454661770912
64 0.04202756957945 0.02536776882377 0.04216259142752 0.02454704861633
128 0.04215961390872 0.02461376091346 0.04216259142616 0.02454704861049
256 0.04216259955285 0.02454764108611 0.04216259142616 0.02454704861049
ρ = 0.01
16 0.02764745305810 0.03908271244059 0.04145153747908 0.02129232793218
32 0.03994042453183 0.02818804933763 0.04242372188117 0.02166516985259
64 0.04207481477062 0.02365888639225 0.04242374291713 0.02166462301523
128 0.04239986579142 0.02210111122351 0.04242374292179 0.02166462302828
256 0.04242431719588 0.02170326321857 0.04242374292179 0.02166462302828
2 Corners
16 0.04613478369077 0.02381635331120 0.04141767031255 0.01902504141843
32 0.04354116342657 0.02025415654551 0.04240217311338 0.01943563484368
64 0.04274414603582 0.01951718789786 0.04240224749500 0.01943484871137
128 0.04250241810608 0.01939520893768 0.04240224762591 0.01943484562635
256 0.04243092698390 0.01939826345460 0.04240224762614 0.01943484561999

Table 6. Direction of incident plane wave θ0 = 0 with ka = 2π and usc(x) for x = (−1, 1) with kr = 20π. Impedance
parameter λ = 1 + i.

advantage of using the graded mesh. In all cases 15 significant digit convergence was
achieved for the rounded scatterer. As in the case of the rounded lemniscate, we observe
that even though the rounded two-corner scatterer (86) has a smooth boundary ∂D, as the
radius of curvature decreases use of the uniform mesh for discretization fails to produce a
convergent solution for small radii of curvature. It demonstrates the need to consider an
appropriate distribution of quadrature points.
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Rounded two-corner scatterer with impedance boundary condition: near field
Uniform Mesh Graded Mesh

N Re usc(x) Im usc(x) Re usc(x) Im usc(x)
ρ = 0.05
16 0.03470677457659 0.03798379196971 0.03843618042815 0.03338842573544
32 0.03897149015734 0.03486730759441 0.03940928962261 0.03387147655152
64 0.03939900905631 0.03392160276388 0.03940929911450 0.03387163276154
128 0.03940928308095 0.03387177435745 0.03940929911442 0.03387163276137
256 0.03940929911413 0.03387163276369 0.03940929911442 0.03387163276137
ρ = 0.04
16 0.03481359170705 0.03603686016428 0.03973252285591 0.03005487424932
32 0.04004351467396 0.03216490387031 0.04069913302070 0.03060510102866
64 0.04067397485734 0.03074186288893 0.04069909427737 0.03060516627501
128 0.04069899786205 0.03060639554837 0.04069909427756 0.03060516627559
256 0.04069909426695 0.03060516643891 0.04069909427756 0.03060516627559
ρ = 0.03
16 0.03403888671802 0.03482751799820 0.04067458127216 0.02679979723427
32 0.04063667872250 0.02981632754250 0.04162851228396 0.02737654283524
64 0.04156807903825 0.02773425361138 0.04162851666947 0.02737622783093
128 0.04162795338930 0.02738656204370 0.04162851666923 0.02737622782875
256 0.04162851649254 0.02737623967346 0.04162851666923 0.02737622782875
ρ = 0.02
16 0.03217155484158 0.03507379516897 0.04121333829419 0.02405994803154
32 0.04067690299734 0.02828422652111 0.04216254273554 0.02454661770912
64 0.04202756957945 0.02536776882377 0.04216259142752 0.02454704861633
128 0.04215961390872 0.02461376091346 0.04216259142616 0.02454704861049
256 0.04216259955285 0.02454764108611 0.04216259142616 0.02454704861049
ρ = 0.01
16 0.02764745305810 0.03908271244059 0.04145153747908 0.02129232793218
32 0.03994042453183 0.02818804933763 0.04242372188117 0.02166516985259
64 0.04207481477062 0.02365888639225 0.04242374291713 0.02166462301523
128 0.04239986579142 0.02210111122351 0.04242374292179 0.02166462302828
256 0.04242431719588 0.02170326321857 0.04242374292179 0.02166462302828
2 Corners
16 0.04613478369077 0.02381635331120 0.04141767031255 0.01902504141843
32 0.04354116342657 0.02025415654551 0.04240217311338 0.01943563484368
64 0.04274414603582 0.01951718789786 0.04240224749500 0.01943484871137
128 0.04250241810608 0.01939520893768 0.04240224762591 0.01943484562635
256 0.04243092698390 0.01939826345460 0.04240224762614 0.01943484561999

Table 6. Direction of incident plane wave θ0 = 0 with ka = 2π and usc(x) for x = (−1, 1) with kr = 20π. Impedance
parameter λ = 1 + i.

advantage of using the graded mesh. In all cases 15 significant digit convergence was
achieved for the rounded scatterer. As in the case of the rounded lemniscate, we observe
that even though the rounded two-corner scatterer (86) has a smooth boundary ∂D, as the
radius of curvature decreases use of the uniform mesh for discretization fails to produce a
convergent solution for small radii of curvature. It demonstrates the need to consider an
appropriate distribution of quadrature points.
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Rounded two-corner scatterer with impedance boundary condition: far field
Uniform Mesh Graded Mesh

N Re u∞(d) Im u∞(d) Re u∞(d) Im u∞(d)
ρ = 0.05
16 0.54786382850918 1.09142671531078 0.53499654458393 1.08180757916455
32 0.54407696878866 1.08791439414992 0.54339168688582 1.08744061118358
64 0.54342318785131 1.08745614894034 0.54339178610716 1.08744068563751
128 0.54339187292392 1.08744071591287 0.54339178610706 1.08744068563756
256 0.54339178610846 1.08744068563798 0.54339178610706 1.08744068563756
ρ = 0.04
16 0.54802405041036 1.09282346754333 0.53343196943322 1.08255766004404
32 0.54302476711729 1.08885799431672 0.54191178786334 1.08818730305528
64 0.54199881644045 1.08822602834406 0.54191183753492 1.08818739837731
128 0.54191259166592 1.08818763880005 0.54191183753526 1.08818739837727
256 0.54191183763337 1.08818739840296 0.54191183753526 1.08818739837727
ρ = 0.03
16 0.54904031395079 1.09419728294031 0.53185218383499 1.08314160094841
32 0.54222295015728 1.08967328649225 0.54039372823952 1.08875566456820
64 0.54062723594874 1.08884581254326 0.54039354075047 1.08875566295939
128 0.54039993768851 1.08875750430892 0.54039354074910 1.08875566295913
256 0.54039354788384 1.08875566458283 0.54039354074910 1.08875566295913
ρ = 0.02
16 0.55147905440958 1.09551480873753 0.53047388953404 1.08352661580456
32 0.54197193671198 1.09026975943922 0.53900018451662 1.08910173339606
64 0.53955928159085 1.08927803170276 0.53900044710649 1.08910181964229
128 0.53904260169118 1.08911245582527 0.53900044710318 1.08910181964229
256 0.53900080793236 1.08910189288763 0.53900044710318 1.08910181964229
ρ = 0.01
16 0.55834834543519 1.09730788959491 0.52900328898032 1.08374759482932
32 0.54310925871843 1.09061324880737 0.53749456980150 1.08927299148915
64 0.53897642362642 1.08955599900788 0.53749420294315 1.08927299186681
128 0.53778718513610 1.08932494624636 0.53749420294888 1.08927299186695
256 0.53751853798100 1.08927708680932 0.53749420294888 1.08927299186695
2 Corners
16 0.53760520970805 1.08630428265680 0.52768053495681 1.08369527189265
32 0.53651537005059 1.08836129033128 0.53623358174525 1.08920867424572
64 0.53621106278279 1.08896400236454 0.53623292759500 1.08920881290892
128 0.53617782659103 1.08914505371977 0.53623292505883 1.08920881334528
256 0.53619704154265 1.08919444740499 0.53623292505360 1.08920881334620

Table 7. Direction of incident plane wave θ0 = 0 with ka = 2π and d = (1, 0). Impedance parameter λ = 1 + i.

A set of typical results is provided in Table 6 which shows the values for the near-field using
uniform mesh and then using graded mesh for a scatterer with the impedance boundary
condition with impedance parameter λ = 1+ i, illuminated by a plane wave incident at angle
θ0 = 0 with ka = 2π. Table 3 shows the results of the far-field for the same experiments.

Having established that use of the graded mesh gives excellent results for the two-corner
scatterer, we may now examine the effect of rounding the corners and determine the
relationship between the radius of curvature of the rounding and the deviation from the

What Effect does Rounding the Corners have on Diffraction from Structures with Corners?
http://dx.doi.org/10.5772/61152

25



solution produced by the two-corner scatterer. The difference between the actual solution
and that produced by rounding is measured using the L2 norm (83) and L∞ norm (84).

The tests were run for all three boundary conditions for ka = 1, 5, 10, and 2π, and radii
of curvature ρ = 0.05, 0.04, ..., 0.01 and, in the case of the impedance loaded scatterers, a
number of impedance parameters. The results were similar for all wave numbers and Table 8
presents the results for ka = 2π. The smaller the radius of curvature used for the rounding,
the smaller the measured error. Both the absolute and relative errors were measured. The
relative error is expressed as percentage of the same norm of the far-field of the two-corner
scatterer.

Using a radius of curvature of ρ = 0.02 , using the L2 norm produces an error of 3.8%
in the Dirichlet case, 1.6% in the Neumann case and 2.4% for the impedance boundary
condition. Similarly, the L∞ norm measures an error of 2.4% in the Dirichlet case, 1.5% in the
Neumann case and 1.4% for the impedance boundary condition. Using a radius of curvature
of ρ = 0.01, using the L2 norm produces an error of 1.2% in the Dirichlet case, 0.4% in
the Neumann case and 1% for the impedance boundary condition. Similarly, the L∞ norm
measures an error of 0.9% in the Dirichlet case, 0.4% in the Neumann case and 0.6% for the
impedance boundary condition.

Comparison of rounding effect to actual two-corner scatterer
ρ L2 Norm % Difference L∞ Norm % Difference

Dirichlet
0.05 0.0219 10 0.1052 7.5
0.04 0.0164 7.7 0.0792 5.6
0.03 0.0112 5.3 0.0543 3.9
0.02 0.0068 3.8 0.0332 2.4
0.01 0.0026 1.2 0.0128 0.9

Neumann
0.05 0.0094 7 0.0433 6.6
0.04 0.0065 4.9 0.0300 4.6
0.03 0.0040 3.0 0.0184 2.8
0.02 0.0021 1.6 0.0097 1.5
0.01 0.0006 0.4 0.0027 0.4

Impedance λ = 1 + i
0.05 0.0113 6.9 0.0487 4.0
0.04 0.0086 5.3 0.0374 3.1
0.03 0.0061 3.7 0.0264 2.1
0.02 0.0039 2.4 0.0167 1.4
0.01 0.0017 1.0 0.0074 0.6

Table 8. Direction of incident plane wave θ0 = 0 with ka = 2π.

6. Conclusion

In this paper we have described numerical schemes and their implementation for the solution
of scattering of a plane wave by two different cylindrical structures: a single-cornered
structure and a second structure with two corners, each with three different boundary
conditions imposed on their surfaces - soft, hard and an impedance boundary condition. We
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solution produced by the two-corner scatterer. The difference between the actual solution
and that produced by rounding is measured using the L2 norm (83) and L∞ norm (84).

The tests were run for all three boundary conditions for ka = 1, 5, 10, and 2π, and radii
of curvature ρ = 0.05, 0.04, ..., 0.01 and, in the case of the impedance loaded scatterers, a
number of impedance parameters. The results were similar for all wave numbers and Table 8
presents the results for ka = 2π. The smaller the radius of curvature used for the rounding,
the smaller the measured error. Both the absolute and relative errors were measured. The
relative error is expressed as percentage of the same norm of the far-field of the two-corner
scatterer.

Using a radius of curvature of ρ = 0.02 , using the L2 norm produces an error of 3.8%
in the Dirichlet case, 1.6% in the Neumann case and 2.4% for the impedance boundary
condition. Similarly, the L∞ norm measures an error of 2.4% in the Dirichlet case, 1.5% in the
Neumann case and 1.4% for the impedance boundary condition. Using a radius of curvature
of ρ = 0.01, using the L2 norm produces an error of 1.2% in the Dirichlet case, 0.4% in
the Neumann case and 1% for the impedance boundary condition. Similarly, the L∞ norm
measures an error of 0.9% in the Dirichlet case, 0.4% in the Neumann case and 0.6% for the
impedance boundary condition.

Comparison of rounding effect to actual two-corner scatterer
ρ L2 Norm % Difference L∞ Norm % Difference

Dirichlet
0.05 0.0219 10 0.1052 7.5
0.04 0.0164 7.7 0.0792 5.6
0.03 0.0112 5.3 0.0543 3.9
0.02 0.0068 3.8 0.0332 2.4
0.01 0.0026 1.2 0.0128 0.9

Neumann
0.05 0.0094 7 0.0433 6.6
0.04 0.0065 4.9 0.0300 4.6
0.03 0.0040 3.0 0.0184 2.8
0.02 0.0021 1.6 0.0097 1.5
0.01 0.0006 0.4 0.0027 0.4

Impedance λ = 1 + i
0.05 0.0113 6.9 0.0487 4.0
0.04 0.0086 5.3 0.0374 3.1
0.03 0.0061 3.7 0.0264 2.1
0.02 0.0039 2.4 0.0167 1.4
0.01 0.0017 1.0 0.0074 0.6

Table 8. Direction of incident plane wave θ0 = 0 with ka = 2π.

6. Conclusion

In this paper we have described numerical schemes and their implementation for the solution
of scattering of a plane wave by two different cylindrical structures: a single-cornered
structure and a second structure with two corners, each with three different boundary
conditions imposed on their surfaces - soft, hard and an impedance boundary condition. We
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have numerically demonstrated that the field scattered by the rounded structure converges,
in both the L2 and L∞ norm, to that scattered by the corresponding sharp cornered object as
the radius of curvature in the vicinity of the corner tends to zero.

It is important to use an appropriate quadrature scheme - a graded mesh - in order to obtain
numerical results efficiently, for both the scatterer with sharp corners and for the scatterer
with rounded corners possessing small radii of curvature. We anticipate that improvements
to the graded mesh employed for the two-cornered object will match the rate of convergence
demonstrated for the single-cornered lemniscate.

Our results show that for the soft boundary condition, the L∞ norm difference between the
near or far scattered field of the single-cornered scatterer and that of the rounded scatterer is
less than 4% when the radius of curvature is restricted so that kρ ≤ 3π/50. This percentage
reduces to 3% or 2% respectively, when the boundary condition is replaced by the Neumann
boundary condition or the impedance boundary condition (with λ = 1 + i), respectively.
More precise measures of the difference are given in Table 4. Similar results were obtained
for the the two-cornered object, and are displayed in Table 8.

Our approach provides a relatively simple yet efficient and accurate method for computing
near and far-fields scattered by sharp cornered objects of diameter D up to a few wavelengths
in extent. Accuracy was of paramount importance in this study in assessing the effects
of rounding a corner. Our calculations rigorously examined the regime 1 ≤ ka ≤ 10
corresponding to 0.318 ≤ D/λ0 ≤ 3.18, where λ0 is wavelength.

A more sophisticated approach to the scattering from soft cylindrical structures with
sharp corners is given in [7]. It employs the so-called recursively compressed inverse
preconditioning method, and as the authors note in their survey of the two dimensional
scattering literature, it alone addresses the problem of accurate near-field evaluation in
scatterers with corners.

In conclusion, this paper provides some precise quantification and assessment of the impact
that the rounding of the corner of a sharp cornered object has on the scattering of acoustic
waves. The method would seem to be extendible considerably beyond the wavelength range
examined, constrained mainly by computer resources.
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Abstract

Second-harmonic generation (SHG), a second-order nonlinear optical technique, was
used to investigate the molecular ordering of self-assembled layer-by-layer films of
PAH, a cationic polyelectrolyte, and PS-119, an anionic polyelectrolyte containing
photoisomerizable azo groups. Possible phase transitions in these multilayer films
and their thermal stability were investigated by probing the SHG signal as a function
of temperature and comparing the molecular order before and after thermal treat‐
ment. These studies were also performed with different pH values for the assembling
solutions, a relevant parameter for polyelectrolyte adsorption. The results have shown
that the films are not thermally stable, with the SHG signal nearly vanishing at a tem‐
perature of 150°C, in contrast to what is reported in the literature. SHG measurements
have also confirmed that the films are isotropic in the plane of the samples, independ‐
ent of their number of layers or the pH of assembling solutions. SHG signal before
and after heating indicates that the SHG signal was considerably reduced at high tem‐
peratures, but after slow cooling it was recovered to almost the same value as before
heating, showing that the thermal disorder is reversible. No phase transition was ob‐
served, since the SHG signal reduction was slow and gradual, without any sudden
change that would characterize a glass transition. We demonstrate that the SHG tech‐
nique provides information on the film arrangement at the microscopic level which
could be difficult to get with traditional techniques.

Keywords: Nonlinear optics, second-harmonic generation, second-order susceptibili‐
ty, polyelectrolytes, layer-by-layer self-assembled films

1. Introduction

The molecular organization and thermal stability of self-assembled thin films containing
azopolymers are important to their applications, such as organic diodes [1, 2], optical storage

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



[3], and biosensors [4, 5], to name a few. Here we are interested in probing the molecular
organization of azopolymer thin films fabricated by the layer-by-layer technique resulting
from their intermolecular and interlayer interactions. The thermal stability of these films will
also be studied by measuring the nonlinear optical signal from second-harmonic generation
(SHG) while the sample is heated.

Polymeric thin films may be very different from thick films. Moreover, the surface properties
of thick films can be very different from those of their bulk [6]. For a full characterization of
polymeric thin films, it is necessary to probe their thermal behavior, including the glass
transition temperature, Tg, that is, the temperature where molecules acquire a more mobile
state, which leads to lower film viscosity. Particularly, the Tg of polymeric materials gives us
information about the intermolecular interactions. Furthermore, glass transition temperatures
have practical importance for optical storage devices because near Tg the information recorded
in the molecular arrangement is lost due to increased motion, which leads to molecular
disorder.

In this sense, several techniques have been used to characterize these polymeric materials, and
the most common are differential scanning calorimetric (DSC), thermal gravimetric analysis
(TGA), and dynamic mechanical analysis (DMA). However, these thermal techniques charac‐
terize bulk samples but are ineffective for studying films with thickness on the order of a few
nanometers. Some authors have applied these techniques to probe free-standing films of
polystyrene (PS) [7], but for films adsorbed on solid substrates, such as layer-by-layer (LbL)
and Langmuir–Blodgett (LB) films, or on liquid interfaces, such as Langmuir films, those
techniques cannot be applied.

Recently, Lutkenhaus et al. have reported an alternative methodology for using traditional
techniques (DSC and TGA) to study LbL films fabricated by secondary interactions [8], like H-
bonding for PEO/PAA films, and PAH/PAA films fabricated by electrostatic interaction [9].
The method is based on using films with many (around 100 or 200) layers, and average
thickness per bilayer about 80 nm. These films were removed from the inert substrate (Teflon)
to be investigated by conventional techniques. Curiously, for PEO/PAA films (assembled by
secondary interactions) it was possible to find a Tg, but not for PAH/PAA (strongly bound by
electrostatic interaction). However, those films are not exactly what we could call ultrathin
LbL films, because both films are very thick (2–8 μm), and the methodology removes the
influence of the substrate. This influence is retained only in the conformation of the initial
layers, but their contribution is negligible in the thermal analysis. It is therefore quite chal‐
lenging to investigate the Tg of ultrathin polymeric films, and in particular of LbL films with
only a few bilayers.

Optical techniques such as ellipsometry and Raman spectroscopy [10] have been used to probe
the Tg of thin films, but they do not allow to investigate how the molecular arrangement is
changed during the glass transition, although their results show excellent agreement with the
values of Tg obtained by other techniques. Because Tg is associated with a transition to a state
of molecular disorder, it is natural to apply second-order nonlinear optical techniques, such
as second-harmonic generation (SHG), which are quite sensitive to molecular orientation [11–
13]. With increasing temperature, the molecules become increasingly mobile (more random
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and dynamic conformation), resulting in increased disorder and reduced SHG signal, which
is dependent on orientational ordering. Therefore, for a system consisting of only one material,
we would expect a sudden variation of the signal when the Tg of the material is reached [14].

Another issue that is interesting is the thermal stability of the films. Here, we do not consider
thermal degradation of the film, but the film’s ability to maintain its molecular arrangement
while temperature varies. Lvov et al. showed that the SHG signal from of PDDA/PAZO LbL
films was substantially reduced when heated to about 120°C [15], showing that the ordering
of the films was destroyed and they were not thermally stable. It is worth mentioning that,
unlike the work of Han et al. [14], ref. [15] does not directly aim at measuring the Tg of LbL
films, but intends only to check their thermal stability. However, some authors have described
thermally stable layer-by-layer films, showing stability around 20% [16].

In this chapter, we will describe the basic theory for SHG in thin films, showing how its
polarization dependence can be used to determine the orientation of chromophores in
azopolymer LbL films, and how phase measurements of the SHG signal can probe the
molecular reorientation after azopolymer adsorption. SHG measurements as a function of
number of layers, of sample azimuthal angle, and of pH of the self-assembly solution reveal
how the molecular organization depends on sample fabrication conditions. We also probe the
thermal stability and effect of heat treatment on molecular ordering.

2. Basic theory

2.1. Fundamentals of nonlinear optics

Radiation-matter interaction processes lead to numerous effects due to light-induced polari‐
zation, which acts as a source of new electromagnetic waves. The polarization induced by the
electric field of the electromagnetic wave, E

→ (r→ , t), is responsible for several optical processes.
If this electric field is relatively weak in comparison to the electrostatic field acting on electrons
within an atom or molecule, the polarization has a linear dependence on the electric field:

,c=
r r
P E (1)

where χ is the linear susceptibility and P
→

 is the linear polarization. This is the linear optics
regime.

However, if the electric field of the electromagnetic wave is strong, new contributions turn out
to be significant. Then, an approximate relation between electric field (cause) and polarization
(effect) is a power series in E

→ (r→ ,  t):

( ) ( ) ( )1 2 3 (1) (2) (3): ... ....c c c= × + + + º + + +
r r r r r r r r

M
r rt t t

P E EE EEE P P P (2)
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The terms χ(n) and P(n) are the susceptibilities and polarizations of nth-order, respectively. Figure
1 shows the linear polarization of Equation (1) and a typical example of the nonlinear response,
Equation (2).

The terms χ(n) and P(n) are the susceptibilities and polarizations of nth-order, respectively. Figure 1 shows the linear 
polarization of Equation (1) and a typical example of the nonlinear response, Equation (2). 
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Figure 1. Typical linear (left) and nonlinear (right) polarization as a function of applied electric field. 

Here, we are interested in second-order effects, which are related to the second-order nonlinear susceptibility, χ(2). For 
the moment we will neglect the vector character of the electric field and polarization, and consider initially the local and 
instantaneous relation (neglecting spatial and frequency dispersion) between the field and the oscillating induced 
polarization. With the applied electric field ��� � ������� , the polarization up to third order is 

� � ����������� � �������������� � ���������������. . .
� ����������� � ��������������� � ����������������. . . (3) 

Using the trigonometric relations �cos���� � �
� �1 � cos ���� and �cos���� � �

� �3 cos�� � cos 3��� we get 

� � ����������� � ���� �� ����1 � ������� � ���� �� ����3����� � ���3����. . .
⇒ � � ����������� � ���� ��� ��� �

�
� ���������� �

���� ��� �������� �
�
� ������3����. . .

 (4) 
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The terms χ(n) and P(n) are the susceptibilities and polarizations of nth-order, respectively. Figure
1 shows the linear polarization of Equation (1) and a typical example of the nonlinear response,
Equation (2).
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We can see that polarization generated by electric field E (t)= E0cosωt  produces light with the
same, double and triple of incident light frequency (named second- and third-harmonic,
respectively), and a static component (optical rectification).

In general, if we have an incident electric field such as E (t)= E1cosω1t + E2cosω2t , representing
two waves of frequencies ω1 and ω2 travelling through the material, it is easy to show that

( ) ( ) ( )
( ) ( ) ( )

22 2
1 1 2 2

2 2 2 2 2
1 2 1 1 2 2 1 2 1 2 1 2 1 2

 
1 12 2 .
2 2

c w w

c w w w w w w
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P E cos t E cos t

E E E cos t E cos t E E cos t E E cos t
(5)

From Equation (5) we can expect the generation of static fields, second-harmonic generation,
a term that oscillates with the difference of incident frequencies (difference-frequency gener‐
ation – DFG), and a term that oscillates with the sum of incident frequencies (sum-frequency
generation – SFG). Therefore, it is possible to generate light with new frequencies through
wave mixing nonlinear processes.

In the preceding equations, the susceptibility relates the electric field with the respective
polarization. If both E

→ (t) and P
→ (t) are vector quantities, the nonlinear nth-order susceptibility

is an (n + 1)th rank tensor. A convenient form to express the term in Equation (5) responsible
for SFG is:

( ) ( ) ( ) ( ) ( )2
3 1 2 3 1 2 1 2 1 2

, 

; ,  w w w c w w w w w w w= + = = +åi ijk j k
j k

P E E (6)

The ijk indices run through the xyz Cartesian coordinates of electric field and polarization.

2.2. Origin of nonlinear response of molecules

The correct interpretation of nonlinear phenomena such as sum-frequency generation (SFG)
or second-harmonic generation (SHG) is related to the understanding of nonlinear second-
order susceptibility, χ (2). Here, we are going to discuss only the main characteristics of χ (2),
but many publications [17–23] present a complete theory of χ (2) effects. However, we will try
to be succinct while addressing relevant issues. The classical treatment is well-known,
providing satisfactory results with a phenomenological theory. However, the quantum
interpretation is more comprehensive and generally allows calculating the nonlinear suscep‐
tibilities and their dispersion.

The origin of nonlinear optical activity of organic molecules can be understood by a Taylor
series expansion of the induced dipole moment of the molecule [21]:

...a b g= + + +l lm m lmn m n lmno m n op E E E E E E (7)
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In Equation (7), αlm is the (first order) linear polarizability, βlmn and γlmno are the second- and
third-order hyperpolarizabilities, respectively.

Through second-order time-dependent perturbation theory [17], we can derive an expression
for βlmn that is quite complicated. But a simplification happens when we consider the case of
SHG with the fundamental frequency ω away from electronic resonances, but with the second-
harmonic 2ω resonant with an electronic transition of the molecule, ωvg [22]:

1 ,
2 2

b
w w

=
- + Gh

l mn
lmn

vg

Q P
i (8)

where Γ is the width of the electronic transition. Terms Pmn and Ql are due to off-resonance
and resonant transition moments, respectively. They are given by

( )( ) ( )( )
| | | | | |ˆ ˆ

,
ˆ|

 
ˆ |m m m m

w w w w w w w w

é ù
ê ú= -
ê ú- - + +ë û

å m n n m
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s vs sg vs sg

v s s g v s s g
P (9)

µ| | .m=l lQ g v (10)

In Equations (9) and (10), μ̂ is the electric dipole operator, | g  is the fundamental state, |ν  is
the excited state resonant with the second-harmonic, and | s  is any other state.

2.3. Second-order susceptibility

The nonlinear second-order susceptibility is a macroscopic average of second-order nonlinear
polarizability β. It is defined as the term that describes the interaction between the material
medium and the optical electric field [23]. The relation between χ(2) and β can be described by
a coordinate transformation from the molecular reference frame to the laboratory frame, as
shown in the following equation:

( ) ( ) ( )(2) .c y q b= jåijk lmnN R R R (11)

where N is the number of molecules by volume, and R(ψ)R(θ)R(φ)  is the product of three
rotation matrices that relate the molecular coordinate system (l, m, n) to the laboratory
coordinate system. The symbol  represents the orientational average. If we know the β tensor
for molecules, measurements of χ(2) elements can give us information about their molecular
orientation, as will be described in Section 2.4.
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Second-harmonic generation (SHG) arises from a term of Equation (5) proportional to
cos(2ωt), when just one electric field at frequency ω is applied. In that case, Equation (6)
becomes:

( ) ( ) ( )(2) (2)2 :w w w c w w= + =
r r rt
P E E (12)

SHG is intrinsically sensitive to surfaces and interfaces due to its selection rule. As we will see
later [see Equation (13)], the SHG intensity is proportional to the square of the second-order
susceptibility χ(2). As a polar third-rank tensor, χ(2) changes sign under the inversion operation
(under the electric dipole approximation): χijk

(2) = −χ−i− j−k
(2) . However, in centrosymmetric media

χ(2) remains unchanged upon inversion of coordinates: χijk
(2) =χ−i− j−k

(2) . Therefore, the only possible
solution for the two earlier equations is χ(2) = 0. We can conclude that, under the electric dipole
approximation, for media with inversion symmetry, no second-order optical process is
possible, including SHG. Most bulk molecular materials do have inversion symmetry. This is
because the functional groups in the bulk of these systems are, in general, randomly or
oppositely oriented [24]. However, because inversion symmetry is usually broken at the
surface/interface, SHG is not forbidden in those cases. Figure 2 illustrates SHG at an interface
between two centrosymmetric media. The incidence angles obey the momentum conservation
along the interface plane: for refraction of incident laser: kω(2)sinαω

(2) =kω
(1)sinαω

(1) (Snell’s law); for
reflective/refractive SHG generation: k2ω

(1)sinα2ω
(1) =2kω

(1)sinαω
(1) ; and k2ω

(2)sinα2ω
(2) =2kω

(1)sinαω
(1). Index

(i), i = 1, 2, refer to media 1 and 2 in Figure 2. For the specific case of thin polymeric films
adsorbed on solid substrate such layer-by-layer films, if asymmetric molecules (or functional
groups) adsorb with random orientations, the net SHG signal is canceled out. Conversely, if
there is a substantial SHG signal, we can conclude that molecules have a net average orientation
at the interface. More detailed considerations about the importance of symmetry on the
interpretation of SHG (and other second-order processes, such as SFG) can be found elsewhere
[13, 17, 18, 22].

For second-harmonic generation at interfaces between two different media, as shown in Figure
2, Y. R. Shen demonstrated [13, 18] that the intensity of the second-harmonic signal is given by

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
3 2

2(2) 2
1

3 2
1 1

8 2 sec
2 ê ˆ2 : e e ,

c
ˆ

2

p w a
w w c w w w

e w e w
= ×

é ùë û

t

h
sI I (13)

where the SHG signal is expressed in terms of the net second-order susceptibility of the surface
χs

(2). The term χeff
(2) = ê(2ω) ⋅χ↔ s

(2) ∶ ê(ω)ê(ω) is the effective susceptibility, which also depends on
the polarizations of the input and output beams, є̂(ωi) and the Fresnel factors L nn(ωi), since
ê(ωi)= є̂(ωi) ⋅ L

↔(ωi). The Fresnel factors are given by the following expressions:
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Figure 2. SHG geometry from the interface between two different media, showing the SHG beams generated in reflec‐
tion and transmission. χS

(2) in usually non-vanishing, while in general χV
(2) = 0.

From Equation (13), we can see that the SHG signal I(2ω) is proportional to |χeff
(2) | 2, the effective

second-order susceptibility of surface. From Equations (8) and (11), we can write χeff
(2) as a

complex number:

(2) (2) ,
2

fc c
w w

= =
- + G

i
eff eff

vg

A e
i (15)

where |χeff
(2) |  is its modulus and ϕ is the phase. Frequently, it is necessary to experimentally

measure the phase of χeff
(2), because it is related to the relative orientation (up or down) of

molecules at the interface. This can be accomplished by interference between SHG signals from
sample (polymer films) and a nonlinear reference, like crystalline quartz or zinc sulfide, ZnS
[25, 26]. In practice, we measure the effective χeff

(2) that is the sum of the reference and the film
signals:
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where |χeff
(2) |  is its modulus and ϕ is the phase. Frequently, it is necessary to experimentally

measure the phase of χeff
(2), because it is related to the relative orientation (up or down) of

molecules at the interface. This can be accomplished by interference between SHG signals from
sample (polymer films) and a nonlinear reference, like crystalline quartz or zinc sulfide, ZnS
[25, 26]. In practice, we measure the effective χeff

(2) that is the sum of the reference and the film
signals:
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( ) ( ) ( )2 2 2f fc c c= +ref filmi i
eff ref filme e

As the SHG signal is proportional to square of χeff
(2), we have

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

222 2 2

2 22 2 2 22 cos , 

f fc c c

c c c c f

= + =

= + + D

ref filmi i
eff ref film

ref film ref film

e e
(16)

where Δϕ =(ϕ film −ϕref )= 2π
λ Δl is the phase difference between two signals, and Δl is the

difference of optical length due to a compensator inserted in the detection beam path (amor‐
phous quartz window). Figure 3 shows the experimental setup. The angle θ of the compensator

determines the additional optical path Δl= Δn  d
cosθ  traveled by the SHG and pump beams from

the sample to the detector, where Δn is the difference in refractive indices of the compensator
for the fundamental and SHG beams. Therefore, the phase difference between the two signals
is given by

2  Δ .pf
l q

D
=

n d
cos

(17)

Figure 3 illustrates the (normalized) interference pattern intensity as a function of compensator
angle θ.
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Figure 3: (a) Experimental setup for SHG phase measurements. (b) Detected intensity (normalized) as 

a function of compensator angle θ. 

 

2.4. Molecular orientation from SHG measurements

As seen earlier, Equation (11), the macroscopic quantity  is related to 

microscopic quantity  through an orientational average of a coordinate transformation, 

where  is a tensor that relates the components of the second-order contribution to the 

dipole moment  of the molecule to local electric field components .  

 
Figure 4:  Molecular geometry with the azobenzene group (Ph– N = N –Ph) along the  axis.  The frame 

(x, y, z) is the sample reference frame, with xz as a mirror plane. The (X, Y, Z) frame is the laboratory 

coordinate system, with XZ as the incidence plane. The molecule is tilted by the polar angle  with 

respect to the surface normal, and  is the azimuthal angle with respect to the sample symmetry 

direction, which in turn is rotated by  with respect to the incidence plane (X direction). 

For molecules with electrons delocalized mainly along a single direction, the 

hyperpolarizability  will have only one element, that is, , along the molecular axis 

ξ, as shown in Figure 4 for an azobenzene group. Then, for the case of a molecular 

monolayer adsorbed on the surface, Eq. (11) can be written as 

Figure 3. a) Experimental setup for SHG phase measurements. (b) Detected intensity (normalized) as a function of
compensator angle θ.
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2.4. Molecular orientation from SHG measurements

As seen earlier, Equation (11), the macroscopic quantity χijk
(2) is related to microscopic quantity

βlmn through an orientational average of a coordinate transformation, where βlmn is a tensor that
relates the components of the second-order contribution to the dipole moment p→  of the
molecule to local electric field components E

→
local .

Figure 4. Molecular geometry with the azobenzene group (Ph– N = N –Ph) along the ξ axis. The frame (x, y, z) is the
sample reference frame, with xz as a mirror plane. The (X, Y, Z) frame is the laboratory coordinate system, with XZ as
the incidence plane. The molecule is tilted by the polar angle θ with respect to the surface normal, and φ is the azimu‐
thal angle with respect to the sample symmetry direction, which in turn is rotated by Ω with respect to the incidence
plane (X direction).

For molecules with electrons delocalized mainly along a single direction, the hyperpolariza‐
bility βlmn will have only one element, that is, βξξξ, along the molecular axis ξ, as shown in
Figure 4 for an azobenzene group. Then, for the case of a molecular monolayer adsorbed on
the surface, Equation (11) can be written as

( )( )( )(2) ˆˆ ˆ ˆˆ ˆ .xxxc x x x b= × × ×ijk N i j k (18)

The transformation of coordinates from the molecular frame l̂ , m  ̂ , and n  ̂  to the sample frame
î, ĵ, and k̂  is given by

ˆˆ ,x q j× =i sin cos (19)
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ˆˆ ,x q j× =j sin sin (20)

ˆ .ˆ x q× =k cos (21)

Considering a medium with a C1v symmetric distribution of molecules on the plane xy (xz is
the sample plane of symmetry), we obtain six independent elements of the tensor χijk

(2)  27]:

(2) 3
1 ,xxxc c qb= =zzz Ncos (22)

(2) 3 3
2 ,xxxc c q jb= =xxx Nsin cos (23)

( )( )(2) (2) (2) 3 2
3 1 ,xxxc c c c q q j b= = = = - -yyz zyy yzy N cos cos cos (24)

( )(2) (2) (2) 3 2
4 ,xxxc c c c q q jb= = = = -xxz zxx xzx N cos cos cos (25)

( ) ( ) ( ) ( )2 2 2 3
5 ,xxxc c c c q q jb= = = = -xzz zxz zzx N sin sin cos (26)

( )(2) (2) (2) 3 3
6 ,xxxc c c c j j qb= = = = -xyy yxy yyx N cos cos sin (27)

Therefore, measuring these six elements in the preceding equations allows determining up to
five parameters of the orientation distribution function of the adsorbed monolayer (since
usually the product Nβξξξ is unknown). This can be performed by SHG measurements with
several combinations of polarization, such as SinSout, SinPout, PinSout, PinPout, MinSout, MinPout, where
the first polarization is for the pump beam at ω and the other is for the generated beam at 2ω.
S indicates the polarization with the electric field perpendicular to the incidence plane, and P
is with the electric field parallel to the incidence plane. M polarization is that where the electric
field has equal components perpendicular and parallel to the incidence plane (mixed polari‐
zation). Figure 2 shows both S and P polarization.

We should note, however, that in general the laboratory coordinate system (XYZ), defined by
incidence plane XZ and the sample plane XY, is not coincident with the sample coordinate
system (xyz), defined by the sample plane xy and the plane of mirror symmetry xz. We define
the angle Ω describing the relation between the two coordinate systems, as shown in Figure 4.

Therefore, to fully determine χeff
(2) in laboratory frame, we need to do an additional coordinate

transformation from the sample frame (xyz) to the laboratory frame (XYZ). Thus, we obtain
χeff

(2) for six possible polarization combinations as a function of independent components χ1 to
χ6 (Equations (22) to (27)), which characterizes the distribution of orientations for the molecules
in study:
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In practice, SHG measurements consist in recording the SH intensity as a function of the sample
azimuthal angle Ω for several polarization combinations. From them, we can determine the
independent components, from χ1 to χ6, that are related to the orientational distribution of
molecules on the sample. For example, for the case of an isotropic sample on its xy plane, only
χ1 and χ3 = χ4 will be nonvanishing, so that all χeff

(2) are either null or independent of azimuthal

angle Ω, as expected. In this case, the ratio 
χ1

χ3
= cos3θ

cosθ − cos3θ  depends only on the average molecular
tilt with respect to the normal direction (polar angle θ). Therefore, measurements can imme‐
diately be qualitatively interpreted to determine if samples are isotropic or not about the
surface, and in that case, if polar orientation changes significantly.

In order to fully determine the orientation of adsorbed molecules at an interface (film), we
assume that this orientation is described by a distribution function such as
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The first term of F (θ,  φ) is a Gaussian distribution function of the polar angle θ, where θ0 is
the average molecular tilt and σ is the polar distribution width. A is a normalization constant,
given by
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This distribution describes the orientation angle of adsorbed molecules with respect to the z-
axis, which is perpendicular to plane of sample (see Figure 4).

The second factor of Equation (34) is a Fourier series on the azimuthal angle φ, truncated at
the third term. There, d0 is the normalization constant equal to 1 / 2π. This distribution describes
the anisotropy of adsorbed molecules along to plane of sample, with respect to the mirror plane
xz.

In order to obtain the parameters in the orientational distribution function F(θ, φ), we need to
experimentally measure χeff

(2) in the six polarization combinations as the sample is rotated
(varying the sample azimuthal angle Ω). We then adjust the data (simultaneous fitting) to
Equations (28) to (33) in order to find the parameters θ0, σ, d1, d2, and d3, as well as the initial
sample azimuth Ω0 (initial angle between sample symmetry direction and laboratory frames,
see Figure 4).

In this chapter, we are interested in probing the molecular orientation of layer-by-layer films
of azopolymers and their thermal stability using the SHG technique. In the next section, we
will briefly describe the most important characteristics of these ultrathin films that are relevant
to the physical interpretation of SHG results.
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3. Layer-by-layer thin films

G. Decher and co-workers [28, 29] were the first to propose this simple and efficient method
of physical deposition. Specifically, layer-by-layer (LbL) deposition is a fast and practical
deposition process based on the electrostatic interaction between polyelectrolytes and opposite
charges on solid substrates, such as glass, silica, or mica [29–33]. It can be used to fabricate thin
films from a few nanometers to hundreds of nanometers. In most cases the mechanism
responsible for adsorption is mainly the electrostatic interaction, but secondary interactions
such as hydrophobicity, Van der Waals, or H-bonding are also relevant [7].

Some advantages of electrostatic LbL with respect to other thin film fabrication techniques, for
example, Langmuir–Blodgett (LB) depositions, are the use of water-soluble molecules
involving a large variety of materials, its independence of size and topology of substrate [31,
32], and the applicability to almost any hydrophobic or hydrophilic solid, such as glass, quartz,
mica, and gold [33].

In the LbL self-assembly process, spontaneous sequential adsorption of oppositely charged
polyelectrolytes (polyions) is carried out from most often dilute aqueous solutions on charged
surfaces. Figure 5 illustrates the experimental procedures for adsorbing LbL films. Typically,
a charged substrate (frequently glass or quartz) is immersed in an oppositely charged polyion
solution. Electrostatic attraction occurs between the charged surface and the oppositely
charged molecules in solution. It is expected that adsorption occurs until overall charge
neutrality or charge reversal is reached at the substrate surface, implying that the adsorption
process is self-limited. After washing the substrate with an aqueous solution (usually of the
same pH as the adsorption solution) in order to remove excess adsorbed material and to ensure
that only one strongly adsorbed monolayer remains, the substrate is dried by N2 flow. We have
shown that this drying step promotes the inhomogeneity of the film in the micrometer scale
[34], making it unfit for certain applications. The next step is immersing the substrate with the
first adsorbed layer in an oppositely charged polyion solution. The oppositely charged
polyelectrolytes will complex at the film/solution interface, leading to adsorption of the second
layer and overall charge reversal again. Now the signal of net surface charge (substrate plus
adsorbed film) is restored to that of the original substrate. Other rinsing and drying steps
complete the fabrications of the first bilayer. The whole procedure can be repeated as many
times as necessary, with the same or a different pair of materials, which may also include
nanoparticles, dendrimers, enzymes, etc. Therefore, in addition to allowing precise control of
film thickness, the LbL method allows making films with their compositions controlled at the
nanometer scale up to several hundreds of nanometers in thickness, simply by properly
choosing the materials used for fabricating each layer.

Since there are no restrictions in the selection of polyelectrolytes, there are many materials that
may be employed in the manufacture of LbL films. Thus, some of the most used are the PEI
(poly(ethylene imine)), PAH (poly(allylamine chloride)), and PDAC (poly(dimethyldially‐
lammonium chloride)) as polycations; and PVS (poly(vinyl sulfonic acid)), PSS (poly(sodium
styrene sulfonate)), Ma-co-DR13 (a side-chain-substituted azobenzene copolymer derived
from azodye Disperse Red 13), PS-119 (Poly(vinylamine) backbone azo chromophore), and
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PAA (poly(acrylic acid)) as polyanions. Figure 6 displays the structural formulas of some of
these polyelectrolytes.

Figure 6. Structural formula for some polyelectrolytes used in LbL assembly.

Figure 5. Self-assembly process. Part A: adsorption, rinsing, and drying of the first layer polyelectrolyte (polycation).
Part B: adsorption, rinsing, and drying of the second layer (polyanion). Repetition of this process determines the de‐
sired number of bilayers.
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In this chapter, we discuss the molecular orientation of self-assembled LbL films fabricated
with polyelectrolytes containing the azo-group. PAH (Mw = 15000) and Poly S-119 (Mw =
unknown) were obtained from Aldrich and used as received. LbL films on BK7 glass substrates
(area 10 x 30 mm2, thickness 4 mm) were prepared from aqueous solutions of PAH and Poly
S-119 with 1.0 mg/ml concentration and pH 3.5, 7.0, and 10.0. For a given choice of pH, both
polyelectrolyte solutions and the rinsing solution had the same pH value, which was adjusted
by addition of HCl (from Qhemis, 37%, analytical grade) and NaOH (from Aldrich, electronic
grade, purity 99.99%). Substrates were cleaned by piranha solutions (H2SO4/H2O2 at 3:1
proportions by volume) for 20 min, extensively rinsed with Milli-Q water (resistivity 18.3
MΩ∙cm) and dried by nitrogen-flow right before use.

The LbL films were prepared by alternate adsorption of cationic (PAH) and anionic (Poly
S-119) polyelectrolytes on the BK7 glass substrates, as described in literature [29, 33]. In this
work, we used just one final drying process: drying by slow water evaporation, that is, the
films were prepared without any drying after adsorption or rinsing stages. In order to dry the
samples after the self-assembly is complete, the substrates were loosely covered by a Petri dish
to avoid contamination and stored for a period of 48 hours at room temperature (~ 23°C) and
air humidity around 40%. Only after this period, the second-harmonic signals were recorded.

Figure 7 shows absorbance at 445 nm (due to the azodye sidechain of PS-119) as a function of
number of bilayers for films fabricated with three different pH values. As we can see, the film
content of PS-119 increases linearly with the number of bilayers, demonstrating that the same
amount of azopolymer is adsorbed at each bilayer. Figure 7 also shows that the adsorbed
amount per layer is larger for pH 10, suggesting the formation of thicker films under such
conditions [35].
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Figure 7. UV-vis absorbance at 445 nm for PAH/PS-119 LbL films fabricated at different pH values. 
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4.1. SHG instrumentation 
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reflection direction (air side). Polarizers are used to set the polarization combination. 
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4. Second-harmonic generation from LbL films

4.1. SHG instrumentation

Due to electronic resonance at 532 nm, PS-119 polyelectrolyte is strongly active in second-
harmonic generation if excited by a 1064 nm laser beam [see Eq. (8)], while PAH is optically
inactive. Therefore, using this pump wavelength we are probing only one polyelectrolyte
(PS-119), while the other is used only to assemble the film. This facilitates the interpretation of
experimental results.

Our SHG instrumentation is shown in Figure 8 for SHG measurements as a function of
azimuthal angle Ω, where we can see a double-functional rotation/translation stage, allowing
rotation of sample around the z axis (azimuthal angle Ω), and its translation on the horizontal
plane xy. A pulsed Nd3+:YAG laser is used to excite the samples. The repetition rate, pulse
duration, and the pump energy of the IR beam at 1064 nm were 20 Hz, 30 ps, and 2.0 mJ,
respectively. The area of beam on the sample surface was approximately 2 mm2, and the angles
of incidence/reflection were 60°, since the phase matching condition along the surface plane
leads to kSHGsinαSHG =2kIRsinαIR, which gives αSHG = αIR in the reflection direction (air side).
Polarizers are used to set the polarization combination.

Figure 8. Layout for SHG measurements, consisting of a mode-locked Nd+3:YAG (1064 nm) laser pumping the sample,
which is positioned at a rotation/translation stage, and a detection system based on a photomultiplier tube (PMT).
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For studying the effect of heating, we used a temperature-controlled sample cell and the SinPout

polarization combination. Figure 9 shows the sample cell for SHG measurements as a function
of temperature, which is aligned by a mirror mount positioned on top of a computerized xy
translation and rotation stage. A commercial temperature controller was used to vary the
temperature with ~ 0.34°C/min heating rate from room temperature (around 25°C) to 190°C.
Figure 9 also shows in more detail the heating cell used in this experiment, with a sample
inside.
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Figure 9. Experimental sample cell used to probe SHG signal as a function of temperature. It allows measurements
either in air or vacuum, and for alignment purposes it is positioned on a mirror mount attached to the rotation/transla‐
tion stage.

4.2. Molecular ordering as a function of number of layers

Measurements of SHG as a function of azimuthal angle of rotation Ω were performed for the
SP (S pump and P SHG signal, or SinPout) and SS (S pump and S SHG signal, or SinSout) polari‐
zation combinations for LbL films of PAH/PS-119, varying the number of monolayers and the
pH of the adsorption/rinsing solutions. For samples with isotropic ordering, the signal in the
SP polarization combination should be intense, while for the SS polarization combination the
SHG signal is only allowed if the sample is anisotropic. However, if there are orientational
domains much smaller than the area of the pump beam in the sample, but larger than the
wavelength of the beam, there should be an intense and isotropic SHG signal for both SP and
SS polarization, confirming the microscopic anisotropy of the sample. Therefore, the absence
of signal in the SS polarization is indicative of an isotropic molecular arrangement at the scale
of the pump beam wavelength.

As a control measurement, an SHG rotational scan was obtained for a sample of z-cut quartz
crystal and also for a gold surface prepared by thermal evaporation on glass. As can be seen
in Figure 10, the measurement for quartz presents six directions where the signal is maximum,
reflecting the C3v symmetry of this quartz crystal surface. For the gold surface, it is isotropic
and the electronic resonance at 532 nm yields a high second-order susceptibility [22] charac‐
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SS polarization, confirming the microscopic anisotropy of the sample. Therefore, the absence
of signal in the SS polarization is indicative of an isotropic molecular arrangement at the scale
of the pump beam wavelength.

As a control measurement, an SHG rotational scan was obtained for a sample of z-cut quartz
crystal and also for a gold surface prepared by thermal evaporation on glass. As can be seen
in Figure 10, the measurement for quartz presents six directions where the signal is maximum,
reflecting the C3v symmetry of this quartz crystal surface. For the gold surface, it is isotropic
and the electronic resonance at 532 nm yields a high second-order susceptibility [22] charac‐
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teristic of this metal. Thus, the SHG signal from gold is independent of orientation and is fairly
strong.

As an example of determining the orientational distribution function for layer-by-layer films,
we consider the results displayed in Figure 11, where we can see the SHG signal as a function
of azimuthal angle Ω for a 10 bilayer film of PAH/Ma-co-DR13 [36]. As described in Section
2.4, the results were adjusted to Equations (28) – (33) to determine χ1 through χ6, and the best
fit lines are shown in Figure 11. Using their definitions (Equations (22) – (27)) and the orien‐
tation distribution function given by Equation (34), the six equations were solved to find the
orientation parameters in F(θ, φ). For these films, the following values were determined: θ0 =
37.41±0.24, σ = 12.85±0.53, d1 = 0.009±0.001, d2 = 0.014±0.002, d3 = -0.001±0.003, and Ω0 =
-11.87±4.78, which fully characterize the orientational distribution of azo-groups in the sample.
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on top of a computerized xy translation and rotation stage. A commercial temperature 

controller was used to vary the temperature with ~ 0.34C/min heating rate from room 

temperature (around 25C) to 190C. Figure 9 also shows in more detail the heating cell 

used in this experiment, with a sample inside. 

 
Figure 9: Experimental sample cell used to probe SHG signal as a function of temperature. It allows 

measurements either in air or vacuum, and for alignment purposes it is positioned on a mirror mount 

attached to the rotation/translation stage. 
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pump beam in the sample, but larger than the wavelength of the beam, there should be an 

intense and isotropic SHG signal for both SP and SS polarization, confirming the 

microscopic anisotropy of the sample. Therefore, the absence of signal in the SS 

polarization is indicative of an isotropic molecular arrangement at the scale of the pump 

beam wavelength. 
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Figure 10: SHG measurements as a function of sample orientation () for (a) z-cut -quartz and (b) 

thermally evaporated gold film, with the SinPout polarization combination. 

Figure 10. SHG measurements as a function of sample orientation (Ω) for (a) z-cut α-quartz and (b) thermally evapo‐
rated gold film, with the SinPout polarization combination.
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The marked effect of drying on the molecular arrangement of azopolymer LbL films can also
be investigated by SHG. Figure 12(a) shows SHG measurements as a function of azimuthal
angle Ω for a one bilayer film of (PAH/PS-119) obtained at three different points on each
sample, for two samples fabricated with solutions of different pH values and dried by slow
evaporation. They show that this fabrication procedure leads to isotropic and homogeneous
LbL films, in agreement with the results already found for films of PAH/PSS [34]. The opposite
was observed for self-assembled films of PAH/Ma-co-DR13, shown in Figure 12(b), which were
fabricated with dry nitrogen flow drying. Indeed BAM (Brewster Angle Microscopy) meas‐
urements revealed the presence of orientational domains and inhomogeneity [36]. However,
we have found that thicker films tend to became globally (not locally) more isotropic, since the
SHG signals show smaller variations as a function of rotation, but the SS polarization combi‐
nation does not vanish.

As an example of determining the orientational distribution function for layer-by-layer films, we consider the results 
displayed in Figure 11, where we can see the SHG signal as a function of azimuthal angle Ω for a 10 bilayer film of 
PAH/Ma-co-DR13 [36]. As described in Section 2.4, the results were adjusted to Equations (28) – (33) to determine 1 
through 6, and the best fit lines are shown in Figure 11. Using their definitions (Equations (22) – (27)) and the orientation 
distribution function given by Equation (34), the six equations were solved to find the orientation parameters in F(, ). 
For these films, the following values were determined: θ0 = 37.41±0.24, σ = 12.85±0.53, d1 = 0.009±0.001, d2 = 0.014±0.002, 
d3 = -0.001±0.003, and Ω0 = -11.87±4.78, which fully characterize the orientational distribution of azo-groups in the 
sample. 

 

Figure 11. Azimuthal dependence of SHG signal for azopolimer (PAH/Ma-co-DR13)10 layer-by-layer films. (From Reference [36]) 

The marked effect of drying on the molecular arrangement of azopolymer LbL films can also be investigated by SHG. 
Figure 12(a) shows SHG measurements as a function of azimuthal angle Ω for a one bilayer film of (PAH/PS-119) 
obtained at three different points on each sample, for two samples fabricated with solutions of different pH values and 
dried by slow evaporation. They show that this fabrication procedure leads to isotropic and homogeneous LbL films, in 
agreement with the results already found for films of PAH/PSS [34]. The opposite was observed for self-assembled films 
of PAH/Ma-co-DR13, shown in Figure 12(b), which were fabricated with dry nitrogen flow drying. Indeed BAM 
(Brewster Angle Microscopy) measurements revealed the presence of orientational domains and inhomogeneity [37]. 
However, we have found that thicker films tend to became globally (not locally) more isotropic, since the SHG signals 
show smaller variations as a function of rotation, but the SS polarization combination does not vanish. 

(b)
 

0

1

2

0

30

60
90

120

150

180

210

240
270

300

330

0

1

2

S
H

G
 in

te
ns

ity
 / 

ar
b.

 u
.

 MS
 SP

Spot 2

(PAH/Ma-co-DR13)1

 

0

1

2

3

4

0

30

60
90

120

150

180

210

240
270

300

330

0

1

2

3

4

S
H

G
 in

te
ns

ity
/ a

rb
. u

.

 MS
 SP

Spot 1

(PAH/Ma-co-DR13)1

0
5

10
15
20
25
30

0

30

60
90

120

150

180

210

240
270

300

330

0
5

10
15
20
25
30

S
H

G
 in

te
ns

ity
 / 

ar
b.

 u
.

 SP 1
 SP 2
 SP 3
 SS 1
 SS 2
 SS 3

(PAH/PS-119)1

pH 10

 

0

10

20

30

40

50

0

30

60
90

120

150

180

210

240
270

300

330

0

10

20

30

40

50

S
H

G
 in

te
ns

id
ad

e 
/ a

rb
. u

.

 SP 1
 SP 2
 SP 3
 SS 1
 SS 2
 SS 3

(PAH/PS-119)1

pH 7(a)

 

Figure 12. (a) SHG measurements in three different spots for two different (PAH/PS-119)1 films fabricated with spontaneous drying (pH 
7.0 and pH 10.0 solutions). (b) SHG measurements in two different spots of the same (PAH/Ma-co-DR13)1 film fabricated with nitrogen 
flow drying. 

SHG measurements as a function of the azimuthal angle Ω for films of PAH/PS-119 of different thicknesses prepared at 
pH 7 showed that the films are always isotropic in the sample plane, since they have strong signal with SP polarization 
combination that is independent of the sample orientation. Furthermore, the SS polarization signal is practically zero 
whatever the number of layers, indicating that the samples are also microscopically isotropic. However, we note that the 
SP signal undergoes a change with the number of layers, which is related to the relative orientation of the azo-groups in 
each layer. 

Figure 12. a) SHG measurements in three different spots for two different (PAH/PS-119)1 films fabricated with sponta‐
neous drying (pH 7.0 and pH 10.0 solutions). (b) SHG measurements in two different spots of the same (PAH/Ma-co-
DR13)1 film fabricated with nitrogen flow drying.

SHG measurements as a function of the azimuthal angle Ω for films of PAH/PS-119 of different
thicknesses prepared at pH 7 showed that the films are always isotropic in the sample plane,
since they have strong signal with SP polarization combination that is independent of the
sample orientation. Furthermore, the SS polarization signal is practically zero whatever the
number of layers, indicating that the samples are also microscopically isotropic. However, we
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The marked effect of drying on the molecular arrangement of azopolymer LbL films can also
be investigated by SHG. Figure 12(a) shows SHG measurements as a function of azimuthal
angle Ω for a one bilayer film of (PAH/PS-119) obtained at three different points on each
sample, for two samples fabricated with solutions of different pH values and dried by slow
evaporation. They show that this fabrication procedure leads to isotropic and homogeneous
LbL films, in agreement with the results already found for films of PAH/PSS [34]. The opposite
was observed for self-assembled films of PAH/Ma-co-DR13, shown in Figure 12(b), which were
fabricated with dry nitrogen flow drying. Indeed BAM (Brewster Angle Microscopy) meas‐
urements revealed the presence of orientational domains and inhomogeneity [36]. However,
we have found that thicker films tend to became globally (not locally) more isotropic, since the
SHG signals show smaller variations as a function of rotation, but the SS polarization combi‐
nation does not vanish.

As an example of determining the orientational distribution function for layer-by-layer films, we consider the results 
displayed in Figure 11, where we can see the SHG signal as a function of azimuthal angle Ω for a 10 bilayer film of 
PAH/Ma-co-DR13 [36]. As described in Section 2.4, the results were adjusted to Equations (28) – (33) to determine 1 
through 6, and the best fit lines are shown in Figure 11. Using their definitions (Equations (22) – (27)) and the orientation 
distribution function given by Equation (34), the six equations were solved to find the orientation parameters in F(, ). 
For these films, the following values were determined: θ0 = 37.41±0.24, σ = 12.85±0.53, d1 = 0.009±0.001, d2 = 0.014±0.002, 
d3 = -0.001±0.003, and Ω0 = -11.87±4.78, which fully characterize the orientational distribution of azo-groups in the 
sample. 
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flow drying. 

SHG measurements as a function of the azimuthal angle Ω for films of PAH/PS-119 of different thicknesses prepared at 
pH 7 showed that the films are always isotropic in the sample plane, since they have strong signal with SP polarization 
combination that is independent of the sample orientation. Furthermore, the SS polarization signal is practically zero 
whatever the number of layers, indicating that the samples are also microscopically isotropic. However, we note that the 
SP signal undergoes a change with the number of layers, which is related to the relative orientation of the azo-groups in 
each layer. 

Figure 12. a) SHG measurements in three different spots for two different (PAH/PS-119)1 films fabricated with sponta‐
neous drying (pH 7.0 and pH 10.0 solutions). (b) SHG measurements in two different spots of the same (PAH/Ma-co-
DR13)1 film fabricated with nitrogen flow drying.

SHG measurements as a function of the azimuthal angle Ω for films of PAH/PS-119 of different
thicknesses prepared at pH 7 showed that the films are always isotropic in the sample plane,
since they have strong signal with SP polarization combination that is independent of the
sample orientation. Furthermore, the SS polarization signal is practically zero whatever the
number of layers, indicating that the samples are also microscopically isotropic. However, we
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note that the SP signal undergoes a change with the number of layers, which is related to the
relative orientation of the azo-groups in each layer.

Similarly to the study of PAH/PSS films [24], for PAH/PS-119 films fabricated at pH 7.0 there
is an alternation of the SP intensities as the last layer of the film is PAH or PS-119. Since the
samples are always isotropic, Figure 13 shows the average intensities of the azimuthal SHG
measurements with SP polarization as a function of the number of layers for the three pH
values studied. Some groups have reported a linear increase of χ(2) with the number of bilayers,
especially above 10 bilayers [37–41], implying that average chromosphere orientations in each
bilayer is the same (e.g., all pointing up, on average, in every bilayer). As noted in Figure 13,
the square root of the SHG signal (which is related to the effective value of χ(2)) does not grow
linearly with the number of bilayers for these PAH/PS-119 films. For pH 10.0, the signal rapidly
decreases with the number of layers, up to 20 layers, but remains approximately constant for
pH 7. In the case of pH 3.5, there is a slight increase of signal with thickness up to 10 bilayers,
but the signal is significantly reduced for thicker films, around 30 bilayers (not shown).
Moreover, we always noted alternating SHG intensity after adsorption of each polyelectrolyte
(integer vs. half-integer number of bilayers), at least for the first few bilayers. Specifically, for
the films of PAH/PS-119 at pH 3.5 the authors of references [38] and [39] report a linear growth
of χ(2) for films up to 100 bilayers. However, we observe that for the same pH value the signal
initially grows with the number of bilayers, but also alternating as the last layer is PAH or
PS-119, and decreases from ~ 10 bilayers, in disagreement with references [37–41]. Even for
other films fabricated at other pH values, the increase was not linear. This behavior was
reproduced in another set of samples manufactured with other solutions. Similar effect was
observed by Lvov and co-workers for PDDA/PAZO LbL films where they reported an increase
of χ(2) up to 5 bilayers, but a reduction for thicker films [15]. At the moment we have no
explanation for this discrepancy between our experimental results and those of references [37–
41]. However, we have reported the changes in molecular conformation including the
molecular ordering after adsorption of the subsequent layer [24], and therefore a linear
increasing of χ(2) would be quite surprising, because that would mean that each and every
PS-119 layer has an identical average orientation, and in the same direction. This would be
especially unexpected considering effects such as interpenetration of layers and increasing film
roughness with the number of layers, as has been observed for films of POMA/PVS [43] and
PAH/Ma-co-DR13 [42].

In summary, comparing the intensities in Figure 13, we see that the signal initially grows with
the number of layers for low pH (3.5), and it only decreases for high pH (10.0) and remains
nearly unchanged for almost neutral pH (7.0). When the number of bilayers is high, we
observed that the SHG signal always decreases considerably.

From the absorbance measurements in Figure 7, the amount of PS-119 per bilayer is constant
in each sample for all three pH values. Therefore, we may conclude that the azopolymer chains
do not remain with the same degree of ordering as the film grows, otherwise we should have
observed a linear increase of χ(2) with thickness. Specifically, since there is a decrease in signal
with increasing number of layers, it is necessary that the adsorption of the last layers is affected
by the average ordering of the previous layers, pointing on average in the opposite direction
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of the first ones. If the first few layers were ordered and the following ones had an isotropic
arrangement, the SHG signal should initially grow and then saturate at a constant value for
thick films.

At pH 3.5, PAH has an ionization degree of about 100%, while the glass is hardly ionized (only
about 9% of the surface Si-OH groups, according to references [43, 44]) and the first layer of
PAH would be expected to be very thin due to the high charge density in the chains and low
substrate charge. However, due to a high ionic strength, the electrostatic shield makes the PAH
chain a little more coiled. Therefore, these films at pH 3.5 are slightly thicker and rougher due
to the reduction of electrostatic interactions by an increased ionic strength. This means that the
SHG signal initially increases with thickness, but the net ordering of each additional bilayer is
reduced for thick films, leading to a saturation (and eventual reduction) of SHG signal, as
shown in Figure 13. For pH 10, the glass is highly charged, but the PAH is only about 30%
ionized, thus forming more folded layers than at pH 3.5. Therefore, the adsorbed amount is
large but there are few sites in the PAH layer available for complexation with the PS-119, thus
decreasing the drive for orientational ordering of PS-119 and leading to films that rapidly
become disordered with increasing thickness, reducing the SHG signal. For pH 7, both the
substrate and PAH are quite charged, with a low ionic strength in the solutions, favoring
electrostatic interactions and allowing the film growth with a relative stability of the SHG
signal.

Similarly to the study of PAH/PSS films [24], for PAH/PS-119 films fabricated at pH 7.0 there is an alternation of the SP 
intensities as the last layer of the film is PAH or PS-119. Since the samples are always isotropic, Figure 13 shows the 
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case of pH 3.5, there is a slight increase of signal with thickness up to 10 bilayers, but the signal is significantly reduced 
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Even for other films fabricated at other pH values, the increase was not linear. This behavior was reproduced in another 
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LbL films where they reported an increase of χ(2) up to 5 bilayers, but a reduction for thicker films [15]. At the moment 
we have no explanation for this discrepancy between our experimental results and those of references [37–41]. However, 
we have reported the changes in molecular conformation including the molecular ordering after adsorption of the 
subsequent layer [24], and therefore a linear increasing of χ(2) would be quite surprising, because that would mean that 
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Figure 13. SHG signal and square root of SHG signal as a function of number of bilayers for PAH/PS-119 films fabricated at pH 3.5, 7.0, 
and 10.0. 

In summary, comparing the intensities in Figure 13, we see that the signal initially grows with the number of layers for 
low pH (3.5), and it only decreases for high pH (10.0) and remains nearly unchanged for almost neutral pH (7.0). When 
the number of bilayers is high, we observed that the SHG signal always decreases considerably. 

Figure 13. SHG signal and square root of SHG signal as a function of number of bilayers for PAH/PS-119 films fabricat‐
ed at pH 3.5, 7.0, and 10.0.
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of the first ones. If the first few layers were ordered and the following ones had an isotropic
arrangement, the SHG signal should initially grow and then saturate at a constant value for
thick films.

At pH 3.5, PAH has an ionization degree of about 100%, while the glass is hardly ionized (only
about 9% of the surface Si-OH groups, according to references [43, 44]) and the first layer of
PAH would be expected to be very thin due to the high charge density in the chains and low
substrate charge. However, due to a high ionic strength, the electrostatic shield makes the PAH
chain a little more coiled. Therefore, these films at pH 3.5 are slightly thicker and rougher due
to the reduction of electrostatic interactions by an increased ionic strength. This means that the
SHG signal initially increases with thickness, but the net ordering of each additional bilayer is
reduced for thick films, leading to a saturation (and eventual reduction) of SHG signal, as
shown in Figure 13. For pH 10, the glass is highly charged, but the PAH is only about 30%
ionized, thus forming more folded layers than at pH 3.5. Therefore, the adsorbed amount is
large but there are few sites in the PAH layer available for complexation with the PS-119, thus
decreasing the drive for orientational ordering of PS-119 and leading to films that rapidly
become disordered with increasing thickness, reducing the SHG signal. For pH 7, both the
substrate and PAH are quite charged, with a low ionic strength in the solutions, favoring
electrostatic interactions and allowing the film growth with a relative stability of the SHG
signal.

Similarly to the study of PAH/PSS films [24], for PAH/PS-119 films fabricated at pH 7.0 there is an alternation of the SP 
intensities as the last layer of the film is PAH or PS-119. Since the samples are always isotropic, Figure 13 shows the 
average intensities of the azimuthal SHG measurements with SP polarization as a function of the number of layers for 
the three pH values studied. Some groups have reported a linear increase of χ(2) with the number of bilayers, especially 
above 10 bilayers [37–41], implying that average chromosphere orientations in each bilayer is the same (e.g., all pointing 
up, on average, in every bilayer). As noted in Figure 13, the square root of the SHG signal (which is related to the 
effective value of χ(2)) does not grow linearly with the number of bilayers for these PAH/PS-119 films. For pH 10.0, the 
signal rapidly decreases with the number of layers, up to 20 layers, but remains approximately constant for pH 7. In the 
case of pH 3.5, there is a slight increase of signal with thickness up to 10 bilayers, but the signal is significantly reduced 
for thicker films, around 30 bilayers (not shown). Moreover, we always noted alternating SHG intensity after adsorption 
of each polyelectrolyte (integer vs. half-integer number of bilayers), at least for the first few bilayers. Specifically, for the 
films of PAH/PS-119 at pH 3.5 the authors of references [38] and [39] report a linear growth of χ(2) for films up to 100 
bilayers. However, we observe that for the same pH value the signal initially grows with the number of bilayers, but also 
alternating as the last layer is PAH or PS-119, and decreases from ~ 10 bilayers, in disagreement with references [37–41]. 
Even for other films fabricated at other pH values, the increase was not linear. This behavior was reproduced in another 
set of samples manufactured with other solutions. Similar effect was observed by Lvov and co-workers for PDDA/PAZO 
LbL films where they reported an increase of χ(2) up to 5 bilayers, but a reduction for thicker films [15]. At the moment 
we have no explanation for this discrepancy between our experimental results and those of references [37–41]. However, 
we have reported the changes in molecular conformation including the molecular ordering after adsorption of the 
subsequent layer [24], and therefore a linear increasing of χ(2) would be quite surprising, because that would mean that 
each and every PS-119 layer has an identical average orientation, and in the same direction. This would be especially 
unexpected considering effects such as interpenetration of layers and increasing film roughness with the number of 
layers, as has been observed for films of POMA/PVS [43] and PAH/Ma-co-DR13 [42]. 
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Figure 13. SHG signal and square root of SHG signal as a function of number of bilayers for PAH/PS-119 films fabricated at pH 3.5, 7.0, 
and 10.0. 

In summary, comparing the intensities in Figure 13, we see that the signal initially grows with the number of layers for 
low pH (3.5), and it only decreases for high pH (10.0) and remains nearly unchanged for almost neutral pH (7.0). When 
the number of bilayers is high, we observed that the SHG signal always decreases considerably. 

Figure 13. SHG signal and square root of SHG signal as a function of number of bilayers for PAH/PS-119 films fabricat‐
ed at pH 3.5, 7.0, and 10.0.
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Another interesting feature is the alternation of the SHG signal for films of a few bilayers (data
not shown). For example, for the film of 3 layers (or 1.5 bilayers), (PAH/PS-119)/PAH, typically
the signal is canceled out or significantly reduced, except for pH 7 where the alternating signals
are all large. Here, we will consider only the films formed at pH 3.5 and 10, which show a
different behavior from that observed in our previous report [24]. Compared to the first bilayer,
PAH/PS-119, which presents considerable SHG signal, the (PAH/PS-119)/PAH film has a new
ordering of PS-119 azo-groups, with random or symmetric configuration in the z-direction of
film growth, which yields a vanishing SHG signal. This because in the 1 bilayer film, the
negatively charged azo-groups of PS-119 are oriented on average toward the cationic PAH
layer. In the three-layer film, the signal is greatly reduced, since the third PAH layer modifies
the orientation of the previously adsorbed PS-119 layer, thereby reducing the SHG signal. In
particular, for pH 3.5 the signal is almost completely canceled, indicating an almost perfectly
symmetrical configuration of the azopolymer active groups. This is reasonable because the
two PAH layers of the PAH/PS-119/PAH film are highly and equally charged, exerting nearly
the same influence on the central PS-119 layer.

To investigate in more detail the orientation of azo-groups of PS-119 in very thin films, in the
anomalous region of ordering as a function of thickness for pH 3.5 films (see Figure 13), we
performed a direct measurement of the phase of χ(2) with the SP polarization combination,
using as a reference a thin film of zinc sulfide (ZnS), as described in Section 2.3.

Figure 14(a) shows that the phase of the SHG signal from the sample, which is related to the
average direction of orientation of the azopolymer is always the same for films formed at pH
3.5 with an integer number of bilayers where the last layer is the azopolymer, covering a highly
charged cationic layer of PAH. For the first bilayer, it is expected that the preferred arrange‐
ment of the azo-groups of PS-119 is toward the highly charged layer of PAH, that is, toward
the substrate side. Thus, this behavior is preserved for all films whose last layer is PS-119. Since
the signal for the film with 3 layers, PAH/PS-119/PAH, is null, we can conclude that occurs a
rearrangement of the chromophores in direction to both layers of PAH, such as observed for
PAH/PSS films [24]. Therefore, the results in Figure 14(a) confirm our assumptions about the
orientation of the azopolymer groups.
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Figure 14: SHG interference pattern for PAH/PS-119 films fabricated at pH 3.5 with various numbers 

of bilayers.  is the angle of the silica compensator plate. 
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For films with 2 or 2.5 bilayers, whose signals are less intense, the phase measurement, while
difficult to be performed, confirms that the reordering of the azo-groups also occurs, as shown
in Figure 14(b). When the film is finished with a layer of PAH, PS-119 chromophores undergo
reorientation and then acquire a small average ordering in the direction opposite to the
substrate, causing a reversal of the phase of the SHG signal. Therefore, films with an even
number of layers have the same phase, with azo-groups pointing toward the substrate, while
the 2.5 layer film had the opposite net orientation.

4.3. Effect of temperature on the ordering of azopolymer films

Now, we shall discuss the effect of heating on the ordering of azopolymer films. Figure 15
shows results for PAH/PS-119 films fabricated from solutions at pH 3.5, which are illustrative
of the general behavior of molecular ordering as a function of heating. We begin at room
temperature (~ 20°C) and ramp the temperature up to 190°C. As can be seen, there is no abrupt
variation of SHG signal, but a gradual and significant decrease of intensity, even for thicker
films with 5 or 10 bilayers. Similar behavior was observed for PDDA/PAZO films [15].
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Figure 15. SHG intensity as a function of temperature for PAH/PS-119 films (pH 3.5). 

It is interesting to note that the literature reports that these films are quite thermally stable. They state that the SHG 
signal decreases about 20% from the initial value at room temperature, for temperatures above Tg (~ 140°C). Clearly, 
Figure 15 shows that thermal stability was not confirmed. The SHG intensity goes to almost zero in some cases, such as 
for the (PAH/PS-119)/PAH film (result not shown). The SHG signal for the 1 bilayer film at 150°C is only ~ 25% of initial 
signal at 20°C: a reduction of 75%, instead of only 20% as previously reported [16, 38, 40]. However, these authors do not 
mention how this Tg was measured. It is not clear if it is for the LbL film, including the substrate effect, or for complexed 
molecules in the bulk. 

The fact that we do not observe an abrupt decrease of the SHG signal (indicating a glass transition temperature) can be 
due interactions in the film that are different from those in the bulk materials, like lateral interactions (intralayer) or 
interlayer interactions. Furthermore, our films are formed by two different molecules and we should also consider the 
substrate effect, because the films studied here have only a few layers and the substrate/polymer electrostatic interaction 
is considerable. Our results on films fabricated at pH 7.0 show this influence on the film adsorption (data not shown 
[45]). For these films, it was observed that the SHG signal vanishes at high temperatures for a 2-bilayer film, but not for 
thicker films. This suggests that these thicker films, with a more efficient complexation between layers, have an 
improved thermal stability because it is more difficult to thermally induce disorder. 

Figure 16 shows the ratio of χ(2) at 180°C and 30°C as a function of the number of bilayers, for films fabricated at both pH 
7 and 3.5. Thicker films are more stable at pH 7, but for films at pH 3.5, that ratio was quite independent of thickness. 
However, there is an important difference in the temperature at which the SHG signal reaches the lowest value for pH 
3.5 films. For a 1-bilayer film, this temperature is around 180°C, but for films with 5 and 10 bilayers, this temperature is 
near 160°C. This behavior suggests a significant influence of substrate charge density on the first layers, increasing the 
complexation effect between layers and the thermal stability for these thin films. For thicker films, the 
complexation/interpenetration of layers is not as disturbed as for thin films and the thermal stability increases. However, 
at pH 3.5 the silica substrate is less charged and has less influence on the complexation of layers, resulting in a thermal 

Figure 15. SHG intensity as a function of temperature for PAH/PS-119 films (pH 3.5).

It is interesting to note that the literature reports that these films are quite thermally stable.
They state that the SHG signal decreases about 20% from the initial value at room temperature,
for temperatures above Tg (~ 140°C). Clearly, Figure 15 shows that thermal stability was not
confirmed. The SHG intensity goes to almost zero in some cases, such as for the (PAH/PS-119)/
PAH film (result not shown). The SHG signal for the 1 bilayer film at 150°C is only ~ 25% of
initial signal at 20°C: a reduction of 75%, instead of only 20% as previously reported [16, 38,
40]. However, these authors do not mention how this Tg was measured. It is not clear if it is
for the LbL film, including the substrate effect, or for complexed molecules in the bulk.
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For films with 2 or 2.5 bilayers, whose signals are less intense, the phase measurement, while
difficult to be performed, confirms that the reordering of the azo-groups also occurs, as shown
in Figure 14(b). When the film is finished with a layer of PAH, PS-119 chromophores undergo
reorientation and then acquire a small average ordering in the direction opposite to the
substrate, causing a reversal of the phase of the SHG signal. Therefore, films with an even
number of layers have the same phase, with azo-groups pointing toward the substrate, while
the 2.5 layer film had the opposite net orientation.

4.3. Effect of temperature on the ordering of azopolymer films

Now, we shall discuss the effect of heating on the ordering of azopolymer films. Figure 15
shows results for PAH/PS-119 films fabricated from solutions at pH 3.5, which are illustrative
of the general behavior of molecular ordering as a function of heating. We begin at room
temperature (~ 20°C) and ramp the temperature up to 190°C. As can be seen, there is no abrupt
variation of SHG signal, but a gradual and significant decrease of intensity, even for thicker
films with 5 or 10 bilayers. Similar behavior was observed for PDDA/PAZO films [15].
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Figure 15. SHG intensity as a function of temperature for PAH/PS-119 films (pH 3.5). 

It is interesting to note that the literature reports that these films are quite thermally stable. They state that the SHG 
signal decreases about 20% from the initial value at room temperature, for temperatures above Tg (~ 140°C). Clearly, 
Figure 15 shows that thermal stability was not confirmed. The SHG intensity goes to almost zero in some cases, such as 
for the (PAH/PS-119)/PAH film (result not shown). The SHG signal for the 1 bilayer film at 150°C is only ~ 25% of initial 
signal at 20°C: a reduction of 75%, instead of only 20% as previously reported [16, 38, 40]. However, these authors do not 
mention how this Tg was measured. It is not clear if it is for the LbL film, including the substrate effect, or for complexed 
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interlayer interactions. Furthermore, our films are formed by two different molecules and we should also consider the 
substrate effect, because the films studied here have only a few layers and the substrate/polymer electrostatic interaction 
is considerable. Our results on films fabricated at pH 7.0 show this influence on the film adsorption (data not shown 
[45]). For these films, it was observed that the SHG signal vanishes at high temperatures for a 2-bilayer film, but not for 
thicker films. This suggests that these thicker films, with a more efficient complexation between layers, have an 
improved thermal stability because it is more difficult to thermally induce disorder. 

Figure 16 shows the ratio of χ(2) at 180°C and 30°C as a function of the number of bilayers, for films fabricated at both pH 
7 and 3.5. Thicker films are more stable at pH 7, but for films at pH 3.5, that ratio was quite independent of thickness. 
However, there is an important difference in the temperature at which the SHG signal reaches the lowest value for pH 
3.5 films. For a 1-bilayer film, this temperature is around 180°C, but for films with 5 and 10 bilayers, this temperature is 
near 160°C. This behavior suggests a significant influence of substrate charge density on the first layers, increasing the 
complexation effect between layers and the thermal stability for these thin films. For thicker films, the 
complexation/interpenetration of layers is not as disturbed as for thin films and the thermal stability increases. However, 
at pH 3.5 the silica substrate is less charged and has less influence on the complexation of layers, resulting in a thermal 

Figure 15. SHG intensity as a function of temperature for PAH/PS-119 films (pH 3.5).

It is interesting to note that the literature reports that these films are quite thermally stable.
They state that the SHG signal decreases about 20% from the initial value at room temperature,
for temperatures above Tg (~ 140°C). Clearly, Figure 15 shows that thermal stability was not
confirmed. The SHG intensity goes to almost zero in some cases, such as for the (PAH/PS-119)/
PAH film (result not shown). The SHG signal for the 1 bilayer film at 150°C is only ~ 25% of
initial signal at 20°C: a reduction of 75%, instead of only 20% as previously reported [16, 38,
40]. However, these authors do not mention how this Tg was measured. It is not clear if it is
for the LbL film, including the substrate effect, or for complexed molecules in the bulk.
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The fact that we do not observe an abrupt decrease of the SHG signal (indicating a glass
transition temperature) can be due interactions in the film that are different from those in the
bulk materials, like lateral (intralayer) or interlayer interactions. Furthermore, our films are
formed by two different molecules and we should also consider the substrate effect because
the films studied here have only a few layers and the substrate/polymer electrostatic interac‐
tion is considerable. Our results on films fabricated at pH 7.0 show this influence on the film
adsorption (data not shown [45]). For these films, it was observed that the SHG signal vanishes
at high temperatures for a 2-bilayer film, but not for thicker films. This suggests that these
thicker films, with a more efficient complexation between layers, have an improved thermal
stability because it is more difficult to thermally induce disorder.

Figure 16 shows the ratio of χ(2) at 180°C and 30°C as a function of the number of bilayers, for
films fabricated at both pH 7 and 3.5. Thicker films are more stable at pH 7, but for films at pH
3.5, that ratio was quite independent of thickness. However, there is an important difference
in the temperature at which the SHG signal reaches the lowest value for pH 3.5 films. For a 1-
bilayer film, this temperature is around 180°C, but for films with 5 and 10 bilayers, this
temperature is near 160°C. This behavior suggests a significant influence of substrate charge
density on the first layers, increasing the complexation effect between layers and the thermal
stability for these thin films. For thicker films, the complexation/interpenetration of layers is
not as disturbed as for thin films and the thermal stability increases. However, at pH 3.5 the
silica substrate is less charged and has less influence on the complexation of layers, resulting
in a thermal stability which is independent of film thickness, with only a slight reduction in
the stabilization temperature for thicker films. For films fabricated at pH 7, the substrate charge
is higher, which promotes more efficient complexation between the polyelectrolytes and yields
more thermally stable films (except for a 2-bilayer film that presents an anomalous behavior).

stability which is independent of film thickness, with only a slight reduction in the stabilization temperature for thicker 
films. For films fabricated at pH 7, the substrate charge is higher, which promotes more efficient complexation between 
the polyelectrolytes and yields more thermally stable films (except for a 2-bilayer film that presents an anomalous 
behavior). 
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Figure 16. Reduction of χ(2) due to heating as a function of number of layers, for films fabricated at pH 7.0 and 3.5. The points are the 
ratio of χ(2) measured at 180°C to that at 30°C, and the lines are guides to the eye. 

In order to verify the effect of heating on the structure of films, we compare the SHG signal for films at pH 3.5 before 
heating, and after slow cooling to room temperature. Results indicate that thermally induced disordering is not 
permanent because the SHG signal is restored after slow cooling. This behavior is similar to what happens in the 
spontaneous drying assembly, since as the film cools the chains are losing mobility, but slowly enough for them to 
recover the best configuration induced by electrostatic interaction, thus recovering the order and restoring the SHG 
signal. For the films fabricated at pH 3.5, the SHG signal as a function of the azimuthal angle has the same isotropic 
profile before and after heating. On the other hand, the same was not verified for films fabricated at pH 10, where we can 
observe that after heating the ordering is no longer isotropic, as shown in Figure 17 for a 1-bilayer PAH/PS-119 film. This 
suggests that the films fabricated at this pH value have larger mobility than those at pH 3.5 or 7, which allows the 
rearrangement of chains to form macroscopic domains (~ hundreds of micrometers) with preferential orientation along 
the substrate plane. 

 

Figure 17. SHG signal in SS and SP polarization combination for a one-bilayer PAH/PS-119 film fabricated at pH 10, before and after 
heating to 190°C. 

5. Conclusions 

In this chapter we have discussed how nonlinear optical methods, and in particular second-harmonic generation (SHG), 
can be used to investigate the molecular order in polyelectrolyte layer-by-layer films containing azopolymers. After a 
brief outline of the basic theory of SHG for interface studies, we have shown how its polarization dependence can be 
used to obtain quantitative information about the orientational distribution function of azo-groups in these thin films. 
However, even a qualitative analysis of the SHG signal can give important information about the film structure. For 
example, the SHG dependence on the azimuthal rotation of the sample has shown that the way the films are dried has a 
marked influence of their molecular arrangement, which is isotropic for slow (spontaneous) drying, while it becomes 
anisotropic and inhomogeneous with nitrogen-flow drying. 

We have also investigated how the molecular ordering depends on the film thickness and fabrication conditions, 
especially the pH of the assembling/rinsing solutions. In contrast to previous reports in the literature, we did not find 

Figure 16. Reduction of χ(2) due to heating as a function of number of layers, for films fabricated at pH 7.0 and 3.5. The
points are the ratio of χ(2) measured at 180°C to that at 30°C, and the lines are guides to the eye.

In order to verify the effect of heating on the structure of films, we compare the SHG signal
for films at pH 3.5 before heating, and after slow cooling to room temperature. Results indicate
that thermally induced disordering is not permanent because the SHG signal is restored after

Probing the Molecular Ordering in Azopolymer Thin Films by Second-Order Nonlinear Optics
http://dx.doi.org/10.5772/61180

53



slow cooling. This behavior is similar to what happens in the spontaneous drying assembly,
since as the film cools the chains are losing mobility, but slowly enough for them to recover
the best configuration induced by electrostatic interaction, thus recovering the order and
restoring the SHG signal. For the films fabricated at pH 3.5, the SHG signal as a function of the
azimuthal angle has the same isotropic profile before and after heating. On the other hand, the
same was not verified for films fabricated at pH 10, where we can observe that after heating
the ordering is no longer isotropic, as shown in Figure 17 for a 1-bilayer PAH/PS-119 film. This
suggests that the films fabricated at this pH value have larger mobility than those at pH 3.5 or
7, which allows the rearrangement of chains to form macroscopic domains (~ hundreds of
micrometers) with preferential orientation along the substrate plane.
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Figure 17: SHG signal in SS and SP polarization combination for a one-bilayer PAH/PS-119 film 

fabricated at pH 10, before and after heating to 190C. 
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for interface studies, we have shown how its polarization dependence can be used to obtain
quantitative information about the orientational distribution function of azo-groups in these
thin films. However, even a qualitative analysis of the SHG signal can give important infor‐
mation about the film structure. For example, the SHG dependence on the azimuthal rotation
of the sample has shown that the way the films are dried has a marked influence of their
molecular arrangement, which is isotropic for slow (spontaneous) drying, while it becomes
anisotropic and inhomogeneous with nitrogen-flow drying.

We have also investigated how the molecular ordering depends on the film thickness and
fabrication conditions, especially the pH of the assembling/rinsing solutions. In contrast to
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slow cooling. This behavior is similar to what happens in the spontaneous drying assembly,
since as the film cools the chains are losing mobility, but slowly enough for them to recover
the best configuration induced by electrostatic interaction, thus recovering the order and
restoring the SHG signal. For the films fabricated at pH 3.5, the SHG signal as a function of the
azimuthal angle has the same isotropic profile before and after heating. On the other hand, the
same was not verified for films fabricated at pH 10, where we can observe that after heating
the ordering is no longer isotropic, as shown in Figure 17 for a 1-bilayer PAH/PS-119 film. This
suggests that the films fabricated at this pH value have larger mobility than those at pH 3.5 or
7, which allows the rearrangement of chains to form macroscopic domains (~ hundreds of
micrometers) with preferential orientation along the substrate plane.
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orientation, leading to a linear increase of the optical nonlinearity with thickness. Instead, we
find that for films fabricated at low or high pH, the nonlinearity tends to decrease for thick
films (~10 bilayers). Films fabricated at neutral pH generate an SHG signal that does not vary
significantly with thickness, except for a slight alternation in intensity for films with odd or
even number of layers. These results are due to the influence of adjacent polyelectrolyte layers
on the order of an adsorbed layer, that is, the order of the last adsorbed layer is different than
that for layers within the film. Phase measurements of the SHG signal confirm the reorientation
of polymer groups in the last layer after adsorption of an additional polyelectrolyte layer.
Finally, we have also studied the thermal stability of the molecular arrangement by SHG
measurements as a function of sample temperature. We found that the nonlinear response
presents a gradual and significant reduction upon heating, so that a clear glass transition
temperature cannot be defined for these ultrathin layer-by-layer films. Again, the thermal
stability of the samples depends on their fabrication conditions (pH and thickness), with higher
charge density in the polyelectrolytes and substrate promoting better complexation and
improving their thermal stability. We also noted that the disordering effect of heating is
reversible, and the SHG signal is recovered upon cooling. However, a few samples had their
molecular arrangement becoming anisotropic after a heating/cooling cycle, as a result of
aggregation and formation of molecular domains at the scale of tens of micrometers. We hope
that these examples of SHG applied to the study of thin nonlinear optical polymer films have
shown how powerful the technique can be to obtain information about the film structure at
the molecular level, with also important consequences for their applications in optical devices.
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Abstract

In this book chapter the electromagnetic force between two parallel electric conduc‐
tors has been derived, applying thereby the effects of propagation delay and the Spe‐
cial Relativity theory, taking thereby also into count the thus far neglected effects
introduced by the voltage sources of both circuits. This has been done for a specific
case consisting of two rectangular circuits, aligned to each other along one of the long
sides, at a distance that is short compared to the long sides. The intention in doing so
is to make a meaningful application of the concept of “two parallel conductors of in‐
finite length”, so that it is possible to make a complete calculation of the force between
the two circuits, avoiding thus making a vague claim as for example Maxwell, saying
that the other parts of the conductors do not contribute to the force. What is radically
new in this interpretation is that it is Coulomb’s law that is responsible for the force.

Keywords: Ampère’s Bridge, Ampère’s Law, Coulomb’s Law, electromagnetic force,
Lorentz force, Lorentz transformation, parallel conductors, propagation delay, retard‐
ed action, Special Relativity theory, Sagnac effect, time dilatation

1. Introduction

In several papers evidence has been presented that is able to refute the widely recognized
electromagnetic theory of today [1-5]. One such fundamental law is Lorentz’ force law. Already
1997 a paper presented mathematical proofs showing that this law is unable to explain the
repulsive force between collinear currents, demonstrated in the case of Ampère’s bridge [1].
Even Graneau’s exploding wires and Hering’s pump cause difficulties, when trying to use
Lorentz’ force law in order to explain the effects that have been registered [6-11]. Therefore it
is most exciting to explain one of the most frequent applications of Lorentz force law, the
attractive force exerted between two parallel conductors carrying a DC current. Confessedly,

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



others have made efforts in this respect already near 200 years ago, most famous of them
Ampère [12]. Successors, like Grassmann, have made serious efforts to make the Lorentz force
(in his early pre-Lorentz formulation) appear to be in accordance with Ampère’s results [13].
In a more recent paper, this claim has been discarded through a mathematical analysis of
Grassmann’s derivation [14]. Additionally, in order to introduce a new theory, it must be able
not only to explain experiments that a recognized theory cannot, but also to explain the
experiments that it apparently is successful in explaining. One crucial phenomenon is that of
light, or electromagnetic radiation. In fact, it has been possible to explain this, too, using
basically Coulomb’s law [15-18]. One may mention also electromagnetic induction [3-5].

The traditional methods have the benefit of being able to predict certain experiments, but not
all. A new method must therefore in order to be better both done the first thing, but also be
able to explain more evidence. By going back to the most basic well-corroborated law,
Coulomb’s law, one would expect a possible solution, provided one is very careful and applies
mathematical method in a very strict fashion.

2. Method

2.1. Description of a physical circuit describing two parallel conductors

A geometry is defined, with two parallel conductors aligned to the x axis in a Cartesian
coordinate system. They are assumed to be of a length that is very long compared to the
rectilinear distance. Already Maxwell complained that this kind of analysis is incomplete, if
not taking into account the track along which the respective currents returns to its origin and
that the apparent conflict between the theory of Ampère and that of Grassmann is related to
this [19]. This is done here, too.

Figure 1. The configuration according to Ampère’s bridge used in order to realize a “two-infinite-parallel-conductor”
circuit
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2.2. Mathematical treatment of ‘infinite length’ and other approximations

A geometry is defined, with two parallel conductors aligned to the x axis in a Cartesian
coordinate system. They are assumed to be of a length that is very long compared to the
rectilinear distance between themselves. Already Maxwell complained that this kind of
analysis is incomplete, if not taking into account the track along which the respective currents
returns to its origin and that the apparent conflict between the theory of Ampère and that of
Grassmann is related to this [20].This has been done here, too. What Maxwell did not specify
closer, was the mathematical treatment of the concept ‘infinite length’. It must of course be
infinite with respect to a smaller entity in the circuit. Choosing quadrangle circuits, with side
L  and the distance between the two sides of respective quadrangle circuit that are aligned
along each other are situated at a distance a. Treating the length of respective side as infinite
will be mathematically expressed through

>>L a (1)

where L  [m] denotes the length of the long side of respective circuit and a [m] the distance
between the two parallel branches that are close to each other. Generally, what concerns the
calculations, the integration results do not display higher order terms that are negligible with
respect to the dominating terms. Therefore, a ≅  sign will often be used when accounting for
the integration result.

2.3. The electromagnetic force between two currents

The two respective currents are being analyzed, using Coulomb’s law, taking into account the
effects of propagation delay and the Special Relativity Theory. The effects of the propagation
delay were derived by this author in a paper 1997 [1], using thereby a different interpretation,
than Feynman [21] and Jackson [22]. This author has been successful in showing what the
fallacies are [2]. In the 1997 paper [1] it was crucial to the success in using Coulomb’s law that
the propagation delay was correctly being derived, both due to the “sending charges” of the
“first conductor” and to the “receiving charges” of the “second conductor”. Having done that
analysis, it remains to take into account to the effects of the Special Relativity theory, especially
the Lorentz transformation of lengths. Since that effect is related only to the relative movements
of the two coordinate axes, and has nothing to do with the propagation delay an observer faces,
it may be multiplied straightforwardly to the effect of propagation delay.

An electric current carried by a conductor implies that both the immobile lattice ions and the
moving electrons contribute to the force exerted on other charges. In the case those are
embedded in a neighboring electric conductor that is also carrying an electric current, they
interact with both positive lattice ions and moving conductor electrons. This implies that
altogether four kinds of interaction will take place, each demanding their own mathematical
treatment respectively: from the positive ions of the first conductor to both kinds of charges
of the second conductor and from the electrons of the first conductor to both kinds of charges
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of the second conductor. In the case of quadrangle circuits, the two respective currents appear
both parallel and perpendicular to each other.

2.4. Coulomb’s law, basic formulation

In order to integrate the contribution to the total force between two currents, carried by
conductors, it is most suitable to use the differential force that an incremental segment gives
rise to. If the immobile positive ions of both conductors are taken into account, one may write

1 2 1 2
2

04
r r

pe
D D

D = rx x u
F

r

vv
(2)

where ΔF
⇀

 [N] denotes the incremental the electric force vector between two points of the two
circuits, ρ1 denotes the line charge density of the first circuit [C/m], ρ2 the line charge density
of the second circuit [C/m] Δx1 [m] an infinitesimal length element along the x direction of the
first conductor, Δx2 [m) an infinitesimal length element along the x direction of the second
conductor, r⇀  [m] the distant vector from a point of the first conductor to a point of the second
conductor u⇀ r  [m] a unit vector along the distant vector from a point of the first conductor to a
point of the second conductor and ε0 [F/m] denotes the permittivity of vacuum, assuming thus
the currents being aligned along the x axis, but this will change throughout the chapter,
dependent on which sections of the circuits are being treated, where the distant vector r⇀  has
been dissolved into its three Cartesian components.

( )2 1 2 1, ,0= - -r x x y yv (3)

For simplicity the z-coordinate has been chosen to zero, based on the model with the circuits
situated in the x-y-plane as defined in Fig. 1.

The force between the two currents will appear as the y component of the total force, according
to the following expression:

1 2 1 2
2

04

r r

pe

D D × ·
D · = r y

y
x x u u

F u
r

v vv v
(4)

A new variable has here been introduced, u⇀ y [m] a unit vector along the positive y axis

The case when both conductors are parallel to each other, especially along the x axis.as for
example between line 8 and 9, in the figure above, the attractive or repulsive forces between
them may be described as the y-component of the force in Eq. (2), as expressed in Eq. (4) above.

In this case, where all charges are stationary, there will be neither a propagation delay effect
nor a relativistic effect due to the Lorentz contraction of one or both coordinates.
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2.5. The method deriving propagation delay

As was mentioned previously, the effects of propagation delay becomes relevant, when the
charges are moving, so that the electric field due to a sending charge must be evaluated at an
earlier time event than at the time, when the field was activated at a distant point. Going farther
away, the travel time becomes longer. This is described in the following figure, which is based
on the analysis first being done in another paper [1]:

The expression for the charge density that is being felt, or observed, at a point at a distance,
when the charge density ρ1 is due to individual charges moving with the velocity v⇀ 1, was
derived in the cited paper and is

1
1, 1(1 )r r

·
= -ret

v r
rc

vv
(5)

where ρ1ret  [C/m] denotes the retarded charge density of the first circuit, v⇀ 1 [m/s] the velocity
of a charge element (electrons) of the first conductor and c [m/s] the speed of light, which may
also be written:

1
1, 1(1 cos )r r q= - ×ret

v
c

(6)

where θ denotes the angle between the direction of the first current and the distant vector r⇀

[m].

This expression for the charge density will be used when the electrons are being studied at the
first conductor.

In this connection it has to be mentioned that the traditional interpretation of propagation
delay, as by Feynman [21] in his derivation of the Liénard-Wiechert potentials is fallacious [2].
However, additionally, there will appear a propagation delay effect also with respect to the
charges receiving the action, since the farther away these charges are situated from the sending
charges, the longer the way to travel, and hence, the charge density will appear to be smaller
to the sender than what is the simultaneous charge density. Correspondingly, the expression
for the charge density that is being felt by the sending charges, is also derived in the cited paper
and is

2
2´, 2(1 )r r

·
= -ret

v r
rc

vv
(7)

where ρ2ret  [C/m] denotes the retarded charge density of the second circuit, v⇀ 2 [m/s] the velocity
of a line charge element (electrons) of the second conductor, which may also be written
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2
2, 2(1 cos )r r y= - ×ret

v
c

(8)

where ψ denotes the angle between the distant vector r⇀  [m] and the direction of the second
current. This expression for the charge density will be used when the electrons are being
studied at the second conductor.

2.6. Coulomb’s law, taking into account the effects of propagation delay

The total force between two parts of respective circuit consists of the sum of the forces due to
the four combinations of positive lattice ions and conduction electrons. Using the results of the
preceding section, they are:

The first case is when the electric force due to positive charges of both conductors is being
studied. The expression for the force will in this case be

1 2 1 2
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04

r r

pe+®+

× · × D D
D · = r y

y
u u x x

F u
r

v vw v
(9)

where ΔF
⇀

+→+ [N] denotes the incremental force from the positive charges of the first conductor
to the positive charges of the second conductor, still sticking to the case with both sections
aligned along the x axis.

The second case, applying to conduction electrons of the first conductor affecting the positive
immobile ions of the second conductor will be

1, 2 1 2
2

04

r r

pe-®+

- × × · × D D
D · = ret r y

y
u u x x

F u
r

v vw v
(10)

where ΔF
⇀
−→+ [N] denotes the incremental force from the negative charges of the first conductor

to the positive charges of the second conductor, thereby using Eq. (5) for the electrons, applying
then the minus sign.

The third case, applying to the positive immobile ions of the first conductor exerting a force
on the conduction electrons of the second conductor, will correspondingly be

1 2, 1 2
2

0

( )

4

r r

pe+®-

- × · × D D
D · = ret r y

y
u u x x

F u
r

v vw v
(11)

where ΔF
⇀

+−− [N] denotes the incremental force from the positive charges of the first conductor
to the negative charges of the second conductor.
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+−− [N] denotes the incremental force from the positive charges of the first conductor
to the negative charges of the second conductor.
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Finally, the fourth case, applying to conduction electrons of the first conductor exerting a force
on the conduction electrons of the second conductor will be:

1, 2, 1 2
2

04

r r

pe-®-

× × · × D D
D · = ret ret r y

y
u u x x

F u
r

v vw v
(12)

where ΔF
⇀
−→− [N] denotes the incremental force from the negative charges of the first conductor

to the negative charges of the second conductor.

Adding these four contributions, keeping in mind also that

1 1 1r=I v (13)

where I1 [A] denotes the current of the first conductor and

2 2 2r=I v (14)

where I2 [A} denotes the current of the second conductor and

2

0 0

1
e m

= c (15)

where μ0 [N / A2] denotes the permeability of vacuum, gives rise to the following expression
for the total electric force between two electric currents, carried by conductors, and has been
earlier derived [1], :

0 1 2 1 2
2

cos cos
4

m q y

p

× D D
D = ×

× r
I I x x

F u
r

v v (16)

valid for the more general case, when the angles between two conductors may be chosen
arbitrarily. In the case of two parallel conductors

q y= (17)

This expression was also successful in predicting the repulsive force between the two parts of
Ampère’s bridge, whereas the Lorentz force wasn’t [23].
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2.7. Coulomb’s law, taking into account also the effects of the Special relativity theory

The Special relativity theory implies that relative movement makes the extension of the moving
things become smaller, as viewed from point of view of the laboratory system, thereby using
the so-called standard configuration [24]. Hence, the vectors between moving and not-moving
charges must necessarily be adjusted accordingly.

Hence, in order to derive more exact expressions for the electric force due to moving charges,
all terms containing the distance vector between charges in the expressions above, even
implicitly, must be modified by using the Lorentz contraction of space, more precisely the
point of the vector that connects to a moving charge element [25]:

2 2
'

1

-
=

-

x vtx
v c

(18)

where x ' [m] denotes the Lorentz transformation of the x variable of the first circuit, movement
assun´med to take place along the x axis, i.e. Standard Configuration.where some authors
prefer to use the term Lorentz factor [26] :

2 2

1( )
1

g =
-

v
v c

(19)

where the Lorentz factor γ(v) is dimensionless. One thing that must be taken into account,
when the Lorentz transformation is concerned, is that every single incremental charge element
that is moving must be denoted its own specific Lorentz transformation, since the Lorentz
transformation is in fact dealing with single points moving with a velocity v. This becomes
evident, when realizing that it is one event that is observed from two different coordinate
systems, i.e. inertial systems [27]. This way of using the Lorentz transformation was further‐
more successful in explaining the Sagnac effect [28].

When performing the calculations, a simplification will be introduced that the electrons
carrying the both currents are propagating with the same velocity, i.e.

1 2= =v v v (20)

For convenience it is here repeated that v⇀ 1 [m/s] denotes the velocity of a charge element
(electrons) of the first conductor and v⇀ 2 [m/s] the velocity of a charge element (electrons) of the
second conductor.This assumption in turn leads to

1 2( ) ( ) ( )g g g= =v v v (21)
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Some necessary preparations will also be needed before it is possible to perform the integra‐
tions, since the denominators of the terms that have to be integrated are on a form that makes
integration on a closed form unfeasible, except for Eq. (9). Serial expansion of the denominators

in the shape of binomial series [29] will make it possible to move terms of higher order of ( v
c )

embedded in the γ(v) terms of the denominator up to the numerator.

The Lorentz transformation according to the Special Relativity theory will be applied. By
practical reasons the calculations have been separated into two categories: the parts of the
conductors being interacting with each other being parallel respectively perpendicular to each
other. It may be remarked that the Lorentz transformation will affect the infinitesimal incre‐
mental length element dx in the denominator, so we will have

( )r g= ×R dQv
dx

(22)

where ρ R [C/m] denotes the Lorentz transformed line charge density.

Along a specified distance (according to the reference system K) along the positive direction
of movement, there will apparently be more charges and if this would be the case for all
directions of movement, as when the charges are turning back to their origin, hence in the
opposite direction, charges would seem to have been “created”. However, a second effect, the
‘time dilation’, will make the opposite thing with the incremental length elements in that
direction, and, hence, the sum of charges will remain unchanged, independently of from which
coordinate system one prefers to observe the events.This is described in the following.

Additionally, there is also an effect, time dilatation that has to be taken into account. This effect
causes the observer of K to register different time proceeding dependent of the direction of
movement. The basic formula describing time dilatation is [28], [30]:

2
' ( )(1 )g= -

dt v dxv
dt dtc

(23)

Assuming the velocity of the moving electrons being v, makes Eq.(23) transform to:

2

2
' ( )(1 )g= -

dt vv
dt c

(24)

where t  [s] denotes the time according to the K inertial system, t ' [s] the Lorentz transformed
time being observed in K to take place in the K’ system.

Eq. (24) may in turn be re-written to
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' 1
( )g

=
dt
dt v (25)

which implies that γ(v) times more charge will flow through a cross section given a certain
time.

but logically, if assuming that the movement takes place in the opposite direction, applying
this on Eq. (23) leads to approximately

' ( )g=
dt v
dt

(26)

in that case,

since

2 2

2 2(1 ) 1+ @ -
v v
c c

(27)

if neglecting higher order terms of v
c .

Eq. (24) may accordingly be re-written to

3' ( ( ))g=
dt v
dt

(28)

This implies that (γ(v))3 times less charge will flow through a cross section given a certain time,
i.e. one will have to divide the force by (γ(v))3.

In the case of a rotating disc, the Sagnac effect describes, how light being propagated along the
direction of rotation will travel a longer distance than a light beam sent counterclockwise along
the same disc [28]. If for example two electron currents flow along the same positive axis, there
will not be any time dilatation when comparing them, but if the currents are directed in
opposite direction to each other, the effect will be doubled. However, in the case of perpen‐
dicular currents, there will be no such difference, since all movement is perpendicular to each
other and, hence, there will not be any difference in propagation time in either direction. This
all will become more evident, when defining the incremental force contributions due to every
incremental displacement.
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2.8. The parts of the two conductors being parallel, aligned along the x axis

The expressions for the electric force due to the four combinations of charges (9), (10), (11) and
(12) will be modified, using the Lorentz transformation. In the first case, described by Eq. (9),
there will be no change, since all the charges are being at rest and, accordingly, no relativistic
effects will be observed:

1 2 1 2
2

04

r r
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× · × D D
D · = D · = r yR

y y
u u x x

F u F u
r

v vv wv v
(29)

where

2 1 2 1( , ,0)= - -r x x y yv (30)

where r⇀  [m] denotes the distant vector from a point of the first conductor to a point of the
second conductor.

The case when conduction electrons of the first conductor are affecting the immobile, positive
ions of the second conductor, as they are moving along the positive x axis, will be more
complicated. Applying Eq. (22) and (25) leads implies that
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where θ ' denotes the Lorentz transformed angle for this case, r ' [m] the Lorentz transformed
absolute value of the Lorentz transformed distance vector r⇀ ' [m] and u⇀ r ' [m] a unit vector along
the Lorentz transformed distant vector r⇀ ' from a point of the first conductor to a point of the
second conductor, where

1
2 2 1
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and
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(33)

The case when the positive, immobile ions of the first conductors are is exerting a force on the
conduction electrons of the second conductors, as they are moving along the positive x axis,
will be also be more complicated. Applying Eq. (22) and (25) leads to:
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where θ ' ' denotes the Lorentz transformed angle for this case, r ' ' [m] the Lorentz transformed
absolute value of the Lorentz transformed distance vector r⇀ ' ' [m] and u⇀ r '' [m] a unit vector
along the Lorentz transformed distant vector r⇀ ' ' from a point of the first conductor to a point
of the second conductor, where
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In the case either of the currents flows in the opposite direction, instead of Eq. (25) should be
applied Eq. (28) together with Eq. (22) on the equation dealing with that current (i.e. either Eq.
(31) or Eq. (34).

The last case, the conduction electrons of the first conductor affecting the conduction electrons
of the second conductor, there will be no time dilation effect, but still a Lorentz contraction.,
This will give rise to the following expression:
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applied Eq. (28) together with Eq. (22) on the equation dealing with that current (i.e. either Eq.
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This will give rise to the following expression:

1 2
1 2 ''' 1 22

´ 2
0

(1 cos ''') (1 cos ''')
( ( ) )

4 ( ''')

r q r q
g

pe-® -

- × - × × · × D D
D · = ×

r yR
y

v v u u x x
c cF u v

r

v v
v v (37)

where

2 1
2 1

2 1
''' ( , ,0)

( ) ( )g g
= - -

x x
r y y

v v
v

(38)

and

2 1

2 1( ) ( )
cos '''

'''
g g

q
-

=

x x
v v

r
(39)

Advanced Electromagnetic Waves72

where θ ' ' ' denotes the Lorentz transformed angle for this case, r ' ' ' [m] the Lorentz transformed
absolute value of the Lorentz transformed distance vector r⇀ ' ' ' [m] and u⇀ r ''' [m] a unit vector
along the Lorentz transformed distant vector r⇀ ' ' ' from a point of the first conductor to a point
of the second conductor. Both the conduction electrons of the first circuit and the conduction
electrons of the second circuit are moving, thereby both implying the need for a Lorentz
transformation. Hence,
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Adding the four contributions to the force, assuming the velocities being equal, expressed
through Eq. (29), Eq. (31), Eq. (34) and Eq. (37) gives, thereby using Eq. (34) (39), the result for
the case the currents are being directed along the same direction:
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where F
⇀ R

total
 [N] denotes the total force due to Lorentz transformed entities, due to the sum

of the contributions from all participating charges, for two specified sections of respective
conductor, or, using Eq. (13), Eq. (14) and Eq. (15) one may as well write
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One may already now observe the leading term −1 in Eq. (42), pointing to the attractive force
between parallel electric currents.

When the direction is the opposite of either current, in the case either or both of the currents
flows along the negative x axis, instead of Eq. (25) Eq. (28) would have to be applied together
with Eq. (22) on the equation dealing with that current (i.e. either Eq. (31), Eq. (34) or Eq. (37).

Eq. (29) will remain unchanged, since in that case both charges are at rest, implying thus no
relativistic effects.

The result is the following modified versions of these equations:
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The multiplicative term is the sum of the effect of both the forwards moving electrons of the
first conductor and the backwards moving electrons of the second conductor.

Adding the four contributions to the force, setting the velocities equal, expressed through Eq.
(29), Eq. (43), Eq. (44) and Eq. (45) gives, thereby using Eq. (39), the result for the case the
currents are flowing opposite to each other, along the x axis:
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which apparently implies that the force will be of equal strength, but with opposite sign. In
that case. Using Eq. (13), Eq. (14) and Eq. (15) one may as well write
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2.8.1. Branch 8 to 9

In order to calculate the force between the two branches 8 and 9, one has to insert

2 1- =y y a (48)

where a [m] indicates the distance between the two parallel branches that are close to each
other, in Eq. (42), or
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Solving the integral gives the result
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Adding the four contributions to the force, setting the velocities equal, expressed through Eq.
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currents are flowing opposite to each other, along the x axis:

2 21 1 2 2 2 1
5

0

( )
(( ) (1 cos ))

4
r r

q
pe

D × D × -
D · @ × -R

total y
x x y y vF u

cr
v

(46)

which apparently implies that the force will be of equal strength, but with opposite sign. In
that case. Using Eq. (13), Eq. (14) and Eq. (15) one may as well write
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2.8.1. Branch 8 to 9

In order to calculate the force between the two branches 8 and 9, one has to insert
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where a [m] indicates the distance between the two parallel branches that are close to each
other, in Eq. (42), or
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Solving the integral gives the result
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where F R
total

(n→n) [N] indicates the total force due to Lorentz transformed entities, due to the
sum of the contributions from all participating charges, for two specified sections of respective
conductor,

The negative sign implies that it is a question of an attractive force.

2.8.2. Branch 8 to 6

In this case the currents are of opposite direction and hence, instead of applying Eq. (25) on
the electrons of branch 6, one will have to apply Eq. (28).

Here
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The summation of the contributions from all the charges will in this case be
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Solving the integral gives the result:
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2.8.3. Branch 8 to the voltage source of branch 6

The claim that the voltage source is playing a role in the balance of forces between electric
currents was shown already in an earlier paper [31] and accordingly, Eq. (49) would have to
be replaced by an integral applying an impulse current instead of I2, namely
.I2⋅3L ⋅δ(x2− L / 2, )

It has to be observed that the direction of that current is opposite to I2, implying thereby the
need for using Eq. (42), i.e. the current I1 has the same direction as .I2⋅ L ⋅δ(x2− L / 2, ).

In this case y2− y1 =
L
2
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The total contribution to the force here will accordingly be:
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Solving the integral gives the result:
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where VSn indicates a voltage source with applied branch number.

2.8.4. Branch 1 to 9

Since the geometry is exactly the same as in the case, when branch 8 is affecting branch 6, the
integral equation will be almost the same, even though here
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The summation of the contributions from all the charges will in this case be

2 1

20 1 2 1 2 2 1
3 2

0 0

( ) ( )2 (1 )
4

m

p= =

× -
· @ × -

×ò ò ò
L L

R
total y

x x

LI I dx dx x x
dF u

r r

v v (57)

The integration result according to Eq. (53) can be used straightforwardly, since the small
difference in y2− y1 compared to Eq (51) will be negligible.
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2.8.5. Branch 1 to 6

In order to calculate the force between the two branches 1 and 6, one will have to set

2 1- =y y L (59)
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in Eq. (42), or
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Solving the integral gives the result
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2.8.6. Branch 1 to the voltage source of branch 6

In this case involving a voltage source, one will have to apply an impulse current instead of
I2, namely .3I2⋅ L ⋅δ(x2− L / 2, )

It has to be observed that the direction of that current is opposite to I2, implying thus the need
for using Eq. (42), i.e. the current I1 has the same direction as .I2⋅ L ⋅δ(x2− L / 2).

In this case y2− y1 = L

The total contribution to the force here will be:
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Solving the integral gives the result:
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2.8.7. Voltage source of branch 1 to branch 9

In this case involving a voltage source, one will have to apply an impulse current instead of
I1, namely .I1⋅3L ⋅δ(x1− L / 2, )

It has to be observed that the direction of that current is opposite to I2, implying thus the need
for using Eq. (42), i.e. the current I2 has the same direction as .I1⋅3L ⋅δ(x1− L / 2, ).

In this case y2− y1 =
L
2
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The total contribution to the force here will be:
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Solving the integral gives the result:
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2.8.8. Voltage source of branch 1 to branch 6

In this case involving a voltage source, one will necessarily have to apply an impulse current
instead of I1, namely .I1⋅3L ⋅δ(x1− L / 2, )

It has to be observed that the direction of that current is opposite to I2, implying thus the need
for using Eq. (42), i.e. the current I2 has the same direction as .I1⋅3L ⋅δ(x1− L / 2, ).

In this case y2− y1 = L

The total contribution to the force here will be:
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Solving the integral gives the result:
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2.8.9. Voltage source of branch 1 to the voltage source of branch 6

In this case Eq. (37) will again be used, but in this case replacing both the currents I1 and I2 in
Eq. (42) with impulse currents, namely I1⋅3L ⋅δ(x2− L / 2, ) and I2⋅3L ⋅δ(x2− L / 2, ).

In this case y2− y1 = L

The total contribution to the force will in this case be:
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2.8.9. Voltage source of branch 1 to the voltage source of branch 6

In this case Eq. (37) will again be used, but in this case replacing both the currents I1 and I2 in
Eq. (42) with impulse currents, namely I1⋅3L ⋅δ(x2− L / 2, ) and I2⋅3L ⋅δ(x2− L / 2, ).

In this case y2− y1 = L

The total contribution to the force will in this case be:
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Solving the integral gives the result:
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2.9. The parts of the two conductors being parallel, aligned along the y axis

In this case both branches are situated along the y axis, necessary changes in the equation for
the force between parallel currents will be needed. The earlier results concerning currents
aligned to the x axis, expressed in Eq. (42) and Eq. (47) must necessarily be modified in order
to fit with these facts. This means that the expression dealing with currents moving both in the
same y direction will obey the following equation
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Further, in the case the currents flow opposite to each other, the following equation will have
to be chosen:
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2.9.1. Branch 10 to 7

In this case the currents flow opposite to each other and one should therefore be tempted to
use Eq. (71). However, since the two currents come close to each other at one point, thereby
giving rise to a singularity that is impossible to treat straightforwardly, it is necessary to extend
the definition of the ‘thin conductors’ carrying the respective currents, to let them have
extension in the x direction, though small, so that x1 : 0→w and x2 : 0→w. In that case it is
furthermore more suitable to apply Eq. (71). This all will be done the following way:
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The approximation that has to be done, when both the conductors are to be regarded as ‘thin’,
i.e. w→0 and the distance between their meeting points are small, a < < L , is to decide, which
one is the very smallest. If choosing w < <a < < L

when solving the integral the following result will arise:

0 1 2(10 7) ( ln ln 4)
4

m
p

® = · @ × - +òR R
total total y

I I LF dF u
a

v v (73)

2.9.2. Branch 10 to5

In order to calculate the force between branch 10 and 5, one will have to insert x2− x1 = L  in

Eq. (70). Since the currents of the two branches flow in the same direction, Eq (70) will be
applied.

The summation of the contributions from all the charges will in this case be
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Solving the integral gives the result:
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2.9.3. Branch 2 to 7

In order to calculate the force between branch 2 and 7, one will have to insert x2− x1 = − L  in Eq
(70). Since the currents of the two branches flow in the same direction, Eq. (70) will be applied.
Here the summation of the contributions from all the charges will in this case be
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Solving the integral gives the result:
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2.9.4. Branch 2 to 5

In this case the currents flow opposite to each other and one should therefore be tempted to
use Eq. (71). However, since the two currents come close to each other at one point, thereby
giving rise to a singularity that is impossible to treat straightforwardly, it will be necessary to
extend the definition of the ‘thin conductors’ carrying the respective currents, to let them have
extension in the x direction, though small, so that x1 : L −w→ L  and x2 : L −w→ L . In this case
it is furthermore more suitable to apply Eq. (71). This all will be done the following way:
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where w [m] indicates the width of the conductor. The approximation that has to be done,
when both the conductors are to be regarded as ‘thin’, i.e. w→0, and the distance between their
meeting points are small, so that a < < L , is to decide, which one is the very smallest. If choosing
w < <a < < L  when solving the integral will give rise to the following result:
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2.10. The parts of the two conductors being perpendicular to each other, from y axis to x axis

In the case one branch is situated along the y axis and the other along they x axis, necessary
changes in the equation for the force between parallel currents have to be undertaken. The
equations describing the four different contributions to the force, due to the four combinations
of charges, Eq. (29), Eq. (31), Eq. (34) and Eq. (37), will be used, but modified with respect to
the new directions. As mentioned earlier, in Ch. 2.6, there will be no time dilation effect. This
leads to the following equation for the total incremental force between the two branches, in
the case both currents flow along the respective positive axis:
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If one of the currents flows along a negative axis, the equation will change sign, so that:
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2.10.1. Branch 10 to 9

In order to calculate the force between the two branches 10 and 9, one will have to insert x1 =0

and y2 =
L
2  in Eq. (80), or
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Solving the integral gives the result
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2.10.2. Branch 2 to 9

In order to calculate the force between the two branches 2 and 9, one will have to assume x1 = L

and y2 =
L
2  in Eq. (80), or
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Solving the integral gives the result
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2.10.3. Branch 10 to 6

In order to calculate the force between the two branches 10 and 6, one has to insert x1 =0 and
y2 = L  in Eq. (81), thus keeping in mind the change of direction of the second current with
respect to the two preceding sections, in this case:
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Solving the integral gives the result
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2.10.4. Branch 2 to 6

In order to calculate the force between the two branches 10 and 6, one has to set x1 = L  and
y2 = L  in Eq. (81), or:
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Solving the integral gives the result
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2.10.5. Branch 10 to Voltage source 6

In this case involving a voltage source, one will have to apply an impulse current instead of
I2, namely .I2⋅3L ⋅δ(x2− L / 2, )

In this case x1 =0 and y2 = L

It has to be observed that the direction of that current is opposite to I2, implying thus the need
for changing sign compared to the integral equation for section 2.9.3 dealing with the forces
between branch 10 and branch 6, so that instead Eq. (80) should be used, thereby expressing
the total: contribution to the force here:
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Solving the integral gives the result:
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2.10.6. Branch 2 to Voltage source 6

In this case involving a voltage source, one will have to apply an impulse current instead of
I2, namely .I2⋅3L ⋅δ(x2− L / 2, )

In this case x1 = L  and y2 = L

It has to be observed that the direction of that current is opposite to I2, implying thus the need
for changing sign compared to the integral equation for section 2.9.3 dealing with the forces
between branch 10 and branch 6, so that instead Eq. (80) should be used, thereby expressing
the total: contribution to the force here:
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Solving the integral gives the result:
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2.11. The parts of the two conductors being perpendicular to each other, from the x axis to
the y axis

In the case one branch is situated along the x axis and the other along they y axis, necessary
changes in the equation for the force between parallel currents have to be undertaken. The
earlier results concerning currents aligned to the x axis, expressed in Eq. (42) and Eq. (47) must
necessarily be modified in order to fit with these facts. This will lead to the following equation:
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If one of the currents flows along a negative axis, the equation will change sign, so that:
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2.11.1. Branch 1 to 7

In order to calculate the force between the two branches 1 and 7, one has to insert y1 =0 and
x2 =0 in Eq. (94), and integrating, or
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If one of the currents flows along a negative axis, the equation will change sign, so that:
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2.11.1. Branch 1 to 7

In order to calculate the force between the two branches 1 and 7, one has to insert y1 =0 and
x2 =0 in Eq. (94), and integrating, or
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Solving the integral gives the result:
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2.11.2. Branch 1 to 5

In order to calculate the force between the two branches 1 and 7, one has to insert y1 =0 and
x2 =0 in Eq. (95), and integrating, or
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Solving the integral gives the result:
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2.11.3. Branch 8 to 7

In order to calculate the force between the two branches 8 and 7, one has to insert y1 =
L
2 −a

and x2 =0 in Eq. (52d’), or
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Solving the integral gives the result:

1 2

0

1 1(8 7) ( ) ( ln ln(1 5))
4 3 5pe

® @ × × - + - + +R
tottal

I I a LF
L a (101)

The Electromagnetic Force between Two Parallel Current Conductors Explained Using Coulomb’s Law
http://dx.doi.org/10.5772/61221

85



2.11.4. Branch 8 to 5

In order to calculate the force between the two branches 8 and 7, one has to insert y1 =
L
2 −a

and x2 = L  in Eq. (52c’), or
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Solving the integral gives the result:
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2.11.5. The Voltage source of branch 1 to branch 7

In this case involving a voltage source, one will have to apply an impulse current instead of
I1, namely .I1⋅3L ⋅δ(x1− L / 2, )

In this case x2 =0 and y1 =0

It has to be observed that the direction of that current is opposite to I1, implying thus the need
for changing sign compared to the integral equation in Sec. 2.10.1 dealing with the forces
between branch 1 and branch 7. Hence, instead Eq. (95) would have to be used, thereby
expressing the total: contribution to the force here:
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Solving the integral gives the result:
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2.11.6. The Voltage source of branch 1 to branch 5

In this case involving a voltage source, one will have to apply an impulse current instead of
I1, namely .I1⋅3L ⋅δ(x1− L / 2, )
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Solving the integral gives the result:
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2.11.6. The Voltage source of branch 1 to branch 5

In this case involving a voltage source, one will have to apply an impulse current instead of
I1, namely .I1⋅3L ⋅δ(x1− L / 2, )
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In this case x2 = L  and y1 =0

It has to be observed that the direction of that current is opposite to I1, implying thus the need
for changing sign compared to the integral equation in Sec. 2.10.2 dealing with the forces
between branch 1 and branch 5. Instead, Eq. (94) should be used, thereby expressing the total:
contribution to the force here:
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Solving the integral gives the result:
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3. Judgment (assessment) of the calculations

If assessing all the calculations for the different parts of the circuits, it becomes evident that it
is only one that dominates over all the others, namely the force between the parts of the two
circuits aligned along each other at a distance a a that is small compared to all the other

dimensions of the circuits that are of order L , or a
L →0. The result is given through Eq. (50),

implying an attractive force between these parts of the conductors. The force is furthermore
proportional to the length of the conductors and inverse proportional to their mutual distance.

4. Conclusion

The two respective currents have been thoroughly analyzed, using Coulomb’s law, taking into
account the effects of propagation delay and the Special Relativity Theory. The way the effects
of the propagation delay have been derived is that of this author in a paper 1997 [1], which
differs fundamentally from the traditional interpretation, as that of Feynman [21] and Jackson
[22]. This author has been successful in showing what the fallacies are [2]. Basically, Feynman
committed a mathematical fault with respect to the calculation of the propagation delay, when
deriving the Liénard-Wiechert potentials [21]. In the 1997 paper by this author [1] it was crucial
to the success of Coulomb’s law that the effects of propagation delay had been correctly
derived, both with respect to the “sending charges” of the “first conductor” and to the
“receiving charges” of the “second conductor”. The first effect gives account for the depend‐
ence of the first current in the expression for the electromagnetic force, the second one for the
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second current in that same expression, but of course, it is arbitrary, which one is treated as
sending or receiving current. This treatment makes it possible to see a product between two
currents in an application of Coulomb’s law, and, hence, there will be no need for the Lorentz
force. When that analysis has been done, it remains to take into account to the effects of the
Special relativity theory, especially the Lorentz transformation of lengths. Since this effect is
related only to the relative movements of the two coordinate axes, and has nothing to do with
the propagation delay an observer faces, it may be multiplied straightforwardly to the effect
of propagation delay. The expression for the force between the two currents are compared to
the expression that Ampère arrive at and to Lorentz’ force law. Thereafter follows a discussion
of the pro et contra of respective model. The result in this article is based on two well-
corroborated natural laws: Coulomb’s law [23] and the Special relativity theory. Ampére in
turn, derives his law in a strictly empirical sense [32], searching for similarities with Coulomb’s
law. However, since in his time, the individual electron had not yet been discovered and,
secondly, the Special relativity theory had not been defined. Hence, Ampère had no other
choice than to establish a fairly good empirical law. Lorentz (or first: Grassmann) faced the
same problem, but his formula was derived through evident mathematical faults [15]. Nb. This
term ’Ampère’s force law´ is not the same law as that Jackson denotes Ampère’s law. Please
cf. the original paper by Ampère [13] and Jackson [24]. This would make it possible to create
a continuous, logical chain, from the findings by Ampère to the established Maxwell electro‐
dynamics. Assis has made an effort to prove that both Ampère’s law and Grassmann’s law
produce the same result, when the forces within Ampère’s bridge are being derived [15].
Admittedly, he concedes that they are not equal at every point, but in the integral sense, when
a complete, closed electric circuit is taken into account. From a strictly mathematical pint of
view, however, if two functions are not equal at every point, they don’t express equal functions.
This is taught in the most basic undergraduate courses. Anyhow, stating that all electric circuits
are necessarily closed, he arrives at the conclusion that both laws are equally applicable on
electric circuits.

To conclude, all three of them: Coulomb’s law, Lorentz’ force law and Ampère’s force law can
account for the attractive force exerted between two parallel electric conductors, carrying a
current in the same direction. On the mere basis of the shape of the functions, it is not possible
to decide, which one is best expressing physical reality, since the very measurements of
currents involves a theory for the force between currents in the context of traditional meas‐
urement instruments. Hence, for every choice of model, there will necessarily appear a
coupling constant that makes the measurements fit with the theory. Therefore, it remains to
make a qualitative analysis of the three models. Above it has already been explored that
Coulomb’s has been used in a very strict manner, applying only the effects of propagation
delay and the Special Relativity theory, whereas Ampère’s force law is only expressing an
empirical estimation of the force and the Lorentz force has been fallaciously derived, using
Ampère’s force law.

Hence, the conclusion to be drawn is that Coulomb’s law gives the most comprehensive
explanation to the force.
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Abstract

Partial discharge occurs a lot in shielded dielectric power cables. Partial discharge
pulses are high-frequency electromagnetic waves that propagate in the shielded
dielectric power cables. This chapter will study partial discharge propagation and
detection in shielded dielectric power cables.

Keywords: Propagation, Detection, Shielded Power Cables

1. Introduction

1.1. Shielded dielectric power cables

Since the 1970s, shielded dielectric cables have been used overseas, and since the mid-1980s,
they have been extensively used in North America as well. Today, because of environmental
concerns, shielded solid dielectric cables are used more and more and most new power cables
installed are solid dielectric cables. Figure 1 [1] shows the structure of a typical high-voltage
shielded dielectric power cable. The conductor core F is the part that delivers power. The
conductor shields C and E help smooth the electric field between the conductor and the
insulation materials. The dielectric or insulation D is used to insulate high-voltage core F from
the ground, i.e. neutral wires B. Encapsulating jacket A prevents water and dust from getting
into the cable.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Figure 1. A typical high-voltage extruded solid dielectric cable. A, encapsulating jacket; B, neutral wires; C, ground
shield; D, dielectric; E, conductor shield; F, conductor; the conductor shield and ground shield are semiconductive.
Usually, they are made by adding carbon black into a polymer and the particle size of the carbon black ranges from 15
to 50 nm. The basic function of this configuration is to confine the electric field within the cable and obtain a symmetri‐
cal radial distribution of the electric within the dielectric [1].

1.2. Partial discharge in shielded dielectric power cables

Most failures occurring in the shielded dielectric cables are related to partial discharge. Partial
discharges are localized breakdowns in a small portion of the insulations, which can be solid
or fluid electrical insulation. When high voltage is applied to high-voltage equipment, defects
introduced during the manufacturing process such as contained insulation cracks, contained
insulation surfaces, or voids can all lead to partial discharges. In some cases, even without any
defects, aging can cause the degradation of the insulator leading to partial discharges. PD
makes damage to the equipment, and equipment with PD occurring within will eventually
fail after a certain time depending on the strength of the PD if proper treatments are not applied.
It’s important to monitor partial discharges in high-voltage systems and if PD is detected,
appropriate actions should be taken to prevent sudden failures, which can cause big blackouts.

Figure 2 gives us some basic ideas on how partial discharges occur. The cavity in the insulation
normal contains gas which could be ionized when the electrical field exceeds the cutoff
strength. When this happens, electromagnetic waves in the radiofrequencies are generated
along with light, heat, noise, and possibly gas. With appropriate technologies and by detecting
the HF radio signals, the magnitude as well as the location of partial discharges can be
identified and used for assessing the health status of the shielded dielectric cable.

Figure 2. A “typical” partial discharge mechanism. The cavity in the insulation normally contains gas, which could be
ionized when the electrical field exceeds the cutoff strength.
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2. Electromagnetic wave propagation in shielded dielectric cables

2.1. Partial discharge pulse properties

As discussed above, PD can create high-frequency electromagnetic waves in the radiofre‐
quencies, heat, light, gas, etc. A lot of research has been conducted to study for detecting PD
using sensors for heat, light, gas, etc. In this chapter, we focus on radiofrequency high-
frequency PD signal detection as it provides a way to detect PD over long distances, which
makes it useful in many cases. To effectively detect and analyze PD, first we have to understand
the PD pulse. The authors will analyze the PD pulse spectrums, frequency properties, etc. Note
that PD occurring in different high-voltage apparatus varies significantly due to the insulation
properties and electric stress needed for triggering PD. Since this chapter focuses on PD in
shielded dielectric cables, we will focus on the PD pulse properties in shielded dielectric cables.

Because the formation of electron avalanches is within the nanosecond range, the PD event is
associated with a very fast current pulse. As of today, there is no direct way to measure the
PD current pulse. A lot of theories have been proposed to simulate and study the current pulse
and different measuring techniques were developed to measure PD current pulses. The PD is
caused by the flow of the electrons and ions. The moving speed of the electrons is much faster
than the ions. Some early theoretical simulations [2–5] predicted that the pulse current in the
voids of the shielded dielectric cables has a rising time and pulse widths in the nanosecond
range followed by a long-duration, low-magnitude pulse. Figure 3 shows one theoretically
predicted PD current pulse. With the high-speed oscilloscope available, some PD experiments
were conducted by Fujimoto and Boggs (1981) and Boggs and Stone (1982) [4] and the
experimental results agree with the theoretical simulation results.

Figure 3. One theoretically predicted PD current pulse [2–5].

There is no standard spectrum chart for PD pulses in the power cables because under different
situations, the PD pulse can be in different shapes leading to different energy spectrums. Some
experimental results [6] show that the partial discharge spectrum has a peak point at about
100 MHz when measuring PD at a distance very close to the PD source. When the partial
discharge pulse propagates in the high-voltage cable, its high-frequency components are
attenuated by the losses majorly caused by the semiconducting materials and, after a 100-meter
trip, the peak frequency of the spectrum can be reduced to 20–30 MHz.
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2.2. Shielded dielectric cable HF attenuation properties

When the electromagnetic PD wave propagates in the cable, its HF components are signifi‐
cantly attenuated by the shielded cables. How far the pulse can travel and be detected by the
PD detection devices heavily relies on the attenuation properties of the cable. A lot of research
[7–17] has been conducted to study different aspects of the HF attenuation features of the
shielded dielectric cables. From Figure 1, the HF attenuation is caused by various components.
One measurement result [9] shown in Figure 4 gives HF attenuation losses for different
components for different frequencies. From Figure 4, it can be seen that for this measurement,
conductor and neutral wire skin effect losses dominate for low frequencies up to 5 MHz. After
5 MHz, grounding shielding losses as well as the dielectric losses start to play a more important
role. This can be explained by the fact that at low frequencies, the capacitive current is low
thus the current passing through the dielectric, conductor and ground shielding is low leading
to relatively low losses. When frequencies are higher, the larger capacitive current flowing
through the resistive component of the conductor and ground shielding makes big losses.

Figure 4. Measurement results for one shielded cable [9].

2.2.1. Shield HF property measurements

From the above analysis, it can be seen that the dielectric properties of the shielding are critical
to HF losses of the shielding dielectric cables. The dielectric properties of the cable semicon‐
ducting shielding can be measured by a HF impedance analyzer. Figure 5 [10 and 17] shows
a typical measurement configuration for HF dielectric properties (dielectric constant and
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conductivity) of the cable shielding. Conducting electrodes with small surface resistivity, often
metal paint, are applied to the two surfaces of the shield material. Normally, contact with the
electrodes is made along one edge of the sample. There is a voltage drop across the “conduct‐
ing” electrodes, which can cause errors in the dielectric properties measurement when the
current flowing through the sample and the nonperfect electrode resulting in possible
measurement errors.

Figure 4. Measurement results for one shielded cable [9]. 
2.2.1 Shield HF property measurements 
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to HF losses of the shielding dielectric cables. The dielectric properties of the cable 
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shows a typical measurement configuration for HF dielectric properties (dielectric constant and 
conductivity) of the cable shielding. Conducting electrodes with small surface resistivity, often 
metal paint, are applied to the two surfaces of the shield material. Normally, contact with the 
electrodes is made along one edge of the sample. There is a voltage drop across the “conducting” 
electrodes, which can cause errors in the dielectric properties measurement when the current 
flowing through the sample and the nonperfect electrode resulting in possible measurement 
errors. 

The measured sample impedance is normally interpreted as resulting from the dielectric 
constant and conductivity of the sample if we assume that the losses and voltage drop in the 
electrodes are negligible [7 and 10]. The applied electrode has a finite conductivity (normal 

 

 

Figure  5.  Typical measurement method  for HF  dielectric  properties  of  the  cable  shielding 
and a simplified sample geometry and lumped element representation [10 and 17]. 
 

Figure 5. Typical measurement method for HF dielectric properties of the cable shielding and a simplified sample ge‐
ometry and lumped element representation [10 and 17].

The measured sample impedance is normally interpreted as resulting from the dielectric
constant and conductivity of the sample if we assume that the losses and voltage drop in the
electrodes are negligible [7 and 10]. The applied electrode has a finite conductivity (normal
silver paint) resulting in changes in the measured loss leading to errors in predicting the shield
properties. These errors increase with frequency because the current through the electrodes
increase significantly with frequency as a result of the large dielectric constant of the shield
material. If we assume that voltage is applied along one edge of the upper and lower surface
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of a rectangular sample, as shown in Figure 5, and define I1(x) is the current as a function of
distance from that edge on one surface (electrode), then the magnitude of the current in the
other surface is also I1(x) with an opposite direction. Likewise, if the voltage on energized
surface as a function of distance from that edge is U1(x), then the voltage on the grounded
surface is Uo-U1(x). Uo is the applied voltage. From the geometry shown in Figure 5, the
following equations can be derived
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where d is the sample thickness, ρ is the electrode surface resistivity in Ω/sq, a is the sample
length, b is the sample width, ω is the angular frequency, and σ and ε are the conductivity and
dielectric constant of the sample, respectively. Furthermore, we can derive the measured
conductivity and relative dielectric constant as [17]
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From Eq. 2, it can be seen that the power losses Pelectrode caused by the electrodes cause errors
as we are measuring losses by the shield Pshield, not losses by the electrodes. On the other hand,
there is a voltage drop along the electrode due to the larger current and finite conductivity of
the electrode resulting in some areas where there is no current flowing through. Thus, the
measured losses can be larger or smaller than the actual shield losses. The shield conductivity
property measurements affect cable high-frequency attenuation calculations a lot, thus it’s very
important that we minimize the errors caused by the electrode resistance. A first-order estimate
of the maximum frequency to which accurate measurements are likely by using the DC
conductivity and low frequency shield dielectric constant to roughly estimate the maximum

Advanced Electromagnetic Waves98



of a rectangular sample, as shown in Figure 5, and define I1(x) is the current as a function of
distance from that edge on one surface (electrode), then the magnitude of the current in the
other surface is also I1(x) with an opposite direction. Likewise, if the voltage on energized
surface as a function of distance from that edge is U1(x), then the voltage on the grounded
surface is Uo-U1(x). Uo is the applied voltage. From the geometry shown in Figure 5, the
following equations can be derived

0

1

0
1

0

2 2exp exp (2 )
2

( )
21 exp 2

2 2 2exp exp (2 ) exp 2 1
( )

2 21 exp 2

( )

Ab A AU x a x
b b

l x
Aa

b

A A Ax a x a
b b bU

U x
Aa

b

b j
A

d

r r
r

r

r r r

r

s wee

æ ö é ù
- -ç ÷ ê úç ÷ ê úè ø ë û

= -
é ùæ ö

+ê úç ÷ç ÷ê úè øë û
æ ö é ù æ ö

+ - + +ç ÷ ç ÷ê úç ÷ ç ÷ê úè ø ë û è ø=
æ ö

+ ç ÷ç ÷
è ø

+
=

(1)

where d is the sample thickness, ρ is the electrode surface resistivity in Ω/sq, a is the sample
length, b is the sample width, ω is the angular frequency, and σ and ε are the conductivity and
dielectric constant of the sample, respectively. Furthermore, we can derive the measured
conductivity and relative dielectric constant as [17]

2

2
0

(2 )electrode shield
P

P P d
VU

s
+

= (2)

and

0 0

c
P

dI
U ab

e
we

= (3)
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as we are measuring losses by the shield Pshield, not losses by the electrodes. On the other hand,
there is a voltage drop along the electrode due to the larger current and finite conductivity of
the electrode resulting in some areas where there is no current flowing through. Thus, the
measured losses can be larger or smaller than the actual shield losses. The shield conductivity
property measurements affect cable high-frequency attenuation calculations a lot, thus it’s very
important that we minimize the errors caused by the electrode resistance. A first-order estimate
of the maximum frequency to which accurate measurements are likely by using the DC
conductivity and low frequency shield dielectric constant to roughly estimate the maximum
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frequency at which the impedance of the shield is comparable to that of the sample electrodes
resulting in Equation 4 for a rectangle sample and Equation 5 for a circular sample [10 and 17]:
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where r2 is the "conducting" electrode radius, r1 is the contact radius at the center of the
electrode, and d is the sample thickness. Figure 6 shows the measured ground shield relative
dielectric constant and conductivity for a shield power cable as well as the calculated and
measured HF attenuation for the shielded cables.

Figure 6. The measured ground shield relative dielectric constant and conductivity for a shielded power cable.

2.2.2. Shielded cable HF attenuation calculations

From Figure 4, there are losses from different components of the shielded power cable. The
losses come from insulation, skin effect, conduct shield, and ground shield. For high frequen‐
cies (5–20 MHz), the loss in the ground shield could dominate the shield cable loss [11,12]. This
chapter discusses the loss calculations in the ground shield as it dominates losses at high
frequency, which is critical for HF PD pulse propagation, detection and analysis. The shielded
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power cable can have different geometries, configurations, and number of neutral wires. The
chapter won’t cover all cable configurations. Two typical shielded cables will be studied.

2.2.2.1. Normal jacketed shield power cable HF loss calculations

The conductor and ground shield layers of shielded distribution cables help provide a smooth
interface between conductors and insulation. Since the losses caused by the conductor shield
are pretty small compared to the losses in other components, these losses are sometimes
ignored in analyses. Figure 7 shows a typical jacketed shielded cable geometry and its
simplified computation model [11 and 17]. The current flows from the conductor through the
insulation (dielectric) passing through the ground semiconducting shield before it reaches the
neutral, resulting in big losses in the shield at high frequency. The current passing through the
ground shield is determined by the conductor voltage level and dielectric impedance, and can
be considered as a “current source.”

Figure 7. A typical jacketed shielded cable geometry and its simplified computation model [11 and 17]. The current
flows from the conductor through the insulation (dielectric) passing the ground semiconducting shield before it reach‐
es the neutral resulting in big losses in the shield at high frequency.

The loss caused by the current in the ground shield, including the component caused by the
propagation of the current in a circumferential direction to reach a neutral wire, can be
calculated with known cable parameters.
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With this simplified model, the ground shield current and voltage distributions of such a
system can be derived [11 and 17]:
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where d is the circumferential distance between two neutral wires; V0 is the applied external
voltage; x is the position along the circumference of the ground shield; σ3 is the conductivity
of the ground shield; ε3 is the dielectric constant of the ground shield; σ4 is the conductivity of
the conductor shield; ε4 is the dielectric constant of the conductor shield; ω is the angular
frequency of the applied voltage; C is the capacitance of the insulation per meter; Rs is the
radius of the ground shield; T is the thickness of the ground shield; and T2 is the thickness of
the conductor shield. From Figure 7, it is the current that passes through the resistive compo‐
nent of the grounding shield that causes losses. To find the loss, the current through the
resistive component needs to be derived, which is given by [11 and 17]
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and similarly, the current passing through the resistive component of the conductor shield can
be found as
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With these two currents known, the losses in the conductor and ground shields can be found
by calculating the power dissipation, i.e. the product of Ir1 and Ir2 and the resistance of the
ground and conductor shields. With some math software such as Maple program and
integrating the product of current and the resistive components, the amount of power
dissipated can be found. To make it easy for the reader to perform such calculations, the Maple
program is attached in the Appendix.
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The losses in the ground shield with some typical parameters (neutral wire conductor radius
of 4 mm, dielectric thickness of 7 mm, conductor shield thickness of 0.2 mm, and ground shield
thickness of 0.5 mm, the relative dielectric constant of 200, and conductivity of 0.1 S/m) can be
seen in Figure 8 for a different number of neutral wires. Finite analysis element calculations
are also conducted and the results of which are compared with the analytic results. They agree
with each other well.

Figure 8. Losses in the ground shield for different numbers of neutral wires [11 and 17]. Finite analysis element calcu‐
lations are also conducted and the results of which are compared with the analytic results. They agree with each other
well.

To give the reader a better idea on the total HF losses in the shielded power cable, one more
plot is given in Figure 9 for a cable with six neutral wires [11 and 17]. From Figure 9, it can be
seen that for high frequencies (from 5 to 20 MHz), the ground shield loss, including the losses
caused by the interaction of the ground shield with the neutral wires, dominates the HF loss
for this six neutral-wire cable. The interaction of the neutral wires with the ground shield plays
a critical role for the total loss, as can be seen by comparison with the line showing the ground
shield loss with and without the effect of the circumferential current.

2.2.2.2. Unjacketed shield power cable HF loss calculations

To save costs, sometimes, unjacketed cables are installed. A cable jacket ensures intimate
contact between ground shield and neutral wires. For unjacketed cables, this contact is not
ensured resulting in the loss caused by the ground shield as a function of the separation
between the neutral wires and the ground shield and the distance between points of contact
of the neutral wires with the ground shield [13]. This section will address the loss as a function
of neutral wire separation from the ground shield, contact interval between the neutral wires,
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ground shield dielectric properties, frequency, etc. Figure 10 [13] gives a simplified model for
the unjacketed cable.

Figure 10. A simplified model for the unjacketed cable. Due to the nature of unjacketed cables, the neutral wires only
have contacts with certain points, A, B and C.

Figure 9. The total losses in a cable with six neutral wires. The losses from the current flowing through the ground
losses contribute significantly to the total loss.
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Due to the nature of unjacketed cables, the neutral wires only have contacts with certain points,
A, B, and C. Similar to a normal jacketed cable, the current flowing through resistive compo‐
nent of the ground shield leads to loss that dominates the loss for high frequencies. The voltage
and current distributions as well as the current passing through the resistive component of
such a system can be found as [13]
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Similarly to a normal jacketed cable, the losses can be found by integrating the product of the
resistive current and the resistance. The Maple program is similar to the normal jacketed shield
cable and can be found in paper [13], and thus is not given in this chapter. The ground shield
losses in the unjacketed cable, which dominates the HF loss, can vary a lot for different shield
dielectric constants, conductivity, and thickness of the ground shield. The thickness of the
ground shield plays an important role because the displacement current from the conductor
to the ground shield flows longitudinally through the resistance of the ground shield before
it reaches a neutral wire-ground shield contact. This loss is maximized under the condition
that the resistive impedance of this path is comparable to the capacitive impedance of the
dielectric, which is significantly affected by the thickness of the ground shield. For a typical
ground shield thickness of 1 mm, and conductor radius, 3.62 mm; insulation thickness, 4.83
mm; capacitance between ground shield and neutral wires, 150 pF/m; insulation dielectric
constant, 2.2; distance between two neutral wire-ground shield contacts, 3 cm; frequency, 20
MHz, the loss of such a jacketed cable vs. dielectric constant and conductivity is shown in
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resistive current and the resistance. The Maple program is similar to the normal jacketed shield
cable and can be found in paper [13], and thus is not given in this chapter. The ground shield
losses in the unjacketed cable, which dominates the HF loss, can vary a lot for different shield
dielectric constants, conductivity, and thickness of the ground shield. The thickness of the
ground shield plays an important role because the displacement current from the conductor
to the ground shield flows longitudinally through the resistance of the ground shield before
it reaches a neutral wire-ground shield contact. This loss is maximized under the condition
that the resistive impedance of this path is comparable to the capacitive impedance of the
dielectric, which is significantly affected by the thickness of the ground shield. For a typical
ground shield thickness of 1 mm, and conductor radius, 3.62 mm; insulation thickness, 4.83
mm; capacitance between ground shield and neutral wires, 150 pF/m; insulation dielectric
constant, 2.2; distance between two neutral wire-ground shield contacts, 3 cm; frequency, 20
MHz, the loss of such a jacketed cable vs. dielectric constant and conductivity is shown in
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Figure 11 [13]. From Figure 11, it can be seen that the losses can be pretty large due to the long
distance needed for the displacement current to flow before it reaches the neutral wires, which
means that the HF electromagnetic PD wave can be attenuated significantly in the unjacketed
cable.

As stated at the beginning of this section, shield cables have different geometries and config‐
urations. The authors won’t address too many configurations and only two typical shielded
cables, i.e. jacketed normal shielded cable and unjacketed shielded cables, are studied in this
section. The reader should keep in mind that when designing and analyzing the HF electro‐
magnetic PD wave signals, it’s very important to know the shield dielectric properties and
cable actual geometry and configurations to get a rough idea of the cable’s HF attenuation
properties. The readers should also know that it’s not easy to do the HF dielectric property
measurements and use caution when conducting such measurements. Furthermore, the reader
needs to know that the shields in the cables are under pressure whereas the shields under test
have no pressure. Some compensation might be necessary to offset the pressure difference.

Figure 11. Losses vs. dielectric constant and conductivity for typical parameters.

2.3. HF electromagnetic PD wave propagation

The HF electromagnetic PD wave propagates in the shield cable and the wave is attenuated
while it travels. How significant the wave is is mainly determined by the HF loss properties
of the cable, which has been discussed extensively in Section 2.2. Besides the losses of the cable,
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the cable splices and termination can also affect the wave propagation and attenuation. Figure
12 shows one typical PD wave propagation. The PD wave propagates in both directions
passing through the cable splices before it reaches the cable termination and reflects back if
the waves are not attenuated completely. When it travels along the cable, HF components are
most attenuated due to the facts discussed in Section 2.2, because the displacement current
increased with frequency resulting in higher losses for higher frequencies. This provides the
electromagnetic wave pulse a big pulse width as shown in Figure 12. If the pulse is not
attenuated completely, it will reach the cable termination and reflect backward toward the PD
source as shown in Figure 12. To analyze the effect of the cable losses, the electromagnetic
wave pulse can be treated as a Gaussian pulse. If a Gaussian pulse in time domain is applied
at the left end of the cable to simulate the PD source signal, it will propagate through the splices
before it can reach the termination. For simplicity, splices are thought in parallel with loads
having characteristic impedance. Since we apply a Gaussian pulse in time domain, we need
to transform it to the frequency domain, multiply it with attenuation factor caused by splices
in frequency domain, then transform it back to time domain. The output voltage is attenuated
by a factor of Vatt which is

2 , s c
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Z ZZVatt Z
Z ZZ Z

= =
++

(11)

where Zs is splice effective impedance, Zc is characteristic impedance. By doing so, we get loss
vs. number of splices as shown in Figure 13. Parameters used in computation are given in the
caption of Figure 13. We also can treat the problem by calculating the energy dissipated by the
cable. Current flows through semicon will result in loss. By calculating the loss, we can get a
voltage attenuation ratio in frequency domain, Vatt1, which is:
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I

P
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P
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where PL is the power dissipated by splice whereas PI is the input power. A Gaussian pulse
multiplied by this ratio results in an attenuated Gaussian pulse as seen in Figure 14.

Figure 12. One typical PD wave propagation pattern. Note that the wave propagates in both directions although only
the right section is shown here.
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Figure 13. Amplitude as a function of number of splice number. Splices have the following parameters: length, 60 cm;
semicon conductivity, 5 s/m; conductor radius, 4 mm; thickness of the insulation, 4 mm; thickness of semicon, 6 mm;
dielectric constant of semicon, 300; dielectric constant of insulation, 2.2.

Figure 14. Attenuated Gaussian pulse. The splice has the following parameters: radius of conductor, 1 cm; thickness of
insulation, 0.5 cm; thickness of semicon, 0.3 cm; conductivity of semicon, 10 S/m; dielectric constant of semicon, 300;
dielectric constant of insulation, 3.3; distance of splice, 40 cm.
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The reader should keep in mind that the studied case is a simulation result based on some
assumed shield dielectric properties. To assess the losses caused by the splices, some field
measurements as well as further computations are necessary. Normally, the splices have
smaller losses compared with the long cable.

3. Electromagnetic wave detection in shielded dielectric cables

PD detection has been extensively used for high-voltage apparatus diagnostic and status
assessment. This section focuses on electromagnetic PD wave detection as, due to its relatively
smaller losses, the HF PD signal can propagate for a long distance and can be detected by the
PD sensors located either at the termination or other appropriate locations of the power circuit
for the shielded power cables.

3.1. PD pulse sensor

Different sensors (optical, acoustic, electrical, etc.) are used for detecting the PD. For detecting
the electromagnetic waves propagating in shielded dielectric cables, normally a high-frequen‐
cy current transformer (HFCT) and ultra high-frequency (UHF) sensor are used [18–21]. The
HFCT is normally placed around the shielded cable or sometimes around the ground strip to
collect the PD signals. The UHF sensor captures the UFH electromagnetic waves propagating
in the shielded cable, which can be attenuated quickly depending on the loss characteristic of
the cable. Figure 15 shows some typical configurations for using HFCT in the PD measure‐
ments. There are a lot of different other sensors such as coupling capacitor, inductively coupled
probes, integrated partial discharge sensor, etc. that are used in PD electromagnetic pulse
detections. Among them, the HFCTs are one of the most widely used sensors due to their high
bandwidth and ease of use.

For processing the measured PD signals, different theories and algorithms have been proposed
for optimizing PD testing results [18–21]. For partial discharge measurements, as stated in the
above sections, the PD signals cannot be detected directly due to its nature as the PD is inside
the insulation. The electromagnetic wave pulse signals we capture are indirect measurements
of the PD and analysis needs to be done to extract useful information such as PD locations, PD
magnitude, etc. Some PD detection technologies require an excitation voltage to produce a
partial discharge signal pulse to find the PD location. For locating the PD location, two sensors
are placed at two different locations along the cable and if the attenuation along the cable is
the same, then when the two sensors reads the same level of PD, the PD source is in the middle
of the two sensors assuming that the cable splices contribute little or few losses for the PD pulse
propagation. Theoretically, the technology should work but an excitation voltage could
damage the cable and the cable needs to be taken out of service. More and more PD detection
systems have been developed for online real-time measurements as they don’t require
dangerous excitation voltages and can be used to assess the HV apparatus under more realistic
conditions. However, the highly noisy environment caused by the high voltage and high
current of the power cable makes extracting useful PD information difficult. To improve the
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signal-to-noise ratio for optimized measurement results, different technologies, such as noise
filtering, digital signal processing optimization, signal amplifying, etc., are used.

Figure 15. HFCT used in PD detection.

3.2. PD pulse detection data processing and transmitting

Some PD detection systems detect PD at the hot spots identified by the utility companies and
can’t be used to monitor the system continuously due to the complicated data processing and
communication. Due to the fact that the PD signals are normally HF signals which can
attenuate quickly if a normal coaxial cable is used for connecting the PD detection sensor and
the PD signal analyzer and also for safety concerns, sometimes, optical coupling [22] is used
for long-distance data transmitting between the sensor and the PD data analyzer. After the
field signals are received by data processors, which can be a wide-band oscilloscope or a
spectrum analyzer, the PD data are processed for waveform, phase, span, etc. [28]. For better
results, field signals can also be filtered and amplified and processed with specialized
processing computers for trend analysis and alarm generation, etc.

With the advancement of modern wireless communication and digital signal processing
technologies, real-time continuously online PD detection becomes more realistic [23-28].
Different wireless technologies have been used for transmitting measured processed data back
to the controlling center. The processed output from the oscilloscope or other digital instru‐
ments can be fed into data transmitters using Ethernet, wireless LTE modem, Wifi, Zigbee
network, etc. Ethernet is reliable and easy to use but sometimes it can be unavailable. Wireless
LTE is flexible but can be expensive due to its common monthly data fee. Wifi is also a good
option if it’s available. Zigbee is a low-cost and low-maintenance method compared with
cellular data service as it does not have a monthly fee. The Zigbee node is small and, if set
correctly, it can run for a long time without maintenance. Figure 16 shows one customized
Zigbee node [29]. However, its data rate is relatively low compared with Ethernet and Wifi.
To monitor the PD in real time, the captured PD signals can be processed with a wideband
local oscilloscope or other devices such as a spectrum analyzer and the output can be fed into
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one of the data transmitting routers. The PD measurements will lead to a lot of raw data and
normally they can’t be sent directly to the remote controlling center due to its high data volume.
After processing, the data can be sent back to the controlling and data concentrator for
appropriate actions such as cable maintenance, alarm generation, etc.

Figure 16. One Zigbee node.

4. Summary and discussion

Because the shielded power cables are widely used in modern HV power systems and the fact
that the partial discharge is a powerful tool for assessing the HV power system status, HF PD
electromagnetic wave propagation, detection, and analysis have been extensively studied. In
this chapter, the authors look into the details of the shield power cable structure, their HF
attenuation properties, PD electromagnetic wave propagation, and address the detection and
analysis of the HF electromagnetic wave in the shielded power cable.

Appendix: Maple program for loss calculations in a typical jacketed
shielded cable

>restart;

>Rc:=4e-3:# Rc is the conductor radius.

>epsilon:=2.2:#Epsilon is the dielectric constant of the insulation.

>epsilon0:=8.85e-12:

>mu1:=1*4*Pi*1e-7:

>Rs:=11.7e-3: #Rs is the ground shield radius (m).

>Rd:=11.2E-3:#Rd is the insulation radius (m).

Advanced Electromagnetic Waves110



one of the data transmitting routers. The PD measurements will lead to a lot of raw data and
normally they can’t be sent directly to the remote controlling center due to its high data volume.
After processing, the data can be sent back to the controlling and data concentrator for
appropriate actions such as cable maintenance, alarm generation, etc.

Figure 16. One Zigbee node.

4. Summary and discussion

Because the shielded power cables are widely used in modern HV power systems and the fact
that the partial discharge is a powerful tool for assessing the HV power system status, HF PD
electromagnetic wave propagation, detection, and analysis have been extensively studied. In
this chapter, the authors look into the details of the shield power cable structure, their HF
attenuation properties, PD electromagnetic wave propagation, and address the detection and
analysis of the HF electromagnetic wave in the shielded power cable.

Appendix: Maple program for loss calculations in a typical jacketed
shielded cable

>restart;

>Rc:=4e-3:# Rc is the conductor radius.

>epsilon:=2.2:#Epsilon is the dielectric constant of the insulation.

>epsilon0:=8.85e-12:

>mu1:=1*4*Pi*1e-7:

>Rs:=11.7e-3: #Rs is the ground shield radius (m).

>Rd:=11.2E-3:#Rd is the insulation radius (m).

Advanced Electromagnetic Waves110

>V0:=1:

>N:=4:# N is the number of neutral wires.

>omega:=2*Pi*f:

>epsilon0:=8.85e-12:

>l:=1:# let the length of the cable be 1 m;

>T:=0.5e-3:# T is the thickness of the ground shield.

>T2:=0.2-3:# T2 is the thickness of the conductor shield.

>d:=evalf(2*Pi*Rs/N):# d is the length between two neutral wires.

>C:=2*Pi*epsilon*epsilon0*l/(ln(Rs/Rc)):# Capacitance of the insulation per meter.

>C1:=2*Pi*epsilon*epsilon0/(ln(Rd/Rc)):

>L1:=mu1*ln(Rs/Rc)/(2*Pi):

>Zc:=evalf(sqrt(L1/C1)):#Characteristic impedance.

>K1:=1/((sigma3+omega*epsilon0*epsilon3*I)*l*T):

>K2:=-2*I/omega/C/1*Pi*Rs+T2/(sigma4+omega*epsilon4*epsilon0*I)/1:

>I1:=

-V0*(exp(1/K2^(1/2)*K1^(1/2)*x)-exp(-K1^(1/2)*(-d+x)/K2^(1/2)))/K1^(1/

2)/K2^(1/2)/(1+exp(1/K2^(1/2)*K1^(1/2)*d)):#

Current distribution along the ground shield.

>V1:=-V0*(exp(1/K2^(1/2)*K1^(1/2)*x)+exp(-K1^(1/2)*(-d+x)/K2^(1/2)))/K2^(

1/2)/(1+exp(1/K2^(1/2)*K1^(1/2)*d)):#

90

Voltage distribution along the ground shield.

>I2:=(-V1)/K2:# Current flowing through the conductor shield.

>dZr4:=T2/(sigma4*l*dx):# dZr4 is the elemental resistive impedance of the

conductor shield.

>dZc4:=1/(I*omega*(epsilon0*epsilon4*l*dx/T2)):# dZc4 is the elemental capacitive

impedance of the conductor shield.

>Ratio2:=simplify(dZc4/(dZc4+dZr4)):# To get the current flowing through the

resistive component of the conductor shield, we calculate Ratio2.

>Irtotal2:=I2*Ratio2:# Irtotal2 is the current flowing through resistive component
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of the conductor shield.

>dZr3:=(1*dx)/(sigma3*l*T):# Same as above.

>dZc3:=1/(I*omega*(epsilon0*epsilon3*l*T/dx)):# Same as above.

>Ratio1:=simplify(dZc3/(dZc3+dZr3)):# Same as above.

>Irtotal:=I1*Ratio1:# Irtotal1 is the current flowing through resistive component

of the ground shield.

>Ii:=Im(Irtotal):

>Ir:=Re(Irtotal):

>Ii2:=Im(Irtotal2):

>Ir2:=Re(Irtotal2):

>Pd4:=int(((Ir2)^2+(Ii2)^2)*(T2/(sigma4)),x=0..d/2):# Conductor shield power

dissipation

>Pd3:=int(((Ir)^2+(Ii)^2)*(1/(sigma3*T)),x=0..d/2):# Ground shield power dissipation

>Pin:=(V0)^2/Zc:# Input power.

>dB3:=10*log10(1-(Pd3*2*N/Pin)):# Ground shield attenuation.

>dB4:=10*log10(1-(Pd4*2*N/Pin)):# Conductor shield attenuation.
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Abstract

This chapter presents authors’ recent research on the nonreciprocal devices utilizing
longitudinally magnetized ferrite coupled line (FCL) junction. The principle of
operation of FCL junction is explained and the hybrid techniques of analysis are
shown. Numerical and experimental results concerning the nonreciprocal devices
utilizing the different configurations of FCL junctions are presented and discussed.

Keywords: ferrite, nonreciprcoal, Faraday rotation

1. Introduction

Nonreciprocal devices have been extensively used in modern microwave and millimeter
systems [2–4, 14, 25, 27, 28]. In order to obtain the nonreciprocal effects, one needs to utilize
the magnetized ferrite materials [2, 4, 14, 25, 27, 28] or active elements such as amplifiers [3].
Recently, the longitudinally magnetized ferrite coupled striplines or slotlines [2, 9, 14, 27]
are being developed and employed to realize integrated nonreciprocal devices. Significant
interest in these devices results from their advantages which are weak biasing magnetic field
and wide operation bandwidth.

The basic part of ferrite coupled line (FCL) devices is longitudinally magnetized FCL section
composed of two coupled lines placed on ferrite substrate [6, 21]. This structure was first
proposed and experimentally verified by [6]. Next, Next, Mazur & Mrozowski in [21] using
the coupled-mode method (CMM) developed the model of FCL section which explains the
operation of this structure and gives basis steps in their design procedure. According to this
model, in the ferrite section, a gyromagnetic coupling occurs, resulting in Faraday rotation
effect. The wide operation bandwidth and high isolation are obtained, when the Faraday

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



rotation phenomenon is optimal. This optimal effect is achieved when the ferrite material is
placed in the region where the wave is linearly polarized and occurs in cylindrical waveguide
with coaxially located ferrite rod or suspended stripline. In order to construct devices such
as circulators [9, 23], gyrators [19, 22], or isolators [13], the FCL junction has to be cascaded
with reciprocal sections providing input signals to the FCL which are either in phase or out
of phase [20].

So far, studies concerning FCL devices have been focused mainly on structures realized in
a planar line technology [1, 4, 9]. Such structures allow one to obtain fully integrated FCL
devices. However, due to the significant length of the ferrite section, the main drawbacks are
high insertion losses occurring in ferrite material and large dimensions of the structure.

There were several attempts to improve performance and to reduce total dimensions of
planar FCL devices. Promising results concerning low insertion losses and high isolation
were obtained for the nonreciprocal devices employing a ferrite coupled slotline [9] and
stripline junctions [23, 24]. For the fabricated devices, obtained insertion losses were not
lower than 3 dB and isolation was better than 12 dB [9, 18, 23]. Moreover, in order to reduce
the dimensions of the planar FCL devices in [4], the circulator with appropriate matching
networks at the ports ensuring multiple reflections was proposed. For presented device, the
FCL junction length reduction by a factor of two was obtained. The drawback of this structure
was high value of insertion losses caused by multiple transmission of signal through the lossy
ferrite junction. Also similar length reduction of FCL junction was achieved with the use of
periodic left-handed/ferrite coupled line (LH-FCL) structures [1]. However, for the simulated
circulator utilizing LH-FCL section, the insertion losses were not lower than 4 dB.

The better performance in comparison to currently proposed planar configurations was
obtained for nonreciprocal devices utilizing cylindrical ferrite coupled line (CFCL) junction
[10]. Due to the similar geometry to the circular waveguide with coaxially located ferrite rod,
such structure allows to obtain close-to-optimal Faraday rotation effect. Moreover, in such
configuration, stronger gyromagnetic coupling occurs which is a result of high magnetic field
concentration in the ferrite medium. These make possible to design shorter ferrite junctions
ensuring lower insertion losses in comparison to planar ones. This junction was successfully
applied to realization of nonreciprocal devices such as isolators and circulators [11, 12].

This chapter presents the authors’ recent research on the nonreciprocal devices utilizing
longitudinally magnetized FCL junction. The operation principle of FCL junction is
explained, and the hybrid techniques of analysis are shown. Numerical and experimental
results concerning the nonreciprocal devices using different configurations of FCL junctions
are presented and discussed.

2. Formulation of the problem

The general view of FCL junction is presented in Fig. 1. This junction is a four-port structure
that contains a ferrite section realized as two coupled lines placed on ferrite substrate.
The ferrite section is fed from dielectric coupled lines with the same cross section where
instead of ferrite, the dielectric materials are used. When the ferrite junction is longitudinally
magnetized, the Faraday rotation phenomenon occurs, resulting in nonreciprocal properties
of the FCL junction. For better understanding of the nonreciprocal effect, an example of a
junction ensuring 45 ◦ Faraday rotation has been considered (see Fig. 1(b) and (c)). When
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lower than 3 dB and isolation was better than 12 dB [9, 18, 23]. Moreover, in order to reduce
the dimensions of the planar FCL devices in [4], the circulator with appropriate matching
networks at the ports ensuring multiple reflections was proposed. For presented device, the
FCL junction length reduction by a factor of two was obtained. The drawback of this structure
was high value of insertion losses caused by multiple transmission of signal through the lossy
ferrite junction. Also similar length reduction of FCL junction was achieved with the use of
periodic left-handed/ferrite coupled line (LH-FCL) structures [1]. However, for the simulated
circulator utilizing LH-FCL section, the insertion losses were not lower than 4 dB.

The better performance in comparison to currently proposed planar configurations was
obtained for nonreciprocal devices utilizing cylindrical ferrite coupled line (CFCL) junction
[10]. Due to the similar geometry to the circular waveguide with coaxially located ferrite rod,
such structure allows to obtain close-to-optimal Faraday rotation effect. Moreover, in such
configuration, stronger gyromagnetic coupling occurs which is a result of high magnetic field
concentration in the ferrite medium. These make possible to design shorter ferrite junctions
ensuring lower insertion losses in comparison to planar ones. This junction was successfully
applied to realization of nonreciprocal devices such as isolators and circulators [11, 12].

This chapter presents the authors’ recent research on the nonreciprocal devices utilizing
longitudinally magnetized FCL junction. The operation principle of FCL junction is
explained, and the hybrid techniques of analysis are shown. Numerical and experimental
results concerning the nonreciprocal devices using different configurations of FCL junctions
are presented and discussed.

2. Formulation of the problem

The general view of FCL junction is presented in Fig. 1. This junction is a four-port structure
that contains a ferrite section realized as two coupled lines placed on ferrite substrate.
The ferrite section is fed from dielectric coupled lines with the same cross section where
instead of ferrite, the dielectric materials are used. When the ferrite junction is longitudinally
magnetized, the Faraday rotation phenomenon occurs, resulting in nonreciprocal properties
of the FCL junction. For better understanding of the nonreciprocal effect, an example of a
junction ensuring 45 ◦ Faraday rotation has been considered (see Fig. 1(b) and (c)). When
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Figure 1. Ferrite coupled line junction: (a) general view of the structure and transmission through the junction for (b)
even-mode excitation and (c) single-port excitation

ports (1) and (2) of the structure are excited with in phase signals of equal amplitude (see
Fig. 1(b)), due to the Faraday rotation, the output signal is observed only at port (4), while
port (3) is isolated. On the other hand, when only port (4) of the structure is excited, the out of
phase signals of equal amplitudes appear in ports (1) and (2) (see Fig. 1(c)). These phenomena
occurring in the FCL section directly indicate the presence of the nonreciprocal effect. Based
on the abovementioned phenomena, it was noted in [20] that in order to obtain nonreciprocal
transmission, the FCL section should be cascaded with the structures that allow for the even-
or odd-mode signal excitation. This makes possible to realize FCL circulators, which can
then be used to design a variety of other nonreciprocal circuits such as isolators or phase
shifters.

One of the basic nonreciprocal circuits built based on the FCL section is a three-port circulator
shown in Fig 2(a). This structure consists of a cascade connection of Te- or To-junction
with four-port FCL junction. Note that the direction of circulation of the circulator structure
depends on the choice of T-junction type. Taking into account the circulator with Te-junction,
when port (1) of the structure is excited the output signal appears in port (2). Excitation of
port (2) of the circulator results in the signal transmission to port (3). Finally, if port (3) is
excited, the signal is transmitted to port (1). Therefore, such circuit provides transmission
sequence between ports (1) → (3) → (2) → (1). The circulation direction will reverse
when the FCL section is cascaded with To-junction. In addition, the circulation direction
can be reversed by changing into opposite the direction of biasing magnetic field which
results in reversed direction of Faraday rotation. The described circulator can be used for the
realization of isolator, by introducing a matched load in one of the circulator ports.

The four-port circulators can be obtained by replacing in three-port circulator from Fig. 2(a)
the normal T-junction with magic T-junction (see Fig. 2(b)) or just by cascading two three-port
FCL circulators (see Fig. 2(c)). The advantage of structure from Fig. 2(b) is that the signal for
each transmission passes through the ferrite section only once, and as a result, this structure
can be characterized by lower insertion losses. However, in the case of integrated circuits, the
realization of this circulator requires the design of a complex and technologically demanding
magic T-junction. In the case of nonreciprocal devices utilizing two FCL sections, it is possible
to obtain better isolation in comparison to structure from Fig. 2(b). However, due to the
double signal passing through the ferrite section, the losses of the structure are two times
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Figure 2. Nonreciprocal devices utilizing ferrite coupled line junction: (a) three-port circulator, (b) four-port circulator
with single FCL section, and (c) four-port circulator with double FCL section

higher. It should be noted that presented nonreciprocal devices from Fig. 2 are analogous to
cylindrical waveguide nonreciprocal devices with Faraday rotation ([7]).

In order to determine the scattering parameters of the FCL junction, two different hybrid
techniques have been proposed and developed ([12, 16–18]) (see Fig. 3). The first approach
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Figure 3. Proposed analysis methods of investigated configurations of FCL junctions

is based on the combination of spectral-domain approach (SDA) and coupled-mode method
(CMM) ([16, 17]). The analysis using SDA/CMM involves introducing an isotropic basic
guide. This guide is complementary to the ferrite one; however, instead of ferrite, the
dielectric characterized by the same permittivity as ferrite and relative permeability µr = 1
is utilized. In this approach, the basic guide modes obtained from SDA are used to
determine the wave parameters of ferrite modes. As a result of the analysis, the dispersion
characteristics of the ferrite line, the gyromagnetic coupling coefficient, and the scattering
parameters of the ferrite junction are obtained. The second method is based on a combination
of SDA with mode-matching (MM) technique ([12, 18]). In this approach, the SDA is utilized
to determine the propagation coefficients and field distribution of two fundamental modes in
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is based on the combination of spectral-domain approach (SDA) and coupled-mode method
(CMM) ([16, 17]). The analysis using SDA/CMM involves introducing an isotropic basic
guide. This guide is complementary to the ferrite one; however, instead of ferrite, the
dielectric characterized by the same permittivity as ferrite and relative permeability µr = 1
is utilized. In this approach, the basic guide modes obtained from SDA are used to
determine the wave parameters of ferrite modes. As a result of the analysis, the dispersion
characteristics of the ferrite line, the gyromagnetic coupling coefficient, and the scattering
parameters of the ferrite junction are obtained. The second method is based on a combination
of SDA with mode-matching (MM) technique ([12, 18]). In this approach, the SDA is utilized
to determine the propagation coefficients and field distribution of two fundamental modes in
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a dielectric and ferrite section. Then by applying the continuity conditions for the tangential
field components at both the interfaces between dielectric and ferrite sections, we formulate
the scattering matrix of four-port FCL junction.

The formulation of SDA for dielectric/ferrite guides with different cross sections has been
presented in section 2.1. The details of scattering matrix calculation utilizing CMM and MM
method have been presented in sections 2.2.1 and 2.2.2, respectively.

2.1. Analysis of dielectric/ferrite guide using SDA

In Fig. 4, the cross sections of the investigated lines are presented. In order to determine the
propagation coefficients and field distribution in the structure, the spectral domain approach
is utilized. Depending on the type of the considered line, the method is formulated in
rectangular, cylindrical, or elliptic coordinate system.
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Figure 4. Investigated types of coupled lines: (a) planar three-strip line, (b) cylindrical coupled slotline and (c) elliptical
three-strip line

The Fourier transform in each coordinate system takes the following form:

• Rectangular coordinates (x, y, z)

f̃ (p) =
∫

R

f (y)e−jpy dy, f (y) =
1

2π

∫

R

f̃ (p)ejpy dp, (1)

• Cylindrical coordinates (ρ, ϕ, z)

f̃ (p) =
1

2π

2π∫

0

f (ϕ)e−jpϕ dϕ, f (ϕ) =
∞

∑
p=−∞

f̃ (p)ejpϕ, (2)

• Elliptic coordinates (u, v, z)
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f̃ e(o)(p) =
1

2π

2π∫

0

f (v)
{

cep(q, v)
sep(q, v)

}
dv, (3)

f (v) =
∞

∑
p=0

f̃ e(p)cep(q, v) +
∞

∑
p=1

f̃ o(p)sep(q, v), (4)

where f̃ (·) is the image of the function f (·), cep(·, ·) and sep(·, ·) are even and odd angular
Mathieu functions of pth order, q = k2

0d2/4, k0 = ω
√

µ0ε0, and d is the focal length. The
electromagnetic field in the structure can be described by Maxwell’s equations defined in the
spectral domain, as follows:

∇× Ẽ = −k0µrηH̃, (5)

∇× ηH̃ = k0εrẼ, (6)

where Ẽ and H̃ are Fourier transforms of the electric and magnetic fields, respectively, η =
−jη0, η0 =

√
µ0/ε0, and µr denotes the permeability tensor of ferrite material. For the

longitudinally magnetized ferrite material along z-axis, µr = Tµ′
rT−1, where µ′

r = µ(ixix +
iyiy) + jµa(ixiy − iyix) + iziz is a permeability tensor in a dyadic form defined in rectangular
coordinates, T is transformation matrix from rectangular to cylindrical or elliptic coordinates,
and µ and µa are defined according to [7].

By applying the boundary and continuity conditions to the relations (5), (6) and assuming the
fields and currents variation along z-axis as e−jβz, one obtains a set of equations combining
tangential electric field (Ẽz and Ẽξ ) and current densities ( J̃z and J̃ξ ) at the strips:

[
Ẽz(ς = ς0, p)
Ẽξ(ς = ς0, p)

]
=

[
G(p, β)

] [ J̃ξ(ς = ς0, p)
J̃z(ς = ς0, p)

]
, (7)

where (ς, ξ) = {(x, y), (ρ, ϕ), (u, v)} and G(p, β) is a dyadic Green’s function ([8]). In order
to solve (7) the current on the patch is expanded in terms of basis functions:

Jξ(ξ) =





N
∑

n=1
an sin

(
nπ(2ξ+w)

2w

)
, |ξ| ≤ w

2

0, otherwise,

(8)

Jz(ξ) =




N
∑

n=0
bn

cos
(

nπ(2ξ+w)
2w

)
√

1−( 2ξ
w )

2 , |ξ| ≤ w
2

0, otherwise,

(9)
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Ẽz(ς = ς0, p)
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where an and bn are unknown current expansion coefficients. Next, using MoM with current
basis functions (8) and (9) chosen as a testing functions (Galerkin method) a homogeneous
set of equations is obtained ([26]). The nontrival solutions of the problem provide us with
a phase coefficients β and corresponding current coefficients allowing us to determine the
current density distributions on the strips as well as the electric and magnetic fields in the
cross section of the structure.

2.2. Scattering matrix of ferrite coupled junction

2.2.1. Coupled-mode method

Using the coupled-mode method, a gyromagnetic coupling coefficient, propagation
coefficients of ferrite modes, and scattering matrix of FCL junction can be determined
([5, 21]). In this method, the transverse electric and magnetic fields in the investigated ferrite
guide are expressed in terms of basic guide field eigenfunctions. Assuming two fundamental
modes propagated in the basic guide, the Maxwell’s equations for basic and ferrite guides
are combined together, and after some mathematical manipulation, the following set of
coupled-mode equations is obtained:

∂

∂z
Ûe(z) + jβeZe Îe(z) = Ceo Îo(z),

∂

∂z
Ûo(z) + jβoZo Îo(z) = Coe Îe(z),

∂

∂z
Îe(z) + jβeYeÛe(z) = 0,

∂

∂z
Îo(z) + jβoYoÛo(z) = 0,

(10)

where

Ceo = −C∗
eo = k0η0µa

∫

Ω f

(
ht,e × h∗

t,o
)
· iz dΩ f (11)

define the coupling between two fundamental modes in the basic guide, Ûe(o)(z) and Îe(o)(z)
are z-dependent voltage and current functions in the ferrite guide, Ze(o) = 1/Ye(o) are
wave impedances of fundamental modes, ht,e(o) are the eigenfunctions of magnetic fields
of fundamental modes, and Ω f is a ferrite area in the cross section. Next, taking into
consideration field distributions Ht,e(o) of basic modes instead of their eigenfunction ht,e(o),
the gyromagnetic coupling coefficient can be written as follows:

Ceo = k0η0µa

√
ZeZo√
PePo

∫

Ω f

(
Ht,e × H∗

t,o
)
· iz dΩ f , (12)

where Pe(o) denotes powers of two fundamental basis modes. As one can see, the
gyromagnetic coupling occurs in the guide when the ferrite is placed in the area where
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magnetic field vectors of two fundamental modes are orthogonal to each other and linearly
polarized.

The above-defined transmission line model of the ferrite guide can be used to determine
scattering matrix of FCL junction. At first, utilizing symmetry properties of the investigated
structure, the modal even/odd voltage and current can be related to voltage and current
defined for each of two coupled lines (see Fig. 5)
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Figure 5. Four-port FCL junction: (a) circuit model, (b) network representation

as follows:

Ûe(z) = Û1(z) + Û2(z), Îe(z) = Î1(z) + Î2(z),

Ûo(z) = Û1(z)− Û2(z), Îo(z) = Î1(z)− Î2(z).
(13)

Next, applying the above relations to (10), the following eigenproblem is obtained:

QK = Kk, (14)

where matrix Q, diagonal matrix of eigenvalues k, and matrix of eigenvectors K are defined
in [10]. The solutions of (14) are the eigenvalues k1 and k2, defining propagation coefficients
of two fundamental modes in ferrite guide which take the following form:

k1,2 = ±

√√√√ β2
e + β2

o
2

±

√(
β2

e − β2
o

2

)2

+
C2

eo
ZeZo

βeβo. (15)

As one can see, the increase of the coupling results in the increase of the difference between
k1 and k2. Finally, the length of the ferrite section ensuring 45 ◦ Faraday rotation decreases
when the coupling Ceo increases.
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of two fundamental modes in ferrite guide which take the following form:
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2

)2

+
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As one can see, the increase of the coupling results in the increase of the difference between
k1 and k2. Finally, the length of the ferrite section ensuring 45 ◦ Faraday rotation decreases
when the coupling Ceo increases.
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Using the solution of (15), the voltage and current in each of the two coupled lines can be
defined at considered z cross section as follows:




Û1(z)
Û2(z)
Î1(z)
Î2(z)


 = K




e−jk1z 0 0 0
0 ejk1z 0 0
0 0 e−jk2z 0
0 0 0 ejk2z







A+
1

A−
1

A+
2

A−
2


 , (16)

where A+(−)
1 and A+(−)

2 are unknown amplitudes of the forward and backward partial waves
in the equivalent transmission line. Assuming notation from Fig. 5(a) and utilizing (16), we
can write the relations between voltages and currents in the ports of the considered junction
defined at interfaces z = 0 and z = L:




Û1(z)
Û2(z)
Î1(z)
Î2(z)




z=0

=




v1
v2
i1
i2


 and




Û1(z)
Û2(z)
Î1(z)
Î2(z)




z=L

=




v3
v4
−i3
−i4


 . (17)

Combining equations (16) and (17), we obtain the following relation:




v3
v4
−i3
−i4


 = K




e−jk1 L 0 0 0
0 ejk1 L 0 0
0 0 e−jk2 L 0
0 0 0 ejk2 L


 K−1




v1
v2
i1
i2


 . (18)

Finally, we define incident and reflected waves in each ith port of the structure as follows:

ai =
vi√
Z0

+ ii
√

Z0 and bi =
vi√
Z0

− ii
√

Z0,

where Z0 is a wave impedance of the port. Applying above relations to (18), we obtain the
scattering matrix of four-port FCL junction which is defined as follows:




b1
b2
b3
b4


 =




S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44







a1
a2
a3
a4


 . (19)

Assuming instead of the voltage and current waves the real voltage and current distribution
in the proposed transmission line model of FCL junction, the wave impedances Ze(o) and Z0
can be treated as characteristic impedances.
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2.2.2. Mode-matching method

In order to determine the S-matrix of the proposed FCL junction, the mode-matching method
is utilized. At first, the junction is analyzed as a two-port structure composed of dielectric
section followed by ferrite section and another dielectric section as presented in Fig. 6. Since
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Figure 6. Two port FCL junction composed of ferrite and dielectric sections.

the widths of the strips in the ferrite and dielectric sections are the same, the higher modes
are not excited, and therefore, they are neglected in the analysis. In this case, only two
fundamental modes are taken into consideration. The modes propagated in the dielectric
and ferrite sections are called dielectric and ferrite waves, respectively. Due to the symmetry
of the structure, we can distinguish even- and odd-mode waves in the dielectric section.
Despite the fact that at port (1) or (2) only one of the dielectric waves can appear, both
ferrite waves are excited. The wave parameters and field distributions of modes in the ferrite
and dielectric sections are determined using SDA ([15]). The total field in each section is
determined as a superposition of both modes propagating in forward (+) and backward
(−) directions. Using the notation from Fig. 6, the total field in dielectric sections i = 1, 2 can
be written in the following form:

F(i)
t =

[
F(i)
+e, F(i)

+o, F(i)
−e, F(i)
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, (20)

where F = (E, H) represents tangential electric or magnetic field and A and B are the
unknown expansion coefficients describing forward and backward waves, respectively, of
even (e) and odd (o) modes. The total field in ferrite section can be written as follows:

F(0)
t =

[
F(0)
+1, F(0)

+2, F(0)
−1, F(0)
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]
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, (21)
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2.2.2. Mode-matching method

In order to determine the S-matrix of the proposed FCL junction, the mode-matching method
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B
e

A
e

1 2

(1)

(1)

B
o

A
o

(1)

(1)

B
e

A
e

(2)

(2)

B
o

A
o

(2)

(2)

C
-1

C
+1

(0)

(0)

C
-2

C
+2

(0)

(0)

(1) (0) (2)

z=0 z=L
z

dielectric

section

dielectric

section

ferrite

section

Figure 6. Two port FCL junction composed of ferrite and dielectric sections.

the widths of the strips in the ferrite and dielectric sections are the same, the higher modes
are not excited, and therefore, they are neglected in the analysis. In this case, only two
fundamental modes are taken into consideration. The modes propagated in the dielectric
and ferrite sections are called dielectric and ferrite waves, respectively. Due to the symmetry
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where F = (E, H) represents tangential electric or magnetic field and A and B are the
unknown expansion coefficients describing forward and backward waves, respectively, of
even (e) and odd (o) modes. The total field in ferrite section can be written as follows:
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t =
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where D(z) = diag([ejk(0)+1z, ejk(0)+2z, ejk(0)−1z, ejk(0)−2z]), k(0)±1(2) are the propagation coefficients of both

fundamental modes in ferrite section and F = (E, H) and C(0)
±1(2) are the unknown expansion

coefficients describing forward (+) and backward (−) waves. Using relations (20) and (21),
the continuity conditions for the tangential components of electric and magnetic fields at two
interfaces z = 0 and z = L can be written as follows:

E(1)
t

∣∣
z=0 = E(0)

t
∣∣
z=0, H(1)

t
∣∣
z=0 = H(0)

t
∣∣
z=0, (22)

E(2)
t

∣∣
z=L = E(0)

t
∣∣
z=L, H(2)

t
∣∣
z=L = H(0)

t
∣∣
z=L. (23)

This set of equations can be solved using the orthogonality expansion method. As a result,
the relation between forward and backward waves in dielectric sections can be derived in the
following form:

B′ = S′A′, (24)

where

S′ =
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and A′ and B′ are the vectors of unknown expansion coefficients for the fields in each

section A′ = [A(1)
e , A(1)

o , A(2)
e , A(2)

o ]T , B′ = [B(1)
e , B(1)

o , B(2)
e , B(2)

o ]T . The S′ matrix defines
the two-mode scattering matrix of two-port FCL junction. The element Sji

nm defines the
relation between m incident wave in the ith port and n reflected wave in the jth port, where
m, n = {e, o} and i, j = {1, 2}.

In the designing procedure of the integrated nonreciprocal devices, more useful is the
S-matrix defined from the point of view of the incident and reflected waves at four ports
of the FCL junction. The scheme of such junction is presented in Fig. 7.
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Using the symmetry properties of the even and odd modes propagated in the dielectric
sections, the matrix S′ can be rearranged in terms of port waves, and finally, the scattering
matrix of four-port FCL junction is obtained. The incident and reflected waves at ith port
are denoted by A(i) and B(i), respectively. Due to symmetry of the waves in the dielectric
sections, they can be written as superpositions of waves in each port of four-port FCL junction
as follows:

A(1)
e = (A(1) + A(2))/

√
2, A(1)

o = (A(1) − A(2))/
√

2,

B(1)
e = (B(1) + B(2))/

√
2, B(1)

o = (B(1) − B(2))/
√

2,

A(2)
e = (A(3) + A(4))/

√
2, A(2)

o = (A(3) − A(4))/
√

2, (26)

B(2)
e = (B(3) + B(4))/

√
2, B(2)

o = (B(3) − B(4))/
√

2.

which can be expressed in the matrix form

A′ = TA and B′ = TB, (27)

where A = [A(1), A(2), A(3), A(4)]T , B = [B(1), B(2), B(3), B(4)]T , and

T =

[
T1 0
0 T1

]
, T1 =

1√
2

[
1 1
1 −1

]
.

Finally, using the two-mode S-matrix (24) and relations (27), the scattering matrix of the
four-port FCL junction is obtained.

B = S A, where S = T−1 S′ T. (28)

Such S-matrix can be used in the analysis of the transmission properties of FCL junction with
the assumed excitation.

3. Numerical results

3.1. Microstrip ferrite coupled line junction

The first investigated structure is a planar microstrip ferrite coupled line (MFCL) junction
presented in Fig. 8(a). The cross section of the junction is shown in Fig. 8(b). It is a multilayer
structure in which two conductive strips are placed at h2 interface while the ground is
placed at h1 interface. A ferrite material with a relative permittivity εr2 = 13.3, saturation
magnetization Ms = 239 kA/m, internal bias Hi = 0, and thickness d2 = 0.5 mm is placed
in layer (2) located above the conductive strips. The dielectric sections have the same cross
section as ferrite section, although instead of ferrite, a dielectric material is used with relative
permeability ur = 1 and with the same relative permittivity as the ferrite material. The
investigated structure has a plane of symmetry AA′ passing through the center of the gap
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The first investigated structure is a planar microstrip ferrite coupled line (MFCL) junction
presented in Fig. 8(a). The cross section of the junction is shown in Fig. 8(b). It is a multilayer
structure in which two conductive strips are placed at h2 interface while the ground is
placed at h1 interface. A ferrite material with a relative permittivity εr2 = 13.3, saturation
magnetization Ms = 239 kA/m, internal bias Hi = 0, and thickness d2 = 0.5 mm is placed
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Figure 8. Planar junction of microstrip ferrite coupled lines: (a) 3D view and (b) cross section of ferrite guide

between the strips. In the dielectric section, this symmetry plane is an electric or magnetic
wall for odd or even mode, respectively.

Utilizing the developed method of analysis, described in section 2, the dispersion
characteristics of the investigated structure are first calculated. The calculations were
performed in the frequency range from 9 to 18 GHz. The characteristics of the propagation
coefficients of the two basic modes propagating in dielectric and ferrite sections are shown
in Fig. 9(a). The ferrite modes have a cutoff frequency near fM = γ(Hi + Ms) = 8.4 GHz
where gyromagnetic coefficient γ = 35.2 MHz m/kA. This means that the ferrite modes
propagate in this structure, when the µe f f = (µ2 − µ2

a)/µ > 0, where µ and µa are the
elements of relative permeability tensor defined in section 2.1. It can be noted that with the
increasing frequency, the propagation coefficients of the modes in the ferrite line converge to
propagation coefficients of the modes in dielectric line. This effect is due to the fact that with
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Figure 9. Simulation results of MFCL junction: (a) dispersion characteristics and (b) magnetic field distribution of even
and odd mode in dielectric section of MFCL junction at f0 = 12.4 GHz
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the increase of frequency, the value of µa element of the permeability tensor (responsible for
gyromagnetic property of the ferrite) decreases.

Figure 9(b) shows the distributions of the transverse components of magnetic fields for
the even and odd modes in the dielectric section. Calculations are performed at frequency
f0 = 12.4 GHz. As can be seen, the magnetic field vectors of the dielectric modes are
orthogonal to each other in the areas above and below the strips in the symmetry plane AA′

of the structure. According to the definition of coupling coefficient (12), if instead of one of
these layers the ferrite material is introduced, the optimal gyrotropic coupling effect will be
obtained.

In the next step, utilizing the MM method described in section 2.2.2, the scattering parameters
of the investigated MFCL junction are determined. The scattering parameters of the junction
in a function of ferrite section length at f0 = 12.4 GHz are shown in Fig. 10. The optimal
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Figure 10. Simulated scattering parameters of MFCL junction versus length of ferrite section at f0 = 12.4 GHz: (a)
magnitude and (b) phase difference

length L of the ferrite section providing 45 ◦ Faraday rotation is determined by amplitude
and phase conditions ([21]). According to these conditions, when port (1) of the structure is
excited, the signal should be equally divided between ports (3) and (4) of the structure, while
port (2) should be isolated. Moreover, the phase difference between signals in ports (3) and
(4) for ports (1) or (2) excitation should be equal to 0 or ±180 ◦. From the obtained results, it
can be seen that optimal length of the section for which the amplitude and phase conditions
are fulfilled is L = 28 mm.

In order to illustrate the nonreciprocal properties occurring in the investigated FCL, the
change of power concentration along the structure has been calculated and presented in
Fig. 11.

Based on the obtained results, one can see the periodic effect of signal exchange between
coupled lines in the ferrite section due to the Faraday rotation phenomenon. Furthermore,
the distributions of the electric and magnetic fields in the input and output ports of FCL
junction providing 45 ◦ Faraday rotation angle (L = 28 mm) have been calculated and
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length L of the ferrite section providing 45 ◦ Faraday rotation is determined by amplitude
and phase conditions ([21]). According to these conditions, when port (1) of the structure is
excited, the signal should be equally divided between ports (3) and (4) of the structure, while
port (2) should be isolated. Moreover, the phase difference between signals in ports (3) and
(4) for ports (1) or (2) excitation should be equal to 0 or ±180 ◦. From the obtained results, it
can be seen that optimal length of the section for which the amplitude and phase conditions
are fulfilled is L = 28 mm.

In order to illustrate the nonreciprocal properties occurring in the investigated FCL, the
change of power concentration along the structure has been calculated and presented in
Fig. 11.

Based on the obtained results, one can see the periodic effect of signal exchange between
coupled lines in the ferrite section due to the Faraday rotation phenomenon. Furthermore,
the distributions of the electric and magnetic fields in the input and output ports of FCL
junction providing 45 ◦ Faraday rotation angle (L = 28 mm) have been calculated and
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Figure 11. Power density distribution along the investigated MFCL section

(a) (b) 

Figure 12. Field distribution in dielectric section of MFCL junction at z = 0 (upper row) and z = 28 mm (bottom row)
mm for: (a) even-mode excitation and (b) odd-mode excitation

presented in Fig. 12. In the analysis, the even- and odd-mode excitations of the junction
were assumed. From the presented results, it can be observed that when such junction is
excited with the even or odd mode, the signal concentrates around the left or right line at the
output of the structure. If the direction of the magnetization will be reversed, the signal will
concentrate on the opposite strips.
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For the FCL junction with the optimal length L = 28 mm of the ferrite section, the scattering
parameters were calculated in a function of frequency (see Fig. 13).
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Figure 13. Simulated frequency-dependent scattering parameters of MFCL junction: (a) magnitude and (b) phase
difference

From the obtained results, it can be seen that the transmission coefficients S31 and S41
are equal to −3 ± 0.5 dB in the frequency range from 11 to 16 GHz, with isolation S21
and reflection losses S11 better than −20 dB. In the considered frequency range, the phase
difference between the output signals in ports (3) and (4) for ports (1) or (2) excitation varies
in the range from −18 to 27 ◦ (see Fig. 13(b)). The optimal 45 ◦ Faraday rotation angle is
obtained for f0 = 12.4 GHz.

3.2. Cylindrical ferrite coupled line junction

Another investigated structure is a cylindrical ferrite coupled line (CFCL) junction. The cross
section of ferrite coupled lines is shown in Fig. 14.
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Figure 14. Cylindrical ferrite coupled line junction: (a) 3D view and (b) cross section of ferrite guide
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From the obtained results, it can be seen that the transmission coefficients S31 and S41
are equal to −3 ± 0.5 dB in the frequency range from 11 to 16 GHz, with isolation S21
and reflection losses S11 better than −20 dB. In the considered frequency range, the phase
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in the range from −18 to 27 ◦ (see Fig. 13(b)). The optimal 45 ◦ Faraday rotation angle is
obtained for f0 = 12.4 GHz.
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Another investigated structure is a cylindrical ferrite coupled line (CFCL) junction. The cross
section of ferrite coupled lines is shown in Fig. 14.
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Figure 14. Cylindrical ferrite coupled line junction: (a) 3D view and (b) cross section of ferrite guide
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This structure consists of a cylindrical ferrite rod of radius r1 covered with dielectric layer of
thickness d = r2 − r1 on which the conductive strips are etched. The dielectric section has the
same cross section as ferrite section; however, instead of a ferrite rod, a dielectric rod is used
with relative permeability µr = 1 and the same relative permittivity as the ferrite material.

Utilizing the developed method of analysis, described in section 2.1, the dispersion
characteristics of the investigated structure are first calculated. In the analysis, the following
dimensions and material parameters of the junction were assumed: r1 = 2.2 mm, εr f = 15,
saturation magnetization Ms = 131 kA/m, internal bias Hi = 0, and dielectric coating:
d = 0.127 mm, εrd = 2.2. The angular slot/strip widths were ∆ϕp = 25 ◦, ∆ϕs = 15 ◦. The
characteristics of the propagation coefficients of the dielectric and the ferrite lines are shown
in Fig. 15(a).
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Figure 15. Simulation results of CFCL junction: (a) dispersion characteristics and (b) magnetic field distributions of
even and odd modes in dielectric section of CFCL junction at f0 = 8.2 GHz

Based on the obtained characteristics for the investigated dielectric lines, it can be noted that
for a specific frequency f0 = 8 GHz, the phase velocities of the even and odd modes are
equal. It means that in such a line, the isotropic coupling vanishes and only gyromagnetic
coupling occurs. This allows to obtain the optimal conditions for the Faraday rotation.

Figure 15(b) shows the magnetic field distributions of the even and odd modes in dielectric
line specified for f0 = 8.2 GHz. From these distributions, it can be seen that there are areas
in the line where the magnetic fields of both modes are orthogonal; hence, placing the ferrite
material in this area of a line will produce the gyromagnetic coupling between the basic field
modes.

In the next step, the scattering parameters of CFCL junction are calculated in a function of
ferrite section length at f0 = 8.2 GHz and shown in Fig 16.

From the presented results, it can be noticed that the optimal length of the ferrite section
providing 45 ◦ Faraday rotation is L = 26 mm. For such length of section S31 = S41 = −3 dB
and the phase difference between signals in ports (3) and (4) for ports (1) and (2), excitation
is then 0 or ±180 ◦.
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Figure 16. Scattering parameters of CFCL junction versus length of ferrite section: (a) magnitude and (b) phase
difference

Similarly to the planar case presented in section 3.1, in order to illustrate the nonreciprocal
properties occurring in the investigated CFCL junction, the power concentration along the
structure has been determined (see Fig. 17).
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Figure 17. Power density and transversal field distribution in the CFCL section for even- (upper row) and odd-mode
(bottom row) excitation calculated at f0 = 8.2 GHz

Furthermore, the distributions of the electric and magnetic fields in the input (z = 0) and
output ports (z = 26 mm) of FCL junction providing 45 ◦ Faraday rotation angle have been
calculated. In the analysis, the even- and odd-mode excitations of the junction were assumed.
The obtained results confirm the nonreciprocal behavior of the designed CFCL junction.
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Similarly to the planar case presented in section 3.1, in order to illustrate the nonreciprocal
properties occurring in the investigated CFCL junction, the power concentration along the
structure has been determined (see Fig. 17).
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Furthermore, the distributions of the electric and magnetic fields in the input (z = 0) and
output ports (z = 26 mm) of FCL junction providing 45 ◦ Faraday rotation angle have been
calculated. In the analysis, the even- and odd-mode excitations of the junction were assumed.
The obtained results confirm the nonreciprocal behavior of the designed CFCL junction.
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For the CFCL junction with the ferrite section of length L = 26 mm, the scattering parameters
were calculated in a function of frequency and presented in Fig. 18.
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Figure 18. Frequency-dependent scattering parameters of CFCL junction for L = 26 mm: (a) magnitude and (b) phase
difference (solid line, our method; dashed line, HFSS)

From the obtained results, it can be seen that the equal power division defined by S31 =
S41 = −3 ± 0.5 dB is obtained in the frequency range from 7 to 8.6 GHz (see Fig. 18(a)). In
this frequency range, the phase difference between the signals in ports (3) and (4) for ports
(1) or (2) excitation varies in the range from −40 ◦ to 10 ◦ (see Fig. 18(b)). In addition, it can be
seen that the optimal amplitude and phase conditions required for 45 ◦ Faraday rotation are
fulfilled at the frequency f0 = 8.25 GHz. The result of the proposed approach is compared
with those obtained from commercial software HFSS, and a good agreement can be observed.

4. Nonreciprocal devices

In this section, the results of investigation of nonreciprocal devices made in both the planar
and conformal line technology are presented. Section 4.1 presents the results of the three-port
circulator realized in slotline technology. Section 4.2 presents the results of a double isolator
realized in microstrip coupled lines technology. In Section 4.3, the results of the four-port
circulator realized utilizing cylindrical ferrite coupled line section are discussed.

4.1. Three-port circulator utilizing ferrite coupled slotline junction

The first investigated circuit is three-port circulator realized in coupled slotline technology,
which is shown in Fig 19(a).

The device is realized as a cascade connection of a T-junction, ferrite coupled slotline (FCSL)
junction, and the output section being the transformer from the coupled slotlines to the
microstrip lines. The cross section of the FCSL junction is shown in Fig. 19(b). The FCSL
junction is a four-layer structure, where the coupled slotlines are realized on a thin laminate
situated above the ferrite material. The T-junction and the output section have the same
cross section as ferrite section, although instead of ferrite, a dielectric material with relative
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Figure 19. FCSL circulator: (a) schematic view of the device and (b) cross section of FCSL junction

permittivity εr = 9.6 is used. T-junction is realized as a transformer from coplanar line into
coupled slotlines. Due to the fact that the coplanar line is fed from the coaxial connector,
the junction provides even excitation of FCSL section. On the other hand, the odd mode,
which is transmitted from the ferrite section, is totally reflected in the plane of the coaxial
connector. The output structure allows for the transmission of the signal from the specific
slot of ferrite junction to the corresponding output microstrip port, while the remaining ports
of the circulator are isolated.

In order to determine the scattering parameters of the circulator shown in Fig. 19(a), the
scattering matrices of the ferrite junction, T-junction, and output section were first calculated.
The scattering parameters of the FCSL junction were simulated with the use of our own
software based on the methods described in section 2. The feeding circuits (T-junction and
output section) were designed with the use of commercial software. The circulator scattering
parameters were obtained by cascade connection of the calculated scattering matrices of
individual sections. The simulated frequency characteristics of the scattering parameters are
shown in Fig 20.

From the obtained results, it can be seen that the investigated configuration has return losses
and isolation better than 10 dB over a wide frequency range from 13 to 20.5 GHz. In the
considered frequency band, the average transmission losses are about 1 dB in the case of a
single pass of the signal through the ferrite section and about 2 dB in the case of double pass
of the signal through the ferrite section. In the analysis, the material losses were not taken
into consideration, and the resulting level of losses is due to return losses and the lack of a
perfect isolation between the ports of circulator.

A photograph of the manufactured prototype of the circulator is shown in Fig. 21. The
measured characteristics of its scattering parameters are depicted in Fig. 22.

Measurements were performed in the frequency range from 10 to 21 GHz. The results
show that the investigated device operates in a wide frequency band. In the frequency
range from 12 to 19 GHz, the average transmission losses are about 2.5 dB, and the level of
isolation and return losses is about 10 dB for a single pass of the signal through the ferrite
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permittivity εr = 9.6 is used. T-junction is realized as a transformer from coplanar line into
coupled slotlines. Due to the fact that the coplanar line is fed from the coaxial connector,
the junction provides even excitation of FCSL section. On the other hand, the odd mode,
which is transmitted from the ferrite section, is totally reflected in the plane of the coaxial
connector. The output structure allows for the transmission of the signal from the specific
slot of ferrite junction to the corresponding output microstrip port, while the remaining ports
of the circulator are isolated.

In order to determine the scattering parameters of the circulator shown in Fig. 19(a), the
scattering matrices of the ferrite junction, T-junction, and output section were first calculated.
The scattering parameters of the FCSL junction were simulated with the use of our own
software based on the methods described in section 2. The feeding circuits (T-junction and
output section) were designed with the use of commercial software. The circulator scattering
parameters were obtained by cascade connection of the calculated scattering matrices of
individual sections. The simulated frequency characteristics of the scattering parameters are
shown in Fig 20.

From the obtained results, it can be seen that the investigated configuration has return losses
and isolation better than 10 dB over a wide frequency range from 13 to 20.5 GHz. In the
considered frequency band, the average transmission losses are about 1 dB in the case of a
single pass of the signal through the ferrite section and about 2 dB in the case of double pass
of the signal through the ferrite section. In the analysis, the material losses were not taken
into consideration, and the resulting level of losses is due to return losses and the lack of a
perfect isolation between the ports of circulator.

A photograph of the manufactured prototype of the circulator is shown in Fig. 21. The
measured characteristics of its scattering parameters are depicted in Fig. 22.

Measurements were performed in the frequency range from 10 to 21 GHz. The results
show that the investigated device operates in a wide frequency band. In the frequency
range from 12 to 19 GHz, the average transmission losses are about 2.5 dB, and the level of
isolation and return losses is about 10 dB for a single pass of the signal through the ferrite
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Figure 20. Simulated scattering parameters of FCSL circulator: (a) transmission with isolation and (b) reflection
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Figure 21. Photograph of the fabricated FCSL circulator: (a) top view and (b) bottom view

section. The best isolation is observed in the frequency range from 12 to 15 GHz and is
better than 16 dB. In the case of a double pass of the signal through the ferrite section, the
transmission losses are two times higher and are about 5.5 dB in the frequency range from 12
to 19 GHz. The isolation is better than 14 dB in the entire frequency range. In the measured
transmission characteristics, small periodically repeating resonances occur, which result from
the inaccuracies in the manufacturing process.

4.2. Double isolator utilizing microstrip coupled line section

Another investigated configuration is a double isolator shown in Fig. 23. This arrangement is
composed of two interconnected and magnetized in the same direction three-port circulators
(see Fig. 2(c)), in which the appropriate ports are terminated by matched loads. The
advantage of this configuration is the ability to achieve high isolation. Unfortunately, due to
the fact that the device uses two ferrite sections, the losses in the system are twice as high as
in the case of isolator with a single section of FCL.
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Figure 22. Measured scattering parameters of FCSL circulator: (a) transmission with isolation and (b) reflection
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Figure 23. Double isolator utilizing microstrip ferrite coupled line junction

Utilizing own software, as well as commercial simulator, the double isolator utilizing ferrite
junction from Fig. 8 was designed. The simulation results are shown in Fig. 24.

From the obtained results, it can be seen that in the frequency range from 10 to 16 GHz, the
isolation is better than 20 dB with return losses better than 10 dB.

The designed structure was manufactured. A photograph of the prototype is shown in
Fig. 25. To obtain the double isolator, ports (3) and (4) of the structure were terminated with
the matched SMA connectors. The obtained experimental results are presented in Fig. 26.

It can be seen that the device works in the frequency band from 9 to 16 GHz. In the
given frequency range the isolation and the average return losses are better than 15 dB.
Furthermore, the average transmission losses are 3.5 dB and they change from 3 dB at 9 GHz
to 4 dB at 16 GHz. Based on these results, it can be estimated, that the losses for a single
pass of the signal through the investigated microstrip ferrite section are about 1.8 dB. The
losses are lower by about 1.5 dB in comparison to the results published for a single section
configuration in [4].
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Figure 22. Measured scattering parameters of FCSL circulator: (a) transmission with isolation and (b) reflection
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Figure 23. Double isolator utilizing microstrip ferrite coupled line junction

Utilizing own software, as well as commercial simulator, the double isolator utilizing ferrite
junction from Fig. 8 was designed. The simulation results are shown in Fig. 24.

From the obtained results, it can be seen that in the frequency range from 10 to 16 GHz, the
isolation is better than 20 dB with return losses better than 10 dB.

The designed structure was manufactured. A photograph of the prototype is shown in
Fig. 25. To obtain the double isolator, ports (3) and (4) of the structure were terminated with
the matched SMA connectors. The obtained experimental results are presented in Fig. 26.

It can be seen that the device works in the frequency band from 9 to 16 GHz. In the
given frequency range the isolation and the average return losses are better than 15 dB.
Furthermore, the average transmission losses are 3.5 dB and they change from 3 dB at 9 GHz
to 4 dB at 16 GHz. Based on these results, it can be estimated, that the losses for a single
pass of the signal through the investigated microstrip ferrite section are about 1.8 dB. The
losses are lower by about 1.5 dB in comparison to the results published for a single section
configuration in [4].
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Figure 24. Simulated scattering parameters of double MFCL isolator: (a) transmission with isolation and (b) reflection
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Figure 25. Photograph of the manufactured double MFCL isolator

4.3. Four-port circulator utilizing cylindrical ferrite coupled line junction

The last investigated device is a four-port circulator shown in Fig. 27. The advantage of this
circulator is that the signal transmission in the circulation direction requires only one pass
through the ferrite coupled line section. As a result, this allows for reduction of losses in the
device in comparison to the alternative configuration of the four-port circulator realized with
the use of double ferrite coupled line section.

The investigated device is realized as a cascade connection of the magic-T structure, the
CFCL junction, and the output section being the transformer from the cylindrical coupled
lines to the uncoupled microstrip lines. The magic-T structure (shown in Fig. 28(a) and (b))
allows to excite ferrite section with odd or even mode.

In the case of port (1) excitation, the signal is transmitted directly through the structure
ensuring even mode excitation of cylindrical coupled lines. On the other hand, when port
(2) is excited, the signal is coupled to slotline, which results in the odd mode signal at ports
(3) and (4). Output section, shown in Fig. 28(c), is a multilayer structure, which transforms
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Figure 26. Measured scattering parameters of double MFCL isolator: (a) transmission with isolation and (b) reflection
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Figure 27. Top and bottom view of four-port circulator utilizing cylindrical ferrite coupled line junction

the cylindrical ferrite coupled line to microstrip lines. In the case of port (1) excitation of
this section, the signal is transmitted to port (3). Similarly, when port (2) is excited, the
signal is transmitted to port (4). For a complete understanding of the operation of the device,
the excitation in ports (1) or (2) can be represented as a superposition of the even and odd
signals, which are of the same amplitude and phase equal to 0 or 180 ◦. Then, for even-mode
excitation, the signal is divided equally between the output ports. On the other hand, in the
case of odd-mode excitation, part of the signal is guided in the bottom slot of the device. Due
to the fact that this slotline is shorted with radial stub, the signal is coupled to a microstrip
line and divided between the output ports. In order to reduce the isotropic coupling, which
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Figure 26. Measured scattering parameters of double MFCL isolator: (a) transmission with isolation and (b) reflection
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the cylindrical ferrite coupled line to microstrip lines. In the case of port (1) excitation of
this section, the signal is transmitted to port (3). Similarly, when port (2) is excited, the
signal is transmitted to port (4). For a complete understanding of the operation of the device,
the excitation in ports (1) or (2) can be represented as a superposition of the even and odd
signals, which are of the same amplitude and phase equal to 0 or 180 ◦. Then, for even-mode
excitation, the signal is divided equally between the output ports. On the other hand, in the
case of odd-mode excitation, part of the signal is guided in the bottom slot of the device. Due
to the fact that this slotline is shorted with radial stub, the signal is coupled to a microstrip
line and divided between the output ports. In order to reduce the isotropic coupling, which

Advanced Electromagnetic Waves140

1

2

3

4

microstrip
layer

impedance
transformer

(a)

slot layer

microstrip
layer

dielectric 1

dielectric 2

(b)

1

2

3

4
dielectric 1

slot layer

microstrip
layer

dielectric 2

(c)

Figure 28. Feeding circuits of CFCL circulator: (a) magic T, top view; (b) magic T, bottom view; and (c) output
transformer from coupled slotlines to microstrip lines

could deteriorate the isolation of the circulator, an additional dielectric layer is used in the
considered structure.

The simulation results of the circulator are presented in Fig. 29. It can be seen that the
device operates in the frequency range from 7.6 to 8.6 GHz. In this frequency range, the
device isolation and return losses are better than 18 dB. In the analysis, a lossless section was
assumed.
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Figure 29. Simulated scattering parameters of four-port CFCL circulator: (a) transmission with isolation and (b)
reflection coefficients with coupling between neighboring ports

The designed device was manufactured (see the photo in Fig. 30) and measured. The
obtained scattering parameters characteristics are shown in Fig. 31.

It can be seen that in the frequency range from 7.6 to 8.6 GHz, the value of transmission from
port (1) to (4) and from port (3) to (1) is about −1.5 dB, while transmission from port (2) to
(3) and port (4) to (2) is about −3 dB. The isolation between these ports in the considered
frequency range is better than 12 dB. Return losses in ports (2), (3), and (4) are better than
17 dB and in port (1) are better than 8 dB. The isolation between ports (1) and (2) is better
than 18 dB and between ports (3) and (4) better than 8 dB. A higher level of return losses
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Figure 30. Photograph of fabricated four-port CFCL circulator: (a) top view and (b) bottom view
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Figure 31. Measured scattering parameters of four-port CFCL circulator: (a) transmission with isolation and (b)
reflection coefficients and coupling between neighboring ports

and a lower level of isolation with respect to simulated results at port (2) result from the
inaccuracy of manufacturing process due to technological limitations. The greatest impact
on the deterioration of the device parameters had the positioning of the cylindrical ferrite
coupled line section with respect to planar structures. Nevertheless, the obtained results of
measurements well agree with the results of simulation.

5. Conclusion

In this chapter, the research on nonreciprocal devices utilizing longitudinally magnetized
ferrite coupled lines junction is presented. The different configurations of FCL junctions
were taken into account, comprising planar lines and conformal guides realized as striplines
or slotlines placed on cylinder with circular cross section. The description of developed fast
and efficient hybrid methods for the analysis of investigated FCL junctions was presented.
The numerical results for planar and conformal FCL junctions were calculated and shown.
Finally, the numerical and experimental results concerning nonreciprocal devices utilizing
proposed planar and conformal FCL junctions were presented and discussed.
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Abstract

Linear vibrator and slot radiators, i.e., radiators of electric and magnetic type, respec‐
tively, are widely used as separate receiver and transmitter structures, elements of an‐
tenna systems, and antenna-feeder devices, including combined vibrator-slot
structures. Widespread occurrence of such radiators is an objective prerequisite for
theoretical analysis of their electrodynamic characteristics. During the last decades, re‐
searchers have published results which make it possible to create a modern theory of
thin vibrator and narrow slot radiators. This theory combines the fundamental
asymptotic methods for determining the single radiator characteristics, the hybrid an‐
alytic-numerical approaches, and the direct numerical techniques for electrodynamic
analysis of such radiators. However, the electrodynamics of single linear electric and
magnetic radiators is far from been completed. It may be explained by further devel‐
opment of modern antenna techniques and antenna-feeder devices, which can be
characterized by such features as multielement structures, integration, and modifica‐
tion of structural units to minimize their mass and dimensions and to ensure electro‐
magnetic compatibility of radio aids, application of metamaterials, formation of
required spatial-energy, and spatial-polarization distributions of electromagnetic
fields in various nondissipative and dissipative media. To solve these tasks, electric
and magnetic radiators, based on various impedance structures with irregular geo‐
metric or electrophysical parameters and on combined vibrator-slot structures, should
be created. This chapter presents the methodological basis for application of the gen‐
eralized method of induced EMMF for the analysis of electrodynamic characteristics
of the combined vibrator-slot structures. Characteristic feature of the generalization to
a new class of approximating functions consists in using them as a function of the cur‐
rent distributions along the impedance vibrator and slot elements; these distributions
are derived as the asymptotic solution of integral equations for the current (key prob‐
lems) by the method of averaging. It should be noted that for simple structures similar
to that considered in the model problem, the proposed approach yields an analytic
solution of the electrodynamic problem. For more complex structures, the method
may be used to design effective numerical-analytical algorithms for their analyses.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



The demonstrative simulation (the comparative analysis of all electrodynamic charac‐
teristics in the operating frequencies range) has confirmed the validity of the pro‐
posed generalized method of induced EMMF for analysis of vibrator-slot systems
with rather arbitrary structure (within accepted assumptions). Here, as examples,
some fragments of this comparative analysis were presented. This method retains all
benefits of analytical methods as compared with direct numerical methods and allows
to expand significantly the boundaries of numerical and analytical studies of practi‐
cally important problems, concerning the application of single impedance vibrator, in‐
cluding irregular vibrator, the systems of such vibrators, and narrow slots.

Keywords: Waves excitation, thin impedance vibrators, narrow slots, vibrator-slot
structures

1. Introduction

At present, linear vibrator and slot radiators, i.e. radiators of electric and magnetic type,
respectively, are widely used as separate receiver and transmitter structures, elements of
antenna systems, and antenna-feeder devices, including combined vibrator-slot structures
[1-4]. Widespread occurrence of such radiators is an objective prerequisite for theoretical
analysis of their electrodynamic characteristics. During last decades researchers have pub‐
lished results which make it possible to create a modern theory of thin vibrator and narrow
slot radiators. This theory combines the fundamental asymptotic methods for determining the
single radiator characteristics [5-7], the hybrid analytic-numerical approaches [8-10], and the
direct numerical techniques for electrodynamic analysis of such radiators [11]. However, the
electrodynamics of single linear electric and magnetic radiators is far from been completed. It
may be explained by further development of modern antenna techniques and antenna-feeder
devices which can be characterized by such features as multielement structures, integration
and modification of structural units to minimize their mass and dimensions and to ensure
electromagnetic compatibility of radio aids, application of metamaterials, formation of
required spatial-energy and spatial-polarization distributions of electromagnetic fields in
various nondissipative and dissipative media. To solve these tasks electric and magnetic
radiators, based on various impedance structures with irregular geometric or electrophysical
parameters, and on combined vibrator-slot structures, should be created [12-20].

Mathematical modeling of antenna-feeder devices requires multiparametric optimization of
electrodynamic problem solution and, hence, effective computational resources and software.
Therefore, in spite of rapid growth of computer potential, there exists a necessity to develop
new effective methods of electrodynamic analysis of antenna-feeder systems, being created
with linear vibrator and slot structures with arbitrary geometric and electrophysical parame‐
ters, satisfying modern versatile requirements, and widening their application in various
spheres. Efficiency of mathematical modeling is defined by rigor of corresponding boundary
problem definition and solution, by performance of computational algorithm, requiring
minimal possible RAM space, and directly depends upon analytical formulation of the models.
That is, the weightier is the analytical component of the method the grater is its efficiency. In
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this connection it should be noted that formation of analytical concepts of electrodynamic
analysis extending the capabilities of physically correct mathematical models for new classes
of boundary problems is always an important problem.

This chapter presents the methodological basis of a new approach to solving the electrody‐
namic problems associated with combined vibrator–slot structures, defined as a generalized
method of induced electro-magneto-motive forces (EMMF). This approach is based on the
classical method of induced EMMF, i.e, basis functions, approximating the currents along the
vibrator and slot elements, are obtained in advance as analytical solutions of key problems,
formulated as integral equations for the currents by the asymptotic averaging method. Bearing
this in mind, we present here solutions of two key problems: a single impedance vibrator and
slot scatterer in a waveguide, obtained by averaging method, and then solve a problem for the
multielement vibrator-slot structures by generalized method of induced EMMF.

2. Problem formulation and initial integral equations

Let us formulate the problem of electromagnetic fields excitation (scattering, radiation) by
finite-size material bodies in two electrodynamic volumes coupled by holes cut in their
common boundary. Suppose that there exists some arbitrary volume V1, bounded by a
perfectly conducting, impedance, or partially impedance surface S1, some parts of which may
be infinitely distant. The volume V1 is coupled with another arbitrary volume V2 through holes
Σn (n =1, 2...N ), cut in the surface S1. The boundary between the volumes V1 and V2 in the
regions around the coupling holes has an infinitely small thickness. Permittivity and perme‐
ability of the medium filling volumes V1 and V2 are ε1, μ1 and ε2, μ2, respectively. Material
bodies, enclosed in local volumes Vm1

 (m1 =1, 2, ...M1) and Vm2
 (m2 =1, 2, ...M2), bounded by

smooth closed surfaces Sm1
 and Sm2

, are allocated in the volumes V1 and V2, respectively. The
bodies have homogeneous material parameters: permittivity εm1

, εm2
, permeability μm1

, μm2
, and

conductivity σm1
, σm2

. The fields of extraneous sources can be specified as the electromagnetic
wave fields, incident on the bodies and the holes (scattering problem), or as fields of electro‐
motive forces, applied to the bodies (radiation problem), or as combination of these fields.
Without loss of generality, we assume that electromagnetic fields of extraneous sources
{E→ 0(r

→ ), H
→

0(r
→ )} exist only in the volume V1. The fields {E→ 0(r

→ ), H
→

0(r
→ )} depend on the time t  as e iωt

(r→  is the radius vector of the observation point, ω =2πf  is an circular frequency and f  is
frequency, measured in Hertz). We seek the electromagnetic fields {E→ V 1

(r→ ), H
→

V 1
(r→ )} and

{E→ V 2
(r→ ), H

→
V 2

(r→ )} in the volumes V1 and V2, satisfying Maxwell’s equations and boundary
conditions on the surfaces Sm1

, Sm2
, Σn, S1 and S2 (Figure 1).

To solve the above-mentioned problem we express the electromagnetic fields in volumes V1

and V2 in terms of the tangential fields components on the surfaces Sm1
, Sm2

 and Σn. In the
Gaussian CGS system of units, the electromagnetic fields can be represented by the well-
known Kirchhoff-Kotler integral equations [3,4]:
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Figure 1. The problem geometry and notations
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Figure 1. The problem geometry and notations
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Here k =2π /λ is the wave number, λ is the free space wavelength, k1 =k ε1μ1 and k2 =k ε2μ2 are
wave numbers in the media filling the volumes V1 and V2, respectively; r→ ′

m1,m2,n are radius-vectors
of sources allocated at the surfaces Sm1

, Sm2
 and Σn ; n→ m1,m2,n are unit vectors of external normals

to the surfaces; ĜV 1,V 2

e (r→ , r→ ′) and ĜV 1,V 2

m (r→ , r→ ′) are the electric and magnetic tensor Green’s
functions for Hertz’s vector potentials in the coupled volumes satisfying the vector Helmholtz
equation and the boundary conditions on surfaces S1 and S2. For the infinitely distant parts of
surfaces S1 or S2 the boundary conditions for the Green’s functions are transformed to the
Sommerfeld’s radiation condition.

Interpretation of the fields in the left-hand side of equations (1) depends upon position of an
observation point r→ . If the observation point r→  belongs to the surfaces Sm1

, Sm2
 or to the apertures

Σn, the fields E
→

(r→ ) and H
→

(r→ ) represent the same fields as in the integrals in the right-hand sides
of equations (1). In this case, equations (1) are non-homogeneous linear integral Fredholm
equations of the second kind, which are known to have the unique solution. If the observation
point lies outside areas Vm1

, Vm2
 and Σn, the equations (1) become the equalities determining

the total electromagnetic field by the field of specified extraneous sources. These equalities
solve, in general terms, the problem of electromagnetic fields excitation by finite size obstacles
if fields on the objects’ surfaces are known. Certainly, to find these fields, the Fredholm integral
equations should be solved beforehand.

The equations (1) can be also used to solve electrodynamics problems if the fields on the
material body surfaces can be defined by additional physical considerations. For example, if
induced currents on well-conducting bodies (σ→∞) are concentrated near the body surface
the skin layer thickness can be neglected and the well-known Leontovich-Shchukin approxi‐
mate impedance boundary condition becomes applicable [4]

, ( ) ( ) , , ( ) ,Sn E r Z r n n H ré ùé ù é ù=ë û ë ûë û
r rr r r r r r

(2)

where Z̄ S(r→ )= R̄S (r→ ) + i X̄ S (r→ )=ZS (r→ ) / Z0 is the distributed complex surface impedance, normal‐
ized to the characteristic free space impedance Z0 =120π Ohm; the value of Z̄ S(r→ ) may vary over
the body surface. It is generally accepted that the boundary condition (2) are physically
adequate under condition | Z̄ S (r→ )| ≪1. If | Z̄ S (r→ )| →0, the boundary condition become that
for the perfect conductor. In contrast to the limiting case of the perfect conductor, the impe‐
dance boundary condition allow to take into account losses in the real material. Since the
relative error of (2) is of order | Z̄ S (r→ )| 3, the inequality 0≤ | Z̄ S (r→ )| ≤0.4 must hold to obtain
valid results by the mathematical model.

Using the impedance boundary condition (2) we can introduce a new unknown, density of
surface currents. Let us perform such change of unknown in the equations (1). Without loss of
generality, we carry the system of equations (1) the transition to the case when all the material
bodies are located in volume V1. By placing the observation point on the surface Sm (index 1
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is omitted) and using the continuity condition for the tangential components of the magnetic
field on the holes Σn, we obtain the system of integral equations relative to the density of surface

currents: electric J
→

m
e (r→ m) at Sm and equivalent magnetic J

→
n
m(r→ n) at Σn. The system can be presented

as
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where q =1, 2, ..., m, ..., M , p =1, 2, ..., n, ..., N , J
→

m
e (r→ m)=

c
4π n→m, H

→
(r→ m) , J

→
n
m(r→ n)=

c
4π n→ n, E

→
(r→ n) , c

is velocity of light in free space.

Thus, the problem of electromagnetic waves excitation by the impedance bodies of finite
dimensions and by the coupling holes between two electrodynamic volumes is formulated as
a rigorous boundary value problem of macroscopic electrodynamics, reduced to the system
of integral equations for surface currents. Solution of this system is an independent problem,
significant in its own right, since it often present considerable mathematical difficulties. If
characteristic dimensions of an object are much greater than wavelength (high-frequency
region) a solution is usually searched as series expansion in ascending power of inverse wave
number. If dimensions of an object are less than wavelength (low-frequency or quasi-static
region), representation of the unknown functions as series expansion in wave number powers
reduces the problem to a sequence of electrostatic problems. Contrary to asymptotic cases,
resonant region, where at least one dimension of an object is comparable with wavelength, is
the most complex for analysis, and requires rigorous solution of field equations. It should be
noted that, from the practical point of view, the resonant region is of exceptional interest for
thin impedance vibrators and narrow slots.
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where q =1, 2, ..., m, ..., M , p =1, 2, ..., n, ..., N , J
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→
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is velocity of light in free space.

Thus, the problem of electromagnetic waves excitation by the impedance bodies of finite
dimensions and by the coupling holes between two electrodynamic volumes is formulated as
a rigorous boundary value problem of macroscopic electrodynamics, reduced to the system
of integral equations for surface currents. Solution of this system is an independent problem,
significant in its own right, since it often present considerable mathematical difficulties. If
characteristic dimensions of an object are much greater than wavelength (high-frequency
region) a solution is usually searched as series expansion in ascending power of inverse wave
number. If dimensions of an object are less than wavelength (low-frequency or quasi-static
region), representation of the unknown functions as series expansion in wave number powers
reduces the problem to a sequence of electrostatic problems. Contrary to asymptotic cases,
resonant region, where at least one dimension of an object is comparable with wavelength, is
the most complex for analysis, and requires rigorous solution of field equations. It should be
noted that, from the practical point of view, the resonant region is of exceptional interest for
thin impedance vibrators and narrow slots.
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3. Integral equations for electric and magnetic currents in thin impedance
vibrators and narrow slots

A straightforward solution of the system (3) for the material objects with irregular surface
shape and for holes with arbitrary geometry may often be impossible due to the known
mathematical difficulties. However, the solution is sufficiently simplified for thin impedance
vibrators and narrow slots, i.e. cylinders, which cross-section perimeter is small as compared
to their length and the wavelength in the surrounding media and for holes, which one
dimension satisfy the analogous conditions [19,20]. The approach used in [19,20] for the
analysis of slot-vibrator systems can be generalized for multi-element systems. In addition,
the boundary condition (2) can be extended for cylindrical vibrator surfaces with an arbitrary
distribution of complex impedance regardless of the exciting field structure and electrophys‐
ical characteristics of vibrator material [4].

For thin vibrators made of circular cylindrical wire and narrow straight slots the equation
system (3) can be easily simplified using inequalities

1,2 1,22
1, 1, 1, 1,m m n n

m n

r r d d
L Ll l

<< << << << (4)

where rm is vibrator radius, L m is vibrator length, dn is slot width, 2L n is slot length, and λ1,2

is wavelength in the corresponding media. The electric current induced on the vibrator surfaces
and equivalent magnetic currents in the slots can be presented using the inequalities (4) as

( ) ( ) ( , ) , ( ) ( ) ( ) ,
m n

e m
m m s m m m m m n n s n n n nJ r e J s J r e J sy r j c x= =
r rr r r r

(5)

where e→ sm
 and e→ sn

 are unit vectors directed along the vibrator and slot axis, respectively; sm and
sn are local coordinates related to the vibrator and slot axes; ψm(ρm, φm) are functions of
transverse (⊥m ) polar coordinates ρm, φm for the vibrators; χn(ξn) are functions of transverse
coordinates ξn for the slots. The functions ψm(ρm, φm) and χn(ξn) satisfy the normality conditions

d d d( , ) 1, ( ) 1,
m n

m m m m m m n n n
x

y r j r r j c x x
^

= =ò ò (6)

and the unknown currents Jm(sm) and Jn(sn) must satisfy the boundary conditions

( ) 0 , ( ) 0 ,m m n nJ L J L± = ± = (7)

where upper indexes e and m are omitted.
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Now we take into account that n→m, J
→

m(r→ m) ≪1 according to inequalities (4) and project the
equations (3a) and (3b) on the axes of the vibrators and slots, respectively, and arrive at a system
of linear integral equations relative to the currents in the vibrators and slots
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Here zim(sm) are internal lineal impedance of the vibrators (ZSm(r→ m)=2πrmzim(r→ m)) measured in
Ohm/m, E0sm

(sm) and H0sn
(sn) are projections of extraneous sources on the vibrators and slots

axes, Gsm

V 1(sm,n, s ′m) and Gsn

V 1(2)(sm,n, s ′n) are components of the tensor Green’s functions in the

volumes V1 and V2.

For solitary vibrator or slot as well as for the absence of electromagnetic interaction between
them, the system (8) splits into two independent equations:
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Here e→ s ′v
 and e→ s ′sl

 are unit vectors of vibrator and slot axes at the sources, and
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Solution of the integral equation with the exact kernel expressions (11) and (12) may be very
difficult, therefore we will use approximate expressions, the so called “quasi-one-dimension‐
al” kernels [5,15]
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derived with the assumption that source points belong to the geometric axes of the vibrator
and slot while observation points belong to vibrator surface and to slot axis, having coordinates
{ssl , ξ / 2}. In that case the functions Gsv

V (sv, s ′
v) and Gssl

V 1,2(ssl , s ′
sl) are everywhere continuous and

equations for the currents are simplified significantly.

Since the form of the Green’s functions was not specified, the equations (8) are valid for any
electrodynamic volumes, provided that the Green’s functions for any electrodynamic volumes
are known or can be constructed. Although the boundary between the volumes V1 and V2

initially was supposed to be of infinitesimal thickness, its actual thickness can be accounted
for by introducing into the equations (8) an effective slot width, defined by the formula given
in the Section 5.

4. Solution of integral equation for current in an impedance vibrator,
located in unbounded free space

Let us use the equation (9) with the approximate kernel (13), being a quasi-one-dimensional
analog of the exact integral equation with kernel (11) as starting point for the analysis. Note that
impedance zi(s)≡const , ε1 =μ1 =1, and index v is omitted. Thus, the equation may be written as
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where R(s, s ′)= (s − s ′)2 + r 2. Let us isolate the logarithmic singularity in the kernel of equation
(15) by identical transformation
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Here
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γ(s)= ln
(L + s) + (L + s)2 + r 2 (L − s) + (L − s)2 + r 2

4L 2  is a function, equal to zero at the

vibrator center and reaching maximal value at its ends where the current in accordance with

boundary condition (7) is equal to zero, Ω=2ln
2L

r  is a large parameter. Then, equation (15) in

view of (16) is transformed to integral equation with a small parameter
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Here α = −
1
Ω =

1
2ln r / (2L )  is a natural small parameter of the problem (|α |  <<1),
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(19)

is the vibrator self-field in free space.

To find the approximate analytic solution of equation (18) we will use the asymptotic averaging
method. The basic principles of the method are presented in [3,4]. To reduce the equation
(18) to a standard equation system with a small parameter in compliance with the method of
variation of constants we will change variables

d d d
d d d

d d d
d dd

2
2

2

( ) ( )cos ( )sin ,
( ) ( ) ( )( ) sin ( ) cos , cos sin 0 ,
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s s s
J s A s B sk J s ks ks

s ss

= +

æ ö
= - + + =ç ÷

è ø

+ = - +

(20)

where A(s) and B(s) are new unknown functions. Then the equation (18) reduces to a system
of integral equations
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This system is equivalent to the equation (18) and represents the standard equations system
unsolvable with respect to derivatives. The right-hand sides of the equations are proportional
to small parameter α, therefore, the functions A(s) and B(s) in the left-hand sides of the
equations system (21) are slowly varying functions and the system can be solved by the
asymptotic averaging method. Then, we replace the system (21) by the simplified system

wherein assume dA(s)
ds =0 and dB(s)

ds =0 in rigth-hand members and carry out partial averaging

over the explicit variable s to obtain the equations of first approximation. The term partial
averaging means that averaging operator acts on all terms, but containing E0s(s) and it may be
done for the system (21). The averaged system can be written as
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iω
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is self-field of the vibrator (19), averaged over its length.

We will seek the solution of the equations system (22) in the form
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Then, substitution (24) into (22) gives
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Then we find C1(s) and C2(s) by solving system (25), determine Ā(s) и B̄(s) from (24), and

substitute them as approximating functions for the current into (20). Thus, the general
asymptotic expression in parameter α for the current in a thin impedance vibrator under
arbitrary excitation may be presented as

d0( ) ( )cos( ) ( )sin( ) ( ) [ , , ] sin ( ) ,
s

s
L

iJ s A L ks L B L ks L E s F s A B k s s s
k
wc c a

-

ì ü¢ ¢ ¢ ¢= - + + - + + + -í ý
î þ
ò% % % (26)

where k̃ =k + χ =k + i(α / r)Z̄ S , Z̄ S = R̄S + i X̄ S  is the normalized complex surface impedance:

Z̄ S =2πrzi / Z0.

For electrically thin vibrators (| (k εμr)2ln(k εμri)|  <<1, ri is the radius of the inner conductor)

with the parameters of material ε, μ, σ, from which they are made, the formulas of the
distributed surface impedance Z̄ S  are presented in Table 1.

№ Design type of vibrator Breadboard view of vibrator Formula for impedance

1 The solid metallic cylinder of the

rΔ0 radius, Δ0 =ω / k 2πσωμ is the
skin-layer thickness

Z̄ S =
1 + i

Z0σΔ0

2 The dielectrical metalized cylinder
with covering, made of the metal of
the hRΔ0 thickness

Z̄ S =
1

Z0σh R + ikr(ε −1) / 2

3 The metal-dielectrical cylinder (L1 is
the thickness of the metal disk, L2 is
the thickness of the dielectric disc)

Z̄ S = − i
L 2

L 1 + L 2

2
krε

4 The magnetodielectrical metalized
cylinder with the inner conducting
cylinder with the radius ri

Z̄ S =
1

Z0σh R − i / krμln(r / ri)

5 The metallic cylinder with covering,
made of magnetodielectric of the r-ri

thickness, or the corrugated
cylinder

Z̄ S = ikrμln(r / ri)

Z̄ S(s)= R̄S (s) + i X̄ S(s)
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№ Design type of vibrator Breadboard view of vibrator Formula for impedance

6 The metallic monofilar helix of the r
radius (kr1) with the ψ winding
angle

Z̄ S =(i / 2)kr ctg 2ψ

Table 1. The formulas of the distributed surface impedance Z̄ S

The formulas have been obtained in the frames of impedance conception [4], and they are just
for thin cylinders both of infinite and finite extension, located in free space. It is necessary to
introduce the multiplier μ1 / ε1 in all formulas for the vibrator in the material medium with
the ε1 and μ1 parameters. We note, that most of the formulas for impedances include the
parameters ε and μ, smooth change of which (in the case of their dependence from the static
electrical and magnetic fields) and the characteristics of radiation of the system, correspond‐
ingly, (at its fixed geometrical sizes) can be made, for example, by external field effects.

The constants Ā( ± L ) and B̄( ± L ) can be found employing the boundary conditions (7) and
the symmetry conditions [5], unambiguously related to a method of vibrator excitation; if
E0s(s)= E0s

s (s), J (s)= J (− s)= J s(s) and Ā(− L )= Ā( + L ) , B̄(− L )= − B̄( + L ) ; if E0s(s)= E0s
a (s),

J (s)= − J (− s)= J a(s) and Ā(− L )= − Ā( + L ) , B̄(− L )= B̄( + L ). Then, in terms of symmetric and
antisymmetric current components, marked by indexes s and a, respectively, for arbitrary
vibrator excitation by E0s(s)= E0s

s (s) + E0s
a (s) it is not difficult to show that

d

d

d

0

0

0

( ) ( ) ( ) ( )sin ( )

sin ( ) [ , ( )] ( )sin ( )
sin 2 ( ,2 )

sin ( ) [ , ( )] ( )sin ( )
sin 2 ( ,2 )

s
s a

s
L

Ls
s
ss

L
La

a
sa

L

iJ s J s J s E s k s s s
k

k L s P kr k L s E s k L s s
kL P kr kL

k L s P kr k L s E s k L s s
kL P kr kL

wa

a
a

a
a

-

-

-

ìï ¢ ¢ ¢= + = -í
ïî

+ + + ¢ ¢ ¢- -
+

ü+ + + ï¢ ¢ ¢- - ý
+

ò

ò

ò

%

% % %
% %

% % %
% % ,

ïþ

(27)

where P s and P a are the functions of vibrator self-fields equal to

d
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( , ) ( , )

[ , ( )] sin ( ) ( ,2 ). (b)
( , ) ( , )

s ikR s L ikR s L
s s

L s L
s ikR s L ikR s L

a a

L s L

e eP kr k L s k s s s P kr kL
R s L R s L

e eP kr k L s k s s s P kr kL
R s L R s L

¢ ¢- - -

- =

¢ ¢- - -

- =

é ù
¢ ¢+ = + - =ê ú¢ ¢-ë û

é ù
¢ ¢+ = - - =ê ú¢ ¢-ë û

ò

ò

% % %

% % %
(28)

It is evident that if an impedance vibrator is located in restricted volume V , the expression for
the current coincides with (27), but the functions of vibrator self-field (28) must contain
components of electric Green’s function for corresponding electrodynamic volume.
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Let us consider a problem of vibrator excitation at its geometric center by a lumped EMF with
amplitude V0. The mathematical model of excitation is presented as

0 0 0( ) ( ) ( 0),s
s sE s E s V sd= = - (29)

where δ(s −0)=δ(s) is Dirac delta-function. Then the expression for the current (27) is

0
sin ( | |) ( , )

( ) .
2 cos ( , )

s

s
L

k L s P kr ksiJ s V
k kL P kr kL

dawa
a

- +æ ö
= - ç ÷ +è ø

% %
% % % (30)

Here Pδs(kr , k̃ s)= P s kr , k̃(L + s) − (sink̃ s + sink̃ | s |) PL
s(kr , k̃ L ) and P s kr , k̃(L + s)  are defined

by the formula (28a). Explicit expressions for Pδ
s(kr , k̃ s) and PL

s(kr , k̃ L ) can be expressed

explicitly in terms of generalized integral functions [4,5]. Thus, PL
s(kr , k̃ L ) which will be

needed below may be presented as

Cin Cin
Si Si

Si Si Cin Cin

( , ) cos {2ln 2 ( ) (1 / 2)[ (2 2 ) (2 2 )]
( / 2)[ (2 2 ) (2 2 )]}
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(31)

where Si(x) and Cin(x) are sine and cosine integrals of complex argument.

Since the current distribution (30) is now known we can calculate electrodynamic character‐
istics of an impedance vibrator. Thus, an input impedance Zin = Rin + i Xin of vibrator in a feed
point is equal

0 cos ( , )60[ ] ,
(0) sin ( , )

s
L

in
L

V kL P kr kLikZ
J k kL P kr kLd

a
a a

æ ö +
= = ç ÷ç ÷ +è ø

% %%
% %Ohm (32)

where
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(33)
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Note, that an input admittance Yin =Gin + iBin can be calculated as Yin =1 / Zin.

To confirm the validity of the above analytical formulas we present the results of a comparative
analysis of calculated and experimental data available in the literature. Figure 2 and Figure 3
show the graphs of the input admittance for two realizations of surface impedance: 1) metal
wire (radius ri =0.3175 cm), covered by dielectric (ε =9.0) shell (radius r =0.635 cm), the experi‐
mental data [21] at Figure 2 and 2) metal wire (ri =0.5175 cm), covered with ferrite (μ =4.7) shell
(r =0.6 cm), the experimental data from [22] at Figure 3. The plots show that trends of the
theoretical curves coincide with that of the experimental curves, especially near the resonance
for Bin =0, though in absolute values some difference is observed. In our opinion, the discrep‐
ancy of theoretical curves, obtained by solving the integral equation for the current by
averaging method, and the experimental curves may be caused by evident fact that vibrator
self-field (19) was averaged and the current amplitude was determined with some error.
integral equation for the current by averaging method, and the experimental curves may be 

caused by evident fact that vibrator self-field (19) was averaged and the current amplitude 

was determined with some error. 
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Figure 2. The input admittance of metal wire (radius 
i

r =0.3175 cm), covered by dielectric shell ( ε =9.0, 

radius r =0.635 cm) versus its electrical length at the frequency f =600 MHz 
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5. Solution of equation for current in a slot between two semi-infinite
rectangular waveguides

Now let us solve the second key problem. Let a resonant iris is placed in infinite hollow
(ε1 =μ1 =ε2 =μ2 =1) rectangular waveguide so that its slot has arbitrary orientation in the plane
of waveguide cross-section and has no contacts with waveguide walls (Figure 4).

Figure 4. The problem geometry and notations

A starting point for the analysis is equation (10) written as (index sl  is omitted)

d dd d
d d

1 2

2 ( , ) 2
2 2

0 0 02 2( )4 ( ) ( ) ( , ) ( , ) ,
( , )

L LikR s s
V V

s s s
L L

ek J s s i H s k J s G s s G s s s
R s ss s

w
¢-

- -

æ ö æ ö é ù¢ ¢ ¢ ¢ ¢ ¢+ = - - + +ç ÷ ç ÷ç ÷ ç ÷ ë û¢è ø è ø
ò ò (34)

where 4
e −ikR(s ,s ′)

R(s, s ′)
 is the Green’s function of the slot in infinite perfectly conducting plane,

G0s
V 1,2(s, s ′) are the Green’s functions, which takes into account multiple reflection from walls

of volumes.

Isolating the logarithmic singularity in the kernel of equation (34) as in (17), we reduce the
equation (34) to an integral equation with small parameter

{ }d
d

2
2

0 02
( ) ( ) ( ) , ( ) , ( ) .s

J s k J s i H s F s J s F s J s
s

a w é ù é ù+ = + +ë û ë û (35)

Here α =1 / 8ln de / (8L )  is the natural small parameter of the problem (|α |  <<1), de =d e −
πh
2d  is

equivalent slot width which takes into account a real wall thickness h  (h /λ <<1) [3],
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is self-field of the slot in infinite perfectly conducting plane,
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is self-field of the slot, which takes into account multiple reflection from walls of volumes.

To solve the equation (35) by averaging method we change the variable according to (20) and
obtain the standard system of integral equations relative to new unknown functions A(s) and
B(s) which is equivalent to initial equation (35)
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where FN = F + F0 is the total self-field of the slot.

Assuming, as in Section 4, dA(s)
ds =0 and dB(s)

ds =0 in the right-hand members of equations (38)

and making partial averaging over the variable s, we derive the equations of the first approx‐
imation by averaging method
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where
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is the slot total self-field, averaged over the slot length.

Solving the system (39), we obtain the general asymptotic expression for the current in narrow
slot, located in arbitrary position relative to the walls of coupling volumes
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To determine constants Ā( ± L ) and B̄( ± L ) we will use the boundary conditions (7) and the
symmetry conditions, uniquely related both to slot excitation method and its position in
waveguide. Then, in terms of symmetric and antisymmetric magnetic current components,
marked by indexes s and a, respectively, for arbitrary slot excitation by H0s(s)= H0s

s (s) + H0s
a (s)

with an accuracy of order α 2 we have
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where N s(kde, 2kL ) and N a(kde, 2kL ) are the functions of self-field which are equal
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which are completely defined by the Green’s functions of the coupling volumes.

Supposing that dominant wave H10 with amplitude H0 is propagated from the region z = −∞,
we have

0 0
0 0
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(44)
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The symmetric and antisymmetric components of the slot current, relative to the slot center
s =0, become equal

2
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(45)

where J0 is current amplitude, f (s) is the current distribution function, kφ =
π
a cosφ,

Wφ
sa(kde, 2kL ) is the function of slot self-field, defined by formulas (43).

Reflection and transmission coefficients, S11 and S12 for the dominant wave in the slot iris are
define by the current as

( )
2

2
11 12 12 3 2

16 cos ( )
1 , ,

[1 ( / ) ][cos 2 ( , )]
gi z

e

k f k L
S S e S

iabk k k kL W kd kL
jg

j j

p j
a

a
= + = -

- +
(46)

2

sin cos ( / )cos sin sin 2 2
( ) 2cos cos ,

2( / )1 ( / )
kL k L k k kL k L k L k L

f k L k L kL
k kk k

j j j j j
j j

jj

- +
= -

-

where kg = k 2− (π / a)2 is the propagation constant of H10 wave.

Figure 5 shows the theoretical and experimental wavelength dependences of power reflection
coefficient |S11|2  for the iris, which oriented so that the angle between slot axis {0s} and
waveguide axis {0x} are 0O  and 30O .

Note that a comparative analysis of the analytical solution of key problems is not limited only
by the examples presented above. Thus, the solution for current in the impedance vibrator,
located in free space, was preliminary compared with the known approximate analytical
solutions of integral equations. The adequacy of the constructed mathematical models to real
physical processes and the reliability of simulation results has been also confirmed by
comparative calculations, obtained by the numerical method of moments and other methods,
in particular, by the finite element method implemented in the software package Ansoft HFSS.

6. Combined vibrator–slot structures

Now let us consider a problem of electromagnetic waves excitation by a narrow straight
transverse slot in the broad wall of rectangular waveguide with a two passive impedance
vibrators in it.
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Figure 6. The geometry of three-element vibrator-slot system and notations

Let a fundamental wave H10 propagates from the area z = −∞ in a hollow infinite rectangular
waveguide, the area index is “Wg”. Two thin nonsymmetrical vibrators (monopoles) with
variable surface impedance are located in a waveguide with cross-section {a ×b}. A narrow
transverse slot cut in a broad wall of the waveguide symmetrically relative to its longitudinal
axis is radiating into free half-space, the area index is “Hs”. The vibrators radiuses and lengths
are r1,2 and L 1,2 ((r1,2 / L 1,2)<<1), the slot width is d , the slot length is 2L 3 ((d / L 3)<<1) and the
waveguide wall thickness is h . One vibrator is located in the plane {x0y} and the second
vibrator may be shifted along the axis {0z} at the distance z0 (Figure 6).

For this configuration the system of integral equations relative to electrical currents at the
vibrators J1,2(s1,2) and equivalent magnetic current in the slot J3(s3) in accordance with (8) may
be represented as
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Figure 5. Power reflection coefficient 
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lytical solutions of integral equations. The adequacy of the constructed mathematical mod-

els to real physical processes and the reliability of simulation results has been also con-

Figure 5. Power reflection coefficient |S11|2  versus wavelength for the iris at a =23.0 mm, b =10.0 mm, 2L  =16.0

mm, d  =1.5 mm, h  =2.0 mm, x0 =a / 2, y0 =b / 2

Advanced Electromagnetic Waves166



Figure 6. The geometry of three-element vibrator-slot system and notations

Let a fundamental wave H10 propagates from the area z = −∞ in a hollow infinite rectangular
waveguide, the area index is “Wg”. Two thin nonsymmetrical vibrators (monopoles) with
variable surface impedance are located in a waveguide with cross-section {a ×b}. A narrow
transverse slot cut in a broad wall of the waveguide symmetrically relative to its longitudinal
axis is radiating into free half-space, the area index is “Hs”. The vibrators radiuses and lengths
are r1,2 and L 1,2 ((r1,2 / L 1,2)<<1), the slot width is d , the slot length is 2L 3 ((d / L 3)<<1) and the
waveguide wall thickness is h . One vibrator is located in the plane {x0y} and the second
vibrator may be shifted along the axis {0z} at the distance z0 (Figure 6).

For this configuration the system of integral equations relative to electrical currents at the
vibrators J1,2(s1,2) and equivalent magnetic current in the slot J3(s3) in accordance with (8) may
be represented as

Dummy Text where 
0

J  is current amplitude, ( )f s  is the current distribution function, 

cosk

a

ϕ

π

= ϕ , ( ,2 )
sa

e

W kd kL
ϕ

 is the function of slot self-field, defined by formulas (43). 

Reflection and transmission coefficients, 
11

S  and 
12

S  for the dominant wave in the slot iris 

are define by the current as 

( )

2

2

11 12 12 3 2

16 cos ( )

1 , ,

[1 ( / ) ][cos 2 ( , )]

ϕγ

ϕ ϕ

π ϕ

= + = −α

− + α

gi z

e

k f k L

S S e S

iabk k k kL W kd kL

 (46) 

Bez Broja 
2

sin cos ( / )cos sin sin 2 2

( ) 2cos cos ,

1 ( / ) 2( / )

kL k L k k kL k L k L k L

f k L k L kL

k k k k

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

− +

= −

−

 

Dummy Text where 
2 2

( / )
g

k k a= − π  is the propagation constant of 
10

H  wave. 

Figure 5 shows the theoretical and experimental wavelength dependences of power reflec-

tion coefficient 
2

11

| |S  for the iris, which oriented so that the angle between slot axis {0 }s  

and waveguide axis {0 }x  are 
O

0  and 
O

30 . 

28 30 32 34 36

0.0

0.2

0.4

0.6

0.8

1.0

 

R
e
f
l
e
c
t
i
o
n
 
c
o
e
f
f
i
c
i
e
n
t
 
|S

1
1

|2

 

Wavelength λ, mm

 Theory

 Experimental data
ϕ=0

Ο

 

28 30 32 34 36

0.0

0.2

0.4

0.6

0.8

1.0

 

R
e
f
l
e
c
t
i
o
n
 
c
o
e
f
f
i
c
i
e
n
t
 
|S

1
1

|2

 

Wavelength λ, mm

 Theory

 Experimental data

ϕ=30

O

 

Figure 5. Power reflection coefficient 
2

11

| |S  versus wavelength for the iris at a =23.0 mm, b =10.0 mm, 

2L =16.0 mm, d =1.5 mm, h =2.0 mm, 
0

/ 2x a= , 
0

/ 2y b=  

Note that a comparative analysis of the analytical solution of key problems is not limited 

only by the examples presented above. Thus, the solution for current in the impedance vi-

brator, located in free space, was preliminary compared with the known approximate ana-

lytical solutions of integral equations. The adequacy of the constructed mathematical mod-

els to real physical processes and the reliability of simulation results has been also con-

Figure 5. Power reflection coefficient |S11|2  versus wavelength for the iris at a =23.0 mm, b =10.0 mm, 2L  =16.0

mm, d  =1.5 mm, h  =2.0 mm, x0 =a / 2, y0 =b / 2

Advanced Electromagnetic Waves166

d d d
d

d

d d
d

1 2

1 2

1 2

3

3

3

1

2

2
2

1 1 1 1 1 2 2 1 2 22
1

3 3 1 3 3

0 1 1 1 1 1

2
2

2 2 2 2 22
2

( ) ( , ) ( ) ( , )

( ) ( , )

( ) ( ) ( ) , (a)

( ) ( , )

L L
Wg Wg
s s

L L

L
Wg
s

L

s i

Wg
s

L

k J s G s s s J s G s s s
s

ik J s G s s s

i E s z s J s

k J s G s s s
s

w

- -

-

-

ì üæ öï ï¢ ¢ ¢ ¢ ¢ ¢+ + -ç ÷í ýç ÷ï ïè øî þ

¢ ¢ ¢-

é ù= - -ë û
æ ö

¢ ¢ ¢+ç ÷ç ÷
è ø

ò ò

ò %

d

d d
d

d

2 1

1

2 1

2

3

3 3

3

1

1 3

1

1 1 2 1 1

0 2 2 2 2 2

2
2
1 3 3 3 3 3 3 32

3

1 1 3 1 1 0 3

( ) ( , )

( ) ( ) ( ) , (b)

( ) ( , ) ( , )

( ) ( , ) ( ). (c)

L L
Wg
s

L

s i

L
Wg Hs
s s

L

L
Wg
s s

L

J s G s s s

i E s z s J s

k J s G s s G s s s
s

ik J s G s s s i H s

w

w

-

-

-

ì üï ï¢ ¢ ¢+ =í ý
ï ïî þ

é ù= - -ë û
æ ö

é ù¢ ¢ ¢ ¢+ + -ç ÷ ë ûç ÷
è ø

¢ ¢ ¢- = -

ò ò

ò

ò %

(47)

Here Gs1,2

Wg(s1,2, s ′
1,2) and Gs3

Wg ,Hs(s3, s ′
3) are components of the Green’s functions of the rectan‐

gular waveguide and the half-space over the plane [3,4],

G̃s1

Wg(s3, s ′
1) =

∂
∂ z Gs1

Wg x(s3), 0, z; x ′(s ′
1), y ′(s ′

1), z0  and

G̃s3

Wg(s1, s ′
3) =

∂
∂ z Gs3

Wg x(s1), y(s1), z; x ′(s ′
3), 0, 0  after substitution z =0 into G̃s1

Wg  and z = z0 into

G̃s3

Wg  after first derivation, zi1,2(s1,2) is the internal impedance per unit length of the vibrators
([Ohm/m]), E0s1,2

(s1,2) and H0s3
(s3) are projections of impressed sources fields on the vibrators

and the slot axes, s1 = − L 1 and s2 = − L 2 are end coordinates of mirror vibrator images relative
to the lower broad wall of the waveguide [4]

We will seek the solution of equations system (47) by a generalized method of induced EMMF
[19,20], using functions J1(2)(s1(2)) = J1(2)

0 f 1(2)(s1(2)) and J3(s3)= J3
0 f 3(s3) as approximating expres‐

sions for the currents. Here J1(2)
0  and J3

0 are unknown current amplitudes, f 1(2)(s1(2)) and f 3(s3)
are predetermined functions of the current distributions. In accordance with (27) and (42) for
the vibrator-slot structure excited by the fundamental wave H10 we have

f 1(2)(s1(2)) =cosk̃ 1(2)s1(2) −cosk̃ 1(2)L 1(2), f 3(s3)=cosks3 −cosk L 3, k̃ 1(2) =k −
i2πzi1(2)

av

Z0Ω1(2)
,

zi1(2)
av =

1
L 1(2)

∫
0

L 1(2)

zi1(2)(s1(2))ds1(2) are average values [4] of internal impedances,

Ω1(2) =2ln(2L 1(2) / r1(2)).

In accordance with the generalized method of induced EMMF, we multiply equation (47a) by
the function f 1(s1), equation (47b) by the function f 2(s2), and the equation (47c) by the function
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f 3(s3) and integrate the equations (47a) and (47b) over the length of the vibrators, and the

equation (47c) over the length of the slot. As a result, we obtain a system of linear algebraic
equations relative to the current amplitudes J1,2,3
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where εn ={1, n =0
2, n ≠0, kx(y) =

m(n)π
a(b) , kz = kx

2 + ky
2 −k 2, m, n are integers; Si and Cin are integral sine

and cosine.

The energy characteristics of the vibrator-slot system: the reflection and transmission coeffi‐

cients, S11 and S12, and power radiation coefficient |SΣ|2 , are defined by the expressions
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In expressions (55)-(57)
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Let us consider several distribution functions for the surface impedance along the vibrator,
namely: 1) ϕ0(s1(2)) =1, the constant distribution, 2) ϕ1(s1(2)) =2 1− (s1(2) / L 1(2)) , the triangular

distribution linear decreasing to the vibrator end, and 3) ϕ2(s1(2)) =2(s1(2) / L 1(2)), the triangular

linear increasing distribution. All distribution have equal average values ϕ0,1,2(s1(2))̄ =1. The

expression for F1(2)
z0  with the distribution function 1), in accordance with (50), can be presented

as

( )
2

1(2) 1(2) 1(2) 1(2)0
1(2) 1(2) 1(2) 1(2) 1(2) 1(2) 1(2)2

1(2) 1(2) 1(2)

1(2) 1(2) 1(2) 1(2)

2 ( ) 32 cos2 sin 2
2 8

( )

S Sz

z
S S

i R iX k L
F k L k L k L

k L r

F R iX

é ùæ ö+ ê úç ÷= - + -
ê úç ÷
è øê úë û

= + F

%
% % %

%

%

(58)

with the distribution function 2) as

( ) ( )

1
1(2) 1(2)

2

1(2) 1(2) 2
1(2) 1(2) 1(2) 1(2) 1(2) 1(2) 1(2) 1(2) 1(2)

72 cos2 sin 2 cos 1
2 4

z z

S S

F F

k L
R iX k L k L k L

=

ì éæ ö üùï ïêç ÷´ F + + - - -í ýúêç ÷ ïûþï è øêëî

%

%
% % % (59)

and with the distribution function 3) as

{

( )

( )

2
1(2) 1(2) 1(2) 1(2)

2

1(2) 1(2) 2
1(2) 1(2) 1(2) 1(2) 1(2)

1(2) 1(2) 1(2) 1(2) 1(2) 1(2)

72 cos2 sin
2 4

3 sin 2 2 cos 1
4

z z
S

S

F F R

k L
iX k L k L

k L k L k L

= F

éæ öêç ÷+ + +
êç ÷
è øêë

üùï- + - ýú
ïûþ

%

%
% %

% % %

(60)

Advanced Electromagnetic Waves170



( )
0

3 11 22 33 21 12 33 31 13 22

2 2
02 01

3 3 11 22 21 12 2 2 2 12 31 1 1 1 31 22
2 1

1

( )( ) sin ( ) sin ( ) ,gik z

g g

J Z Z Z Z Z Z Z Z Z

x xk kf kL Z Z Z Z f k L Z Z f k L e Z Z
a ak k k k

p p

S S S S S

-S S S

= - -

é ù
ê ú´ - + -
ê úë û

% %
% %

1(2) 1(2) 1(2) 1(2) 1(2) 1(2) 1(2) 1(2) 1(2)( ) sin cos ,f k L k L k L k L= -% % % %

3 3 3 3
3 3 2

sin cos( / ) ( / )cos sin( / )
( ) .

1 [ / ( )]
kL L a ka kL L af kL

ka
p p p

p
-

=
-

Let us consider several distribution functions for the surface impedance along the vibrator,
namely: 1) ϕ0(s1(2)) =1, the constant distribution, 2) ϕ1(s1(2)) =2 1− (s1(2) / L 1(2)) , the triangular

distribution linear decreasing to the vibrator end, and 3) ϕ2(s1(2)) =2(s1(2) / L 1(2)), the triangular

linear increasing distribution. All distribution have equal average values ϕ0,1,2(s1(2))̄ =1. The

expression for F1(2)
z0  with the distribution function 1), in accordance with (50), can be presented

as

( )
2

1(2) 1(2) 1(2) 1(2)0
1(2) 1(2) 1(2) 1(2) 1(2) 1(2) 1(2)2

1(2) 1(2) 1(2)

1(2) 1(2) 1(2) 1(2)

2 ( ) 32 cos2 sin 2
2 8

( )

S Sz

z
S S

i R iX k L
F k L k L k L

k L r

F R iX

é ùæ ö+ ê úç ÷= - + -
ê úç ÷
è øê úë û

= + F

%
% % %

%

%

(58)

with the distribution function 2) as

( ) ( )

1
1(2) 1(2)

2

1(2) 1(2) 2
1(2) 1(2) 1(2) 1(2) 1(2) 1(2) 1(2) 1(2) 1(2)

72 cos2 sin 2 cos 1
2 4

z z

S S

F F

k L
R iX k L k L k L

=

ì éæ ö üùï ïêç ÷´ F + + - - -í ýúêç ÷ ïûþï è øêëî

%

%
% % % (59)

and with the distribution function 3) as

{

( )

( )

2
1(2) 1(2) 1(2) 1(2)

2

1(2) 1(2) 2
1(2) 1(2) 1(2) 1(2) 1(2)

1(2) 1(2) 1(2) 1(2) 1(2) 1(2)

72 cos2 sin
2 4

3 sin 2 2 cos 1
4

z z
S

S

F F R

k L
iX k L k L

k L k L k L

= F

éæ öêç ÷+ + +
êç ÷
è øêë

üùï- + - ýú
ïûþ

%

%
% %

% % %

(60)

Advanced Electromagnetic Waves170

Since the formulas for F1(2)
z0,1,2 differ from one another, in spite of equal average values of

functions ϕ0,1,2(s1(2)) and identical functional dependences in formulas for currents, the cur‐
rent amplitudes and, hence, energy characteristics will be substantially different.

Figures 7, 8 shows the wavelength dependences of the radiation coefficient, modules of the
reflection and transmission coefficients in the wavelength range of the waveguide single-mode
regime, obtained using the following common parameters: a =58.0 mm, b =25.0 mm, h  =0.5 mm,
r1,2 =2.0 mm, L 1,2 =15.0 mm, R̄S 1(2) =0, x01 =a / 8, x02 =7a / 8, d  =4.0 mm and 2L 3 =40.0 mm.
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Figure 7. The energy characteristics versus wavelength at 
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Figure 7. The energy characteristics versus wavelength at λv1,2
res =λsl

res, Z̄ S 1 = Z̄ S 2

The choice of slot dimensions was stipulated by its natural resonance at the average wave‐
length of the waveguide frequency range λ3

res =86.0 mm. The dimensions of the vibrators have
been selected so that their resonant wavelength was within the waveguide operating range.
Here we present the results only for vibrators with inductive impedances (X̄ S 1(2) >0), known
to increase the vibrator electrical length, i.e. to increase λ1,2

res as compared to case Z̄ S 1(2) =0,
without decreasing a distance between the vibrators ends and the upper broad wall of the
waveguide. This is very important for increasing the breakdown power for waveguide device
as a whole.

As might be expected from physical considerations, displacement of the impedance vibrator
along the longitudinal axis of the waveguide at a distance z0 from the centre of the slot, where
the maximum mutual influence between elements of the structure is observed, are multiple of

λG / 4 (Fig. 7: z0 =λG / 4 =32.0 mm and z0 =λG / 2 =64.0 mm). Here λG =2π / (2π /λsl
res)2 − (π / a)2 is

resonant wavelength of the slot in the waveguide, and λsl
res is the resonant wavelength of the

slot in the free half-space over the plane. As seen from Figure 7, an acceptable reflection
coefficient |S11 |  and high level of radiation could not be achieved if the monopoles have the
equal distributed impedances Z̄ S 1 = Z̄ S 2. The maximum of radiation coefficient |SΣ|2  and
almost perfect agreement with the feed line, as well as tuning to other resonant wavelengths
can be achieved by changing the distribution functions of impedance along the monopoles
axes (Figure 8). Fig. 8 also shows that the results of mathematical modeling are confirmed by
the experimental data. Experimental models have been made in the form of corrugated brass
rods (see photo in Figure 8).
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For the arbitrary vibrator-slot structures and coupled electrodynamic volumes expressions for

f v
s ,a(sv) and f sl

s ,a(ssl) (the subscripts s, a denote the symmetric and antisymmetric components

of the currents with respect to the vibrator (sv =0) and slot (ssl =0) centers, respectively), in

accordance with the results, presented in Sections 4 and 5 (see formulas (27) and (42)), can be

obtained from the following relations
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For the arbitrary vibrator-slot structures and coupled electrodynamic volumes expressions for
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s ,a(sv) and f sl

s ,a(ssl) (the subscripts s, a denote the symmetric and antisymmetric components

of the currents with respect to the vibrator (sv =0) and slot (ssl =0) centers, respectively), in

accordance with the results, presented in Sections 4 and 5 (see formulas (27) and (42)), can be

obtained from the following relations

d

d

d

,
0

,

,
0

,
0

,

sin ( ) ( )sin ( )

( ) , (a)
sin ( ) ( )sin ( )

sin ( ) ( )sin ( )

( )
sin (

v

v

v

v

v

v

sl

sl

sl

s
s a

v v s v v v v
Ls a

v v L
s a

v v s v v v v
s

s
s a

sl sl s sl sl sl sl
Ls a

sl sl

s

k L s E s k L s s

f s
k L s E s k L s s

k L s H s k L s s

f s
k L

-

-

ì ü
¢ ¢ ¢ï ï- +

ï ïï ï
í ý
ï ï¢ ¢ ¢+ + -ï ï
ï ïî þ

¢ ¢ ¢- +

+

ò

ò

ò

% %

:
% %

:

d,
0

, (b)
) ( )sin ( )

sl

sl

sl

L
s a

l sl s sl sl sl sl
s

s H s k L s s

ì ü
ï ï
ï ïï ï
í ý
ï ï¢ ¢ ¢+ -ï ï
ï ïî þ

ò

(61)

65 70 75 80 85 90 95 100 105

0.0

0.2

0.4

0.6

0.8

1.0

 

 Wavelength λ, mm

 
E
n
e
r
g
y
 
c
h
a
r
a
c
t
e
r
i
s
t
i
c
s

 |S
Σ

|

2

 |S
11

|

 |S
12

|

 Slot (|S
Σ

|

2

)

Z
S1

=ikr
1

ln(5.5)

Z
S2

=ikr
2

ln(5.5)

z
0

=32.0 mm

VSWR=1.5

 

65 70 75 80 85 90 95 100 105

0.0

0.2

0.4

0.6

0.8

1.0
 

 
 
E
n
e
r
g
y
 
c
h
a
r
a
c
t
e
r
i
s
t
i
c
s

  Wavelength λ, mm

Z
S1

=ikr
1

ln(5.5)

Z
S2

=ikr
2

ln(5.5)

z
0

=64.0 mm

 |S
Σ

|

2

 |S
11

|

 |S
12

|

 Slot (|S
Σ

|

2

)

VSWR=1.5

 

Figure 7. The energy characteristics versus wavelength at 
1,2

res res

v sl

λ = λ , 
1 2S S

Z Z=  

60 65 70 75 80 85 90 95 100 105

0.0

0.2

0.4

0.6

0.8

1.0

 

E
n
e
r
g
y
 
c
h
a
r
a
c
t
e
r
i
s
t
i
c
s

Wavelength λ, mm

Z
S1

=ikr
1

ln(4.0)

Z
S2

=0

z
0

=64.0mm

 |S
Σ

|

2

 |S
11

|

 |S
12

|

 Slot (|S
Σ

|

2

)

VSWR=1.5

 

60 65 70 75 80 85 90 95 100 105

0.0

0.2

0.4

0.6

0.8

1.0

 

E
n
e
r
g
y
 
c
h
a
r
a
c
t
e
r
i
s
t
i
c
s

Wavelength λ, mm

 |S
Σ

|

2

 |S
11

|

 |S
12

|

 Slot (|S
Σ

|

2

)

Z
S1

=ikr
1

ln(4.0)φ
2

(s
1

)

Z
S2

=ikr
2

ln(4.0)

z
0

=64.0mm

VSWR=1.5

 

65 70 75 80 85 90 95 100 105

0.0

0.2

0.4

0.6

0.8

1.0

 |S
Σ

|

2

 |S
11

|

 |S
12

|

 

E
n
e
r
g
y
 
c
h
a
r
a
c
t
e
r
i
s
t
i
c
s

Wavelength λ, mm

Z
S1

=ikr
1

ln(4.0)

Z
S2

=ikr
2

ln(4.0)φ
1

(s
2

)

z
0

=64 mm

VSWR=1.5

 

65 70 75 80 85 90 95 100 105

0.0

0.2

0.4

0.6

0.8

1.0

 |S
Σ

|

2

 |S
11

|

 |S
12

|

 

E
n
e
r
g
y
 
c
h
a
r
a
c
t
e
r
i
s
t
i
c
s

 Wavelength λ, mm

Z
S1

=ikr
1

ln(4.0)φ
1

(s
1

)

Z
S2

=ikr
2

ln(4.0)

z
0

=64 mm

VSWR=1.5

 

Figure 8. The energy characteristics versus wavelength at 
1,2

res res

v sl

λ ≠ λ , 
1 2S S

Z Z≠ , experimental data are 

marked by circles 

The choice of slot dimensions was stipulated by its natural resonance at the average wave-

length of the waveguide frequency range 
3

res

λ =86.0 mm. The dimensions of the vibrators 

have been selected so that their resonant wavelength was within the waveguide operating 

range. Here we present the results only for vibrators with inductive impedances (
1(2)S

X >0), 

Figure 8. The energy characteristics versus wavelength at λv1,2
res ≠λsl

res, Z̄ S 1≠ Z̄ S 2, experimental data are marked by
circles

Advanced Electromagnetic Waves172

where E0sv

s ,a(sv) and H0ssl

s ,a(ssl) are projections of symmetric and antisymmetric components of
impressed sources on the vibrator and the slot axes. Here the sign ~ means that after integration
in expressions (61) only multipliers, depending upon coordinates sv and ssl , are left.

Note once more that for arbitrary orientations of the vibrator, or the slot relative to the
waveguide walls, or for another impressed field sources, the expressions (61) should be used
to determine the distribution functions of electric and magnetic currents in the vibrator and
slot. For example, for the longitudinal slot in the broad wall of waveguide, i.e. if axes {0ssl} and
{0z} coincide, we obtain

( ) cos cos cos cos ,

( ) sin sin sin sin .

s
sl sl sl g sl sl g sl

a
sl sl sl g sl sl g sl

f s ks k L kL k s

f s ks k L kL k s

= -

= -
(62)

If vibrator is excited at its base by voltage δ -generator as in a waveguide-to-coaxial adapter
we have

( ) sin ( ).v v v vf s k L s= -% (63)

7. Conclusion

This chapter presents the methodological basis for application of the generalized method of
induced EMMF for the analysis of electrodynamic characteristics of the combined vibrator-
slot structures. Characteristic feature of the generalization to a new class of approximating
functions consists in using them as a function of the current distributions along the impedance
vibrator and slot elements; these distributions are derived as the asymptotic solution of integral
equations for the current (key problems) by the method of averaging. Comparison of theoret‐
ical and experimental curves indicates that the solution of integral equations for combined
vibrator-slot structures by the generalized method of induced EMMF with approximating
functions for the currents in the impedance vibrator and the slot, obtained by averaging
method is quite legitimate. It should be noted that for simple structures similar to that
considered in the model problem, the proposed approach yields an analytic solution of the
electrodynamic problem. For more complex structures, the method may be used to design
effective numerical-analytical algorithms for their analyses.

The demonstrative simulation (the comparative analysis of all electrodynamic characteristics
in the operating frequencies range) has confirmed the validity of the proposed generalized
method of induced EMMF for analysis of vibrator-slot systems with rather arbitrary structure
(within accepted assumptions). Here, as examples, some fragments of this comparative
analysis were presented. This method retains all benefits of analytical methods as compared
with direct numerical methods and allows to expand significantly the boundaries of numerical

Electromagnetic Waves Excitation by Thin Impedance Vibrators and Narrow Slots in Electrodynamic Volumes
http://dx.doi.org/10.5772/61188

173



and analytical studies of practically important problems, concerning the application of single
impedance vibrator, including irregular vibrator, the systems of such vibrators and narrow
slots. And this is a natural step in the further development of the general fundamental theory
of linear radiators of electric and magnetic types.
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Chapter 7

Rigorous Approach to Analysis of Two-Dimensional
Potential Problems, Wave Propagation and Scattering
for Multi-conductor Systems
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Abstract

The research described in this chapter analyses two-dimensional potential problems
for the multi-body systems, transverse electromagnetic wave propagation along
multi-conductor transmission lines and two-dimensional plane wave scattering by
various arrays. All conductors may be of arbitrary cross-sections; the only restric‐
tion on the system geometry is a smooth parameterization. These problems are
mathematically modelled by Dirichlet boundary value problems for either the Lap‐
lace or the Helmholtz equation, with the classical integral representation of the sol‐
utions in the form of single-layer potential. The analytical-numerical algorithm
presented here is based on the method of analytical regularization. The key idea be‐
hind this technique is an analytical transformation of the initial ill-posed integral
equations to a well-conditioned Fredholm second kind matrix equation. The result‐
ing system of infinite linear algebraic equations is effectively solved using the trun‐
cation method: the solution of the truncated system converges to the solution of the
infinite system with the guaranteed accuracy that only depends on the truncation
number and thus may be pre-specified. The solution obtained is applied to the accu‐
rate analysis of 2-D electrostatic- and electrodynamic-field problems for multi-con‐
ductor systems with arbitrary profiled conductors. Examples of some conceptual
shielded transmission lines incorporating various configurations of conductors and
scattering problems for the arrays of thick strips establish the utility of our method
and its reliability in various situations

Keywords: Scattering, propagation, analytical regularization, Laplace equation,
Helmholtz equation
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1. Introduction

In electrostatic and electromagnetic studies of highly elongated cylinders, and ensembles or
arrays of such cylinders, it is well-known [1] that the most important effects can be treated by
replacing the three-dimensional structure by the corresponding cross-sectional two-dimen‐
sional (2D) profile. Such cylinders are described by a < < L , where L  is the length of the
cylinder, and a is a parameter characterizing its cross-section. This condition ensures that for
real objects such as charged conducting cylinders, the field induced by their ends will have no
impact on electric field distribution well away from the ends, or this impact will be vanishingly
small as L →∞. Such idealization in 2D electrostatics causes nonphysical solutions: the
arbitrary profiled charged cylinder, for instance, generates a potential that logarithmically
grows instead of vanishing as expected at distant observation points. This means that the
potential is unbounded at infinity. The nonphysical nature of the solution is commented by
many authors. However, for systems of charged conductors this difficulty can be avoided in
one of two ways: by setting the net charge of the system to be equal to zero or by introducing
earthed infinite planes or closed earthed shields. This issue is discussed in [2]. In spite of the
seeming limitations that the above conditions enforce on 2D electrostatic modelling, they
naturally occur in almost all problems arising in practice. In particular, 2D boundary value
problems for the Laplace and Helmholtz equation describe many problems of practical interest
arising aero- and hydrodynamics (potential fluid flow), electrostatics, electromagnetic
scattering studies, acoustics, elasticity theory, etc.

The long-standing interest in the investigation of the electrostatic field in periodic structures
continues because of numerous applications. One example is the analysis of the propagation
of the transverse electromagnetic (TEM) wave in open and shielded multi-conductor trans‐
mission lines [3, 4]. When the contour of a conductor coincides with the coordinate surface of
one of the coordinate systems in which the Laplace’s equation is separable, the Fourier method
(method of separation of variables) is used. More generally, a variety of potential problems
have been solved by the conformal mapping method. These results are described in many
classical handbooks and monographs. The number of such solved problems is highly restrict‐
ed. Nowadays, the need for simulation of devices used in practice requires development of
more universal methods to tackle problems with objects of various finite-width shapes. One
of such numerous examples is the capacitance calculation for thick electrodes [5] where a
physically reasonable meaning of ‘edge capacitance’ arises only because an accurate charge
distribution over the whole electrode could not be accurately calculated. Though solutions
obtained for single objects may adequately describe the real situation, most practical problems
deal with a finite number of objects (say, conductors). Even when a conductor is of canonical
shape (circular or elliptic cylinder), the solution of an electrostatic multi-conductor problem
for an assembly of cylinders of different radii is a very bulky and lengthy procedure. Solving
this problem as a classical boundary value problem for Laplace’s equation and enforcing the
pre-assigned boundary conditions at the surface of each conductor, it is necessary to make
multiple re-expansions of the eigen functions of the Laplace’s equation in each local coordinate
system in terms of that chosen to satisfy the boundary conditions.
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Electromagnetic and acoustic problems described by the Helmholtz equation can also be
considered in two dimensions. A great variety of publications consider the problem involving
infinite gratings. They are often used in antenna applications as polarizers and filters. In [6], a
vector diffraction formulation for the analysis of perfectly conducting gratings of finite width
and thickness is presented. The grating is assumed to have a finite number of infinitely long
arbitrarily shaped rods, and is illuminated by an arbitrary plane wave. Electric and magnetic
field integral equations are used to numerically solve the corresponding TM and TE electro‐
magnetic problems. Periodic structures in the millimetre wave range are considered in [7]: this
paper studies single and double periodic devices using a semi-analytical mode-matching
technique. Diffraction of the TM-polarized Gaussian beam by N equally spaced slits (finite
grating in a planar perfectly conducting thick screen) is investigated in [8]. Numerous
publications consider the different types of arrays. A general approach was presented in [9]
for solving the 2D scattering of a plane wave by an arbitrary configuration of perfectly
conducting circular cylinders in front of a plane surface with general reflection properties.
Acoustic scattering by a cluster of small sound-soft obstacles was considered in [10]. The 2D
scattering of a Gaussian beam by a periodic array of circular cylinders is studied in [11]. A
study of the electromagnetic scattering from multi-layered periodic arrays of parallel circular
cylinders is presented in [12]. The electromagnetic scattering by multiple perfectly conducting
arbitrary polygonal cylinders is analysed in [13].

It should be noted that the long history of solving the Laplace and Helmholtz equations is
marked by the development of many numerical methods which are useful in simulation of
practical devices. Such methods include the finite difference technique, extrapolation [14],
point-matching method [15], boundary element method [16], spectral-space domain method
[17], finite element method [18-20], transverse modal analysis [21] and mode-matching method
[22]. A numerical integral equation approach is used in [23] to explore plane-wave scattering
from a nonplanar surface with a sinusoidal height profile for the case of the magnetic field
parallel to the surface ridges (TM polarization). In spite of effectiveness of these methods in
many cases and flexibility in geometrical representation of the structures, modelling of ridges
still have some substantial drawbacks. Most of the methods require large resources in terms
of computational time and storage. Often the solutions obtained with such purely numerical
methods need to be verified through comparison to other results: accuracy generally cannot
be guaranteed for a greater number of iterations or larger-scale computations. This problem
becomes pronounced in some topologically complex configurations. In electromagnetics, the
corresponding class of numerical solutions is applicable in the low to intermediate frequency
range. Resonant systems behaviour cannot be reliably analysed with the numerical techniques
(see [24]). Analytical-numerical methods such as those based on the method of analytical
regularization (MAR) are designed to overcome these drawbacks in the resonant regime. A
comparative analysis of the MAR and other methods was conducted in [25], and in [26] the
distinctive features of each of the discussed methods are clearly described. The above-
mentioned methods are mostly suited for analysis of a single or very few conductors. In the
case of a significant number of conductors with individual profiles, the effectiveness of such
purely numerical methods is highly problematic because of the rapidly growing scale of
computations.
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In order to address these difficulties, we present here a semi-analytical approach to the analysis
of 2D electrostatic and electrodynamic field problems for multi-conductor systems. The
problems to be solved are treated as the classical Dirichlet boundary value problems for the
Laplace and Helmholtz equations. It is well-known [27, 28] that solutions to the Laplace and
Helmholtz equations can be represented as a single-layer potential at points exterior to the
body of a single conductor with contour S  is given by

( ) ( , ) ( ) p
S

U q G p q Z p dS= ò (1)

where Z (p) is related to the linear charge distribution on the contour S  in the case of the Laplace
equation, and to the linear current density in case of the Helmholtz equation.

G(p, q)= −
1

2π log| p −q |  is the Green’s function for Laplace’s equation in 2D space. If the

contour S  is charged to some prescribed potential value V0, then Z (p) may be found by solving
the equation:

0
1 log ( ) ,

2 p p
s

p q Z p dS V q S
p

- - = Îò (2)

This equation may be classified as a first kind Fredholm equation with a singular kernel; it is
ill-posed [29]. Nevertheless, this problem has been tackled by many authors who used direct
numerical schemes for solving its discrete analogue in a form of a first kind algebraic equation.
Theoretically, any numerical method applied to solve this equation is unable to guarantee
uniform convergence, or pre-determined computational accuracy.

The only way to avoid these shortcomings is to transform the initial equation into a second
kind Fredholm equation, discretization of which guarantees uniform convergence and any
pre-determined accuracy of the numerical solution depending on truncation number. We
employ the MAR, in particular, described in [30, 31]. An accurate solution to wave scattering
by a single infinitely long cylinder of arbitrary cross-section by the MAR was obtained in [32].
The details of the algorithm for cylinders of closed arbitrary profile are presented in [26, 31].
In this chapter, we generalize the MAR for a multi-conductor potential problem where each
body is an arbitrary profiled cylinder.

2. Regularization of the electrostatic problem: MAR

2.1. Problem statement

Consider (N-1) arbitrary profiled charged perfect electric conductor (PEC) cylinders embedded
into a homogeneous dielectric medium with relative permittivity εr  (Figure 1). The finite
dielectric medium is bounded by the infinitesimally thin, grounded cylindrical shell.
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Figure 1. Problem geometry.

The problem is to find electrostatic potential U  elsewhere inside the shielded region. This
electrostatic problem is fully described by the Dirichlet boundary value problem for the
Laplace equation:

0UD = (3)

with boundary conditions of the potentials Vn given at the surface of each of N cylinders:

, 1,..., 1; 0.
n N

n NS S
U V n N U V= = - = = (4)

To employ the regularization procedure, all contours Sn must be smooth enough and non-self
crossing to provide their continuous parameterization and twice differentiation at each point
of Sn.

2.2. Problem solution

The main challenge of this problem is that all the conductors are arbitrary-shaped and the
classical separation of variables method is not applicable here. We use a more general approach
based on an integral representation. Using the superposition principle, we seek the solution
for the total field potential U  as the sum of the single-layer potentials contributed by each
cylinder:

( ) ( ) ( )
1

;
j

N

j p
j S

qU q G p Z p dS
=

-= å ò (5)
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where Zj is the unknown line charge density of the j th conductor scaled by 4π / ε, Sj is the
boundary contour of the j th conductor and points q lie in the area between the contours. The
Kernel G of the integral equation (5) is the 2D free space Green’s function:

( )1 log
2

p qG
p

-= - (6)

where | p −q |  is the distance between points q and p.

Applying boundary conditions to (5), one can arrive at the coupled system of integral equations
for the unknowns Zj :

( ) ( )
1

, 1,...,
j

N

ij j p n
j S

p qG Z p dl V i N
=

-- = =å ò (7)

Equation (7) represents a system of first kind Fredholm integral equations that is generally ill-
posed.

The contours of the conductors’ cross-sections should be smooth. Thus for the analysis of the
rectangular and square conductors, corners should be smoothed. The two most common types
of parameterization are by angle and by arc length. Here, we use parameterization by angle.
After parameterization of the contours η(θ)≡ (x(θ), y(θ)) and introducing some new notations:

( ) ( )( ) ( ) { }
( ) { }

1/ 22 2

1/ 22 2

, '( ) '( ) ,

, ( ) ( ) ( ) ( ) ( ) ( ) ,

j j j j

sj s j s j s jp q

z l Z l x y

R x x y y

q h q q q q

q t h q h t q t q t

é ù é ùë û ë û

é ù é ù- ë û ë û

= = +

= = - = - + -
(8)

we obtain the system of N integral equations:

( )( ) ( ) ( )
1

, , 1,2... .
N

sj j s
j

G R z d V s N
p

p

q t t t q
= -

- = =å ò (9)

The described approach permits us to consider a broader set of possible boundary conditions
than simply a constant, though in the application to be described, a constant is deployed on
the RHS of (9).

For the kernels G(Rsj(θ, τ)) such that s ≠ j, points corresponding to θ and τ belong to different
contours and so Rsj(θ, τ)≠0 everywhere; hence, the corresponding integral terms do not
contain singularities. For Gss(θ, τ) the corresponding integral contains a singularity of loga‐
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rithmic type at the points θ =τ. In this case, we analytically separate the Green’s function into
the singular part and a remainder L sj that does not contain any singularity:

( ) ( )( ) ( )
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- = = ¹

-- = = + =
(10)

Now we can determine L sj from (10) as follows:
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, log , , .

sj
sj

sj
sj

L R s j

L R s j

q tq t q t

q t q t

æ ö
ç ÷
è ø

-= - =

= ¹
(11)

The function L sj, s = j is a regular function, defined everywhere except at points θ =τ ; the
function L sj, s ≠ j is defined everywhere. It can be shown that for the Laplace’s equation this
regular function has the same degree of smoothness as the contour parameterization. An exact
expression for L sj, s = j at the points of singularity where θ =τ was obtained analytically:

( ) ( )( ), log ,sjL lq t q= (12)

where l(θ)= x(θ)2 + y(θ)2 is an arc length in the point θ.

Now we can redefine function L sj, s = j everywhere by the formula:
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Using the well-known Fourier expansion, we can formulate an expression for the singular part
of the Green’s function:

( )
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As the function L sj is regular, we can expand it into double Fourier series:

( )( , ) .sj sj i n m
nm

n m
L l e q tq t

¥ ¥
+

=-¥ =-¥

= å å (15)

Also the unknown function zj and the given potential function are represented by their Fourier
series:

( ) , ( )j jin in
j n j nz e V et qt x q n

¥ ¥

-¥ -¥

= =å å (16)

After substitution of all expansions into (9), one can arrive at the system of N  integral equations:
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q q qx
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Using orthogonal properties and completeness of the functions {e inφ}n=−∞
n=∞  and defining the

rescaled unknown Fourier coefficients of charge density function ξn
s as follows: ξ̃n

s =
ξn

s

σn
,

σn = |n | 1/2 when n ≠0 and σ0 =1,  we obtain the following infinite system of linear algebraic
equations:

0 ,
1

(1 ) , 0, 1, 2...; 1,2,..., .
N

sj js s
n n n m n m m n n

j m
l v n s Nx d s s x s

¥

-
= =-¥

- + = = ± ± =å å% % (18)

Following the steps suggested in [33], it can be shown that coefficient matrix in (18) is square
summable:

2
,

1
| | , 0, 1, 2...; 1,2,..., .

N
sj

n m n m
j m

l n s Ns s
¥

-
= =-¥

< ¥ = ± ± =å å (19)

Thus the infinite system (18) is of a second Fredholm kind and can now be effectively solved
by a truncation method. The solution of the truncated system monotonically and rapidly
converges to the exact solution. The above solution automatically incorporates the reciprocal
influence of all charged cylinders, allowing accurate calculation of the line charge densities on
the boundaries and then the field potentials at any point of the space between the conductors.
Fourier expansions in (18) are calculated numerically as all functions are regular.
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3. Regularization of the Dirichlet problem for Helmholtz equation: MAR
technique for the N-body multiple scattering

3.1. Statement of the problem

In this section, we consider the scattering problem for the structure which consists of N
arbitrary profiled perfect electric -conductor cylinders embedded into a homogeneous
dielectric medium with relative permittivity ε. The main steps of the solution algorithm are
similar to those which were carried out to obtain the solution to the Laplace equation, presented
in Section 2.2.

The scattered electromagnetic field U s obeys the Helmholtz equation:

( ) ( )2 0,sk U pD + = (20)

where point p lies exterior to the structure S , k =2π /λ is the wave number and λ is the
corresponding wave length.

Here we consider incident fields in the form of a plane wave. We focus on a transverse magnetic
(TM) wave polarization of the incident field (U 0), therefore the scattered field should satisfy
the Dirichlet boundary condition on metallic surfaces:

0( ) ( ), .sU p U p p S= - Î (21)

The field should also satisfy the Sommerfeld radiation condition:

( ) ( ) ( ) ( )1/ 2 1/ 2( ); ,
s

s sU pU p O p ikU p O p
p

- -¶
= - =

¶
(22)

As |p|→∞ where | p |  is the radial component of the point p in the arbitrary fixed polar
coordinate system.

3.2. Regularized solution

Solutions to the Laplace equation can be represented as a single-layer potential at points
exterior to the body. Using the superposition principle, we seek the solution as the sum of
single-layer potentials contributed by each cylinder:

( ) ( ) ( )
1

.
n

N

n n p
n Ln

np qU q G Z p dl
=

-= å ò (23)
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Here G(| pn −q |) is the relevant free space Green's function depending on the distance | pn −q |
between the observation point q and point pn lying on the contour Sn :

G(| p −q |)= −
i
4 H0

(1)(k | p −q |),  and the function Z (p) is related to the linear current density

J (p) as J (p)= ikcZ / 4π (where k  is a wave number, c the light speed).

Applying boundary conditions to (23), we obtain the system of N  integral equations:

( ) ( ) ( )0

1
1,..., ., ,

n

n

N

n n n p m m
j L

p q q S m NG Z p dl U q
=

- == - Îå ò (24)

After parameterization of the contours ηn(θ)= (xn(θ), yn(θ)) where θ∈ −π, π , we use the
definition of a line integral and obtain a functional equation in the form:

( )( ) ( ) ( )0

1
, .

N

mn n
j

G R z d U
p

p
qq t t t

= -
= -å ò (25)

The following notation is used in (25): zn(τ)= ln(τ)Zn(pn(τ)),  where

ln = (xn(τ)′)2 + (yn(τ)′)2, n =1, ..., N ; Rmn(θ, τ) is the distance between points ηm(θ) and ηn(τ)

lying on the m-th and n-th contours, respectively.

The kernel of the integral equation (25) contains a singularity only in the terms G(Rmn(θ, τ)). It
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so that the regular part of Green's function is
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Here G(| pn −q |) is the relevant free space Green's function depending on the distance | pn −q |
between the observation point q and point pn lying on the contour Sn :

G(| p −q |)= −
i
4 H0

(1)(k | p −q |),  and the function Z (p) is related to the linear current density

J (p) as J (p)= ikcZ / 4π (where k  is a wave number, c the light speed).

Applying boundary conditions to (23), we obtain the system of N  integral equations:
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After parameterization of the contours ηn(θ)= (xn(θ), yn(θ)) where θ∈ −π, π , we use the
definition of a line integral and obtain a functional equation in the form:
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The function H mn, m =n is a regular function, defined everywhere except at the points θ =τ ;
the function H mn, m≠n is regular everywhere. An exact expression for H mm at the points of
singularity is obtained analytically:

( ) ( )
log ,

2 2
, mmm k liH

q t

qp gq t
=

×
+ += - (28)

where γ is Euler's constant.

We expand the singular part of Green's functions in the same way as in Section 2.2, and perform

the double Fourier series expansion for the regular function H mm : H mn(θ, τ)= ∑
j,l=−∞

∞
h jl

mn e i( jθ+lτ).

The unknown function zj is also represented by its Fourier series: zn(τ)= ∑
p=−∞

∞
ξp

ne ipτ.

After substitution of all expansions into (25), one can arrive at the system of N  integral
equations. Following the regularization steps for the Laplace equation from Section 2.3, we
obtain an infinite system of linear algebraic equations of the second kind:
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The infinite systems (31) can be effectively solved by a truncation method. The solution of the
truncated system steadily and rapidly converges to the exact solution [34]. There are no
limitations on the number of cylinders with arbitrary smooth cross-sections.

4. Numerical results

The numerical code was validated by comparing obtained results with known analytical
solutions for the coaxial line with a centred inner conductor [35] and the coaxial line with a
shifted inner conductor [36]. Results obtained coincide for up to 16 decimal places with the
published solutions starting with Ntr =16 for the centred inner conductor and Ntr =128 for the

Rigorous Approach to Analysis of Two-Dimensional Potential Problems, Wave Propagation and Scattering...
http://dx.doi.org/10.5772/61287

187



inner conductor located close to the shield. Our results are also in a good agreement with other
semi-analytical and numerical techniques (for example, presented in [37]).

As an illustration of the effectiveness of the obtained solution, we calculate the capacitance
matrix for the assembly of arbitrary profiled cylinders located inside the grounded shield.
There are no limitations on the number of cylinders with arbitrary smooth cross-sections. The
high efficiency of the code is also the result of employment of the discrete Fast Fourier
Transform. This makes filling of the matrix very fast routine procedure. For example, the
computation time for a problem with the four inner cylinders and truncation number Ntr =256
does not exceed 4.5 s on a standard PC.

Efficiency of the developed method is also illustrated by the behaviour of the normalized
truncation error versus truncation number (see [30]) calculated in the maximum norm sense
as:
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where | xn
N tr +1 | n=0

N tr and {xn
N tr +1}n=0

N tr +1 denote the solutions to the systems (19) or (29) truncated to
Ntr and Ntr + 1 equations, respectively. The results of the calculations of truncation error for
the infinite system (18) defining the solution to the Laplace equation are shown in the Figure
2. The considered structure is a circular shield of radius 1 with elliptic conductor with major
semi-axis b1 = 0.5 and various values of the minor semi-axis b2, embedded in the centre of the
shield.

Figure 3 shows the condition number behaviour in the same case. The results are quite accurate
and stable: for a simple structure like this, the condition number has reached a stable value
even for small values of the truncation number.

In these examples, the ellipse is parameterized by the angle as a parameter. Fewer number of
points on the sides of a slender ellipse results in decreasing accuracy for smaller b2. Arc length
parameterization is one way to overcome this drawback. Other parameterizations could be
even more effective, but they often require some adjustments for each shape.

Various shapes of conductor will be considered in this chapter. For all system configurations
here and below, the inner conductors’ potentials are set to be 1; the shield is grounded. The
profile of each interior conductor is described by the super-ellipse equation (32), where
function ρ(φ) and its derivative are continuous [38], with

1
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Figure 2. Normalized truncation error versus Ntr  : major semi-axis of the inner ellipse b1 = 0.5 and various values of
the minor semi-axis b2.

Figure 3. Condition number versus Ntr .
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In this equation, a and b are the figure size parameters, n1, n2, n3 define corner sharpness and
m represents the symmetry. This formula allows us to model a great variety of shapes such as
an ellipse (n =n1 =n2 =n3 =2, m =4), a rectangle with rounded-off corners (n =n1 =n2 =n3 >2, m =4),
a star with the smooth rays (n1 =2, n2 =n3 >2,  m is equal to the number of rays) and many others.

This parameterization is infinitely differentiable which gives us a great advantage in accuracy.
To demonstrate this property, comparison of two different parameterizations used in the
solution to the Helmholtz equation for a single rectangle with rounded-off corners is presented
in Figure 4.

Figure 4. Comparison of super-ellipse and smoothed rectangular parameterizations.

Parameterization 1 stands for a super-ellipse formula; straight lines with a combination of
quarter circles are used for the Parameterization 2. The super-ellipse parameterization uses
n =n1 =n2 =n3,  (see (32)); the greater the n is, the sharper the corners of the rectangle are. Sharper
corners require higher truncation number to get the same level of the accuracy due to the
parameterization by the angle. In Parameterization 2, r  is a radius of curvature used to
smoothen the corner, h  is rectangle height. In all cases, rectangle height/width ratio is equal
to 0.5. Parameterization 2 is not twice differentiable - there is a discontinuity in the second
derivative at the joining of the straight line and the quarter circle. This account for slow
convergence of the second parameterization as Ntr→∞.
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4.1. Electrostatic problems

4.1.1. Multi-conductor transmission lines

Here the power of the method is illustrated by the analysis of multi-conductor transmission
lines. Other possible applications of our method for the problems modelled by the Laplace
equation include impedance calculations for the transmission lines with adjustable inner
conductor, published in [39] and capacitance calculations for the capacitance microscope [40].

The distribution of the electrostatic field for a conceptual configuration of a shielded three-
conductor transmission line is shown in Figure 5.

Figure 5. Conceptual circular shielded transmission line with three inner cylinders. (a =b =0.6, m =5, n1 =2,
n2 =n3 =13).

It is worth noting that apparently sharp edges are in fact not sharp but have a very small radius
of curvature at some points due to parameterization of the contours.

Next we present the calculations for the capacitance matrix (Table 1) calculated by formula
Ci , j =∂Qi / ∂uj in the case of the circular shield and conductors of nearly rectangular cross-
section (Figure 4). Here Qi is a total charge on the i th cylinder, and uj is the potential of the j
th cylinder.
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Symmetric alignment: Non-symmetric alignment:

C =( 3.5583 -0.4441 -0.4441
-0.4441 3.5580 -0.4440
-0.4441 -0.4440 3.5580

) C =( 3.5151 -0.2713 -0.4191
-0.2713 3.8903 -1.1851
-0.4191 -1.1851 3.9261

)
Table 1. Capacitance matrix values for the structure for the square conductors with a circular shield (see Figure 6).

Two configurations are examined - a symmetrical one and another obtained by the translation
of one conductor, as indicated in Figure 6. In each case, accuracy was ensured by examining
error estimates as a function of truncation number as explained above.

Figure 6. Symmetrical and shifted inner conductors alignment (a =b =0.1,  m =4,  n1 =n2 =n3 =40).

4.1.2. Transmission lines with the closely spaced conductors

Another example demonstrating the effectiveness of the developed algorithm is a study of the
closely spaced conductors case (Figure 7). In Table 2, capacitance values for a circular con‐
ductor are shown depending on a distance between the inner conductor of a radius 0.1 and a
shield of radius 1. Truncation numbers are chosen to ensure capacitance values and are stable
to four decimal places.

The analysis shows that reliable results are obtained when the condition d ≥Δl  is satisfied,
where d  is the distance between the conductors, Δl = L / Ntr  is a parameterization step, L  is a
maximum contour length.
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4.2. Scattering of a plane wave by an array of thick strips

Arrays, which are composed of a finite number of strips, are probably the most common
periodic structures. They are employed in various electromagnetic radiating and wave-
guiding devices. For example, a simple but effective leaky-wave antenna can be designed by
placing a microstrip grating above a ground plane, as first proposed by Honey in the 1950s [41]
and then studied by different authors with many variations [42]. In addition, periodic
structures in the millimetre wave range with high precision requirements must be planar
structures, for fabrication reasons [7]. Also, in other applications the strip grating is often used
as a circular polarizer [43]. The list of applications can be continued. Nowadays, a lot of
attention is paid to more realistic models of the strip gratings: finite gratings, excited by
compact directional sources [8]; gratings with thick strips [44, 45]; special elemental positioning
[46, 47], etc.

In this section, we consider scattering of an obliquely incident E-polarized plane wave by a
finite array of metallic thick strips which is relevant to the problems examined in the papers
mentioned above. The case of the array of circular cylinders, including resonant effects, was
considered in [48].

Figure 7. A circular shield with a closely spaced inner conductor.

d/r Ntr C

1 64 5.1270

0.5 128 6.9491

0.1 512 14.9620

0.05 1024 21.0534

Table 2. Capacitance values for the structure with the closely spaced conductors.
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4.2.1. Linear array of horizontal thick strips

We consider the scattering of the E-polarized plane wave obliquely incident the linear array
composed of the metallic thick strips, as shown in Figure 8. The elemental thick strip is
described by its width w and its thickness t . The element spacing is characterized by d . The
incidence angle is φ0. In our calculations, we set w =1, so that k ≡kw is the relative wave number.

Figure 8. Linear array of horizontal strips.

The radar cross-section (RCS) is determined from the scattered field as ρ→∞ in the direction
φ =φ0 + π, where φ0 is angle of incidence of the incident plane wave, via

( ) 2

0lim 2 , .sRCS U
r

pr r j p
®¥

= + (33)

The dependence of the RCS (RCS (φ0), in dB) on the incidence angle, φ0, for the 3-, 5- and 9-
elements array (k =π) is shown in Figure 9. As the number of elements grows two peaks
occurring away from normal incidence begin to dominate over the other minor maxima, due
to specular reflection from the elements of the array. The highest peak corresponds to normal
incidence (φ0 = 90°); the second peak corresponds to the incidence angle φ0 = cos-1(1/1.5) = 48.19°.
The calculation of the current density distribution on the contour of each element is of practical
interest, especially for the situations when the results obtained for infinite gratings are used
for finite gratings. It is reasonable to assume that the near equal current distribution on all
elements of the finite grating is a plausible argument to treat such grating as a fragment of the
infinite grating. This idea was used, for example, by Kalhor in [49].

In our calculations, we fix the number of the strips N =5 in the grating and calculate the current
distribution on each element. The results are shown in Figure 10, where we used the param‐
eters: φ0 =90 , k =π, t =0.1, d =1.5.

Because of the symmetrical (for normal wave incidence) location of the elements in the array,
the distribution | Jz(φ)|  will be identical for the strips, numerated by the indexes n = ± 1 and
n = ± 2. Figure 10 demonstrates that current density distributions on all strips are very close to
each other, as a front planar surface of each strip is uniformly illuminated by the incidental
plane wave. This induces, in particular, a constant current density on most part of the frontal
surface of the strip, except in the narrow region near its corners. The current density | Jz(φ)|
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Figure 9. RCS (φ0), (k =π, t / w =0.1, d =1.5).

Figure 10. | Jz(φ)|  at the strips n = −2, 1, 0 in the 5-element array (k =π, t / w =0.1, d =1.5).
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 has predictable jumps at the angle values, corresponding to the corners of the thick strips.
Figure 10 shows four sharp peaks in the distribution of the function | Jz(φ)| . Two dominant
peaks correspond to the directly illuminated corners of the frontal surface of the strip. Two
other peaks with significantly smaller magnitude correspond to the corners on the underside
of the strip; furthermore, the current density on these parts is relatively small. Due to these
peculiarities of the current density distribution on the surface of the thick strip, the dependence
of | Jz(φ)|  on the number of strips in the array is quite weak.

The scattered pattern in the direction φ is defined as

( )[ , ]
( ) lim ( , ) / max ( , ) .s sSP U U

r j p p
j r j r j

®¥ Î -
= (34)

The distribution of the scattered field in the far-field zone is shown in Figures 11-13.

Figure 11. Scattering pattern of the 3-, 5- and 9-strip array φ0 =90 , k =π, t / w =0.1, d =1.5.

Figure 13 demonstrates the SP for the 3-, 5- and 9-element array with the same geometrical
parameters, as in Figure 11, but for a different incidence angle, φ0 =30 , and wave number
k =kw =2. With a small number of strips in the array, the shape of the main beam is not
symmetric (the case N =3, Figure 12); for formation of a well-focused beam, it is necessary to
increase the number of strips in the array. This assertion is confirmed by the substantially
improved shape of the main scattering beam when element number increases to N =9.
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(
0

30 , 2 , / 0.1, 1.5k t w dϕ π= = = =

�

). 

Figure 12. Scattering pattern of the 3-, 5- and 9-strip array (φ0 =30 , k =2π, t / w =0.1, d =1.5).

Figure 13. Scattering pattern in dB of the 3-, 5- and 9-strip array (φ0 =30 , k =2π, t / w =0.1, d =1.5).
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Next we consider the frequency dependence RCS (k ) of the RCS on wavenumber. Setting the
array parameters: N =3, 5, 9 w =1, t =0.1, d =1.5,  φ0 =90 , we calculate the function RCS (k ) in
the range 0≤k ≤25 (see Figure 14).

It is worth noting that extremely high values of the function RCS (k ) are explained by its
normalization (the single element width was chosen to be a characteristic parameter, so that
k =kw. For the 9-element array analysed above the total width W  of the array is
W =9w + 8(d −w)=13 units (all sizes are related to the strip width); hence, kW =13kw. For
comparison with the case of a single element case, the RCS should be scaled by the total width
of array.

Figure 14. RCS versus relative wave number: N =3, 5, 9;φ0 =90 , t / w =0.1, d =1.5.

The next graph in Figure 15 illustrates the effect of perturbing the periodicity of the array on
the RCS: the central strip is moved towards to the neighbouring strip by a distance d =0.4. At
the lower values of the relative wave number (0≤kw ≤1.8), there is no influence of the non-
symmetrical location of the central strip on the value of the RCS. At the value kw =1.8, the shift
g =0.9−0.5 (see Figure 15) becomes slightly greater than the wave size λ / 9. Hence, we can
conclude that the disturbance in the location of the strip in the array is insignificant on the RCS
when the shift does not exceed λ / 9.

Now let us investigate how the thickness of the strips in an array impacts the RCS. In fact, we
will consider a more general problem. Usually the term thick strip refers to the strip with the
width w greater than its height h  (h / w <1); otherwise, it is more reasonable to call such a
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structure a rectangular or square bar (h / w ≥1). The ratio t =h / w =1 represents a threshold
value; the parameters w and h  are better described as height and width as shown in Figure 16.

Figure 16. Schematic view of the strip thickening.

Here we consider normal wave incidence φ0 =90  on the array of strips with the fixed param‐
eters: w =1, d / w =3,  k ≡kw =π, 2π and 5π. Starting from the relative strip thickness
t =h / w =0.05, we consider the dependence of RCS on t  for a 3-element array in the range
0.05≤ t =h / w ≤3. The results of these calculations are presented in Figure 17 (k =π), Figure 18
(k =2π) and Figure 19 (k =5π).

Figure 15. RCS of the 9-element periodic array (black) and array with shifted central strip (red):
N =9;φ0 =90 , t / w =0.1, d =1.5.
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Figure 17. RCS of the 3-element array versus relative strip thickness t  (φ0 =90 , k =π, w =1, d =3).

Figure 18. RCS of the 3-element array versus relative strip thickness t  (φ0 =90 , k =2π, w =1, d =3).
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Figure 17. RCS of the 3-element array versus relative strip thickness t  (φ0 =90 , k =π, w =1, d =3).

Figure 18. RCS of the 3-element array versus relative strip thickness t  (φ0 =90 , k =2π, w =1, d =3).
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Figure 19. RCS of the 3-element array versus relative strip thickness t  (φ0 =90 , k =5π, w =1, d =3).

Surprisingly the RCS is fairly insensitive to substantial thickening of the original horizontal
thin strip (t =h / w =0.05), even at the extreme transformation of the strip into a vertical rectan‐
gular cylinder with t =h / w =3. The difference between the maximum value RCS (t) and its
minimum value for the wavenumbers k =π and k =2π does not exceed 7.4%. In the case when
k =5π, this difference increases to 8.3%.

4.2.2. Inclined arrays of thick strips

It was shown previously in this chapter that different positioning of the strips affects the
reflection properties. Let us consider another geometry, arranging the strips as a 2D truncated
corner reflector (see Figure 20).

Figure 20. Truncated corner reflector (φ0 =90 ): (a) isolated reflector and (b) array of three reflectors.
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Here we only consider normal wave incidence, so we normalize the function RCS (k ) by the
characteristic maximum size of the structure. We define geometric parameters W  for the single
reflector and W ′ for the array of the corner reflectors (see Figure 20) by
W =d + (w + t) / 2, W ′=3W , where d  is the distance between strip centres, w and t  are the
single strip relative width and thickness, respectively. We calculate the dependence RCS (kW )
for the three values d =0.8, 1.2, 1.6. As in previous calculations, we take w =1, t =0.1. The E-
polarized plane wave excites the truncated corner reflector with incident angle φ0 =90° . The
frequency dependence of the RCS in the range 0<kW ≤20 for the single truncated corner
reflector is shown in Figure 21.

The frequency dependence of the RCS in the range for the array of three truncated corner
reflectors is shown in Figure 22. The RCS for the single truncated corner reflector is of a regular
oscillatory character for each parameter d =0.8, 1.2, 1.6 ; the average level of the RCS steadily
grows along with the relative wave number. Combined as a 3-element array, a moderate
enhancement of the RCS is observed. Closer spacing (d =0.8, 1.2) of the reflectors preserves the
regular oscillatory behaviour of the RCS (kW ), in contrast to more separated spacing (d =1.6),
where some peaks in the RCS graph (red, Figure 22) become suppressed.

Figure 21. RCS (kW ) for the single corner reflector: φ0 =90 , w =1, t =0.1.
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5. Conclusion 

In this chapter, a rigorous approach to the numerical analysis of the multi-conductor 

problems in electrostatics and multiple wave scattering for metallic cylinders is presented. 

The problems are treated as a classical Dirichlet boundary value problem for the Laplace 

and Helmholtz equations. All conductors may be of arbitrary cross-sections; the only 

restriction on the system geometry is a smooth parameterization of the boundaries. 

The 2D multi-conductor problems for the Laplace and Helmholtz equations are rigorously 

solved by the MAR. The problem is transformed to a numerical analysis of an infinite 

system of linear algebraic equations of the second kind. This explains its fast convergence 

and guaranteed computational accuracy, depending only upon truncation number tr
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computation of the matrix elements is based on the discrete FFT, making the matrix filling 

an accurate and extremely fast procedure. The only limitation imposed on the contour is its 

smoothness. When the contour incorporates corners, they should be rounded. The 

developed algorithm is numerically stable and fast, and accuracy of the solution can be 

pre-specified. The solution obtained is applied to the accurate analysis of 2D electrostatic 
and electrodynamic field problems for multi-conductor systems with arbitrary profiled 

conductors. Examples for some conceptual shielded transmission lines incorporating 

differently profiled conductors and scattering problems for the arrays of thick strips illustrate 

the efficiency and reliability of the method. 
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Figure 22. RCS (kW ′) for the array of three corner reflectors: φ0 =90 , w =1, t =0.1.

5. Conclusion

In this chapter, a rigorous approach to the numerical analysis of the multi-conductor problems
in electrostatics and multiple wave scattering for metallic cylinders is presented. The problems
are treated as a classical Dirichlet boundary value problem for the Laplace and Helmholtz
equations. All conductors may be of arbitrary cross-sections; the only restriction on the system
geometry is a smooth parameterization of the boundaries.

The 2D multi-conductor problems for the Laplace and Helmholtz equations are rigorously
solved by the MAR. The problem is transformed to a numerical analysis of an infinite system
of linear algebraic equations of the second kind. This explains its fast convergence and
guaranteed computational accuracy, depending only upon truncation number Ntr . The
computation of the matrix elements is based on the discrete FFT, making the matrix filling an
accurate and extremely fast procedure. The only limitation imposed on the contour is its
smoothness. When the contour incorporates corners, they should be rounded. The developed
algorithm is numerically stable and fast, and accuracy of the solution can be pre-specified. The
solution obtained is applied to the accurate analysis of 2D electrostatic and electrodynamic
field problems for multi-conductor systems with arbitrary profiled conductors. Examples for
some conceptual shielded transmission lines incorporating differently profiled conductors and
scattering problems for the arrays of thick strips illustrate the efficiency and reliability of the
method.
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Abstract

This chapter is dedicated to the analysis of the spin resonance response (ESR) of different
magnetic phases, in nanoparticles (NPs) of magnetic oxides, or ferrites. Evidence of the
correlations between resonance spectrum and magnetic structure has been published, of
course, in many works; however, to our knowledge, it is somewhat scattered and not
easily accessible. We have chosen to carry out this analysis mainly on ferrite NPs because
these magnetic materials exhibit a wide variety of magnetic properties, and as a conse‐
quence, a large diversity of classic and novel applications in technological fields ranging
from electronics to biomedics.

Keywords: EPR, FMR, ESR, Nanoparticles, Ferrites

1. Introduction

This chapter is dedicated to the analysis of the spin resonance response (ESR) of different
magnetic phases, in nanoparticles (NPs) of magnetic oxides, or ferrites. Evidence of the
correlations between resonance spectrum and magnetic structure has been published, of
course, in many works; however, to our knowledge, it is somewhat scattered and not easily
accessible. We have chosen to carry out this analysis mainly on ferrite NPs because these
magnetic materials exhibit a wide variety of magnetic properties, and as a consequence, a large
diversity of classic and novel applications in technological fields ranging from electronics to
biomedics.

Ferrites can also be easily tailored, and in the nanometric range and at the appropriate
temperatures, they exhibit one of the main magnetic structures: ordered ferrimagnetic,
superparamagnetic, or paramagnetic. The latter structure is less complex, and electron
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paramagnetic resonance (EPR) has been known for ~50 years, so in some way, this is a situation
both classic and new. Ferrimagnetic and superparamagnetic NPs are more complex, and their
resonance response is currently an active research subject.

We first describe the general basis of the classic resonance technique, where a microwave signal
of constant frequency is applied on the sample, which is simultaneously subjected to a
sweeping magnetic field, in order to achieve the resonance conditions. We tried to establish
the main differences between the response of classic and metallic paramagnetic phases and
the shapes of magnetically ordered (ferro- or ferrimagnetic) phases in the bulk state.

We then briefly review the novel properties associated with the nanometric size, followed by
a short account of crystal structure and magnetic interactions in ferrites. EPR is briefly
described, illustrated with some recent results. A basic description of the superparamagnetic
phase is then given, with a review of some of the theoretical models proposed, as well as some
of the most representative experimental results. The ferrimagnetic phase is then described with
an accent on the differences originated by the exchange interactions, magnetocrystalline
anisotropy, demagnetization fields, etc., and their effects on the response signal. The general
response of magnetic nanoparticles in the ordered state is discussed. In the conclusion, finally,
an attempt is made to establish a correlation between these phases and their resonance signals.

1.1. Nanomagnetism

In addition to the changes related to the decrease in scale down to the nanometric range,
magnetic materials provide another source of novel properties. Many of the critical parameters
in magnetism are found in the 1 to 200-nm scale of length, see Table 1 [1]. Two of the most
interesting changes in magnetic structure as a consequence of the reduction in size are the
change from multidomain to single domain and superparamagnetism.

Bulk samples of ferro- and ferrimagnetic materials are divided into magnetic domains
(separated by domain walls) in order to decrease the magnetostatic energy, i.e., the energy
associated with the presence of magnetic flux just outside the sample surface. Inside the
magnetic domains exchange energy is at a minimum (all spins are parallel coupled) as well as
magnetocrystalline energy (all spins are oriented into easy axes), and the magnetization of
domains is oriented to provide a continuous magnetic flux inside the sample, thus avoiding
any external flux. This is why most magnetic materials do not manifest any attraction or
repulsion force (in the absence of an applied magnetic field). Magnetostatic energy is therefore
eliminated, except for a small contribution from domain walls, where spins rotate from the
orientation of a domain toward the orientation of the neighboring domain. There is also a small
contribution to both exchange and anisotropy energy due to domain walls, as spins cannot be
strictly parallel, neither oriented into easy directions within the domain wall. These contribu‐
tions, however, are small as domain wall thickness is in the 10- to 100-nm range. Domain walls
represent a very sensitive equilibrium in ferromagnetic materials. They can be displaced by
very small applied, fields and their dynamics of propagation though defects (pinning sites)
have a fundamental importance for soft magnetic materials [2].
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As samples become smaller, there is a limit where it becomes more convenient, on an energetic
basis, to eliminate the domain walls and form a single domain on the whole sample. This
transition becomes feasible because magnetostatic energy is a function of the sample volume,
while domain wall energy depends on their total surface. As a single domain, materials become
magnetically harder; the coercive field typically exhibits an inverse relationship with the
particle size going through a maximum for the transition between single domain and multi‐
domain structure. Single-domain ferromagnets become harder because in the absence of
domain wall, the main magnetization process is spin rotation, i.e., the applied magnetic field
has to rotate each spin against the anisotropy. This is very different than having domain walls;
as they are in a delicate equilibrium, a small field can easily displace them with large variation
in oriented domains associated with their passage.

Property Typical length range (nm)

Exchange interaction 0.1–1

RKKY Interaction 0.1–10

Single-domain limit 10–1000

Superparamagnetic limit 1–100

Thickness of domain walls 10–100

Table 1. Critical lengths in magnetism. Adapted from Guimaraes [1].

The reduction in scale can also lead to a superparamagnetic (SPM) phase. As discussed with
more detail in Section 3, in an SPM phase, the thermal energy dominates over anisotropy, and
the magnetization is therefore subjected to random fluctuations. It is interesting to note that
in the SPM phase, the exchange interaction maintains the spin coupling up to the Curie
temperature, which is higher than the temperature of transition from ordered to SPM phase,
also known as blocking temperature. The magnetic properties in the SPM phase are different
to both those in the ordered phase and in the paramagnetic phase. SPM properties allow many
novel applications, particularly in the field of biomedicine.

2. Ferrites

Spinel ferrites are a large family of materials, with the structure of the natural spinel mineral,
MgAl2O4, first determined by Bragg [3]. The spinel is a very stable crystal structure; it is almost
enough to satisfy the conditions of neutral electric charge, relatively small cation radii, and a
¾ cation-to-anion ratio [2]. These conditions allow several cation combinations such as 2,3 (as
in Ni2+Fe3+

2O4), 2,4 (as in Co2GeO4), 1,3,4 (as in LiFeTiO4), 1,3 (as in Li0.5Fe2.5O4), 1,2,5 (as in
LiNiVO4), and 1,6 (as in Na2WO4). Most of ferrites with significant magnetic properties are of
the 2,3 type and contain Fe3+. An important ferrite is magnetite Fe2+Fe3+

2O4, also referred as
Fe3O4, which is the oldest known magnetic material. The name “magnetic” is derived from
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Magnesia, which is the region where magnetite was first discovered in Greece in the 6th
century BC. It is interesting that magnetite, the magnetic material first reported in history, is
currently an extremely active field in basic and applied research. This is certainly due to its
fascinating magnetic and electric properties, associated with the coexistence of ferrous and
ferric cations in equivalent crystal sites. A related magnetic material also particularly interest‐
ing is maghemite (or γ-Fe2O3), which possesses only Fe3+ and the same spinel structure often
obtained by oxidation of magnetite. Since the cation to anion ratio is not ¾, it contains vacancies
in a fraction of cation sites; by using the spinel formula, it can be represented as □1/3Fe3+

8/3O4.
Here, □ stands for vacancies.

The crystal symmetry can be understood by considering a face centered cubic (fcc) lattice of
oxygen, leading to two kinds of cation sites: 64 tetrahedral sites and 32 octahedral sites for a
unit cell, which is formed by 8 times the basic formula D2+T3+

2O4 (D2+ stands for a divalent
cation, and T3+ for a trivalent cation). Only one-eighth of tetrahedral sites is occupied and half
of octahedral sites as well. The space group is Fd3m. This structure is shown in Figure 1.

In the spinel mineral MgAl2O4, Mg2+ cations occupy tetrahedral sites and Al3+ cations are found
in octahedral sites, which appears as a stable arrangement, as far as divalent cations are
surrounded by less anions (four anions in the tetrahedral site) than trivalent cations with higher
electric charge and enclosed by 6 anions. This structure is known as the normal spinel, and is
indicated by using the system (D2+) [T3+

2]O4. Parenthesis indicates occupancy of tetrahedral
sites, also known as “A” sites, and square brackets show cations on octahedral sites or “B”
sites. A different cations distribution is (T3+)[T3+D2+)O4, where the divalent cation goes to an
octahedral site and trivalent cations are found both on tetra and octahedral sites. This is the
inverse spinel. An intermediate cation distribution has also been observed for some ferrites,
(D1–δ Tδ)[DδT2-δ]O4, where δ is the degree of inversion.

The cation distribution in spinels was a problem for some time, but it is now well understood.
The involved energies are the elastic energy, associated with the lattice deformation produced
by cation radii differences. The electrostatic energy, also known as the Madelung energy, which
depends on the overall electric charge distribution; divalent cations on small sites and trivalent
cations on larger sites should stabilize the spinel. The crystal field energy has also a large
influence on cation site “preference,” and it is related mainly to the geometry of d-orbitals (or
electronic orbitals for nontransition cations). d5 orbitals, for instance, can occupy both types of
sites as these orbitals (in high-spin state) have spherical geometry (see Table 2).

Tetrahedral Octahedral Undistinguished

Cd2+ Co2+ Fe3+

Zn2+ Ni2+ Mn2+

Cu2+ Mg2+

Fe2+ Mo2+

Li1+

Table 2. Cation preferences for spinel sites. Adapted from [2].
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Figure 1. Representation of the spinel structure. The unit cell can be divided into octants (above). The detailed struc‐
ture of two octants is illustrated below. Large spheres are oxygen, small black spheres indicate cations in tetrahedral
sites, and small white spheres represent cations in octahedral sites [2].

An outstanding characteristic of the spinel structure is that it admits an extremely large variety
of total solid solutions. The divalent cations in the spinel formula can be formed by a combination
of two (or more) cations; Fe3+ can also by partially or totally substituted by another trivalent
cation, always maintaining the spinel crystal structure. A very well studied system (or
“family”) is Zn-Ni ferrites with the general formula ZnxNi1-xFe2O4, with 0 ≤ x ≤ 1. The end
compositions are nickel ferrite, NiFe2O4 (for x = 0), and zinc ferrite, ZnFe2O4 (x = 1). Nickel
ferrite is an inverse spinel, while zinc ferrite is a normal one; due to the features of magnetic
interactions in spinel ferrites, nickel ferrite is ferrimagnetic with a Curie point about 858 K,
while zinc ferrite is antiferromagnetic with a Néel temperature about 9 K. The properties of
this family of compounds can be “tailored” between these two extreme behaviors just by
varying the chemical composition.

The magnetic structure and interactions in ferrites can be understood on the basis of superex‐
change interactions between two transition cations separated by an oxygen, as shown in Figure
2. The electron spin up in the p-orbital of the oxygen can occupy for a short period of time the
empty half of the d-orbital in the transition cation at right, if the occupied state in this cation
is spin down. As the p-orbital of oxygen exhibits, for the same given period of time, an available
site for an electron with spin up, the electron of the transition cation on the left side of the
oxygen can occupy this place, if its spin is pointing up. This mechanism leads therefore to an
antiparallel arrangement of spins on the transition cations. In spinels, there are two sublattices,
a tetrahedral one (with one cation per formula) and an octahedral one (with two cations per
formula). In most cases, a resultant appears and most ferrites possess a net magnetization. The
Zn-Ni ferrite family is a very good example of the richness of magnetic properties and structure
of ferrites.
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Figure 2. Superexchange interactions in ferrites.

The magnetic interactions in spinel ferrites can be easily understood by considering two B sites
and one A site about an oxygen, see Figure 3. The center and right side of this figure, where
the large circle represents the oxygen ion, the small circle above it stands for the cation on the
A site, and the two small circles below represent B sites. Note that this arrangement is 3D, but
for this schematic illustration, it has been simplified on a plane. Nickel ferrite is an inverse
spinel, Ni2+ goes to B sites, one ferric ion occupies the other B site, and the other Fe3+ is located
on the A site. All magnetic interactions between cations are antiparallel (superexchange).

A

B B

A

B B

Figure 3. Schematic spin arrangements in spinel ferrites. Left: a section of the crystal structure showing the cation occu‐
pancy about an oxygen. Center: the ferrimagnetic spin orientation of the crystal sites for nickel ferrite. Right: the anti‐
ferromagnetic structure for the zinc ferrite.

There are A–O–B interactions between the cation on A site and the cations on B sites, and an
B–O–B interaction between the cations on the two B sites. However, due to the axial symmetry
of oxygen p-orbitals, superexchange interaction becomes more efficient when cations and
oxygen are in an axial arrangement. This makes a strong difference between interactions; A–
O–B interaction is far more efficient than B–O–B interactions since the latter has a 90° angle,
while the former is closer to 180°. As a result, both spins on B sites are antiparallel to the A
spin. The magnetic moment of Fe3+ on A site cancels with the magnetic moment of Fe3+ on B
site, and the resulting magnetic moment is the spin value for nickel Ni2+ (2.3 Bohr magnetons),
as shown in Figure 3 center. This is a strong interaction; the Curie transition is about 858 K.
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In the case of zinc ferrite, iron ions occupy the B sites and zinc is located on the A site. Since
Zn2+ is a 3d10 ion, it has no magnetic moment, and the only interaction is B–O–B, leading to an
antiparallel arrangement of spins (Figure, 3 right). The spins are identical, and the material
becomes antiferromagnetic. The Néel temperature is about 9 K, and this clearly illustrates the
weakness of this superexchange interaction, as compared with AOB of the nickel ferrite case.
Based on transition temperatures, A–O–B interaction is roughly 95 times stronger than B–O–
B interaction.

3. Electron paramagnetic resonance

Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) is a technique of
observing resonance absorption of microwave power by unpaired electron spins aligned with
a magnetic field [4]. The electron paramagnetic resonance (EPR) spectroscopy is similar to the
nuclear magnetic resonance (NMR) except for the fact that EPR arises from the interaction
between unpaired electrons and electromagnetic radiation.

The history of EPR can be told beginning with the Stern–Gerlach experiment in 1921. They
observed that a beam of silver atoms split into two lines when it was subjected to a magnetic
field. In contrast with the line splitting in optics found by Zeeman in 1896, these phenomena
could not be explained by the angular momentum of the electrons. At the time quantum
mechanics was still developing and was still an emerging field. Three more years passed before
Uhlenbeck and Goudsmit found an explanation for these anomalous Zeeman effect when they
postulated the spin [5,6].

The development of the EPR was furthered by the World War II since after the war was over,
there was available a great amount of microwave instruments from the radar equipment used
in the war. It was in 1945 when a Russian physicist, Zavoisky, observed the first EPR spectrum.
He observed a radiofrequency absorption line from a CuCl2⋅2H2O sample. One year later, the
first NMR spectrum was observed and through the first decade both techniques developed
simultaneously. Nevertheless, EPR spectroscopy had a few challenges from lack of microwave
components and limited microwave power to expensive instrumentation and consequently
was left behind by NMR for a couple of decades [4–6].

It was until the 1980s that the instrumentation became cheaper and more manageable and the
first pulse EPR was released to the market. A decade later the high field spectrometer was
released and since then the interest in EPR as a characterization technique has considerably
increased.

The spin angular momentum S gives rise to a magnetic moment μ =– gμBS, where g is the g
factor; its value for free electrons is g = 2.0023193043617 and μB is the Bohr magneton. When
the electrons are subjected to an external field H (it is customary to place the field along the z
axis), the energy levels of the degenerate spin states split depending on their quantum
magnetic moment ms = ± 1/2 and the strength of the magnetic field as shown in Figure 4 [4–6].
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Figure 4. Splitting of the energy levels of an electron spin in a magnetic field at the resonance frequencies.

When the irradiation at a given frequency ω0 is the same as the energy difference ∆E between
both states, a resonant absorption takes place. This frequency is named the Larmor frequency
ω0 = –γ H0 after J. Larmor [6]:

0 BW g Hw mD = =h (1)

The detection of that absorption is the most important principle of this spectroscopy.

For temperatures above the Curie temperature, the magnetic moments in an external field obey
the Bloch equations. These equations follow the Larmor theorem where the motion of the
magnetic moments in a magnetic field originates a torque [6–9]:

d
dt

g= ´
M M Hh (2)

To detect the absorption, there is an oscillating microwave field H1 = (Hx,Hy,0) = (H1cos(ωmwt),
H1sin(ωmwt),0) aside from the external magnetic field along the z axis. This magnetic field
deviates the magnetization away from its equilibrium position. To describe accurately the
motion of the magnetization vector, it is important to take into account the relaxation effects.
The relaxation time has two components, the longitudinal relaxation time, which is the average
time in which the magnetization vector returns to its thermal equilibrium state, and the
transverse relaxation time, which characterizes the loss of coherence in the transverse plane
due to spin interactions [5–8].

The evolution of the magnetization as a function of time and its dependence of the magnetic
field is given by the equation motion derived by F. Bloch [5–6]:

Advanced Electromagnetic Waves216



Figure 4. Splitting of the energy levels of an electron spin in a magnetic field at the resonance frequencies.

When the irradiation at a given frequency ω0 is the same as the energy difference ∆E between
both states, a resonant absorption takes place. This frequency is named the Larmor frequency
ω0 = –γ H0 after J. Larmor [6]:

0 BW g Hw mD = =h (1)

The detection of that absorption is the most important principle of this spectroscopy.

For temperatures above the Curie temperature, the magnetic moments in an external field obey
the Bloch equations. These equations follow the Larmor theorem where the motion of the
magnetic moments in a magnetic field originates a torque [6–9]:

d
dt

g= ´
M M Hh (2)

To detect the absorption, there is an oscillating microwave field H1 = (Hx,Hy,0) = (H1cos(ωmwt),
H1sin(ωmwt),0) aside from the external magnetic field along the z axis. This magnetic field
deviates the magnetization away from its equilibrium position. To describe accurately the
motion of the magnetization vector, it is important to take into account the relaxation effects.
The relaxation time has two components, the longitudinal relaxation time, which is the average
time in which the magnetization vector returns to its thermal equilibrium state, and the
transverse relaxation time, which characterizes the loss of coherence in the transverse plane
due to spin interactions [5–8].

The evolution of the magnetization as a function of time and its dependence of the magnetic
field is given by the equation motion derived by F. Bloch [5–6]:

Advanced Electromagnetic Waves216

0( ) ( ) ( ( ) )d t t t
dt

g= ´ - -
M M H R M Mh (3)

whereγ is the gyromagnetic ratio, H = (H1cos(ωmwt), H1sin(ωmwt),Hz), and R is the relaxation
tensor given by [6]:
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Relaxation phenomena need to be taken into account to describe the motion of the magneti‐
zation vector. T1 is the longitudinal relaxation time; this parameter characterizes the process
that makes the magnetization vector return to its thermal equilibrium. T2 is the transverse
relaxation time which describes the loss of coherence in the transverse plane due to spin-spin
interactions.

Electron paramagnetic resonance is a very useful technique to study the properties of bulk
paramagnetic compounds including their transitions to the magnetic ordered state. Below this
temperature, ferromagnetic resonance (FMR) or antiferromagnetic resonance (AFMR) are
detected. EPR in paramagnetic samples give information such as the resonance active ion
valence and the symmetry of the ligand environment. In the case of nanoparticles, the theory
of EPR is not quite the same as in bulk; however, a study of the thermal variations of EPR
spectra can be very informative because of the high sensibility of the EPR technique [10].

Let’s recall that magnetic resonance is observable only in materials that contain a sufficient
number of permanent magnetic dipoles; if the origin of these dipoles is electronic, then the
resonance is detectable with a population even fewer than 1011 dipoles [8].

The first paramagnetic resonance absorption in metals due to the conduction electrons was
observed by Feher and Kip [8]. The conduction electrons have an effect on the shape and
intensity of the resonance lines. However, until the theoretical study of Dyson, there were not
many studies in conduction electron paramagnetic resonance in metals [11].

In a metal, the electrons are assumed to diffuse as free particles and the magnetic moments of
each of them can be seen as free-particle moments. When the metal is placed in a radiofre‐
quency electromagnetic field and at the same time in a perpendicular uniform magnetic field,
a certain macroscopic magnetization is created as a result of the magnetic moments of the
conduction electrons. The penetration of the radio frequency field into the metal is modified
by the magnetization. Actually, only the layers near the surface contribute, since the excitation
field H1 penetrates only a small depth into the metal. This is called the skin effect [11]. The
magnetization M shows a resonant behavior and becomes large when the frequency of the
field is nearly equal to the resonant frequency. The absorption field observed is a measure of
the total energy absorbed in the metal both by eddy currents and by the resistive out of phase
component of the magnetization.
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There are four assumptions which need to be taken into account to study the dependence of
the line width [8,11]:

1. The electrons which carry the magnetization in a metal are assumed to lie at the top of the
Fermi distribution of the conduction electrons and to move with constant velocity.

2. Each electron moves as an independent classical particle with random changes in their
direction.

3. The spin of each particle is a quantum independent variable. It is unaffected by collisions
and only the local magnetic field has an effect on them.

4. Given any time interval t and U, a volume relaxation time there is a probability ~exp(-t/U)
that the spin state of an electron will not be randomly distributed by collisions during this
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Figure 5. Typical first derivative EPR spectrum observed in colloidal samples of Na, with mean diameter particle
small compared to the skin depth. The basic parameters and the definition of R  are indicated. Adapted from Feh‐
er and Kip [8].
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The magnetic susceptibility in metals has a diamagnetic component due to the circulation of
electrons in the field H. This is opposed by the normal paramagnetic component due to
unpaired electrons. This is related with another EPR parameter that has been studied in metals:
the g factor [8,12]. The relation between the resonance values of the constant magnetic field H0

and the frequency is determined by the magnitude of the g factor of the conduction electrons.
The existence of internal interactions in a metal leads to a shift in the value of the g factor.

Experimentally, the g factor has been measured in different paramagnetic metals giving rise
to values very close to the g free electron value g = 2.0023 as shown in Table 3. This is a measure
of the spin-orbit coupling. It has been possible to study S-state ions in metals in order to
understand the interaction between the conduction electrons and the inserted ions.

Metal Experimental values ∆g = g– 2.0023

Li ∆g < 10–4

Na ∆g = –(8 ± 2) × 10–4

Be ∆g = +(9 ± 2) × 10–4

Table 3. Experimental values for the g shift. Adapted from Feher and Kip [8].

EPR spectroscopy has made contributions in understanding the bonding and the electronic
structure of molecular species with metal–metal bonds. Some of the information obtained
through this technique includes determining whether unpaired electrons reside in metal-based
or ligand-based molecular orbitals, giving information of the metal center’s total electronic
spin, which also provides information of its oxidation state, broadly have information of the
distribution of the unpaired electrons between metals and organic ligands [13].

3.1. Magnetic nanoparticles

Iron-based  oxide  nanoparticles  materials  have  been  widely  studied  because  of  their
technological importance. γ-Fe2O3 is a very popular material for magnetic tape purposes.
Another popular material in high density recording media is BaFe12O19  and its substitut‐
ed derivatives since it can be doped with other cations in order to reduce their magnetocrys‐
talline anisotropy [10].

Bulk Fe2O3 exists as a ferrimagneticγ -Fe2O3 (maghemite) or antiferromagnetic α-Fe2O3

(hematite). Maghemite nanoparticles are a representative model for the experimental study of
nanoparticles and for testing theoretical concepts. In contrast, bulk hematite is antiferromag‐
netic below the Morin temperature and weakly ferromagnetic above this temperature [10].

At room temperature, the EPR of γ-Fe2O3 and BaFe2O4 and nanoparticles show a tow line
pattern as shown in Figure 6 [9], which is typical of superparamagnetic resonance in contrast
with the BaFe12O19 where the narrow line is more pronounced (as shown in Figure 6c). In
these sample, the line width ΔH ∼120 Oe and g = 2.00; this value of the g factor is typical
paramagnetic.
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Figure 6. Room temperature EPR spectra of nanoparticles: (a) Fe2O3, (b) BaFe2O4, and (c) BaFe12O19. Adapted from Kok‐
sharob et al. [10].

It is shown in Figure 7a that below 100 K, the broad line 1 shows a typical superparamagnetic
(SPM) behavior of single-domain particles in the absence of transitions to a magnetic ordered
state. SPM behavior will be discussed in the following section. Below 50 K, new resonances
appear such as 2 and 3. Point 2 is a typical paramagnetic resonance signal. On the other hand,
point 3 is characteristic of a phase transition α-Fe2O3 of the hematite to antiferromagnetic phase.

Figure 7. (a) EPR spectra of Fe2O3 nanoparticles; (b) EPR spectra of BaFe2O4 nanoparticles. Adapted from Koksharob et
al. [10].

The bulk thermodynamics phase diagram [14] shows several interchangeable iron oxide
phases. For nanoparticles, the mutual phase transition should be easier. For this reason, it is
accurate to expect a multiphase composition in Fe2O3 nanoparticles. In point 3, the value g is
4.03, which is characteristic of a high spin state Fe3+ in the rhombic crystal field. The antifer‐
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romagnetic transition is associated with the α-Fe2O3 phase. In rhombohedralα -Fe2O3 as well
as in γ-Fe2O3, there is a departure from axial symmetry. The paramagnetic signal in point 2 is
attributed to the γ-Fe2O3 phase; it has a g value of 2.02, and it is due to the octahedral symmetry
sites of Fe3+ in the spinel structure.

Bulk BaFe2O4 is nonferrimagnetic. On the contrary, BaFe2O4 demonstrate an EPR anomaly near
125 K that could indicate the presence of a Fe2O3 phase. On the other hand, bulk hexaferrite
BaFe12O19 is a representative case of FMR because of its very high uniaxial anisotropy.
However, in the nanoparticles, the contribution of the particle’s surface is appreciable and can
reduce the total anisotropy energy as well as crystalline defects due to stress and strain. The
EPR spectra reveal the effect of superparamagnetic fluctuations narrowing the resonance [10]
and will be discussed in the next section.

4. Spin resonance in superparamagnetic phases

The superparamagnetic (SPM) state is characterized by random fluctuations of the magneti‐
zation due to thermal excitation. It appears in ferro- and ferrimagnetic particles, which are
sufficiently small and thus single domain, typically in the nanometric range (1–100 nm). It is
important to note that in contrast with the paramagnetic state, characterized by random
fluctuations of individual, noninteracting spins in the SPM phase, these fluctuations involve the
whole magnetization vector, which is the sum of all individual moments of the particle. As SPM
occurs at temperatures below the Curie transition, exchange interaction is effective, and spins
are therefore coupled. It is by this reason that some authors describe SPM as “macro-spin”
fluctuations.

A simple approach to SPM can be obtained by considering the magnetocrystalline anisotropy
energy, EK = K V, for a nanoparticle of volume V and anisotropy constant K. When this product
becomes small and comparable to the thermal energy ET = kBT (where kB is the Boltzmann
constant), the magnetization oscillates by thermal excitations and easy directions vanish. A
simplified graphical model is shown in Figure 8. A uniaxial nanoparticle has two easy
magnetization directions, i.e., two magnetization orientations that lead to a minimum in
anisotropy energy. These orientations are separated by an energy barrier EK = K V. Superpar‐
amagnetism appears when the thermal energy becomes comparable to anisotropy energy, and
therefore the energy barrier is dominated by thermal oscillations.

A nanoparticle of a given composition and constant volume typically shows a ferro/ferrimag‐
netic behavior at low temperatures and can become superparamagnetic as T increases. At low
temperatures, K is large and T is small, and the opposite is true as T increases. The temperature
at which SPM occurs is known as the blocking temperature, TB.

The probability of reversal of magnetization is given by the Néel–Arrhenius or Néel–Brown
relation [15,16]:
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( )m 0 Bexp /KV k Tt t= (6)

where V is the volume of the nanoparticle, K is the anisotropy constant, T is the temperature,
τm is the average length of time for a magnetization reversal to occur, and τ0 is a characteristic
time constant related with the gyromagnetic precession, known also as the attempt time for a
given material. Typical values are in the 10–9 to 10–10 s range. Under an applied magnetic field,
the blocking temperature variations can be expressed (for uniaxial materials) as [17]
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where H is the applied field, HK is the anisotropy field, and a has a typical value of 1.5 [18].
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Figure 8. Schematics of the energy in a single-domain particle (with uniaxial anisotropy) as a function of the angle be‐
tween easy axes and the magnetization direction. For SPM nanoparticles, the energy barrier is comparable to the ther‐
mal energy, thus resulting in magnetization random oscillations.

It is interesting to note that the blocking temperature, TB, depends on the time window, tw, of
the particular experimental technique. tw is the effective length of time during the measure‐
ment. If tw >> τm, the magnetization will show several reversals and the state of the particle
will we taken as SPM. On the contrary, if tw << τm, magnetization will exhibit a stable state, and
therefore the material will be considered as in the ordered phase. The time window for TB

determination from magnetization measurements in the ZFC-FC technique (in a SQUID
machine) is about 10–1 s, while for Mössbauer spectroscopy or spin resonance techniques tw is
about 10–6 s. A model to describe the crossover from the SPM state to the blocked phase in
magnetic nanoparticles has been recently proposed [19]. It is based on the Stoner–Wohlfarth
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about 10–6 s. A model to describe the crossover from the SPM state to the blocked phase in
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model and also assumes noninteracting nanoparticles with uniaxial anisotropy and uniform
random reversal of magnetization.

SPM materials show no hysteresis in M vs. H plots, i.e., absence of both coercive field and
remanent magnetization, as illustrated in Figure 9. For an ensemble of noninteracting particles
at temperatures low enough (TB < T < KV/10kB), a simple model for the magnetization behavior,
based on the paramagnetic theory, is

0( ) tanh
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æ ö
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è ø
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At higher temperatures (T > KV/kB),
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where n is the density (atoms/volume), μ is the magnetic moment (the “macrospin”), M is the
magnetization, and L is the Langevin function, L (x) = 1/tanh (x) – 1/x, with x = μ0H μ / T kB.
This behavior is very convenient for many applications, especially in biomedicine, where
magnetic nanoparticles manifest a magnetization only when subjected to a magnetic field, thus
avoiding interparticle interactions (which could lead to aggregation) at H = 0. In contrast, SPM
is useless for magnetic recording since the absence of a remanent state eliminates any possi‐
bility of memory.
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Figure 9. Hysteresis loop of ZnNi nanoparticles in the superparamagnetic phase [20]. 
The kinetic approach [21,22] is known with this name because it makes use of the Fokker–Planck-type equation used by 
Brown [16] to analyze viscosity problems. The main criticism for this approach is that it predicts an increase of the line 
width with temperature, which is opposite to the large majority of experimental results. On some cases, a tendency to 
show a constant line width has been observed, but to our knowledge, no significant increase in ∆H has been reported in 
SPM phases as T increases. 
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Figure 10. Resonance field as a function of temperature for Zn-Ni ferrite NPs, at f = 9.45 GHz [23]. 
The SPM state has elicited the proposal of a number of theoretical models to account for its magnetization, and more 
specifically to understand the features of the resonance spectrum. Some models [24, 25] discuss the longitudinal modes, 
which are more directly associated with magnetization reversal. For spin resonance, however, it is the transverse modes, 
which are more directly related with magnetization precession and therefore with magnetization resonance. There are 
two main approaches, the so-called “statistical” approach and the “kinetic” approach. 
In the statistical approach [26,27], which has a phenomenological character, the resonance conditions are evaluated by 
averaging over the equilibrium statistical distribution of all possible directions of particle magnetization moment. Typically,
this model assumes that the magnetocrystalline anisotropy is smaller than the interaction energy between the 
magnetization and the applied field. While modeling can effectively represent some of the experimental results, the 
averaging of the magnetic anisotropy is not fully clear. 
Another approach is also based on the Landau–Lifshitz equation of magnetization dynamics. In this model [26], H is 
changed by Hloc to take into account both the external field and the effective field of the intrinsic anisotropy of the NPs. 
The dependence of the line width with temperature is expressed by 
      ∆H = ∆HT L(X)      (10) 
where ∆HT is the limiting value of the line width for bulk particles and L(X) is a Langevin type (L(X) = cot h X– 1/X) of a 
phenomenological temperature factor X (see Berger et al. [26] for more details). 
Experimentally, the behavior of the line width and the resonance field of SPM phases of metallic and oxide NPs is quite 
clear; as temperature increases, the line width decreases and the resonance field increases, as illustrated by means of 
some recent results, see Figure 11 [23]. 

Figure 9. Hysteresis loop of ZnNi nanoparticles in the superparamagnetic phase [20].
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The kinetic approach [21,22] is known with this name because it makes use of the Fokker–
Planck-type equation used by Brown [16] to analyze viscosity problems. The main criticism
for this approach is that it predicts an increase of the line width with temperature, which is
opposite to the large majority of experimental results. On some cases, a tendency to show a
constant line width has been observed, but to our knowledge, no significant increase in ∆H
has been reported in SPM phases as T increases.

The kinetic approach [21,22] is known with this name because it makes use of the Fokker–Planck‐type equation used by 
Brown [16] to analyze viscosity problems. The main criticism for this approach is that it predicts an increase of the line 
width with temperature, which is opposite to the large majority of experimental results. On some cases, a tendency to 
show a constant line width has been observed, but to our knowledge, no significant increase in ∆H has been reported in 
SPM phases as T increases. 

100 200 300 400 500

240

260

280

300

320

340

H
re

s  
(m

T)

T  (K)

Zn0.7Ni0.3Fe2O4

Figure 10. Resonance field as a function of temperature for Zn-Ni ferrite NPs, at f = 9.45 GHz [23]. 
The SPM state has elicited the proposal of a number of theoretical models to account for its magnetization, and more 
specifically to understand the features of the resonance spectrum. Some models [24, 25] discuss the longitudinal modes, 
which are more directly associated with magnetization reversal. For spin resonance, however, it is the transverse modes, 
which are more directly related with magnetization precession and therefore with magnetization resonance. There are 
two main approaches, the so-called “statistical” approach and the “kinetic” approach. 
In the statistical approach [26,27], which has a phenomenological character, the resonance conditions are evaluated by 
averaging over the equilibrium statistical distribution of all possible directions of particle magnetization moment. Typically,
this model assumes that the magnetocrystalline anisotropy is smaller than the interaction energy between the 
magnetization and the applied field. While modeling can effectively represent some of the experimental results, the 
averaging of the magnetic anisotropy is not fully clear. 
Another approach is also based on the Landau–Lifshitz equation of magnetization dynamics. In this model [26], H is 
changed by Hloc to take into account both the external field and the effective field of the intrinsic anisotropy of the NPs. 
The dependence of the line width with temperature is expressed by 
      ∆H = ∆HT L(X)      (10) 
where ∆HT is the limiting value of the line width for bulk particles and L(X) is a Langevin type (L(X) = cot h X– 1/X) of a 
phenomenological temperature factor X (see Berger et al. [26] for more details). 
Experimentally, the behavior of the line width and the resonance field of SPM phases of metallic and oxide NPs is quite 
clear; as temperature increases, the line width decreases and the resonance field increases, as illustrated by means of 
some recent results, see Figure 11 [23]. 
As temperature increases, the resonance field increases from 243 mT for 102 K to 333 mT for 473 K. This is due to the 
fact that for temperatures below the Curie transition, there is an internal field formed by all the possible contribution to the
ordered state: 

Hint = Hexch + Hanis + Hdem + ...    (11) 
where Hexch is the exchange interaction, Hanis is the anisotropy field, and Hdem is the demagnetization field. As a result, 
the magnetization vector is subjected to a total field composed by the internal field and the applied field, 

Htot = Happl + Hint      (12) 
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The SPM state has elicited the proposal of a number of theoretical models to account for its
magnetization, and more specifically to understand the features of the resonance spectrum.
Some models [24, 25] discuss the longitudinal modes, which are more directly associated with
magnetization reversal. For spin resonance, however, it is the transverse modes, which are
more directly related with magnetization precession and therefore with magnetization
resonance. There are two main approaches, the so-called “statistical” approach and the
“kinetic” approach.

In the statistical approach [26,27], which has a phenomenological character, the resonance
conditions are evaluated by averaging over the equilibrium statistical distribution of all
possible directions of particle magnetization moment. Typically, this model assumes that the
magnetocrystalline anisotropy is smaller than the interaction energy between the magnetiza‐
tion and the applied field. While modeling can effectively represent some of the experimental
results, the averaging of the magnetic anisotropy is not fully clear.

Another approach is also based on the Landau–Lifshitz equation of magnetization dynamics.
In this model [26], H is changed by Hloc to take into account both the external field and the
effective field of the intrinsic anisotropy of the NPs. The dependence of the line width with
temperature is expressed by
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The SPM state has elicited the proposal of a number of theoretical models to account for its
magnetization, and more specifically to understand the features of the resonance spectrum.
Some models [24, 25] discuss the longitudinal modes, which are more directly associated with
magnetization reversal. For spin resonance, however, it is the transverse modes, which are
more directly related with magnetization precession and therefore with magnetization
resonance. There are two main approaches, the so-called “statistical” approach and the
“kinetic” approach.

In the statistical approach [26,27], which has a phenomenological character, the resonance
conditions are evaluated by averaging over the equilibrium statistical distribution of all
possible directions of particle magnetization moment. Typically, this model assumes that the
magnetocrystalline anisotropy is smaller than the interaction energy between the magnetiza‐
tion and the applied field. While modeling can effectively represent some of the experimental
results, the averaging of the magnetic anisotropy is not fully clear.

Another approach is also based on the Landau–Lifshitz equation of magnetization dynamics.
In this model [26], H is changed by Hloc to take into account both the external field and the
effective field of the intrinsic anisotropy of the NPs. The dependence of the line width with
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( ) TH H L XD = D (10)

where ∆HT is the limiting value of the line width for bulk particles and L(X) is a Langevin type
(L(X) = cot h X– 1/X) of a phenomenological temperature factor X (see Berger et al. [26] for
more details).

Experimentally, the behavior of the line width and the resonance field of SPM phases of
metallic and oxide NPs is quite clear; as temperature increases, the line width decreases and
the resonance field increases, as illustrated by means of some recent results, see Figure 11 [23].

As temperature increases, the resonance field increases from 243 mT for 102 K to 333 mT for
473 K. This is due to the fact that for temperatures below the Curie transition, there is an internal
field formed by all the possible contribution to the ordered state:

int exch anis dem  ...H H H H= + + + (11)

where Hexch is the exchange interaction, Hanis is the anisotropy field, and Hdem is the demagnet‐
ization field. As a result, the magnetization vector is subjected to a total field composed by the
internal field and the applied field,

tot appl intH H H= + (12)
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In order to fulfill the resonance conditions (Larmor equation), a smaller external field is
required. In the paramagnetic state, thermal energy has overwhelmed the exchange coupling,
and the resonance field is identical to the applied field. On the other hand, it is interesting to
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note again that in the SPM state, the exchange interaction is fully effective, and it remains active
up to the Curie transition.

In SPM phases, Hanis should be small and decreasing as T increases and thermal energy
progressively overwhelms it, but it certainly retains some influence, especially at temperatures
close to TB. The transition from the ordered (ferrimagnetic) to the SPM phase is essentially
continuous. This is more evident in the H > Hres section of the resonance signal, as this section
exhibits a larger broadening and becomes asymmetric. As we will see, this section of the signal
is also associated with the magnetocrystalline anisotropy in the case of ferrimagnetic phases.
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As an attempt to get more insight into the changes associated with the SPM phase, we have
proposed a parameter R, which measures the symmetry of the resonance signal. This param‐
eter is defined as the ratio R = A–/A+, between the amplitude of the section in the negative part
of the spectrum, A–, and the amplitude of the positive part, A+, as shown in Figure 12. In many
ferrite NPs, R has been observed to tend to unity as temperature increases and the ferrite
progresses to the paramagnetic phase.

5. Ferromagnetic resonance

While the physical principals behind EPR experiments are due to the Zeeman effect, ferro‐
magnetic resonance has a different description because FMR arises from the precessional
motion of the whole magnetization M of a ferromagnetic material in an external magnetic field
H as shown in Figure 13 [27].
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As an attempt to get more insight into the changes associated with the SPM phase, we have
proposed a parameter R, which measures the symmetry of the resonance signal. This param‐
eter is defined as the ratio R = A–/A+, between the amplitude of the section in the negative part
of the spectrum, A–, and the amplitude of the positive part, A+, as shown in Figure 12. In many
ferrite NPs, R has been observed to tend to unity as temperature increases and the ferrite
progresses to the paramagnetic phase.

5. Ferromagnetic resonance

While the physical principals behind EPR experiments are due to the Zeeman effect, ferro‐
magnetic resonance has a different description because FMR arises from the precessional
motion of the whole magnetization M of a ferromagnetic material in an external magnetic field
H as shown in Figure 13 [27].
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Figure 13. Magnetization vector M precessing around an external field H.

Actually ferromagnetic resonance at microwave frequencies is similar in principle to nuclear
spin resonance. The total electron magnetic moment of the sample precesses around the
direction of the external field and the absorption is due to the energy absorbed from the rf
transverse field when its frequency is equal to the precessional frequency [27,28].

The ferromagnetic resonance was unknowingly discovered by V. K. Arkad’yev when he
observed the absorption of ultrahigh frequency radiation by ferromagnetic materials. How‐
ever, it was officially observed by Griffiths in the Clarendon Laboratory in Oxford in 1946 and
then confirmed by Yager and Bozorth who found a sharp peak in a supermalloy (Ni 75%–Fe
20%–Mo 5%) sample for a field strength near 5 kOe with a 24,000-Mc/s frequency [28].

Ferromagnetic  resonance  was  theoretically  discussed before  it  was  knowingly  observed,
particularly  in  the  paper  written  by  Landau and Lifshitz  in  Kharkov in  1935.  C.  Kittel
provided a  more complete  theoretical  formulation in  1951 [27,28].  The resonant  absorp‐
tion in ferromagnetic metals for a given frequency is controlled by an effective field Heff,
which is the sum of an external applied field and the contributions of internal magnetiza‐
tion, while in EPR the effective field in which the absorption takes place is the same as the
external applied field [27–29].

From the theoretical point of view, the ferromagnetic resonance is described by the FMR
equations. These are differential equations that connect time derivatives of the magnetization
components with the components of the magnetization, the external field, the static magnetic
susceptibility, and the time relaxation [9,27]. The FMR equations are different depending on
the temperature regime which one is working in. Below the Curie temperature, the FMR
equations are called the Landau–Lifshitz equations. Over the Curie temperature, the FMR
equations lead to the Bloch-type ferromagnetic-resonance equations [9].

These equations were obtained empirically; however, for a better understanding of the
microscopic phenomena, a quantum statistical derivation was developed by O. A. Olkhov and
B. N. Provotorov, taking into account a system with spin magnetism placed in a magnetic field
composed by a constant field H0 (which causes the state of full saturation), and the alternating
field H1 [9].

The Hamiltonian for this derivation contemplates the potential energy μH.S, the exchange
interaction term, the dipolar interaction term, the lattice energy, and the spin–lattice interac‐
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tion. For the quantum statistical derivation, the relationship between the relaxation time and
the correlation time is very important. The correlation time ωC is much less than the relaxation
time ωR. This means that the equilibrium in the spin system is established by the strong
exchange interaction, while the relaxation is conditioned by the weak dipolar interaction, so
the equilibrium of the system is established by the strong exchange interaction much more
quickly than the relaxation process. This assumption is confirmed by experimental data on the
inelastic magnetic scattering of neutrons [9].

The principal result of the theory is that the resonance condition is given by [9,28]

1/ 2
0 {[ ( ) ] [ ( ) ]}

2 z y z z z x z z
eg H N N M H N N M
mc

w = + - ´ + - (13)

Instead of the Larmor condition, where ω0 is the frequency at resonance, γ = ge/2mc, is the
magnetomechanical ratio for an electron spin, Hz is the static magnetic field, Mz is the compo‐
nent of the magnetization along the z axis, and Nx,y,z are the components of the demagnetization.

It is important to take into account that the resonance condition is closely related to the
demagnetization field, and this depends on the shape of the sample. For this reason, there are
some special cases for the resonance frequency, for instance, the plane, the sphere, and a long
circular cylinder [27,28].

Another important consideration is that the energy of ferromagnetic crystals depends in part
on the anisotropy energy. The anisotropy energy has an effect in the resonance condition. In
the case of a single crystal, the value of the magnetic field required for resonance at fixed
frequency depends on the direction of the crystal axes relative to the shape axes of the sample.

In a polycrystalline sample, the absorption line will, in general, look broader than in a single
crystal sample because the distribution in direction of the crystalline axes causes a distribution
in the field strengths for resonance [27,28].

It is convenient to consider the effect of the anisotropy energy as an equivalent magnetic field
Hs; this field is defined such that the torque exerted on the sample by this field is equal to the
torque exerted by the anisotropy energy,

S
S

f
q
¶

= ´
¶

M H (14)

However, this equivalent magnetic field is not completely determined by equation 2 because
the magnitude and the direction are arbitrary. One can express the components of HS in terms
of an effective demagnetization factor, which will be added to the usual demagnetization factor
in the equation for the resonance frequency. The resonance condition depends on the shape
of the sample as well as on the orientation of the crystal.
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some special cases for the resonance frequency, for instance, the plane, the sphere, and a long
circular cylinder [27,28].

Another important consideration is that the energy of ferromagnetic crystals depends in part
on the anisotropy energy. The anisotropy energy has an effect in the resonance condition. In
the case of a single crystal, the value of the magnetic field required for resonance at fixed
frequency depends on the direction of the crystal axes relative to the shape axes of the sample.

In a polycrystalline sample, the absorption line will, in general, look broader than in a single
crystal sample because the distribution in direction of the crystalline axes causes a distribution
in the field strengths for resonance [27,28].

It is convenient to consider the effect of the anisotropy energy as an equivalent magnetic field
Hs; this field is defined such that the torque exerted on the sample by this field is equal to the
torque exerted by the anisotropy energy,

S
S

f
q
¶

= ´
¶

M H (14)

However, this equivalent magnetic field is not completely determined by equation 2 because
the magnitude and the direction are arbitrary. One can express the components of HS in terms
of an effective demagnetization factor, which will be added to the usual demagnetization factor
in the equation for the resonance frequency. The resonance condition depends on the shape
of the sample as well as on the orientation of the crystal.
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Figure 14. Comparison of the theoretical resonance condition for [100] and [110] directions in Fe-Si single crystal with a
(001) plane surface. Adapted from Kittel [28].

A classic example of this is the difference of the magnetic field required for resonance with the
(100) crystal face in a crystal with cubic anisotropy when the static field Hz is in the [110]
direction and when Hz is in the [100], see Figure 14. In the first case, Hz is greater than in the
second. The difference is of the order of 4K1/MS.[6].

5.1. Ferrimagnetic nanoparticles

Nanoparticles of magnetic systems are of particular interest since the reduction to nanosized
dimensions of the magnetic lattice gives rise to many interesting and different properties with
respect to bulk materials. For instance, the surface spins, which constitute an important fraction
of the total spins, undergo decrease in the coordination number and, therefore, a deficiency in
exchange interactions. This situation can lead to severe changes in magnetization and aniso‐
tropy behavior. The relaxation processes of magnetization are also strongly temperature and
size dependent.

In order to make a comparison between the three phases in ferrite NPs, Figure 15, we have
selected the spectra obtained at 103 K (ordered, ferrimagnetic phase), 323 K (SPM phase), and
448 K (paramagnetic phases) [23]. The main difference exhibited by the ordered phase (in
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addition to the decrease in the resonance field) is the broadening in the section at H > Hres, i.e.,
A–. The origin of this feature should be found in the effect of the internal field, which is the
main difference with the other phases, and in particular, in the magnetocrystalline anisotropy
field.

We present here two examples to show the complexity of changes driven by the reduction to
nanosize dimensions, as illustrated by FMR. The first example involves cobalt-doped zinc
ferrite nanoparticles (Co0.73yZn0.73(1-y)Fe2.18□0.09O4). After synthesis, they were solubilized in
aqueous solution containing 10% of polyvinyl alcohol [29]. Upon evaporation and during the
polymerization process, the samples were subjected to a magnetic field in order to obtain an
alignment of anisotropy axes.

The magnetization curves for these samples showed that the coercitivity increases as the
percentage of Co increased, as well as the ratio of the remanence magnetization to saturated
magnetization MR/MS. This latter result was interpreted as a change from uniaxial anisotropy
for the Zn ferrite to a cubic anisotropy for the ferrites containing Co. This result was confirmed
by the FMR spectrums as shown in Figure 15, associated with a broadening of the line width.
This is attributed to the strong cubic magnetocrystalline anisotropy of cobalt ions in octahedral
sites. This is somewhat contradictory as in bulk materials, it is well known that Co2+ on
octahedral sites leads to change in the anisotropy sign (negative in most ferrites) from negative
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Figure 15. Typical signals associated with the three magnetic phases; paramagnetic at 448 K, ferrimagnetic at 103 K,
and in the middle, the SPM phase which shows a progressive behavior from ferrimagnetic to paramagnetic as T in‐
creases [23].

The FMR spectra of 3.7-nm nanoparticles show a drastic change when 10% of cobalt ions were
added. A line width broadening and a shift in resonance toward lower fields are observed as
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Figure 15. Typical signals associated with the three magnetic phases; paramagnetic at 448 K, ferrimagnetic at 103 K,
and in the middle, the SPM phase which shows a progressive behavior from ferrimagnetic to paramagnetic as T in‐
creases [23].

The FMR spectra of 3.7-nm nanoparticles show a drastic change when 10% of cobalt ions were
added. A line width broadening and a shift in resonance toward lower fields are observed as
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the temperature decreases, and this behavior is more evident for the nanoparticles containing
Co (Figure 16).

Figure 16. FMR spectra of 3.7-nm diameter ferrite nanoparticles dispersed in PVA, at various temperatures. (a) Zinc
ferrite nanoparticles with no cobalt (y = 0). (b) Zinc ferrite with y = 10 of cobalt. Adapted from Gazeau et al. [31].

The next example is a ferrite nanoparticle system of maghemite (γ-Fe3O2) [31]. The oxide γ-
Fe3O2 is an inverse spinel structure with all iron in the trivalent state and ion vacancies in the
octahedral sublattice. Anisotropy properties studies have been done for γ-Fe3O2 nanoparticles
of diameter from 4.8 to 10 nm dispersed in glycerol forming a magnetic fluid. This study is
done by measuring the samples in a temperature range from 3.5 K to 300 K with (i) zero field
cooled (ZFC) and thus randomly oriented anisotropy axes and (ii) field cooled (FC) with Hfr =
10 kOe. The FMR spectra showed a decrease in the resonance field, and a broadening of the
line width, Figure 17. The parameters are shown in Figure 5 [31].

The resonance fields and the line widths of the γ-Fe3O2 samples are represented as a function
of temperature, see Figure 18. The ZF experiments are done for θ = 0° and for θ = 90°, where
θ is the angle between the directions of the freezing field and the magnetizing field.

In the field cooled samples, the orientation distribution of the anisotropy axes results from the
competition between the magnetic energy, the anisotropy energy and the thermal energy. The
distribution in orientation of the anisotropy axes affects the FMR spectrum in angular variation
and line width. On the other hand, there is also an effect of the particle size in the anisotropy.
This is observed in Figure 19, where Hres(90°)–Hres(0°) and ΔH are plotted as a function of
temperature for different particle sizes. The observed reduction of Hres(90°)–Hres(0°) is related
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to the particle size decrease because of the orientation distribution of the anisotropy axes. The
FMR study indicates that nanosized particles possess uniaxial anisotropy, even though bulk
maghemite has a cubic anisotropy.

By using a theoretical model [32] based on the Landau–Lifshitz–Gilbert dynamics, it is possible
to show that for a single domain assembly of magnetic NPs with randomly distributed
anisotropy axes, a large broadening of the absorption line is obtained, see Figure 19. In addition
to a shift of the resonance frequency, the distribution of anisotropy axes gives rise to a
significant change in the shape and symmetry of the line. Figure 20 was calculated at zero
temperature; as temperature increases, the shift in resonance field decreases, and due to the
typical decrease in anisotropy energy with T, the line broadening is also reduced.

Figure 17. FMR spectrum of maghemite (γ-Fe3O2) nanoparticles of 7 nm of average diameter at room temperature and mi‐
crowave frequency f = 9.26 GHz. The inset shows the spinel structure of maghemite. Adapted from Gazeau et al. [31].

Figure 18. (a) Temperature dependence of the resonance field for 10-nm diameter γ-Fe3O2 nanoparticles cooled under a
10-kOe magnetic field (FC) and cooled without field (ZFC). The arrow indicates the melting temperature of the ferro‐
fluid matrix. (b) Temperature dependence of the peak-to-peak line width for the same samples. Adapted from Gazeau
et al. [31].
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Figure 20. Absorbed FMR power (arbitrary units) vs reduced magnetic field at zero temperature and for different val‐
ues of the damping parameter in the Landau–Lifshitz–Gilbert dynamics [32].

Figure 19. (a) Difference of the resonance fields for anisotropy axis orientated at 90° and 0° form the magnetic field. (b)
Peak-to-peak line width as a function of microwave field for two different size of γ-Fe3O2 nanoparticles. (c) Anisotropy
field deduced for angular variations at 3.5 K as a function a particle size. Adapted from Sukhov et al. [32].
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Figure 21. Interpretation of the line broadening in ferrites with cubic anisotropy. On a [110] crystal plane, containing
two easy axis of the <111> family, which have an influence on the magnetization dynamics, leading to an increase in
the precession amplitude.

These results were obtained for the case of uniaxial materials; in the case of most ferrites with
cubic anisotropy axes, it would be expected a larger broadening. In a very cartoon-like model,
it is possible to imagine that the magnetization is first oriented along the applied field, which
has a value closer to the anisotropy field. Once close to the saturation and once satisfied the
resonance conditions, the magnetization is driven by the microwave radiation to precess
uniformly, that is in phase. However, magnetocrystaline anisotropy is strong at these temper‐
atures, and it is possible to consider that the magnetization vector can still feel its influence
and precesses with a tendency toward the cubic axes. This dynamics leads to a broadening of
the line, as far as the main result will be the combination of precession along several anisotropy
axes, and has to be averaged over a large NPs population. Figure 21 illustrates this interpre‐
tation.

6. Conclusions

It can be established that systematic and significant differences occur in the resonance signal
of ferrite NPs, associated with the magnetic structure. Paramagnetic phases lead to a high
resonance field (typically in the ~330 mT range for the X band) with a small line width and a
tendency to a symmetric signal (R ~ 1) (see signal at 448 K in Figure 15), in contrast with the
ferromagnetic phase, which exhibits a lower resonance field, broad line width and asymmetric
shape (signal at 103 K, Figure 15). Between these two different behaviors, there is an SPM phase
showing a resonance field closer to the one for the paramagnetic phase, a progressive decrease
in the broadening of the minimum section of the line (absorption at H > Hres), and therefore an
increase in the R parameter toward 1.0. The exact transition temperatures are not easy to
establish since evolution from one phase to the next is quite continuous.

Advanced Electromagnetic Waves234



Figure 21. Interpretation of the line broadening in ferrites with cubic anisotropy. On a [110] crystal plane, containing
two easy axis of the <111> family, which have an influence on the magnetization dynamics, leading to an increase in
the precession amplitude.

These results were obtained for the case of uniaxial materials; in the case of most ferrites with
cubic anisotropy axes, it would be expected a larger broadening. In a very cartoon-like model,
it is possible to imagine that the magnetization is first oriented along the applied field, which
has a value closer to the anisotropy field. Once close to the saturation and once satisfied the
resonance conditions, the magnetization is driven by the microwave radiation to precess
uniformly, that is in phase. However, magnetocrystaline anisotropy is strong at these temper‐
atures, and it is possible to consider that the magnetization vector can still feel its influence
and precesses with a tendency toward the cubic axes. This dynamics leads to a broadening of
the line, as far as the main result will be the combination of precession along several anisotropy
axes, and has to be averaged over a large NPs population. Figure 21 illustrates this interpre‐
tation.

6. Conclusions

It can be established that systematic and significant differences occur in the resonance signal
of ferrite NPs, associated with the magnetic structure. Paramagnetic phases lead to a high
resonance field (typically in the ~330 mT range for the X band) with a small line width and a
tendency to a symmetric signal (R ~ 1) (see signal at 448 K in Figure 15), in contrast with the
ferromagnetic phase, which exhibits a lower resonance field, broad line width and asymmetric
shape (signal at 103 K, Figure 15). Between these two different behaviors, there is an SPM phase
showing a resonance field closer to the one for the paramagnetic phase, a progressive decrease
in the broadening of the minimum section of the line (absorption at H > Hres), and therefore an
increase in the R parameter toward 1.0. The exact transition temperatures are not easy to
establish since evolution from one phase to the next is quite continuous.

Advanced Electromagnetic Waves234

As a general conclusion, these reviews confirm that electron spin resonance is a very sensitive
experimental method that can be used to characterize magnetic phases in the complex field of
magnetic nanoparticles.
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Abstract

Confined environments like tunnels are electrically large structures for guided
wave propagation. They can have arbitrary cross sections, and the design and
optimization of antenna for communication system requires the knowledge of
a “full-wave” solution in nearby zones. Current models based on asymptotic
approaches do not describe adequately the wave propagation under the above
conditions. In addition, a complete “full-wave” analysis of the tunnel propagation
performances is not feasible in terms of computer expenditure. After a survey of
the most commonly used techniques for propagation in tunnels, some investigation
regarding an appropriate approach to find the fields is proposed. It is based
on a modal decomposition of the wave propagation that allows an optimization
of the coupling with the antenna. To find the mode characteristic for arbitrary
cross section, a full-wave method, namely, the transmission-line matrix (TLM), is
modified to a so-called 2.5-dimensional TLM algorithm and presented in details.
This approach is validated for a canonical structure. Then, it is applied to study the
wave propagation in a realistic rectangular tunnel. The concept of surface impedance
boundary condition (SIBC) is introduced to reduce the TLM computational domain
and model the tunnel walls that can be considered as lossy dielectric. Results show
that guided structures with lossy dielectric walls of arbitrary cross section can be
studied with this approach.

Keywords: wave propagation, wave-guides, Transmission Line Matrix Method,
arbitrary cross-section wave-guides, dielectric waveguides, Modes

1. Introduction

Railway, roadway and mine tunnels, buildings, and warehouses are some examples of
confined environments, in which electromagnetic wave propagation has to be investigated
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



for communication channel characterization. In this paper, we shall focus on tunnel
environments. The prediction and characterization of the radio-wave propagation is needed
to optimize the system performances.

Confined environments are complex real-life electromagnetic (EM) problems. Several
techniques and methods are used to study the radio-wave propagation or to design
antennas to achieve some good performance. Experimental techniques, analytical
methods (exact solutions), numerical methods (approximate solutions), asymptotic methods
(approximate high-frequency expansions of Maxwell’s equations), and approximate
techniques (approximate solutions applicable for certain types of electromagnetic problems)
are among the most commonly used techniques in confined structures. Experiments might
be expensive and time consuming. Analytical and approximate techniques are limited
to some structures. In turn, asymptotic methods are mostly used to study the wave
propagation in tunnels. However, in many cases, the antennas employed to provide the
communication in these systems are strongly affected by its surrounding environment,
affecting the performance of the system. Thus, near-field considerations have to be accounted
for, which cannot be considered by these techniques. Finally, the practical utilization
of numerical full-wave methods has been hampered by their large computational time
compared to asymptotic methods.

With the increasing development of computers, appropriate new models and simplifications
are being developed. The formulation of an efficient modal approach stemming from the
fact that tunnels can be modeled by an over-sized waveguide and the a priori knowledge of
the fields in the axial direction is presented. It allows one to have a better physical insight
into wave propagation in confined environments, as well as dealing with electrically large
structures like tunnels. The mode parameter determination is carried out by a full-wave
time-domain method, namely, the transmission-line matrix (TLM) method.

The calculation volume has to be limited in full-wave volumic methods, and we are interested
only in the fields inside the tunnel. Thus, the electromagnetic modeling of the tunnel walls,
which can be lossy dielectric, is addressed. Lastly, by assimilating a confined environment
to a lossy dielectric waveguides of arbitrary cross section, the mode extraction of these
structures is presented. To the best of the authors’ knowledge, no such model has been
reported.

The chapter is structured as follows: In the first section, an overview of the principal
techniques for the description of the EM wave propagation in above structures is briefly
presented. In the second section, the formulation of the modal approach is described
in detail. In the following section, the implementation for a simple canonical case is
shown. Lastly, the numerical analysis of multimodal waveguides representative of confined
environments is illustrated in a realistic rectangular tunnel. Finally, discussions and
conclusions are developed at the end of the chapter.

2. Modeling approaches for wave propagation in confined environments

The correct understanding of wave propagation in confined structures like tunnels has been
an important area of research and development. They have been studied in the last 40 years
for radio communication system deployment. Unfortunately, as we shall see, current models
cannot be generally applied or they do not describe adequately the wave propagation. The
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purpose of this section is to provide an overview of the approaches for the problem of wave
propagation in these structures.

2.1. Analytical models: circular and elliptical dielectric tunnels

No analytic solution exists for the problem of wave propagation along a dielectric waveguide
of arbitrary cross-sectional shape. The circular and elliptical waveguides are the only
cases for which analytic solutions for guided waves exist. Field solution in waveguides
for analytical and approximate methods is usually expressed in terms of modes. They
are classified into different types according to their field configuration: transverse electric
modes (TE), with no electric field in the direction of propagation; transverse magnetic modes
(TM), with no magnetic field in this direction; transverse electromagnetic modes (TEM), with
neither electric nor magnetic field in this direction; and hybrid modes (HE) or (EH), with
nonzero electric and magnetic fields in the direction of propagation.

Dielectric circular waveguides can support a family of circularly symmetric TEnm or TMnm
modes, with n = m = 0, and hybrid modes HEnm and EHnm. The subscripts n and m denote
the number of oscillations with the cylindrical coordinates ρ and φ, respectively. Some
discussions considering different excitations, dependence on the constitutive parameters
of the tunnel walls, and other interesting topics are treated in [9]. The details of the
determination of the fields will not be repeated here. Finally, the wave propagation in
elliptical tunnels has not been treated. However, a deformed circular waveguide can be
approximated by an elliptical cylinder. Detailed theoretical as well as experimental results
can be found in [34].

2.2. Approximate models: rectangular dielectric tunnels

An exact analytic solution does not exist for the case of wave propagation in a rectangular
tunnel with lossy dielectric walls. An approximate approach, namely, Marcatilli’s method, is
usually employed to analyze this structure. The a priori assumption of Marcatilli’s approach is
that most of the energy of the modes propagating in the structure is contained within the core
region and very little guided power is contained in the corner regions of the guide [34]. Then,
the boundary conditions are only matched along the four sides of the hollow region, and the
fields in the corners are ignored. The Helmholtz equation in Cartesian coordinates is solved
with separated variables, and approximate solutions for the propagation constant and for
the field distributions are found. The modes are classified into Ex

nm and Ey
nm with most of its

electric field polarized in the horizontal or vertical direction, respectively. This approximation
gives the mode parameters with sufficient accuracy as long as the assumptions below are
valid:

(nλ/2w) << 1
(mλ/2h) << 1 (1)

|ε̄ − 1|1/2 /ε̄ >> (nλ/2w)

|ε̄ − 1|1/2 /ε̄ >> (mλ/2h)
(2)
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where n and m are integers describing the nm-th mode, λ is the free-space wavelength, w
and h the waveguide dimensions, and ε̄ is the normalized complex permittivity ε̄ = εr −
jσ/ (ωε0), where σ is the wall conductivity. Finally, a study of modal propagation in curved
rectangular tunnels can be found in [20].

2.3. Asymptotic models

Ray models use high-frequency expansions of Maxwell’s equations and are based on optical
laws to model the fields. They constitute the most commonly used deterministic techniques
to analyze confined environments [32]. In ray-based methods, the waves are treated as rays
propagating perpendicular to the wave fronts. This approximation is valid at positions
sufficiently distant from the source. The resulting spherical waves can be approximated
by a locally plane wave on a small portion of the sphere. Two methods are widely used:
ray launching and ray tracing [8, 10]. Curved tunnels, arched cross sections, or bends of a
tunnel can be treated by ray methods provided that radii of curvature of the surface be large
compared to the wavelength [22, 33].

Current tunnel cross sections are getting smaller, and antennas have to operate close to
the tunnel walls, such that these interfere with their near-fields. As a result, antenna
performances cannot be guaranteed by using asymptotic methods. For this reason, full-wave
models accounting for near-field effects become more relevant.

2.4. Full-wave models

In electromagnetism, two main families of numerical methods exist: frequency and
time-domain methods. Nowadays, time-domain methods are becoming increasingly used
[11, 31]. They are attractive because of their relative simplicity and their ability to account
for arbitrary geometries, obstacles like vehicles, nonlinearities, and different materials and
to determine transient response and perform wideband characterization [6, 32, 35]. Thus,
full-wave methods attract more attention for the purpose of deterministic radio coverage
predictions, near-field considerations, simplifications, and practical implementations [13].
However, efficient and adequate models are still needed to describe the wave propagation
in tunnel environments. A modal approach is preferred because it allows one to describe
the propagation by modes [1, 2, 29]. An efficient time-domain modal approach based on the
transmission-line matrix (TLM) method will be introduced in the next section.

3. The Transmission-Line Matrix (TLM) method for guiding structures

The transmission-line matrix (TLM) method was developed by P. B. Johns and his co-workers
in the 1970s [17]. Its theoretical foundations are based on Huygens’s model of wave
propagation. The TLM method is very attractive and flexible to analyze electromagnetic field
problems and has received increased recognition for full-wave analysis of arbitrary-shaped
guiding structures [15]. Through the years, several nodes have been developed in TLM for
structured and unstructured meshes in two and three dimensions. We will focus on the
symmetrical condensed node (SCN), which is the most widely used for 3D structures.
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3.1. Description of 3D TLM method

The symmetrical condensed node (SCN) consists of a network of interconnected multi-port
devices where the electromagnetic wave propagation is simulated by the propagation of
traveling pulses; a unit cell is presented in (Figure 1). On each arm, two orthogonal ports are
employed to account for any polarization.

Figure 1. Scheme of the SCN node

To solve an electromagnetic problem, the solution region has to be divided into a number of
these elementary nodes.

A rule of thumb consists of taking the maximum cubic cell size as ∆l = λ/10, where λ
correspond to the medium wavelength of the highest frequency of interest. Then, excitation
is imposed. The objective of the source terms is to simulate a desired phenomenon in the
structure. For instance, in guiding structures, a given mode can be selectively excited by
an adequate field distribution that corresponds to the mode transverse configuration (mode
template). Some other problems require to analyze the structure over a wide frequency
range. This is achieved by exciting the structure with a wideband time signal such as Dirac,
Gaussian, etc. Thus, in general, the excitation corresponds to a space-time distribution.
Nodes are interconnected by these virtual transmission lines, and the excitation propagates
from the source nodes to the adjacent nodes at each time step.

The method is carried out basically through two processes: scattering and connection. In the
scattering process, voltage pulses nVi are incident upon the node from each of the link-lines
(halfway between two nodes) at each time step n∆t. These pulses are then scattered to
produce a set of scattered voltages, kVr, which become incident on adjacent nodes at the
next time step (n + 1)∆t. In the connection process, pulses are simply exchanged among
immediate neighbors.

Volumic methods such as TLM full-wave methods require a limitation of the computational
domain for open problems in which fields exist at large distances. Thus, somehow the
problem has to be bounded. The boundary conditions are the set of conditions which
specifies the behavior of fields at the boundaries of the computational domain.
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3.1.1. Boundary conditions in TLM

The boundary conditions link the electromagnetic fields through the tangential or normal
field values. Since TLM is based on the equivalence between Maxwell’s equations and
equations for voltages and currents that travel in a mesh of interconnected transmission lines,
a relationship of the involved voltages at the boundary can be found. The scattered voltages
Vr are always known values, and the incident voltages Vi are unknown. Any resistive load
at a boundary may be simulated by introducing a reflection coefficient Γ as shown in (3), [7].

k+1Vi
armj (x, y, z) = ΓkVr

armj (x, y, z) (3)

This formalism allows us to represent a variety of boundary conditions as long as a reflection
coefficient Γ can be defined. For instance, for a perfectly electric conductor (PEC), boundary
is simulated by choosing Γ = −1; a perfectly magnetic conductor (PMC) is implemented by
choosing Γ = 1. The reflection coefficient for lossy boundaries [15], relating the incident and
reflected voltages, can be expressed in Laplace domain by the (4).

Γ (s) =
Vr (s)
Vi (s)

=

[
∆yZs (s)− Zzy∆z

]
[
∆yZs (s) + Zzy∆z

] (4)

where ∆y and ∆z are the cell dimensions; Zzy the impedance of the arms, equal to Z0 =√
µ0/ε0 for the standard SCN node; and Zs is the surface impedance (SI). In the case of a

good conductor, an approximation by a real number for Γ is presented in [28]. However, Γ
is in general complex and would alter the shape of the excitation pulses, which cannot be
accounted for in the TLM method [7].

3.2. Application to confined environments modeled by arbitrary cross-section
oversized waveguides: 2.5D TLM approach

The analysis of electrically large structures like tunnels involves a high computation time
by using full-wave methods like TLM. However, some astutenesses can be considered to
efficiently model them, which translates in finding an approach to simplify the analysis
of oversized waveguides. From the geometrical point of view, tunnels can have any
arbitrary shape, and this constraint has to be considered. From the electromagnetic point
of view, waves propagating in tunnels can be classified in modes. This problem is well
known in electromagnetic theory. As we shall see, a full-wave model based on a modal
decomposition of the waves for the analysis of the radio propagation in tunnels at high
frequencies is presented. Besides, the concept is used to further reduce the complexity of
this electromagnetic problem.

3.2.1. The TLM modal approach

Modal approaches in frequency domain are based on the expansion of fields in terms of
modes. In general, total fields can be represented as the sum of modes as shown in (5):
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F (x, y, z) =
N

∑
i=1

Ai(x, z)e−(αi+jβi)y, (5)

where N is the total number of modes, Ai(x, z) the amplitude of the i-th mode at the
coordinate (x, z) in the plane perpendicular to the propagation direction y, αi its attenuation,
and βi its phase constant. The mode amplitude Ai(x, z) gives the electric or magnetic field
distribution of the mode. The phase constant β represents the change in phase along the path
traveled by the wave. Lastly, the attenuation constant is a measure of losses in the structure.

In the literature, the simplification of uniform guide problems in TLM was first introduced
by [16] to obtain the dispersion properties. They proposed the reduction of the calculation
region by introducing the field dependence solution in the propagation direction y. The
longitudinal dependence can be described by exponential terms e−jβy, where β is the phase
constant and y the longitudinal distance in the guide. Hence, for a specific mode, two points
along the longitudinal distance of the guide have only a phase difference β (y2 − y1). Then,
it is possible to find a relationship between the reflected voltages of the node at the time
k∆t and the incident ones at the time (k + 1)∆t. This approach allows one to reduce the
computation domain from a 3D mesh of 3D nodes to a 2D one, avoiding to calculate the
fields over all points along the propagation direction.

The concept of mode will be employed to find a more efficient formulation, to obtain a
reduced 2.5-dimensional TLM modal approach for finding fields. The term 2.5D is used as
the 3D computational domain is reduced to a 2D mesh in the guide cross section. However,
cells are 3D ones that account for all 6 electromagnetic field components. The reduced model
can be applied for a uniform (invariant cross section along y) tunnel of arbitrary cross section.

3.3. Formulation of the 2.5D TLM node for guiding structures

To obtain the reduced TLM formulation for guiding structures, the voltages in each arm
should be updated at each time step. In doing this, eight relationships between the reflected
and incident voltages are needed. As mentioned before, stubs are added to model the
background media with constitutive parameters ε and µ. Then, six additional relationships
are needed for these stubs.

In [25], a procedure to find the required updating relationships based on Maxwell’s equations
is presented. To employ this procedure, six additional relationships are required to update all
field components. The process is divided into two steps. The first step consists of finding the
relationship between fields at the center of the node and the incident and reflected voltages
taken at each arm. Then, the six relationships for the fields at instant n ∆t are found by using
the integral form of Maxwell’s equations in the three principal planes (z, y), (x, z), and (x,
y). In the next step, field continuity equations at the center are applied by using the integral
form of Maxwell’s equations for contours passing through the center of the three principal
planes. Then, 12 relationships for the voltages are found in terms of the fields at the center.
By manipulating these expressions, the required eight relationships to update the voltages
are found. Finally, the voltages for the stubs are calculated in the same way as the standard
SCN node. The TLM algorithm is then completed.
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3.3.1. Starting point: maxwell’s equations in integral form

The starting point is the integral form of Maxwell’s equations for an isotropic medium and
given by (6) and (7).

∮

C
�H.�dl =

∫∫
ε̂

∂�E
∂t

.�ds +
∫∫

σ̂e�E.�ds +
∫∫

�Je.�ds (6)

∮

C
�E.�dl = −

∫∫
µ̂

∂�H
∂t

.�ds −
∫∫

σ̂m�E.�ds −
∫∫

�Jm.�ds, (7)

where �Je and �Jm are the electric and magnetic current density sources, respectively; the
tensors σ̂e, µ̂, σ̂e, σ̂m are given by ε̂e = ε0 diag(εxx, εyy, εzz), µ̂e = µ0 diag(µxx, µyy, µzz), σ̂e =
diag(σex, σey, σez), σ̂m = diag(σmx, σmy, σmz) with ε0 and µ0 the permittivity and permeability
of free space, respectively.

3.3.2. Field sampling

Consider the standard 3D SCN node. Using the same notation for the SCN node proposed
by Johns, samples for the electric and magnetic fields in the cell are presented in (Figure 2).

Figure 2. Field sampling in TLM, (a) electric field and (b) magnetic field

En and Hn correspond to field samples at each point of the cell. The incident Vi and reflected
Vr voltages are related with these samples by (8). This equation gives us the relationship
between the tangential fields at each face of the node and voltages in TLM network.
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between the tangential fields at each face of the node and voltages in TLM network.
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�E and �H denote the electric and magnetic fields, respectively; Zij are the characteristic
impedances of each arm. They are equal to Z0 for the SCN node. Finally, ∆x, ∆y, and
∆z correspond to the cell dimensions. Note that the voltages V1, V5, V7, and V12 of the SCN
node do not appear since they were removed. Six additional voltages (incident and reflected)
have to be considered to model materials with a relative permittivity and/or permeability
higher than the unity. They can be obtained by using the vector:

�VE =
1
2

[
∆xEx

13 ∆yEy
14 ∆zEz

15

]
(9)

�VH =
1
2

Z0

[
∆xHx

16 ∆yHy
17 ∆zHz

18

]
(10)

3.3.3. Determination of the updating equations for the fields

To find the updating relationships for the electric and magnetic fields, an approximation
of Maxwell’s equations in the integral form must be done. This can be accomplished by
considering the rectangular mesh of Figure 2 and applying (6) and (7) in the main integration
planes, (z, y), (x, z), and (x, y).

3.3.3.1. Integration in the (z, y)-plane

Figure 3 shows the contour of integration for the magnetic and electric fields in the (z,
y)-plane. The samples are taken according to Figure 2 and considering the exponential
dependence of the fields in the propagation direction.

Figure 3. Integration of Maxwell’s equations in the integral form in the plane (z, y). (a) H-field and (b) E-field

Maxwell-Ampère and Maxwell-Faraday equations applied to the contour Γ bounding this
plane are given by (13) and (14), respectively. Moreover, electric and magnetic laws are given
by (15) and (16), respectively. The calculation of these integrals is done by approximating
their values as the mean value of the same integral at the time steps (n + 1/2)∆t and (n −
1/2)∆t. For the contour integrals, the approximation
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∫ (n+1/2)∆t

(n−1/2)∆t
O(t)dt ≈ ∆t

(
1 + T

2

)
Õ, (11)

is used. The term Õ =
∮

Γ
�H.�dl or Õ =

∮
Γ
�E.�dl. Regarding the surface integrals, they can be

calculated using

∫ (n+1/2)∆t

(n−1/2)∆t

P(t)
dt

dt ≈ (1 − T)P, (12)

where P(t) =
∫∫

S
�D.�dS or P(t) =

∫∫
S
�B.�dS.

The application of the above expressions gives

∮

C
�H.�dl ∼=

(
1 + T

2

)
2sin

(
β∆y

2

)
e−j βy0

[
1
β

(
Hy

2 − Hy
9

)
− j ∆zH(n)

z

]
(13)

∮

C
�E.�dl ∼=

(
1 + T

2

)
2sin

(
β∆y

2

)
e−j βy0

[
1
β

(
Ey

4 − Ey
8

)
− j ∆zE(n)

z

]
(14)

ε
∫∫

S

∂�Ex

∂t
.�dS ∼= (1 − T)

εx∆y∆z
Z0c0∆tβ∆x

∆xẼxe−jβy0 2sin
(

β∆y
2

)
(15)

− µ
∫∫

S

∂ �Hx

∂t
.�dS ∼= (T − 1)

Z0µx∆y∆z
c0∆tβ∆x

∆xH̃xe−jβy0 2sin
(

β∆y
2

)
(16)

T corresponds to a delay operator, Z0 is the characteristic impedance in free space, and c0
the speed of light in vacuum. The terms Ẽx and H̃x correspond to an approximation of the
fields at instant n∆t. They can be calculated as the mean value of the field components in the
plane:

Ẽx =
Ex

2 + Ex
9 + ŶsxEx

13

Ŷsx + 2
≈ E(n)

x (17)

H̃x =
Hx

4 + Hx
8 + Ẑsx Hx

16
Ẑsx + 2

≈ H(n)
x (18)

where Ŷsx and Ẑsx are the normalized admittances and impedances, respectively, to model
the materials with a relative permeability and/or permittivity higher than unity. Their values
are given by

Ŷsi + 2 = 2 ε i∆j∆k
c0∆t∆i for i ∈ (x, z) Ẑsi + 2 = 2 µi∆j∆k

c0∆t∆i for i ∈ (x, z) (19)
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where Ŷsx and Ẑsx are the normalized admittances and impedances, respectively, to model
the materials with a relative permeability and/or permittivity higher than unity. Their values
are given by

Ŷsi + 2 = 2 ε i∆j∆k
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Regarding loss terms, the approximation of the corresponding integrals in (13) is done by
taking their value at the center of the cell. This leads to

∫∫

S
σeζ

�Eζ .�dS ∼= Geζ

[
∆ζẼζ

]
= σeς

∆χ∆ρ

∆ς

[
∆ζẼζ

]
(20)

∫∫

S
σmζ

�Hζ .�dS ∼= Rmζ

[
∆ζH̃ζ

]
= σmς

∆χ∆ρ

∆ς

[
∆ζH̃ζ

]
, (21)

where ζ denotes the field component x, y, or z and Geζ and Rmζ correspond to the electric
conductance and magnetic resistance, respectively, for each direction. Finally, the surface
integrals of the sources are evaluated by taking their values at the center:

∫∫

S
Jeζ .�dS ∼= Veζ (22)

∫∫

S
Jmζ .�dS ∼= Vmζ ∆S, (23)

where Veζ = Jeζ ∆S and Vmζ = Jmζ ∆S. The infinitesimal area can be calculated, for instance,
as ∆S = ∆y∆z for the x-direction (ζ = x).

By replacing the above expression in Maxwell’s equations (6) and (7), the expressions in
(24) and (25) can be obtained. Equation (8) was employed to express the fields in terms of
reflected and incident voltages.

Vr
2 + Vr

9 + ŶsxVr
13 = Vi

2 + Vi
9 + ŶsxVi

13 − α′Z0∆zH(n)
z − Rmx

Z0
∆zH(n)

x − Vmx
Z0

(24)

Vr
4 − Vr

8 + ẐsxVr
16 = −Vi

4 + Vi
8 + ẐsxVi

16 + α′∆zE(n)
z − Rmx

Z0
∆zH(n)

x − Vmx
Z0

, (25)

where α′ = β∆y/2.

3.3.3.2. Integration in the (x, z)-plane

This plane is perpendicular to the propagation direction; thus, any integral is affected by the
exponential dependence of the fields. They can be calculated as for the standard SCN node.
The contours of integration for the magnetic and electric fields in the (x, z)-plane are shown
in Figure 4, respectively.

Maxwell-Ampere and Maxwell-Faraday equations applied to these contours are given by

∮

C
�H.�dl ∼=

(
1 + T

2

)
[∆x (Hx

4 − Hx
8 )− ∆z (Hz

11 − Hz
3)] (26)
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Figure 4. Integration contour of Maxwell’s equations in the integral form in the plane (x, z). (a) H-field and (b) E-field
∮

C
�E.�dl ∼=

(
1 + T

2

)
[∆x (Ex

2 − Ex
9 )− ∆z (Ez

10 − Ez
6)] (27)

whereas the right-hand side of the Maxwell-Ampere and Maxwell-Faraday equations are
given by:

RHSMA ∼= (1 − T)
εy∆x∆z

Z0c0∆t∆y
∆yẼy + Z0Gey∆yEn

y + Z0Vey (28)

RHSMF ∼= (T − 1)
Z0µy∆x∆z

c0∆t∆y
∆yH̃y −

Rmy

Z0
∆yHn

y −
Vmy

Z0
, (29)

where Gey = σey∆z∆y/∆x is the term employed to model the electric losses, Rmy =
σmy∆z∆y/∆x models the magnetic losses, T and Z0 were already defined, Vey = Jey∆z∆y,
Vmy = Jmy∆z∆y, and c0 the speed of light in vacuum. RHSMA and RHSMF correspond to
the right-hand side of Maxwell’s Faraday and Maxwell’s (6) and (7), respectively; the terms
Ẽy and H̃y correspond to fields approximations of the fields at instant n∆t given by

Ẽy =
Ey

4 + Ey
8 + Ey

11 + Ey
3 + ŶsyEy

14

Ŷsy + 4
≈ E(n)

y (30)

H̃y =
Hy

2 + Hy
10 − Hy

9 − Hy
6 + Ẑsy Hy

17
Ẑsy + 4

≈ H(n)
y (31)

In this case, the normalized admittances and impedances Ŷsy and Ẑsy are given, respectively,
by

Ŷsi + 4 = 2 ε i∆j∆k
c0∆t∆i for i = y Ẑsi + 4 = 2 µi∆j∆k

c0∆t∆i for i = y (32)
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Figure 4. Integration contour of Maxwell’s equations in the integral form in the plane (x, z). (a) H-field and (b) E-field
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Finally, (26) with (28) and (27) with (29), one obtains (33) and(34), respectively. Again,
equation (8) was employed to express the equation in terms of reflected and incident voltages.

Vr
3 + Vr

11 + Vr
4 + Vr

8 + ŶsyVr
14 =

Vi
3 + Vi

11 + Vi
4 + Vi

8 + ŶsyVi
14 − Z0Gey∆yE(n)

y − Z0Vey
(33)

−Vr
2 − Vr

10 + Vr
9 + Vr

6 + ẐsyVr
17 =

Vi
2 + Vi

10 − Vi
9 − Vi

6 + ẐsyVi
17 −

Rmy
Z0

∆yH(n)
y − Vmy

Z0
(34)

3.3.3.3. Integration in the (x, y)-plane

This plane is parallel to the propagation direction. Thus, the value of the integrals will
depend on the exponential dependence of the fields. The contours of integration for the
magnetic and electric fields in the (x, y)-plane are shown in Figure 5.

Figure 5. Integration contour of Maxwell’s equations in the integral form in the plane (x, y). (a) H-field and (b) E-field

By using the same procedure as for the other planes, Maxwell-Ampere and Maxwell-Faraday
equations and electric and magnetic laws yield, respectively,

∮

C
�H.�dl ∼=

(
1 + T

2

)
2sin

(
β∆y

2

)
e−j βy0

[
1
β

(
Hy

10 − Hy
6

)
− j ∆xHx

]
(35)

∮

C
�E.�dl ∼=

(
1 + T

2

)
2sin

(
β∆y

2

)
e−j βy0

[
1
β

(
Ey

11 − Ey
3

)
− j ∆xEx

]
(36)

RHSMA ∼= (1 − T)
εz∆x∆y

Z0c0∆t∆z
∆yẼz + Z0Gey∆zEn

z + Z0Vez (37)
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RHSMF ∼= (T − 1)
Z0µz∆x∆y

c0∆t∆y
∆zH̃z −

Rmz

Z0
∆zHn

z − Vmz

Z0
(38)

In the above, Gez = σez∆x∆y/∆z is the term used to model the electric losses, Rmz =
σm∆x∆y/∆z models the magnetic losses, Vez = Jez∆x∆y, Vmy = Jmy∆x∆y, and the terms
Ẽz and H̃z which correspond to the mean value of all field components in the plane are
given, respectively, by

Ẽz =
Ez

10 + Ez
6 + ŶszEz

15

Ŷsz + 2
≈ E(n)

z (39)

H̃z =
Hz

11 + Hz
3 + Ẑsz Hz

18
Ẑsz + 2

≈ H(n)
z (40)

The normalized admittances Ŷsz and impedances Ẑsz are given by (19). By following a similar
procedure to the other integration planes, the following expressions are obtained:

Vr
10 + Vr

6 + ŶszVr
15 =

Vi
10 + Vi

6 + ŶszVi
15 + αZ0∆xH(n)

x − Z0Gez∆zE(n)
z − Z0Vez

(41)

Vr
11 − Vr

3 + ẐsxVr
18 =

−Vi
11 + Vi

3 + ẐsxVi
18 − αZ0∆xE(n)

x − Rmz
Z0

∆zH(n)
z − Vmz

Z0
(42)

The relationships of (24), (25),(33),(34),(41), and (42) allow us to determine ∆xEn
x , ∆xHn

x ,

∆yE(n)
y , ∆yH(n)

y , ∆zE(n)
z , and ∆zH(n)

z , from which fields can be computed at any time step.
Eight additional relationships are still needed to obtain reflected voltages. By expressing
the fields at the center of the cell, these expressions can be found, as detailed in the next
subsection.

3.3.4. Determination of the updating equations for the voltages

To obtain the reflected voltages at any time step, six new contours have to be defined. Figure 6
shows the integration contours for finding fields at the center of the cell using Maxwell’s
equations in the integral form in the three planes.

The procedure is the same as presented before. First, Maxwell’s equations are approximated
for each of these contours. Consider the contour in dashed lines for the plane (z, y);
Maxwell-Ampere and the electric flux equations are given, respectively, by

∮

C
�H.�dl ∼=

[
2∆yHn

y −
(

1 + T
2

)
(H2 − H9)

]
e−jβy0 2sin

(
β∆y

2

)
(43)
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RHSMF ∼= (T − 1)
Z0µz∆x∆y

c0∆t∆y
∆zH̃z −

Rmz

Z0
∆zHn

z − Vmz

Z0
(38)

In the above, Gez = σez∆x∆y/∆z is the term used to model the electric losses, Rmz =
σm∆x∆y/∆z models the magnetic losses, Vez = Jez∆x∆y, Vmy = Jmy∆x∆y, and the terms
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given, respectively, by

Ẽz =
Ez

10 + Ez
6 + ŶszEz

15

Ŷsz + 2
≈ E(n)

z (39)

H̃z =
Hz

11 + Hz
3 + Ẑsz Hz

18
Ẑsz + 2

≈ H(n)
z (40)

The normalized admittances Ŷsz and impedances Ẑsz are given by (19). By following a similar
procedure to the other integration planes, the following expressions are obtained:

Vr
10 + Vr

6 + ŶszVr
15 =

Vi
10 + Vi

6 + ŶszVi
15 + αZ0∆xH(n)

x − Z0Gez∆zE(n)
z − Z0Vez

(41)

Vr
11 − Vr

3 + ẐsxVr
18 =

−Vi
11 + Vi

3 + ẐsxVi
18 − αZ0∆xE(n)

x − Rmz
Z0

∆zH(n)
z − Vmz

Z0
(42)

The relationships of (24), (25),(33),(34),(41), and (42) allow us to determine ∆xEn
x , ∆xHn

x ,

∆yE(n)
y , ∆yH(n)

y , ∆zE(n)
z , and ∆zH(n)

z , from which fields can be computed at any time step.
Eight additional relationships are still needed to obtain reflected voltages. By expressing
the fields at the center of the cell, these expressions can be found, as detailed in the next
subsection.

3.3.4. Determination of the updating equations for the voltages

To obtain the reflected voltages at any time step, six new contours have to be defined. Figure 6
shows the integration contours for finding fields at the center of the cell using Maxwell’s
equations in the integral form in the three planes.
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for each of these contours. Consider the contour in dashed lines for the plane (z, y);
Maxwell-Ampere and the electric flux equations are given, respectively, by
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)
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]
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(
β∆y
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)
(43)

Advanced Electromagnetic Waves252

Figure 6. Integration contours for Maxwell’s equations in the integral form for finding fields at the center of the cell:
(a) x0z, (b) z0x, and (c) x0y plane

ε
∫∫

∂�Ex

∂t
.�dS ∼=

1
2
(1 − T)

εx∆y∆z
Z0c0∆t∆x

∆x (E9 − E2) e−jβy0 2sin
(

β∆y
2

)
(44)

Then, the expressions in (43) and (44) are used in combination with (8) to express the result in
terms of reflected and incident voltages, yielding (45). By considering the remaining red and
blue contours and applying Maxwell’s equations in these planes, (46) to (50) can be found.

2Z0∆yH(n)
y = Ŷzx

(
Vr

9 − Vr
2 + Vi

9 − Vr
2

)

2∆yE(n)
y =

(
Vr

8 + Vr
4 + Vi

4 + Vi
8

) (45)

2Z0∆yH(n)
y = Ŷxz

(
Vr

6 − Vr
10 + Vi

6 − Vr
10

)

2∆yE(n)
y =

(
Vr

3 + Vr
11 + Vi

3 + Vi
11

) (46)

2Z0∆zH(n)
z = ˆYxy

(
Vr

11 − Vr
3 + Vi

11 − Vr
3

)

2∆yE(n)
y =

(
Vr

6 + Vr
10 + Vi

6 + Vi
10

) (47)

2Z0∆zH(n)
z = ˆYyx

(
Vr

1 − Vr
12 + Vi

1 − Vr
12

)

2∆yE(n)
y =

(
Vr

5 + Vr
7 + Vi

5 + Vi
7

) (48)
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2Z0∆xH(n)
x = Ŷyz

(
Vr

7 − Vr
5 + Vi

7 − Vr
5

)

2∆xE(n)
x =

(
Vr

1 + Vr
12 + Vi

1 + Vi
12

) (49)

2Z0∆xH(n)
x = Ŷzy

(
Vr

4 − Vr
8 + Vi

4 − Vr
8

)

2∆xE(n)
x =

(
Vr

2 + Vr
9 + Vi

2 + Vi
9

) (50)

In summary, 12 expressions at the center were found. These expressions relate fields at
instant n∆t, incident and reflected voltages. They allow us to update the eight voltages in
the node. By replacing the above expressions of the fields in (8), one obtains




Vr
9

Vr
11

Vr
8

Vr
10

Vr
4

Vr
2

Vr
6

Vr
3




=




∆xE(n)
x − Z0∆yH(n)

y

∆yE(n)
y − Z0∆zH(n)

z

∆yE(n)
y + Z0∆xH(n)

x

∆zE(n)
z + Z0∆yH(n)

y

∆yE(n)
y − Z0∆xH(n)

x

∆xE(n)
x + Z0∆yH(n)

y

∆zE(n)
z − Z0∆yH(n)

y

∆yE(n)
y + Z0∆zH(n)

z




−




Vi
9

Vi
11

Vi
8

Vi
10

Vi
4

Vi
2

Vi
6

Vi
3




(51)

The calculation of reflected voltages at stubs is done as for standard SCN:

Vr
13 = ∆xE(n)

x − Vi
13

Vr
14 = ∆yE(n)

y − Vi
14

Vr
15 = ∆zE(n)

z − Vi
15

Vr
16 = ∆xZ0H(n)

x − Vi
16

Vr
17 = ∆yZ0H(n)

y − Vi
17

Vr
18 = ∆zZ0H(n)

z − Vi
18

(52)

3.4. Results of the 2.5D modal approach

To characterize any waveguide field amplitudes, attenuation constant and phase constant
must be calculated. Here, we examine how to obtain these parameters by using the 2.5D
TLM approach for guiding structures.

3.4.1. Phase constant: dispersion diagram β − ω

For each mode, β is a function of frequency ω; it is known as the dispersion diagram of
the structure. In general, this relationship is not linearly proportional to the frequency for
waveguides. The computation of the dispersion diagram with the TLM approach for guiding
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The calculation of reflected voltages at stubs is done as for standard SCN:

Vr
13 = ∆xE(n)
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15 = ∆zE(n)
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3.4. Results of the 2.5D modal approach

To characterize any waveguide field amplitudes, attenuation constant and phase constant
must be calculated. Here, we examine how to obtain these parameters by using the 2.5D
TLM approach for guiding structures.

3.4.1. Phase constant: dispersion diagram β − ω

For each mode, β is a function of frequency ω; it is known as the dispersion diagram of
the structure. In general, this relationship is not linearly proportional to the frequency for
waveguides. The computation of the dispersion diagram with the TLM approach for guiding
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structures is as follows: The structure has to be excited as explained in Section 3.1. Then,
the field components at the time step k∆t can be found through (17, 18, 30, 31, 39, 40). After
a sufficient number of time-step iterations, the response corresponds to the superposition of
the modal fields in the guide. By performing a Fourier transform, the frequency response
of the structure can be obtained. The peaks in this spectrum correspond to the modes, and
they belong to a specific value of the phase constant β. Hence, different β values have to be
imposed to obtain the dispersion diagram.

3.4.2. Attenuation constant

The attenuation of the modes can be extracted from the time-domain response at a phase
constant βl given by

Elm (k∆t) =
M

∑
k=0

Elm (0) e−
ωlm

2Qlm
k∆tejωlmk∆t, (53)

where M is the number of modes propagating in the structure, Elm (0) is the initial field
magnitude of the m-th mode, Qlm its quality factor, and ωlm the angular resonance frequency
of the mode in radians per second for the l-th evaluated value of βl . A similar expression can
be found for the magnetic field by replacing E by H in (53). To characterize the attenuation
of the modes, the damping parameter has to be estimated. At each frequency ωlm in the
dispersion curve of a given mode, the attenuation constant is related with the quality factor
Qlm and the group velocity Vglm by [34]

αlm ≈ ωlm
2QlmVglm

=
ωlm

2Qlm

∂β

∂ω
(54)

The terms ωlm/2Qlm can be extracted from the sampled time-domain response of (53) by
using an estimation technique for modal content of a time-varying waveform. For instance,
the Matrix pencil method has been a very popular technique for efficient extraction of the
modal parameters [14]. Finally, the group velocity in (54), which involves the derivate of
β with respect to ω, can be approximated by taking the finite differences ∆β/∆ω of the
dispersion diagram calculated in the previous section.

4. Implementation of the 2.5D TLM for guiding structures

To validate this approach, the study of a simple theoretical “reference solution” for a
canonical geometry is considered. A metallic-rectangular waveguide homogeneously filled
with a lossy dielectric material is studied in this section.

4.1. Results for a homogeneously lossy dielectric-filled metallic-rectangular
waveguide

Consider a metallic waveguide with dimensions a = 6 cm and height b = 4 cm. It was filled
with a lossy dielectric with relative permittivity εr = 2 and a conductivity σ = 0.001 Sm−1

and simulated with the 2.5D TLM, as shown in Figure 7 (a). An array of 14 × 10 nodes is
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considered, and a perfect electric boundary condition is imposed at the top, bottom, and side
walls, as illustrated in Figure 7 (b). To reduce the dispersion error, a mesh size of ∆l = λ/15
at 6 GHz is chosen. The signal is obtained after N = 4000 time steps and is convolved with
a Hanning window.

Figure 7. (a) Rectangular-metallic waveguide filled with a lossy dielectric; (b) 2.5D TLM mesh of the rectangular
waveguide terminated by a perfect electric boundary condition (PEC). The dimensions are given in terms of the mesh
size ∆l = λ/15 at 6 GHz

The dispersion diagram is obtained in the frequency range from 1 GHz up to 4 GHz and is
compared with the theory. For the case of a rectangular-metallic waveguide, the theoretical
expression for the dispersion diagram is given by [26]:

β =

√
(ω

√
µε)2 −

(mπ

a

)2
−

(nπ

b

)2
, (55)

where ω is the angular frequency; µ = µ0; ε = εrε0; m, n correspond to the order of the
modes; and a and b are the waveguide dimensions. The comparison between the numerical
dispersion diagram and the theoretical one is shown in Figure 8.

The continuous lines represent the theoretical results, whereas the discrete points are the
results obtained by using the 2.5D TLM algorithm. Different β values ranging from 0 to
80 (rad/m) with 80 samples have been considered. The simulation is carried out for 4000
iterations for each β value. Good agreement between theory and the 2.5D TLM for guiding
structures was obtained. The dispersion curves of a plane wave propagating in free space
and a wave propagating in a medium with the same relative permittivity as the loading
material (εr = 2) are plotted as well. It is worth observing that the dispersion curves of the
modes tend to the curve of a plane wave propagating in a medium with relative permittivity
εr = 2 as the frequency increases. Finally, the theoretical attenuation constant of the metallic
waveguide is calculated by [26]:

αd =
k2tanδ

2β
, (56)

where k = ω
√

µε is the (real) wave number in the absence of losses, tanδ = (ωε′′ + σ) /ωε′

is the loss tangent with ε = ε′ − jε′′ = εrε0 − jσ/ω, and β is the phase constant. The results
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Figure 8. Dispersion diagram of a rectangular-metallic waveguide with dimensions a = 6 cm and b = 4 cm: Theory
(continuous lines), results using the guiding 2.5D TLM approach (dots)

Figure 9. Attenuation constant for a lossy dielectric filled metallic-rectangular waveguide: Theory (continuous lines),
simulation (dots)

obtained for the attenuation constants by numerical simulation and theory are shown in
Figure 9.

The comparison between both curves validates this approach quite satisfactorily. The
discrepancies observed close to the cutoff frequency are explained by the fact that (57) is
valid as long as α << β.

α ≈ ∂β

∂ω
∆ω (57)

Consequently, since α is deduced from ∆β in the numerical approach, an inevitable large
calculation error on the attenuation constant α is obtained for a given error on ∆β. To
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illustrate this point, let us consider the calculation of the propagated error on α. The total
differential of a function z = f (x1, x2, ..., xN), where xi is the i-th independent variable, is
given by

dz =

(
∂ f
∂x1

)
∆x1 +

(
∂ f
∂x2

)
∆x2 + ... +

(
∂ f

∂xN

)
∆xN (58)

the term dz denotes the error in z. The uncertainty in the calculation of the attenuation
constant for waveguides can be found by considering the differential of the attenuation and
phase constants, α and β, respectively. The differential of the attenuation and phase constants
can be computed by

∆α =

(
∂α

∂ω

)
∆ω, (59)

∆β =

(
∂β

∂ω

)
∆ω. (60)

Finally, by dividing (59) by (60), the differential of the attenuation constant in terms of the
differential of the phase constant is given by

∆α =

(
∂α

∂ω

)(
∂ω

∂β

)
∆β (61)

is obtained.

As frequency increases, the first partial derivative on the right-hand side of (61) tends to
zero and the second to the speed of light in free space, c0. Hence, for high frequencies,
the error ∆α is bounded. For low frequencies, the first derivate tends to infinity and the
second to a finite value, resulting in a larger error. Indeed, in Figure 9, the highest difference
between both approaches occurs at cutoff frequencies of the modes and decreases far from
these frequencies. Apart from this relative error on α, the comparison between numerical
results and theory for both propagation constant β and the attenuation constant α confirms
the suitability of the 2.5D TLM to characterize modal parameters in waveguiding structures.

5. Numerical analysis of multimodal waveguide: Model of confined
environments

So far, we have considered the modeling of guiding structures with metallic walls. However,
tunnels have dielectric walls and other materials within them (trains, cars, objects, etc.).
They also involve boundary conditions which can be time or frequency dependent. The
limitation of the computational domain within dielectric materials is usually achieved by
using perfectly matched layer (PML) for transmission-line method (TLM), finite-difference
time domain (FDTD), or finite element method (FEM) implementations. However, this
solution is too expensive in terms of complexity and consequently, computation cost when
dealing with very large electrical objects. Since we are interested only in fields within
the hollow region of the tunnel, appropriate boundary conditions, namely, the surface
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impedance boundary conditions (SIBCs), constitute the mathematical artifice to limit the
computational domain.

5.1. Assumptions for tunnel wall modeling: SIBC concept

To apply the SIBC concept, fields in the walls region are assumed to be time exponential
decaying, source free, and with no reflections returning to the interface air and tunnels walls.
For practical purposes, the wall thickness t should be larger than the skin depth δ, (t >> δ).
A thickness of 2δ would ensure an amplitude of 1.8% of the launched wave [30]. Another
important requirement is the smallest radius of curvature on a surface Rmin, which must be
larger than the skin depth (Rmin >> δ). Consequently, the interface can be considered locally
flat and plane-wave concept can be applied. Considering a numerical method like TLM,
using the common criteria of λ/10 for the maximum mesh size, waves can be treated locally
as plane waves. Moreover, at this resolution level, the staircase mesh is a good approximation
of curved surfaces.

5.2. SIBC implementation in time domain for tunnel wall modeling

The implementation of the SIBC concept was first introduced for good conductors. An
overview of the implementations of these techniques in time domain can be found in
[5, 23, 27]. Tunnel walls are typically modeled by a lossy dielectric with relative permittivity
εr = 10 − 12 and conductivity σ = 0.01 − 0.02Sm−1[9]. Maloney in [21] first introduced the
SIBC for lossy dielectric in FDTD by using an expansion of the impedance model proposed
by [5] for good conductors. Finally, [27] proposed a way to improve its implement in FDTD.

In contrast with good conductors, the SIBC for lossy dielectric varies with the angle of
incidence and polarization of incident waves. If one considers Figure 10, surface impedances
for vertical and horizontal polarizations are given by [24]

ZV (s) =
E

′+
x (x, 0, s)

H
′+
y (x, 0, s)

= η
cos (θt)

s + σ/ε

√
s2 + 2αs (62)

ZH (s) = −
E

′+
y (x, 0, s)

H
′+
x (x, 0, s)

= η
s

cos (θt)
√

s2 + 2αs
(63)

where

α = σ
2εcos2(θt)

= σ
2ε0εrcos2(θt)

cos (θt) =
√

1 − υ2

c2 sin2 (θi) =
√

1 − sin2(θi)
µrεr

υ = 1√
µε = 1√

µ0µrε0εr

(64)
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Figure 10. Geometry and coordinate system for a TE and TM polarized waves incident onto a dispersive half space

Z (s) is the surface impedance; s is the complex frequency; η is the intrinsic impedance of
the lossy dielectric; ε, µ, and σ its constitutive parameters; and θi and θt are the angles of
incidence and refraction, respectively. In tunnel environments, the incident angle θi for the
waves is unknown. Moreover, multiple reflections of waves with different angles of incidence
are involved. To the best of the authors’ knowledge, no work has been reported for SIBC
under these conditions. A procedure to implement it in any time-domain method as well
as its validation is presented in [2, 4]. Here, a brief explanation of its implementation is
described.

5.3. SIBC formulation for tunnel wall modeling

The SIBC is inherently a frequency-domain concept. When it is transformed into the
time domain for use in methods such as TLM, it is replaced by a convolution integral.
Maloney in [21] proposed a recursive formula to overcome the computational difficulties
for its calculation. To implement the SIBC in TLM, the reflection coefficient of (4) has to be
calculated. This coefficient depends on the polarization, frequency, and angle of incidence.
Thus, their influences have to be studied.

For tunnel walls, the relative permittivity εr >> 1. Then, for these values in (64), the term
cos (θt) in (Eqs.62, 63) tends to one, obtaining the two angle-independent expressions of the
surface impedance for both polarizations:

ZV (s) = Z||pol−TM =
η

s + σ/ε

√
s2 + 2αs (65)

ZH (s) = Z⊥pol−TE = η
s√

s2 + 2αs
(66)

By using a rational polynomial approximation [12], the resulting coefficient of (4) can be
calculated for both polarizations into the form
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P (s) ≈ P̃ (s) =
N (s)
D (s)

= ΠM
i=0

[
s − ξi
s − ζi

]
≈ Vr (s)

Vi (s)
, (67)

where ξi and ζi correspond to the poles and zeros of P̃ (s) and si are the sample points.
Consider discrete values of a function P (S) at points Si. One can find two polynomials N (s)
and D (s) of order M, such that P̃ (s) = N (s) /D (s) best approximates P (s), in the least
square sense.

The next step is to obtain (67) in z-domain. The bilinear z-transform can be employed,
obtaining the rational polynomial expression

P (z) = ΠM
i=0

[
z − ξ ′i
z − ζ ′i

]
(68)

Finally, the discrete-time state variable representation of (68) can be obtained, which gives us
the required relationship between the reflected and incident voltages necessary to implement
the boundary in TLM. A canonical representation for the state-space and output equations is
given, respectively, by




x1
...

xM


 = z−1




f1 0 · · · 0
0 f2 · · · 0
...

...
...

...
0 0 · · · fM







x1
x2
...

xM


+ z−1




g1
g2
...

gM


Vi (69)

Vr =
[
h1 h2 · · · hM

]



x1
x2
...

xM


+ z−1 j1Vi (70)

This procedure guarantees a good agreement with theory for a relative permittivity εr >> 1,
i.e., it applies to roadway and railway tunnel modeling.

5.4. Wave Propagation in a Rectangular Tunnel with Lossy Dielectric Walls
Using the SIBC

The wave propagation in a rectangular tunnel with transverse dimension w = 7 m × h =
5 m was studied. This tunnel was simulated using the TLM for guiding structures and
time-domain SIBC implementations presented previously. The tunnel walls were modeled
by using a lossy dielectric with εr = 12 and σ = 0.02 Sm−1. The tunnel is shown in Figure 11.

In a rectangular hollow dielectric waveguide, the modes are classified into two families: the
first ones with most of its electric field polarized in the y-direction, designed as Ey

nm, and
the other ones with most of its electric field polarized in the x-direction, designed as Ex

nm.
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Figure 11. Left: Rectangular tunnel with dimensions w = 7 m ≈ 70 λ and w = 5 m ≈ 50 λ. Right: Equivalent 2.5D
problem terminated by SIBC (dashed line: TLM staircase section approximation)

Using this notation, the figure on the left of Figure 12 shows a comparison in the range
of frequency from 0.4 GHz to 2 GHz of the dispersion curves for the modes Ex

11 and Ey
11

between our procedure and the commonly used Marcatilli’s theory for dielectric rectangular
waveguides (see Section 2.2). Some very good agreement was obtained for both modes.

Figure 12. Dispersion curve for: a) Ey
11 mode and b) Ex

11 mode of the rectangular tunnel calculated in the frequency
range from 0.4 GHz to 2 GHz with Marcatilli’s theory and our procedure, b) dispersion diagram for a rectangular
tunnel in the frequency range from 0.2 GHz to 2 GHz using our numerical procedure [4]

As it can be seen, the dispersion curves for the modes tend to the limit β = ω/c, and up
to 3 GHz, they are propagating modes. They propagate with different phase constants and
the propagation is strongly multimodal, e.g., around 120 modes at 3 GHz. The figure on the
right of Figure 12 shows the comparison between both approaches in terms of attenuation
constant. One can notice some discrepancies in the low region of the spectrum. One should
stress that (54) is valid for α << β, and the approximation fails close to the cutoff frequency
of the modes (see Section 4.1). Moreover, discrepancies can be explained by the fact that
Marcatilli’s theory neglects fields at the corners. As the frequency increases, fields are more
concentrated in the core region, reducing this error. In Figure 12, the difference between the
attenuation constants diminishes as the frequency increases, confirming this fact.

Figure 13 shows the field profiles for the Ey
11 and Ex

11 modes in the waveguide calculated
with Marcatilli’s theory. Results obtained in Figure 14 were with the 2.5D TLM approach for
guiding structures at 1 GHz. The structure was excited with a Gaussian pulse and injecting
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the corresponding phase constant of the mode, β ≈ 20 in Figure 12. Good agreement was
found for the field profiles of both modes.

Figure 13. Field configuration in dBV/m of the Ey
11 and Ex

11 modes calculated with Marcatilli’s theory [18, 19].

Figure 14. Field configuration in dBV/m of the Ey
11 and Ex

11 modes calculated with our procedure [4].

To conclude, it is important to mention that the application of this method can be extended to
any uniform waveguiding structure, and also, it can be used to optimally determine antenna
field specifications and positioning in confined or waveguide environments as presented in
[3].

6. Conclusion

The TLM (transmission-line matrix) to characterize modes in guided structures was proposed
and described. The 2.5D TLM approach is useful for finding the dispersion diagram,
amplitude, and attenuation constant of modes propagating in uniform lossy guiding
structures with arbitrary cross section. Its validation in a metallic-rectangular waveguide was
presented. This confirms that this approach is well suited for numerical implementation.

Then, the modeling of the wave propagation in lossy waveguides as mine, roadway, or
railway tunnels was studied. A procedure to implement the concept of SIBC (surface
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impedance boundary condition) to simulate the lossy dielectric walls was described. This
concept allows us to avoid the meshing of the tunnel walls by replacing the wall medium by
a frequency-dependent reflection coefficient. Thus, field values beyond the air-wall interface
are not required for mode parameter computation. However, the presence of the dielectric
beyond the interface is accounted for by the SIBC. The SIBC concept yields satisfactory results
as long as εr >> 1, for arbitrary conductivity. The illustration of the capabilities of this
method in a rectangular tunnel shows that our procedure is in agreement with theory for
the mode amplitudes, attenuation, and phase constants for the Ey

11 and Ex
11 modes when

compared with Marcatilli’s model.

The 2.5D TLM approach for guiding structures and the SIBC concept might be also applied
to study the radio-wave propagation for any cross section. The results in terms of amplitudes
and dispersion curves and attenuation constants will allow to study different types of
structures and the sensibility of these parameters with the polarization, excitation, shape,
size, or frequency.
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