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Biped robots represent a very interesting research subject, with several particularities 
and scope topics, such as: mechanical design, gait simulation, patterns generation, 
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Preface

Biped robots represent a very interesting research subject, with several particularities 
and scope topics. Natural biped locomotion involves a very large number of degrees 
of freedom. There are more than 200 degrees of freedom in the human locomotion. 
Besides, we have diverse problems related to kinematics, dynamics, equilibrium, sta-
bility, etc.

All these aspects make the study of biped robots a very complex subject, and many 
times the research results are not totally satisfactory. However, with scienti c and 
technological advances, based on theoretical and experimental works, many research-
ers have collaborated in the evolution of the biped robots design, looking for to de-
velop autonomous systems, as well as to help in rehabilitation technologies of human 
beings.

Thus, this book intends to present some works related to the study of biped robots, 
developed by researchers worldwide.

From the great number of interesting information presented here, I believe that this 
book can off er some help in new researches, as well as to incite the interest of people 
for this area of study, and its related topics, such as: mechanical design, gait simula-
tion, patt erns generation, kinematics, dynamics, equilibrium, stability, kinds of con-
trol, adaptability, biomechanics, cybernetics, and rehabilitation technologies.

Armando Carlos de Pina Filho
Federal University of Rio de Janeiro – UFRJ

Brazil
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Mobile Sensors for Robotics Research 
Tao Liu1, Yoshio Inoue1, 

 Kyoko Shibata1 and Kouzou Shiojima2  
1Kochi University of Technology 

2TEC GIHAN Co., LTD 
 Japan 

1. Introduction      
Integrating rehabilitation robots with human motion and force sensors for effective training 
and positive therapeutic effects is attracting more and more attentions in research and clinic 
fields (Bonato, 2010; Moreno et al., 2009). In order to control robots at the level of human 
motor control, the muscular activity of the lower limbs which has been estimated from 
measurements of joint moments and segment orientations may be useful information for 
biomedical applications (Wu et al., 2009; Lin et al., 2010). Kinematic and kinetic data have 
been widely collected using a high-speed camera system and force plate for the estimation 
of lower limb joint loads in laboratory environments (Shakoor et al., 2010; Wannop et al., 
2010). However, these commonly used stationary devices for human dynamics analysis 
require lots of space, special operators, expensive instruments and complex calibration 
settings; moreover, the range of measurement is limited to capturing a few strides in a gait 
laboratory. The main shortcomings restrict the application of these stationary devices to 
experimental research and it is difficult to find applications of gait evaluation in the daily 
environment or clinic. As an alternative to these conventional techniques, some inexpensive 
and easy to use wearable measurement systems which can accurately estimate triaxial 
ground reaction force (GRF) and three-dimensional (3D) body orientations have been 
developed to implement human dynamics analysis and gait assessments in different 
environments (Bachlin et al., 2010; Veltink et al., 2005) .  
Recently, some inexpensive in-chip inertial sensors including gyroscopes and 
accelerometers have been gradually coming into practical application in human motion 
analysis. To expand the scope of application of a mobile force plate system, a small 3D 
inertial sensor module can be integrated into the force plate. Liedtke et al. proposed a 
combination sensor system including six degrees of freedom force and moment sensors and 
miniature inertial sensors (provided by Xsens Motion Technologies) to estimate the joint 
moments and powers of the ankle (Liedtke et al., 2007). If 3D orientations of the foot are 
obtained and integrated with measured triaxial GRF during gait, an inverse dynamic method 
can be used to implement joint dynamics analysis of the lower limb (Schepers et al., 2007).  
We are presently concentrating on the development of some wearable sensors to measure 
human GRF and segment orientations during gait. A multi-axial force sensor has been 
developed to measure triaxial GRF and the coordinates of the center of pressure, when fixed 
under a specially designed shoe (Liu et al., 2007). However, its hard interface and the weight 
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load on the foot affected normal walking according to our experimental tests. A thin and 
light force plate based on 3D tactile sensors and using lower-cost materials was proposed in 
our past research (Liu et al., 2009a), and a sensor matrix will be constructed to directly 
perform triaxial GRF measurements. Moreover, in order to quantify human movements, we 
have developed some wearable sensor modules using gyroscopes and accelerometers for 
ambulatory measurements of human segment orientations (). In this chapter, a mobile force 
plate and 3D motion analysis system (M3D) is introduced, which have been reported in our 
former publication (Liu et al., 2010). 3D inertial sensor modules which were designed using 
lower cost inertial sensors including a triaxial accelerometer and gyroscope were integrated 
into a newly developed force plate. Verification experiments were conducted to compare the 
estimation results of M3D with measurements performed on a stationary force plate. Finally, 
an application experiment is introduced to quantify and evaluate human gait. We measured 
the 3D GRF and orientations of feet using M3D to evaluate paralysis gait   

2. Methods and materials 
2.1 Mechanical design of mobile force plate 
Small triaxial force sensors (USL06-H5-500N) provided by Tec Gihan Co. Japan can only 
detect the three-directional force induced on a small circular plate (Φ 6 mm), see Table 1, so 
it is difficult to apply directly to the measurement of the GRF distributed under a foot. As 
shown in Fig. 1 (a), a mobile force plate (weight: 156g, size: 80×80×15mm3) was constructed 
using three small triaxial force sensors, in which two aluminum plates were used as top and 
bottom plates to accurately fix the three sensors. Each small sensor, when calibrated using 
data provided by the manufacturer, can measure triaxial forces relative to their slave 
coordinate systems (∑si) defined on the center of each sensor, where subscript i represents 
the number of the small sensor in every force plate (i = 1, 2, and 3). The GRF and center of 
pressure (CoP) measured using the force plate so developed could be expressed in the force 
plate coordinate system (∑f) which is located at the interface between the force plate and the 
ground, with the origin of the force plate coordinate system taken as the center of the force 
plate (see Fig. 1 (b)). The y-axis of the force plate coordinate system was chosen to represent 
the anterior-posterior direction of human movement on the bottom plate, and the z-axis was 
made vertical, while the x-axis was chosen such that the resulting force plate coordinate 
system would be right-handed. We aligned the y-axis of each sensor’s slave coordinate to 
the origin of the force plate coordinate system, while the three origins of the slave 
coordinates were evenly distributed on the same circle (radius: r = 30 mm), and were fixed 
120° apart from each other. Fxi, Fyi and Fzi were defined as the triaxial forces measured 
using the three triaxial sensors. The triaxial GRF and coordinates of the CoP could be 
calculated from the following equations: 

 
1 3 2 3 1

( +F ) cos(60 ) ( ) cos(30 )x x x x y yF F F F F= ⋅ − − − ⋅   (1) 

 
1 3 2 1 3

( ) cos(60 ) ( ) cos(30 )y y y y x xF F F F F F= + ⋅ − − − ⋅  (2) 

 
1 2 3z z z zF F F F= + +  (3) 

 
2 1 3

( ) sin(30 )x z z zM F r F F r= ⋅ − + ⋅ ⋅  (4) 
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 /cop y zx M F=  (7) 

 /cop x zy M F=  (8) 
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where Fx, Fy and Fz are defined as the triaxial GRF (FGRF) measured using the force plate in the 
force plate coordinate system, and Mx, My and Mz indicate triaxial moments estimated from 
measurements of the three sensors, while xCOP, yCOP and zCOP are the coordinates of the CoP,  
 

 
Fig. 1. (a) Prototype of a mobile force plate, (b) Coordinate systems of the force plate 
 

Type USL06-H5-500N 
X- and Y- axis 250 Rated Capacity (N) Z-axis 500 
X- and Y- axis 900 Rated Capacity (με) 
Z-axis 1700 

Nonlinearity (After calibration of cross effect) Within 1.0% 
Hysteresis (After calibration of cross effect) Within 1.0% 
Size (mm) 20×20×5 
Weight (g) 15 

Table 1. Main specifications of the small triaxial force sensor used for the mobile force plate 

In order to examine the inside force distribution of the mobile force plate, ANSYS FEA 
software was used to perform a static analysis and to simulate the effects of multi-axial 

(a)

Small triaxial force sensors

(b)
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forces which may be distributed over the three contact points of the small sensors on the top 
aluminum plate.  
Fig. 2 shows the finite element mesh and a representative result of the deformation of the 
top plate which is attached to the small sensors using three M3 screws.  When we load the 
top plate with a z-axial force Fz = 733.57 N (vertical pressure: 0.125 MPa) and y-axial force 
Fy = 263.5 N (spread over 527 nodes), and x-axial force Fx = 263.5 N (spread over 527 nodes), 
the induced three-directional forces on the small sensor can be calculated by the finite 
element method and the results are given in Table 2. The maximum force (274.6 N) on the z-
axis of the three sensors, and the maximum x- and y-axis forces of 136.61 N never exceed the 
measurement capacity of the small sensor. 
 

 
Fig. 2. (a) Finite element mesh, (b) Results of deformation plot 
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Triaxial Forces (N) No. X Y Z 
1 89.48 136.61 274.6 
2 59.19 69.03 219.7 
3 114.83 58.16 239.27 

Table 2. Three-directional forces on the small sensor when we load the force plate by Fz= 
733.57N, Fy=263.5N and Fx=263.5N 

2.2 Estimation of 3D orientation 
As shown in Fig. 3, we constructed a 3D motion sensor module composed of a triaxial 
accelerometer (MMA7260Q, supplied by Sunhayato Co.) and three uniaxial gyroscopes 
(ENC-03R, supplied by Murata Co.) on the PCB board inside the mobile force plate. The 
module can measure triaxial accelerations and angular velocities which can be used to 
estimate a 3D orientation transformation matrix, so we can implement ambulatory GRF and 
CoP measurements using the combined system of mobile force plate and 3D motion analysis 
system (M3D).  
 

 
Fig. 3. 3D motion sensor module constructed using three uniaxial gyroscopes and a triaxial 
accelerometer 
We defined two local coordinate systems fixed to the two M3Ds under the heel and the 
forefoot as ∑f_heel and ∑f_toe respectively (see Fig. 4). The relative position of the two force 
plates was aligned using a simple alignment mechanism composed of three linear guides 
and a ruler to let the origins of ∑f_toe be on the y-axis of ∑f_heel, and to let the y-axes of the 
two force plate coordinate systems be collinear, before we mounted them to a shoe. For 
calculation purposes, such as estimating joint moments and reaction forces of the ankle 
during loading response and terminal stance phases (Parry, 1992), all vectors including the 
joint displacement vector, GRF vector and gravity vector have to be expressed in the same 
coordinate system, that is the global coordinate system (∑g). Moreover, the origin and 
orientation of this global coordinate system are renewed for each foot placement to coincide 
with the heel force plate coordinate system (∑f_heel), when the heel is flat on the ground.  
The integration of the measured angular velocity vector (ω = [ωx, ωy, ωz]) in each force plate 
coordinate system was defined as C = [Cx, Cy, Cz], which could be used to calculate the 3D 
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2.2 Estimation of 3D orientation 
As shown in Fig. 3, we constructed a 3D motion sensor module composed of a triaxial 
accelerometer (MMA7260Q, supplied by Sunhayato Co.) and three uniaxial gyroscopes 
(ENC-03R, supplied by Murata Co.) on the PCB board inside the mobile force plate. The 
module can measure triaxial accelerations and angular velocities which can be used to 
estimate a 3D orientation transformation matrix, so we can implement ambulatory GRF and 
CoP measurements using the combined system of mobile force plate and 3D motion analysis 
system (M3D).  
 

 
Fig. 3. 3D motion sensor module constructed using three uniaxial gyroscopes and a triaxial 
accelerometer 
We defined two local coordinate systems fixed to the two M3Ds under the heel and the 
forefoot as ∑f_heel and ∑f_toe respectively (see Fig. 4). The relative position of the two force 
plates was aligned using a simple alignment mechanism composed of three linear guides 
and a ruler to let the origins of ∑f_toe be on the y-axis of ∑f_heel, and to let the y-axes of the 
two force plate coordinate systems be collinear, before we mounted them to a shoe. For 
calculation purposes, such as estimating joint moments and reaction forces of the ankle 
during loading response and terminal stance phases (Parry, 1992), all vectors including the 
joint displacement vector, GRF vector and gravity vector have to be expressed in the same 
coordinate system, that is the global coordinate system (∑g). Moreover, the origin and 
orientation of this global coordinate system are renewed for each foot placement to coincide 
with the heel force plate coordinate system (∑f_heel), when the heel is flat on the ground.  
The integration of the measured angular velocity vector (ω = [ωx, ωy, ωz]) in each force plate 
coordinate system was defined as C = [Cx, Cy, Cz], which could be used to calculate the 3D 
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orientation transformation matrix (R) between the global coordinate system and a force 
plate coordinate system by solving the following equations proposed by Bortz (1970): 
 

 

∑f toe
∑f heel

M3D 

Right sandal 

 
Fig. 4. M3D and the coordinate systems 
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where [ωx(i), ωy(i), ωz(i)] is a sample vector of the triaxial angular velocities of the force plate 
during a sampling interval Δt, Cii+1 is an angular displacement vector in the sampling 
interval, and R0 is an initial transformation matrix initialized as a unit matrix (|R0|=1). If 
the force plate is flat on a level ground, we can update R according to R = R0. 

2.3 Transformation of triaxial GRF measured by  mobile force plates 
The triaxial GRF measured by the two M3Ds can be transformed to global coordinates and 
then combined to calculate the total GRF ( g

FRGF ) and the global coordinate vectors of CoP 

( [ ] _, , g heel
COPx y z  and [ ] _, , g toe

COPx y z ) using the following equations: 
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 _ _g f heel f toeheel toe
g FRG g FRGFRGF R F R F= ⋅ + ⋅   (14)         
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gCOP COPx y z R x y z= ⋅    (15)               

   [ ] [ ]_ _, , , ,g toe toef toe
gCOP COPx y z R x y z= ⋅   (16)            

where heel
FRGF  and toe

FRGF  are the triaxial GRF measured by the two M3Ds under the heel and 
forefoot with their respective coordinate systems; [ ], , heel

COPx y z  and  [ ], , toe
COPx y z are coordinate 

vectors of CoP measured using the two M3Ds; _f heel
gR  and _f toe

gR  are the orientation 
transformation matrices of the two M3Ds for transforming the triaxial GRF measured by the 
two M3Ds in their attached coordinate systems into the measurement results  relative to the 
global coordinate system. 

3. Experimental study  
3.1 Verification experiment  
A stationary TF-4060-A force plate (Tec Gihan Co. Japan) was used as a reference 
measurement system to verify the measurement results of the M3D system being developed. 
As shown in Fig. 5, a young volunteer wearing M3D was asked to walk on the stationary force 
plate and the signals from the two measurement systems were simultaneously sampled at a 
rate of 100 samples/s, after a trig signal was sent from the data logger of the M3D. 
First, a static test experiment was conducted to validate the triaxial force measurement of 
the M3D without movement. Only one foot wearing the M3D is put on the stationary force 
plate and the subject arbitrarily moved his center of pressure. As shown in Fig. 6, the triaxial 
measurement results obtained with the stationary force plate (FP) and M3D almost 
completely overlap and the maximum errors in the triaxial force measurements were less 
than 5% of the corresponding maximum forces. Second, in order to verify the M3D 
ambulatory measurement, a dynamic test was performed on a walking measurement, in 
which the subject was asked to step on the force plate at a normal speed of about one step/s 
(see Fig. 7). The verification experiment results indicate that the sensor can measure the 
triaxial force with high precision (error: less than 6.4% of the maximum measurement force) 
under static and dynamic working conditions. 

3.2 Measurement of paralysis gait using M3D 
I As an application of the research, experiments were performed to quantitatively compare 
and analyze normal walking and paralysis walking using the M3D. The main features of 
paralysis gait can be summarized as follows: the toe on the paralyzed side rotates to the 
outside with a larger angle than in normal gait; the knee is stretched to the outside during 
the swing phase. A healthy subject was trained to imitate the walking feature of paralysis, 
and we separately measured the imitated paralysis gait of the left leg and right leg. The 
walking distance of the experimental tests is about 6 m.  
Figs. 8 and 9 give the vertical components of GRF on the two feet (Solid blue line: GRF on 
the left foot; Solid pink line: GRF on the right foot) measured with the M3D system in 
normal gait and on the right foot imitating paralysis gait, respectively. We note that there 
are no large differences in the shape of the vertical force (z-axial force) curves induced on 
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orientation transformation matrix (R) between the global coordinate system and a force 
plate coordinate system by solving the following equations proposed by Bortz (1970): 
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where [ωx(i), ωy(i), ωz(i)] is a sample vector of the triaxial angular velocities of the force plate 
during a sampling interval Δt, Cii+1 is an angular displacement vector in the sampling 
interval, and R0 is an initial transformation matrix initialized as a unit matrix (|R0|=1). If 
the force plate is flat on a level ground, we can update R according to R = R0. 

2.3 Transformation of triaxial GRF measured by  mobile force plates 
The triaxial GRF measured by the two M3Ds can be transformed to global coordinates and 
then combined to calculate the total GRF ( g

FRGF ) and the global coordinate vectors of CoP 

( [ ] _, , g heel
COPx y z  and [ ] _, , g toe

COPx y z ) using the following equations: 
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transformation matrices of the two M3Ds for transforming the triaxial GRF measured by the 
two M3Ds in their attached coordinate systems into the measurement results  relative to the 
global coordinate system. 

3. Experimental study  
3.1 Verification experiment  
A stationary TF-4060-A force plate (Tec Gihan Co. Japan) was used as a reference 
measurement system to verify the measurement results of the M3D system being developed. 
As shown in Fig. 5, a young volunteer wearing M3D was asked to walk on the stationary force 
plate and the signals from the two measurement systems were simultaneously sampled at a 
rate of 100 samples/s, after a trig signal was sent from the data logger of the M3D. 
First, a static test experiment was conducted to validate the triaxial force measurement of 
the M3D without movement. Only one foot wearing the M3D is put on the stationary force 
plate and the subject arbitrarily moved his center of pressure. As shown in Fig. 6, the triaxial 
measurement results obtained with the stationary force plate (FP) and M3D almost 
completely overlap and the maximum errors in the triaxial force measurements were less 
than 5% of the corresponding maximum forces. Second, in order to verify the M3D 
ambulatory measurement, a dynamic test was performed on a walking measurement, in 
which the subject was asked to step on the force plate at a normal speed of about one step/s 
(see Fig. 7). The verification experiment results indicate that the sensor can measure the 
triaxial force with high precision (error: less than 6.4% of the maximum measurement force) 
under static and dynamic working conditions. 

3.2 Measurement of paralysis gait using M3D 
I As an application of the research, experiments were performed to quantitatively compare 
and analyze normal walking and paralysis walking using the M3D. The main features of 
paralysis gait can be summarized as follows: the toe on the paralyzed side rotates to the 
outside with a larger angle than in normal gait; the knee is stretched to the outside during 
the swing phase. A healthy subject was trained to imitate the walking feature of paralysis, 
and we separately measured the imitated paralysis gait of the left leg and right leg. The 
walking distance of the experimental tests is about 6 m.  
Figs. 8 and 9 give the vertical components of GRF on the two feet (Solid blue line: GRF on 
the left foot; Solid pink line: GRF on the right foot) measured with the M3D system in 
normal gait and on the right foot imitating paralysis gait, respectively. We note that there 
are no large differences in the shape of the vertical force (z-axial force) curves induced on 
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Fig. 5. Verification experiments to validate the measurements of the M3D 
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Fig. 6. Experiment results of the static test 
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(a) X and Y - axial forces when stepping on the stationary force plate 
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(b) Z-axial force when stepping on the stationary force plate 

Fig. 7. Experiment results of the dynamic test 

the right and left foot during normal walking, and that the GRF on the two feet have good 
balance and symmetry during continuous strides. When we compare the curves in Fig. 9 
with the normal gait data, we can clearly note that the two peaks of the z-axial force on the 
left foot which is not on the paralyzed side are depressed. Moreover, it has been understood 
that the stance phase period of the healthy leg (the left leg) was about 1.6 times longer than 
the paralyzed side (the right leg) during a stride. 
The rotation angles of the toe and heel of the feet around the medial-lateral direction (x-axis, 
see Fig. 5) are shown in Fig. 10, in which the dotted lines indicate the movements of the right 
foot and the rotation angles of the left foot are plotted with solid lines. The positive angle 
values represent the plantar flexion of the foot segments, and the negative values indicate 
dorsal flexion. The flexion angles of the paralysis foot (the right foot) are reduced 
significantly and the heel-strike angles and toe-off angles were less than 20 degrees. 
Moreover, it is noted that the toe joint of the paralysis foot was almost never rotated during 
the gait, because the heel and toe had the same flexion angles during the entire walking 
measurements. We also obtained similar results in the measurements of left leg paralysis 
using the M3D.  
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the right and left foot during normal walking, and that the GRF on the two feet have good 
balance and symmetry during continuous strides. When we compare the curves in Fig. 9 
with the normal gait data, we can clearly note that the two peaks of the z-axial force on the 
left foot which is not on the paralyzed side are depressed. Moreover, it has been understood 
that the stance phase period of the healthy leg (the left leg) was about 1.6 times longer than 
the paralyzed side (the right leg) during a stride. 
The rotation angles of the toe and heel of the feet around the medial-lateral direction (x-axis, 
see Fig. 5) are shown in Fig. 10, in which the dotted lines indicate the movements of the right 
foot and the rotation angles of the left foot are plotted with solid lines. The positive angle 
values represent the plantar flexion of the foot segments, and the negative values indicate 
dorsal flexion. The flexion angles of the paralysis foot (the right foot) are reduced 
significantly and the heel-strike angles and toe-off angles were less than 20 degrees. 
Moreover, it is noted that the toe joint of the paralysis foot was almost never rotated during 
the gait, because the heel and toe had the same flexion angles during the entire walking 
measurements. We also obtained similar results in the measurements of left leg paralysis 
using the M3D.  
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Fig. 8. Z-axis force during normal walking 
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Fig. 9. Z-axis force during paralysis gait 
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Fig. 10. X-axial angles of the feet during paralysis gait 

4. Discussions and conclusions  
A mobile force plate and 3D motion analysis system (M3D) was developed using lower cost 
inertial sensor chips and small triaxial force sensors. In order to apply the system to human 
gait evaluation, verification experiments were implemented to compare the results 
estimated by M3D with measurements made with a stationary force plate. In the static tests, 
the force measurements by the M3D system along three axes were highly correlated in both 
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amplitude and dynamic response to the reference measurements using the stationary force 
plate (see Fig. 6) and this verifies that the M3D system could measure the triaxial GRF in its 
fixed local coordinate system with acceptable precision (less than 5% of the corresponding 
maximum force). However, as shown in Fig. 7, there were larger errors in the triaxial GRF 
measurements. The most likely source of amplitude error in the triaxial GRF measurement 
was in the orientation estimate of M3D movements using a triaxial accelerometer which 
could only implement x- and y-axial angular displacement re-calibration. In the future, we 
will integrate a triaxial magnetic sensor (Zhu & Zhou, 2009) for estimating the heading angle 
(z-axial angular displacement) during gait, because the z-axial (vertical) cumulative error 
induced by the drift effect of the gyroscope sensor could be re-calibrated using 
measurements from the magnetic sensor. Since only straight level walking was tested with 
M3D, it is necessary to examine more movements to verify ambulatory measurements 
obtained with M3D in future gait experiments. Moreover, the sensitivity of results to initial 
sensor drift and initial orientation fix will be addressed so that the system can be applied to 
many other applications.  
In our research application using the new system, the quantitative differences between 
paralysis gait and normal gait were analyzed based to the results of z-axial GRF (Fig. 9) and 
x-axial angular flexions (Fig. 10). In clinical applications, the quantitative analysis of gait 
variability using kinematic and kinetic characterizations can be helpful to medical doctors in 
monitoring patient recovery status. Moreover, these quantitative results may help to 
strengthen their confidence in rehabilitation. Walking speed, stride length, center of mass 
(CoM) and CoP have been considered as influencing factors in evaluations of human gait 
(Lee & Chou, 2006). In this paper, only the z-axial GRF (vertical force) and x-axial 
orientation were analyzed to evaluate different gaits. However, according to one study on 
slip type falls (Chang et al., 2003), the friction force was used to draw up important safety 
criteria for detecting safe gait, so the transverse components of GRF may provide important 
information when quantifying gait variability. The M3D system can be used to obtain multi-
dimensional motion and force data on successive gait in non-laboratory environments, so 
we will develop a new method based on measurements from the mobile system for 
quantifying gait variability. Moreover, a statistical analysis of the multi-dimensional GRF 
and orientation data extracted from successive gait measurements will be used to evaluate 
normal and pathological gait. 
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1. Introduction

Biped locomotion consists of both sagittal and lateral (frontal) plane motions. Although the
stability of the locomotion must be ensured in both the planes, their natures are different.
In the sagittal plane, the main purpose is to move from one place to another; thus, the
stability is dynamic – losing static balance is essential in sagittal plane motion; it produces
tumble for travel. In the lateral plane, on the other hand, maintaining an upright posture is
crucial. Hence, lateral stability is static, and stabilizing a saddle point in the phase plane of
the inverted pendulum motion is the main challenge.
In general, the zero moment point (ZMP) criterion is utilized for biped motion control (Kagami
et al., 2002; Mitobe et al., 2001; Nagasaka et al., 1999; Suleiman et al., 2009; Yamaguchi &
Takanishi, 1997). Although this method is effective and useful, planned motion using this
method is not suitable when the environmental conditions change from those considered
during motion planning. The literature offers excellent reports on the modification of planned
motion (Hirai et al., 1998; Huang et al., 2000; Kulvanit et al., 2005; Lee et al., 2005; Napoleon
& Sampei, 2002; Prahlad et al., 2007; Wollherr & Buss, 2004), or online motion generation
(Behnke, 2006; Czarnetzki et al., 2009; Héliot & Espiau, 2008; Kajita & Tani, 1996; Nishiwaki
et al., 2002; Sugihara et al., 2002) that solve this problem.
Usually, motion planning based on the ZMP criterion is applied to both the sagittal and lateral
planes. The concept of this paper is that motion planning in the lateral plane can be skipped
because of the difference in the nature of its stability. In the sagittal plane, motion planning
is certainly crucial: one cannot proceed without actively generating both leg swing and torso
behaviour, followed by the planned motion. The ZMP method was originally proposed to
design such co-ordinated motions. However, in the lateral plane, balance is the primary
purpose; generating active motion is a secondary problem. Nonetheless, in the ZMP method,
the motion is first planned, and balance is maintained as a result of exact tracking of the
planned motion. In our opinion, the process should be reversed for motion in the lateral
plane, with balance control coming first and motion emerging as a result of balance control.
From this viewpoint, trajectory generation for the lateral plane should be eliminated by setting
balance as the control object.
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is certainly crucial: one cannot proceed without actively generating both leg swing and torso
behaviour, followed by the planned motion. The ZMP method was originally proposed to
design such co-ordinated motions. However, in the lateral plane, balance is the primary
purpose; generating active motion is a secondary problem. Nonetheless, in the ZMP method,
the motion is first planned, and balance is maintained as a result of exact tracking of the
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Fig. 1. Lateral stepping motion on different gradients.

To maintain balance without motion planning, we introduce the direct centre of pressure
(CoP), i.e. ZMP control (Ito et al., 2003; 2007; 2008) (the CoP is equivalent to the ZMP). Instead
of an indirect balancing method, such as tracking the positions of trajectories planned using
the ZMP criterion, we select the ZMP directly as the control variable.
Adaptive lateral motion should result without adjusting the controllers or motion pattern
generators. This arises from the invariance in the ZMP trajectory in biped lateral motion.
Lateral motion on flat and sloped floors is illustrated in Fig. 1. To maintain balance, the
motion trajectories of the torso and legs must change adaptively in relation to the angle of the
slope. On the other hand, the ZMP trajectory, indicating the time stamp of the load centre,
is invariable. Therefore, balance control based on direct ZMP control can naturally produce
adaptive motion without re-designing the motion trajectories. In this chapter, we explain a
balance control strategy based on direct ZMP feedback and confirm the effectiveness of this
method by conducting experiments of improved robot from our previous papers (Ito et al.,
2007; 2008).
This chapter is organized as follows: the next section presents the mathematical framework;
section 3 describes a control method based on the direct ZMP control; section 4 reports on
robot experiments as well as simulation of lateral stepping motion and the section 5 presents
our conclusions.

2. Basic Theory of balance control

2.1 Inverted Pendulum model
2.1.1 Assumptions
The CoP is the representative action point of the ground reaction forces and coincides with
the ZMP (Goswami, 1999). Because the ZMP contains significant information on balance, the
ground reaction forces are also expected to contain the information.
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Fig. 2. Inverted pendulum model for biped balance.

From this viewpoint, feedback control of ground reaction forces is introduced for balance
control (Ito & Kawasaki, 2005). Because the ankle strategy is dominant for balancing
with respect to small disturbances (Horak & Nashner, 1986), the inverted pendulum model
illustrated in the left of Fig. 2 is considered with the following assumptions:

• The motion occurs only in the sagittal plane.

• The body (inverted pendulum) and the foot (support) are connected at the ankle joint.

• The foot does not slip on the ground.

• The shape of the foot is symmetrical in the anterior-posterior direction.

• The foot has two ground contact points: the heel and the toe.

• The vertical component of the ground reaction force is measurable.

• The ankle joint is located at the midpoint of the foot with zero height.

• The ankle joint angle and its velocity are detectable.

• An appropriate torque is actively generated at the ankle joint.

• An unknown constant external force is exerted at the centre of gravity (CoG).

The notations are defined as follows: M and m are the mass of the body and foot link,
respectively; I is the moment of inertia of the body link around the ankle joint; L is the length
between the ankle joint and the CoG of the body link; � is the length from the ankle joint to
the toe or the heel; θ is the ankle joint angle; θ̇ is its velocity and τ is the ankle joint torque.
FH and FT are the vertical components of the ground reaction force at the heel and the toe,
respectively. fy is the vertical component of the internal force between the two links. Fx and
Fy are the horizontal and vertical components of constant external force, respectively, and g is
the gravitational acceleration.
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2.1.2 Control law
The goal of the control is to maintain the postural balance regardless of the constant external
forces Fx and Fy. With respect to the stability margin (McGhee & Frank, 1968), FT and FH
should be kept equal, indicating that the ZMP is held to the centre under the foot. The
following control method achieves this.

Theorem 1. Define an ankle joint torque τ by using adequate feedback gains Kd, Kp, K f and adequate
constant θd as

τ = −Kdθ̇ + Kp(θd − θ) + K f

∫
(FH − FT)dt. (1)

Then, θ = θ f becomes a locally asymptotically stable posture, and FH = FT holds at the stationary
state. Here, θ f is a constant satisfying

sin θ f = − Fx

A
, cos θ f =

Mg − Fy

A
. (2)

where
A =

√
(Mg − Fy)2 + F2

x (3)

Proof. The motion equation of the body link is described as

I θ̈ = MLg sin θ + FxL cos θ − FyL sin θ + τ.

= AL sin(θ − θ f ) + τ (4)

On the other hand, the ground reaction forces, with ankle joint torque, are

FT = − 1
2�

τ +
1
2

mg +
1
2

fy, (5)

FH =
1
2�

τ +
1
2

mg +
1
2

fy, (6)

Here, a new state variable τf is defined as

τf =
∫
(FH − FT)dt. (7)

Then, the control law (1) becomes

τ = −Kdθ̇ + Kp(θd − θ) + K f τf . (8)

which is regarded as a state feedback whose states are θ, θ̇ and τf . In addition, differentiating
(7) and then substituting (5) and (6) results in

τ̇f =
1
�

τ. (9)

An equilibrium point (θ̄, ¯̇θ, τ̄f ) of the dynamics in (4) and (9) with control law (8) is obtained
by setting the time-derivative term as zero. It is given as

(θ̄, ¯̇θ, τ̄f ) = (θ f , 0,
Kp

K f
(θ f − θd)). (10)
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Fig. 3. Lateral sway model for biped balance.

In this state, τ = 0 holds according to (8) and (10), indicating that FH = FT. The local stability
of this equilibrium point is ensured by the controllability of the linearized dynamics around
this point.

2.1.3 Behaviour
The stationary posture from the control law in (1) is illustrated in the right of Fig. 2. This
stationary state θ f depends not on θd but the external forces Fx and Fy. It follows that the
stationary posture changes adaptively with respect to the environmental conditions expressed
as unknown constant external forces. This posture allows the ankle joint torque to be zero
in the stationary state, since the moment of the external force is balanced by that of the
gravity around the ankle joint. This is an advantage of the control law, in addition to being a
model-free property.

2.2 Lateral Sway model
2.2.1 Assumptions
Here, we extend the control law in (1) to active lateral sway with double support. Because the
flexion of knee joints in this motion is small, each leg is represented by only one link, without
a knee, as shown in Fig. 3. Thus, the following assumptions are introduced:

• The motion is restricted within the lateral plane.

• The lateral motion is approximately represented using a 5-link model consisting of one
body, two legs and two feet.

• The foot does not slip on the ground.

• Ankle joints are assumed to be located at the centre of the foot with zero height.

• At the end of both sides, the feet contact the ground.

• The vertical component of the ground reaction forces is measurable.

• The angles and velocities are detectable at the ankle and hip joints.

• Every joint is actively actuated.
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In this state, τ = 0 holds according to (8) and (10), indicating that FH = FT. The local stability
of this equilibrium point is ensured by the controllability of the linearized dynamics around
this point.
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as unknown constant external forces. This posture allows the ankle joint torque to be zero
in the stationary state, since the moment of the external force is balanced by that of the
gravity around the ankle joint. This is an advantage of the control law, in addition to being a
model-free property.
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Here, we extend the control law in (1) to active lateral sway with double support. Because the
flexion of knee joints in this motion is small, each leg is represented by only one link, without
a knee, as shown in Fig. 3. Thus, the following assumptions are introduced:

• The motion is restricted within the lateral plane.

• The lateral motion is approximately represented using a 5-link model consisting of one
body, two legs and two feet.

• The foot does not slip on the ground.

• Ankle joints are assumed to be located at the centre of the foot with zero height.
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• The vertical component of the ground reaction forces is measurable.
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• An unknown constant external force is exerted on the CoG of the entire body.

Assume that the feet always maintain contact with the ground. This constraint forces the
mechanism to be a closed link constructed by the body and two legs, indicating that the degree
of freedom (DoF) of motion is reduced to one.
Here, the following notations are defined: (xG, yG) denotes the CoG position in the coordinate
frame whose origin is set at the midpoint between two ankle joints, φ is a lateral sway angle in
this coordinate frame. (xR, yR), (xL, yL) and (xB, yB) are the CoG of the right leg, left leg and
body (pelvis), respectively. L is the length of the leg, � is the length from the ground to the CoG
of the leg, �B is the half length of the body, � f is the length from the ankle joint to the side of
the foot and x f is the distance to the ankle joint from the origin of this coordinate frame. FRO,
FRI , FLO, and FLI are the vertical components of ground reaction forces at four contact points,
whose subscripts RO, RI , LI and LO represent the positions of the contact points, indicating the
right outside, the right inside, the left inside and the left outside, respectively. F = [Fx, Fy]

T

is the external force that is assumed to be constant. Θ = [θRA, θRH , θLH , θLA]
T is a joint angle

vector whose elements are the joint angles of the right ankle, right hip, left hip and left ankle,
respectively, and T = [τRA, τRH , τLH , τLA]

T is a joint torque vector whose elements are the
torque at each joint. τφ is a generalized force defined in the coordinate frame on the CoG orbit
Φ, and PZMP is the position of the ZMP.

2.2.2 Control law
Under these assumptions, PZMP is calculated from the magnitude of the ground reaction
forces at the four contact points as follows:

PZMP =
FRO
Fall

(x f + � f ) +
FRI

Fall
(x f − � f )− FLI

Fall
(x f − � f )− FLO

Fall
(x f + � f ), (11)

where

Fall = FRO + FRI + FLI + FLO. (12)

The purpose is to control the position of the ZMP at its reference position Pd in the lateral
sway model, as shown in Fig. 1. Here, Pd is appropriately planned in advance and may
be constant or, alternatively, switched. This is achieved using ZMP feedback obtained by
extending theorem 1.

Theorem 2. Define a generalized force τφ based on PZMP as

τφ = −Kdφ̇ + Kp(φd − φ) + K f

∫
(Pd − PZMP)dt, (13)

and assign each joint torque T so that the following equation holds

τφ = JT(Θ)T. (14)

Here, φd is a constant, and J(Θ) is a Jacobian matrix that relates the deviation of Θ to that of φ

ΔΘ = J(Θ)Δφ. (15)

Then, PZMP converges to Pd if it starts in the neighbourhood of Pd.
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Proof. Because there is only one DoF of the lateral sway model, the sway angle φ uniquely
determines each joint angle Θ in the range 0 < θRH < π, 0 < θLH < π. Here, this relationship
is described as Θ = Θ(φ). Then, the equation of motion with respect to φ is obtained as

M(Θ)φ̈ + C(Θ, Θ̇) + G(Θ, g, F) = τφ. (16)

On the other hand, the relationship between PZMP and τφ is given as

PZMP = P(Θ)τφ + Q(Θ, Θ̇) + R(Θ, g, F). (17)

Here, M(Θ) > 0 is an inertia term, C(Θ, Θ̇) and Q(Θ, Θ̇) become the second order terms of
the element of Θ̇, G and R contain both the gravity term and external force F. See Appendix
7.3 for the derivation of (16) and (17). Then, a new variable τf is introduced:

τf =
�
(PZMP − Pd)dt. (18)

The differentiation of τf provides the relationship

τ̇f = PZMP − Pd. (19)

And, using (17), it becomes

τ̇f = P(Θ)τφ + Q(Θ, Θ̇) + R(Θ, g, F)− Pd. (20)

In addition, the control law in (13) is described using τf

τφ = −Kdφ̇ + Kp(φd − φ) + K f τf . (21)

Let [φ, φ̇, τf ]
T be state variables of the dynamics of (16) and (20) with the control law in (21).

At the equilibrium point, the derivative terms are forced to zero, indicating that τ̇f = 0 in (19);
thus, PZMP = Pd. To test the stability of the equilibrium point, (16) and (20) are linearized
around it.

ξ̇ =

⎡
⎣

0 1 0
−Ḡθ J̄/M̄ 0 0�

R̄θ + P̄θτ̄φ
�

J̄ 0 0

⎤
⎦ ξ +

⎡
⎣

0
1/M̄

P̄

⎤
⎦ Δτφ (22)

Here, ξ = [Δφ, Δφ̇, Δτf ]
T is a deviation from the equilibrium point, M̄ = M(Θ̄), Θ̄ = Θ(φ̄),

J̄ = J(Θ̄), P̄ = P(Θ̄), Ḡθ =
∂G(Θ̄)

∂Θ
, R̄θ =

∂R(Θ̄)

∂Θ
, P̄θ =

∂P(Θ̄)

∂Θ
, and Δτφ is a deviation from

the input at the equilibrium τ̄φ = Kp(φd − φ̄) + K f τ̄f . The controllability matrix Mc of this
linear system becomes

Mc =

⎡
⎣

0 1/M̄ 0
1/M̄ 0 −Ḡθ J̄/M̄2

P̄ 0
�

R̄θ + P̄θ τ̄φ
�

J̄/M̄

⎤
⎦ , (23)

whose determinant is calculated as

|Mc| = − 1
M̄3 (P̄Ḡθ + R̄θ + P̄θ Ḡ) J̄ = − 1

M̄3
∂

∂φ
(PG + R)

����
φ=φ̄

. (24)
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• An unknown constant external force is exerted on the CoG of the entire body.

Assume that the feet always maintain contact with the ground. This constraint forces the
mechanism to be a closed link constructed by the body and two legs, indicating that the degree
of freedom (DoF) of motion is reduced to one.
Here, the following notations are defined: (xG, yG) denotes the CoG position in the coordinate
frame whose origin is set at the midpoint between two ankle joints, φ is a lateral sway angle in
this coordinate frame. (xR, yR), (xL, yL) and (xB, yB) are the CoG of the right leg, left leg and
body (pelvis), respectively. L is the length of the leg, � is the length from the ground to the CoG
of the leg, �B is the half length of the body, � f is the length from the ankle joint to the side of
the foot and x f is the distance to the ankle joint from the origin of this coordinate frame. FRO,
FRI , FLO, and FLI are the vertical components of ground reaction forces at four contact points,
whose subscripts RO, RI , LI and LO represent the positions of the contact points, indicating the
right outside, the right inside, the left inside and the left outside, respectively. F = [Fx, Fy]

T

is the external force that is assumed to be constant. Θ = [θRA, θRH , θLH , θLA]
T is a joint angle

vector whose elements are the joint angles of the right ankle, right hip, left hip and left ankle,
respectively, and T = [τRA, τRH , τLH , τLA]

T is a joint torque vector whose elements are the
torque at each joint. τφ is a generalized force defined in the coordinate frame on the CoG orbit
Φ, and PZMP is the position of the ZMP.

2.2.2 Control law
Under these assumptions, PZMP is calculated from the magnitude of the ground reaction
forces at the four contact points as follows:

PZMP =
FRO
Fall

(x f + � f ) +
FRI

Fall
(x f − � f )− FLI

Fall
(x f − � f )− FLO

Fall
(x f + � f ), (11)

where

Fall = FRO + FRI + FLI + FLO. (12)

The purpose is to control the position of the ZMP at its reference position Pd in the lateral
sway model, as shown in Fig. 1. Here, Pd is appropriately planned in advance and may
be constant or, alternatively, switched. This is achieved using ZMP feedback obtained by
extending theorem 1.

Theorem 2. Define a generalized force τφ based on PZMP as

τφ = −Kdφ̇ + Kp(φd − φ) + K f

∫
(Pd − PZMP)dt, (13)

and assign each joint torque T so that the following equation holds

τφ = JT(Θ)T. (14)

Here, φd is a constant, and J(Θ) is a Jacobian matrix that relates the deviation of Θ to that of φ

ΔΘ = J(Θ)Δφ. (15)

Then, PZMP converges to Pd if it starts in the neighbourhood of Pd.
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Proof. Because there is only one DoF of the lateral sway model, the sway angle φ uniquely
determines each joint angle Θ in the range 0 < θRH < π, 0 < θLH < π. Here, this relationship
is described as Θ = Θ(φ). Then, the equation of motion with respect to φ is obtained as

M(Θ)φ̈ + C(Θ, Θ̇) + G(Θ, g, F) = τφ. (16)

On the other hand, the relationship between PZMP and τφ is given as

PZMP = P(Θ)τφ + Q(Θ, Θ̇) + R(Θ, g, F). (17)

Here, M(Θ) > 0 is an inertia term, C(Θ, Θ̇) and Q(Θ, Θ̇) become the second order terms of
the element of Θ̇, G and R contain both the gravity term and external force F. See Appendix
7.3 for the derivation of (16) and (17). Then, a new variable τf is introduced:

τf =
�
(PZMP − Pd)dt. (18)

The differentiation of τf provides the relationship

τ̇f = PZMP − Pd. (19)

And, using (17), it becomes

τ̇f = P(Θ)τφ + Q(Θ, Θ̇) + R(Θ, g, F)− Pd. (20)

In addition, the control law in (13) is described using τf

τφ = −Kdφ̇ + Kp(φd − φ) + K f τf . (21)

Let [φ, φ̇, τf ]
T be state variables of the dynamics of (16) and (20) with the control law in (21).

At the equilibrium point, the derivative terms are forced to zero, indicating that τ̇f = 0 in (19);
thus, PZMP = Pd. To test the stability of the equilibrium point, (16) and (20) are linearized
around it.

ξ̇ =

⎡
⎣

0 1 0
−Ḡθ J̄/M̄ 0 0�

R̄θ + P̄θτ̄φ
�

J̄ 0 0

⎤
⎦ ξ +

⎡
⎣

0
1/M̄

P̄

⎤
⎦ Δτφ (22)

Here, ξ = [Δφ, Δφ̇, Δτf ]
T is a deviation from the equilibrium point, M̄ = M(Θ̄), Θ̄ = Θ(φ̄),

J̄ = J(Θ̄), P̄ = P(Θ̄), Ḡθ =
∂G(Θ̄)

∂Θ
, R̄θ =

∂R(Θ̄)

∂Θ
, P̄θ =

∂P(Θ̄)

∂Θ
, and Δτφ is a deviation from

the input at the equilibrium τ̄φ = Kp(φd − φ̄) + K f τ̄f . The controllability matrix Mc of this
linear system becomes

Mc =

⎡
⎣

0 1/M̄ 0
1/M̄ 0 −Ḡθ J̄/M̄2

P̄ 0
�

R̄θ + P̄θ τ̄φ
�

J̄/M̄

⎤
⎦ , (23)

whose determinant is calculated as

|Mc| = − 1
M̄3 (P̄Ḡθ + R̄θ + P̄θ Ḡ) J̄ = − 1

M̄3
∂

∂φ
(PG + R)

����
φ=φ̄

. (24)
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Here, the relationship τ̄φ = Ḡ = G(Θ̄) from (16) and J̄ = ∂Θ
∂φ were applied. To verify

|Mc| �= 0, the deviation of the ZMP position is considered. Substituting (16) into τφ of (17)
and linearizing (17) around the equilibrium point results in

ΔPZMP = PMΔφ̈ +
∂

∂φ
(PG + R)

∣∣∣∣
φ=φ̄

Δφ. (25)

This equation implies that the ZMP deviation depends on both the inertial force (the first
term) and the gravitational effect (the second term), which varies with the posture, i.e. the
CoG position. This is consistent with the definition of the ZMP – it is determined by the

inertial and gravitational forces. Now, assume |Mc| = 0. Then, ∂
∂φ (PG + R)

∣∣∣
φ=φ̄

= 0 from

(24). This produces the conclusion, based on (25), that the ZMP position does not change
regardless of the CoG deviation. This contradicts the definition of ZMP; thus, |Mc| �= 0 is
ensured. Accordingly, the controllability matrix Mc should be full rank and the linear system
is controllable – the equilibrium point can be stabilized by adequate Kd, Kp and K f in (13).
Finally, note that we can find joint torque T to satisfy the relationship in (14).

2.2.3 Behaviour
The behaviour of the lateral sway model under control laws (13) - (15) is expected to be similar
to that of the inverted pendulum model using control law (1) discussed in the section 2.1.3,
i.e., in the stationary state:

• The ZMP is controlled to its reference position Pd.

• The posture changes with the external force.

• The generalized force τφ becomes zero due to the balance between the gravitational and
external forces.

Thus, this control law is a natural extension of control law (1) when there are multiple contact
points and active joints.

3. Control of in-place stepping

3.1 Strategy
Here, we focus on in-place stepping motion to achieve it without generating reference
trajectories of joint angles, as expected in section 1. The stepping motion is divided into
single- and double-support phases. The control law is defined separately in these two phases,
and then, two theorems from the previous section are applied, since this task basically
involves the stabilization of the inverted pendulum with respect to external forces caused
by ground gradients. However, some extensions are needed: definition of the switching
conditions between the two control laws and the time-dependent reference for the ZMP
position. The local stability of the control laws will ensure tracking of the ZMP position to
the time-dependent reference.

3.2 Control
3.2.1 Single-support phase
On a slope, adaptive behaviour is observed – the body tilts around the ankle joint of the
supporting leg, as shown in the bottom of Fig. 1. Thus, the ankle joint plays a significant role,
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Fig. 4. Single-support phase approximation by using the inverted pendulumn model.

and the dynamics of the single-support phase can be approximated by an inverted pendulum
with a foot support, as shown in Fig. 4. Under this approximation, theorem 1 is applicable by
regarding the effect of the slope as well as the swing leg dynamics as unknown external forces
Fx and Fy. The flow of the balance control is summarized as

1. Detect the angle and its velocity at the ankle joint of the support leg.

2. Detect the ground reaction forces at both ends of the supporting foot.

3. Calculate the ankle joint torque according to (1).

4. Output the ankle joint torque with its actuator.

The trajectory tracking control should be introduced to lift the swing leg.

3.2.2 Switching from single- to double-support phase
Control law (1) is expected to compensate for disturbances caused by the torso and swing leg
when stepping. If the torso and swing leg motions are adequately controlled, the posture of
the initial state of the single-support phase will be recovered. Thus, the switch condition of
the control law is set as the recovery of the initial posture.

3.2.3 Double-support phase
To change to the other support leg, the ZMP position must shift from under the current
supporting leg to the other. Control laws (13) - (15) are expected to make the ZMP track
such a reference position Pd. Following is the control flow:

1. Detect the angle and its velocity at the ankle and hip joints.

2. Detect the ground reaction forces at both ends of the feet.

3. Calculate the lateral sway angle φ by following the next relationship (Appendix 7.1):

φ =
θLA − θRA

2
. (26)

4. Calculate PZMP by using (11).
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Here, the relationship τ̄φ = Ḡ = G(Θ̄) from (16) and J̄ = ∂Θ
∂φ were applied. To verify

|Mc| �= 0, the deviation of the ZMP position is considered. Substituting (16) into τφ of (17)
and linearizing (17) around the equilibrium point results in

ΔPZMP = PMΔφ̈ +
∂

∂φ
(PG + R)

∣∣∣∣
φ=φ̄

Δφ. (25)

This equation implies that the ZMP deviation depends on both the inertial force (the first
term) and the gravitational effect (the second term), which varies with the posture, i.e. the
CoG position. This is consistent with the definition of the ZMP – it is determined by the

inertial and gravitational forces. Now, assume |Mc| = 0. Then, ∂
∂φ (PG + R)

∣∣∣
φ=φ̄

= 0 from

(24). This produces the conclusion, based on (25), that the ZMP position does not change
regardless of the CoG deviation. This contradicts the definition of ZMP; thus, |Mc| �= 0 is
ensured. Accordingly, the controllability matrix Mc should be full rank and the linear system
is controllable – the equilibrium point can be stabilized by adequate Kd, Kp and K f in (13).
Finally, note that we can find joint torque T to satisfy the relationship in (14).

2.2.3 Behaviour
The behaviour of the lateral sway model under control laws (13) - (15) is expected to be similar
to that of the inverted pendulum model using control law (1) discussed in the section 2.1.3,
i.e., in the stationary state:

• The ZMP is controlled to its reference position Pd.

• The posture changes with the external force.

• The generalized force τφ becomes zero due to the balance between the gravitational and
external forces.

Thus, this control law is a natural extension of control law (1) when there are multiple contact
points and active joints.

3. Control of in-place stepping

3.1 Strategy
Here, we focus on in-place stepping motion to achieve it without generating reference
trajectories of joint angles, as expected in section 1. The stepping motion is divided into
single- and double-support phases. The control law is defined separately in these two phases,
and then, two theorems from the previous section are applied, since this task basically
involves the stabilization of the inverted pendulum with respect to external forces caused
by ground gradients. However, some extensions are needed: definition of the switching
conditions between the two control laws and the time-dependent reference for the ZMP
position. The local stability of the control laws will ensure tracking of the ZMP position to
the time-dependent reference.

3.2 Control
3.2.1 Single-support phase
On a slope, adaptive behaviour is observed – the body tilts around the ankle joint of the
supporting leg, as shown in the bottom of Fig. 1. Thus, the ankle joint plays a significant role,
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Fig. 4. Single-support phase approximation by using the inverted pendulumn model.

and the dynamics of the single-support phase can be approximated by an inverted pendulum
with a foot support, as shown in Fig. 4. Under this approximation, theorem 1 is applicable by
regarding the effect of the slope as well as the swing leg dynamics as unknown external forces
Fx and Fy. The flow of the balance control is summarized as

1. Detect the angle and its velocity at the ankle joint of the support leg.

2. Detect the ground reaction forces at both ends of the supporting foot.

3. Calculate the ankle joint torque according to (1).

4. Output the ankle joint torque with its actuator.

The trajectory tracking control should be introduced to lift the swing leg.

3.2.2 Switching from single- to double-support phase
Control law (1) is expected to compensate for disturbances caused by the torso and swing leg
when stepping. If the torso and swing leg motions are adequately controlled, the posture of
the initial state of the single-support phase will be recovered. Thus, the switch condition of
the control law is set as the recovery of the initial posture.

3.2.3 Double-support phase
To change to the other support leg, the ZMP position must shift from under the current
supporting leg to the other. Control laws (13) - (15) are expected to make the ZMP track
such a reference position Pd. Following is the control flow:

1. Detect the angle and its velocity at the ankle and hip joints.

2. Detect the ground reaction forces at both ends of the feet.

3. Calculate the lateral sway angle φ by following the next relationship (Appendix 7.1):

φ =
θLA − θRA

2
. (26)

4. Calculate PZMP by using (11).
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5. Compute the generalized force τφ according to (13).

6. Distribute the generalized force τφ to each joint torque τ so as to satisfy (14). Namely,

T = (JT(Θ))∗τφ + (I − JT(Θ)(JT(Θ))∗)p. (27)

Here, ∗ denotes the generalized inverse matrix, and p is an arbitrary 4-dimensional vector.
See Appendix 7.2 for the calculation of J(Θ).

7. Output the joint torque by using the actuators.

3.2.4 Switching from double- to single-support phase
According to control law (13), the ZMP position is shifted to the side of the next supporting
leg by following Pd. The control law is switched when the ZMP position reaches an area under
the next supporting foot.

4. Robot experiment

4.1 Object
In the previous section, we proposed a control method for lateral stepping that does not
require motion planning, i.e. the reference trajectory generation of joint angles. This direct
ZMP control is expected to allow a robot to naturally change their motion according to the
slope. The objective of this experiment is to confirm this effect by using a robot with reduced
DoF. The details of the robot are described in section 4.3.

4.2 Simulation
Prior to the experiments, the control method is simulated under the influence of the constant
external force, as expressed by

Fx = −Mg sin α (28)

Fy = −Mg(1 − cos α). (29)

This is equivalent to the gravitational effect on a slope with angle α. The cases where α = 0
[rad] (no external force) and α = 0.2 [rad] are examined. The parameters are M = 2.5 [kg],
m = 1.25 [kg], m f = 0 [kg], L = 0.20 [m], � = 0.1 [m], �B = 0.07 [m], � f = 0.02 [m]. The
feedback gains of (1) are set to Kd = 30, Kp = 500 and K f = 1, while those of (13) are Kd = 5,
Kp = 10 and K f = 100. To the hip joint in the single-support phase, the conventional PD
control with non-linear compensation is applied with a reference trajectory that lifts up the
swing leg – the feedback gains are Kd = 100 and Kp = 500.
The graphs in Fig. 5(a) and (b) the ZMP position over time. Regardless of the external forces,
similar ZMP profiles are obtained, implying that the body weight shifts as expected in both
cases. The time-based plot of the horizontal CoG position is depicted in Fig. 5(c): when the
external force is exerted, the stepping motion is performed with the posture tilted against it.

4.3 Equipment
Experiments were performed using a biped robot with four DoFs: two in the hip joints, two
in the ankle joints and no DoF other than that in the lateral plane. This is an improved version
of that in our previous paper (Ito et al., 2007; 2008). The robot is 35 [cm] high and weighs 2.4
[kg]. The sole of the foot is 8.6 [cm] long and the horizontal distance between the right and
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(b) Reference and actual trajectory of ZMP for α = 0.20
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(c) Horizontal position of CoG.

Fig. 5. Simulation results.

left ankles is 13.4 [cm]. Four motors are installed: two drive hip joints, while the others drive
ankle joints. A rotary encoder installed in each motor provides information on the joint angles
of the robot. Furthermore, three load cells are attached to each sole to provide ZMP detection.
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5. Compute the generalized force τφ according to (13).

6. Distribute the generalized force τφ to each joint torque τ so as to satisfy (14). Namely,

T = (JT(Θ))∗τφ + (I − JT(Θ)(JT(Θ))∗)p. (27)

Here, ∗ denotes the generalized inverse matrix, and p is an arbitrary 4-dimensional vector.
See Appendix 7.2 for the calculation of J(Θ).

7. Output the joint torque by using the actuators.

3.2.4 Switching from double- to single-support phase
According to control law (13), the ZMP position is shifted to the side of the next supporting
leg by following Pd. The control law is switched when the ZMP position reaches an area under
the next supporting foot.

4. Robot experiment

4.1 Object
In the previous section, we proposed a control method for lateral stepping that does not
require motion planning, i.e. the reference trajectory generation of joint angles. This direct
ZMP control is expected to allow a robot to naturally change their motion according to the
slope. The objective of this experiment is to confirm this effect by using a robot with reduced
DoF. The details of the robot are described in section 4.3.

4.2 Simulation
Prior to the experiments, the control method is simulated under the influence of the constant
external force, as expressed by

Fx = −Mg sin α (28)

Fy = −Mg(1 − cos α). (29)

This is equivalent to the gravitational effect on a slope with angle α. The cases where α = 0
[rad] (no external force) and α = 0.2 [rad] are examined. The parameters are M = 2.5 [kg],
m = 1.25 [kg], m f = 0 [kg], L = 0.20 [m], � = 0.1 [m], �B = 0.07 [m], � f = 0.02 [m]. The
feedback gains of (1) are set to Kd = 30, Kp = 500 and K f = 1, while those of (13) are Kd = 5,
Kp = 10 and K f = 100. To the hip joint in the single-support phase, the conventional PD
control with non-linear compensation is applied with a reference trajectory that lifts up the
swing leg – the feedback gains are Kd = 100 and Kp = 500.
The graphs in Fig. 5(a) and (b) the ZMP position over time. Regardless of the external forces,
similar ZMP profiles are obtained, implying that the body weight shifts as expected in both
cases. The time-based plot of the horizontal CoG position is depicted in Fig. 5(c): when the
external force is exerted, the stepping motion is performed with the posture tilted against it.

4.3 Equipment
Experiments were performed using a biped robot with four DoFs: two in the hip joints, two
in the ankle joints and no DoF other than that in the lateral plane. This is an improved version
of that in our previous paper (Ito et al., 2007; 2008). The robot is 35 [cm] high and weighs 2.4
[kg]. The sole of the foot is 8.6 [cm] long and the horizontal distance between the right and
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(c) Horizontal position of CoG.

Fig. 5. Simulation results.

left ankles is 13.4 [cm]. Four motors are installed: two drive hip joints, while the others drive
ankle joints. A rotary encoder installed in each motor provides information on the joint angles
of the robot. Furthermore, three load cells are attached to each sole to provide ZMP detection.
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Fig. 6. Snapshots of biped robot experiments on a sloped surface.

The robot controller, operated by ART-LINUX, acquires the sensory information via a pulse
counter and A/D converter. It calculates the torque that should be applied at each joint and
sends them to the motor driver via a D/A converter. In the experiment, the controller operates
at 1 [ms].

4.4 Methods
In the single-support phase, the control law (1) is applied for the ankle joint of the support leg
with feedback gains of Kd = 0.001, Kp = 0.005 and K f = 0.0018. Note that the unit of the angle
is set to degrees to allow a simple check of the robot motion in the experiment; thus, the gains
are given in the degree unit system. θ in (1) is approximated by the CoG sway angle φ, and φ
at the start of each single-support phase is set to θd in (1) so that the ankle joint torque initially
becomes zero. The other joint angles are controlled by the PD control. Its reference trajectories
are set as follows. The hip joint of the swing leg is held in its neutral position, whereas that of
the support leg is extended 30 [deg] from its neutral position in 8 [s], and then, returned to the
neutral position again in 8 [s], which is represented by the fifth-order polynomial equation of
the time. The ankle joint of the swing leg is controlled so that its sole becomes parallel to the
ground at the end of the single-support phase. The control mode is switched when the hip
joint angle reaches a neutral position. The feedback gains of the PD control are Kd = 0.0009
and Kp = 0.009. They are the same for the three joints.
The double-support phase uses control laws (13)-(15). The feedback gains are set to Kd =
0.001, Kp = 0.002 and K f = 0.07. Pd is set using the fifth-order polynomial equation, to move
18 [cm], i.e. from 8 [cm] (the side of the previous support leg) to 10 [cm] on the reverse side,
in 15[s]. To promote ZMP movement, the distance of the ZMP shift is set slightly larger than
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(a) Reference and actual trajectory of ZMP on flat floor.
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(b) Reference and actual trajectory of ZMP on slope.

(c) Horizontal position of CoG.

Fig. 7. Experimental results.
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Fig. 6. Snapshots of biped robot experiments on a sloped surface.

The robot controller, operated by ART-LINUX, acquires the sensory information via a pulse
counter and A/D converter. It calculates the torque that should be applied at each joint and
sends them to the motor driver via a D/A converter. In the experiment, the controller operates
at 1 [ms].

4.4 Methods
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the time. The ankle joint of the swing leg is controlled so that its sole becomes parallel to the
ground at the end of the single-support phase. The control mode is switched when the hip
joint angle reaches a neutral position. The feedback gains of the PD control are Kd = 0.0009
and Kp = 0.009. They are the same for the three joints.
The double-support phase uses control laws (13)-(15). The feedback gains are set to Kd =
0.001, Kp = 0.002 and K f = 0.07. Pd is set using the fifth-order polynomial equation, to move
18 [cm], i.e. from 8 [cm] (the side of the previous support leg) to 10 [cm] on the reverse side,
in 15[s]. To promote ZMP movement, the distance of the ZMP shift is set slightly larger than
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(a) Reference and actual trajectory of ZMP on flat floor.
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(b) Reference and actual trajectory of ZMP on slope.

(c) Horizontal position of CoG.

Fig. 7. Experimental results.
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the natural width between the two ankle joints (x f =6.7[cm]). The control mode is switched on
the basis of the ZMP position. This threshold is set 7 [cm]. Experiments are executed on both
flat ground and an 8 [deg] slope.

4.5 Results and remarks
Snapshots of the robot motion on the slope are shown in Fig. 6. To evaluate the behaviour
for both the conditions, time-based plots of the ZMP position in the double-support phase are
shown in Fig. 7: (a) is on the flat ground and (b) is on the slope. The ZMP profiles are quite
similar, implying that the stepping motion can be achieved regardless of the slope angle. The
time based plot of the horizontal CoG position is shown in Fig. 7(c). The profile of the slope
condition is shifted up from that on flat ground, indicating that lateral motion is achieved by
tilting the entire body adaptively against the slope, as shown in Fig. 1. The slow motion of the
robot requires improvement. Correcting mechanical problems, such as backlash at the joints,
will improve the motion speed somewhat.

5. Conclusions

The generation of the joint or CoG reference trajectories is a complicated task in biped robot
control. By restricting the task to balance control in the lateral plane motion, a control method
without the need for generating reference trajectories was proposed. This control method is
essentially a feedback control of the ZMP position that makes the most use of the information
on the ground reaction forces. Thus, the reference trajectories of both joints and the CoG
of the body, which are usually affected by environmental conditions such as the slope, are
unnecessary, although those of the ZMP position are required. This approach provides natural
adaptive changes in the lateral motion. Applying it to the control of a biped robot, whose DoF
of motion were restricted within the lateral plane, experimentally confirmed its effectiveness.
Improving the speed of the robot’s movements and applying this technique to 3D biped
locomotion are considered for future work.
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7. Appendex

7.1 Definition of φ

The lateral sway angle φ is calculated as

φ = arctan
xG
yG

. (30)

Here, xG and yG are the horizontal and vertical positions of the CoG of the lateral sway model,
respectively, and are described as

xG = 2ρ cos
θRA + θLA

2
sin

θLA − θRA

2
(31)

yG = 2ρ cos
θRA + θLA

2
cos

θLA − θRA
2

, (32)
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where

ρ =
2m�+ ML
2(2m + M)

. (33)

Using this relationship, we obtain

xG

yG
= tan

θLA − θRA

2
. (34)

According to the definition of the generalized coordinates (30), φ is expressed by (26), i.e.,

φ = Jφ1Θ = Jφ2X, (35)

where
Jφ1 =

� − 1
2 0 0 1

2

�
(36)

Jφ2 =
�

0 0 0 0 0 1
2 0 0 − 1

2

�
. (37)

The definition of X will be seen later in (47).

7.2 Calculation of the Jacobian matrix
The Jacobian matrix J(Θ), which maps φ̇ to Θ̇, is calculated as follows. From (26), we get

φ̇ =
θ̇LA − θ̇RA

2
. (38)

On the other hand, a kinematic relationship among the joint angles is given as

− θRA + θRH + θLH − θLA = π. (39)

Differentiating it, we obtain

− θ̇RA + θ̇RH + θ̇LH − θ̇LA = 0. (40)

In addition, the position of the left hip joint (xRH , yRH) can be described in two ways:
�

xRH
yRH

�
=

� −x f + L sin θRA
L cos θRA

�
=

�
x f − L sin θLA − 2�B sin(θLH − θLA)

L cos θLA − 2�B cos(θLH − θLA)

�
. (41)

Differentiating them, the following equations hold.
� −Lθ̇LA cos θLA − 2�B(θ̇LH − θ̇LA) cos(θLH − θLA)

−Lθ̇LA sin θLA + 2�B(θ̇LH − θ̇LA) sin(θLH − θLA)

�
=

�
Lθ̇RA cos θRA
−Lθ̇RA sin θRA

�
. (42)

Solve the three equations (38), (40) and (42) as four variables Θ̇ = [θ̇RA, θ̇RH , θ̇LH , θ̇LA]
T and

the relationship between Θ̇ and φ̇ is represented by

Θ̇ =
2

J1 + J3

⎡
⎢⎢⎣

−J1
−J1 + J2
J3 − J2

J3

⎤
⎥⎥⎦ φ̇ = J(Θ)φ̇ (43)
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Fig. 8. Notation for the derivation of motion equation.

J1 = 2�B sin θLH (44)

J2 = L sin(θLH + θRH) (45)

J3 = 2�B sin θRH . (46)

7.3 Motion equations
We define the vectors X and F as follows:

X = [ xB yB θB xL yL θL xR yR θR ]T (47)

F = [ FLH
x FLH

y FRH
x FRH

y FLA
x FLA

y FRA
x FRA

y ]T. (48)

The mechanical constraint is described as

CC(X) = 0, (49)

where

CC(X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xB − �B sin θB − xL − �s sin θL
yB − �B cos θB − yL − �s cos θL
xB + �B sin θB − xR + �s sin θR
yB + �B cos θB − yR − �s cos θR

xL − � sin θL
yL − � cos θL
xR + � sin θR
yR − � cos θR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)

�s = L − �. (51)
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Refer to Fig. 8 for the notations. The motion equation is expressed as

MẌ = JT
X F + G0 + JT

θ T. (52)

Here,
M = diag[MB, MB, IB, ML, ML, IL, ML, ML, IL] (53)

JX =
∂CC(X)

∂X
(54)

G0 = GG + JT
e Fe (55)

GG = [ 0 −MBg 0 0 −MLg 0 0 −MLg 0 ]T (56)

Jθ =

⎡
⎢⎢⎣

0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 −1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0

⎤
⎥⎥⎦ (57)

Je =

�
0 0 0 0 0 ρ cos θL 0 0 −ρ cos θR
0 0 0 0 0 −ρ sin θL 0 0 −ρ sin θR

�
(58)

Fe =
�

Fx Fy
�T . (59)

Differentiating (49) two times, we obtain

JXẌ + C0 = 0, (60)

where
C0 = J̇X · Ẋ . (61)

Combining (52) with (60), we can get
�

M −JT
X

−JX 0

� �
Ẍ
F

�
=

�
G0 + JT

θ τ
C0

�
. (62)

The matrix of the left hand side has an inverse matrix since M has it. This inverse matrix is
put to �

M −JT
X

−JX 0

�−1

=

�
N0 NT

1
N1 N2

�
. (63)

Then, (62) can be solved for Ẍ and F.
�

Ẍ
F

�
=

�
N0 NT

1
N1 N2

� �
G0 + JT

θ τ
C0

�
. (64)

From (35),
φ̈ = Jφ2Ẍ = Jφ2(N0(G0 + JT

θ JT
φ1τφ) + NT

1 C0). (65)

The dynamics of φ is expressed by (16), where

M(Θ) = (Jφ2N0 JT
φ2)

−1 (66)

C(Θ, Θ̇) = (Jφ2N0 JT
φ2)

−1 Jφ2 NT
1 C0 (67)
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φ̈ = Jφ2Ẍ = Jφ2(N0(G0 + JT

θ JT
φ1τφ) + NT

1 C0). (65)

The dynamics of φ is expressed by (16), where

M(Θ) = (Jφ2N0 JT
φ2)

−1 (66)

C(Θ, Θ̇) = (Jφ2N0 JT
φ2)

−1 Jφ2 NT
1 C0 (67)

31
Motion Control of Biped Lateral Stepping
Based on Zero Moment Point Feedback for Adaptation to Slopes



G(Θ, g, F) = (Jφ2N0 JT
φ2)

−1 Jφ2 N0G0. (68)

Note that Jφ1 Jθ = Jφ2 and X is uniquely written by Θ, i.e., X = X(Θ).
On the other hand, the ground reaction forces are expressed as

FLO =
1
2

FLA
y +

1
� f

τLA (69)

FLI =
1
2

FLA
y − 1

� f
τLA (70)

FRO =
1
2

FRA
y +

1
� f

τRA (71)

FRI =
1
2

FRA
y − 1

� f
τRA. (72)

Assume that Fall is constant because it corresponds to the total weight. Then, (11) is rewritten
as

PZMP = JT
Z1F + JT

Z2τ (73)

JZ1 =
[

0 0 0 0 0 −x f /Fall 0 x f /Fall
]T

(74)

JZ2 =
[

2/Fall 0 0 −2/Fall
]T . (75)

From (64), F is expressed as
F = N1(G0 + JT

θ τ) + N2C0. (76)

Substituting this equation to (73), we obtain (17), where

P(Θ) = JT
Z1N1 JT

θ + JT
Z2 (77)

Q(Θ, Θ̇) = JT
Z1N2C0 (78)

R(Θ, g, F) = JT
Z1N1G0. (79)
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34 Biped Robots

1. Introduction

Legged robots have been studied and developed for a long time. The primary advantage of
legged motion is that they can traverse terrains inaccessible to wheeled robots. Biped robots
are probably the most complicated of legged robots. Despite their complexity there has been
a substantial amount of work done in the field including different techniques that have been
developed to model, design and control biped robots. There are primarily two kinds of biped
robots: active and passive bipeds. Many sophisticated, intelligent bipeds have been built by
major companies. Most of the bipeds built are based on active control techniques; these are
typically complicated, require high energies and are expensive to build. Also, they are far
from mimicking true human motion. Owing to this, reliable biped robots are still elusive even
to this day.
McGeer (1990) analyzed the natural dynamics of two-legged systems. He numerically and
experimentally analyzed systems with concentrated masses on legs and hip. These bipeds
did not have a torso and no external torques were applied. He showed that these systems
could walk stably down small slopes and sustain the motion. This class of biped motion is
known as Passive Dynamic Walking.
The step length and the velocity of the passive biped depend on parameters such as the
masses, lengths and the slope on which the biped is walking. A passive biped is much
more efficient than active bipeds and mimics the human motion better. Goswami, Espiau
& Keramane (1996); Goswami et al. (1993); Goswami, Thuilot & Espiau (1996); Goswami,
Thuilotz & Espiauy (1996) describe the limit cycles and their stability in the passive gait of
a biped without a torso. They obtained some numerical solutions of a system with known
parameters. In Goswami et al. (1997) and Roussel et al. (98) bifurcation and chaos are studied
and the dependence of the gait on the slope is explained.
Asano, Luo & Yamakita (2004) use energy-based control laws to enable the biped to mimic the
passive motion; they analyze a biped without torso and knees. Asano, Yamakita, Kamamichi
& Luo (2004), Kim & Oh (2004), Paul et al. (2003), Silva & Machado (2001) and Goswami (1999)
are some more of the innovative attempts to build a simple yet controllable walking machine.
Although passive dynamic walking is efficient, simple to implement and analyze, the step
length and the velocity of motion of the passive biped are greatly dependent on the system
parameters. The path followed by the biped is uncontrollable and there is no control
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Fig. 1. Two Dimensional Model of the Biped

whatsoever on the system performance. This makes passive bipeds unrealistic for practical
applications.
Actively controlled bipeds on the other hand are very adaptable to path planning and stability
control at the cost of simplicity. Further they are typically prohibitively costly. Recognizing
this, some attempts have been made to incorporate passive dynamics into actively controlled
bipeds as it could theoretically result in an efficient method.
The torso plays an important role in the motion of bipeds. Typically most of the mass is
concentrated on the torso or on the hip. It can be observed even in human motion that the
position of the torso changes with a change in slope. Athletes also seem to use the torso to
gain efficiency. Our present work is motivated by this influence the torso has on the biped.
Although many bipeds with torsos have been built, little work has been done to utilize the
effect of the torso on dynamics. This work tries to incorporate torso dynamics into the control
of bipeds.
This paper analyzes the effect of the torso on the step length and velocity of a biped walking
down a known slope. This information is used to control the step length and velocity of biped
by applying the torque solely at the hip. The legs are passive at all times. The motion of legs is
controlled solely by the mathematical coupling between the motion of the torso and the legs.
The biped analyzed is shown in Fig. 1.
The goal of this work is to control just the step-length and velocities; clearly, there are
infinitely many path profiles that can be executed to achieve this goal. Each path profile has
a corresponding torque and external energy associated with it. In this work the path profile
that minimizes the external energy input is found and the corresponding torque is applied.
A biped is built to implement and test the effect of torso on the biped motion. The biped walks
only down the slopes. The legs are not actuated externally. Different torques are input to the
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biped to make it walk with a required step length. The biped weighs 7 kg and is 60 cm tall. A
DC motor is used to actuate the torso.
The second section provides the mathematical model for the biped being considered. It
explains the phases of biped motion and derives the governing equation of motion. A
brief introduction to terminology in bipeds and computational methods in passive bipeds
is also provided. The third section presents the simulations of the biped in forward and
inverse dynamics. Trajectories for typical parameter values are solved for and the variation
of potential energy and kinetic energy is studied. Also the dependence of biped motion on
the torso is studied. Section Four defines the optimal problem and its corresponding solution.
Optimal trajectories and torques are obtained. Section Five explains the experimental setup,
and Section Six, the results of practical application of the principle. Finally, Section Seven
summarizes the work and presents a list of future tasks to be accomplished.

2. Modeling

The biped is modeled in two dimensional space. It has two legs without knees, and the mass
is assumed to be concentrated at the center of mass of each leg. The lengths of both legs are
equal and the two legs are connected by a hip. There is a third mass on the torso which is at
the center of the hip. The motor mass is assumed to be concentrated at a known distance from
the hip. The degrees of freedom and parameters are as shown in Fig. 1.
The basic motion consists of two phases: the swing phase and the impact phase. The swing
phase consists of motion of the swing leg, and the motion is described by a continuous
differential equation obtained from Lagrange equations. The impact phase consists of
instantaneous impact of the swing leg and the transition to the next step. The following
assumptions are made in deriving the equations of motion.

• The biped is modeled only in the lateral plane; the motion in the longitudinal plane is
neglected.

• The impact of the swing leg at the end of each step is infinitesimally small.

• The impact of the swing leg is plastic.

• After the impact phase the functionality of each leg is interchanged; i.e., the swing leg
becomes the stance leg, and vice versa.

• The angular momentum is conserved during impact.

With these assumptions, the governing equation of the biped can be derived for the swing
phase as follows.

M(q, q̇)q̈+ C(q, q̇) + K(q) = F, when θ1 + θ2 �= π − 2φ (1)

The impact occurs when θ1 + θ2 = π − 2φ; the states after impact are given by

q+ =

⎛
⎝

0 1 0
1 0 0
0 0 1

⎞
⎠ q− (2)

q̇+ =

⎛
⎝

0 1 0
1 0 0
0 0 1

⎞
⎠�

q− + [JM−1 JT ]−1δṙe
�

(3)
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re is a vector containing the co-ordinates of the end-point of the swing leg.
M, C, K, F, and J are system matrices as described by Eqs. 4–8.

M(q) =⎡
⎣

m1a2 + (mT +mH +m2)�
2 −m2b� cos(θ1 − θ2) (mHpl −mTql) � sin (θ1 + θC)

−m2b� cos (θ1 − θ2) m2b2 0
(mHpl −mTql) � sin (θ1 + θC) 0 mHp2

l +mTq2
l

⎤
⎦

(4)

C(q̇, q) =

⎡
⎣
(mHpl −mTql) � cos (θ1 − θ2) θ̇2

1 −m2b� sin (θ1 − θ2) θ̇2
2

m2b� sin (θ1 − θ2) θ̇2
1

(mHpl −mTql) � cos (θ1 + θC) θ̇2
1

⎤
⎦ (5)

K(q) =

⎡
⎣
[m1a+ (mH +mT +m2) �] g cos θ1

−m2gb cos θ2
(mHpl −mTql) g sin θC

⎤
⎦ (6)

J =
∂re

∂q
(7)

F =

⎡
⎣

0
0
τ

⎤
⎦ (8)

The parameters of motion are the step length (λ) and the time taken for each step (tend); tend
can be obtained by solving

θ1(tend) + θ2(tend) = π − 2φ (9)

The step length λ is then given by

λ =
�
(xe f − xei)2 + (ye f − yei)2 (10)

where, xe, ye, the co-ordinates of the end point of the swing leg, are given by

xe = � cos θ1 − � cos θ2 (11)

ye = � sin θ1 − � sin θ2 (12)

xei, yei are the co-ordinates at t = 0, and, xe f , ye f are the co-ordinates at t = tend.

3. Simulation

There are two stages of simulation: forward dynamics and inverse dynamics. Forward
dynamics refers to the solution of the equations to compute the dynamic response to the
imposed excitations, and is typically done using a standard procedure such as the Runge
Kutta algorithm (which is the one we used). Inverse dynamics is the computation of the
excitation necessary to achieve a certain prescribed motion, and is described in the next
subsection.
The initial choice of parameters is such that they are close to the physical system. Later some
parameters are varied so that the dependence of the path on the parameters can be verified.
The parameter values are chosen considering the final biped to be built and also care is taken
that the parameters do not create singularities in the problem. The parameter values chosen
are given in Table 1.
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Parameters
Parameter Value
m1 0.5 Kg
mH 2.5 Kg
mT 3.5 Kg
m2 0.5 Kg
a 0.14 m
b 0.21 m
pl 0.1 m
ql 0.2 m
� 0.35 m
φ 3o

Table 1. Parameter Values
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Fig. 2. Dependence of step length on ql

To check for the dependence of the trajectories on the torso the parameters corresponding to
the torso, pl and ql , are varied; the torso parameters appearing as moment terms mT, mH are
held constant.
The results of the forward dynamic simulation are as follows. Mass mT has a decreasing effect
on λ and tend. As shown in Fig. 2, λ decreases from 9 cm to 7.5 cm when ql changes from 0.1
to 0.6 cm. As expected the decrease in λ causes a decrease in tend from 0.22 sec to 0.16 sec,
as shown in Fig. 3. It can be seen from the graphs that the change in the tend is higher near
smaller values of ql .
Mass mH has an increasing effect on λ and tend. λ increases from 6.6 cm to 9 cm when pl
changes from 0.1 to 0.6 cm. As expected the increase in λ causes an increase in tend from 0.15
sec to 0.23 sec. These are shown in Figs. 4 and 5 respectively.
In order to visualize the change in the shape of the profile, position vector of end point of the
swing leg (xe, ye) is plotted qualitatively for changes in ql and pl . These are shown in Figs. 6
and 7 respectively. In each of the plots the number at the end of the arrow denotes the value
of ql (or pl) at which the profile was generated. The dotted line represents the slope on which
the biped is walking.
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changes from 0.1 to 0.6 cm. As expected the increase in λ causes an increase in tend from 0.15
sec to 0.23 sec. These are shown in Figs. 4 and 5 respectively.
In order to visualize the change in the shape of the profile, position vector of end point of the
swing leg (xe, ye) is plotted qualitatively for changes in ql and pl . These are shown in Figs. 6
and 7 respectively. In each of the plots the number at the end of the arrow denotes the value
of ql (or pl) at which the profile was generated. The dotted line represents the slope on which
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3.1 Inverse Dynamics
In order to make the biped move with a predetermined step length and velocity, an external
torque needs to be applied. The external torque is applied only at the torso. In order to
determine the torque we need to solve the inverse dynamics problem. The flowchart to
determine the torque by inverse dynamics is shown in Fig. 8.
Figure 9 is the input and Fig. 10 is the output of the algorithm. Note that θ1 is monotonic in
this case. The shape of the feet profile is shown in Fig. 11. The step length and step-end time
chosen are 6 cm and 0.43 sec respectively. The maximum torque applied is 4.75 Nm.

4. Optimization

The choice of the profile of θ1 has been arbitrary in the inverse dynamics problem. Now,
we focus on the development of an optimal trajectory for the biped. The objective here is to
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Fig. 6. Qualitative shape of the feet profile for varying ql as numbered (see text for
explanation)

minimize the external energy input to the system given the governing dynamics, step length
and the time-period.
The external energy is supplied in the form of a torque which is applied at the torso. Eq. 20
gives the total external energy supplied to the biped. In the optimal problem the profiles of θ1,
θ2 are reasonably fitted to a cubic curve as shown in Eqs. 13 and 14. There are four unknown
coefficients for each variable. Since the initial conditions, λ and tend are known and since
the profiles should satisfy these conditions, the number of independent coefficients for each
profile is two. These coefficients are the design variables for the optimization problem.
Since the profiles of both θ1 and θ2 are chosen they should satisfy the governing equation,
hence the second equation in the governing equation that couples θ1 and θ2 becomes the
nonlinear equality constraint for the optimization shown in Eq. 22. Also, it should be taken
care that the feet-profile is consistent with the slope; i.e., during the swing phase it should
always be above the ground. This can be modeled using geometry by ensuring that each
point of the feet profile when substituted in the equation of the slope should be non-negative.
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θ2 are reasonably fitted to a cubic curve as shown in Eqs. 13 and 14. There are four unknown
coefficients for each variable. Since the initial conditions, λ and tend are known and since
the profiles should satisfy these conditions, the number of independent coefficients for each
profile is two. These coefficients are the design variables for the optimization problem.
Since the profiles of both θ1 and θ2 are chosen they should satisfy the governing equation,
hence the second equation in the governing equation that couples θ1 and θ2 becomes the
nonlinear equality constraint for the optimization shown in Eq. 22. Also, it should be taken
care that the feet-profile is consistent with the slope; i.e., during the swing phase it should
always be above the ground. This can be modeled using geometry by ensuring that each
point of the feet profile when substituted in the equation of the slope should be non-negative.
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This becomes the nonlinear inequality constraint shown in Eq. 23. The optimal problem
formulation is shown in the next subsection.

4.0.1 Problem definition
Let

θ1opt (t) = a0 + a1t+ a2t
2 + a3t

3 (13)

θ2opt(t) = b0 + b1t+ b2t
2 + b3t

3 (14)
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This becomes the nonlinear inequality constraint shown in Eq. 23. The optimal problem
formulation is shown in the next subsection.

4.0.1 Problem definition
Let

θ1opt (t) = a0 + a1t+ a2t
2 + a3t

3 (13)

θ2opt(t) = b0 + b1t+ b2t
2 + b3t

3 (14)
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Since θ1opt and θ2opt satisfy the initial and end condition

a0 = θ1i
(15)

b0 = θ2i (16)

a1 =
θ1 f

− θ1i
− a2t2end − a3t3end

tend
(17)

b1 =
θ2 f − θ2i − b2t2end − abt3end

tend
(18)

The design variables for the optimization problem are defined as

xopt =

⎡
⎢⎢⎣
a3
a2
b3
b2

⎤
⎥⎥⎦ (19)

The total external energy supplied per step is

Eext(xopt) =
� tend

t0
τ ˙θCdt (20)

The optimal problem is hence (minimization of energy):

Min Eext(xopt) (21)

such that

−m2�b cos (θ1opt − θ2opt )θ̈1opt +m2b2 θ̈1opt +m2�b sin(θ1opt − θ2opt )θ̇
2
1opt

−m2gb cos θ2opt = 0 (22)

−ye − tan φxe ≤ 0 (23)

where, ye and xe are the co-ordinates of the end point of the swing leg. Sequential Quadratic
Programming is used to solve the optimal problem. Solving the optimal problem with λ = 6
cm and tend = 0.35, the maximum torque obtained here is less than half that obtained by
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choosing a quadratic interpolation of θ1. The cubic interpolations of θ1 and θ2 from the
optimal solution are shown in Fig. 12 and 13 respectively. Unlike the inverse dynamics case
the angles do not decrease monotonically. θ1 first increases to 89o and then decreases to 82o.
This indicates a substantial difference in the behavior of the system. The optimal torque
necessary for this motion is shown in Fig. 14. More extensive simulations are documented
in Kappaganthu (2007).

5. Experimental setup

The aim of the experiment is to build a two dimensional biped that can be controlled with the
torso. It is used to verify the controllability of the step length and velocity using a torso. The
third dimension is neglected, steel guides are used to balance the biped in the 3rd dimension.
Prismatic joints actuated by solenoids are used to provide sufficient clearance during the step
take off. The solenoids are timed using the 555 timer circuit whose switches are placed at the
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feet. A motor is used to control the torso. dSpace is used to interface the hardware with the
software. The biped robot built is shown in Fig. 15. The components of the biped and the
principle of operation are explained in the following sections.

5.1 Components
5.1.1 Legs
Two aluminium C channels .125 inches thick are used as legs. The length of the aluminum
channels is 14 inches. Each leg is 1.5 inches wide, the length of the channelsŠ leg is .75 inches.
A hole .25 inches in diameter is drilled at the top of each leg to connect the hip. A small hole
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.125 inches in diameter is drilled near the bottom to assemble the prismatic joint. Mounting
bases, 5 inches long and 2.75 inches wide are provided at 3 inches from the top to mount the
solenoids. An aluminium L angle support is attached at the 10 inches to load the spring of the
prismatic joint.

5.1.2 Prismatic joint
A slider with a slot 1 inch long in a rectangular slab of 2.5X1.26 inches is attached to the leg
with a screw. L angles of 1 inch are fixed at either end of the slider. The top angle is used to
load a spring and the bottom angle is attached to the foot. A spring, 1.5 inch long, is placed
between the angles on the leg and slider.

5.1.3 Solenoid
An AC intermittent solenoid is used to actuate the prismatic joint. The solenoid has a stroke
length of 1 inch; it runs on 120VAC, 60 Hz current. The solenoid is mounted on the mounting
base provided on the leg. The solenoid is 3 inches long and 2.33 inches wide. The pull force at
1 inch stroke length is 6 Lb. The solenoid weighs 2.7 Lb.

5.1.4 Hip
The hip made from a cylindrical aluminium rod of diameter .25 inches. The hip is 10 inches
long. Three hex threads are machined at each end of the hip. Bearings 1 inch long made of
PVC are attached at each end. The bearings are step turned to prevent play.

5.1.5 Feet
Feet are probably the most complicated parts to design. The feet design obtained after a lot of
experimentation is 5 inches long and 3.25 inches wide and are carved from wood. Choosing
the feet profile is a difficult task. It should be such that it does not interfere with the motion.
As there is no actuation at the feet, it should be sufficiently curved to allow free rotation about
the point of contact, however it should not be too steep as this would topple the biped. The
profile has been obtained by trial and error. Each foot has a switch which turns on when the
feet hit the slope.

5.1.6 Torso, motor and gears
The torso is made up of a 2X14 inches aluminium block. A hole .25 inches in diameter is
drilled at the end to connect it to the hip. The torso is fixed in place on the hip using cylindrical
restraints. A DC servomotor is used to actuate the torso. The motor has an internal gear train
for speed reduction. The motor has a nominal voltage of 24VDC and a stall torque of 1250
mNm. It weighs 400 grams and is 3 inches long. The planetary gear train has a reduction
ratio of 531:1. The maximum torque output in intermittent operation is 20Nm. The length of
motor gear train combination is 7 inches. The total weight is 1.5 Kg. Additionally a 1.75 inches
diameter brass gear is attached to the shaft; this meshes with a gear 3 inches in diameter. The
larger gear is fixed to the hip.

5.1.7 555 Time circuit
The 555 timer is used to switch the relay, which actuates the solenoid. The 555 timer is a circuit
whose input is a trigger and the output is a step signal of known period. The period can be
adjusted by changing the resistance and conductance in the circuit. A description of the circuit
can be found in any popular book on circuits. The time period of the output pulse is given by
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load a spring and the bottom angle is attached to the foot. A spring, 1.5 inch long, is placed
between the angles on the leg and slider.
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An AC intermittent solenoid is used to actuate the prismatic joint. The solenoid has a stroke
length of 1 inch; it runs on 120VAC, 60 Hz current. The solenoid is mounted on the mounting
base provided on the leg. The solenoid is 3 inches long and 2.33 inches wide. The pull force at
1 inch stroke length is 6 Lb. The solenoid weighs 2.7 Lb.

5.1.4 Hip
The hip made from a cylindrical aluminium rod of diameter .25 inches. The hip is 10 inches
long. Three hex threads are machined at each end of the hip. Bearings 1 inch long made of
PVC are attached at each end. The bearings are step turned to prevent play.

5.1.5 Feet
Feet are probably the most complicated parts to design. The feet design obtained after a lot of
experimentation is 5 inches long and 3.25 inches wide and are carved from wood. Choosing
the feet profile is a difficult task. It should be such that it does not interfere with the motion.
As there is no actuation at the feet, it should be sufficiently curved to allow free rotation about
the point of contact, however it should not be too steep as this would topple the biped. The
profile has been obtained by trial and error. Each foot has a switch which turns on when the
feet hit the slope.

5.1.6 Torso, motor and gears
The torso is made up of a 2X14 inches aluminium block. A hole .25 inches in diameter is
drilled at the end to connect it to the hip. The torso is fixed in place on the hip using cylindrical
restraints. A DC servomotor is used to actuate the torso. The motor has an internal gear train
for speed reduction. The motor has a nominal voltage of 24VDC and a stall torque of 1250
mNm. It weighs 400 grams and is 3 inches long. The planetary gear train has a reduction
ratio of 531:1. The maximum torque output in intermittent operation is 20Nm. The length of
motor gear train combination is 7 inches. The total weight is 1.5 Kg. Additionally a 1.75 inches
diameter brass gear is attached to the shaft; this meshes with a gear 3 inches in diameter. The
larger gear is fixed to the hip.

5.1.7 555 Time circuit
The 555 timer is used to switch the relay, which actuates the solenoid. The 555 timer is a circuit
whose input is a trigger and the output is a step signal of known period. The period can be
adjusted by changing the resistance and conductance in the circuit. A description of the circuit
can be found in any popular book on circuits. The time period of the output pulse is given by
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Eq. 24, where Rv and Cv are the resistance and capacitance respectively.

Tout = RvCv (24)

5.1.8 Power sources and relays
A total of four power sources are used. Two power sources are used to drive the motors
in forward and backward direction. Agilent 3614A power sources are used. These can be
remotely controlled using dSpace and have a gain of 20 and a range of 0-20VDC. One power
source is connected to the 555 timer circuit and the fourth powers the 12VDC relay which
switches the solenoids. A total of six relays are used. Two 12VDC relays switch the solenoids.
Four 7VDC SPDT relays are used to switch the two power sources controlling the forward
and backward motion of the torso.

5.1.9 Guideways
When the solenoid is actuated the prismatic joint causes the feet to lift up; however because of
the weight of leg the biped tilts sideways. In order to prevent this, guideways are used. These
guideways support the biped at the hip. A better solution would be to use lighter actuators
for the prismatic joint and provide a reactive force at the stance legs ankle. This has not been
implemented as guideways are easier and cheaper to build and at the same time satisfy the
requirement of validating the qualitative effect of the torso on walking in 2 dimensions. An
‘L’ hook at the hip is used for safety to prevent the biped from deviating from the path and
falling.

5.2 Working principle
There are three different processes happening at the same time, the up and down motion of
the prismatic joints, the swinging of legs causing the biped to walk and the controlled motion
of the torso. Data is collected from and transferred only in the latter two processes. The first
process is autonomous to most extent. Fig. 17 and 16 explain the processes involved.
When the left leg hits the slope, the switch on it sends a signal to the first 555 timer circuit
which sends a timed pulse to the solenoid attached to the right leg, this gives clearance to the
leg, due to the dynamics of the system the leg moves forward and takes a step. The timer is
set such that it is less than 50% of step period, this ensures that the leg gets back to its original
length before the end of the step. When the right leg hits the slope the second 555 timer sends
a signal to the left leg and the process repeats itself to create an obstructed motion.
The motor is actuated by an Agilent E3615A power source. The range of this power source
is 0-20VDC; however, negative voltage needs to be applied to drive the motor in the reverse
direction. This problem has been overcome by using two power sources. The power sources
drive the motor in two opposite direction. This too has a problem; the power sources go into
overdrive due to a short circuit between the independent power sources. To completely open
the circuit when the power source is not in use, two relays are used. These relays are closed
when the power source is to be inactive and open when the power source is to be active.

6. Experimental results

Data is collected and analyzed for three sets of data on a slope of 3o . In the first two cases the
torso is fixed and no external torque is applied. The torso is fixed at two different positions,
once leaning forward and once leaning backward. In the third case optimal torque is applied.
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Fig. 16. Solenoid Control Schematic

Fig. 17. Torso Control Schematic

6.1 Fixed torso
The profiles of θ1 and θ2 are obtained without a torque on the torso. In the first case the torso
is held at an angle of 10o and in the second case at an angle of −10o. Fig. 18 show the raw
data obtained with θc = 10o and Fig. 19 show the raw data obtained with θc = −10o. It can
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Eq. 24, where Rv and Cv are the resistance and capacitance respectively.
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remotely controlled using dSpace and have a gain of 20 and a range of 0-20VDC. One power
source is connected to the 555 timer circuit and the fourth powers the 12VDC relay which
switches the solenoids. A total of six relays are used. Two 12VDC relays switch the solenoids.
Four 7VDC SPDT relays are used to switch the two power sources controlling the forward
and backward motion of the torso.

5.1.9 Guideways
When the solenoid is actuated the prismatic joint causes the feet to lift up; however because of
the weight of leg the biped tilts sideways. In order to prevent this, guideways are used. These
guideways support the biped at the hip. A better solution would be to use lighter actuators
for the prismatic joint and provide a reactive force at the stance legs ankle. This has not been
implemented as guideways are easier and cheaper to build and at the same time satisfy the
requirement of validating the qualitative effect of the torso on walking in 2 dimensions. An
‘L’ hook at the hip is used for safety to prevent the biped from deviating from the path and
falling.

5.2 Working principle
There are three different processes happening at the same time, the up and down motion of
the prismatic joints, the swinging of legs causing the biped to walk and the controlled motion
of the torso. Data is collected from and transferred only in the latter two processes. The first
process is autonomous to most extent. Fig. 17 and 16 explain the processes involved.
When the left leg hits the slope, the switch on it sends a signal to the first 555 timer circuit
which sends a timed pulse to the solenoid attached to the right leg, this gives clearance to the
leg, due to the dynamics of the system the leg moves forward and takes a step. The timer is
set such that it is less than 50% of step period, this ensures that the leg gets back to its original
length before the end of the step. When the right leg hits the slope the second 555 timer sends
a signal to the left leg and the process repeats itself to create an obstructed motion.
The motor is actuated by an Agilent E3615A power source. The range of this power source
is 0-20VDC; however, negative voltage needs to be applied to drive the motor in the reverse
direction. This problem has been overcome by using two power sources. The power sources
drive the motor in two opposite direction. This too has a problem; the power sources go into
overdrive due to a short circuit between the independent power sources. To completely open
the circuit when the power source is not in use, two relays are used. These relays are closed
when the power source is to be inactive and open when the power source is to be active.

6. Experimental results

Data is collected and analyzed for three sets of data on a slope of 3o . In the first two cases the
torso is fixed and no external torque is applied. The torso is fixed at two different positions,
once leaning forward and once leaning backward. In the third case optimal torque is applied.
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Fig. 16. Solenoid Control Schematic

Fig. 17. Torso Control Schematic

6.1 Fixed torso
The profiles of θ1 and θ2 are obtained without a torque on the torso. In the first case the torso
is held at an angle of 10o and in the second case at an angle of −10o. Fig. 18 show the raw
data obtained with θc = 10o and Fig. 19 show the raw data obtained with θc = −10o. It can
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be seen that there is no periodicity in the variation. Various initial conditions were tried but
no limit cycle was found. Also it is not possible to wait for the biped to converge to a nearest
limit cycle if it exists, since only 10 to 15 steps are possible on the ramp. The step profiles for
a single step are shown in Figs. 20 and 21 for θc = 10o and θc = −10o respectively.
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Fig. 19. Sensor output of angle subtended by the leg with vertical when θC = −10o

6.2 Optimal torque
The optimal torque is calculated for a step length of 6 cm and a time period of .35 sec.
However, again because of the the inherent differences between the mathematical model and
the real system, there is a substantial difference between the time periods. The optimal torque
obtained is stretched evenly over the real time period. After many iterations the torque’s time
period and the real time period were made to match at .595 sec. The torque applied is shown
in Fig. 22. Figure 23 show the raw data obtained from the sensor. This is more periodic and
indicative of a useful walking robot.
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The comparison of experimental and numerical feet profiles is shown in Fig. 24. It can be seen
that there is a marked qualitative similarity between the experimental and numerical results.
Also it can be observed that there is more repetitiveness in this case when compared to the
case with no torque. The experimental step length was 4.5 cm.

7. Conclusion

This research has explored a novel aspect of biped robots with torsos. It has shown the
importance and utility of the torso in the dynamics of the biped. The torso has been used
efficiently to make the biped walk with the specified step length and velocity. The use of the
torso has reduced the number of actuators required; further, the use of optimal torque has
greatly reduced the external energy required for walking. The biped we analyzed, designed
and constucted effectively uses the natural dynamics of the system; at the same time, the
external excitation at torso has increased the practicability of the biped.
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The comparison of experimental and numerical feet profiles is shown in Fig. 24. It can be seen
that there is a marked qualitative similarity between the experimental and numerical results.
Also it can be observed that there is more repetitiveness in this case when compared to the
case with no torque. The experimental step length was 4.5 cm.

7. Conclusion

This research has explored a novel aspect of biped robots with torsos. It has shown the
importance and utility of the torso in the dynamics of the biped. The torso has been used
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greatly reduced the external energy required for walking. The biped we analyzed, designed
and constucted effectively uses the natural dynamics of the system; at the same time, the
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A working model of the biped has been built. This biped has shown impressive qualitative
agreement with numerical results. The Villanova biped walks on slopes, and the step-length
and velocity can be controlled. When a torque acts on the biped it shows a higher repeatability
of step-length than when no torque is applied. Optimal torque has been computed and
applied, and the biped exhibits satisfactory performance.
Currently efforts are underway to add knees and feet to the analysis. Since the method is
computationally expensive, work is being done to implement control using more efficient
algorithms.
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1. Introduction

Over the past several years a considerable amount of studies have been proposed on biped
walking. The choice of type of feet such as a contact points, flat feet and circular arc
feet is important, because walking stability is essentially affected by the contact with the
ground. Control methods of many traditional humanoids with flat foot are based on zero
moment point (ZMP) that remains inside the convex hull of the foot support using the ankle
torque. There are lots of successful results, but the gaits seem not to be so natural. On the
other hand, for a biped with point contact a geometric tracking method for biped walking
using input-output linearization (Aoustin & Formalsky, 1999; Grizzle et al., 2001; Aoustin&
Formalsky, 2003; Chevallereau et al., 2003) produces stable gait that seems quite natural. (The
idea of the geometric tracking can be seen in the previous studies of Furusho (Furusho et
al., 1981) and Kajita (Kajita & Tani, 1991).) Grizzle, et al. (Grizzle et al., 2001) proposed the
method for a three-link model, only two outputs are controlled, the reference are expressed
as a function of the biped state. Zero dynamics with an impact event of the controlled system
were analyzed by Poincaré method. The effectiveness of geometric tracking has been verified
on a platform called ’Rabbit’ (Chevallereau et al., 2003) (Fig.1 left) with point feet. Westervelt,
et al. (Westervelt et al., 2005) gave some additional results to show capability for robustness,
changing average walking rate, and rejecting a perturbation by ’one-step transition control’
and ’event-based control’.
In the field of passive dynamic walking mechanisms (McGeer, 1990), it is shown that a biped
with large radius circular arc feet can take easily a lot of steps. The prototype Emu (Fig.1
right) can be equipped with various arc feet with different radii (Kinugasa et al., 2003; 2007).
In previous walking experiments the biped Emu is excited by gravity or forced oscillation of
the length of legs. If the feet radius is 10% of leg length, the biped could only take few steps
(Kinugasa et al., 2003) excited by the effect of gravity because of the sensitivity to disturbances
produced by the cables, the guide to avoid lateral motion and so on. The biped could not
walk by the forced oscillation. In the case of a radius which is 97% of leg length, the biped
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Fig. 1. Biped bipeds, “Rabbit” (left) and “Emu” (right).

Emu (Fig.1 right) can take easily few dozen of steps (Kinugasa et al., 2007) by the gravity
and the leg oscillations. The step number is limited only by the space of our laboratory. The
effect of the radii of circular feet was significant for our results, but the change of radius is
also accompanied by other difference in physical parameters, thus a direct conclusion on the
experimental study is not obvious and a more rigorous study must be done. In fact, the same
results are well known in the field of passive dynamic walking as it is mentioned in Section 2.
The geometric tracking method that was used for the underactuated biped Rabbit can be
extended to the case of underactuated biped with circular arc feet. If the biped has the circular
arc feet, the analytical stability study given by Chevallereau, et al. (Chevallereau et al., 2003)
can not be applied directly. The contact point between the supporting foot and the ground
moves forward during the step in this case. The same difficulty appears also in a flat feet
model. For this problem, Djoudi and Chevallereau (Chevallereau & Djoudi, 2006) gave a
solution to analyze the stability with a chosen evolution of the ZMP.
The purpose of the paper is to show the effects of the circular arc feet for an underactuated
planar biped controlled by a geometric tracking method. The effect of the feet shape on the
control properties is obviously depending on the walking strategies. Therefore it is significant
to clarify the effect of the feet shape on the geometric tracking even if it is well known in the
passive dynamic walking field.
A model of our biped is composed of five links. Prismatic knee joints are employed to avoid
the foot clearance problem which occurs in association with large foot, not actuated ankle and
rotational knee joint. A geometric evolution of the biped configuration is controlled, instead
of a temporal evolution. The input-output linearization with a PD control law and a feed
forward compensation is used for geometric tracking. The temporal evolution is analyzed
using Poincaré map. The map is given by an analytic expression based on the angular
momentum about the mobile contact point. The effect of the radius of the circular arc feet
on stability and the basin of attraction is revealed by analytic calculation. It is compared to
the effect of radius of the circular arc feet on passive dynamic walking. Section 2 presents an
overview of previous studies on the circular arc feet. Section 3 gives the biped model. It is
composed of a dynamic model and the impact model (instantaneous double support). Section
4 presents the control method. Section 5 gives the stability analysis. Some simulation results
are shown and some discussion on the effects of the feet radius is developed in Section 6.
Section 7 concludes the paper.
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2. Previous studies on biped with circular arc feet

A circular arc feet for the biped are often treated in the field of passive dynamic walking
McGeer (1990). It is well known that a passive dynamic walking gives an extremely natural
gait. McGeer showed that an eigenvalue of the “speed mode” came to unit when the radius of
a circular arc foot approaches the length of legs, and the eigenvalue becomes unit for synthetic
wheel which has the foot radius equals to the leg length. The “speed mode” was related to
dissipation of energy at the impact.
Wisse, et al. Wisse & van Frankenhuyzen (2003) showed that the larger feet radius, the larger
amount of disturbances is accepted in experiments. The robustness against disturbances is
connected to the size of a basin of attraction for walking. Wisse explained in the other paper
Wisse et al. (2005) that “The walker will fall backward if it has not enough velocity to overcome
the vertical position. Circular feet smoothen the hip trajectory and thus relax the initial
velocity requirement. As the result, the basin of attraction is enlarged.” However a decisive
study on the effect of circular arc feet on the basin of attraction has yet to be performed.
Recently, Wisse, et al. Wisse et al. (2006) presented a stability analysis of passive dynamic
walking with flat feet and passive ankles. The effect of the flat feet was analogous to the effect
of the circular arc feet for many properties in the sense that ZMP smoothly and monotonically
moves forward from heel to toe. However he pointed out the need of validation for a more
accurate model of the heel strike transition. Asano and Luo Asano & Luo (2007) discussed
similar effect between the circular arc feet and the flat feet with actuated ankles.
Adamczy, Collins and Kuo Adamczyk et al. (2006) studied the centre of mass (CoM)
mechanical work per step with respect to foot radius for various simple models of biped
powered by an instantaneous push-off impulse under the stance foot just before contralateral
heel strike Kuo (2001). They also showed relationships between foot radius and metabolic
costs from measured via respiratory gas exchange. The data are collected through human
walking with feet attached to rigid arc, and they conclude that the most effective walking is
obtained when the foot radius equals to 30% of leg length. Geometrically speaking, feet length
should be at least twice of the product of the coxa angle between two legs and the radius of
feet McGeer (1990). Therefore one might choose the radius as 1/3 of a leg length with an angle
0.3 rad between two legs, in order to make an anthropomorphic biped, as McGeer wrote.
Thus for anthropomorphic models, 1/3 of leg length seems to be desirable in the sense of
geometry between step length and feet lengths McGeer (1990), “foot clearance problem” Wisse
& van Frankenhuyzen (2003) and energy costs Adamczyk et al. (2006).

3. The biped modeling

A biped presented in Fig.2 is composed of a torso and two symmetric legs which consist of the
prismatic frictionless knees and the circular arc feet. The hips are rotational frictionless joints.
We assume that the contact point does not slip and the biped walks in a vertical sagittal plane.
The vector θ = [l1, l2, θ1, θ2, θ3]

′ (“ ′ ” means transpose) of configuration variables (see Fig. 2,
left) describes the shape of the biped during single support, li is the length of leg i, θi, i = 1, 2
is the angle between the torso and the leg i, θ3 is the absolute angle of the supporting leg. The
contact point between the biped and the ground is N1. The lowest point of the swing leg tip is
noted N2. The actuator torques and forces are expressed by a vector Γ = [Γ1, Γ2, Γ3, Γ4]

′. The
absolute orientation of the biped θ3 is not directly actuated. Thus, in a single support (SS),
the biped is an under-actuated system. The walking gait consists of single support phases
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experimental study is not obvious and a more rigorous study must be done. In fact, the same
results are well known in the field of passive dynamic walking as it is mentioned in Section 2.
The geometric tracking method that was used for the underactuated biped Rabbit can be
extended to the case of underactuated biped with circular arc feet. If the biped has the circular
arc feet, the analytical stability study given by Chevallereau, et al. (Chevallereau et al., 2003)
can not be applied directly. The contact point between the supporting foot and the ground
moves forward during the step in this case. The same difficulty appears also in a flat feet
model. For this problem, Djoudi and Chevallereau (Chevallereau & Djoudi, 2006) gave a
solution to analyze the stability with a chosen evolution of the ZMP.
The purpose of the paper is to show the effects of the circular arc feet for an underactuated
planar biped controlled by a geometric tracking method. The effect of the feet shape on the
control properties is obviously depending on the walking strategies. Therefore it is significant
to clarify the effect of the feet shape on the geometric tracking even if it is well known in the
passive dynamic walking field.
A model of our biped is composed of five links. Prismatic knee joints are employed to avoid
the foot clearance problem which occurs in association with large foot, not actuated ankle and
rotational knee joint. A geometric evolution of the biped configuration is controlled, instead
of a temporal evolution. The input-output linearization with a PD control law and a feed
forward compensation is used for geometric tracking. The temporal evolution is analyzed
using Poincaré map. The map is given by an analytic expression based on the angular
momentum about the mobile contact point. The effect of the radius of the circular arc feet
on stability and the basin of attraction is revealed by analytic calculation. It is compared to
the effect of radius of the circular arc feet on passive dynamic walking. Section 2 presents an
overview of previous studies on the circular arc feet. Section 3 gives the biped model. It is
composed of a dynamic model and the impact model (instantaneous double support). Section
4 presents the control method. Section 5 gives the stability analysis. Some simulation results
are shown and some discussion on the effects of the feet radius is developed in Section 6.
Section 7 concludes the paper.
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2. Previous studies on biped with circular arc feet

A circular arc feet for the biped are often treated in the field of passive dynamic walking
McGeer (1990). It is well known that a passive dynamic walking gives an extremely natural
gait. McGeer showed that an eigenvalue of the “speed mode” came to unit when the radius of
a circular arc foot approaches the length of legs, and the eigenvalue becomes unit for synthetic
wheel which has the foot radius equals to the leg length. The “speed mode” was related to
dissipation of energy at the impact.
Wisse, et al. Wisse & van Frankenhuyzen (2003) showed that the larger feet radius, the larger
amount of disturbances is accepted in experiments. The robustness against disturbances is
connected to the size of a basin of attraction for walking. Wisse explained in the other paper
Wisse et al. (2005) that “The walker will fall backward if it has not enough velocity to overcome
the vertical position. Circular feet smoothen the hip trajectory and thus relax the initial
velocity requirement. As the result, the basin of attraction is enlarged.” However a decisive
study on the effect of circular arc feet on the basin of attraction has yet to be performed.
Recently, Wisse, et al. Wisse et al. (2006) presented a stability analysis of passive dynamic
walking with flat feet and passive ankles. The effect of the flat feet was analogous to the effect
of the circular arc feet for many properties in the sense that ZMP smoothly and monotonically
moves forward from heel to toe. However he pointed out the need of validation for a more
accurate model of the heel strike transition. Asano and Luo Asano & Luo (2007) discussed
similar effect between the circular arc feet and the flat feet with actuated ankles.
Adamczy, Collins and Kuo Adamczyk et al. (2006) studied the centre of mass (CoM)
mechanical work per step with respect to foot radius for various simple models of biped
powered by an instantaneous push-off impulse under the stance foot just before contralateral
heel strike Kuo (2001). They also showed relationships between foot radius and metabolic
costs from measured via respiratory gas exchange. The data are collected through human
walking with feet attached to rigid arc, and they conclude that the most effective walking is
obtained when the foot radius equals to 30% of leg length. Geometrically speaking, feet length
should be at least twice of the product of the coxa angle between two legs and the radius of
feet McGeer (1990). Therefore one might choose the radius as 1/3 of a leg length with an angle
0.3 rad between two legs, in order to make an anthropomorphic biped, as McGeer wrote.
Thus for anthropomorphic models, 1/3 of leg length seems to be desirable in the sense of
geometry between step length and feet lengths McGeer (1990), “foot clearance problem” Wisse
& van Frankenhuyzen (2003) and energy costs Adamczyk et al. (2006).

3. The biped modeling

A biped presented in Fig.2 is composed of a torso and two symmetric legs which consist of the
prismatic frictionless knees and the circular arc feet. The hips are rotational frictionless joints.
We assume that the contact point does not slip and the biped walks in a vertical sagittal plane.
The vector θ = [l1, l2, θ1, θ2, θ3]

′ (“ ′ ” means transpose) of configuration variables (see Fig. 2,
left) describes the shape of the biped during single support, li is the length of leg i, θi, i = 1, 2
is the angle between the torso and the leg i, θ3 is the absolute angle of the supporting leg. The
contact point between the biped and the ground is N1. The lowest point of the swing leg tip is
noted N2. The actuator torques and forces are expressed by a vector Γ = [Γ1, Γ2, Γ3, Γ4]

′. The
absolute orientation of the biped θ3 is not directly actuated. Thus, in a single support (SS),
the biped is an under-actuated system. The walking gait consists of single support phases
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separated by impacts, which are instantaneous double supports where a leg exchange takes
place.

3.1 Dynamic model for single support phase
The dynamic model can be written as follows:

D(θ)θ̈ + H(θ, θ̇) = BΓ, (1)

where D ∈ �5×5 is the inertia matrix, the vector H ∈ �5 contains Coriolis, centrifugal and
gravity terms. B ∈ �5×4 defines how the inputs Γ enter the model. Due to the choice of joint
coordinates, the matrix B is written as: B = [I4, O4×1]

�.

3.2 Impact model
To derive an impact model, an general dynamic model is written:

De(θ)θ̈e + He(θe, θ̇) = BeΓ + DRi (θ)Ri. (2)

where θe = [θ�, xH , yH ]�, and xH and yH are the Cartesian coordinates of the hip position Hp

shown in Fig.2 (right), De ∈ �7×7 is the inertia matrix, the vector He ∈ �7 contains Coriolis,
centrifugal and gravity terms. Ri = [Rxi , Ryi ]

� is a ground reaction force vector applied at the
contact point. Be ∈ �7×4 and DRi ∈ �7×2 defines how the inputs Γ and Ri enter the model, i
is the number of the leg in contact with the ground, i = 1, i = 2, or i = 1, 2.
When the leg i rolls on the ground, the contact with the ground occurs in Ni. If leg i touches
the ground and since, we assume that no sliding occurs, the position of Ni is ONi = [−Rθ3, 0]�,
where O is defined such that for the current step, the point contact is in 0 when θ3 is zero. This
position can also be calculated by : ONi = OHp + HpCi + Ci Ni (Fig. 2, middle). Thus, we
have :

[ −Rθ3
0

]
=

[
xH + (li − R) sin θ3

yH − (li − R) cos θ3 − R

]
. (3)

Therefore, the following constraint equation is obtained:

Ψi :=
[

xH + Rθ3 + (li − R) sin θ3
yH − R − (li − R) cos θ3

]
= 0. (4)
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Equation (4) is differentiated twice with respect to time, to obtain a constraint on the joint
acceleration:

D�
Ri

θ̈e + CRi(θe, θ̇e)θ̇e = 0. (5)

where D�
Ri

= ∂Ψi/∂θe and CRi comes from the derivation.
We assume that the impact is inelastic and instantaneous without sliding. Let θ̇−e and θ̇+e be
the angular velocities just before and just after the impact, respectively. Let Imi = [Imxi , Imyi ]

�,
for i = 1, 2 be the vector of magnitudes of the impulsive reaction at the contact point of the
stance and the swing leg. During the impact, the previous supporting leg can stay on the
ground or take-off. If the leg takes off, the velocity of N1 after the impact is positive. The
impulsive ground reaction associated to a leg that stays on the ground must be positive and
be in the friction cone. If the supporting leg takes off, the associated impulsive ground reaction
is zero. The impact occurs when the leg tip of the swing leg contacts to the ground. To take
into account the two cases, the following impact equation can be written:

{
De(θ)(θ̇+e − θ̇−e ) = DR(θ)Im
D�

R(θ)θ̇
+
e = 0

, (6)

where,

DR(θ) =

{
DR2(θ), ẏ+N1

> 0
DR12(θ), Imy1 > 0, Imy2 > 0

, Im =

{
Im2 , ẏ+N1

> 0
Im12 , Imy1 > 0, Imy2 > 0

,

DR12 (θ) =

[
DR1 (θ) 0

0 DR2 (θ)

]
, Im12 =

[
Im1

Im2

]
.

From Eq. (6), we obtain:

θ̇+e = (I7×7 − D−1
e DR(D

�
RD−1

e DR)
−1D�

R) · θ̇−e . (7)

Before and after the impact, the biped is in contact with the ground on at least one leg,
thus xH , yH can be calculated as function of θ, and ẋH , ẏH can be calculated as function of
θ̇. Equation (7) can be transformed into an equation of θ, θ̇ only.

θ̇+ = Δ(θ)θ̇−, (8)

where Δ(θ) ∈ �5×5 is the impact matrix. This matrix depends on the foot radius R. In the gait
studied, the legs swap their roles from one step to the next, thus since the biped is symmetric,
the dynamic model is derived only for the support on leg 1. And the leg exchange is taken
into account just after the impact. The state of the biped to begin the next step is :

θi = TLSθ f , θ̇i = TLS θ̇+, θ̇+ = Δ(θ f )θ̇ f , (9)

where TLS ∈ �5×5 is the permutation matrix describing the leg exchange, the indexes i, f
denoted the initial and final states of the biped for one step.
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separated by impacts, which are instantaneous double supports where a leg exchange takes
place.

3.1 Dynamic model for single support phase
The dynamic model can be written as follows:

D(θ)θ̈ + H(θ, θ̇) = BΓ, (1)

where D ∈ �5×5 is the inertia matrix, the vector H ∈ �5 contains Coriolis, centrifugal and
gravity terms. B ∈ �5×4 defines how the inputs Γ enter the model. Due to the choice of joint
coordinates, the matrix B is written as: B = [I4, O4×1]

�.

3.2 Impact model
To derive an impact model, an general dynamic model is written:

De(θ)θ̈e + He(θe, θ̇) = BeΓ + DRi (θ)Ri. (2)

where θe = [θ�, xH , yH ]�, and xH and yH are the Cartesian coordinates of the hip position Hp

shown in Fig.2 (right), De ∈ �7×7 is the inertia matrix, the vector He ∈ �7 contains Coriolis,
centrifugal and gravity terms. Ri = [Rxi , Ryi ]

� is a ground reaction force vector applied at the
contact point. Be ∈ �7×4 and DRi ∈ �7×2 defines how the inputs Γ and Ri enter the model, i
is the number of the leg in contact with the ground, i = 1, i = 2, or i = 1, 2.
When the leg i rolls on the ground, the contact with the ground occurs in Ni. If leg i touches
the ground and since, we assume that no sliding occurs, the position of Ni is ONi = [−Rθ3, 0]�,
where O is defined such that for the current step, the point contact is in 0 when θ3 is zero. This
position can also be calculated by : ONi = OHp + HpCi + Ci Ni (Fig. 2, middle). Thus, we
have :

[ −Rθ3
0

]
=

[
xH + (li − R) sin θ3

yH − (li − R) cos θ3 − R

]
. (3)

Therefore, the following constraint equation is obtained:

Ψi :=
[

xH + Rθ3 + (li − R) sin θ3
yH − R − (li − R) cos θ3

]
= 0. (4)
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Equation (4) is differentiated twice with respect to time, to obtain a constraint on the joint
acceleration:

D�
Ri

θ̈e + CRi(θe, θ̇e)θ̇e = 0. (5)

where D�
Ri

= ∂Ψi/∂θe and CRi comes from the derivation.
We assume that the impact is inelastic and instantaneous without sliding. Let θ̇−e and θ̇+e be
the angular velocities just before and just after the impact, respectively. Let Imi = [Imxi , Imyi ]

�,
for i = 1, 2 be the vector of magnitudes of the impulsive reaction at the contact point of the
stance and the swing leg. During the impact, the previous supporting leg can stay on the
ground or take-off. If the leg takes off, the velocity of N1 after the impact is positive. The
impulsive ground reaction associated to a leg that stays on the ground must be positive and
be in the friction cone. If the supporting leg takes off, the associated impulsive ground reaction
is zero. The impact occurs when the leg tip of the swing leg contacts to the ground. To take
into account the two cases, the following impact equation can be written:

{
De(θ)(θ̇+e − θ̇−e ) = DR(θ)Im
D�

R(θ)θ̇
+
e = 0

, (6)

where,

DR(θ) =

{
DR2(θ), ẏ+N1

> 0
DR12(θ), Imy1 > 0, Imy2 > 0

, Im =

{
Im2 , ẏ+N1

> 0
Im12 , Imy1 > 0, Imy2 > 0

,

DR12 (θ) =

[
DR1 (θ) 0

0 DR2 (θ)

]
, Im12 =

[
Im1

Im2

]
.

From Eq. (6), we obtain:

θ̇+e = (I7×7 − D−1
e DR(D

�
RD−1

e DR)
−1D�

R) · θ̇−e . (7)

Before and after the impact, the biped is in contact with the ground on at least one leg,
thus xH , yH can be calculated as function of θ, and ẋH , ẏH can be calculated as function of
θ̇. Equation (7) can be transformed into an equation of θ, θ̇ only.

θ̇+ = Δ(θ)θ̇−, (8)

where Δ(θ) ∈ �5×5 is the impact matrix. This matrix depends on the foot radius R. In the gait
studied, the legs swap their roles from one step to the next, thus since the biped is symmetric,
the dynamic model is derived only for the support on leg 1. And the leg exchange is taken
into account just after the impact. The state of the biped to begin the next step is :

θi = TLSθ f , θ̇i = TLS θ̇+, θ̇+ = Δ(θ f )θ̇ f , (9)

where TLS ∈ �5×5 is the permutation matrix describing the leg exchange, the indexes i, f
denoted the initial and final states of the biped for one step.
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4. Control law

Since the studied biped is underactuated, and since some significant results have been
obtained for the control of underactuated biped with point contact Chevallereau et al. (2003);
Westervelt et al. (2005), our strategy for walking is to control four variables, such that they
track the reference defined with respect to the monotonic variable θ3. The four variables
that are controlled are grouped in vector h = [h1, h2, h3, h4]

� = [θ2 − θ1, θ3 − θ1 + π, l1, l2]�,
composed of the angle between two legs, the absolute angle of the torso, and the leg lengths,
(shown in Fig. 2, middle). This vector h, plus θ3 defines the configuration of the biped. The
relation with vector θ is the following:

θ =

⎡
⎢⎢⎢⎢⎣

h3
h4

−h2 + θ3
h1 − h2 + θ3

θ3

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1
0 −1 0 0
1 −1 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦

h +

⎡
⎢⎢⎢⎢⎣

0
0
1
1
1

⎤
⎥⎥⎥⎥⎦

θ3 (10)

θ =
∂θ

∂h
h +

∂θ

∂θ3
θ3. (11)

where ∂θ
∂h and ∂θ

∂θ3
are the constant matrices given in (10). Thus we have also:

θ̈ =
∂θ

∂h
ḧ +

∂θ

∂θ3
θ̈3. (12)

The control law is based on a computed torque control law and is such that the behavior of
the controlled variables are:

ḧ = ḧd − Kp(h − hd)− Kd(ḣ − ḣd). (13)

But the reference to follow is a function of the variable θ3 thus the reference is:

hd = hd(θ3) (14)

ḣd =
dhd

dθ3
(θ3)θ̇3 (15)

ḧd =
dhd

dθ3
(θ3)θ̈3 +

d2hd

dθ2
3
(θ3)θ̇

2
3, (16)

Thus the desired behavior in closed loop is given by:

ḧ =
dhd

dθ3
(θ3)θ̈3 +

d2hd

dθ2
3
(θ3)θ̇

2
3 − Kp(h − hd(θ3))− Kd(ḣ − dhd

dθ3
(θ3)θ̇3). (17)

This expression is denoted:

ḧ =
dhd

dθ3
(θ3)θ̈3 + v(θ, θ̇). (18)

The dynamic model (1) can be expressed as function of ḧ and θ̈3 using (12)
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D(θ)(
∂θ

∂h
ḧ +

∂θ

∂θ3
θ̈3) + H(θ, θ̇) = BΓ, (19)

The torques will be calculated in order to have in closed loop the behavior given in (18), thus
the torques must satisfy:

D(θ)((
∂θ

∂h
dhd

dθ3
(θ3) +

∂θ

∂θ3
)θ̈3 +

∂θ

∂h
v(θ, θ̇)) + H(θ, θ̇) = BΓ, (20)

Since the biped is underactuated, all the motion are not possible and based on the expression
of matrix B, the admissible acceleration θ̈3 can be deduced. The dynamic model is
decomposed into two sub-models. The first sub-model is composed of the first four lines
and allows to calculate the torque. The second sub-model is composed of the fifth line and
allows to calculate θ̈3. This sub-system gives:

θ̈3 =
−D5(θ)

∂θ
∂h v(θ, θ̇)− H5(θ, θ̇)

D5(θ)(
∂θ
∂h

dhd

dθ3
(θ3) +

∂θ
∂θ3

)
, (21)

where the index 5 refers to the 5th line of matrix D and vector H.
Finally, the control law is obtained:

Γ = D1,4(θ)((
∂θ

∂h
dhd

dθ3
(θ3) +

∂θ

∂θ3
)θ̈3 +

∂θ

∂h
v(θ, θ̇)) + H1,4(θ, θ̇), (22)

where the indexes 1, 4 refer to the first four lines of matrix D and vector H.

5. Stability analysis

With the control, the output vector h converges to the reference path hd(θ3), and if the
reference function is such that the impact condition is satisfied, the output is zero step after
step for convenient choice of the control gains Kp, Kd Morris & Grizzle (2005).

5.1 Reference path
Since the initial and final configurations for a single support are double support
configurations, when hd is given, θ3 can be deduced from geometrical relations. Thus the
initial and final values of θ3 on one step are known and denoted θ3i and θ3 f . Since the
condition of the impact is a geometrical condition, if the control law has converged and if
θ3 has a monotonic evolution, the configuration at the impact is the desired one. The reference
function is designed such that the impact condition is satisfied. According to equations (8),
(9), and (11), the reference path must be such that:

θ(θ3i) = TLSθ(θ3 f ). (23)

(
∂θ

∂h
∂hd

∂θ3
(θ3i) +

∂θ

∂θ3
)θ̇3i = TLSΔ(θ3 f )(

∂θ

∂h
∂hd

∂θ3
(θ3 f ) +

∂θ

∂θ3
)θ̇3 f , (24)

Equality (24) is composed of five scalar equations, thus ∂hd

∂θ3
(θ3i) and θ̇3i

θ̇3 f
can be calculated as

function of ∂hd

∂θ3
(θ3 f ). The ration of velocities is denoted δθ̇3

:

δθ̇3
=

θ̇3i

θ̇3 f
. (25)
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Since the initial and final configurations for a single support are double support
configurations, when hd is given, θ3 can be deduced from geometrical relations. Thus the
initial and final values of θ3 on one step are known and denoted θ3i and θ3 f . Since the
condition of the impact is a geometrical condition, if the control law has converged and if
θ3 has a monotonic evolution, the configuration at the impact is the desired one. The reference
function is designed such that the impact condition is satisfied. According to equations (8),
(9), and (11), the reference path must be such that:

θ(θ3i) = TLSθ(θ3 f ). (23)

(
∂θ

∂h
∂hd

∂θ3
(θ3i) +

∂θ

∂θ3
)θ̇3i = TLSΔ(θ3 f )(

∂θ

∂h
∂hd

∂θ3
(θ3 f ) +

∂θ

∂θ3
)θ̇3 f , (24)

Equality (24) is composed of five scalar equations, thus ∂hd

∂θ3
(θ3i) and θ̇3i

θ̇3 f
can be calculated as

function of ∂hd

∂θ3
(θ3 f ). The ration of velocities is denoted δθ̇3

:

δθ̇3
=

θ̇3i

θ̇3 f
. (25)
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5.2 Principle of the stability analysis

With the control law, the output vector h converges to the reference path hd(θ3). In the
following section we assume that h = hd(θ3), that is, the system tracks the reference path. The
five degrees of freedom (DoF) of the biped can be reduced to one DoF of a virtual equivalent
pendulum under the condition, and we will hence analyze stability of the pendulum instead
of the original biped.
This condition does not mean that the biped motion is cyclic with respect to time since the
temporal evolution of θ3 is the result of integration of Eq. (21), and thus depends on the
reference path hd(θ3). For a SS phase θ3 must evolve monotonically from θ3i to θ3 f . The
temporal evolution of the biped during a SS phase is completely defined by the velocity θ̇3
for one particular value θ3. The stability analysis is based on the Poincaré return map, and
this return map will be built just before the impact, when the biped is in the configuration
hd(θ3 f ), θ3 f . The variable that is effective to study the convergence to a cyclic motion is θ̇3 f .
Since the angular momentum is proportional to θ̇3 f , the angular momentum (or its square
value) can also be used in the stability analysis

5.3 SS phase
According the Newton-Euler second law, as the gravity is the only external force that produces
a torque around N1, the equilibrium of the biped in rotation around the mobile contact point
N1 gives:

σ̇N1 + MVN1 × VG = rN1 G × M�g, (26)

where VN1 and VG are the velocities at the points N1 = [−Rθ3, 0]� and the center of mass,
G = [xG, yG]

�, M is the total mass of the biped, the gravity vector is �g = [0,−g]�, and σN1 is
the angular momentum about N1. The general expression of σN1 is:

σN1 = ∑
i

mirN1 Gi
× VGi +∑

i
Iiwi (27)

where Gi is the center of mass for the link i, mi and Ii are the mass and the inertia of link i, wi
is the angular velocity of link i, and VGi is the linear velocity of Gi. This quantity is linear with
respect to the joint velocity component and can be written:

σN1 = S(θ)θ̇ (28)

We assume that the biped follows reference path thus we have:

θ =
∂θ

∂h
hd(θ3) +

∂θ

∂θ3
θ3. (29)

θ̇ =
∂θ

∂h
∂hd

∂θ3
(θ3)θ̇3 +

∂θ

∂θ3
θ̇3. (30)

Thus the angular momentum σN1 (28) is rewritten:

σN1 = S(θ)(
∂θ

∂h
∂hd

∂θ3
(θ3) +

∂θ

∂θ3
)θ̇3 = Iθ3(θ3)θ̇3. (31)

Equation (26) can be developed using the expression of rN1 G, VG, VN1 as:

σ̇N1 = −Mg(xG(θ3) + Rθ3) + MR
dyG(θ3)

dθ3
θ̇2

3. (32)
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Equation (31) is combined to Eq. (32) to express the derivative of σN1 with respect to θ3, under
the assumption that θ3 is monotonic:

dσN1

dθ3
= −Mg(xG + Rθ3)

Iθ3

σN1

+ MR
dyG
dθ3

σN1

Iθ3

. (33)

A new variable ξ = σ2
N1

/2 is introduced, to transform Eq. (33) into an equation that can be
integrated analytically:

dξ

dθ3
= κ1(θ3) + 2κ2(θ3)ξ, (34)

κ1(θ3) = −Mg(xG + Rθ3)Iθ3 ,

κ2(θ3) =
MR
Iθ3

(
∂yG(θ)

∂θ

)� dθd

dθ3
.

Equation (34) is a first order ordinary differential equation linear in ξ. Therefore, a general
solution can be obtained, for a step that begins with θ3i as a initial value:

ξ(θ3) = δ2
SS(θ3)ξ(θ3i) + V(θ3), (35)

δSS(θ3) = exp
(∫ θ3

θ3i

κ2(τ2)dτ2

)
, (36)

V(θ3) =
∫ θ3

θ3i

exp
(∫ θ3

τ1

2κ2(τ2)dτ2

)
κ1(τ1)dτ1. (37)

ξ and V are a pseudo-kinetic and a pseudo-potential energies of the virtual equivalent
pendulum, respectively.
As a consequence if θ̇3i is known θ̇3 can be deduced for the current step as a function of V and
δSS without integration of (26). To be able to deduce from this equation the evolution of ξ (and
in consequence of σN1 and θ̇3) step after step, the evolution of ξ at the impact must be taken
into account. In the following section, the index k will be added to denote the number of the
current step

5.4 Impact phase
Let us consider the impact between steps k and k + 1. Using (31), ξ at the end of step k is:

ξk(θ3 f ) =
1
2
(Iθ3 f

(θ3 f )θ̇3 f ,k)
2 (38)

and ξ at the beginning of the step k + 1 is:

ξk+1(θ3i) =
1
2
(Iθ3i

(θ3i)θ̇3i,k+1)
2 (39)

Using (25), and defining δI by,
δI = Iθ3(θ3i)/Iθ3(θ3 f ), (40)

we obtain:

ξk+1(θ3i) = δ2
I δ2

θ̇3
ξk(θ3 f ). (41)
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the angular momentum about N1. The general expression of σN1 is:
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Iiwi (27)

where Gi is the center of mass for the link i, mi and Ii are the mass and the inertia of link i, wi
is the angular velocity of link i, and VGi is the linear velocity of Gi. This quantity is linear with
respect to the joint velocity component and can be written:

σN1 = S(θ)θ̇ (28)
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θ̇ =
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∂hd
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∂θ3
θ̇3. (30)

Thus the angular momentum σN1 (28) is rewritten:

σN1 = S(θ)(
∂θ

∂h
∂hd

∂θ3
(θ3) +

∂θ

∂θ3
)θ̇3 = Iθ3(θ3)θ̇3. (31)

Equation (26) can be developed using the expression of rN1 G, VG, VN1 as:

σ̇N1 = −Mg(xG(θ3) + Rθ3) + MR
dyG(θ3)

dθ3
θ̇2

3. (32)
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solution can be obtained, for a step that begins with θ3i as a initial value:
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ξ and V are a pseudo-kinetic and a pseudo-potential energies of the virtual equivalent
pendulum, respectively.
As a consequence if θ̇3i is known θ̇3 can be deduced for the current step as a function of V and
δSS without integration of (26). To be able to deduce from this equation the evolution of ξ (and
in consequence of σN1 and θ̇3) step after step, the evolution of ξ at the impact must be taken
into account. In the following section, the index k will be added to denote the number of the
current step

5.4 Impact phase
Let us consider the impact between steps k and k + 1. Using (31), ξ at the end of step k is:

ξk(θ3 f ) =
1
2
(Iθ3 f

(θ3 f )θ̇3 f ,k)
2 (38)

and ξ at the beginning of the step k + 1 is:

ξk+1(θ3i) =
1
2
(Iθ3i

(θ3i)θ̇3i,k+1)
2 (39)

Using (25), and defining δI by,
δI = Iθ3(θ3i)/Iθ3(θ3 f ), (40)

we obtain:

ξk+1(θ3i) = δ2
I δ2

θ̇3
ξk(θ3 f ). (41)
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5.5 Poincaré map

Combining (35) and (41), the final value of ξ from the kth step to the (k + 1)th step is as
follows:

ξk+1(θ3 f ) = δ2(θ3 f )ξk(θ3 f ) + V(θ3 f ), (42)

δ(θ3 f ) = δSS(θ3 f )δI δθ̇3
, (43)

where θ3 f is the value of θ3 just before the impact. This equation describes the Poincaré map.
If a cyclic motion exists, then ξk+1(θ3 f ) corresponds to ξk(θ3 f ). Thus, a fixed point ξc(θ3 f ) is
given using (42) as follows:

ξc(θ3 f ) =
V(θ3 f )

1 − δ2(θ3 f )
. (44)

Since ξc(θ3 f ) is positive, V(θ3 f ) and 1 − δ2(θ3 f ) must have the same sign. The following cases
can occur:

Case 1: From (42), the fixed point is stable, if δ2(θ3 f ) < 1. Therefore, if δ2(θ3 f ) < 1 and
V(θ3 f ) > 0, then an asymptotically stable cyclic motion exists.

Case 2: If δ2(θ3 f ) = 1 and V(θ3 f ) = 0, from (42), ξk+1(θ3 f ) = ξk(θ3 f ), namely, all motions are
cyclic.

Case 3: From (42), the fixed point is unstable, if δ2(θ3 f ) > 1. Therefore, if δ2(θ3 f ) > 1 and
V(θ3 f ) < 0, then an unstable cyclic motion exists.

Case 4: V(θ3 f )(1 − δ2(θ3 f )) < 0, no cyclic motion exists.

Since by definition ξ ≥ 0, from Eq. (35) for the complete step, ξc must satisfy the following
inequality:

ξc(θ3 f ) ≥ ξmin = max
θ3

−V(θ3)

δ2(θ3)
. (45)

to have ξ(θ3) > 0 for θ3 between θ3i and θ3 f .
Since a product of the two variables (δI · δθ̇3

) is the ratio of momentum σN1 at the contact point
N1 before and after the impact, the speed of convergence is mainly associated with this ratio
(This point will be detailed in the following sections), and connected to the distance between
the contact points and velocity of the mass center before the impact Chevallereau et al. (2004).
The contact point before the impact, at the end of the single support phase, is denoted N1, the
contact point after the impact, at the beginning of the next single support phase, is denoted
N2. Using equilibrium relation it is possible to compute the change of angular momentum
around the contact point at impact as function of the value of the radii.
The distance d between the N1 and N2 is (see Fig.2)

N1N2 = d = 2(l − R) sin(h1/2). (46)

The angular momentum before the impact denoted σ−
N1

is calculated around N1 and can also
be calculated around N2, it is then denoted σ−

N2
, the angular momentum transfer gives:

σ−
N2

= σ−
N1

− M · d · ẏ−G . (47)
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ms 1 [kg] Is 0.05[kgm2 ] sh 0.4 [m] l1 0.8∼0.85 [m]
m f 1 [kg] I f 0.05[kgm2 ] fm 0.2 [m] l2 0.75∼0.8 [m]
mb 15 [kg] Ib 3[kgm2] sb 0.1 [m] R 0∼1.0 [m]

Table 1. Physical parameters for the dynamic model

At the impact, considering the vertical component Imy1 of the impulsive ground reaction Im1

in the point N1, the equilibrium in rotation around N2 gives:

σ+
N2

= σ−
N2

− d · Imy1 , (48)

where Imy1 is the vertical component of the impulsive ground reaction Im1 applied by the
ground in N1. The vertical equilibrium of the biped at the impact is :

Imy1 + Imy2 = M(ẏ+G − ẏ−G ), (49)

where Imy1 and Imy2 are the vertical components of the impulsive ground reactions Im1 and
Im2 respectively in the points N1 and N2. The impact are such that the two legs stay on the
ground, thus Imy1 > 0 and Imy2 > 0 and we have:

0 < Imy1 < M(ẏ+G − ẏ−G ). (50)

As a consequence, combining (47), (48), and (50), we have:

σ−
N1

− M · d · ẏ+G < σ+
N2

< σ−
N1

− M · d · ẏ−G , if d > 0, (51)

σ+
N2

= σ−
N1

, if d = 0, (52)

σ−
N1

− M · d · ẏ−G < σ+
N2

< σ−
N1

− M · d · ẏ+G , if d < 0. (53)

When Iθ3 > 0 (see Fig.7) and θ̇3 < 0 (see Fig.4), σ−
N1

< 0. Considering (25), (31) and (40), the
ratio δI δθ̇3

is bounded:

1 − M · d · ẏ−G
σ−

N1

< δI δθ̇3
< 1 − M · d · ẏ+G

σ−
N1

, (d > 0), (54)

δI δθ̇3
= 1, (d = 0), (55)

1 − M · d · ẏ+G
σ−

N1

< δI δθ̇3
< 1 − M · d · ẏ−G

σ−
N1

, (d < 0) (56)

6. Simulation

In simulations, the physical parameters of the biped shown in Fig.2 are used (see Table 1).
The gains of the control law are chosen so that tracking errors can be smaller than 10−4 for all
walking gaits.

{
Kp = diag([105, 104, 105, 5 × 104])
Kd = diag([5 × 102, 5 × 102, 103, 5 × 102])

(57)
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5.5 Poincaré map
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to have ξ(θ3) > 0 for θ3 between θ3i and θ3 f .
Since a product of the two variables (δI · δθ̇3

) is the ratio of momentum σN1 at the contact point
N1 before and after the impact, the speed of convergence is mainly associated with this ratio
(This point will be detailed in the following sections), and connected to the distance between
the contact points and velocity of the mass center before the impact Chevallereau et al. (2004).
The contact point before the impact, at the end of the single support phase, is denoted N1, the
contact point after the impact, at the beginning of the next single support phase, is denoted
N2. Using equilibrium relation it is possible to compute the change of angular momentum
around the contact point at impact as function of the value of the radii.
The distance d between the N1 and N2 is (see Fig.2)

N1N2 = d = 2(l − R) sin(h1/2). (46)

The angular momentum before the impact denoted σ−
N1

is calculated around N1 and can also
be calculated around N2, it is then denoted σ−

N2
, the angular momentum transfer gives:
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− M · d · ẏ−G . (47)
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At the impact, considering the vertical component Imy1 of the impulsive ground reaction Im1

in the point N1, the equilibrium in rotation around N2 gives:

σ+
N2

= σ−
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− d · Imy1 , (48)

where Imy1 is the vertical component of the impulsive ground reaction Im1 applied by the
ground in N1. The vertical equilibrium of the biped at the impact is :

Imy1 + Imy2 = M(ẏ+G − ẏ−G ), (49)

where Imy1 and Imy2 are the vertical components of the impulsive ground reactions Im1 and
Im2 respectively in the points N1 and N2. The impact are such that the two legs stay on the
ground, thus Imy1 > 0 and Imy2 > 0 and we have:

0 < Imy1 < M(ẏ+G − ẏ−G ). (50)

As a consequence, combining (47), (48), and (50), we have:
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Fig. 3. The stick diagrams of walking. The foot radii R = 0 [m] (above left), 0.2 [m] (above
right), 0.5 [m] (bellow left) and 0.7 [m] (bellow right).

Foot radius [m] 0 0.1 0.2 0.3
Angle of torso [rad] -0.060 -0.051 -0.043 -0.034

Foot radius [m] 0.4 0.5 0.6 0.7 0.8
Angle of torso [rad] -0.026 -0.018 -0.011 -0.004 0.002

Table 2. Torso angles. The angles are chosen such that cyclic motions have the same value
ξc(θ3 f ) = ξ(−0.12) = 16.27.

6.1 Design of reference path

The reference path hd is defined by a fourth order polynomial function such that:

hd(θ3) = a[1, θ1
3, θ2

3, θ3
3, θ4

3 ]
�, (58)

where a ∈ �4×5 is a coefficient matrix for the reference hd. An intermediate position of SS
phase, positions and derivative with respect to θ just before the impact are given in order to
calculate the coefficients of the reference paths (see Fig.3). Position and derivative with respect
to θ after the impact are calculated by equations (23) and (24) .
Walking is depending on not only the radii of feet but also of the reference path of the length
of the legs. The foot radius reduces the velocity of the CoM before the impact. The reference
paths of the legs are chosen to smoothen the vertical variation of the CoM. However the
references of the legs are affected by the impact, and the choice of the reference paths is limited
accordingly. The radius mainly smoothens the vertical CoM motion.
The initial and the final length for the both legs are chosen as the same value. The final velocity
for the biped are arbitrary fixed. The intermediate configuration for the legs is chosen such
that the swing leg length decreases 0.02 m and the stance leg length increases 0.01 m during
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Fig. 4. Time responses at the cyclic motion with R = 0.5 [m] of the angle of the both legs, the
torso, the length of legs and the leg tip. The reference paths are very well tracked.
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Fig. 3. The stick diagrams of walking. The foot radii R = 0 [m] (above left), 0.2 [m] (above
right), 0.5 [m] (bellow left) and 0.7 [m] (bellow right).

Foot radius [m] 0 0.1 0.2 0.3
Angle of torso [rad] -0.060 -0.051 -0.043 -0.034

Foot radius [m] 0.4 0.5 0.6 0.7 0.8
Angle of torso [rad] -0.026 -0.018 -0.011 -0.004 0.002

Table 2. Torso angles. The angles are chosen such that cyclic motions have the same value
ξc(θ3 f ) = ξ(−0.12) = 16.27.

6.1 Design of reference path

The reference path hd is defined by a fourth order polynomial function such that:

hd(θ3) = a[1, θ1
3, θ2

3, θ3
3, θ4

3 ]
�, (58)

where a ∈ �4×5 is a coefficient matrix for the reference hd. An intermediate position of SS
phase, positions and derivative with respect to θ just before the impact are given in order to
calculate the coefficients of the reference paths (see Fig.3). Position and derivative with respect
to θ after the impact are calculated by equations (23) and (24) .
Walking is depending on not only the radii of feet but also of the reference path of the length
of the legs. The foot radius reduces the velocity of the CoM before the impact. The reference
paths of the legs are chosen to smoothen the vertical variation of the CoM. However the
references of the legs are affected by the impact, and the choice of the reference paths is limited
accordingly. The radius mainly smoothens the vertical CoM motion.
The initial and the final length for the both legs are chosen as the same value. The final velocity
for the biped are arbitrary fixed. The intermediate configuration for the legs is chosen such
that the swing leg length decreases 0.02 m and the stance leg length increases 0.01 m during
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Fig. 4. Time responses at the cyclic motion with R = 0.5 [m] of the angle of the both legs, the
torso, the length of legs and the leg tip. The reference paths are very well tracked.

67Effect of Circular Arc Feet on a Control Law for a Biped



−0.1 0 0.1

0.81

0.82

0.83

y 
ax

is
 o

f 
C

oM
 p

os
it

io
n 

[m
]

x axis of CoM position [m]

R=0 [m]

R=1.0 [m]

CoM velocities are always downward
at pre−impacts.

−0.1 0 0.1
0.794

0.796

0.798

0.8

0.802

y 
ax

is
 o

f 
C

oM
 p

os
it

io
n 

[m
]

x axis of CoM position [m]

R=0 [m]

1.0

A simple model with rigid legs
and circular arc feet

CoM velocity at pre−impact
is upward when R>0.8

Leg lengths are 0.8 [m]

CoM is located at hip
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 5. CoM positions with respect to R. Left: the case of our biped shown in Fig.2. Tangent
vectors of right ends of lines are expressing a post-impact velocity of CoM. Right: the case of
a simple model with rigid legs and circular arc feet. CoM is located at hip position. When R
> 0.8 [m], CoM velocities are upward. It gives a contradiction at the impact or there would
be a flight phase.

the step to avoid that the swing leg tip touches the ground and the length of the legs is 0.8 [m]
at the impact. Therefore the top position of the CoM is almost the same for each foot radius as
shown in Fig.5. For one value R, we choose the angle of the torso at the impact arbitrary. The
angle of the torso at the intermediate configuration is equal to 110% of the value of the torso
angle at the impact. The corresponding value ξc(θ3 f ) is deduced. For example, the coefficient
matrix in Eq.(58) for R = 0.5 is obtained as follows:

a|R=0.5 =

⎡
⎢⎢⎣

0 −3.02 −0.158 70.8 10.9
−0.0201 0.0002 0.255 −0.0106 −8.89

0.810 −0.122 −1.58 8.50 61.2
0.780 −0.0037 1.91 0.254 −36.5

⎤
⎥⎥⎦ (59)

Then from this reference motion we deduced the reference motion for the other value of the
radius R. The angle of the torso at the impact h2(θ3 f ) is adjusted such that the cyclic motions
for all foot radii R have the same value ξc(θ3 f ) as shown in Table 2.
Fig.3 shows examples of stick diagrams of walking for one step with the foot radii R =0 [m],
0.2 [m], 0.5 [m] and 0.7 [m] and the step angle =0.24 [rad]. A cyclic motion for R = 0.5 [m] is
given in Fig.4. CoM positions with respect to R are shown in Fig.5. Tangent vectors of right
ends of lines are expressing a post-impact velocity of CoM. The variation of CoM velocities at
the impact are presented in Fig.6.
Energy excitation for continuous walking with smaller feet radius is mainly done by the
asymmetric mass distribution due to the torso forward inclination. Leg swing also provides a
way of putting energy. For small feet radii, the energy for walking is produced by the weight
of the torso that is inclined forward. For larger feet radii, the energy for walking is produced
by the motion of the swing leg.
Since the impact equation changes, the initial configuration and velocity are changed
accordingly. During the impact, for the chosen reference path, the two legs stay on the ground.
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and after the impact. The vertical velocities before the impact are always directed downward.

6.2 Stability analysis
The variables in the analytic solution (35) are shown in Fig.7 with respect to the monotonic
variable θ3 for various values of the foot radius R. It should be noted that the monotonic
variable is evolving from a positive value to a negative value, θ3 : 0.12 [rad] → −0.12 [rad].
In Fig.7, ξc(θ) is given for all the cyclic motions. It can be observed that ξc(θ3 f ) = ξ(−0.12) =
16.27. The figure of δ2

SS(θ3) is given by Eq. (36). The convergence of Poincaré map, as shown
in Eq. (43), is function of δ2

SS(θ3 f ) = δ2
SS(−0.12). However the values of δ2

SS(−0.12) are very
close to unit thus the convergence of Poincaré map is essentially defined by the impact map :
δ(θ3 f ) ≈ δI δθ̇3

. The second figure from the left of Fig.7 represents the evolution of V defined
by Eq. (37). These functions are essentially affected by the evolution ξ. The third figure of
Fig.7 shows the term Iθ3 given by Eq. (31), Iθ3 is always positive and has not large variation.
This first study concerns reference path with an interlink angle at the impact equals to 0.24
[rad]. For this value, the evolution of δ2

SS(θ3 f ),δI , δθ̇3
and δ(θ3 f ) are given in solid line in Fig.8,

as function of the R. The cyclic motion is stable for R < 0.8.
In order to determine if the radius R = 0.8 is a limit of stability only for one specific reference
path or if this limit is more physical, different kinds of reference motion are considered in the
following. Only the interlink angle h1(θ3 f ) at the impact is changed. For different values of h1
and radii R, the coefficient involves in the convergence condition are drawn in Fig.8.
δθ̇3

and δI increase when R increases and h1(θ3 f ) decreases from Fig.8. δ2 also increases at the
same time. The term δ2 comes to unit when R = 0.8 [m] which means that R has the same
values as the length of legs at the impact.
Remark: We confirmed in another simulations that variations of the torso angle had small
influences on δI and δθ̇3

although it essentially affects ξ. The variables V, δSS, Iθ3 and ξ in
the analytic solution for SS phase change for the torso angle. However the variation of δSS is
smaller than the variations of δI and δθ̇3

with respect to the foot radii. �
Fig.9 presents the stability property with respect to the foot radii. Two black rigid lines show
V and δ2 − 1. V and δ2 − 1 have opposite sign thus a cyclic motion may exist such that (45) is
satisfied for any value of radii R. For R < 0.8 [m], the motion is stable. For R > 0.8 [m], the
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a simple model with rigid legs and circular arc feet. CoM is located at hip position. When R
> 0.8 [m], CoM velocities are upward. It gives a contradiction at the impact or there would
be a flight phase.

the step to avoid that the swing leg tip touches the ground and the length of the legs is 0.8 [m]
at the impact. Therefore the top position of the CoM is almost the same for each foot radius as
shown in Fig.5. For one value R, we choose the angle of the torso at the impact arbitrary. The
angle of the torso at the intermediate configuration is equal to 110% of the value of the torso
angle at the impact. The corresponding value ξc(θ3 f ) is deduced. For example, the coefficient
matrix in Eq.(58) for R = 0.5 is obtained as follows:

a|R=0.5 =

⎡
⎢⎢⎣

0 −3.02 −0.158 70.8 10.9
−0.0201 0.0002 0.255 −0.0106 −8.89

0.810 −0.122 −1.58 8.50 61.2
0.780 −0.0037 1.91 0.254 −36.5

⎤
⎥⎥⎦ (59)

Then from this reference motion we deduced the reference motion for the other value of the
radius R. The angle of the torso at the impact h2(θ3 f ) is adjusted such that the cyclic motions
for all foot radii R have the same value ξc(θ3 f ) as shown in Table 2.
Fig.3 shows examples of stick diagrams of walking for one step with the foot radii R =0 [m],
0.2 [m], 0.5 [m] and 0.7 [m] and the step angle =0.24 [rad]. A cyclic motion for R = 0.5 [m] is
given in Fig.4. CoM positions with respect to R are shown in Fig.5. Tangent vectors of right
ends of lines are expressing a post-impact velocity of CoM. The variation of CoM velocities at
the impact are presented in Fig.6.
Energy excitation for continuous walking with smaller feet radius is mainly done by the
asymmetric mass distribution due to the torso forward inclination. Leg swing also provides a
way of putting energy. For small feet radii, the energy for walking is produced by the weight
of the torso that is inclined forward. For larger feet radii, the energy for walking is produced
by the motion of the swing leg.
Since the impact equation changes, the initial configuration and velocity are changed
accordingly. During the impact, for the chosen reference path, the two legs stay on the ground.
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6.2 Stability analysis
The variables in the analytic solution (35) are shown in Fig.7 with respect to the monotonic
variable θ3 for various values of the foot radius R. It should be noted that the monotonic
variable is evolving from a positive value to a negative value, θ3 : 0.12 [rad] → −0.12 [rad].
In Fig.7, ξc(θ) is given for all the cyclic motions. It can be observed that ξc(θ3 f ) = ξ(−0.12) =
16.27. The figure of δ2

SS(θ3) is given by Eq. (36). The convergence of Poincaré map, as shown
in Eq. (43), is function of δ2

SS(θ3 f ) = δ2
SS(−0.12). However the values of δ2

SS(−0.12) are very
close to unit thus the convergence of Poincaré map is essentially defined by the impact map :
δ(θ3 f ) ≈ δI δθ̇3

. The second figure from the left of Fig.7 represents the evolution of V defined
by Eq. (37). These functions are essentially affected by the evolution ξ. The third figure of
Fig.7 shows the term Iθ3 given by Eq. (31), Iθ3 is always positive and has not large variation.
This first study concerns reference path with an interlink angle at the impact equals to 0.24
[rad]. For this value, the evolution of δ2

SS(θ3 f ),δI , δθ̇3
and δ(θ3 f ) are given in solid line in Fig.8,

as function of the R. The cyclic motion is stable for R < 0.8.
In order to determine if the radius R = 0.8 is a limit of stability only for one specific reference
path or if this limit is more physical, different kinds of reference motion are considered in the
following. Only the interlink angle h1(θ3 f ) at the impact is changed. For different values of h1
and radii R, the coefficient involves in the convergence condition are drawn in Fig.8.
δθ̇3

and δI increase when R increases and h1(θ3 f ) decreases from Fig.8. δ2 also increases at the
same time. The term δ2 comes to unit when R = 0.8 [m] which means that R has the same
values as the length of legs at the impact.
Remark: We confirmed in another simulations that variations of the torso angle had small
influences on δI and δθ̇3

although it essentially affects ξ. The variables V, δSS, Iθ3 and ξ in
the analytic solution for SS phase change for the torso angle. However the variation of δSS is
smaller than the variations of δI and δθ̇3

with respect to the foot radii. �
Fig.9 presents the stability property with respect to the foot radii. Two black rigid lines show
V and δ2 − 1. V and δ2 − 1 have opposite sign thus a cyclic motion may exist such that (45) is
satisfied for any value of radii R. For R < 0.8 [m], the motion is stable. For R > 0.8 [m], the
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Fig. 7. Analytic solutions for SS phase. The figures are δ2
SS by Eq. (36) (above left), V by Eq.

(37) (above right), the function Iθ3 by Eq.(31) (bellow left)and ξ by Eq. (35) (bellow right). θ3
evolves from positive (0.12) to negative (−0.12).

motion is unstable. For R = 0.8 [m], the motion is neutral, in this case any value ξc produces
cyclic motions.
Case corresponding to a radius superior to the length of each leg, (R > 0.8 [m]) can be studied
if we consider that the motions of feet are not in the same sagittal plane to avoid collisions. In
the leg exchange, at the impact, the contact point moves back but the contact point has a large
forward progression during the single support phase, the biped goes forward.
The gradient δ2 (Eq. (43)) of Poincaré map (Eq. (42)) depends on the SS phase (δSS) and the
impact phase (δI · δθ̇3

). δSS was close to unit at the impact. Since ẏ−G < ẏ+G < 0 (see Fig.6),
we obtain that the foot radius R and the sign of d defined the position of the ratio δI δθ̇3

with
respect to 1 from Eq. (54) to Eq. (56).

• if R < l, d > 0, and δI δθ̇3
< 1

• if R = l, d = 0, and δI δθ̇3
= 1

• if R > l, d < 0, and δI δθ̇3
> 1

The property of the gradient δ2 agrees with “speed mode” of passive dynamic walking
obtained by McGeer McGeer (1990). Wisse Wisse et al. (2006) finds results that are different
from our results. For passive walking he finds that for stability point of view the best radius is
14% of leg length, this value corresponds to a case where two monotonic lines of eigenvalues
are crossing. The increasing one is represented ’Speed mode’, and the decreasing one is
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R = 0.8 [m] means that the radius is the same as the leg length at the impact for the analytic
solution. For R = 0.8 [m], the cyclic motion is not stable.

’Totter mode’. However the crossing point changes with respect to slope angle and physical
parameters of bipeds. The 14% of leg length is not the best radius, generally speaking. In our
controlled system, it is predictable that the ’Totter mode’ is close to zero or much smaller than
the ’Speed mode’, since the ’Speed mode’ is expressed by the zero dynamics of the controlled
system and the ’Totter mode’ is depending on the controller gains. Term δ2 has the same
property of the ’Speed mode’, and thus is increasing with respect to R. In our case we are
not interested in the best solution but in the limit where stability exists, thus there are no
contradiction with the results of Wisse Wisse et al. (2006).

6.3 Basin of attraction
Basins of attraction determined by numerical computations are shown in Fig.10. The larger
the foot radii are in the stable domain, the wider the basin of attraction is but the slower the
speed of convergence is. If the foot radius is the same as the leg length, the motion is neutral,
that is, all motions are cyclic.
In Fig.10, the area between the line of ξ−min and ξ−max is the basin of attraction. The variable
ξ just before the impact is used for expressing the basin of attraction. The line ξc represents
the cyclic motions. Fig.11 presents time evolutions of θ3, θ̇3 for 100 steps. The following foot
radii are considered: R = 0 [m], 0.5 [m] , 0.8 [m] and 1.3 [m]. The first two cases are clearly

71Effect of Circular Arc Feet on a Control Law for a Biped



−0.1 0 0.1

1

1.01

1.02

1.03

δ2 S
S

θ3

R=0[m]

0.1

0.2

0.3

0.4
0.5

0.6
0.7
0.8
0.9
1.0

−0.1 0 0.1

−10

0

V

θ3

R=0[m]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

−0.1 0 0.1

12

13

I

θ3

R=0[m]

1.0

θ 3

−0.1 0 0.1
0

10

20

ξ

θ3

R=0[m]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 7. Analytic solutions for SS phase. The figures are δ2
SS by Eq. (36) (above left), V by Eq.

(37) (above right), the function Iθ3 by Eq.(31) (bellow left)and ξ by Eq. (35) (bellow right). θ3
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motion is unstable. For R = 0.8 [m], the motion is neutral, in this case any value ξc produces
cyclic motions.
Case corresponding to a radius superior to the length of each leg, (R > 0.8 [m]) can be studied
if we consider that the motions of feet are not in the same sagittal plane to avoid collisions. In
the leg exchange, at the impact, the contact point moves back but the contact point has a large
forward progression during the single support phase, the biped goes forward.
The gradient δ2 (Eq. (43)) of Poincaré map (Eq. (42)) depends on the SS phase (δSS) and the
impact phase (δI · δθ̇3

). δSS was close to unit at the impact. Since ẏ−G < ẏ+G < 0 (see Fig.6),
we obtain that the foot radius R and the sign of d defined the position of the ratio δI δθ̇3

with
respect to 1 from Eq. (54) to Eq. (56).

• if R < l, d > 0, and δI δθ̇3
< 1

• if R = l, d = 0, and δI δθ̇3
= 1

• if R > l, d < 0, and δI δθ̇3
> 1

The property of the gradient δ2 agrees with “speed mode” of passive dynamic walking
obtained by McGeer McGeer (1990). Wisse Wisse et al. (2006) finds results that are different
from our results. For passive walking he finds that for stability point of view the best radius is
14% of leg length, this value corresponds to a case where two monotonic lines of eigenvalues
are crossing. The increasing one is represented ’Speed mode’, and the decreasing one is
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’Totter mode’. However the crossing point changes with respect to slope angle and physical
parameters of bipeds. The 14% of leg length is not the best radius, generally speaking. In our
controlled system, it is predictable that the ’Totter mode’ is close to zero or much smaller than
the ’Speed mode’, since the ’Speed mode’ is expressed by the zero dynamics of the controlled
system and the ’Totter mode’ is depending on the controller gains. Term δ2 has the same
property of the ’Speed mode’, and thus is increasing with respect to R. In our case we are
not interested in the best solution but in the limit where stability exists, thus there are no
contradiction with the results of Wisse Wisse et al. (2006).

6.3 Basin of attraction
Basins of attraction determined by numerical computations are shown in Fig.10. The larger
the foot radii are in the stable domain, the wider the basin of attraction is but the slower the
speed of convergence is. If the foot radius is the same as the leg length, the motion is neutral,
that is, all motions are cyclic.
In Fig.10, the area between the line of ξ−min and ξ−max is the basin of attraction. The variable
ξ just before the impact is used for expressing the basin of attraction. The line ξc represents
the cyclic motions. Fig.11 presents time evolutions of θ3, θ̇3 for 100 steps. The following foot
radii are considered: R = 0 [m], 0.5 [m] , 0.8 [m] and 1.3 [m]. The first two cases are clearly
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satisfied. For R < 0.8 [m] the motion is stable. For R > 0.8 [m] the motion is unstable. For
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stable, the case, R = 0.8, is neutral, and the case, R = 1.3, is unstable. Simulations confirm the
existence of the neutral condition.
The property of the basin of attraction with respect to the radius is also analogous to the results
of passive dynamic walking by Wisse Wisse & van Frankenhuyzen (2003). As depicted in
Fig.10, the bottom line shows minimal ξ corresponding to ξmin. It means a required minimal
angular momentum to overcome a gap from a minimum of a vertical position of CoM to a
maximum. If the momentum is smaller than the minimum, the complete step is not achieved,
the step begins and then the robot goes backward to return to its initial configuration for the
step. After that, the robot stops, but it does not fall down contrarily to a passive dynamic
walker Wisse et al. (2005) that falls down backward.
From Fig.5, the smaller the radius is, the larger the gaps of the vertical positions of CoM and
the minimal ξ−min are. Thus the circular arc feet broaden the minimal bounds. The variation of
the maximal bounds is caused by limits on the vertical reaction forces to avoid taking-off. The
reaction force vector R1 at the point N1 is given by the following equation:

R1 =

[
Rx1

Ry1

]
=

[
MẍG
M(ÿG + g)

]
. (60)

The vertical acceleration ÿG is decided by the the centrifugal force caused by the angular
velocity of the stance leg θ̇3 and an acceleration of the leg variation l̈i(t). The radius smoothens
the variation of CoM, and consequently the centrifugal force is reduced. We observe that the
acceleration of the leg is smaller when the radii increase. Thus, the maximal ξ−max is extended
when the radius increases. Namely, the basin of attraction is broaden by physical properties
such as the feet radii. Globally, our controlled system has similar properties for stability and
basin of attraction to the passive dynamic walking.

6.4 Consumed energy
Consumed energies and specific resistance for one cyclic step with respect to the foot radii R
are described in Fig.12. The following formula is used for computing the consumed energy

72 Biped Robots

0 0.2 0.4 0.6 0.8

0

100

ξ

Foot radius R [m]

ξ

ξ

max

c

ξmin

(θ3 )
f

(θ3
f

)

(θ3
f

)

Fig. 10. Basin of attraction of ξ w.r.t. the foot radii R. The area between the line of ξmin(θ
f
3 )

and ξmax(θ
f
3 ) is the basin of attraction by the numerical method. The line ξc means the cyclic

motions. In the upper area of ξmax(θ
f
3 ), vertical reaction forces are negative. There would be

a flight phase. In the lower area of ξmin(θ
f
3 ), the velocity of the monotonic variable after the

impact is not large enough to produce a step, ξmin(θ
f
3 ) is given by (45). After the beginning of

the step, the biped goes backward or stands still eventually.

0

50

100

−0.2

0

0.2

−0.5

0

0.5

Time [s]

Phase of a leg R=0[m], step numbers=100

Leg angle [rad]

A
ng

ul
ar

 v
el

oc
it

y 
[r

ad
/s

]

0
10

20
30

40
50

−0.2

0

0.2
−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

Phase of a leg R=0.5[m], step numbers=100

Leg angle [rad]

A
ng

ul
ar

 v
el

oc
it

y 
[r

ad
/s

]

0
20

40
60

−0.2

0

0.2
−0.5

0

0.5

1

Time [s]

Phase of a leg R=0.8[m], step numbers=100

Leg angle [rad]

A
ng

ul
ar

 v
el

oc
it

y 
[r

ad
/s

]

0
10

20
30

−0.2

0

0.2
−2

−1

0

1

2

3

Time [s]

Phase of a leg R=1.3[m], step numbers=100

Leg angle [rad]

A
ng

ul
ar

 v
el

oc
it

y 
[r

ad
/s

]

Fig. 11. Time evolutions of phases for the first leg at the foot radii R = 0 [m] (stable, above
left), 0.5 [m] (stable, above right), 0.8 [m] (neutral, bellow left) and 1.3 [m] (unstable, bellow
right).
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stable, the case, R = 0.8, is neutral, and the case, R = 1.3, is unstable. Simulations confirm the
existence of the neutral condition.
The property of the basin of attraction with respect to the radius is also analogous to the results
of passive dynamic walking by Wisse Wisse & van Frankenhuyzen (2003). As depicted in
Fig.10, the bottom line shows minimal ξ corresponding to ξmin. It means a required minimal
angular momentum to overcome a gap from a minimum of a vertical position of CoM to a
maximum. If the momentum is smaller than the minimum, the complete step is not achieved,
the step begins and then the robot goes backward to return to its initial configuration for the
step. After that, the robot stops, but it does not fall down contrarily to a passive dynamic
walker Wisse et al. (2005) that falls down backward.
From Fig.5, the smaller the radius is, the larger the gaps of the vertical positions of CoM and
the minimal ξ−min are. Thus the circular arc feet broaden the minimal bounds. The variation of
the maximal bounds is caused by limits on the vertical reaction forces to avoid taking-off. The
reaction force vector R1 at the point N1 is given by the following equation:

R1 =

[
Rx1

Ry1

]
=

[
MẍG
M(ÿG + g)

]
. (60)

The vertical acceleration ÿG is decided by the the centrifugal force caused by the angular
velocity of the stance leg θ̇3 and an acceleration of the leg variation l̈i(t). The radius smoothens
the variation of CoM, and consequently the centrifugal force is reduced. We observe that the
acceleration of the leg is smaller when the radii increase. Thus, the maximal ξ−max is extended
when the radius increases. Namely, the basin of attraction is broaden by physical properties
such as the feet radii. Globally, our controlled system has similar properties for stability and
basin of attraction to the passive dynamic walking.

6.4 Consumed energy
Consumed energies and specific resistance for one cyclic step with respect to the foot radii R
are described in Fig.12. The following formula is used for computing the consumed energy
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Fig. 11. Time evolutions of phases for the first leg at the foot radii R = 0 [m] (stable, above
left), 0.5 [m] (stable, above right), 0.8 [m] (neutral, bellow left) and 1.3 [m] (unstable, bellow
right).
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Ec:

Ec =
∫ T

0
|θ̇� · B · Γ|dt. (61)

The specific resistance SR is computed by the following fomula:

SR =
Ec

MgdxG

(62)

dxG indicates distance of total CoG for one step in horizontal direction. The larger the foot
radius is, the smaller the consumed energy as well as the specific resistance is for the cyclic
motion, even if the motion becomes unstable. Thus, the circular arc feet are effective in
reducing the consumed energy.
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Fig. 12. Consumed energy (left) and specific resistance (right) for one cyclic step w.r.t. the
foot radii R by the numerical simulation. The torso angle is chosen so that ξ = 16.27 by the
analytic solution for all R.

6.5 Optimal radius
There is a trade-off property between the convergence speed, the basin of attraction and
the energy consumption. What we can say is that the nearer the radius is to the leg
length, the slower the speed of convergence is and the larger the basin is. ’Foot clearance
problem’ does not appear because of the variable length legs in our case. In the cases
of ’Anthropomorphic Model’ and ’Simplest Model’ of Adamczyk’s result Adamczyk et al.
(2006), the CoM mechanical work property with respect to feet radii is similar to our result of
consumed energy. However, in their cases of ’Forward-foot Model’ and ’Kneed Model’, the
work had a minimum.
The suggestion of McGeer’s to choose a foot radius of 1/3 of leg lengths can also be considered
in our discussion. It might be better to choose a larger radius (e.g. between a half and three
quarters) to have a large basin of attraction even if the speed of convergence is worth.

6.6 Unstable walking with radii greater than the leg length
Kuo’s analysis Kuo (2001) of the CoM velocity contradicts our study because he considers
a simple model with rigid legs and circular arc feet and the CoM is located at hip position,
and we consider prismatic knees. The right of Fig.5 presents the evolution of the CoM
relative to the simple model Kuo (2001). Tangent vectors of right ends of lines are expressing
the pre-impact velocity of CoM, and tangent vectors of left ends of lines are expressing the
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post-impact velocity of CoM. When R > 0.8 [m], the change of CoM velocities are upward,
which means the impulsive force at the impact is negative. It actually would be a flight phase.
Left part of Fig.5 gives the CoM evolution in the case of our biped shown in Fig.2. Since all of
the ranges of velocities of CoM at the impact are downward, it never fails to flight phase for
any radius. In fact, our biped has prismatic knees and CoM is mainly distributed on the torso
which is swinging a little. A lot of paths can be chosen for the CoM position differently from
the simple model.

7. Conclusion

In the paper, some effects of circular arc feet for a planar biped via a geometric tracking were
taken into account. An analytic solution of Poincaré map was given for the controlled system.
Stability of walking was analyzed by the Poincaré map and the following results are obtained:

• Radii of the circular arc feet affect the stability of walking, and the speed of convergence
decreases when the radii approaches to a leg length.

• A basin of attraction is broadened by choosing larger radii and the controller can stabilize
the biped walking in the largest basin of attraction for the radii less than the leg length.

The leg length and the radius smoothen the variation and reduce the impact velocity. From
the properties of the reference paths, The radius of the foot has a significant effect for the
stability and the basin of attraction. The results are analogous to those McGeer (1990); Wisse
& van Frankenhuyzen (2003) and the prospect Wisse et al. (2005) on passive dynamic walking.
The geometric tracking method does not change the general effect of the circular arc feet.
A reduction of the vertical CoM variation by the foot radius is functional not only for the
geometric tracking method but for general biped walking. However the motion of CoM and
the consumed energy are different from some very simple models because our model has
variable length of legs and a torso.
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1. Introduction 
This paper describes the control of a biped robot that uses an SVR (Support Vector 
Regression) for its balance. The control system was tested subjected to external sagittal 
pulling and pushing forces. Biped robots have leg link structures similar to the human’s 
anatomy. To be able to maintain its stability under dynamic situations such robotic systems 
require good mechanical designs and force sensors to acquire the zero moment point (ZMP). 
Research in biped robotics has recently had a great surge due to the challenges of the subject 
and the media impact of famous biped robots like Honda’s. 
(Vukobratovic, 1990) developed a mathematical model of a biped robot and its method of 
control. Some research works (Zarrugh & Radcliffe, 1979), (Nakamura et al., 2004), (Jang et 
al., 2002) have reported the gait of biped robots based on human kinematics data, and a very 
good study of human body kinematics was done by Winter (Winter, 1990). Because a biped 
robot is easily knocked down, its stability must be taken into account in its gait design. 
Zheng (Zheng & Shen, 1990) proposed a method of gait synthesis taking into account the 
static stability. Chevallereau (Chevallereau et al., 1998) discussed dynamic stability through 
the analysis of the reaction force between the base of the foot and the ground. Unfortunately 
the defined trajectory does not assure the satisfaction of the stability restriction.  
To assure the dynamic stability of a biped robot, Shin (Shin et al., 1990) and Hirai (Hirai et 
al., 1998) proposed standard methods for gait synthesis based on the zero moment point 
(ZMP). Basically this method consists of designing a desired ZMP trajectory, duly correcting 
the movement of the torso to maintain the ZMP trajectory as designed. However, because 
the change of the ZMP to accommodate the movement of the torso is limited, not all desired 
ZMP trajectories are possible (Park & Kim, 1998). The ZMP position can be obtained 
computationally using a model of the robot. However there might be a significant difference 
between the real and the calculated ZMP due to the difference between the real robot’s 
physical parameters and its approximated mathematical model. To avoid this error, four 
force sensors are usually used on each foot to obtain an estimate for the real ZMP.  
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In the simplified 2-link control model the biped robot is divided into two masses, the torso 
and the legs, and can be used online. In the method described in this work the robot is 
divided into 8 links, which increases the accuracy, but also increases the computation time 
making it difficult to be used online. To overcome this limitation, some researchers propose  
computational intelligence techniques such as neuro-fuzzy nets and fuzzy systems for the 
control of biped robots (Choi et al., 2006), (Behnke, 2006), (Ferreira et al., 2004). These 
techniques have been surveyed by Katić (Katić & Vukobratović, 2005). As the ZMP control is 
non-linear an SVR (Vapnik, 1998) is appropriate. SVR calculates the optimal hyper plane for 
the training data and works faster than several other computational intelligence techniques 
(Ferreira et al., 2007a). 
In this work the training of the SVR uses values obtained by simulating the full dynamic 
model of the biped robot. Some walking experiments where conducted to test the 
implemented control algorithm. The robot was subjected to external sagittal pushing forces 
and the dragging of masses. The experiments were performed with and without the SVR 
controller active and the results show the effectiveness of the SVR controller together with 
the presented gait, based on the human locomotion. 

2. Implemented robot and software 
A biped robot was designed and built at the Institute of System and Robotics of the 
Department of Electrical and Computer Engineering of the University of Coimbra, in 
Portugal. The mechanical structure of the robot shown in Fig. 1 has the main joints of hip, 
knee, and ankle, for each leg. There is another joint, an active inverted pendulum that is  
 

 
Fig. 1. Implemented robot. 
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used for the lateral balance of the structure. The robot carries its battery pack on this 
inverted pendulum. The robot is actuated by seven servo motors and the structure is made 
of acrylic and aluminium. It weighs 2.3 kg and is 0.5 m tall.  
The robot was designed to move in both horizontal and inclined planes, to go up and down 
stairs, and has a speed of approximately 0.05 m/s. A 9600 bit/s RS232 wireless transmission 
link binds the control software, that is running on a PC, to the robot. The robot board has 
two PIC microprocessors, one to acquire the digital values of the force sensors and the other 
to actuate the servo motors. 
An integrated software platform was developed which allows both the simulation and the 
real time control of the biped robot. The software screen layout is illustrated in Fig. 2. 
 

 
Fig. 2. Simulation and control software window. 
Because it is very important to have very good mechanical contact between the force sensors 
(strip type) and the robot’s feet, two different mechanical configurations were tested, as 
shown in Fig. 3. One of them uses a 9 mm of diameter cylinder (size of the active area of the 
sensor), and the other uses a semi-sphere to contact each sensor. Initially the cylindrical 
configuration was used and the signal was found to have a poor precision, due to the 
distribution of the force over the surface of the sensor. With the spherical configuration this 
problem was solved because the force is applied at a single point. 
 

 
Fig. 3. Detail of the mechanical configurations used to improve the contact of the robot’s feet 
with the force sensors. 

3. Robot’s 3D model and dynamics 
Kinematics allows the movement of a robot to be described in terms of its position, speed 
and acceleration. Kinematics ignores the concepts of force, mass and inertia. The most 



 Biped Robots 

 

78 

In the simplified 2-link control model the biped robot is divided into two masses, the torso 
and the legs, and can be used online. In the method described in this work the robot is 
divided into 8 links, which increases the accuracy, but also increases the computation time 
making it difficult to be used online. To overcome this limitation, some researchers propose  
computational intelligence techniques such as neuro-fuzzy nets and fuzzy systems for the 
control of biped robots (Choi et al., 2006), (Behnke, 2006), (Ferreira et al., 2004). These 
techniques have been surveyed by Katić (Katić & Vukobratović, 2005). As the ZMP control is 
non-linear an SVR (Vapnik, 1998) is appropriate. SVR calculates the optimal hyper plane for 
the training data and works faster than several other computational intelligence techniques 
(Ferreira et al., 2007a). 
In this work the training of the SVR uses values obtained by simulating the full dynamic 
model of the biped robot. Some walking experiments where conducted to test the 
implemented control algorithm. The robot was subjected to external sagittal pushing forces 
and the dragging of masses. The experiments were performed with and without the SVR 
controller active and the results show the effectiveness of the SVR controller together with 
the presented gait, based on the human locomotion. 

2. Implemented robot and software 
A biped robot was designed and built at the Institute of System and Robotics of the 
Department of Electrical and Computer Engineering of the University of Coimbra, in 
Portugal. The mechanical structure of the robot shown in Fig. 1 has the main joints of hip, 
knee, and ankle, for each leg. There is another joint, an active inverted pendulum that is  
 

 
Fig. 1. Implemented robot. 

SVR Controller for a Biped Robot with a Human-like Gait Subjected to External Sagittal Forces   

 

79 

used for the lateral balance of the structure. The robot carries its battery pack on this 
inverted pendulum. The robot is actuated by seven servo motors and the structure is made 
of acrylic and aluminium. It weighs 2.3 kg and is 0.5 m tall.  
The robot was designed to move in both horizontal and inclined planes, to go up and down 
stairs, and has a speed of approximately 0.05 m/s. A 9600 bit/s RS232 wireless transmission 
link binds the control software, that is running on a PC, to the robot. The robot board has 
two PIC microprocessors, one to acquire the digital values of the force sensors and the other 
to actuate the servo motors. 
An integrated software platform was developed which allows both the simulation and the 
real time control of the biped robot. The software screen layout is illustrated in Fig. 2. 
 

 
Fig. 2. Simulation and control software window. 
Because it is very important to have very good mechanical contact between the force sensors 
(strip type) and the robot’s feet, two different mechanical configurations were tested, as 
shown in Fig. 3. One of them uses a 9 mm of diameter cylinder (size of the active area of the 
sensor), and the other uses a semi-sphere to contact each sensor. Initially the cylindrical 
configuration was used and the signal was found to have a poor precision, due to the 
distribution of the force over the surface of the sensor. With the spherical configuration this 
problem was solved because the force is applied at a single point. 
 

 
Fig. 3. Detail of the mechanical configurations used to improve the contact of the robot’s feet 
with the force sensors. 

3. Robot’s 3D model and dynamics 
Kinematics allows the movement of a robot to be described in terms of its position, speed 
and acceleration. Kinematics ignores the concepts of force, mass and inertia. The most 



 Biped Robots 

 

80 

widely-used representation is the Denavit-Hartenberg formalism. The systems of axes 
adopted to model the biped robot are shown in Fig. 4, together with a 3D model of the 
robot. 
 

 
Fig. 4. 3D model and the respective coordinate systems. 

Dynamics is the field of physics that studies the application of systems of forces and 
moments to a rigid body. In the case of the biped robot the ZMP formulation can be used 
(Hang et al., 1999), based on a dynamic calculation. 
For a robot with four or more legs it is possible to consider the static stability that uses the 
center of gravity, but for a biped robot the dynamic stability may have to be taken into 
account, and the calculation of the ZMP makes this possible. The ZMP is defined as the 
point on the ground where the sum of all the active moments of force is null. In Fig. 5, the 
minimum distance between the ZMP and the border of the stable region is called the 
stability margin, and this can be considered as an indicator of the quality of the robot’s 
stability. 
 

 
Fig. 5. Definition of the stability margin. 

If the ZMP is inside the polygon of contact (stable region of the foot) between the foot and 
the ground, it can be said that the biped robot is stable. When the distance between the ZMP 
and the border of the stable region of the foot is the greatest, that is, when the coordinates of 
the ZMP are next to the center of the stable region, it can be said that the biped robot 
exhibits a high stability. For the robot model in Fig. 6, with the physical characteristics 
presented in Table I, the ZMP location is calculated by 
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where x , y  and z  are linear accelerations, Iix and Iiy , are inertia coefficients, αix and αiy are 
angular accelerations, mi is the mass of the link i, and g is the gravitational acceleration. The 
aim of this work is the control of the robot in the sagittal plane. The control variable is the 
Xzmp. The lateral control is assured by the pendulum movement and is not studied here. 
 

 
Fig. 6. Biped lumped mass model. 
 

Biped Mass (kg) Length (m) Ix (×10-4 kg.m2) Iy (×10-4 kg.m2) 
Foot 0.28x2 0.035 2.64 3.51 
Shank  0.15x2 0.115 7.23 6.81 
Thigh 0.15x2 0.115 7.23 6.81 
Haunches 0.60 0.065 21.25 9.70 
Pendulum 0.54 0.170 159.58 160.17 

Table 1. Physical characteristics of the biped robot. 

4. Designed gaits 
A gait has been chosen that was conceived with the goal of being similar to human 
locomotion in horizontal planes. To describe a robotic human-like gait only the hip and 
ankle trajectories are needed. The knee trajectory depends on these two trajectories. 
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Humans are among the best biped walkers, which is a good reason for obtaining their joint 
trajectories when they walk, and then applying this information to a biped robot, even 
though its physical characteristics differ from those of a human being. 
The joint trajectories of hip, knee and ankle in the sagittal plane during a single gait cycle of 
a normal human being have been presented by Winter (Winter, 1990). 
To acquire human trajectories an acquisition system was developed (Ferreira et al., 2007b). 
Images were captured with a color webcam that has the following characteristics: CMOS 
640 x 480 (VGA) sensor, maximum of 30 frames per second, USB 2 interface. Trajectory data 
were obtained with a 26 year-old male, 1.85 m tall. Several light emitting diodes (LED) were 
placed on strategic points on the male (Fig. 7a). Fig. 7b shows the model used to calculate 
the joint angles, where H is the point on the heel, T is the tip of the foot, K is the point on the 
knee, HI is the point on the hip and SH is the point on the shoulder. These reference points 
were captured by placing the camera perpendicular to the background, 3 m away from it 
and 0.75 m from the floor. This latter distance is half the distance from the floor to the 
highest reference point, which is the shoulder mark. 
 

 
Fig. 7. (a) White light LED used as reference points on the person and (b) reference points on 
the person’s model. 

After the image acquisition of the reference points, the coordinates of the mass centers of 
these reference points were calculated for each frame and their trajectories obtained. The 
next step was to normalize the points of the trajectories and obtain a polynomial regression 
(which has square coefficient relation 0.996). This can be applied to any robot, using the 
height of the leg (ZL) and the step length (XS) as scale factors. So the hip and ankle 
trajectories are calculated by (3) and (4). 
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where 
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The values of the parameters used in the experiment were XS = 0.23 m and ZL = 0.07 m. The 
trajectories obtained for the hip and the ankle are shown in Fig. 8 for the grounded foot, and in 
Fig. 9 for the moving foot. The torso angle in the human walk is similar to a cosine function. 

5. Trajectory planning algorithm 
The control method used in this work to achieve the sagittal equilibrium of the robot 
consists of correcting the hip and pendulum angle (torso angle) in order to keep the ZMP in 
the center of the grounded foot (with a tolerance of 4 mm). 
We describe next the torso trajectory planning algorithm. It was executed off-line, and the 
result was used for the SVR training and for the amplitude setting of the initial predictive 
trajectory of the torso. First, taking into account the gait’s characteristics, several via points 
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Humans are among the best biped walkers, which is a good reason for obtaining their joint 
trajectories when they walk, and then applying this information to a biped robot, even 
though its physical characteristics differ from those of a human being. 
The joint trajectories of hip, knee and ankle in the sagittal plane during a single gait cycle of 
a normal human being have been presented by Winter (Winter, 1990). 
To acquire human trajectories an acquisition system was developed (Ferreira et al., 2007b). 
Images were captured with a color webcam that has the following characteristics: CMOS 
640 x 480 (VGA) sensor, maximum of 30 frames per second, USB 2 interface. Trajectory data 
were obtained with a 26 year-old male, 1.85 m tall. Several light emitting diodes (LED) were 
placed on strategic points on the male (Fig. 7a). Fig. 7b shows the model used to calculate 
the joint angles, where H is the point on the heel, T is the tip of the foot, K is the point on the 
knee, HI is the point on the hip and SH is the point on the shoulder. These reference points 
were captured by placing the camera perpendicular to the background, 3 m away from it 
and 0.75 m from the floor. This latter distance is half the distance from the floor to the 
highest reference point, which is the shoulder mark. 
 

 
Fig. 7. (a) White light LED used as reference points on the person and (b) reference points on 
the person’s model. 

After the image acquisition of the reference points, the coordinates of the mass centers of 
these reference points were calculated for each frame and their trajectories obtained. The 
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The values of the parameters used in the experiment were XS = 0.23 m and ZL = 0.07 m. The 
trajectories obtained for the hip and the ankle are shown in Fig. 8 for the grounded foot, and in 
Fig. 9 for the moving foot. The torso angle in the human walk is similar to a cosine function. 
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The control method used in this work to achieve the sagittal equilibrium of the robot 
consists of correcting the hip and pendulum angle (torso angle) in order to keep the ZMP in 
the center of the grounded foot (with a tolerance of 4 mm). 
We describe next the torso trajectory planning algorithm. It was executed off-line, and the 
result was used for the SVR training and for the amplitude setting of the initial predictive 
trajectory of the torso. First, taking into account the gait’s characteristics, several via points 
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Fig. 8. Trajectories of the hip and ankle for the grounded foot. 
 

 
Fig. 9. Trajectories of the hip and ankle for the moving foot. 

of the trajectory are obtained, and the trajectory of the foot is generated using a cubic spline. 
After that, the trajectories of the joints are calculated using direct and inverse kinematics; 
finally, the ZMP is calculated and the stability margin determined. This stability margin is 
then used to make iterative corrections to the torso angle, using the desired ZMP (center of 
the grounded foot) as reference. This procedure is repeated for all frames of the step. 
It must be noticed that some gaits may not be stable because the working range of the servo 
motors used is limited. Fig. 10 shows the algorithm explained before. 
This algorithm is used for the static and dynamic models, but the spline is not needed in the 
static model, which greatly reduces computational effort. The dynamic model requires four 
splines for each link, resulting in a great computational effort and making real-time 
computation difficult. 
Fig. 11 shows the ZMP trajectory obtained with the previous algorithm for the “walking in 
horizontal planes” gait with a step length of 0.11 m. The figure shows ZMP points marked 
with crosses. 
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Fig. 10. Trajectory planning algorithm. 

 

 
Fig. 11. ZMP Trajectory. 

The SVR training data are the ΔθTorso (torso angle correction), the XZMP and DXZMP (XZMP 
discrete time derivative). The ΔθTorso versus DXZMP data were obtained by expert knowledge 
having a PD controller in mind. The ΔθTorso versus XZMP training data were obtained by 
simulation using the trajectory planning algorithm, described above, for several step lengths 
and times. The result of the simulation was the relation K(t) between the required torso 
angle correction (ΔθTorso) and the difference between the actual XZMP and the desired XZMP 
(XZMPD, which is zero because it is at the origin of the coordinate system), to maximize the 
biped robot stability margin, as a function of the step time Tstep (see Fig. 12). 
Analyzing Fig. 12, it can be considered that K does not depend on the length of the gait, but 
only on the step time. Using a curve fitting algorithm, the expression 

 ( ) = ⋅ − ⋅ + ⋅ − ⋅ +4 3 20.002 0.0637 0.7795 4.4803 2.7866K t t t t t  (5) 
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Fig. 12. The relation K = ΔθTorso / (XZMP − XZMPD). 

was obtained. With this relationship the static model can be used to generate a first estimate 
for θtorso, using the center of gravity (CoG), instead of the XZMP.  
It was found that the human torso angle trajectory is similar to a cosine function. The 
predicted torso angle is then given by 

 π
θ
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where A = XCoG ·K(TStep) and S% is the gait time percentage. The value of XCoG (X coordinate 
of the center of gravity of the robot) is calculated in the transition from the double phase to 
the single phase using  
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where mi is the mass of the link i and g is the gravitational acceleration. 

6. Control strategy 
The proposed biped control model is shown in Fig. 13. The joint angles of the robot, except 
the torso angle, are determined by inverse kinematics using the designed gait (3) and (4) for 
the entire step. The values of the torso angle are predicted by (6). After that, for each frame, 
all joint angles values are sent to the biped robot and the real XZMP (XZMPR) is determined 
reading the force sensors placed under its feet. The XZMPR value is then used by the SVR to 
correct the torso angle in real time. The output of the SVR is an increment to be added to the 
torso angle given by (6). 
This control strategy assures the stability of the robot, even if external disturbances occur. 
In order to allow real time control, the actual (real) value of the ZMP (ZMPR) is needed. 
When the ZMP is within the stable area, the ZMP and the centre of pressure (CoP) are the 
same. To determine the CoP, four force sensors are used in each foot of the robot, as Fig. 14 
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Fig. 13. SVR control of the biped robot. 
 

 
Fig. 14. Top view diagram of the foot, showing the location of the force sensors. 

shows. These sensors are used to detect the force intensity and where the force is exerted, 
which is determined by 
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where Fi is the force measured in sensor i, and ir  is the sensor i position vector. 
Force sensor signals are acquired by an analog to digital converter (ADC) with 10-bit 
resolution and with a maximum of 30 Hz sampling rate. The force measurements are noisy 
and the force sensor is sensitive to vibrations during the motion, so a second order 
Butterworth low pass filter is used to remove noise and high frequency vibrations from the 
force sensor signal. The difference equation for a second-order low-pass Butterworth digital 
filter has the form 

 − − − −= + + − −1 2 1 3 2 2 1 3 2k k k k k ky b x b x b x a y a y  (9) 

where y is the filtered variable, x is the unfiltered variable, xk is the value of x at time tk, yk is 
the value of y at time tk, tk = k·T is the current time, T = tk − tk-1 is the constant sampling 
interval, and k is an integer. 
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7. Support vector machines 
Support Vector Machines (SVM) were developed by Vapnik (Vapnik, 1998) first to solve 
classification problems, and then they were successfully extended to regression and density 
estimation problems (Mohamed & Farag, 2003). SVM have gained popularity due to their 
many attractive features and promising empirical performance. The formulation of SVM 
employs the Structural Risk Minimization (SRM) principle, which has been shown to be 
superior to the traditional Empirical Risk Minimization (ERM) principle employed in the 
other non-parametric learning algorithms (e.g. neural networks) (Vapnik et al., 1999). SRM 
minimizes an upper bound on the generalization error as opposed to ERM, which 
minimizes the error on the training data. This difference makes SVM more attractive in 
statistical learning applications. SVM are used for classification and regression. In this work 
an SVM is used for regression, being usually designated by SVR. 

7.1 Support Vector Regression (SVR) 
Given a set of data points, {(x1, z1), . . . , (xk, zk)}, such that xi ∈ Rn is an input and zi ∈ R is a 
target output, the standard form of support vector regression (Vapnik, 1998) is: 
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For the biped robot controller we used the Gaussian kernel 
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since it demonstrated to perform well on this problem. 
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Fig. 15 shows the insensitive band (tube) of a typical non-linear regression function when 
the SVR method is used. To solve the SVR with this kernel, the LIBSVM (Chang & Lin, 2007) 
was used, where the C, ε and γ parameters of (10) and (13) must be chosen to generate the 
best final model, for this training data. Parameter C represents the importance of the values 
outside the regression tube, ε corresponds to the radius of the regression function tube and γ 
represents the Gaussian kernel width. Therefore, the number of support vectors is a 
decreasing function of ε and a nonzero value of ε is required to avoid overfitting. On the 
other hand, a too large value of ε could result in an underfitting. 

 
Fig. 15. The insensitive band for a non-linear regression function. 

7.2 Support Vector Regression simulation 
In this work the SVR was trained with 239 normalized data points and tested with another 
68 data point, as defined in Section 5. To choose the above parameters, ε was varied from 
0.01 to 0.2 with increments of 0.01, C was varied from 0.1 to 2 with increments of 0.1 and γ 
was varied from 1 to 4 with increments of 0.1. Fig. 16 plots the minimum MSE (mean square  
 

 
Fig. 16. γ, C and MSE versus ε. 
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error) for the combinations defined above, as well as the corresponding C and γ parameters, 
as functions of ε. 
Analyzing Fig. 16, the value of ε = 0.13 was chosen because it corresponds to the highest 
point of the region where the MSE is constant and small. For this value of  ε the other 
parameters are γ = 2.6 and C = 0.9. To complement the performances of the SVR, Fig. 17 and 
18 show the variation of the mean square error (MSE) and the mean absolute error (MAE) 
versus C and γ respectively. The average time to calculate the SVR was 0.2 ms, which 
proved to be adequate for our problem. Fig. 19 shows the behavior of the final model. 
 
 
 

 
 

Fig. 17. MSE and MAE against C. 

 
 
 

 
 

Fig. 18. MSE and MAE against γ. 
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Fig. 19. Behavior of the final model. 

8. Experimental results 
To determine the functionality of the balance control system based on an SVR, several 
experiments were performed. With this control technique, the stability of the robot is 
assured, even in the event of external disturbances. 
The values presented in the next figures were normalized such that unit values correspond 
to 25 degrees for θtorso, 10 degrees for θankle, 55 degrees for the pendulum lateral angle 
(θlateral), 0.047 m for XZMP and by 9.8 N for the external force. 
In the first experiment the biped robot was walking on a flat surface, playing back the 
human leg trajectories obtained with the video camera, without the SVR controller active. 
The torso was kept vertical. The Xzmp behavior is shown in Fig. 20 and it can be seen that it is 
very irregular, and that after some steps the robot falls. The origin of the Xzmp axes 
corresponds to the center of the support area.  
 

 
Fig. 20. θLateral and Xzmp obtained with the robot walking on a flat surface and the torso 
always vertical, without the SVR controller active. 
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Fig. 20. θLateral and Xzmp obtained with the robot walking on a flat surface and the torso 
always vertical, without the SVR controller active. 

xzmp Dxzmp

ΔθTorso



 Biped Robots 

 

92 

In the second experiment the robot was walking on a flat surface with the SVR controller 
active. In this case both the Xzmp and the torso angle exhibit regular behavior (see Fig. 21). A 
walking snapshots of one step is shown in Fig. 22. At the end of this experiment an external 
force was applied, pushing the robot on the back. The force was applied at a height of 0.3 m, 
and the robot maintained its stability, as can be seen in Fig. 23. 
 

 

 
Fig. 21. θLateral, θTorso and Xzmp obtained with the robot walking on a flat surface and the torso 
control active. 

 
 

 
 

 
Fig. 22. Walking snapshots on a flat surface and the torso control active. 
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Fig. 23. θLateral, θTorso and Xzmp obtained with the robot walking on a flat surface and the torso 
control active, and under an external force. 

In the third experiment an external pushing force was applied on the rear side of the robot 
when it was standing with only one foot on the ground. As can be seen in Fig. 24 and in the 
snapshots shown in Fig. 25, when the force is applied the controller maintains the stability. 
In the final experiment the robot suffers another external pushing force (greater than the 
force applied in the third experiment and for a little longer) applied on its front side. As 
shown in Fig. 26 and Fig. 27 the controller is able to stabilize the robot. 
 

 
 

 
 

Fig. 24. θTorso and Xzmp obtained when the robot is pushed from behind, standing with only 
one foot on the ground. 
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Fig. 25. Snapshots of a rear push. 
 

 
Fig. 26. θTorso and Xzmp obtained when the robot is pushed from the front, standing with only 
one foot on the ground. 

 

 
Fig. 27. Snapshots of a front push. 

In these two next experiments the robot was walking on a flat surface, with a step length of 
0.07 m, using the trajectories of the human gait, dragging a mass of 1.5 kg (that provides a 
pulling force of about 5 N), with (Fig. 28 and 29) and without (Fig. 30 and 31) the SVR 
controller active.  
It is visible in Fig. 29 (with the SVR balance controller active) that the robot is able to pull the 
mass along the step, i.e., the mass moves forward 0.07 m (the step length), while in Fig. 31 
(without the SVR balance controller active) the mass moves forward only 0.035 m and the 
robot falls in the next step. In Fig. 30 it is possible to see that the value of XZMP is in the limit 
of the stable area. 

SVR Controller for a Biped Robot with a Human-like Gait Subjected to External Sagittal Forces   

 

95 

 

 
 

Fig. 28. XZMP, XZMPref, ankle, designed torso (θtorsoD), torso and lateral angles on a horizontal 
flat surface pulling a mass with the SVR controller active. 

 
 

 
 

 
 

Fig. 29. Walking snapshots of one step on a horizontal flat surface pulling a mass with the 
SVR controller active. 
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Fig. 29. Walking snapshots of one step on a horizontal flat surface pulling a mass with the 
SVR controller active. 
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Fig. 30. XZMP, designed torso (θtorsoD) and lateral angles on a horizontal flat surface pulling a 
mass without the SVR controller active. 

 

 
 

 
Fig. 31. Walking snapshots on a horizontal flat surface pulling a mass without the SVR 
controller active. The robot falls down at about t = 8s. 

The effectiveness of the SVR controller is illustrated in Fig. 28 where the robot presents a 
good stability margin compared to Fig. 30 where the XZMP profile is irregular and the 
stability margin is close to zero at time about 4 seconds and zero at about 8 seconds, when 
the robot falls down. 

9. Conclusions 
The real time control of an 8-link biped robot using the dynamic model of the ZMP is 
difficult, due to the processing time of the corresponding equations. A simulator of an 8-link 
biped robot model was developed that allows training data to be obtained for an SVR. The 
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input variable DXzmp was used to include the behavior of a PD controller in the SVR.The 
application of the SVR method requires a good trade off between over-fitting and under-
fitting to obtain a smooth behavior for the final model. 
The major advantage of the SVR is running in 0.2 ms which is 50 times faster than a neuro-
fuzzy controller. The use of the SVR allows the real time control of the robot. This SVR uses 
the real CoP, acquired through force sensors placed under the robot’s feet, as input. The SVR 
was tested and satisfactory results were obtained when the robot pulls a mass that is 65% of 
the robot’s mass. 
To obtain a good stable step it is very important to design good leg trajectories so that only a 
small variation of torso movement is needed to maintain balance. It was verified that the 
human-like gait is a good choice to use in this biped robot. 
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1. Introduction     
The research on the principles of legged locomotion is an interdisciplinary endeavor. Such 
principles are coming together from research in biomechanics, neuroscience, control theory, 
mechanical design, and artificial intelligence. Such research can help us understand human 
and animal locomotion in implementing useful legged vehicles. There are three main 
reasons for exploring the legged locomotion. The first reason is to develop vehicles that can 
move on uneven and rough terrain. Vehicles with wheels can only move on prepared 
surfaces such as roads and rails; however, most surfaces are not paved. The second reason is 
to understand human and animal locomotion mechanics. The study of the mechanisms 
and principles of control found in nature can help us develop better legged vehicles. The 
third reason which motivated the study of legged locomotion is the need to build artificial 
legs for amputees. Although some effective artificial legs have been built to date, more in-
depth research is required to fully understand the mechanisms and movements necessary to 
substitute the actual limbs. 
The research in this paper concerns a group of legged robots known as bipedal walking 
robots. Research on this subject has a long history; however, it is only in the last two decades 
that successful experimental prototypes have been developed. The vast majority of 
humanoid and bipedal robots control the joint angle profiles to carry out the locomotion. 
Active walking robots (robots with actuators) can do the above task with reasonable speed 
and position accuracy at the cost of high control efforts, low efficiencies, and most of the 
time unnatural gaits. WABIAN-2R is among the most successful bipedal walking humanoid 
robots. In spite of the extensive research on humanoid robots, the actions of walking, 
running, jumping and manipulation are still difficult for robots. 
Passive-dynamic walking robots have been developed by researchers to mimic human 
walking. The main goal of building passive-dynamic walking robots is to study the role of 
natural dynamics in bipedal walking. Passive-dynamic walkers use gravitational energy to 
walk down a ramp without any actuators. They are energy efficient but have weak stability 
in the gait. In addition, the major cause of the energy loss in the current passive-dynamic 
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walking robots is the instantaneous change in the velocity of the mass centre during each leg 
transition. 
Recently, to overcome the limitations and disadvantages of the above walking robots (active 
and passive), researchers have proposed energy-efficient walking robots which can be 
divided into two major research areas. The first research area is the walking robots with 
actuators which track the optimized joints angle trajectories. The trajectories are determined 
from an optimization procedure used to minimize an objective function. The second 
research area is the passive–dynamic robots with direct drive or elastic actuators installed at 
some of the joints of the biped. Three successful dynamic walking robots are the Cornell 
Robot, Denise and Toddler. The main goal of developing dynamic walking robots is to 
increase the efficiency of locomotion. 
The bipedal humanoid robot WABIAN-2R was developed in Takanishi Laboratory at 
Waseda University to simulate human motion. Compared to most bipedal humanoid robots, 
WABIAN-2R is able to perform a human-like walking with stretched knees during the 
stance phase while other robots walk with bent knees (Fig. 1). However, its walking 
performance requires a large torque and a rapid change in velocity. This requires a 
harmonic drive gear with high ratio to increase the torque as well as a fast rotating motor 
(Fig. 2). Therefore, WABIAN-2R needs a lot of energy in each walking step with heavy foot 
and respectively oversized actuators. This is a problem that can be seen in most of the 
advanced humanoid robots developed for various tasks. However, the energy loss could be 
prevented by modifying the design of the ankle joint. A spring mechanism could be added 
at the ankle joint in order to store part of the energy of the robot during the collision phase 
and to release it by continuing the motion passively. By combining the passive motion and 
the actively controlled joints, the humanoid robot can realize walking with more similarity 
to human motion. This paper investigates the idea through simulation of WABIAN-2R with 
passive ankle joints that has a back actuator attached in series with springs. This study is 
currently focusing on dynamic motion on the sagittal plane while the lateral plane is fully 
active. 

2. Dynamic simulation 
Dynamic simulation could be used the purpose of testing and checking the dynamic motion 
of a mechanical structured model. It has the advantages of saving cost and risk which are 
highly needed in a development of a mechanical structure. There are many simulation 
software have been developed for robotics application, mainly for the industrial robot 
applications. However, there are some software packages used for mobile robot simulation. 
For examples, RoboWorks, SD/FAST, OpenHRP, Webots, and Yobotics are used for mobile 
and legged robot simulation. Webots is high and advanced simulation software used in 
Robotics simulation. It is use for prototyping and simulation of mobile robots. It has many 
advanced functions and techniques. Webots is very easy to use and implement. Therefore, 
we choose it as simulation software for our research. 

2.1 Modeling 
In order to develop a dynamic simulation, we need to go through several steps. First is 
modeling where we set up the simulation environment and initial parameters. We set up a 
full structure of WABIAN-2, based on the specifications (size, shape, mass distribution, 
friction, .etc) of components of WABIAN-2 (Fig. 3). 
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Fig. 1. WABIAN-2R 

 
Fig. 2. The Joint Gear System  

2.2 Controlling 
Second is controlling, which identifies simulation objects and controls the simulation 
procedures. The controller is some how similar to the WABIAN-2R control. It gets the input 
data from the CSV pattern file, and sets the position angle of each joint through inverse 
kinematics techniques. Moreover, the controller sets the simulate time step and the 
measurement of data. 
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Fig. 3. Modeled WABIAN-2R in the simulation world 

2.3 Running 
The program in the controller section of the simulator will run by going through the main 
function. There are several steps the controller will go through. First, check the pattern file 
and prepare to read through the lines. Then read the data from one line. The data is in terms 
of position and orientation of foots and hands. Using these data we calculate each joint 
position through inverse kinematics techniques. After that it will set all positions to its joint. 
The controller runs one control step of 30ms which is similar to the real robot. The controller 
goes through all the lines in the pattern file until it is completed in the last line. When the 
simulation runs it can be viewed the simulation from different view sides. This can gives us 
a clear idea about the simulation performance. Moreover, most of the needed data could be 
measured through several functions. 

3. Robot model 
WABIAN-2R is developed to simulate human motion. Thus the DOF configuration and 
design structure of the robot is made according to the human body. The design of the robot 
waist with a 2 DOF helps the robot to perform stretched knee walking, which is similar to 
the human’s. The leg model and ankle joint is detailed in this section. 

3.1 Leg model 
In most of the passive dynamic walking robots, the legs consist of a hip joint and a knee 
joint. The knee joint is useful when lifting the leg above the ground during the swing phase. 
The ankle joint could be eliminated in case that semicircular feet are used. Otherwise, it 
would be necessary to use an ankle joint in addition to the knee and hip joints. 
WABIAN-2R is able to perform a fully stretched walking. This walking is made using only 
the hip and ankle joints without the use of the knee joint. In this case, the robot leg is 
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simplified from 6 DOF to 5 DOF (3 DOF at the hip and 2 DOF at the ankle). However, the 
joints movements in the sagittal plane will be made only through 2 DOF (the ankle pitch 
joint and the hip pitch joint) (Fig. 4). 
 

 

Spring Mechanism

Hip Joint 

Ankle Joint 

 
Fig. 4. Simple Robot Model 

3.2 Ankle joint 
In order to have partly passive walking motion, named by semi-passive motion in this 
paper, the actuator of the ankle joint in the robot is redesigned in a way to be switched 
between passive and active mode. Moreover, the ankle should have a level of controllable 
mechanical compliance for better stability. Therefore, the ankle joint is modified by adding a 
mechanism called “Rotary Adjustable Stiffness Artificial Tendon” (RASAT). RASAT 
provides both active and passive rotational motion at the ankle joint. Here we proposed a 
new design of the ankle, which makes the RASAT bi-directional performing in both active 
and passive modes.  Moreover, it keeps the compliancy of the joint. The elasticity of the joint 
could overcome the stability difficulties disturbances that might occur in case the foot 
landing with an orientation (Fig. 5). 
The rotary adjustable stiffness artificial tendon (RASAT) is specially designed to provide a 
wide range of the stiffness (Fig. 6). In RASAT, a pair of compression springs is intentionally 
inserted between the two concentric input and output links. Each spring pair consists of a 
low stiffness spring with a stiffness of K1 and a high stiffness spring with a stiffness of K2. 
The offset between the low and high stiffness springs with value l, is adjustable. Distance d, 
of the spring pairs with respect to the center of rotation of the links. In this case, the internal 
torque T, between the concentric input and output links is calculated from: 
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The rotation around the ankle joint is very small, ranging between -0.25 to 0.25. Therefore, 
the rotation angle equal to:  

 θ ≈ tan θ (2) 

From equation (2) the torque provided by the mechanism could be calculated from: 
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The rotation around the ankle joint is very small, ranging between -0.25 to 0.25. Therefore, 
the rotation angle equal to:  

 θ ≈ tan θ (2) 

From equation (2) the torque provided by the mechanism could be calculated from: 
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In addition to RASAT, a back actuator is attached in serial (Fig. 7). The purpose of the Back 
Actuator is not only to adjust the offset between two springs, but also to provide the 
required torque at the ankle joint in order for the robot to move forward( Fig. 8). 
 

 
Fig. 5. Foot Landing 

 
Fig. 6. General schematic of RASAT 
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Fig. 7. Structure of Back Actuator connection 
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Fig. 8. Changing the Twisting Angle to increase the Joint Torque 

4. Walking control 
WABIAN-2R is based on joint position control according to the trajectory planning of the 
foot. The step length and height are calculated from the robot’s pattern generator, which 
provides the robot trajectory planning in joint or Cartesian space. 
The stability of passive dynamic walking relies on the energy consumption of the robot. 
Therefore, the trajectory based joint control method of WABIAN-2R should be partially 
switched to the torque controlled method instead of  position control. Since the ankle joint is 
set to be passive in this research, the hip joint is the only leg joint that is being controlled. 
However, in this paper, only the joints on the sagittal plane of the leg are torque controlled 
while the other joints on the robot are position controlled.  

4.1 Hip joint control 
The hip joint is controlled using a PD controller to provide the required torque to perform 
the motion (Fig. 9). The equation for the torque is given below:  

 p d c v K ( )  Kτ θ θ ω= − −  (4) 

where Kp is the spring constant gain and Kv is the damper constant gain. θd is the reference 
position set in the pattern, θc is the current position, and ω is the joint velocity. 
 

 

 
Fig. 9. Hip joint controlled using torque control 
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Fig. 9. Hip joint controlled using torque control 
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4.2 Ankle joint control 
The ankle joint provide the required torque in order for the robot to move forward. The 
design of the joint help to store some the energy in terms of elastic potential energy and 
release it in form of a joint torque. The control method depends on the mode of action; 
RASAT mechanism as passive and Back Actuator as active mode.  
To have a fully passive mode the offset l in the RASAT is set to maximum value. The makes 
the low stiffness spring is the only acting spring around the ankle joint. On the other hand, 
setting the offset to zero will limit the motion making the RASAT unmovable (Fig. 10). In 
this way the rotation around the ankle pitch joint is only provide the back actuator.  
In the case of setting the mode to semi passive, both the RASAT and the back actuator is 
used. The offset value of l is initially adjusted according to the required torque need. The 
back actuator controller set the twisting angle according the velocity feedback. The 
controller the measure the velocity of the robot body and compare it with the reference 
velocity which set for the robot. The twisting angle increases and decreases according to the 
amount of differences of the robot velocity. The difference is set in the equation below:  

 2 21 1
2 2

m v k θΔ = Δ  (5) 

From equation (5) the desired spring deflection can be obtained using  

 ( )d c
m v v
k

θΔ = ⋅ −  (6) 

 
Fig. 10. RASAT mechanism set to active mode 

The twisting angle controller  is given below: 

 ( )( 1) ( )t t d cn n G v vθ θ+ = + ⋅ −  (7) 

Where θt is the twisting angle, vd is the desired velocity, vc is the measured velocity, and G is 
the control gain. The variable n is the control time step number.  
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In case that the offset l is set to small value, this can help to provide mechanical compliance. 
This will support the foot landing in case the foot plane is not in parallel to the surface. 

4.3. Robot walking  
In order for the robot to make the passive move, it goes through several stages, as shown in 
Figure 14. First the robot takes the passive leg forward to have a step. Second, the heel of the 
foot touches the ground (until this stage, there is no energy stored in the passive joint). 
Third, the joint starts twisting while the leg is forced downward, making the joint store the 
energy. After the foot landing has been completed, the forward passive motion starts by 
releasing the stored energy in the passive joint. Finally, the step ends by landing the other 
foot on the ground. After the step is complete it either stops the motion or takes another step 
(Fig. 11).   

 
 

 
  Start Step Heel Touch 

Down 
Store Energy Release Torque Step End 

Fig. 11. Passive Step Taking Stages 

5. Experiments 
Many experiments are conducted in a simulation to check the performance of the robot. 
WABIAN-2R is simulated with all of its 39 DOF in the simulation package. Different ways 
were check to achieve the semi passive dynamic walking.  

5.1 Natural mode 
We conducted many simulations to achieve the semi passive walking using only the spring 
mechanism on the right ankle pitch. The spring mechanism in the ankle joint is a torsion 
spring with a stiffness of 50 N.m /rad. The right leg only has the passive joint while the 
other leg is full active. This helps the robot to stand before it starts to walk. The controller 
gains for the hip joint are set to Kp = 3000 and Kv = 25.  
In the simulation the robot starts by lifting the right leg and pushing it forward using the 
hip joint. Then the left leg stands on the ground, lifting the whole body of the robot forward 
using the hip and ankle joints. The right foot, with a passive spring touches the ground and 
the ankle joint stores energy in the spring during the collision phase. The stored energy 
provided enough torque to push the body of the robot forward. A semi-passive walking for 
one step or two steps can be easily achieved (Fig. 12 & Fig. 15). Several other experiments 
were conducted with different parameters for the controller. Moreover, the spring stiffness 
was also adjusted and the effects on the walking performance were checked. We realised 
that the higher the spring stiffness the first steps were difficult for the robot to complete. On 
the other hand, when the spring stiffness is low, the walking performance goes smoothly 
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but further on the robot velocity becomes slower which makes the robot unable to complete 
the semi-passive walking. 

5.2 Using RASAT mechanism 
Many simulations were conducted to achieve the semi-passive walking. Some experiments 
were successful by setting the ankle joint spring stiffness to 100 N.m/rad which is equal to 
160kN/m for the compression spring in the ASAT mechanism. For the hip joint torque 
control the spring constant (Kp) is set to 5000 and the damper constant (Kv) is set to 25. Both 
ankle pitch joints are set to active mode in order to keep the robot standing before start 
walking. Whence the robot gain some velocity for it motion both joint are set to passive 
mode to be passive dynamic walking motion. A simulation was conducted and the robot 
was able to walking for 8 steps (Fig. 18). 
 

   
 

   
Fig. 12. Simulation of A Semi-Passive Walking for One Step 
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Fig. 13. Passive Joint Angle Measurement 
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Fig. 14. Passive Joint Torque 

 
 
 

   
 

   
 

   
 

 
Fig. 15. Simulation of A Semi-Passive Walking for Two Steps 
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Fig. 16. Passive Joint Angle Measurement 
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Fig. 18. Simulation for semi passive dynamic walking using RASAT mechanism 

  
 

    
 

    

    
 

    
 

 

  
Fig. 19. Simulation for Semi-Passive Walking with a Back Actuator 
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5.3 With the back actuator 
Several simulations were conducted to create a semi-passive walking with as many as steps 
possible. We achieved a semi-passive walking with four steps by using the back actuator 
controller only during the stance phase (Fig. 19). The compliancy of the ankle joint also 
improves the robot’s stability when the heel touches the ground first, preventing the 
necessity of a flat foot contact during the collision. Several control gains of the back actuator 
were experimented by computer simulations. The best gain, providing a stable semi-passive 
walking, is 0.05 with a small velocity error compared with the reference velocity of the 
centre of mass (Fig. 20). 
 
 
 
 
 
 
 
 
 
 

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8 9 10

Tim e (s)

V
e
lo
c
it
y
 (
m
/
s)

M easured V elocity Reference Velocity  
 
 
 

 

 
 
Fig. 20. Robot Velocity Measured Data 

Semi-Passive Dynamic Walking Approach for 
Bipedal Humanoid Robot Based on Dynamic Simulation   

 

113 

6. Conclusions 
The semi-passive dynamic walking method is tested in WABIAN-2R using computer 
simulations. The design of the ankle joint of WABIAN-2R in the computer simulation is 
modified to include an elastic element in series with the pitch actuator. This allows the robot 
to perform a semi-passive dynamic walking. The results demonstrate that the semi-passive 
walking can be realized by using a 100 N.m/rad of torsion spring at the ankle joint for eight 
walking steps. However actuation and torque control of the ankle joint is necessary for 
lower stiffness values, 50 N.m/rad. In that case, different control gains are tested to obtain 
the best value. In addition, using a torque control at the hip joint is required to push the 
robot forward. Adjusting the stiffness of the ankle joint can be helpful in sustaining the 
semi-passive motion. 
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1. Introduction

Recently, skillful motions performed by animals are realized by used of actual robots (Hirai
et al., 1998; McGeer, 1990; Nakanishi et al., 2000; Raibert, 1986; Saito & Fukuda, 1997). Most
of these works focused on a single type of locomotion. On the other hand, animals such
as primates move in several types of locomotion form and select suitable locomotion form
depending on their surroundings, situation, and purpose. For example, a gorilla has high
behavior flexibility in a forest by adopting bipedal walking in a narrow space, quadrupedal
walking on rough terrain and brachiation in the forest canopy. Inspired by these high
mobility of an animal, we have developed an anthropoid-like “Multi-locomotion robot” that
can perform several types of locomotion and choose the proper one depending on robot’s
needs (Fig. 1, (Fukuda et al., 2009)). A development of a multi-locomotion robot which has
plural locomotion types for high mobility is one of challenging issues, because a problem
is remaining in addition to research issues on humanoid robot study. That is a control
architecture that synthesizes several locomotion controllers. When we consider a transition
connecting one locomotion to another, two independent controllers corresponding to each
locomotion type are not enough. A control algorithm that covering control properties of
multiple locomotion controllers should be developed because the transition motion cannot
be realized by fusing control outputs from multiple controllers. Based on this notion, we have
proposed a novel control method named Passive Dynamic Autonomous Control (PDAC) (Doi
et al., 2004) that realize not only a bipedal walk (Aoyama et al., 2009) but also a quadrupedal
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Tadayoshi Aoyama1, Kosuke Sekiyama2,
Yasuhisa Hasegawa3, and Toshio Fukuda4

1,2,4Nagoya University,
3University of Tsukuba

Japan

Passive Dynamic Autonomous Control for the 
Multi-locomotion Robot 

7



 Biped Robots 

 

114 

Ghorbani, R. and Wu, Q., Conceptual Design of the Adjustable Stiffness Artificial Tendons 
for Legged Robotics. Mechanism and Machine Theory, Vol 44, issued 1 pp 140-161, 
2009. 

Masaki Ogino, Koh Hosoda, and Minoru Asada, Learning Energy-Efficient Walking with 
Ballistic Walking, Adaptive Motion of Animals and Machines  Tokyo, Japan: 
Springer-Tokyo, 2006, paper 155-164. 

Qian Yang, B.G. Shiva Prasad, Peter A. Engel, and Derek Woolatt. “Dynamic Response of 
Compressor Valve Springs to Impact Loading,” Proceedings of the 1996 
International Compressor Engineering Conference, 353-358. West Lafayette, IN, 
Purdue University. 

 

1. Introduction

Recently, skillful motions performed by animals are realized by used of actual robots (Hirai
et al., 1998; McGeer, 1990; Nakanishi et al., 2000; Raibert, 1986; Saito & Fukuda, 1997). Most
of these works focused on a single type of locomotion. On the other hand, animals such
as primates move in several types of locomotion form and select suitable locomotion form
depending on their surroundings, situation, and purpose. For example, a gorilla has high
behavior flexibility in a forest by adopting bipedal walking in a narrow space, quadrupedal
walking on rough terrain and brachiation in the forest canopy. Inspired by these high
mobility of an animal, we have developed an anthropoid-like “Multi-locomotion robot” that
can perform several types of locomotion and choose the proper one depending on robot’s
needs (Fig. 1, (Fukuda et al., 2009)). A development of a multi-locomotion robot which has
plural locomotion types for high mobility is one of challenging issues, because a problem
is remaining in addition to research issues on humanoid robot study. That is a control
architecture that synthesizes several locomotion controllers. When we consider a transition
connecting one locomotion to another, two independent controllers corresponding to each
locomotion type are not enough. A control algorithm that covering control properties of
multiple locomotion controllers should be developed because the transition motion cannot
be realized by fusing control outputs from multiple controllers. Based on this notion, we have
proposed a novel control method named Passive Dynamic Autonomous Control (PDAC) (Doi
et al., 2004) that realize not only a bipedal walk (Aoyama et al., 2009) but also a quadrupedal

Biped Walking

Climbing

Brachiation

Quadruped Walking
Druming

Running

Crouching

Fig. 1. Concept of the Multi-Locomotion Robot.

Tadayoshi Aoyama1, Kosuke Sekiyama2,
Yasuhisa Hasegawa3, and Toshio Fukuda4

1,2,4Nagoya University,
3University of Tsukuba

Japan

Passive Dynamic Autonomous Control for the 
Multi-locomotion Robot 

7



walk (Asano et al., 2007) and a brachiation (Fukuda et al., 2007). In this chapter, we focus
on a bipedal walking control. We have already proposed 3-D biped control method based on
PDAC (Aoyama et al., 2009). This chapter introduces another stabilizing method of the robot
dynamics; then the stabilizing method is validated by the numerical simulation.
This chapter continues as follows. In Section 2, we introduce the Gorilla Robot III that has
been developed as a prototype of the multi-locomotion robot. In Section 3, we explain about
PDAC concisely. Section 4 describes the walking model, Section 5 introduces stabilization
method, and Section 6 shows the results of the numerical simulation. Finally, we summarize
this chapter in Section 7.

2. Multi–locomotion robot

This section introduces the “Gorilla Robot III” briefly. Gorilla robot III have been developed as
a prototype of the Multi-locomotion Robot; details are found in (Fukuda et al., 2009). Figure
2 shows the overview of Gorilla Robot III and its link structure. This robot is about 1.0 m
tall, weighs about 24.0 kg, and consists of 25 links and 24 AC motors including two grippers.
The real-time operating system VxWorks (Wind River Systems Inc) runs on a Pentium III PC
for processing sensory data and generating its behaviors. Two kinds of sensors are attached
to each hand. The rate gyroscope, CRS03-04 manufactured by Silicon Sensing Systems Japan
Ltd., measures the angular velocity around the contact bar to calculate the pendulum angle
during the motion. The force sensor, IFS-67M25A made by NITTA CORPORATION, measures
reaction forces from contact bars in order to judge whether the robot successfully grasps the
bar or not.
This robot has been designed to perform biped locomotion, quadruped locomotion and
brachiation. We designed the controller for all locomotion using the same algorithm “PDAC".
The approach of PDAC is to describe the robot dynamics as an autonomous system around a
contact point, using an interlocking so that the robot could keep the robot inherent dynamics.
The PDAC is explained in next section. 3-D dynamic walking is achieved as shown in Fig.3
(Aoyama et al., 2009). We also designed a controller for a quadrupedal walk (Asano et
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(a) (b) (c) (d) (e)

Fig. 3. Snapshots of the Bipedal Walking Experiment. Each figure shows the snapshots at
(a)1st (b)7th (c)13th (d)19th (e)25th step. (Aoyama et al., 2009)

(1) t=0.0[s] (2) t=3.0[s] (3) t=6.0[s] (4) t=9.0[s]

Fig. 4. Snapshots of the quadrupedal walking using PDAC. (Asano et al., 2007)

Fig. 5. Snapshots of the brachiation using PDAC. (Fukuda et al., 2007)

al., 2007), and brachiation (Fukuda et al., 2007) using the same PDAC. The snapshot of the
quadrupedal walk is shown in Fig.4 and the brachiation is shown in Fig.5.

3. Passive dynamic autonomous control (PDAC)

3.1 Converged dynamics
This section gives explanation of PDAC that was proposed previously by Doi et.al. based
on two concepts, i.e. the point-contact and the virtual constraint (Doi et al., 2004). The
point-contact means that a robot contacts a ground at a point, that is, the first joint is passive.
The virtual constraint has been proposed by Grizzle and Westervelt et al. (Grizzle et al.,
2001; Westervelt et al., 2004) as a set of holonomic constraints on the robot’s actuated DOF
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Fig. 6. Mechanical model of the serial n-link rigid robot. θi and τi are the angle and the torque
of ith joint respectively. mi and Ji are the mass and the moment of inertia of ith link
respectively.

parameterized by the robot’s unactuated DOF. Assuming that PDAC is applied to a serial
n-link rigid robot as shown in Fig. 6, these two concepts are expressed as follows:

τ1 = 0, (1)

Θ = [θ1, θ2, · · · , θn]
T = [ f1(θ), f2(θ), · · · , fn(θ)]T

:= f (θ), (2)

where θ is the angle around the contact point with respect to the absolute coordinate system,
that is, θ1 = f1(θ) = θ.
The dynamic equations of this model are given by

d
dt

(
M (Θ)Θ̇

)− 1
2

∂

∂Θ

(
Θ̇

T
M (Θ)Θ̇

)
− G(Θ) = τ , (3)

where
M (Θ) := [m1(Θ)T ,m2(Θ)T, · · · ,mn(Θ)T ]T, G(Θ) := [G1(Θ), G2(Θ), · · · , Gn(Θ)]T, Θ :=
[θ1, θ2, · · · , θn]

T, τ := [τ1, τ2, · · · , τn]
T, and ∂

∂Θ
= [ ∂

∂θ1
, ∂

∂θ2
, · · · , ∂

∂θn
]T.

Since the dynamic equation around the contact point has no term of the Coriolis force in this
model, it is given as

d
dt

(
m1(Θ)TΘ̇

)
− G1(Θ) = τ1. (4)

By differentiating Eq. (2) with respect to time, the following equation is acquired,

Θ̇ =
∂f (θ)

∂θ
θ̇ =

[
∂ f1(θ)

∂θ
,

∂ f2(θ)
∂θ

, · · · ,
∂ fn(θ)

∂θ

]T
θ̇. (5)

Substituting Eqs. (1), (2) and (5) into Eq. (3) yields the following dynamic equation,

d
dt

(
M(θ)θ̇

)
= G(θ), (6)
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where

M(θ) :=m1

�
f (θ)

�T df (θ)
dθ

, (7)

G(θ) :=G1

�
f (θ)

�
. (8)

By multiplying both sides of Eq. (6) by M(θ)θ̇ and by integrating with respect to time, the
dynamics around the contact point is obtained as follows:

� �
M(θ)θ̇

� d
dt

�
M(θ)θ̇

�
dt =

�
M(θ)G(θ)θ̇ dt (9)

⇐⇒1
2

�
M(θ)θ̇

�2
=

�
M(θ)G(θ) dθ. (10)

Therefore, the whole robot dynamics is expressed as the following one-dimensional
autonomous system,

θ̇ =
1

M(θ)

�
2
�

M(θ)G(θ) dθ (11)

:=
1

M(θ)

�
2
�
D(θ) + C

�
(12)

:=F(θ). (13)

In this chapter, we term Eqs. (12) and (13) as the Converged dynamics.

4. Dynamics and walking model

In this section, we describe biped walking model by means of 3-D inverted pendulum that
is same as our previous work (Aoyama et al., 2009). At first, the dynamics of the model
representing the robot dynamics in single-support phase is obtained. Next, by describing the
pendulum length as a function of its angle, we express the whole robot dynamics as the 2-D
autonomous system under the constraint that the trunk inclination is kept in the gravitational
direction during the walk.

4.1 3-D inverted pendulum model
In this chapter, a robot is modeled as a 3-D inverted pendulum shown in Fig. 7(a). Since
walking motion is symmetrical, the left-handed system is used in the left-leg supporting phase
and vice versa as shown in Fig. 7(b) so that it is possible to describe the robot dynamics
in both supporting phases as single dynamics. We apply the assumption of point-contact
to this pendulum later in accordance with PDAC, hence it is possible to choose the axes of
pendulum angle around contact point to express its dynamics. In this chapter, we utilize the
polar coordinate system. The state variables and parameters are shown in Fig. 8(b). By use of
the six variables q1 to q5 and l, it is possible to express any state of the robot.
Let mass of the robot be m and let tensor of inertia be

I :=

⎛
⎝

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎞
⎠ . (14)

119Passive Dynamic Autonomous Control for the Multi-locomotion Robot



m1

m2

mn

J2

J1

Jn

θ2

θn

τ1

τ2

τn

x

y

o

θ1

Fig. 6. Mechanical model of the serial n-link rigid robot. θi and τi are the angle and the torque
of ith joint respectively. mi and Ji are the mass and the moment of inertia of ith link
respectively.

parameterized by the robot’s unactuated DOF. Assuming that PDAC is applied to a serial
n-link rigid robot as shown in Fig. 6, these two concepts are expressed as follows:

τ1 = 0, (1)

Θ = [θ1, θ2, · · · , θn]
T = [ f1(θ), f2(θ), · · · , fn(θ)]T

:= f (θ), (2)

where θ is the angle around the contact point with respect to the absolute coordinate system,
that is, θ1 = f1(θ) = θ.
The dynamic equations of this model are given by

d
dt

(
M (Θ)Θ̇

)− 1
2

∂

∂Θ

(
Θ̇

T
M (Θ)Θ̇

)
− G(Θ) = τ , (3)

where
M (Θ) := [m1(Θ)T ,m2(Θ)T, · · · ,mn(Θ)T ]T, G(Θ) := [G1(Θ), G2(Θ), · · · , Gn(Θ)]T, Θ :=
[θ1, θ2, · · · , θn]

T, τ := [τ1, τ2, · · · , τn]
T, and ∂

∂Θ
= [ ∂

∂θ1
, ∂

∂θ2
, · · · , ∂

∂θn
]T.

Since the dynamic equation around the contact point has no term of the Coriolis force in this
model, it is given as

d
dt

(
m1(Θ)TΘ̇

)
− G1(Θ) = τ1. (4)

By differentiating Eq. (2) with respect to time, the following equation is acquired,

Θ̇ =
∂f (θ)

∂θ
θ̇ =

[
∂ f1(θ)

∂θ
,

∂ f2(θ)
∂θ

, · · · ,
∂ fn(θ)

∂θ

]T
θ̇. (5)

Substituting Eqs. (1), (2) and (5) into Eq. (3) yields the following dynamic equation,

d
dt

(
M(θ)θ̇

)
= G(θ), (6)

118 Biped Robots

where

M(θ) :=m1

�
f (θ)

�T df (θ)
dθ

, (7)

G(θ) :=G1

�
f (θ)

�
. (8)

By multiplying both sides of Eq. (6) by M(θ)θ̇ and by integrating with respect to time, the
dynamics around the contact point is obtained as follows:

� �
M(θ)θ̇

� d
dt

�
M(θ)θ̇

�
dt =

�
M(θ)G(θ)θ̇ dt (9)

⇐⇒1
2

�
M(θ)θ̇

�2
=

�
M(θ)G(θ) dθ. (10)

Therefore, the whole robot dynamics is expressed as the following one-dimensional
autonomous system,

θ̇ =
1

M(θ)

�
2
�

M(θ)G(θ) dθ (11)

:=
1

M(θ)

�
2
�
D(θ) + C

�
(12)

:=F(θ). (13)

In this chapter, we term Eqs. (12) and (13) as the Converged dynamics.

4. Dynamics and walking model

In this section, we describe biped walking model by means of 3-D inverted pendulum that
is same as our previous work (Aoyama et al., 2009). At first, the dynamics of the model
representing the robot dynamics in single-support phase is obtained. Next, by describing the
pendulum length as a function of its angle, we express the whole robot dynamics as the 2-D
autonomous system under the constraint that the trunk inclination is kept in the gravitational
direction during the walk.

4.1 3-D inverted pendulum model
In this chapter, a robot is modeled as a 3-D inverted pendulum shown in Fig. 7(a). Since
walking motion is symmetrical, the left-handed system is used in the left-leg supporting phase
and vice versa as shown in Fig. 7(b) so that it is possible to describe the robot dynamics
in both supporting phases as single dynamics. We apply the assumption of point-contact
to this pendulum later in accordance with PDAC, hence it is possible to choose the axes of
pendulum angle around contact point to express its dynamics. In this chapter, we utilize the
polar coordinate system. The state variables and parameters are shown in Fig. 8(b). By use of
the six variables q1 to q5 and l, it is possible to express any state of the robot.
Let mass of the robot be m and let tensor of inertia be

I :=

⎛
⎝

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎞
⎠ . (14)
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Fig. 7. (a) 3-D inverted pendulum model. (b) Definition of coordinate system. The
left-handed system is used in the left-leg supporting phase and vice versa in order to
facilitate the dynamics description of walking motion. Note that this figure shows just a
coordinate system definition and doesn’t mean that foot placement is in alignment.
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Fig. 8. (a) Parameters and variables of the 3-D inverted pendulum model. q1 and q2 are the
variables of the pendulum angle around the contact point. q3, q4 and q5 decide the upper
body posture. l is the variable of the pendulum length. L is the virtual value for convenience
of description and equals zero. (b) Polar coordinate system around contact point

The configuration of humanoid robots is basically symmetrical, hence generality is not lost by
assuming that all products of inertia are zero, i.e. Ixy = Iyx = Iyz = Izy = Izx = Ixz = 0,

I = diag(Ixx, Iyy, Izz)
:= diag(Ix, Iy, Iz). (15)

Note that this tensor of inertia is parameter in the local coordinate system that is attached to
the robot body, not in the global one.
In this chapter, the trunk inclination is kept in the gravitational direction and the upper body
does not rotate around yaw-axis, that is,

q3 = −q2 (16)
q4 = −q1 (17)
q5 = 0. (18)
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Then, the dynamic equations with respect to q1, q2, and l are obtained respectively as follows:

d
dt

(
ml2 sin2 q2q̇1

)
= τ1, (19)

d
dt

(
ml2q̇2

)
−ml2q̇1

2 sin q2 cos q2 −mgl sin q2 = τ2, (20)

d
dt

(
ml̇

)
−ml(q̇1

2 sin2 q2 + q̇2
2)−mg cos q2 = f , (21)

where (τ1, τ2, f ) are the torques and force corresponding to the variables (q1, q2, l).

4.2 Converged dynamics
In order to control the 3-D inverted pendulum by means of PDAC, the assumption of
point-contact is applied, i.e.

τ1 = τ2 = 0. (22)

For simplicity of description, we describe q1 and q2 as φ and θ respectively in the below. From
Eq. (16)-(22), Eq. (19) and (20) are expressed as follows:

d
dt

(
ml2 sin2 θφ̇

)
= 0, (23)

d
dt

(
ml2θ̇

)
= ml2φ̇2 sin θ cos θ +mgl sin θ. (24)

By multiplying both sides of Eq. (23) by ml2 sin2 θφ̇, and integrating with respect to time, the
following constraint equation is obtained,

φ̇ =

√
2C1

ml2 sin2 θ
(25)

:= F1(θ), (26)

where C1 is the integral constant which is decided by initial status just after foot-contact.
Substituting Eq. (25) into Eq. (24) results in

θ̇ =
1

ml2

√
2
∫ (

2C1 cos θ

sin3 θ
+m2gl3 sin θdθ

)
(27)

:=
1

M(θ)

√
2
(
D(θ) + C2

)
(28)

:= F2(θ). (29)

Next, in accordance with PDAC, the pendulum length is described as the function of θ,

l := λ(θ). (30)

In this chapter, λ is defined as the following function of θ,

λ(θ) =: 3
√

p1θ3 + p2θ2 + p3θ+p4 (31)

=: 3
√

f (θ). (32)
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Fig. 8. (a) Parameters and variables of the 3-D inverted pendulum model. q1 and q2 are the
variables of the pendulum angle around the contact point. q3, q4 and q5 decide the upper
body posture. l is the variable of the pendulum length. L is the virtual value for convenience
of description and equals zero. (b) Polar coordinate system around contact point

The configuration of humanoid robots is basically symmetrical, hence generality is not lost by
assuming that all products of inertia are zero, i.e. Ixy = Iyx = Iyz = Izy = Izx = Ixz = 0,

I = diag(Ixx, Iyy, Izz)
:= diag(Ix, Iy, Iz). (15)

Note that this tensor of inertia is parameter in the local coordinate system that is attached to
the robot body, not in the global one.
In this chapter, the trunk inclination is kept in the gravitational direction and the upper body
does not rotate around yaw-axis, that is,

q3 = −q2 (16)
q4 = −q1 (17)
q5 = 0. (18)
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Then, the dynamic equations with respect to q1, q2, and l are obtained respectively as follows:

d
dt

(
ml2 sin2 q2q̇1

)
= τ1, (19)

d
dt

(
ml2q̇2

)
−ml2q̇1

2 sin q2 cos q2 −mgl sin q2 = τ2, (20)

d
dt

(
ml̇

)
−ml(q̇1

2 sin2 q2 + q̇2
2)−mg cos q2 = f , (21)

where (τ1, τ2, f ) are the torques and force corresponding to the variables (q1, q2, l).

4.2 Converged dynamics
In order to control the 3-D inverted pendulum by means of PDAC, the assumption of
point-contact is applied, i.e.

τ1 = τ2 = 0. (22)

For simplicity of description, we describe q1 and q2 as φ and θ respectively in the below. From
Eq. (16)-(22), Eq. (19) and (20) are expressed as follows:

d
dt

(
ml2 sin2 θφ̇

)
= 0, (23)

d
dt

(
ml2θ̇

)
= ml2φ̇2 sin θ cos θ +mgl sin θ. (24)

By multiplying both sides of Eq. (23) by ml2 sin2 θφ̇, and integrating with respect to time, the
following constraint equation is obtained,

φ̇ =

√
2C1

ml2 sin2 θ
(25)

:= F1(θ), (26)

where C1 is the integral constant which is decided by initial status just after foot-contact.
Substituting Eq. (25) into Eq. (24) results in

θ̇ =
1

ml2

√
2
∫ (

2C1 cos θ

sin3 θ
+m2gl3 sin θdθ

)
(27)

:=
1

M(θ)

√
2
(
D(θ) + C2

)
(28)

:= F2(θ). (29)

Next, in accordance with PDAC, the pendulum length is described as the function of θ,

l := λ(θ). (30)

In this chapter, λ is defined as the following function of θ,

λ(θ) =: 3
√

p1θ3 + p2θ2 + p3θ+p4 (31)

=: 3
√

f (θ). (32)
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By substituting this equation into Eq. (28), converged dynamics is derived,

M(θ) = m f (θ)2/3, (33)

D(θ) = − C1

sin2 θ
−m2g

((
f (θ)− f ��(θ)

)
cos θ − (

f �(θ)− f ���(θ)
)

sin θ
)

. (34)

4.3 Design of walking cycle
In this subsection, the actual motion of the robot is designed. Figure 9 shows the schematics of
the pendulum motion and the COG trajectory. The continuous line shows a trajectory of the
COG in the right-leg support phase and the dotted line shows in the left-leg support phase.
The dot on the edge of both the continuous line and the dotted one means a foot-contact.
Figure 10 shows the parameters and variables of the pendulum motion. S0 and S2 denote
moments just before and after a foot-contact, and S1 is a moment at θ̇ = 0. θi, φi, and li
denote the roll angle, yaw angle, and pendulum length at Si (i = 0, 1, 2) respectively. During
a cycle of walking motion, φ is monotonically increasing. Meanwhile, θ decreases at first, and
then increases, after posing for a moment at θ1. Thus, we compartmentalize a walking cycle
from a foot-contact to the next foot-contact into two phases—Phase (A): from S0 to S1 (θ̇ < 0),
Phase (B): from S1 to S2 (θ̇ > 0). In the phase (A), the pendulum length is constant, thus the

Fig. 9. Motion of the inverted pendulum. The continuous line shows the COG trajectory in
the right-leg support phase and the dotted line shows in the left-leg support phase. The dot
on the edge of both the continuous line and the dotted one depicts means foot-contact.
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coefficients p1-p4 in Eq. (31) are

p1 = p2 = p3 = 0 (35)

pd = l30. (36)

In the phase (B), the coefficients p1-p4 are decided so that the following four conditions are
satisfied,

f (θ1) = l31, (37)

f (θ2) = l32, (38)

f �(θ2) = 0, and (39)

− f ��(θ1) cos θ1 +
(− f �(θ1) + f ���(θ1)

)
sin θ1 = 0. (40)

Eqs. (37) and (38) signify the condition of pendulum length continuity, and Eq. (39) is the
condition that the velocity of pendulum along l is 0 at a foot-contact. The objective of Eq. (40)
is to match PDAC constants of the phase (A) and (B).
From Eqs. (37)-(40), the coefficients p1-p4 are derived as follows:

p1 = − l32 − l30
(θ2 − θ1)2

u3

u1u3 − u2
, (41)

p2 = − l32 − l30
(θ2 − θ1)2

u2

u1u3 − u2
, (42)

p3 = −3p1θ2
2 − 2p2θ2, and (43)

p4 = l32 − p1θ3
2 − p2θ2

2 − p3θ2, (44)

where

u1 = 2θ2 + θ1, (45)

u2 = −6θ1 cos θ1 − 3θ2
1 sin θ1 + 6 sin θ1 + 3θ2

2 sin θ1, and (46)
u3 = −2 cos θ1 − 2θ1 sin θ1 + 2θ2 sin θ1. (47)

4.4 Foot-contact model
In this chapter, the impact between the foot and a ground is assumed to be perfectly inelastic.
Thus the angular momentum around a new contact point is conserved. Assuming that φ0 is
the angle of φ just before a foot-contact, the position vector of the pendulum after impact, L is

L = [l0 sin φ0 sin θ0, l0 cos φ0 sin θ0, l0 cos θ0]
T, (48)

where φ0 and θ0 are angles in the coordinate system of next step.
The vector of velocity immediately prior to a foot-contact, V1, is calculated as follows:

V1 =[vx, vy, vz]T, (49)

where vx =l2(φ̇2 cos φ2 sin θ2 + θ̇2 sin φ2 cos θ2) + l̇2(sin φ2 sin θ2)

vy =l2(−φ̇2 sin φ2 sin θ2 + θ̇2 cos φ2 cos θ2) + l̇2(cos φ2 sin θ2)

vz =− l2θ̇2 sin θ2 + l̇2(cos θ2),
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By substituting this equation into Eq. (28), converged dynamics is derived,

M(θ) = m f (θ)2/3, (33)

D(θ) = − C1

sin2 θ
−m2g

((
f (θ)− f ��(θ)

)
cos θ − (

f �(θ)− f ���(θ)
)

sin θ
)

. (34)

4.3 Design of walking cycle
In this subsection, the actual motion of the robot is designed. Figure 9 shows the schematics of
the pendulum motion and the COG trajectory. The continuous line shows a trajectory of the
COG in the right-leg support phase and the dotted line shows in the left-leg support phase.
The dot on the edge of both the continuous line and the dotted one means a foot-contact.
Figure 10 shows the parameters and variables of the pendulum motion. S0 and S2 denote
moments just before and after a foot-contact, and S1 is a moment at θ̇ = 0. θi, φi, and li
denote the roll angle, yaw angle, and pendulum length at Si (i = 0, 1, 2) respectively. During
a cycle of walking motion, φ is monotonically increasing. Meanwhile, θ decreases at first, and
then increases, after posing for a moment at θ1. Thus, we compartmentalize a walking cycle
from a foot-contact to the next foot-contact into two phases—Phase (A): from S0 to S1 (θ̇ < 0),
Phase (B): from S1 to S2 (θ̇ > 0). In the phase (A), the pendulum length is constant, thus the

Fig. 9. Motion of the inverted pendulum. The continuous line shows the COG trajectory in
the right-leg support phase and the dotted line shows in the left-leg support phase. The dot
on the edge of both the continuous line and the dotted one depicts means foot-contact.
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coefficients p1-p4 in Eq. (31) are

p1 = p2 = p3 = 0 (35)

pd = l30. (36)

In the phase (B), the coefficients p1-p4 are decided so that the following four conditions are
satisfied,

f (θ1) = l31, (37)

f (θ2) = l32, (38)

f �(θ2) = 0, and (39)

− f ��(θ1) cos θ1 +
(− f �(θ1) + f ���(θ1)

)
sin θ1 = 0. (40)

Eqs. (37) and (38) signify the condition of pendulum length continuity, and Eq. (39) is the
condition that the velocity of pendulum along l is 0 at a foot-contact. The objective of Eq. (40)
is to match PDAC constants of the phase (A) and (B).
From Eqs. (37)-(40), the coefficients p1-p4 are derived as follows:

p1 = − l32 − l30
(θ2 − θ1)2

u3

u1u3 − u2
, (41)

p2 = − l32 − l30
(θ2 − θ1)2

u2

u1u3 − u2
, (42)

p3 = −3p1θ2
2 − 2p2θ2, and (43)

p4 = l32 − p1θ3
2 − p2θ2

2 − p3θ2, (44)

where

u1 = 2θ2 + θ1, (45)

u2 = −6θ1 cos θ1 − 3θ2
1 sin θ1 + 6 sin θ1 + 3θ2

2 sin θ1, and (46)
u3 = −2 cos θ1 − 2θ1 sin θ1 + 2θ2 sin θ1. (47)

4.4 Foot-contact model
In this chapter, the impact between the foot and a ground is assumed to be perfectly inelastic.
Thus the angular momentum around a new contact point is conserved. Assuming that φ0 is
the angle of φ just before a foot-contact, the position vector of the pendulum after impact, L is

L = [l0 sin φ0 sin θ0, l0 cos φ0 sin θ0, l0 cos θ0]
T, (48)

where φ0 and θ0 are angles in the coordinate system of next step.
The vector of velocity immediately prior to a foot-contact, V1, is calculated as follows:

V1 =[vx, vy, vz]T, (49)

where vx =l2(φ̇2 cos φ2 sin θ2 + θ̇2 sin φ2 cos θ2) + l̇2(sin φ2 sin θ2)

vy =l2(−φ̇2 sin φ2 sin θ2 + θ̇2 cos φ2 cos θ2) + l̇2(cos φ2 sin θ2)

vz =− l2θ̇2 sin θ2 + l̇2(cos θ2),
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where φ2 is the angle of φ just before an impact.
The velocity vector after the impact, V0, is found by the following calculation,

V0 =
V1 · (L× (V1 ×L))

|L× (V1 ×L)| (L× (V1 ×L)) (50)

=
L× (V1 ×L)

l2
(51)

:= [v�x, v�y, v�z]T. (52)

Note that in the above calculation of V0, V1 must be treated as V1 = [−vx, vy, vz] since left-
and right-handed systems are switched at the foot-contact.
From Eq. (52), θ̇0 and φ̇0 are decided,

θ̇0 =
l2
l0

(
φ̇2 cos θ0 sin θ2 sin(φ0 + φ2) + θ̇2

(
sin θ2 sin θ0 − cos θ0 cos θ2 cos(φ0 + φ2)

))
, (53)

φ̇0 =
l2

l0 sin θ0

(
θ̇2 cos θ2 sin(φ0 + φ2) + φ̇2 sin θ2 cos(φ0 + φ2)

)
. (54)

5. Stabilization
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Fig. 11. Geometrical constraints at foot-contact
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Fig. 13. Phase portrait around yaw- and roll axis under the condition of � = const. The three
instance of various φ0 is shown.

5.1 Geometrical constraints
In order to stabilize walking, some constraints are given. At first, the lengthening value of
pendulum is fixed at constant value. In this constraint, supplied energy is nearly constant. In
addition, the following two constraints at foot-contact, are designed as shown in Fig. 11,

• COG height h at a foot-contact is constant, i.e. roll angles of stance- and swing-leg are
constant at foot-contact.

• Yaw angle of swing-leg is shifted by � from the symmetrical position with stance-leg at
foot-contact, i.e. it is φ0[k+ 1] = −φ2[k] + � where φ0[k+ 1] and φ2[k] denote φ0 and φ2 at
k+ 1th and kth step respectively.

5.2 Convergence analysis of the dynamics
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Fig. 14. Nested structure of the trajectory. φ0[k] denotes the yaw angle at the beginning of
stance-leg phase.

In this subsection, the convergence analysis is conducted. Fig. 12 depicts the simulation result
under the condition of �=0.018[rad]=const, l0 =0.51[m], and Δl =0.007[m]. As can be seen in
this figure, θ and θ̇, φ̇ are converged on a certain fixed point. However, it can be seen in Fig. 13,
which shows the phase portrait around yaw- and roll axis, that the trajectory is not converged
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where φ2 is the angle of φ just before an impact.
The velocity vector after the impact, V0, is found by the following calculation,

V0 =
V1 · (L× (V1 ×L))

|L× (V1 ×L)| (L× (V1 ×L)) (50)

=
L× (V1 ×L)

l2
(51)

:= [v�x, v�y, v�z]T. (52)

Note that in the above calculation of V0, V1 must be treated as V1 = [−vx, vy, vz] since left-
and right-handed systems are switched at the foot-contact.
From Eq. (52), θ̇0 and φ̇0 are decided,

θ̇0 =
l2
l0

(
φ̇2 cos θ0 sin θ2 sin(φ0 + φ2) + θ̇2

(
sin θ2 sin θ0 − cos θ0 cos θ2 cos(φ0 + φ2)

))
, (53)

φ̇0 =
l2

l0 sin θ0

(
θ̇2 cos θ2 sin(φ0 + φ2) + φ̇2 sin θ2 cos(φ0 + φ2)

)
. (54)
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on a unique one and two-cycle trajectory appears. If two-cycle occurs, a robot walks leftwards
and cannot walk straight.
In this simulation, the initial angle around yaw-axis, φ0, is varied without changing any other
state and condition. From this figure, it can be seen that the converged trajectory seems to
be depending on the initial state and that there is the certain set of initial state converging a
unique trajectory.
Here, the phase portrait around yaw-axis is focused on. Fig. 14 shows the ones under the
left and right condition in Fig. 13 in which the left- and right-leg supporting phases are
depicted by the dotted and continuous line respectively. As shown in this figure, in the
condition of unique-trajectory-convergence, the phase portrait around yaw axis possesses the
nested structure, i.e. the trajectories in left- and right-leg supporting phase are nested each
other—φ0[k+ 1] is in between φ0[k] and φ0[k+ 2]—and gradually attracted. Note that φ0[k]
is φ0 value at kth step. Hence, it is contemplated that by the controller adjusting � so as to
achieve the nested structure of phase portrait around yaw-axis, it is possible to converge the
dynamics on a unique trajectory.

5.3 Landing position control
In this subsection, we design the stabilizing controller that adjusts the landing position of
stance-leg foot base on the nested structure.
If the present state is inside the converged trajectory, the condition to achieve the nested
structure is described as

(φ0[k] > φ0[k+ 1]) ∧ (φ0[k+ 1] > φ0[k+ 2]). (55)

Meanwhile, it the present state is outside, it is

(φ0[k] < φ0[k+ 1]) ∧ (φ0[k+ 1] < φ0[k+ 2]). (56)

In order to build the stabilizing controller making the yaw dynamics attract to the nested
structure, we define the distance between present state and the nested structure and design
the stabilizing method minimizing this distance as follows:

min(
√
(φ0[k+ 2]− φ0[k+ 1])2 + (φ0[k+ 1]− φ0[k])2). (57)

By adjusting the landing position according to this equation, it is conceivable that robot
dynamics is attracted to the nested structure and consequently converged on a unique
trajectory.

6. Walking simulation

The validity of proposed control was tested by numerical simulation. Fig. 15 and Fig. 16 show
the simulation results of the proposed control. Fig. 15(b) depicts the result of the controller
embedded the above-mentioned stabilization. In Fig. 15(a) and (b), same initial condition
is employed. Note that, as shown in Fig. 15(a), the two-cycle trajectory appears without
stabilization, however in Fig. 15(b), the dynamics is converged on unique trajectory with
stabilization.
The proposed stabilizing method succeeded in convergence the two-cycle trajectory on a
unique trajectory. Fig. 17 shows the simulation snapshots of dynamic walking control.
Without stabilization based on landing position control, 3-D walking was converged on not
unique trajectory but two-cycle one, hence the robot could not walk straight and walked
leftwards as can be seen in Fig. 17. Meanwhile, with stabilization, it was confirmed that the
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robot can walk straight. After convergence, step-length, walking period, and walking velocity
were 0.18[m], 0.65[s], and 0.28[m/s] respectively.
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7. Conclusion

In this chapter, the concept of the multi-locomotion robot that has the high mobilization
capacity by achieving several kinds of locomotion independently was introduced at first. In
addition, the Gorilla Robot III was introduced as hardware of the multi-locomotion robot.
Second, the Passive Dynamic Autonomous Control (PDAC) which has proposed previously
was explained. Not only biped walk but also quadruped walk and brachiation have been
realized in our previous work. Third, we proposed the stabilizing control method that realizes
3-D biped walking based on the assumption of point-contact. The proposed method described
the robot dynamics by use of a 3-D inverted pendulum model in the polar coordinate system.
We applied the PDAC concept to the robot dynamics and expressed the 3-D dynamics as the
2-D autonomous system. In addition, the stabilizing controller adjusting landing position
to make yaw dynamics attract to the nested structure was designed. Finally, the validity of
proposed controller is tested by numerical simulation.
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1. Introduction  
The importance of stability for dynamical systems is well-known. Any real system, including 
biped robots, need to be working under all kinds of disturbances. Whether the biped robot can 
effectively keep the planned motion under these disturbances is a fundamental property, and 
that is the explanation of stability intuitively. Stability of biped walking is the key problem in 
the theoretical framework of biped robots. Roughly speaking, the research of biped robots can 
be classified as the following three aspects: stability criterion, walking pattern planning, and 
walking pattern control. The purpose of stability criterion is to give the condition that the robot 
can realize stable walking under some control strategy. The purpose of walking pattern 
planning is to generate a desired gait offline or online, and it plays the role of feed-forward 
(Huang et al., 2001). The purpose of walking pattern control is to modify the planning walking 
pattern based on sensory information, and it plays the role of feedback (Huang & Nakamura, 
2005). Among the above three aspects, stability criterion is the most fundamental and 
important, and it is the basis of walking pattern planning and real-time control. Although 
some researchers have proposed several walking control methods which are not based on 
stability criterion (Raibert, 1986; Geng et al., 2006); however if these methods can not ensure 
walking stability from the aspect of theory, then it will need many trials on hardware before 
success, and it is difficult to generate them to other platforms. Presently, there are the 
following three stability criteria for biped walking. 
The first criterion is zero moment point (ZMP) criterion. The ZMP was originally defined as 
the point in the ground plane about which the net moments due to ground contacts become 
zero in the plane of ground (Vukobratovic & Juricic, 1969). As long as the ZMP lies strictly 
inside the support polygon of the foot, then the support foot will not rotate about its 
extremities, and the desired trajectories of the robot’s joints are dynamically feasible, just 
like a stationary manipulator. Takanishi et al. (1985) and Hirai et al. (1998) have proposed 
the methods of pattern synthesis based on ZMP offline. Recently, Kajita et al. (2001), Lim et 
al. (2002), and Nishiwaki et al. (2002) discussed the methods of online pattern generation. 
The ZMP criterion is not a necessary condition for stable walking. The ZMP criterion results 
in a flat-footed and short-step walking style which is less dynamic than human beings. 
During normal walking, human do not always obeys the ZMP requirement and the foot 
does not always remain flat on the ground. Humans, even with prosthetic legs, use foot 
rotation to decrease energy loss at impact (Kuo, 2002). Based on the ZMP criterion, the robot 
can only realize static walking or quasi-dynamic walking, as shown in Fig. 1(a) and (b). 
During the dynamic walking of human beings, the under-actuated degree-of-freedom 
(DOF) emerges between the support foot and the ground, as shown in Fig.1 (c). 
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(a)Static Walk

(b)Quasi-dynamic Walk

(c)Dynamic Walk

Underactuated
DOF

(a)

(b) (c)

COM

COMCOM

ZMP

ZMP FZMP  
Fig. 1. Classification of biped locomotion. In case (a), the robot’s nominal trajectory has been 
planned so that the center of mass (COM) and ZMP are both within the interior of the 
footprint. In case (b), COM has moved out of the footprint while ZMP still keeps within the 
interior of the footprint. In both case (a) and (b), the foot will not rotate, and thus the foot is 
acting as a base, just like a normal robotic manipulator. In case (c), however, both COM and 
ZMP has moved out the interior of the footprint, allowing the foot to rotate 

The second stability criterion is Poincare return maps (Guckenheimer & Holmes, 1985), 
which is a technique for determining the existence of periodic orbits and their stability 
properties. With this method, the system is assumed to have a periodic limit cycle. Small 
deviations from the cycle follow the linear relation 

 1n nX KX+ =  (1) 

where nX  is the vector of deviations from the fixed point, K is a linear return map, and 
1nX +  is the vector of deviations in the following cycle. If the eigenvalues of K have moduli 

less than one, then the limit cycle is stable. Hurmuzlu and Moskowitz (1993) first applied 
the Poincare map to the locomotion systems, McGeer (1990) and Goswami et al. (1996) used 
this technique to analyze stability issues of passive walking robots. Grizzle et al. (2001) 
developed an extension of Poincare method that reduces the stability calculation to a one-
dimensional map, and Westervelt et al. (2003a) used this method to design automated 
control for an under-actuated planar biped robot (Chevallereau et al., 2003). However, Using 
Poincare return maps as a stability criterion of biped walking has two serious limitations. 
Firstly, they are only applicable for periodic bipedal walking. There is nothing periodic 
about walking across unevenly spaces obstacles, or changing walking speed. Secondly, 
using eigenvalues of Poincare return maps is valid only for small deviations from a limit 
cycle. Large disruptions from a limit cycle, such as when being pushed, cannot be analyzed 
using this technique. Therefore, Poincare return maps are not necessary for analysing 
bipedal walking in general. 
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The third stability criterion is motivated by observation that human beings keep the relative 
small size of angular momentum about the center of mass (CoM) during walking. In the 
book Legged Robots that Balance, Raibert (1986) speculated that a control system that keeps 
angular momentum during stance could achieve higher efficiency and better performance. 
Popovic and Englehart (2004) have suggested that humanoid control systems should 
explicitly minimize global spin angular momentum during steady state forward walking. 
However, minimizing angular momentum is not a necessary condition for stable walking. 
Human can walk can walk while swinging his or her upper body which makes the global 
spin angular momentum larger than zero. Minimizing angular momentum is not a sufficient 
condition for stable walking, as a biped robot can fall down the ground while maintaining 
an angular zero momentum (Pratt & Tedrake, 2005). Therefore, angular momentum about 
the Center of Mass is not a good stability criterion for biped walking. 
In fact, the desirable characteristics of an ideal stability criterion for biped walking may 
include: 
1. Universal. The ideal stability criterion should be applicable not only to static walking, 

but also to dynamic walking. The ideal stability criterion should be applicable not only 
to periodic walking, but also to non-periodic walking. 

2. Sufficient and Necessary. If the stability margin is outside an acceptable threshold of 
values, the robot will fall down. If the stability margin is inside an acceptable threshold 
of values, the robot will walk stably. 

3. Comparable and Measurable. Two walking patterns should be comparable for stability 
based on their relative stability margins. One should be able to measure the relevant 
state variables and estimate the stability margin on-line in order to use it for control 
purposes  (Pratt & Tedrake, 2005). 

4. Simple and Convenient. The ideal stability criterion should be easy to compute, and 
convenient to be used in analyzing and controlling robots. 

This chapter explores such a coherent stability criterion based on the description of biped 
walking from a global point of view. The organization of this chapter is organized as follows. 
Section II proposed an overall mathematical modeling method for biped walking is based on 
dimensional-variant hybrid automata. Section III presented a rigorous definition of biped 
walking stability by combining the character of biped locomotion with the notion of classical 
stability, and pointed out that the model in the task space is a length-varying and inertia-
varying inverted pendulum. Section IV presented a stability criterion in task space of biped 
walking. Section V introduced application methods of the proposed criterion. Section VI 
provided the experimental results of a planar biped robot. Section VII concluded the chapter. 

2. Overall mathematical model for dynamic biped walking 
2.1 Assumption of dynamic walking 
During biped locomotion, two legs alternately contact the ground. When only one leg 
contacts the ground, the robot is called in single support phase. When both legs contact the 
ground, the robot is called in double support phase. The overall biped walking consists of 
single support phase and double support phase. 
In the field of biped locomotion, there’s still no accurate and rigorous definition for dynamic 
walking (Goswami & Kallem, 2004). For the purposes of this chapter, to eliminate 
complications, we assume that dynamic walking should satisfy the following two 
requirements: 
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(a)Static Walk

(b)Quasi-dynamic Walk

(c)Dynamic Walk

Underactuated
DOF

(a)

(b) (c)

COM

COMCOM

ZMP

ZMP FZMP  
Fig. 1. Classification of biped locomotion. In case (a), the robot’s nominal trajectory has been 
planned so that the center of mass (COM) and ZMP are both within the interior of the 
footprint. In case (b), COM has moved out of the footprint while ZMP still keeps within the 
interior of the footprint. In both case (a) and (b), the foot will not rotate, and thus the foot is 
acting as a base, just like a normal robotic manipulator. In case (c), however, both COM and 
ZMP has moved out the interior of the footprint, allowing the foot to rotate 
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1. The under-actuated DOF emerges between the support foot and the ground during 
dynamic walking. 

2. The double support phase is instantaneous and can be modeled as a rigid contact. 
The robot is said to be in under-actuated phase when the robot is in the mode of toe or heel 
contact, and in fully-actuated phase when the robot is in the mode of full sole contact. A 
typical dynamic walking for biped robots with feet is shown in Fig.2. 
 

(b) Toe contact(a) Foot contact (c) Heel contact

Walking direction

(d) Foot contact 
Fig. 2. A typical dynamic walking for biped robots with feet 

Since the assumption of instantaneous double support phase, each discrete phase can be 
modeled as an N-link rigid body open-chain robot with one-DOF revolute joints. The 
equations of motion are given by the following general form: 

 ( ) ( , ) ( )D q q C q q q G q Bu+ + =  (2) 

where 1: ( ; ; )Nq q q Q= ∈  are the joint angles, Q  is a simply-connected, open subset of 
[0,2 )Nπ corresponding to physically reasonable configuration of the robot. The matrix ( )D q  
is the inertia matrix, the matrix ( )C q  contains Coriolis and centrifugal terms, ( )G q  is the 
gravity vector, and B  is an input matrix. 
Defining : ( ; )x q q= , the model in each phase can be written in state space form 

 
1 1

0
: ( ) ( )

[ ]

q
x u f x g x u

D Cq G D B− −

⎡ ⎤ ⎡ ⎤
= + = +⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  (3) 

with state space : {( ; )| , }NTQ q q q Q q R= ∈ ∈ . 

2.2 Overall biped model based on dimension-variant hybrid automata 
The overall biped model is hybrid and dimension-variant in nature, consisting of some 
continuous dynamics and re-initialization rules at the contact event. We propose an overall 
mathematical modeling method for biped walking based on dimension-variant hybrid 
automata. This method expresses the overall biped walking model as an 8-tuple 

 ( , , , , , , , )=H V X N F D E S Δ  (4) 

where  
= { , , , }V f t hoot oe eel is the collection of discrete states; 
{ }= ∈:i iX x V  is the collection of continuous states; 
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{ }dim( ) :i i= ∈N x V  is the dimension of X ; 
{ ( , ) : }i= × →F F x V X XT  is the vector fields; 
{ : }i i= ∈D TQ V  is the collection of domains; 

⊆ ×E V V  is the collection of edges; 
{ : }= ∈S S Ee e  is the collection of transition sections; 
{ : }e e= ∈EΔ Δ  is the collection of transition rules; 

Let ( )−⋅  and ( )+⋅  donate quantities immediately just before and after transition. Given H , 
the basic idea is that starting from a point in some domain iTQ , we flow according to iF  
until (and if) we reach some transition section j

iS , then switch via the transition rule j
iΔ , 

continue flowing in jTQ , according to jF  and so on, as shown in Fig. 3. 
 

( )i i i=�x F x ( )j j j=�x F x

i i∈x TQ j j∈x TQ

j
i i
− ∈x S ( )+ j

j i i
−=x xΔ( , )i j

 
Fig. 3. Diagram of dimension-variant hybrid automata 
A typical dynamic walking with feet shown in Fig.2 can be modeled as a dimension-variant 
hybrid automaton, as shown in Fig. 4. This modelling method can reflect all kinds of 
continuous and discrete properties of biped walking, which makes it possible to study 
stability and design control strategy for biped locomotion from a global point of view. 
It should be noted that the solution 0( )t xϕ  of dimension-variant hybrid automata is 
piecewise continuous and hybrid, as shown in Fig.5. 

3. Stability definition and task space 
3.1 Stability definition of biped walking 
The manuscript has to be submitted in MS Word (*.doc) and PDF format. If you use other 
word editors and can not transfer it in Word and PDF please contact us. The most intuitive 
definition of biped stability is likely that “the biped does not fall”. This section will give a 
sequence of preliminary definitions leading to a rigorous mathematical definition of biped 
walking stability by combining the character of biped locomotion with the notion of classical 
stability from the view of hybrid automata. 
Since the main destination of biped walking is to avoid fall, following (Pratt & Tedrake, 
2005), we define a fall in this chapter as follows. 
Definition 4.1 (Fall) Let FallQ  be a set of the robot’s configuration in which a point on the 
biped, other than a point on the feet, touches the ground.  
There are three modes of fall for biped robots considering in this chapter as shown in Fig. 6. 
Let q  and �q  denote the vector of generalized position and velocity respectively. FallQ  can 
be expressed as 

 Fall torso hip knee{ | ( ) 0} { | ( ) 0} { ( ) 0}y y y= = = =∪ ∪Q q q q q q  (5) 
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Fig. 4. Dimension-variant hybrid automata for dynamic walking wirh feet 

 

 
Fig. 5. Solution of dimension-variant hybrid automata 

 

(a) Torso mode (b) Hip mode (c) Knee mode  
Fig. 6. Three modes of fall configuration 

Introducing the state vector ( ; )=x q q , the solution starting from 0x  can be donated as 
0( )t xϕ , and it is hybrid and piecewise continuous. Let 0 0( ) { ( )|0 }t t= ≤ < ∞x xOrb ϕ  donate 

the hybrid orbit of biped walking. It should be noted that 0( )xOrb  can be not only periodic 
walking (Gizzle et al., 2001), but also non-periodic walking. 
Definition 4.2 (Feasible Orbit) Let 0( )xOrb  be a hybrid orbit starting from 0x . If  

0( ; ) ( )∀ ∈q q xOrb , satisfying 

 Fall∉q Q  (6) 

then 0( )xOrb is a feasible orbit. 
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Definition 4.3 (Distance between a Point and an Orbit) Given a norm || ||⋅ , the distance 
between a point i i∈x TQ  and an orbit 0( )xOrb  can be defined as 

 
0

0 ( )
dist ( )) : inf || ||

i
i i

∈
= −

∩y x TQ
x x x y

Orb
( ,Orb  (7) 

Definition 4.4 (Open Neighborhood of an Orbit) Let 0( )xOrb  be an orbit starting from 0x . 
Given a norm || ||⋅ , the open neighborhood of an orbit 0( )xOrb  can be defined as 

 0 0( )) { |dist ( )) }δ δ= <x x x x(Orb ( ,OrbΩ  (8) 

Definition 4.5 (Stable Walking) Let 0( )xOrb  be a feasible orbit of biped walking. If 0ε∀ > , 
( ) 0δ ε∃ >  which determines an open neighbourhood 0( ))δ x(OrbΩ  such that for 

every 0( ))δ∈x x(OrbΩ , satisfying 0( ) ( ))t
ε∈x x(OrbΩϕ  for all 0t ≥ , then the biped walking 

is stable. 
Definition 4.6 (Attractive Walking) Let 0( )xOrb  be a feasible orbit of biped walking. If  

0δ∃ >  which determines an open neighbourhood 0( ))δ x(OrbΩ  such that for 
every 0( ))δ∈x x(OrbΩ , satisfying 0lim ( ) ( )t

t→∞
∈x xOrbϕ , then the biped walking is attractive. 

Definition 4.7 (Asymptotically Stable Walking) If a biped walking is both stable and 
attractive, then it is asymptotically stable. 
Definition 4.8 (Exponentially Stable Walking) If there exists 0δ > , 0γ > , and 0β >  such 
that, 0t∀ > ,  

 0 0dist( ( ), ( )) e dist( , ( ))t tβγ −≤x x x xOrb Orbϕ  (9) 

whenever 0( ))δ∈x x(OrbΩ . 

3.2 Biped model in the task space 
The definition of biped stability is established in high-DOF space; however it is difficult to 
study the stability in this high-DOF space directly. Although biped robots are typically high 
DOF mechanisms, the task of biped walking is inherent a low DOF task. Considering planar 
biped walking, the task space is only 1-DOF problem, as shown in Fig. 7. 
In fact, stability of biped walking can be studied in the low-DOF task space under virtual 
constraint control strategy  (Gizzle et al., 2001; Canudas-de-Wit, 2004), as shown in Fig. 8. 
Inspired by the work of Westervelt et al. (2003a), let θ and σ donate the position and 
angular momentum around the pivot point of the stance leg respectively. Let 

2( ; )i i i iθ σ= ∈ ⊂z Z R  donate the state variable of the task space. According to the angular 
momentum balance theorem, the model of the task space has the following special form 
 

 
Fig. 7. Task Space of biped locomotion in sagittal plane 
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Fig. 8. Example of virtually constrainted system 
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where iI  plays the role of an inertia, and iJ  plays the role of a net moment around the 
pivot. 

3.3 Basic definitions for the biped model in the task space 

Let ( )( , ) :
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i ii i i

i i
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F  donate the vector field in task space. We assume the following 

conditions are satisfied: 
H1) 2

i ⊂Z R  is open and connected; 

H2) 2:i i →F Z R is 1C ; 

H3) A solution ( )t
izϕ  is right continuous on t, and depends continuously on the initial 

condition iz ; 

H4) Transition section is designed as 1i
i
+ =S  {( , )| }i i i iθ σ θ θ −=  

H5) v is 
1C , and 1 1 1( )i i i

i i i
+ + + ∅∩S SΔ = ; 

H6) 0iσ >  during normal forward walking. 
Definition 4.9 (Time Function) T : i →Z R  is defined as 

 1T( ) : { 0| ( ) }t i
i i it += ≥ ∈z z Sϕ  (11) 

The meaning of time function is the time to the transition section at the first time. 
Definition 4.10 (Distance Function) d : i →Z R  is defined as 

 *
0

0 T( )
d( ): sup dist( ( ), ( ))

i

t
i i

t≤ <
= Orb

z
z z zϕ  (12) 

The meaning of distance function is the maximum distance between *
0( )zOrb  and solution 

( )t
izϕ  before the first time to impact section. 

Definition 4.11 (Total Distance Function) D : i →Z R is defined as 
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=z z zOrbϕ  () 

The meaning of distance function is the maximum distance between *
0( )zOrb  and solution 

( )t
izϕ  while (0, ]t∈ ∞ . 

Lemma 1: [(Grizzle, 2001), Lemma3 and 4] Suppose that H1-H4 hold, then T( )iz  and d( )iz  
is continuous. 
Lemma 2: Suppose that H1-H5 hold, then D( )iz  is continuous. 
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+

→
= � �

z
z zΔ ϕ . By H3), H5), and Lemma 2, 1d( )i

+
+z  is continuous. In 

the same way, any item in the right side of the equation (14) is continuous. Therefore, D( )iz  
is continuous.              ♠ 

4. Stability criterion in the task space 
4.1 Section Sequence and its Stability Equivalence to Orbit 
Definition 5.1 (Section Sequence) *

0{ }i i
∞
=z  is defined as a set of intersection point between 

*
0( )zOrb  and transition sections as shown in Fig. 9, and *

iz  can be written as 

 * * 1
0: ( ) i
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+= ∩z z SOrb  (15) 

where *
0( )zOrb  is the set closure of *
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Fig. 9. Section sequence and section map 

Theorem 1 Under H1)–H5), if section sequence *
0{ }i i

∞
=z  is stable (resp., asymptotically stable, 

or exponentially stable), orbit *
0( )zOrb  is stable (resp., asymptotically stable, or 

exponentially stable). 
Proof: The process can be summed up into the following three parts: 
1.  Proving stable 
Since section sequence *

0{ }i i
∞
=z  is stable, then 0ε∀ > , ( ) 0δ ε∃ >  such that for every 

*
0 0( )( )δ ε∈z B z , satisfying *( )i iε∈z B z  for all 0i ≥ . This implies that *

0 0( )( )δ ε∀ ∈z B z , there 
exists  a solution 0( )t zϕ  defined on [0, )∞  with the initial value 0z . Moreover, following 
[(Grizzle, 2001), Equation (55)], an upper bound on how far the solution 0( )t zϕ  wanders 
from the orbit is given by 
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Fig. 8. Example of virtually constrainted system 
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where iI  plays the role of an inertia, and iJ  plays the role of a net moment around the 
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Theorem 1 Under H1)–H5), if section sequence *
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or exponentially stable), orbit *
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Proof: The process can be summed up into the following three parts: 
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*
0

*
0 0 0 ( ( ))sup dist( ( ), ( )) sup D( )t

t ε≥ ∈≤ ∩z z Sz z zOrbOrb Ωϕ  (16) 

According to Lemma 2, D( )iz  is continuous; moreover, for *
0( )∈ ∩z z SOrb , D( ) 0=z . This 

implies that 0ε∀ > , 0ε∃ > , satisfying 

 D*
0( ( ))sup ( )z

ε
ε∈ <∩z z SOrbΩ  (17) 

 

Take (17) into (16), and yield 

 *
0 0 0sup dist( ( ), ( ))t

t ε≥ <z zOrbϕ  (18) 

According to definition 4.4, (18) can be written as 

 *
0 0( ) ( ( ))t

ε∈z zOrbΩϕ  (19) 

By H3) and H4), It is easy to construct a small enough open neighborhood *
0( ( ))δ zOrbΩ   

satisfying that when *
0 0( ( ))δ∈ ∩z z ZOrbΩ , *

0 0( )δ∈z B z , which proves that the orbit is stable  
2.  Proving asymptotic stable 
Since section sequence *

0{ }i i
∞
=z  is asymptotically stable, then there exists 0δ >  such that for 

every *
0 0( )( )δ ε∈z B z , satisfying *

0lim ( )ii→∞
∈z zOrb . According to definition 4.3, we have 

D(lim ) 0ii→∞
=z . This implies that there exists a solution 0( )t zϕ  satisfying 

*
0 0limdist( ( ), ( )) 0t

t→∞
=z zOrbϕ , which proves that the orbit is asymptotically stable.                       

3.  Proving exponentially stable 
Since section sequence *

0{ }i i
∞
=z  is exponentially stable, then there exists 0δ > , 0γ >  and 

0β >  such that, for all 0i ≥ , 

 * *
0 0|| || e || ||i

i i
βγ −− ≤ −z z z z  (20) 

 

whenever * 1
0 0 0( ( ))δ∈ ∩z z SOrbΩ  

According to Lemma 1 and H5), for any 0i ≥ , T( )iz
T( )iz  and 1( )i

i i
+ zΔ  are all continuous; 

therefore, there exists an open ball *( )r iB z ,  minT 0> , maxT 0> , such that for 
* 1( ) i

i r i i
+∈ ∩z B z S , 

 1
min max0 T T ( ) T <i

i i
+< ≤ ≤ ∞� zΔ  (21) 

Since exponential stability of *
0{ }i i

∞
=z  implies stability of *

0{ }i i
∞
=z , *

0( )zOrb  is also stable. 
Thereby, there exists 0δ > , such that for *

0 0( ( ))δ∈z zOrbΩ , satisfying *
0 0( ) ( ( ))t

r∈z zOrbΩϕ  
for all 0t ≥ . According to H3), H4) and standard bounds for the Lipschitz dependence of 
the solution w.r.t. its initial condition, it follows that for * 1( ) i

i i iδ
+∈ ∩z B z S , 

1 max

1 * 1 1 * *
0 0 T0 T ( )sup dist( ( ), ( )) sup || ( ) ( )|| || ||i

i i

t i t i t i
i i t i i i i i i it L+
+ + +

≤ ≤≤ ≤ ≤ − ≤ −� � � �z z z z z z zOrbΔ Δ Δ Δϕ ϕ ϕ (22) 

where iL  is the Lipschitz constant of continuous function 1( )t i
i
+ ⋅�Δϕ . 

According to (20) and (22), for 0i ≥ , 

 1
1 * *

0 0 00 T ( )sup dist( ( ), ( )) e || ||i
i i

t i i
i i it L βγ+
+ −

≤ ≤ ≤ −� �z z z z zOrbΔ Δϕ  (23) 
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Define supi iL L= , and considering  (21) and (23), for all 0t ≥ , 

 maxT* *
0 0 0 0dist( ( ), ( )) e e || ||

t
t L

β
βγ

−
≤ ⋅ −z z z zOrbϕ  (24) 

By H3) and H4), there exists 0c >  such that 

 * *
0 0 0 0|| || dist( , ( ))c− ≤ ⋅z z z zOrb  (25) 

The proof of asymptotical stability can be finished by taking (25) into (24).                                

4.2 Section map and its analytical form 
Definition 5.2 (Section Map) 1 1 2

1 1:i i i
i i i i i
+ + +

+ +→∩ ∩P S Z S Z  is defined as  

 
*T( ( ))1 * *( ) : ( ( ))ii

i i iϕ+ = zP z zΔ Δ  (26) 

The meaning of section map is the map between two contiguous section sequences, as 
shown in Fig. 9. 
Remark 1: It should be noted that section map does not need the system is periodic. 
Since iZ  is two-dimensional, |1 {( ; ) }i

i i i i iθ σ θ θ+ −= =S  is a one-dimensional restriction; 
therefore, section map and section sequence are both one-dimensional essentially. By H6), 

1 2 2
1: ( ) ( )i

i i iρ σ σ+ − −
+→  is homeomorphous with 1i

i
+P , and section map 0{ }i iσ − ∞

=  is 
homeomorphous to 2

0{( ) }i iσ − ∞
= , which can be written as 

 2 1 2
0 1 0 0 0{( ) } { (( ) )}i

i i i iσ ρ ρ σ− ∞ − ∞
= − == ���  (27) 

Thereby, the stability of section sequence is determined by the form of 
1i

iρ
+

. 
By (10), section map 2 2

1 1: ( ) ( )i
i i iρ σ σ− −
− − →  can be written as 

 2 2
1 1( ) ( ) 2 ( ) ( )i

i

i
i i i i i i i iI J d

θ

θ
σ δ σ θ θ θ

−

+
− −

− −= ⋅ + ∫  (28) 

where 1 1: /i
i i iδ σ σ+ −
− −=  is called section-map factor. 

It should be noted that (28) is a one-dimensional linear time-invariant map. 

4.3 Section-map stability criterion 
Theorem 2 (Section-map Stability Criterion) Under H1)–H6), if 0 10 sup 1i

i iδ> −< < , *
0( )zOrb  

is exponentially stable; moreover, the smaller 0 1sup i
i iδ> −  is, the faster *

0( )zOrb  converges. 
Proof: According to Theorem 1, the exponential stability of *

0( )zOrb  lies on the exponential 
stability of *

0{ }k k
∞
=z . Since *

0{ }k k
∞
=z  and 2

0{( ) }i iσ − ∞
=  is homeomorphous, the following will 

prove the exponential stability of 2
0{( ) }i iσ − ∞

= . 
Define 2( )i iξ σ −= , and *

0{ }i iξ ∞
=  can be written as 

 * * 1 * 2 1 * 1 *
0 0 0 0 1 0 0 1 0 0{ } { , ( ), ( ), , ( ), }i

i i iξ ξ ρ ξ ρ ρ ξ ρ ρ ξ∞
= −= � � ��� �  (29) 

When there exists an initial perturbation *
0 0|| ||ξ ξ δ− < , according to (28), for all 0i ≥ , 
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Define supi iL L= , and considering  (21) and (23), for all 0t ≥ , 
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It should be noted that (28) is a one-dimensional linear time-invariant map. 

4.3 Section-map stability criterion 
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i iδ> −< < , *
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is exponentially stable; moreover, the smaller 0 1sup i
i iδ> −  is, the faster *

0( )zOrb  converges. 
Proof: According to Theorem 1, the exponential stability of *

0( )zOrb  lies on the exponential 
stability of *

0{ }k k
∞
=z . Since *

0{ }k k
∞
=z  and 2

0{( ) }i iσ − ∞
=  is homeomorphous, the following will 

prove the exponential stability of 2
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= . 
Define 2( )i iξ σ −= , and *

0{ }i iξ ∞
=  can be written as 
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When there exists an initial perturbation *
0 0|| ||ξ ξ δ− < , according to (28), for all 0i ≥ , 



 Biped Robots 

 

140 

* * 2 * 2 1 2 *
1 1 1 1 1 1 1 1 0 0 0|| |||| ( ) ( )|| ( ) || || ( ) ( ) || ||i i i i

i i i i i i i i i iξ ξ ρ ξ ρ ξ δ ξ ξ δ δ ξ ξ− − − − − − − −− = − = − = ⋅ − (30) 

Moreover, 

 max maxln 2(ln )2 1 2 2 2
1 0 max( ) ( ) ( ) ( )i i i i

i e eδ δδ δ δ ⋅
− ≤ = =  (31) 

Take (31) into (30), and yield 

 max2(ln )* *
0 0|| || || ||i

i i e δξ ξ ξ ξ⋅− ≤ −  (32) 

Since 0 10 sup 1i
i iδ> −< < , then 0 1ln(sup ) 0i

i iδ> − < , which proves that *
0{ }i iξ ∞

=  is exponential 
stable. ♠ 
Remark 2: Theorem 2 can be intuitively explained as: If the error arising from an initial 
perturbation can be shrinked at each impact, then the stability of the orbit can be achieved, 
vice versa, as shown in Fig. 10. 
 

 

  
Fig. 10. Intuitive explaination of section-map stability criterion 

Remark 3:  Section-map Stability Criterion is an extension of Poincare return maps, and it is 
applicable to non-periodic walking which Poincare return map criterion can not solve. 
In Section I, we have asserted that a desirable stability criterion for biped walking should 
satisfy four characteristics. In followings, we will give an explanation for section-map 
stability criterion about the above four characteristics. 
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1. Universal. Section-map stability criterion is established on a rigorous definition of biped 
walking; therefore it can not only be applicable to static walking, but also to dynamic 
walking, and can not only be used to study periodic walking, but also to non-periodic 
walking. 

2. Necessary and Sufficient. Section-map stability criterion is a sufficient condition for 
biped walking, is a necessary condition for periodic walking, and is a quasi-necessary 
condition for non-periodic walking. The quasi-necessary condition means that the 
condition that all section-map factors are less than one is not necessary for non-periodic 
walking, but the number of section-map factors which is less than one should be larger 
than the number of section-map factors which is more than one. 

3. Comparable and Measurable. By comparing the section-map factors of two walking 
patterns, one can determine which pattern is more stable. The lower δ , the faster the 
convergence toward the reference trajectory after perturbation. One can measure the 
relevant state variables and calculate or estimate the stability margin on-line in order to 
use it for control purposes. 

4. Simple and Convenient. Comparing with ZMP criterion, it is not necessary to calculate 
all points of trajectories, and only transition points need to be calculated. Comparing 
with Poincare methods, the proposed criterion study biped walking in low-dimension 
task space and has a concise form; therefore section-map stability criterion is easy to 
compute, and convenient to be used in analyzing and controlling biped walking. 

5. Applications of section-map stability criterion to planar biped walking 
5.1 Planar biped robot THR-I 
To test the validation of the proposed criterion, a planar biped robot called THR-I has been 
developed, and this robot has five links which are connected by revolute joints. To constrain 
motions in the frontal plane, THR-I was constructed with a boom attached at the hip joint, as 
shown in Fig. 11. The boom constrains the sagittal plane to be tangent to a sphere centered 
at the universal joint, and still allows the robot to freely trip or fall forward or backward. 
The material of the boom is made of carbon fiber which is rather light, and the length of the 
boom is more than 5 times leg length of THR-I; therefore, the influence of the boom on THR-
I’ dynamics  in the sagittal plane is very small. 
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* * 2 * 2 1 2 *
1 1 1 1 1 1 1 1 0 0 0|| |||| ( ) ( )|| ( ) || || ( ) ( ) || ||i i i i

i i i i i i i i i iξ ξ ρ ξ ρ ξ δ ξ ξ δ δ ξ ξ− − − − − − − −− = − = − = ⋅ − (30) 

Moreover, 

 max maxln 2(ln )2 1 2 2 2
1 0 max( ) ( ) ( ) ( )i i i i

i e eδ δδ δ δ ⋅
− ≤ = =  (31) 

Take (31) into (30), and yield 

 max2(ln )* *
0 0|| || || ||i

i i e δξ ξ ξ ξ⋅− ≤ −  (32) 

Since 0 10 sup 1i
i iδ> −< < , then 0 1ln(sup ) 0i

i iδ> − < , which proves that *
0{ }i iξ ∞

=  is exponential 
stable. ♠ 
Remark 2: Theorem 2 can be intuitively explained as: If the error arising from an initial 
perturbation can be shrinked at each impact, then the stability of the orbit can be achieved, 
vice versa, as shown in Fig. 10. 
 

 

  
Fig. 10. Intuitive explaination of section-map stability criterion 

Remark 3:  Section-map Stability Criterion is an extension of Poincare return maps, and it is 
applicable to non-periodic walking which Poincare return map criterion can not solve. 
In Section I, we have asserted that a desirable stability criterion for biped walking should 
satisfy four characteristics. In followings, we will give an explanation for section-map 
stability criterion about the above four characteristics. 
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1. Universal. Section-map stability criterion is established on a rigorous definition of biped 
walking; therefore it can not only be applicable to static walking, but also to dynamic 
walking, and can not only be used to study periodic walking, but also to non-periodic 
walking. 
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at the universal joint, and still allows the robot to freely trip or fall forward or backward. 
The material of the boom is made of carbon fiber which is rather light, and the length of the 
boom is more than 5 times leg length of THR-I; therefore, the influence of the boom on THR-
I’ dynamics  in the sagittal plane is very small. 
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Encoders are located between the boom and hip joint, and binary contact switches are 
located at the tip of the leg to detect whether or not a leg is in contact with the walking 
surface. There is no actuation at the stance leg tip. Hence, the robot is underactuated. It is 
assumed that walking consists of two successive phase: a single support phase and an 
instantaneous impact phase. Although this robot is simple, it captures the main difficulties: 
hybrid, static instability, and under-actuation. This model was also adopted in (Geng et al., 
2006; Chevallereau et al., 2003). 
To describe the shape of the biped, let 1 2 3 4( , , , )cq q q q q ′=  denote the configuration 
coordinates, and 5q  denote the absolute coordinate of the torso with respect to the 
coordinate frame as shown in Fig.12. The vector of the generalized coordinates of the biped 
robot is defined as 1 2 3 4 5( , , , , )q q q q q q ′= . Let ( , )com comx y  denote the Cartesian coordinates of 
the center of mass. Torques iu , 1i =  to 4, are applied between each connection of two links. 
Let σ  denote the biped angular momentum around the pivot point of the stance leg. For the 
above choice of the coordinates in the support phase, σ  has the following form 
(Chevallereau, 2004): 

 5( )cD q qσ = −  (33) 

where 5( )cD q  is the fifth line of matrix ( )cD q . 
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Fig. 12. Model of  a 5-link THR-I biped robot 

Since only the gravity affects the angular momentum around the pivot point, the angular 
momentum dynamics can therefore be written as 

 ( )commg x qσ = ⋅  (34) 

Let q− , q+ , q− , and q+  denote the pre- and post-impact generalized positions and 
generalized velocities, respectively. The superscript “–” and “+” will denote quantities 
immediately before and after impact thereinafter. 
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We assumed that the impact is instantaneous and inelastic. After impact the former stance 
leg is lifted off immediately, and the legs swap roles, which can be written as the following 
transformation equation: 

 q Rq+ −=  (35) 

where 

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 is a circular matrix describing the exchange of the support leg. 

According to the conservation of momentum about impact point and no rebound nor slip at 
impact of swing leg tip, the map from q−  and q+  can be obtained respectively by 

 ( )qq q q+ − −= Δ  (36) 

where ( )q q−Δ  can be found in (Westervelt et al., 2003a). 

5.2 Synthesizing periodic walking patterns based on section-map factor 
Consider the following output function (Westervelt et al., 2003a): 

 0( ) : ( ) ( )dy h q h q h qθ= = −  (37) 

where 0( )h q specifies the four actuated joints that are to be controlled and ( )dh qθ  specifies 
the desired evolution of these joints as a function of the monotonic quantity θ(q), as shown 
in Fig. 13. Driving y to zero will force 0( )h q  to track ( )dh qθ ; thus the configuration of the 
robot is being controlled as a holonomic constraint parameterized by ( )qθ . 
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Choosing 

 0 0( ) :h q H qa=  (38) 

 ( ) :q cqθ =  (39) 

where [ ]0 4 4 4 10H I × ×= , c = [-1  0 -1/2  0 -1]. 
To obtain a stable walking pattern, we propose a synthesizing method consisting of the 
following four steps: 
1.  parameterize position constraints ( )dh θ at all breakpoints; 
Since one of the basic aspects of biped locomotion is to maintain a constant erect torso, we 
specify q5 = 0 in the whole walking cycle, as shown in Fig. 13. 
To shape the impact posture, we define two normalized non-dimensional parameters: 

 1 2: ( ) /sk l l L= +  (40) 
 

 1 1 2: /( )hk l l l= +  (41) 

where sk  describes the magnitude of the stride relative to leg length, and hk  describes the 
ratio of the hip abscissa to the stride. sk  and hk  could take values from 0 to 1 during normal 
gaits. 
Let H  denote the height of hip joint at impact, and. H  can be determined by the following 
equation: 

 2 2cos ( / 2) / 4sH L kα= −  (42) 

where α  is the angle of the knee joint when 0.5hk = . 
To be compatible with the ground condition, it is necessary to specify several middle 
postures to describe the swing foot over rough terrain or in environments with obstacles. 
For simplicity, we select one middle posture mq  where ( ) / 2mθ θ θ+ −= + . The height of the 
hip in the middle posture can be determined by ( ) / 2mH A B= + . We utilize the Cartesian 
coordinates of swing foot ( , )m m

f fx y , to parameterize mq . The robot can negotiate different 
obstacles on the ground by varying ( , )m m

f fx y . 
Since both impact postures and middle postures are determined, the configuration at all 
breakpoints can be written as 

 
0

0

0

( , ),

( ) ( , ),

( , ),

s h
m m m m

d f f

s h

H q k k

h H q x y

H q k k

θ θ

θ θ θ

θ θ

+ +

− −

⎧ =
⎪⎪= =⎨
⎪

=⎪⎩

 (43) 

2. determine the derivative constraints ( ) /ddh dθ θ  at impact postures; 
Since we assume that the robot maintain a constant erect posture during the whole walking 
cycle, the following two conditions must be satisfied: 

 5 0q− =  (44) 
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 5 1 4[0 1] 0qq q+ −
×= Δ =  (45) 

Observing from human walking, we find that human beings appear to hold his support 
knee joint and relative angle between two thighs intendedly just before impact, so we get 
the following equation: 

 3 0q− =  (46) 

 
2 1 0q q− −− =  (47) 

Let σ −  denote the angular momentum just before impact. According to (33), one can obtain 

 5( )D q qσ − −
− = −  (48) 

According to equation (44) to (48), the generalized velocities q −  can be expressed as 

 ( )q q σ− − −= Π  (49) 

where 

1

1 4

5

0 0 0 0 1 0
[0 1] 0

0 0 1 0 0 0( )
1( )
01 1 0 0 0

q

q
D q

−

×
−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Π = ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥− ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

. 

Considering the equation (36), the generalized velocities q+  can also be uniquely 
determined. Considering (38), (39), and (49), the derivative constraints at impact postures 
can be written as 

 0

0

( ) /( ( )),

( ) /( ( )),
d

q q

H q c qdh
d H q c q

θ θ

θ θ θ

− − +

− − −

⎧ Π Π =⎪= ⎨
Δ Π Δ Π =⎪⎩

 (50) 

3. obtain the continuous trajectory ( )dh θ  by interpolation; 
To satisfy constraint (43), (50), and the continuity conditions of the first derivative and the 
second derivative at all breakpoints, ( )dh θ  are characterized by two third-order polynomial 
expressions: 

 

3

0
3

0

( ) , [ , ]
( )

( ) , [ , ]

i m
i

i
d

m i m
i

i

M
h

N

θ θ θ θ θ
θ

θ θ θ θ θ

+ +

=

−

=

⎧
⋅ − ∈⎪

⎪= ⎨
⎪ ⋅ − ∈⎪⎩

∑

∑
 (51) 

Thereby, we can obtain iM  and iN  by third-order spline interpolation. In this way, ( )dh θ  is 
twice differentiable during the whole single support phase. When ( , )m m

f fx y  and α  are 
specified, the walking pattern can be determined by the two non-dimensional parameters 

sk  and hk  uniquely. 
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4.  determine the parameters with a small section-map factor. 
Considering (33), (36), (48), and (49), the section-map factor can be calculated as 
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−
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�
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�
 (52) 

According to (52), the section-map factor only depends on q  at impact. Since there are only 
two parameters sk  and hk , we can easily obtain a small section-map factor by exhaustive 
search computation (Fu et al., 2006). 

5.3 Stable walking transition and its stability analysis 
According to section-map stability criterion, the robot can achieve stable walking provided 
that all section-map factors is less than one. Fig. 14 shows the property of angular 
momentum during one-step transition. 
 

 
Fig. 14. Property of angular momentum during one-step transition 

Moreover, each walking pattern has a domain of stable attraction, and we assume the 
domains before and after transition are respectively 

 min maxa aσ −< <a  (53) 

 min maxb bσ −< <b  (54) 

Define one-step transition map :P σ σ− −
→ →a b a b  

 2( ) ( ) 2 ( ) ( )P I J d
θ

θ
σ δ σ θ θ θ

−

+
− −

→ = ⋅ + ∫ b

a
a b a a a  (55) 

To realize a stable one-step transition, the following two conditions must be satisfied: 
The domain of attraction of walking pattern a can be steered into the domain of attraction of 
walking pattern b under transition map (Westervelt, 2003b), that is, 

 min max min max{ ( )| } { | }P a a b bσ σ σ σ− − − −
→ < < < < ≠ ∅∩a b a a b b  (56) 

The walking with perturbation should be in the intersection set of domains: 
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 1
min max min max{ | } { ( )| }a a P b bσ σ σ σ σ− − − − − −

→∈ < < < <∩a a a a b b b  (57) 

Since one-step transition map (55) is a monotonic increasing function, as shown in Fig. 15, 
the two stable transition conditions can be written as 

 max min

min max

( )
( )

P a b
P a b

→

→

>⎧
⎨ <⎩

a b

a b
 (58) 

 1 1
min min max maxmin{ , ( )} max{ , ( )}a P b a P bσ− − −

→ →< <a b a a b  (59) 

Fig. 16 shows the property of angular momentum during multi-step transition, and we 
assume the domains before and after transition are respectively 
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Fig. 15. Phase portraits during one-step transition 

 min maxa aσ −< <a  (60) 

 min maxd dσ −< <d  (61) 

Define multi-step transition map :P σ σ− −
→ →a d a d , to realize a stable multi-step transition, 

the following two conditions must be satisfied: 

 min max min max{ ( )| } { | }P a a d dσ σ σ σ− − − −
→ < < < < ≠ ∅∩a d a a d d  (62) 

 1
min max min max{ | } { ( )| }a a P d dσ σ σ σ σ− − − − − −

→∈ < < < <∩a a a a d d d  (63) 
 

 
Fig. 16. Property of angular momentum during multi-step transition 
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To realize a stable one-step transition, the following two conditions must be satisfied: 
The domain of attraction of walking pattern a can be steered into the domain of attraction of 
walking pattern b under transition map (Westervelt, 2003b), that is, 

 min max min max{ ( )| } { | }P a a b bσ σ σ σ− − − −
→ < < < < ≠ ∅∩a b a a b b  (56) 

The walking with perturbation should be in the intersection set of domains: 
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Since one-step transition map (55) is a monotonic increasing function, as shown in Fig. 15, 
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Fig. 16 shows the property of angular momentum during multi-step transition, and we 
assume the domains before and after transition are respectively 
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Fig. 15. Phase portraits during one-step transition 

 min maxa aσ −< <a  (60) 

 min maxd dσ −< <d  (61) 

Define multi-step transition map :P σ σ− −
→ →a d a d , to realize a stable multi-step transition, 

the following two conditions must be satisfied: 

 min max min max{ ( )| } { | }P a a d dσ σ σ σ− − − −
→ < < < < ≠ ∅∩a d a a d d  (62) 

 1
min max min max{ | } { ( )| }a a P d dσ σ σ σ σ− − − − − −

→∈ < < < <∩a a a a d d d  (63) 
 

 
Fig. 16. Property of angular momentum during multi-step transition 
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6. Walking eperiments 
6.1 Stable walking experiment 
This section provides several experimental results toward checking the section-map stability 
criterion. 
In the first experiment, THR-I was controlled to walk on a flat floor with a section-map 
factor 0.89δ = . The experiment lasted more than 120s and THR-I took approximately 600 
steps, which indicates the walking period is 0.2s per step. Fig. 17 gives video frames of THR-
I taking four steps for a typical walking motion.  Fig. 18 is the  real  joint  angles  versus  time 
during walking. Fig. 19 are the section-map factors calculated from encoders during 
walking. 
 

 

 

 
Fig. 17. Video frames of THR-I taking four consecutive steps with 0.89δ = . The robot is 
walking at 0.20 s per step 

6.2 Unstable walking experiment 
The second experiment demonstrated the walking result with a section-map factor 1.20δ = , 
which indicates the corresponding biped walking is unstable stable. Fig. 20 shows the 
desired and real values of holonomic constraints, from which we can observe that the 
walking pattern can not be imposed on the robot. Fig. 21 is the corresponding snapshot of 
the walking experiment, from which one can see the robot falls forward finally. 
For periodic forward walking, the minimum of the angular momentum around the pivot 
point during a walking cycle should be positive; otherwise the robot has no enough energy 
to achieve a step and will fall backward.  Fig. 22 is the desired and real values of holonomic 
constraints during walking on level ground with the section factor min 0σ < , which indicates 
that the robot will fall backward finally. Fig. 23 is the snapshot of walking experiment. 

6.3 Stable walking transition experiment 
The fourth experiment demonstrated the walking transition. Fig. 24 is simulation results of 
phase portraits during one-step transition with a 5% error from limit cycles before 

t=1.12s t=1.20s t=1.28s t=1.36s 

t=1.44s t=1.52s t=1.60s t=1.68s 

t=1.76s t=1.84s t=1.92s t=2.00s 
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transition. The section-map factor before transition is 0.86, and after transition is 0.89; 
therefore, the walking is stable. Fig. 25 gives video frames of THR-I walking from 0.2s/step 
to 0.3s/step.  
 

 
Fig. 18. Real joint angles of THR-I with 0.89δ =  
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Fig. 19. Section-map factor estimated by rotary encoders during walking. All section-map 
factors are.less than one 
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Fig. 19. Section-map factor estimated by rotary encoders during walking. All section-map 
factors are.less than one 
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Fig. 20. Desired and real values of holonomic constraints with 1.2δ =  

 

 

 

 

 
 
Fig. 21. Video frames of biped walking experiment  with 1.2δ =  
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Fig. 22. Desired and real values of holonomic constraints with min 0σ <  

 
 

 

 

 
 

Fig. 23. Video frames of biped walking experiment with min 0σ <  
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Fig. 24. Simulation results of phase portraits during one-step transition 

 
 

 

 
 

Fig. 25. Video frames of biped walking transition experiment 
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7. Conclusion 
When publications are referred in the text, enclose the author’s name and the date of 
publication within the brackets. For one author, use author’s surname and the date (Arkin, 
2004). For two authors, give both names & the year (Mataric & Brooks, 1999). For three or 
more authors, use the first author, plus „et al.“, and the date (Siegwart et al., 2006). If giving 
a list of reference, separate them using semicolons. 
In this study, we focused on a coherent stability criterion and its application methods for 
biped walking. The main results of this chapter are summarized as follows: 
1. An overall mathematical modelling method for biped walking is proposed based on 

dimension-variant hybrid automata. This method expresses the overall biped walking 
model as an 8-tuple and can reflect all kinds of continuous and discrete properties of 
biped walking, which makes it possible to study stability and design control strategy 
for biped locomotion from a global point of view. 

2. A rigorous mathematical definition of biped walking stability is presented by 
combining the character of biped locomotion with the notion of classical stability from 
the view of hybrid trajectory. It is pointed out that the model in the task space is a 
length-varying and inertia-varying inverted pendulum, and the analytic form of the 
inverted pendulum model is derived. This makes it possible to study stability of biped 
walking in a low-dimension task space. 

3. It is pointed out that, under some assumption, stability of the hybrid trajectory is 
equivalent to that of the section sequence at switch section in the task space of biped 
walking. Based on this result, section-map stability criterion is presented. This criterion 
is applicable not only to dynamic walking which ZMP criterion can not solve, but also 
to non-periodic walking which Poincare return map criterion can not solve. 

4. By the proposed criterion, a synthesizing method for walking patterns based on section-
map factor is presented. The effectiveness of this method is confirmed by a biped robot 
THR-I, which can walk with a relative speed of 2 leg lengths per second. This robot is 
one of the few biped machines which can walk so fast and stable (Geng et al., 2006). 

Since the sagittal plane dynamics of biped walking are almost decoupled from those in the 
frontal plane (Furusho & Sano, 1990; Kuo, 1999), this chapter is only concentrated on 
stability issue in sagittal plane. The future work is to extend this method to the frontal plane 
to produce stable, dynamic three-dimensional walking. 
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1. Introduction 
The study of mechanisms like mechanical members intends not only to build autonomous 
robots, but also to help in the rehabilitation of human being. The study of locomotion to take 
part in this context, and has been intensively studied since the second half of 20th century. 
An ample vision of the state of the technique up to 1990 can be found in works as Raibert 
(1986) and Vukobratovic et al. (1990). 
Year after year, from technological advances, based on theoretical and experimental 
researches, the man tries to copy or to imitate some systems of the human body. It is the 
case, for example, of the central pattern generator (CPG), responsible for the production of 
rhythmic movements. Modelling of this CPG can be made by means of coupled oscillators, 
and this system generates patterns similar to human CPG, becoming possible the human 
gait simulation. There are some significant works about the locomotion of vertebrates 
controlled by central pattern generators: Grillner (1985), and Pearson (1993). 
From a model of two-dimensional locomotor, oscillators with integer relation of frequency 
can be used for simulating the behaviour of the hip angle and of the knees angles. Each 
oscillator has its own parameters and the link to the other oscillators is made through 
coupling terms. We intend to evaluate a system with coupled van der Pol oscillators. Some 
previous works about CPGs using nonlinear oscillators, applied in the human gait 
simulation, can be seen in Bay & Hemami (1987), Zielinska (1996), Dutra et al. (2003), Pina 
Filho (2005), and Pina Filho (2008). 
The objective of this work is to analyze the dynamics of this coupled oscillators system by 
means of bifurcation diagrams and Poincaré maps. From the analysis and graphs generated in 
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specialized nervous systems are known as nervous oscillators or central pattern generators 
(CPGs). The human locomotion is controlled, in part, by a central pattern generator, which 
is evidenced in the works as Calancie et al. (1994), and Dimitrijevic et al. (1998). 
The choice of an appropriate pattern of locomotion depends on the combination of a central 
programming and sensorial data, as well as of the instruction for one determined motor 
condition. This information determines the way of organisation of the muscular synergy, 
which is planned for adequate multiple conditions of posture and gait (Horak & Nashner, 
1986). 
Figure 1 presents a scheme of the control system of the human locomotion, controlled by the 
central nervous system, which the central pattern generator supplies a series of pattern 
curves for each part of the locomotor. This information is passed to the muscles by means of 
a network of motoneurons, and the conjoined muscular activity performs the locomotion. 
Sensorial information about the conditions of the environment or some disturbance are 
supplied as feedback of the system, providing a fast action proceeding from the central 
pattern generator, which adapts the gait to the new situation. 
 

 
Fig. 1. Control system of the human locomotion. 
Despite the people not walk in completely identical way, some characteristics in the gait can 
be considered universal, and these similar points serve as base for description of patterns of 
the kinematics, dynamics and muscular activity in the locomotion. 
In the study to be presented here, the greater interest is related to the patterns of the hip and 
knee angles. From the knowledge of these patterns of behaviour, the simulation of the 
central pattern generator using the system of coupled oscillators becomes possible. 
Considering the anatomical planes of movement, we need to know the behaviour of hip and 
knee in sagittal plane. Figure 2 presents the movements of flexion and extension of the 
articulation of hip and knee in sagittal plane. 
According Pina Filho et al. (2006), figures 3 and 4 present the graphs of angular 
displacement and phase space of the hip in the sagittal plane, related to the movements of 
flexion and extension, while figures 5 and 6 present the graphs of angular displacement and 
phase space of the knee, related to the movements of flexion and extension. 
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Fig. 2. Movements of the hip and knee: flexion and extension. 

 
Fig. 3. Angular displacement of the hip in the sagittal plane (mean ± deviation). 

 
Fig. 4. Phase space of the hip in the sagittal plane. 
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Fig. 5. Angular displacement of the knee in the sagittal plane (mean ± deviation). 
 

 
Fig. 6. Phase space of the knee in the sagittal plane. 

3. Biped locomotor model 
Before a model of CPG can be applied to a physical system, the desired characteristics of the 
system must be completely determined, such as: the movement of the leg or another 
rhythmic behaviour of the locomotor. Some works with description of the rhythmic 
movement of animals include Eberhart (1976), Winter (1983) and McMahon (1984), this last 
one presenting an ample study about the particularities of the human locomotion. To 
specify the model to be studied is important to know some concepts related to the bipedal 
gait, such as the determinants of gait. 
The modelling of natural biped locomotion is made more feasible by reducing the number 
of degrees of freedom, since there are more than 200 degrees of freedom involved in legged 
locomotion. According to Saunders et al. (1953), the most important determinants of gait 
are: 1) the compass gait that is performed with stiff legs like an inverted pendulum. The 
pathway of the centre of gravity is a series of arcs; 2) pelvic rotation about a vertical axis. 
The influence of this determinant flattens the arcs of the pathway of the centre of gravity; 3) 
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pelvic tilt, the effects on the non-weight-bearing side further flatten the arc of translation of 
the centre of gravity; 4) knee flexion of the stance leg. The effects of this determinant 
combined with pelvic rotation and pelvic tilt achieve minimal vertical displacement of the 
centre of gravity; 5) plantar flexion of the stance ankle. The effects of the arcs of foot and 
knee rotation smooth out the abrupt inflexions at the intersection of the arcs of translation of 
the centre of gravity; 6) lateral displacement of the pelvis. 
Figure 7 presents a 3D model with 15 degrees of freedom, and the six determinants of gait. 
The kinematical analysis, using the characteristic pair of joints method is presented in 
Saunders et al. (1953). 

 

 
 

Fig. 7. Three-dimensional model with the six determinants of gait. 

In order to simplify the investigation, a 2D model that performs motions parallel only to the 
sagittal plane will be considered. This model, showed in Fig. 8, characterises the three most 
important determinants of gait, determinants 1 (the compass gait), 4 (knee flexion of the 
stance leg), and 5 (plantar flexion of the stance ankle). The model does not take into account 
the motion of the joints necessary for the lateral displacement of the pelvis, for the pelvic 
rotation, and for the pelvic tilt. 
Figure 8 presents too the angles and lengths of the model, where: s is the length of foot 
responsible for the support (toes), p is the length of foot that raises up the ground (sole), t is 
the length of tibia, and f is the length of femur. The angle of the hip θ4 and the angles of the 
knees θ3 and θ5 will be determined by a coupled oscillators system, representing the CPG, 
while the other angles are calculated by the kinematical analysis of the mechanism. In this 
work we will not present details of this analysis, which can be seen in Pina Filho (2005). 
This model must be capable to show clearly the phenomena occurred in the course of the 
motion, and works with the hypothesis of the rigid body, where the natural structural 
movements of the skin and muscles, as well as bone deformities, are disregarded. The 
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Fig. 8. Two-dimensional model with the determinants of gait, angles and lengths. 

locomotion cycle can be divided in two intervals: double support phase, with the two feet on 
the ground, and single support phase, with only one foot touching the ground, and one of 
the legs performs a balance movement (the extremity of the support leg is assumed as not 
sliding). 
From this model, we can now to study the CPG, simulated by means of nonlinear 
oscillators, which can be used in control systems of locomotion, providing the approach 
trajectories of the legs. The CPG is composed of a set of oscillators, where each oscillator, 
with own amplitude, frequency and parameters, generates angular signals of reference for 
the movement of the legs, as we will see in the next section. 

4. Modelling of the oscillators system 
Coupled oscillators systems have been extensively used in studies of physiological and 
biochemical modelling. Since the years of 1960, many researchers have studied the case of 
coupling between two oscillators, because this study is the basis to understand the 
phenomenon in a great number of coupled oscillators. One of the types of oscillators that 
can be used in coupled systems is the auto-excited ones, which have a stable limit cycle 
without external forces. The van der Pol oscillator is an example of this type of oscillator, 
and it will be used in this work. Then, considering a system of n coupled van der Pol 
oscillators, from van der Pol equation: 

 ( )( ) ( )2 2
0 01 0                 , 0x p x x x x x pε ε− − − + Ω − = ≥   (1) 

where ε, p and Ω correspond to the parameters of the oscillator, and adding coupling terms 
that relate the oscillators velocities, we have: 
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which represents coupling between oscillators with the same frequency, where θ 
corresponds to the system degrees of freedom. In the case of coupling between oscillators 
with integer relation of frequency, the equation would be: 

 ( ) ( ) ( ) ( )2 2
, ,

1 1
1  0

m n

h h h h ho h h h ho h i i i io h k h k
i k

p c cθ ε θ θ θ θ θ θ θ θ θ θ
= =

⎡ ⎤ ⎡ ⎤− − − + Ω − − − − − =⎣ ⎦⎢ ⎥⎣ ⎦ ∑ ∑  (3) 

where ( ), [ ]h i i i ioc θ θ θ−  is responsible for the coupling between oscillators with different 
frequencies, while ( ),h k h kc θ θ− , also seen in Eq. (2), effects the coupling between oscillators 
with the same frequency. Both terms were defined by Dutra (1995). 
 

 
Fig. 9. Structure of coupling oscillators. 

Experimental studies of human locomotion (Braune & Fischer, 1987) and Fourier analysis of 
these data (Dutra, 1995) show that the movements of θ3, θ4 and θ5 (see Fig. 8) can be 
described very precisely by their fundamental harmonic, whether the biped in single or 
double support phase. 
To generate the angles θ3, θ4 and θ5 as a periodic attractor of a nonlinear net, three coupled 
van der Pol oscillators were used. These oscillators are mutually coupled by terms that 
determine the influence of one oscillator on the others (Fig. 9). 
Applying Eq. (2) and (3) to the proposed problem, knowing that the frequency of θ3 and θ5 
(knee angles) is double of θ4 (hip angle), we have the following equations: 

 ( ) ( ) ( ) ( )2 2
3 3 3 3 3 3 3 3 3 3,4 4 4 4 3,5 3 5[1 ] 0o o op c cθ ε θ θ θ θ θ θ θ θ θ θ⎡ ⎤− − − + Ω − − − − − =⎣ ⎦  (4) 

 ( ) ( ) ( ) ( )2 2
4 4 4 4 4 4 4 4 4 4,3 3 3 3 4,5 5 5 5[1 ] 0o o o op c cθ ε θ θ θ θ θ θ θ θ θ θ θ⎡ ⎤ ⎡ ⎤− − − + Ω − − − − − =⎣ ⎦ ⎣ ⎦  (5) 

 ( ) ( ) ( ) ( )2 2
5 5 5 5 5 5 5 5 5 5,4 4 4 4 5,3 5 3[1 ] 0o o op c cθ ε θ θ θ θ θ θ θ θ θ θ⎡ ⎤− − − + Ω − − − − − =⎣ ⎦  (6) 

From Eq. (4)-(6), using the parameters shown in Table 1 together with values supplied by 
Pina Filho (2005), the graphs were generated in MATLAB as shown in Fig. 10 and 11, which 
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present, respectively, the behaviour of θ3, θ4 and θ5 as a function of time and stable limit 
cycles of oscillators. 
 

c3,4 c4,3 c3,5 c5,3 c4,5 c5,4 ε3 ε4 ε5 

0.001 0.001 0.1 0.1 0.001 0.001 0.01 0.1 0.01 

Table 1. Parameters of van der Pol oscillators. 
 

 
Fig. 10. Angles as a function of time. 
 

 
Fig. 11. Trajectories in the phase space. 

Comparing Fig. 10 and 11 with the experimental results presented in Section 2 (Fig. 3, 4, 5, 
6), it is verified that the coupling system supplies similar results, what confirms the 
possibility of use of mutually coupled van der Pol oscillators in the modelling of the CPG. 
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Figure 12 shows, with a stick figure, the gait with a step length of 0.63 m. Figure 13 shows 
the gait with a step length of 0.38 m. Dimensions used in the model can be seen in Table 2. 
 

Thumb Foot Leg (below the knee) Thigh 
0.03 m 0.11 m 0.37 m 0.37 m 

Table 2. Model dimensions. 
 

 
Fig. 12. Stick figure showing the gait with a step length of 0.63 m. 
 

 
Fig. 13. Stick figure showing the gait with a step length of 0.38 m. 

5. Dynamical analysis of the oscillators system 
The nonlinear dynamical analysis of the system presented here requires the definition of 
some usual concepts. Usually, for some values of parameters, the system behaviour is 
periodic, and for other values the behaviour is chaotic. A periodic system returns to its state 
after a finite time t. The trajectory in the phase space is represented by a closed curve. The 
chaotic system presents trajectories of non-closed orbits that are generated by the solution of 
a deterministic set of ordinary differential equations. 
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Two conditions must be satisfied to make possible that a system presents chaotic behaviour: 
the equations of motion must include a nonlinear term; and the system must have at least 
three independent dynamic variables. The main consequence associated with the chaos is 
the sensitivity to the initial conditions. In chaotic systems, a small change in the initial 
conditions results in a drastic change in the system behaviour. More details about the Chaos 
theory and its characteristics can be found in many works, such as: Strogatz (1994) and 
Baker & Gollub (1996). 
The existence of bifurcation in a system is related with the existence of chaos. In all chaotic 
system, it is possible to observe the bifurcation phenomenon, however, not all system that 
presents bifurcation necessarily presents a chaotic response. The influence of some 
parameter in the system response can be identified by means of bifurcation diagrams, which 
present the stroboscopic distribution of the system response from slow variation of a 
parameter (Thompsom & Stewart, 1986). This method was applied here, which implies to 
simulate different parameter values that we want to analyze, evaluating the response in 
Poincaré maps. 
The Poincaré map consists in the reduction of continuous systems in time (flows) in discrete 
systems in time (maps). Then, a Poincaré map allows that system dynamics to be 
represented in a space with lesser dimension than original system, reducing a n-dimensional 
space for n−1 dimensions. The Poincaré map is obtained from the phase space diagram by 
observing this “stroboscopically”, i.e., sample points in the phase space in regular intervals. 
Then, considering different values for the parameters ε3, ε4 and ε5, the tests have been 
performed using MATLAB to generate the bifurcation diagrams and Poincaré maps. In 
principle, keeping values of ε4 = 0.1 and ε5 = 0.01, the value of ε3 was varied from 0 to 2. 
Other values of the system have been kept. Figure 14 presents the bifurcation diagram 
showing the behaviour of knee oscillator θ3 with variation of parameter ε3, which represents 
the damping term related with this oscillator. 
 

 
Fig. 14. Bifurcation diagram for θ3 with variation of ε3. 
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The diagram of Fig. 14 does not represent the bifurcation as simple curves, which normally 
happens in dynamical analysis of a system, but with a cloud of points. Considering the 
complexity of coupled oscillators system, this fact can be explained by relation between 
coupling terms or by quasiperiodic response of the system. 
According to Santos et al. (2004), a great variation between coupling terms, with one of them 
approaching to zero, makes the system presents practically a unidirectional coupling, and 
consequently the response in bifurcation diagram is represented by a cloud of points, 
characterizing not only the presence of periodic and chaotic orbits, as also pseudo-
trajectories. More details about this subject can be seen in Grebogi et al. (2002). 
In relation to system behaviour, with small values of damping term, below 0.1, the system 
presents a periodic response (Fig. 15). With the increase of damping term, the system starts 
to present a quasiperiodic response and later chaotic response, as presented in Fig. 16 and 
17, respectively. 
 

 
Fig. 15. Periodic response: ε3 = 0.01. 

 

 
Fig. 16. Quasiperiodic response: ε3 = 1. 
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Fig. 17. Chaotic response: ε3 = 2. 
 

 
Fig. 18. Sensitivity to the initial conditions in chaotic response. 

From Fig. 14 and 17, we observed the configuration of chaotic regime when ε3 = 2. More 
details about transition between quasiperiodic and chaotic response are presented by 
Yoshinaga & Kawakami (1994), Yang (2000) and Pazó et al. (2001). 
Sensitivity to the initial conditions can be verified considering two simulations with 
different conditions, for example, with ε3 = 3 (chaotic regime), choosing initial values for the 
angles: θ3 = 3º, θ4 = 50º, θ5 = −3º, and changing θ3 = 3.001º, we observed the influence of 
initial conditions in the system response (Fig. 18). 
Another interesting point of the chaos analysis is the presence of strange attractors, which 
can be observed in Poincaré map. In dissipative systems the Poincaré map presents a set of 
points disposed in an organized form, with a preferential region in phase space that attracts 
the states of dynamical system. Figure 19 showing the strange attractor generated in the 
analysis of knee oscillator θ3. 
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Fig. 19. Strange attractor for θ3. 

Considering the coupling oscillators, the degree of influence between them is defined by the 
coupling term. Then, a change of oscillator parameters must influence the behaviour of 
other oscillators. Figure 20 presents the bifurcation diagram showing the behaviour of knee 
oscillator θ5 with variation of parameter ε3. 
 

 
Fig. 20. Bifurcation diagram for θ5 with variation of ε3. 

In relation to the hip angle, the influence of knee oscillator θ3 on the hip is small, therefore 
the behaviour of θ4 does not show many alterations. This occurs due to small value adopted 
for the coupling term between the oscillators (c34 = c43 = 0.001). In relation to the knees, the 
coupling term is greater (c35 = c53 = 0.1), configuring a more significant influence. 
Similarly to analysis of ε3, the system response can be analyzed by varying the values of ε4 
(from 0 to 2) and keeping the other values fixed. Figure 21 presents the bifurcation diagram 
showing the behaviour of hip oscillator θ4 with variation of parameter ε4, which represents 
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the damping term related with this oscillator. Figure 22 showing the strange attractor 
generated in the analysis of this oscillator. 
 

 
Fig. 21. Bifurcation diagram for θ4 with variation of ε4. 
 

 
Fig. 22. Strange attractor for θ4. 

As seen previously in the analysis of ε3, the influence of hip on the knees is small, then a 
variation of ε4 does not cause great changes in θ3 and θ5. 
Finally, the system response can be analyzed by varying the values of ε5 (from 0 to 2) and 
keeping the other system values fixed. Figure 23 presents the bifurcation diagram showing 
the behaviour of knee oscillator θ5 with variation of the parameter ε5, which represents the 
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damping term related with this oscillator. Figure 24 showing the strange attractor generated 
in the analysis of this oscillator. 
Figure 25 presents the bifurcation diagram showing the behaviour of knee oscillator θ3 with 
variation of the parameter ε5. In relation to the hip, the knee oscillator θ5 presents small 
influence on the hip angle θ4. 
 
 

 
 

Fig. 23. Bifurcation diagram for θ5 with variation of ε5. 
 
 

 
 

Fig. 24. Strange attractor for θ5. 
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Fig. 25. Bifurcation diagram for θ3 with variation of ε5. 

6. Conclusion 
In this chapter, we present the study of a biped locomotor with a CPG formed by a system 
of coupled van der Pol oscillators. A biped locomotor model with three of the six most 
important determinants of human gait was used in the analyses. After the modelling of the 
oscillators system, a dynamical analysis was performed to verify the performance of the 
system, in particular, aspects related to the chaos. From presented results and discussion, we 
come to the following conclusions: the use of mutually coupled nonlinear oscillators of van 
der Pol can represent an excellent way to generate locomotion pattern signals, allowing its 
application for the control of a biped by the synchronization and coordination of the legs, 
once the choice of parameters is correct, which must be made from the data supplied by the 
analysis of bifurcation and chaos. Through the dynamical analysis it was possible to 
evidence a weak point of coupling systems. The influence of the knee oscillators on the hip, 
and vice versa, is very small, what can harm the functionality of the system. The solution for 
this problem seems immediate: to increase the value of the coupling term between the hip 
and knees. However, this can make the system unstable. Then, it is necessary a more refined 
study of the problem, which will be made in future works, as well as a study of the 
behaviour of the ankles, and simulation of the hip and knees in the other anatomical planes, 
increasing the network of coupled oscillators, and consequently simulating with more 
details the human locomotion CPG. This study has great application in the project of 
autonomous robots and in the rehabilitation technology, not only in the project of prosthesis 
and orthesis, but also in the searching of procedures that help to recuperate motor functions 
of human beings. 
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1. Introduction   
The notion of obtaining passive gaits, powered only by gravity, was pioneered by 
McGeer[1], who thought that ,we can perhaps learn about the stability and control of 
walking by studying un-powered, uncontrolled models.  
Some results with McGeer’s passive dynamic models of human locomotion suggest that 
human body parameters such as mass distribution or limb lengths may have more influence 
on the existence and quality of gait than is generally recognized. The question has been 
subsequently studied by many other researchers-such as Collins, Garcia and Goswami. 
 Human locomotion is typically described as having a periodic movement pattern and stable 
passive gaits were found for both planar and non-planar bipeds on shallow downhill slopes. 
And the existence of passive limit cycles(periodic behavior) has important implications for 
the design of walking robots. Some basic definition about the limit cycle has been 
induced[2][3][6], discrete events, such as contact with the ground , can act to trap the 
evolving system state within a constrained region of the state space. Therefore, even when 
the underlying continuous dynamics are unstable, discrete events may induce a stable limit 
set and limit cycles are often created in this way.  
Here the paper will take great interest in the model Goswami presented 1997 and will 
describe the model geometry, its dynamic parameters, and its governing equations during 
the swing stage and the transition stage. In addition, a typical walk cycle of the passive 
robot on a inclined plain with the help of a phase diagram will be discussed, this motion can 
continue indefinitely due to a delicate balance between the robot’s kinetic energy and 
potential energy. The discussion about the intricate energy transition and also the mutual 
influence between the swing leg and stance leg will help us to be better aware of the 
passivity gait of this kind of compass-like biped robot, besides, some further control ideas 
will be educed based on this very character thus lead to systematic control design. In spite of 
this, the paper also present some applicable control strategies on the gait biped to improve 
its gaits and present some new idea of anti-phase synchronization. 
The results of gait biped concluded above can also be extended to the model of three 
dimensional phase and some useful research results will shed light on new discovery of this 
terrific field of the gait biped.  
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2. The compass gait biped model 
2.1 The model description and assumption  
The paper will follow the model that Goswami presented in 1997, so called the compass gait 
biped, shown as Figure 1, is equivalent to a double pendulum with point masse mH and m 
concentrated at the hip and legs respectively. The leg-length is l, which is divided into two 
parts: a and b, a is the distance from the leg-tip to the position of m and b is the distance from 
m to the hip center mH. The support angle θs and nonsupport angle θns determine the 
configuration of the compass gait. The angle was made by the biped leg with the vertical 
(counterclockwise positive). 2α is the total angle between the legs, which is defined as the 
“inter-leg angle”, and in addition is formed during the instant when both legs are touching 
the ground. The slope of the ground with the horizontal is denoted by the angle φ      
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Fig. 1. Model of a compass gait biped robot on a slope 

The model has been made by the following assumptions: the total mass of the robot 
mC = 2m + mH is constant and equal to 20kg. For the sake of simplifying the model, all 
masses are considered point-masses and the legs are identical with each leg having 
telescopically retractable knee joint with a mass-less lower leg(shank), this retractable knee 
joint which is called prismatic-joint knee and is the imaginary concoction, the function of it 
is to address the conceptual problem of foot-clearance common to all knee-less planar 
bipeds. The gait consists of swing stage and an instantaneous transition stage: during the 
swing stage the robot behaves exactly like an inverted planar double pendulum with its 
support point being analogous to the point of suspension of the pendulum. During the 
transition stage the support is transferred from one leg to the other. The robot is assumed to 
move on a horizontal or inclined plane surface. The impact of the swing leg with the ground 
is assumed to be inelastic and without sliding[4]. This implies that during the instantaneous 
transition stage the robot configuration remains un-changed, and the angular momentum of 
the robot about the impacting foot as well as the angular momentum of the pre-impact 
support leg about the hip are conserved. These conservation laws lead to a discontinuous 
change in robot velocity. 

2.2 Dynamics of the swing stage 
The dynamic equations of the swing stage are similar to the well-known double pendulum 
equations. Since the legs of the robot are assumed identical, the equations are similar 
regardless of the support leg considered.  
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They have the following form 
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The parameters used for our simulations are a = b =0.5m, l a b= + , Hm =2 m =10kg. Since no 
dissipation takes place during swing stage, thus the total mechanical energy E of the robot is 
conserved during this stage. 

2.3 Transition equations  
The algebraic transition equations relate the robot’s states just before and just after its 
collision with the ground. The support and the non-support legs switch during transition. 
The pre-impact and post-impact configurations of the robot can be simply related by  

 Jθ θ+ −=  (2) 

With 
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J
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 (3) 

 The matrix J exchanges the support and the swing leg angles for the upcoming swing 
stage. The pre-impact and post-impact variables are identified respectively with the 
superscripts – and +. The conservation of angular momentum principle applied to the robot 
gives us the following equation  
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From which we can write the joint-velocity relationship  
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The complete state vector q  before and after impact can thus be written as  

.
( )q W qα+ −=  

With 

. 0
( )

0 ( )
J

W
H

α
α

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

Moreover, it follows with the robot geometry during the transfer  

2ns sθ θ ϕ− −+ = −         (or 2ns sθ θ ϕ+ ++ = −  ) 

2ns sθ θ α− −− =            ( or 2s nsθ θ α+ +− =   ) 

where +and – correspond to the instants just after and before the change of support, 
respectively. 
The assumption that the angular momentum of the robot is conserved during the transition 
doesn’t explicitly indicate how the mechanical energy of the robot changes during this stage. 
we will present a detailed explanation in the following section on the fact that through the 
transition stage, the change in mechanical energy is always negative. 

3. Characteristics of steady passive compass gaits                                                   
3.1 Description of a typical limit cycle 
 Due to the hybrid nature[5] of the governing equations, it is impossible to utilize the 
traditional tool developed to aid the study of this nonlinear systems. McGeer has proposed 
an idea of linearizing the swing-stage equations of the robot about an equilibrium state, thus 
making it possible to explicitly integrate these equations. Next the transition equations are 
concatenated and the conditions for the existence of a periodic solution of this coupled 
system is found. To study the stability of this periodic solution, a second linearization about 
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the periodic solution is necessary. The problem with this approach is that the linear solution 
is valid only within a narrow region around the point of linearization.   
     

 
Fig. 2. Phase portrait of a periodic walk. This figure corresponds to only one leg of the biped, 
one cycle in the figure corresponds to two steps of the robot. In the figure we have indicated 
some of the time stamps important in the dynamic evolution of the biped. The configuration 
of the biped has been shown with small stick diagrams. In these diagrams, one leg is dotted, 
the other leg is solid, and a black dot at the foot indicates the supporting leg. 

Figure 2 just presents the sketch of a phase-space limit cycle of a symmetric gait of the robot 
on a three degree slope.  
 Follow the phase trajectory at the instant marked Ι , corresponding to time 0t += , when the 
rear leg just loses contact with the ground and becomes the swing leg. The phase trajectory 
evolves in the clockwise sense in the diagram with the cycle from Ι - ΙΙ , depicts the swing 
leg suspended as a simple pendulum from the moving point-hip, at the same time, stance 
leg “hinged” at the point of support as an inverted  simple pendulum. While the swing leg 
will cross the velocity axis at a positive velocity, the biped is in the vertical configuration. 
During the process, only the stance leg contacts with the ground, please recall that we have 
the assumption that there is no slipping at the stance leg ground contact. Instant ΙΙ  
corresponds to time t T −= , when the swing leg is about to touch the ground. The impact 
between the swing leg and the ground occurs at the instant t T= , we observe a velocity 
jump from ΙΙ - ΙΙΙ  due to the impact. In order to simplify the model, we assume that the time 
during the impact is instantaneous, which means there is an impulse force acting on the 
biped. Due to this presumption, constant angle momentum is possible and the decrease of 
the kinetics can be explained by the jump in velocity and inelastic property. At instant ΙΙΙ , 
t T += , the swing leg becomes the support leg and executes the process of ΙΙΙ - VΙ ，and it 
corresponds to the motion of the support “hinged” at the point of support as an inverted 
simple pendulum. From VΙ — Ι，thus 0t −= - 0t += ，the velocity jump appears for 
another time due to the impact between the current swing leg with the ground, similar to 
the process ΙΙ - ΙΙΙ , and then the cyclic trajectory is a limit cycle. For the stable gaits, it will 
attract and absorb all nearby trajectories that enter its attractive basin. This property will be 
useful for the further control strategy design.   
  Simulation trials reveal that the passive compass gait robot can walk down a slope with a 
steady gait. For a given robot, one and only one stable gait on a given slope exists, which 
symbolize the periodicity of the humanoid gaits, if we can make full use of this property, we 
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may find some idea on controlling the robots by maintaining the stability of limit cycle 
through the idea of adding some torque or only adjust the parameter of the system. 
Moreover, the initial value of the passive walking must correspond with an energy value , 
for the lost energy during the process of collision should conform to some regulations 
between the gravity and kinemics. To a certain slope, the limit cycle is the only, so the state 
point adjoin to the limit cycle can also converge to the limit cycle. The non-linear system 
possesses the property of being sensitive to the initial value, so the analytical procedure to 
find this limit cycle still remain a challenge.  

3.2 The energy analysis in passive gait  
Figures 3 depict the variation graph of kinetic energy, potential energy and total mechanical 
energy corresponding to the limit cycle of certain three slope respectively. Seen from figures, 
we can clearly specify the whole biped gaits of the robot, the kinetic energy (KE) and the 
potential energy (PE) have a complex variation process just not as we have expected before. 
KE just experiences an asymmetry periodic process. At instant T, a sharp downwards jump 
exists because of the inelastic impact of the legs and the ground thus causing the loss of the 
kinetic energy dramatically, we can clearly see from Figure 3 that the reduction of the energy is 
irregular just due to the inertial kinetic energy compensation of the stance leg, the 
enhancement of kinetic energy is partly compensated by gravity, the detailed message of the 
variation of the energy and conversion can be informed in figures. While PE just experiences a 
contrary process. During the swing stage, gravity and only gravity acts on the robot, so the 
whole mechanical energy of the system will keep constant. At instant t = T, mechanical energy 
will also have a downward jump, this variation value will be equal to the kinetics’. The 
potential energy decreases continuously during the whole process, we can tell from figures 
that some coupling phenomenon exists between the swing leg and the stance leg, similar to 
that 2-dof mechanical configuration. Mutual influence between the two legs can be observed 
indirectly by figures and also will help us in realizing this complex hybrid system. 
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Fig. 3. The kinetic energy and potential energy variation graph corres-ponding to the limit 
cycle of certain three slope     

Seen from Figures, we present the variation and comparison graph. And some important 
points 0 1 2 3 4, , , ,t t t t t  have been selected out to explain the whole biped gaits, they represent 
the instant corresponding to different culmination points during the steady gaits period. 
During the whole walking course, KE and PE curve just go along with the direction 

0 1 2 3 4t t t t t− − − − , amid of it, 0 0t = , 4t T= . The graph can tell us some details about the 
particular energy variation of the whole steady robot gaits.  
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Fig. 4. The total mechanical energy variation graph corresponding to the limit cycle of 
certain three slope   
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Fig. 5. The variation and comparison graph of KE and PE conversion of the swing leg during 
steady robot gaits of certain 3 degree slope 
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Fig. 6. The graph on the two nearest existed culmination values of KE and PE corresponding 
to the course of energy conversion of the swing leg within one gait cycle  

Seen from Figures we address the culmination values corresponding to the course of energy 
conversion. There are   three culmination points of KE and two culmination points of PE 
within one steady gait period. For Figure 11, we can set the culmination potential value of 
the swing leg as 1P , 2P , 3P  from the left to right, and also set two culmination kinetic value 
of the swing leg as 1K , 2K  with the same sequence above within one gait cycle, the 
maximum and minimum of the energy can be observed. The figure just search out the 
culmination point of the two nearest point as k  and p , the potential energy culmination 
point just drop behind the kinetic energy culmination point even they are adjacent while 
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they are not the same point as we had thought before. The reason will be well explained in 
the following section. 
Theoretical speaking, the mechanic energy should keep constant during the swing stage 
corresponding to the stable walking limit cycle. Virtually, total mechanic energy will 
decrease incessantly during the swing stage. While the reduction of the magnitude can be 
omitted comparing with total energy magnitude. The reason that we mention this problem 
is that due to the complexity of the non-linear system, it is necessary  to make some 
adjustments sometimes in order to get the better results when considering the control 
strategy of the system. 
The phenomena called “rub ground” will exist during the swing stage, this phenomena just 
happens at the time before the superposition of two legs and ends just at the instant of the 
superposition of two legs. The height between the swing leg and the ground will be 
negative when the swing leg swings from the start to the vertical position by simulation 
results corresponding to steady robot gaits of certain 3 degree slope, the maximum of the 
height will reach  -0.0033m. Why this phenomenon exist and how to avoid this state which 
we intuitively sense unrealistic? We can solve this problem by some technique methods 
such as the assumption discussed in the second part of the paper- the introduction of a 
purely imaginary concoction so called prismatic joint knee. The prismatic joint is assumed to 
retract the lower leg to clear the ground, and the retraction of the lower leg is assumed 
mass-less, it will not affect the robot dynamics and the swing leg returns to its original 
length l  at transition. The assumption is very necessary for the existence of the limit cycle 
and many properties of the bipedal gaits can be observed directly and also will guide us in 
some directions: for example, what is the relationship between the point of intersection of 
two legs and the height between the swing leg and the ground? For real gaits of the robot, 
we can modify the value of the graph to keep tracing   the steady gaits of the robot.  
 

 
Fig. 7. The relationship graph of angle position between the swing leg and the stance leg   

‘---’ just represents the swing leg and ‘—’ just represents the stance leg, the same with the 
following figures.    
Seen from Figure 15, the angle position curve of the swing leg is much more approach to 
sine wave, while the stance leg has a comparative big difference with the swing leg. This can 
be explained that the stance leg experiences a compelled motion, with the action force 
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coming from the swing leg as well as gravity. And in addition, the coupling degree of the 
two legs vary at different instant.  
The angle position will be more than zero when two legs are in the state of superposition, 
which means the joint of superposition lies in the left side of the vertical direction. When the 
swing leg becomes straight, the angle of the stance leg will be positive, and the stance leg the 
same. 
Here the focus of the work is a relative further study of the passive gait of a compass-like, 
planar, biped robot on inclined slopes, an analysis about the distribution of the energy and 
also the conversion law between the swing leg and the stance leg during the process of the 
steady robot gaits, have been discussed in the paper. Phase-position property corresponds 
to the limit cycle, the coupling properties between two legs, the existence of the culmination 
points which produced in the course of the conversion of KE and PE are also the topic of the 
research. To a certain slope angle φ, one and only one stable limit cycle exists. 
The research of the paper will have positive significance in getting better aware of the law 
and global property to biped gaits of the robot. The model we adopt here is an ideal 
position, how to induce or modify a more realistic model for biped gaits, and how to enlarge 
the initial value attraction region of the limit cycle as well as how to apply the efficient 
control on the robot combined with its own property with the least energy possible will 
guide our further research direction. 

4. Some simple control laws  
The existence of passive gaits in simple bipeds is interesting and may help to explain the 
efficiency of human locomotion. In particular, the sensitivity to initial conditions and 
ground slope must first be emphasized [8]. In spite of this, robustness to external 
disturbances and parameter uncertainty must be investigated. In the paper, we address 
simple control law for the compass gait biped by tracking a given mechanical energy of the 
robot with the torque added on the hip and ankle respectively.  

4.1 The idea of control law tracking passive energy level  
As the robot walks down on a slope, its support point also shifts downward at every 
touchdown, the kinetic energy will increase accordingly as it loses gravitational potential 
energy. In a steady walk, at the end of each step by the impact, the amount of kinetic energy 
will absorb the loss of the gravitational potential energy. This character presents us an idea 
on control passive biped robot, if, at every touchdown we reset our potential energy 
reference line to the point of touchdown, then the total energy of the robot appears constant 
regardless of its downward descent. We name the characteristic energy of the passive limit 
cycle on a given slope as “reference energy”, the function of it is to drive the robot toward it 
thus attain to a mobile balance. 
The approach assumes that we have already identified the passive limit cycle for a given 
slope and the advantage of it is that it is able to generate gaits which don’t exist for the un-
powered robot. In addition, at the same time, only those neighborhoods of the passive gait 
can function well by this control law. The total mechanical energy E of the robot can be 

expressed as 
. .

0.5
T

E M PEθ θ= + . The power input to the system is the time rate of change of 

the total energy,
. . T

E B uθ=  for a passive cycle 0u = , and the reference energy of the limit 
cycle is 
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* *( , )E E θ θ= . Here we use a simple damper control law of the form

.
B u β θ= − . So the 

power input to the system is therefore
. . T

E θ β θ= − . For a positive definite β , the quantity 
. T

θ β θ− <0, which means that the robot’s kinetic energy decreases monotonically. In order 
to simplify the choice, we can further specify that the control law should bring the current 
level of the robot to the reference energy level at an exponential rate. 
Three ways of the control law[9] will be implemented: by means of the two actuators acting 
independently or them acting together on the hip or in the supporting leg at the point of 
support, the latter will be also called as “support ankle torque”. The paper will have a 
discussion about the latter two control strategies. 

4.2 Control with hip torque    
We propose a control law of the following form based on the idea presenting abov then after 
the calculation we get  
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λ is a parameter influencing the degree about the rate of convergent to the reference energy 
level. At the state of

. .
0s nsθ θ− = , the control law will have a singularity, to solve this 

problem, the common idea is to set the control to zero whenever  
. .

s nsθ θ ε− < . 
To the passive limit cycle on a 3° slope, we make some active phase cycle superimposed on 
it, and from the picture, we let the starting position, denote as A, lie outside the basin of the 
attraction of the passive limit cycle. In this situation the passive robot would have fallen 
down soon, while the control law will lead the gait of the robot go back into the state of limit 
cycle and thus keep the periodic state. We can come to the conclusion from the control that 
the basin of attraction of the passive limit cycle has been enlarged and this will have a 
realistic sense in the application of the further study. 
 

A

      

Hu
Ν

m
  (

) 

Time   (sec)  
Fig. 8. Active stabilization of a limit cycle. Here we show the performance of the energy 
tracking law for a robot walking down a 3° slope. The system driven only by a hip torque 
seeks and returns to the passive cycle of the robot. The initial condition is denoted as point 
A, lying outside the basin of attraction of the passive limit cycle. Through the control 
strategy, the system has been brought back to the limit cycle. The right will be the graph of 
the variation graph on the control added on the hip 
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Seen from Figure, we conclude that the system will run away from the limit cycle without 
the added control. While added with control, the system will make a 3-4 gaits adjustment to 
converge to the original limit cycle and then keep its stable gait state, which proves the 
validity of the control. Figure 4 just depicts the variation on total energy based on the hip 
control condition, we can clearly see that the total energy will fluctuate within a transitory 
process and then go into a constant value which corresponding to the energy of the limit 
cycle. From Figure, we can explicitly be aware of the detailed variation on the control torque 
act of the hip and of the every gait state. To seek for the deep relationship between the 
variations of added torque,  the variation regulation of the energy control and also the 
property of the limit cycle will be useful. 
Then, we observe the process with the starting position lying inside the basin of attraction of 
the passive limit cycle of certain slope(here 3°). 
 

                 
Fig. 9. Limit cycle corresponding to the certain three slope with the initial condition lying in 
the limit cycle  The variation on total energy corresponding to the condition as Figure has 
demonstrated.   

 

           
Fig. 10. Limit cycle with hip control corresponding to the condition as Figure And the 
variation on total energy corresponding to the condition as Figure 8 has demonstrated.       

Figures 9 and 10 just show us something about the limit cycle corresponding the certain 
three slope with the initial condition lying in the limit cycle and also the variation of total 
mechanical energy corresponding that condition. 
Figures 9 and 10 just show us the whole process with control added on the hip. Seen from 
the picture, we may safely find that time consuming in going into the limit cycle has been 
improved a lot evidently, with only two gaits the gait will converge to its stable period with 



 Biped Robots 

 

184 

*.
* *( , )E E θ θ= . Here we use a simple damper control law of the form

.
B u β θ= − . So the 

power input to the system is therefore
. . T

E θ β θ= − . For a positive definite β , the quantity 
. T

θ β θ− <0, which means that the robot’s kinetic energy decreases monotonically. In order 
to simplify the choice, we can further specify that the control law should bring the current 
level of the robot to the reference energy level at an exponential rate. 
Three ways of the control law[9] will be implemented: by means of the two actuators acting 
independently or them acting together on the hip or in the supporting leg at the point of 
support, the latter will be also called as “support ankle torque”. The paper will have a 
discussion about the latter two control strategies. 

4.2 Control with hip torque    
We propose a control law of the following form based on the idea presenting abov then after 
the calculation we get  

 
*

. .
( )

H
s ns

E Eu λ

θ θ

−
= −

−
 (4) 

λ is a parameter influencing the degree about the rate of convergent to the reference energy 
level. At the state of

. .
0s nsθ θ− = , the control law will have a singularity, to solve this 

problem, the common idea is to set the control to zero whenever  
. .

s nsθ θ ε− < . 
To the passive limit cycle on a 3° slope, we make some active phase cycle superimposed on 
it, and from the picture, we let the starting position, denote as A, lie outside the basin of the 
attraction of the passive limit cycle. In this situation the passive robot would have fallen 
down soon, while the control law will lead the gait of the robot go back into the state of limit 
cycle and thus keep the periodic state. We can come to the conclusion from the control that 
the basin of attraction of the passive limit cycle has been enlarged and this will have a 
realistic sense in the application of the further study. 
 

A

      

Hu
Ν

m
  (

) 

Time   (sec)  
Fig. 8. Active stabilization of a limit cycle. Here we show the performance of the energy 
tracking law for a robot walking down a 3° slope. The system driven only by a hip torque 
seeks and returns to the passive cycle of the robot. The initial condition is denoted as point 
A, lying outside the basin of attraction of the passive limit cycle. Through the control 
strategy, the system has been brought back to the limit cycle. The right will be the graph of 
the variation graph on the control added on the hip 

Some Results on the Study of Kneed Gait Biped   

 

185 

Seen from Figure, we conclude that the system will run away from the limit cycle without 
the added control. While added with control, the system will make a 3-4 gaits adjustment to 
converge to the original limit cycle and then keep its stable gait state, which proves the 
validity of the control. Figure 4 just depicts the variation on total energy based on the hip 
control condition, we can clearly see that the total energy will fluctuate within a transitory 
process and then go into a constant value which corresponding to the energy of the limit 
cycle. From Figure, we can explicitly be aware of the detailed variation on the control torque 
act of the hip and of the every gait state. To seek for the deep relationship between the 
variations of added torque,  the variation regulation of the energy control and also the 
property of the limit cycle will be useful. 
Then, we observe the process with the starting position lying inside the basin of attraction of 
the passive limit cycle of certain slope(here 3°). 
 

                 
Fig. 9. Limit cycle corresponding to the certain three slope with the initial condition lying in 
the limit cycle  The variation on total energy corresponding to the condition as Figure has 
demonstrated.   

 

           
Fig. 10. Limit cycle with hip control corresponding to the condition as Figure And the 
variation on total energy corresponding to the condition as Figure 8 has demonstrated.       

Figures 9 and 10 just show us something about the limit cycle corresponding the certain 
three slope with the initial condition lying in the limit cycle and also the variation of total 
mechanical energy corresponding that condition. 
Figures 9 and 10 just show us the whole process with control added on the hip. Seen from 
the picture, we may safely find that time consuming in going into the limit cycle has been 
improved a lot evidently, with only two gaits the gait will converge to its stable period with 



 Biped Robots 

 

186 

control comparing at least 4 gaits to the same limit cycle by its own convergence. The 
variation on the total mechanical energy just describes the whole process of the biped gaits. 
In another words, with the control on the hip we may efficiently improve the quality of the 
convergence of the passive limit cycle. 
Next, we’d meant to make unnatural limit cycles to track the certain target mechanical 
energy denoted by Etar, which is different from the reference energy corresponding to that 
slope. 
By the use of hip control, we can successfully produce new gaits, while it is very interest for 
us to see that the consequence in tracking the specified target energy can not match the very 
exact result that we expect, it will converge to the energy cycle which is adjacent to the 
target energy cycle. That is to say, the control strategy can help us to track any appointed 
target energy in some degree and will guide us to get better aware of the property of the 
passive gait control. 
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Fig. 11. Target energy tracking control and also the variation graph by using hip actuator on 
the control added on the hip  
 

The target energy 
we’d like to track 

The final attained energy 
with hip control 

154tarE J=  153.1348JfinalE =  

156tarE J=  153.1520JfinalE =  

158tarE J=  153.1480JfinalE =  

160tarE J=  153.1088JfinalE =  

Table 1. The relationship between active biped gait for different target energies and the 
energy level at which the robot converged at the end. 

Seen from Table 1, we find that no cycle with an energy level tarE  less than that 
corresponding to the passive cycle could be generated 

4.3 Control with ankle torque   
We will implement the same control law employing only the support ankle torque following 
the above hip control, and then we have: 
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With the same procedure depicted as section 3.2, to the passive limit cycle on a 3° slope, we 
make some active phase cycle superimposed on it, we let the starting position, denote as A 
lie outside the basin of the attraction of the passive limit cycle, and in this situation the 
passive robot would have fallen down soon. While the control law will make the gait go into 
the state of limit cycle and thus enlarge the basin of attraction of the passive limit cycle.  
 

A

                     
Fig. 12. Active stabilization of a limit cycle. Here we show the performance of the energy 
tracking law for a robot walking down a  3° slope. The system driven only by an ankle 
torque on the stance leg seeks and returns to the passive cycle of the robot. The initial 
condition is denoted as point A, lying outside the basin of attraction of the passive limit 
cycle. Through the control strategy, the system has been brought back to the limit cycle. And 
the right one will be the Energy tracking control using support ankle actuation. Ten steps of 
the robot are presented here. The support ankle alternates between the left and the right 
ankle. The black dot represents the energy Etar=152.6J and the real line represents the 
energy Etar=153.08J.    

Figure 12 reveals the evolution of ankle torque. The repeated peaks in the control torque 
correspond to the time instants of foot touchdown. The zero of the time axis in the figure 
represents the beginning of a swing stage. Seen from this Figure, control is active from the 
beginning and as the robot’s energy reaches the reference energy, the control becomes zero, 
clearly, foot touchdown has caused a sudden change in the angular velocity and also the 
system energy. In reality, arbitrarily large torques can’t be applied as it may cause the robot 
foot to roll on the ground or maybe leave the ground.  
We can come to a conclusion from Figure 16 that the target energy that we appoint ahead 
must lie in a relatively narrow region in order not to run away from the stable periodic state 
due to the property of non-linear system. We have found during the study that if we choose 
the target energy a little farther away from the reference energy, with only ankle control, the 
target energy that we expected can’t be tracked successfully. Seen from Figure, the total 
energy will never converge to a constant value as we expect. Figure12 below just address the 
region about limit cycle of a stable gait with ankle control in certain slope.  
For the study to the ankle torque control and the hip torque control, we come to the result 
that the main difference between them, is that for the hip control discussed above, we can 
effectively converge to any target energy (within a limit), which has  much larger region 
than the ankle control. The reason will be explained as the ankle control is capable of more 
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represents the beginning of a swing stage. Seen from this Figure, control is active from the 
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clearly, foot touchdown has caused a sudden change in the angular velocity and also the 
system energy. In reality, arbitrarily large torques can’t be applied as it may cause the robot 
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directly affecting the overall dynamics of the robot. Whether controlled at the hip or at the 
ankle, the control law will enlarge the basin of attraction of the limit cycle. 
 

Passive limit cycle
E=153.078J

E=152J
E=153J

E=154.7J

 
Fig. 13. Some region about limit cycle of a stable gait with ankle control in certain slope  

In addition, we will pay more attention to the study about two actuators added at the hip 
and ankle together in the future work and it will be useful to identify the boundary of the 
basin of attraction and to determine the favorable initial conditions. In spite of all stated 
above, we should also know that the robot’s behavior is heavily influenced by the impact 
model which is not the only available impact model, how to model some new realistic 
foot/ground impact models possessing such a manner that reasonable perturbations of the 
model parameters don’t dramatically change the gait, should be considered. 

5. The complicated idea of controlling the gait biped with energy based 
control slope invariance law   
5.1 Controlled symmetry and slope invariance  
The idea that passive limit cycles can be made slope invariant by a control that compensates 
the gravitational torques acting on the biped has been proposed by Mark. Spong.  
The result just relies on some symmetry properties in the Lagrangian dynamics of robots 
with respect to rotations of inertial frame. A group action of ( )SO n  has been defined to 
change the ground slope with respect to the inertial frame on Q , for 2n =  in the planar 
case, this group action takes a particularly simple form as  
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The group action, :A Q Qφ →  is given by  

 1 2( ) ( , )A q q qφ ϕ ϕ= + +  (7) 

The so called lifted action on TQ  is  

 
. .

( ( ), ( )) ( ( ), )A q A Aq T q q qφ φ φ=  (8) 

The kinetic energy and impact equations are invariant under this group action and if ( )q t , .
( )iq t is a solution trajectory of (1), with 0u = then 

.
( ),A q qφ is a solution of  
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( ) ( , ) ( ( ) 0AM q q C q q q g qφ+ + =  (9) 

Via the control 

 1( ( ) ( ( ))Au B g q g qφ−= −  (10) 

The limit cycle of Figure can be reproduced on any ground slope via active control that 
effectively cancels the gravity vector that corresponds to the current slope.  

5.2 Energy based control to the gravity compensation control  
Using this gravity compensation control of the previous section. We let  
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So that (1) becomes  
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The design of the additional term u
−

 is to increase the robustness to slope variations. Set S as 
a storage function 

 21 ( )
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E is the total (kinetic and potential) energy 
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Where the second equality comes from the usual passivity or skew-symmetry property of 
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directly affecting the overall dynamics of the robot. Whether controlled at the hip or at the 
ankle, the control law will enlarge the basin of attraction of the limit cycle. 
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Fig. 13. Some region about limit cycle of a stable gait with ankle control in certain slope  
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So the function S works just as a Lyapunov function. Thus the total energy of the biped will 
thus converge exponentially toward the reference between impacts. At the impact the 
storage function will exhibit a jump discontinuity. It follows from standard results in hybrid 
system theory that, if less than its value at the previous jump, then the total energy will 
converge asymptotically to the reference energy as t →∞ . 

5.3 Some results with energy tracking  
Figures in this section will show that the addition of the total energy shaping control u

−
 

results in both an increase in the basin of attraction of the limit cycle and increased 
convergence to the limit cycle. This has important consequences for robustness to external 
disturbances as well as uncertainty and variations in the ground slope.  
 

         

A

 
Fig. 14. Convergence to the limit cycle (a)without total energy control (b)with total energy 
control  

With total energy control, the biped trajectory converges to the limit cycle in one to three 
steps depending on the initial conditions whereas without the total energy control 
convergence is much slower, on the order of ten to twelve steps just as Figure 3 shows. And 
Figure just presents the variation process with the energy explanation variation graph. The 
whole detailed convergence process will be identified in the figure. The value of the storage 
function, S , shown in Figure 14, will decrease at each step, the implication of this is that the 
trajectory after each step moves closer to the limit cycle on which the energy equals the 
reference energy. 
Seen from figure 14 (a), the initial condition lies outside the region to the limit cycle, and the 
robot will fall down with asymmetry gaits under this condition. By the idea of control, the 
trajectory of the gait will be brought back to the stable limit cycle only within few steps, this 
proves that, with control, an increase occur in the basin of attraction of the limit cycle.                  
The convergence speed and convergence efficiency of the control will be influenced by 
scalar k  in great degree. With the simulation, a result comes out that it is not right for k  to 
be the larger the better, virtually this feedback coefficient will possess a more complex 
variation during the whole control process. That is to say, there exists an “optimal” choice as 
well as appropriate value for k  beyond which the stability is degraded, the choose value of 
this k  will be preferable important for the control of the limit cycle. 
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5.4 Slope variation  
As a further illustration, the performance of the system when the slope exhibits a sudden 
change will be presented. The control input is determined by the local slope, which is the 
ground slope at the stance leg. The local slope can be determined by the two–point contact 
condition which occurs at the moment of contact of the swing foot with the ground thus for 
a discrete slope change. Figure 8(a) shows that, without the total energy control, the robot is 
not able to maintain a stable gait. Figure 8(b) shows that, with the addition of the total 
energy based control u , the biped successfully makes the transition between slopes. During 
the course of simulation, we can come to the conclusion that refE  will be the decisive factor 
to the control, and it must correspond to certain angleφ , otherwise the control strategy will 
be out of function. 
 

9φ =
7φ =
5φ =

3φ =
1φ =

 
Fig. 15. The limit cycle corresponding to different slope angle using the control u  with 

0 3φ =  
Figure 15 just addresses the detail for the limit cycle corresponding to different slope angle 
using the control u  with the initial 0 3φ = . The control idea is thus to make the robot vary 
at different limit cycle to keep stable walking gaits when facing different suddenly slope 
change and in addition this control idea is shown to be effective in generating new stable 
walking gaits for biped robots. Definitely the total energy control increases the basin of 
attraction but there are still limits to the range of slope variation as well as disturbances that 
the biped can tolerate. Increasing the basin of attraction further would improve the 
applicability of these passivity based ideas. 

6. Control of average progression speed with two actuators   
Energy based control slope invariance law just discussed above works pretty well in some 
occasion while the law neglects the truth that actually the speed of walking gaits should be 
considered in some degree in passive walking when creating steady gaits. In order to solve 
the problem, so called average progression speed control strategy which Goswami has 
proposed will help us to establish the relationship between the average speed of progression 
and the target energy to improve the robot performance.   
This control strategy for the robot is on the basis of the principle that the total energy of 
robot appeared constant regardless of its downward descent. The control law tries to drive 
the robot toward the reference energy corresponding to the energy of the limit cycle on 
given slope. The assumption is that, for the given slope, a passive limit cycle exists and have 
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already been identified. Although this may appear extremely constraining at first, while the 
advantage is that gaits can be generated which don’t exist for the un-powered robot. 
The total mechanical energy E of the robot can be expressed as

.
T0.5E M PEθ θ= + . The 

power input to the system is the time rate of change of the total energy, 
.

TE S uθ= , for a 
passive cycle 0u =  and the reference energy * * *( , )E E θ θ= . A simple damper control law of 
the form 

.
S u βθ= − is used here. The power input to the system is therefore 

.
TE θ β θ= − . For 

a positive definite β  the quantity Tθ β θ− <0, which means that the robot’s kinetic energy 
decreases monotonically. In order to simplify the choice, specify that the control law should 
attempt to bring the current level of the robot to the reference energy level at an exponential 
rate. 
The hip actuator and the actuator in the supporting leg at the support of leg are available at 
any instant. This section will have a study on the performance of the control law with both 
actuators. 

6.1 Control of two actuators 
The idea on the control of average progression speed will be discussed as the following. The 

average speed per step is given by 2 sinlv
T

α
=  , the thk step target energy is tar

kE , which is 

equal to that the 1thk −  step with an added term. And this target energy is proportional to 
the error in speed. tar

kE  is expressed as          

 tar
kE = 1

tar
kE − + 1( )tar

kv vη −−  (14) 

η  is a weighting factor between energy and speed. A simplification is obtained by imposing 
that the hip torque be proportional to the ankle torque with a proportionality constant of ,μ   
thus [1 ]T Hμ μ μ= , while the relationship of the actuator between hip torque and ankle 
torque can be assigned at any rate that we expect. 
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With the implementation of the control law corresponding to two actuators, some 
satisfactory control results have been acquired and the strategy has been proved to be valid 
in tracking reference energy considering the influence of speed.   
Figures 16 will show us some detailed message about the process that through the two 
actuators control in tracking the limit cycle. It will just take the robot about 30-40 gaits to 
walk into the limit cycle that we appoint. The collision with the ground is avoided by means 
of the retraction of the mass-less shank of the swing leg. In general, if the inclination of the 
upward slope is increased, the robot tends to lengthen the step length in order to maintain 
the specified speed. The same control law can be easily extended to control the robot on a 
terrain with a series of plane surfaces with changing slopes.   
As shown in Figures 17, the desired speed is reached for a large range of values of λ . As the 
target speed is less than that corresponding to the passive limit cycle, the robot tries to 
lengthen its step length and the step period to maintain a constant average speed.  
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Fig. 16. Phase plane representation of the energy tracking control with two actuators added 
on the hip and the ankle together. The right will be the average speed and the number of 
steps corresponding to the two actuators control  
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Fig. 17. Phase plane representation of the energy tracking control with respect to the 
different parameter λ using two actuators. The average speed and the number of steps with 
respect to the different parameter λ using two actuators  

6.2 Some discussion about parameter variation   
With the control, we find that the average progression speed control strategy can works 
pretty well in solving some more difficult walking gait with the appropriate parameter 
variation. Control of the average speed with two actuators ensures the convergence to an 
active cycle for a reasonably specified speed. The control law has been studied in detail by 
changing one parameter at a time while holding the others fixed. The parameters concerned 
are , ,λ μ η , 0

tarE . The following simulations are carried with for the following  parameter  as 

0.0524, 0.2710, 153 ,
5, 5, 2, 5 / .

ref

tar

E J
V m s

φ α

λ μ η
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Fig. 17. Phase plane representation of the energy tracking control with respect to the 
different parameter λ using two actuators. The average speed and the number of steps with 
respect to the different parameter λ using two actuators  
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λ The desired average speed is reached for a large range of values ofλ 

μ  
For higher values of  μ , it will cause a bifurcation leading to asymmetric 
or 2-periodic gaits. In such a gait the average speed oscillates around the 
target speed, the amplitude of this oscillation increases with μ  

η  
Will slightly affects the speed of convergence to the cycle. And when it is zero 
the target energy is not updated at every step so for a target energy equal to the 
reference energy the robot converges to the passive limit cycle. 

0
tarE  

Affects the rate of convergence to the target speed. The target energy is modified 
at every step and we can’t predict a priority to what final energy the robot will 
converge. 

Table 1. Effect of , , ,λ μ η  0
tarE  

 
 

μ  ( )α  ( / )v m s  ( )T s  ( )finalE J  

5 9.9240 0.5 0.6890 148.9767 

8 10.5769 0.5 0.7339 149.2529 

 
10 

10.8739 
and 

10.4443 

0.5222 
and 

0.4778 

0.7222 
and 

0.7584 

149.8433 
and 

149.9025 

Table 2. Effect of μ on the control performance. The table corresponds to simulations on a 
3 slope with parameters: 5λ = , 153tarE J=  , 5η =  

The most curious effect of μ is that for higher values, it will cause a bifurcation leading to 
asymmetry or 2-periodic gaits just shown as the data of Table 2. In such a gait, the average 
speed oscillates around the target speed, and the amplitude of this oscillation increase with 
μ. And figure 15 will show us the limit cycle under the so called 2-periodic gaits state. At 
this time, the gaits just locate in the limit cycle and is about to get away from this stable state 
if some slight disturbances working on the gaits. In addition, when getting out of this state, 
the walking gait of the robot will go into chaos and then slip down. Figure 16 is the graph of 
the average speed and the number of steps with 2-periodic gaits state. With different initial 
energy value, the graph of average speed and the number of steps will be different due to 
the sensitivity of chaos. 
Furthermore, some more attention should be paid to the work of how to identify the 
boundary of the basin of attraction and how to determine the favorable initial conditions 
effectively. In spite of all those stated in the paper, there still exists some other problems 
such as the robot’s behavior is heavily influenced by the impact model which the paper 
proposed is not the only available impact model. How to model some new realistic 
foot/ground impact models possessing such a manner that reasonable perturbations of the 
model parameters don’t dramatically change the gait, should be considered. 
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Fig. 18. Phase plane representation of the energy tracking control using two actuators with 
2-periodic gaits state. 
 

 
Fig. 19. The average speed and the number of steps corresponding to the two actuators 
control with 2-periodic gaits state 

7. Influence of robot parameters on the gait 
This section presents the effects of continuous change of the parameters φ , μ  and β  on the 
gait of our compass-like biped robot. First we discuss the limitations of al linear model in 
predicting the robot’s long term behavior. Next we point out the general features of the 
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symmetric gaits of the robot-this section mainly consists of a graphical presentation. When 
one of the parameters exceeds a certain limiting value, we observe bifurcation of the 
dynamics which we discuss subsequently. Finally we focus on the features of chaotic 
behavior of the robot gait. 

7.1 Symmetric gait 
This section presents the evolution of pertinent gait descriptors as functions of the three 
parameters during the symmetric gait regime of the robot. As opposed to a parameters 
which can be directly altered , a gait descriptors is an observed(measurable or computable) 
quantity which cannot be modified directly but is indirectly influenced by the parameters. 
The gait descriptors that appear the most meaningful to us for this study are the state 
variables q, the half inter-leg angle at touchdown α ,the step period T ,the average speed of 
progression v ,the total mechanical energy of the robot ,E and the loss of mechanical energy 

EΔ  due to impact. 
The evolution of the gait descriptors is presented  in the form of so-called bifurcation. 
Figs.5(a) to 5(f), 6.(a) to 6.(f) and 7(a) to 7(f). present the evolution of the gait descriptors that 
appear the most meaningful to us for this study are the state descriptors T , α , Sθ (at the 

beginning of a step), v , E  and E
E
Δ  as functions ,respectively ,of the parameters φ  and μ  

but decreases with β .The results show that both the step period and the step length of the 
robot .The overall behavior of the robot can be summarized qualitatively as follows: 
 

 T L E v 

φ ↗ ↗ ↗ ↗ ↗ 

μ ↗ ↗ ↗ ↗ ↗ 

β ↗ ↗ ↗ ↘ ↘ 
 
Some interpretations are in order here. Let us consider the evolution of total mechanical 
energy E  of the robot in response to parameter changes. As the ground slope φ  increases 
the potential energy PE  of the robot available per step slightly increases. The kinetic energy 
KE ,being roughly proportional to 2θ ,increases also, see Fig.5(c). As a consequence the 
total energy E , Fig.5(e). An increase in β  results in a lowering of the center of mass of the 
robot, which lowers PE  available per step and increases the step period . The latter results 
in a decreases in the average velocity of the robot (Fig.7 (d)). The increase in KE  caused by 
the small increase in the sθ  cannot compensate for the decreases in PE  and consequently 
lowers E . Conversely, an increase in μ  , which results in raising the center of mass of the 
robot , increase E . 
It is interesting to look at the effect of a parameter change on the evolution of entire limit 
cycles as shown in Fig.s5(g), 6(g) and 7(g). In response to an increase in φ  the limit cycle 
expands along both axes, see Fig.5(g), implying an increase in the range of joint angle and 
joint velocity .The limit cycles are compensated along the joint velocity axis for an increase 
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in the parameters μ  and β  (Figs .6(g) and 7(g)). A shorter reach of the limit cycle along the 
joint velocity  axis means a smaller maximum joint velocity but dose not necessarily mean a 
slower robot . We see in Fig6 (d) that an increase in μ  is associated with an increase in the 
average speed of progression v . 

7.2 Chaotic bifurcation 
7.2.1 Period-doubling bifurcation 
We noticed in Figs.5 and 6 that for the range of variations of the parameters considered in this 
study an increase in φ and β cause a bifurcation in all the gait descriptors. Bifurcation was also 
observed for higher values of μ especially when coupled with higher values of φ (Fig.7). 
As a consequence of the period-doubling bifurcation the limit cycle becomes 2-periodic and 
the robot gait becomes asymmetric with a shorter step and a longer step. The occurrence of 
bifurcation is shown in Figs.5,6,7 by the emergence of two branches in the curves, each 
associated with one of two dissimilar steps and describing its characteristic variables. Since 
bifurcation involves the state of the system and since all the gait descriptors, in turn, depend 
on the robot states, the occurrence of bifurcation is simultaneously manifested in all the gait 
descriptors. 
On further increasing the parameters , the robot gait may experience a further period-
doubling, giving rise to a 4-periodic limit cycle . This phenonmenon , repeated ad infinitum, 
is called a period doubling cascade and is recognized as one of the possible routes leading to 
chaos. Regardless of the parameter considered, we observe that the successive period 
doubling occur after progressively smaller intervals of parameter variation. This is expected 
in view of general results on period doubling casacades. 
Period doubling cascades leading to chaotic behavior have already been observed for 
passive planar hopping robots which possess a smaller dimension than that of the compass.  
2n-periodic gaits, termed as “limping gaits,” were observed and analyzed for hopping 
robots. 
In Fig.9 we introduce a novel way of capturing the behavior of the biped during a period 
doubling cascade ensuring from the parameter φ (other parameters are kept constant at 

2, 1μ β= = ). The figure plots the first plots the first return map of nsθ . For a 1-periodic 
robot gait nsθ  is the same in every step. This gait is therefore represented by a point on the 
45° line. 
As we change the ground slope, this point moves along the 45° line from the right-hand top 
corner of  Fig.9, as indicated by the arrow. 
The first period doubling occurs at 4.38φ °=  when the gait turns 2-periodic and is therefore 
represented by 2 points. Just after the first bifurcation the 2 representative points differ only 
slightly from that of the 1-periodic gait from which they originate. The two steps are 
therefore very similar to the steps of the steps of the symmetric gaits. On further changes , in 
the parameter the two representative points move away from the 45°  line along the two 
branches shown by dotted lines in Fig.9. It follows that one step length is slightly longer and 
the other slightly shorter than those of the corresponding symmetric gait. As we increase the 
slope the longer step is further elongated and the shorter step further shortened. 
This continues until a second period doubling occurs at 4.93φ °=  when each branch gives 
rise to two sub-branches. In this 4-periodic gait the 4 different steps are visited in the same 
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is called a period doubling cascade and is recognized as one of the possible routes leading to 
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Period doubling cascades leading to chaotic behavior have already been observed for 
passive planar hopping robots which possess a smaller dimension than that of the compass.  
2n-periodic gaits, termed as “limping gaits,” were observed and analyzed for hopping 
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In Fig.9 we introduce a novel way of capturing the behavior of the biped during a period 
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2, 1μ β= = ). The figure plots the first plots the first return map of nsθ . For a 1-periodic 
robot gait nsθ  is the same in every step. This gait is therefore represented by a point on the 
45° line. 
As we change the ground slope, this point moves along the 45° line from the right-hand top 
corner of  Fig.9, as indicated by the arrow. 
The first period doubling occurs at 4.38φ °=  when the gait turns 2-periodic and is therefore 
represented by 2 points. Just after the first bifurcation the 2 representative points differ only 
slightly from that of the 1-periodic gait from which they originate. The two steps are 
therefore very similar to the steps of the steps of the symmetric gaits. On further changes , in 
the parameter the two representative points move away from the 45°  line along the two 
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rise to two sub-branches. In this 4-periodic gait the 4 different steps are visited in the same 



 Biped Robots 

 

198 

order with a longer step always followed by a shorter step. The last clearly identifiable 
bifurcation occurs when 5.02φ = °  as the robot gait becomes 8-periodic. 
 

 
Fig. 20. First-return map of 2n -periodic steady gaits 
The period doubling cascade may also be observed using phase plane diagrams. The phase 
plane diagram for a symmetric gait. which is a single-loop closed trajectory repeated after 
two robot steps. During one step the considered leg is in the swing stage and during the 
following one, it is in the support stage. Since the gait is symmetric, the robot legs are 
indistinguishable and the phase plane cycles of the two legs are identical. 
In case of a 2-periodic gait, since all state variables are identical after every two steps, the 
phase plane limit cycle associated with one leg is still a single-loop closed trajectory 
repeated after two robot steps, see Fig.21(a). However, since the gait is asymmetric, the limit 
cycles associated with the legs are no longer identical. 
In case of 2n -periodic gaits, all the state variables repeat themselves after every 2n  steps. 
The phase plane diagram associated with one leg is therefore a 12n− -loop closed trajectory 
repeated after every 2n  steps, distinguishable from the phase diagram of the other leg. The 
visual inspection of the phase plane diagrams of the 4-periodic and the 8-periodic gaits (Fig. 
21(b) and 21(c), respectively) correctly indicates that they resulted from the bifurcation of 
respectively the preceding 2-periodic and the 4-periodic gaits.  

7.2.2 Chaotic gaits 
The chaotic gait is an extreme case of the asymmetric gait and is characterized by a complete 
disappearance of order in a system. During a chaotic gait on a given slope, the states, and 
consequently the gait descriptors, of the biped robot never completely repeat themselves. 
Chaotic gaits are represented in the bifurcation diagrams by a continuous distribution of 
points. We explicitly show this on Figs.22(a) and 22(b) and omit them in the other 
bifurcation diagrams for the sake of clarity. 
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                                       (a)                                                                              (b) 

 
(c)                                                                             (d) 

 

Fig. 21. Phase plane limit cycles of a) 2-periodic steady gait( 4.38φ °= ),b)4-periodic steady 
gait( 4.93φ °= ), c) 8-periodic steady gait( 5.02φ = ° ) d) chaotic gait associated with one leg, 
100 robot steps, ( 5.2φ °= ). For all the 4 subplots 2, 1μ β= = . 
 

The gradual progression of the robot gait to the chaotic regime is well depicted in the first 
return maps of , 1 ,( )ns k ns kfθ θ+ = shown in Figs. 11(a) to 11(d). When 5.02φ °= , the gait is 8-
periodic and its first return map consist of 8 points. At 5.05φ °= ,the first return map still 
consists of 8 distinguishable clusters of points(Fig.11(a)). Through multiple period doubling 
bifurcation this 8-periodic gait gives rise to a 2n -periodic gait with a large n . This gait will 
still preserved and nsθ  is still always followed by a small one. The same property is still 
preserved, since a large nsθ  is still always followed by a small one. The same property still 
holds for 5.13φ °= , but in this case the first return map appears as a continuum of 
points(Fig.11(c)). We are therefore very close to the “broad-band frequency” characteristic 
typical of chaotic behavior. Finally, when 5.21φ °= , we observe that predictability and 
periodicity have been completely destroyed, since a large nsθ  can be followed by another 
large one. The layered structure of the strange attractor can also be guessed from the first 
return map. 
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                                       (a)                                                                              (b) 

 
                                       (c)                                                                              (d) 

Fig. 22. First return map of nsθ : a) 2n -periodic gait, n  large( 5.05φ = ° ), b) 2n -periodic gait, 
n  very large( 5.10φ = ° ), c) approaching chaotic gait ( 5.13φ = ° ), d) chaotic gait 
( 5.21φ = ° ).For all the 4 subplots 2, 1μ β= = . 

7.2.3 Local stability of the limit cycle 
One way to investigate the orbital stability of a limit cycle is by means of studying the 
stability of its fixed point in the Poincare map. As a natural choice studying of the Poincare 
section of the compass biped we take the condition that the swing leg of the robot touches 
the ground. For two successive touchdowns of the same leg the states of the robot can be 
related as 

 1( )k kx F x +=  (14) 

Where [ , , , ]Tns s ns sx θ θ θ θ=  is the 4-component state vector of the robot. 
For a cyclic phase trajectory the first return map is fixed point of the mapping. On a cyclic 
trajectory, therefore , 1k kx x +=  and we can write, * *( )x F x= .For a small perturbation *xΔ  
around the limit cycle the nonlinear mapping function F  can be expressed in terms of 
Taylor series expansion as 
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 * * * *( ) ( ) ( )F x x F x F x+ Δ ≈ + ∇ Δ  (15) 

Where F∇  is the gradient of F  with respect to the states. Since *x  is a cyclic solution ,we 
can rewrite Eq.2as 

 * * * *( ) ( )F x x x F x+ Δ ≈ + ∇ Δ  (16) 

The mapping F  is stable if the first return map of a perturbed state is closer to the fixed 
point. This property can be viewed as the contraction of the phase eigenvalues of F∇ at the 
fixed point *x  are strictly less than one. From Eq.3 we write * * * *( ) ( )F x F x x x∇ Δ ≈ + Δ −  
where * *( )F x x+ Δ  is the first return map of the perturb one state * *x x+ Δ . As it is not 
practical to analytically calculate perturb one state at a time by a small amount and observe 
its first return map. Repeating this procedure at least four times (once for each of the four 
states ) we obtain an equation of the form 

 ( )F τ∇ = Ψ  (17) 

When φ  increases from 0.0524 to 0.0824, the variation of eigenvalues are as follows: 
 

 
When 0.0908φ = , the limit cycle is as follows: 

 

 
When μ  increases, the variation of the first, the second and the fourth eigenvalues are as 
follows: 
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When β  increases, the variation of the first, the second and the fourth eigenvalues are as 
follows: 
 

 
When μ  and β  increase, the real parts of the first and the second vary from negative to 
positive. It shows that the system varies from stable to unstable. 

7.2.4 Chaotic control laws 
Here we introduce a simple control law which was inspired by the passive energy 
characteristics of the compass model. As the robot walks down on a slope its support point 
also shifts downward at every touchdown . As it loses gravitational potential energy in this 
way its kinetic energy increases accordingly. In a steady walk this is exactly the amount of 
kinetic energy that is to be absorbed at the end of each step by the impact. If, at every 
touchdown we reset our potential energy reference line to the point of touchdown, the total 
energy of the robot appears constant regardless of its downward descent. We formulate a 
control strategy for the robot based on this principle. The control law, aware of this 
characteristic energy of the passive limit cycle, called the reference energy in this section, of 
the robot on a given slope tries to drive the robot toward it. 

8. The introduction of anti-phase synchronization 
Observing from the human gait biped, symmetry is an important indicator of healthy 
gait[6]. The presence and nature of asymmetry in gait can be a useful diagnostic tool for the 
clinicians. Symmetry can be measured through the use of so many kinetics variables such as 
acceleration, force, moment, energy, power, step period and step length. Is it possible to 
apply this obviously symmetry property of healthy gait in human walking into the design of 
the robot’s gait and explicitly explain the efficiency of human and animal locomotion more 
in detail will be a new challenge. Some new control strategy of “anti-phase synchronization” 
has been presented here to reduce the complexity such as the property of nonlinearity and 
strong coupling of this hybrid dynamic system. To the best of our knowledge, it is the first 
time to introduce the concept of synchronization to explain and control the motion of 
passive biped theoretically.    

Some Results on the Study of Kneed Gait Biped   

 

203 

For a perfectly symmetric gait a properly synchronized twin trajectories from corresponding 
joints should be identical. Through the control and the reduced presumption of the collision 
model, the strong coupling between two legs has been successfully erased. A controller 
which is able to solve the synchronization problem in such a way that the pendulum reaches 
the desired level of energy and they move synchronously in opposite directions has been 
presented and in addition the construction of new Lyapunov function and simulation 
results prove the validity of the strategy. The method stated in the paper is helpful to 
practical application of the design of the robot’s gait.  
The paper is organized as follows. First we formulate the problem statement. Next we 
analyze the behavior of compass-like biped. Then the symmetry property in gait biped and 
the possibility to the application of the anti-phase synchronization have been discussed in III 
as well as the problem of erasing the coupling between two legs. The main contribution of V 
is the construction of Lypunov function, the proposed controller and also the local stability 
analysis.  Simulation results stated in IV just verify the effectiveness of the proposed 
method. The conclusions and future work are formulated in the final part.  

8.1 Some symmetry property in gait biped   
One of the most important properties in steady gait biped is that there exists some kind of 
symmetry with the variation of angle position and angle velocity. 
The comparison relationship on the angular position of the two legs during steady periodic 
gait cycle has been presented in Fig. 3. It is obviously that angular positions of the two legs 
are asymmetry. The gait biped walking works as a double pendulum, while the stance leg 
has a comparative big difference with the swing leg. This can be explained that the stance 
leg experiences a relative compelled motion with the action force coming from the swing leg 
as well as from gravity. And in addition, the coupling degree of the two legs varies at 
different instant. 
Presume the intersection point between two legs in Fig. 3 and the middle point with the two 
culmination value within one cycle of the swing leg as the symmetry point respectively, we 
get the asymmetry degree figures about two legs. 
Observing from Fig. 4(a), different hip mass will correspond to the result that the larger the 
hip mass is, the higher the symmetry degree is. That is to say, the coupling effect between 
two legs will be influenced by the hip mass in great degree. With Fig. 4(b), different μ will 
correspond to the different error about the angular position and angular velocity. The 
conclusion is very important for it will help in modifying the gait biped model when 
choosing the parameter and adjusting the gait biped cycle. As stated above, Figures 4(a) and 
4(b) just provide us a kind of symmetry. While for the coupling of the two legs, it is 
impossible to construct the same ideal sub-systems to fulfil traditional master-slave 
synchronization corresponding to the dynamic system of the robot. The most direct way is 
to erase the coupling of the two legs and construct the subsystem of the swing leg and 
stance leg respectively, observing their position and the angle velocity relationship.  

8.2 Anti-phase synchronization  
In order to make the system to reach a kind of synchronization, the complex dynamic 
equation should be simplified as: 1. erase the coupling of two legs. 2. construct the new 
collision model between the swing leg and the ground. 3. add the control with the least 
energy consumption at appropriate instant as impulse force to imitate the behaviour of 
human gait. The paper will pay great attention to the solution of the first problem. 
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When β  increases, the variation of the first, the second and the fourth eigenvalues are as 
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characteristic energy of the passive limit cycle, called the reference energy in this section, of 
the robot on a given slope tries to drive the robot toward it. 

8. The introduction of anti-phase synchronization 
Observing from the human gait biped, symmetry is an important indicator of healthy 
gait[6]. The presence and nature of asymmetry in gait can be a useful diagnostic tool for the 
clinicians. Symmetry can be measured through the use of so many kinetics variables such as 
acceleration, force, moment, energy, power, step period and step length. Is it possible to 
apply this obviously symmetry property of healthy gait in human walking into the design of 
the robot’s gait and explicitly explain the efficiency of human and animal locomotion more 
in detail will be a new challenge. Some new control strategy of “anti-phase synchronization” 
has been presented here to reduce the complexity such as the property of nonlinearity and 
strong coupling of this hybrid dynamic system. To the best of our knowledge, it is the first 
time to introduce the concept of synchronization to explain and control the motion of 
passive biped theoretically.    
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For a perfectly symmetric gait a properly synchronized twin trajectories from corresponding 
joints should be identical. Through the control and the reduced presumption of the collision 
model, the strong coupling between two legs has been successfully erased. A controller 
which is able to solve the synchronization problem in such a way that the pendulum reaches 
the desired level of energy and they move synchronously in opposite directions has been 
presented and in addition the construction of new Lyapunov function and simulation 
results prove the validity of the strategy. The method stated in the paper is helpful to 
practical application of the design of the robot’s gait.  
The paper is organized as follows. First we formulate the problem statement. Next we 
analyze the behavior of compass-like biped. Then the symmetry property in gait biped and 
the possibility to the application of the anti-phase synchronization have been discussed in III 
as well as the problem of erasing the coupling between two legs. The main contribution of V 
is the construction of Lypunov function, the proposed controller and also the local stability 
analysis.  Simulation results stated in IV just verify the effectiveness of the proposed 
method. The conclusions and future work are formulated in the final part.  

8.1 Some symmetry property in gait biped   
One of the most important properties in steady gait biped is that there exists some kind of 
symmetry with the variation of angle position and angle velocity. 
The comparison relationship on the angular position of the two legs during steady periodic 
gait cycle has been presented in Fig. 3. It is obviously that angular positions of the two legs 
are asymmetry. The gait biped walking works as a double pendulum, while the stance leg 
has a comparative big difference with the swing leg. This can be explained that the stance 
leg experiences a relative compelled motion with the action force coming from the swing leg 
as well as from gravity. And in addition, the coupling degree of the two legs varies at 
different instant. 
Presume the intersection point between two legs in Fig. 3 and the middle point with the two 
culmination value within one cycle of the swing leg as the symmetry point respectively, we 
get the asymmetry degree figures about two legs. 
Observing from Fig. 4(a), different hip mass will correspond to the result that the larger the 
hip mass is, the higher the symmetry degree is. That is to say, the coupling effect between 
two legs will be influenced by the hip mass in great degree. With Fig. 4(b), different μ will 
correspond to the different error about the angular position and angular velocity. The 
conclusion is very important for it will help in modifying the gait biped model when 
choosing the parameter and adjusting the gait biped cycle. As stated above, Figures 4(a) and 
4(b) just provide us a kind of symmetry. While for the coupling of the two legs, it is 
impossible to construct the same ideal sub-systems to fulfil traditional master-slave 
synchronization corresponding to the dynamic system of the robot. The most direct way is 
to erase the coupling of the two legs and construct the subsystem of the swing leg and 
stance leg respectively, observing their position and the angle velocity relationship.  

8.2 Anti-phase synchronization  
In order to make the system to reach a kind of synchronization, the complex dynamic 
equation should be simplified as: 1. erase the coupling of two legs. 2. construct the new 
collision model between the swing leg and the ground. 3. add the control with the least 
energy consumption at appropriate instant as impulse force to imitate the behaviour of 
human gait. The paper will pay great attention to the solution of the first problem. 
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                                         (a)                                                                              (b)                             

Fig. 23. The asymmetry degree Figures about two legs with different symmetry point (a) 
inter-section point between legs (b) centre value with two culmination within one cycle of 
the swing leg   

By applying the idea of “inverse dynamic control”[10], make both the gravity torque act on 
the robot and the added control torque be equivalent to a gravity action, then a closed loop 
linear system with the same effect on the robot can be obtained. The advantage of the idea is 
that it can help adjust the gait distance and also the period corresponding to the forward 
varied velocity at any instant. Through the control, the swing leg acts as the single 
pendulum and the stance leg works as the inverted pendulum, the dynamic property of the 
two legs are the same except the analysis of the equilibrium point and the stability.   
In addition, a reasonable presumption can be provided that there exists no collision with the 
swing leg and the ground with respect to this kind of pendulum walking. That means with 
the algebra constraint added, during the cycle of gait biped, the tip of the swing leg slides 
with the ground all the time and no friction will be considered when the robot moving 
forward. The construction of the new collision model can be solved by the consideration of 
knees which is not the topic of this paper. It is reasonable for us to eliminate the impact of 
collision model here for the impact can be solved by some idea such as time delay set and 
other counteract equipment when designing the real robot. Under this condition, the phase 
graph of the gait will be a perfect circle, at the end of each gait cycle, the velocity of the leg 
will be set zero and at the same time preceding the velocity conversion.   

8.3 Erasing the coupling 
There exists strong coupling action between θns and θs  when analysing the dynamic 
equation. Erasing the coupling and construct the same sub-system with the idea of “inverse 
dynamic control”, then obtain a closed loop linear system. For the non-linear equations (2) 
of our biped, as the stance leg is about to leave the ground, the anti-phase control is induced 
to the equation with the form                                 

 1( ( ) ( , ) ( ))u B M q a C q q q g q−= + +  (18) 

Reduces the system to the decoupled double integrator system  
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q a=  (19) 

Joint angles can then be controlled independently using a control law  

 p da K q K q r= − − +  (20) 

Where pK and dK are diagonal matrices with elements consisting of position and velocity 
gains, respectively. For a given desired trajectory  

 ( ( ), ( ))d dt q t q t  (21) 

We can choose the input ( )r t as  

 ( ) ( ) ( )d d d
p dr q t K q t K q t= + +  (22)    

The desired trajectory can be obtained as cubic trajectory as shown in [11] if the initial and 
final states of the trajectory are known. Thus a kind of synchronization can get with the 
walking trajectory and the given trajectory. 
Simulation demonstrates that the rule for the swing leg is similar with the simple 
pendulum, during the process of anti-phase synchronization control, keep the dynamic state 
of the swing leg and make the stance leg act with the same rule, then  
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k  is the parameter representing the mass centre of the pendulum. With the same parameter 
described in section 2, the distance between the hip and the mass centre is b , the distance 

between the foot and the mass centre is a , where 
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The dynamic equation of the robot can be divided into two independent parts, and both of 
them possess the same expression as      
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8.4 Control synchronization  
For global application of the synchronization method, introduce the new coordination  
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With the control strategy stated above, equations of the two legs have been given as (9) and 
(10) with the same dynamic control rule. Assume that both the legs possess the point mass 
m, and then the virtual mechanical energy of the robot is   
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2
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t t t
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+ −
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Obviously 0V ≥ , appoint V as the Lyapunov function of the system, for the collision has 
been avoided here, thus the system is conservative, then 0V = . Seen from equation (11), the 
mechanical energy of the system is constant, this proves that the dynamic behaviour of the 
two legs can come to the state of anti-phase synchronization; expected ideal symmetry 
property appears here. 
Synchronizing the two dynamic systems with the idea (12) so called mutual direction 
coupling synchronization.     
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Where ( )K x x
− −

− , ( )K x x
− −

− is the mutual coupling synchronization control item of the two sub-
systems. In addition, it will be adjusted different for the purpose of improving the 
synchronized precision and enhancing the synchronized velocity.  

1 2( , ,..., )nK diag k k k= is so called coupling  length, where 2n =  here. Therefore the control 
objective can be formalized by the following relations  

 lim( ) 0t t
ns st

θ θ
→∞

+ =  (28) 

 lim( ) 0t t
ns st

θ θ
→∞

+ =  (29) 

Synchronized time of the system should be considered   here and two legs would come to 
the state of anti-phase synchronization within one cycle with the control. In order to fulfil 
the control of the gait biped, two main problems are discussed as follows: 1. stability with 
which the robot will not to slip forwards or downwards corresponding to the gait biped in a 
2-dimension plain. 2. the gait should satisfy any given target velocity and gait distance as 
well. To reach this kind of target control goal, an applicable method is to control the 
amplitude of the swing leg with energy consumption consideration. 
Add the new controller which is related to in system (9) and (10) 
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Where 
. .

*( , ) ( , ) 2ns sns sH H H Hθ θ θ θ= + − . 1λ , 2λ  is the ratio coefficient, which decides the 
converging speed of anti-phase synchronization; γ is positive gain coefficient.  H represents 
Hamiltonian function of each pendulum-like leg and the designed controller (16) can swing 
the pendulum up to the desired energy level *H in such a way that the pendulum-like two 
legs move in opposite directions. 
Theorem:  For any given controller presented as (16), if satisfies *

2 2Hλ > , then the set 
t t
ns sθ θ= − , t t

ns sθ θ= −  is globally asymptotically stable with respect to the controlled system 
(15).  
Proof: Construct the virtual Hamiltonian function of each pendulum-like leg  

 2 21( , ) ( ) (1 cos )
2

t tH m kl mgklθ θ θ θ= + −  (31)     

The control objective can be formalized by the following relations 

 *lim ( ( ), ( )) ,t t
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H t t Hθ θ θ θ θ
→∞

= =  (32) 

The relation implies that the periods of oscillations of each pendulum are identical 
(frequency synchronization). 
Using the control law (16), analyses the equations of the closed loop system with respect to 
the variable t t

ns sx θ θ= +  , then  

2
2 1( ) sinm kl x x xλ λ+ +  

 *
2[ ( , ) ( , ) 2 ]t t t t

ns ns s sH H H xγ θ θ θ θ λ= − + + −  (33) 

Define a new Lyapunov function to the whole system 
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2 2Hλ > , 0V ≤ . Then the set 0x =  is globally 

asymptotically stable. 
From this observation one can make a few important conclusions. First, the uncontrolled 
system can exhibit synchronous behaviour. Clearly, it follows that the Hamiltonian of each 
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pendulum tends to a common limit. However, due to energy dissipation the limit value 
depends on the initial conditions and particularly, if one initializes the pendulum from an 
identical point, the oscillations will decay. Therefore the uncontrolled system exhibits a 
behaviour which is very close to the desired one, and there is one thing to the controller-to 
maintain the energy level    for each pendulum, and this problem will be useful for the 
further research.  
As predicted by the theorem, there is a set of zero Lebesgue measure of exceptional initial 
conditions for which the control objective can not be achieved. For example, if one initiate 
the system at the point where 0,t t

ns sθ θ= = 0t t
ns sθ θ= =  the anti-phase synchronization 

control u  based on the energy can’t drive the system away from the zero condition, 
however from practical point of view, it is not difficult to modify the controller to handle 
this problem.  
Presume the system has been in the condition of anti-phase synchronization, that is, the 
stable point of the closed loop system, the limit dynamics of each pendulum is given by the 
following equation 

2 *( ) sin( ) 2 ( , )t t t tm kl mgkl H Hθ θ γ θ θ⎡ ⎤+ = − −⎣ ⎦  

And therefore the control objective  

*lim ( , )t t
t

H Hθ θ
→∞

=
 

is achieved. 

8.5 Simulation and discussion   
To verify the effectiveness of the proposed method, we conduct the following simulation 
results.    
 

  
                                              (a)                                                                        (b) 
Fig. 24. Anti-phase synchronization of two legs in the controlled system with different initial 
condition ( , , )ns sθ θ γ (a) (0.01, 0, 10)   (b) (-0.05, 0.05, 10)       

The limit cycle under anti-phase synchronization is given by Figure 5 and its Mechanical 
energy of the robot under anti-phase synchronization is just depicted by Figure 24. It is 
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clearly that  the anti-phase synchronization can enlarge the convergence region of the limit 
cycle and it appears the typical double-pendulum property.  
Figures 24 present the results of the anti-phase synchronization based on the energy control.  
With the anti-phase synchronization control, the angular position and angular velocity of 
the two legs can reach the synchronization with the same magnitude and the opposite 
direction at any moment. Simulation results prove the validity of the control method. In 
addition, as simulation demonstrates, with different initial condition of the gait biped will 
be around zero as well as any given biped value and with the control it can converge to the 
state of anti-phase synchronization corresponding to any given target energy. The 
converging speed depends on the controlled parameter 1 2, ,γ λ λ . Virtually the higher the 
value of the parameters are, the faster the converging speed is. The consequence is valid 
with the consideration of both the constraint of the manipulator and the appropriate 
maximized sustaining force added on the system. In practice, for not using the initial 
condition as it does in simulation, so the effect of the control will be better in controlling the 
practical robot.   
In this work, we considered the problem of controlled synchronization of the decoupled two 
legs based on the compass-like biped model. Some new method so called “anti-phase 
synchronization” has been presented to explain the perfectly symmetric gait typical of healthy 
gait in human walking. The paper also proposed a useful controller which is able to solve the 
synchronization problem in such a way that the pendulum reaches the desired level of energy 
and they move synchronously in opposite directions. In addition, the construction of Lypunov 
function, the local stability analysis to the proposed controller as well as the presentation of 
simulation results have also been stated and proved the validity of the method.  
For the next step, the design of a more efficient new collision model and also the further 
analysis about the added simplified impulse force under new condition will be helpful to 
practical application of the design of the robot’s gait. 

9. The description and assumption on he model with knees  

Next, we will extend the model to the new one with knees, and the state of the straight 
direction of the gait biped will be equivalent to the one of the compass-like gait biped, then 
the equation can be united as the unanimous form discussed formerly the model shown as 
Figure 25, partially resemble Compass-like waker with point masse Hm , sm  and tm  
concentrated at the hip ,shanks and thighs respectively. The leg-length is L, which is divided 
into three parts: sl and tl , sl is the distance from the heel to the knee of m  and  sl  is the 
distance from knee to the hip center Hm ,in the meanwhile,both shank and thigh are divided 
by their respective sub-mass center sm and tm into two parts,with  sl  1a  and 1b ,with tl  

2a and 2b . 1 1 2 2, ,s t s tl l L a b l a b l+ = + = + =  As is depicted in figure 1, three key parameters 
are needed to describe the configuration of the walker, 1q , 2q  and 3q . 2α  is the total angle 
between the legs, which is defined as the “inter-leg angle”, and in addition is formed during 
the instant when both legs are touching the ground. The slope of the ground with the 
horizontal is denoted by the angle γ . 
The model has been made by the following assumptions: the total mass of the robot 

2 2C s t Hm m m m= + + is constant. For the sake of analysing the model, we separate the 
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pendulum tends to a common limit. However, due to energy dissipation the limit value 
depends on the initial conditions and particularly, if one initializes the pendulum from an 
identical point, the oscillations will decay. Therefore the uncontrolled system exhibits a 
behaviour which is very close to the desired one, and there is one thing to the controller-to 
maintain the energy level    for each pendulum, and this problem will be useful for the 
further research.  
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2 *( ) sin( ) 2 ( , )t t t tm kl mgkl H Hθ θ γ θ θ⎡ ⎤+ = − −⎣ ⎦  

And therefore the control objective  

*lim ( , )t t
t

H Hθ θ
→∞

=
 

is achieved. 

8.5 Simulation and discussion   
To verify the effectiveness of the proposed method, we conduct the following simulation 
results.    
 

  
                                              (a)                                                                        (b) 
Fig. 24. Anti-phase synchronization of two legs in the controlled system with different initial 
condition ( , , )ns sθ θ γ (a) (0.01, 0, 10)   (b) (-0.05, 0.05, 10)       

The limit cycle under anti-phase synchronization is given by Figure 5 and its Mechanical 
energy of the robot under anti-phase synchronization is just depicted by Figure 24. It is 
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clearly that  the anti-phase synchronization can enlarge the convergence region of the limit 
cycle and it appears the typical double-pendulum property.  
Figures 24 present the results of the anti-phase synchronization based on the energy control.  
With the anti-phase synchronization control, the angular position and angular velocity of 
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converging speed depends on the controlled parameter 1 2, ,γ λ λ . Virtually the higher the 
value of the parameters are, the faster the converging speed is. The consequence is valid 
with the consideration of both the constraint of the manipulator and the appropriate 
maximized sustaining force added on the system. In practice, for not using the initial 
condition as it does in simulation, so the effect of the control will be better in controlling the 
practical robot.   
In this work, we considered the problem of controlled synchronization of the decoupled two 
legs based on the compass-like biped model. Some new method so called “anti-phase 
synchronization” has been presented to explain the perfectly symmetric gait typical of healthy 
gait in human walking. The paper also proposed a useful controller which is able to solve the 
synchronization problem in such a way that the pendulum reaches the desired level of energy 
and they move synchronously in opposite directions. In addition, the construction of Lypunov 
function, the local stability analysis to the proposed controller as well as the presentation of 
simulation results have also been stated and proved the validity of the method.  
For the next step, the design of a more efficient new collision model and also the further 
analysis about the added simplified impulse force under new condition will be helpful to 
practical application of the design of the robot’s gait. 

9. The description and assumption on he model with knees  

Next, we will extend the model to the new one with knees, and the state of the straight 
direction of the gait biped will be equivalent to the one of the compass-like gait biped, then 
the equation can be united as the unanimous form discussed formerly the model shown as 
Figure 25, partially resemble Compass-like waker with point masse Hm , sm  and tm  
concentrated at the hip ,shanks and thighs respectively. The leg-length is L, which is divided 
into three parts: sl and tl , sl is the distance from the heel to the knee of m  and  sl  is the 
distance from knee to the hip center Hm ,in the meanwhile,both shank and thigh are divided 
by their respective sub-mass center sm and tm into two parts,with  sl  1a  and 1b ,with tl  

2a and 2b . 1 1 2 2, ,s t s tl l L a b l a b l+ = + = + =  As is depicted in figure 1, three key parameters 
are needed to describe the configuration of the walker, 1q , 2q  and 3q . 2α  is the total angle 
between the legs, which is defined as the “inter-leg angle”, and in addition is formed during 
the instant when both legs are touching the ground. The slope of the ground with the 
horizontal is denoted by the angle γ . 
The model has been made by the following assumptions: the total mass of the robot 

2 2C s t Hm m m m= + + is constant. For the sake of analysing the model, we separate the 
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motion into two phases, knee-free phase and knee-locked phases,whose boundaries are  
knee-strike and heel strike,that is the period between knee-strike and heel-strike is knee-
locked stage and the period between  heel-strike and knee-strike is knee-free stage.    
 

 
Fig. 25. Model of a  passive kneed-walker  on a slope 

 

 
Fig. 2. Stages  in  a  step  cycle  of  a  kneed-walker  
In order to simplify the analysis and calculation of The waking model, we shoud make some 
assumptions at first. All masses are considered point-masses and one leg are identical with 
the other. The gait consists of knee-free stage and a knee-locked stage: during the knee-
locked stage the robot behaves exactly like an inverted planar double pendulum with its 
support point being analogous to the point of suspension of the pendulum. During the 
knee-free stage, the stance leg remain straight while the swing-leg bends at its knee, which is 
different from the Compass-like walker. The robot is assumed to move on a horizontal or 
inclined plane surface. The impact of the swing leg with the ground is assumed to be 
inelastic and without sliding, so is the impact between the thigh and the shank of the swing 
leg, which marks the inception of the knee-locked stage. This implies that during the 
instantaneous transition stage the robot configuration remains un-changed, and the angular 
momentum of the robot about the impacting foot as well as the angular momentum of the 
pre-impact support leg about the hip are conserved. Thanks to angular-momentum 
conservation law, we can obtain some useful equations, by which some meaningful 
simulations will be made. 
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10. The applicable function on 3D model 
As we have discussed before, we have finished the model of the whole integral process of 
the gait biped, while for the sake of the real application, a 3D model- a more 
anthropomorphic model should be presented necessarily. 
The simulation of the 3D one is similar with the 2D model. Previously, when the roll angle 
and its derivative are set to zero, the equation gained from the support leg angle, non-
support angle and their derivatives will be share some characteristics with the 2D robot. 
Moreover, reversely if the two angles and their derivatives are set to zero, the model 
represented by the roll angle will behave like an inverted pendulum. So the comparison 
between 3D model in this special condition and the 2D model is a direct way to the correct 
of the modeling. 
The 3d dynamic walking bipedal model 
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→

i

1θ
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φ
 

Fig. 26. 3d dynamical bipedal walker 

The model consists of two legs connected by a pelvis, with pin joints at the hips[3]. The legs 
are point feet, shown as Figure.1. The same with 2D bipedal model, it is also equivalent to a 
double pendulum (more obviously in saggital plane model) with point masse Hm  and 
m concentrated at the hip and feet respectively. The leg-length is l . The support angle 1θ , 
nonsupport angle 2θ  and roll angle 3θ  determine the configuration of the gait. The angle 
was made by the biped leg with the vertical (counterclockwise positive). 2α  is the total 
angle between the legs, which is defined as the “inter-leg angle”, and in addition is formed 
during the instant when both legs are touching the ground. The slope of the ground with the 
horizontal is denoted by the angle φ . 
The model has been made by the following assumptions: the total mass of the robot 

2C Hm m m= +  is constant and equal to 20kg. For the sake of simplifying the model, all 
masses are considered point-masses and the legs are identical with point feet. The same as 
2d bipedal model, the 3d gait also consists of swing stage and an instantaneous transition 
stage: during the swing stage the robot behaves exactly like an inverted planar double 
pendulum with its support point being analogous to the point of suspension of the 
pendulum. During the transition stage the support is transferred from one leg to the other. 
The robot is assumed to move on an inclined plane surface and the leg only swing forward 
and backward. The impact of the swing leg with the ground is assumed to be inelastic and 
without sliding [4]. This implies that during the instantaneous transition stage the robot 
configuration remains un-changed, and the angular momentum of the robot about the 
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The model consists of two legs connected by a pelvis, with pin joints at the hips[3]. The legs 
are point feet, shown as Figure.1. The same with 2D bipedal model, it is also equivalent to a 
double pendulum (more obviously in saggital plane model) with point masse Hm  and 
m concentrated at the hip and feet respectively. The leg-length is l . The support angle 1θ , 
nonsupport angle 2θ  and roll angle 3θ  determine the configuration of the gait. The angle 
was made by the biped leg with the vertical (counterclockwise positive). 2α  is the total 
angle between the legs, which is defined as the “inter-leg angle”, and in addition is formed 
during the instant when both legs are touching the ground. The slope of the ground with the 
horizontal is denoted by the angle φ . 
The model has been made by the following assumptions: the total mass of the robot 

2C Hm m m= +  is constant and equal to 20kg. For the sake of simplifying the model, all 
masses are considered point-masses and the legs are identical with point feet. The same as 
2d bipedal model, the 3d gait also consists of swing stage and an instantaneous transition 
stage: during the swing stage the robot behaves exactly like an inverted planar double 
pendulum with its support point being analogous to the point of suspension of the 
pendulum. During the transition stage the support is transferred from one leg to the other. 
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without sliding [4]. This implies that during the instantaneous transition stage the robot 
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impacting foot as well as the angular momentum of the pre-impact support leg about the 
hip is conserved. These conservation laws lead to a discontinuous change in robot velocity. 
 

1θ

2θ

Hm

mm
φ

B

H

A
 

Fig. 27. Sagittal planar 3d model  
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Fig. 3. Frontal 3d model  
The new dynamic equations of the swing stage are similar to the well-known double 
pendulum equations. Since the legs of the robot are assumed identical, the equations are 
similar regardless of the support leg considered with the variation of the following. 
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The parameters used for our simulations are l =1 m , Hm =2 m =10kg. Since no dissipation 
takes place during swing stage, thus the total mechanical energy E of the robot is conserved 
during this stage. 
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Where the Lagrangian ( , )L θ θ  is the difference between the kinetic energy and the potential 
energy of the robot: L( ,θ θ )=K( ,θ θ )-P(θ ), the right-hand side term of (3) is 0, since the 
robot is completely passive. The new equation of the gait biped are given as the following 
and the results presented before can be applied perfectly.  
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Fig. 19. Model in the 3d space 
In order to calculate the energy of the robot, we simply consider the dynamics of the three 
distinct masses: 
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In order to calculate the energy of the robot, we simply consider the dynamics of the three 
distinct masses: 
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 1 3 1 3 2 3 0( ) cos cos (cos cos cos cos )HP m gL mgL Pθ θ θ θ θ θ θ= + − +  (35) 

Where HV
→

, AV
→

and BV
→

are the velocities of the point masses. In the frame [ , , ]i j k
→ → →

 depicted 
on Fig.3, these vectors are given by: 

1 3 31 3 1 3 1 1 1 1 3 1 3( sin sin cos cos ) cos ( sin cos cos sin )HV L L i L j L L kθ θ θ θ θ θ θ θ θ θ θ θ θ θ
• • • • •

= − + + + − −  

1 3 2 31 3 1 3 2 3 2 3

1 31 1 2 2 1 3 1 3

2 2 3 3 2 3

( sin sin cos cos sin sin cos cos )

( cos cos ) ( sin cos cos sin

sin cos cos sin )

BV L L L L i

L L j L L

L L k

θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

• • • •

• • • •

• •

= − + + −

+ − + − −

+ +

 

0AV
→

=     

 
The Transition equation 
Since our robot is constituted of only two links, the condition of conservation of angular 
momentum leads to only two equations: 
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Where points H, A and B are respectively the hip, the mass center of the support leg, the 

mass center of the non-support leg. HV
→

, AV
→

and BV
→

are respectively the velocity vectors at 
H, A and B. The superscripts – and + indicate respectively pre-impact and post-impact 
variables.All the vectors appearing are given by: 
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And for the assumption of the angles between hip and legs are all constant with 90 , there is 
extra torque at H.  
We get the following compact equation between the pre-impact and post-impact angular 
velocities: 
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By doing the transition of the equation, we can avail the consequences of the model to the 
real robot model. 

11. Conclusions and future work 
The focus of the work is a relative further study of the passive gait of a compass-like, planar, 
biped robot with knees on inclined slopes. An analysis about the distribution of the energy 
and also the conversion law between the swing leg and the stance leg during the process of 
the steady robot gaits, have been discussed in the paper. Phase-position property 
corresponds to the limit cycle, the coupling properties between two legs,  the existence of 
the culmination points which produced in the course of the conversion of KE and PE are 
also the topic of the research. To a certain slope angle φ, one and only one stable limit cycle 
exists. 
The research of the paper will have positive significance in getting better aware of the law 
and global property to biped gaits of the robot. The model we adopt here is quite applicable, 
how to enlarge the initial value attraction region of the limit cycle as well as how to apply 
the efficient control on the robot combined with its own property with the least energy 
possible will guide our further research direction. 

Some Results on the Study of Kneed Gait Biped   

 

217 

12. Acknowledgement 
This work is supported by the Research Fund for the Doctoral Program of Higher Education 
of China under grant 20090061120050 as well as the Forward and Crossing Research Fund 
for the Basic Theory in Jilin University under Grant 421033205410. 

13. References 
[1] T. McGeer, “Passive dynamic walking”, International Journal of Robotics Research, 9(2), 

pp. 62-82, 1990. 
[2] S.H. Collins, M. Wisse and A. Ruina, “A 3-d passive dynamic walking robot with two 

legs and knees”, International Journal of Robotics Research, 20(7), pp. 607-615, 
2001. 

[3] A. Goswami, B. Espiau and A. Keramane, “Limit cycles and their stability in a passive 
bipedal gait”, Proc. IEEE Conference on Robotics and Automation, pp. 246-251, 
1996.  

[4] M. Garcia, A. Chatterjee, A. Ruina and M. Coleman, The simplest walking model: 
stability, complexity, and scaling”, ASME Journal of Biomechanical Engineering, 
120(2), pp. 281-288, 1998. 

[5] H. Ohta, M.. Yamakita and K. Furuta, “From passive to active dynamic walking”, IEEE 
Conference on Decision and Control, pp.  3883-3885, 1999.  

[6] A. Goswami, “Kinetic quantification of gait symmetry based on bilateral cyclograms”, 
Proc. XIXth Congress of the International Society of Biomechanics, pp. 56-62,  
2003.  

[7] A. Goswami, B. Thuilot and B. Espiau, “A study of the passive gait of   a compass-like 
biped robot: symmetry and chaos”, International Journal of Robotics Research, 
17(12), pp. 1282-1301, 1998. 

[8] J.W. Grizzle, G. Abba and F. Plestan, “Asymptotically stable walking for biped robots: 
analysis via systems with impulsive effects”, IEEE Transactions on Robotics and 
Automation Control, 46(1), pp. 51-64, 2001., pp. 51-64, 2001.    

[9] A. Goswami, B. Tuilot and B. Espiau, “Compass like bipedal robot   part I: stability and 
bifurcation of passive gaits”, INRIA Research   Report, 1996.  

[10] G. Bhatia, M.W. Spong, “Hybrid control for smooth walking of a biped with knees and 
torso”, Proc. 2004 IEEE Conference on Control Applications, pp. 88-96, 2004.  

[11] Y.F. Zheng, J. Shen, F.R. Sias, “A motion control scheme for a  biped robot to climb 
sloping surfaces”, Proc. IEEE Conference on Robotics and Automation, 2(4), pp814-
816, 1988.  

[12] I. A. Hiskens, “Stability of hybrid system limit cycle: application to the compass gait 
biped robot”, Proceedings of 40th IEEE Conference on Decision and Control, pp. 
774-779, 2001. 

[13] A. Goswami, B. Tuilot and B. Espiau, “Compass like bipedal robot part I: stability and 
bifurcation of passive gaits”, INTRIA Research Report, 1996.  

[14] M.W. Spong, G. Bhatia, “Further Results on Control of the Compass Gait Biped”, IEEE 
International Conference on Intelligent Robots and Systems Proceedings, pp. 1933-
1938, 2003.  



 Biped Robots 

 

216 

And for the assumption of the angles between hip and legs are all constant with 90 , there is 
extra torque at H.  
We get the following compact equation between the pre-impact and post-impact angular 
velocities: 
 

( ) ( )Q Qθ θ θ θ− +
− +=  

 
With matrices ( )Q θ− and ( )Q θ+  given by: 
 

3 1 2 1 2 3

3 1 2 3 3 2 1 2

1 2

cos cos( ) 0 cos sin sin

( ) cos cos( ) cos sin sin (cos cos )

0 0 cos cos

H H

H

m m

Q m m m

m

θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

θ θ

− − − − − −

− − − − − − − −
−

− −

⎛ ⎞− − −
⎜ ⎟
⎜ ⎟= − − −
⎜ ⎟
⎜ ⎟−⎝ ⎠

 

 

3 3 1 2 3 1 2

3 1 2 3

1 1 3 3 1 2 1 1 2 2

3 2 2 1
2

cos cos [1 cos( )] cos [1 cos( )]

( ) cos cos( ) cos
0 0

cos sin sin sin [ sin( ) cos sin cos sin ]

sin sin (cos cos )

cos

H

H

H

m m m

Q m m

m m

m

m

θ θ θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ

+ + + + + + +

+ + + +
+

+ + + + + + + + + +

+ + + +

⎛ + − − − −
⎜
⎜= − −
⎜
⎜
⎝

+ − + + +

−

− 2
1 1 2(cos cos )mθ θ θ+ + +

⎞
⎟
⎟
⎟
⎟− − ⎠

 

 
By doing the transition of the equation, we can avail the consequences of the model to the 
real robot model. 

11. Conclusions and future work 
The focus of the work is a relative further study of the passive gait of a compass-like, planar, 
biped robot with knees on inclined slopes. An analysis about the distribution of the energy 
and also the conversion law between the swing leg and the stance leg during the process of 
the steady robot gaits, have been discussed in the paper. Phase-position property 
corresponds to the limit cycle, the coupling properties between two legs,  the existence of 
the culmination points which produced in the course of the conversion of KE and PE are 
also the topic of the research. To a certain slope angle φ, one and only one stable limit cycle 
exists. 
The research of the paper will have positive significance in getting better aware of the law 
and global property to biped gaits of the robot. The model we adopt here is quite applicable, 
how to enlarge the initial value attraction region of the limit cycle as well as how to apply 
the efficient control on the robot combined with its own property with the least energy 
possible will guide our further research direction. 

Some Results on the Study of Kneed Gait Biped   

 

217 

12. Acknowledgement 
This work is supported by the Research Fund for the Doctoral Program of Higher Education 
of China under grant 20090061120050 as well as the Forward and Crossing Research Fund 
for the Basic Theory in Jilin University under Grant 421033205410. 

13. References 
[1] T. McGeer, “Passive dynamic walking”, International Journal of Robotics Research, 9(2), 

pp. 62-82, 1990. 
[2] S.H. Collins, M. Wisse and A. Ruina, “A 3-d passive dynamic walking robot with two 

legs and knees”, International Journal of Robotics Research, 20(7), pp. 607-615, 
2001. 

[3] A. Goswami, B. Espiau and A. Keramane, “Limit cycles and their stability in a passive 
bipedal gait”, Proc. IEEE Conference on Robotics and Automation, pp. 246-251, 
1996.  

[4] M. Garcia, A. Chatterjee, A. Ruina and M. Coleman, The simplest walking model: 
stability, complexity, and scaling”, ASME Journal of Biomechanical Engineering, 
120(2), pp. 281-288, 1998. 

[5] H. Ohta, M.. Yamakita and K. Furuta, “From passive to active dynamic walking”, IEEE 
Conference on Decision and Control, pp.  3883-3885, 1999.  

[6] A. Goswami, “Kinetic quantification of gait symmetry based on bilateral cyclograms”, 
Proc. XIXth Congress of the International Society of Biomechanics, pp. 56-62,  
2003.  

[7] A. Goswami, B. Thuilot and B. Espiau, “A study of the passive gait of   a compass-like 
biped robot: symmetry and chaos”, International Journal of Robotics Research, 
17(12), pp. 1282-1301, 1998. 

[8] J.W. Grizzle, G. Abba and F. Plestan, “Asymptotically stable walking for biped robots: 
analysis via systems with impulsive effects”, IEEE Transactions on Robotics and 
Automation Control, 46(1), pp. 51-64, 2001., pp. 51-64, 2001.    

[9] A. Goswami, B. Tuilot and B. Espiau, “Compass like bipedal robot   part I: stability and 
bifurcation of passive gaits”, INRIA Research   Report, 1996.  

[10] G. Bhatia, M.W. Spong, “Hybrid control for smooth walking of a biped with knees and 
torso”, Proc. 2004 IEEE Conference on Control Applications, pp. 88-96, 2004.  

[11] Y.F. Zheng, J. Shen, F.R. Sias, “A motion control scheme for a  biped robot to climb 
sloping surfaces”, Proc. IEEE Conference on Robotics and Automation, 2(4), pp814-
816, 1988.  

[12] I. A. Hiskens, “Stability of hybrid system limit cycle: application to the compass gait 
biped robot”, Proceedings of 40th IEEE Conference on Decision and Control, pp. 
774-779, 2001. 

[13] A. Goswami, B. Tuilot and B. Espiau, “Compass like bipedal robot part I: stability and 
bifurcation of passive gaits”, INTRIA Research Report, 1996.  

[14] M.W. Spong, G. Bhatia, “Further Results on Control of the Compass Gait Biped”, IEEE 
International Conference on Intelligent Robots and Systems Proceedings, pp. 1933-
1938, 2003.  



 Biped Robots 

 

218 

[15] M. Garcia, A. Chatterjee, A. Ruina and M. Coleman, “The simplest walking model: 
stability, complexity, and scaling”, ASME Journal of Biomechanical Engineering, 
120(2), pp. 281-288, 1998. 

Shohei Kato and Minoru Ishida
Nagoya Institute of Technology

Japan

1. Introduction

A lot of research on humanoid robots or biped robots has been conducted. This research
focused on enabling robots to walk very smoothly, similar to the way humans walk, which is
highly energy efficient. Motion control using a central pattern generator (CPG) has attracted
much attention as an effective control mechanism for biped robots to achieve human-like
walking (e.g., Kato & Itoh (2005); Kotosaka & Schaal (2000); Miyakoshi et al. (1998); Taga
(1995a;b); Taga et al. (1991)). The CPG is modeled mathematically to a neural rhythm
generator that exists at a relatively low level of the central nervous system, such as the spinal
cord of animals. This motion control using the CPG has generated various motions: walking
by Ishida et al. (2009a;b); Itoh et al. (2004); Nakamura et al. (2005); Taki et al. (2004), step
by Miyakoshi et al. (1998), and drum motions by Kotosaka & Schaal (2000). Taga (1995a;b)
proposed a neuro-musculo-skeletal model based on the CPG, and it enabled a biped robot
to have a human gait in two dimensions. Among the researchers of highly energy-efficient
walking, McGeer (1990) was the first to study passive dynamic walking (PDW). A PDW
robot walks forward by placing the foot on the ground and riding on the supporting leg,
which rolls forward as an inverted pendulum mounted on the supporting foot. At the same
time, it places the swing foot forward by moving the swing leg in a pendular arc, so that it
makes the foot strike a ground when the mechanism is in a configuration identical to that at
the beginning of a step. If the dynamic characteristic of the robot and the environment (e.g.,
the slope and velocity when the walking begins) agree, then the PDW robot achieves highly
energy-efficient walking without any actuator control. Sugimoto & Osuka (2004) proposed
a control method for quasi passive dynamic walking (Quasi-PDW). Quasi-PDW means that
the robot usually does PDW without any input torque, and the actuators of the robot are
used for ensuring walking stability only when the walking begins or when a disturbance
occurs. Haruna et al. (2001) researched a PDW robot with a torso. CPG-based motion control
inputs some torque to all the joints of the robot’s lower limbs regardless of gait. When we
think about human walking, we take into account the joints of the swing leg without any
input torque. Active walking needs to be mixed with PDW for robot walking. Quasi-PDW is
an example of a mixture of active walking and PDW. Quasi-PDW is applicable to the robot
whose dynamic characteristic suits to PDW. However, there is a lot of robots that can not
satisfy a dynamic characteristic for PDW. To achieve this mixture with the robots, we added
the mechanism of PDW to an active walking robot. In this chapter, we describe a motion
control method based on the mixture of CPG and PDW (Ishida et al. (2009a;b)), that is, the
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dynamic passivization of joint control, achieving robust and energy-efficient walking. We
focused on robot walking on a downhill slope.

2. The Robot model and its motion control primitive

2.1 The link structure of humanoid robot
The section describes two link models of humanoid robot: two dimensional link model in
sagittal plane and three dimensional link model of entire body.

2.1.1 Two dimensional model
The model of the human body is composed of the HAT (head, arms, and trunk), pelvis, thighs,
shanks, and feet (shown in Figure 1). There are seven joints, two each at the hips, knees, and
ankles, and one at the trunk.

2.1.2 Three dimensional model
We also consider the motion control of a humanoid robot, HOAP-1 (Murase et al. (2001)),
shown in Figure 2. HOAP-1 has 6-DOFs in each leg. The coxa joint has three degrees of
freedom; pitch, yaw, and roll, the knee joint has one degree of freedom; pitch, and the ankle
joint has two degrees of freedom; pitch, and roll. The height and weight of the robot and
48[cm] and 6[kg].
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2.2 Neural rhythm generator
Walking movement is periodical. In this research, we control walking movement using CPG,
which is often used in generating periodical movement. CPG is modeled mathematically
to the neural rhythm generator which exists at a relatively low level of the central nervous
system such as the spinal cord of animals. Standout feature of CPG, it is synchronized its
inner state with rhythmic input from outside in term of phase. Using this feature, therefore
walking movement having robustness for changes of environment is able to be generated.
CPG is composed of multi-neurons which inhibit each other. The mathematical model of a
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neuron is represented as following system of differential equation.

τiu̇i = −ui − b · f (vi) +
n

∑
j=1

wij f (ui) + u0 + Si, (1)

τ�
i v̇i = −vi + f (ui), (2)

f (x) = max(x, 0), (3)

where ui is the inner state of i-th neuron; vi is a variable which represents the degree of
the adaptation or self-inhibition effect of the i-th neuron; τi and τ�

i are time constants of the
inner state and the adaptation effect of the i-th neuron, respectively; b is a coefficient of the
adaptation effect; wij is a connecting weight from the j-th neuron to the i-th neuron; u0 is
an external input with a constant rate; and Si is the local and global sensory information
that is sent to the i-th neuron. A neuron excited by u0 is oscillated by self-inhibition and
cross-inhibition, and f (u) is output of neuron. For more precise, please refer to Matsuoka
(1985) and Matsuoka (1987).

2.3 Neuro-musculo-skeletal system
In this research, we adopted the neuro-musculo-skeletal system proposed by Taga (1995a) for
a motion control method based on CPG in the robot. The neuro-musculo-skeletal system is
composed of two dynamical systems: a neural system and a musculo-skeletal system. The
neural system is composed of CPG network, and the musculo-skeletal system is composed
of skeletons considered muscles surrounding to them. The system can generate flexible and
adaptable walking movement through the mutual interaction among the neural system, the
musculo-skeletal system and environment.
In this chapter, we propose CPG-based walking motion generation considering two styles in
neuro-musculo-skeletal system: walking in sagittal plane (in two dimensions) and walking
with real lower body (in three dimensions).

2.3.1 Two dimensional model
In the neural system, the neural rhythm generator consists of seven neural oscillators in
accordance with the robot’s link structure shown in Figure 1. The neural oscillators are
allocated to seven joints: the trunk and the pairs of the hips, knees, and ankles, shown in
Figure 3 (left). Two neurons at a neural oscillator each have a flexion and extension effect on
muscles corresponding to the CPG. In the musculo-skeletal system, the skeletons match the
robot’s link structure. There are six single-joint muscles and three double-joint muscles for
each of the limbs and two for the upper body. Figure 3 (right) shows the configuration of the
muscles. Two neurons in the neural oscillators alternately activate the antagonist muscles.

2.3.2 Three dimensional model
For the three dimensional link model (see Figure 2 (left)), neural oscillators are allocated
to twelve joints: the pairs of the coxas (pitch, yaw, and roll), knees, and ankles (pitch and
roll). Two neurons at a neural oscillator each have a flexion and extension effect on muscles
corresponding to the CPG. In the musculo-skeletal system, the skeletons match the robot’s
link structure. There are twelve single-joint muscles and three double-joint muscles for each
of the limbs. Figure 4 shows the configuration of the muscles (30 muscles in total).
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2.4 Motion control based on neuro-musculo-skeletal system
Figure 5 shows a block diagram of the motion control system based on the dynamic
passivization of joint control. In this research, we added a joint control transfer switch to the
neuro-musculo-skeletal system proposed by Taga for a motion control method. Joint control
transfer switch is described in Section 3.1. If the transfer switch is passive, then it nullifies the
input torque in the swing leg for the rhythmic torque controller and for the impedance torque
controller. If it is active, then it enables the input torque in the swing leg for the rhythmic
torque controller and for the impedance torque controller. The system performs the motion
control based on the iteration of the following processes:

1. First, output f (u(t)) of the CPG in time t is excited by constant input u0 to the neuron. The
rhythmic torque controller generates rhythmic torque Tmr(t + ΔT) from f (u(t)), sensory
input S(t) of the robot at time t, and the output of the joint control transfer switch in time
t.

2. The impedance torque controller generates impedance torque Tmi(t + ΔT) to maintain a
standing position from joint angle θ(t), joint angular velocity θ̇(t), and the sensory input
of the robot at time t.

3. The muscle torque Tm(t + ΔT) is generated from Tmr(t + ΔT) and Tmi(t + ΔT).

4. The joint torque T(t + ΔT) is calculated from Tm(t + ΔT).

5. The kinematics simulator generates the motion of the robot when joint torque T(t + ΔT)
is given to the robot. Then, the simulator calculates joint angle θ(t + ΔT), joint angular

223Dynamic Joint Passivization for Bipedal Locomotion



neuron is represented as following system of differential equation.

τiu̇i = −ui − b · f (vi) +
n

∑
j=1

wij f (ui) + u0 + Si, (1)

τ�
i v̇i = −vi + f (ui), (2)

f (x) = max(x, 0), (3)

where ui is the inner state of i-th neuron; vi is a variable which represents the degree of
the adaptation or self-inhibition effect of the i-th neuron; τi and τ�

i are time constants of the
inner state and the adaptation effect of the i-th neuron, respectively; b is a coefficient of the
adaptation effect; wij is a connecting weight from the j-th neuron to the i-th neuron; u0 is
an external input with a constant rate; and Si is the local and global sensory information
that is sent to the i-th neuron. A neuron excited by u0 is oscillated by self-inhibition and
cross-inhibition, and f (u) is output of neuron. For more precise, please refer to Matsuoka
(1985) and Matsuoka (1987).

2.3 Neuro-musculo-skeletal system
In this research, we adopted the neuro-musculo-skeletal system proposed by Taga (1995a) for
a motion control method based on CPG in the robot. The neuro-musculo-skeletal system is
composed of two dynamical systems: a neural system and a musculo-skeletal system. The
neural system is composed of CPG network, and the musculo-skeletal system is composed
of skeletons considered muscles surrounding to them. The system can generate flexible and
adaptable walking movement through the mutual interaction among the neural system, the
musculo-skeletal system and environment.
In this chapter, we propose CPG-based walking motion generation considering two styles in
neuro-musculo-skeletal system: walking in sagittal plane (in two dimensions) and walking
with real lower body (in three dimensions).

2.3.1 Two dimensional model
In the neural system, the neural rhythm generator consists of seven neural oscillators in
accordance with the robot’s link structure shown in Figure 1. The neural oscillators are
allocated to seven joints: the trunk and the pairs of the hips, knees, and ankles, shown in
Figure 3 (left). Two neurons at a neural oscillator each have a flexion and extension effect on
muscles corresponding to the CPG. In the musculo-skeletal system, the skeletons match the
robot’s link structure. There are six single-joint muscles and three double-joint muscles for
each of the limbs and two for the upper body. Figure 3 (right) shows the configuration of the
muscles. Two neurons in the neural oscillators alternately activate the antagonist muscles.

2.3.2 Three dimensional model
For the three dimensional link model (see Figure 2 (left)), neural oscillators are allocated
to twelve joints: the pairs of the coxas (pitch, yaw, and roll), knees, and ankles (pitch and
roll). Two neurons at a neural oscillator each have a flexion and extension effect on muscles
corresponding to the CPG. In the musculo-skeletal system, the skeletons match the robot’s
link structure. There are twelve single-joint muscles and three double-joint muscles for each
of the limbs. Figure 4 shows the configuration of the muscles (30 muscles in total).

222 Biped Robots

Constant Input

CPG

Rhythmic Torque
Controller

Joint Control
Transfer Switch

State of posture

Touch Sense

Kinematic Simulator (2D: Newton-Euler method / 3D Open Dynamic Engine)

Sensory Input

Impedance Torque
Controller

Muscle Torque

Joint Torque

u0

u(t) v(t)

S(t)

Sg(t)

Slon(t)

(z(t))

θ̇(t)

Sron(t)

Sroff (t)

Sloff (t)

x(t)

y(t) (ż(t))
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control based on the iteration of the following processes:

1. First, output f (u(t)) of the CPG in time t is excited by constant input u0 to the neuron. The
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velocity θ̇(t + ΔT), the coordinates p(t + ΔT) = (x(t + ΔT), y(t + ΔT))T (p(t + ΔT) =
(x(t + ΔT), y(t + ΔT), z(t + ΔT))T for 3D simulation), and velocity ẋ(t + ΔT), ẏ(t + ΔT)
(ż(t+ΔT) for 3D simulation) of each link after motion. The simulator sets the time forward
for ΔT.

6. The flags of the foot contacting the ground Sron, Sro f f , Slon, Slo f f are obtained by the touch
sense. The state of posture Sg(t) is updated by them and by the output of the kinematics
simulator.

3. Dynamic passivization of joint control

In this paper, we describe a “Joint Control Transfer Switch” that is switched to “ACTIVE”
or “PASSIVE” according to the environment and the posture information for adding the
mechanism of PDW to the motion control method based on CPG. Our intention was to make
the joint control of the swing leg temporarily passive in the swing leg phase. Figure 6 shows
a concept chart of the dynamic passivization of the joint control. The important part is the
passive phase time and the switch timing of the joint control.

3.1 Joint control transfer switch
The slope and posture information is used as information that decides the switch timing of
the joint control (see Figure 7). The body’s center of gravity (COG) and the swing leg’s center
of gravity (COGS) are obtained from the posture information while walking. Angle θS is
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Fig. 8. Snapshots of gaits on 2 percent downhill slope with our system (top), CPG (middle),
and Passive (bottom)

calculated from the COG, COGS, and the slope. In addition, angle ψ is calculated from the
COG, center of pressure (COP), and the slope.
The joint control transfer switch changes joint control to active or passive according to the
following conditions:

• ψ ≤ π
2

· θS ≥ α: ACTIVE

· θS < α: PASSIVE

• ψ >
π
2

· θS > β: PASSIVE

· θS ≤ β: ACTIVE,

where α and β are set to an appropriate value according to a dynamic characteristic of the
robot and a slope (0 ≤ α, β ≤ π).

4. Walking in sagittal plane

We conducted a walking control experiment to test the effectiveness of our method. Firstly,
this section reports walking control performances in sagittal plane using 2D link model shown
in Figure 1. In the experiments, we used the neuro-musculo-skeletal system proposed by Taga
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Our system CPG Passive

Travel distance [m] 15.4 11.7 9.6
Sum total of input torque [Nms] 2.1E+03 2.2E+03 1.6E+03

Locomotion cost [Ns] 1.4E+02 1.9E+02 1.6E+02
α [rad] 1.79 - -
β [rad] 0.24 - -

Table 1. Results of first experiment

Our system CPG

λ1θ1
(HAT) 7.5E-02 1.1E-01

λ1θ2
(pelvis) 9.3E-03 1.3E-02

λ1θ3
(right thigh) 1.0E-01 2.3E-01

λ1θ4
(left thigh) 1.6E-01 2.3E-01

λ1θ5
(right shank) 1.2E-01 2.7E-01

λ1θ6
(left shank) 2.2E-01 2.4E-01

λ1θ7
(right foot) 1.0E-01 1.5E-01

λ1θ8
(left foot) 1.7E-01 1.4E-01

average 1.2E-01 1.7E-01

Table 2. Maximum lyapunov exponent

and a control method where the joint control was set to passive during the swing leg phase
for comparison with our method. The former method is labeled “CPG” and the latter method
is labeled “Passive”. Because this robot could not do PDW in this environment, PDW was
excluded from the objects of comparison.

4.1 Optimizing parameters
We optimized the common parameters of all the methods and parameters (α and β) of our
method with simulated annealing with advanced adaptive neighborhood (SA/AAN) by Miki
et al. (2002) prior to conducting the walking experiments (e.g., Itoh et al. (2004); Nakamura
et al. (2005); Taki et al. (2004)). We optimized the rhythmic torque parameter as common
parameters of all the methods. The rhythmic torque Tmrj that acts on j-th muscle is defined
by the following equation:

Tmrj = (rpart · Son + (1 − rpart) · So f f ) · ppart · f (ui), (4)

where r and p are rhythmic torque parameter, part is a type of muscle, Son(So f f ) is flag of the
contacting (leaving) the ground. In the experiments, the walking time and the locomotion cost
were used for optimizing the performance. The value of the locomotion cost is defined by the
following equation:

Cost =
1

L

M

∑
i=1

∫ Time

0
|Ti(t)|dt, (5)

where Ti is the input torque of the i-th joint, L is the travel distance, M is the number of joints,
and Time is the simulation time. We perturbed parameters 10,000 times simultaneously. Each
simulation took 10 seconds. We set the value of reference in Taga (1995a) for the common
parameters of all the methods other than rhythm torque parameter.
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and a control method where the joint control was set to passive during the swing leg phase
for comparison with our method. The former method is labeled “CPG” and the latter method
is labeled “Passive”. Because this robot could not do PDW in this environment, PDW was
excluded from the objects of comparison.

4.1 Optimizing parameters
We optimized the common parameters of all the methods and parameters (α and β) of our
method with simulated annealing with advanced adaptive neighborhood (SA/AAN) by Miki
et al. (2002) prior to conducting the walking experiments (e.g., Itoh et al. (2004); Nakamura
et al. (2005); Taki et al. (2004)). We optimized the rhythmic torque parameter as common
parameters of all the methods. The rhythmic torque Tmrj that acts on j-th muscle is defined
by the following equation:

Tmrj = (rpart · Son + (1 − rpart) · So f f ) · ppart · f (ui), (4)

where r and p are rhythmic torque parameter, part is a type of muscle, Son(So f f ) is flag of the
contacting (leaving) the ground. In the experiments, the walking time and the locomotion cost
were used for optimizing the performance. The value of the locomotion cost is defined by the
following equation:

Cost =
1

L

M

∑
i=1

∫ Time

0
|Ti(t)|dt, (5)

where Ti is the input torque of the i-th joint, L is the travel distance, M is the number of joints,
and Time is the simulation time. We perturbed parameters 10,000 times simultaneously. Each
simulation took 10 seconds. We set the value of reference in Taga (1995a) for the common
parameters of all the methods other than rhythm torque parameter.
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4.2 Generating locomotion based on the dynamic passivization of joint control
First of all, we determined the effects of the dynamic passivization of the joint control. In this
experiment, we used a 2 percent downhill slope.
Figure 8 shows the gaits over 10 seconds on a 2 percent downhill slope. In this figure, the
snapshots of the gait were traced every 0.3 seconds. Table 1 shows the travel distances, the
sum total of the input torques, the locomotion costs, and the parameters of our method (α
and β). Our system’s walks were longer than the other’s. Two methods, our system and the
Passive system, having the mechanism of passivization of joint control generated walking that
was more energy efficient than that of CPG. When our system is compared with the Passive
system, we found that our system consumed more torque because its passive phase time was
shorter. However, the travel distance increased more than the increment of the consumption
torque, and our system reduced the locomotion cost.

4.3 Gait stability analysis
Next, we determined the gait stability. In this section, the two motion control methods of our
system and CPG were used. In the following experiments, the Passive system was excluded
from the comparison because it is a special example of our system and our system reduced the
locomotion cost more than the Passive system in section 4.2. Figure 9 shows the phase plots of
parts of the body in the frontal plane for 9.0 seconds from 1.0 second after the walking begins:
the HAT (head, arms, and trunk) (top), the thigh of right leg (middle), and the shank of right
leg (bottom). The horizontal axes represent the absolute angle in the radian, and the vertical
axes represent the angular velocities. Our system generates steady periodic motion because
its phase plots are more periodic than those of CPG.
We analyzed the gait stability using the maximum lyapunov exponent. Table 2 shows the
maximum lyapunov exponent (Alligood et al. (1996)) of parts of the body. In this table,
the maximum lyapunov exponents of our system’s gait are smaller than those of CPG. The
walking using our system is steadier than the CPG.

4.4 Adaptive walking on various slopes
The performance of the systems on various downhill slopes was then examined at a 2 percent
interval with a 0 to 18 percent downhill slope. In this section, the parameters were optimized
beforehand in each environment.
The experimental results demonstrated that our system and the CPG can walk for 10 or more
seconds on downhill slopes with a 0 to 16 percent downhill. Our system and the CPG could
not walk for 10 or more seconds on a 18 percent downhill slope. Figure 10 shows the gaits
over 10 seconds on a 16 percent downhill slope. In this figure, the snapshots of the gait were
traced every 0.3 seconds. Our system walks farther than CPG on a 16 percent downhill slope,
as the results in the preceding section also indicate. Figure 11 shows the locomotion cost of
each method on each downhill slope. Our system generates the energy-efficient walking on
each downhill slope if it can walk for 10 or more seconds. Figure 12 shows the parameters
(α, β, the maximum value of θS (θmax

S ), and the minimum value of θS (θmin
S )) on each downhill

slope. If α exceeds θmax
S (14 and 16 percent downhill slopes), the joint control transfer switch

changes the joint control to passive at the same time the foot leaves the ground. If β falls
below θmin

S (2, 10, 14, 16 percent downhill slope), the joint control transfer switch changes the
joint control to active at the same time as the foot touches the ground. Our system generates
energy-efficient walking on various (from 0 to 12 percent) downhill slopes because it uses the

228 Biped Robots

Our system

-3

-2

-1

 0

 1

 2

 0  2  4  6  8  10  12  14  16  18

y[
m

]

x[m]

CPG

-3

-2

-1

 0

 1

 2

 0  2  4  6  8  10  12  14  16  18

y[
m

]

x[m]

Fig. 10. Snapshots of gaits on 16 percent downhill slope with our system (top) and CPG
(bottom)

 0

 50

 100

 150

 200

 0  2  4  6  8  10  12  14  16

Lo
co

m
ot

io
n 

C
os

t [
N

s]

Slope [%]

Our system
CPG

Fig. 11. Locomotion costs

passive phase appropriately. Our system generates walking that has been made passive on a
14 or 16 percent downhill slope for all periods of the swing leg phase.

4.5 Adaptive walking on uneven terrain
Next, we conducted a walking control experiment on uneven terrain. The profile of the
downhill slope yg(x) is described by

yg(x) =

{
−0.02x (x < x0)
−a(x − x0)− 0.02x0 (x ≥ x0),

(6)
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a variation Our system CPG

0 -0.0200 � �
0.0025 -0.0175 � �
0.0050 -0.0150 � �
0.0075 -0.0125 � �
0.0100 -0.0100 � ×
0.0125 -0.0075 � �
0.0150 -0.0050 � �
0.0175 -0.0025 � ×
0.0200 0 � ×
0.0225 0.0025 � ×
0.0250 0.0050 � ×
0.0275 0.0075 � �
0.0300 0.0100 � �
0.0325 0.0125 � ×
0.0350 0.0150 × ×
0.0375 0.0175 × ×
0.0400 0.0200 × ×

Table 3. Results of walking experiment on uneven terrain

where a (0 ≤ a ≤ 4) is the slope of the terrain at a 0.0025 interval, and x0 is the position
at which the slope of the terrain changes. In this experiment, we set x0 = 5. We used each
parameter that was obtained in the preceding section. Table 3 shows the experimental results.
In this table, “�” indicates that the robot could walk for 10 or more seconds. “×” means that
the robot could not walk for 10 or more seconds; it fell down. Our system has robustness that
is as good as CPG’s on uneven terrain. We found that our system did not detract from the
robustness of CPG. Figure 13 shows the gaits over 10 seconds; a = 0.0325. In this figure, the
snapshots of the gaits are traced every 0.3 seconds. Our system performs gaits that are more
stable than those of CPG.

4.6 Comparing robot gait with human gait
Finally, we compared the robot and human gaits. The data on the human gait were measured
using motion capture.
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Figure 14 shows the gait over 2 seconds on a 14 percent downhill slope. In this figure, the
snapshots of the gait were traced every 0.3 seconds. The our system’s and CPG’s gaits are
vorlage. In contrast, human’s gait is backward tilting.
The error of the vertical component of the COG’s trajectory for the robot gait and that for
the human gait were calculated. Figure 15 shows the trajectories of the COG. In this figure,
the trajectory of our system’s gait is closer to the trajectory of a human gait than the CPG’s,
and it is more periodically steady than CPG’s as well. The mean absolute error of our system
is 0.0122[m], and that of CPG is 0.0285[m]. Our system’s gait is closer to a human gait than
CPG’s.

5. Three dimensional bipedal walking

In this section, for the expansion of the sophisticated CPG-PDW-mixture based motion control
mechanism, we describe a motion control method for three dimensional biped robots shown
in Figure 2 using dynamic passivization of the joint control. The motion control primitive and
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where a (0 ≤ a ≤ 4) is the slope of the terrain at a 0.0025 interval, and x0 is the position
at which the slope of the terrain changes. In this experiment, we set x0 = 5. We used each
parameter that was obtained in the preceding section. Table 3 shows the experimental results.
In this table, “�” indicates that the robot could walk for 10 or more seconds. “×” means that
the robot could not walk for 10 or more seconds; it fell down. Our system has robustness that
is as good as CPG’s on uneven terrain. We found that our system did not detract from the
robustness of CPG. Figure 13 shows the gaits over 10 seconds; a = 0.0325. In this figure, the
snapshots of the gaits are traced every 0.3 seconds. Our system performs gaits that are more
stable than those of CPG.
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Finally, we compared the robot and human gaits. The data on the human gait were measured
using motion capture.
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Figure 14 shows the gait over 2 seconds on a 14 percent downhill slope. In this figure, the
snapshots of the gait were traced every 0.3 seconds. The our system’s and CPG’s gaits are
vorlage. In contrast, human’s gait is backward tilting.
The error of the vertical component of the COG’s trajectory for the robot gait and that for
the human gait were calculated. Figure 15 shows the trajectories of the COG. In this figure,
the trajectory of our system’s gait is closer to the trajectory of a human gait than the CPG’s,
and it is more periodically steady than CPG’s as well. The mean absolute error of our system
is 0.0122[m], and that of CPG is 0.0285[m]. Our system’s gait is closer to a human gait than
CPG’s.

5. Three dimensional bipedal walking

In this section, for the expansion of the sophisticated CPG-PDW-mixture based motion control
mechanism, we describe a motion control method for three dimensional biped robots shown
in Figure 2 using dynamic passivization of the joint control. The motion control primitive and
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Our system CPG

Travel distance[m] 0.507 0.411

Sum total of input torque[Nms] 102.2 93.34

Locomotion cost[Ns] 201.8 227.2

Table 4. Results of First Experiment (3D walk)

the dynamic passivization mechanism and their parameters optimization are in an analogous
manner of two dimensional way (described in Section 2 and Section 3).

5.1 Generating locomotion based on the dynamic passivization of joint control
We determined the effects of the dynamic passivization of the joint control. In this experiment,
we used a level ground.
Figure 16 shows the gaits over 10 seconds on a level ground. In this figure, the snapshots
of the gait were traced every 1.0 seconds. Table 4 shows the travel distances, the sum
total of the input torques, the locomotion costs. Our system that has the mechanism of
passivization of joint control generated walking that was longer than that of CPG. The sum
total of the input torques of CPG’s walking is less than that of Out system’s walking. However,
the travel distance increased more than the increment of the consumption torque, and our
system reduced the locomotion cost. We confirmed that our system generated energy efficient
walking.
Figure 17 shows the trajectories of center of gravity of the robot (horizontal plane component)
by the two methods. In this figure, the solid and broken lines show the trajectory of our
system and CPG, respectively. The Stride of our system’s gait is longer than that of CPG’s gait,
because our system appropriately nullifies the input torque in the swing leg. Therefore, our
system generated walking that was longer than that of CPG.

5.2 Gait stability analysis
We determined the gait stability. We analyzed the gait stability using the lyapunov exponent
(Alligood et al. (1996)). The lyapunov exponent is a method that measures a trajectory
instability of reconstructed attractor. If a maximum lyapunov exponent λ1 that was calculated
by this analysis is positive and a smaller value, the result indicates that the system acquires
a stable gait. In this section, the attractors were reconstructed with the longitudinal data
of the body’s center of gravity while walking. The time delays for attractor reconstruction
were selected as the first zero of the autocorrelation function (Albano et al. (1988)). We set
the embedding dimension m = 3 (Takens (1981)). Table 5 shows the maximum lyapunov
exponent of the body’s center of gravity. In this table, the maximum lyapunov exponents of
our system’s gait are smaller than those of CPG. The walking using our system is steadier than
the CPG.
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(a) Our system
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Fig. 16. Snapshots of 3D gaits

Our system CPG

λ1COGy
0.0027 0.0062

λ1COGz
0.0676 0.1085

Table 5. Maximum Lyapunov Exponent (3D walk)

6. Related work

In one of the mixture of active walking and PDW, there is walking that is called “ballistic
walking”. Ballistic walking is supposed to be a human walking model suggested by Mochon
& McMahon (1980). They got the idea from the observation of human walking data, in which
the muscles of the swing leg are activated only at the beginning and the end of the swing
phase. Ogino et al. (2003) proposed a motion control method for energy efficient walking with
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ballistic walking. However, the method changes motion control statically. Even if the step time
is changed, the passive phase period is always constant. Sugimoto & Osuka (2004) proposed
a control method for quasi passive dynamic walking (Quasi-PDW). Quasi-PDW means that
the robot usually does PDW without any input torque, and the actuators of the robot are used
for ensuring walking stability only when the walking begins or when a disturbance occurs.
Therefore, Quasi-PDW robots can generate energy efficient walking. However, Quasi-PDW is
applicable to the robot whose dynamic characteristic suits to PDW. There are a lot of robots
that can not satisfy a dynamic characteristic. Quasi-PDW robots have trouble to change the
actions (e.g., changing of course, changing of speed, stop motion).
Our system dynamically changes joint control according to the pose information of robot and
environment. Therefore, if the step time is changed, the robot can appropriately change joint
control to passive. Our system need not to satisfy a dynamic characteristic to PDW, can easily
change the actions.

7. Conclusions and future work

We described a motion control method for 2D and 3D biped robots based on a mixture of
CPG and PDW, that is, dynamic passivization of joint control. We conducted walking control
experiments to test the effectiveness of our method, and it demonstrated superior gaits. In
gait stability analysis, we conducted that our system generated more stable gait than CPG’s.
We conducted walking control experiments on various downhill slopes, and our method
was superior here as well. In experiments on uneven terrain, our method generated robust
walking that was better than CPG’s. We compared the robot and human gait, and our system
had a trajectory that more closely modeled human walking than CPG.
In future work, we will create a motion control method that accounts for dynamic
passivization of joint control other than in the swing leg. We will analyze the factor that
the motion control using our system improved gait stability and robustness.
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ballistic walking. However, the method changes motion control statically. Even if the step time
is changed, the passive phase period is always constant. Sugimoto & Osuka (2004) proposed
a control method for quasi passive dynamic walking (Quasi-PDW). Quasi-PDW means that
the robot usually does PDW without any input torque, and the actuators of the robot are used
for ensuring walking stability only when the walking begins or when a disturbance occurs.
Therefore, Quasi-PDW robots can generate energy efficient walking. However, Quasi-PDW is
applicable to the robot whose dynamic characteristic suits to PDW. There are a lot of robots
that can not satisfy a dynamic characteristic. Quasi-PDW robots have trouble to change the
actions (e.g., changing of course, changing of speed, stop motion).
Our system dynamically changes joint control according to the pose information of robot and
environment. Therefore, if the step time is changed, the robot can appropriately change joint
control to passive. Our system need not to satisfy a dynamic characteristic to PDW, can easily
change the actions.

7. Conclusions and future work

We described a motion control method for 2D and 3D biped robots based on a mixture of
CPG and PDW, that is, dynamic passivization of joint control. We conducted walking control
experiments to test the effectiveness of our method, and it demonstrated superior gaits. In
gait stability analysis, we conducted that our system generated more stable gait than CPG’s.
We conducted walking control experiments on various downhill slopes, and our method
was superior here as well. In experiments on uneven terrain, our method generated robust
walking that was better than CPG’s. We compared the robot and human gait, and our system
had a trajectory that more closely modeled human walking than CPG.
In future work, we will create a motion control method that accounts for dynamic
passivization of joint control other than in the swing leg. We will analyze the factor that
the motion control using our system improved gait stability and robustness.
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1. Introduction 
Humans possess a complex physical structure and can perform difficult movement tasks. 
Over the past few decades, many researchers around the world have concentrated on 
achieving human-like artificial mobility or dexterity either on humanoid robots or during 
the implementation of robotic assistive devices. In particular, humanoid-type robots mainly 
focused on hands to understand the mechanical and dynamical functions of ourselves. On 
the other hand, there have been few researches to achieve human like foot. Until now, 
human-like skillful mobility has not been achieved on humanoid robots, since the robotic 
feet are far from adaptation to keep stable contact on the ground and the current kinematic 
structures of a humanoid foot is different from that of a real human foot. Stability related 
issues have been the main goal for humanoid robots in relevant researches. Initially, 
humanoid robots were built so that they can walk stably with flat foot (Sakagani et al., 2002; 
Okada et al., 2004 ). These initial walking patterns were optimized for the highest stability, 
and the resulting walking pattern had knee bending and flat-feet walking. A more advanced 
strategy was developed for generating biped walking pattern involving heel strike and toe 
off motion in (Huang et al., 2001). However, because of the mechanism’s limitation the knee 
bending walking patterns were always chosen for the benefit of stability, thus making it less 
natural. Today, more advanced control approaches, faster and more powerful actuators, and 
more sophisticated walking pattern generation strategies have helped the research goal to 
be shifted to pursue more natural walking patterns for biped robots, with the expectation 
that someday humanoid robot can coexist with human. 
To improve walking capacity of humanoid-type robots, toe mechanisms with 1-dof was 
suggested earlier, (Ahn et al., 2003; Takahashi et al., 2004). For walking in a straight 
direction, 1-dof toe mechanism can supply faster walking for a robot. In addition, relative 
toe motion can increase the naturalness of robot walking and help to reduce the load on the 
knee joints, where high force and speed are required to achieve robot locomotion 
(Nishiwaki & Kagami, 2002). However, the foot device with 1-dof toe mechanism cannot 
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direction, 1-dof toe mechanism can supply faster walking for a robot. In addition, relative 
toe motion can increase the naturalness of robot walking and help to reduce the load on the 
knee joints, where high force and speed are required to achieve robot locomotion 
(Nishiwaki & Kagami, 2002). However, the foot device with 1-dof toe mechanism cannot 
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adapt turning during walking and may not satisfy safe and natural walking under uneven 
terrain conditions, (Takao et al., 2003). Takao et. al concluded through gait experiments that 
the robotic foot mechanisms with multi degree-of-motions can contribute smooth and 
effective body motions in the stance phase. A foot mechanism with such dexterous motions 
at toe, foot, and heel will certainly enable the humanoid robots to perform more efficient 
and skillful movements on various terrains. Therefore, it will be advantageous to develop 
foot mechanisms with multi-dof motions for humanoid-type robots to satisfy natural 
walking actions on various terrain situations. Even though serial actuations of rotary motors 
at foot joints can generate multi-dof motions, it is difficult to implement the active joints due 
to the high torque by the heavy humanoid weight. Thus, a serial-parallel mechanism can be 
a good solution to satisfy the desired performance of foot devices in humanoid robots since 
it can produce high rigidity, compactness, and precise resolution, as compared to serial 
mechanisms. In addition, the foot mechanism for humanoid-type robots should have multi-
platforms to allow relative rotations between the toe and the foot, and to generate heel 
motions.  
This chapter deals with a toe & foot& heel model that can allow a humanoid robot to walk 
more naturally, closer to a normal human. A foot device with a 4-DOF parallel mechanism is 
suggested to generate human-like foot motions.  The mechanism for the toe & foot& heel 
motions for the humanoid consists of several toe platforms using a serial-parallel hybrid 
mechanism; a foot platform, a heel platform, corresponding limbs to the platforms, and the 
base, which is located at the humanoid shin. The suggested foot platform can generate pitch 
& roll motions at ankle position using 2-dof-driving parallel mechanism with two linear 
actuators fixed to the base. The toe and heel joint motions can be implemented by attaching 
6-dof serial joints between the platform and the base, and by connecting the corresponding 
platform and the foot platform with a revolute joint. As a result, the suggested foot 
mechanism with more dexterous functions can adjust the biped robot’s walking movements 
during the stance phase of gait. Together with its design advantage, the suggested toe, foot, 
and heel model can also facilitate more natural walking patterns for biped robots. A new 
alternative methodology to generate gait pattern online with knee stretched motion utilizing 
toe and heel joints will also be presented within this chapter.  

2. The mechanism description 
2.1 Human foot  
The set of foot and ankle is mechanically very complex since it has 26 bones, 33 joints, more 
than 100 muscles, tendons, and ligaments (Guihard &Gorce, 2004). All these mechanical 
elements collaborate to offer the body support, balance, and mobility. Structurally, the foot 
has three main parts: The hindfoot, the midfoot, and the forefoot. The hindfoot is composed 
of three joints and connects the midfoot to the ankle. It lets the foot to move up and down  
(-50°- 20°) and provides slight rotations. The midfoot has five irregular shaped tarsal bones, 
which acts as a shock absorber. The forefoot has five phalanges of toes and their connecting 
long bones called metatarsals. Their maximum rotation range is about 90° when the toes are 
totally raised.  

2.2 Mechanism description for toe, foot, and heel models 
The mechanism for the toe & foot & heel motions of the humanoid robot consists of several 
toe platforms, a foot platform, and a heel platform and corresponding limbs to the 
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platforms, revolute joints between the toes and the foot platform, and a revolute joint 
between the heel and the foot platform as shown in Figure 1.  Base of each platform is 
located at a humanoid shin.  
 

 
Fig. 1. A novel foot mechanism with toe, foot, and heel motions 

In the figure, the letters P, R, U, and, S represent prismatic, revolute, universal, and 
spherical joints, respectively. An underlined letter represents an actuated joint. The numbers 
of toe and heel joint are selected as two and one, respectively. One limb with 6-dof serial 
joints (S-P-U) is attached to toe and heel platforms, respectively, while middle limb (Pe-Re-R) 
and four-bar limb (S-S) are attached to the foot platform. The middle limb with equivalent 3-
dof serial joint (Pe-Re-R) is driven by the 2-dof driving mechanism that is equivalent active 
serial prismatic and revolute joints (Pe-Re) with two base-fixed prismatic actuators. The four-
bar limb will allow the foot platform to generate a pitch motion (θ) according to active 
prismatic joint motions (Pe) of the 2-dof driving mechanism. In result, the foot platform can 
generate two rotations with equivalent 2-dof serial joint (Re-Re). A toe joint motion can be 
implemented by attaching 6-dof serial joints (S-P-U) between the toe platform and the base, 
and by connecting the toe and the foot platform with a revolute joint. Similarly, a heel joint 
motion can be implemented by attaching a 6-dof serial joints (S-P-U) limb and a revolute 
joint to the rear part of the foot platform 
Since toe and heel platforms have one limb with one 6-dof serial joint (S-P-U) and the foot 
platform has 2-dof serial joint (Re-Re), the final output displacement of each platform is 
dependent only on that of the foot platform with its 2-dof serial joint (Re-Re), which is the 
intersection of the special Plücker of two limbs. Therefore, the suggested mechanisms have 
five degrees of freedom in total when the toe joints are two and the heel joint is one. The 
suggested foot model can generate pitch & roll motions at the ankle position of a humanoid 
robot, toe joints motions, and a heel joint motion. Toe joint motions can be extended by 
attaching another toe platform with an additional 6-dof limb to the foot platform.  
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adapt turning during walking and may not satisfy safe and natural walking under uneven 
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Fig. 1. A novel foot mechanism with toe, foot, and heel motions 

In the figure, the letters P, R, U, and, S represent prismatic, revolute, universal, and 
spherical joints, respectively. An underlined letter represents an actuated joint. The numbers 
of toe and heel joint are selected as two and one, respectively. One limb with 6-dof serial 
joints (S-P-U) is attached to toe and heel platforms, respectively, while middle limb (Pe-Re-R) 
and four-bar limb (S-S) are attached to the foot platform. The middle limb with equivalent 3-
dof serial joint (Pe-Re-R) is driven by the 2-dof driving mechanism that is equivalent active 
serial prismatic and revolute joints (Pe-Re) with two base-fixed prismatic actuators. The four-
bar limb will allow the foot platform to generate a pitch motion (θ) according to active 
prismatic joint motions (Pe) of the 2-dof driving mechanism. In result, the foot platform can 
generate two rotations with equivalent 2-dof serial joint (Re-Re). A toe joint motion can be 
implemented by attaching 6-dof serial joints (S-P-U) between the toe platform and the base, 
and by connecting the toe and the foot platform with a revolute joint. Similarly, a heel joint 
motion can be implemented by attaching a 6-dof serial joints (S-P-U) limb and a revolute 
joint to the rear part of the foot platform 
Since toe and heel platforms have one limb with one 6-dof serial joint (S-P-U) and the foot 
platform has 2-dof serial joint (Re-Re), the final output displacement of each platform is 
dependent only on that of the foot platform with its 2-dof serial joint (Re-Re), which is the 
intersection of the special Plücker of two limbs. Therefore, the suggested mechanisms have 
five degrees of freedom in total when the toe joints are two and the heel joint is one. The 
suggested foot model can generate pitch & roll motions at the ankle position of a humanoid 
robot, toe joints motions, and a heel joint motion. Toe joint motions can be extended by 
attaching another toe platform with an additional 6-dof limb to the foot platform.  
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(a) T-R type joint array 

 
(b) T-R type Implementation 

Fig. 2. T-R type 2-dof-driving mechanism 

Figures 2 shows a T-R type 2-dof driving mechanism that can generate 2-dof translational 
and rotational motions of the platform using two base-fixed prismatic actuators. Figure 2(a) 
shows the joint array of the T-R type 2-dof-driving mechanism. The T-R-type driving 
mechanism consists of passive prismatic joints (P1 and P2) between revolute joints (R5 and 
R6) at the upper ends of the active prismatic joints (P3 and P4) fixed to the base and end-
effector of the driving mechanism, and includes a passive prismatic joint (P3) between the 
revolute joint R7 of the end-effector and base plate. P3 allows the end-effector to move in the 
z-direction only and R7 allows the end-effector to rotate about the y-axis only. A CAD model 
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of the T-R-type driving mechanism is shown in Figure 2(b). Consequently, the T-R-type 
driving mechanism is conceptually equivalent to active serial prismatic and revolute joints 
(Pe-Re).  Also, R-R-type mechanism will be generated by attaching an additional rotation bar, 
which will change a translation motion to a rotation as shown in Figure 3. 
 

 
Fig. 3. R-R type 2-dof driving mechanisms 

Figure 4 shows the link-pair relationship diagram for the 2-dof-driving mechanism. The 
white boxes represent passive joints and the hatched boxes represent active joints. Lines 
between letters represent links. It is possible to consider each driving mechanism as 
equivalent to the two actuated joints (Pe-Re or Re-Re) in terms of the number and type of 
degrees of motion. The motions of the given mechanism can be verified using Grübler’s 
formula as: 
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Fig. 4. The link-pair relationship diagram of the 4-dof mechanisms with three platforms 
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Fig. 5. The joint structure of the mechanism with the N+2 DoF 

If the driving mechanisms are considered equivalent to serial (Pe-Re) joints and the number 
of the toe platform and the heel platform is two and zero, the mobility of the 4-dof 
mechanisms with three platforms as shown in Figure 4 is: 

M4dof = 6(10 – 12 –1) + 1×6 + 2×2 + 3×4 = 4  

The Figure 5 shows that the numbers of the toe platform and the heel platform with the foot 
platform determine the mobility of the mechanism. If the platform numbers is N except the 
foot platform, then, the mobility of the mechanism can be computed as;  

 (2 ) 6((4 3 ) (4 4 ) 1) 1 2

2 3 (2 ) 3 (2 ) 2
N dofM N N N

N N N N
+ = + − + − + × +

× + × + + × + = +
  (2) 

Therefore, the mobility of the mechanism can be generalized as follows: 

 M = 2 + N  

where M is the mobility of the suggested mechanism and N is the number of platforms with 
a 6-joint (S-P-U) limb and a revolute joint. For example, If N=3, the mobility becomes five as 
follows; 
When N=3,  

M(2+3)dof = 6(13 – 16 –1) + 1× 8 + 2× 3 + 3× 5 = 5 

Figure 6 shows that when N=3, the mechanism can generate two toe joints motions and foot 
motions with two rotations and one heel joint motion.  
Figure 7 shows the developed humanoid foot which can generate pitch motions of the two 
toe platforms and the heel platform with relative rotations between the corresponding 
platform and the foot platform. The mechanism can generate two rotations at an ankle with 
a R-R type 2-dof-driving mechanism motion. 
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Fig. 6. Platform motions with N=3 

 
Fig. 7. The developed humanoid foot 

3. Walking simulations with a biped robot  
3.1 Kinematics of a biped robot with the foot models  
The kinematic relationships of a biped robot with the foot models are derived to generate 
walking trajectory. Forward and inverse kinematic equations are used to calculate the 
posture of robot and angles of each joint. Coordinate system of the biped robot with foot 
models with two toe joints and one heel joint is shown in Figure 8. The base coordinates  
{ bO } is located on the ground in the middle point of the feet, and the truck coordinates  
{ MO } is located on the middle point of waist. The left { ,f LO } and right { ,f RO } foot 
coordinates are located on the foot platform. The waist coordinate { wO } is located on the 
upper position of each limb.  
The inverse kinematics computes angles 1, 2, 3, 4, 5, 6,, , , , ,i i i i i iφ θ θ θ φ ν of each joint of the biped 
robot given the position and orientation of the waist center, and the toe joints , ,,tr i tl iθ θ  and the 
heel joint ,h iθ , where 1, 2, 3,, ,i i iφ θ θ are pitch and roll angles of the ankle joint, knee joint angle, 
respectively. 4, 5, 6,, ,i i iθ φ ν are the joint angles of the pelvis, and i is the sub-suffix for left L and 
right R.  For inverse kinematics of the biped robot, the equation can be derived as follows; 
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Fig. 8. Coordinate system of the biped robot 
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where  ( , , )t t t tO x y z  is the vector from the foot coordinate ,f iO  to waist coordinate ,w iO , and 
rL , kL , pL , and wL are the average length of the 2dof driving mechanism, the length of calf, 

thigh, and waist, respectively. R is the rotation matrix, 3( , , )fT x y z  is the translation matrix 
from local reference frame Of (xf, yf, zf) of the foot platform to the 3-axis mobile reference 
frame O3 (x3, y3, z3).   If ,w iL  is equal to zero, then the equation (3) can be simplified into 
equation (4) 
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From the equations (4-a) and (4-c), the roll angle 1φ of ankle joints can be computed as;  

1
1 tan ( / )t tx zφ −=  

From the equation (4-b) and equation (4-c), the equation (5) can be derived by deleting the 
parameter 3θ and utilizing the MATLAB symbolic toolbox (Mathworks).  
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Then, the kinematic relationships of the 5-dof foot mechanism are shown in Figure 9. A local 
reference frame for the foot platform, Of(xf, yf, zf), is located at the center of the foot platform. 
A local reference frames for the toe-left Of (xf, yf, zf) and the toe-right Otr (xtr, ytr, ztr) are 
centered at each toe platform, respectively. The base of the 5-dof foot mechanism, O5dof (x5dof, 
y5dof, z5dof), mobile reference frames is located on the z-axes of reference frame Of of its 
platform.  b is the distance of y-axis from center position Of of the foot platform to the toe-
revolute joint, a is the distance of y-axis from the revolute joint to center position Otl  of the 
toe  platform, and  c is the distance of x–axis from the foot platform joint to center position 
Otl  of the toe  platform .  
 

 
Fig. 9. The kinematic model of the foot mechanism 

The height Lf from the foot reference frame to O5dof reference frame have following relation 

 2 2 2
22 cos( / 2)f fL b L bLθ θ π= + − +   (6) 

where Lθ  is a constant  distance value from  center revolute joint to O5dof reference frame.  
From equation (6), the height Lf can be computed as 

 2 2 2
2 2sin( ) sin( )fL b b b Lθθ θ= − + − +    (7) 
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Then, the equation (7) can be rearranged into equation (8). 

 2 2 2
2 f f 2f =b +(L ) -2bL cos( /2)-Lθθ π+   (8) 

Since the equations (5) and (8) have only unknown parameters of 2θ and fL , these two 
nonlinear equations can be solved by Newton-Rapson’s numeric method. If the parameter 
2θ and fL  are solved, then 3θ  can be computed by utilizing the equation (4-c). Next, the 

lengths of the actuators of the 2-dof driving mechanism are then obtained as: 
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where Lf1, Lf2, and Lbase are the active lengths of the left and right actuators, and the distance 
between the two active prismatic joints of the 2-dof mechanism, respectively.   
If the toe joint angles trθ , tlθ  and the heel joint angle hθ are given, the actuator’s length of 
each platform can be computed as follows; 
 
The mobile reference frame O5dof can be represented in the base reference frame (Xb, Yb, Zb) 
as: 

 5
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The coordinate position Otl of the toe-left mobile reference frame can be represented in the 
base reference frame (Xb, Yb, Zb) as: 
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Similarly, the coordinate position Otr of the toe-right mobile reference frame can be 
represented in the base reference frame (Xb, Yb, Zb) as: 
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Subsequently, the toe-left actuator length can be easily computed as follows; 

 | |tl tl aL O O= −   (13) 

Also, the toe-right actuator length can be easily computed as follows; 

 | |tr tr aL O O= −   (14) 

Using the above method, the heel actuator length can be computed as follows; 

 | |h heel aL O O= −   (15)  
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3.2 The models of normal gait cycle 
Normal gait is defined as series of rhythmic alternating movements of the limbs and trunk 
(Perry, 1992). The gait cycle is the activity that occurs between heel strike by one extremity and 
the subsequent heel strike on the same side. The gait cycle consists of stance and swing phases. 
The entire period during which the foot is on the ground is the stance phase. Conversely, 
during the swing phase, the foot that is stepping forward is not in contact with any object. 
Stance phase accounts for approximately 60% of a single gait cycle, while swing phase 
accounts for approximately 40%. During the stance phase, the human foot performs a rolling 
motion on the ground. Throughout the motion trajectory, one foot lands on its heel at some 
heel-strike angle α (loading phase). Then, the foot stays flat on the ground during mid-stance 
(mid-stance phase). After the sole of the foot has made contact with the ground, the heel 
begins to rise from the ground with relative rotation at the metatarsal joint, and the contact 
moves to the toe with a toe-off angle λ (terminal stance). Finally, the sole of the foot flattens 
before the foot is lifted from the ground (pre-swing phase). To simulate these foot trajectories 
on a planar surface during stance phase, the platform variables θf and θr of the footpad 
mechanism can be defined for each subphase during the stance phase, as shown in Figure 10. 
Note that the left and right toe joints are identical and during loading phase, the toe joint angle 
θt and the foot pitch angle θf are identical, while the foot pitch angle θf and the heel joint angle 
θh are identical during terminal stance 
 

 
Fig. 10. Foot trajectory during stance phase 

3.3 Trajectory generation of the humanoid robot with the suggested toe, foot, and 
heel models 
If heel-strike angle α, toe-off angle λ, step length are 20°,  and 30cm, the foot trajectory 
configuration at a planar surface with respect to the gait cycle is obtained as shown in Figure 
11. These simulations based on gait analysis showed that the suggested mechanism with toe, 
foot, and heel models can generate natural foot motions, including relative rotations at the 
toe and the heel during the stance phases. 
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Fig. 11. The walking simulations of a biped robot with toe, foot, and heel models during the 
stance phase 

4. Online gait pattern generation  
Traditionally, the ZMP based trajectory method was used by researchers to generate gait 
patterns for humanoid robots. Approaches using simplified biped robot model such as 
rolling mass model or inverted pendulum model were usually being utilized to solve the 
ZMP equations, (Nishiwaki et al., 2002). However, there could be difficulties in some cases 
to achieve the necessary high hip accelerations to realize the desired ZMP trajectories. In 
such cases, since the trunk has the biggest mass value, energy consumption increases, and 
control for task execution of the upper limbs becomes difficult,  (Huang et al., 2001). 
Moreover, no matter how well the algorithm can make the biped robot follow the desired 
ZMP trajectory, the motion result of the hip itself cannot be assured. This has motivated 
several researchers to find alternative ways of generating gait patterns for biped robots. 
Huang et al. proposed a gait pattern algortihm that control the hip motion with adjustable 
hip parameters that achieved highest stability margin, instead of designing the ZMP 
trajectory first. This way, the motion result can be directly controlled with those parameters. 
Though Huang’s method has some advantages compared to the ZMP trajectory method, it 
required an optimization scheme to select best hip parameters that can obtain gait pattern 
with the highest stability margin which made the algorithm unable to generate the gait 
pattern online. Advancement has been made with this method, (Peng et al., 2004). However, 
since typical walking pattern has to be defined first, there will be limitation on the variety of 
the gait patterns. Hence, it is very important to improve effective gait pattern algorithms. 
In terms of foot mechanism more important developments were made as discussed in 
(Ramzi et al., 2003; Nishiwaki et al., 2002; Yoon et al., 2007; Ki Ahn et al., 2003). These robots 
had modified feet using extra joints in their toe positions. There are many researches 
concerning toe joints in the biped robot research. Faster walking, longer steps and more 
degrees of freedom were obtained in these research studies. Knee stretch motion has often 
been related to the naturalness of biped walking. Recently some researchers tried to achieve 
stable walking patterns involving knee stretch motion (Kurazume et al., 2005; Ogura et al., 
2006). There is even a commercial product for humanoid robot that is able to walk with 
straight knee (Garage, 2008). The research utilized a conventional biped robot with flat foot 
to generate straight walking pattern (Kurazume et al., 2005). One of the main reasons why 
knee stretch motion for biped walking is hard to achieve is that during the knee stretch, the 
inverse kinematics solution for the leg becomes singular. This research has not been able to 
avoid this singularity and utilized “if-then” commands on its algorithm. In (Ogura et al., 
2006), the researchers tried to achieve knee stretch walking by adding extra joint in the 
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humanoid robot. In this way the singularity can be overcome by the extra joint in the waist 
owing to losing some DOF in the knees. To achieve knee stretch walking pattern, we will 
attempt to add extra joint in the heel here. It is true that human doesn’t have heel joint, but 
gait analysis research shows that human walking sequence has heel strike motion and the 
knee stretch occurs during this phase of walking (Perry, 1992). During this motion, human 
heel acts as an extra support region. Based on these facts, we decided to add extra heel joint 
to produce some support region. Figure 12 shows the sequence of foot support areas during 
stance phase. With the extra heel joint, we propose a walking pattern strategy that enables 
the knee stretch motion which can avoid singularity. The loss of degree of freedom in the 
knee can be overcome through the existence of the heel joint. Our algorithm can generate 
stable knee stretch walking patterns without singularity. With knee-stretched motion, biped 
robot walking pattern will not only become more similar to human, but also will require less 
torque and thus making the pattern more energy efficient as human walking itself is 
optimized to energy efficiency (Kurazume et al., 2005; Ogura et al., 2006). Moreover, with 
our proposed mechanism, utilizing extra addition of heel joint is comparably less 
sophisticated than those biped robots, which have waist joints. We studied our algorithm 
with a biped robot in computer simulation. The walking trajectory generated through this 
method has successfully generated knee stretch walking patterns. Because of the addition of 
the heel joints, not only the support area during double support phase was increased, but 
singularity during the knee stretch motion has been also avoided. As the computer 
simulation results, the proposed gait pattern has showed better performance compared to 
the common walking gait in terms of joint torque requirements and energy consumptions. 
 

 
Fig. 12. Human sequence of foot support areas during stance phase (Perry, 1992). 

4.1 Biped robot model and walking cycle 
The suggested biped robot model has 5 degrees of freedom in each leg, with the extra 2 DOF 
coming from the toe and heel joints. The center of mass in each link is considered to be right 
in the center of each link. The biped configuration is shown in Figure 13. Biped walking is a 
periodic phenomenon. A complete walking cycle is composed of double-support phase and 
single support phase. The cycle starts from the beginning of the double support phase, 
where the heel strike motion occurs, and ends after the swing leg finishes its swing phase. 
Figure 13 also shows a complete walking cycle along with the biped configuration. The 
walking pattern that we discuss in this chapter covers only the motion in the sagittal plane. 
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Fig. 11. The walking simulations of a biped robot with toe, foot, and heel models during the 
stance phase 

4. Online gait pattern generation  
Traditionally, the ZMP based trajectory method was used by researchers to generate gait 
patterns for humanoid robots. Approaches using simplified biped robot model such as 
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inverse kinematics solution for the leg becomes singular. This research has not been able to 
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humanoid robot. In this way the singularity can be overcome by the extra joint in the waist 
owing to losing some DOF in the knees. To achieve knee stretch walking pattern, we will 
attempt to add extra joint in the heel here. It is true that human doesn’t have heel joint, but 
gait analysis research shows that human walking sequence has heel strike motion and the 
knee stretch occurs during this phase of walking (Perry, 1992). During this motion, human 
heel acts as an extra support region. Based on these facts, we decided to add extra heel joint 
to produce some support region. Figure 12 shows the sequence of foot support areas during 
stance phase. With the extra heel joint, we propose a walking pattern strategy that enables 
the knee stretch motion which can avoid singularity. The loss of degree of freedom in the 
knee can be overcome through the existence of the heel joint. Our algorithm can generate 
stable knee stretch walking patterns without singularity. With knee-stretched motion, biped 
robot walking pattern will not only become more similar to human, but also will require less 
torque and thus making the pattern more energy efficient as human walking itself is 
optimized to energy efficiency (Kurazume et al., 2005; Ogura et al., 2006). Moreover, with 
our proposed mechanism, utilizing extra addition of heel joint is comparably less 
sophisticated than those biped robots, which have waist joints. We studied our algorithm 
with a biped robot in computer simulation. The walking trajectory generated through this 
method has successfully generated knee stretch walking patterns. Because of the addition of 
the heel joints, not only the support area during double support phase was increased, but 
singularity during the knee stretch motion has been also avoided. As the computer 
simulation results, the proposed gait pattern has showed better performance compared to 
the common walking gait in terms of joint torque requirements and energy consumptions. 
 

 
Fig. 12. Human sequence of foot support areas during stance phase (Perry, 1992). 

4.1 Biped robot model and walking cycle 
The suggested biped robot model has 5 degrees of freedom in each leg, with the extra 2 DOF 
coming from the toe and heel joints. The center of mass in each link is considered to be right 
in the center of each link. The biped configuration is shown in Figure 13. Biped walking is a 
periodic phenomenon. A complete walking cycle is composed of double-support phase and 
single support phase. The cycle starts from the beginning of the double support phase, 
where the heel strike motion occurs, and ends after the swing leg finishes its swing phase. 
Figure 13 also shows a complete walking cycle along with the biped configuration. The 
walking pattern that we discuss in this chapter covers only the motion in the sagittal plane. 
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Given the foot and hip trajectories, toe-heel and knee trajectories were obtained from the 
kinematic constraints of the mechanism.  
 

 

 
Fig. 13. Model of the biped robot and a complete walking cycle. 

4.1.1 Initial foot trajectory  
We planned for the initial foot trajectory as mentioned in (Huang et al., 2001). In sagittal 
plane each foot trajectory can be represented by vector �� � � ������, �����, �������, where 
������, ������ is the coordinate of the ankle, and ����� denotes the angle between the foot 
and the x-axis. A similar vector can also denote the toe and heel trajectories. For toe 
���� � ��������, �������, ��������,  where ��������, ��������  is the coordinate of the toe, and 
������� denotes the angle between the toe and the foot. And, for heel 
����� � ���������, ��������, ���������,  where (��������, ��������) is the coordinate of the heel, and 
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 denotes the angle between the heel and the foot. Figure 14 shows the detailed 
configuration of each vector of the links in the foot. 
 

 
Fig. 14. Link vector configuration of the biped foot 

The foot trajectory can be expressed by the function with respect to time, with a walking 
period of   , as 

   

   (16) 

  

where Tc, Td, Tm are the period of one walking step, double support phase, and when the 
foot at the maximum height respectively. Lao and Hao are the x and z positions of the foot 
when it reaches the highest position , qb and qf are the initial toe off and heel strike angles 
respectively. While the vector position of the toe and heel will always be at the tip of the 
foot, the angle trajectories of the toe and heel are not the same as the foot. The toe and heel 
trajectories were designed so that it will land parallel with the ground, they can be 
expressed as 
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where Ry is the rotation matrix about y axis. To ensure the continuity of the trajectories, a 
third order cubic spline interpolation is implemented for each trajectory for generating 
continuous trajectory function. 
After the initial foot, toe and heel trajectories are obtained, the support area of the stable 
margin througout the whole walking cycle can also be determined. This has been used later 
on as the base of the ZMP trajectory definition. Using this strategy, the increment of the 
support area during double support phase compared to the walking pattern without 
utilizing toe and heel joints can be shown. Figure 15 shows the difference between both the 
cases. 
 

 
Fig. 15. Comparison of support area 

4.2 Online trajectory generation 
4.2.1 Desired ZMP trajectory and CoM trajectory 
Zero moment point (ZMP) is the main criterion in biped robots for stable walk. We defined 
the ZMP trajectory after obtaining the support area. We chose moving ZMP trajectory 
instead of a fix one. The ZMP slides from one stable point to another stable point in each of 
the phases of the walking sequence. The ZMP trajectory can be expressed as 
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  (18) 

 
where px is the ZMP position in x direction. 
The center of mass (CoM) trajectory was obtained by solving a differential equation from the 
simplified model of the biped robot as mentioned in (Choi et al., 2007). The ZMP equation 
was expressed as 

 �� � �� � ��/�������   (19) 

where �� �  ��/��  is the natural frequency of the simplified biped walking robot system, 
(cx, cz) is the vector position of CoM and g is the value of gravity. By solving (19) with 
respect to (18), the x trajectory of CoM (cx) will be obtained. In our method we keep the 
center of mass (CoM) trajectory at a fix height, thus the z trajectory of CoM (cz) is fixed. The 
hip trajectory will be determined from the CoM trajectory as  

 ����� �  �����, 
 ����� �  ����� � ����/2�  (20) 

where (xh(t), zh(t)) is the vector position of the hip. 

4.2.2 Hip trajectory 
The hip trajectory obtained by the above method can indeed satisfy the desired ZMP 
trajectory mentioned in (18) for simplified model of the biped robot. But once we apply the 
trajectory for the complete system of biped robot, the limited hip motion has caused the non 
capability of the trajectory to achieve all of the desired ZMP trajectory.  
The parameterization of the hip trajectory mentioned in (Huang et al., 2001) is applied to 
make the adjustments. The only difference from (Huang et al., 2001) is that we utilize the 
parameter value xed and xsd from the previous hip trajectory obtained above. In this way, no 
optimization scheme needs to be used. Those parameters are used to generate new hip 
trajectory by the same method of interpolation. And, since those parameters obtained from 
an already stable trajectory, we can also guarantee the stability of the new hip trajectory. 
Figure 16 shows the difference between adjusted CoM trajectory and the initial one.  
After the hip trajectory is decided, the knee trajectory is decided by the inverse kinematics 
formula. Thus, all links trajectories are determined and the initial walking pattern is 
produced. 
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where (xh(t), zh(t)) is the vector position of the hip. 

4.2.2 Hip trajectory 
The hip trajectory obtained by the above method can indeed satisfy the desired ZMP 
trajectory mentioned in (18) for simplified model of the biped robot. But once we apply the 
trajectory for the complete system of biped robot, the limited hip motion has caused the non 
capability of the trajectory to achieve all of the desired ZMP trajectory.  
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make the adjustments. The only difference from (Huang et al., 2001) is that we utilize the 
parameter value xed and xsd from the previous hip trajectory obtained above. In this way, no 
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formula. Thus, all links trajectories are determined and the initial walking pattern is 
produced. 
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Fig. 16. Comparison between initial and adjusted CoM trajectories 

4.3 Knee stretch motion 
In human walking cycle, the knee angle reaches its minimum value during the heel strike 
motion (Perry, 1992). Here we introduce time parameters Tk, Tka and Tkb, which mark the 
time when knee angle reach its minimum value, the beginning and ending time of the knee-
stretch motion period. In this section we will explain how the knee-stretch motion is 
performed and how it can prevent the singularity. 

4.3.1 Knee trajectory 
After deciding the initial trajectory, the initial knee angle trajectory ( ) is modified 
during this knee-stretch period. Let (  and ) be the values of knee angle at kTk – Tka and 
kTk − Tkb, so that the new knee angle trajectory can be expressed as 
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and the new continuous knee angle trajectory is obtained by cubic spline interpolation. 

4.3.2 Inverse kinematic solution and singularity avoidance 
The initial trajectory is obtained by specifying ankle trajectory and hip trajectory, and the 
knee trajectory is obtained by inverse kinematics solution. In sagittal plane, this scheme is 
exactly the same as 2 link planar mechanism, and if the knee angle is zero, the inverse 
kinematics solution will produce imaginary value known as singularity. In our algorithm, 
we will keep the hip trajectory as it is, and the ankle trajectory is modified as follows. 
During the time period of (kTk−Tka < t < kTk−Tkb), instead of determining the knee position 
from the ankle and hip trajectories, we utilize the heel position and the modified knee angle 
trajectories to find the solution of knee and ankle position through the inverse kinematics 
problem. In this way, the system will become as three-link planar mechanism. As a result, 
the loss of the degree of freedom at the knee position can still be overcome by extra DOF at 
the heel joint. This can be explained as shown in Figure 17. 
 

 
Fig. 17. Extra DOF at heel joint that avoid singularity. 

After modifying the knee angle trajectory and obtaining modified parameters from previous 
steps, new knee and foot trajectories are obtained. The modification also changes the initial 
heel strike angle qf. A complete algorithm description is shown in Figure 18. 

4.4 Simulation result 
The simulations have been performed in ADAMS. This simulation was intended to verify 
the effectiveness of the algorithm in terms of stability, torque requirements and energy 
consumptions. Comparisons have been done between the proposed gait pattern and a 
common gait pattern of the biped robot. The parameters of the biped robot (Figure 13) were 
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set according to Table I. The walking speed was 2 s/step with the step length of 0.35 
m/step.  
Figure 19 is for the stick figures and knee angle trajectories obtained from the algorithm. 
Both results were compared with those in human which indicates a similarity compared to 
common gait pattern. Although they do not perfectly match, it can be observed that the 
knee, foot and foot angle trajectories show quite similar trends to those in human. Figure 20 
shows the comparison between the knee angle of biped robot and human in the same 100% 
walking cycle, though not all parts of the trajectory are the same, similarity can be seen in 
some period of time during the knee stretch motion and our proposed pattern can also 
generate 0o knee angle. During around 40% of the walking cycle, which is at the toeoff 
motion, our proposed pattern is different from human. This was due to the fact that humans 
also generate an almost knee stretch motion during toe-off. 
The knee stretch walking not only gives natural and humanlike walking pattern but also 
better performance in the knee torque requirement (Kurazume et al., 2005; Ogura et al., 
2006). This gives an opportunity to employ smaller actuators for the knee. Figure 9 shows 
knee joint torque comparison between the common gait and the proposed gait, it is clearly 
shows that the proposed gait has less torque requirement. Figure 21 shows knee joint energy 
consumption comparison between the common gait and the proposed gait. The proposed 
gait shows better performance than the common gait. Table II summarize the torque 
requirement and energy consumption comparisons between the common gait and the 
proposed gait. All of the joint torque requirements of the proposed gait pattern is less than 
those in the common gait pattern. The addition of the heel and toe joints did not show high 
torque requirements, so it will make it possible for real implementation. In terms of energy 
consumptions, the overall result shows that the proposed gait pattern shows better 
performance compared to the common gait. 
 

 
 

 
Fig. 19. Stick figure comparison with human. 
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Fig. 20. Knee angle comparison with human. 
 

  
Fig. 21. Knee torque and energy consumption comparison between the common gait and the 
proposed gait. 

 
Table I Parameters of The Biped Robot Model 

 
Table II Summary of The Simulation Results 
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Figure 22 shows a frame by frame animation of the resulting algorithm. It can be noticed 
that the knee stretch occurs during the heel strike motion. The animation showed that the 
biped robot can walk stably without falling. 
 

 
Fig. 22. Sequence of successive frame showing knee stretch walking pattern. 

5. Conclusions 
During walking sequence, human heels act as passive joints that create some support area, 
which helps the stability of human walking. This research attempts to replace human-heel 
like mechanism with heel joint in the biped robot foot. The existence of heel joints in the 
biped robot feet has two main advantages. The first one is that the support area during 
double support phase will be increased. Secondly, singularity during knee stretch motion 
can be avoided.  
This chapter presents a new mechanism for toe&foot&heel motions with multi-platforms 
using a serial-parallel hybrid mechanism. The suggested mechanism can generate pitch and 
roll motions at ankle position, during toe and heel joint motions. These motions are 
adequate for natural foot and ankle movements of a humanoid robot. The developed foot 
device with the suggested mechanism will allow humanoid robots to walk more stably and 
in ways that are more natural. A new alternative method for generating knee stretch 
walking pattern for biped robot utilizing toe and heel joints has been also presented with 
this chapter, which has several advantages over previous algorithms. The proposed 
algorithm was verified using computer simulation, and better performances have been 
obtained as compared to common gait pattern. The improvements for the effectiveness of 
the proposed algorithm in terms of joint torque requirements as well as energy 
consumptions have been presented.  
It is observed that the utilization of toe and heel joints increases the stability margin during 
the double support phase, thus giving more freedom in designing the walking patterns. 
Furthermore, the addition of heel joint has the advantage of avoiding singularity during the 
knee stretch motion, because the loss of degree of freedom in the knee can still be 
compensated by the existence of extra dof in the heel joint. While the previous researchers 
have also suggested the addition of waist joint to avoid singularity, compared to waist joint, 
two heel joints are comparably smaller and less complicated. For existing biped robots, it 
will be a lot easier to modify the foot than to modify the waist. As a final point, the pattern 
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obtained from this method shows similarities with those of human walking pattern, thus 
can provide more natural walking for the robot.  
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1. Introduction    
Humanoid robot is a type of robot that the overall appearance is based on that of the human 
body. Humanoid robots include a rich diversity of projects where perception, processing 
and action are embodied in a recognizably anthropomorphic form in order to emulate some 
subset of the physical, cognitive and social dimensions of the human body and experience. 
The research on humanoid robots spans from stability to optimal control, gait generation, 
human-robot and robot-robot communication (Konno et al., 1997) (Hirai et al, 1998) (Cheng 
et al., 2001). In addition, humanoid robots have been also used to understand better human 
motion and establish working coexistence of human and humanoid robot (Althaus et al., 
2004).  
Humanoid robot with two legs usually have problem to stabilize its biped walk motions. In 
fact, one of the most sophisticated forms of legged motion is that of biped gait locomotion. 
Human locomotion stands out among other forms of biped locomotion chiefly in terms of 
the dynamic systems point of view. This is due to the fact that during a significant part of 
the human walking motion, the moving body is not in static equilibrium.  
Biped walking robot can be classified by its gait. There are two major research areas in biped 
walking robot: the static gait and dynamic gait. For a biped robot, two different situations 
arise in sequence during the walking motion: the statically stable double-support phase in 
which the whole structure of the robot is supported on both feet simultaneously, and the 
statically unstable single-support phase when only one foot is in contact with the ground, 
while the other foot is being transferred from back to front. Eventually, this type of walking 
pattern delays the walking speed. Moreover, joint structure design in robots does not permit 
flexible movement like that of human being. Indeed, one motor only can rotate in one 
direction. Even by reducing reduction-ratio can increase the motor rotation, it will 
eventually reduce the torque output which is not desirable for real-time operation. 
Therefore, a method to control sufficient walking speed in conjunction with the biped gait 
trajectory is inevitably important. This is because in real-time application, the robots are 
likely to be required to walk faster or slower according to situation that occurred during the 
operation.  
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1. Introduction    
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body. Humanoid robots include a rich diversity of projects where perception, processing 
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the dynamic systems point of view. This is due to the fact that during a significant part of 
the human walking motion, the moving body is not in static equilibrium.  
Biped walking robot can be classified by its gait. There are two major research areas in biped 
walking robot: the static gait and dynamic gait. For a biped robot, two different situations 
arise in sequence during the walking motion: the statically stable double-support phase in 
which the whole structure of the robot is supported on both feet simultaneously, and the 
statically unstable single-support phase when only one foot is in contact with the ground, 
while the other foot is being transferred from back to front. Eventually, this type of walking 
pattern delays the walking speed. Moreover, joint structure design in robots does not permit 
flexible movement like that of human being. Indeed, one motor only can rotate in one 
direction. Even by reducing reduction-ratio can increase the motor rotation, it will 
eventually reduce the torque output which is not desirable for real-time operation. 
Therefore, a method to control sufficient walking speed in conjunction with the biped gait 
trajectory is inevitably important. This is because in real-time application, the robots are 
likely to be required to walk faster or slower according to situation that occurred during the 
operation.  
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This chapter presents analysis results of optimal gait trajectory generation in a biped 
humanoid robot. The work presented in this chapter is focusing on analysis to improve 
biped walk quality and speed by considering reduction-ratio at joint-motor system with 
other physical parameters in humanoid robot’s body. The analysis utilized a 21-dofs 
humanoid robot Bonten-Maru II as experimental platform.  
The early sections of this chapter presents the background and motivation of current 
research, followed by hardware structure and design characteristics of humanoid robot 
Bonten-Maru II. The next section presents the optimization of trajectory generation using 
inverse kinematics for 6-dofs humanoid robot legs. A simplified approach was implemented 
to solving inverse kinematics problems by classifying the robot leg’s joints into several 
groups of joint coordinate frames. To describe translation and rotational relationship 
between adjacent joint links, a matrix method proposed by Denavit-Hartenberg (Denavit 
and Hartenberg, 1955) was employed, which systematically establishes a coordinate system 
for each link of an articulated chain. In addition, to perform a smooth and reliable gait, it is 
necessary to define step-length and foot-height during transferring one leg in one step walk. 
The step-length is a parameter value that can be adjusted and fixed in the control system. 
On the other hand, the foot-height is defined by applying ellipse formulation. Interpolation 
by time function of the leg’s start and end points using ellipse formulation provide smooth 
trajectory pattern at each gait. 
The final section presents analysis of biped walking speed by maintaining reduction-ratio 
value but consider step length, hip-joint height from ground and duty-ratio as experimental 
parameters. Eventually, it is easy to control the walking speed by reducing or increasing the 
reduction-ratio at the robot joint-motor system. However, in real-time operation it is 
desirable to have a stable and high reduction-ratio value in order to provide high torque 
output to the robot’s manipulator during performing tasks, such as during object 
manipulation, avoiding obstacle, etc. Therefore the reduction-ratio is required to remain 
always at fixed and high value. 

2. Background and motivation 
To realize human-like walking robots, many researches about the biped locomotion robot 
have been archived especially in prototyping biped locomotion, biped legged control and 
optimal gait locomotion. In these researches, dynamic and stable walking can be realized. 
Vukobratovic (Vukobratovic et al. 1990) have investigated the walking dynamics and 
proposed Zero Moment Point (ZMP) as an index of walking stability. Meanwhile, Takanishi 
and Hirai (Takanishi et al., 1985, Hirai et al., 1998) have proposed methods of walking 
pattern synthesis based on the ZMP, and demonstrate walking motion and pattern synthesis 
with real humanoid robots. Meanwhile, the methods to realizing dynamic walking were 
presented in (Hasegawa et al., 2000, Lim et al., 2000). Other achievements are in prototyping 
biped locomotion, biped legged control and optimal gait locomotion (Goswani et al., 1997, 
Capi et al., 2003).  
Input energy is another important index for natural walking motion. Eventually, the energy-
optimal trajectory for highly non-linear equations of a complex robot is hard to find 
numerically. Recently, an evolutionary optimization method, such as evolutionary 
programming (EP), genetic algorithm (GA) and so on have been identified to find the 
optimal solutions in a non-linear system. In the research with Bonten-Maru II, Capi (Capi et 
al., 2003, Nasu et al., 2007) has proposed a real time generation of humanoid robot optimal 
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gait by using soft computing techniques. GA was employed to minimize the energy for 
humanoid robot gait. The Radial Basis Function Neural Networks (RBFNN) is used for real 
time gait generations, which are trained based on GA data. 
In order to realize optimal gait generation, several studies have been reported related with 
walking speed of biped robot. For example Chevallereau & Aoustin (Chevallereau & 
Aoustin, 2001) have studied optimal reference trajectory for walking and running of a biped 
robot. Furthermore, Yamaguchi (Yamaguchi et al., 1993) have been using the ZMP as a 
criterion to distinguish the stability of walking for a biped walking robot which has a trunk. 
The authors introduce a control method of dynamic biped walking for a biped walking 
robot to compensate for the three-axis (pitch, roll and yaw-axis) moment on an arbitrary 
planned ZMP by trunk motion. The authors developed a biped walking robot and 
performed a walking experiment with the robot using the control method. The result was a 
fast dynamic biped walking at the walking speed of 0.54 s/step with a 0.3 m step on a flat 
floor. This walking speed is about 50% faster than that with the robot which compensates 
for only the two-axis (pitch and roll-axis) moment by trunk motion. Meanwhile, control 
system that stabilizes running biped robot HRP-2LR has been proposed by Kajita (Kajita et 
al., 2005). The robot uses prescribed running pattern calculated by resolved momentum 
control, and a running controller stabilizes the system against disturbance. 
Eventually, it is easy to control the walking speed by reducing or increasing the reduction-
ratio at the robot joint-motor system. However, in real-time operation it is desirable to have 
a stable and high reduction-ratio value in order to provide high torque output to the robot’s 
manipulator during performing tasks, such as during object manipulation, avoiding 
obstacle, etc. 

3. Humanoid robot “Bonten-Maru II” 
Motivated by the current state-of-the-art in humanoids research, we have previously 
developed a research prototype biped humanoid robot called Bonten-Maru II. The Bonten-
Maru II appearance diagram and outer dimension are shown in Fig. 1. It is 1.25 [m] tall and 
weight 31.5 [kg], which similar to an eight or nine year old child. The Bonten-Maru II is a 
research prototype humanoid robot, and such has undergone some refinement as different 
research direction is considered. During the design process, some predefined degree of 
stiffness, accuracy, repeatability, mobility and other design factor have been taken into 
consideration.  
The Bonten-Maru II was designed to mimic as much as human characteristic, especially for 
contribution of its joints. Figure 2 shows configuration of dofs in the robot body. The robot 
has total of 21 dof: 6 dof for each leg, 3 dof for each arm, 1 dof for waist and 2 dof for head. 
The high number of dof gives the Bonten-Maru II possibility to realize complex motions. 
Moreover, the distribution of dof which is very similar with humans gives advantages for 
the humanoid robot to attain human-like motion. Every joint is driven by DC servomotor 
with a rotary encoder and harmonic drive reduction system, and PC with Linux is utilized 
for control. Rotation angles of joints were recorded by the rotary encoder that installed at 
rear side of DC servomotor. The sampling frequency is 200 Hz. The power is supplied to 
each joint by timing belt and harmonic drive reduction system. Gear number at the DC 
servomotor side is 60; while at the harmonic drive side is 16. Therefore, it makes reduction 
ratio at the harmonic side to be 1:100, while overall reduction ratio is 1:333. 
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gait by using soft computing techniques. GA was employed to minimize the energy for 
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Fig. 1. Bonten-Maru II appearance diagram and outer dimension. 

 

 
Fig. 2. Configuration of dofs in Bonten-Maru II humanoid robot body. 

Table 1 shows range of joints rotation angle. Each joint has relatively wide range of rotation 
angle, especially for both leg’s hip yaw which permit both legs to rotate in wide range of 
angle during correction of orientation and obstacle avoidance. Construction of the robot’s 
links was also designed to mimic human’s structure. The motor driver, the PC and the 
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power supply are placed outside of the robot. At the legs side, under each foot are four 
pressure sensor, two at the toe and two across the heel. These provide a good indication of 
both contact with the ground, and the Zero Moment Point (ZMP) position. At the head part 
is equipped with two monochrome CCD cameras (542x492 pixels) and connected to PC by 
video capture board.  
 

Axis Range of rotation angle (deg.) 
Waist (yaw) -45 ~ 45 
Hip (yaw) -90 ~ 90 
Right hip (roll) -90 ~ 25 
Left hip (roll) -25 ~ 90 
Hip (pitch) -130 ~ 45 
Knee (pitch) -20 ~150 
Ankle (pitch) -90 ~ 60 
Right ankle (roll) -90 ~ 20 
Left ankle (roll) -20 ~ 90 

Table 1. Joint rotation range at leg system in Bonten-Maru II. 

4. Optimization of trajectory generation in humanoid’s legs 
Optimization of trajectory generation is nacessary to ganerate optimal biped trajectory of 
humanoid robot legs. It is commonly known that trajectory of robot manipulator is obtain 
by solving kinematic relationship between adjacent links. Robot kinematics deals with the 
analytical study of the geometry of a robot’s motion with respect to a fixed reference 
coordinate system as a function of time without regarding the force/moments that cause the 
motion. Commonly, trajectory generation for biped locomotion robots is defined by solving 
forward and inverse kinematics problems (Kajita et al, 2005). In a forward kinematics 
problem, where the joint variable is given, it is easy to determine the end-effector’s position 
and orientation. An inverse kinematics problem, however, in which each joint variable is 
determined by using end-effector position and orientation data, does not guarantee a 
closed-form solution.  
Traditionally three methods are used to solve an inverse kinematics problem: geometric, 
iterative, and algebraic (Koker, 2005). However, the more complex the manipulator’s joint 
structure, the more complicated and time-consuming these methods become. In order to 
optimize trajectory generation of biped walking robot, a simplified approach was proposed 
and implemented in 6-DOFs legs to solving inverse kinematics problems by classifying the 
robot’s joints into several groups of joint coordinate frames at the robot’s manipulator.To 
describe translation and rotational relationship between adjacent joint links, we employ a 
matrix method proposed by Denavit-Hartenberg (Denavit and Hartenberg, 1955), which 
systematically establishes a coordinate system for each link of an articulated chain. 
Optimization of kinematic solutions helps to increase calculation time and reduce memory 
usage of the robot control system. It also improve the stability of biped trajectory that can be 
utilize to ganerate and control the speed of biped walking. 
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problem, where the joint variable is given, it is easy to determine the end-effector’s position 
and orientation. An inverse kinematics problem, however, in which each joint variable is 
determined by using end-effector position and orientation data, does not guarantee a 
closed-form solution.  
Traditionally three methods are used to solve an inverse kinematics problem: geometric, 
iterative, and algebraic (Koker, 2005). However, the more complex the manipulator’s joint 
structure, the more complicated and time-consuming these methods become. In order to 
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describe translation and rotational relationship between adjacent joint links, we employ a 
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systematically establishes a coordinate system for each link of an articulated chain. 
Optimization of kinematic solutions helps to increase calculation time and reduce memory 
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utilize to ganerate and control the speed of biped walking. 
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Fig. 3. Photograph of Bonten-Maru II lower side body and the configuration of links and 
joints. 

4.1 Legs structure 
Basic idea of legged robot is ability to perform wide and variety range of human-like gait 
motions. The Bonten-Maru II humanoid robot is designed to mimic as much as human 
structure, especially for its joints and links configuration to have wide range of rotation 
angle. Figure 3 shows photograph and diagram of the Bonten-Maru II lower side body. 
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Configuration of links, joints and harmonic drive at the Bonten-Maru II lower side body were 
shown in this figure. Each leg is consists of 6-dofs: 3 dof for hip, 1 dof for knee, and 2 dof for 
ankle. Hip-joint yaw is connecting each leg with the waist part.  
The design of link position and joint-motor structure greatly influence the joint rotation 
range (Bischoff & Graefe, 2005). The link positions were configured with thigh link 
positioned at inner side of leg, while shin link positioned at outer side of the leg. It gives the 
hip joints wide rotation range to outside direction and the ankle joints also possible to rotate 
wider to inner side, at the same time gives better stability. Both of these links were 
connected with knee joint and were given specific space so that knee joint can rotate as far as 
160 degree to back direction. 
Configuration of the harmonic drive position at hip joints and ankle joints were installed at 
the rear side of roll direction so that the leg’s link can swing to front direction in wide 
rotation angle. Moreover, both thigh links were given specific space so that when hip joint 
rotates to yawing direction, both links do not collide to each other. Consequently, rotation of 
hip joint at yaw direction can reach until 90 degree. In this research, wide rotation angle of 
yaw direction is required so that the robot can easily change its direction in wider angle, 
particularly during avoiding obstacles and operation in confined spaces. 

4.2 Kinematics solutions of 6-DOFs Legs 
Each of the legs in humanoid robot Bonten-Maru II has six DOFs: three DOFs (yaw, roll and 
pitch) at the hip joint, one DOF (pitch) at the knee joint and two DOFs (pitch and roll) at the 
ankle joint. In this research, only inverse kinematics calculations for the robot leg we solved. 
A reference coordinate is taken at the intersection point of the 3-DOF hip joint. In solving 
calculations of inverse kinematics for the leg, just as for arm, the joint coordinates are 
divided into eight separate coordinate frames as listed bellow. 

∑0 ： Reference coordinate.  
∑1  ： Hip yaw coordinate.   
∑2  ： Hip roll coordinate.  
∑3  ： Hip pitch coordinate.  
∑4  ： Knee pitch coordinate.  
∑5  ： Ankle pitch coordinate.   
∑6  ： Ankle roll coordinate.  
∑h  ： Foot bottom-center coordinate.  

Figure 4 shows a model of the robot leg that indicates the configurations and orientation of 
each set of joint coordinates. Here, link length for the thigh is l1, while for the shin it is l2. The 
Link parameters for the leg are defined in Table 2. Referring to Fig. 4, the transformation 
matrix at the bottom of the foot ( 6h T) is an independent link parameter because the 
coordinate direction is changeable. Here, to simplify the calculations, the ankle joint is 
positioned so that the bottom of the foot settles on the floor surface. The leg’s orientation is 
fixed from the reference coordinate so that the third row of the rotation matrix at the leg’s 
end becomes like Eq. (1).  

 leg 0 0 1
T

zP ⎡ ⎤= ⎣ ⎦    (1) 
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Configuration of links, joints and harmonic drive at the Bonten-Maru II lower side body were 
shown in this figure. Each leg is consists of 6-dofs: 3 dof for hip, 1 dof for knee, and 2 dof for 
ankle. Hip-joint yaw is connecting each leg with the waist part.  
The design of link position and joint-motor structure greatly influence the joint rotation 
range (Bischoff & Graefe, 2005). The link positions were configured with thigh link 
positioned at inner side of leg, while shin link positioned at outer side of the leg. It gives the 
hip joints wide rotation range to outside direction and the ankle joints also possible to rotate 
wider to inner side, at the same time gives better stability. Both of these links were 
connected with knee joint and were given specific space so that knee joint can rotate as far as 
160 degree to back direction. 
Configuration of the harmonic drive position at hip joints and ankle joints were installed at 
the rear side of roll direction so that the leg’s link can swing to front direction in wide 
rotation angle. Moreover, both thigh links were given specific space so that when hip joint 
rotates to yawing direction, both links do not collide to each other. Consequently, rotation of 
hip joint at yaw direction can reach until 90 degree. In this research, wide rotation angle of 
yaw direction is required so that the robot can easily change its direction in wider angle, 
particularly during avoiding obstacles and operation in confined spaces. 

4.2 Kinematics solutions of 6-DOFs Legs 
Each of the legs in humanoid robot Bonten-Maru II has six DOFs: three DOFs (yaw, roll and 
pitch) at the hip joint, one DOF (pitch) at the knee joint and two DOFs (pitch and roll) at the 
ankle joint. In this research, only inverse kinematics calculations for the robot leg we solved. 
A reference coordinate is taken at the intersection point of the 3-DOF hip joint. In solving 
calculations of inverse kinematics for the leg, just as for arm, the joint coordinates are 
divided into eight separate coordinate frames as listed bellow. 

∑0 ： Reference coordinate.  
∑1  ： Hip yaw coordinate.   
∑2  ： Hip roll coordinate.  
∑3  ： Hip pitch coordinate.  
∑4  ： Knee pitch coordinate.  
∑5  ： Ankle pitch coordinate.   
∑6  ： Ankle roll coordinate.  
∑h  ： Foot bottom-center coordinate.  

Figure 4 shows a model of the robot leg that indicates the configurations and orientation of 
each set of joint coordinates. Here, link length for the thigh is l1, while for the shin it is l2. The 
Link parameters for the leg are defined in Table 2. Referring to Fig. 4, the transformation 
matrix at the bottom of the foot ( 6h T) is an independent link parameter because the 
coordinate direction is changeable. Here, to simplify the calculations, the ankle joint is 
positioned so that the bottom of the foot settles on the floor surface. The leg’s orientation is 
fixed from the reference coordinate so that the third row of the rotation matrix at the leg’s 
end becomes like Eq. (1).  

 leg 0 0 1
T
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Fig. 4. Configurations of joint coordinates at the robot leg. 
 

Link θileg d α l 
0 θ1leg+90º 0 0 0 
1 θ2leg-90 º 0 90 º 0 
2 θ3leg 0 90 º 0 
3 θ4leg 0 0 l1 
4 θ5leg 0 0 l2 
5 θ6leg 0 -90 º 0 
6 0 0 0 l3 

Table 2. Link parameters of the leg 

Furthermore, the leg’s links are classified into three groups to short-cut the calculations, 
where each group of links is calculated separately as follows. 
i. From link 0 to link 1 (Reference coordinate to coordinate joint number 1). 
ii. From link 1 to link 4 (Coordinate joint number 2 to coordinate joint number 4). 
iii. From link 4 to link 6 (Coordinate joint number 5 to coordinate at the bottom of the foot). 
Basically, i) is to control leg rotation at the Z-axis, ii) is to define the leg position, while iii) is 
to decide the leg’s end-point orientation. A coordinate transformation matrix can be 
arranged as below. 

 0
h T= 0

1T 1
4 T 4

h T= ( 0h T)( 12 T 2
3 T 3

4 T)( 45 T 5
6 T 6

h T)  (2) 

Here, the coordinate transformation matrices for 14 T and 4
h T can be defined as Eqs. (3) and 

(4), respectively. 
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4 T= 1

2 T 2
3 T 3
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 4
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⎢ ⎥−⎢ ⎥= ⎢ ⎥− − −
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4)    

The coordinate transformation matrix for 0h T, which describes the leg’s end-point position 
and orientation, can be shown with the following equation. 

 0
h T

11 12 13

21 22 23

31 32 33

0 0 0 1

x

y

z

r r r p
r r r p

r r r p

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (5) 

From Eq. (1), the following conditions were satisfied. 

 13 23 31 32 330 , 1r r r r r= = = = =  (6) 

Hence, joint rotation angles θ1leg~θ6leg can be defined by applying the above conditions. First, 
considering i), in order to provide rotation at the Z-axis, only the hip joint needs to rotate in 
the yaw direction, specifically by defining θ1leg. As mentioned earlier, the bottom of the foot 
settles on the floor surface; therefore, the rotation matrix for the leg’s end-point measured 
from the reference coordinate can be defined by the following equation. 

 0
h R 1legRot( , )z θ=

1leg 1leg 11 12

1leg 1leg 21 22

0 0
0 0

0 0 10 0 1

c s r r
s c r r

θ θ

θ θ

⎡ ⎤− ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 (7) 

Here, θ1leg can be defined as below.  

 ( )1leg 21 22atan2 ,r rθ =   (8) 

Next, considering ii), from the obtained result of θ1leg, 0h T is defined in Eq. (9). 

 0
h T

1 1 leg

1 1 leg

leg
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0

0 0 1

0 0 0 1

x

y

z

s c P

c s P

P
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−⎢ ⎥
= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  (9) 
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Fig. 4. Configurations of joint coordinates at the robot leg. 
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Here, from constrain orientation of the leg’s end point, the position vector of joint 5 is 
defined as follows in Eq. (10), and its relative connection with the matrix is defined in Eq. 
(11). Next, equation (12) is defined relatively.     

 0P5= 0
4 T4P5 leg leg leg 3

T

x y zP P P l⎡ ⎤= −⎣ ⎦
,   (10) 

 1 4 0 1 0
4 5 1 5

ˆ ˆT P T P−=   (11) 
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 (12)  
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To define joint angles θ2leg, θ3leg, θ4leg, Eq. (13) is used . The rotation angles are defined as the 
following equations.  
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Finally, considering iii), joint angles θ5leg and θ6 leg are defined geometrically by the following 
equations.  

 5leg 3leg 4legθ θ θ= − −  (20) 
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 6leg 2legθ θ= −   (21) 

4.3 Interpolation and gait trajectory pattern 
Application of high degree of polynomial equations will help the manipulators to perform 
smooth trajectory. This method called interpolation. Interpolation refers to a time history of 
position, velocity and acceleration for each robotic joint. A common way of making a robot’s 
manipulator to move from start point P0 to end point Pf  in a smooth, controlled fashion is to 
have each joint to move as specified by a smooth function of time t. Each joint starts and 
ends its motion at the same time, thus the robot’s motion appears to be coordinated.   
In order to compute these motions, in the case of position, velocity and acceleration at start 
point P0 and end point Pf are given, interpolation of end-effector’s position described in time 
t variable function was performed using polynomial equation to generate trajectory. In this 
research, we employ degree-5 polynomial equation as shown in Eq. (22) to solve 
interpolation from start point P0 to end point Pf. Velocity and acceleration at P0 and Pf are 
defined as zero; only the position factor is considered as a coefficient for performing 
interpolation. 
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Time factor at P0 and Pf are describe as t0 = 0 and tf, respectively. Here, boundary condition 
for each position, velocity and acceleration at P0 and Pf are shown at following equations. 
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Here, coefficient ai (i = 0,1,2,3,4,5) are defined by solving deviations of above equations. 
Results of the deviations are shown at below Eq. (24). 
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Here, from constrain orientation of the leg’s end point, the position vector of joint 5 is 
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Here, coefficient ai (i = 0,1,2,3,4,5) are defined by solving deviations of above equations. 
Results of the deviations are shown at below Eq. (24). 
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As mentioned before, velocity and acceleration at P0 and Pf were considered as zero, as 
shown in Eq.  (25).  

  ( ) ( ) ( )0 (0) 0f fP P P t P t
• •• • ••

= = = = .    (25) 

Generation of motion trajectories from points P0 to Pf only considered the position factor. 
Therefore, by given only positions data at P0 and Pf, respectively described as y0 and yf, 
coefficients ai (i = 0,1,2,3,4,5) were solved as below Eq. (26). 
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Finally, degree-5 polynomial function is defined as following equation. 
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Where, 

 
f

current timetu
t motion time
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Meanwhile, to perform smooth and reliable gait trajectory in biped walk, it is necessary to 
define foot-height during transferring one leg in one step walk based on the acquired step-
length. The foot-height is defined by applying ellipse formulation, like shown in gait 
trajectory pattern at Fig. 5. In walking forward and backward, the foot height at z-axis is 
defined in Eq. (29). Meanwhile during side-step walk, the foot height is defined in (30). 
Here, h is hip-joint height from the ground. 

 
Fig. 5. Gait trajectory pattern of humanoid robot leg 
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In real-time operation, biped locomotion is performed by given the leg’s end point position 
to the robot control system so that joint angle at each joint can be calculated by inverse 
kinematics formulations. Consequently the joint rotation speed and pattern is controlled by 
the above formulations of interpolation using degree-5 polynomial equations. By applying 
these formulations, each gait motion is performed in smooth and controlled trajectory. 

4.4 Verification of biped trajectory generation by simulation 
A simulation using animation that applies GnuPlot in humanoid robot Bonten-Maru II 
control system was performed to analyze and confirm of the robot joint’s trajectory 
generation. Figure 6 presents the simulation interface of the robot’s trajectory, which 
features a robot control process, a motion instructor process, and robot animation. In the 
 

 

 
Fig. 6. Simulation interface presents robot’s trajectory and motion process. 
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simulation, the robot performing biped locomotion of yawing motion to change its 
orientation by turning to back-left area.  
In order to perform this motion, rotation of hip-joint yaw is the key-point. By solving Eq. (8), 
the robot rotation angle at hip joint is decided from 0 degree to 90 degree. Meanwhile target 
position of leg’s end-point at xyz-axes plane is defined by solving inverse kinematics in Eqs. 
(14), (15), (16), (20), (21), and interpolation in Eq. (27). At this time the yawing angle θ1leg is 
fixed at 70º.  
During performing the yawing motion, at first the left leg’s hip-joint yaw will rotate 
counterclockwise direction to θ1leg. At the same time, the left leg follows along an ellipse 
trajectory in regard to z-axis direction to move the leg one step. This stepping motion is 
performed by given the leg’s end point position to the robot’s control system so that the 
joint angles of θ1leg~θ6leg could be solved by inverse kinematics calculations. The left leg 
position is defined by interpolation of the leg end point from its initial position with respect 
to the xy-axes position at a certain calculated distance. At this time the right leg acts as the 
support axis. Then, the robot corrects its orientation by changing the support axis to the left  
 

 
Fig. 7. Rotation angle of the left leg joints in biped walking while turning to left in yawing 
motion. 
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leg, while the left leg hip-joint yaw reverses the rotation to clockwise direction to complete 
the motion.  
Each joint’s rotation angles were saved and analyzed in a graph structure. For example, the 
graph for the left leg during yawing motion is plotted in Fig. 7. The graph shows the smooth 
trajectory of the rotation angles at each leg’s joint. These simulation results verified 
reliability of the proposed kinematics and interpolation formulations to generate smooth 
and controlled trajectory for humanoid robot Bonten-Maru II. 

5. Analysis of biped walking speed 
5.1 Methodology 
The main consideration in a biped humanoid robot is to generate the robot’s efficient gait 
during performing tasks and maintain it in a stable condition until the tasks are completed. 
The efficiency in biped robots is normally related with how fast and how easy the tasks can 
be completed. In this research, to increase walking speed without changing the reduction-
ratio, we considered three parameters to control the walking speed in biped robot 
locomotion: 
1. Step length; s 
2. hip-joint height from the ground; h 
3. Duty-ratio; d 
Figure 8 shows initial orientation of Bonten-Maru II during performing task which also 
indicate the step length and hip-joint height of the robot. The step-length is the distance 
between ankle-joints of a support leg and a swing leg when both of them are settled on the 
ground during walking motion. The hip-joint height is the distance between intersection 
point of hip-joint roll and pitch to the ground in walking position. Meanwhile, duty-ratio for 
biped robot mechanism is described as time ratio of one foot touches the ground when 
another foot swing to transfer the leg in one cycle of walking motion. In biped gait motion, 
two steps are equal to one cycle.  
 

        
Fig. 8. Orientation of Bonten-Maru II to perform motion and parameters of hip-height h and 
step length s. 
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leg, while the left leg hip-joint yaw reverses the rotation to clockwise direction to complete 
the motion.  
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graph for the left leg during yawing motion is plotted in Fig. 7. The graph shows the smooth 
trajectory of the rotation angles at each leg’s joint. These simulation results verified 
reliability of the proposed kinematics and interpolation formulations to generate smooth 
and controlled trajectory for humanoid robot Bonten-Maru II. 

5. Analysis of biped walking speed 
5.1 Methodology 
The main consideration in a biped humanoid robot is to generate the robot’s efficient gait 
during performing tasks and maintain it in a stable condition until the tasks are completed. 
The efficiency in biped robots is normally related with how fast and how easy the tasks can 
be completed. In this research, to increase walking speed without changing the reduction-
ratio, we considered three parameters to control the walking speed in biped robot 
locomotion: 
1. Step length; s 
2. hip-joint height from the ground; h 
3. Duty-ratio; d 
Figure 8 shows initial orientation of Bonten-Maru II during performing task which also 
indicate the step length and hip-joint height of the robot. The step-length is the distance 
between ankle-joints of a support leg and a swing leg when both of them are settled on the 
ground during walking motion. The hip-joint height is the distance between intersection 
point of hip-joint roll and pitch to the ground in walking position. Meanwhile, duty-ratio for 
biped robot mechanism is described as time ratio of one foot touches the ground when 
another foot swing to transfer the leg in one cycle of walking motion. In biped gait motion, 
two steps are equal to one cycle.  
 

        
Fig. 8. Orientation of Bonten-Maru II to perform motion and parameters of hip-height h and 
step length s. 
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Hip-joint height [mm] Max. step length in 1 
step[mm] 

Max. step length in 1 
cycle [mm] 

h1=468 350 700 
h2=518 300 600 
h3=568 200 400 

Table 3. Relationship of step length against hip-joint height at Bonten-Maru II. 

Reffering to the Bonten-Maru II body and structure of the leg, the link parameters at the legs 
are used in calculations to define hip-joint height and maximum step length by geometrical 
analysis. Link parameters of the legs were calculated geometrically to define relation 
between step-length and hip-joint height. From the geometrical analysis, relation between 
the step-length and the hip-joint height is defined in Table 3. 
At joint-motor system of Bonten-Maru II, maximum no-load rotation for the DC servomotor 
at each joint is 7220 [rpm]. This rotation is reduced by pulley and harmonic drive-reduction 
system to 1/333, in order to produce high torque output during performing tasks. We 
considered that the robot required high torque to perform tasks; therefore we do not change 
the reduction-ratio, which is 333:1. Eventually, these specifications produced maximum joint 
angular velocity at 130 [deg/s]. However, for safety reason, the joint angular velocity at the 
motor was reduced to 117 [deg/s]. The step time can be adjusted in the robot control system 
easily. However, if the step time is too small in order to increase walking speed, the robot 
motion becomes unstable. Moreover, the maximum step length performed becomes limited. 
In current condition, the step time for Bonten-Maru II to complete one cycle of walking is 
fixed between 7~10 second at maximum step length 75 [mm]. The duty-ratio d is increased 
gradually from 0.7 to 0.85. These parameter values are applied in simulation present in the 
next section. 

5.2 Simulation analysis 
A simulation analysis of the robot walking velocity using simulation interface that applies 
GnuPlot was performed based on parameters condition explained at previous section. The 
time for one circle of walking gait is initially fixed at 10 second. Each joint’s rotation angles 
are saved and analyzed in a graph structure. Based on the joint angle, angular velocity of 
each joint was calculated.  
Figure 9 shows joint angle data for right leg joints when performing 10 steps walk at 
condition: h=518 [mm], s=100 [mm] and d=0.7. From the angle data, angular velocity for 
each joint was calculated and presented in Fig. 10. The first and last gait shows acceleration 
and deceleration of the gait velocity. The three steps in the middle show maximum angular 
velocity of the legs joint.  
Basically, in biped robot the maximum walking gait velocity is calculated from maximum 
joint angular velocity data by defining minimum step time for one gait. Eventually, by 
applying the same parameter, even if time for one step is initially different; the final joint 
angle obtained by the robot is same. Hence, in this analysis we can obtain the minimum step 
time in one step from the maximum joint angular velocity data that the initial step time was 
10 seconds. Basically, the minimum gait time in one step is satisfying following equation: 

  max
min
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×
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Here, Vθmax is the maximum joint angular velocity at the motor, tmin is minimum time for one 
step, and vθmax is maximum joint angular velocity in each gait. Finally, the maximum 
walking gait velocity wmax is defined by dividing length s with minimum step time tmin in 
each gait, as shown in following equation.  

 min
min

sw
t

=   (32) 

 
Fig. 9. Graph of joint rotation angle at right leg. 

 

 
Fig. 10. Graph of angular velocity of joint rotation at right leg. 
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Hip-joint height [mm] Max. step length in 1 
step[mm] 

Max. step length in 1 
cycle [mm] 

h1=468 350 700 
h2=518 300 600 
h3=568 200 400 

Table 3. Relationship of step length against hip-joint height at Bonten-Maru II. 
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easily. However, if the step time is too small in order to increase walking speed, the robot 
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GnuPlot was performed based on parameters condition explained at previous section. The 
time for one circle of walking gait is initially fixed at 10 second. Each joint’s rotation angles 
are saved and analyzed in a graph structure. Based on the joint angle, angular velocity of 
each joint was calculated.  
Figure 9 shows joint angle data for right leg joints when performing 10 steps walk at 
condition: h=518 [mm], s=100 [mm] and d=0.7. From the angle data, angular velocity for 
each joint was calculated and presented in Fig. 10. The first and last gait shows acceleration 
and deceleration of the gait velocity. The three steps in the middle show maximum angular 
velocity of the legs joint.  
Basically, in biped robot the maximum walking gait velocity is calculated from maximum 
joint angular velocity data by defining minimum step time for one gait. Eventually, by 
applying the same parameter, even if time for one step is initially different; the final joint 
angle obtained by the robot is same. Hence, in this analysis we can obtain the minimum step 
time in one step from the maximum joint angular velocity data that the initial step time was 
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Here, Vθmax is the maximum joint angular velocity at the motor, tmin is minimum time for one 
step, and vθmax is maximum joint angular velocity in each gait. Finally, the maximum 
walking gait velocity wmax is defined by dividing length s with minimum step time tmin in 
each gait, as shown in following equation.  
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Fig. 9. Graph of joint rotation angle at right leg. 

 

 
Fig. 10. Graph of angular velocity of joint rotation at right leg. 
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Fig. 11. Analysis results of maximum walking velocity at each gait. 
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Simulation results of walking gait velocity at each parameters value are compiled in graphs 
as shown in Fig. 11(a), (b) and (c). According to these graphs, from the relation of walking 
velocity and step length, the walking velocity was maintain nearly at constant value when it 
reached certain step length. Moreover, in relation of step length and hip-joint height, the 
higher hip-joint position is providing wider step length to perform better walking distance.  
At this point, lower duty-ratio shows the best results in relation of the hip-joint height and 
the step length for higher walking gait velocity, as shown in Fig. 11(b), where the low duty-
ratio shows high walking velocity in relationship between the hip-joint-height and the step-
length. It means by shorten the time for the support leg touching the ground will urge swing 
leg to increase its speed to complete one walking cycle, thus increase the walking velocity. 
At the same time, by choosing suitable step-length and hip-joint-height parameters, travel 
distance in each step can be improved. Analysis results revealed that it is possible to control 
biped walking speed without reducing the reduction-ratio at the joint-motor system. 
From the simulation results, we can conclude that lower duty-ratio in suitable hip-joint 
height comparatively provided higher walking gait velocity. For Bonten-Maru II, the 
maximum walking gait velocity was improved from 30 [mm/s] to 66 [mm/s], which is 
about two times better than current walking velocity. At this time the hip-joint height is 518 
[mm] and the time for one step is 4.5 seconds. 
 

 
Fig. 12. Humanoid robot performs biped walking applying the best parameters value from 
simulation results: h=518 [mm], s=200 [mm] and d=0.7, time per step 4.5 sec. 

 

 
Fig. 13. Humanoid robot performs biped walking applying current parameters value: h=568 
[mm], s=75 [mm] and d=0.8, time per step 2.5 sec. 

5.3 Experiments with Bonten-Maru II 
Real-time experiments with the biped humanoid robot Bonten-Maru II were conducted to 
evaluate performance of the proposed methodology of optimal biped locomotion to 
improve walking speed of the humanoid robot. The parameter values that revealed the best 
result in simulation were applied, in comparison with current walking condition. Figures 12 
and 13 respectively show photograph of the actual robot’s walking motion in each 
experiment, which also indicate the parameter values applied. Travel distance was 
measured during the experiments.  
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Simulation results of walking gait velocity at each parameters value are compiled in graphs 
as shown in Fig. 11(a), (b) and (c). According to these graphs, from the relation of walking 
velocity and step length, the walking velocity was maintain nearly at constant value when it 
reached certain step length. Moreover, in relation of step length and hip-joint height, the 
higher hip-joint position is providing wider step length to perform better walking distance.  
At this point, lower duty-ratio shows the best results in relation of the hip-joint height and 
the step length for higher walking gait velocity, as shown in Fig. 11(b), where the low duty-
ratio shows high walking velocity in relationship between the hip-joint-height and the step-
length. It means by shorten the time for the support leg touching the ground will urge swing 
leg to increase its speed to complete one walking cycle, thus increase the walking velocity. 
At the same time, by choosing suitable step-length and hip-joint-height parameters, travel 
distance in each step can be improved. Analysis results revealed that it is possible to control 
biped walking speed without reducing the reduction-ratio at the joint-motor system. 
From the simulation results, we can conclude that lower duty-ratio in suitable hip-joint 
height comparatively provided higher walking gait velocity. For Bonten-Maru II, the 
maximum walking gait velocity was improved from 30 [mm/s] to 66 [mm/s], which is 
about two times better than current walking velocity. At this time the hip-joint height is 518 
[mm] and the time for one step is 4.5 seconds. 
 

 
Fig. 12. Humanoid robot performs biped walking applying the best parameters value from 
simulation results: h=518 [mm], s=200 [mm] and d=0.7, time per step 4.5 sec. 

 

 
Fig. 13. Humanoid robot performs biped walking applying current parameters value: h=568 
[mm], s=75 [mm] and d=0.8, time per step 2.5 sec. 
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improve walking speed of the humanoid robot. The parameter values that revealed the best 
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The experimental results show that by applying the best parameters value obtained in the 
simulation results, the walking speed was improved. At the same time, the travel distance is 
longer about three times compared with current condition. This result reveals that the travel 
distance was improved in conjunction with the improvement of walking speed in the biped 
humanoid robot. The robot performed biped walking in smooth and stable condition.  

5.3 Result and discussion 
In our approach, we directly analyze geometrically the robot link structures and 
dimensions, and consider duty-ratio as effective parameters to improve walking speed in 
biped humanoid robot. Simulation results based on humanoid robot Bonten-Maru II 
parameters reveals that walking speed was improved by applying low duty-ratio at 
appropriate step length and hip-joint height. The walking speed increased about two times 
compared to normal condition. Meanwhile, real-time experiments utilizing real biped 
humanoid robot based on simulation results shows that the robot’s travel distance during 
walking was improved about three times better than current walking condition. This 
analysis proved that it is possible to improve walking speed in stable biped locomotion 
without reducing the reduction-ratio.  

6. Conclusion 
This chapter presented analysis of biped gait locomotion to improve walking speed in 
humanoid robot without changing reduction-ratio at joint-motor system. Step length, hip-
joint height, and duty-ratio were identified as parameters in this analysis. A Relationship 
between step length and hip-joint height was defined using geometrical calculations. 
Simulation analysis was conducted followed by real time experiments using humanoid 
robot Bonten-Maru II. Simulation results based on the humanoid robot Bonten-Maru II 
revealed that walking speed was improved by applying low duty-ratio at appropriate step 
length and hip-joint height. The walking speed increased about two times compared to 
normal condition. The real-time experiments utilizing Bonten-Maru II based on the 
simulation results shows that the robot’s travel distance during walking was improved 
about three times better than current walking condition. The robot also walked faster in a 
stable condition compared to current walking condition.  
This analysis proved that it is possible to improve walking speed in biped walking robots 
without reducing the reduction-ratio. The presented optimal gait generation in biped 
locomotion improved the performance of humanoid robot system towards operation in real 
world. This was proved by simulation and experimental results. Moreover, analysis results 
of gait trajectory generation proposed an efficient gait pattern for the biped robot. Since the 
analysis results revealed that it is possible to control biped locomotion speed without 
changing reduction-ratio at joint-motor system, the high torque output at robot’s 
manipulator to conduct tasks in various motions is maintained.  
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simulation results, the walking speed was improved. At the same time, the travel distance is 
longer about three times compared with current condition. This result reveals that the travel 
distance was improved in conjunction with the improvement of walking speed in the biped 
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5.3 Result and discussion 
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parameters reveals that walking speed was improved by applying low duty-ratio at 
appropriate step length and hip-joint height. The walking speed increased about two times 
compared to normal condition. Meanwhile, real-time experiments utilizing real biped 
humanoid robot based on simulation results shows that the robot’s travel distance during 
walking was improved about three times better than current walking condition. This 
analysis proved that it is possible to improve walking speed in stable biped locomotion 
without reducing the reduction-ratio.  
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humanoid robot without changing reduction-ratio at joint-motor system. Step length, hip-
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between step length and hip-joint height was defined using geometrical calculations. 
Simulation analysis was conducted followed by real time experiments using humanoid 
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about three times better than current walking condition. The robot also walked faster in a 
stable condition compared to current walking condition.  
This analysis proved that it is possible to improve walking speed in biped walking robots 
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locomotion improved the performance of humanoid robot system towards operation in real 
world. This was proved by simulation and experimental results. Moreover, analysis results 
of gait trajectory generation proposed an efficient gait pattern for the biped robot. Since the 
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1. Introduction  
In order to solve inverse kinematics of a multi-DOF (degree of freedom) mechanism, many 
methods have been proposed with the Jacobian linearization method. When solving inverse 
kinematics problems of the biped robot with this method, long computation time is required 
since the Jacobian matrix should be updated in order to solve the configuration for each 
different end-effector trajectory knot. In this chapter, two smooth trajectories are generated 
as target positions, one for swing leg’s ankle, and the other for center of gravity (COG). 
These generated knot points in the task space with appropriate distance to each other are 
used to solve inverse kinematics by the proposed modified Jacobian method—Fixed Leg 
Jacobian. It can guarantee that only one iteration is required to solve the configuration when 
it is away from singularity with a small position error (0.0712% of leg length). The proposed 
algorithm can generate the gait in real-time including singularity avoidance and joint limit 
avoidance. Simulations have been carried out. The results showed that the proposed method 
can generate a smooth gait for robot walking on real-time implementation. 
Compared with wheeled robots, legged robots have the advantage of being able to traverse 
uneven or sharp-height-changing environments. Nowadays, many vehicles, buildings and 
environments are designed for humans. Simple robots cannot enter and adapt to these 
places. Therefore, we must design complicated humanoid robots to do it. But when the 
designs become more complicated and with more DOFs, it is getting harder to control and 
generate the trajectories of them. The proposed algorithm can quickly generate smooth 
trajectories of the ankle and COG and solve inverse kinematics in order to achieve real-time 
control of biped robots. In this chapter, the focus is how to coordinate the swing leg, the 
fixed leg and the COG of the robot, and generate the gait in real-time. In the simulation, the 
robot has 24 DOFs, 6 in each leg (12 in two legs), 4 in each arm (8 in two arms), 2 in the torso 
and 2 in the head. The most important DOFs for balancing and walking are the twelve DOFs 
in the legs. DOFs in the fixed leg dominate the position of the COG, and the position of the 
ankle of the swing leg is given relative to the position of the ankle of the fixed leg in order to 
guarantee that the swing leg is in a proper position that it will not hit the fixed leg and touch 
the ground. The trajectories of the end-effectors planned with desired constraints are 
inputted to solve inverse kinematics, as shown in Fig. 1. 
Many researchers have proposed the solutions to the problem while solving Jacobian 
linearized inverse kinematics. They include the damped least square method (DLS) 
(Wampler, 1986) and the robust damped least square method (RDLS) (Nakamura & 
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1. Introduction  
In order to solve inverse kinematics of a multi-DOF (degree of freedom) mechanism, many 
methods have been proposed with the Jacobian linearization method. When solving inverse 
kinematics problems of the biped robot with this method, long computation time is required 
since the Jacobian matrix should be updated in order to solve the configuration for each 
different end-effector trajectory knot. In this chapter, two smooth trajectories are generated 
as target positions, one for swing leg’s ankle, and the other for center of gravity (COG). 
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uneven or sharp-height-changing environments. Nowadays, many vehicles, buildings and 
environments are designed for humans. Simple robots cannot enter and adapt to these 
places. Therefore, we must design complicated humanoid robots to do it. But when the 
designs become more complicated and with more DOFs, it is getting harder to control and 
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trajectories of the ankle and COG and solve inverse kinematics in order to achieve real-time 
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ankle of the swing leg is given relative to the position of the ankle of the fixed leg in order to 
guarantee that the swing leg is in a proper position that it will not hit the fixed leg and touch 
the ground. The trajectories of the end-effectors planned with desired constraints are 
inputted to solve inverse kinematics, as shown in Fig. 1. 
Many researchers have proposed the solutions to the problem while solving Jacobian 
linearized inverse kinematics. They include the damped least square method (DLS) 
(Wampler, 1986) and the robust damped least square method (RDLS) (Nakamura & 
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Fig. 1. Solving robot walking gait using inverse kinematics 

Hanafusa, 1986), which are used for singularity avoidance. The weighted least-norm 
method (WLN) (Chan & Dubey, 1995) is used for joint limit avoidance. These two methods 
(RDLS and WLN) are used in this chapter to improve the performance of the algorithm. 
Many other methods are proposed, such as the selectively damped least squares methods 
(SDLS) (Buss & Kim, 2004), the gradient projection method (GPM) (Liegeois, 1997) and the 
extended Jacobian method EJM (Klein et al.,1995; Tevatia & Schaal, 2000). 
On the other hand, the target positions that are one-by-one inputted to solve the inverse 
kinematics should also be planned appropriately. If the target positions are not planned 
close enough, many iterations will be wasted since the end-effectors are not in the desired 
positions and directions. Non-smooth target positions make the robot’s joints oscillate. 
Regarding the generation of the trajectories, many methods were proposed, such as 
Lagrange interpolations, cubic spline, conventional tension spline (CTS) and modified 
tension spline (MTS) (Huang & Liu, 2005). Each method has its limitation. In this chapter, 
MTS is applied in order to generate smooth trajectories in position, velocity, acceleration, 
and jerk. 

2. Robot kinematics 
2.1 Inverse kinematics with pseudo inverse 
The pseudo inverse method and two improving methods, RDLS, WLN, are used in this 
chapter to construct the inverse kinematics solver. By using forward kinematics method 
(DH method), the relationship between the position of the end-effectors and the joint angles 
can be found as Equation (1). 

 ( )x f θ=  (1) 

The Jacobian linearized relationship between the velocities of the end-effectors and the joint 
angles are defined as Equation (2). 

 x Jθ=  (2) 
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where J denotes the Jacobian matrix; if there are redundant DOFs in the system, J is a 
rectangle matrix. Pseudo inverse method can be used to solve θ  with given x : 

 J xθ +=  (3) 

2.2 Robust damped least squares methods (RDLS) 
If the determinant of JJT is zero or close to zero, singularity occurs. In order to avoid the 
singularity, robust damped least square method (RDLS) is applied. The idea of the damped 
least square method (DLS) is to minimize 2 2|| || || ||x Jθ α θ− + , the sum of the square of 
the residual error and the joint velocities. Here α is a positive damping factor. Thus, the 
pseudo inverse with DLS method is shown as Equation (4). 

 1( )T T
mJ J JJ Iα+ −= +  (4) 

where Im is an identity matrix with the same dimension as JJT matrix. The damping factor α 
helps to avoid singularity, but it also affects the solved θ . Thus, α should not be applied at 
nonsingular configurations. Nakamura et al. proposed a robust DLS method to solve this 
problem. A factor h is defined as Equation (5). 

 ( ) det( )Th JJ=θ  (5) 

When h approaches to zero, it is getting closer to singularity. Then α is adjusted 
automatically with Equation (6). 

 0(1 ),
0,

s sh h if h h
otherwise

α
α

⎧ − <⎪= ⎨
⎪⎩

 (6) 

where hs denotes the threshold value, α0 is the value of damping factor at singular points. 
With the equation above, α is effective only when the configuration is near singular 
configuration. 

2.3 Weighted least-norm method 
The weighted least-norm method is designed from the idea of null space. The general 
solution of θ  for solving inverse kinematics can be written as Equation (7). 

 ( )J I J J+ += + −θ x φ  (7) 

where φ is an arbitrary vector. J x+  is the particular solution, and (I-J+J)φ is the 
homogeneous solution. Joint limit avoidance is important for humanoid robots in order to 
act like human beings. A weighted least-norm (WLN) solution based scheme for avoiding 
joint limits is proposed by Chan & Dubey. In this method, a performance criterion H(θ) is 
defined as Equation (8). 
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where J denotes the Jacobian matrix; if there are redundant DOFs in the system, J is a 
rectangle matrix. Pseudo inverse method can be used to solve θ  with given x : 

 J xθ +=  (3) 

2.2 Robust damped least squares methods (RDLS) 
If the determinant of JJT is zero or close to zero, singularity occurs. In order to avoid the 
singularity, robust damped least square method (RDLS) is applied. The idea of the damped 
least square method (DLS) is to minimize 2 2|| || || ||x Jθ α θ− + , the sum of the square of 
the residual error and the joint velocities. Here α is a positive damping factor. Thus, the 
pseudo inverse with DLS method is shown as Equation (4). 
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helps to avoid singularity, but it also affects the solved θ . Thus, α should not be applied at 
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problem. A factor h is defined as Equation (5). 
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With the equation above, α is effective only when the configuration is near singular 
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The weighted least-norm method is designed from the idea of null space. The general 
solution of θ  for solving inverse kinematics can be written as Equation (7). 
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where φ is an arbitrary vector. J x+  is the particular solution, and (I-J+J)φ is the 
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act like human beings. A weighted least-norm (WLN) solution based scheme for avoiding 
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When any joint approaches its limit, the value of H(θ) grows very fast, and so is its partial 
differentiation ∂H(θ)/∂θi. Thus, the weighting matrix is defined as Equations (9) and (10). 
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The WLN method can be expressed as Equations (11) and (12). 

 1/2
WJ JW −=  (11) 

 1/2 1/2( )W WW J W J J− + − + += + −θ x x  (12) 

2.4 RWLN method 
The RWLN method (Yu, 2006) is the combination of the RDLS method and the WLN 
method. The equation used to solve inverse kinematics with the RWLN method is shown as 
Equations (13) and (14). 

 1/2 1/2
, ,( )W WW J W J Jα α α

− + − + += + −θ x x  (13) 

 1
, ( )T T

W W W W W mJ J J J Iα α+ −= +  (14) 

It can avoid the singularity of J+, and can also avoid the singularity of WJ+  with auto- 
adjusting α and α W. 

3. Gait generation algorithm 
The solving process of inverse kinematics is described in the following. 
1. The D-H forward kinematics of each limb and head is constructed independently. All 

limbs have the same base point which is at the middle point of the two hips. 
2. Determine the trajectory of the end-effector of the swing leg using MTS method and the 

trajectory of the COG using preview control method (Kajita et al., 2006). The 
relationship between the swing leg and fixed leg is discussed in the following 
discussion “Relative Input”. 

3. Construct the conventional Jacobian matrix and the COG Jacobian matrix. 
4. Construct the proposed F-Jacobian matrix and then combine it into the conventional 

Jacobian matrix. 
5. Solve inverse kinematics using the proposed F-Jacobian method with the inputs, the 

trajectories of the swing leg and COG. 
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3.1 Relative input 
If the trajectories of the end-effectors of the swing leg and the fixed leg are assigned 
independently, the swing leg may touch the fixed leg or even be lower than the fixed leg to 
break the balance of the robot if there is no any other good checking method to check it. So 
the position of the ankle of the swing leg should be dependent upon the position of the 
swing leg, as shown in Fig. 2 and Equation (15). 

 ,swing fixed n bl traj ir r R r r= + +  (15) 

 

 
Fig. 2. Relative input trajectory of the swing leg 

where swingr  denotes the position vector from “Base” to the ankle of the swing leg, fixedr  
denotes the position vector from “Base” to the ankle of the fixed leg, blr  denotes the position 
vector from the ankle of the fixed leg to the ankle of the swing leg, Rn denotes the rotation 
matrix that expresses the rotation between the base coordinate frame and the ground. The 
magnitude of blr  is a constant. And the ,traj ir  denotes the i-th planned trajectory point of the 
ankle of the swing leg. It can control how the swing leg moves in each stride. The Rn is not 
an identity matrix when the orientation of the robot is not the same as the world 
coordinates. In this chapter, in order to simplify the system, the orientation of the robot is 
the same as the world coordinates and the Rn is an identity matrix. With dependent position 
input of the ankle of the swing leg, we can give a trajectory easily that the swing leg will not 
lower than the fixed leg to avoid breaking the balance of the robot and touching the fixed leg. 

3.2 Modified Tension Splines (MTS) 
It is also important that we should input smooth and well-defined trajectories to our system. 
MTS method is based on conventional tension splines (CTS), and the tension factor can be 
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When any joint approaches its limit, the value of H(θ) grows very fast, and so is its partial 
differentiation ∂H(θ)/∂θi. Thus, the weighting matrix is defined as Equations (9) and (10). 
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3.2 Modified Tension Splines (MTS) 
It is also important that we should input smooth and well-defined trajectories to our system. 
MTS method is based on conventional tension splines (CTS), and the tension factor can be 
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arbitrarily assigned in this method. MTS method also generates trajectories with smooth 
position, velocity, acceleration and jerk. Trajectory planned by MTS is defined as Equation (16). 
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where hi = ti+1-ti, the time interval of the i-th CTS segment, αij denotes the tension factor of 
the ith CTS segment. The acceleration ijq  can be found as Equation (17). After solving the 

ijq , the knots q can be found by Equation (16). 
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3.3 Fixed Leg Jacobian (F-Jacobian) 
After constructing the DH parameters, the Jacobian matrix can be found by the cross 
product method, and then the limbs and the head can be controlled independently with the 
Jacobian matrix. The ankles, the fingertips and the head are chosen as end-effectors. But if 
we solve inverse kinematics of the limbs and the head of the robot independently, it is very 
difficult to decide where the positions of the end-effectors should be because DH forward 
kinematics method constructs the joint positions and orientations in its own coordinates 
instead of the world coordinates, and all positions of the end-effectors in the world 
coordinates are influenced by the movements of the fixed leg. Equation (18) describes the 
conventional Jacobian matrix that is used while solving inverse kinematics independently. 
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 (18) 

where d  denotes the vector from the current end-effector position to the desired end-
effector position in its own coordinates; LL, RL, LA, RA, and H denotes left leg, right leg, left 
arm, right arm, and head, respectively. If we just want to control the limbs and the head of 
the robot independently, it is enough to solve inverse kinematics with the equation above in 
one iteration if d  is given appropriately (not too large). 
In fact, it is not enough to control the end-effectors independently. Relative input should be 
used to prevent the swing leg from hitting the fixed leg or touching the ground. The velocity 
of the ankle of the fixed leg in the world coordinates is zero because it is fixed on the 
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ground. The velocities of all other end-effectors in the world coordinates can be found by 
subtracting the velocity of the fixed leg from them. In world coordinates, the velocities of the 
end-effectors are shown in Equation (19) – (21). 
 

 , ,0, 0fixed world fixed worldV ω= =  (19) 
 

 , , , , , ,,  swing world swing local fixed local swing world swing local fixed localV V V ω ω ω= − = −  (20) 
 

 , , , , , ,,  other world other local fixed local other world other local fixed localV V V ω ω ω= − = −  (21) 

 

where fixedV  and fixedω  denote the velocity and the angular velocity of the fixed leg; the 
subscript “world” denotes  the variable is in the world coordinates, and the subscript “local” 
denotes  the variable is in its own body-fixed coordinates. 
Since the “Base” of the legs and arms are the same, the Jacobian matrix expressing the 
influence of the fixed leg to all other end-effectors can be calculated as follows. It is 
calculated using the cross product method, as shown in Equation (22) – (24). 
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It is called “F-Jacobian” (Fixed Leg Jacobian) method. Note that RotationalJ  is given as 
Equation (23). 

 ,1 ,2 , ,... ...Rotational e e e j e nJ ω ω ω ω⎡ ⎤= −⎣ ⎦  (23) 

 

where n denotes the total number of joints of the fixed leg, ωe,j are unit normal vectors of the 
joints of the fixed leg. The minus sign is multiplied since when a joint in the fixed leg rotates 
clockwise in its coordinates, the body rotates counterclockwise in the world coordinates. On 
the other hand, the JTranslational  is calculated as Equation (24). 
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where , _j F end effr →  denotes the vector from the j-th joint of the fixed leg to the end-effector 
affected by the movement of the motion of the fixed leg. 
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arbitrarily assigned in this method. MTS method also generates trajectories with smooth 
position, velocity, acceleration and jerk. Trajectory planned by MTS is defined as Equation (16). 
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where hi = ti+1-ti, the time interval of the i-th CTS segment, αij denotes the tension factor of 
the ith CTS segment. The acceleration ijq  can be found as Equation (17). After solving the 

ijq , the knots q can be found by Equation (16). 
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3.3 Fixed Leg Jacobian (F-Jacobian) 
After constructing the DH parameters, the Jacobian matrix can be found by the cross 
product method, and then the limbs and the head can be controlled independently with the 
Jacobian matrix. The ankles, the fingertips and the head are chosen as end-effectors. But if 
we solve inverse kinematics of the limbs and the head of the robot independently, it is very 
difficult to decide where the positions of the end-effectors should be because DH forward 
kinematics method constructs the joint positions and orientations in its own coordinates 
instead of the world coordinates, and all positions of the end-effectors in the world 
coordinates are influenced by the movements of the fixed leg. Equation (18) describes the 
conventional Jacobian matrix that is used while solving inverse kinematics independently. 
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where d  denotes the vector from the current end-effector position to the desired end-
effector position in its own coordinates; LL, RL, LA, RA, and H denotes left leg, right leg, left 
arm, right arm, and head, respectively. If we just want to control the limbs and the head of 
the robot independently, it is enough to solve inverse kinematics with the equation above in 
one iteration if d  is given appropriately (not too large). 
In fact, it is not enough to control the end-effectors independently. Relative input should be 
used to prevent the swing leg from hitting the fixed leg or touching the ground. The velocity 
of the ankle of the fixed leg in the world coordinates is zero because it is fixed on the 
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ground. The velocities of all other end-effectors in the world coordinates can be found by 
subtracting the velocity of the fixed leg from them. In world coordinates, the velocities of the 
end-effectors are shown in Equation (19) – (21). 
 

 , ,0, 0fixed world fixed worldV ω= =  (19) 
 

 , , , , , ,,  swing world swing local fixed local swing world swing local fixed localV V V ω ω ω= − = −  (20) 
 

 , , , , , ,,  other world other local fixed local other world other local fixed localV V V ω ω ω= − = −  (21) 
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It is called “F-Jacobian” (Fixed Leg Jacobian) method. Note that RotationalJ  is given as 
Equation (23). 
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where n denotes the total number of joints of the fixed leg, ωe,j are unit normal vectors of the 
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where , _j F end effr →  denotes the vector from the j-th joint of the fixed leg to the end-effector 
affected by the movement of the motion of the fixed leg. 
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Fig. 3. Build the F-Jacobian 
The F-Jacobian matrix is written as Equation (25). 
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 (25) 

where Jf→X denotes the F-Jacobian matrices; the subscript “X” denotes the end-effector 
affected by the movement of the joints of the fixed leg, such as the swing leg and the 
fingertips. 
Recall the Equation (15). 

 ,swing fixed n bl traj ir r R r r= + +  (15) 

The 3-by-1 column vector swingd  is given by: 

 , ,swing swing next swing nowd r r= −  (26) 

 
To achieve the desired position of the fixed leg, the fixedr  term converges to the target 
position after iterations of inverse kinematics algorithm. The swingd  term also changes with 
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the fixedr  term. Here the F-Jacobian method can be used to describe and compensate the 
effect of the motion of the fixed leg in the Jacobian matrix in order to reduce the total 
iterations while solving inverse kinematics. Equation (27) can be obtained by multiplying 
the second row and the θ  column of the matrices in Equation (25) as 

 swing f s fixed swing swingd J Jθ θ→= +  (27) 

The f s fixedJ θ→  term means the effect of the fixed leg in the world coordinates, and serves as 
the compensation term. The swing swingJ θ  term means the affection of the joints of the swing 
leg itself. Without the compensation of F-Jacobian term, the end-effectors will oscillate and 
then converge to the desired position slower. 

3.4 COG Jacobian (Center of Gravity Jacobian) 
The position, velocity and acceleration of COG are highly related with whether the robot 
falls or not. The position of COG can be computed by averaging the sum of the product of 
the linkage masses and their position vectors, as shown in Equation (28). Note that the COGr  
is a 3-by-1 vector described in Cartesian coordinates. 

 ,
1 1

1 n n

COG i m i i
i i

r m r m
n = =

= ⋅∑ ∑  (28) 

where “Base” denotes the start point of forward kinematics, ,m ir  denotes the vector from 
base to the COG of linkage i , and mi denotes the mass of linkage i. 
 

 
Fig. 4. Position of the COG of a linkage 

When a joint rotates, only parts of the whole body are rotated, while the others are not 
rotated. Separating the rotated parts and the fixed parts (without rotating), we obtain 
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 , , , ,
joint

COG a h a h ua k ua k
h k j

M r m r m r
=

⎛ ⎞
⋅ = ⋅ + ⋅⎜ ⎟

⎝ ⎠
∑ ∑  (29) 

where M denotes the total mass of the robot, subscript “a” denotes the parts that are affected 
by the rotation, subscript “ua” denotes the parts that are unaffected by the rotation, the ma,h 

and mua,k denote the mass that are affected and unaffected by the joint j, and the vectors ,a hr  
and ,ua kr  denote the position of the COG of each affected part and each unaffected part. The 
equation can also be written as  

 ( ) , , , ,jointCOG a a ua ua a j a j ua j ua jj
M r M r M r M r M r

=
⋅ = ⋅ + ⋅ = ⋅ + ⋅  (30) 

where Ma,j denotes the total mass of the parts affected by joint j, and Mua,j denotes the total 
mass of the parts unaffected by joint j, ,a jr  and ,ua jr  denote the position vector of the COG 
of the affected and unaffected parts. Note that the members of affected and unaffected parts 
change with different joint j, and they also depend upon each different control system. The 
position change of COGr  caused by the rotation of joint j can be approximated as  

 , ,
, , ,

a j ua j
COG j a j ua j

M M
r r r

M M
Δ = ⋅ Δ + ⋅ Δ  (31) 

Since uar  is unaffected by the rotation, uarΔ  is always equal to zero. ,COG jrΔ  denotes the 
displacement of the whole robot’s COG caused by the rotation of the j-th joint. Thus, the 
COG Jacobian can be obtained as 

 ,
, , ,

a j
COG j a j COG j j

M
r r J

M
θΔ = Δ = ⋅  (32) 

where the JCOG,j denotes the COG Jacobian of joint j, jθ  denotes the angular speed of joint j.  
The COG Jacobian matrix of the joints on the limbs except the joints on the fixed leg can be 
found as Fig. 5 and Equation (33). 

 ω →= ×, ,
a

COG j e j c j
MJ r
M

 (33) 

where ,a jω  denotes the unit vector along the z-direction of the j-th axis, c jr →  denotes the 
vector from the j-th joint to the COG of the affected parts. We can also use this concept to get 
the COG Jacobian of the fixed leg, as shown in Fig.6 and Equation (34). 

 , , ,
a

COG j COG j j e j c j j
Mr J r
M

θ ω θ→Δ = ⋅ = − × ⋅  (34) 

In the coordinates of the fixed leg, the rotation of a joint rotates the parts that are lower than 
it. But in the world coordinates, the rotation causes the parts higher than the joint to rotate 
with the same angular velocity in negative direction. 

 ω →= − ×, ,
a

COG j a j c j
MJ r
M

 (35) 
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Fig. 5. Construction of COG Jacobian—swing leg 
 

 
Fig. 6. Construction of COG Jacobian—fixed leg 

The Jacobian matrix with COG Jacobian can be written as  
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where fixedd  is a 3-by-1 matrix, it controls the three orientations of the fixed leg. The other 
three DOFs of the fixed leg are used to control the position of the COG, COGd  is a 3-by-1 
matrix that controls the position of COG, JX→C denotes the COG Jacobian, the “X” denotes 
the limbs that their movements affect the position of the COM. 

4. Simulation 
All the input trajectories of the swing leg in the simulations below are generated with 
“Relative input” method, and the position of the swing leg is given relative to the fixed leg 
in order to guarantee the swing leg is in a proper position, as shown in Fig. 7. The COG 
trajectory is generated smoothly and fits the COG/ZMP (zero moment point) inverted 
pendulum constraint with the preview control method, as shown in Fig. 8. 
 

 
Fig. 7. Planned trajectory of the ankle of the swing leg 

 

 
Fig. 8. Planned trajectory of the COG 

The inputs above are inputted to the robot walking system in the simulation. The 
computation times of the same robot model with conventional Jacobian matrix and 
proposed F-Jacobian matrix will be compared. Each gait configuration should be solved as 
soon as possible in order to gain more CPU resources in each time period, and then each gait 
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configuration will be sent to the robot within the desired time interval to control the robot 
walking speed. Human walks about 90 to 110 steps in a minute. It means 0.55 to 0.67 second 
per step. The robot should walk faster than at least 1.0sec/step to simulate human walking. 
The simulation results are shown below. All the simulations below are done with a personal 
computer equipped with Intel Core2Duo E6300 1.83GHz and 2GB RAM. 
 

 
Fig. 9. Simulation results of computation time 
 

 
Fig. 10. Simulation results of iterations 
The graphics above show the computation time and the iterations per step of the pseudo 
inverse method with and without F-Jacobian method. Step 1 and step 2 are initial steps, so 
they are with different computation time and iterations per step. The red bar is the 
0.55sec/step reference line of human walking speed. Inverse kinematics with F-Jacobian 
solves the planned 9 steps in 3.07 second  and 232 iterations (average 0.341 second and 25.8 
iterations), and inverse kinematics without F-Jacobian solves the planned 9 steps in 4.62 
second and 677 iterations (average 0.513 second and 75.2 iterations). Clearly, the proposed 
method, F-Jacobian, saved 33.55% computation time and 65.73% iterations per step. Except 
initial steps, each step contains 27 configurations. In the 27 configurations, the first three and 
last three points need no iteration because they are at the same position. The proposed 
method, F-Jacobian, can solve each configuration in only one computation when the 
acceptable error is 0.2mm (0.0712% of the length of legs). “Acceptable error” means the 
acceptable position error value when solving inverse kinematics. If the position error is 
smaller than the acceptable error, the next trajectory knot will be inputted to the inverse 
kinematics solver. If the position error is still larger than the acceptable error, the same 
trajectory knot will be inputted to the solver again. Since the input to the inverse kinematics 
are close and smooth enough, the proposed method can get smooth trajectories and solve 
each configuration in one iteration. But for the same input, inverse kinematics without F-
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Jacobian makes the joints oscillate and needs about 3 iterations to solve one configuration. 
Fig. 11 and Fig. 12 show the solved trajectories of the left ankle (end-effector) with and 
without F-Jacobian. 
 

 
Fig. 11. Solved trajectory with F-Jacobian 

 

 
Fig. 12. Solved trajectory without F-Jacobian 

Without F-Jacobian, the solved trajectories are not all useable. Only points that are in the 
acceptable error range are useable. We can reduce the number of useless points with F-
Jacobian method. The robot walks from 0 to -400mm in the simulation. Only some 
configurations in the initial steps are not solved in one computation since the home 
configuration of the robot is near singularity. After initial steps, the robot has bent its knees, 
and hence keeps the robot away from the singular configurations. All the configurations after 
initial steps are solved in one computation. Fig.13 and Fig.14 show the position error after each 
inverse kinematics computation (conventional Jacobian vs. the proposed F- Jacobian). 
In the figures, the max error of conventional Jacobian method is about fifteen times larger than 
F-Jacobian method. Fig.15 shows the acceptable error versus the total iterations of the inverse 
kinematics computation (for 232 trajectory knots) with and without F-Jacobian method. 
From the figure, we can see the number of total iterations for conventional Jacobian method 
grows much faster than the F-Jacobian method when we choose the acceptable error from 
2mm to 0.0002mm. 
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Fig. 13. Position error--conventional Jacobian 
 

 
Fig. 14. Position error F-Jacobian 
 

 
Fig. 15. Acceptable error vs. total  iterations 
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Fig. 14. Position error F-Jacobian 
 

 
Fig. 15. Acceptable error vs. total  iterations 
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5. Conclusions 
Cooperation of the swing leg and the fixed leg is important for a humanoid robot. In this 
chapter, the position of the swing leg is dependent upon the position of the fixed leg. In 
order to solve inverse kinematics faster, F-Jacobian method is applied. The F-Jacobian 
method can compensate the displacements of the other end-effectors that are caused by the 
rotation of each joint in the fixed leg. F-Jacobian method can save computation time and 
generate knots more smoothly and effectively than the conventional Jacobian method. F-
Jacobian method can be extended to construct COG Jacobian and other Jacobian matrices in 
order to describe and compensate the effect of the fixed leg. Simulations are done and justify 
that the F-Jacobian has better performance than conventional Jacobian method. 

6. References 
Buss, S. R. & Kim, J. S. (2004). Selectively damped least squares for inverse kinematics. 

Journal of Graphics Tools, Vol. 10, pp. 37-49 
Chan, T. F. & Dubey, R. V. (1995). A Weighted Least-Norm Solution Based Scheme for 

Avoiding Joint Limits for Redundant Joint Manipulators. IEEE Trans. On Robotics 
and Automation, Vol. 11, No. 2, pp. 286-292 

Huang, H. P. & Liu, C. P. (2005). A Novel Trajectory Optimization and Workspace 
Boundary Singularity Solution for Industrial Robots. Proceedings of Automation the 
Eighth International Conference on Automation Technology Conference, pp. 1-6 

Klein, C. A., Caroline, C. J. & Ahmed, S. (1995). A New Formulation of the Extended 
Jacobian Method and its Use in Mapping Algorithmic Singularities for 
Kinematically Redundant Manipulators. IEEE Trans. on Robotics and Automation, 
Vol. 11, No. 1, pp. 50-55 

Kajita S., Morisawa M., Harada K., Kaneko K., Kanehiro F., Fujiwara K. & Hirukawa H. 
(2006). Biped Walking Pattern Generator allowing Auxiliary ZMP Control. 
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2993-2999 

Liegeois, A. (1997). Automatic Supervisory Control of the Configuration and Behavior of 
Multibody Mechanisms. IEEE Trans. systems, Man, and Cybernetics, Vol. 7, No. 12 

Nakamura, Y. & Hanafusa H. (1986). Inverse Kinematics Solutions with Singularity 
Robustness for Robot Manipulator Control. ASME Journal of Dynamic Systems, 
Measurement and Control, Vol. 108, pp. 163-171 

Tevatia, G. & Schaal S. (2000). Inverse Kinematics for Humanoid Robots. Proc. IEEE Int. Conf. 
Robotics and Automation, pp. 294-299 

Wampler, C. W. (1986). Manipulator inverse kinematic solutions based on vector 
formulations and damped least squares methods. IEEE Transactions on Systems, 
Man, and Cybernetics, Vol. SMC-16, No. 1, pp 93-101 

Yu, S. W. (2006). Walking Pattern Analysis and Control of a Humanoid Robot. Master 
Thesis, Department of Mechanical Engineering, National Taiwan University, pp. 
28-30 

 

15 

Walking Pattern Generation and Stabilization of 
Walking for Small Humanoid Robots 

Yogo Takada, Tomoki Tajiri, Kiyoshi Ogawa and Tomoyuki Wakisaka 
Osaka City University 

Japan 

1. Introduction 
Declining birthrate and a growing proportion of elderly people are closed up as social issues 
in Japan. Especially, a growing proportion of elderly people is seen as an issue in nations of 
Europe and North America and so on as well as Japan. New labors engaging in the life 
support and the nursing for the elderly person will need in the future. To supplement the 
lack of the manpower, the research that applies the robot technology to the welfare field is 
important. Especially, because the shape of a humanoid robot looks like human, the person 
who receives nursing can be relieved. Besides, a humanoid robot can act under person's life 
environment, and can use the tool that the person uses. In addition, it is possible to avoid 
colliding with something put on the ground because the biped robot does not move with 
wheels. The biped robot can be used even in the environment including steps and 
ruggedness where robots with wheels cannot be used. In a word, the biped humanoid robot 
is extremely effective as the robot that acts in the environment where we live in daily life. 
However, it is necessary to prevent the robot from falling in the case of two-legged 
locomotion. Moreover, it is also necessary to keep controlling while the robot is only 
standing with stable posture. Various techniques about the walking of a humanoid robot 
have been devised up to now in recent years, and the walking pattern generation of a 
humanoid robot with complex dynamics has become possible. 
On the floor where information about the height of the small step was obtained beforehand, 
steady dynamic walking was achieved by using such as the technique of linear inverse 
pendulum model where the humanoid robot was expressed with an inverted pendulum of 
simple single-mass system, and truck model with preview control of ZMP trajectory (Kajita, 
2005, 2009). However, in the case that the robot walks in a real environment, it is difficult to 
obtain the detailed information on the floor beforehand and give the information to the 
biped robot at any time. There are research examples (Kajita & Tani., 1996) of making the 
robot measure the shape of the road with sensors while walking. But, it is necessary to 
install the highly accurate sensor in the robot. The road where the robot walks is not only a 
smooth road. A small ruggedness and a gradual inclination are contained in many cases. 
However, it is impossible to record information of detailed shape on the ruggedness onto 
the robot beforehand. 
A biped robot KHR-2HV manufactured by Kondo Kagaku Co., Ltd. in Japan and HOAP-1 
manufactured by Fujitsu Automation Ltd. in Japan were used in this study as humanoid 
robots. The basic walking experiment was conducted by using KHR-2HV. Then, another 
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biped robot HOAP-1 was used in the attempt of steady gait on the floor including unknown 
ruggedness. ZMP (Zero Moment Point) that shows dynamic stability is used in a lot of biped 
robots, and it is important to plan the position trajectory of the ankles and waist beforehand 
when walking. The locomotory controller for walking, running, swimming and flying 
animals is based on a Central Pattern Generator (CPG). Models of CPGs have been proposed 
and many roboticists have adapted these models for the control of robots (Miyakoshi et al., 
2000). 
In this study, first, by using KHR-2HV, posture control based on ZMP was attempted and 
the walking posture was stabilized. A simple nervous oscillator circuit was composed based 
on CPG and the reflex. We tried to stabilize the walking state with posture control by using 
ZMP, after the walking pattern was generated with CPG.  
Next, by using HOAP-1, we tried the dynamic walking of the biped robot when there is 
ruggedness on the floor. Dynamic walking is more efficient than static walking. But, the 
dynamic walking is not steady when ruggedness exists on the floor. Therefore, various devices 
need to control. The walking pattern composed of each joint angle is also necessary for the 
dynamic walking of biped robot. Linear inverse pendulum mode is used to make the walking 
pattern. And, the position-based impedance control was conducted to soften the impact 
caused by the collision of a rugged floor and foot. In this impedance control, the signals from 
the force sensors installed on the soles were used. In addition, the upper part of the robot was 
controlled by using the output signals of the gyro sensor and acceleration sensor to correct the 
inclination when the posture inclined. We verified whether the robot was able to walk stably 
on the road on which there was unknown ruggedness by applying these methods to the 
control of robot by using a physical simulator and an actual robot HOAP-1.  

2. Stabilization of static walking by use of CPG 
Walking of biped robots greatly is distinguished between static walk and dynamic walk. 
The static walk is described here. At the present time, ZMP (Zero Moment Point) that shows 
dynamic stability is used in a lot of robots, and the trajectory plans of walking are studied. 
Moreover, on the other hand, the robots walk with motion generation techniques of rhythm 
pattern generator CPG (Central Pattern Generator) and the reflex motion by the sense 
referring creature models.  
In this study, first, only the ZMP was used to control the posture. Then, the stabilization 
with ZMP and the gait pattern generated with the CPG and reflex motion were combined to 
achieve steadier walking. 

2.1 Small humanoid robot 
Robot KHR-2HV manufactured by Kondo Kagaku Co. was used for this study. The height is 
0.35 m and weight is 1.26 kg. This robot is shown in Fig. 1. 
The number of degrees of freedom in the upper part of the body is 7, and that of legs is 10, 
and the total is 17. The force sensors (made of Inaba Rubber Co, Ltd.) were arranged in each 
of four corners of the sole of foot, and the back of humanoid robot was equipped with RM-
board made of iXs Research Corp. as a controller.  
For the simulation of robot motion, open architecture kinetic simulator OpenHRP (Kanehiro 
et al., 2004), which was an integrated software development environment for humanoid 
robotics, was used. The simulation model is based on KHR-2HV with the above-mentioned 
equipments. The sampling period of simulation in this study was set to 140 ms. 
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Fig. 1. Photographs of humanoid robot KHR-2HV 

2.2 Motion control technique of humanoid robot 
The motion control is necessary in order to make the robot KHR-2HV walk. Figure 2 shows 
the method of the motion control for the robot. 
 

 
Fig. 2. Motion control technique of humanoid robot 

It is important to set target positions of toes and the center of a waist part so as to make the 
robot move ideally. The target angle of each joint is obtained with the reverse kinematics. 
Then, each joint is controlled to target joint angle with motor servo control. Consequently, 
the toes and waist operate ideally, and the stable walking of the robot is achieved. However, 
in the simulation, the servo control of each motor was not considered. It was assumed that 
each joint moves in the sampling period to the target angle in this simulation. 

2.3 Walking control using ZMP 
ZMP is a point on the floor surface where the inertia force and moment produced by 
gravitation become zero, and it deeply relates to the cause of a tumble while the robot is 
walking. ZMP is known to be equivalent to a central point of the reaction force from the 
floor. In this study, ZMP was obtained as the central point calculated from force sensors 
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installed on the sole of foot. The ZMP calculated from the value of the sensor was used for 
the posture control of the robot shown in Fig. 3. This control system is two degree of 
freedom PID controller that makes ZMP obtained from the force sensors approach to the 
target trajectory of robot. The heaviest waist in robot is controlled based on the value of 
error between the position of ZMP ZMPp  while walking and the target of ZMP ZMPp . 
Because ZMP ZMPp approaches the target ZMP, the robot stabilizes its posture. The renewal 
amount of the waist position waistΔp is given by Equation 1, 
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where, 
waist

nΔp is renewal amount of waist position at the time n ΔT⋅ , ΔT is sampling period, 

ZMP

np is target ZMP at n ΔT⋅ ,
ZMP

np is measured value of ZMP at n ΔT⋅ . 
This posture controller was mounted on the robot, and the walking simulation was 
conducted. The targeted value of right and left foot toes is given beforehand as a time 
function. 
 

 
Fig. 3. Posture controller for the robot using ZMP 
Figures 4 and 5 show the appearances and trajectories of the walking robot on the 
simulation. Fig. 4 displays the robot walking for ten seconds from on the left to lower right 
at intervals of one second. Moreover, the X direction shows travelling direction of robot, and 
the Y direction shows the lateral direction of robot respectively. The robot did not fall as a 
result of mounting the posture controller in which the waist center position was controlled 
to make ZMP approach to the target ZMP trajectory. The robot kept walking stably. The 
ZMP follows the target in both X direction and Y direction. It is effective in the stabilization 
of the biped robot walking to operate the heaviest part (waist in this case) in robot. 
Though we desperately adjusted the parameters in the posture controller, the parameters 
that showed a quicker response were not able to be obtained. Therefore, the walking cycle of 
robot could not shorten any further. Moreover, the waist position of the direction of X has 
swung to about 15 mm for the period while the idling leg is exchanged with the supporting 
leg because this control method relies on only the ZMP when the position of the waist is 
controlled. 
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Fig. 4. Appearance of robot walking with posture control by using ZMP 
 

 
Fig. 5. Trajectories of robot walking with posture control by using ZMP 

2.4 Walking pattern generation used CPG and stabilization of walking 
2.4.1 Nervous oscillator 
In this study, we used a nervous oscillator (Matsuoka, 1985, 1987) composed of adaptable 
nerve elements (neurons) as the motion generation technique of creature model. The 
theoretical concept of adaptable nerve elements is given as the following Equations 2 to 5, 
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 ( 0, , 1)ni N= −…   (6) 

where, nN is the number of nerve elements, iu is neuron which shows internal state of nerve 
element, affixing character i  indicates the nerve element of the i th, iv is variable that shows 
adaptive effect, iy is output, is is input signal from outside sensor, iy� is variable that shows 
control from other nerve elements, uiτ is time constant concerning iu  in Equation 2, viτ is 
time constant concerning iv in Equation 3, iβ is variable that shows frequency where 
adaptation is caused, 0

iu is steady input, ijw is coupling coefficient from nerve element j th to 
nerve element i th. When ijw is positive, iy� works as an inhibitory signal. And, when ijw is 
negative, iy� works as an excitatory signal. 
The nervous oscillator has the basic structure where adaptable nerve elements that united to 
control the other nerve elements mutually. The basic structure is shown in Fig. 6. Because 
the CPG model with this nervous oscillator changes flexibly the rhythm pattern according to 
the input signal that come from the outside, the flexible walking can be achieved. Figure 7 
shows the behaviour of basic nervous oscillator of Fig. 6. Here, 0

iu =2.5. 
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2.4.2 Walking pattern generation used CPG 
Figures 8 and 9 show the nervous oscillator circuit used for the robot walking. The output 
signals 0y , 1y of the nervous oscillator composed of 0u , 1u in main generator in Fig. 8 were 
used for the position control of the waist center for the lateral direction. In a word, the 
walking rhythm of robot was generated with CPG. The outputs 2y , 3y of the nerve elements 

2u , 3u uniting main generator with excitatory connection were used for the target height of 
right and left legs’ toe. These nerve elements were controlled by the input step signals 

2s , 3s . Working of these nerve elements has improved timing of exchanging the supporting 
leg and the idling leg. Therefore, the robot steps (does walking motion in a same place) 
stably. 
 

 
 

Fig. 8. CPG model for the robot stepping stably 

The nervous oscillator composed of 4u , 5u  in Fig. 9, which generates the output signals 
4y , 5y reacting to the input signals 4s , 5s from force sensors on the sole of the foot, is used for 

the stepping forward. The robot judges whether the sole of foot touches the ground by using 
the force sensors. The judged result enters the nervous oscillator as an input signal if the sole 
of foot touches the ground. The nerve element becomes a state of excitation when the signal 
enters, and the output signal comes out as reflex action. The robot steps forward by using 
the signal come from the nervous oscillator according to the contact situation with the 
ground. 
 
 

 
 

Fig. 9. Reflex model for the robot walking forward 

Figures 10 and 11 show the appearances and trajectories of the walking robot with CPG on 
the simulation. Periodic walking operation was achieved based on the rhythm generated by 
the CPG model. In addition, the robot was able to walk without falling down by adjusting 
the timing in which the idling leg was exchanged for the supporting leg by external inputs 
according to ZMP. Moreover, the motions of ZMP and waist for the travelling direction in 
this method were calmer than the method in the case that only ZMP signal was used with 
PID control. Even if the walking cycle shortened, a steady walking could be maintained. 

4s 5s
4u 5u

Neuron 
Excitatory connection 
Inhibitory connection 
External input 

is
2s

3s

0u 1u

2u 3u

0input Steady iu

generator
Main

generator
Stepping



 Biped Robots 

 

304 

 ( 0, , 1)ni N= −…   (6) 
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Fig. 10. Appearance of robot walking with CPG and posture control by using ZMP 
 

 
 

 
 

Fig. 11. Trajectories of robot walking with CPG and posture control by using ZMP 

2.4.3 Walking experiment by using KHR-2HV 
The CPG model used for the walking simulation was applied to a real machine, and the 
walking experiment was conducted. The gait initiation time of KHR-2HV was after 2.5 s 
passed from the experiment start. Then, the control period was set to 130 ms. In this time, 
I/O waiting time was about 80 ms and the computing time was about 50 ms. Figure 12 
shows the appearance of KHR-2HV’s walking. Moreover, Figs. 13 and 14 show the time 
behaviors of the waist position and ZMP. The motion of the travelling direction (X direction) 
is shown in Fig. 13, and that of lateral direction (Y direction) is shown in Fig. 14. Though the 
trajectory of ZMP was vibrating, a steady walking could be achieved based on the rhythm 
generated with the CPG model. 
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Fig. 12. Appearance of KHR-2HV walking with CPG and posture control by using ZMP 
 

 

 
Fig. 13. Trajectories for travelling direction of KHR-2HV walking with CPG and posture 
control by using ZMP 

 

 
Fig. 14. Trajectories for lateral direction of KHR-2HV walking with CPG and posture control 
by using ZMP 
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3. Stabilization of dynamic walking on uneven road 
High-speed movement is expected in the dynamic walk compared with the static walk. 
However, the control system for the dynamic walk is more difficult than that of static walk. 
We have advanced the research by using more excellent robot HOAP-1 though KHR-2HV 
had been used till then because the dynamic walk needs a high-integrity controller. 
It is necessary to lead the trajectory of the gravity point of a biped robot and predict the 
landing place of the idling leg beforehand so as to achieve the dynamic walk. It is not 
difficult to achieve the dynamic walk on the simulation if the theory to predict the landing 
point is extremely accurate. However, for the success of stable walking in the experiment 
with a real biped robot, there are conditions that each link of robot is rigid and that floor 
surface must be completely flat. 
In the real environment, minute ruggedness of few millimeters in height exists even if it is a 
floor surface that looks smooth. The center of gravity of the robot vibrates because of the 
ruggedness, and the robot falls down. Therefore, it is difficult to achieve the dynamic walk 
compared with the static walk. Here, the method of achieving a stable dynamic walk is 
described even if minute ruggedness of several millimeters exists in the floor face. 

3.1 Configuration of humanoid robot “HOAP-1” 
Biped humanoid robot HOAP-1 was used in this study. Figure 15 shows the photograph of 
HOAP-1 whose height is 483 mm and weight is 5.9 kg. The number of degrees of freedom in 
the upper part of the body is 8, and that of legs is 12, and the total is 20. The arrangement of 
each joint of legs is shown in Fig. 16. Because only 12 motors of the leg were used to walking 
in this study, the upper part of the body was omitted in this Fig. 16. Two axes in the ankle 
and three axes in the waist intersect at one point respectively. The parameters of each link 
are shown in Table 1. The three-axes acceleration sensor and three-axes gyro sensor are 
installed in the waist.  Four force resister sensors are installed in right and left sole of the 
foot. The resistance of these force resister sensors changes in proportion according to 
pressure. 
 

 
Fig. 15. Photograph of HOAP-1 
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 Length (m) Mass (kg) 
Leg link 1 1L : 0.039 0.04 
Leg link 2 2L : 0.10 0.46 
Leg link 3 3L : 0.10 0.46 
Leg link 4 4L : 0.037 0.14 

Table 1. Parameters of each link 

 
Fig. 16. Arrangement of each joint of legs 

3.2 Control system to stabilize the dynamic walk 
3.2.1 Position-based impedance control for an idling leg 
When the idling leg touches to unknown ruggedness shown in Fig. 17, an actual landing 
point changes from the one of the planned gait pattern. Then, the impact is generated on the 
sole of foot when the idling leg touches to the ground. The robot falls down after its posture 
got worse because this impulsive force becomes very big disturbance in the object system. 
  

 
Fig. 17. Walking on a road with unknown step 

The impedance control is often used as a technique for controlling the contact strength 
between the surrounding environment and a part of the robot in the field of the robotic 
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control. There are some examples in the field of humanoid robot (Kawaji et al., 1996; Sorao 
et al., 1997; Nisikawa et al., 1999; Hasimoto et al., 2007). In this study, the position-based 
impedance control was conducted by using the force resister sensors installed on the sole of 
foot of the robot. In the impedance control, three virtual impedance properties of inertia, 
rigidity and damping coefficient are given to the part of control object. Then, the amount of 
the change at the position of ankle is led from the dynamic equation according to the 
impulsive force measured with the sensors. The impulsive force weakens when the leg 
moves based on the led position. In a word, it is expected that the impedance control have 
the same effect as when real springs and dampers are given to the target part. 
Four force resister sensors are installed on the each sole of right and left foot of HOAP-1 
used in this study, and the arrangement is shown in Fig. 18. In addition, each parameter in 
Fig. 18 is shown in Table 2. 
 

 
Fig. 18. Arrangement of force resister sensors 
 

 Length  (m) 
1l  0.017 

2l  0.017 

3l  0.042 

4l  0.028 

Table 2. Parameters for the arrangement of force resister sensors 

Only force in the direction of z can be detected with four force resister sensors 1-4, and the 
forces measured with force resister sensors were defined as 1f , 2f , 3f , 4f respectively. 
Torques xτ , yτ where the center of gyration is x axis and y axis respectively and force zf in 
the direction z can be obtained from Equation 6, 
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and the virtual spring and damper mechanism shown in Fig. 19 can be utilized for the 
control system to stabilize the dynamic walk by using the force and torque on the toe of 
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idling leg obtained by Equation 6. The dynamic equation of this toe of idling leg model is 
given as Equation 7, 

imp leg imp leg imp leg= + +F M p C p K p  

F
T

x y zf⎡ ⎤= ⎣ ⎦τ τ , legp
T

x y zp⎡ ⎤= ⎣ ⎦θ θ  
(7) 

where, impM (diagonal matrix x y z: diag( , , )J J M ) is virtual inertia and mass, impC  
( x y zdiag( , , )C C C ) is virtual viscous coefficient, impK  ( x y zdiag( , , )K K K ) is virtual coefficient 
of rigidity, xθ is rotation angle around x axis, yθ is rotation angle around y axis, zp is 
moving distance in the z direction. In addition, the angle xθ , yθ and moving distance zp  are 
defined to zero on standing upright as shown in Fig. 16, and the arrow direction in Fig. 19 is 
defined as positive direction. 
 

 
(a)  Front view                                (b)  Side view 

Fig. 19. Model of impedance control 

When the ideal joint angle n
xθ around x axis of toe was led by using Equation 7, Equation 8 

was obtained, 
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where, 0
xθ is initial angle (momentary value that the idling leg touch to the ground with 

unknown ruggedness), n
xθ is current angle, n-1

xθ is angle before time for 1 period of control 
period, n-2

xθ is angle before time for 2 periods of control period. The rotation angle of toe 
around y axis and the moving distance in the z direction were controlled as well as x axis. 
The impact caused by touching to unknown ruggedness was weakened by impedance 
control in which the force zf and torque xτ , yτ in Equation 6 were controlled to become small. 
We verified the effect of impedance control. The parameters in Table 3 were used in this 
verification. The height of an unknown step on the ground was set to 20 mm. The time 
behaviors of vertical distance from the waist of the robot to the toe of foot are shown in Fig. 
20 as a result. Here, only zf was applied in the impedance control in this verification. The 
idling leg's position of the z direction has changed according to the force zf as shown in Fig. 
20. Therefore, it is confirmed that landing point in the z direction of idling leg was corrected 
in response to unknown step on the ground. 
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 Value 
zM  1.4 kg 

zC  70.0 Ns/m 

zK  100.0 N/m 

Table 3. Parameters used in impedance control 
 

 
Fig. 20. Time behaviors of force measured with force sensors and distance between waist 
and toe of foot touching the unknown step on the ground in impedance control 

3.2.2 Posture control for upper part of robot 
Vertical posture of the upper part in the body is good for steady walking of the biped robot 
while walking. However, the upper part of the body occasionally inclines as shown in Fig. 
21 by the small inclination of floor surface on uneven road. In this case, there is a possibility 
that ZMP goes out from the stable zone of the foot-ankle assembly. Therefore, when the 
posture inclined, the upper part of the body must be controlled to keep vertical posture by 
using the inclination of upper part measured with the gyro sensor and the acceleration 
sensor. In this posture stabilization control, the motor of the ankle rotated according to the 
value of the measured inclination. 
 

 
Fig. 21. Walking on a road with slopes 

A concrete content is described here. The current inclination of upper part of the body gyroθ  
was obtained by integrating the output of the gyro sensor installed in the waist of the robot. 
Then, the upper part of the body was kept vertical by the servo control of the ankle joint 
according to obtained inclination of the upper part gyroθ  and target posture, which was 
target inclination of upper part body

targetθ . 
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At this time, target inclination the upper part body
targetθ  was obtained by using the output values 

xa , ya  and za  of the 3-dimensional acceleration sensor installed in the waist of the robot as 
shown in Equation 9, 

 
Tbody

target z x z y
1 1tan ( / ) tan ( / )a a a aθ − −⎡ ⎤= ⎣ ⎦ .  (9) 

However, the influence of robot’s acceleration is included in the output of this acceleration 
sensor. Therefore, while the robot has accelerated to the travelling direction, the upper part 
of the body does not become perpendicular but leans toward the travelling direction a little. 
This inclination preferably prevents the robot from falling behind, and has stabilized the 
robot walking more. 
The PI controller was used for this posture control as shown in Equation 10, 

 ( ) ( )leg body body
P gyro target gyro targetref

I

1K t
T

θ θ θ θ θ
⎧ ⎫

= − + − Δ⎨ ⎬
⎩ ⎭

∑    (10) 

where, PK and IT  are parameters of PI controller, and the current inclination of upper part 
gyroθ  is obtained from Equation 11, 

 gyro gyro tθ ω= Δ∑  (11) 

where, gyroω is angular velocity of the waist obtained from the output of the gyro sensor. The 
initial posture angle of the robot needed in Equation 11 was obtained after the acceleration 
sensor outputs when the robot was fixed to flat surface floor were substituted for Equation 
9. The posture of robot is controlled so that gyroθ  can approach body

targetθ  by the PI controller 
shown in Equation 10. 
  

 
                            (a) Without PI controller                         (b) With PI controller 

Fig. 22. Inclination angle of the waist 
Figure 22 shows the time behaviors about the inclination of the upper part (waist) of the 
body. The robot walked on the sloping road that is inclining on 2.0°(0.035 rad) in the 
direction around y axis. The inclination of the upper part was obtained by integrating the 
output of the gyro sensor. In Fig. 22(a), the time behaviors of robot walking without 
feedback by the PI control are shown. In Fig. 22(b), the time behaviors in case where 
inclination angle of upper part was controlled by the PI controller are shown. The robot 
began walking at 0.5 seconds, and it began to go up on the slope at 2.0 s in both cases. 
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 Value 
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zK  100.0 N/m 

Table 3. Parameters used in impedance control 
 

 
Fig. 20. Time behaviors of force measured with force sensors and distance between waist 
and toe of foot touching the unknown step on the ground in impedance control 
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Fig. 21. Walking on a road with slopes 

A concrete content is described here. The current inclination of upper part of the body gyroθ  
was obtained by integrating the output of the gyro sensor installed in the waist of the robot. 
Then, the upper part of the body was kept vertical by the servo control of the ankle joint 
according to obtained inclination of the upper part gyroθ  and target posture, which was 
target inclination of upper part body

targetθ . 
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At this time, target inclination the upper part body
targetθ  was obtained by using the output values 

xa , ya  and za  of the 3-dimensional acceleration sensor installed in the waist of the robot as 
shown in Equation 9, 
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When there was no posture control, inclination angle in the travelling direction yθ  was 0.02 
rad on the average, and the dispersion was 0.024 rad. When there was the posture control, 
the average was 0.009 rad and the dispersion was 0.017 rad. It was confirmed that the 
posture of robot was improved as a result of the PI controller. 

3.3 Walking on road with ruggedness 
3.3.1 Generation of gait pattern with inverse pendulum model 
Linear inverse pendulum model (Kajita, 2005) was used for the walking pattern generation 
in this study. For the linear inverse pendulum model, a robot is assumed to be a single-mass 
system as shown in Fig. 23, and the dynamic equation of the mass system inverse pendulum 
model is set up. The trajectory of gravity point in a robot for a steady walking is calculated 
by solving the dynamic equation about the mass system of inverse pendulum. Adjustment 
of kick force f prevents the gravity point from falling, and gravity point can be fixed to 
arbitrary height ( cZ ) in Fig. 23. For the linear inverse pendulum model, the trajectory of 
gravity point while walking can be obtained by setting the walking cycle and the landing 
position of idling leg beforehand. In this study, relative values as shown in Fig. 24 from a 
present landing position to the next landing position must be decided. The next landing 
points are calculated by using Equations 12 and 13 whenever the foot lands on ground, 

 x x x
( 1) ( )i ip p S+ = +   (12) 

 y y y
( 1) ( ) ( 1)i i ip p S+ = + −  (13) 

where, x
( )ip and y

( )ip show x coordinate and y coordinate at the landing point of i th step. 
 

 
Fig. 23. Liner inverse pendulum model (LIPM) for humanoid robot walking 

It is possible to divide into two time period (one-legged support period and two-legged 
support period) in the walking cycle of human. However, the linear inverse pendulum 
model is a trajectory plan method only for the one-legged supporting period. Therefore, it is 
necessary to consider another trajectory plan of gravity point for two-legged supporting 
period. In this study, in order to connect two-legged supporting period to other one-legged 
supporting period smoothly and continuously, the positions, velocities and accelerations of 
gravity point were interpolated by the fifth function. 
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Fig. 24. Parameters used in LIPM 

 
 

 
 

Fig. 25. Connection of two-legged supporting period and one-legged supporting period 
concerning trajectory of gravity point 

The positions, velocities, accelerations and times of gravity point at the start and end of two-
legged supporting period were decided beforehand. The trajectory of gravity point ( )x t for 
the two-legged supporting period was obtained by interpolating them with the polynomial 
equation shown in Equation 14, 

 5 4 3 2
0 1 2 3 4 5( )x t a t a t a t a t a t a= + + + + +  (14) 

where, the coefficients from 1a to 5a are obtained by Equation 15, 
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Moreover, the gravity point trajectory of y-axis ( )y t  was similarly interpolated and obtained. 
The trajectories of right and left idling legs were created based on Equation 16, 
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Moreover, the gravity point trajectory of y-axis ( )y t  was similarly interpolated and obtained. 
The trajectories of right and left idling legs were created based on Equation 16, 
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where, it is necessary to decide the maximum value of height h , the stride xS and the time 
for one-legged supporting period oneT to obtain ( )x t and ( )z t . Each trajectory was calculated 
every time, when a present leg left the ground, and it moved to the following planned 
landing position. By using the Equation 16, the movement of foot, where the acceleration of 
the idling leg is gradual at beginning and at landing, can be realized as shown in Fig. 26. 
 

 

 
Fig. 26. Movement of idling foot 

3.3.2 Walking on ruggedness road in simulation 
In the dynamic walk, stable walking can be achieved by applying the gait pattern based on 
the theory to predict the landing point by using liner inverse pendulum model. However, 
there are conditions that each link of robot is rigid and that floor surface must be completely 
flat. In addition, it is necessary to use high-precision actuator systems that operate by target 
signals. In the real environment, minute ruggedness of few millimeters in height exists even 
if it is a floor surface that looks smooth. When robots walk on the ruggedness, the gravity 
point of the robot vibrates because of the ruggedness, and the robot falls down. Therefore, 
the gait pattern has been improved by using the stabilization control system that describes 
ahead. Figure 27 shows the outline of the walking control system. Trajectory COGp of the 
gravity point of robot and trajectory leg

refp of the idling leg were generated with the walking 
pattern generator. The trajectory of the idling leg was calculated by the impedance control 
system and becomes leg

targetp . Then, refθ is calculated with the inverse kinematics. After leg
refθ  

calculated by the PI controller is added to refθ , angle targetθ  becomes target angle vector of all 
of motors of joints. 
The trial of robot walking on the road including unknown ruggedness was conducted with 
using these walking-pattern generation and stabilization control system on the simulation. 
OpenHRP (Kanehiro et al., 2004), which was an integrated software development 
environment for humanoid robotics, was used for the simulator. The time interval of  
simulator was set to 1 msec, and the control cycle of robot was set to 5 msec. Then other 
parameters in this simulator are shown in Table 4. Figure 28 shows the size concerning an 
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Fig. 27. Outline of walking control system for HOAP-1 

 
LIPM Impedance controller 

 Value  Value 
oneT  0.3 s xJ , yJ  1.0 kgm2 

twoT  0.2 s zM  1.0 kg 

xS  0.06 m xK , yK  100.0 Nm/rad 

yS  0.04 m zK  1.0 N/m 

h  0.02 m xC , yC  70.0 Nms/rad 

cZ  0.13 m zC  10.0 Ns/m 

PK  2.5 s-1 
 

 

IT  0.8 s 

Table 4. Parameters used in liner inverse pendulum model (LIPM) and impedance controller 

 

 
Fig. 28. Unknown ruggedness road used in simulation 

unknown ruggedness of the road used in the simulation. The result of walking simulation 
about the trajectory of the gravity point is shown in Fig. 29 and the trajectory of toe of idling 
leg is shown in Fig. 30. In this figure, the position of toe of idling leg is appropriately 
controlled according to the height of unknown step while walking. Figure 31 shows the 
walking appearance on the simulation with the snap shot of each 0.3 sec. The left leg of the 
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unknown ruggedness of the road used in the simulation. The result of walking simulation 
about the trajectory of the gravity point is shown in Fig. 29 and the trajectory of toe of idling 
leg is shown in Fig. 30. In this figure, the position of toe of idling leg is appropriately 
controlled according to the height of unknown step while walking. Figure 31 shows the 
walking appearance on the simulation with the snap shot of each 0.3 sec. The left leg of the 
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robot stepped on the ruggedness of 5 mm in height as shown in Fig. 31(e). The robot kept 
walking on the ruggedness afterwards. 
 

 
Fig. 29. Time behaviors of COG (center of gravity) 
 

 
Fig. 30. Trajectory of legs  

 
Fig. 31. Snapshots of the walking motion of HOAP-1 on the simulaiton 
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However, it can be confirmed that the behavior of the right leg did unexpected motion when 
x reached 0.25 m in Fig. 30. The unexpected motion was generated because the stabilization 
control system was not able to weaken the impact from an unknown step of 6 mm in height. 
This walking control is very effective in a real environment because most ruggedness of 
floor on a smooth road is almost less than 6 mm. Moreover, ruggedness that is higher than 6 
mm can be recognized beforehand as an obstacle. 

3.4 Experimental verification 
This section shows the experimental results of which the previously described control 
techniques were applied for an actual humanoid robot. 
The control cycle was set to 5 msec same as on the simulation, and other control parameters 
are shown in Table 5. The value of the control parameter is larger than that of the 
parameters used on the simulation. This is because it was necessary to reduce the value of 
the parameters in the simulation environment where impact is greater than that of real 
environment. Because the elastic deformation by the outside force is not considered in the 
simulation, the calculated impact becomes greater. The value of parameters in the inverse 
pendulum model was same as the parameters used in the simulation.  
 

 Value 

xJ , yJ  1.0 kgm2 

zM  1.0 kg 

xK , yK  5.0 Nm/rad 

zK  200.0 N/m 

xC , yC  10.0 Nms/rad 

zC  140.0 Ns/m 

PK  3.0 s-1 

IT  1.1 s 

Table 5. Parameters used in controller  

Moreover, the acrylic boards of 4 mm and 6 mm in thickness were arranged as unknown 
ruggedness like Fig. 32. The experimental result concerning the trajectory of the gravity 
point is shown in Fig. 33. The time behavior of the length between the toe of idling leg and 
waist is shown in Fig. 34. The distance from the toe of idling leg to the waist changes in the 
range from 0.14 to 0.18 m. The vertical movement of idling foot of the robot is remarkably 
seen in this Figure. Moreover, points from a to d in this Figure indicate the moment of 
landing of idling foot. In a word, it can be confirmed that the value of Pz changes a little by 
landing of the idling foot. 
The walking appearance of the real robot HOAP-1 is shown in Fig. 35 as snap shot of 
photographs. In Fig. 35(a), the right leg is on the acrylic board of 6mm, and the left leg is on 
another acrylic board of 4mm. Then, in Fig. 35(d), the right leg stepped acrylic board of 4mm 
on which the left leg was stepping. Afterwards, the robot kept walking stably. 
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Moreover, the acrylic boards of 4 mm and 6 mm in thickness were arranged as unknown 
ruggedness like Fig. 32. The experimental result concerning the trajectory of the gravity 
point is shown in Fig. 33. The time behavior of the length between the toe of idling leg and 
waist is shown in Fig. 34. The distance from the toe of idling leg to the waist changes in the 
range from 0.14 to 0.18 m. The vertical movement of idling foot of the robot is remarkably 
seen in this Figure. Moreover, points from a to d in this Figure indicate the moment of 
landing of idling foot. In a word, it can be confirmed that the value of Pz changes a little by 
landing of the idling foot. 
The walking appearance of the real robot HOAP-1 is shown in Fig. 35 as snap shot of 
photographs. In Fig. 35(a), the right leg is on the acrylic board of 6mm, and the left leg is on 
another acrylic board of 4mm. Then, in Fig. 35(d), the right leg stepped acrylic board of 4mm 
on which the left leg was stepping. Afterwards, the robot kept walking stably. 
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Fig. 32. Arranged acrylic boards of 4 mm and 6 mm as unknown ruggedness 

 
 

 
 
 

Fig. 33. Trajectory of gravity point of HOAP-1 obtained by experiment 
 

 
 

 
 

 
Fig. 34. Trajectory of legs obtained by experiment 
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Fig. 35. Arranged acrylic boards of 4 mm and 6 mm as unknown ruggedness 

4. Concluding remarks 
By using KHR-2HV, posture control based on ZMP was attempted and the walking posture 
was stabilized. As a result, the robot voluntarily adjusted the exchange timing of supporting 
leg and idling leg according to the state of robot by using the nerve oscillator circuit. Then, 
the robot walked controlling posture by using ZMP without the tumble in the simulation. In 
addition, the CPG model used for the walking simulation was applied to a real biped robot, 
and the walking pattern was generated. The biped robot KHR-2HV kept walking and 
maintaining steady balance for a few seconds. But, in this case, KHR-2HV walked slowly 
with static walking. 
Then, by using HOAP-1, we tried the dynamic walking of the biped robot when there is 
ruggedness on the floor. The biped robot maintained the stability even if the foot collided to 
the small step from which information was not given, by correcting the position and turning 
angle of tip of idling leg with the impedance control. In addition, walking steady has been 
possible as a result of the experiment with a real biped robot HOAP-1 by these control 
techniques. 
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techniques. 
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