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Preface

The Fourier transform is important in engineering, mathematics, and physical sciences.  Its
discrete counterpart, the discrete Fourier transform (DFT), which is typically computed us‐
ing the fast Fourier transform (FFT), has revolutionized modern society, as it is ubiquitous in
digital electronics and signal processing. This book focuses on Fourier transform applica‐
tions in signal processing techniques and physical sciences. The field of signal processing
has seen an explosive growth during the past decades, as phenomenal advances both in re‐
search and applications have been made. During the preparation of this book, we found that
almost all the textbooks on signal processing and physics have a section devoted to the
Fourier transform theory. The basic idea is that it is possible to form any function as a summa‐
tion of a series of sine and cosine terms of increasing frequency. In other words, any space or time-
varying data can be transformed into a different domain called the frequency space. Joseph
Fourier first proposed the idea of Fourier transform in the 19th century, and it had proven to
be useful for various applications, mainly in signal processing for many applications. It can
be said that Gauss was the first scientist who proposed the techniques that we now call the
FFT for calculating the coefficients in a trigonometric expansion of an asteroid's orbit in
1805. However, it was the seminal paper by Cooley and Tukey in 1965 that caught the atten‐
tion of the science and engineering community and, in a way, proposed the discipline of
digital signal processing. The FFT may be the most important numerical algorithm in sci‐
ence, engineering, and applied mathematics. New theoretical results are still appearing, ad‐
vances in computers and hardware continually restate the basic questions, and new
applications open new areas for research. It is hoped that this book will provide the back‐
ground, references, and incentive to encourage further research and results in this field as
well as provide tools for practical applications. One of the features of this book is that the
inclusion is simple, and practical examples that expose the reader to real-life signal process‐
ing have been given. The whole book contains eight chapters, and it divided into two sec‐
tions. The first section consists of five chapters that deal with signal processing while the last
three chapters deal with physical sciences.

In the first chapter, a unified fast hybrid recursive Fourier transform based on Jacket matrix
has been derived. The proposed analysis proves that discrete cosine transform-II (DCT-II),
discrete sine transform-II (DST-II), and DFT can be unified by using the diagonal sparse ma‐
trix based on the Jacket matrix and recursive structure based on some modifications. In
chapter two, a new acquisition algorithm for global navigation satellite system has been in‐
troduced. Two multipath interference mitigation algorithms based on the decoupled param‐
eter estimation algorithms are presented in this chapter. The FFT based approach is used to
determine the sensitivity of output parameters in chapter three. The signal influenced by
sensitive parameter variation is compared with a reference signal. In chapter 4, theorems



about convergence of integrals of products, based on a version of Riemann-Lebesgue Lem‐
ma function are presented. Fourier transform using Henstock-Kurzweil Integral is used in
this chapter. The real and the complex number fields are extended for treating the Fourier
transform for functional in chapter five. Two kinds of Fourier transform theories to the
propagator for fields harmonic oscillator are applied.

In chapter six, section two, it is shown that XRD analysis provides more information for un‐
derstanding the physical properties of nanomaterial structure. In chapter seven, a new ap‐
proach is introduced for studying the irregular Gabor transform, and proved some non
harmonic sets of Fourier expansions for Gabor systems instead of sets of complex exponen‐
tials. In chapter eight, the mineral phases formed during chalcopyrite bioleaching are stud‐
ied using Acidithiobacillusferrooxidans bacteria in the absence of ferrous sulfate and elemental
sulfur based on Fourier transform infrared spectroscopy, scanning electron microscopy with
energy dispersive X-ray spectroscopy, and X-ray diffraction.

Finally, I would like to thank all the authors who have participated in this book for their
valuable contributions. Also, I would like to thank all the reviewers for their valuable notes.
While there is no doubt that this book may have omitted some significant findings in the
Fourier transform field, we hope the information included will be useful for electrical engi‐
neers, communication engineers, signal processing engineers, physicians and mathemati‐
cians, in addition to the academic researchers working in this field.

Asst. Prof. Salih Mohammed Salih, SMIEEE
Renewable Energy Research Center

University of Anbar, Iraq
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Chapter 1

Jacket Matrix
Based Recursive Fourier
Analysis and Its Applications

Daechul Park and Moon Ho Lee

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/59353

1. Introduction

The last decade based on orthogonal transform has been seen a quiet revolution in digital video
technology as in Moving Picture Experts Group (MPEG)-4, H.264, and high efficiency video
coding (HEVC) [1–7]. The discrete cosine transform (DCT)-II is popular compression struc‐
tures for MPEG-4, H.264, and HEVC, and is accepted as the best suboptimal transformation
since its performance is very close to that of the statistically optimal Karhunen-Loeve transform
(KLT) [1-5].

The discrete signal processing based on the discrete Fourier transform (DFT) is popular in wide
range of applications depending on specific targets: orthogonal frequency division multiplex‐
ing (OFDM) wireless mobile communication systems in 3GPP-LTE [3], mobile worldwide
interoperability for microwave access (WiMAX), international mobile telecommunications-
advanced (IMT-Advanced), broadcasting related applications such as digital audio broad‐
casting (DAB), digital video broadcasting (DVB), digital multimedia broadcasting (DMB))
based on DFT. Furthermore, the Haar-based wavelet transform (HWT) is also very useful in
the joint photographic experts group committee in 2000 (JPEG-2000) standard [2], [8]. Thus,
different applications require different types of unitary matrices and their decompositions.
From this reason, in this book chapter we will propose a unified hybrid algorithm which can
be used in the mentioned several applications in different purposes.

Compared with the conventional individual matrix decompositions, our main contributions
are summarized as follows:

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and eproduction in any medium, provided the original work is properly cited.



• We propose the diagonal sparse matrix factorization for a unified hybrid algorithm based
on the properties of the Jacket matrix [9], [10] and the recursive decomposition of the sparse
matrix. It has been shown that this matrix decomposition is useful in developing the fast
algorithms [11]. Individual DCT-II [1–3], [6], [7], [12], DST-II [4], [6], [7], [13], DFT [3], [5],
[14], and HWT [8] matrices can be decomposed to one orthogonal character matrix and a
corresponding special sparse matrix. The inverse of the sparse matrix can be easily obtained
from the property of the block (element)-wise inverse Jacket matrix. However, there have
been no previous works in the development of the common matrix decomposition sup‐
porting these transforms.

• We propose a new unified hybrid algorithm which can be used in the multimedia applica‐
tions, wireless communication systems, and broadcasting systems at almost the same
computational complexity as those of the conventional unitary matrix decompositions as
summarized in Table 1 and 2. Compared with the existing unitary matrix decompositions,
the proposed hybrid algorithm can be even used to the heterogeneous systems with hybrid
multimedia terminals being serviced with different applications. The block (element)-wise
diagonal decompositions of DCT-II, DST-II, DFT and DWT have a similar pattern as Cooley-
Tukey’s regular butterfly structures. Moreover, this unified hybrid algorithm can be also
applied to the wireless communication terminals requiring a multiuser multiple input-
multiple output (MIMO) SVD block diagonalization systems [15], [11,19], [22] and diagonal
channels interference alignment management in macro/femto cell coexisting networks [16].
In [15-16, 19, 22- 23], a block-diagonalized matrix can be applied to wireless communications
MIMO downlink channel.

In Section 2, we present recursive factorization algorithms of DCT-II, DST-II, and DFT matrix
for fast computation. In Section 3, hybrid architecture is proposed for fast computations of
DCT-II, DST-II, and DFT matrices. Also numerical simulations follow. The conclusion is given
in Section 4.

Notation: The superscript (⋅ )T  denotes transposition; I N  denotes the N × N  identity matrix; 0

denotes an all-zero matrix of appropriate dimensions; Cl
i =cos(iπ / l) ; Sl

i =sin(iπ / l) ; W = e −
j2π
N  ;

⊗  and ⊕ , respectively, denote the Kronecker product and the direct sum.

2. Jacket matrix based recursive decompositions of Fourier matrix

2.1. Recursive decomposition of DCT-II

Definition 1: Let JN = {ai, j} be a matrix, then it is called the Jacket matrix when JN
−1 = 1

N {(ai, j)−1}T .

That is, the inverse of the Jacket matrix can be determined by its element-wise inverse [9-11].
The row permutation matrix, PN  is defined by
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where PN  elements are determined by the following relation:

{ pi , j =1, if i =2 j, 0≤ j ≤
N
2 −1,

pi , j =1, if i =(2 j + 1)modN ,
N
2 ≤ j ≤N −1,

pi , j =0, others.

The block column permutation matrix, QN  is defined by

/4 /2
2

/2 /4
, 4.

é ù
= = ³ê ú

ë û

0
and

0
N N

N N
N N

N
I

Q I Q
I (2)

where Ī N /2 denotes reversed identity matrix. Note that QN
−1 =QN  and PN

−1≠PN , whereas QN
−1 =QN

T

and PN
−1 = PN

T .

Proposition 1: With the use of the Kronecker product and Hadamard matrices, a higher order block-
wise inverse Jacket matrix (BIJM) can be recursively obtained by

2 2, 2= Ä ³N N NJ J H (3)

then

1
2 2

1- = T
N NN

J J (4)

where the lowest order Hadamard matrix is defined by H2 =
1 1
1 − 1

Proof: A proof of this proposition is given in Appendix 6.A.

Note that since the BIJM requires a matrix transposition and then normalization by its size, a
class of transforms can be easily inverted as follows:

Jacket Matrix Based Recursive Fourier Analysis and Its Applications
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1
2 2 2 2 2 2 2 2

1, .-= = =and T
N N N N N N N NN

Y J X X J Y J Y (5)

Due to a simple operation of the BIJM, we can reduce the complexity order as the matrix size
increases. In the following, we shall use this property of the BIJM in developing a hybrid
diagonal block-wise transform.

According to [1-4] and [7], the DCT-II matrix is defined as follows:

0 0 0 1 0 1

2 0 2 1 2 1

2 2 2
4 4 4

2 2 2
4 4 4

1 1 1
2 2 2

2 2-

- - - -

F F F

F F F

é ù
ê ú
ê ú
ê ú= =
ê ú
ê ú
ê ú
ë û

L

L
M M O M

L

N

N N N N

k k k
N N NN N

k k k
N N N

C C C
N N

C C C

XC (6)

where Φi =2i + 1 and ki = i + 1. We first define a permuted DCT-II matrix

C̃ N = PN
−1CN QN

−1 = 2
N PN

−1XN QN
−1. We can readily show that the matrix XN  can be constructed

recursively as follows:

/2 /2 /2 /2 /2

/2 /2 /2 /2 /2

0
.

0
é ù é ù é ù

= =ê ú ê ú ê ú-ë û ë û ë û

I I
B B I I

N N N N N
N N N N N

N N N N N

X X X
X P Q P Q

B - (7)

Here, the matrix BN  in (7) is given as:

( ) ( ){ },
4,= = f m n

N N NB m n CB (8)

where f (m, 1)=2m−1 and f (m, n + 1)= f (m, n) + 2 f (m, 1) for m, n∈ {1, 2, …, N / 2}. For example,
the matrix B4 is given by

1 3 5 7
16 16 16 16
3 7 1 5
16 16 16 16

4 5 1 7 3
16 16 16 16
7 5 3 1
16 16 16 16

.

é ù
ê ú

- - -ê ú
= ê ú

-ê ú
ê ú- -ë û

C C C C

C C C C

C C C C

C C C C

B (9)

Since XN /2
−1 = 4

N XN /2
T  and BN /2

−1 = 4
N BN /2

T , the matrix decomposition in (7) is the form of the matrix
product of diagonal block-wise inverse Jacket and Hadamard matrices. The matrix BN /2 is
recursively factorized using Lemma 1.

Fourier Transform - Signal Processing and Physical Sciences6
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Lemma 1:The matrix BN  can be decomposed as:

=N N N NXB L D (10)

where a lower triangular matrix L N  is defined by L N = {L N (m, n)} with elements
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m

m n
N

m n

L m n m n
m n

(11)

and a diagonal matrix DN  is defined by DN = diag{C4N
Φ0, C4N

Φ1, … , C4N
ΦN −1}.

Proof:A proof of this Lemma is provided in Appendix 6.B.

Using (10), we first rewrite (7) as
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which can be evaluated recursively as follows:
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Note that in (13) a 2×2 Hadamard matrix is defined by X2 =
1 1
1 −1 . Also, applying the Kro‐

necker product of I2 and X4, X8 can be obtained. Keep applying the Kronecker product of I2

and XN /2, the final equivalent form of XN  is obtained. Thus, the proposed systematic decom‐
position is based on the Jacket and Hadamard matrices.
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In [17], the author proposed a recursive decimation-in-frequency algorithm, where the same
decomposition specified in (10) was used. However, due to using a different permutation
matrix, a different recursive form was obtained. Different recursive decomposition was
proposed in [18]. Four different matrices, such as the first matrix, the last matrix, the odd
numbered matrix, and the even number matrix, were proposed. Compared to the decompo‐
sition in [18], the proposed decomposition is seen to be more systematic and requires less
numbers of additions and multiplications. We show a complexity comparison among the
proposed decomposition and other methods in Table 1-2.

Reference number
Conventional methods Proposed

Addition Multiplication Addition Multiplication

W. H. Chen at el
[18]

DCT-II

3N / 2(log2N −1) + 2 N log2N − (3N / 2) + 4 N log2N N / 2(log2N + 1)

Z. Wang[13] DST-
II

N ( 7
4 log2(N )−2) + 3 N ( 3

4 log2(N )−1) + 3 N log2N N / 2(log2N + 1)

Cooley and Tukey
[21] DFT

N log2N (N / 2)log2N N log2N (N / 2)log2N

Table 1. The comparison of computation complexity of conventional independent the DCT-II, DST-II, DFT, and hybrid
DCT-II/DST-II/DFT

Matrix
Size, N

Conventional Proposed

Addition Multiplication Addition Multiplication

DCT-II

4 8 6 8 6

8 26 16 24 16

16 74 44 64 40

32 194 116 160 96

64 482 292 384 224

128 1154 708 896 512

256 2690 1668 2048 1152

DST-II

4 9 5 8 6

8 29 13 24 16

16 83 35 64 40

32 219 91 160 96

64 547 227 384 224

128 1315 547 896 512

256 3075 1283 2048 1152

DFT

4 8 4 8 4

8 24 12 24 12

16 64 32 64 32
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Matrix
Size, N

Conventional Proposed

Addition Multiplication Addition Multiplication

32 160 80 160 80

64 384 192 384 192

128 896 448 896 448

256 2048 1024 2048 1024

Table 2. Computational Complexity: DCT-II/DST-II/DFT

Applying (13), we can readily compute CN = 2
N XN . The inverse of CN  can be obtained from

the properties of the sparse Jacket matrix inverse:

( ) ( )
1 1

1 1 /2 /2 /2 1
1

/2 /2 /2

/2 /2 /2

/2 /2 /2

0
2 0

0
.

2 0

- -
- - -

-

é ùé ù
= ê úê ú

ê úë û ë û
é ùé ù

= ê úê ú
ê úë û ë û

N N N
N N N

N N N

T
N N N T

N NT
N N N

N

N

X

X

I I
C Q P

I -I B

I I
Q P

I -I B

(14)

The corresponding butterfly data flow diagram of CN  is given in Fig. 1.

Figure 1. Regular systematic butterfly data flow of DCT-II.
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2.2. Recursive decomposition of the DST-II

The DST-II matrix [1-4] and [7] can be expressed as follows:

0 0 0 1 0 1

1 0 1 11 1

2 0 2 1 2 1

2 2 2
4 4 4
2 22
4 4 4

2 2 2
4 4 4

2 2 .

1 1 1
2 2 2

-

-

- - - -

F F F

F FF

F F F

é ù
ê ú
ê ú
ê ú
ê ú= =
ê ú
ê ú
ê ú

- -ê ú
ë û

L

L
M M O M

L

L

N

N

N N N N

k k k
N N N
k kk
N N N

N N
k k k
N N N

S S S

S S S

N NS S S
YS (15)

Similar to the procedure we have used in the DCT-II matrix, we first define the permuted DST-
II matrix, S̃ N  as follows:

1 1 1 12 .- - - -=%
N N N N N N NN

YS = P S Q P Q (16)

From (16), we can have a recursive form for YN  as

/2 /2 /2

/2 /2 /2

0
0

é ù é ù
= ê ú ê ú

ë û ë û
N N N

N N N
N N N

Y
Y

A I I
P Q

I -I (17)

where the submatrix AN  can be calculated by

=N N N NYA U D (18)

where U N  and DN  are, respectively, upper triangular and diagonal matrices. The upper
triangular matrix U N ={U N (m, n)} is defined as follows:

( )
( )

( ) ( )

1

1 1

2 1 , and

, 2 1 1 ,
0,

-

- -

ì - " =
ï
ï= - - ³í
ï <ïî

m

m n
N

m n N

U m n m n
m n

(19)

whereas the matrix DN  is defined as before in (10). The derivation of (18) is given in Appendix
C. Recursively applying (18) in (17), Recursively applying (18) in (17), we can find that
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[ ]

/2 /2 /2 /2 /2 /2 /2 /2

/2 /2 /2 /2 /2 /2

/2 /2 /2 /2
2 /2

/2 /2 /2 /2

0 0
0 0

0 0
.

0 0

é ù é ù é ù é ù
= =ê ú ê ú ê ú ê ú

ë û ë û ë û ë û
é ù é ù é ù

= Äê ú ê ú ê ú
ë û ë û ë û

N N N N N N N N
N N N N N

N N N N N N

N N N N
N N N

N N N N

Y
Y

Y Y

Y

A I I U D I I
P Q P Q

I -I I -I

U D I I
P I Q

I I I -I

(20)

Further applying (17) to the Kronecker product I2⊗YN /2 , the following general recursive
form for DST-II matrix can be obtained as:

[ ]

4

/2

/2 2 2 2 2
2 2 4 2 2 4

/2 2 2 2 2

/2

/2

0 0 02
0 0 0

0
0

é ù
ê úé ùé ùê úê úê úê úé ùé ù é ù é ù é ùê úê ú= ´ Ä Ä Äê úê úê ú ê ú ê ú ê úê úê úë û ë û ë ûë û ê úë ûê úê úê úê úë ûë ûê ú
ê úë û

é
´ ê
ë

L L
144444444424444444443

144444444444424444444444443
N

N
N N

N

N

N

N
Y

Y

Y
U U D I I

P I I P I Q
I I I I -I

D
I

Y

/2 /2

/2 /2
.

ù é ù
ú ê ú
û ë û

N N
N

N N

I I
Q

I -I

(21)

Note that if we compare (21) and (13), a similarity can be found in the proposed matrix

decompositions. That is, starting from the common lowest order Y2 =
1 1
1 −1 , the discrete sine

kernel matrix is recursively constructed. Especially, applying the relationship of

U N = Ĩ N L̃ N Ĩ N , where Ĩ N =

0 ⋯ 0 1
0 ⋯ 1 0
⋮ ⋰ ⋮ ⋮
1 ⋯ 0 0

 denotes the opposite diagonal identity matrix, the

butterfly data flow of the DST-II matrix can be obtained from the corresponding that of the
proposed DCT-II decomposition. The butterfly data flow graph of the DST-II matrix is shown
in Fig. 2.

Now utilizing the properties of the BIJM, we can first obtain

1
/2 /2

/2 /2

0 02
0 0

- é ùé ù
= ê úê ú

ê úë û ë û

T
N N

T
N NNY Y

A A
(22)

such that the inverse of the matrix SN  is given by

/2 /2 /21

/2 /2 /2

0
.

2 0
-

é ù é ù
= ê ú ê ú

ê ú ê úë û ë û

T
N N N T

N N NT
N N N

N
Y

I I A
S Q P

I -I
(23)
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Note that applying again the properties of the BIJM and (18), a recursive form of the inverse
DST-II can be easily obtained.

Figure 2. Regular systematic butterfly data flow of DST-II.

2.3. Recursive decomposition of DFT

The DFT is a Fourier representation of a given sequence {x(n)},

( ) ( )
1

0
, 0 1.

-

=
= £ £ -å

N
nm

m
n x m n NX W (24)

where W = e − j2π/N . The N  -point DFT matrix can be denoted by F N ={W nm}. The N × N  Sylvester
Hadamard matrix is denoted by HN . The Sylvester Hadamard matrix is generated by the
successive Kronecker products:

2 /2= ÄN NH H H (25)

for N =4, 8, … In (25), we define H2 =
1 1
1 −1 . We decompose a sparse matrix EN = PN F̃ N W N

in the following way:
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%

T
N N N

N NN N N
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N NN N N

F P F

I IF F F
F
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(26)

where EN /2 is further decomposed by Lemma 1

/2 /2 /2 /2= %
N N N NE P F W (27)

where W N  is the diagonal complex unit for the N-point DFT matrix. That is, we have

W N =diag{W 0, …, W N −1}.

Figure 3. Butterfly data flow of DFT.

Similar to the development for DCT-II and DST-II, we first rewrite (26) using (27) as

/2 /2/2

/2 /2/2 /2 /2

/2 /2 /2 /2
2 /2

/2 /2 /2 /2

0
0

0 0
.

0 0

é ù é ù
= ê ú ê ú

ë ûë û
é ù é ù é ù

é ù= Äê ú ê ú ê úë û
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N NN
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N NN N N
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I IF
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(28)
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I2 ⊗ F̃ N /2  in (28) can be recursively decomposed in the following way:

4

/2

/2 /2 /2 /22 2 2 2
2 4 2 2

/2 /2 /2 /22 2 2 2

0 00 0
.

0 00 0

é ù
ê úé ùê úê úê úé ù é ù é ùé ù é ù é ùê úé ù= ´ Ä Ä ´ê úê ú ê ú ê úê ú ê ú ê úë ûê úë û ë û ë ûë û ë û ë ûê úê úê úë ûê ú
ê úë û

%

%

% %L L
1444444442444444443

144444444424444444443
N

N N N N
N

N N N N

F

F

I I I II I I I
F I P I F

P W I -IP W I -I (29)

It is clear that the form of (29) is the same as that of (13), where we only need to change L l  to
Pl  and Dl  to W l for l ∈ {2, 4, 8, …, N / 2} to convert the DCT-II matrix into DFT matrix. Conse‐
quently, the butterfly data flow of the DFT matrix can be drawn in Fig. 3 using the baseline
architecture of DCT-II.

3. Proposed hybrid architecture for fast computations of DCT-II, DST-II,
and DFT matrices

We have derived recursive formulas for DCT-II, DST-II, and DFT. The derived results show
that DCT-II, DST-II, and DFT matrices can be unified by using a similar sparse matrix decom‐
position algorithm, which is based on the block-wise Jacket matrix and diagonal recursive
architecture with different characters. The conventional method is only converted from DFT
to DCT-II, DST-II. But our proposed method can be universally switching from DCT-II to DST-
II, and DFT vice versa. Figs. 1-3 exhibit the similar recursive flow diagrams and let us motivate
to develop universal hybrid architecture via switching mode selection. Moreover, the butterfly
data flow graphs have log2N  stages. From Fig.1, we can generate Figs. 2-3 according to the
following proposed ways:

3.1. From DCT-II to DST-II

The N-point DCT-II of x is given by

1

0

2 (2 1) 2( ) ( )cos
2

1 , 0
where , 0,1,..., 1,

1 / 2 , 0

p-

=

+
= =

¹ìï= - = í
=ïî

å x
N

DCT
N m m N

n

m

m nX m c x n c C
N N N

m
m n N c

m

(30)

The N-point DST-II of x is given by
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The N-point DST-II of x is given by

Fourier Transform - Signal Processing and Physical Sciences14

1

0

2 ( 1)(2 1) 2( ) ( )sin
2

1 , 1
, 0,1,..., 1,

1 / 2 , 1

p-
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¹ -ìï= - = í
= -ïî
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DST
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N N N

m N
where m n N s

m N

(31)

Let CN  and SN  be orthogonal N × N  DCT-II and DST-II matrices, respectively. Also,

x= x(0) x(1) … x(N −1) T  denotes the column vector for the data sequence x(n). Substitut‐
ing m = N −k −1, k =1, 2, …, N  into (30), we have

1

0

2 (2 1)( 1)( 1) ( )cos , 0,1,2,..., 1
2

p-

-
=

+ - -
- - = = -å

N

N N k
n

n N kC N k c x n k N
N N

(32)

Using the following trigonometric identity

(2 1) (2 1)( 1)cos
2 2

(2 1) (2 1)( 1) (2 1) (2 1)( 1)cos cos sin sin
2 2 2 2

(2 1)( 1)( 1) sin
2

p p

p p p p

p

+ + +æ ö-ç ÷
è ø

+ + + + + +æ ö æ ö æ ö æ ö= +ç ÷ ç ÷ ç ÷ ç ÷
è ø è ø è ø è ø

+ +æ ö= - ç ÷
è ø

n

n n k
N

n n k n n k
N N

n k
N

(33)

(32) becomes

1

0

2 (2 1)( 1)( 1) ( 1) ( )sin
2

p-

-
=

+ +
- - = -å

N
n

N N k
n

n kC N k c x n
N N

(34)

where CN =(N −k −1) represents the reflected version of CN (k ) and this can be achieved by
multiplying the reversed identity matrix Ī N  to CN . (34) can be represented in a more compact
matrix multiplication form [13]:

= Û =IN N N N N N N NS C M C I S M (35)

where, MN = M1 ⊗ I N /2 , M1 =
1 0
0 −1

Then, the DST-II matrix is resulted from the DCT-II matrix. Note that compatibility property
exists in the DCT-II and DST-II.
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3.2. From DFT to DCT-II

The (m,n) elements of the DCT-II kernel matrix is expressed by

[ ] ( )
,

2 12 cos
2

p+
=N mm n

m n
C c

N N
(36)

A new sequence x (1)(n) is defined by

( ) ( ) ( )
( ) ( ) ( )

1

1

2 0 2 1

1 2 1 0 2 1

ì = £ £ -ï
í

- - = + £ £ -ïî

x n x n for n N

x N n x n for n N
(37)

For the sequence x (1)(n), we see that we can write

( )

1 1
(1) (1)

0 0
1 1

(1) 2 (2 1/2)/2 /2 (1) 2 /

0 0
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2 2( )e ( )e
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p p
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= =
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= =

-

+ æ ö= = +ç ÷
è ø

æ ö æ ö
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è ø è ø
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å å

å å
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N N
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N m m
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j m N
m N
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c e F
N

R R

R

(38)

where R indicates a real part.

With the result above we have avoided computing a DFT of double size. We have

{ } { }0 1 /2 2/2 ( 1)/2
4 4 , , 1, , , ,p p p- - - - -= =K LW N j N j N j N N

N Ndiag W W diag e e e (39)

Now, the result can be put in the more compact matrix-vector form

( )4
2

= R WN m N NC c F
N

(40)

Then, the DCT-II matrix is resulted from the DFT matrix.

3.3. From DCT-II and DST-II to DFT

We develop a relation between the circular convolution operation in the discrete cosine and
sine transform domains. We need to measure half of the total coefficients. The main advantage
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where R indicates a real part.

With the result above we have avoided computing a DFT of double size. We have

{ } { }0 1 /2 2/2 ( 1)/2
4 4 , , 1, , , ,p p p- - - - -= =K LW N j N j N j N N

N Ndiag W W diag e e e (39)

Now, the result can be put in the more compact matrix-vector form

( )4
2

= R WN m N NC c F
N

(40)

Then, the DCT-II matrix is resulted from the DFT matrix.

3.3. From DCT-II and DST-II to DFT

We develop a relation between the circular convolution operation in the discrete cosine and
sine transform domains. We need to measure half of the total coefficients. The main advantage
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of a proposed new relation is that the input sequences to be convolved need not be symmetrical
or asymmetrical. Thus, the transform coefficients can be either symmetric or asymmetric [21].

From (30) and (31), it changes to coefficient for circular convolution (C) format. Thus, we have
the following equations:

( ) ( )
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(41)

We can rewrite the DFT (24)
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Multiplying (42) by 2e − jπm/N , we can get
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Comparing the first term of (41) with first one of (43), it can be seen that

2∑
n=0

N −1
x(n)(cos

m(2n + 1)π
N )  is decimated and asymmetrically extended of (41) with index

m =0 : N −1. Similarly, 2∑
n=0

N −1
x(n)(sin

m(2n + 1)π
N )  is decimated and symmetrically extended of

(41) with index m =1 : N . It is observed that proper zero padding of the sequences, symmetric
convolution can be used to perform linear convolution. The circular convolution of cosine and
sine periodic sequences in time/spatial domain is equivalent to multiplication in the DFT
domain. Then, the DFT matrix is resulted from the DCT-II and DST-II matrices.

3.4. Unified hybrid fast algorithm

Based on the above conversions from the proposed decomposition of DCT-II, we can form a
hybrid fast algorithm that can cover DCT-II, DST-II, and DFT. The general block diagram of
the proposed hybrid fast algorithm is shown in Fig. 4. The common recursive block of

P N /2h −1L blockdiagonal() I2⊗Z2 Rblockdiagonal()
I2 I2

I2 − I2
QN /2h −1 is multiplied repeatedly
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according to the size of the kernel with different transforms as like as bracket ((((⋅ )))). The
requiring computational complexity of individual DCT-II, DST-II, and DFT is summarized in
Table 1 and Table 2. It can be seen that the proposed hybrid algorithm requires little more
computations in addition and multiplication compared to Wang’s result [13]. However, the
proposed scheme requires a much less computational complexity in addition and multiplica‐
tion compared to those of the decompositions proposed by [11,13,18]. In addition, compared
to these transforms, the proposed hybrid fast algorithm can be efficiently extensible to larger
transform sizes due to its diagonal block-wise inverse operation of recursive structure.
Moreover, the proposed hybrid structure is easily extended to cover different applications. For
example, a base station wireless communication terminal delivers a compressed version of
multimedia data via wireless communications network. Either DCT-II or DST-II can be used
in compressing multimedia data since the proposed decomposition is based on block diago‐
nalization it can significantly reduce its complexity due to simple structure[11,19, 22], for
various multimedia sources. The DCT image coding can be easily implemented in the
proposed hybrid structure as shown in Fig. 4(b). From (45), the DCT-II is obtained by taking
a real part of multiplication result of e − jπm/2N  with F N ={W nm}. If the DCT-II is multiplied by
Ī N CN M N , then we get DST. If the DCT and DST are convolved in time and frequency domain
and multiplied by 2e − jπm/N , the DFT matrix can be obtained. Thus, the proposed hybrid
algorithm enables the terminal to adapt to its operational physical device and size.
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3.4 Numerical Simulations 

      As shown in [7] the coding performance DST outperforms DCT at high correlation values (  ) and is very 

close to that of the KLT. Since the basis vectors of DCT maximize their energy distribution at both ends, hence 
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3.5. Numerical simulations

As shown in [7] the coding performance DST outperforms DCT at high correlation values (ρ)
and is very close to that of the KLT. Since the basis vectors of DCT maximize their energy
distribution at both ends, hence the discontinuity appears at block boundaries due to quanti‐
zation effects. However, since the basis vectors of DST minimizes their energy distribution at
other ends, DST provides smooth transition between neighboring blocks. Therefore, the
proposed hybrid transform coding scheme provides a consistent reconstruction and preserves
more details, as shown in Fig. 6 with a size of 512 x 512 and 8 bits quantization.

Now consider an N × N  block of pixels, X, containing xi , j, i, j =1, 2, …, N . We can write 2-D
transformation for the kth block X as YS =TSQ XkQ T  and YC =TC Xk .

Depending on the availability of boundary values (in top- boundary and left-boundary) in
images the hybrid coding scheme accomplishes the 2-D transform of a block pixels as two
sequential 1-D transforms separately performed on rows and columns. Therefore the choice
of 1-D transform for each direction is dependent on the corresponding prediction boundary
condition.

• Vertical transform (for each column vector): employ DST if top boundary is used for
prediction; otherwise use DCT.

• Horizontal transform (for each row vector): employ DST if left boundary is used for
prediction; otherwise use DCT.

What we observed from numerical experiments is that the combined scheme over DCT-II only
performs better in perceptual clarity as well as PSNR. Jointly optimized spatial prediction and
block transform (see Fig. 5 (e) and (f)) using DCT/DST-II compression(PSNR 35.12dB) outper‐
forms only DCT-II compression(PSNR 32.38dB). Less blocky artifacts are revealed compared
to that of DCT-II. Without a priori knowledge of boundary condition, DCT-II performs better
than any other block transform coding. The worst result is obtained using DST-II only.

4. Conclusion

In this book chapter, we have derived a unified fast hybrid recursive Fourier transform based
on Jacket matrix. The proposed analysis have shown that DCT-II, DST-II, and DFT can be
unified by using the diagonal sparse matrix based on the Jacket matrix and recursive structure
with some characters changed from DCT-II to DST-II, and DFT. The proposed algorithm also
uses the matrix product of recursively lower order diagonal sparse matrix and Hadamard
matrix. The resulting signal flow graphs of DCT-II, DST-II, and DFT have a regular systematic
butterfly structure. Therefore, the complexity of the proposed unified hybrid algorithm has
been much less as its matrix size gets larger. This butterfly structure has grown by a recursive
nature of the fast hybrid Jacket Hadamard matrix. Based on a systematic butterfly structure,
a unified switching system can be devised. We have also applied the circulant channel matrix
in our proposed method. Thus, the proposed hybrid scheme can be effectively applied to the
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heterogeneous transform systems having various matrix dimensions. Jointly optimized DCT
and DST-II compression scheme have revealed a better performance (about 3dB) over the DCT
or DST only compression method.

Figure 5. Image Coding Results showing DCT-II only and jointly optimized DCT/DST-II compression (a) Original Lena
image (b) zoomed original Lena image (c) DCT-II compressed Lena image(PSNR=32.38 dB) (d) Zoomed DCT-II com‐
pressed Lena image (e) DCT/DST-II compressed Lena image (PSNR=35.12 dB) (f) Zoomed DCT/DST-II compressed Le‐
na image.

Appendix

Appendix A

A Proof of Proposition 1

We use mathematical induction to prove Proposition 1. The lowest order BIJM is defined as

2 2 2 2

2 2 2 2
8

2 2 2 2

2 2 2 2

é ù
ê ú- -ê ú=
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ê ú

- -ë û

I I I I
I C C I

J
I C C I
I I I I

(44)
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where C2 =
H 2

2
. Since

2 2 2 2

2 2 2 21
8

2 2 2 2

2 2 2 2

-

é ù
ê ú

- -ê ú= ê ú- -ê ú
ê ú- -ë û

T T

T T

I I I I

I C C I
J

I C C I
I I I I

(45)

equation (4) holds for 2N = 8. Now we assume that the BIJM JN  satisfies (4), i.e., JN JN
T = N

2 I N .

Since J2N J2N
T =(JN ⊗H2)(JN ⊗H2)T =(JN JN

T )⊗ (H2H2
T )= N

2 I N ⊗ 2I2 = N I2N , this proposition is
proved by mathematical induction that (4) holds for all 2N . If N =1, certainly J2J2

T = I2.

Appendix B

A Proof of Lemma 1

According to the definition of an N × N  matrix BN , BN  is given as follows:
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where ki = i + 1. Since cos((2k + 1)Φm)=2cos(2kΦm)cos(Φm)−cos((2k −1)Φm),we have
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Using (47), BN  can be decomposed as:
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which proves (10) in Lemma 1.

Appendix C

A Proof ofEquation (18)

By using the sum and difference formulas for the sine function, we can have
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where ki = i + 1, Φj =2 j + 1, i, j =0, 1, ⋯ , N −1.

By taking (49) and into the right hand side of (18), we have
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The left hand side of (18) matrix A N  from Y N  can be represented by
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We can obtain (50) and (51) are the same and the expression of (18) is correct.
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1. Introduction

GNSS (Global Navigation Satellite System) has been found application in many areas. In some
cases, the performance requirements for GNSS are very high. There are many error sources
that would degrade the positioning performance of GNSS, e.g., clock errors, ephemeris errors,
tropospheric propagation delay, and multipath. Many positioning errors mentioned above are
constant for all GNSS receivers in a given small area and can be removed or reduced by using
the popular differential technique. However, due to the geographical position difference
between the reference station and the receiver, the multipath environment of receivers, such
as amplitudes and number of multipath signals, is totally different with that of the reference
station. Thus differential technique can not eliminate the multipath error. Many studies have
shown that the multipath interference will lead to a position error around several meters which
endangers the reliability and accuracy of GNSS. Therefore, multipath interference mitigation
has been a hot topic in the field of satellite navigation receiver design.

Multipath interferences are the signals reflected by the objects around the GNSS receiver. Then
the multipath interference and the LOS (line of sight) signal are simultaneously received by
antenna which brings a phase distortion in the tracking loops of receivers. Finally, the phase
distortion results in the tracking and positioning error.

There have been many studies about the effect of multipath interference. Kalyanaraman et al.
in [1] analyzed the multipath effects on code tracking loop. Kos et al. [2] provided a detailed
analysis of the multipath effects on the positioning error. Main multipath interference
mitigation techniques are based on antenna technique and signal processing algorithms.
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By mounting the antenna in a well-designed place based on the multipath environment,
Maqsood et al. in [3] compared the performances of multipath interference mitigation for
different antennas. Ray et al. in [4] proposed a multipath mitigation algorithm based on an
antenna array. A design principle of antenna was proposed by Alfred et al. in [5] for satellite
navigation landing system. The multipath mitigation technique based on the special antenna
can only suppress the multipath signal coming from the ground below the antenna. However,
it is useless for the multipath interference signal reflected by the objects above the antenna.

Popular signal processing techniques are the narrow correlator and MEDLL (Multipath
Estimated Delay Locked Loop). Narrow correlator is adopted in many GNSS receivers which
suppresses multipath interference by reducing the early-late correlator spacing. The signal
model for the narrow correlator is provided by Michael et al. in [6]. Cannon et al. in [7] analyzed
the performance of narrow correlator in the satellite navigation system. The performance of
narrow correlator can be improved by decreasing the early-late correlator spacing. However,
the narrow correlator assumes that the bandwidth of the received signal is infinite which is
invalid in the practical applications. Thus, when the early-late correlation spacing is less than
the reciprocal of the channel bandwidth, the tracking error cannot be further decreased by
reducing the early-late correlator spacing. MEDLL is a multipath interference mitigation
algorithm based on the statistical theory as in [8], which estimates the time delays via the
maximum likelihood criterion. Therefore, the complexity of MEDLL is much higher than
narrow correlator.

This chapter firstly presents a new acquisition algorithm for GNSS. Then two multipath
interference mitigation algorithms based on the DPE (Decoupled Parameter Estimation)
parameter estimation algorithms are presented. The FFT algorithm is utilized to reduce the
computational complexity in all proposed algorithms. Numerical results are provided to
demonstrate the performances of the proposed algorithms. The remainder of this chapter is
arranged as follows. Section 2 presents the new acquisition algorithm. Two multipath inter‐
ference mitigation algorithms are separately presented in Section 3. Section 4 concludes the
chapter.

2. A novel GNSS acquisition algorithm

2.1. Data model and problem formulation

GNSS signal is composed of three parts, the carrier, the ranging codes and the data codes. In
order to facilitate the presentation, GPS is taken as an example. However, the proposed
algorithm is also suitable for other GNSS system. The carrier of GPS (Global Navigation
System) consists of the three different frequency bands, i.e., L1 (1575.42 MHz), L2 (1227.6 MHz)
and L5 (1176.45MHz), see [9-10]. The ranging codes are pseudo random noise (PRN) codes
including C/A code, P code and M code which are known in advance. Data codes or the
navigation data are binary codes containing the satellite ephemeris, satellite status, clock
system, the orbit perturbation correction of the satellite clock motion state and the atmospheric
refraction correction, etc..
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Suppose that one receiver obtained the signals from P satellites and the received data can be
expressed as

( )

1
( ) ( ) ( ) ( )-

=

= - - +å dp p
P

j t
p p p p p

p
y t d t c t e e tw ta t t (1)

where dp(t) represents the navigation data of the p th  satellite, cp(t) is the C/A code of the p th

satellite, e(t) is the thermal noise, αp, τp and ωdp denote the amplitude, time delay and Doppler

frequency of the p th  satellite, respectively. It should be noted that only the L1 signal is
considered in this chapter.

After A/D conversion, the data can be written as

( )
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( ) ( ) ( ) ( )-
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= - - +å dp p
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p
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The conventional acquisition procedure is a two-dimensional searching algorithm, which is
time consuming even when using parallel searching algorithm. Moreover, the frequency
resolution of the conventional acquisition algorithm cannot satisfy the requirements of the
tracking loop. Hence, a more accurate frequency estimation is required before tracking in the
conventional receiver.

Therefore, a new GNSS acquisition algorithm is proposed in this section. The Doppler
frequency is firstly estimated. After that, the initial code phase is then obtained via NLS
(Nonlinear Least Square) fitting. Compared with the conventional acquisition algorithm, the
proposed algorithm can obtain a comparative performance with a lower computational
complexity.

2.2. Principle of the novel acquisition algorithm

It can be noted from the data model in section 2.1 that there are three unknown parameters in
the acquisition process, which are the PRN index of the p th  satellite, the corresponding Doppler
frequency ωdp and its initial code phase τp.

2.2.1. Doppler frequency estimation

Due to the navigation data and C/A code are ±1 in GPS system, it can be seen from equation
(2) that the Fourier spectrum of each satellite contains multiple frequency components.
Therefore, the Doppler frequency cannot be extracted from the spectrum directly. To eliminate
the influence on frequency estimation brought by the navigation data and C/A code, we square
equation (2) as in [11]
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Since the value of navigation data and C/A code is ±1 in GPS system, then the above equation
can be simplified as
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It can be seen from equation (4) that the spectrum of each satellite only contains a single
dominant frequency component corresponding to the Doppler frequency. For the reason that
not only the correlation of C/A code of different satellites is very small but also the signal and
noise are uncorrelated, it is obviously that in equation (5) the product terms of different C/A
codes as well as the product of noise and signal are close to zero. Fourier analysis method can
be directly used to estimate the signal frequency.

The Fourier transform of equation (4) can be expressed as
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/ 2
( ) ( )

-
-

=-

= å
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j n

n N
F y n e ww (6)

where ω =2ωdp can be obtained based on the locations of the first p dominant peaks of F (ω).
A more accurate estimation result can be achieved by using FFT (Fast Fourier Transform)
padding with zeros.

The estimated value of ω̂ is in the range of −π, π , thus from equation (6) we know that the
estimated value of ω̂dp −π / 2, π / 2 . As ωdp −π, π , the estimated frequency could be ω̂dp or
ω̂dp + π. Therefore, the frequency ambiguity will lead to a mistake. Due to the IF (Intermediate
Frequency) of the satellite signals is definitely known after down conversion and the range of
Doppler shift is between ±10kHz [12], the difference between true frequency and the ambiguity
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one is generally greater than the Doppler shift. Therefore, ambiguity frequency can be excluded
by determining whether the frequency is in the range of the Doppler shift.

The frequency spectrum of the received data before and after the square operation is shown
in Figure 1. It can be noted that before square operation, there are multiple dominant frequency
components. Thus the Doppler frequency cannot be extracted directly. However, after being
squared, there is only one dominant Doppler frequency present in the spectrum, so an accurate
Doppler frequency can be estimated.

2.2.2. Code phase estimation and matching

After obtaining the Doppler frequency, the initial phases and the PRN index of the C/A code
from all satellites can be estimated by using its autocorrelation characteristic. Let
sp(n)=dp(n)cp(n)e jωdpn, then equation (2) can be expressed as

Chapter 1 
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where 2 dp  can be obtained based on the locations of the first p  dominant peaks of ( )F  . A 
more accurate estimation result can be achieved by using FFT (Fast Fourier Transform) padding with 
zeros. 

 

(a) before square operation   

 
(b) after square operation 

Figure 1 Frequency spectrum before and after square operation 

The estimated value of ̂  is in the range of [ , ]  , thus from equation (6) we know that the 
estimated value of ˆ [ / 2, / 2]dp    . As [ , ]dp    , the estimated frequency could be ˆdp  or 
ˆdp  . Therefore, the frequency ambiguity will lead to a mistake. Due to the IF (Intermediate 

Frequency) of the satellite signals is definitely known after down conversion and the range of Doppler 
shift is between 10kHz  [12], the difference between true frequency and the ambiguity one is 
generally greater than the Doppler shift. Therefore, ambiguity frequency can be excluded by 
determining whether the frequency is in the range of the Doppler shift. 

Figure 1. Frequency spectrum before and after square operation
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As the Doppler frequency ω̂dq has been estimated, ω̂dq can be used to take the place of ωdq. Then
the signal sent by the q th  satellite can be reconstructed as

ˆˆ ( ) ( ) ( )= dqj n
q q qs n d n c n e w (8)

Suppose the time delay from the q th  satellite to the receiver is τq, then the received signal can
be written as

2ˆ( ) ( ) ( )= - +q q q qy n s n e na t (9)

where e2(n)=∑
p=1
p≠q

P

αpsp(n− τp) + αqs(n− τq)−αqŝ(n− τq) + e(n). The DFT (Discrete Fourier Transform) of

equation (9) can be written as

2ˆ( ) ( ) ( )= +qj k
f q fq fy k s k e e kwa (10)

where yf (k), ŝ fq(k ) and e f 2(k ) are the DFT of y(n), ŝq(n) and e2(n) respectively, ωq = −2πτq f s / N
with f s is the sampling frequency. Note, here xf  is used to represent the DFT of x. Hence, the
estimation of τq is transformed to the estimation of ωq.

To estimate ωq, we define the following NLS cost function [12-15]
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where ( )T denotes the transpose operation. Then the cost function in equation (11) can be
transformed as
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q e e ew w wwa (13)

( / 2), ( / 2 1),..., ( / 2 1)é ù= - - + -ë û
T

f f f fy N y N y Ny (14)

where ( )T denotes the transpose operation. Then the cost function in equation (11) can be
transformed as
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( ) 2ˆˆ ( )= -q f q fq qZ w a wy S a (15)

where  denotes the Euclidean norm. Minimizing Z (ω̂q) with respect to ωq yields the
estimated ω̂q as

2ˆˆ arg max ( )=
q

H H
q q fq fw

w wa S y (16)

The time delay estimation can be further obtained by

ˆˆ / (2 )= -q q sN ft w p (17)

Equation (16) can be solved by using FFT algorithm with a low computation burden. Since the
PRN index of the received signal is unknown, consequently, it is not feasible to reconstruct
ŝq(n) directly by equation (8). Therefore, we should reconstruct signal of each satellite with the
estimated Doppler frequency ω̂q. Then the cross correlation of the reconstructed signal and the
received one can be calculated. Furthermore, the corresponding time delay can be estimated
from equation (16).

It is well-known that the cross correlation coefficients of different C/A codes are very small. In
addition, the signal and noise are uncorrelated. Thus Fourier analysis results of the above
mentioned component are close to zero. The maximum correlation value can only be obtained
in the case that the C/A code of the reconstructed signal is the same as the received one.
Therefore, the PRN index can be obtained. Furthermore, the code delay can be estimated by
the location of the maximum correlation value. Then, we obtained all the unknown parameters.

2.3. Comparison of acquisition algorithms

Suppose the searching time for Doppler frequency estimation is Q in the conventional
acquisition algorithm, P  is the number of satellite received by the receiver. In GPS, the typical
values of Q and P  are 21 and 4-8, respectively, as in [9, 11]. The total number of satellites M  is
32. Since Doppler frequency and code delay are unknown in the conventional acquisition
algorithm, Q frequency points should be searched over certain frequency range. What’s more,
M  satellites are also to be searched for each of the Q frequency points. While in the proposed
algorithm, the Doppler frequencies of P  satellites have been estimated, only P  accurate
frequencies need to be searched.

Figure 2 compares the searching process of the proposed algorithm and the conventional one.
It can be seen that the computation complexity of the proposed algorithm is significantly lower
than that of the conventional algorithm in that the typical value of Q is obviously greater than
P .

Comparison of computation burden between new acquisition algorithm and conventional
acquisition algorithm are shown Table 1. It can be clearly seen from Table 1 that, since Q is
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always greater than P , the computation complexity of the proposed algorithm is lower than
the conventional acquisition procedure. In practices, only 4 satellites are enough to determine
the user position, which is less than 8, hence the computation burden should be further
decreased. As the number of satellite is equal to 4, only half of the original computation
complexity is required.
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Multiplication times Addition times FFT times Time Complexity

conventional method 7MQ+4M 2MQ+3M 2MQ O(MQ)

new method 6MP+4P 3MP+7P M (P+1) +1 O(MP)

Table 1. Comparison of computation burden between new algorithm and conventional one

2.4. Numerical results

To verify the performance of the proposed algorithm, GPS signals from 8 satellites with PRN
indexes 1, 2, 13, 20, 22, 24, 25 and 27 are simulated. Considering the IF is 1.25MHz, the sampling
rate is 7.5MHz, the pre integration time is 1ms and the signal to noise ratio (SNR) is -20dB. The
frequency searching step of the conventional acquisition algorithm is 1kHz. The acquisition
results are shown in Figure 3.
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In Figure 3, the horizontal axis stands for the PRN index of the satellites and the vertical axis
denotes the acquisition metric. Since the proposed algorithm only calculates the correlation of
the received satellite signal and the local reference signal, correlation results of the other
satellite are not shown in Figure 3(b). It can be noted that acquisition results are identical, and
the peak value of the proposed algorithm is higher than the conventional one. Therefore, the
proposed algorithm has a comparative performance with the conventional one.

3. Two novel methods for multipath mitigation

3.1. Multipath data model

The term multipath is derived from the fact that a signal transmitted from a GNSS satellite can
follow a ‘multiple’ number of propagation ‘paths’ to the receiving antenna. This is possible
because the signal can be reflected back to the antenna from surrounding objects, including
the earth’s surface.

Suppose the signal transmitted by GNSS satellites can be written as

( ) ( ) ( )= cj tx t d t c t e w (18)

where d (t) is the navigation data, c(t) is the C/A code in GPS. Here, we take the two path signal
model as an example, which can be generalized to multiple reflection path signals directly.
The received signal including the LOS signal with a single reflection can be written as

2
( )

1
( ) ( ) ( ) ( )-

=

¢= - - +å c pj t
p p p

p
y t d t c t e e tw ta t t (19)

where α1′, τ1 is amplitude and code delay of the LOS signal, α2′, τ2 is amplitude and code delay
of the reflect signal, e(t) is the thermal noise. Equation (19) can also be deployed as

( ) ( ) ( ) ( )( )1 2

2
( )

1

1 1 1 2 2 2

( ) ( ) ( ) ( )

( )

-

=

- -

¢= - - +

¢ ¢= - - + - - +

å c p

c c c

j t
p p p

p

j j j t

y t d t c t e e t

d t c t e d t c t e e e t

w t

w t w t w

a t t

a t t a t t
(20)

To obtain the Doppler frequency of the LOS signal, we use the following relation

( )1
1= =c c

R t
c

f w t w (21)
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To obtain the Doppler frequency of the LOS signal, we use the following relation

( )1
1= =c c

R t
c

f w t w (21)
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Assume the radial velocity of the receiver relative to the satellite is v1, then the range between
them can be given by

( )1 0 1= +R t R v t (22)

where R0 is the initial range between receiver and satellite, then equation (21) can be further
given by

0 1 0 1
1 2+ æ ö= = = +ç ÷

è ø
c c

R v t R v t
c

f w t w p
l l

(23)

As the relative radial velocity is constant, the Doppler frequency can be obtained by

1
1 = =d

d v
dt
fw

l
(24)

The propagation range of the multipath signal can be written as

( ) ( )2 0 1= + + DR t R v t R t (25)

where ΔR(t) is the propagation range difference between the LOS signal and the reflected one.
Since satellites are far away from the receiver, the range difference ΔR(t) can be considered as
constant in the short integration time. Then equation (21) can be represented as

0 1 0 12+ Dæ ö= = + +ç ÷
è ø

c p c
R v t R v t R

c
w t w p

l l l
(26)

Further simplify of equation (20) we can get

( ) ( ) ( ) ( ) ( )( )11 2
1 1 1 2 2 2( ) ( )- +D ¢-¢ ¢= - - + - - +dj j tjy t d t c t e d t c t e e e tj j pwja t t a t t (27)

where ω ′
d =ωd 1 + ωc is the Doppler frequency of the received signal, φ1 =R0 / λ and φ2 =φ1 + Δφ

are the phase of the LOS signal and the reflect one respectively, with Δφ an extra phase caused
by the extra propagation range ΔR. Accordingly, the LOS signal and reflect signal share the
same Doppler shift.

After A/D conversion, the transformed digital signal can be written as
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2

1
( ) ( ) ( ) ( )- ¢

=

¢= - - +å p dj j n
p p p

p
y n d n c n e e e nj wa t t (28)

Assume the Doppler frequency has been estimated accurately, then the complex phase e jω ′
d n

can be compensated after down-conversion. Hence, equation (28) can be written as

2

1
( ) ( ) ( ) ( )-

=

¢= - - +å pj
p p p

p
y n d n c n e e nja t t (29)

where ẽ(n) is equal to e(n)e − jω ′
d n that share the same statistics characteristic with e(n). So we

still use e(n) to represent the noise data.

The in-phase component of equation (29) can be given by

( )
2

I
1

( ) ( ) ( )cos ( )
=

¢= - - - +å p p p p c
p

y n d n c n e na t t j j (30)

where φc is the synthetic phase of the LOS signal and the reflect one. Assume d  is the early-late
correlator spacing in the classical DLL, the estimated code delay of the direct signal is τ̂1. Then
the early and late code can be written as

1̂( ) ( / 2)= - -E Is t y t dt (31)

1̂( ) ( / 2)= - +L Is t y t dt (32)

In classical DLL, the in-phase early and late correlation value is given as

2

1
( ) ( / 2)cos( )

=

= + D - -åE p p p c
p

R R de a e t j j (33)

2

1
( ) ( / 2)cos( )

=

= + D + -åL p p p c
p

R R de a e t j j (34)

where ε = τ1− τ̂1 is the estimation error of the LOS signal, namely tracking error. Δτ = τ2− τ1 is the
relative delay of the multipath signal to the LOS. The discrimination function of the classical
DLL (Delay Locked Loop) can be written as
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In GNSS navigation, the receiver is concerned to maximize the correlation function between
the received and locally generated signals. This can be accomplished by determining the
locations of the zero output of the discriminator which corresponds to the maximum of the
correlation function. Here, the early-late correlator is used to determine the position of this
zero. However, the presence of multipath introduces some bias in the position of the first
arrival peak and has an impact in the user’s position, which can be clearly seen in Figure 4.
Then the classical DLL failed to cope with multipath propagation, see [7-8].

3.2. Code delay estimation

3.2.1. Code delay estimation in the correlation domain via NLS

In this subsection, a code delay estimation algorithm based on DPE in correlation domain is
proposed. To deploy the proposed algorithm, we combine the complex constant phase e − jφp

and the real amplitude α ′
p in equation (29) together as a new complex variable α ″

p. Then
equation (29) can be written as

Figure 4. Correlation peak when multipath is present
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2

1
( ) ( ) ( ) ( )

=

¢¢= - - +å p p p
p

y n d n c n e na t t (36)

The navigation data cycle is much longer than that of the C/A code, but only one cycle of the
C/A code is used in the code delay estimation. Consequently, the navigation data jump can be
neglected in the signal reconstruction. Then the navigation data +1 or −1 is written into α ″

p

and denoted as αp. Therefore equation (36) can be written as

2

1
( ) ( ) ( )

=

= - +å p p
p

y n c n e na t (37)

To simplify the following expression, s() is introduced to represent c(). Then equation (37) can
be represented as

2

1
( ) ( ) ( )

=

= - +å p p
p

y n s n e na t (38)

Multipath interference mitigation based on code delay estimation focus on the estimation of
the LOS delay τ1 and the reflect delay τ2, where the estimated result can be used to migrate the
multipath. After acquisition, the correlation between the received satellite signal and the local
reference signal is used to estimate the parameter of both the LOS signal and the reflected one.
The proposed code delay estimation algorithm can take the place of the classical DLL, which
can be described in details as follows.

To obtain the initial code delay, the correlation function between the received satellite signal
and the reference signal is represented as

( )( ) corr ( ), ( )=r n s n y n (39)

where corr() represents the cross correlation operation. Since the noise is uncorrelated with the
signal, equation (39) can be further expressed as

2

1
( ) ( ) ( )

=

= - +å s
p p

p
r n r n w na t (40)

where r s(n) is the autocorrelation of s(n), w(n)=corr(s(n), e(n)) can still be thought as noise that
sharing the same statistic characteristics with e(n). Apply DFT to equation (40)
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2

1
( ) ( ) ( )

=

= +å pj ks
f f p f

p
p k r k e w kwa (41)

where pf (k), rf
s(k ), wf (k ) are the DFT of p(n), r s(n) and w(n) respectively, ωp = −2πτp / N Ts with Ts

is the sampling interval.

Define a NLS cost function as

{ }( )
2

/ 2 22

1 1
/ 2 1

, ( ) ( )
=

=- =

= -å å p
N

j ks
p p f f pp

k N p
C p k r k e ww a a (42)

The unknown parameters {ωp, αp} p=1
2  can be obtained by minimizing the cost function

C1({ωp, αp} p=1
2 ). Whereas, searching over a multidimensional space to solve the NLS problem

requires higher computational complexity. To reduce the complexity, the Weighted Fourier
Transform and RELAXation (WRELAX) algorithm (see [12]) is utilized here to solve the NLS
problem. Let

T( / 2) ( / 2 1) ( / 2 1)( ) , ,...,- - + -é ù= ë û
p p pj N j N j N

p e e ew w wwa (43)

T
( / 2), ( / 2 1),..., ( / 2 1)é ù= - - + -ë ûf f f fp N p N p Np (44)

{ }( / 2), ( / 2 1),..., ( / 2 1)= - - + -s s s
f f f fdiag r N r N r NR (45)

Consequently the cost function in equation (42) can be rewritten as

2
2

2
1 1

1
({ , } ) ( )=

=

= -åp p p f p f p
p

C w a a wp R a (46)

Further, we assume {ω̂q, α̂q}q=1,q≠p
2  have been estimated, then

2

1

ˆ ˆ[ ( )]
=
¹

= -åfp f q f p
q
q p

a wp p R a (47)
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Substitute equation (47) into equation (46) we have

22
2 1({ , } ) ( )= = -p p p fp p f pC w a a wp R a (48)

By minimizing the cost function C2, estimation of ω̂ p and α̂ p can be obtained from

( ) 2
ˆ arg max ( )H *=

p
p p f fpw

w wa R p (49)

and

( )
2

ˆ

( )
ˆ

H *

=

=

p p

p f fp
p

f F w w

w
a

a R p

R
(50)

where F  represents the Frobenius norm. Hence, ω̂ p can be obtained as the location of the
periodogram |aΗ(ωp)(R f p fp) | 2, which can be efficiently computed by using FFT to the data
sequence R f p fp padded with zeros. (Note the padding with zeros is necessary to determine
ω̂ p with more accuracy.) Then α̂ p is easily computed from the complex height of the peak of
aΗ(ω̂ p)(R f p fp)

R f F
2 .

With the above simple preparations, we now proceed to present the correlation domain
algorithm for the minimization of the NLS cost function. The proposed algorithm comprises
the following steps.

Step 1. Assume p =1. Obtain {ω̂1, α̂1} from equation (49) and equation (50).

Step 2. Assume p =2 (the LOS signal and one reflected path). Compute p f 2 with (47) by using
{ω̂1, α̂1} obtained in Step (1). Obtain {ω̂2, α̂2} from p f 2 described above.

Next, compute p f 1 with (47) by using {ω̂2, α̂2} and redetermine {ω̂1, α̂1} from p f 1 as in equation
(49) and equation (50) above.

Iterate the previous two substeps until “practical convergence” is achieved then we can obtain
{ω̂ p, α̂ p} p=1

2 . Furthermore, by using ω̂ p = −2πτ̂ p / N Ts the code delay τ̂ p, p =1, 2 can be obtained.

From the previous description one can find that the proposed algorithm can be implemented
by simply FFT operation which leads to a less computation load.

The diagram of the novel code delay estimation algorithm is shown in Figure 5.
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Figure 5. Diagram of the correlation domain code delay estimation algorithm

3.2.2. Code delay estimation in the data domain via NLS

Another DPE algorithm is proposed in this subsection. Different from the correlation domain

algorithm, the unknown parameters {αp, τp} p=1
2  can also be estimated directly in the data

domain, which can be described as follows.

Again, the signal after down-conversion is given by

2

1
( ) ( ) ( )
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= - +å p p
p

y n s n e na t (51)

To obtain the unknown parameters {αp, τp} p=1
2  in equation (51), DFT is applied firstly
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1
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p
y k s k e e k N k Nwa (52)
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where yf (k), sf (k ), ef (k ) are the DFT of y(n), s(n) and e(n) respectively. ωp = −2πτp f s / N  with f s

represents the sampling frequency. Till now, the code delay estimation is transformed to the
angular frequency ωp estimation, after which τp can be obtained by the relation

τp = −ωpN / 2π f s.

To obtain (α̂ p, ω̂ p), a NLS cost function as follows is defined

{ }( )
2

/ 2 1 22

1 1
/ 2 1

, ( ) ( )
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=- =

= -å å p
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j k
p p f f pp
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{ }( / 2), ( / 2 1),..., ( / 2 1)= - - + -f f f fdiag s N s N s NS (54)
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Hence, minimizing the cost function in equation (53) is equivalent to minimizing the following
cost function
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2
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=
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Assume {α̂q, ω̂q}q=1,q≠p
2  is known prior or has been estimated, then we have

( )
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Substitute equation (58) into equation (57)
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Fourier Transform - Signal Processing and Physical Sciences42



where yf (k), sf (k ), ef (k ) are the DFT of y(n), s(n) and e(n) respectively. ωp = −2πτp f s / N  with f s

represents the sampling frequency. Till now, the code delay estimation is transformed to the
angular frequency ωp estimation, after which τp can be obtained by the relation

τp = −ωpN / 2π f s.

To obtain (α̂ p, ω̂ p), a NLS cost function as follows is defined

{ }( )
2

/ 2 1 22

1 1
/ 2 1

, ( ) ( )
-

=
=- =

= -å å p
N

j k
p p f f pp

k N p
Q y k s k e wa w a (53)

Let

{ }( / 2), ( / 2 1),..., ( / 2 1)= - - + -f f f fdiag s N s N s NS (54)

( / 2), ( / 2 1),... ( / 2 1)é ù= - - + -ë û
T

f f f fy N y N y Ny (55)

( / 2) ( / 2 1) ( / 2 1)( ) , ,...,- - + -é ù= ë û
p p p

Tj N j N j N
p e e ew w wwa (56)

Hence, minimizing the cost function in equation (53) is equivalent to minimizing the following
cost function

{ }( ) ( )
2

22

2 1
1

,
=

=

= -åp p f p f pp
p

Q a w a wy S a (57)

Assume {α̂q, ω̂q}q=1,q≠p
2  is known prior or has been estimated, then we have

( )
2

1

ˆ ˆ
=
¹

é ù= - ë ûåfp f q f p
q
q p

a wy y S a (58)

Substitute equation (58) into equation (57)

( ) ( ) 2

2 , = -p p fp p f pQ a w a wy S a (59)

Fourier Transform - Signal Processing and Physical Sciences42

Equation (59) gets the minimum while y fp =αpS f a(ωp), then the estimation results ω̂ p and α̂ p

can be obtained in the following way

( ) 2H *ˆ arg max ( )=
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w wa S y (60)
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From equation (60), ω̂ p can be obtained as the location of the periodogram |aH (ω)(S f
* y fp) | 2,

which can be efficiently computed by using the FFT with the data sequence S f
* y fp padded with

zeros. (Note the padding with zeros is necessary to determine ω̂ p with more accuracy.) Then

α̂ p is easily computed from the complex height of the peak of 
aH (ωp)(S f

* y fp)
S f F

2 .

The diagram of the data domain code delay estimation algorithm is shown as in Figure 6.
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With the above simple preparations, we now proceed to present the relaxation algorithm for
the minimization of the nonlinear least-squares cost function. The data domain WRELAX
algorithm comprises the following steps.

Step 1. Assume p =1. Obtain {ω̂1, α̂1} from equation (61) and equation (60).

Step 2. Assume p =2 (the LOS signal and one reflected path). Compute y f 2 with (47) by using
{ω̂1, α̂1} obtained in Step (1). Obtain {ω̂2, α̂2} from y f 2 described above.

Next, compute y f 1 with equation (47) by using {ω̂2, α̂2} and redetermine {ω̂1, α̂1} from y f 1 as
in equation (49) and equation (50) above.

Iterate the previous two substeps until “practical convergence” is achieved then we can obtain
{ω̂ p, α̂ p} p=1

2 . Furthermore, by using ω̂ p = −2πτ̂ p / N Ts the code delay τ̂ p, p =1, 2 can be obtained.

From the previous description one can find that the proposed algorithm can be implemented
by simply FFT operation which deserves a less computation load.

3.2.3. Comparison of the above two algorithms

To further analyze the two proposed algorithms, the cost functions of them are further
discussed in this subsection. Following the discussion in section 3.2.1 and section 3.2.2, we
define

( ) ( ) ( ) T
/ 2 , / 2 1 ,..., / 2 1é ù= - - + -ë ûf f f fs N s N s Ns (62)

Then

H=f f fR s s (63)

In the noise free situation we have

( )=fp p f pa wp R a (64)

Then the correlation domain cost function in equation (49) can be further decomposed as
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Fourier Transform - Signal Processing and Physical Sciences44



With the above simple preparations, we now proceed to present the relaxation algorithm for
the minimization of the nonlinear least-squares cost function. The data domain WRELAX
algorithm comprises the following steps.

Step 1. Assume p =1. Obtain {ω̂1, α̂1} from equation (61) and equation (60).

Step 2. Assume p =2 (the LOS signal and one reflected path). Compute y f 2 with (47) by using
{ω̂1, α̂1} obtained in Step (1). Obtain {ω̂2, α̂2} from y f 2 described above.

Next, compute y f 1 with equation (47) by using {ω̂2, α̂2} and redetermine {ω̂1, α̂1} from y f 1 as
in equation (49) and equation (50) above.

Iterate the previous two substeps until “practical convergence” is achieved then we can obtain
{ω̂ p, α̂ p} p=1

2 . Furthermore, by using ω̂ p = −2πτ̂ p / N Ts the code delay τ̂ p, p =1, 2 can be obtained.

From the previous description one can find that the proposed algorithm can be implemented
by simply FFT operation which deserves a less computation load.

3.2.3. Comparison of the above two algorithms

To further analyze the two proposed algorithms, the cost functions of them are further
discussed in this subsection. Following the discussion in section 3.2.1 and section 3.2.2, we
define

( ) ( ) ( ) T
/ 2 , / 2 1 ,..., / 2 1é ù= - - + -ë ûf f f fs N s N s Ns (62)

Then

H=f f fR s s (63)

In the noise free situation we have

( )=fp p f pa wp R a (64)

Then the correlation domain cost function in equation (49) can be further decomposed as

( )

( ) ( )( )
( ) ( ) ( )

2

2

2
H H

2
T H

ˆ arg max ( )

arg max ( ) ( )

arg max ( ) ( )

arg max ( ) ( )

H *

H *

*H

H *

=

=

= ´ ´

é ù= ´ ´ ´ë û

p

p

p

p

p p fs fp

p fs p fs p

p f f p f f p

p f f f f p p

w

w

w

w

w w

w a w

w a w

w a w

a R p

a R R a

a s s s s a

a s s s s a

(65)

Fourier Transform - Signal Processing and Physical Sciences44

And in the same situation the data domain cost function in equation (60) can be deployed in
the following way
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It has been discussed in previous subsection that ω̂ p can be obtained by using the FFT with the
data sequence R f p fp and S f H y fp, respectively. Note (αpa(ωp)) is an impulse signal, and
FFT(s f

*s f
T) convolutions with the impulse signal is still FFT(s f

*s f
T) but with a code delay, which

is the parameter to be estimated. From equation (65) and (66) we realized that the cost function
are the FFT of αpa(ωp) weighted by different window function, where window function in the
correlation domain is w1 =FFT((s f

Ts f
*)(s f s f

H)), but the window function in data domain is
w2 =FFT(s f

*s f
T). It’s clear that the weighted window w1, w2 will broaden the cost function, and

the impact of w1 is more serious than that of w2, which can also be seen from the comparison
of the cost function given in Figure 7. From this point of view, the proposed data domain
algorithm would deserve a more accurate estimation result.
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Figure 7. Comparison of the correlation domain and the data domain cost function

Correlation of the received data and the locally generated signal and the auto-correlation of
the locally generated signal should be calculated in correlation domain WRELAX algorithm.
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Suppose the iteration times of the two proposed algorithms are the same, the correlation
domain WRELAX algorithm is more complex than the data domain WRELAX algorithm.

3.2.4. Numerical results

To investigate the performance of the proposed algorithm in the presence of multipath, a
simulation experiment was performed. The code delay estimation error can be represented as
the function of τ, and as explained in [l] and [7], maximum and minimum errors occur when
the multipath signal is in-phase Δφ =0 °or out-of-phase Δφ = ± 180 °with the LOS signal. The
curve of the maximum and minimum errors is regarded as the error envelopes, which is used
in the following numerical experiment to evaluate the performance.

Chapter 1 

reflected signal is 2 1 0.5   . The code delay difference 2 1      is varied from 0 to 1.5 chips. 
The error is calculated at the maximum points when the multipath signal is at 0°in phase with 
respect to the LOS signal. The results are shown in Figure 8(a).  

   

  (a). error envelopes                                                     

 

    (b). details of (a) 

Figure 8 Comparison of the error envelopes  

In Figure 8, the curve ‘classical DLL’ denotes the error envelope of the classical DLL, and the curve 
‘narrow correlator’ denotes the error envelope of the narrow correlator with spacing 0.1d   chip. 
Both the ‘classical DLL’ and the ‘narrow correlator’ were calculated by taking the DLL equations and 
solving for the tracking error. The curve ‘MEDLL’, ‘Correlation Domain’ and ‘Data Domain’ denote 
the code delay estimation error of MEDLL, proposed correlation domain algorithm and data domain 
algorithm, respectively. The results indicate that in the presence of multipath, the classical DLL 
technique has a large tracking error, which fails in multipath mitigation. The tracking error is reduced 

Figure 8. Comparison of the error envelopes
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Suppose there is only one reflected multipath signal combined with the LOS signal. The noise
and the receiver bandwidth are not considered in the experiment. The relative amplitude of
the direct and the reflected signal is α2 / α1 =0.5. The code delay difference Δτ = τ2− τ1 is varied
from 0 to 1.5 chips. The error is calculated at the maximum points when the multipath signal
is at 0°in phase with respect to the LOS signal. The results are shown in Figure 8(a).

In Figure 8, the curve ‘classical DLL’ denotes the error envelope of the classical DLL, and the
curve ‘narrow correlator’ denotes the error envelope of the narrow correlator with spacing
d =0.1 chip. Both the ‘classical DLL’ and the ‘narrow correlator’ were calculated by taking the
DLL equations and solving for the tracking error. The curve ‘MEDLL’, ‘Correlation Domain’
and ‘Data Domain’ denote the code delay estimation error of MEDLL, proposed correlation
domain algorithm and data domain algorithm, respectively. The results indicate that in the
presence of multipath, the classical DLL technique has a large tracking error, which fails in
multipath mitigation. The tracking error is reduced in the narrow correlator. However, based
on the previous conclusion, the tracking error is nearly constant when the correlation spacing
is less than 0.1 chip. The tracking accuracy of the algorithms in this section and MEDLL show
a considerable improvement over the narrow correlator technique and the classical DLL
technique. The improved performance can be of great help in critical GPS applications where
the multipath errors associated with using conventional receivers can easily exceed the
accuracy requirements. To further compare the performance of the two proposed algorithms
and MEDLL, we magnify the results in Figure 8(a) to obtain Figure 8(b). It is clear that the
proposed two algorithms have a more favorable performance than MEDLL. Furthermore, the
proposed data domain algorithm is superior to the correlation domain algorithm, which is
consistent with the conclusion in section 3.2.3.

4. Conclusion

A novel acquisition algorithm is firstly proposed in this chapter. In the proposed algorithm,
the Doppler frequency is obtained by utilizing FFT of the squared data. Then, the PRN index
and initial code phases of the satellite are obtained based on the NLS criterion. It can be seen
that the proposed algorithm can not only reduce the computation complexity but also attain
a comparable performance to the conventional acquisition algorithm.

After that, two algorithms are presented to suppress the multipath interference by estimating
the code delay. In the proposed algorithms, the code delay was obtained by solving a NLS
equation, which can be further realized by FFT operation. Compared with the conventional
estimation algorithm, the proposed two algorithms perform better in multipath propagating
environments and bear lower computation burden.
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Chapter 3

Use of Fast Fourier Transform for Sensitivity Analysis

Andrej Prošek and Matjaž Leskovar

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/59769

1. Introduction

The uncertainty quantification of code calculations is typically accompanied by a sensitivity
analysis, in which the influence of the individual contributors to the uncertainty is determined.
In the sensitivity analysis, the basic step is to perform sensitivity calculations varying the input
parameters. One or more input parameters could be varied at a time. The typical statistical
methods for the sensitivity analysis used in uncertainty methods are for example Pearson’s
Correlation Coefficient, Standardized Regression Coefficient, Partial Correlation Coefficient
and others [1]. The output results are time domain signals. The objective of this study was to
use fast Fourier transform (FFT) based approaches to determine the sensitivity of output
parameters. In the reference [2], the FFT based approaches have been used for the accuracy
quantification. The difference between the accuracy quantification and the sensitivity analysis
is that in the accuracy quantification the experimental data are compared to the code calculated
data, while in the sensitivity analysis the reference calculation signal is compared to the
sensitivity run calculation signal. To do this comparison, first the fast Fourier transform is used
to transform time domain signals into frequency domain signals. Then, the average amplitude
is calculated, which is the sum of the amplitudes of the frequency domain difference signal
(between the sensitivity run calculation signal and the reference calculation signal) normalized
by the sum of the amplitudes of the frequency domain reference signal. Finally, the figures of
merit based on the average amplitude are used to judge the sensitivity.

Such a FFT based approach is different from the typical sensitivity analysis using a statistical
procedure to determine the influence of sensitive input parameters on the output parameter.
Namely, the influence of the sensitive input parameters is represented by the average ampli‐
tude which remembers the previous history.

In this study it is shown that the proposed FFT based tool is complementary and a good
alternative to the mentioned typical statistical methods, if one parameter is varied at a time.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and eproduction in any medium, provided the original work is properly cited.



The advantage of the proposed method is that the results of the sensitivity analysis obtained
by the FFT based tool could be ranked. It provides a consistent ranking of sensitive input
parameters according to their influence to the output parameter when one parameter is varied
at a time, and based on the fact that the same method can be used for more participants
performing calculations. For example, there is no need to have ranking levels like it was
proposed in the Phase III of the Best Estimate Methods – Uncertainty and Sensitivity Evalua‐
tion (BEMUSE) programme [3] for the qualitative judgement, because in this approach the
figure of merit is a quantitative value and therefore can be directly ranked. The zero value of
the figure of merit means a not relevant sensitive parameter and the larger the figure of merit
is the more influential the input parameter is.

The difference between statistical methods and the FFT based approach is that in the case of
statistical methods the influence of each varied input parameter on the output result can be
obtained even if more parameters are varied at a time. This cannot be done by FFT based tools
when more parameters are varied at a time. Rather, the total influence of sensitive parameters
on the result is given by the FFT based tool. But the good thing is that the same measure is
used for both single and multiple variations and in this way the compensation effects of the
influence of different sensitive parameters could be studied. As was already mentioned the
FFT based approaches are complementary to statistical methods.

In this Chapter, first the original fast Fourier transform based method (FFTBM) approach is
described. The average amplitude, the signal mirroring, the FFTBM Add-in tool and the time
dependent accuracy measures are introduced. Based on signal mirroring the improved FFTBM
by signal mirroring (FFTBM-SM) was developed. By calculating the time dependent average
amplitude it can be answered, which discrepancy due to the parameter variation contributes
to the sensitivity and how much is its contribution. The past application of the FFT based tool
for the accuracy quantification showed that the original FFTBM gave an unrealistic judgment
of the average amplitude for monotonically increasing or decreasing functions, causing
problems in the FFTBM results interpretation. It was found out [4] that the reason for such an
unrealistic calculated accuracy of increasing/decreasing signals is the edge between the first
and last data point of the investigated signal, when the signal is periodically extended. Namely,
if the values of the first and last data point of the investigated signal differ, then there are
discontinuities present in the periodically extended signal seen by the discrete Fourier
transform, which views the finite domain signal as an infinite periodic signal. The disconti‐
nuities give several harmonic components in the frequency domain, thus increasing the sum
of the amplitudes, on which FFTBM is based, and by this influencing the accuracy. The
influence of the edge due to the periodically extended signal is for clarity reasons called the
edge effect.

Then the methods used for the sensitivity analysis are described. For the demonstration of the
sensitivity study using FFT based tools the L2-5 test, which simulates the large break loss of
coolant accident in the Loss of Fluid test (LOFT) facility, was used. The signals used were
obtained from the Organisation for Economic Co-operation and Development (OECD)
BEMUSE project. In the BEMUSE project there were 14 participants, each performing a
reference calculation and 15 sensitivity runs of the LOFT L2-5 test. Three output parameters
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were provided: the upper plenum pressure, the primary side mass inventory and the rod
surface temperature.

Finally, the application of the FFT based approaches to the sensitivity analysis is described.
Both FFTBM and FFTBM-SM were used.

2. Fast fourier transform based method description

The FFT based method is proposed for the sensitivity analysis, which is analogous to the FFT
based code-accuracy assessment described in ref. [5]. The FFT based approach for code
accuracy consists of three steps: a) selection of the test case (experimental or plant measured
time trends to compare), b) qualitative analysis, and c) quantitative analysis. The qualitative
analysis is necessary before quantifying the discrepancies between the measured and calcu‐
lated trends. The qualitative analysis includes also the visual observation of plots and the
evaluation of the discrepancies between the measured and calculated trends, which should be
predictable and understood. For the sensitivity analysis the same FFT based approach is used
for the quantitative analysis as used for the code-accuracy. However, the signals compared
now are the output signal obtained with the reference value of the input parameter and the
output signal as the result of the sensitive input parameter variation.

In the quantitative analysis, the influence of the sensitive input parameter variation is judged
in the frequency domain. Therefore the time domain signals used in the sensitivity analysis
have to be transformed in the frequency domain signals. The addressed time domain signals
assume values different from zero only in the interval [0, Td], where Td is the duration of the
signal. Also the digital computers can only work with information that is discrete and finite
in length (e.g. N points) and there is no version of the Fourier transform that uses finite length
signals [6]. The way around this is to make the finite data look like an infinite length signal.
This is done by imagining that the signal has an infinite number of samples on the left and
right of the actual points. The imagined samples can be a duplication of the actual data points.
In this case, the signal looks discrete and periodic. This calls for the discrete Fourier transform
(DFT) to be used. There are several ways to calculate DFT. One method is FFT. While it
produces the same results as the other approaches, it is incredibly more efficient. The key point
to understand the FFTBM is that the periodicity is invoked in order to be able to use a
mathematical tool, i.e., the DFT. It seems that the developers of the original FFTBM have not
been sufficiently aware of this fact.

The discrete Fourier transform views both, the time domain and the frequency domain, as
periodic [6]. However, the signals to be used for the comparison are not periodic and the user
must conform to the DFT’s view of the world. When a new period starts, the N samples on the
left side are not related to the samples on the right side. However, DFT views these N points
to be a single period of an infinitely long periodic signal. This means that the left side of the
signal is connected to the right side of the signal, and vice versa. The most serious consequence
of the time domain periodicity is the occurrence of the edge, where the signals are glued. When
the signal spectrum is calculated with DFT, the edge is taken into account, despite the fact that
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the edge has no physical meaning for the comparison, since it was introduced artificially by
the applied numerical method. It is known that the edge produces a variegated spectrum of
frequencies due to the discontinuity of the edge. These frequencies originating from the
artificially introduced edge may overshadow the frequency spectrum of the investigated
signal. Therefore an improved version of FFTBM by signal mirroring has been proposed, which
is described in detail in [4]. Both the original FFTBM and the improved FFTBM by signal
mirroring have been used in the demonstration application. The same equations are used for
the calculation of the average amplitude, like for the original FFTBM, except that, instead of
the original signals, the symmetrized signals are used (for further details see ref. [4]). In the
following it is first described how the average amplitude is calculated.

2.1. Average amplitude

FFT is another method for calculating the DFT. While it produces the same result as the other
approaches, it significantly reduces the computation time. FFT usually operates with a number
of values N that is a power of two. Typically, N is selected between 32 and 4096 [6]. In addition,
the sampling theorem must be fulfilled to avoid the distortion of sampled signals due to the
aliasing occurrence. The sampling theorem says: “a signal that varies continuously with time
is completely determined by its values at an infinite sequence of equally spaced times if the
frequency of these sampling times is greater than twice the highest frequency component of
the signal” [7]. Thus if the number of points defining the function in the time domain is N=2m

+1, then according to the sampling theorem the sampling frequency is:
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where τ is the sampling interval, td is the transient time duration of the sampled signal and
fmax is the highest (maximum) frequency component of the signal. The sampling theorem does
not hold beyond fmax. From the relation in Eq. (1) it is seen that the number of points selection
is strictly connected to the sampling frequency. The FFT algorithm requires the number of
points, equally spaced, which is a power with base 2. Generally an interpolation is necessary
to satisfy this requirement. The original FFTBM is done so that the default value of the exponent
m ranges from 8 to 11. This gives N ranging from 512 to 4096. The final number of points used
by FFTBM is determined depending on the value of ffix, which is the minimum requested
maximum frequency and is input value. If fmax is not larger than ffix, the number of points is
doubled (exponent m is increased for 1) until the criterion is satisfied or the exponent m equals
to 11. Please note, that the minimum value of the exponent m is 8. The FFTBM application
implies the following input values: the fixed frequency ffix (minimum maximum frequency of
the analysis, this determines the number of points N), the cut off frequency (fcut), the start time
ts and the end time te of the analysed window (determines the analysis window td = ts - te). A
cut off frequency has been introduced to cut off spurious contributions, generally negligible.
When fcut is equal or larger than ffix, all frequency components are considered.
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For the calculation of the differences between the output signal obtained with the reference
value of the input parameter (reference signal Fref(t)) and the output signal as the result of the
sensitive input parameter variation (sensitive signal Fsen(t)), the reference signal (Fref(t)) and
the difference signal ΔF(t) are needed. The difference signal in the time domain is defined as:

( ) .ref senΔF t F (t) F (t)= - (2)

After performing the fast Fourier transform the obtained spectra of amplitudes are used for
the calculation of the average amplitude (AA):
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where | Δ̃F ( f n)|  is the difference signal amplitude at frequency fn and | F̃ ref( f n)|  is the
reference signal amplitude at frequency fn. The AA factor can be considered as a sort of average
fractional difference and the closer the AA value is to zero, the smaller is the sensitivity
(influence). In our specific application, the larger the sensitivity is the larger is the difference
between the signals, normally resulting in a larger AA value. Typically, based on the previous
experience in the accuracy quantification the values of AA below 0.3 indicate a small influence
(in the case of pressure below 0.1), while the values above 0.5 indicate a large influence.

The above Eq. (3) can be also viewed as:
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where AAdif is the average amplitude of the difference signal and AAref is the average ampli‐
tude of the reference signal:
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If the reference and sensitive signals are the same, the difference signal is zero. The larger the
difference is, the larger is AAdif (in principle). On the other hand, AAref normalizes the aver‐
age amplitude AA and the higher the sum of amplitudes is, the lower is the average ampli‐
tude AA. This means that for ranking the sensitivities of the selected output parameter only
AAdif has an influence. On the other hand, for judging the influence of a single sensitive parameter
variation on different output parameters, besides AAdif also AAref influences the ranking due
to the different AAref the output parameters have.
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where | Δ̃F ( f 0)| is the mean value of the difference signal and it is equivalent to the mean error
(ME) in the time domain as defined in ref. [8]. The measure fraction A0 shows when the frequency
amplitudes are dominating or when the mean values (like constant differences) are dominat‐
ing the sum of the amplitudes.

2.2. Signal mirroring

If we have a function F (t) where 0≤ t ≤ td and td is the transient time duration, its mirrored function
is defined as Fmir(t)=F (− t), where − td ≤ t ≤0. From these functions a new function is composed
which is symmetrical in regard to the y-axis: Fm(t), where − td ≤ t ≤ td . This is illustrated in Figure
1. By composing the original signal (shown in Figure 1(a)) and its mirrored signal (signal
mirroring), a signal without the edge between the first and the last data sample is obtained, and
it is called symmetrized signal (shown in Figure 1(b)). It has the double number of points in
order not to lose any information. Also it should be noted that the edge is not present in the
original time domain signal (see Figure 1(a)). However, when performing FFT, the aperiodic
original signal is treated as a periodic original signal as mentioned before and therefore the edge
is part of the periodic original signal, what is not physical. In the case of the symmetrized signal
the edge is not present even when treating the signal as periodic.

For the calculation of the average amplitude by signal mirroring AAm the Eq. (3) is used like
for the calculation of AA, except that, instead of the original signals, the symmetrized signals
are used. This may be efficiently done by signal mirroring, where the investigated signal is
mirrored before the original FFTBM is applied. By composing the original signal and its
mirrored signal (signal mirroring), a symmetric signal (also called symmetrized signal) with
the same characteristics is obtained, but without introducing the edge when viewed as an
infinite periodic signal (for details refer to refs. [4, 9]). FFTBM using the symmetrized signals
is called FFTBM-SM.
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2.3. FFTBM Add-in tool

To take the advantages of spread sheets in preparing input forms, analysing data (including
analysis of values), modifying graphs and the capability to store time recorded data, plots,
input forms and results, the Jožef Stefan Institute (JSI) in-house Microsoft Excel Add-in for the
accuracy evaluation of thermal-hydraulic code calculations with FFTBM has been developed
in 2003 [10]. Later the tool was upgraded with the capability to symmetrize the signals, and
some other improvements. The upgraded tool is called JSI FFTBM Add-in 2007 [11] and it has
been used for the sensitivity study, described in this chapter. It includes both FFTBM and
FFTBM-SM. As already mentioned, the difference between FFTBM and FFTBM-SM is that in
the latter the signals are symmetrized to eliminate the edge effect in calculating the average
amplitude by signal mirroring (AAm).

JSI FFTBM Add-in 2007 provides additional information on interpolated data of the signals
used, the difference signals, the amplitude spectra and the AA dependency on the cut
frequency. The user can use the interpolated data for visual checking about the agreement of
the original signal and the interpolated signal. The amplitude spectra give the possibility to
compare the spectra between different signals. Information on the AA dependency on the cut
frequency is used to check if the cut frequency is selected properly. Usually the dependency
is not so big, therefore by default AA at the selected fcut frequencies is calculated:

• minimal AA (AAmin) at frequency (when fcut > 0.05 fmax) which gives the minimum AA,

• average AA (AAavg) is calculated as the average AA at all cut frequencies,

• maximal AA (AAmax) at the frequency (when fcut > 0.05 fmax) which gives the maximum AA,

• 5 percentile AA (AA05) at frequency fcut = 0.05 fmax,

• 50 percentile AA (AA50) at frequency fcut = 0.5 fmax,

• 100 percentile AA (AA100) considering all amplitudes (for fcut = fmax).

This gives an indication if AA is significantly dependent on the cut frequency. In principle,
AA should not be much different when half or all frequencies from the amplitude spectrum
are considered for the AA calculation. If this is not the case, deeper insight into AA is needed
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to judge if there is a spurious contribution present in the signal. For example, in the case of
measured data, noise may be present in the signal. In the case of code calculated digital data,
noise is not present in the signals, therefore the whole amplitude spectrum is recommended
for the AA calculation. Nevertheless, the user should be aware that AA depends on the cut
frequency and that the result may change when not all frequencies are considered. Typically
higher frequency components have lower amplitudes than lower frequencies, therefore the
lower frequency content is always used for the AA calculation (only higher frequency
components are filtered).

2.4. Time dependent average amplitude

In the ref. [12] the influence of the time window selection was studied. Instead of a few
phenomenological windows a series of narrow windows (phases) could be selected. This gives
the possibility to get the time dependency of the average amplitude. The increasing time
interval was defined as a set of time intervals each increased for the duration of one narrow
time window and the last time interval being the whole transient duration time. By increasing
the time interval we see how the average amplitude changes with the time progression as it is
shown in Figure 2. The average amplitude was calculated by the original FFTBM not consid‐
ering the edge effect. Therefore the average amplitude shown in Figure 2(b) first increases and
then partly decreases in spite of the discrepancy present all this time during the temperature
increase shown in Figure 2(a).

The time dependent average amplitude is also indispensable for the sensitivity analysis. From
such a time dependant average amplitude it can be easily seen when the largest influence
occurs on the output parameter due to the sensitive parameter variation.
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In BEMUSE, Phase II, single parameter sensitivity analyses have been proposed and performed
by the participants to study the influence of different parameters (break area, gap conductivity,
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3. Methods used for sensitivity analysis

In BEMUSE, Phase II, single parameter sensitivity analyses have been proposed and performed
by the participants to study the influence of different parameters (break area, gap conductivity,
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core pressure drops, time of scram etc.) upon the predicted large-break loss-of-coolant accident
(LBLOCA) evolution [13]. The performed sensitivity studies were intended to be used as
guidance for deriving uncertainties of relevant input parameters like for phase III of the
BEMUSE programme.

The sensitivity analysis is concerned, generally, with the influence of inputs on the output and
output variability. Generally, sensitivity analyses are conducted by defining the model and its
independent and dependent variables, assigning probability density functions to each input
parameter, generating an input matrix through an appropriate random sampling method,
performing calculations, and assessing the influences and relative importance of each input/
output relationship.

In our demonstration case, the calculated data obtained in the Phase II of BEMUSE provided
by the host organization have been used. The input matrix consists of the single parameter
variation. The range of variations has been proposed by the host organization. For sensitivity
calculations, only one value (minimal or maximal) of the input parameter was proposed when
the range of the parameter variation was specified for selected sensitive parameter. For each
single parameter variation the calculation was performed. The influence of the sensitive
parameter variation has been estimated through the application of FFT based approaches.

We will call sensitivity (of the output parameter Y versus the i-th input parameter Xi) a measure

having the dimension of ∂Y
∂Xi

 that is independent of the range of variation of the parameter

Xi. Sensitivity is related to output variability.

We will call influence a measure of the effect of the variation of the parameter Xi on its full

range (ΔXi) having the dimension of ∂Y
∂Xi

ΔXi (same as Y) or more often dimensionless form

∂Y
∂Xi

ΔY
ΔXi

.

In our sensitivity analysis the influences were determined. Please note that classical measures
of influences are: Pearson’s or Spearman’s Correlation Coefficients, Standardised Regression
Coefficients, etc. [14]. In FFT based approaches the AA is a dimensionless number, showing
influences in terms of the average amplitude obtained in the frequency domain which
represents the physical influence (e.g. temperature or pressure change).

3.1. Test description

The LOFT L2-5 test was selected for this demonstration because a huge amount of data was
available [15]. The reference and sensitivity calculations of the LOFT L2-5 test were performed
in the phase II of the BEMUSE research program. The nuclear LOFT integral test facility is a
scale model of a pressurized water reactor. The objective of the test was to simulate a loss of
coolant accident (LOCA) caused by a double-ended, off-shear guillotine cold leg rupture
coupled with a loss of off-site power. The experiment was initiated by opening the quick
opening blowdown valves in the broken loop hot and cold legs. The reactor scrammed and
emergency core cooling systems started their injection. After initial heatup the core was

Use of Fast Fourier Transform for Sensitivity Analysis
http://dx.doi.org/10.5772/59769

59



quenched at 65 s, following the core reflood. The low pressure injection system (LPIS) was
stopped at 107.1 s, after the experiment was considered complete. In total 14 calculations from
13 organizations were performed. For more detailed information on the calculations the reader
is referred to [4, 15].

3.2. Sensitivity calculations description

The series of sensitivity calculations with assigned parameters was proposed to participants.
For each parameter the host organization recommended the value to be used. The short
description of the cases to be analysed is given in Table 1.

ID Parameter
Recommended
values (RV)

Description

S-1 Break Area RC x 1.15
Tube diameter from reactor pressure vessel to break point shall
be modified in respect to RC.

S-2 Gap Conductivity RC x 0.2 Only in the hot rod in the hot channel (zone 4).

S-3 Gap Thickness RC x 3 Only in the hot rod in the hot channel (zone 4).

S-4 Presence of Crud 0.15 mm
Consideration of 0.15 mm of crud in hot rod in hot channel with
thermal conductivity that is characteristic of ceramic material,
e.g. Al2O3.

S-5 Fuel Conductivity RC x 0.4 Only in the hot rod in the hot channel (zone 4).

S-6 Core Pressure Drop
RC + D:
DPtot=(DPtot)RC x 1.3

The pressure drop across the core shall increase (decrease) of an
amount D to obtain a total pressure drop that is 30% bigger than
the total pressure drop of the reference case.

S-7
CCFL at Upper Tie Plate (UTP)
and/or connection upper plenum
(UP)

Range not
assigned

Counter courant flow limitation (CCFL) is nodalization
dependent. Each participant can propose a solution.

S-8 Decay Power RC x 1.25 The decay power has to be 25% bigger than in the reference case.

S-9 Time of Scram RC + 1 s
The power curve shall follow the imposed trend that implies full
power till RC + 1 sec and after that shall followed the decay
power.

S-10 Maximum Linear Power RC x 1.5 Only in the hot rod in the hot channel (zone 4).

S-11 Accumulator Pressure RC - 0.5 MPa
Set point of accumulator pressure 0.5 MPa lower than the set
point in the base case (= 4.29 MPa).

S-12 Accumulator Liquid Mass RC x 0.7
Accumulator liquid mass shall be 0.7 times the value in the
reference case.

S-13 Pressurizer Level RC - 0.5 m Pressurizer level shall be 0.5 m lower than in the reference case.

S-14 HPIS Failure Failure of HPIS.

S-15 LPIS injection initiated RC + 30 s Delay in starting LPIS injection.

RC: value used in Reference Case

Table 1. List of sensitivity analyses and proposed parameter variations (adapted per Table 6 in ref. [15])

Fourier Transform - Signal Processing and Physical Sciences60



quenched at 65 s, following the core reflood. The low pressure injection system (LPIS) was
stopped at 107.1 s, after the experiment was considered complete. In total 14 calculations from
13 organizations were performed. For more detailed information on the calculations the reader
is referred to [4, 15].

3.2. Sensitivity calculations description

The series of sensitivity calculations with assigned parameters was proposed to participants.
For each parameter the host organization recommended the value to be used. The short
description of the cases to be analysed is given in Table 1.

ID Parameter
Recommended
values (RV)

Description

S-1 Break Area RC x 1.15
Tube diameter from reactor pressure vessel to break point shall
be modified in respect to RC.

S-2 Gap Conductivity RC x 0.2 Only in the hot rod in the hot channel (zone 4).

S-3 Gap Thickness RC x 3 Only in the hot rod in the hot channel (zone 4).

S-4 Presence of Crud 0.15 mm
Consideration of 0.15 mm of crud in hot rod in hot channel with
thermal conductivity that is characteristic of ceramic material,
e.g. Al2O3.

S-5 Fuel Conductivity RC x 0.4 Only in the hot rod in the hot channel (zone 4).

S-6 Core Pressure Drop
RC + D:
DPtot=(DPtot)RC x 1.3

The pressure drop across the core shall increase (decrease) of an
amount D to obtain a total pressure drop that is 30% bigger than
the total pressure drop of the reference case.

S-7
CCFL at Upper Tie Plate (UTP)
and/or connection upper plenum
(UP)

Range not
assigned

Counter courant flow limitation (CCFL) is nodalization
dependent. Each participant can propose a solution.

S-8 Decay Power RC x 1.25 The decay power has to be 25% bigger than in the reference case.

S-9 Time of Scram RC + 1 s
The power curve shall follow the imposed trend that implies full
power till RC + 1 sec and after that shall followed the decay
power.

S-10 Maximum Linear Power RC x 1.5 Only in the hot rod in the hot channel (zone 4).

S-11 Accumulator Pressure RC - 0.5 MPa
Set point of accumulator pressure 0.5 MPa lower than the set
point in the base case (= 4.29 MPa).

S-12 Accumulator Liquid Mass RC x 0.7
Accumulator liquid mass shall be 0.7 times the value in the
reference case.

S-13 Pressurizer Level RC - 0.5 m Pressurizer level shall be 0.5 m lower than in the reference case.

S-14 HPIS Failure Failure of HPIS.

S-15 LPIS injection initiated RC + 30 s Delay in starting LPIS injection.

RC: value used in Reference Case

Table 1. List of sensitivity analyses and proposed parameter variations (adapted per Table 6 in ref. [15])

Fourier Transform - Signal Processing and Physical Sciences60

In Table 2 sensitivity calculations performed by 14 participants are shown. Each row presents
sensitivity calculations S-1 to S-15. If the calculation is performed with recommended values,
the sign √ is used. If another value has been used, the value of the sensitive parameter is
indicated. If the sensitivity calculation has not been performed, the cell is shaded grey.

Name S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12 S-13 S-14 S-15

P-1
RC × 1.15

(area)
RC × 0.5 √ √ RC × 0.5 √

CCFL at
UTP

√ √ √ √ √ √ √ √

P-2 √ * √ * √ * √ * √ * √ * √ * √ * √ * √ √ * √ * √ *

P-3 RC × 0.7 RC × 2 √ * √ * √ * √ * √ * √ * √ * √ * √ * √ * √ * √ *

P-4 √ √ √ √ √ √ √ √ √ √ √ √

P-5
Adjusted to

pressure
√ *

RC × 2
(resist-
ance)

√ √ √

P-6
RC × 1.15

(open size)
√ √ √ * √ * √ * √ * √ * √ * √ * √ * √ * √ * √ * √ *

P-7 √ * √ * √ * √ * √ *

P-8 √ RC × 0.4RC × 2.4 √ RC × 0.6 √ √ √ √
RC ×
1.2

√ √ √ √ √

P-9 √ * √ * √ * √ * √ * √ *
CCFL at

UP
√ * √ * √ * √ * √ * √ * √ * √ *

P-10 √ √ √ √ √ √ √ √ √ √ √ √ √

P-11 √ * √ * √ * √ * √ * √ * √ * √ * √ * √ * √ * √ * √ * √ *

P-12 √ √ √ √ √ √
turned

off
√ √ √ √ √ √ √ √

P-13
RC × 1.15

(area)
√ √ √ √ √ default √ √ √ √ √ √ √ √

P-14 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

* no information given in Ref. [15], but high certainty that recommended values were used;

√ - recommended value used

Table 2. Sensitivity calculations performed by participants

3.3. Figures of merit for sensitivity analysis

Same figures of merit were proposed for the original FFTBM and improved FFTBM-SM. In the
case of signal mirroring the additional index m is used to distinguish the FFTBM-SM from
FFTBM. The first figure of merit is the average amplitude (AA or AAm), which tells how the
single input parameter variation (or combination of input parameter variations) influences the
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output parameter. As there are several sensitive input parameters, several participants
performing sensitivity runs and more selected output parameters, three additional figures of
merit were proposed. The average amplitude of the participant sensitivity runs (AAp or AAmp)
is used to judge which sensitivity runs set is more influential to the input parameter variations.
AAp or AAmp is calculated as the average of AAs for the participant sensitivity runs (15 in our
specific case). The average amplitude of the sensitivity runs for the same sensitive parameter
(AAs or AAms) is used to judge how influential (in average) the sensitive parameter is in
calculations performed by different participants. AAs or AAms is calculated as the average of
AAs of participants for the same sensitivity run (14 in our specific case). Finally, the total
average amplitude (AAt or AAmt) is the average AA or average AAm obtained from all
sensitivity runs performed by all participants.

4. Application of FFT based approches to sensitivity analysis

In this section the application of the original FFTBM and FFTBM-SM is demonstrated. As was
explained in Subsection 2.1, two digital signals (reference and sensitive) of the same duration
are used for calculating the average amplitude, which is a measure of the influence of the
sensitive parameter variation. An example of calculating AAm is given first. Then the single
value influence (based on the average amplitude) for the whole time window is given. Finally,
the time dependent influence is presented for the sensitivity runs. We conclude this section
with the discussion.

4.1. AAm figure of merit example

In the example the influence of sensitive parameters on three output parameters for the interval
0-119.5 s (whole transient time) is shown for calculations of participant P-14. The participant
P-14 provided for each time trend 241 samples. This means that the sampling frequency was
2 Hz. The input values for FFTBM-SM were therefore the following: ffix=2 Hz, fcut=2 Hz, tb=0 s
and te=119.5 s (time 119.5 s was selected because some users provided the last data point at a
value slightly smaller than 120 s). Per sampling theorem (Eq. (1)) at least 478 data points are
needed. However, the minimum number of points per FFTBM-SM is 512. Table 3 shows that
requesting more samples than required has a minor influence on the results.

To get some qualitative impression on the influence of input parameters on output parameters
judged by FFTBM-SM, Figure 3 shows time trends of P-14 upper plenum pressure, primary
side mass and cladding temperature. Visually it may be indicated that the upper plenum
pressure is the most influenced by the break flow (S-1). On the other hand, hot rod parameters
(S-2, S-3, S-4 and S-5) and accumulator initial mass (S-12) do not have significant influence on
upper plenum pressure (see Figures 3(a2), 3(a3), 3(a4) and 3(a5)). The primary side mass
inventory is the most influenced by the gap conductivity (S-2), fuel conductivity (S-5), and the
accumulator liquid mass (S-12). When comparing S-2 and S-5 calculations, one may indicate
that the S-5 calculation is a bit closer to the reference calculation. On the other hand, comparing
the S-2 and S-12 calculation, in the case of S-2 the difference is absolutely larger than S-12,
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however in case of S-12 the difference is present a longer time than in the case of S-2. The
calculated AAm is comparable.

To see this in more detail, Figure 4 shows part of the magnitude difference signal spectra
| Δ̃F ( f n)|  for S-2 and S-12, which are used for the calculation of AAdif per Eq. (5). Please note
that fmax is 2.14 Hz. However, summing of amplitudes up to 0.2 Hz contributes more than 90%
to total AAdif (for S-2 the sum is 11.26 out of 12.43 and for S-12 the sum is 10.83 out of 11.79).
Summing amplitudes up to 0.05 Hz (representing 13 samples out of 513) contributes more than
80% to total AAdif (for S-2 the sum is 10.16 out of 12.43 and for S-12 the sum is 9.57 out of 11.79).
One may see that the zero frequency component (mean value of difference signal in the time
domain) is larger for S-2 than S-12 and that due to this contribution finally S-2 is judged as
more influential than S-12.

4.2. Single value influence for whole time window

In the example presented in Section 4.1, AAm for the P-14 calculation was determined. In this
section all fourteen calculations are considered, and both FFTBM and FFTBM-SM are used for
calculating all figures of merit presented in Section 3.3. The obtained results for the sensitive
parameter influence on the three output parameters (upper plenum pressure, primary side
mass inventory and rod surface temperature) are shown in Tables 4 through 6.

The qualitative comparison between FFTBM and FFTBM-SM results showed that the agree‐
ment is quite good. This is expected as at the end of the transient the influence of the sensitive
parameter is generally insignificant, resulting that in the difference signal the edge is very

Upper plenum pressure Primary side mass Rod surface temperature

N=29 N=210 N=211 N=212 N=29 N=210 N=211 N=212 N=29 N=210 N=211 N=212

S-1 0.085 0.088 0.089 0.089 0.102 0.103 0.103 0.104 0.330 0.335 0.338 0.339

S-2 0.032 0.033 0.034 0.034 0.124 0.125 0.125 0.125 0.799 0.806 0.805 0.807

S-3 0.015 0.016 0.016 0.016 0.056 0.056 0.057 0.057 0.488 0.491 0.494 0.495

S-4 0.015 0.016 0.016 0.016 0.056 0.057 0.057 0.057 0.295 0.301 0.301 0.303

S-5 0.026 0.027 0.027 0.027 0.108 0.108 0.109 0.109 0.937 0.944 0.948 0.948

S-6 0.019 0.019 0.020 0.020 0.046 0.046 0.046 0.046 0.256 0.258 0.261 0.263

S-7 0.023 0.024 0.024 0.024 0.051 0.051 0.052 0.052 0.258 0.269 0.270 0.272

S-8 0.016 0.016 0.017 0.017 0.041 0.041 0.042 0.042 0.143 0.145 0.147 0.148

S-9 0.018 0.019 0.019 0.019 0.039 0.040 0.040 0.040 0.205 0.208 0.209 0.210

S-10 0.015 0.016 0.016 0.017 0.043 0.043 0.044 0.044 0.449 0.460 0.460 0.461

S-11 0.021 0.022 0.022 0.022 0.090 0.090 0.091 0.091 0.239 0.240 0.243 0.245

S-12 0.029 0.030 0.030 0.031 0.117 0.118 0.119 0.119 0.480 0.487 0.488 0.490

S-13 0.045 0.046 0.046 0.047 0.065 0.066 0.066 0.066 0.302 0.308 0.310 0.311

S-14 0.015 0.016 0.016 0.016 0.052 0.053 0.053 0.053 0.255 0.256 0.259 0.261

S-15 0.016 0.016 0.017 0.017 0.059 0.059 0.060 0.060 0.147 0.150 0.151 0.152

Table 3. Average amplitude AAm for the whole time interval for participant P-14 calculated by FFFTB-SM as a
function of the number of samples N
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small or not present at all. The edge is still present in the reference signal, but because it is used
for the normalization it has no impact on the ranking of parameters and so the qualitative
agreement between FFTBM and FFTBM-SM is good. This is not the case for the quantitative
agreement as the normalization directly impacts the average amplitude. The average ampli‐
tudes obtained by both FFTBM and FFTBM-SM suggest that the most influential parameter
for the upper plenum pressure is in all calculations the break flow area (S-1). To judge how
influential the parameter is, the average amplitude of the sensitivity runs for the same sensitive
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parameter (AAs or AAms) obtained both by FFTBM and FFTBM-SM show that the variations
of the break flow area (S-1), pressurizer level (S-13), core pressure drop (S-6) and presence of
crud (S-4) the most influence the output parameter upper plenum pressure. The only difference
between the FFTBM and FFTBM-SM results is that ranks for S-6 and S-4 are changed.

Table 4 

(a) Application of FFTBM - upper plenum pressure, time interval 0 - 119.5 s 
ID-S S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12 S-13 S-14 S-15   
ID-P AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AAp 

P-1 0.051 0.011 0.010 0.006 0.009 0.011 0.008 0.013 0.011 0.019 0.019 0.015 0.036 0.011 0.010 0.016 

P-2 0.042 0.008 0.010   0.008 0.005   0.002 0.006 0.001 0.006 0.015 0.013 0.001 0.002 0.009 

P-3 0.070 0.025 0.035 0.030 0.034 0.108   0.045 0.028 0.042 0.043 0.045 0.060 0.010 0.008 0.042 

P-4 0.110   0.014   0.013 0.015   0.011 0.011 0.012 0.030 0.033 0.027 0.010 0.012 0.025 

P-5 0.089 0.014       0.016   0.023 0.018 0.019           0.030 

P-6 0.029 0.010 0.012 0.013 0.010 0.077 0.015 0.009 0.011 0.010 0.011 0.010 0.017 0.008 0.005 0.016 

P-7 0.030         0.008   0.006   0.005 0.009         0.012 

P-8 0.068 0.013 0.009 0.010 0.012 0.015 0.018 0.014 0.015 0.015 0.016 0.018 0.027 0.012 0.010 0.018 

P-9 0.074 0.007 0.009 0.008 0.008 0.010 0.009 0.009 0.010 0.008 0.011 0.015 0.027 0.000 0.008 0.014 

P-10 0.059 0.030 0.018   0.008 0.023   0.006 0.007 0.029 0.039 0.009 0.052 0.004 0.012 0.023 

P-11 0.035 0.008 0.012 0.117 0.016 0.012   0.012 0.013 0.011 0.019 0.019 0.028 0.012 0.016 0.024 

P-12 0.035 0.006 0.009 0.007 0.008 0.009 0.010 0.004 0.009 0.008 0.009 0.006 0.021 0.004 0.009 0.010 

P-13 0.041 0.014 0.015 0.011 0.016 0.132 0.016 0.014 0.013 0.015 0.017 0.011 0.024 0.006 0.005 0.023 

P-14 0.044 0.017 0.008 0.008 0.013 0.010 0.012 0.008 0.009 0.008 0.011 0.015 0.023 0.008 0.008 0.013 

AAs 0.055 0.014 0.013 0.023 0.013 0.032 0.013 0.012 0.012 0.014 0.018 0.017 0.030 0.007 0.009 AAt=0.019 

Legend:   0.02-0.04   >0.04 

(b) Application of FFTBM-SM - upper plenum pressure, time interval 0 - 119.5 s 
ID-S S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12 S-13 S-14 S-15   
ID-P AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAmp 

P-1 0.098 0.021 0.020 0.012 0.018 0.021 0.016 0.026 0.022 0.038 0.038 0.030 0.070 0.021 0.019 0.031 

P-2 0.080 0.016 0.018   0.014 0.009   0.003 0.011 0.002 0.012 0.029 0.026 0.002 0.004 0.017 

P-3 0.145 0.048 0.071 0.055 0.065 0.127   0.090 0.054 0.084 0.086 0.090 0.120 0.019 0.015 0.076 

P-4 0.212   0.026   0.025 0.028   0.021 0.023 0.023 0.059 0.064 0.051 0.019 0.023 0.048 

P-5 0.160 0.024       0.028   0.039 0.032 0.034           0.053 

P-6 0.054 0.019 0.021 0.023 0.018 0.130 0.028 0.016 0.020 0.018 0.021 0.018 0.032 0.014 0.010 0.029 

P-7 0.056         0.016   0.010   0.008 0.016         0.021 

P-8 0.127 0.024 0.017 0.018 0.024 0.029 0.034 0.026 0.029 0.028 0.031 0.036 0.050 0.024 0.018 0.034 

P-9 0.139 0.013 0.017 0.015 0.015 0.018 0.017 0.017 0.019 0.015 0.022 0.028 0.053 0.000 0.014 0.027 

P-10 0.118 0.060 0.035   0.015 0.043   0.012 0.013 0.056 0.073 0.017 0.098 0.009 0.024 0.044 

P-11 0.068 0.017 0.024 0.234 0.030 0.023   0.024 0.025 0.023 0.036 0.036 0.052 0.024 0.033 0.046 

P-12 0.065 0.011 0.017 0.014 0.016 0.017 0.019 0.008 0.016 0.014 0.018 0.010 0.039 0.007 0.017 0.019 

P-13 0.072 0.024 0.026 0.019 0.027 0.225 0.029 0.024 0.023 0.026 0.030 0.018 0.042 0.010 0.007 0.040 

P-14 0.085 0.032 0.015 0.015 0.026 0.019 0.023 0.016 0.018 0.015 0.021 0.029 0.045 0.015 0.016 0.026 

AAms 0.106 0.026 0.026 0.045 0.024 0.052 0.024 0.024 0.023 0.027 0.036 0.034 0.056 0.014 0.017 AAmt=0.036 
Legend:   0.04-0.08     >0.08                 
 

   Table 4. Influence of sensitive parameters on upper plenum pressure in time interval 0-119.5 s as judged by (a) original
FFTBM and (b) improved FFTBM by signal mirroring
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When looking calculations, the most influenced upper plenum calculation is P-3. To judge how
the calculation is influenced by the sensitive parameters variation, the average amplitude of
the participant sensitivity runs (AAp or AAmp) is used. Besides P-3 the P-5 calculation was also
judged as the much influenced by the sensitive parameter variations. Both methods qualita‐
tively give the same results for the average amplitude of the participant sensitivity runs. The
total average amplitude (AAt or AAmt) show the overall influence of the sensitive parameters
variations of all calculations on the output upper plenum pressure. The higher the value is the
higher is the influence. The ratio between AAmt and AAt to be 1.88 also tells what the contri‐
bution of the edge effect is in average.
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Figure 4. Magnitude difference signal spectra for S-2 and S-12 runs of P-14 participants

The average amplitudes shown in Table 5, obtained by both FFTBM and FFTBM-SM suggest
that the most influential parameter for the primary side mass inventory when considering all
calculations is the accumulator liquid mass (S-12). Both the AAs and AAms indicate the
accumulator liquid mass (S-12), break flow area (S-1), accumulator pressure (S-11) and
pressurizer level (S-13) the most influential sensitive parameters on the primary side mass
inventory.

When looking the calculations, the most influenced primary side mass inventory calculation
is P-3. The AAp and AAmp indicate as the second most influenced the P-13 calculation. Again
both methods qualitatively give very similar results for the average amplitude of the partici‐
pant sensitivity runs. The AAt and AAmt show that the overall influence of the sensitive
parameters variations of all calculations on the output primary side mass inventory is higher
than on the upper plenum pressure. The ratio between AAmt and AAt is 1.55, indicating that
the primary side mass inventory is less influenced by the edge effect (see also Figure3).

The average amplitudes shown in Table 6, obtained by both FFTBM and FFTBM-SM suggest
that the most influential parameter for the rod surface temperature when considering all
calculations is the fuel conductivity (S-5). Both AAs and AAms indicate the fuel conductivity
(S-5) and gap conductivity (S-2) as the most influential. Significant influences have also the
gap thickness (S-3), maximum linear power (S-10), break flow area (S-1) and the accumulator
liquid mass (S-12) and a few others. The only difference between the FFTBM and FFTBM-SM
results is that the ranks for S-1 and S-12 are changed.
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The average amplitudes shown in Table 5, obtained by both FFTBM and FFTBM-SM suggest
that the most influential parameter for the primary side mass inventory when considering all
calculations is the accumulator liquid mass (S-12). Both the AAs and AAms indicate the
accumulator liquid mass (S-12), break flow area (S-1), accumulator pressure (S-11) and
pressurizer level (S-13) the most influential sensitive parameters on the primary side mass
inventory.

When looking the calculations, the most influenced primary side mass inventory calculation
is P-3. The AAp and AAmp indicate as the second most influenced the P-13 calculation. Again
both methods qualitatively give very similar results for the average amplitude of the partici‐
pant sensitivity runs. The AAt and AAmt show that the overall influence of the sensitive
parameters variations of all calculations on the output primary side mass inventory is higher
than on the upper plenum pressure. The ratio between AAmt and AAt is 1.55, indicating that
the primary side mass inventory is less influenced by the edge effect (see also Figure3).

The average amplitudes shown in Table 6, obtained by both FFTBM and FFTBM-SM suggest
that the most influential parameter for the rod surface temperature when considering all
calculations is the fuel conductivity (S-5). Both AAs and AAms indicate the fuel conductivity
(S-5) and gap conductivity (S-2) as the most influential. Significant influences have also the
gap thickness (S-3), maximum linear power (S-10), break flow area (S-1) and the accumulator
liquid mass (S-12) and a few others. The only difference between the FFTBM and FFTBM-SM
results is that the ranks for S-1 and S-12 are changed.
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When looking the calculations, the most influenced rod surface rod temperature calculation
is P-10. The AAp and AAmp indicate that the next two most influenced are the P-2 and P-3
calculation. Again both methods qualitatively give pretty similar results for the average
amplitude of the participant sensitivity runs. The AAt and AAmt show that the overall influence
of the sensitive parameters variations of all calculations on the output rod surface temperature

Table 5 

(a) Application of FFTBM - primary side mass inventory, time interval 0 - 119.5 s 
ID-S S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12 S-13 S-14 S-15   
ID-P AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AAp 

P-1 0.052 0.026 0.019 0.018 0.015 0.026 0.018 0.017 0.015 0.017 0.048 0.052 0.032 0.014 0.02 0.026 
P-2 0.046 0.014 0.014   0.013 0.015   0.014 0.015 0.016 0.017 0.084 0.027 0.012 0.02 0.023 
P-3 0.102 0.083 0.071 0.060 0.092 0.180   0.118 0.064 0.086 0.124 0.137 0.124 0.013 0.01 0.091 
P-4 0.125   0.022   0.021 0.042   0.018 0.037 0.023 0.054 0.091 0.036 0.025 0.03 0.043 
P-5 0.071 0.027       0.022   0.051 0.038 0.033           0.040 
P-6 0.066 0.036 0.056 0.020 0.052 0.045 0.061 0.035 0.035 0.036 0.034 0.158 0.044 0.040 0.07 0.052 
P-7 0.035         0.035   0.017   0.007 0.026         0.024 
P-8 0.083 0.053 0.016 0.046 0.025 0.051 0.042 0.022 0.038 0.033 0.042 0.073 0.069 0.031 0.03 0.043 
P-9 0.073 0.014 0.013 0.015 0.011 0.012 0.012 0.022 0.020 0.008 0.038 0.093 0.033 0.000 0.06 0.028 
P-10 0.089 0.010 0.003   0.059 0.019   0.039 0.034 0.019 0.153 0.095 0.041 0.038 0.04 0.049 
P-11 0.041 0.019 0.024 0.145 0.041 0.020   0.048 0.020 0.033 0.040 0.053 0.032 0.039 0.07 0.045 
P-12 0.039 0.010 0.033 0.018 0.022 0.022 0.024 0.007 0.037 0.025 0.024 0.203 0.039 0.029 0.09 0.042 
P-13 0.072 0.047 0.035 0.045 0.066 0.077 0.000 0.050 0.077 0.044 0.092 0.179 0.075 0.049 0.07 0.065 
P-14 0.049 0.136 0.035 0.034 0.104 0.032 0.026 0.022 0.023 0.023 0.049 0.090 0.060 0.041 0.05 0.052 
AAs 0.067 0.040 0.028 0.044 0.043 0.043 0.026 0.034 0.035 0.029 0.057 0.109 0.051 0.028 0.05 AAt=0.046 
Legend:   0.05-0.1   >0.1 

(b) Application of FFTBM-SM - primary side mass inventory, time interval 0 - 119.5 s 
ID-S S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12 S-13 S-14 S-15   
ID-P AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAmp 

P-1 0.096 0.043 0.034 0.030 0.028 0.034 0.030 0.033 0.028 0.032 0.071 0.084 0.062 0.025 0.037 0.045 
P-2 0.096 0.028 0.028   0.025 0.028   0.025 0.028 0.029 0.035 0.139 0.047 0.024 0.033 0.044 
P-3 0.171 0.146 0.142 0.107 0.158 0.215   0.212 0.124 0.168 0.202 0.226 0.229 0.027 0.027 0.154 
P-4 0.227   0.041   0.040 0.076   0.036 0.063 0.045 0.107 0.160 0.071 0.043 0.048 0.080 
P-5 0.141 0.049       0.041   0.086 0.072 0.063           0.076 
P-6 0.096 0.058 0.076 0.035 0.070 0.074 0.081 0.050 0.055 0.055 0.060 0.159 0.085 0.055 0.069 0.072 
P-7 0.060         0.051   0.020   0.014 0.048         0.039 
P-8 0.152 0.073 0.032 0.091 0.047 0.094 0.081 0.042 0.074 0.067 0.077 0.133 0.084 0.062 0.053 0.078 
P-9 0.136 0.024 0.019 0.022 0.020 0.022 0.021 0.026 0.029 0.014 0.052 0.134 0.057 0.000 0.062 0.043 
P-10 0.111 0.017 0.006   0.073 0.025   0.048 0.043 0.034 0.161 0.101 0.065 0.062 0.062 0.062 
P-11 0.070 0.038 0.044 0.290 0.064 0.038   0.077 0.035 0.058 0.068 0.091 0.060 0.057 0.094 0.077 
P-12 0.057 0.011 0.035 0.019 0.025 0.025 0.030 0.007 0.037 0.027 0.035 0.135 0.050 0.019 0.066 0.039 
P-13 0.133 0.085 0.063 0.085 0.102 0.129 0.000 0.092 0.128 0.076 0.144 0.235 0.092 0.091 0.124 0.105 
P-14 0.102 0.124 0.056 0.056 0.108 0.046 0.051 0.041 0.039 0.043 0.090 0.117 0.065 0.052 0.059 0.070 
AAms 0.118 0.058 0.048 0.082 0.063 0.064 0.042 0.057 0.058 0.052 0.088 0.143 0.081 0.043 0.061 AAmt=0.071 
Legend:   0.07-0.14     >0.14                 
 

   Table 5. Influence of sensitive parameters on primary side mass inventory in time interval 0-119.5 s as judged by (a)
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is higher than on the primary side mass inventory. The ratio between AAmt and AAt is 1.17,

indicating that the rod surface temperature is the least influenced by the edge effect (see also

Figure 3).

Table 6 

(a) Application of FFTBM - rod surface temperature, time interval 0 - 119.5 s 
ID-S S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12 S-13 S-14 S-15   
ID-P AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AAp 

P-1 0.323 0.498 0.424 0.085 0.318 0.189 0.122 0.194 0.253 0.413 0.283 0.342 0.204 0.104 0.129 0.259 
P-2 0.323 0.403 0.608  0.493 0.312  0.301 0.282 0.495 0.220 1.679 0.097 0.099 0.174 0.422 
P-3 0.432 0.451 0.476 0.406 0.703 0.496  0.415 0.386 0.266 0.426 0.198 0.212 0.247 0.184 0.378 
P-4 0.368  0.252  0.445 0.185  0.210 0.289 0.527 0.195 0.388 0.207 0.328 0.107 0.292 
P-5 0.184 0.284       0.174  0.330 0.308 0.328          0.268 
P-6 0.622 0.379 0.402 0.167 0.543 0.415 0.444 0.349 0.157 0.483 0.392 0.210 0.360 0.172 0.166 0.351 
P-7 0.340        0.207  0.239  0.358 0.261        0.281 
P-8 0.446 0.396 0.305 0.150 0.351 0.227 0.283 0.329 0.337 0.360 0.117 0.434 0.149 0.171 0.133 0.279 
P-9 0.229 0.407 0.343 0.135 0.386 0.208 0.089 0.152 0.255 0.207 0.208 0.212 0.160 0.000 0.072 0.204 
P-10 0.345 0.848 0.555  0.762 0.264  0.349 0.339 0.683 0.311 0.238 0.401 0.080 0.307 0.422 
P-11 0.207 0.507 0.639 0.335 0.243 0.358  0.681 0.204 0.437 0.224 0.239 0.279 0.104 0.142 0.328 
P-12 0.344 0.598 0.419 0.216 0.543 0.192 0.110 0.252 0.339 0.825 0.232 0.187 0.245 0.145 0.211 0.324 
P-13 0.253 0.535 0.339 0.124 0.464 0.343 0.238 0.197 0.349 0.221 0.290 0.256 0.111 0.090 0.160 0.265 
P-14 0.257 0.668 0.420 0.267 0.738 0.206 0.205 0.113 0.173 0.386 0.197 0.380 0.236 0.204 0.114 0.304 
AAs 0.334 0.498 0.432 0.209 0.499 0.270 0.213 0.294 0.282 0.428 0.258 0.397 0.222 0.145 0.158AAt=0.314 

  0.25-0.45   >0.45 

(b) Application of FFTBM-SM - rod surface temperature, time interval 0 - 119.5 s 
ID-S S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12 S-13 S-14 S-15   
ID-P AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAmp 

P-1 0.396 0.605 0.499 0.103 0.383 0.229 0.149 0.231 0.302 0.490 0.338 0.415 0.247 0.127 0.155 0.311 
P-2 0.389 0.475 0.717   0.605 0.368   0.358 0.348 0.542 0.265 0.913 0.121 0.120 0.214 0.418 
P-3 0.508 0.515 0.516 0.481 0.861 0.580   0.486 0.461 0.305 0.489 0.234 0.250 0.285 0.217 0.442 
P-4 0.438   0.285   0.504 0.226   0.255 0.350 0.557 0.230 0.459 0.249 0.402 0.131 0.340 
P-5 0.227 0.360       0.213   0.402 0.385 0.400           0.331 
P-6 0.736 0.467 0.444 0.200 0.656 0.481 0.526 0.412 0.183 0.525 0.452 0.247 0.423 0.201 0.196 0.410 
P-7 0.411         0.251   0.288   0.416 0.316         0.336 
P-8 0.528 0.456 0.372 0.188 0.432 0.274 0.342 0.404 0.414 0.449 0.149 0.483 0.189 0.209 0.165 0.337 
P-9 0.293 0.492 0.418 0.172 0.506 0.264 0.114 0.194 0.311 0.238 0.264 0.270 0.202 0.000 0.091 0.255 
P-10 0.410 0.982 0.625   0.930 0.307   0.402 0.391 0.768 0.367 0.284 0.472 0.094 0.353 0.491 
P-11 0.244 0.579 0.727 0.412 0.270 0.442   0.829 0.243 0.523 0.278 0.286 0.342 0.126 0.170 0.391 
P-12 0.414 0.680 0.487 0.260 0.667 0.231 0.128 0.309 0.383 0.637 0.282 0.227 0.293 0.170 0.251 0.361 
P-13 0.302 0.604 0.401 0.148 0.563 0.411 0.291 0.238 0.412 0.266 0.351 0.292 0.134 0.109 0.177 0.313 
P-14 0.330 0.799 0.488 0.295 0.937 0.256 0.258 0.143 0.205 0.449 0.239 0.480 0.302 0.255 0.147 0.372 
AAms 0.402 0.585 0.498 0.251 0.609 0.324 0.258 0.353 0.338 0.469 0.309 0.382 0.269 0.175 0.189 AAmt=0.366 
Legend:   0.3-0.5     >0.5                   
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is higher than on the primary side mass inventory. The ratio between AAmt and AAt is 1.17,

indicating that the rod surface temperature is the least influenced by the edge effect (see also

Figure 3).
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ID-P AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AAp 
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P-2 0.323 0.403 0.608  0.493 0.312  0.301 0.282 0.495 0.220 1.679 0.097 0.099 0.174 0.422 
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P-10 0.345 0.848 0.555  0.762 0.264  0.349 0.339 0.683 0.311 0.238 0.401 0.080 0.307 0.422 
P-11 0.207 0.507 0.639 0.335 0.243 0.358  0.681 0.204 0.437 0.224 0.239 0.279 0.104 0.142 0.328 
P-12 0.344 0.598 0.419 0.216 0.543 0.192 0.110 0.252 0.339 0.825 0.232 0.187 0.245 0.145 0.211 0.324 
P-13 0.253 0.535 0.339 0.124 0.464 0.343 0.238 0.197 0.349 0.221 0.290 0.256 0.111 0.090 0.160 0.265 
P-14 0.257 0.668 0.420 0.267 0.738 0.206 0.205 0.113 0.173 0.386 0.197 0.380 0.236 0.204 0.114 0.304 
AAs 0.334 0.498 0.432 0.209 0.499 0.270 0.213 0.294 0.282 0.428 0.258 0.397 0.222 0.145 0.158AAt=0.314 

  0.25-0.45   >0.45 

(b) Application of FFTBM-SM - rod surface temperature, time interval 0 - 119.5 s 
ID-S S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12 S-13 S-14 S-15   
ID-P AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAm AAmp 
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P-3 0.508 0.515 0.516 0.481 0.861 0.580   0.486 0.461 0.305 0.489 0.234 0.250 0.285 0.217 0.442 
P-4 0.438   0.285   0.504 0.226   0.255 0.350 0.557 0.230 0.459 0.249 0.402 0.131 0.340 
P-5 0.227 0.360       0.213   0.402 0.385 0.400           0.331 
P-6 0.736 0.467 0.444 0.200 0.656 0.481 0.526 0.412 0.183 0.525 0.452 0.247 0.423 0.201 0.196 0.410 
P-7 0.411         0.251   0.288   0.416 0.316         0.336 
P-8 0.528 0.456 0.372 0.188 0.432 0.274 0.342 0.404 0.414 0.449 0.149 0.483 0.189 0.209 0.165 0.337 
P-9 0.293 0.492 0.418 0.172 0.506 0.264 0.114 0.194 0.311 0.238 0.264 0.270 0.202 0.000 0.091 0.255 
P-10 0.410 0.982 0.625   0.930 0.307   0.402 0.391 0.768 0.367 0.284 0.472 0.094 0.353 0.491 
P-11 0.244 0.579 0.727 0.412 0.270 0.442   0.829 0.243 0.523 0.278 0.286 0.342 0.126 0.170 0.391 
P-12 0.414 0.680 0.487 0.260 0.667 0.231 0.128 0.309 0.383 0.637 0.282 0.227 0.293 0.170 0.251 0.361 
P-13 0.302 0.604 0.401 0.148 0.563 0.411 0.291 0.238 0.412 0.266 0.351 0.292 0.134 0.109 0.177 0.313 
P-14 0.330 0.799 0.488 0.295 0.937 0.256 0.258 0.143 0.205 0.449 0.239 0.480 0.302 0.255 0.147 0.372 
AAms 0.402 0.585 0.498 0.251 0.609 0.324 0.258 0.353 0.338 0.469 0.309 0.382 0.269 0.175 0.189 AAmt=0.366 
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4.3. Time dependent influence

The results presented in Section 4.2 give information on the accumulated influence of sensitive
parameters for the whole transient duration (single value figures of merit). Additional insight
into the results is obtained from the time dependent average amplitudes for each single
variation of parameters. They provide information how the influence changes during the
transient progression.

Figure 5 shows the comparison between the FFTBM and FFTBM-SM results for the P-14
sensitive calculations shown in Figure 3. It is shown how the sensitive parameter influence
changes during the transient progression. The judged quantitative influence in Figure 5 reflects
well what is seen during the visual observation of Figure 3, in which 5 out of 15 sensitive
parameter variations for the three output parameters for the P-14 calculation are shown. Please
note that the FFT based approaches are especially to be used when there are several calculations
(fourteen in our case) with several sensitive parameter variations (fifteen in our case) to judge
the influence of the sensitive parameters in an uniform way.

When looking the output parameter upper plenum pressure, both FFTBM (excluding period
when edge effect significantly contributes to average amplitude) and FFTBM-SM clearly show
when during the transient the parameter was influential. For all parameters shown in Figure
5 the major influence was during the first 30 seconds when the pressure was dropping. In the
case of the S-1 parameter the influence was the largest (see Figure 5(a1)), but still not extremely
significant. For parameters S-2, S-3, S-5 and S-12 the total influence is small. The values of
average amplitudes up to 0.03 are small. This is confirmed by Figures 3(a2), 3(a3), 3 (a4) and
3 (a5) which show that the reference and sensitive signals for the upper plenum pressure
practically match each other.

When looking the output parameter primary side mass inventory, the influence of the sensitive
parameters is also quite small. Parameter S-1 is the most influential in the beginning of the
transient (see also Figure 3(b1)), while all other shown sensitive parameters (S-2, S-3, S-5 and
S-12) become more influential later into the transient. This is in agreement with the Figures
3(b2), 3(b3), 3(b4) and 3(b5), in which the differences in the first 20 seconds are practically not
visible.

Finally, when looking the output parameter rod surface temperature, the influence of the
sensitive parameters is the largest among the selected output parameters as shown by the plots
and the average amplitude trends. The variation of the break flow area (S-1) having the largest
influence on the upper plenum pressure has a lower influence on the rod surface temperature
than the sensitive parameters S-2, S-3, S-5 and S-12. This is logically as the break area size
directly impacts the upper plenum pressure.

From Figure 5(c1) it can be seen that the influence of S-1 on the rod surface temperature is
judged to be in the beginning of the transient and at around 60 s. When comparing the sensitive
signal to the reference signal in Figure 3(c1), in the beginning for the sensitive signal a slower
temperature increase with under predicted peak and earlier temperature decrease (rod
quench) at around 60 s can be seen. At other times the trends are similar. In the case of S-2 the
temperature is over predicted and the quench is delayed. Therefore besides the initial jump
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the AAm is still increasing till 20 s and for the time duration of the rod quench delay. For

parameter S-3 it can be seen that its influence is between the S-1 and the S-2 influence, what

can be confirmed from Figures 3(c1), 3(c2) and 3(c3). The influence of S-5 on the rod surface
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the AAm is still increasing till 20 s and for the time duration of the rod quench delay. For

parameter S-3 it can be seen that its influence is between the S-1 and the S-2 influence, what

can be confirmed from Figures 3(c1), 3(c2) and 3(c3). The influence of S-5 on the rod surface
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temperature is the largest what can be easily confirmed when comparing Figure 3(c4) and
Figure 5(c4). The influence of S-11 is smaller than S-1 because S-11 influences only the time of
rod quenching. Finally, S-12 shows that the larger discrepancy in the times when the rod
quench starts causes also larger values of average amplitudes. Also when comparing the
average amplitudes obtained by FFTBM and FFTBM-SM it can be seen that they agree pretty
well for the output parameters primary side mass inventory and the rod surface temperature,
because the edge present in the periodic signal is relatively smaller from the edge present in
the upper plenum pressure periodic signal.

Figure 6(a) shows the comparison of the rod surface temperature reference calculations to
experimental data. One may see that the calculations differ and that they do not exactly match
the experimental data. Therefore the reader should always keep in mind that the direct
comparison of sensitive signals (see Figure 6(b)) obtained by different participants could not
answer in which calculation the sensitive parameter is the most influential.

Fourier Transform 20

initial jump the AAm is still increasing till 20s and for the time duration of the rod quench 1 
delay. For parameter S-3 it can be seen that its influence is between the S-1 and the S-2 2 
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Fig.6. Comparison of (a) reference calculations with experimental value nd (b) sensitive runs 17 
for S-2 sensitive parameter variation 18 
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could be compared as it is shown in the Figures 7, 8 and 9 for the output parameters upper 20 
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For each of the output parameters the most influential parameters are shown as identified 22 
from Tables 4, 5 and 6. Figure 7 for the upper plenum pressure shows that for the majority 23 
of calculations the influences of the same sensitive parameter variation are similar. There are 24 
only a few calculations significantly deviating, for example P-4 for S-1 variation, P-3 and P-25 
10 for S-13 variation, P-3 for S-6 variation and P-11 for S-4 variation. Figure 8 for the primary 26 
side mass inventory shows that the P3 calculation was more sensitive to variations than 27 
other calculations. In the case of the S-4 sensitive parameter variation the P-11 calculation 28 
significantly deviates from other calculations and the reason may be that the code model is 29 
used outside its validation range [13]. 30 

Figure 6. Comparison of (a) reference calculations with experimental value and (b) sensitive runs for S-2 sensitive pa‐
rameter variation

However, by calculating the average amplitude the sensitive runs by different participants
could be compared as it is shown in the Figures 7, 8 and 9 for the output parameters upper
plenum pressure, primary side mass inventory and rod surface temperature, respectively. For
each of the output parameters the most influential parameters are shown as identified from
Tables 4, 5 and 6. Figure 7 for the upper plenum pressure shows that for the majority of
calculations the influences of the same sensitive parameter variation are similar. There are only
a few calculations significantly deviating, for example P-4 for S-1 variation, P-3 and P-10 for
S-13 variation, P-13 for S-6 variation and P-11 for S-4 variation. Figure 8 for the primary side
mass inventory shows that the P3 calculation was more sensitive to variations than other
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calculations. In the case of the S-4 sensitive parameter variation the P-11 calculation signifi‐
cantly deviates from other calculations and the reason may be that the code model is used
outside its validation range [13].

Figure 9 shows that some parameters are more influential in the beginning of the transient
(e.g. S-5), some in the middle of the transient (e.g. S-12) and that in the last part normally there
is no significant influence (exception is the calculation P-2 for the S-12 sensitive parameter in
which the rod surface temperature did not quench due to no accumulator injection when it
was supposed to inject).
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4.4. Discussion

In the application for each participant each sensitivity run in the set was compared to his
reference calculation and the average amplitude, which is the figure of merit for FFT based
approaches, was used to judge how each output parameter is sensitive to the selected input
parameter. For brevity reasons, only some examples were given in Figures 6 through 9.
Nevertheless, these examples are sufficient to demonstrate that the results for the whole
transient interval, shown in Tables 4, 5 and 6 may not be always sufficient for judging the
sensitivity. For example, for the output parameter rod surface temperature there is higher
interest in the value of the maximum rod surface temperature rather the average influence on
the rod surface temperature, therefore it is important to know how the influence changes with
time. Also, some parameters are more influential at the beginning and the others later in the
calculation.

The results suggest that the FFT based approaches are especially appropriate for a quick
sensitivity analysis in which several calculations need to be compared. It is very appropriate
also due to the inherent feature, which integrates the contribution of the parameter variation
with progressing transient time.

In addition, the average amplitude of participant sensitivity runs for the participants (AAp or
AAmp) and the average amplitude for the same sensitive parameter (AAs or AAms) were
calculated. These measures could be used for ranking purposes. In this way information on
the most influential input parameter and which participant calculation is the most sensitive to
variations is obtained. Finally, different output parameters could be compared between each
other regarding the influence of input parameters of all participants (AAt or AAmt). Quantita‐
tively it is judged that the most influenced output parameter is the rod surface temperature
and the least influenced the upper plenum pressure.

5. Conclusions

The study using FFTBM-SM and FFTBM was performed to show that the FFT based ap‐
proaches could be used for sensitivity analyses. The LOFT L2-5 test, which simulates the large
break loss of coolant accident, was used in the frame of the BEMUSE programme for sensitivity
runs. In total 15 sensitivity runs were performed by 14 participants.

It can be concluded that with FFTBM-SM the analyst can get a good picture of the influence
of the single parameter variation to the results throughout the transient. Some sensitive
parameters are more influential at the beginning and the others later in the calculation. Due
to the edge effect FFTBM-SM is advantageous for time dependent sensitivity calculations with
respect to FFTBM, while for the whole transient duration (average sensitivity during whole
transient) in general also FFTBM gives consistent results. FFT based approaches could be also
used to quantify the influence of several parameter variations on the results. However, the
influential parameters could not be identified nor the direction of the influence.
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The results suggest that the FFT based approaches are especially appropriate for a quick
assessment of a sensitivity analysis in which several calculations need to be compared or the
influence of single sensitive parameters needs to be ranked. Such a sensitivity analysis could
provide information which are the most influential parameters and how influential the input
parameters are on the selected output parameters and when they influence during a transient.
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1. Introduction

Let f be a function defined on a closed interval [a, b] in the extended real line R, its Fourier
transform at s ∈ R is defined as

f̂ (s) =
∫ b

a
e−ixs f (x)dx. (1)

The classical Riemann-Lebesgue Lemma states that

lim
|s|→∞

∫ b

a
e−ixs f (x)dx = 0, (2)

whenever f ∈ L1([a, b]).

We consider important to study analogous results about this lemma due to the following
reasons:

• The classical Riemann-Lebesgue Lemma is an important tool used when proving several
results related with convergence of Fourier Series and Fourier transform. In turn, these
theorems have applications in the Harmonic Analysis which has many applications in the
physics, biology, engineering and others sciences. For example, it is directly applied to
the study of periodic perturbations of a class of resonant problems.

• An important problem is to consider an orthogonal basis, different to the trigonometric
basis, and study the Fourier expansion of a function with respect to this basis. In this
case, it is obtained an expression in this way

©2012 prvi et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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2 ime knjige

∫ b

a
h(xs) f (x)dx. (3)

• In some cases the expression (1) exists and the expression (2) is true even if the function
f is not Lebesgue integrable.

Thus, a variant of the Riemann-Lebesgue Lemma is to get conditions for the functions f and
h which ensure that (3) is well defined and satisfies

lim
|s|→∞

∫ b

a
h(xs) f (x)dx = 0. (4)

Some results of this type and related results are found in [1], [2], [3], and [4].

In the space of Henstock-Kurzweil integrable functions over R, HK(R), the Fourier transform
does not always exist. In [5] was proven that e−i(·)s f is Henstock-Kurzweil integrable under
certain conditions and that, in general, does not satisfy the Riemann-Lebesgue Lemma.
Subsequently, it was shown in [6], [3] and [4] that the Fourier transform exists and the
equation (2) is true when −∞ = a, b = ∞ and f belongs to BV0(R), the space of bounded
variation functions that vanish at infinity. A special case arises when f is in the intersection
of functions of bounded variation and Henstock-Kurzweil integrable functions.

There exist Henstock-Kurzweil (HK) integrable functions f which f ∈ HK(I) \ L1(I)
such that (2) is not fulfilled, when I is a bounded interval. In [7], Zygmund exhibited
Henstock-Kurzweil integrable functions such that their Fourier coefficients do not tend to
zero. In [8] are given necessary and sufficient conditions in order to

∫ b
a f (x)gn(x)dx −→∫ b

a f (x)g(x)dx, for all f ∈ HK([a, b]). Thus, we will prove that the Fourier transform has the
asymptotic behavior:

f̂ (s) = o(s), as |s| → ∞,

where f ∈ HK(I) \ L1(I)

Moreover in [9], Titchmarsh proved that it is the best possible approximation for functions
with improper Riemann integral.

This chapter is divided into 5 sections; we present the main results we have obtained
in recent years: [3], [4], [6] and [10]. In this section we introduce basic concepts and
important theorems about the Henstock-Kurzweil integral and bounded variation functions.
In the second part of this study we prove some generalizations about the convergence of

integrals of products in the completion of the space HK([a, b]), ̂HK([a, b]), where [a, b]
can be a bounded or unbounded interval. As a consequence, some results related to the
Riemann-Lebesgue Lemma in the context of the Henstock-Kurzweil integral are proved over
bounded intervals. Besides, for elements in the completion of the space of Henstock-Kurzweil
integrable functions, we get a similar result to the Riemann-Lebesgue property for the
Dirichlet Kernel, as well as the asymptotic behavior of the n-th partial sum of Fourier series.
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lim
|s|→∞

∫ b

a
h(xs) f (x)dx = 0. (4)

Some results of this type and related results are found in [1], [2], [3], and [4].

In the space of Henstock-Kurzweil integrable functions over R, HK(R), the Fourier transform
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∫ b
a f (x)gn(x)dx −→∫ b
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Moreover in [9], Titchmarsh proved that it is the best possible approximation for functions
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important theorems about the Henstock-Kurzweil integral and bounded variation functions.
In the second part of this study we prove some generalizations about the convergence of

integrals of products in the completion of the space HK([a, b]), ̂HK([a, b]), where [a, b]
can be a bounded or unbounded interval. As a consequence, some results related to the
Riemann-Lebesgue Lemma in the context of the Henstock-Kurzweil integral are proved over
bounded intervals. Besides, for elements in the completion of the space of Henstock-Kurzweil
integrable functions, we get a similar result to the Riemann-Lebesgue property for the
Dirichlet Kernel, as well as the asymptotic behavior of the n-th partial sum of Fourier series.
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In the third section, we consider a complex function g defined on certain subset of R2. Many
functions on functional analysis are integrals of the form Γ(s) =

∫ ∞
−∞ f (t)g(t, s)dt. We study

the function Γ when f belongs to BV0(R) and g(t, ·) is continuous for all t. The integral we
use is Henstock-Kurzweil integral. There are well known results about existence, continuity
and differentiability of Γ, considering the Lebesgue theory. In the HK integral context there
are results about this too, for example, Theorems 12.12 and 12.13 from [11]. But they all need
the stronger condition that the function f (t)g(t, s) is bounded by a HK integrable function.
We give more conditions for existence, continuity and differentiability of Γ. Finally we give
some applications such as some properties about the convolution of the Fourier and Laplace
transforms.

In section 4, we exhibit a family of functions in HK(R) included in BV0(R) \ L1(R). At the
last section we get a version of Riemann-Lebesgue Lemma for bounded variation functions
that vanish at infinity. With this result we get properties for the Fourier transform of functions
in BV0(R): it is well defined, is continuous on R − {0}, and vanishes at ±∞, as classical
results. Moreover, we obtain a result on pointwise inversion of the Fourier transform.

1.1. Basic concepts and nomenclature

We will refer to a finite or infinite interval if its Lebesgue measure is finite or infinite. Let
I ⊂ R be a closed interval, finite or infinite. A partition P of I is a increasing finite collection
of points {t0, t1, ..., tn} ⊂ I such that if I is a compact interval [a, b], then t0 = a and tn = b; if
I = [a, ∞), t0 = a; and if I = (−∞, b] then tn = b.

Let us consider I ⊂ R as a closed interval finite. A tagged partition of I is a set of ordered pairs
{[ti−1, ti], si}n

i=1 where it is assigned a point si ∈ [ti−1, ti], which is called a tag of [ti−1, ti].
With this concept we define the Henstock-Kurzweil integral on finite intervals in R.

Definition 1. The function f : [a, b] → R is Henstock-Kurzweil integrable if there exists H ∈ R

which satisfies the following: for each ε > 0 exists a function γε : [a, b] → (0, ∞) such that if
P = {( [ti−1, ti], si)}n

i=1 is a tagged partition such that

[ti−1, ti] ⊂ [si − γε(si), si + γε(si) ] for i = 1, 2, ..., n., (5)

then

|Σn
i=1 f (si)(ti − ti−1)− H| < ε.

H is the integral of f over [a, b] and it is denoted as

H =
∫ b

a
f =

∫ b

a
f dt

It is said that a tagged partition is called γε−fine if satisfies (5).

This definition can be extended on infinite intervals as follows.
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Definition 2. Let γ : [a, ∞] → (0, ∞) be a function, we will say that the tagged partition P =

{( [ti−1, ti], si)}n+1
i=1 is γ−fine if:

(a) t0 = a, tn+1 = ∞.

(b) [ti−1, ti] ⊂ [si − γε(si), si + γε(si) ] for i = 1, 2, ..., n.

(c) [tn, ∞] ⊂ [1/γ(∞), ∞].

Put f (∞) = 0 and f (−∞) = 0. This allows us define the integral of f over infinite intervals.

Definition 3. It is said that the function f : [a, ∞] → R is Henstock-Kurzweil integrable if it satisfies
the Definition 1, but the partition P must be γε−fine according to Definition 2.

For functions defined on [−∞, a] or [−∞,+∞] the integral is defined analogously. We will
denote the vector space of Henstock-Kurzweil integrable functions on I as HK(I)

The space of Henstock-Kurzweil integrable functions on the interval I = [a, b], finite or
infinite interval, is a semi-normed space with the Alexiewicz semi-norm

|| f ||A = sup
a≤x≤b

∣∣∣∣
∫ x

a
f (t)dt

∣∣∣∣ . (6)

We denote the space of functions in HK([c, d]) for each finite interval [c, d] in I as HKloc(I).

Definition 4. A function f : I → R is a bounded variation function over I (finite interval) if
exists a M > 0 such that

Var( f , I) = sup

{
n

∑
i=1

| f (ti)− f (ti−1)| : P is a partition of I

}
< M.

Its total variation over I is Var( f , I). In case I is not finite, for example [a, ∞], it is said that
f : [a, ∞] → R is a bounded variation function over I if there exists N > 0 such that

Var( f , [a, t]) ≤ N,

for all t ≥ a. The total variation of f on I is equal to

Var( f , [a, ∞)) = sup {Var( f , [a, t] ) : a ≤ t} . (7)

For I = (−∞, b] the considerations are analogous.

The set of bounded variation functions over [a, b] is denoted as BV([a, b]) and we will denote
the space of functions f such that f ∈ BV([c, d]) for each compact interval [c, d] in R as
BVloc(R). We will refer to BV0(R) as the subspace of functions f belong to BV(R) such that
vanishing at ±∞.
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At the Lemma 25 we prove that: HK(R) ∩ BV(R) ⊂ BV0(R). It is not hard prove that
BV0(R) � L1(R) and BV0(R) � HK(R). Furthermore, there are functions in HK(R) or
L1(R) but they are not in BV0(R). For example, the function f (t) defined by 0 for t ∈ (−∞, 1)
and 1/t for t ∈ [1, ∞) belongs to BV0(R) but does not belong to L1(R), neither in HK(R).
In addition, other examples are the characteristic function of Q on a compact interval and
g(t) = t2 sin(exp(t2)) are in HK(R) \ BV0(R).

We consider the completion of HK([a, b]) as

{[{ fk}] : { fk} is a Cauchy sequence in HK([a, b])},

where the convergence is respect Alexiewicz norm, and will be denoted by ̂HK([a, b]). It is

possible to prove that ̂HK([a, b]) is isometrically isomorphic to the subspace of distributions
each of which is the distributional derivative of a continuous function, see [12]. The indefinite
integral of f = [{ fk}] ∈ ̂HK([a, b]) is defined as

∫ x

a
f = lim

k→∞

∫ x

a
fk.

Thus, ̂HK([a, b]) is a Banach space with the Alexiewicz norm (6). The completion is also
defined in [13]. Besides, basic results of the integral continue being true on the completion.
More details see [12].

To facilitate reading, we recall the following results. The first one is a well known result, and
it can be found for example in [14] and [15].

Theorem 5. Let f be a real function defined on N × N. If limn→n0 f (k, n) = ψ(k) exists for each
k, and limk→k0 f (k, n) = ϕ(n) converges uniformly on n, then

lim
k→k0

lim
n→n0

f (k, n) = lim
n→n0

lim
k→k0

f (k, n).

Theorem 6. [16, Theorem 33.1] Suppose X is a normed space, Y is a Banach space and that {Tn}
is a sequence of bounded linear operators from X into Y. Then the conditions: i) {||Tn||} is bounded
and ii) {Tn(x)} is convergent for each x ∈ Z, where Z is a dense subset on X implies that for each
x ∈ X, the sequence (Tn(x)) is convergent in Y and the linear operator T : X → Y defined by
T(x) = limn→∞ Tn(x) is bounded.

Theorem 7. [17] If g is a HK integrable function on [a, b] ⊆ R and f is a bounded variation function
on [a, b], then f g is HK integrable on [a, b] and

∣∣∣∣
∫ b

a
f g
∣∣∣∣ ≤ inf

t∈[a,b]
| f (t)|

∣∣∣∣
∫ b

a
g(t)dt

∣∣∣∣+ ‖g‖[a,b]Var( f , [a, b]).
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Theorem 8. [11, Hake’s Theorem] ϕ ∈ HK([a, ∞]) if and only if for each b, ε such that b > a
b − a > ε > 0, it follows that ϕ ∈ HK([a + ε, b]) and lim

ε→0, b→∞

∫ b
a+ε ϕ(t)dt exists. In this case, this

limit is
∫ ∞

a ϕ(t)dt.

Theorem 9. [11, Chartier-Dirichlet’s Test] Let f and g be functions defined on [a, ∞). Suppose that

1. g ∈ HK([a, c]) for every c ≥ a, and G defined by G(x) =
∫ x

a g is bounded on [a, ∞).

2. f is of bounded variation on [a, ∞) and lim
x→∞

f (x) = 0.

Then f g ∈ HK([a, ∞)).

Moreover, by Multiplier Theorem, Hake’s Theorem and Chartier-Dirichlet Test, we have the
following lemma.

Lemma 10. Let f , g : [a, ∞] → R. Suppose that f ∈ BV0([a, ∞]), ϕ ∈ HK([a, b]) for every b > a,
and Φ(t) =

∫ t
a ϕdu is bounded on [a, ∞). Then ϕ f ∈ HK([a, b]),

∫ ∞

a
ϕ f dt = −

∫ ∞

a
Φ(t)d f (t)

and
∣∣∣∣
∫ ∞

a
ϕ f dt

∣∣∣∣ ≤ sup
a<t

|Φ(t)|Var( f , [a, ∞]).

Similar results are valid for the cases [−∞, ∞] and [−∞, a].

Let I = [a, b] and E ⊂ I. We say that the function F : I → R is in ACδ(E) if for each ε > 0
there exist ηε > 0 and a gauge δε on E such that if {(xi, yi)}N

i is a (δε, E)−fine subpartition
of E such that ∑N

i (yi − xi) < ηε, then ∑N
1 |F(xi)− F(yi)| < ε. On the other hand, F belongs

to the class ACGδ(I) if there exists a sequence {En}∞
1 of sets in I such that I = ∪∞

n=1En and
F ∈ ACδ(En) for each n ∈ N. A characterization of this type of functions is the following.

Theorem 11. A function f ∈ HK(I) if and only if there exists a function F ∈ ACGδ such that
F

′
= f a.e.

Theorem 12. [18, Theorem 4] Let a, b ∈ R. If h : R × [a, b] → C is such that

1. h(t, ·) belongs to ACGδ on [a, b] for almost all t ∈ R;

2. and h(·, s) is a HK integrable function on R for all s ∈ [a, b].

Then H :=
∫ ∞
−∞ h(t, ·)dt belongs to ACGδ on [a, b] and H′(s) =

∫ ∞
−∞ D2h(t, s)dt for almost all

s ∈ (a, b), iff,

∫ t

s

∫ ∞

−∞
D2h(t, s)dtds =

∫ ∞

−∞

∫ t

s
D2h(t, s)dsdt
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for all [s, t] ⊆ [a, b]. In particular,

H′(s0) =
∫ ∞

−∞
D2h(t, s0)dt

when H2 :=
∫ ∞
−∞ D2h(t, ·)dt is continuous at s0.

2. Fourier coefficients for functions in the Henstock-Kurzweil completion.

For finite intervals, the Theorem 12.11 of [19] tells us that: In order that
∫ b

a f gn →∫ b
a f g, n → ∞, whenever f ∈ HK([a, b]), it is necessary and sufficient that: i) gn is

almost everywhere of bounded variation on [a, b] for each n; ii) sup{||gn||∞ + ||gn||BV} < ∞;
iii)

∫ d
c gn →

∫ d
c g, n → ∞, for each interval (c, d) ⊂ (a, b). The Theorem 3 of [8]

proves that above theorem is valid for infinite intervals. In this section we show that [19,
Theorem 12.11] and [8, Theorem 3] are true for functions belonging to the completion of the
Henstock-Kurzweil space. First, we need to prove the next lemma. The class of step functions
on [a, b] will be denoted as K([a, b]).

Lemma 13. Let [a, b] be an infinite interval. The set K([a, b]) is dense in HK([a, b]).

Proof. Let f ∈ HK([a, ∞]) and ε > 0 be given. By Hake’s Theorem, exists N ∈ N such that
for each x ≥ N,

∣∣∣∣
∫ ∞

x
f
∣∣∣∣ <

ε

2
. (8)

Since K([a, N]) is dense in HK([a, N]), by Theorem 7 of [20], there exists a function h ∈
K([a, N]) such that

|| f − h||A,[a,N] = sup
x∈[a,N]

∣∣∣∣
∫ x

a
( f − h)

∣∣∣∣ <
ε

2
. (9)

Defining h0 ∈ K([a, ∞]) as

h0(x) =
{

h(x) if x ∈ [a, N]
0 if x ∈ (N, ∞].

It follows, by (8) and (9), that

|| f − h0||A ≤ ε.

Similar arguments apply for intervals as [−∞, a] or [−∞, ∞].
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2.1. The convergence of integrals of products in the completion

The following result appears in [3]. Here, we present a detailed proof.

Theorem 14. Let [a, b] ⊂ R. In order that

∫ b

a
f gn →

∫ b

a
f g, n → ∞, (10)

whenever f ∈ ̂HK([a, b]), it is necessary and sufficient that: i) gn is almost everywhere of bounded
variation on [a, b] for each n; ii) sup{||gn||∞ + ||gn||BV} < ∞; iii)

∫ d
c gn →

∫ d
c g, n → ∞, for

each interval (c, d) ⊂ (a, b).

Proof. The necessity follows from [19, Theorem 12.11]. Now we will prove the sufficiency

condition. Define the linear functionals T, Tn : ̂HK([a, b]) → R by

Tn( f ) =
∫ b

a
f gn and T( f ) =

∫ b

a
f g. (11)

Supposing i) and ii), we have, by Multiplier Theorem, that the sequence {Tn} is bounded
by sup{||gn||∞ + ||gn||BV}. Owing to Lemma 13, the space of step functions is dense in
̂HK([a, b]), then considering the Theorem 6 it is sufficient to prove that {Tn( f )} converge to

T( f ), for each step function f . First, let f (x) = χ(c,d)(x) be the characteristic function of
(c, d) ⊂ [a, b]. Thus,

Tn( f ) =
∫ b

a
χ(c,d)gn =

∫ d

c
gn,

by the hypothesis iii), we have that {Tn(χ(c,d))} converges to T(χ(c,d)), as n → ∞. Now, let f
be a step function. Being that each Tn is a linear functional, then {Tn( f )} converges to T( f ),
as n → ∞. Thus, the result holds.

Remark 15. On HK([a, b]). The hypothesis iii) can be replaced by: gn converges pointwise to g,
then the result follows from Corollary 3.2 of [21]. The result on the completion holds by Theorem 6.
Note that the conditions i), ii) and iii) do not imply converges pointwise from {gn} to g, see example
2 of [8].

For the case of functions defined on a finite interval we get Theorem 16, and a lemma of
Riemann-Lebesgue type for functions in the Henstock-Kurzweil space completion.

Theorem 16. Let [a, b] be a finite interval. If i) gn converges to g in measure on [a, b], ii) each gn is
equal to hn almost everywhere, a normalized bounded variation function and iii) there is M > 0 such
that Var(hn, [a, b]) ≤ M, n ≥ 1, then for all f ∈ ̂HK([a, b]),

∫ b

a
f gn →

∫ b

a
f g, n → ∞.

Fourier Transform - Signal Processing and Physical Sciences86



8 ime knjige

2.1. The convergence of integrals of products in the completion

The following result appears in [3]. Here, we present a detailed proof.

Theorem 14. Let [a, b] ⊂ R. In order that

∫ b

a
f gn →

∫ b

a
f g, n → ∞, (10)

whenever f ∈ ̂HK([a, b]), it is necessary and sufficient that: i) gn is almost everywhere of bounded
variation on [a, b] for each n; ii) sup{||gn||∞ + ||gn||BV} < ∞; iii)

∫ d
c gn →

∫ d
c g, n → ∞, for

each interval (c, d) ⊂ (a, b).

Proof. The necessity follows from [19, Theorem 12.11]. Now we will prove the sufficiency

condition. Define the linear functionals T, Tn : ̂HK([a, b]) → R by

Tn( f ) =
∫ b

a
f gn and T( f ) =

∫ b

a
f g. (11)

Supposing i) and ii), we have, by Multiplier Theorem, that the sequence {Tn} is bounded
by sup{||gn||∞ + ||gn||BV}. Owing to Lemma 13, the space of step functions is dense in
̂HK([a, b]), then considering the Theorem 6 it is sufficient to prove that {Tn( f )} converge to

T( f ), for each step function f . First, let f (x) = χ(c,d)(x) be the characteristic function of
(c, d) ⊂ [a, b]. Thus,

Tn( f ) =
∫ b

a
χ(c,d)gn =

∫ d

c
gn,

by the hypothesis iii), we have that {Tn(χ(c,d))} converges to T(χ(c,d)), as n → ∞. Now, let f
be a step function. Being that each Tn is a linear functional, then {Tn( f )} converges to T( f ),
as n → ∞. Thus, the result holds.

Remark 15. On HK([a, b]). The hypothesis iii) can be replaced by: gn converges pointwise to g,
then the result follows from Corollary 3.2 of [21]. The result on the completion holds by Theorem 6.
Note that the conditions i), ii) and iii) do not imply converges pointwise from {gn} to g, see example
2 of [8].

For the case of functions defined on a finite interval we get Theorem 16, and a lemma of
Riemann-Lebesgue type for functions in the Henstock-Kurzweil space completion.

Theorem 16. Let [a, b] be a finite interval. If i) gn converges to g in measure on [a, b], ii) each gn is
equal to hn almost everywhere, a normalized bounded variation function and iii) there is M > 0 such
that Var(hn, [a, b]) ≤ M, n ≥ 1, then for all f ∈ ̂HK([a, b]),

∫ b

a
f gn →

∫ b

a
f g, n → ∞.
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Proof. Let f ∈ ̂HK([a, b]) be given, where f = [{ fk}], we want to prove that

lim
n→∞

lim
k→∞

∫ b

a
fkgn =

∫ b

a
f g.

Define f (k, n) =
∫ b

a fkgn. By the hypothesis i) about (gn) we have

lim
n→∞

∫ b

a
fkgn =

∫ b

a
fkg.

Moreover

lim
k→∞

lim
n→∞

∫ b

a
fkgn =

∫ b

a
f g,

by the integral definition on the completion. We will prove that limk→∞ f (k, n) =
∫ b

a f gn
converges uniformly on n. Let ε > 0 be given, there exists k0 such that || fk − f ||A ≤ ε, if
k ≥ k0. Besides, if k ≥ k0,

∣∣∣∣
∫ b

a
fkgn −

∫ b

a
f gn

∣∣∣∣ ≤ || fk − f ||AVar(gn, [a, b])

≤ Mε.

Therefore, by Theorem 5,

lim
n→∞

lim
k→∞

∫ b

a
fkgn =

∫ b

a
f g.

The following result is a “generalization" of Riemann-Lebesgue Lemma on the completion of
the space HK([a, b]), over finite intervals, it also appears in [3].

Corollary 17. If ϕ : R → R such that ϕ′ exists, is bounded and ϕ(s) = o(s), as |s| → ∞, then for
each f ∈ ̂HK([a, b]) we have the next asymptotic behavior

∫ b

a
ϕ(st) f (t)dt = o(s), as |s| → ∞.

Proof. For each s �= 0 define ϕs : R → R as ϕs(t) = ϕ(st)/s. In order to prove

lim
s→∞

∫ b

a

ϕ(st)
s

f (t)dt = 0,

it is sufficient to show that ϕs fulfills the hypothesis of Theorem 16. Now, we will check item
by item. i) Because of ϕ(s) = o(s), as |s| → ∞ and the interval [a, b] is finite, it follows that
ϕs converges in measure to 0. ii) Owing to ϕ′ is bounded then, by the Mean Value Theorem,
we have that ϕs ∈ BV([a, b]). iii) Var(ϕs, [a, b]) is bounded uniformly by upper bound of ϕ′

and a − b.
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2.2. Riemann-Lebesgue Property

This property establishes that
∫ π

r f (t)Dn(t)dt → 0, for each f ∈ L1[−π, π] and r ∈ (0, π],

where Dn(t) =
sin(n+1/2)t

sin(t/2) denotes the n-th Dirichlet Kernel of order n. Now, we provide an
analogous result concerning the Henstock-Kurzweil completion.

Theorem 18. For any f ∈ ̂HK([−π, π]), and r ∈ (0, π],

lim
n→∞

1
n

∫ π

r
f (t)Dn(t)dt = 0. (12)

Proof. Note that the function g(t) = 1/ sin(t/2) is in BV([r, π]). Moreover, by Multiplier

Theorem we have f g ∈ ̂HK([r, π]). Hence, by Corollary 17, we get

∫ π

r
f (t)g(t) sin(n + 1/2)tdt = o(n), |n| → ∞.

Considering an similar argument from above proof, it follows that

∫ π

r
f (t)

sin(n + 1/2)t
t/2

dt = o(n), |n| → ∞. (13)

For n ∈ N∪{0}, we define the function Φn(t) =
sin(n+1/2)t

t/2 for t �= 0 and Φn(0) = 2n+ 1, it is
called the discrete Fourier Kernel of order n. This kernel provides a very good approximation
to the Dirichlet Kernel Dn for |t| < 2, but Φn decreases more rapidly than Dn, see [1].

Theorem 19. Let f ∈ ̂HK([0, π]) and r ∈ (0, π]. Then, assuming that any of next limits exist,

lim
n→∞

1
n

∫ r

0
f (t)Dn(t)dt = lim

n→∞

1
n

∫ r

0
f (t)

sin(n + 1/2)t
t/2

dt.

Proof. Define g : [0, π] → R by

g(t) =





1
sin(t/2) −

1
t/2 for t ∈ (0, π]

0 for t = 0.

Since g ∈ BV([0, π]), f g ∈ ̂HK([0, π]). By Corollary 17, we have
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lim
n→∞

1
n

∫ π

0
f (t)

(
1

sin(t/2)
− 1

t/2

)
sin (n + 1/2) tdt = 0. (14)

Now, by (14), we have

lim
n→∞

1
n

∫ π

0

(
f (t)Dn(t)− f (t)

sin(n + 1/2)t
t/2

)
dt = 0.

Then

lim
n→∞

1
n

[∫ r

0

(
f (t)Dn(t)− f (t)

sin(n + 1/2)t
t/2

)
dt

+
∫ π

r

(
f (t)Dn(t)− f (t)

sin(n + 1/2)t
t/2

)
dt
]
= 0.

By Theorem 18 and (13),

lim
n→∞

1
n

∫ π

r

(
f (t)Dn(t)− f (t)

sin(n + 1/2)t
t/2

)
dt = 0.

Therefore, assuming that any of the limits exist, we have

lim
n→∞

1
n

∫ r

0
f (t)Dn(t)dt = lim

n→∞

1
n

∫ r

0
f (t)

sin(n + 1/2)t
t/2

dt.

The following result is a characterization of the asymptotic behavior of n − th partial sum of
the Fourier series, it can be found in [3].

Corollary 20. Let f ∈ ̂HK([−π, π]) be 2π− periodic. The n − th partial sum of the Fourier series
at t has the following asymptotic behavior Sn( f , t) = o(n), when |n| → ∞ iff

∫ π

0
[ f (t + u) + f (t − u)]

sin(n + 1/2)u
u

du = o(n),

if |n| → ∞.

Proof. Since Sn( f , t) =
∫ π
−π f (t + u)Dn(u)du, realizing a change of variable (see section 6 of

[13]), then by Theorem 19 we get the result.
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3. Henstock-Kurzweil integral transform

The results in this section are based for functions in the vector space BV0(R), and they have
to [10] as principal reference.

We will introduce some additional terminology in order to facilitate the following results.

If g : R × R → C is a function and s0 ∈ R, we say that s0 fulfills hypothesis (H) relative to g
if:

(H) there exist δ = δ(s0) > 0 and M = M(s0) > 0, such that, if |s − s0| < δ then

∣∣∣∣
∫ v

u
g(t, s)dt

∣∣∣∣ ≤ M,

for all [u, v] ⊆ R.

This condition plays a significant role in the following results. Also, the next theorems can
be found in [10].

Theorem 21. Let f : R → R and g : R × R → C be functions. Assume that f ∈ BV0(R), and
s0 ∈ R fulfills Hypothesis (H) relative to g, then

Γ(s) =
∫ ∞

−∞
f (t)g(t, s)dt

is well defined for all s in a neighborhood of s0.

Proof. Applying Theorem 9 the result holds.

Theorem 22. Let f : R → R and g : R × R → C be functions assume that

1. f belongs to BV0(R), g is bounded, and

2. g(t, ·) is continuous for all t ∈ R.

If s0 ∈ R fulfills Hypothesis (H) relative to g, then the function Γ is continuous at s0.

Proof. By Hypothesis (H), there exist δ1 > 0 and M > 0, such that, if |s − s0| < δ1 then

∣∣∣∣
∫ v

u
g(t, s)dt

∣∣∣∣ ≤ M (15)

for all [u, v] ⊆ R. From Theorem 21, Γ(s) exists for all s ∈ Bδ1 (s0).

Let an arbitrary ε > 0, by Hake’s theorem, there exists K1 > 0 such that

Fourier Transform - Signal Processing and Physical Sciences90
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∣∣∣∣
∫

|t|≥u
f (t)g(t, s0)dt

∣∣∣∣ <
ε

3
(16)

for all u ≥ K1. On the other hand, as

lim
t→−∞

Var( f , (−∞, t]) = 0 and lim
t→∞

Var( f , [t, ∞)) = 0,

there is K2 > 0 such that for each t > K2,

Var( f , (−∞, −t]) + Var( f , [t, ∞)) <
ε

3M
.

Let K = max{K1, K2}. From Theorem 7, it follows that for every v ≥ K and every s ∈ Bδ1 (s0),

∣∣∣∣
∫ v

K
f (t)g(t, s)dt

∣∣∣∣ ≤ ‖g(·, s)‖[K, v]

[
inf

t∈[K, v]
| f (t)|+ Var( f , [K, v])

]

≤ M [| f (v)|+ Var( f , [K, ∞))] ,

where the second inequality is true due to (15). This implies, since limt→∞ | f (t)| = 0, that

∣∣∣∣
∫ ∞

K
f (t)g(t, s)dt

∣∣∣∣ ≤ M · Var( f , [K, ∞)).

Analogously we have that

∣∣∣∣
∫ −K

−∞
f (t)g(t, s)dt

∣∣∣∣ ≤ M · Var( f , (−∞, −K]).

Therefore, for each s ∈ Bδ1 (s0),

∣∣∣∣
∫

|t|≥K
f (t)g(t, s)dt

∣∣∣∣ ≤ M [Var( f , (−∞, −K]) f + Var( f , [K, ∞))]

< M
ε

3M
=

ε

3
. (17)
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Since f is L1[−K, K], g is bounded and g(t, ·) is continuous for all t ∈ R. For example, using
Theorem 12.12 of [11], it is easy to show that the function

ΓK(s) =
∫ K

−K
f (t)g(t, s)dt, s ∈ R,

is continuous at s0. This implies that there is δ2 > 0 such that for every s ∈ Bδ2 (s0),

∣∣∣∣
∫ K

−K
f (t)[g(t, s)− g(t, s0)]dt

∣∣∣∣ <
ε

3
. (18)

Let δ = min{δ1, δ2}. Then for all s ∈ Bδ(s0),

|Γ(s)− Γ(s0)| ≤
∣∣∣∣
∫ K

−K
f (t)[g(t, s)− g(t, s0)]dt

∣∣∣∣

+

∣∣∣∣
∫

|t|≥K
f (t)g(t, s)dt

∣∣∣∣+
∣∣∣∣
∫

|t|≥K
f (t)g(t, s0)dt

∣∣∣∣ .

Thus, from (16), (17) and (18), |Γ(s)− Γ(s0)| < ε
3 + ε

3 + ε
3 = ε, for all s ∈ Bδ(s0).

Theorem 23. Let a, b ∈ R. If f : R → R and g : R × [a, b] → C are functions such that

1. f ∈ BV0(R), g is measurable, bounded and

2. for all s ∈ [a, b], s satisfies Hypothesis (H) relative to g.

Then
∫ b

a

∫ ∞

−∞
f (t)g(t, s)dtds =

∫ ∞

−∞

∫ b

a
f (t)g(t, s)dsdt

Proof. From (2) and since [a, b] is compact, there exists M > 0 such that, for every s ∈ [a, b]
and for all [u, v] ⊆ R :

∣∣∫ v
u g(t, s)dt

∣∣ ≤ M.

For r > 0 and s ∈ [a, b], let Γr(s) =
∫ r
−r f (t)g(t, s)dt. By Theorem 7, we notice that

|Γr(s)| =
∣∣∣∣
∫ r

−r
f (t)g(t, s)dt

∣∣∣∣

≤ ‖g(·, s)‖[−r, r]

[
inf

t∈[−r, r]
| f (t)|+ V[−r, r] f

]

≤ M[| f (0)|+ V f ]

for all s ∈ [a, b].
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So, for each r > 0, Γr is HK integrable on [a, b] and is bounded for a fixed constant. Moreover,
by Theorem 21 and Hake’s theorem

lim
r→∞

Γr(s) = Γ(s)

for all s ∈ [a, b].

Using the Lebesgue Dominated Convergence Theorem, we have that Γ is HK integrable on
[a, b] and

∫ b

a
Γ(s)ds = lim

r→∞

∫ b

a
Γr(s)ds.

Now, because of f is Lebesgue integrable on [−r, r]; g is measurable and bounded; and by
Fubini’s theorem, it follows that

∫ b

a

∫ r

−r
f (t)g(t, s)dtds =

∫ r

−r

∫ b

a
f (t)g(t, s) dsdt.

Consequently

lim
r→∞

∫ r

−r

∫ b

a
f (t)g(t, s)dsdt = lim

r→∞

∫ b

a
Γr(s)ds =

∫ b

a
Γ(s)ds.

So by Hake’s theorem,

∫ ∞

−∞

∫ b

a
f (t)g(t, s) dsdt =

∫ b

a
Γ(s)ds =

∫ b

a

∫ ∞

−∞
f (t)g(t, s)dtds.

Theorem 24. Let f ∈ BV0(R) and g : R × R → C be a function such that its partial derivative
D2g is bounded and continuous on R × R. If s0 ∈ R is such that

1. there is K > 0 for which ‖g(·, s0)‖[u,v] ≤ K for all [u, v] ⊆ R, and

2. s0 satisfies Hypothesis (H) relative to D2g.

Then Γ is derivable at s0, and

Γ′(s0) =
∫ ∞

−∞
f (t)D2g(t, s0)dt. (19)
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Proof. Using conditions (1) and (2) and the Mean Value theorem, there exist δ > 0 and
M > 0 such that, for each s ∈ (s0 − δ, s0 + δ),

∣∣∣∣
∫ v

u
D2g(t, s)dt

∣∣∣∣ < M and
∣∣∣∣
∫ v

u
g(t, s)dt

∣∣∣∣ < M, (20)

for all [u, v] ⊆ R.

Let a, b be real numbers with s0 − δ < a < s0 < b < s0 + δ. We use Theorem 12 to prove
(19). The function f (t)g(t, ·) is differentiable on [a, b] for each t ∈ R, therefore f (t)g(t, ·) is
ACGδ on [a, b] for all t ∈ R. By (20) and Theorem 9, f (·)g(·, s) is HK-integrable on R for all
s ∈ [a, b]. Then

Γ′(s0) =
∫ ∞

−∞
f (t)D2g(t, s0)dt

when, if

Γ2 :=
∫ ∞

−∞
f (t)D2g(t, ·)dt

is continuous at s0, and

∫ t

s

∫ ∞

−∞
f (t)D2g(t, s)dtds =

∫ ∞

−∞

∫ t

s
f (t)D2g(t, s)dsdt

for all [s, t] ⊆ [a, b]. The first affirmation is true by (20) and Theorem 22, and the second
affirmation is true due to (20) and Theorem 23

3.1. Some applications

An important work about the Fourier transform using the Henstock-Kurzweil integral:
existence, continuity, inversion theorems etc. was published in [5]. Nevertheless, there are
some omissions in that results that use the Lemma 25 (a) of [5]. Also the authors of this book
chapter in [6], [3] and [4] have studied existence, continuity and Riemann-Lebesgue lemma
about the Fourier transform of functions belong to HK(R) ∩ BV(R) and BV0(R). Following
the line of [6], in Theorem 26 we include some results from them as consequences of theorems
above section.

Let f and g be real-valued functions on R. The convolution of f and g is the function f ∗ g
defined by

f ∗ g(x) =
∫ ∞

−∞
f (x − y)g(y)dy
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(19). The function f (t)g(t, ·) is differentiable on [a, b] for each t ∈ R, therefore f (t)g(t, ·) is
ACGδ on [a, b] for all t ∈ R. By (20) and Theorem 9, f (·)g(·, s) is HK-integrable on R for all
s ∈ [a, b]. Then

Γ′(s0) =
∫ ∞

−∞
f (t)D2g(t, s0)dt

when, if

Γ2 :=
∫ ∞

−∞
f (t)D2g(t, ·)dt

is continuous at s0, and

∫ t

s

∫ ∞

−∞
f (t)D2g(t, s)dtds =

∫ ∞

−∞

∫ t

s
f (t)D2g(t, s)dsdt

for all [s, t] ⊆ [a, b]. The first affirmation is true by (20) and Theorem 22, and the second
affirmation is true due to (20) and Theorem 23

3.1. Some applications

An important work about the Fourier transform using the Henstock-Kurzweil integral:
existence, continuity, inversion theorems etc. was published in [5]. Nevertheless, there are
some omissions in that results that use the Lemma 25 (a) of [5]. Also the authors of this book
chapter in [6], [3] and [4] have studied existence, continuity and Riemann-Lebesgue lemma
about the Fourier transform of functions belong to HK(R) ∩ BV(R) and BV0(R). Following
the line of [6], in Theorem 26 we include some results from them as consequences of theorems
above section.

Let f and g be real-valued functions on R. The convolution of f and g is the function f ∗ g
defined by

f ∗ g(x) =
∫ ∞

−∞
f (x − y)g(y)dy
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for all x such that the integral exists. Several conditions can be imposed on f and g to
guarantee that f ∗ g is defined on R. For example, if f is HK- integrable and g is of bounded
variation.

Lemma 25. For f ∈ HK(R) ∩ BV(R), lim
|x|→∞

f (x) = 0.

Proof. Since f is a bounded variation function on R then the limit of f (x), as |x| → ∞, exists.
Suppose that lim

|x|→∞
f (x) = α �= 0. Take 0 < ε < |α|. There exists A > 0 such that α− ε < f (x),

for all |x| > A. Observe that f (x) > 0 on [A, ∞), so f ∈ L([A, ∞)). Therefore the constant
function α − ε is Lebesgue integrable on [A, ∞), which is a contradiction.

Observe, as consequence of above Lemma, we have that the vector space HK(R) ∩ BV(R) is
contained in BV0(R). So the next theorem is an immediately consequence of above section.

Theorem 26. If f ∈ HK(R) ∩ BV(R), then

1. f̂ exists on R.

2. f̂ is continuous on R \ {0}.

3. If g(t) = t f (t) and g ∈ HK(R) ∩ BV(R) , then f̂ is differentiable on R \ {0}, and

f̂
′
(s) = −iĝ(s), for each s ∈ R \ {0}.

4. For h ∈ L1(R) ∩ BV(R), f̂ ∗ h(s) = f̂ (s)ĥ(s) for all s ∈ R.

Proof. We observe that
∣∣∣∣
∫ v

u
e−itsdt

∣∣∣∣ ≤
2
|s| , (21)

for all [u, v] ⊆ R. Thus, each s0 �= 0 satisfies Hypothesis (H) relative to e−its.

(a) Theorem 21 implies that f̂ (s0) exists for all s0 �= 0 and, since f ∈ HK(R), f̂ (0) exists.
Therefore f̂ exists on R.

(b) By Theorem 22, f̂ is continuous at s0, for all s0 �= 0.

(c) It follows by Theorem 12 in similar way to the proof of Theorem 24.

(d) Let k(x, y) = f (y − x)e−iys, where s is a fixed real number. We get, for each y ∈ R and all
[u, v] ⊆ R,

∣∣∣∣
∫ v

u
k(x, y)dx

∣∣∣∣ =
∣∣∣∣
∫ v

u
f (y − x)dx

∣∣∣∣

=

∣∣∣∣
∫ y−v

y−u
f (z)dz

∣∣∣∣ ≤ ‖ f ‖A.
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So, every real number y satisfies Hypothesis (H) relative to k. Now, observe that h ∈ BV0(R)
and k is measurable and bounded. Thus, by Theorem 23,

∫ a

−a

∫ ∞

−∞
h(x)k(x, y)dxdy =

∫ ∞

−∞

∫ a

−a
h(x)k(x, y)dydx, (22)

for all a > 0.

On the other hand,

∣∣∣∣h(x)
∫ a

−a
f (y − x)e−iysdy

∣∣∣∣ ≤ |h(x)|
∣∣∣∣
∫ a−x

−a−x
f (z)e−izsdz

∣∣∣∣
≤ |h(x)|‖ f (·)e−i(·)s‖A.

Since h ∈ L(R), using Dominated Convergence theorem, it follows that

f̂ (s)ĥ(s) =
∫ ∞

−∞
h(x)

∫ ∞

−∞
f (y − x)e−iysdydx

= lim
a→∞

∫ ∞

−∞
h(x)

∫ a

−a
f (y − x)e−iysdydx.

Moreover, from (22), we have

f̂ (s)ĥ(s) = lim
a→∞

∫ a

−a

∫ ∞

−∞
h(x) f (y − x)e−iysdxdy

= lim
a→∞

∫ a

−a
( f ∗ h)(y)e−iysdy.

We conclude, by Hake’s theorem, that

f̂ ∗ h(s) = f̂ (s)ĥ(s).

Recall that the Laplace transform, at z ∈ C, of a function f : [0, ∞) → R is defined as

L( f )(z) =
∫ ∞

0
f (t)e−ztdt.

Theorem 27. If f ∈ HK([0, ∞)) ∩ BV([0, ∞)), then

1. L( f )(z) exists for all z ∈ C.

2. If F(x, y) = L( f )(x+ iy), then F(·, y) is continuous on R for all y �= 0, and F(x, ·) is continuous
on R for all x �= 0.
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4. A set of functions in HK(R) ∩ BV0(R) \ L1(R)

Taking into account Lemma 25, the set HK(R) ∩ BV(R) is included in BV0(R) and does not
have inclusion relations with L1(R). Since the step functions belong to HK(R)∩ BV(R), then
by Lemma 13, we have that HK(R) ∩ BV(R) is dense in HK(R). In this section we exhibit a
set of functions in HK(R) ∩ BV0(R) \ L1(R).

Proposition 28. Let b > a > 0. Suppose that f : [a, ∞) → R is not identically zero, is continuous
and periodic with period b − a. Let F(x) =

∫ x
a f (t)dt be bounded on [a, ∞). Moreover, assume

that ϕ : [a, ∞) → R is a nonnegative and monotone decreasing function which satisfies the next
conditions:

(i) limt→∞ ϕ(t) = 0,

(ii) ϕ /∈ HK([a, ∞)).

Then the product ϕ f ∈ HK([a, ∞)) \ L1([a, ∞)).

Proof. We take to ∈ (a, b), δo > 0 and γ > 0 such that

γ ≤ | f (t)| for each t ∈ [to − δo, to + δo] ⊂ (a, b).

Periodicity of f gives

γ ≤ | f (t)|

for each t ∈ ⋃∞
k=0[to − δo + k(b − a), to + δo + k(b − a)]. Therefore,

∫ b+n(b−a)

a
ϕ(t)| f (t)|dt ≥ γ

n

∑
k=0

∫ to+δo+k(b−a)

to−δo+k(b−a)
ϕ(t)dt

≥ γ
n

∑
k=0

∫ to+δo+k(b−a)

to−δo+k(b−a)
ϕ(to + δo + k(b − a))dt

= γ(2δo)
n

∑
k=0

ϕ(to + δo + k(b − a)). (23)

Also,

∫ b+n(b−a)

a
ϕ(t)dt ≤

n

∑
k=0

∫ b+k(b−a)

a+k(b−a)
ϕ(t)dt

≤
n

∑
k=0

ϕ(a + k(b − a))
∫ b+k(b−a)

a+k(b−a)
dt

≤ (b − a)ϕ(a) (24)

+(b − a)
n

∑
k=1

ϕ(to + δo + (k − 1)(b − a)).
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Because of ϕ /∈ HK([a, ∞]), we get limn→∞
∫ b+n(b−a)

a ϕ(t)dt = ∞. Thus, equations (23) and
(24) imply ϕ f /∈ L1([a, ∞)]. On the other hand, by Chartier-Dirichlet’s Test of [11], the
function ϕ f belongs to HK([a, ∞)).

Corollary 29. Let α, β be positive numbers such that α + β > 1 with β ≤ 1. Suppose a > 0 and
f : [a, ∞) → R obeys the hypotheses of Proposition 28. Then, the function fα,β : [a1/α, ∞) → R

defined by

fα,β(t) =
f (tα)

tβ
(25)

is in HK([a1/α, ∞)) \ L1([a1/α, ∞)).

Proof. The change of variable u = tα gives,

∫ ∞

a
1
α

f (tα)

tβ
dt =

∫ ∞

a

f (u)

u
β−1

α +1
du. (26)

The hypotheses for α, β imply that the function ϕ(u) = u−[ (β−1)
α +1] satisfies the conditions of

Proposition 28. Then, ϕ f ∈ HK([a, ∞) \ L1([a, ∞)), satisfying the statement of the corollary.

Proposition 30. Let β > α > 0 be fixed with β + α > 1. Suppose f : [a, ∞) → R is a bounded and
continuous function, with bounded derivative. Then the function fα,β : [a1/α, ∞) → R, defined by
fα,β(t) = f (tα)/tβ, belongs to the space BV([a1/α, ∞)).

Proof. Let M1 and M2 be bounds for f and f ′, respectively. We have,

f ′α,β(t) =
α f ′(tα)

tβ−α+1 − β f (tα)

tβ+1 ,

which gives

∣∣∣ f ′α,β(t)
∣∣∣ ≤ αM2

tβ−α+1 +
βM1

tβ+1 .

Now, take x > a
1
α . Since β − α > 0, then

αM2

tβ−α+1 +
βM1

tβ+1 ∈ L1([a
1
α , x)).

A straightforward application of the Theorem 7.7 of [11] implies f ′α,β ∈ L1([a1/α, x)).
Moreover
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∫ x

a
1
α
| f ′α,β(t)|dt ≤ αM2

∫ x

a
1
α

t−β+α−1dt

+βM1

∫ x

a
1
α

t−β−1dt

= − αM2
β − α

(
1

xβ−α
− 1

a
β−α

α

)

−M1

(
1

xβ
− 1

a
β
α

)

≤ αM2
β − α

1

a
β−α

α

+
M1

a
β
α

.

These estimates together with the Theorem 7.5 of [11] imply,

V( fα,β; [a
1
α , x)) ≤ αM2

β − α

1

a
β−α

α

+
M1

a
β
α

. (27)

If x tends to ∞, one gets fα,β ∈ BV([a1/α, ∞)).

Corollary 29 and Proposition 30 provide us Henstock-Kurzweil integrable functions defined
on unbounded intervals which are not Lebesgue integrable.

Corollary 31. Let a, α, β be such that: 0 < a, 0 < α < β ≤ 1 and 1 < β + α. Suppose that
f : [a, ∞) → R satisfies both the hypotheses of Corollary 29 and Proposition 30. Then, the function
fα,β belongs to HK([a1/α, ∞)) ∩ BV([a1/α, ∞)) \ L1([a1/α, ∞)).

Taking into account the above functions we have the following corollary.

Corollary 32. Let a, α, β be such that: 0 < a, 0 < α < β ≤ 1 and 1 < β + α, and let h in
BV([−a1/α, a1/α]). Suppose that f : [a, ∞) → R satisfies both the hypotheses of Corollary 29 and
Proposition 30. Then f : R → R defined by

g(t) =




h(t) if t ∈ (−a1/α, a1/α),

f (|t|α)
|t|β

if f ∈ (−∞, −a1/α] ∪ [a1/α, ∞)

is in HK(R) ∩ BV(R) \ L(R).

Example 33. Let us consider the trigonometric functions sin(t) and cos(t). Then the following
family of functions satisfies the hypotheses of Theorem 34.

sinα
β : R → R; sinα

β(t) = χ1,α (t)
sin(tα)

tβ
,

cosα
β : R → R; cosα

β(t) = χ2,α (t)
cos(tα)

tβ
.
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Here χ1,α and χ2,α are the characteristic functions of the intervals [π1/α, ∞) and [(π/2)1/α, ∞),
respectively. The numbers α, β are taken as in Corollary 31.

From the above example belongs to HK(R) ∩ BV(R) \ L(R). By the Multiplier theorem it
follows that HK(R) ∩ BV(R) ⊂ L2(R), so the above function is in BV0(R) ∩ L2(R) \ L(R).
Therefore, there exist functions in L2(R) \ L(R) such that their Fourier transforms exist as
in (1), as an integral in HK sense.

5. The Riemann-Lebesgue Lemma and the Dirichlet-Jordan Theorem for
BV0 functions

The Riemann-Lebesgue lemma is a fundamental result of the Harmonic Analysis. An novel
aspect is the validity of this lemma for functions which are not Lebesgue integrable, since this
fact could help to expand the space of functions where the inversion of the Fourier transform
is possible. In this section we prove a generalization of the Riemann-Lebesgue Lemma for
functions of bounded variation which vanish at infinity. As consequence, it is obtained a
proof of the Dirichlet-Jordan theorem for this kind of functions. This theorem provides a
pointwise inversion of the Fourier transform.

We observe that the implications 1 and 2 of Theorem 26 are particularizations of the next
result.

Theorem 34 (Generalization of Riemann-Lebesgue Lemma). Let ϕ ∈ HKloc(R) be a function
such that Φ(t) =

∫ t
0 ϕ(x)dx is bounded function on R. If f ∈ BV0(R), then the function H(w) =∫ ∞

−∞ f (t)ϕ(wt)dt is defined on R \ {0} , it is continuous and

lim
|w|→∞

H(w) = 0.

Proof. Given w ∈ R, we define ϕw(t) = ϕ(wt). Because of ϕ ∈ HKloc(R), then ϕ and
ϕw are in HK([0, b]), for b > 0. By Jordan decomposition, there exist functions f1 and f2
which are nondecreasing functions belonging to BV0(R) such that f = f1 − f2. Hence,
by Chartier-Dirichlet’s Test, f ϕw ∈ HK([0, ∞]). By applying the Multiplier Theorem and
supposing w �= 0, it follows

∫ ∞

0
f (t)ϕ(wt)dt = −

∫ ∞

0

Φ(wt)
w

d f (t)

= −
∫ ∞

0

Φ(wt)
w

d f1(t) (28)

+
∫ ∞

0

Φ(wt)
w

d f2(t),

where d fi(t) is the Lebesgue-Sieltjes measure generated by fi, i = 1, 2.

Let β a positive number and let M the upper bound of |Φ|. For w ∈ [β, ∞) we have that
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pointwise inversion of the Fourier transform.

We observe that the implications 1 and 2 of Theorem 26 are particularizations of the next
result.

Theorem 34 (Generalization of Riemann-Lebesgue Lemma). Let ϕ ∈ HKloc(R) be a function
such that Φ(t) =
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0 ϕ(x)dx is bounded function on R. If f ∈ BV0(R), then the function H(w) =∫ ∞
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which are nondecreasing functions belonging to BV0(R) such that f = f1 − f2. Hence,
by Chartier-Dirichlet’s Test, f ϕw ∈ HK([0, ∞]). By applying the Multiplier Theorem and
supposing w �= 0, it follows

∫ ∞

0
f (t)ϕ(wt)dt = −

∫ ∞

0

Φ(wt)
w

d f (t)

= −
∫ ∞

0

Φ(wt)
w

d f1(t) (28)

+
∫ ∞

0

Φ(wt)
w

d f2(t),

where d fi(t) is the Lebesgue-Sieltjes measure generated by fi, i = 1, 2.

Let β a positive number and let M the upper bound of |Φ|. For w ∈ [β, ∞) we have that
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∣∣∣∣
Φ(wt)

w

∣∣∣∣ ≤
M
β

. (29)

Since Φ(wt)/w is continuous over [β, ∞) and the measures d fi(t) are finite, then by the
Dominated Convergence Theorem applied to right side integrals in (28), it follows that

lim
w→w0

H(w) = H(w0),

for each w0 ∈ [β, ∞). Since β is arbitrary, we obtain the continuity of H on (0, ∞).

Moreover, by (28), we have for w ∈ (0, ∞) that

∣∣∣∣
∫ ∞

0
f (t)ϕ(wt)dt

∣∣∣∣ ≤
M
|w|Var( f ; [0, ∞]).

Thus, we conclude that

lim
|w|→∞

∫ ∞

0
f (t)ϕ(wt)dt = 0.

To complete the proof, we use similar arguments for the interval (−∞, 0].

The above theorem confirms that H ∈ C0(R \ {0}), for each f ∈ BV0(R). As corollary we
have the Riemann-Lebesgue Lemma.

Corollary 35. If f ∈ BV0(R), then f̂ ∈ C0(R \ {0}).

We know that if g, h ∈ BV([a, ∞]) then gh ∈ BV([a, ∞]). Employing this fact and Theorem 34
we get the following corollary.

Corollary 36. Suppose that δ, α > 0 and f ∈ BV(R), then

lim
M→∞

∞∫

δ

f (t)
tα

e−iMtdt = 0.

The Sine Integral is defined as

Si(x) =
2
π

∫ x

0

sin t
t

dt,

which has the properties:

1. Si(0) = 0, limx→∞ Si(x) = 1 and

2. Si(x) ≤ Si(π) for all x ∈ [0, ∞].
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We use the Sine Integral function in the proof of the following lemma.

Lemma 37. Let δ > 0. If f ∈ BV0(R), then

lim
ε→0

∫ ∞

δ
f (t)

sin εt
t

dt = 0.

Proof. By Lemma 10 we have

∣∣∣∣
∫ ∞

δ

sin εt
t

f (t)dt
∣∣∣∣ ≤

∣∣∣∣
∫ ∞

δ

(∫ tε

δε

sin u
u

du
)

d f (t)
∣∣∣∣ . (30)

Since for each t ∈ [a, ∞): limε→0
∫ tε

δε
sin u

u du = 0 and
∣∣∣∫ tε

δε
sin u

u du
∣∣∣ ≤ πSi(π) for all ε > 0.

Then, we obtain the result applying the Lebesgue Dominated Convergence theorem to the
integral on the right in (30).

Lemma 38. Suppose that 0 < α < β or α < β < 0. If f ∈ BV0(R), then for all s ∈ [α, β] we have

lim
a→−∞
b→∞

∫ β

α
eixs

∫ b

a
f (t)e−istdtds =

∫ β

α
eixs

∫ ∞

−∞
f (t)e−istdtds. (31)

Proof. We will do the proof for 0 < α < β. Let f̂0b(s) =
∫ b

0 f (t)e−istdt and f̂0(s) =∫ ∞
0 f (t)e−istdt, which are continuous on R � {0}. Therefore the integrals in (31) exist. We

know that there is R > 0 such that | f (t)| ≤ R for all t ∈ R, and that for any b > 0 :
V( f ; [0, b]) ≤ V( f ; [0, ∞)). For each s ∈ [α, β] the Multiplier theorem implies

∣∣∣ f̂0b(s)
∣∣∣ ≤ 2

α
{R + V( f ; [0, ∞))} = N.

This inequality implies that for any b > 0 and all s ∈ [α, β] :
∣∣∣eixs f̂0b(s)

∣∣∣ ≤ N, for each x ∈ R.

Applying the theorem of Hake we have: limb→∞ f̂0b(s) = f̂0(s). Then, by the Lebesgue
Dominated Convergence theorem,

lim
b→∞

∫ β

α
eixs f̂0b(s)ds =

∫ β

α
eixs f̂0(s)ds.

To conclude the proof, we follow a similar process over the interval [a, 0] leading a to minus
infinity.

To obtain the Dirichlet-Jordan theorem we state the following lemma [22, Theorem 11.8].
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Lemma 39. Let δ > 0. If g is of bounded variation on [0, δ], then

lim
M→∞

2
π

∫ δ

0
g(t)

sin Mt
t

dt = g(0+)

Theorem 40 (Dirichlet-Jordan Theorem). If f is a function in BV0(R), then, for each x ∈ R,

lim
M→∞
ε→0

1
2π

∫

ε<|s|<M

eixs f̂ (s)ds =
1
2
{ f (x + 0) + f (x − 0)}. (32)

Proof. Let g(x, t) = f (x − t) + f (x + t) and suppose that δ > 0. By Fubini’s theorem for the
Lebesgue integral [22, Theorem 15.7] at [−M,−ε]× [a, b] and [ε, M]× [a, b] and Lema 38, we
have

∫

ε<|s|<M

eixs
∫ ∞

−∞
f (t)e−istdtds = lim

a→−∞
b→∞

(∫ −ε

−M
+

∫ M

ε

)
eixs

∫ b

a
f (t)e−istdtds

= lim
a→−∞
b→∞

∫ b

a
f (t)

(∫ −ε

−M
+

∫ M

ε

)
eis(x−t)dsdt

=
∫ ∞

−∞
f (t)

(∫ −ε

−M
+

∫ M

ε

)
eis(x−t)dsdt

= 2
∫ ∞

0

g(x, t)
t

(sin M t − sin εt)dt

= 2
∫ ∞

δ

g(x, t)
t

(sin M t − sin εt)dt

+2
∫ δ

0

g(x, t)
t

(sin M t − sin εt)dt.

In [δ, ∞], by Corollary 36 and Lemma 37, we get

lim
M→∞,ε→0

∫ ∞

δ

g(x, t)
t

(sin M t − sin εt)dt = 0. (33)

In [0, δ], applying the Lebesgue Dominate Convergence theorem,

lim
ε→0

∫ δ

0

g(x, t)
t

sin εtdt = 0. (34)
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Now, by Lemma 39,

lim
M→∞

∫ δ

0
g(x, t)

sin Mt
t

dt = g(x, 0+) =
π

2
[ f (x − 0) + f (x + 0)] .

We conclude the proof combining (33), (34) and the above expression.

We observe that the classical theorem of Dirichlet-Jordan on L(R) is a particular case of
Theorem 40. Taking into account that HK(R) ∩ BV(R) ⊂ BV0(R), then from Theorem 34
and Theorem 40 we get that if f ∈ HK(R) ∩ BV(R), then its Fourier transform f̂ (s) exists in
each s ∈ R; f̂ ∈ C0(R\ {0}), and the expression (32) holds for each x ∈ R.

Corollary 41. There exist functions in L2(R) \ L(R) such that their Fourier transforms exist as in
(1) and, for each x ∈ R, the expression (32) is true.

6. Conclusions

We present theorems about convergence of integrals of products in the completion of HK(I),
which those we have a version of Riemann-Lebesgue Lemma (over compact intervals) and
analogous results at Riemann-Lebesgue property, a characterization of behavior of n-th
partial sum of the Fourier series. Moreover, we have gotten basic properties (existence as
integral, continuity, asymptotic behavior) about Fourier transform using Henstock-Kurzweil
Integral, for this was necessary to get a generalization of Riemann-Lebesgue Lemma over
BV0(R), in particular those characteristics are valid over HK(R) ∩ BV(R). This intersection
does not have relation inclusion with Lebesgue integrable functions space, we give a set of
functions such that it belongs to HK(R)∩ BV(R) \ L(R). Finally we have a generalization of
Dirichlet-Jordan over BV0(R).
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1. Introduction

For Fourier transform theory, one of the most important and difficult things is how to
treat the Dirac delta function and how to define it. In 1930, the Dirac delta function was
defined originally by Paul A.M. Dirac([1]) in order to create the quantum mechanical theory
in Physics. In classical mechanics, there is the beautiful Newton’s law. Under it, it is assumed
that a particle is a point with a mass. For the investigation of a small world for example,
elementary particles, it should be changed to the quantum mechanical theory where particles
are not already only points as in Mathematics but also some area with infinitesimal length
for us. They have some properties like waves. The Dirac delta function is defined to be
realized the image of the particle in the small world. The particle changed to be the moving
wave, and it becomes a set of such waves. It is called field in Physics and we need the second
quantization . The quantum mechanics is developed to the quantum field theory where the
delta function is much complicated to treat in the standard mathematical theory.

The delta function is usually defined as the delta measure in the functional analysis. Under
the basic definition, the functional analysis is developed in the functional space for example
Banach space, Hilbert space. These theory is applied to the existence problem of solutions for
the ordinary and partial differential equations. On the other hand, the delta function is also
defined just as a function in the extension of the real number field ([3],[4],[5],[18]) in 1962.
The idea is that firstly the real and complex number fields are extended to the nonstandard
universe, secondly the delta function is defined as a function in the extended universe (cf.
[3]).

In this chapter the real number field and complex number field are extended twice and a
higher degree of delta function is defined as a function on the space of functions. By using the
secondly extended delta function, the Fourier transform theory is considered, that is called
" double infinitesimal Fourier transform ". In the theory, the Poisson summation formula
is also satisfied, and some important examples are calculated. The Fourier transforms of δ,

δ2, ... , and
√

δ, ... can be calculated, which are constant functions as 1, infinite, ... , and
infinitesimal, ... .

©2012 prezimena autora, kod vise prvi et al., licensee InTech. This is an open access chapter distributed under
the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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Then the Fourier transform of the gaussian functional is also calculated. The gaussian

functional means that the standard part of the image for α ∈ L2 is exp
(
−πξ

∫ ∞
−∞ α

2(t)dt
)

,

for ξ ∈ C with Re(ξ) > 0. The double infinitesimal Fourier transform is calculated as

Cξ exp
(
−πξ

−1
∫ ∞
−∞ α

2(t)dt
)

for α ∈ L2(R), in which Cξ is a constant independent of α .

Finally a sort of functional is constructed in the theory that associates to Riemann’s zeta
function. The path integral is defined for the application in the theory, and it is shown that
the path integral of the functional Zs corresponds to Riemann’s zeta function in the case
that Re(s) > 1. By using the Poisson summation formula for the functional, a relationship
appears between the functional and Riemann’s zeta function.

2. Infinitesimal Fourier transform

The usual universe is extended, in order to treat many stages of delta functions and functions
on the space of functions. For the extension, there exists two methods, one is the second
extension of the universe in the nonstandard analysis ([8],[9]) and the other is the Relative
set theory in the axiomatic set theory ( [13]). The first one ([8],[9]) is explained here, by using
an ultrafilter .

2.1. First extension of the universe

Let Λ be an infinite set. Let F be a nonprincipal ultrafilter on Λ. For each λ ∈ Λ, let Sλ be a
set. An equivalence relation ∼ is induced from F on ∏λ∈Λ Sλ. For α = (αλ), β = (βλ) (λ ∈

Λ),

α ∼ β ⇐⇒ {λ ∈ Λ | αλ = βλ} ∈ F. (1)

The set of equivalence classes is called ultraproduct of Sλ for F with respect to ∼. If Sλ = S
for λ ∈ Λ, then it is called ultraproduct of S for F and it is written as ∗S. The set S is naturally
embedded in ∗S by the following mapping :

s (∈ S) �→ [(sλ = s), λ ∈ Λ] (∈ ∗S) (2)

where [ ] denotes the equivalence class with respect to the ultrafilter F. The mapping is
written as ∗, and call it naturally elementary embedding. From now on, we identify the
image ∗(S) as S.

Definition 2.1.1.

Let H (∈ ∗Z) be an infinite even number. The infinite number H is even, when for H =
[(Hλ), λ ∈ Λ], {λ ∈ Λ | Hλ is even} ∈ F. The number 1

H is written as ε. We define an
infinitesimal lattice space L, an infinitesimal lattice subspace L and a space of functions R(L)
on L as follows :

L := ε
∗Z = {εz | z ∈

∗Z},

L :=
{

εz
∣∣∣ z ∈

∗Z, − H
2 ≤ εz <

H
2

}
(⊂ L),
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R(L) := {ϕ | ϕ is an internal function from L to ∗C} .

The space R(L) is extended to the space of periodic functions on L with period H. We write
the same notation R(L) for the space of periodic functions.

Gaishi Takeuchi([18]) introduced an infinitesimal δ function. Furthermore Moto-o Kinoshita
([4],[5]) constructed an infinitesimal Fourier transformation theory on R(L). It is explained
briefly.

Definition 2.1.2.

For ϕ, ψ ∈ R(L), the infinitesimal δ function, the infinitesimal Fourier transformation Fϕ (∈
R(L)), the inverse infinitesimal Fourier transformation Fϕ (∈ R(L)) and the convolution
ϕ ∗ ψ (∈ R(L)) are defined as follows :

δ ∈ R(L), δ(x) :=

{
H (x = 0)

0 (x �= 0)
(3)

(Fϕ)(p) := ∑
x∈L

ε exp (−2πipx) ϕ(x) (4)

(Fϕ)(p) := ∑
x∈L

ε exp (2πipx) ϕ(x) (5)

(ϕ ∗ ψ)(x) := ∑
y∈L

εϕ(x − y)ψ(y). (6)

The definition implies the following theorem as same as the Fourier transform for the finite
discrete abelian group.

Theorem 2.1.3.

(1) δ = F1 = F1, (2) F is unitary, F4 = 1, FF = FF = 1,

(3) f ∗ δ = δ ∗ f = f , (4) f ∗ g = g ∗ f ,

(5) F( f ∗ g) = (F f )(Fg), (6) F( f ∗ g) = (F f )(Fg),

(7) F( f g) = (F f ) ∗ (Fg), (8) F( f g) = (F f ) ∗ (Fg).

The definition implies the following proposition by the simple calculation:

Proposition 2.1.4.

If l ∈ R, then

Fδ
l = (H)(l−1). (7)

Examples of the infinitesimal Fourier transform for functions
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The infinitesimal Fourier transforms of the gaussian function ϕξ , ϕim ∈ R(L) are calculated

as follows: ϕξ(x) = exp(−ξπx2), where ξ ∈ C, Re(ξ) > 0,

ϕim(x) = exp(−imπx2), where m ∈ Z.

For ϕξ , we obtain :

Proposition 2.1.5.

(Fϕξ)(p) = cξ(p)ϕξ(
p
ξ
), where cξ(p) = ∑x∈L ε exp(−ξπ(x + i

ξ
p)2) and p is an element of

the lattice L.

If p is finite, then st(cξ(p)) = 1
√

ξ
.

Proof. The infinitesimal Fourier transforms of ϕξ is :

(Fϕξ)(p) = ∑
x∈L

ε exp(−2πipx) exp(−ξπx2)

= (∑
x∈L

ε exp(−ξπ(x +
i

ξ
p)2)) exp(−π

1

ξ
p2) = cξ(p)ϕξ(

p

ξ
) (8)

where cξ(p) = ∑x∈L ε exp(−ξπ(x + i
ξ

p)2). If p is finite, then st(cξ(p))

=
∫ ∞
−∞ exp

(
−ξπ

(
t + i

ξ
st(p)

)2
)

dt = 1
√

ξ
.

Theorem 2.1.3 (8) implies the following for cξ :

Proposition 2.1.6.

ϕξ(x′) =
(

Fcξ(p) ∗
(

c 1
ξ

(−x)ϕξ(x)
))

(x′). (9)

Proof. It is obtained : (Fϕξ)(p) = cξ(p)ϕξ(
p
ξ
), and put F to the above :

(F(Fϕξ))(x) = (F(cξ(p)ϕξ(
p
ξ
)))(x)

= (Fcξ(p) ∗ Fϕξ(
p
ξ
))(x), that is, ϕξ(x) = (Fcξ(p) ∗ Fϕξ(

p
ξ
))(x).

Now (Fϕξ(
p
ξ
))(x) = ∑p∈L ε exp(−2πipx) exp(−ξ(

p
ξ
)2

π)

= ∑p∈L ε exp(−π
1
ξ
(p2

− 2πiξ px)) =
(

∑p∈L ε exp(−π

ξ
(p − iξx)2)

)
ϕξ(x).

By the definition : cξ(p) = ∑x∈L ε exp(−πξ(x + i 1
ξ

p)2), the sum

∑p∈L ε exp(−π

ξ
(p − iξx)2) is c 1

ξ

(−x). Hence

ϕξ(x′) =
(

Fcξ(p) ∗
(

c 1
ξ

(−x)ϕξ(x)
))

(x′). (10)
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For the following proposition 2.1.7, the Gauss sum is recalled (cf.[15]) : For z ∈ N, the Gauss

sum ∑z−1
l=0 exp(−i 2π

z l2) is equal to
√

z
1+(−i)z

1−i .

Proposition 2.1.7. If m|2H2 and m|

p
ε

, then

(Fϕim)(p) = cim(p) exp(iπ
1

m
p2) (11)

where cim(p) =
√

m
2

1+i
2H2

m

1+i for positive m and cim(p) =
√

−m
2

1+(−i)
2H2
−m

1−i for negative m.

Proof. (Fϕim)(p) = ∑x∈L ε exp(−imπx2) exp(−2πixp)

= cim(p) exp(iπ 1
m p2), where cim(p) = ∑x∈L ε exp(−imπ(x +

p
m )2).

Since m|

p
ε

, the element
p
m is in L. It is remarked that exp(−iπmx2) = exp(−iπm(x + H)2).

For positive m,

cim(p) = ∑
x∈L

ε exp(−imπx2) =
m

2

(
ε

√
2H2

m

1 + (−i)
2H2

m

1 − i

)
(12)

by the above Gauss sum. Hence cim(p) =
√

m
2

1+i
2H2

m

1+i . For negative m, the proof is as same

as the above.

2.2. Second extension of the universe

To treat a ∗-unbounded functional f in the nonstandard analysis, we need a second
nonstandardization. Let F2 := F be a nonprincipal ultrafilter on an infinite set Λ2 := Λ
as above. Denote the ultraproduct of a set S with respect to F2 by ∗S as above. Let F1 be
another nonprincipal ultrafilter on an infinite set Λ1. Take the ∗-ultrafilter ∗F1 on ∗Λ1. For
an internal set S in the sense of ∗-nonstandardization, let ⋆S be the ∗-ultraproduct of S with
respect to ∗F1. Thus, a double ultraproduct ⋆(∗R), ⋆(∗Z), etc are defined for the set R, Z, etc.
It is shown easily that

⋆(∗S) = SΛ1×Λ2 /FF2

1 , (13)

where FF2

1 denotes the ultrafilter on Λ1 × Λ2 such that for any A ⊂ Λ1 × Λ2, A ∈ FF2

1 if and
only if

{λ ∈ Λ1 | {µ ∈ Λ2 | (λ, µ) ∈ A} ∈ F2} ∈ F1. (14)

The work is done with this double nonstandardization. The natural imbedding ⋆S of an
internal element S which is not considered as a set in ∗-nonstandardization is often denoted
simply by S.
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An infinite number in ⋆(∗R) is defined to be greater than any element in ∗R. We remark
that an infinite number in ∗R is not infinite in ⋆( ∗R), that is, the word ′′an infinite number
in ⋆(∗R)′′ has a double meaning. An infinitesimal number in ⋆(∗R) is also defined to be
nonzero and whose absolute value is less than each positive number in ∗R.

Definition 2.2.1.

Let H(∈ ∗Z), H′(∈ ⋆(∗Z)) be even positive numbers such that H′ is larger than any element
in ∗Z, and let ε(∈ ∗R), ε

′(∈ ⋆(∗R)) be infinitesimals satifying εH = 1, ε
′H′ = 1. We define

as follows :

L := ε
∗Z = {εz | z ∈

∗Z}, L′ := ε
′ ⋆( ∗Z) = {ε

′z′ | z′ ∈ ⋆( ∗Z)},

L :=
{

εz
∣∣∣ z ∈

∗Z, − H
2 ≤ εz <

H
2

}
(⊂ L),

L′ :=
{

ε
′z′

∣∣∣ z′ ∈ ⋆( ∗Z), − H′

2 ≤ ε
′z′ < H′

2

}
(⊂ L′).

Here L is an ultraproduct of lattices

Lµ :=
{

εµzµ

∣∣∣ zµ ∈ Z, −
Hµ

2 ≤ εµzµ <
Hµ

2

}
(µ ∈ Λ2)

in R, and L′ is also an ultraproduct of lattices

L′

λ
:=

{
ε
′

λ
z′

λ

∣∣∣ z′
λ
∈

∗Z, −
H′

λ

2 ≤ ε
′

λ
z′

λ
<

H′

λ

2

}
(λ ∈ Λ1)

in ∗R that is an ultraproduct of

L′

λµ
:=

{
ε
′

λµ
z′

λµ

∣∣∣∣ z′
λµ

∈ Z, −
H′

λµ

2 ≤ ε
′

λµ
z′

λµ
<

H′

λµ

2

}
(µ ∈ Λ2).

A latticed space of functions X is defined as follows,

X := {a | a is an internal function with double meanings, from ⋆L to L′

}

= {[(aλ), λ ∈ Λ1] | aλ is an internal function from L to L′

λ
} (15)

where aλ : L → L′

λ
is aλ = [(aλµ), µ ∈ Λ2], aλµ : Lµ → L′

λµ
.

Three equivalence relations ∼H , ∼
⋆(H) and ∼H′ are defined on L, ⋆(L) and L′ :

x ∼H y ⇐⇒ x − y ∈ H ∗Z, x ∼

⋆(H) y ⇐⇒ x − y ∈ ⋆(H) ⋆( ∗Z),

x ∼H′ y ⇐⇒ x − y ∈ H′ ⋆( ∗Z).

Then L/ ∼H , ⋆(L)/ ∼

⋆(H) and L′/ ∼H′ are identified as L, ⋆(L) and L′. Since ⋆(L)

is identified with L, the set ⋆(L)/ ∼

⋆(H) is identified with L/ ∼H . Furthermore X is
represented as the following internal set :

{a | a is an internal function from ⋆(L)/ ∼

⋆(H) to L
′/ ∼H′ }. (16)
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The same notation is used as a function from ⋆(L) to L′ to represent a function in the above
internal set. The space A of functionals is defined as follows:

A := { f | f is an internal function with a double meaning from X to ⋆( ∗C)}. (17)

An infinitesimal delta function δ(a)(∈ A), an infinitesimal Fourier transform of f (∈ A), an
inverse infinitesimal Fourier transform of f and a convolution of f , g(∈ A), are defined by
the following :

Definition 2.2.2. The delta function

δ(a) :=

{
(H′)(

⋆H)2
(a = 0)

0 (a �= 0)
(18)

and, with ε0 := (H′)−( ⋆H)2
∈

⋆(∗R),

(F f )(b) := ∑
a∈X

ε0 exp

(
−2πi ∑

k∈L

a(k)b(k)

)
f (a) (19)

(F f )(b) := ∑
a∈X

ε0 exp

(
2πi ∑

k∈L

a(k)b(k)

)
f (a) (20)

( f ∗ g)(a) := ∑
a′∈X

ε0 f (a − a′)g(a′). (21)

The inner product on A is defined as:

( f , g) := ∑
b∈X

ε0 f (b)g(b), (22)

where f (b) is the complex conjugate of f (b). In the section 3, Riemann’s zeta function
is written down as a nonstandard functional in Definition 2.2.2. In general, ∑k∈L a2(k) is
infinite, and it is difficult to consider the meaining of F, F in Definition 2.2.2 as standard
objects. They are defined only algebraically. In order to understand Definition 2.2.2
analytically for a standard one, we change the definition briefly, to Definition 2.2.3. By
replacing the definitions of L′, δ, ε0, F, F in Definition 2.2.2 as the following, another type of
infinitesimal Fourier transformation is defined later. The different point is only the definition
of an inner product of the space of functions X. In Definition 2.2.2 , the inner product of
a, b(∈ X) is ∑k∈L a(k)b(k), and in the following definition, it is ⋆

ε ∑k∈L a(k)b(k). Definition

2.2.3. L′ :=
{

ε
′z′

∣∣∣ z′ ∈ ⋆( ∗Z), − ⋆H H′

2 ≤ ε
′z′ < ⋆H H′

2

}
,

δ(a) :=

{
( ⋆H)

( ⋆H)2

2 H′( ⋆H)2
(a = 0),

0 (a �= 0)
(23)
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and, with ε0 := ( ⋆H)−
( ⋆H)2

2 H′−( ⋆H)2

(F f )(b) := ∑
a∈X

ε0 exp

(
−2πi ⋆ε ∑

k∈L

a(k)b(k)

)
f (a) (24)

(F f )(b) := ∑
a∈X

ε0 exp

(
2πi ⋆ε ∑

k∈L

a(k)b(k)

)
f (a). (25)

Then the lattice L′

λµ
is an abelian group for each λµ. The following theorem is obtained as

same as the case of the discrete abelian group :

Theorem 2.2.4.

(1) δ = F1 = F1, (2) F is unitary, F4 = 1, FF = FF = 1,

(3) f ∗ δ = δ ∗ f = f , (4) f ∗ g = g ∗ f ,

(5) F( f ∗ g) = (F f )(Fg), (6) F( f ∗ g) = (F f )(Fg),

(7) F( f g) = (F f ) ∗ (Fg), (8) F( f g) = (F f ) ∗ (Fg).

The definition directly implies the following proposition :

Proposition 2.2.5. If l ∈ R+, then

Fδ
l = (H′)(l−1)( ⋆H)2

. (26)

If there exists α, β ∈ L2(R) so that a = ∗

α|L, b = ∗

β|L, that is, a(k) = ⋆( ∗α(k)),
b(k) = ⋆( ∗β(k)), then st(st(⋆ε ∑k∈L a(k)b(k))) =

∫ ∞
−∞ α(x)b(x)dx. Definition 2.2.3 is easier

understanding than Definition 2.2.2 for a standard meaning in analysis. For the reason, we
consider mainly Definition 2.2.3 about several examples. However Definition 2.2.2 is also
treated algebraically, as algebraically defined functions are not always L2-functions on R.
The two types of Fourier transforms are different in a standard meaning.

Examples of the double infinitesimal Fourier transform

It is defined: an equivalence relation ∼ ⋆HH′ in L′ by x ∼ ⋆HH′ y ⇔ x − y ∈

⋆HH′ ⋆( ∗Z). The
quotient space L′/ ∼ ⋆HH′ is defined with L′. Let

XH, ⋆HH′ := {a′ | a′ is an internal function with a double meaning, from ⋆L/ ∼

⋆(H)

to L′/ ∼ ⋆HH′ }

and let e be a mapping from X to XH, ⋆HH′ , defined by (e(a))([k]) = [a(k̂)], where [ ] on the

left-hand side represents the equivalence class for the equivalence relation ∼

⋆(H) in ⋆L, k̂ is

a representative in ⋆(L) satisfying k ∼

⋆(H) k̂, and [ ] on the right-hand side represents the

equivalence class for the equivalence relation ∼ ⋆HH′ in L′. Furthermore f (a′) is identified to
be f (e−1(a′)).
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The double infinitesimal Fourier transform of exp
�
−π

⋆
εξ ∑k∈L a2(k)

�

The double infinitesimal Fourier transform of

gξ(a) = exp

�
−π

⋆
εξ ∑

k∈L

a2(k)

�
, (27)

where ξ ∈ C, Re(ξ) > 0,

is calculated in the space A of functionals, for Definition 2.2.3. It is identified ⋆( ∗ξ) ∈ C with
ξ ∈ C.

Theorem 2.2.6. F(gξ)(b) = Cξ(b)gξ(
b
ξ
), where b ∈ X and

Cξ(b) = ∑
a∈X

ε0 exp

�
−π

⋆
εξ ∑

k∈L

(a(k) + i
1

ξ
b(k))2

�
. (28)

Proof. The infinitesimal Fourier transform of gξ(a) is done.

F(gξ)(b) = F
�
exp

�
−π

⋆
εξ ∑k∈L a2(k)

��
(b)

= ∑a∈X ε0 exp (−2iπ ⋆
ε ∑k∈L a(k)b(k)) exp

�
−π

⋆
εξ ∑k∈L a2(k)

�

= Cξ(b)gξ(
b
ξ
).

Let ⋆ ◦ ∗ : R →

⋆( ∗R) be the natural elementary embedding and let st(c) for c ∈

⋆( ∗R)
be the standard part of c with respect to the natural elementary embedding ⋆ ◦ ∗. Let st(c)
be the standard part of c with respect to the natural elementary embedding ⋆ and ∗ . Then
st = st ◦ st.

Theorem 2.2.7. If the image of b (∈ X) is bounded by a finite value of ∗R, that is, there
exists b0 ∈

∗R such that k ∈ L ⇒ |b(k)| ≤ ⋆(b0), then

st(Cξ(b)) =

�
∗

�
1
√

ξ

��H2

(∈ ∗

R), st




Cξ(b)

⋆

��
∗

�
1
√

ξ

��H2
�


 = 1. (29)

Proof. st(Cξ(b)) = st(∑a∈X ∏k∈L

√

εε
′ exp

�
−πξ{

√

ε(a(k)) + i
√

ε
1
ξ
(b(k))}2

�
)

= ∏k∈L

� ∗∞
−

∗∞ exp
�
−πξ{x + i

√

ε
1
ξ

st2(b(k))}
2
�

dx

= ∏k∈L

� ∗∞
−

∗∞ exp
�
−πξx2

�
dx.

The argument is same about the infinitesimal Fourier transform of g′
ξ
(a) =

exp(−πξ ∑k∈L a2(k)), for Definition 2.2.2, as the above.
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Theorem 2.2.8.

F(g′
ξ
)(b) = Bξ(b)g′

ξ
(

b

ξ
), (30)

where b ∈ X and

Bξ(b) = ∑a∈X ε0 exp
�
−πξ ∑k∈L(a(k) + i 1

ξ
b(k))2

�
. Furthermore, if the image of b (∈ X) is

bounded by a finite value of ∗R, that is, ∃b0 ∈

∗R s.t. k ∈ L ⇒ |b(k)| ≤ ⋆(b0) then

st(Bξ(b)) =

�
∗

�
1
√

ξ

��H2

(∈ ∗R), st




Bξ(b)

⋆

��
∗

�
1
√

ξ

��H2
�


 = 1. (31)

The double infinitesimal Fourier transform of exp(−iπm ⋆
ε ∑k∈L a2(k))

The double infinitesimal Fourier transform of gim(a) = exp(−iπm ⋆
ε ∑k∈L a2(k)), where m ∈

Z, is calculated for Definition 2.2.3.

Proposition 2.2.9. F(gim)(b) is written as Cim(b)g 1
im
(b).

If m|2 ⋆HH′2 and m|

b(k)
ε′

for an arbitrary k in L, then F(gim)(b) = Cim(b)g 1
im
(b), where

Cim(b) =

��
m
2

1+i
2 ⋆HH′2

m

1+i

�( ⋆H)2

for a positive m and

Cim(b) =

��
−m

2
1+(−i)

2 ⋆HH′2
−m

1−i

�( ⋆H)2

for a negative m.

Proof.

F(gim)(b) = Cim(b)g 1
im
(b), where Cim(b) = ∑a∈X ε0 exp(−iπm ⋆

ε ∑k∈L(a(k) + 1
m b(k))2).

When a(k), b(k) are denoted as ε
′n′, ε

′l′,

∑
−

⋆H H′2

2 ≤a(k)< ⋆H H′2

2

exp(−iπm ⋆
ε ∑k∈L(a(k) + 1

m b(k))2

= ∑
−

⋆H H′2

2 ≤ε′n′

<
⋆H H′2

2

exp(−iπm ⋆
ε ∑

k∈L

(ε′n′ + ε
′

n′

m
)2). (32)

Since m|

b(k)
ε′

, for a positive m, it is equal to

∑
−

⋆H H′2

2 ≤ε′n′

<
⋆H H′2

2

exp(−iπm ⋆
εε
′2n′2) =

m

2

�
2 ⋆HH′2

m

1 + i
2 ⋆HH′2

m

1 + i
(33)
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by Proposition 2.1.5. Hence Cim =

(√
m
2

1+i
2 ⋆HH′2

m

1+i

)( ⋆H)2

for a positive m. For a negative m,

the proof is as same as the above.

The argument for the infinitesimal Fourier transform of g′im(a) = exp(−iπm ∑k∈L a2(k)),

for Definition 2.2.2, is as same as the above one of gim for Definition 2.2.3.

Proposition 2.2.10. If m|2 ⋆HH′2 and m|

b(k)
ε′

for an arbitrary k in L, then (F((g′im))(b) =

Bim(b)g′1
im

(b), where Bim(b) =

(√
m
2

1+i
2H′2

m

1+i

)( ⋆H)2

for a positive m and Bim(b) =

(√
−m

2
1+(−i)

2H′2
−m

1−i

)( ⋆H)2

for a negative m.

2.3. The meaning of the double infinitesimal Fourier transform

There exists a natural injection from a space of standard functions to X as

α �→ (a : k ∈ L �→ ⋆( ∗α(k)) ∈ L′). (34)

Hence a space of standard functions is embedded in X through the natural injection. If there
is no confusion, standard functions are identified as nonstandard functions by the natural
injection.

For a standard functional f , if the domain of ⋆( ∗ f ) is in X, we can define
a Fourier transform F( ⋆( ∗ f )). Since st(st(F( ⋆( ∗ f ))) is a standard functional as
st(st(F( ⋆( ∗ f )))(α) =st(st(F( ⋆( ∗ f ))(a))) for a : k ∈ L → ⋆( ∗α(k)) ∈ L′, such standard
functional has a Fourier transform st(st(F( ⋆( ∗ f ))).

Similarly to the case of functions, the following subspace L

2(A) of A is defined:

Definition 2.3.1.

L

2(A) := { f ∈ A| there exists c ∈ ∗R so that (
1

c ∑
a∈X

ε0| f (a)|2) < +∞}. (35)

The standard part st(∑a∈X ε0| f (a)|2) is a ∗− norm in L

2(A). Theorem 2.1.3 (2) implies the
following proposition.

Proposition 2.3.2. The Fourier transform F and the inverse F preserve the space L

2(A).

Hence if f is a standard functional so that ⋆( ∗ f ) is an element of L

2(A), the Fourier
transformation F( ⋆( ∗ f )), F( ⋆( ∗ f )) are also in L

2(A). Now there is no theory of Fourier
transform for functionals in "standard analysis", and it is well-known that there is no
nontrivial translation-invariant measure on an infinite-dimensional separable Banach space.
In fact, on the infinite-dimensional Banach space there is an infinite sequence of pairwise
disjoint open balls of same sizes in a larger ball. The measure is translation-invariant,
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the measure of the small balls are same, but the measure of the larger ball is finite, it is
contradiction. By the reason we do not argue a relationship between our Fourier transform
and standard Fourier transform, any more.

Here number fields are extended twice to realize the delta function for functionals. The
extended real number field divided to very small infinitesimal lattices. These lattices are
too small for normal real number field and the first extended real number field to observe
them. Axiomatically, the double extended number field can be treat in a large universe, that
is, relative set theory ([13],[14]). The concept of observable and relatively observable are
formulated, and two kinds of delta functions are defined. The Fourier transform theory is
developed, which is called divergence Fourier transform . It is applied to solve an elementary
ordinary differential equation with a delta function(cf.[12]).

3. Poisson summation formula

The Poisson summation formula is a fundamental formula for each Fourier transform theory.
In this section, it is explained about the Kinoshita’s Fourier transform and our double
infinitesimal Fourier transform . Some examples of the gaussian type functions are calculated
for the applications of the Poisson summation formula.

3.1. Poisson summation formula for infinitesimal Fourier transform

The Poisson summation formula of finite group is extended to Kinoshita’s infinitesimal
Fourier transform.

Formulation

Theorem 3.1.1. Let S be an internal subgroup of L. Then the following formula is obtained,
for ϕ ∈ R(L),

|S⊥

|

−

1
2 ∑

p∈S⊥

(Fϕ)(p) = |S|−
1
2 ∑

x∈S

ϕ(x) (36)

where S⊥ := {p ∈ L | exp(2πipx) = 1 for ∀x ∈ S}.

Since L is an internal cyclic group, the group S is also an internal cyclic group. The generator
of L is ε. The generator of S is written as εs (s ∈

∗Z). Since the order of L is H2, so s is a
factor of H2.

The following lemma is prepared for the proof of Theorem 3.1.1.

Lemma 3.1.2. S⊥ =< ε
H2

s >.

Proof of Lemma 3.1.2. For p ∈ S⊥, we write p = εt. Then the following is obtained:

exp(2πipεs) = 1 ⇐⇒ exp(2πiεtεs) = 1 ⇐⇒ exp(2πit
s

H2
) = 1 ⇐⇒ t

s

H2
∈

∗

Z. (37)
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Hence the generater of S⊥ is ε
H2

s .

Proof of Theorem 3.1.1. By Lemma 2.1.2, |S| = H2

s and |S⊥

| = s. If x /∈ S, then ε
H2

s xs =

εH2x ∈

∗Z, and
�

exp
�

2πiε H2

s x
��s

= 1. For x ∈ L,

∑
p∈S⊥

exp(2πipx) =




exp(2πi(− H
2 )x)(1−(exp(2πiε H2

s x)s))

1−exp(2πiε H2

s x)
(x /∈ S)

∑p∈S⊥
1 (x ∈ S)

=

�
0 (x /∈ S)

s (x ∈ S)
. (38)

Hence

∑p∈S⊥
(Fϕ)(p) = ∑p∈S⊥

ε(∑x∈L ϕ(x) exp(2πipx))

= ε ∑
x∈L

ϕ(x)( ∑
p∈S⊥

exp(2πipx)) =
s

H ∑
x∈S

ϕ(x). (39)

Thus

1
√

s
∑

p∈S⊥

(Fϕ)(p) =

�
s

H2 ∑
x∈S

ϕ(x) (40)

hence

|S⊥

|

−

1
2 ∑

p∈S⊥

(Fϕ)(p) =
1

|S|
1
2

∑
x∈S

ϕ(x) · · · (♯1). (41)

Proposition 3.1.3. Especially if s is equal to H, then (♯1) implies that ∑p∈S⊥
(Fϕ)(p) =

∑x∈S ϕ(x). The standard part of it is st(∑p∈S⊥
(Fϕ)(p)) =st(∑x∈S ϕ(x)).

If there exists a standard function ϕ
′ : R → C so that ϕ = ∗

ϕ
′

|L, then the right hand side is
equal to ∑

−∞<x<∞ ϕ
′(x), that is, ∑

−∞<x<∞st(ϕ)(x). Furthermore if εs is infinitesimal and
ϕ
′ is integrable on R, then

st(εs ∑x∈S ϕ(x)) =
� ∞
−∞ ϕ

′(x)dx.

Since (♯1) implies that

∑p∈S⊥
(Fϕ)(p) = εs ∑x∈S ϕ(x),

it is obtained st(∑p∈S⊥
(Fϕ)(p)) =

� ∞
−∞ ϕ

′(x)dx, that is,
� ∞
−∞st(ϕ)(x)dx.
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The even number H is decomposed to prime factors H = pl1
1 pl2

2 · · · plm
m , where p1 = 2, p1 <

p2 < · · · < pm, each pi is a prime number, 0 < li. Since S is a subgroup of L, the

number s is a factor of H2. When we write s as pk1

1 pk2
2 · · · pkm

m , the order of S is equal to

p2l1−k1

1 p2l2−k2
2 · · · p2lm−km

m and the order of S⊥ is pk1

1 pk2
2 · · · pkm

m . Hence (27) is

(pk1

1 pk2
2 · · · pkm

m )−
1
2 ∑

p∈S⊥

(Fϕ)(p)) = (p2l1−k1

1 p2l2−k2
2 · · · p2lm−km

m )−
1
2 ∑

x∈S

ϕ(x). (42)

Examples

Theorem 3.1.1 is applied to the following two kinds of functions :

1.ϕi(x) = exp(−iπx2) (43)

2.ϕξ(x) = exp(−ξπx2) (44)

where ξ ∈ C, Re(ξ) > 0. Then the infinitesimal Fourier transforms are :

1.(Fϕi)(p) = exp(−i
π

4
)ϕi(p) · · · (♯2) (45)

2.(Fϕξ)(p) = cξ(p)ϕξ(
p

ξ
), (46)

where st(cξ(p)) = 1
√

ξ
, if p is finite. Hence the following formulas are obtained :

1.|S⊥

|

−

1
2 exp(−i

π

4
) ∑

p∈S⊥

ϕi(p) = |S|−
1
2 ∑

x∈S

ϕi(x), (47)

2.|S⊥

|

−

1
2 ∑

p∈S⊥

cξ(p)ϕξ(
p

ξ
) = |S|−

1
2 ∑

x∈S

ϕξ(x). (48)

When the generator of S is εs, this is written as the following, explicitly :

1.H exp(−i
π

4
) ∑

p∈S⊥

exp(iπp2) = s ∑
x∈S

exp(−iπx2) (49)

2.H ∑
p∈S⊥

cξ(p)exp(−
1

ξ
πp2) = s ∑

x∈S

exp(−ξπx2). (50)

The following proposition is obtained:

Proposition 3.1.4.

(i) If s = H, then the generator of S is 1 and S = S⊥ = L ∩

∗Z. Hence
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1. exp(−i
π

4
) ∑

p∈L∩ ∗Z

exp(iπp2) = ∑
x∈L∩ ∗Z

exp(−iπx2) (51)

2. ∑
p∈L∩ ∗Z

cξ(p)exp(−
1

ξ
πp2) = ∑

x∈L∩ ∗Z

exp(−ξπx2). (52)

Taking their standard parts, we obtain :

2.st( ∑
p∈L∩ ∗Z

cξ(p)exp(−
1

ξ
πp2)) = st( ∑

x∈L∩ ∗Z

exp(−ξπx2))

= ∑
−∞<n<∞

exp(−ξπn2) = θ(iξ) (53)

where θ(z) is a θ-function, defined by θ(z) = ∑
−∞<n<∞ exp(iπzn2).

(ii) If εs is infinitesimal, then the equation:

H ∑p∈S⊥
cξ(p)exp(− 1

ξ
πp2) = s ∑x∈S exp(−ξπx2) implies the following:

st( ∑
p∈S⊥

cξ(p)exp(−
1

ξ
πp2)) = st(εs ∑

x∈S

exp(−ξπx2))

=
∫ ∞

−∞
exp(−ξπx2)dx =

1
√

ξ
. (54)

It is known that st(cξ(p)) = 1
√

ξ
, and ∑

−∞<x<∞ exp(−ξπx2) in the formula 2 of (i) is equal

to 1
√

ξ
∑
−∞<p<∞ exp(− 1

ξ
πp2) by the standard Poisson summation formula. Hence, by 2 of

(i), we obtain st(∑p∈S⊥
cξ(p)exp(− 1

ξ
πp2)) = ∑

−∞<p<∞st(cξ(p)exp(− 1
ξ

πp2)).

The formula (♯2) in 1 for ϕi(x) is extended to ϕim(x) = exp(−imπx2), for an integer m so
that m|2H2 . If m|

p
ε

, we recall

(Fϕim)(p) = cim(p) exp(iπ 1
m p2),

where cim(p) =
√

m
2

1+i
2H2

m

1+i for a positive m and cim(p) =
√

−m
2

1+(−i)
2H2
−m

1−i for a negative m.

Hence |S⊥

|

−

1
2 ∑p∈S⊥

cim(p)ϕ 1
im
(p) = |S|−

1
2 ∑x∈S ϕim(x). When the generator εs′ of S⊥ satifies

m|s′, that is, the generator εs of S satifies m|

H2

s , it reduces to the following:

H

√
m

2

1 + i
2H2

m

1 + i ∑
p∈S⊥

exp(iπ
1

m
p2) = s ∑

x∈S

exp(−imπx2) (55)
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for a positive m,

H

√
−m

2

1 + (−i)
2H2

−m

1 − i ∑
p∈S⊥

exp(iπ
1

m
p2) = s ∑

x∈S

exp(−imπx2) (56)

for a negative m.

3.2. Poisson summation formula for Definition 2.2.2

Poisson summation formula of finite group is extended to the double infinitesimal Fourier
transform for Definition 2.2.2 on the space of functionals.

Formulation

Theorem 3.2.1. Let Y be an internal subgroup of X. Then the following is obtained, for
f ∈ A,

|Y⊥

|

−

1
2 ∑

b∈Y⊥

(F f )(b) = |Y|−
1
2 ∑

a∈Y

f (a) (57)

where Y⊥ := {b ∈ X | exp(2πi < a, b >) = 1 for ∀a ∈ X} and < a, b >:= ∑k∈L a(k)b(k).

Lemma 3.2.2. |Y⊥

| = |X|

|Y|
.

Proof of Lemma 3.2.2. For k ∈ L, we denote Yk := {a(k) ∈ L′

| a ∈ Y}.

b ∈ Y⊥

⇐⇒ ∀a ∈ Y, exp(2πi ∑k∈L a(k)b(k)) = 1

⇐⇒ ∀k ∈ L, b(k) ∈ Y⊥

k

⇐⇒ b : L → L′, ∀k ∈ L, b(k) ∈ Y⊥

k .

Hence |Y⊥

| = ∏k∈L |Y
⊥

k |. Lemma 3.1.2 implies |Y⊥

k | = H′2

|Yk |
. Thus

|Y⊥

| = ∏
k∈L

(
H′2

|Yk|

)
=

H′2 ∗H2

∏k∈L |Yk|
=

|X|

|Y|
(58)

Proof of Theorem 3.2.1.

|Y⊥

|

−

1
2 ∑

b∈Y⊥

(F f )(b) = |Y⊥

|

−

1
2 ∑

a∈X

ε0( ∑
b∈Y⊥

exp(−2πi < a, b >)) f (a). (59)
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√
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2H2
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k .

Hence |Y⊥

| = ∏k∈L |Y
⊥

k |. Lemma 3.1.2 implies |Y⊥

k | = H′2

|Yk |
. Thus

|Y⊥

| = ∏
k∈L

(
H′2

|Yk|

)
=

H′2 ∗H2

∏k∈L |Yk|
=

|X|

|Y|
(58)

Proof of Theorem 3.2.1.

|Y⊥

|

−

1
2 ∑

b∈Y⊥

(F f )(b) = |Y⊥

|

−

1
2 ∑

a∈X

ε0( ∑
b∈Y⊥

exp(−2πi < a, b >)) f (a). (59)
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Since ∑b∈Y⊥
exp(−2πi < a, b >) =

{
0 (a /∈ Y)

|Y⊥

| (a ∈ Y)
, the above is equal to

|Y⊥

|

−

1
2 ε0|Y

⊥

| ∑
a∈Y

f (a) = |Y⊥

|

1
2 H′−

∗H2

∑
a∈Y

f (a) = |Y|−
1
2 ∑

a∈Y

f (a). (60)

In the special case where f (a) = ∏k∈L fk(a(k)),

(F f )(b) = ∑a∈X ε0 exp(−2πi ∑k∈L a(k)b(k))∏k∈L fk(a(k))

= ∏
k∈L

( ∑
a(k)∈L′

ε
′ exp(−2πia(k)b(k)) fk(a(k)). (61)

Namely, the Fourier transform in functional space is the product of those in function space.

Corollary 3.2.3.

(i) If each generator of Yk is equal to 1, f is written as ∏k∈L fk, fk = ∗(st( fk))|L′ , and

∑
−∞<n<∞st( fk)(n) converges, then

st( ∑
b∈Y⊥

(F f )(b)) = ∏
k∈L

( ∑
−∞<n<∞

st( fk)(n)). (62)

(ii) If each generator of Yk is infinitesimal, f is written as ∏k∈L fk, fk = ∗(st( fk))|L′ and st( fk)
is L1-integrable on R, then

st( ∑
b∈Y⊥

(F f )(b)) = ∏
k∈L

∫

−∞<t<∞
st( fk)(t)dt. (63)

Examples

Theorem 3.2.1 is applied to the following two kinds of functionals :

1. fi(a) = exp(−iπ ∑
k∈L

a(k)2) (64)

2. fξ(a) = exp(−ξπ ∑
k∈L

a(k)2), (65)

where ξ ∈ C, Re(ξ) > 0.
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The infinitesimal Fourier transforms of the functionals are :

1.(F fi)(b) = (−1)
H
2 fi(b) · · · (♯3) (66)

2.(F fξ)(b) = Bξ(b) fξ(
b

ξ
), (67)

hence the followings are obtained :

1.|Y⊥

|

−

1
2 (−1)

H
2 ∑

b∈Y⊥

fi(b) = |Y|−
1
2 ∑

a∈Y

fi(a) (68)

2.|Y⊥

|

−

1
2 ∑

b∈Y⊥

Bξ(b) fξ(
b

ξ
) = |Y|−

1
2 ∑

a∈Y

fξ(a). (69)

These are written as the following, explicitly :

1.|Y⊥

|

−

1
2 (−1)

H
2 ∑

b∈Y⊥

exp(−iπ ∑
k∈L

b(k)2) = |Y|−
1
2 ∑

a∈Y

exp(−iπ ∑
k∈L

a(k)2), (70)

2.|Y⊥

|

−

1
2 ∑

b∈Y⊥

Bξ(b) exp(−
1

ξ
π ∑

k∈L

b(k)2) = |Y|−
1
2 ∑

a∈Y

exp(−ξπ ∑
k∈L

a(k)2). (71)

Corollary 3.2.3 implies the following proposition 3.2.4.

Proposition 3.2.4.

(i) If each generator of Yk is equal to 1, then

1.(−1)
H
2 st( ∑

b∈Y⊥

exp(−iπ ∏
k∈L

b(k)2)) = ( ∑
−∞<n<∞

exp(−iπn2))H2
(72)

2.st( ∑
b∈Y⊥

Bξ(b) exp(−
1

ξ
π ∑

k∈L

b(k)2)) = ( ∑
−∞<n<∞

exp(−ξπn2))H2
(73)

(
= (θ(iξ))H2

)
.

(ii) If each generator of Yk is equal to a natural number mk, then
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1.(F fi)(b) = (−1)
H
2 fi(b) · · · (♯3) (66)

2.(F fξ)(b) = Bξ(b) fξ(
b

ξ
), (67)
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(i) If each generator of Yk is equal to 1, then

1.(−1)
H
2 st( ∑

b∈Y⊥

exp(−iπ ∏
k∈L

b(k)2)) = ( ∑
−∞<n<∞

exp(−iπn2))H2
(72)

2.st( ∑
b∈Y⊥

Bξ(b) exp(−
1

ξ
π ∑

k∈L

b(k)2)) = ( ∑
−∞<n<∞

exp(−ξπn2))H2
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(
= (θ(iξ))H2

)
.
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1.(−1)
H
2 st( ∑

b∈Y⊥

exp(−iπ ∏
k∈L

b(k)2)) = ∏
k∈L

(mk ∑
−∞<n<∞

exp(−iπm2
kn2)) (74)

2.st( ∑
b∈Y⊥

Bξ(b) exp(−
1

ξ
π ∑

k∈L

b(k)2)) = ∏
k∈L

(mk ∑
−∞<n<∞

exp(−ξπm2
kn2)) (75)

�
= ∏

k∈L

(mkθ(im2
kξ))

�
.

(iii) If each generator of Yk is infinitesimal, then

2.st( ∑
b∈Y⊥

Bξ(b) exp(−
1

ξ
π ∑

k∈L

b(k)2)) = (
� ∞

−∞
exp(−ξπt2)dt)H2

(76)

�
=

�
∗

�
1
√

ξ

��H2�
.

The above formula (♯3) for fi(a) is extended to fim(a) = exp(−imπ ∑k∈L a2(k)), for an integer

m so that m|2H′2 . If m|

b(k)
ε′

, we recall

(F fim)(b) = Bim(b) f 1
im
(b) (77)

where Bim(b) =

��
m
2

1+i
2H′2

m

1+i

�( ⋆H)2

for a positive m , Bim(b) =

��
−m

2
1+(−i)

2H′2
−m

1−i

�( ⋆H)2

for

a negative m.

Hence |Y⊥

|

−

1
2 ∑b∈Y⊥

Bim(b) f 1
im
(b) = |Y|−

1
2 ∑a∈Y fim(a). When each generator ε

′s′k of Y⊥

k

satisfies m|s′k, that is, each generator ε
′sk of Yk satisfies m|

H′2

sk
, it reduces to the following :

H′( ⋆H)2



�

m

2

1 + i
2H′2

m

1 + i




( ⋆H)2

∑
b∈Y⊥

exp(iπ
1

m ∑
k∈L

b(k)2) = ∏
k∈L

sk ∑
a∈Y

exp(−imπ ∑
k∈L

a(k)2)(78)
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for a positive m, and

H′( ⋆H)2



�

−m

2

1 + (−i)
2H′2

−m

1 − i




( ⋆H)2

∑
b∈Y⊥

exp(iπ
1

m ∑
k∈L

b(k)2)

= ∏
k∈L

sk ∑
a∈Y

exp(−imπ ∑
k∈L

a(k)2) (79)

for a negative m.

If sk = H′ and m|H′, then



�

m

2

1 + i
2H′2

m

1 + i




( ⋆H)2

∑
b∈Y⊥

exp(iπ
1

m ∑
k∈L

b(k)2) = ∑
a∈Y

exp(−imπ ∑
k∈L

a(k)2) (80)

for a positive m, and



�

−m

2

1 + (−i)
2H′2

−m

1 − i




( ⋆H)2

∑
b∈Y⊥

exp(iπ
1

m ∑
k∈L

b(k)2) = ∑
a∈Y

exp(−imπ ∑
k∈L

a(k)2) (81)

for a negative m, that is,

�
√

m exp(−i
π

4
)
�( ⋆H)2

∑
b∈Y⊥

exp(iπ
1

m ∑
k∈L

b(k)2) = ∑
a∈Y

exp(−imπ ∑
k∈L

a(k)2) (82)

for a positive m, and

�
√

−m exp(i
π

4
)
�( ⋆H)2

∑
b∈Y⊥

exp(iπ
1

m ∑
k∈L

b(k)2) = ∑
a∈Y

exp(−imπ ∑
k∈L

a(k)2) (83)

for a negative m.

3.3. Poisson summation formula for Definition 2.2.3

Poisson summation formula of finite group is extended to the double infinitesimal Fourier
transformation for Definition 2.2.3 on the space of functionals originally defined in [8].

Formulation

The following theorem for Definition 2.2.3 is obtained as the argument in the section 3.2.

Theorem 3.3.1. Let Y be an internal subgroup of X. Then the following is obtained, for
f ∈ A,
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�

−m

2
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2H′2

−m

1 − i




( ⋆H)2
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1
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= ∏
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�

m
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m
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�
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√
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4
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�
√
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π

4
)
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Poisson summation formula of finite group is extended to the double infinitesimal Fourier
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The following theorem for Definition 2.2.3 is obtained as the argument in the section 3.2.

Theorem 3.3.1. Let Y be an internal subgroup of X. Then the following is obtained, for
f ∈ A,
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|Y⊥ε
|

−

1
2 ∑

b∈Y⊥ε

(F f )(b) = |Y|−
1
2 ∑

a∈Y

f (a) (84)

where < a, b >ε := ⋆
ε ∑k∈L a(k)b(k) and Y⊥ε := {b ∈ X | exp(2πi < a, b >ε) = 1 for ∀a ∈ Y}.

Lemma 3.3.2. |Y⊥ε
| = |X|

|Y|
.

Proof of Lemma 3.3.2. For k ∈ L, it is denoted Yk := {a(k) ∈ L′

| a ∈ Y}.

b ∈ Y⊥ε
⇐⇒ ∀a ∈ Y, exp(2πi ⋆ε ∑k∈L a(k)b(k)) = 1

⇐⇒ ∀k ∈ L, ⋆
εb(k) ∈ Y⊥

k .

For k ∈ L, generators defined by the following are written as m, n :

Yk =< ε
′m >, {b(k) ∈ L′

|

⋆
εb(k) ∈ Y⊥

k } =< ε
′n > .

Now

exp(2πi ⋆εε
′mε

′n) = 1 ⇐⇒

⋆
εε
′mε

′n = 1. (85)

It is written Y⊥ε

k := {b(k) ∈ L′

|

⋆
εb(k) ∈ Y⊥

k }. Then |Y⊥ε

k | = m. This is equal to
⋆HH′2

⋆HH′2/m
=

|L′

|

|Yk |
. Hence

|Y⊥ε
| = ∏

k∈L

|Y⊥ε

k | =
|X|

|Y|
. (86)

Proof of Theorem 3.3.1.

|Y⊥ε
|

−

1
2 ∑

b∈Y⊥ε

(F f )(b) = |Y⊥ε
|

−

1
2 ∑

a∈X

ε0( ∑
b∈Y⊥ε

exp(−2πi < a, b >ε)) f (a). (87)

Since ∑b∈Y⊥ε exp(−2πi < a, b >ε) =

{
0 (a /∈ Y)

|Y⊥ε
| (a ∈ Y)

, the above is equal to

|Y⊥ε
|

−

1
2 ε0|Y

⊥ε
| ∑

a∈Y

f (a) = |Y|−
1
2 ∑

a∈Y

f (a). (88)

The following is obtained:
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Corollary 3.3.3.

(i) If each generator of Yk is equal to 1, f is written as ∏k∈L fk, fk = ∗(st( fk))|L′ , and

∑
−∞<n<∞st( fk)(n) converges, then

H
H2

2 st( ∑
b∈Y⊥

(F f )(b)) = ∏
k∈L

( ∑
−∞<n<∞

st( fk)(n)). (89)

(ii) If each generator of Yk is infinitesimal, f is written as ∏k∈L fk, fk = ∗(st( fk))|L′ , and
st( fk) is L1-integrable on R, then

H
H2

2 st( ∑
b∈Y⊥

(F f )(b)) = ∏
k∈L

∫ ∞

−∞
st( fk)(t)dt. (90)

Examples Theorem 3.3.1 is applied to the following two functionals :

1.gi(a) = exp(−iπ ⋆
ε ∑

k∈L

a(k)2) (91)

2.gξ(a) = exp(−ξπ
⋆
ε ∑

k∈L

a(k)2) (92)

where ξ ∈ C, Re(ξ) > 0. The infinitesimal Fourier transforms are :

1.(Fgi)(b) = (−1)
H
2 gi(b) · · · (♯4) (93)

2.(Fgξ)(b) = Cξ(b)gξ(
b

ξ
) (94)

hence the following formulas are obtained :

1.|Y⊥ε
|

−

1
2 (−1)

H
2 ∑

b∈Y⊥ε

gi(b) = |Y|−
1
2 ∑

a∈Y

gi(a) (95)

2.|Y⊥ε
|

−

1
2 ∑

b∈Y⊥ε

Cξ(b)gξ(
b

ξ
) = |Y|−

1
2 ∑

a∈Y

gξ(a). (96)

These are written as the following, explicitly :

1.|Y⊥ε
|

−

1
2 (−1)

H
2 ∑

b∈Y⊥ε

exp(−iπ ⋆
ε ∑

k∈L

b(k)2) = |Y|−
1
2 ∑

a∈Y

exp(−iπ ⋆
ε ∑

k∈L

a(k)2) (97)

2.|Y⊥ε
|

−

1
2 ∑

b∈Y⊥ε

Cξ(b)exp(−
1

ξ
π

⋆
ε ∑

k∈L

a(k)2) = |Y|−
1
2 ∑

a∈Y

exp(−ξπ
⋆
ε ∑

k∈L

a(k)2). (98)

Corollaly 3.3.3 implies the following proposition 3.3.4.
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Corollary 3.3.3.

(i) If each generator of Yk is equal to 1, f is written as ∏k∈L fk, fk = ∗(st( fk))|L′ , and

∑
−∞<n<∞st( fk)(n) converges, then

H
H2

2 st( ∑
b∈Y⊥

(F f )(b)) = ∏
k∈L

( ∑
−∞<n<∞

st( fk)(n)). (89)

(ii) If each generator of Yk is infinitesimal, f is written as ∏k∈L fk, fk = ∗(st( fk))|L′ , and
st( fk) is L1-integrable on R, then

H
H2

2 st( ∑
b∈Y⊥

(F f )(b)) = ∏
k∈L

∫ ∞

−∞
st( fk)(t)dt. (90)

Examples Theorem 3.3.1 is applied to the following two functionals :

1.gi(a) = exp(−iπ ⋆
ε ∑

k∈L

a(k)2) (91)

2.gξ(a) = exp(−ξπ
⋆
ε ∑

k∈L

a(k)2) (92)

where ξ ∈ C, Re(ξ) > 0. The infinitesimal Fourier transforms are :

1.(Fgi)(b) = (−1)
H
2 gi(b) · · · (♯4) (93)

2.(Fgξ)(b) = Cξ(b)gξ(
b

ξ
) (94)

hence the following formulas are obtained :

1.|Y⊥ε
|

−

1
2 (−1)

H
2 ∑

b∈Y⊥ε

gi(b) = |Y|−
1
2 ∑

a∈Y

gi(a) (95)

2.|Y⊥ε
|

−

1
2 ∑

b∈Y⊥ε

Cξ(b)gξ(
b

ξ
) = |Y|−

1
2 ∑

a∈Y

gξ(a). (96)

These are written as the following, explicitly :

1.|Y⊥ε
|

−

1
2 (−1)

H
2 ∑

b∈Y⊥ε

exp(−iπ ⋆
ε ∑

k∈L

b(k)2) = |Y|−
1
2 ∑

a∈Y

exp(−iπ ⋆
ε ∑

k∈L

a(k)2) (97)

2.|Y⊥ε
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1
2 ∑
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Cξ(b)exp(−
1

ξ
π

⋆
ε ∑
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1
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a∈Y

exp(−ξπ
⋆
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Proposition 3.3.4.

(i) If each generator of Yk is equal to 1, then the standard parts are :

1.H
H2

2 (−1)
H
2 st( ∑

b∈Y⊥

ε

exp(−iπε ∑
k∈L

b(k)2)) = ( ∑
−∞<n<∞

exp(−iπεn2))H2
(99)

2.H
H2

2 st( ∑
b∈Y⊥

ε

Cξ(b) exp(−
1

ξ
πε ∑

k∈L

b(k)2)) = ( ∑
−∞<n<∞

exp(−ξπεn2))H2
(100)

(
= (θ(iξ))H2

)
.

(ii) If each generator of Yk is equal to a natural number mk, then

1.H
H2

2 (−1)
H
2 st( ∑

b∈Y⊥

ε

exp(−iπε ∑
k∈L

b(k)2)) = ∏
k∈L

(mk ∑
−∞<n<∞

exp(−iπεm2
kn2)) (101)

2.H
H2

2 st( ∑
b∈Y⊥

ε

Cξ(b) exp(−
1

ξ
πε ∑

k∈L

b(k)2)) = ∏
k∈L

(mk ∑
−∞<n<∞

exp(−ξπεm2
kn2)) (102)

(
= ∏

k∈L

(mkθ(im2
kξ))

)
.

(iii) If each generator of Yk is infinitesimal, then

2.st( ∑
b∈Y⊥

ε

Cξ(b) exp(−
1

ξ
πε ∑

k∈L

b(k)2)) = (
∫ ∞

−∞
exp(−ξπt2)dt)H2

(103)

(
=

(
∗

(
1
√

ξ

))H2)
.

The above formulation (♯4) of gi(a) is extended to gim(a) = exp(−imπ
⋆
ε ∑k∈L a2(k)), for an

integer m so that m|2 ⋆HH′2 . If m|

b(k)
ε′

for an arbitrary k ∈ L, it is recalled

(Fgim)(b) = Cim(b)g 1
im
(b), where Cim(b) =

(√
m
2

1+i
2 ⋆HH′2

m

1+i

) ⋆H2

for a positive m and

Cim(b) =

(√
−m

2
1+(−i)

2 ⋆HH′2
−m

1−i

) ⋆H2

for a negative m.
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Hence |Y⊥ε
|

−

1
2 ∑b∈Y⊥

Cim(b)g 1
im
(b) = |Y|−

1
2 ∑a∈Y gim(a). When each generator ε

′s′k of Y⊥ε

k

satisfies m|s′k, that is, each generator ε
′sk of Yk satisfies m|

⋆HH′2

sk
, it reduces to the following:

H
H2

2 H′( ⋆H)2



�

m

2

1 + i
2 ⋆HH′2

m

1 + i




( ⋆H)2

∑
b∈Y⊥ε

exp(iπ
1

m
⋆
ε ∑

k∈L

b(k)2)

= ∏
k∈L

sk ∑
a∈Y

exp(−imπ
⋆
ε ∑

k∈L

a(k)2) (104)

for a positive m, and

H
H2

2 H′( ⋆H)2



�

−m

2

1 + (−i)
2 ⋆HH′2

−m

1 − i




( ⋆H)2

∑
b∈Y⊥ε

exp(iπ
1

m
⋆
ε ∑

k∈L

b(k)2)

= ∏
k∈L

sk ∑
a∈Y

exp(−imπ
⋆
ε ∑

k∈L

a(k)2) (105)

for a negative m. If sk = H′ and m|H′, then

H
H2

2



�

m

2

1 + i
2 ⋆HH′2

m

1 + i




( ⋆H)2

∑
b∈Y⊥ε

exp(iπ
1

m ∑
k∈L

b(k)2) = ∑
a∈Y

exp(−imπ
⋆
ε ∑

k∈L

a(k)2) (106)

for a positive m, and

H
H2

2



�

−m

2

1 + (−i)
2 ⋆HH′2

−m

1 − i




( ⋆H)2

∑
b∈Y⊥ε

exp(iπ
1

m ∑
k∈L

b(k)2)

= ∑
a∈Y

exp(−imπ
⋆
ε ∑

k∈L

a(k)2) (107)

for a negative m, that is,

H
H2

2

�
√

m exp(−i
π

4
)
�( ⋆H)2

∑
b∈Y⊥ε

exp(iπ
1

m ∑
k∈L

b(k)2) = ∑
a∈Y

exp(−imπ
⋆
ε ∑

k∈L

a(k)2) (108)
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H
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�
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2
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H
H2

2



�

m

2

1 + i
2 ⋆HH′2

m

1 + i




( ⋆H)2
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exp(iπ
1
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⋆
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H
H2

2



�

−m

2

1 + (−i)
2 ⋆HH′2

−m

1 − i




( ⋆H)2

∑
b∈Y⊥ε

exp(iπ
1

m ∑
k∈L

b(k)2)

= ∑
a∈Y

exp(−imπ
⋆
ε ∑

k∈L

a(k)2) (107)

for a negative m, that is,

H
H2

2

�
√

m exp(−i
π

4
)
�( ⋆H)2

∑
b∈Y⊥ε

exp(iπ
1

m ∑
k∈L

b(k)2) = ∑
a∈Y

exp(−imπ
⋆
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k∈L
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for a positive m, and

H
H2

2

(
√

−m exp(i
π

4
)
)( ⋆H)2

∑
b∈Y⊥ε

exp(iπ
1

m ∑
k∈L

b(k)2) = ∑
a∈Y

exp(−imπ
⋆
ε ∑

k∈L

a(k)2) (109)

for a negative m.

4. Quantum field theory and Zeta function

In this section the quantum field theory is developed by using the double infinitesimal
Fourier transform. The propagator for a system of the harmonic oscillators is considered
in the quantum field theory.

4.1. Path integral in the quantum field theory

Definition4.1.1. A path integral of f (∈ A) is defined as follows:

∑
a∈X

ε0 f (a) (110)

with ε0 := (H′)−( ⋆H)2
∈

⋆(∗R).

It is briefly explained that the complexification of the propagator for the harmonic oscillator
is represented as the following path integral. In Feynman’s formulation of quantum
mechanics([2]), the propagator of the one-dimensional harmonic oscillator is the following
path integral: K(q, q0, t)

= lim
n→∞

∫

Rn
(

m

2πih̄ǫ
)(n+1)/2 exp

( iǫ

h̄

n+1

∑
j=1

(m

2
(

xj − xj−1

ǫ
)2

−

m

2
λ

2x2
j

))
dx1dx2 · · · dxn (111)

where x0 = q0, xn+1 = q, ǫ = t
n . In nonstandard analysis, it is known that, for a sequence

an,

lim
n→∞

an = a i f f ∗aw ≈ a (112)

for any infinite natural number ω ∈

∗ N − N, where ∗an is the ∗ extension of {an}n∈N , and ≈

means that ∗aw − a is infinitesimal, that is, the standard part of aw is a, usually denoted by
st(∗aw) = a . The standard part of the nonstandard path integral is written as

st
∫
∗Rw

(
m

2πih̄ǫ
)(ω+1)/2 exp

( iǫ

h̄

w+1

∑
j=1

(m

2
(

xj − xj−1

ǫ
)2

−

m

2
λ

2x2
j

))
dx1dx2 · · · dxw. (113)
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By extending t to a complex number, the path integral is complexified to the following :

st
∫
∗Rw

(
m

2πih̄ǫ
)(ω+1)/2 exp

( iǫ

h̄

w+1

∑
j=1

(m

2
(

xj − xj−1

ǫ
)2

−

m

2
λ

2x2
j

))
dx1dx2 · · · dxw. (114)

Theorem 4.1.2. Let t ∈ R, t �= st(±
√

2n
λ

√
1 − cos( kπ

ω+1 )), k = 1, 2, · · · , ω, or for t ∈ C, whose

imaginary part is negative. The complexified one-dimensional harmonic oscillator standard

functional integral is given by ( m
2πih̄ )

1
2

√
λ

sin(λt)
exp( im

h̄
λ

sin λt ((q
2
0 + q2) cos λt − 2qq0)).

Proof. If t �= st(±
√

2n
λ

√
1 − cos( kπ

ω+1 )), k = 1, 2, · · · , ω, then

t �= ±

√

2n

λ

√
1 − cos(

kπ

ω + 1
), k = 1, 2, · · · , ω (115)

for arbitrary infinite number ω . The theorem is followed from the discrete calculation using
the matrix representation of the operator(cf. [7]).

It corresponds to the well-known real propagator for one dimensional harmonic oscillator.
For the d-dimensional harmonic oscillator, d-dimensional vectors are written as q0, q , the
square norms are |q0|

2, |q|2, and the inner product of q0, q is q0q. We have :

Corollary 4.1.3. For the complexified d-dimensional harmonic oscillator standard functional
integral, the complexified propagator is given by

(
m

2πih̄
)

d
2 (

λ

sin(λt)
)

d
2 exp(

im

h̄

λ

sin λt
((|q0|

2 + |q|2) cos λt − 2qq0)). (116)

Proof. By factorizing Theorem 4.1.2 into a product on d dimensional, the corollary is
obtained.

The trace of the compiexified propagator is calculated for one dimensional harmonic
oscillator.

Since

∫ ∞

−∞
(

m

2πih̄
)

1
2

√
λ

sin(λt)
exp(

im

h̄

λ

sin λt
2((cos λt − 1)q2))dq =

1

2i sin(λt/2)
(117)

the following is obtained (cf.[6],[7]):

Theorem 4.1.4. Let t ∈ R, t �= ±st(
√

2ω

λ

√
1 − cos( kπ

ω+1 )), k = 1, 2, · · · , ω, or t ∈ C,

whose imaginary part is negative. The trace of the complexified one-dimensional harmonic
oscillator standard functional integral is given by 1

2i sin(λt/2)
.
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√

2ω
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Proof. By putting q0 = q in ( m
2πih̄ )

1
2

√
λ

sin(λt)
exp( im

h̄
λ

sin λt ((q
2
0 + q2) cos λt − 2qq0)), the trace

is the following integral :

∫ ∞

−∞
(

m

2πih̄
)

1
2

√
λ

sin(λt)
exp(

im

h̄

λ

sin λt
2((cos λt − 1)q2))dq =

1

2i sin(λt/2)
. (118)

Corollary 4.1.5. If the potential is modified to V(q) = m
2 (

λ
2

2 |q|2 −

λ

2 ), then the trace is
1

2i sin(λt/2)
exp( λt

2 )).

For the d-dimensional harmonic oscillator, the following is obtained :

Corollary 4.1.6. For the trace of the modified complexified propagator for d-dimensional

harmonic oscillator, the trace is ( 1
2i sin(λt/2)

exp( λt
2 )))d.

In the next section, Corollaries 4.1.5 and 4.1.6 are used to treat an infinite dimensional
harmonic oscillator.

4.2. Representation of the zeta function.

Corollary 4.1.5 is extended to an infinite dimensional harmonic oscillator using nonstandard
analysis. For it the three types of extension ∗R ,⋆∗R, #⋆∗R of R are prepared corresponding
to Definition 2.2.2 , then the three stages of infinite numbers exist. In these three extension
fields, we fix infinite natural numbers HF ∈

∗N ,HT ∈

⋆∗N, H” ∈ 2#⋆∗N . Let T be a positive
standard real number and let ǫT , ǫ” be infinitesimals in ⋆∗R , #⋆∗R defined by T

HT
, 1

H” . A
lattice L” and two function space X, A are defined as the following:

L” :=
{

ε”z”
∣∣∣ z” ∈

#⋆∗Z, −H”
2 ≤ ””z” <

H”
2

}
).

X :=
{

α :#⋆ {0, 1, · · · .HF − 1} → L”, internal
}

,

A :=
{

a :# {0, 1, · · · .HT} → X, internal
}

.

Then an element a of A is written as the component (ak
j , 0 ≤ j ≤ HT , 0 ≤ k ≤ HF − 1).

All prime numbers are ordered as p(1) = 2, p(2) = 3, ... , p(n) < p(n + 1), ... , that is, p
is a mapping from N to the set of prime numbers, p : N → {prime number} . Let λk be
ln∗ p(k) for each k , 0 ≤ k ≤ HF − 1. A potential Vk :#⋆∗ R →

#⋆∗ R is defined for each k ,

0 ≤ k ≤ HF − 1, as Vk(q) =
λ

2
k

2 |q|2 − λk
2 . An element α of X is written as the component

α = (αk, 0 ≤ k ≤ HF − 1).

Let V be a global potential as the following:

V(α) =
HF−1

∑
k=0

Vk(α
k)

(
=

HF−1

∑
k=0

(
λ

2
k

2

∣∣∣αk
∣∣∣2 − λk

2

))
. (119)
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In order to transport t to later, the element − λk
2 is put in the usual potential for harmonic

oscillators. It is considered the following summation K(a, b, t) depending of a, b ∈ X:

K(a, b, t) = ∑
a∈A,a0=a.aHT

=b

((ǫ′)HF )HT ((
1

2πǫT
)HF )HT exp(ǫT(

1

2

HT

∑
j=1

|

aj − aj−1

ǫT
|

2
− V(aj))).(120)

Then K(a, b, t) is calculated,

K(a, b, t) = (
1

2πǫT
)HT

HF−1

∏
k=1

∑
ak

j ∈L′ ,0≤j≤HT−1

(ǫ′)HT (
1

2πǫT
)HT exp(ǫT(

1

2

HT

∑
j=1

|

ak
j − ak

j−1

ǫT
|

2
− V(ak

j ))), (121)

where a0 = a, aHT
= b.

The summation ∑a∈X(ǫ
′)HT K(a, a.t) is denoted by tr(K(a, a, t)). Three correspondences

putting standard parts are written as st# : #⋆∗R →

⋆∗R, st⋆ : ⋆∗R →

∗R, st
∗

: ∗R → R .
When there are no confusion, they are simply written as st. The composition st

∗

◦ st⋆ ◦ st# :
#⋆∗R → R is denoted also by st for simplicity.

Theorem 4.2.1. If the real part of t is greater than 1, the standard part st(tr(K(a, a, t))) of
tr(K(a, a, t)) corresponds to Riemann’s zeta function ζ(t).

Proot. The standard parts of tr(K(a, a, t)) as follows.

st#(tr(K(a, a, t))) =

HF−1

∏
k=1

∫ ∫
· · ·

∫
(

1

2πǫT
)HT exp(ǫT(

1

2

HT

∑
j=1

(
qk

j − qk
j−1

ǫT
)2

− V(qk
j )))dqk

0dqk
1 · · · dqk

HT−1 (122)

=
HF−1

∏
k=1

∫
{

∫
· · ·

∫
(

1

2πǫT
)HT exp(ǫT(

1

2

HT

∑
j=1

(
qk

j − qk
j−1

ǫT
)2

− V(qk
j )))dqk

1 · · · dqk
HT−1}dqk

0 (123)

by Fubini’s theorem. Furthermore,

st⋆st#(tr(K(a, a, t))) =
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HF−1

∏
k=1

st⋆{
∫
{

∫
· · ·

∫
(

1

2πǫT
)HT exp(ǫT(

1

2

HT
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j=1

(
qk

j − qk
j−1

ǫT
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− V(qk
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0} (124)

by the same calculation of Theorem 4.1.2 (cf.[6],[7]) ,
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In order to transport t to later, the element − λk
2 is put in the usual potential for harmonic

oscillators. It is considered the following summation K(a, b, t) depending of a, b ∈ X:

K(a, b, t) = ∑
a∈A,a0=a.aHT

=b

((ǫ′)HF )HT ((
1

2πǫT
)HF )HT exp(ǫT(

1

2

HT

∑
j=1

|

aj − aj−1

ǫT
|

2
− V(aj))).(120)

Then K(a, b, t) is calculated,

K(a, b, t) = (
1

2πǫT
)HT

HF−1

∏
k=1

∑
ak

j ∈L′ ,0≤j≤HT−1

(ǫ′)HT (
1

2πǫT
)HT exp(ǫT(

1

2

HT

∑
j=1

|

ak
j − ak

j−1

ǫT
|

2
− V(ak

j ))), (121)

where a0 = a, aHT
= b.

The summation ∑a∈X(ǫ
′)HT K(a, a.t) is denoted by tr(K(a, a, t)). Three correspondences

putting standard parts are written as st# : #⋆∗R →

⋆∗R, st⋆ : ⋆∗R →

∗R, st
∗

: ∗R → R .
When there are no confusion, they are simply written as st. The composition st

∗

◦ st⋆ ◦ st# :
#⋆∗R → R is denoted also by st for simplicity.
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=
HF−1

∏
k=0

(
1

2i sin( λkt
2i )

exp(
λkt

2
)) =

HF−1

∏
k=0

1

1 − p−t
k

. (125)

By Lebesque’s convergence theorem, (st
∗

(st⋆(st#(tr(K(a, a, t))))) = ∏∞
k=0

1
1−p−t

k

= ζ(t) , if

the real part of t is positive .

4.2. Another representation of the zeta function

In this section, both st
∗

, st⋆ and st# are denoted as st for the simplification. A functional
is defined on X, and a relationship between the functional and Riemann’s zeta function
is shown later. The nonstandard extension ∗p : ∗N →

∗

{prime number} is written as
∗p([lµ]) = [p(lµ)], and a mapping p̃ : ∗N →

⋆( ∗{prime number}) is defined as p̃([lµ]) =
⋆[p(lµ)]. For s ∈ C, Zs(∈ A) is defined as the following :

Zs(a) := ∏
k∈L

p̃(H(k +
H

2
) + 1)(−s(a(k)+ H′

2 )). (126)

Now H(k + H
2 ) + 1 is an element of ∗N and a(k) + H′/2 is an element of ⋆( ∗N). Then

Zs(a) is calculated as exp(−s ∑k∈L log( p̃(H(k + H
2 ) + 1))a(k))∏k∈L p̃(H(k + H

2 ) + 1)−s H′

2 .
The following theorem is obtained for the Fourier transform of Zs for Definition 2.2 1:

Theorem 4.3.1.

(F((Zs))(b) =

(
∏
k∈L

p̃(H(k +
H

2
) + 1)

)
−s H′

2

· ∏
k∈L

ε
′

sinh((2πib(k) + s log p̃(H(k + H
2 ) + 1)) H′

2 )

exp(− ε′

2 (2πib(k) + s log p̃(H(k + H
2 ) + 1)) sinh( ε′

2 (2πib(k) + s log p̃(H(k + H
2 ) + 1)

. (127)

Proof.

(F((Zs))(b) =

(
∏
k∈L

p̃(H(k +
H

2
) + 1)

)
−s H′

2

· ∑
a∈X

ε0 exp(−s ∑
k∈L

log p̃(H(k +
H

2
) + 1)a(k)) exp(−2πi ∑

k∈L

a(k)b(k))

=

(
∏
k∈L

p̃(H(k +
H

2
) + 1)

)
−s H′

2

· ∑
a∈X

ε0 exp(−(2πi b(k) + s log p̃(H(k +
H

2
) + 1))a(k))

=

(
∏
k∈L

p̃(H(k +
H

2
) + 1)

)
−s H′

2
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· ∏
k∈L

ε
′

sinh((2πi b(k) + s log p̃(H(k + H
2 ) + 1)) H′

2 )

exp(− ε′

2 (2πi b(k) + s log p̃(H(k + H
2 ) + 1)) sinh( ε′

2 (2πi b(k) + s log p̃(H(k + H
2 ) + 1))

.

Riemann’s zeta function ζ(s) is defined by ζ(s) = ∏∞
l=1

1
1−p(l)−s for Re(s) > 1. Let YZ be a

subgroup of X so that each generator of (YZ)k is equal to 1. Then the following theorem is
obtained :

Theorem 4.3.2. If Re(s) > 1, then st(st(∑a∈YZ
(Zs))(a))) = ζ(s).

Proof. st(st(∑a∈YZ
(Zs)(a))) =st

(
st
((

∏k∈L p̃(H(k + H
2 ) + 1)

)(−s(a(k)+ H′

2 ))))

= st
(

st
(
∏
k∈L

1 − p̃(H(k + H
2 ) + 1)−sH′

1 − p̃(H(k + H
2 ) + 1)−s

))
= st

(
∏
k∈L

1

1 − p̃(H(k + H
2 ) + 1)−s

)
= ζ(s). (128)

Furthermore, Poisson summation formula and Theorem 4.3.2 imply the following :

Corollary 4.3.3.

st( ∑
b∈Y⊥

Z

(F(Zs)(b)) = st
(
∏
k∈L

1 − p̃(H(k + H
2 ) + 1)−sH′

1 − p̃(H(k + H
2 ) + 1)−s

)
. (129)

Hence we obtain :

st(st( ∑
b∈Y⊥

Z

(F(Zs)(b)))) = ζ(s) (130)

for Re(s) > 1.

In general, the physical theory has variables for position, time, and fields. Especially there
are many kinds of variables in quantum field theory. The function depends on such variables
mixed as f (q, t, a, b, c) where q is position, t is time, a, b, c are fields. When the function is
treated for such mixed variables, the Kinoshita’s infinitesimal Fourier transform and our
double infinitesimal Fourier transform are applied in the double extended number field.
The two kinds of Fourier transforms can be used for one function. In the theory, the delta
functions for variable and for fields have different infinitesimals and infinite values. The
delta function for fields has an infinitesimal much smaller and much bigger infinite number.
However they can be treat in the double extended number field. Two kinds of delta functions
are defined with another degrees. One delta function has an infinitesimal of the first degree
and the other delta function has an infinitesimal of the second degree. The infinitesimal of
the second one can not be observable with respect to the first one.
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5. Conclusion

The real and complex number fields are extended to the larger number fields where there
are many infinitesimal and infinite numbers. A lattice of infinitesimal width is included in
the extended real number field. An infinitesimal Fourier transform theory is constructed on
the infinitesimal lattice. These extended number fields are furthermore extended to much
higher generalized fields where there exist much higher infinitesimal and infinite numbers.
A double infinitesimal Fourier transform theory is developed on these double extended
number fields. The usual formulae for Fourier theory are satisfied in the theory, especially
the Poisson summation formula. The Fourier theory is based on the integral theory for
functionals corresponding to the path integral in the physics. The theory is associated to
the physical theory in the quantum field theory which is mathematically rigorous . For an
application for the double infinitesimal calculation, Riemann’s zeta function is represented
as such an integral for the propagator of an infinite dimensional harmonic oscillator.
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Chapter 6

Experimental Data Deconvolution
Based on Fourier Transform
Applied in Nanomaterial Structure

Adrian Bot, Nicolae Aldea and Florica Matei

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/59667

1. Introduction

In many kinds of experimental measurements, such as astrophysics, atomic physics, biophy‐
sics, geophysics, high energy physics, nuclear physics, plasma physics, solid state physics,
bending or torsion elastic, heat propagation or statistical mechanics, the signal measured in
the laboratory can be expressed mathematically as a convolution of two functions. The first
represents the resolution function called the instrumental signal, which is specific for each
setup, and the second is the true sample that contains all physical information. These phe‐
nomena can be modelled by an integral equation, which means the unknown function is under
the integral operator. The most important type of integral equation applied in physical and
technical signal treatments is the Fredholm integral equation of the first kind. The opposite
process when used for true sample function determination is known in the literature as
experimental data deconvolution. Solution determination of the deconvolution equation does
not readily unveil its true mathematical implications concerning the stability of the solutions
or other aspects. Thus, from this point of view, the problem is described as improper or ill-
posed. The most rigorous methods for solving the deconvolution equation are: regularization,
spline function approximation and Fourier transform technique. The essential feature of
regularization method is the replacement of a given improper problem with another, auxiliary,
correctly posed problem. The second method consists in approximating both the experimental
and instrumental signals by piecewise cubic spline. Most often when using this technique, the
true sample function belongs to the same piecewise cubic spline class. The topic of this chapter
is the application of Fourier transform in experimental data deconvolution for use in nano‐
material structures.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



2. Mathematical background of signal deconvolution

As mentioned in the introduction, ill-posed problems from a mathematical point of view have
many applications in physics and technologies [1]. In addition to the abovementioned
examples, the examples below should be noted.

Solving the Cauchy problem for the Laplace equation, ΔU =0 has a direct application in
biophysics as in [2]. The problem consists in determining the biopotential distribution within
the body denoted by U, when the body surface potential values are known. The phenomenon

is modelled by the Laplace equation, and the Cauchy conditions are U |S = f (S ) and ∂U
∂n |

S
=0,

where S represents the surface of the body.

The determination of radioactive substances in the body, as in [2], and protein crystallography
structures also deal with ill-posed problems: see [3].

The same formalism is used in quantum mechanics to determine the particle scattering cross-
section on different targets, as well as in plasma physics in the case of the electron distribution
after speed is received from the dispersion curve analysis [2].

An intuitive way of grasping an ill-posed problem can be modelled by the movement of the
vibrating string when many forces are acting perpendicularly on the string, as represented in
Figure 1.
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Figure 1. Physical model of the vibrating string

In terms of the mathematical equation, the phenomenon described above has a correspondent
in physics spectroscopy used in the study of nanomaterials. In the first instance, it is considered
that in the point of abscissa xk, force f

→
k  acts perpendicularly to the direction of the string. The
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string movement in the vertical plane at an arbitrary point s is given by the proportionality
relationship,

( ) ( , ) ( )k kh s g s x f x= (1)

where g(s, xk ) characterizes the impact of force f
→

(xk ) on the movement h(s). Using the same
considerations, for N forces f

→
1, f

→
2,⋯ ,  f

→
N   that act independently in N points of abscissa x1,

x2, ..., xN  in the direction perpendicular to the string, the string movements will be obtained
as h 1,  h 2, ..., h N . Therefore the movement associated with an arbitrary point of the string of
abscissa s is described by the relation below

1 1 2 2
1

( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )
N

k k k k
i

h s g s x f x g s x f x g s x f x g s x f x
=

= + + + =åL (2)

When a force is distributed continuously along the entire string, the movement of the point s
of the string will be given by

0

( ) ( , ) ( )
l

h s g s x f x dx= ò (3)

where l represents the length of the string.

The function f is the density of force, which means the force per unit length, and f(x)dx
represents the force that acts on the arc element dx. The function g is called the influence
function because it shows the degree of influence of the distribution force f on displacement h.

The equation (3) is named the Fredholm integral equation of the first kind, and it is a particular
case of the integral equation,

( ) ( ) ( , ) ( ) ( ),
b

a

l s f s g s x f x dx h s c x d+ = £ £ò (4)

where l, g and h are continuous known functions. If function l is null, then equation (4)
represents an integral equation of the first kind. If function l has no zero on c, d  then the
equation (4) is of the second kind, while if l has some zeros on [c,d] then the equation (4) is of
the third kind.

Although the aim of this chapter is signal deconvolution using the Fourier transform, it is
important to mentionthe other two methods used to solve equation (4) when l ≡0,  that is, the
regularization method and the spline approach.
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Hadamard stated that a problem is well posed if it has a unique solution, and the solution
depends continuously on the data [4]. Any problem that is not a well-posed problem is an ill-
posed one. The Fredholm equation of the first kind is ill posed because small changes in the
data generate huge modification of the unknown function.

2.1. Regularization method

This method consists in the replacement of the ill-posed problem (4) with l ≡0 by a well-posed
problem, and there are many scientific papers that develop different types of regularization
method depending on kernel type and other specific needs. Below we describe the Tikhonov
regularization method applied to the equation (4) with l ≡0. Let X and Y be Hilbert spaces and
⋅  be the norm on Hilbert space. If the kernel g is smooth, the operator G : X →Y

( )( ) ( , ) ( )
b

a

Gf s g s x f x dx= ò (5)

is linear. Then equation (4) with l ≡0 becomes

Gf h= (6)

The regularization method consists in the determination of the approximate solution of the
equation (4) of the first kind as a minimization of the following functional

2 2( ) - ,a f G h Lf f XF = + a " Î (7)

The value α >0 represents the regularization parameter and L is a linear operator defined below

' ''
0 1 2

ˆ( )Lf a f f a f a f= - + + (8)

where ai has the value 0 or 1; and f ' and f '' are the first and the second derivative of f. Function
f̂  represents a trial solution for equation (4) with l ≡0. The regularization order for the operator
L is the same as the derivability order of f. The regularization parameter should be chosen
carefully, because a good minimum for the functional (7) does not always lead to an adequate
solution for equation (4) with l ≡0 as in [4]. The discrimination procedure of the equation (4)
with l ≡0 and functional (7) depends on the specifics of each type of problem such as domain,
type of kernel, etc., but this is not the subject of this chapter: see [4-6].

Some disadvantages of the regularization method, which is an iterative method, are the fact
that it is very sensitive to the noise present in the experimental function and is time consuming.
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If the kernel g of the equation (4) with l ≡0 has a delayed argument then the equation is called
a convolution equation, and is widely applied in physical spectroscopy. The general form of
a convolution equation is given by

( ) ( ) ( )h s g s x f x dx
¥

-¥

= -ò (9)

After the change of variable x=t-s it is found that (9) is equivalent by the equation

( ) ( ) ( )h s g t f t s dt
¥

-¥

= -ò (10)

2.2. Spline technique

Spline functions for signal deconvolution technique help eliminate the drawbacks mentioned
above [7]. The advantage of the method proposed in [7] lies in the fact that Beniaminy’s method
is a one-step method. In this case, the true sample function f is represented as a piecewise cubic
spline function, and after the substitution of it into equation (10), the experimental function h
becomes a piecewise cubic spline function with the same knots but different coefficients. The
connection between the coefficients of functions h and f are given by the moments of instru‐
mental function g. Thus, if function f has the form
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with ξk , k =1, n − 1̄ are the knots and ak, bk, ck and dk are the coefficients of the spline function f.
They are chosen such that the function together with its first two derivatives is continuous.
Replacing (12) in (11), the experimental function has the form
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where
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and Mk = ∫
−∞

∞

t k g(t)dt  represents the moment of order k. Beniaminy considered that experimental

function h given by (14) is a cubic spline function. In [8] it is shown that that function h is not
a spline function due to the lack of the continuity in the first two derivatives of h. However,
the algorithm from [7] gives good results, but the quality of the true sample function depends
on how wide the instrumental function is. In order to obtain the true sample function f given
by (12) and (13), we calculate spline coefficients of the experimental function and using these
values and (14) obtain the coefficients ak, bk, ck and dk.

2.3. Solving the convolution equation using Fourier transform

Take the functions h, f, and g whose Fourier transform is given by the functions H, F and G. By
applying the Fourier transform operator on both members of equation (10) we obtain

( )exp( 2 ) ( ) ( ) exp( 2 )h s i s ds g f s d i s ds
+¥ +¥ +¥

-¥ -¥ -¥

é ù
- p n = t - t t - p nê ú

ë û
ò ò ò (15)

By changing the order of integration, the Fourier transform of the signal h is expressed by the
relation,

( ) ( ) ( )exp( 2 )H g f s i s ds d
+¥ +¥

-¥ -¥

é ù
n = t - t - p n tê ú

ë û
ò ò (16)

Using the substitution σ = s −ν, the quantity between square brackets from the previous relation
becomes

( ) ( )( )exp 2 exp 2 ( )exp( 2 ) exp( 2 ) ( )f i d i f i d i F
+¥ +¥

-¥ -¥

s é- p n s + t ù s = - p nt s - p ns s = - p nt uë ûò ò (17)

In this context the relation (16) becomes

( ) ( )exp( 2 ) ( ) ( ) ( )H g i F d F G
+¥

-¥

n = t - p nt n t = n nò (18)
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The relation (18) is known as the convolution theorem. If direct and inverse Fourier transform
operators and convolution product are respectively denoted by TF, TF-1 and *, then the relation
(18) is written symbolically as

( ) ( ) ( ) ( )TF h TF f TF g F G TF f g= = = *

and

1( )TF F G h f g- = = *

In this way, the process of the inverse Fourier transform applied to function F determines f
signal. In X-ray diffraction theory this is known as the Stokes method.

Experimental signals h, coded by (1), (3), (5) and (6) for a set of supported gold catalyst (Au/
SiO2), and instrumental contribution g measured on a gold foil, are presented in Figure 2.
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In the scientific literature we can see many authors display serious confusion about the concept of 
deconvolution. Often, when they decompose the experimental signal h according to certain specific 
criteria, some say that it has achieved the deconvolution of the initial signal. This fact may be 
accepted only if the instrumental function g from equation (11) is described by the Dirac distribution. 

Figure 2. The experimental relative intensities h of the supported gold catalysts and instrumental function g

3. Why is the technique of deconvolution used in nanomaterials science?

In the scientific literature we can see many authors display serious confusion about the concept
of deconvolution. Often, when they decompose the experimental signal h according to certain
specific criteria, some say that it has achieved the deconvolution of the initial signal. This fact
may be accepted only if the instrumental function g from equation (11) is described by the
Dirac distribution. Only in this case is the true sample function f identical to the experimental
signal h. Unfortunately, no instrumental function of any measuring device can be described
by the Dirac distribution.

It is well known that the macroscopic physical properties of various materials depend directly
on their density of states (DS). The DS is directly linked to crystallographic properties. For
physical systems that belong to the long order class, moving the crystallographic lattice in the
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whole real space will reproduce the whole structure. The nanostructured materials, which
belong to the short-range class, are obtained by moving the lattice in the three crystallographic
directions at the limited distances, generating crystallites whose size is no greater than a few
hundred angstroms. In this case, the DS is drastically modified in comparison with the
previous class of materials. From a physical point of view the DS is closely related to the
nanomaterials’ dimensionality, so crystallite size gives direct information about new topolog‐
ical properties. It can emphasize that amorphous, disordered or weak crystalline materials can
have new bonding and anti-bonding options. The systems consisting of nanoparticles whose
dimensions do not exceed 50 Å have the majority of atoms practically situated on the surface
for the most part. Additionally, the behaviour of crystallites whose size is between 50 Å and
300 Å is described on the basis of quantum mechanics to explain the advanced properties of
the tunnelling effect. All these reasons lead to the search for an adequate method to determine
reliable information such as effective particle size, microstrains of lattice, and particle distri‐
bution function. This information is obtained by Fourier deconvolution of the instrumental
and experimental X-ray line profiles (XRLP) approximated by Gauss, Cauchy and Voigt
distributions and generalized by Fermi function (GFF) as in [9]. The powder reflection
broadening of the nanomaterials is normally caused by small size, crystallites and distortions
within crystallites due to dislocation configurations. It is the most valuable and cheapest
technique for the structural determination of crystalline nanomaterials.

Generally speaking, in X-ray diffraction on powder, the most accurate and reliable analysis of
the signals is given by the convolution equation (10) where h, g and f are experimental data,
instrumental contribution of setup experimental spectrum, and true sample function as a
solution of equation (10), respectively.

Figure 3. Numerical solution of the deconvolution equation (19) determined by an algebraic discretization
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Let us consider the experimental signals of (111) X-ray line profile of supported nickel catalyst,
and the instrumental function given by nickel foil obtained by a synchrotron radiation setup
at 201 points with a constant step of 0.040 in 2θ variables, as shown in Figure 3.

The convolution equation (9) can be approximated in different ways, but the simplest approx‐
imation is given by following the algebraic system

201

201
( ) ( ) ( ) 1,201i i j j j

j
h x g x s f s s i

=-

= - D =å K (19)

where Δsj is a constant step in 2θ variables. It turns out that the roots f(sj) of system (19) do not
lead to a smooth signal, but yield a curve which makes for enhanced oscillations. Its behaviour
is given by f signal in Figure 3. This result is given by a computer code written in Maple 11
language, a sequence of which is presented in Appendix 1. From a physical point of view, this
type of solution is impracticable because the crystallite size in nanostructured systems is
contained in the tails of XRLP. Therefore, the lobes of the XRLP must be sufficiently smooth.
As shown in the inset of Figure 3, this condition is not met.. It would be possible to improve
the quality of signal f trying to extend the definition interval for signal g. Thus we will
approximate the unbounded integral on a bounded interval, but one that is sufficiently large.

This depends on the performances of the computer system and on the algorithm developed
for solving inhomogeneous systems of linear equations with sizes of at least several thousand.

4. Distributions frequently used in physics and chemical signal
deconvolution applied in nanomaterials science

It is known that, from a mathematical point of view, the XRLP are described by the symmetric
or asymmetric distributions. As in [10,11] a large variety of functions for analysis of XRLP,
such as Voigt (V), pseudo-Voigt (pV) and Pearson VII (P7), are proposed.

4.1. Gauss distribution

Many results such as the propagation of uncertainties and the least square method can be
derived analytically in explicit form when the relevant variables are normally distributed.
Gauss distribution is defined by mathematical relation

2

0 expG
G

GG

I x aI
é ùæ ö-ê ú= -ç ÷

gpg ê úè øë û
(20)

where I0G, a and γG are the profile area, gravitational centre measured in 2θ variable, and
broadening of the XRLP, respectively. The nth moment, n=0,1 is given by relations
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0 0 1( ) ,G G G GI x dx I a
+¥

-¥

m = = m =ò

The integral width δG and full width at half maximum FWHMG are given by relations

δG = πγG and FWH MG =2 ln2γG

If both signals h and g are described by Gaussian distributions and take into account the
relationship (18), the full width and FWHM of the true sample function are expressed by the
relations

2 2
, , , , ,2 ln 2G f G h G g G f G fFWHMg = g - g = g (21)

4.2. Cauchy distribution

The Cauchy distribution, also called the Lorentzian distribution, is a continuous distribution
that describes population distribution of electron levels with multiple applications in physical
spectroscopy. Its analytical expression is given by relation

0
2 2( )

C C
C

C

II
x a
g

=
p g + - (22)

where I0C ,  a and γC  are profile surface, gravitational centre and broadening of the XRLP,
respectively. The nth moment n=0,1 is given by relations

0 0 1( ) and   C C C CI x dx I a
+¥

-¥

m = = m =ò

The integral widths δG and full width at half maximum FWHMC are given by relations

and 2C C C CFWHMd = pg = g

The deconvolution of two signals h and g determined by Cauchy distributions is also a Cauchy
distribution whose full width δC,f and FWHMC,f are given by relations

, , , , ,and 2C f C h C g C f C fFWHMd = d - d = d (23)
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4.3. Generalized Fermi function

Although extensive research over the past few decades has made progress in XRLP global
approximations, their complete analytical properties have not been reported in the literature.
Unfortunately, most of them have complicated forms, and they are not easy to handle
mathematically. Recently, as in [9,11], a simple function with a minimal number of parameters
named the generalized Fermi function (GFF), suitable for minimization and with remarkable
analytical properties, was presented from a purely phenomenological point of view. It is given
by the relationship,

( ) ( )( ) a s c b s c
Ah s

e e- - -=
+

(24)

where A, a, b, c are unknown parameters. The values A, c describe the amplitude and the
position of the peak, and a, b control its shape. If b=0, the h function reproduces the Fermi-Dirac
electronic energy distribution. The GFF has remarkable mathematical properties, with direct
use in determining the moments, the integral width, and the Fourier transform of the XRLP,
as well as the true sample function. Here we give its properties without proofs.

i. By setting

' ( ) / 2 ( ) / 2s s c a b q a b= - r = + = -

we obtain

cosh ' sinh '( ')
2 cosh '
A qs qsh s

s
æ ö+

= ç ÷rè ø
(25)

ii. the limit of h function for infinite arguments is finite, so limh (s ') =0  when s '→ ± ∞ ;

iii. the zero, first and second order moments (µ0, µ1, µ2) of the h function are given by the
relations

2
2
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2 2 2 2cos2 cos
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q
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iv. the integral width δh(a, b) of the h function has the following form

( ) ( )1/ ( )
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a b

a b
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p -

+

p
d = (26)
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v. the Fourier transform of the h function is given by the relationship
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vi. if we consider the functions f and g defined by equation (25), by their deconvolution
we can compute the |F(L)| function, which is used in Warren and Averbach’s analysis
in [12]. Therefore, the magnitude of F(L) function has the following form:
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where the arguments of trigonometric and hyperbolic functions are expressed by

2 2
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g h

g g h h
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a = b = g = d =

r r r r

The subscripts g and h refer to the instrumental and experimental XRLP. Taking into account
the convolution theorem, the true sample function f is given by the relationship
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The last integral cannot be accurately resolved. In order to do so we have to consider some
arguments. The Fourier transform of f is the F function, given by the relations

( )
( )

( )
( ) ( ) exp( ( )), ( ) arctan

( )
F L

F L F L i L L
F L

Á
= q q =

Â

where θ means the angle function, and ℜ(F ) and ℑ(F ) are the real and imaginary parts of the
complex function F, respectively. The arguments α, β, γ and δ from equation (28) depend only
on the asymmetry parameters a and b of the g and f functions. If the XRLP asymmetry is not
very large (i.e., a and b parameters are close enough as values) the cos2α ≈1, cos2γ ≈1 approxi‐
mations are reliable. Therefore, we obtain ℑ(F )< <ℜ(F ), θ(L) ≈ 0 and the magnitude of the
Fourier transform for the true XRLP sample can be expressed as
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(vii) if we consider the previous approximation, the true XRLP sample is given by an inverse
Fourier transform of the F function, and consequently we have
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(viii) the integral width of the true XRLP sample can be expressed by the δf function

( )
2

( , ) cos 1
2 cos

h

h g

g

f h g
h

pr
pr r
r

p
d r r = +

r (31)

4.4. Voigt distribution applied in X-ray line profile analysis

Before briefly describing the mathematical properties of the Voigt distribution, let us examine
the physical concept underlying the approximation of the XRLP by Voigt distribution and the
convolution process.

During decades of research, Warren and Averbach [12] introduced the X-ray diffraction
concept for the mosaic structure model, in which the atoms are arranged in blocks, each block
itself being an ideal crystal, but with adjacent blocks that do not accurately fit together. They
considered that the XRLP h represents the convolution between the true sample f and the
instrumental function g, produced by a well-annealed sample. The effective crystallite size Deff

and lattice disorder parameter <εhkl> were analysed as a set of independent events in a
likelihood concept. Based on Fourier convolution produced between f and g signals and the
mosaic structural model, the analytical form of the Fourier transform for the true sample
function was obtained. The normalized F was described as the product of two factors, F(s)(L)
and F(ε)(L) , where variable L represents the distance perpendicular to the (hkl) reflection
planes. The factor F(s)(L)  describes the contribution of crystallite size and stocking fault
probability, while the factor F(ε)(L)  gives information about the microstrain of the lattice. The
general form of the Fourier transform of the true sample for cubic lattices was given by
relationships
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where h 0
2 =h 2 + k 2 + l 2. The general form of the true sample function f is given by inverse Fourier

transform of F(L)
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where s =2( sinθ
λ −

sinθ0
λ ), erf (x)=
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Deff (hkl) . The last relation from the mathematical

point of view represents a Voigt distribution. If we take into account the properties of the Gauss
and Cauchy distributions, the Voigt distribution can be generalized by relation
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Based on relation (18), its Fourier transform is given by FT V = FT IG
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The analytical expression of the Voigt distribution is
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Explicit forms of experimental signal and true sample function normalized at I0V  are given by
relations [13]
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Maximum value of true sample function is
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and the convolution of two Voigt functions is also a Voigt function.

The integral width of a true sample function has the two components given by the Gauss and
Cauchy contributions

( ) ( )2 2 2
, , , , , ,

1 1,G f G h G g C f C h C gd = d - d d = d - d
p p

(39)

Balzar and Popa are among the leading scientists in the field of Fourier analysis of X-ray
diffraction profiles, and they suggested that each Gauss and Cauchy component contains
information about the average crystallite size (δS ) and distortion of the lattice (δD) as in [14].
From the algebraic point of view, they proposed the following relationship

2 2 2
, , , , , ,,G f SG f DG f C f SC f DC fd = d + d d = d + d (40)
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Based on the new concept introduced by them, the two components of the Fourier transform
are given by the relations

2 2 2 2
, , , ,2 2( ) , ( )SG f SC f DG f DC fL L L LS DF L e F L e-p d - d -p d - d= = (41)

The particle size distribution function, P(L) is determined from the second derivative of strain-
corrected Fourier transform of the true sample function. The volume-weighted column-length
PV and surface-weighted column-length PS distributions are given by the following [14]:
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5. Experimental section, data analysis and results

A series of four supported gold catalysts were studied by X-ray diffraction (XRD) in order to
determine the average particle size of the gold, the microstrain of the lattice as well as the size
and microstrain distribution functions by XRLP deconvolution using Fourier transform
technique. The gold catalyst samples with up to 5 wt% gold content were prepared by
impregnation of the SiO2 support with aqueous solution of HAuCl4×3H2O and homogeneous
deposition-precipitation using urea as the precipitating agent method, respectively. The X-ray
diffraction data of the supported gold catalysts displayed in Figure 3 were collected using a
Rigaku horizontal powder diffractometer with rotated anode in Bragg-Brentano geometry
with Ni-filtered Cu Kα radiation, λ = 1.54178 Å, at room temperature. The typical experimental
conditions were: 60 sec for each step, initial angle 2θ = 320, and a step of 0.020, and each profile
was measured at 2700 points. The XRD method is based on the deconvolution of the experi‐
mental XRLP (111) and (222) using Fourier transform procedure by fitting the XRLP with the
Gauss, Cauchy, GFF and Voigt distributions. The Fourier analysis of XRLP validity depends
strongly on the magnitude and nature of the errors propagated in the data analysis. The
scientific literature treated three systematic errors: uncorrected constant background, trunca‐
tion, and effect of sampling for the observed profile at a finite number of points that appear in
discrete Fourier analysis. In order to minimize propagation of these systematic errors, a global
approximation of the XRLP is adopted instead of the discrete calculus. The reason for this
choice was the simplicity and mathematical elegance of the analytical Fourier transform
magnitude and the integral width of the true XRLP given by equations (20)-(24), (31), (34) and
(38), as in [15]. The robustness of these approximations for the XRLP arises from the possibility
of using the analytical forms of the Fourier transform instead of a numerical fast Fourier
transform (FFT). It is well known that the validity of the numerical FFT depends drastically
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on the filtering technique what was adopted in [16]. In this way, the validity of the nanostruc‐
tural parameters is closely related to the accuracy of the Fourier transform magnitude of the
true XRLP.

Experimental relative intensities (111) with respect to 2θ values for (1) system are shown in
Figure 4. The next steps consist in background correction of XRLP by polynomial procedures,
finding the best parameters for the distributions adopted using the method of least squares or
nonlinear fit, and then deconvoluting them using instrumental function. The main steps in the
data analysis of the investigated systems are shown in Figure 4.

Experimental relative intensities (111) with respect to 2θ values for (1) system are shown in Figure 4. 
The next steps consist in background correction of XRLP by polynomial procedures, finding the best 
parameters for the distributions adopted using the method of least squares or nonlinear fit, and then 
deconvoluting them using instrumental function. The main steps in the data analysis of the 
investigated systems are shown in Figure 4. 

Figure 4. Various stages of processing for X-ray line profile (111) of the sample (1) 

Experimental relative intensities (222) with respect to 2θ values for (6) system are shown in Figure 5. 

Figure 5. Various stages of processing for X-ray line profile (222) of the sample (6) 

Figure 4. Various stages of processing for X-ray line profile (111) of the sample (1)

Experimental relative intensities (222) with respect to 2θ values for (6) system are shown in
Figure 5.

The Fourier transforms normalized for the true sample function of the investigated samples
(1) and (6) were calculated by three distinct methods, based on relations (28), (32) and (41), and
are displayed in Figure 6.

The microstrain and particle size distribution functions determined by Fourier deconvolution
of a single XRLP were calculated using equation (32), and are plotted in Figure 7.

The credibility of the parameters describing the investigated nanostructure systems depends
primarily on the process of approximation of XRLP. This criterion is expressed by the root
mean squares of residuals (rmsr) of data analysis and is given by relation
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Figure 6. Fourier transform of true sample function of XRLP (111) and (222) for systems (1) and (6): 
blue - general relation, red - GFF, green - Voigt distribution 

The microstrain and particle size distribution functions determined by Fourier deconvolution of a 
single XRLP were calculated using equation (32), and are plotted in Figure 7.  

Figure 7. Size and microstrain distribution functions of (111) XRLP for system (1)  

The credibility of the parameters describing the investigated nanostructure systems depends primarily 
on the process of approximation of XRLP. This criterion is expressed by the root mean squares of 
residuals (rmsr) of data analysis and is given by relation  

Figure 6. Fourier transform of true sample function of XRLP (111) and (222) for systems (1) and (6): blue - general rela‐
tion, red - GFF, green - Voigt distribution

The rmsr values for all distributions used in XRLP approximation process are given in Table
1. The rmsr values are closely related to the spectral noise of experimental data. Here it is shown
that a model based on GFF and Voigt distribution may be more realistic and accurate.

The integral  widths and FWHM of the true sample functions calculated for all  distribu‐
tions were determined using the relations (21), (23), (31) and (38). Their values are presented
in Table 2.
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The rmsr values for all distributions used in XRLP approximation process are given in Table
1. The rmsr values are closely related to the spectral noise of experimental data. Here it is shown
that a model based on GFF and Voigt distribution may be more realistic and accurate.

The integral  widths and FWHM of the true sample functions calculated for all  distribu‐
tions were determined using the relations (21), (23), (31) and (38). Their values are presented
in Table 2.
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Figure 7. Size and microstrain distribution functions of (111) XRLP for system (1)

Sample hkl
Distribution

GFF Gauss Cauchy Voigt

(1)
111 26.2658 47.6477 40.6091 26.9398

222 14.8795 15.2648 16.0429 15.1880

(3)
111 21.5743 31.4428 28.0142 22.1633

222 12.5725 12.4615 12.6212 12.4534

(5)
111 18.1273 26.6941 21.8148 17.4276

222 13.2033 13.3122 13.2599 13.2771

(6)
111 28.1267 31.8679 36.0040 35.5948

222 18.8487 20.5945 33.2718 19.9656

Table 1. Values for rmsr for investigated samples

Because the experimental XRLP was measured for both (111) and (222), the surface-weighted
column-length PS and volume-weighted column-length PV distribution functions were
determined using relations (42,43) implemented in BREADTH software [17]. Additionally, it
has found that the Gumbel distribution is the most adequate function for the global approxi‐
mation of both probabilities’ curves, and the results are shown in Figure 8.

The global structural parameters obtained for the investigated samples are summarized in
Table 3 and Table 4.
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Sample hkl
2θ0

[Deg]

Distributions

GFF Gauss Cauchy Voigt

δ
[Deg]

a*
[Deg]

δ
[Deg]

a*
[Deg]

δ
[Deg]

a*
[Deg]

δ
[Deg]

a*
[Deg]

(1)
111 38.291 0.644 0.540 0.638 0.599 0.738 0.469 0.713 0.537

222 81.780 0.862 0.715 0.854 0.803 1.025 0.653 0.927 0.765

(3)
111 38.220 0.802 0.672 0.798 0.750 0.919 0.585 0.891 0.668

222 81.763 1.028 0.860 1.011 0.950 1.181 0.752 1.095 0.912

(5)
111 38.211 0.631 0.529 0.621 0.583 0.723 0.460 0.701 0.519

222 81.801 1.052 0.873 1.067 1.003 1.225 0.780 1.185 0.890

(6)
111 38.292 0.363 0.304 0.363 0.341 0.426 0.271 0.374 0.335

222 81.872 0.506 0.423 0.498 0.468 0.613 0.390 0.528 0.461

a* represents FWHM

Table 2. Values for integral width and full width at half maximum for investigated samples

  

Figure 8. Surface-weighted column-length distribution function, PS, and volume-weighted column-
length distribution function, PV, for (5) and (6) systems
 
The global structural parameters obtained for the investigated samples are summarized in Table 3 and 
Table 4. 
 
Table 3. Values for crystallite size determined by Scherrer method, and effective crystallite size using 
single XRLP approximations 

Sample GFF approximation Single Voigt approximation 
 SchD111  D111 SchD222  D222 SchD111  D111 SchD222  D222 

(1) 180 168 180 139 145 154 118 145 
(3) 143 135 139 130 116 118 98 139 
(5) 183 171 145 112 153 151 108 95 
(6) 398 309 313 263 249 384 199 303 

 
Table 4. Values for the average crystallite size and microstrain using double Voigt approaches 

Sample hkl SS DD Δ±  

[Å] 
VV DD Δ±   

[Å] ( ) ( ) 2/122/12 2/Δ±2/ VV DεDε  

(1) [111/222] 90±12 133±15. 0.211E-02 ± 0.152E-03 
(3) [111/222] 69±13 104± 17 0.262E-02 ± 0.288E-03 
(5) [111/222] 106±30 153±41 0.280E-02 ± 0.216E-03 
(6) [111/222] 214±72 233±79 0.105E-02 ± 0.522E-03 

 
Hydrogen chemisorption, transmission electron microscopy (TEM), magnetization, electronic 
paramagnetic resonance (EPR) and other methods could also be used to determine the average 
diameter of particles by taking into account a prior spherical form for the grains. By XRD method we 
can obtain the crystallite sizes that have different values for different crystallographic planes. There is 
a large difference between the particle size and the crystallite size due to the different physical 
meaning of the two concepts. It is possible that the particles of the supported gold catalysts are made 
up of many gold crystallites. 
The size of the crystallites determined by equations (32) and (41), corresponding to (111) and (222) 
planes, have different values. The crystallite sizes SchD111 and SchD222  are determined by the Scherrer 
method [18] without taking into account the microstrain of the lattice. The values D111 and D222 were 
determined by Fourier deconvolution method for single XRLP, while the averages of DV and DS were 

Figure 8. Surface-weighted column-length distribution function, PS, and volume-weighted column-length distribution
function, PV, for (5) and (6) systems

Sample GFF approximation Single Voigt approximation

D111
Sch D111 D222

Sch D222 D111
Sch D111 D222

Sch D222

(1) 180 168 180 139 145 154 118 145

(3) 143 135 139 130 116 118 98 139

(5) 183 171 145 112 153 151 108 95
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Sample hkl
2θ0

[Deg]

Distributions

GFF Gauss Cauchy Voigt

δ
[Deg]

a*
[Deg]

δ
[Deg]

a*
[Deg]

δ
[Deg]

a*
[Deg]

δ
[Deg]

a*
[Deg]
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(3)
111 38.220 0.802 0.672 0.798 0.750 0.919 0.585 0.891 0.668

222 81.763 1.028 0.860 1.011 0.950 1.181 0.752 1.095 0.912

(5)
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(6)
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a* represents FWHM

Table 2. Values for integral width and full width at half maximum for investigated samples
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Sample hkl
D S ± ΔDS

[Å]

D V ± ΔDV

[Å]
ε 2(DV / 2) 1/2 ± Δ ε 2(DV / 2) 1/2

(1) [111/222] 90±12 133±15. 0.211E-02 ± 0.152E-03

(3) [111/222] 69±13 104± 17 0.262E-02 ± 0.288E-03

(5) [111/222] 106±30 153±41 0.280E-02 ± 0.216E-03

(6) [111/222] 214±72 233±79 0.105E-02 ± 0.522E-03

Table 4. Values for the average crystallite size and microstrain using double Voigt approaches

Hydrogen chemisorption, transmission electron microscopy (TEM), magnetization, electronic
paramagnetic resonance (EPR) and other methods could also be used to determine the average
diameter of particles by taking into account a prior spherical form for the grains. By XRD
method we can obtain the crystallite sizes that have different values for different crystallo‐
graphic planes. There is a large difference between the particle size and the crystallite size due
to the different physical meaning of the two concepts. It is possible that the particles of the
supported gold catalysts are made up of many gold crystallites.

The size of the crystallites determined by equations (32) and (41), corresponding to (111) and
(222) planes, have different values. The crystallite sizes D111

Sch  and D222
Sch  are determined by the

Scherrer method [18] without taking into account the microstrain of the lattice. The values D111

and D222 were determined by Fourier deconvolution method for single XRLP, while the
averages of DV and DS were calculated by a double Voigt approach. The difference between
the crystallites’ size can be explained by the fact that the analytical models are different due
to the different approaches. This means that the geometry of the crystallites is not spherical
[18]. The microstrain parameter of the lattice can also be correlated with the effective crystallite
size in the following way: the value of the effective crystallite size increases when the micro‐
strain value decreases.

The main procedures of the SIZE.mws software dedicated to Fourier analysis of the XRLP by
GFF and Voigt distributions written in Maple 11 language are presented in Appendix 2.

6. Conclusions

In the present chapter, it is shown that XRD analysis provides more information for under‐
standing the physical properties of nanomaterial structure. Powder X-ray diffraction is the
cheapest and most reliable method compared with hydrogen chemisorptions, TEM techni‐
ques, magnetic measurements, EPR, etc. The main conclusions that can be drawn from these
studies are:

1. For XRLP analysis, a global approximation should be applied rather than a numerical
Fourier analysis. The former analysis is better than a numerical calculation because it can
minimize the systematic errors that could appear in the traditional Fourier analysis.

2. Our numerical results show that by using the GFF and the Voigt distribution we success‐
fully obtained reliable global nanostructural parameters;
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3. Cauchy and Gauss distributions used for XRLP approximation give roughly structural
information;

4. Powder X-ray diffraction gives the most detailed nanostructural results, such as: average
crystallite size, microstrain, and distribution functions of crystallite size and microstrain;

5. Surface-weighted domain size depends only on Cauchy integral breadth, while volume-
weighted domain size depends on Cauchy and Gauss integral breadths;

6. To obtain valid structural results, it is important to have: a good S/N ratio of the experi‐
mental spectra, a good deconvolution technique for the experimental and instrumental
spectra, and an adequate computer package and programs for data analysis.

Appendix 1

Input data h.txt and g.txt files

`k`:=1;
line_h:= readline(`h.txt`):
line_g:= readline(`g.txt`):
while line <> 0 do
temp_h:= sscanf(line_h,`%8f%8f`):temp_g:=sscanf(line_g,`%8f %8f`):
printf(`%10.5f %10.5f`,temp_h[1],temp_h[2]): lprint():
printf(`%10.5f %10.5f`,temp_g[1],temp_g[2]): lprint():
twotheta_h[`k`]:=temp_h[1];
intensity_h[`k`]:=temp_h[2];
twotheta_g[`k`]:=temp_g[1];
intensity_g[`k`]:=temp_g[2];
line_h:= readline(`h.txt`):
line_g:= readline(`g.txt`):
`k`:=`k`+1;
end do;
`k`:=`k`-1;
p_h:=plot([twotheta_h[`ih`],intensity_h[`ih`],`ih`=1..k],col-
or=red,style=LINE,thickness=2,axes=boxed,gridlines,
labels=["2theta",""]):
p_g:=plot([twotheta_g[`ig`],intensity_g[`ig`],`ig`=1..k],col-
or=blue,style=LINE,thickness=2,axes=boxed,gridlines,
labels=["2theta",""]):
display({p_h,p_g});
deltatwotheta:=twotheta_h[2]-twotheta_h[1]:

h vector determination

twok:=2*k;
for `i` from 1 to k
do
h[`i`]:=intensity_h[`i`]:
end do:
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h[`k`+1]:=0:
`j`:=1:
for `i` from `k`+2 to twok+1
do
h[`i`]:=intensity_h[`j`]:
`j`:=`j`+1:
end do:
print(h);

g array determination

`j`:=1:
for `i` from -twok to -k
do
g[`i`]:=intensity_g[`j`]:
`j`:=`j`+1;
end do:
`j`:=1:
for `i` from -k to -1
do
g[`i`]:=intensity_g[`j`]:
`j`:=`j`+1:
end do:
g[0]:=0.:
for `i` from 1 to k
do
g[`i`]:=intensity_g[`i`]:
end do:
`j`:=1:
for `i` from k+1 to twok
do
g[`i`]:=intensity_g[`j`]:
`j`:=`j`+1:
end do:
print(g):

a matrix determination

for `i` from 1 to twok+1
do
for `j` from 1 to twok+1
do
a[`i`,`j`]:=0.:
end do:
end do:
`i1`:=0:
for `i` from -k to k
do
`j1`:=0:
`i1`:=`i1`+1:
for `j` from -k to k
do
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`j1`:=`j1`+1:
a[`i1`,`j1`]:=g[`i`-`j`]*deltatwotheta;
end do:
end do:
print(a);

solving integral deconvolution equation by direct discretization

f:=linsolve(a,h):
for `i` from 1 to twok+1
do
twotheta_f[`i`]:=twotheta_h[1]+(`i`-1)*deltatwotheta:
intensity_f[`i`]:=eval(f[`i`]);
end do:
p_h:=plot([twotheta_h[`ihh`],intensity_h[`ihh`],`ihh`=1..k],col-
or=red,style=LINE,thickness=2,axes=boxed,gridlines,labels=["2theta",""]):
p_g:=plot([twotheta_g[`igg`],intensity_g[`igg`],`igg`=1..k],
color=blue,style=LINE,thickness=2,axes=boxed,gridlines,
labels=["2theta",""]):
p_f:=plot([twotheta_f[`iff`],intensity_f[`iff`],`iff`=1..twok+1],
color=green,style=LINE,thickness=2,axes=boxed,gridlines,
labels=["2theta",""]):
display({p_h,p_g,p_f});
fd:= fopen("f",WRITE,TEXT):
for `i` from 1 to k
do
fprintf(fd,"%g %g\n",twotheta_f[`i`],intensity_f[`i`]):
end do:
fclose(fd):

Appendix 2

Fourier transform of true sample function procedure

f_GFF_freq:=proc(freq)
local arg_in,arg_sa;
arg_in:=(Pi*q_in)/(2*rho_in) + I *(Pi*Pi*freq)/rho_in;
arg_sa:=(Pi*q_sa)/(2*rho_sa) + I * (Pi*Pi*freq)/rho_sa;
(ampl_sa/ampl_in)*(rho_in/rho_sa)*cos(arg_in)/cos(arg_sa);
end:

Module of Fourier transform of true sample function procedure

FT_GFF_modul:=proc(freq)
local aux,bux,auxr_0,auxi_0;
aux:=evalc(Re(f_GFF_freq(freq))):
bux:=evalc(Im(f_GFF_freq(freq))):
aux:=aux*aux+bux*bux:
auxr_0:=evalc(Re(f_GFF_freq(0))):
auxi_0:=evalc(Im(f_GFF_freq(0))):
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bux:=auxr_0*auxr_0+auxi_0*auxi_0:
sqrt(aux/bux):
end:

True sample function procedure

f_GFF_s:=proc(s)
local arg1,arg2;
arg1:=(Pi/2)*(rho_sa/rho_in);
arg2:=(rho_sa*s);
(2/Pi)*(ampl_sa/ampl_in)*
rho_in*cos(arg1)*cosh(arg2)/(cosh(2*arg2)+cos(2*arg1));
end:

Integral width of true sample function procedure

int_width_GFF:=proc(rho_in,rho_sa)
local arg;
arg:=Pi*rho_sa/rho_in;
Pi/(2*rho_sa*cos(arg/2))*(cos(arg)+1);
end:

Moment of zero order for experimental X-ray line profile procedure

mu_0_GFF:=proc(ampl,rho,q)
local arg;
arg:=(Pi*q)/(2*rho);
(ampl/2)*(Pi/rho)*(1/cos(arg));
end:

Moment of first order for experimental X-ray line profile procedure

mu_1_GFF:=proc(rho,q)
local arg;
arg:=(Pi*q)/(2*rho);
(Pi/(2*rho))*tan(arg);
end:

Moment of second order for experimental X-ray line profile procedure

mu_2_GFF:=proc(rho,q)
local arg;
arg:=(Pi*q)/(2*rho);
((Pi/(2*rho))^2)*(1./(cos(arg)^2)+tan(arg)^2);
end:

Experimental X-ray line profile procedure approximated by GFF distribution

exp_profile_GFF:=proc(s)
local arg_q,arg_rho;
arg_q:=q*s; arg_rho:=rho*s;
(ampl/2)*(cosh(arg_q)+sinh(arg_q))/cosh(arg_rho);
end:
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Instrumental X-ray line profile procedure determined by GFF distribution

inst_profile_GFF:=proc(s)
local arg_q,arg_rho;
arg_q:=q_in*s; arg_rho:=rho_in*s;
(ampl_in/2)*(cosh(arg_q)+sinh(arg_q))/cosh(arg_rho);
end:

Fourier transform procedure for general relation of true sample function developed by

Warren-Averbach theory

gen_function:=proc(freq)
exp(-beta_gen(fmin,fmax)*freq*freq-
gama_gen(fmin,fmax)*abs(freq));
end:

Procedure for experimental XRLP given by Voigt approximation

h_Voigt_function:=proc(s)
local arg1,arg2,arg3,arg4;
arg1:=(gama_h_c**2-s**2)/(gama_h_g**2);
arg2:=(gama_h_c-I*s)/gama_h_g;
arg3:=(gama_h_c+I*s)/gama_h_g;
arg4:=2.*gama_h_c*s/(gama_h_g**2);
amp_h/(sqrt(Pi)*gama_h_g)*exp(arg1)*
(Re(erfc(arg2))*cos(arg4)-Im(erfc(arg3))*sin(arg4));
end:

Procedure for instrumental XRLP given by Voigt approximation

g_Voigt_function:=proc(s)
local arg1,arg2,arg3,arg4;
arg1:=(gama_g_c**2-s**2)/(gama_g_g**2);
arg2:=(gama_g_c-I*s)/gama_g_g;
arg3:=(gama_g_c+I*s)/gama_g_g;
arg4:=2.*gama_g_c*s/(gama_g_g**2);
amp_g/(sqrt(Pi)*gama_g_g)*exp(arg1)*
(Re(erfc(arg2))*cos(arg4)-Im(erfc(arg3))*sin(arg4));
end:

Procedure for the true sample function calculated by Voigt approximation

f_Voigt_function:=proc(s)
local arg1,arg2,arg3,arg4;
arg1:=(gama_f_c**2-s**2)/(gama_f_g**2);
arg2:=(gama_f_c-I*s)/gama_f_g;
arg3:=(gama_f_c+I*s)/gama_f_g;
arg4:=2.*gama_f_c*s/(gama_f_g**2);
amp_h/amp_g/(sqrt(Pi)*gama_f_g)*exp(arg1)*(Re(erfc(arg2))*cos(arg4)-
Im(erfc(arg3))*sin(arg4));
end:
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Instrumental X-ray line profile procedure determined by GFF distribution

inst_profile_GFF:=proc(s)
local arg_q,arg_rho;
arg_q:=q_in*s; arg_rho:=rho_in*s;
(ampl_in/2)*(cosh(arg_q)+sinh(arg_q))/cosh(arg_rho);
end:

Fourier transform procedure for general relation of true sample function developed by
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gen_function:=proc(freq)
exp(-beta_gen(fmin,fmax)*freq*freq-
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Procedure for instrumental XRLP given by Voigt approximation
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arg1:=(gama_g_c**2-s**2)/(gama_g_g**2);
arg2:=(gama_g_c-I*s)/gama_g_g;
arg3:=(gama_g_c+I*s)/gama_g_g;
arg4:=2.*gama_g_c*s/(gama_g_g**2);
amp_g/(sqrt(Pi)*gama_g_g)*exp(arg1)*
(Re(erfc(arg2))*cos(arg4)-Im(erfc(arg3))*sin(arg4));
end:

Procedure for the true sample function calculated by Voigt approximation

f_Voigt_function:=proc(s)
local arg1,arg2,arg3,arg4;
arg1:=(gama_f_c**2-s**2)/(gama_f_g**2);
arg2:=(gama_f_c-I*s)/gama_f_g;
arg3:=(gama_f_c+I*s)/gama_f_g;
arg4:=2.*gama_f_c*s/(gama_f_g**2);
amp_h/amp_g/(sqrt(Pi)*gama_f_g)*exp(arg1)*(Re(erfc(arg2))*cos(arg4)-
Im(erfc(arg3))*sin(arg4));
end:
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1. Introduction

The notion of Gabor transform, named after Dennis Gabor [1], is a special case of the
short-time Fourier transform. The Gabor analysis, as it stands now, is a rather new field, but
the idea goes back quite some while. Dennis Gabor investigated in [1] the representation of
a one dimensional signal in two dimensions, time and frequency. He suggested to represent
a function by a linear combination of translated and modulated Gaussians. Interestingly,
there is a tight connection between this approach and quantum mechanics (c.f. [2]).
On the mathematical side, the representation of functions by other functions was further
investigated, leading to the theory of atomic decompositions, developed by Feichtinger and
Gröchenig [3].

Gabor transform and Gabor expansion have long been recognized as very useful tools for
the signal processing, and it is because of this reason over the recent years, an increasing
attention has been given to the study of them in engineering and applied Mathematics, see
for instance [4, 5]. Borichev et al. [6] studied the stability problem for the Gabor expansions
generated by a Gaussian function. In [7], Ascensi and Bruna proved that the unique Gabor
atom with analytical Gabor space, the image of L2(R) under the Gabor transform, is the
Gaussian function. The structure of Gabor and super Gabor spaces inside L2(R2d) is studied
by Abreu [8]. Christensen [9] has done a comprehensive study of the Gabor system and has
asked for the necessary and sufficient conditions to get a frame for L2(R).

Today Gabor analysis and the closely related wavelet analysis are considered topics in
harmonic analysis. The basic idea behind wavelet analysis is that the notion of an
orthonormal basis is not always useful. Sometimes it is more important for a decomposing
set to have special properties, like good time frequency localization, than to have unique
coefficients. This led to the concept of frames, which was introduced by Duffin and Schaefer
in [10] and was made popular by Daubechies, and today is one of the most important
foundations of Gabor theory and a fundamental subject in harmonic analysis.
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2 Fourier Transform

Most examples of Gabor frames correspond to regular nets of points. That is, sets of the
type {e2πibnth(t − am)}n,m∈Zd . One can usually find sufficient and necessary conditions for
the existence of such kind of frames, with a variety of applications. For technical reasons,
however, one needs to work with frames coming from irregular grids. One of the main
purposes of this chapter is to study perturbations of irregular Gabor frames and the problem
of stability.

On the other hand, the theory of nonharmonic Fourier series is concerned with the
completeness and expansion properties of sets of complex exponentials {eiλnt

} in Lp[−π, π].
In 1952, Duffin and Schaeffer [10] used frames to study this theory, and later Young put
together many results in his book [11]. Reid [12] proved that if {λn} is a sequence of real
numbers whose differences are nondecreasing, then the set of complex exponentials {eiλnt

}

is a Riesz-Fischer sequence in L2[−A, A] for every A > 0. Jaffard [13] investigated how the
regularity of nonharmonic Fourier series is related to the spacing of their frequencies, and
this is obtained by using a transformation which simultaneously captures the advantages of
the Gabor and wavelet transforms.

In this chapter, we restate and prove some classical results of (nonharmonic) Fourier
expansions for Gabor systems instead of sets of complex exponentials. Some of the results
may be known or obtainable via Hilbert space methods, but the main advantage of this work
is that it uses analytic methods and can be fully understood with elementary knowledge of
functional and complex analysis in several variables [14, 15].

2. Preliminaries

Let us introduce the notions and basic results, needed later in the chapter.

Definition 2.1 We say that Λ = {zj}j∈N ⊂ C
d is a separated set if there exists ε > 0 such that

|zi − zj| ≧ ε, i �= j. The largest of such ε is called the separation constant of Λ. A finite union
of separated sets is called a relatively separated set.

Definition 2.2 A sequence of vectors {xn} in a normed space X is said to be complete if its
linear span is dense in X , that is, if for each vector x and each ε > 0 there is a finite linear
combination c1x1 + · · ·+ cnxn such that

�x − (c1x1 + · · ·+ cnxn)� < ε.

Definition 2.3 A sequence { fn} in a Hilbert space H is said to be a Bessel sequence if

∞

∑
n=1

|� f , fn�|
2
< ∞

for every element f ∈ H. It is called a Riesz-Fischer sequence if the moment problem

� f , fn� = cn, n ≧ 1
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admits at least one solution f ∈ H whenever {cn} ∈ l2.

Proposition 2.4 Let { fn} be a sequence in a Hilbert space H. Then

(i) { fn} is a Bessel sequence with bound M if and only if the inequality

∥∥∥∑ cn fn

∥∥∥
2
≦ M ∑ |cn|

2

holds for every finite sequence of scalars {cn};

(ii) { fn} is a Riesz-Fischer sequence with bound m if and only if the inequality

m ∑ |cn|
2 ≦

∥∥∥∑ cn fn

∥∥∥
2

holds for every finite sequence of scalars {cn}.

Remark 2.5 For a sequence { fn} in a Hilbert space H, the moment problem

� f , fn� = cn, n ≧ 1

has at most one solution for every choice of the scalars {cn} if and only if { fn} is complete.

Definition 2.6 A countable family { fk}k∈I in a separable Hilbert space H is a frame for H if
there exist constants A and B such that 0 < A ≦ B < ∞ and

A� f �2 ≦ ∑
k∈I

|� f , fk�|
2 ≦ B� f �2, f ∈ H.

A, B are called the lower and upper frame bounds respectively. They are not unique: the biggest
lower bound and the smallest upper bound are called the optimal frame bounds. Every element
in H has at least one representation as an infinite linear combination of the frame elements.

Definition 2.7 Let c ∈ R
d, the unitary operators Tc and Mc on L2(Rd) defined by

Tc f (t) = f (t − c) and Mc f (t) = e2πict f (t) are called the Translation and Modulation operator,
respectively. For a discrete set Λ = {zj}j∈Z in C

d and a fixed nonzero window function

h ∈ L2(Rd), we define the Gabor system G(h, Λ) as:

G(h, Λ) = {MyTxh(t) = e2πiyth(t − x); x + iy ∈ Λ}.

For simplicity we denote e2πiyth(t − x) by hz(t), where z = x + iy. Gabor systems were first
introduced by Gabor [1] in 1946 for signal processing, and is still widely used. A Gabor
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4 Fourier Transform

system is said to be exact in L2(Rd) if it is complete, but fails to be complete on the removal
of any one term.

If G(h, Λ) is a frame for L2(Rd), it is called a Gabor frame or Weyl-Heisenberg frame.

Definition 2.8 Let f be an entire function. For r > 0, the maximum modulus function is
M(r) = max{| f (z)| : |z| = r}. Unless f is a constant of modulus less than or equal to 1, its
order, which is denoted by ρ, is defined by

ρ = lim sup
r→∞

log log M(r)

log r
.

Simple examples of functions of finite order include ez, sin z, and cos z, all of which are of
order 1, and cos

√

z, which is of order 1
2 . Every polynomial is of order 0; the order of a

constant function is of course 0 and the function eez
is of infinite order.

Remark 2.9 An entire function has an order of growth ≦ ρ if | f (z)| ≦ A eB|z|ρ .

The following is the fundamental factorization theorem for entire functions of finite order.
It is due to Hadamard who used the result in his celebrated proof of the Prime Number
Theorem. It is one of the classical theorems in function theory.

Theorem 2.10 (Hadamard Factorization Theorem) Let f be an entire function of finite order
ρ, {zn} be the zeros of f different from 0, k be the order of zero of f at the origin, and

f (z) = zkeg(z)
∞

∏
n=1

(1 −
z

zn
)

be its canonical Factorization, then g(z) is a polynomial of degree no longer than ρ.

Definition 2.11 The (Bargmann-)Fock space, F (Cd), is the Hilbert space of all entire functions
f on C

d for which

� f �2
F

=
∫

Cd
| f (z)|2e−π|z|2 dz,

is finite. The natural inner product on F (Cd) is defined by

� f , g�
F

=
∫

Cd
f (z)g(z)e−π|z|2 dz; f , g ∈ F (Cd).

The Bargmann transform of a function f ∈ L2(Rd) is the function B f on C
d defined by
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B f (z) = 2
d
4 e−

π

2 z2
∫

Rd
f (t)e−πt2

e2πtz dt.

Definition 2.12 Fix a function h ∈ L2(Rd) (called the window function). The Gabor transform
with respect to the window h is the isomorphic inclusion

Vh : L2(Rd) −→ L2(Cd),

defined by

Vh f (z) = � f (t), hz(t)� = 2d/4
∫

Rd
f (t)h(t − x)e−2πity dt

for every f ∈ L2(Rd) and z = x + iy ∈ C
d. The following subspace of L2(Cd) which is the

image of L2(Rd) under the Gabor transform with the window h,

Gh = {Vh f : f ∈ L2(Rd)},

is called Gabor space or model space. A simple calculation shows that the Bargmann transform

is related to the Gabor transform with the Gaussian window g(t) = 2d/4e−πt2
in L2(Rd) by

the formula

Vg f (x − iy) = eiπxye−π
|x+iy|2

2 (B f )(x + iy). (1)

For more details we refer the reader to [2, 7, 8, 17].

3. Gabor Expansion

Here we discuss the fundamental completeness properties of the Gabor systems. The most
extensive results in the case of the sets of complex exponentials {eiλnt

} over a finite interval
of the real axis were obtained by Paley and Wiener [16]. At the same time, we will be laying
the groundwork for a more penetrating investigation of nonharmonic Gabor expansions in
L2(R2).

Let {(λn, µn)}n∈Z be an arbitrary countable subset of R
2 and

{ϕn(ξ)}n∈Z =
{

Mµn Tλn
g(ξ)

}
n∈Z

=
{
√

2 e2πiµnξ−π(ξ−λn)2
}

n∈Z

; (2)

where ξ ∈ R
2 or C, be the corresponding Gabor system with respect to the Gaussian window

g in L2(R2). If {ϕn}n∈Z is incomplete in L2(R2) then the closed linear span M of {ϕn}n∈Z is
a proper subspace of L2(R2). By Hahn-Banach Theorem there exists a function F in L2(R2)
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6 Fourier Transform

such that F|
M

= 0 and F �= 0. Riesz Representation Theorem implies that F = Fϕ for some

ϕ in L2(R2) and

F(h) = Fϕ(h) =
∫

R2
h ϕ dξ; h ∈ L2(R2).

For (z, w) ∈ C
2 take

f (z, w) =
√

2
∫

R2
e2πiwξ−π(ξ−z)2

ϕ(ξ) dξ, (3)

then f (λn, µn) = F(ϕn) = 0 (since F|
M

= 0).

Remark 3.1 The system (2) is incomplete in L2(R2) if and only if there exists a nontrivial
entire function of the form (3) in the Gabor space Gg, which is zero for every (λn, µn).
Furthermore, since

f (z, w) = Vg ϕ(z,−w) = eiπzwe−π
|z|2+|w|

2

2 (Bϕ)(z, w),

we have

| f (z, w)| ≦ �ϕ�2 e
π

2 |(z,w)|2 .

Theorem 3.2 Let {λn}n∈Z be a symmetric sequence of real numbers (λ
−n = −λn). If the

Gabor system

{
4
√

2 e2πiλnt−π(t−λn)2
}

n∈Z

(4)

is exact in L2(R), then the product

∞

∏
n=1

(
1 −

z2

λ2
n

)
e

z2

λ2
n

converges to an entire function which belongs to the Gabor space with Gaussian window in
L2(R).

Proof. By Remark 3.1, if the system (4) is exact, then there exists an entire function f (z) in
the Gabor space Gg such that f (λn) = 0 for n �= 0, and

f (z) =
4
√

2
∫

R

e2πizt−π(t−z)2
ϕ(t) dt; ϕ ∈ L2(R).

Since f (λn) = 0 for n �= 0 and the sequence {λn} is symmetric, ϕ(−t) has the same
orthogonality properties as ϕ(t). But by Remark 2.5, ϕ(t) is unique, so ϕ(t) must be even.
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Hence f (z) is even. Now f (z) vanishes only at the λn with n �= 0. Indeed, if f (z) vanishes at
z = γ, then the function

f̃ (z) =
z f (z)

z − γ

would also belong to Gg and would vanish at every λn. The system (4) would then be

incomplete in L2(R), contrary to hypothesis.

Let us observe that the function f̃ belongs to Gg. Since the Bargmann transform is
related to the Gabor transform by the formula (1), it is sufficient to show that the function

eiπxye
π

2 (|x|
2+|y|2) f̃ (z); z = x + iy, belongs to the Fock space F (C). In other words, we must

show that the integral

∫

C

|z|2

|z − γ|2

∣∣ f (z)eiπxye
π

2 (|x|
2+|y|2)

∣∣2e−π(|x|2+|y|2)dx dy; z = x + iy,

is finite. Since limz→∞ |

z

z − γ
| = 1, we have |

z

z − γ
| ≦ 3/2 outside a square T with

complement Tc. Thus the above integral is no larger than

∫

T

|z|2

|z − γ|2

∣∣ f (z)eiπxye
π

2 (|x|
2+|y|2)

∣∣2e−π(|x|2+|y|2)dx dy

+ 9/4
∫

Tc

∣∣ f (z)eiπxye
π

2 (|x|
2+|y|2)

∣∣2e−π(|x|2+|y|2)dx dy

≦

∫

T

|z|2

|z − γ|2

∣∣ f (z)eiπxye
π

2 (|x|
2+|y|2)

∣∣2e−π(|x|2+|y|2)dx dy

+ 9/4
∫

C

∣∣ f (z)eiπxye
π

2 (|x|
2+|y|2)

∣∣2e−π(|x|2+|y|2)dx dy.

In the last expression, since T is compact the first integral is finite, and since the function

f (z)eiπxye
π

2 (|x|
2+|y|2) is in the Fock space F (C), so is the second integral. Next since

| f (z)| ≦ �ϕ�2 e
π

2 |z|
2
,

the order of growth of f is at most 2, and by Hadamard’s factorization theorem,

f (z) = eAz
∞

∏
n=1

(
1 −

z2

λ2
n

)
e

z2

λ2
n ; A ∈ R.

Since f (z) and the canonical product are both even, A = 0 and

f (z) =
∞

∏
n=1

(
1 −

z2

λ2
n

)
e

z2

λ2
n .
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We have the following version of Plancherel-Pólya theorem. We give the proof which is

similar to [11, Th. 2.16] for the sake of completeness.

Theorem 3.3 (Plancherel-Pólya). If f (z) is an entire function of order of growth≦ τ and if
for some positive number p,

∫ ∞

−∞
| f (x)|p dx < ∞,

then

∫ ∞

−∞
| f (x + iy)|p dx ≦ epτ|y|

∫ ∞

−∞
| f (x)|p dx.

The proof will require two preliminary lemmas. Suppose that q(z) is a non constant
continuous function in the closed upper half-plane, Imz ≧ 0, and analytic in its interior.
Let a and p be positive real numbers and put

Q(z) =
∫ a

−a
|q(z + t)|p dt.

It is clear that Q(z) is continuous for Imz ≧ 0. Since |q(z)|p is subharmonic for Imz > 0 (see
[12, p.83]), so is Q(z).

Lemma 3.4 Let q(z) be a function of order of growth≦ τ in the half-plane Imz ≧ 0 and
suppose that the following quantities are both finite:

M = sup
−∞<x<∞

Q(x)andN = sup
y>0

Q(iy).

Then on this half-plane,

Q(z) ≦ max(M, N).

Proof. Since q(z) is of order of growth≦ τ, then there exist positive numbers A and B such
that

|q(z)| ≦ AeB|z|τ (Imz ≧ 0). (5)

For each positive number ε, define the auxiliary function

qε(z) = q(z)e−ε(λ(z+a))3/2
, (6)
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where λ = e−iπ/4. The exponent of e in (6) has two possible determinations in the half-plane
Imz > 0; we choose the one whose real part is negative in the quarter-plane x > −a, y ≧ 0.
Put

Qε(z) =
∫ a

−a
|qε(z + t)|p dt,

which is then defined and continuous in the upper half-plane Imz ≧ 0, and subharmonic
in its interior. A simple calculation involving (5) and (6) shows that in the quarter plane
x > −a, y ≧ 0,

|qε(z)| ≦ AeB|z|τ−εγ|z+a|3/2
, (7)

where γ = cos 3π/8, and |qε(z)| ≦ |q(z)|. Hence

Qε(z) ≦ Q(z)(x ≧ 0, y ≧ 0),

and in particular

Qε(x) ≦ M for x ≧ 0 and Qε(iy) ≦ N for y ≧ 0.

Let z0 be a fixed but arbitrary point in the first quadrant. We shall apply the maximum
principle to Qε(z) in the region Ω = {z : Rez ≧ 0, Imz ≧ 0, |z| ≦ R}, choosing R large
enough so that (i) z0 ∈ Ω, and (ii) the maximum value of Qε(z) on Ω is not attained on
the circular arc|z| = R (this is possible by virtue of (7)). Since Qε(z) does not reduce to a
constant, the maximum value of Qε(z) on Ω must be attained on one of the coordinate axes,
and in particular,

Qε(z0) ≦ max(M, N).

Now let ε → 0. This establishes the result for the first quadrant; the proof for the second
quadrant is similar.

Lemma 3.5 In addition to the hypotheses of Lemma 3.4, suppose that

lim
y→∞

q(x + iy) = 0 (8)

uniformly in x, for −a ≦ x ≦ a. Then

Q(z) ≦ M, Imz ≧ 0.
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Proof. It is sufficient to show that N ≦ M. By virtue of (8), we see that the function Q(iy)
tends to zero as y → ∞, and so must attain its least upper bound N for some finite value of
y, say y = y0. If y0 = 0, then

N = Q(iy0) = Q(0) ≦ M.

If y0 > 0, then the maximum principle shows that the least upper bound of Q(z) in the
half-plane Imz ≧ 0 cannot be attained at the interior point z = iy0. Therefore, by Lemma 3.4,

N = Q(iy0) < max(M, N),

and again N < M.

Theorem 3.3 now follows.

Proof of Theorem 3.3. It is sufficient to prove the theorem when y > 0 and f (z) is not
identically zero. Let ε be a fixed positive number and consider the function

q(z) = f (z)ei(τ+ε)z.

It is easy to see that, for each positive number a, the functions q(z) and Q(z) satisfy the
conditions Lemmas 3.4 and 3.5. Consequently, for y > 0,

Q(iy) ≦ M <

∫ ∞

−∞
|q(x)|pdx.

This together with the definitions of q(z) and Q(z) implies

e−p(τ+ε)y
∫ a

−a
| f (x + iy)|pdx <

∫ ∞

−∞
| f (x)|pdx.

To get the result, first let a → ∞, then let ε → 0.

Proposition 3.6 Let f (z, w) be an entire function of order of growth≦ τ and suppose that
{λn}, {µn} are increasing sequences of real numbers such that

λn+1 − λn ≧ ε1 > 0 and µn+1 − µn ≧ ε2 > 0.

If for some positive number p,

sup
n

∫ ∞

−∞
| f (xz, µn)|

p dxz < ∞ and sup
n

∫ ∞

−∞
| f (λn, xw)|

p dxw < ∞, (9)
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then

∑
n
| f (λn, µn)|

p
< ∞.

Proof. First, using the Plancherel-Pólya Theorem, observe that conditions (9) imply that

sup
n

∫ ∞

−∞
| f (z, µn)|

p dxz ≦ epτ|yz |

∫ ∞

−∞
sup

n
| f (xz, µn)|

p dxz,

and

sup
n

∫ ∞

−∞
| f (λn, w)|p dxw ≦ epτ|yw |

∫ ∞

−∞
sup

n
| f (λn, xw)|

p dxw.

Now since | f |p is plurisubharmonic, the inequality

| f (z0, w0)|
p ≦

1

2π

∫ 2π

0
| f ((z0, w0) + (ζ, η)eiθ)|p dθ (10)

holds for all values of (ζ, η). Fix η = 0, multiply both sides of (10) by ζ and integrate between
0 and δ1,

∫
δ1

0
| f (z0, w0)|

p
ζ dζ ≦

1

2π

∫
δ1

0

∫ 2π

0
| f (z0 + ζeiθ , w0)|

p dθ ζ dζ.

Then

| f (z0, w0)|
p ≦

1

πδ2
1

∫∫

Ω1

| f (z, w0)|
p dxz dyz,

where Ω1 = {(z, w0) : |z − z0| ≦ δ1}. Similarly fix ζ = 0, multiply both sides of (10) by η

and integrate between 0 and δ2,

| f (z0, w0)|
p ≦

1

πδ2
2

∫∫

Ω2

| f (z0, w)|p dxw dyw,

where Ω2 = {(z0, w) : |w − w0| ≦ δ2}. Then

2| f (z0, w0)|
p ≦

1

πδ2
1

∫∫

Ω1

| f (z, w0)|
p dxz dyz

+
1

πδ2
2

∫∫

Ω2

| f (z0, w)|p dxw dyw.
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Now let Ωn
1 = {(λn + z, µn) : |z| ≦ δ1} and Ωn

2 = {(λn, µn + w) : |w| ≦ δ2}, then

2 ∑
n
| f (λn, µn)|

p ≦ ∑
n

( 1

πδ2
1

∫∫

Ωn
1

| f (λn + z, µn)|
p dxz dyz

+
1

πδ2
2

∫∫

Ωn
2

| f (λn, µn + w)|p dxw dyw

)

≦ ∑
n

( 1

πδ2
1

∫
δ1

−δ1

∫
δ1

−δ1

| f (λn + z, µn)|
p dxz dyz

+
1

πδ2
2

∫
δ2

−δ2

∫
δ2

−δ2

| f (λn, µn + w)|p dxw dyw

)

= ∑
n

( 1

πδ2
1

∫
δ1

−δ1

∫
λn+δ1

λn−δ1

| f (z, µn)|
p dxz dyz

+
1

πδ2
2

∫
δ2

−δ2

∫
µn+δ2

µn−δ2

| f (λn, w)|p dxw dyw

)
.

It is clear that the last expression above is no larger than

∑
n

( 1

πδ2
1

∫
δ1

−δ1

∫
λn+δ1

λn−δ1

sup
n

| f (z, µn)|
p dxz dyz

+
1

πδ2
2

∫
δ2

−δ2

∫
µn+δ2

µn−δ2

sup
n

| f (λn, w)|p dxw dyw

)
.

Now for δ1 =
ε1

2
and δ2 =

ε2

2
, the intervals (λn − δ1, λn + δ1) are pairwise disjoint, and

similarly for the intervals (µn − δ2, µn + δ2), thus

2 ∑
n
| f (λn, µn)|

p ≦
1

πδ2
1

∫
δ1

−δ1

∫ ∞

−∞
sup

n
| f (z, µn)|

p dxz dyz

+
1

πδ2
2

∫
δ2

−δ2

∫ ∞

−∞
sup

n
| f (λn, w)|p dxw dyw.

We conclude that

2 ∑
n
| f (λn, µn)|

p ≦
1

πδ2
1

∫
δ1

−δ1

(
epτ|yz |

∫ ∞

−∞
sup

n
| f (xz, µn)|

p dxz

)
dyz

+
1

πδ2
2

∫
δ2

−δ2

(
epτ|yw |

∫ ∞

−∞
sup

n
| f (λn, xw)|

p dxw

)
dyw

= B1 sup
n

∫ ∞

−∞
| f (xz, µn)|

p dxz

+ B2 sup
n

∫ ∞

−∞
| f (λn, xw)|

p dxw < ∞,
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1

πδ2
1
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sup

n
| f (z, µn)|

p dxz dyz

+
1

πδ2
2

∫
δ2

−δ2
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sup

n
| f (λn, w)|p dxw dyw.

We conclude that

2 ∑
n
| f (λn, µn)|

p ≦
1

πδ2
1

∫
δ1

−δ1

(
epτ|yz |

∫ ∞

−∞
sup

n
| f (xz, µn)|

p dxz

)
dyz

+
1

πδ2
2

∫
δ2

−δ2

(
epτ|yw |

∫ ∞

−∞
sup

n
| f (λn, xw)|

p dxw

)
dyw

= B1 sup
n

∫ ∞
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| f (xz, µn)|

p dxz

+ B2 sup
n

∫ ∞

−∞
| f (λn, xw)|

p dxw < ∞,
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where B1 = B1(p, τ, ε1) and B2 = B2(p, τ, ε2).

Remark 3.7 In the above proposition, if we replace the conditions (9) by

∫ ∞

−∞

∫ ∞

−∞
| f (xz, xw)|

pdxz dxw < ∞

the interior integral is finite everywhere except on a null set. If we use Fubini to change the
order of integration, we get a null set for the integral against the second variable. If we know
that none of λn’s and µn’s lie in these null sets, the conclusion still holds.

Theorem 3.8 If {λn}n∈Z and {µn}n∈Z are separated sequences of real numbers such that
0 ≦ λn ≦ 1 and 0 ≦ µn ≦ 1 for each n, then the Gabor system (2) forms a Bessel sequence in
L2(R2). If ∑n |cn|

2
< ∞, then the Gabor expansion

∑
n

cne2πiµnξ−π(ξ−λn)2

converges in mean to an element of L2(R2).

Proof. If φ ∈ L2(R2) then the inner product

an = �

√

2 e2πiµnξ−π(ξ−λn)2
, φ(ξ)�;

is just the value f (λn, µn) of the entire function

f (z, w) =
√

2
∫

R2
ϕ(ξ) e2πiwξ−π(ξ−z)2

dξ; ϕ(ξ) = φ(ξ),

in the Gabor space Gg and f is of order of growth 2. we have

sup
n

∫ ∞

−∞
| f (xz, µn)|

p dxz

≦ 2p/2 Mpeπ

∫ ∞

−∞

[ ∫
R

e−2π(xξ−xz)2
dxξ

∫

R

e−2π(|yξ |−1)2
dyξ

]p/2
dxz < ∞,

and similarly

sup
n

∫ ∞

−∞
| f (λn, xw)|

p dxw < ∞.

Therefore f satisfies conditions (9) and by Proposition 3.6 we have
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∑
n

|�

√

2 e2πiµnξ−π(ξ−λn)2
, φ(ξ)�|2 = ∑

n

|an|
2 = ∑

n

| f (λn, µn)|
2
< ∞.

Thus the Gabor system (2) forms a Bessel sequence in L2(R2). The second part follows from
the first by Proposition 2.4.

Paley and Wiener, showed in Theorem XLII of [16] that whenever

lim
n→±∞

(λn+1 − λn) = ∞,

for a sequence of real numbers {λn}, then the exponentials are weakly independent over an
arbitrarily short interval: ∑ aneiλnt = 0 only when all the an are zero. The next lemma states
a similar statement for the set of complex exponentials replaced by the system (4). Here l.i.m.
is used to show the limit in mean-square in L2. The proof is almost identical to that of Paley
and Wiener.

Lemma 3.9 Let no an vanish, ∑∞
−∞ |an|

2 converge, and let

· · · < λ
−n < · · · < λ

−1 < λ0 < λ1 < · · · < λn < · · ·

such that

lim
n→±∞

(λn+1 − λn) = ∞.

Let

f (t) = ł.i.m.N→∞

N

∑
−N

an e2πiλnt−π(t−λn)2
;

over every finite range. If f (t) is equivalent to zero over any interval (a, b) then f (t) is
equivalent to zero over every interval, and all the an’s vanish.

Now we want to show that if the separation of the λn’s is great enough then system (4) is a
Riesz-Fischer sequence.

Theorem 3.10 Let {λn} be a sequence of real numbers whose differences are nondecreasing
and satisfy

∑
1

(λk+1 − λk)2
< ∞.

Then the Gabor system (4) is a Riesz-Fischer sequence in L2(R).
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Proof. We adapt the proof of [16, Th. 1]. By the second part of the Proposition 2.4 we have
to show that for all finite sequences of scalars {cn} and some constant m > 0,

m ∑ |cn|
2 ≦

∥∥∥∑ cn
4
√

2 e2πiλnt−π(t−λn)2
∥∥∥

2
. (11)

Using c to denote an l2 sequence {c1, c2, · · · }, inequality (11) is the same as

�Gc, c�l2

�c, c�l2

≧ m,

where the l2 operator G is the Gram matrix of the members of the Gabor system (4). It is to
be shown that the eigenvalues of finite subsections of G are bounded away from zero, which
in turn follows from these two conditions:

(1) Gv = 0 implies v = 0, for every l2 sequence v.

(2) G = I + M, where M is a compact operator.

The first condition is satisfied by Lemma 3.9. To verify condition (2), observe that the entries
of G = I + M are

gnm =
√

2
∫ ∞

−∞
e2πi(λn−λm)t−π(t−λn)2

−π(t−λm)2
dt.

Now M can be shown to be compact by showing that its Schmidt norm is finite. Since G is
symmetric, it suffices to show that

∞

∑
n=1

∞

∑
m=n+1

g2
nm < ∞.

The sum is bounded above,

∞

∑
n=1

∞

∑
m=n+1

g2
nm = 2

∞

∑
n=1

∞

∑
m=n+1

( ∫ ∞

−∞
e2πi(λn−λm)t−π(t−λn)2

−π(t−λm)2
dt
)2

≦ 2
∞

∑
n=1

∞

∑
m=n+1

( ∫ ∞

−∞
e2πi(λn−λm)t dt

)2

= 2
∞

∑
n=1

∞

∑
m=n+1

lim
A→∞

( ∫ A

−A
e2πi(λn−λm)t dt

)2

≦
2

π2

∞

∑
n=1

∞

∑
m=n+1

1

(λn − λm)2

<
2

π2

∞

∑
n=1

∞

∑
m=n+1

1

(λn+1 − λn)2(m − n)2
,
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where (λm − λn) ≦ (λn+1 − λn)(m + n) follows from the assumption that differences are
nondecreasing. Letting k = m + n, one concludes that

∞

∑
n=1

∞

∑
m=n+1

g2
nm < C

∞

∑
n=1

1

(λn+1 − λn)2
< ∞,

establishing the theorem.

Theorem 3.11 Let

f (z) =
∫ ∞

−∞
α(t)e2πizt−π(t−z)2

dt,

where α ∈ L2(R). If f (µ) = 0 and g(z) =
z − λ

z − µ
f (z), then there exists a function β in L2(R)

such that

g(z) =
∫ ∞

−∞
β(t)e2πizt−π(t−z)2

dt. (12)

Moreover,

β(t) = α(t) + 2π(i + 1)(λ − µ)e−2πiµt+π(t−µ)2
∫ t

−∞
α(s)e2πiµs−π(s−µ)2

ds (13)

almost everywhere on R.

Proof. To motivate the proof, let us suppose that g(z) is in fact representable in the form
(12), and try to deduce (13). If (12) holds, then

1

z − µ

∫ ∞

−∞
α(t)e2πizt−π(t−z)2

dt =
1

z − λ

∫ ∞

−∞
β(t)e2πizt−π(t−z)2

dt.

The trick in solving for β(t) is to transform each of these integrals by first rewriting

e2πizt−π(t−z)2
as

e2πizt−π(t−z)2
= e2πi(z−µ)t+2πiµt−π(t−µ)2+π(z−µ)(2t−z−µ).

and then integrating by parts. When this is done, the result is

1

z − µ

∫ ∞

−∞
α(t)e2πizt−π(t−z)2

dt =
∫ ∞

−∞
α1(t)e

2πizt−π(t−z)2
dt,
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with

α1(t) = −2(i + 1)πe−2πiµt+π(t−µ)2
∫ t

−∞
α(s)e2πiµs−π(s−µ)2

ds,

and

1

z − λ

∫ ∞

−∞
β(t)e2πizt−π(t−z)2

dt =
∫ ∞

−∞
β1(t)e

2πizt−π(t−z)2
dt,

with

β1(t) = −2(i + 1)πe−2πiλt+π(t−λ)2
∫ t

−∞
β(s)e2πiλs−π(s−λ)2

ds.

It follows that α1(t) = β1(t) almost everywhere on R, and so

e2πi(λ−µ)t+π(λ−µ)(2t−(λ+µ))
∫ t

−∞
α(s)e2πiµs−π(s−µ)2

ds

=
∫ t

−∞
β(s)e2πiλs−π(s−λ)2

ds.

To obtain (13), differentiate both sides of this equation with respect to t. Now simply observe
that all of the above steps are reversible, that is β ∈ L2(R).

Remark 3.12 A similar result holds when f is of the form

f (z) =
∫ ∞

−∞
e2πizt−π(t−z)2

dα(t),

and α is of bounded variation on R, only now

g(z) =
∫ ∞

−∞
e2πizt−π(t−z)2

dβ(t),

with

dβ(t) = dα(t) + 2πi(λ − µ)e−2πiµt+π(t−µ)2
∫ t

−∞
e2πiµs−π(s−µ)2

dα(s).

Corollary 3.13 The completeness of system (4) is unaffected if one λn is replaced by another
number.

Nowak [18] showed that the deficit of the regular Gabor system generated by h ∈ L2(Rd)
and a, b > 0 is either zero or infinite if the system is a Bessel sequence in L2(Rd). The next
result on the deficit of the irregular Gabor system (4) is proved as in [19, Th. 4.6]. Here we
give the proof for the sake of completeness.
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18 Fourier Transform

Theorem 3.14 If {λn} is a separated sequence of real numbers such that

λn+1 − λn > 1; (n = 0,±1,±2, · · · )

then the Gabor system (4) has infinite deficiency in L2(R).

Proof. Let N be a fixed but arbitrary positive integer. If K is large enough, then we can
replace

λ0, λ1, · · · , λK

by

µ0, µ1, · · · , µK+N+1,

so that the resulting sequence, relabeled {µn}, satisfies

inf
n
(µn+1 − µn) > 1.

By Theorem 3.10 there is a function ϕ ∈ L2(R) such that

∫

R

ϕ(t)
4
√

2 e−2πiµnt−π(t−µn)2
dt =

{ 1 if n = 0,
0 if n �= 0

.

Thus the system

{
4
√

2 e2πiµnt−π(t−µn)2
: n �= 0

}

is incomplete in L2(R), and we conclude by the above corollary that the deficiency of the
system in L2(R) is at least N.

4. Stability

In this section we study stability of sampling sets in Gabor spaces. Here we let Gh to be the
Gabor space of a Gabor window h ∈ L2(Rd), and Λ be a discrete set in C

d.

Proposition 4.1 [17, Cor. 3.2.3] (Inversion formula for the Gabor transform) Let h, γ ∈ L2(Rd)
be such that �h, γ� �= 0, and we consider Vh f (z) = � f , hz�, for every f ∈ L2(Rd). Then it is
fulfilled that Vh f ∈ L2(Cd). Moreover we have inversion formula given by:

f (t) =
1

�h, γ�

∫

Cd
Vh f (z) MyTxγ(t) dy dx; z = x + iy ∈ C

d.
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The image of L2(Rd) under the Gabor transform with the window h, forms a reproducing
kernel Hilbert space

Gh = {Vh f : f ∈ L2(Rd)}

(a closed subspace of L2(Cd)) which is called Gabor space or model space.

The following result is proved for d = 1 in [19, Prop. 1.29], the proof given here is based on
[17].

Proposition 4.2 The Gabor space Gh of a Gabor window h ∈ L2(Rd) is a Hilbert subspace of
L2(Cd) that is characterized for the following reproducing kernel:

kh(z, z0) = k(z, z0) = kz0 (z) = �hz0 , hz�.

That is, F ∈ Gh if and only if

F ∈ L2(Cd)

and

F(z0) =
∫

Cd
F(z) k(z, z0) dx dy. (14)

Proof. We introduced the inversion formula for the Gabor transform in Proposition 4.1.
Without loss of generality, we may assume that �h� = 1. Now for z0 = x0 + iy0 ∈ C

d we
have

Vh f (z0) =
∫

Rd
f (t) My0 Tx0 h(t) dt

=
∫

Rd

( ∫

Cd
Vh f (z)MyTxh(t)dx dy

)
My0 Tx0 h(t) dt

where z = x + iy. Switching the integrals we have

Vh f (z0) =
∫

Cd
Vh f (z)

( ∫

Rd
MyTxh(t) My0 Tx0 h(t) dt

)
dx dy

=
∫

Cd
Vh f (z)

( ∫

Rd
hz(t)hz0 (t) dt

)
dx dy,

that is,

F(z0) =
∫

Cd
F(z)�hz, hz0 �dx dy

=
∫

Cd
F(z)k(z, z0)dx dy.
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20 Fourier Transform

Therefore k replays all the functions of the space, and as it belongs to this space, it is its
reproducing kernel.

For x, y ∈ R
d we recall Tx describes a translation by x also called a time shift and My a

modulation by y also called a frequency shift. So the operators of the form MyTx or Tx My

are known as time-frequency shifts. They satisfy the commutation relations

Tx My f (t) = (My f )(t − x)

= e2πiy.(t−x) f (t − x)

= e−2πiy.x MyTx f (t)

Then we have

�hz, hz0 � = �MyTxh, My0 Tx0 h�

= �h, T
−x My0−yTx0 h�

= �h, e2πix.(y0−y)My0−yTx0−xh�

= e2πix.(y−y0)
�h, My0−yTx0−xh�

= e2πix.(y−y0)
�h, hz0−z�

In terms of kh(z) = kh(z, 0) = �h, hz� one has

kh(z, z0) = �hz, hz0 � = e2πix.(y−y0)
�h, hz0−z�

= e2πix.(y−y0)kh(z0 − z)

and hence the reproduction formula (14) takes the form

F(z0) =
∫

Cd
F(z)e2πix.(y−y0)kh(z0 − z)dx dy

Using this notations we can deduce that

Vh fz0 (z) = � fz0 , hz� = e2πix0.(y0−y)
� f , hz−z0 �

= e2πix0.(y0−y)Vh f (z − z0).

In this way, to be consistent with the notation and the definition of the transform, we have to
define the translations in C

d of a function F ∈ Gh (or in L2(Cd) in a general way) as:

Fz0 (z) = e2πix0.(y0−y)F(z − z0).
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It is necessary to observe that these translations do not coincide in general with the usual
translation of C

d. But if we look at the function, then we have

|Fz0 (z)| = |F(z − z0)|.

Since in general the function F(z − z0) can not belong to Gh. Taking this into account we can
write the reproduction formula in a bit more compact way

F(z0) =
∫

Cd
F(z)kz(z0)dx dy

The Gabor space has certain good continuity properties. More precisely, the functions of the
space will be uniformly continuous. For F ∈ Gh, since F is defined as a definite integral, it
is uniformly continuous with respect to the free variable of the integrand, i.e. for each ε > 0
there exists δ > 0 such that if |z1 − z2| < δ by using triangle inequality we have

∣∣
|F(z1)| − |F(z2)|

∣∣ ≦ |F(z1)− F(z2)| < ε

Ascensi [19] formalized this idea in the case d = 1 with the following result.

Proposition 4.3 [19, Prop. 5.1] Let Gh be the Gabor space of normalized Gabor window
h ∈ L2(Rd). Then, given ε there exists δ such that if |z1 − z2| < δ, then for every F ∈ Gh

F(z) = � f , hz�

it is fulfilled that

∣∣
|F(z1)| − |F(z2)|

∣∣ < �F�ε = � f �ε.

A good description of the Gabor space is most convenient if there are some complete
characterizations. The best situation occurs when for some analyzing function the Gabor
space is a space of holomorphic functions. The most important example and the only possible
one is the Gaussian function, for which the Gabor space can be identified with the Fock
space, in which the sampling and interpolation sets are completely characterized [20]. The
following assertion is proved for d = 1 in [7], we do not know if the same holds in higher
dimensions.

Problem 4.4 Consider the Gabor space with a Gabor window h ∈ L2(Rd)

Gh =
{

F(z) =
∫

Rd
f (t)e−2πiy.th(t − x) dt, f ∈ L2(Rd)

}
.

Then this space is a space of antiholomorphic functions (i.e., F(x,−y) is holomorphic),
modulo a multiplication by a weight, if and only if h is a time-frequency translation of the
Gaussian function.
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22 Fourier Transform

As the space in that we will work is formed by continuous functions and it has reproducing
kernel, we can sample the functions at any point. Given a set of points of C

d we can consider,
for each F ∈ Gh, the succession of values that F takes in this set.

Definition 4.5 A discrete set Λ = {zj}j∈Z in C
d is said to be a sampling set for Gh if there are

constants A, B > 0 such that

A�F�2 ≦ ∑
j∈Z

|F(zj)|
2 ≦ B�F�2F ∈ Gh.

These sets are very important since they correspond with frames. We give some properties
of Gabor space and sampling set in the case d > 1. The case d = 1 was considered by Ascensi
and Bruna in [7]. The proofs are essentially the same (with little changes in certain cases).
Recall that Gh = {Vh f : f ∈ L2(Rd)} is the Gabor space. Here we assume that �h� = 1.

Proposition 4.6 If Λ = {zj}j∈N is a sampling set for Gh then Λ is a relatively separated set.

Proof. The proof is exactly similar to the proof of [7, Prop. 3.1].

Definition 4.7 Given a continuous function F defined in C
d we define its local maximal function

as:

MF(z) = sup
|w−z|<1

|F(w)|

Lemma 4.8 Let Λ = {λj}j∈Z be a separated set with separation constant ε. Then

∑
λ∈Λ

|k(λ)| <
1

cε2d
�Mk�1,

where c = m(B(0, 1)).

Proof. We suppose without loss of generality that 1 < ε < 2. Then using sub-mean-value
inequality

∑
λ∈Λ

|k(λ)| ≦ ∑
λ∈Λ

1

|B(λ, ε)|

∫

B(λ,ε)
|k(z)| dm(z)

≦ ∑
λ∈Λ

1

|B(λ, ε)|

∫

B(λ,ε)
Mk(z) dm(z)

≦ ∑
λ∈Λ

1

|B(λ, ε)|

∫

Cd
Mk(z) dm(z).
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Since by hypothesis those balls are disjoint, then

∑
λ∈Λ

|k(λ)| <
1

cε2d
�Mk�1.

.

Proposition 4.9 If Λ is a separated set, there exists B > 0 such that

∑
λ∈Λ

|F(λ)|2 ≦ B�F�2; F ∈ Gh.

Proof. Calculating directly we have that

∑
λ∈Λ

|F(λ)|2 = ∑
λ∈Λ


�

Cd
F(z)kλ(z) dm(z)


2

≦ ∑
λ∈Λ

� �

Cd
|F(z)|2|kλ(z)| dm(z)

�
×

� �

Cd
|kλ(z)| dm(z)

�

=
�

Cd
|F(z)|2 ∑

λ∈Λ
|k(z − λ)| dm(z)×

�

Cd
|k(z)| dm(z).

Here
�

Cd |k(z)| dm(z) = m < ∞ because the kernel is integrable and also

∑
λ∈Λ

|k(z − λ)| = ∑
γ∈(z−Λ)

|k(γ)|

is bounded independently of z, and since z − Λ has the same separation constant as Λ we
can apply Lemma 4.8. Then

∑
λ∈Λ

|F(λ)|2 ≦

�

Cd
|F(z)|2 ∑

γ∈(z−Λ)

|k(γ)| dm(z)
�

Cd
|k(z)| dm(z)

≦ B�F�2,

where B =
m

cε2d
�Mk�1 and ε is the separation constant of Λ.

Next, we want to know when the Gabor system G(h, Λ) is a frame for L2(Rd). First
we observe that Vh f (z) = � f , hz� and �Vh f � = � f � (if �h� = 1). As we have bijective
correspondence between Gh and L2(Rd) by the Gabor transform, we can write

∑
λ∈Λ

|F(λ)|2 = ∑
λ∈Λ

|Vh f (λ)|2 = ∑
λ∈Λ

|� f , hλ�|
2
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for every f ∈ L2(Rd) or for every Vh f ∈ Gh. Therefore the frame condition and that of
sampling set are equivalent. We conclude that: given a discrete set Λ ⊂ C

d and a Gabor
window h ∈ L2(Rd), G(h, Λ) is a frame for L2(Rd) if and only if Λ is a sampling set for Gh.

Let Σα = {h ∈ C∞(R) ∩ L2(R) : h′ + zh ∈ L2(R) and �h′ + zh�2 ≦ α�h�2 f or z(t) = t t ∈ R}.
It is clear that C∞

c (R) ⊆ Σα and so Σα is a non empty set.

Lemma 4.10 Let h ∈ Σα and let {λn}n∈N and {µn}n∈N be sequences of scalars and suppose
that there exist positive numbers B and L such that

∑
n

|F(λn)|
2 ≦ B�F�2; (F ∈ Gh)

and

|µn − λn| ≦ L, (n = 1, 2, 3, · · · ).

Then for every F ∈ Gh

∑
n

|F(λn)− F(µn)|
2 ≦ B(eαL

− 1)2
�F�2.

Proof. Let F be an element of Gh. By expanding F in a Taylor series about λn, we find that

F(µn)− F(λn) =
∞

∑
k=1

F(k)(λn)

k!
(µn − λn)

k(n = 1, 2, 3, · · · ).

If ρ is an arbitrary positive number, then by multiplying and dividing the summand by ρ
k

we find also that

|F(µn)− F(λn)|
2 ≦

∞

∑
k=1

|F(k)(λn)|2

ρ2kk!

∞

∑
k=1

ρ
2k
|µn − λn|

2k

k!

Since Gh is closed under differentiation and �F′

�2 ≦ α�F�2 it follows that

∑
n

|F(k)(λn)|
2 ≦ B�F(k)

�

2

≦ Bα
2k
�F�2, k = 1, 2, 3, · · ·

Therefore we obtain

∑ |F(λn)− F(µn)|
2 ≦ B�F�2

∞

∑
k=1

α
2k

ρ2kk!

∞

∑
k=1

(ρL)2k

k!

= B�F�2(e
α

2

ρ2
− 1)(eρ

2 L2
− 1)
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since |µn − λn| ≦ L.

Now by choosing ρ =

√
α

L
we get

∑
n

|F(λn)− F(µn)|
2 ≦ B(eαL

− 1)2
�F�2.

Theorem 4.11 If {λn}n∈N is a sampling set for Gh(h ∈ Σα) then there exists positive constant
L such that if {µn}n∈N satisfies |λn − µn| ≦ L for all n, then {µn}n∈N is also sampling set.

Proof. Since {λn}n∈N is a sampling set for Gh, then there exist positive constants A and B

such that

A�F�2 ≦ ∑
n

|F(λn)|
2 ≦ B�F�2

for every function F belonging to the Gabor space Gh. Let {µn}n∈N be complex scalars for
which |λn − µn| ≦ L(n = 1, 2, 3, · · · ). It is to be shown that if L is sufficiently small, then
similar inequalities hold for the µn’s.

By virtue of the previous lemma, for every F ∈ Gh,

∑
n

|F(λn)− F(µn)|
2 ≦ B(eαL

− 1)2
�F�2

and since �F�2 ≦
1

A
∑n |F(λn)|2 to have

∑
n

|F(λn)− F(µn)|
2 ≦ C ∑

n

|F(λn)|
2

where C =
B

A
(eαL

− 1)2. Applying Minkowski’s inequality, we find that

∣∣∣
√

∑ |F(λn)|2 −
√

∑ |F(µn)|2
∣∣∣ ≦

√
C ∑ |F(λn)|2,

and hence

√

A(1 −
√

C)�F� ≦
√

∑ |F(µn)|2 ≦
√

B(1 +
√

C)�F�
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for every F. Since C is less than 1 if L is sufficiently small, {µn}n∈N is a sampling set for Gh.

Problem 4.12 Let h, k ∈ L2(R). It would be desirable to show that there exists ε > 0 such
that if �k − h� < ε and {λn} is a sampling set for Gh then {λn} is a sampling set for Gk. If
one can show this and h ∈ Σα, then for each k ∈ L2(R) with �k − h� < ε the stability result
of Theorem 4.11 holds for Gk as well. Now since Σα is norm dense in L2(R), one could
conclude that Theorem 4.11 holds for each h ∈ L2(R). At present we are not able to prove
that a "small" perturbation does not effect sampling set.
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Chapter 8

Mineralogical Characterization of Chalcopyrite
Bioleaching

E.R. Mejía, J.D. Ospina, L. Osorno, M.A. Márquez and
A.L. Morales

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/59489

1. Introduction

Chalcopyrite (CuFeS2) is the most important copper ore, comprising approximately 70% of
copper reserves in the world [1,2]. In metallurgical applications, chalcopyrite is mainly
subjected to pyrometallurgy treatment after concentration by a flotation process [3,4]. The
interest in bio-hydrometallurgy has increased recently in order to minimize the sulfur dioxide
emissions, and to reduce energy consumption [5-9]. However, the chalcopyrite copper
leaching rate is slower than other copper minerals such as chalcocite (Cu2S), covellite (CuS),
and bornite (Cu5FeS4) [10]. Initial rapid leaching rates decline with time, and bioleaching
processes release only part of the copper [11]due to so-called passivation reactions at the
mineral surfaces [12, 13]. After almost a century of research into the mechanisms of chalco‐
pyrite dissolution in ferric media, there is a consensus with respect to the formation of a
passivating film on the surface [3, 11-16]. Despite this, the nature of this film remains unknown,
although it has been postulated that it must have low porosity and be a bad electricity
conductor (Córdoba et al., 2008a). Various models were describing the mass transfer diffusion
and chemical reactions on the chalcopyrite surface. Those models have been proposed to
explain the nature and composition of the passivation film that causes slow oxidation of the
chalcopyrite: (I) metal-deficient sulfides, (II) elemental sulfur-Sº, (III) polysulfides-XSn, and (vi)
jarosite-XFe3(SO4)2(OH)6 [4, 11-17].

Klauber (2008) [8] reviewed the chemical characteristics of the surface layer of chalcopyrite
leached with ferric sulfate and suggested passivation candidates including metal-deficient
sulfides and elemental sulfur-Sº. This author suggested that the metal-deficient sulfide is
formed by non-stoichiometric dissolution of sulfides based on analytical evidence. Parker et
al. (2003) [11] used XPS analysis to detect elemental sulfur, sulfate, and disulfide phases in the

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and eproduction in any medium, provided the original work is properly cited.



solid form in chalcopyrite bioleaching experiments. Additionally, chalcopyrite bioleaching
results in the dissolution of iron, which potentially leads to precipitation of Fe3+ hydroxysul‐
fates such as jarosite [11]. Under these conditions, chalcopyrite leaching may involve iron-
deficient secondary minerals and intermediates [19].

These studies agreed that the jarosite precipitation is linked to chalcopyrite passivation. These
different theories require substantial further research. It is, therefore, crucial to tackle the issue
from different angles in an attempt to understand the nature of the recalcitrant chalcopyrite.

Moreover, mineralogical characterization of the products in different types of beneficiation
processes, called “process mineralogy,” has been performed as a fundamental piece of the
planning, optimizing, and monitoring of different minerals [5, 20]. In this way, an appropriate
understanding of the mineralogy in the chalcopyrite and its transformation is essential to
understanding the passivation mechanism [21]. This type of research can be turned quite
complicated due to factors like fine size of particles, low crystallinity, a small proportion of
mineral phases, and nature of ore minerals in the various steps of the process. Due to these
features it is necessary to use different complementary analytical techniques like electron
microscopes, electron microprobe, X-ray diffractometers and spectrometric methods [22, 23].

The primary objective of this research is to characterize the mineral phases generated in the
bioleaching process of chalcopyrite and to understand the evolution or transformation of these
phases to elucidate its influence on chalcopyrite passivation of the process.

2. Material and methods

2.1. Mineral

All experiments were carried out using a natural chalcopyrite sample from “La Primavera”
Mine (La Cruzada Segovia, Antioquia, Colombia). The mineral was subjected to crushing and
milling processes followed by gravimetric separation in a Wilfley table. Afterward, manual
concentration was performed under stereographic microscopy. The mineral composition of
the sample measured by countdown points was 85.23% chalcopyrite (CuFeS2), 1.27% quartz
(SiO2), 1.69% covellite (CuS), 2.53% sphalerite, and 3.37% molybdenite (MoS2). The mineral
was milled using an agate mortar. This guaranteed size, pass through 200 Tyler mesh (~75μm),
and the mineral was then sterilized in a furnace for 90 min at 80 °C.

2.2. Bioleaching experiments

Acidithiobacillus ferrooxidans ATCC 23270 bacterial strains was employed in the bioleaching
experiments. The microorganisms were previously grown in T&K medium ((NH4)SO4:
0.5g/L; MgSO4.7H2O: 0.5g/L; K2HPO4: 0.5g/L) [24, 25]. By successive replacement of the ferrous
sulfate with chalcopyrite. The medium was acidified to pH 1.8 using H2SO4. The flasks were
sterilized by autoclaving for 20 min, 120°C at 18 psi. The experiment was inoculated with A.
ferrooxidans 10% (v/v) with 107 cel/ml. The experiments were carried out for 30 days in 500-mL
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flasks containing 300 mL medium with 10% (w/v) chalcopyrite. Those were shaking at 180 rpm
and 30ºC. All conditions were duplicated, and the respective abiotic control was included.

2.3. Chemical analysis

Measurements of pH (HACH HQ40d multi PHC30103) and redox potential (Shot Handylab
1 Pt 6880) (reference electrode Ag0/AgCl) were performed in situ every day. Samples were
aseptically withdrawn from the flasks after 24 h and then every five days for mineralogical
and chemical analysis. The samples were separated in a DIAMOND IEC DIVISION centrifuge
for 15 min at 3000 rpm. Iron and sulfate concentrations were measured with an UV-visible
GENESYS™ 10 spectrophotometer. The methods employed were 3500-FeD (O-phenantroline)
for total iron according to the Standard Methods for water analysis[26].

2.4. Mineralogical analysis

Combinations of analytical techniques were used in the mineralogical sample characterization.
The Fourier transform infrared (FTIR) spectra for the solid samples were recorded in an FTIR
Spectrophotometer Shimadzu Advantage 8400 using KBr pellets in transmission mode. A
sample of the KBr mixture at a 1:200 ratio was used. A total of 20 scans with a spectral resolution
of 4 cm-1, a range of 400–4000 cm-1, and Happ-Henzel correction were used. The biooxidation
samples were mounted in epoxy resin and polished with sequentially finer SiC grit paper and
a final polish with 0.05-μm alumina powder. Polished section analysis was performed with
JEOL JSM 5910 LV scanning electron microscopy (SEM) in backscattering electron mode and
an energy-dispersive X-ray spectroscopy detector (EDX) (Oxford Instrument) using a beam
voltage of 18 kV.

X-ray diffraction (XRD) analyses of the samples were conducted in a Bruker D8ADVANCE
diffractometer with Cu λ=1.5406 Å radiation generated at 35 kV and 30 mA. XRD data were
obtained using a computer-controlled XRD Panalytical X'Pert Pro MPD. The samples collected
for mineralogical studies have a statistical representation and the analyses performed by
different techniques and on different grains for the same mineral give validity to the results.

3. Results

3.1. Chalcopyrite leaching experiment

Chalcopyrite oxidation in the inoculated culture presented a low pH (2.1), while the control
pH was 2.8. Redox potencial increased from 330 mV until 580 mV. The abiotic control did not
change in the time (180 mV). The dissolution of total Fe (Fig. 1) presented continue increase in
the time showed a maximum value at 15th day (8182.25 ppm) and then decreased and stay
invariant until 7251.44 ppm, abiotic control did not show a significant changes in the time
(780,12 ppm).
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Figure 1. Concentration of total Fe (mg/L) in the Time (Day).

The concentration of SO4
2- reached its maximum value at 15th day (50200 ppm) after this day

it was decreased until 25600 ppm (Fig 2). The no inoculated flask did not present considerable
variation in the time, and those had a significant difference compared with an inoculated test.

Figure 2. Concentration of sulphate (mg/L) in the Time (day).
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Copper extraction was 35.45%; this dissolution was growing at 15th day next stabilized in the
time. Less than 6% of Cu was solubilized in the chemical controls (Fig. 3).

Figure 3. Copper dissolution (%) in the Time (Day).

3.2. Mineralogical analysis

3.2.1. FTIR measurements

Results obtained by FTIR (Fig 4) showed that the predominant mineral phase present was
jarosite, which was confirmed by the presence of the ν3 band (anti-symmetric stretching triply
degenerate vibration) at 1190 cm-1, 1085 cm-1, and 1008 cm-1, ν4 band (deformation vibration)
at 629 cm-1, and ν2 bands (deformation vibration doubly degenerate) at 513 cm-1 and 470 cm-1

[19, 21, 27, 28]. There was also absorption at 740 cm-1, 870 cm-1, and 1414 cm-1, which may
correspond to ν3 of NH4

+ in the ammonium jarosite [19]. In addition, typical bands of quartz
at 798 cm-1, 779 cm-1, and 694 cm-1 could be observed [29] as well as the hydroxyl groups at
3400 cm-1 and water at 1640 cm-1 of the jarosite mineral [28, 30]. Bands around 2935 cm-1 related
to the total carbon present on the cell surface showed a permanent increase [31-33]. The samples
did not show a significant difference during the first five days, but between the 5th and the
10th day, the width and intensity of the jarosite bands significantly increased. After this point,
the band increases in the samples were very slow. FTIR of uninoculated samples for all tests
showed a spectrum with little variation compared with the unleashed sample.
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Figure 4. Fourier transforms infrared spectra of solid residues after bioleaching of chalcopyrite. H2O (water), OM (or‐
ganic matter), CO2 (Carbon dioxide), NH4

+(ammonium in jarosite), SO4
2- (sulphate in jarosite) and Qz (quartz).

3.2.2. SEM/EDX analysis

SEM images of uninoculated samples for all tests (Fig. 5) showed surfaces with few alterations
such as isolated cracks. These alterations were interpreted as mineral genetic defects. The
grains had well-defined edges. EDX analysis of the grains showed the chalcopyrite’s stoichio‐
metric composition (Fig. 6). The morphology of the grains exposed to bacteria is illustrated in
Figs. 7. All the samples show typical corrosion features such as pits, grooves, and gulfs on the
surfaces of the chalcopyrite grains (Figs. 7) that increased from the edge of the grain toward
the core. These characteristics were observable the first day of the process and became more
evident with time. EDX also characterized an aggregate containing S, O, and Fe (Fig.6). Average
pit size and pitting density on the surface increased with reaction time. After 15 days, the
surface pitting was extensive, resulting in discrete euhedral and elongated pits and grooves
(Fig. 7). The formation of jarosite aggregates increased with time and sharply increased until
the end of the process. Moreover, some grains showed a partial jarosite film covering the
chalcopyrite grains since the first day of the process (Fig. 7)
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Figure 9. X-ray diffraction spectra of chalcopyrite during the bioleaching process in the 5, 15 and 30 days. (CPy, chalco‐
pyrite; Qz, quartz; Mo, molybdenite; W, wollastonite; Cl, chlorite; J, jarosite; Cv, covellite).

Figure 9. X-ray diffraction spectra of chalcopyrite during the bioleaching process in the 5, 15 
and 30 days. (CPy, chalcopyrite; Qz, quartz; Mo, molybdenite; W, wollastonite; Cl, chlorite; J, 

jarosite; Cv, covellite). 

Figure 10. X-ray diffractograms of uninoculated samples after 30 days of the process. (CPy, chalcopyrite; 
Qz, quartz; Mo, molybdenite; Cl, chlorite; CuS, covellite). 
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4. Discussion

4.1. Chalcopyrite leaching experiment

As previously stated, it is possible to conclude that the chalcopyrite bioleaching process was
passivated. The results suggest that a low level of Fe3+ is favorable for Cu lixiviation since the
copper release slowed at high Fe3+ concentration. Chemical analysis showed that around the
15th day, the system had a flat ferrous ion concentration, high ferric ion concentration, increased
redox potential, and decreased copper dissolution. Hiroyoshi et al. (2001) [10] found that when
the concentration of ferrous and cupric ions is low in the system, the overall reaction of
chalcopyrite leaching is controlled by ferric ions and the copper extraction rate is slower. This
could explain what happened after at 15 days the release of copper occurs more slowly.
Furthermore, ferrous ions promoted chalcopyrite bioleaching below the “critical” potential, in
this case around of 430 mV, which caused enhanced copper removal on days 1–15. In the higher
potential area (days 16–30), the release of copper was smaller than that in the lower-potential
region because there might not have been enough ferrous ion to promote chalcopyrite
bioleaching. The present findings agree with those of previous works [3,4, 10, 34, 35]. The
hypotheses in these works were that the chalcopyrite dissolution was catalyzed by the ferrous
ion according to the following reactions (1-3):

+ 2+ 0 2+
2 2 2CuFeS + 4H + O  Cu + 2S + Fe + 2H O® (1)

2+ 2+ 3+
2 2CuFeS + 3Cu + 3Fe  2Cu S + 4Fe® (2)

3+ 2+ 2+ 0
22Cu S + 8Fe  4Cu + 8Fe + 2S® (3)

These researchers found that the inhibition of chalcopyrite bioleaching by mesophilic micro‐
organisms is due to bacterial consumption of ferrous ion. In these reactions, the role of
microorganisms such as A. ferrooxidans was not evident, and the copper dissolution was a
purely chemical process. However, in the present study, we observed that A. ferrooxidans plays
a fundamental role in the copper dissolution, as can be seen in the chemical controls where
dissolution practically fails to occur.

Nevertheless, some researchers have found that copper release is favored at high Fe3+

concentrations, where this ion contributes to the overall efficiency of the chalcopyrite leaching
in which ferric ions acts as oxidizers, producing elemental sulfur according to the following
reaction (4) [11, 16, 3-39].

3+ 2+ 2+
2CuFeS + 4Fe 5Fe + Cu + 2S°® (4)
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4.2. Mineralogical analysis

From the results previously outlined, it is possible to conclude that the leaching process the
silicates did not present detectable changes, demonstrating refractoriness to it. Jarosite is the
most abundant mineral phase as product of the bacterial leaching of chalcopyrite. There is a
predominance of the ammonic component in the jarosite. The generation of jarosite in bacterial
systems has been already documented in the literature [21]. [40] Produced jarosite using A.
ferrooxidans and demonstrated the preference in the incorporation of K+ and NH4

+ in the jarosite
in this system. Ammonium in the jarosite was incorporated probably from compounds used
as nutrients in these processes.

Jarosite phase could be considered as the unfavorable phase because its presence apparently
would passivate the copper release [5, 10, 11, 16, 34-38]. The jarosite formation was more
marked from 15th day onward, when the system showed a lower concentration of ferrous ion,
a higher concentration of ferric ion, increased redox potential, and a high concentration of
SO4

2- in the solution. Jarosite formation was favored when redox potentials increased above
the critical value (430 mV) around the 15th day, favoring the hydrolysis of ferric ion, promoting
jarosite precipitation, and possibly generating chalcopyrite passivation [5]. The formation of
jarosite was confirmed by FTIR spectra, which showed permanent increases in the typical
bands.

The sharp increase of jarosite bands on the 15th day and its further slow increase was consistent
with the observed chemical data. It is important to note the jarosite bands more defined with
the time. It could involve a crystallinity increase in the jarosite structure. On the other hand,
the increase of the band at 2935 cm-1 was possibly due to an increase in bacterial population,
indicating bacterial activity, which cannot detected by other characterization techniques [33].
Moreover, the NH4 bands increased and were clearer with the time. It could indicate the
NH4 was gradually incorporating into the jarosite structure. Ammonium in the jarosite
incorporated probably from compounds of ammonium, which are used as nutrients in this
process, since it is the case of the ammonium sulfate added in T&K as source of energy [21].
In this way, if the microorganism did not have a NH4 as source of energy they could decrease
its activity.

Furthermore, SEM analysis showed that chalcopyrite dissolution, in the presence of these
microorganisms, occurred on the surface due to the presence of roughening of the grains and
the formation of dissolution pits, both of which increase with time. The pH reigning in the test
and the high levels of Fe3+ and SO4

2- could generate system instability, favoring the precipitation
and nucleation of jarosite agglomerating on small chalcopyrite particles, increasing after the
10th day and forming a non-uniform film on the largest chalcopyrite grains. Jarosite precipi‐
tation was indicated by breakage in the solubility limit of iron and sulfates in the solution,
which could be mitigated by reduced levels of sulfates in the medium [1, 5, 30, 34]

On the other hand, XRD analysis (Figs. 9) indicated that jarosite formed at the expense of
chalcopyrite dissolution. Moreover, XRD spectrum showed a covellita formation at the
expense of chalcopyrite dissolution. In contrast, the chalcopyrite in the control reaction system
remained visually unaltered. Nevertheless, the dissolution of minority phases as molybdenite,
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wollastonite, and chlorite was observed. This mineralogical analysis showed the predomi‐
nance of the galvanic effect, where lower-potential molybdenite dissolves in contact with
chalcopyrite [41, 42].

Moreover, chlorite and wollastonite are soluble in acidic environments [5], and small quantities
of the Cl- ion are not toxic to the bacterial population [43]. The increased relative abundance
in the process could indicate a reduced ratio of chalcopyrite to covellite and, therefore, confirms
the hypotheses raised by Hiroyoshi et al. [44-48], where the ferrous ions promoted chalcopyrite
leaching, favoring the reduction of chalcopyrite to covellite and the simultaneously oxidation
of this mineral. However, in this case, the ferrous ions apparently induced the reduction of
chalcopyrite to covellite and the simultaneous oxidation. The hypothesis of this work was that
the chalcopyrite dissolution was initially catalyzed by the ferrous ion according to the
following reactions (5-7):

+ 2+ 0 2+
2 2 2CuFeS + 4H + O  Cu + 2S + Fe + 2H O® (5)

2+ 2+ 3+
2CuFeS + Cu + Fe  2CuS + 2Fe® (6)

3+ 2+ 2+ 0CuS + Fe  Cu + Fe + S® (7)

Finally, it was possible to define the mechanisms from bacterial leaching of chalcopyrite is
according figure 11:

Figure 11. Chalcopyrite bioleaching mechanism.
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5. Conclusions

The characterization the mineral phases generated in the bioleaching process of chalcopyrite
for A. ferrooxidans allowed understanding the transformation of these phases in the process
chalcopyrite passivation. We showed that chalcopyrite bioleaching is not a typical bioprocess
because faster and greater extractions resulted when the leaching was performed at low redox
potential values. In this case, the ferrous ions apparently favored the reduction of chalcopyrite
to CuS and the simultaneous oxidation of this newly formed phase, increasing the release of
copper. A high concentration of Fe3+ produces chemical instability in the process, favoring the
precipitation of the jarosite principal phase formed in the processes. This phenomenon could
be responsible for inhibiting chalcopyrite bioleaching. The results suggest that the mineral
dissolution rate was affected by jarosite formation. This mineral may limit the diffusion of ions
through the chalcopyrite surface and the access of the leaching solution. The bacteria A.
ferrooxidans play an important role in the chalcopyrite bioleaching.
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