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Preface

Head and neck cancers comprise of tumours arising in the following anatomical locations:
oral cavity, pharynx (nasopharynx, oropharynx, hypopharynx), larynx, paranasal sinuses,
nasal cavity and salivary glands. The predominant type consists of squamous cell carcino‐
mas (95%) whilst the remaining are adenocarcinomas or melanomas.

According to the latest Globocan report issued by the International Agency for research on
Cancer, the estimated incidence of head and neck cancer (HNC) in 2012 among men repre‐
sents 7% of all cancers, while in women is 2.6% [1]. While the incidence of head and neck
cancers caused by known risk factors such as tobacco smoking and alcohol consumption has
lately decreased [2], a relatively new entity of head and neck squamous cell carcinoma, mostly
located in the oropharynx was shown to be on the rise and was attributed to the human papil‐
lomavirus (HPV) [3]. This distinct entity of head and neck cancer holds different biological
characteristics from the non-HPV tumours and responds differently to therapy [3,4]. New
treatment challenges are therefore generated that need solutions in the near future.

Conventional treatment techniques such as surgery and radio-chemotherapy have not im‐
proved significantly the overall 5-year survival of this disease over the past thirty years. The
high mortality rate is due to the fact that most head and neck cancers are diagnosed at ad‐
vanced stages of the disease. Additionally, given the anatomical location of these tumours,
treatment often leads to long-term side effects, which can have a significant impact on the
quality of life. Early diagnosis therefore plays a key role in increasing the therapeutic ratio
and improving patient survival and quality of life.

As for several other tumour types, radiobiology continues to shape the treatment of head
and neck cancers. The original four Rs of radiotherapy (i.e. repair, repopulation, reoxygena‐
tion and redistribution along the cell cycle) have been promoted to six Rs by the inclusion of
radioresistance and remote effects. New developments related to cancer stem cells and their
interaction with the hypoxic environment, as well as the higher radiosensitivity of HPV-pos‐
itive HNC due to their compromised repair capacity are important elements for new treat‐
ment designs.

While the management of head and neck cancer is evolving, there are still several challenges
and unanswered questions that need solutions. Further efforts are needed to resolve clinical
concerns such as:

• Tumour repopulation during treatment and the role of cancer stem cells in head and neck
tumour recurrence;

• Quantitative assessment of radiobiological hypoxia in head and neck tumours and meth‐
ods to overcome hypoxia-driven radioresistance;



• Treatment individualisation based on tumour kinetics and dynamics;

• Distant metastases and systemic treatment approaches;

• The role of targeted therapy in head and neck cancer;

• Treatment directions for HPV positive oropharyngeal cancer and dose de-escalation;

• Reduction of treatment-related normal tissue complications.

Contemporary Issues in Head and Neck Cancer Management is a small compilation of some
topical aspects regarding head and neck cancer treatment, including the etiology of HPV-
positive oropharyngeal cancers and risk factors in the young population, the challenge of
surgical margin definition and the perennial problem of systemic treatment due to distant
metastases. Radiobiological aspects are also covered through the “Rs” of radiotherapy, with
a couple of chapters being dedicated to radioresistance and tumour microenvironment. This
book comes as an addition to the existing literature that aims to tackle this radiobiologically
challenging tumour.

I would like to thank all authors for their hard work and great contributions to this volume
of Contemporary Issues in Head and Neck Cancer Management

Prof. Loredana G. Marcu
Faculty of Science, University of Oradea, Romania

School of Chemistry and Physics, University of Adelaide,
SA, Australia
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Chapter 1

Radioresistance in Head and Neck Squamous Cell
Carcinoma — Possible Molecular Markers for Local
Recurrence and New Putative Therapeutic Strategies

Federica Ganci, Andrea Sacconi,
Valentina Manciocco, Giuseppe Spriano,
Giulia Fontemaggi, Paolo Carlini and
Giovanni Blandino

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/60081

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) comprises 5.5% of all incidence cancers
and is the sixth leading cancer worldwide with approximately 600,000 cases reported annually
[1, 2]. The vast majority of them are squamous cell carcinomas that originate in the epithelium
of the oral cavity, pharynx and larynx. There is a higher incidence rate in males compared to
females and the median age of patients with HNSCC is about 60 years [3]. The main risk factors
for HNSCC are tobacco smoking and heavy use of alcohol. In particular, alcohol consumption
and tobacco smoking have a synergic effect [4]. The contribution of tobacco exposure to
HNSCC carcinogenesis is strongly correlated with the time and rate of the person who smokes
and has showed to have site-specific differences according to the anatomical regions, with an
increase in sensitivity from the oral cavity down to the larynx [5]. In addition, high-risk
infection types of human papillomavirus (especially HPV-16 and 18) is emerging as a major
cause of a subgroup of HNSCC, particularly those of the oropharynx and oral cavity [2, 6]. The
traditional risk factors, tobacco and alcohol use, do not appear to play a contributing role in
HPV-positive cancers [7]. However, it is known that HPV-positive and negative tumors have
different clinical, pathological and molecular characteristics and that HPV-positive tumors are
associated with a more favorable outcome [2, 6] and better response to standard therapy.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Many molecular studies show that these HNSCC may not be as homogeneous as previously
supposed. This indicates the need to obtain a more detailed molecular characterization in order
to stratify patients better. This ultimately is likely to provide a more rational therapeutic
approach, potentially relevant to diagnosis and prognosis of this poorly defined subset of
HNSCC cancer.

2. Therapy strategies and molecular mechanisms of radioresistance

HNSCC is typically characterized by locoregional diffusion and low propensity to develop
distant metastasis. Due to the lack of symptoms in the early stage of the disease, about two
thirds of patients are diagnosed in advanced stage with lymph node metastases. Local
recurrence affects about 50-60% of patients and metastases develop in 15-20% of cases [8], with
the five-year overall survival rate less than 50% [8, 9]. Locoregional failure is the most common
cause of death in patients affected by HNSCC [10]. Recurrence may arise from residual
neoplastic cells that survive to the treatment or from underlying field cancerization. Indeed,
one key feature of HNSCC is the insurgence of recurrences after seemingly complete surgical
resection, probably due to the existence of preneoplastic processes at multiple sites in the
mucosa (“field cancerization” hypothesis). These preneoplastic tissues are apparently tumor-
free when analyzed at histological level but present several genetic alterations when analyzed
at a molecular level [11, 12].

Typically, HNSCC treatment consists of surgical resection followed by ionizing radiation or
chemoradiation, or chemoradiation alone. Therapeutic strategy choice depends on disease
stage: tumors at early stage are treated with surgery or radiotherapy. Surgery can be performed
if complete tumor excision is possible and radiation can be used postoperatively when surgical
margins are positive for the presence of tumor cells and/or if lymphovascular invasion by
tumor is found. Platinum-based agents, in particular cisplatin (CDDP), are the conventional
chemotherapeutic drugs for HNSCC treatment. More advanced cancers require multimodality
therapy combining surgery, radiation and chemotherapy. Concurrent chemoradiation is the
preferred treatment for advanced inoperable HNSCC [13-15]. These standard therapies have
some limitations; they have several side effects and generally more than 50% of HNSCC
patients relapse. The toxicities are mainly due to non-selective nature of treatment. However,
resistance to chemoradiotherapy frequently occurs and is associated with poor outcome. This
is the major clinical problem in HNSCC patients and relies on the fact that recurrence is often
related to an intrinsic tumor radioresistance [14].

Molecular mechanisms underlying the resistance to radiotherapy or combined treatments
mainly involve intracellular pathways related to cell proliferation, apoptosis, DNA repair and
angiogenesis [13, 14, 16, 17]. To date, the main molecular mechanisms for radioresistance are:

• The hypoxia phenomenon

• Alterations in the Epidermal Growth Factor Receptor (EGFR)- PI3K/Akt pathway

• Epithelial Mesenchymal Transition (EMT) process

Contemporary Issues in Head and Neck Cancer Management4
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• The deregulation in p53 signaling cascades

• Alterations in the expression of angiogenic factors

• The presence of cancer stem cells (CSCs) subpopulation in tumor tissue

2.1. Hypoxia

Hypoxia is a common phenomenon present in many tumors and is associated with poor
prognosis, malignant transformation and therapy resistance [18, 19]. In solid tumors, including
HNSCC, oxygen is frequently reduced as the result of intermittent blood flow arising from the
abnormal tumor microvasculature. Under oxygen deficiency, hypoxic tumor cells can activate
the expression of hypoxia-inducible genes, functionally related to pro-survival, anti-apoptosis,
angiogenesis, DNA-repair and metabolism signaling pathways [18, 20]. In particular, tumor
cells switch their glucose metabolism from the oxygen-dependent tricarboxylic acid (TCA)
cycle to oxygen-independent glycolysis metabolic pathway; as a consequence, hypoxic cells
use glycolysis as main mechanism to produce ATP.

A key transcription factor having a central role in hypoxia-related gene expression changes is
hypoxia-inducible transcription factor 1 (HIF-1). In normoxia, HIF-1α undergoes rapid
hydroxylation and degradation. In hypoxia, hydroxylation is prevented, stabilized HIF-1α
binds to HIF-1β and the heterodimer binds to hypoxia response elements in target genes, such
as glycolytic enzymes, angiogenic molecules (among which VEGFA), survival and growth
factors (among which EGF, PDGF and TGF-β), chaperons and other apoptosis resistance-
related proteins [13, 18, 21].

DNA double-stranded breaks (DSB) are the main DNA lesions leading to cell killing after
radiotherapy. Oxygen is known to be a potent radiosensitizer and, through interaction with
the radicals formed following radiation, it is essential for the promotion of radiation-induced
DNA damage. Oxygen deficiency causes a reduction in reactive oxygen species (ROS)
production and a deficit in radiation-induced DNA damage [20]. In agreement with these
evidences, cells irradiated in the presence of air are about three times more sensitive than cells
irradiated under conditions of severe hypoxia [22].

One of the evidences linking hypoxia to radiation response is a correlation between tumor
control and hemoglobin levels [23], which is also related to oxygenation of solid tumors.
Indeed, high hemoglobin (Hb) level, prior to and during treatment, has been associated with
good prognosis in HNSCC patients treated with radiotherapy [23].

Hypoxia problem is particularly relevant in smoker patients. Indeed, in these HNSCC patients,
the low oxygen level is also influenced by the formation of carboxyhemoglobin (COHb) and
nicotine vase constrictive effect. As a consequence, the response to treatment and survival of
smoker patients is significantly reduced compared to nonsmokers [23].

Given the influence of hemoglobin on tumor oxygenation and radiotherapy response, many
researches tried to find methods able to increase Hb level in HNSCC patients having low Hb
level, prior to and during radiation treatment; transfusion, or erythropoietin stimulating
agents, are some of them, but unfortunately did not result in improved outcome or response

Radioresistance in Head and Neck Squamous Cell Carcinoma — Possible Molecular Markers for Local Recurrence…
http://dx.doi.org/10.5772/60081
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to therapy [23]. To date, the main radiosensitizing and cytotoxic agents used in the clinical
practice for hypoxic cells targeting are nitroimidazoles, which have also been shown to
improve locoregional control, when applied in conjunction with radiation [20].

There is also interest in the use of nitroimidazoles as noninvasive hypoxia markers [24, 25].
Indeed, it remains difficult to identify hypoxic tumors and those patients most likely to benefit
from hypoxia modification therapy. Under hypoxic conditions, nitroimidazoles are converted
into reactive intermediates, which then become covalently bound to macromolecules within
the cell. Nitroimidazoles labeling with an appropriate isotope or immunologically recogniza‐
ble marker allows the bioreduced compound to be detected, indicating the presence of
hypoxia.

Additional indirect non-invasive techniques being explored to identify hypoxic tumors
include measuring the immunohistochemical expression of hypoxia-regulated proteins, such
as carbonic anhydrase 9 (CA9) and HIF-1α [26, 27]. This represents an attractive approach for
routine clinical use, but is limited by the variability of expression of these markers within a
tumor and by the lack of hypoxia specificity of individual proteins. An attempt to overcome
these problems has been carried out by searching for tumor hypoxia gene signatures by meta-
analysis of transcriptome datasets [28-30]. Winter and colleagues defined an in vivo hypoxia
metagene by clustering around the RNA expression of a set of known in vitro hypoxia-
regulated genes; this signature was also validated as a prognostic factor for recurrence-free-
survival in an independent data set [30].

2.2. Alterations in the Epidermal Growth Factor Receptor (EGFR)-PI3K/Akt pathway

Epidermal growth factor receptor (EGFR) is a transmembrane protein with tyrosine kinase
activity that is overexpressed in about 90% of HNSCC, even if its expression is highly variable
according to different subgroups of head and neck tumors as well as within the same tumor
type [2, 14]. Stimulation by extracellular soluble ligands as epidermal growth factor (EGF) and
transforming growth factors (TGFs) induces a conformational change leading to receptor
heterodimerization with one of its family members (ErbB2, ErbB3, ErbB4); this causes auto‐
phosphorylation of the receptor intracellular domain and subsequent internalization followed
by the activation of multiple signaling pathways, such as Ras-MAPKs (mitogen-activated
protein kinases), extracellular signal-regulated kinases (ERKs), phosphatidylinositol-3-kinase-
AKT (PI3-K/AKT), signal transducers and activators of transcription (STAT) and phospholi‐
pase C gamma (PLC-g) pathways [20].

High EGFR expression correlates with poor prognosis and resistance to conventional radio‐
therapy. EGFR expression can also be activated by the ionizing radiation itself, leading to
increased radioresistance [20]. EGFR activation is also involved in increased proliferation rate
and consequent repopulation, rendering radiotherapy ineffective [14].

Key proteins activated by EGFR are AKT and Ras; the first one is a kinase which phosphory‐
lates multiple downstream effectors, stimulating cell survival and inhibiting apoptosis; Ras is
a cell membrane protein able to stimulate a tyrosine kinase cascade, including B-RAF, MEK,
MAPK proteins, by which Myc, FOS and Jun translocate in the nucleus finally promoting cell
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proliferation. This cascade is also able to stimulate the production of EGFR monomers, TGFs
and amphiregulin (AREG), contributing to paracrine EGFR activation [14]. Other proteins
activated by EGFR are cyclin D1 and Pim-1, involved in cell cycle progression and inhibition
of apoptosis; for the activation of both, the signal is mediated by STATs proteins [31, 32]. In
addition, the interaction between EGFR-PI3-K/AKT and HIF pathways was also observed
under hypoxic conditions, providing evidences on the correlation between EGFR signaling
and the induction of angiogenic proteins, such as VEGFA, which is a downstream target of
HIF-1 [20]

A subgroup of HNSCC (40%) expresses a truncated splicing variant of the EGFR, called
EGFRvIII, in which the ligand-binding domain is altered, due to the deletion of amino acids
6-273. This alteration causes a permanent phosphorylation and activation of the receptor, also
in the absence of EGF and TGFs ligands binding. As wild-type EGFR, EGFRvIII is implicated
in increased cell proliferation, cell survival, motility and invasion. This variant is absent in
normal tissues [17].

Besides EGFR overexpression, other mechanisms are involved in PI3K/Akt signaling hyper-
activation, such as Ras activation, PI3-K gene mutation, Akt gene amplification and loss of
tumor suppressor protein PTEN [14].

2.3. Epithelial Mesenchymal Transition (EMT) process

Another important mechanism by which radiotherapy can fail in HNSCC is epithelial to
mesenchymal transition (EMT) process. When EMT occurs, epithelial cells change in mesen‐
chymal phenotype which is characterized by reduction of the matrix contact, cell–cell adhesion
followed by an increase in cell migration and motility. A crucial step of EMT is the loss of E-
cadherin, a strong epithelial marker involved in adherens junction that anchors epithelial cells
to each other [33]. A reduction of E-cadherin level was observed in HNSCC, especially in poorly
differentiated tumors. In addition, many studies have demonstrated that aberrant E-cadherin
expression is associated with poor outcome and local recurrence in HNSCC [34]. Loss or
decrease of E-cadherin expression causes the translocation of β-catenin protein from the cell
membrane to the nucleus to induce transcription of EMT-related genes, such as TWIST and
SNAIL1 [33]. Another important protein involved in EMT is vimentin, which is an intermediate
filament protein used as a marker for mesenchymal cells and is associated with the migratory
phenotype, local recurrence and survival in HNSCC [34, 35]. Also fibronectin, a glycoprotein
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to transcriptionally regulate wt-p53 target genes and to exert antitumor effects such as
apoptosis, growth arrest, differentiation and senescence. On the other hand, countless
evidence has demonstrated that at least certain mutant forms of the p53 protein may possess
gain of function activity, thereby positively contributing to the development, maintenance and
spreading of many types of tumor, including HNSCC [38, 39]. The prognostic role of p53
alteration in HNSCC is controversial. However, generally, deregulation of p53 protein predicts
shorter overall survival, local recurrence and cancer treatment failure [40-44].

In particular, p53 alteration leads to an impaired capability to arrest cell cycle and to inhibit
apoptosis. In addition, in this condition also DNA damage repair results compromised. As
a consequence, tumor cells carrying TP53 mutation are less sensitive to radiation-induced
cell  death  and  are  unable  to  restore  DNA  integrity,  thus  accumulating  several  genetic
mutations  which  lead  to  increased  tumor  heterogeneity  and  finally  to  resistance  to
conventional therapy [14].

In addition, several evidences show that its prognostic value depends on the TP53 protein
domain affected by mutation [43-46]. One of the main classifications of TP53 mutation used in
HNSCC is “disruptive” versus “not-disruptive”; any mutation in L2 or L3 loop of the DNA-
binding domain resulting in a polarity change of the protein or any stop codon was classified
as disruptive [44]. Disruptive TP53 mutations were associated with poor outcome and
increased radioresistance [44, 46]. Other studies have proposed an alternative classification by
which mutations in DNA-binding regions, especially in L2 and L3+LSH motifs, were associ‐
ated with poorer prognosis and clinical response to radiotherapy [45].

Of note, emerging evidences show that senescence may play a role in the radiation response
by wild-type p53 [47]. Senescence is a form of cell cycle arrest in which cells lack replicative
potential while remaining metabolically active, and was found to correlate with radiosensi‐
tivity in HNSCC [46]. In the proposed model, in the presence of TP53 wild type or nondis‐
ruptive mutation, radiation promotes the induction of ROS production and p21 protein
expression, which are critical mediators of cellular senescence. TP53 disruptive mutations
cause cellular senescence inhibition by reduction of radiation-induced ROS, thus driving
resistance to radiotherapy [46].

2.5. Alterations in the expression of angiogenic factors

Angiogenesis is a process by which new blood vessels grow up from preexisting capillaries.
Because expanding tumors have a continuous need for oxygen and nutrients, tumor cells
induce angiogenesis. In particular, by secreting a variety of growth factors they activate the
endothelial cells, constituting the inner lining of blood vessels, which produce proteases that
degrade the basal membrane and extracellular matrix components. As a consequence, the
endothelial cells can proliferate and migrate forming new capillary beds. Because in tumors
new blood vessels are irregular and disorganized, the oxygen supply inside the tissue is not
homogenous, resulting in continuous angiogenesis stimulation [48].

The main actors of this process are vascular endothelial growth factor (VEGF), fibroblast
growth factor (FGF) and matrix metalloprotease (MPP) family proteins.
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VEGF family consists of seven ligands, which play a central role in the formation of new blood
vessels; VEGFA is the best known agent that induces angiogenesis by binding two receptor
tyrosine kinases, VEGFR-1 and VEGFR-2. VEGFA is able to promote development of the
vascular system, cell migration, survival and induction of MMPs [13]; it also activates
PI3K/AKT and Ras/MAPK signaling pathways [49]. There are increasing evidences that
angiogenic response of irradiated tumor cells is related with decreasing radiation sensitivity
and head and neck cancer progression. In a meta-analysis of 12 studies including 1002 patients
affected by cancer of oral cavity, pharynx and larynx, VEGF expression positivity was
associated with a two folds higher risk of death at 2 years of follow-up [50].

Release of VEGF and bEGF by epithelial tumor cells after irradiation is a common response
mechanism by which cancer cells may survive and become protected from radiation-induced
cell death [51]. Therefore, the level of VEGF and bEGF prior to and during treatment may be
relevant for successful therapy.

2.6. Cancer Stem Cells (CSCs)

Cancer stem cells (CSCs) have been defined by Clarke et al., as a small tumor subpopulation
possessing the capability to self-renewal and causing the heterogeneous lineage of cancer cells
inside the tumor [52]. They are functionally defined as a subset of tumor cells with ability of
self-renewal and multipotency, serving as progenitors of cancer cells. The characteristics by
which CSCs can be distinguished to other cancer cells are the following [53]:

1. Promotion of tumorigenesis when they are transplanted in immunosuppressed mice.

2. Expression of specific cell surface markers (such as CD44, CD133, ALDH1, CD24) and
formation of tumor spheres.

3. Tumors arising from CSCs have a heterogeneous cells population composed by tumori‐
genic and non-tumorigenic cells.

4. Capacity of self-renewal in seriated transplants over several generations.

The presence of this subpopulation has been identified in several tumors, including HNSCC
where its ability to maintain tumor population, metastasize and to be resistant to radioche‐
motherapy has been shown [53-55].

The origin of CSCs has not been clearly defined; in HNSCC, it has been proposed that a chronic
inflammation caused by permanent tobacco, alcohol use, mechanic irritation or viral infection,
in association with genetic predisposition, lead to the accumulation of various genetic
alterations and finally to the manifestation of a malignant phenotype [53].

In addition, during tumor progression, some CSCs, through an EMT process, can acquire the
ability to infiltrate and metastasize. On the other hand, EMT is involved in the acquisition of
cancer stem cells properties; at the molecular level, the transcription factor Twist induces
downregulation of E-cadherin while promoting expression of Bim1, which has an essential
role in self-renewal of CSCs. In agreement with these data, high expression of Bim1 and Twist
are associated with a poor prognosis in HNSCC [53].
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In HNSCC patients, high percentage of CD44 positive cells was associated with higher rate of
treatment failure in general, while cells expressing CD44, CD24, Oct4 and integrin β1 were
associated with poor outcome after radiotherapy [56, 57]. From a clinical point of view, these
evidences suggest that the patients can be cured if CSCs are completely eliminated.

3. Potential molecular markers for local recurrence and radioresistance

One of the current major research questions in the management of HNSCC disease addresses
the prediction and treatment of local recurrence. As described before, mortality of patients
with HNSCC is primarily driven by tumor cell radioresistance leading to local recurrence. Due
to the heterogeneous nature of tumors, the identification of markers with prognostic or
predictive value to be used as a complement to conventional diagnostic methods is a complex
challenge. Indeed, although advance in expression technologies, current studies have provid‐
ed ambiguous results.

Among the prognostic markers proposed in HNSCC, as described in the previous paragraph,
the presence of mutation in TP53 gene predicts the development of locoregional recurrence by
increasing the radioresistance in tumor cells (Table 1).

Additional molecular markers predicting high local recurrence development and response to
radiotherapy are summarized in Table 1.

Gene Function References

TP53
A tumor-suppressor regulating cell cycle progression, apoptosis and
cell survival.

[2, 42, 44, 46, 58]

HIF-1α
A transcription factor induced under hypoxic condition and
promoting EMT, angiogenesis, cell migration and metastasis.

[16]

PTEN
A tumor suppressor gene regulating signaling pathways controlling
cell proliferation and apoptosis.

[59-62]

Fibronectin
It is a glycoprotein of the extracellular matrix, which plays a major
role in cell adhesion, growth, migration, and differentiation.

[36]

EGFR
Transmembrane TK acting as a central transducer in multiple
pathways that mediate cell cycle progression, angiogenesis,
inhibition of apoptosis, tumor invasion and metastasis.

[14, 20]

VEGFs
Ligands of transmembrane TK promoting cell proliferation,
migration and survival of endothelial cells during tumor growth.

[13, 14, 20, 51]

Cox2
Catalytic enzyme decreasing apoptosis, increasing inflammation
and important for tumor progression.

[63]
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Gene Function References

p-AKT (Ser473)
It is a serine/threonine-specific protein kinase that plays a key role in
multiple cellular processes such as glucose metabolism, apoptosis,
cell proliferation, transcription and cell migration.

[64]

Cyclin B1

It is a regulatory protein involved in mitosis. It begins to increase
during G2, peaks in mitosis, and is rapidly degraded before the cell
cycle is completed. By the interaction with cdk1, cyclin B1 promotes
cell progression.

[65, 66]

E-cadherin/
Vimentin

They are protein markers of EMT; E-cadherin is a marker of
epithelial cells, while vimentin is a marker of mesenchymal cells.

[34, 35]

Yap/BCL-2/
c-met/VEGF/ Clauding

They are genes involved in cell proliferation, migration, inhibition of
apoptosis and angiogenesis.

[67]

Rac1
It is a member of Rac family of Rho GTPase involved in intracellular
adherens junction, epithelial differentiation and regulation of
motility.

[68, 69]

Pim-1
It is an oncogene with serine/threonine kinase activity mainly
involved in cell cycle progression, apoptosis and transcriptional
activation.

[32]

CD10 Cell surface antigen associated with CSCs. [70]

FOXM1
It is a gene involved in cell cycle regulation, which is associated with
radioresistance only in quiescent cells.

[71]

15–gene hypoxia classifier
composed by ADM,
ALDOA, ANKRD37,
BNIP3, BNIP3L, C3orf28,
EGLN3, KCTD11, LOX,
NDRG1, P4HA1, P4HA2,
PDK1, PFKFB3, SLC2A1

These genes are able to classify more or less hypoxic tumors.
Tumors classified as high hypoxic and treated with radiotherapy
show a poor outcome respect to low hypoxic ones. Accordingly,
more hypoxic tumors have a better response to radiosensitiser
nimorazole respect to those classified as low hypoxic.

[29]

Gene expression model of
intrinsic tumor
radiosensitivity based on
the expression of 10 genes
composed by Androgen
Receptor (AR), c.Jun,
STAT1, PKC, RelA, c-Abl,
SUMO-1, CDK1 (p34),
HDAC1, IRF1

The authors developed a radiosensitive predictive model using 10
genes comprised in central pathways involved in radioresistance.
This linear regression algorithm generates a radiosensitive index RSI
having a prognostic value in HNSCC datasets.

[72]

Table 1. Biomarkers predicting local recurrence and radioresistance in head and neck cancers.
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3.1. MicroRNAs as new potential biomarkers predicting radiotherapy response

A class of small non-coding RNAs termed microRNAs (miRNAs) has recently been indicated
as biomarker of some type of cancers [73]. miRNAs are endogenous, small, non-coding RNAs
of 17-25 nucleotides that are thought to regulate approximately 30% of human genes at
posttranscriptional level, primarily through their partial complementarity with the coding
region or 3’ untranslated region (UTR) of target mRNAs. This leads to translational repression
and/or degradation of target mRNA, therefore regulating gene expression [74]. They are
involved in essential biological activities such as cellular differentiation, proliferation,
development, apoptosis and cell cycle regulation. The roles of miRNAs in cancer have been
extensively investigated in the past few years. The relevance of miRNAs in cancer was
suggested by the observed changes in expression patterns and recurrent amplification as well
as deletion of miRNA genes in cancer [75]. It has been shown that there are two types of cancer-
related miRNAs: oncogenic or tumor suppressor miRNAs [74].

Several investigators have empathized the role of miRs as biomarkers for HNSCC [42] and the
usefulness of miRs as prognostic factors has only begun to be explored. Moreover, miRNA
expression may predict the efficacy of therapies, including radiotherapy [76]. Data from the
study of miR-205 and let-7d expression showed their association with locoregional occurrence
and shorter survival [77]. In addition, high expression of miR-205 can be used to detect positive
lymph nodes, suggesting that this miR can be considered as a marker for metastatic HNSCC
[78]. A similar study has shown that lower expression levels of miR-451 in HNSCC tumors are
associated with recurrence [79]. Another recent work reported that downregulated miR-125b
expression was associated with proliferation and radioresistance mechanisms, probably
through ICAM2 signaling [80]. In addition, miR-17-5p expression has been shown to be
induced in irradiated oral cancer cells and it downregulates p21 protein expression, contribu‐
ting to radioresistance [81].

Furthermore, we also identified microRNAs signatures (miR-17-3p, miR-18b-5p, miR-324-5p,
miR-19a-3p, miR-200a-3p, miR-331-3p, miR-21-3p, miR-21-5p, miR-205-5p, miR-151a-3p,
miR-96-5p and miR-429) that are able to predict the risk of local recurrence and poor outcome
in HNSCC tumors, and that are more powerful as biomarkers when compared to traditional
prognostic indicators [42]. Finally, some evidences support the possibility to use miRNA
detected in plasma as radio-responsive biomarkers for different types of cancer, including
HNSCC. Accordingly, in HNSCC patients, the authors have detected changes in the abun‐
dance of circulating miRNAs (miR-425-5p and miR-93-5p) during radiochemotherapy. In
addition, the researchers have demonstrated that the altered plasma miRNA changes after the
therapy are the results of miRNAs release from damaged tumor cells [82].

4. Molecular strategies and future application in the treatment of HNSCC

Conventional HNSCC treatment consists of surgical resection followed by ionizing radiation
or chemoradiation. In case of local advance/inoperable HNSCC, the typical treatment is
concomitant platinum-based chemoradiotherapy. These standard therapies have some
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limitations; the surgery can result in disfigurement and functional impairment, while the
radiochemotherapy, although it is an organ-preserving treatment, can cause several side
effects including mucositis, oral candidiasis, loss of taste, xerostomia and osteoradionecrosis
[83, 84]. In addition, overall five-year survival rate is lower than 50% in HNSCC patients.
Therefore, resistance to chemoradiotherapy often occurs and is associated with recurrences
and poor outcomes; this represents a major clinical problem for HNSCC patients [14].

The understanding of the molecular perturbations in the cells of carcinomas recurring after
irradiation could help to identify more specific target proteins and design novel therapeutic
agents that will help improving therapy outcome in patients with HNSCC recurrences.

Tumor cells repopulation is a common effect observed in radiotherapy failure. A method to
decrease this phenomenon, called Accelerated Radiotherapy (AR), is the reduction of overall
radiation treatment time maintaining the total dose constant [14]. This therapeutic approach
has produced excellent results in patients with advanced HNSCC [85]. In addition, several
studies have shown that patients overexpressing EGFR protein, result to be more sensitive and
consequently to have a better response to AR [14].

Besides the modification of radiotherapy modalities, there are several therapeutic strategies,
such as, for example, immunotherapy, that can be combined with radiation, and are subjected
to clinical development [86] (Table 2). Currently, two of the main intriguing targets for new
targeted therapy are EGFR and VEGFR [86]. Both targeted therapies can be subdivided in
monoclonal antibodies and tyrosine kinase inhibitors.

4.1. EGFR targeted therapy

The role of EGFR signaling in radioresistance was widely discussed in the paragraph 2.2. Many
evidences suggest that the use of EGFR inhibitors in combination with radiotherapy improves
the outcomes of HNSCC patients respect to those treated with radiotherapy alone [14].

4.1.1. EGFR monoclonal antibodies

One of the main antibodies targeting EGFR is called cetuximab. Other anti-EGFR antibodies
under active investigations in combination with chemoradiotherapy in HNSCC are panitu‐
mumab, zalutumumab and nimotuzumab (Table 2).

Cetuximab: It is a chimeric IgG1 mAb, which by the recognition of determinants expressed on
the extracellular domain of EGFR, antagonize normal receptor interaction, preventing the
activation of the downstream signaling pathways [17]. Based on the results obtained from the
clinical trials, since 2006 it has been approved by the Food and Drug Administration (FDA) in
association with radiotherapy [14, 86]. However, a meta-analysis studying 15 trials and
focusing on the comparison of the two currently combined modality therapies show that
chemoradiotherapy respect to radiotherapy plus cetuximab is associated with a better overall
survival and locoregional recurrence in advanced HNSCC [87]. In addition, some HNSCC
patients develop a resistance to anti-EGFR therapy mainly due to k-Ras deregulation in
absence of its mutation [14, 17, 88] and the presence of the variant EGFRvIII in tumor cells [17].
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In this last case, the deletion presents in this variant cause a reduction in the binding affinity
of monoclonal antibodies raised with wild type EGFR [17].

Panitumumab: Preclinical evidences show that it increases radiosensitivity by the radiation-
induced DNA damage and preventing the translocation of EGFR in the nucleus. Currently,
therapy combining radiation in combination with panitumumab is undergoing phase III
clinical trials [86]. In addition, a phase III trial performed in advanced HNSCC patients to
compare 5-FU and cisplatin treatment in presence and not of panitumumab have not shown
an important improvement of the clinical outcome [89].

Zalutumumab: Several studies on phase I/II trial were performed using this drug at different
doses in combination to radiation and/or chemotherapy; the results are encouraging and a
phase III is ongoing [86].

Nimotuzumab: Preclinical studies show that it has antiproliferative, antiangiogenic and
proapoptotic effects and it is well tolerated in HNSCC patients treated with radiation [86].
However, it has been demonstrated that cetuximab is more effective in comparison to nimo‐
tuzumab in enhancing radiosensitivity in high-EGFR expressing cells [90].

In conclusion, antibody anti-EGFR in combination with radiation therapy was well tolerated
in HNSCC patients; currently, the best-studied mAb are cetuximab and panitumumab. Both
improve radiosensitivity and overall survival in advanced HNSCC treated with radiation.
However, the addition of cetuximab to conventional chemoradiotherapy has not shown a
significant improvement in clinical outcome and the results obtained from the treatment of a
large number of patients in multi-centered trials has shown that the treatment is effective in
about 20% of cases [17].

To date, the use of cetuximab in combination with radiation represents a standard clinical
approach, particularly in HNSCC patients who cannot tolerate chemotherapy [86].

4.1.2. EGFR tyrosine kinase inhibitors

Another group of agents targeting EGFR are small molecule tyrosine kinase inhibitors (TKIs).
They act preventing EGFR autophosphorylation and consequently its activation by the
occupation of the EGFR intracellular ATP-binding domain [17]. The two best studied TKIs are
gefitinib (Iressa) and erlotinib (Tarceva). Others are called lapatinib and afanitib (Table 2).

Gefitinib: Preclinical studies show that gefitinib treatment on HNSCC cells can inhibit cell
proliferation, decrease cell survival and enhance tumor cell radiosensitivity [91]. In addition,
encouraging results were obtained in the clinical studies when gefitinib was combined with
VEGFR inhibitors or other targets, suggesting the possibility to use it as possible neoadjuvant
agent. Besides that, clinical trials combining gefitinib with chemoradiotherapy have not yet
demonstrated a significant improvement respect to conventional therapy [86].

Erlotinib: Encouraging results were obtained from preclinical studies showing that the
combination of erlotinib with radiation and/or VEGFR inhibitors improve treatment efficacy
by the inhibition of tumor growth, proliferation and vessel density [92, 93]. However, to date,
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there is no convincing clinical evidence that the addition of erlotinib to conventional therapy
is universally beneficial [86]

Lapatinib and Afatinib: They are orally active EGFR and HER2 inhibitors, which seem to be well
tolerated from HNSCC patients. Interestingly, in p16-negative HNSCC patients, a large
difference in clinical outcome was observed in patients treated with lapatinib versus placebo.
Phase III trials are ongoing in HNSCC for both molecules [86].

4.2. VEGF targeted therapy

As explained in the paragraph 2.5, VEGF is one of the most important regulators of angiogen‐
esis; its upregulation is a common event in HNSCC and it is associated with radioresistance
and poor prognosis.

4.2.1. VEGF monoclonal antibodies

Bevacizumab (Avastin) (Table 2) is the main recombinant anti-VEGFA monoclonal antibody
under active investigation for HNSCC therapy. Preclinical evidences show that bevacizumab
is able to act as radiation sensitizer in HNSCC cells, to reduce angiogenesis and tumor growth
[86]. Phase I/II clinical trials performed using bevacizumab in combination with conventional
chemoradiotherapy in HNSCC have shown that although this combined modality therapy is
possible, to date there is no strong evidence that the addition of bevacizumab to chemoradio‐
therapy causes an improvement of the overall survival in HNSCC patients [13]. Future
investigations are necessary to define the effectiveness of this molecule in the treatment of
HNSCC.

4.2.2. VEGFR tyrosine kinase inhibitors

To date, the known VEGF tyrosine kinase inhibitors are: vandetanib (ZD6474), sunitinib,
sorafenib and linifanib (ABT-869) (Table 2).

Vandetanib: It is an orally multi-kinase inhibitor targeting EGFR, VEGFR-2 and RET tyrosine
kinases. Preclinical evidences show that the administration of vandetanib enhances the
antitumor effects of radiation therapy by inhibition of both EGFR and VEGFR signaling in
HNSCC human tumor xenografts; in particular, the authors demonstrate that radiation plus
vandetanib treatment is effective in both overexpressing EGFR tumor cells and EGFR- null
cells [94]. In addition, vandetanib restores HNSCC cells sensitivity to cisplatin and radiation
in vivo and in vitro by promoting an increase of apoptosis and a decrease of microvessel density
[95]. A randomized phase II clinical trial using a combination of cisplatin and radiation with
or without vandetanib in advanced HNSCC is under consideration [13].

Sunitinib: It is an orally multi-kinase inhibitor targeting VEGFR, PDGFR and c-Kit tyrosine
kinases. Preclinical and clinical studies show that sunitinib has low activity as monotherapy,
but in combination with cetuximab and radiation, it causes a strong tumor inhibition effect by
a complete abolition of tumor growth. Specifically, the combination of cetuximab and sunitinib
causes a decrease of cell proliferation and enhances cell differentiation, while a decrease in
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tumor vessels number was observed when the radiation treatment was added [96]. These
results encourage future clinical investigations regarding the sunitinib and chemoradiother‐
apy treatment combination.

Sorafenib: It is an oral inhibitor of serine/threonine protein kinase b-Raf, C-Raf, VEGFR and
PDGFR. Preclinical evidences show that sorafenib in combination with chemoradiation is able
to enhance a more effective antitumor effect by the inhibition of cell growth, clone formation,
cell migration and invasion compared to chemoradiation or radiation alone. This therapy
combination is also able to inhibit tumor angiogenesis [97]. In addition, sunitinib can increase
the antiproliferative effect of chemoradiotherapy by inhibiting the Raf/MEK/ERK signaling
pathway and consequently downregulating the expression of the DNA repair proteins ERCC-1
and XRCC-1 [13]. Although these results suggest that sorafenib could enhance the effectiveness
of chemoradiotherapy, ongoing phase I/II clinical trials will determine the real efficacy of
sorafenib in HNSCC patients.

Linifanib: It is a novel ATP-competitive tyrosine kinase inhibitor of the VEGF and PDGF
receptor family members. Preliminary data on HNSCC cells show that linifanib can act as
radiation sensitizer since its combination with radiation is more effective compared to
radiation or chemoradiation alone [13].

4.3. Other targeted therapies

As explained in the paragraph 2 relative to molecular mechanisms of radioresistance, there
are many actors playing a key role in the failure of radiotherapy in HNSCC. As a consequence,
targeted therapies against other molecules besides EGFR and VEGF family proteins were
developed and their characterization is still ongoing. Among them, there are Src-family kinase
inhibitors such as dosatinib; proteasome inhibitors as bortezomib, cyclooxygenase(Cox)-2
inhibitor (colecoxib); PI3K/Akt/mTOR inhibitors as wortmannin, perifostine and temsiroli‐
mus; and therapies targeting c-Met signaling pathway [14, 86] (Table 2).

Briefly, Src-kinase inhibitor dasatinib promotes radiosensitization by decreasing EGFR
phosphorylation, its translocation in the nucleus and consequently, its association with DNA–
protein kinases, blocking DNA repair pathways [98, 99]. Evidences on proteasome inhibitor
bortezomib show its capability to act as radiosensitizer; specifically, it promotes the upregu‐
lation of PTEN activity and downregulation of p-Akt, leading to an increase of apoptosis of
tumor cells [100-102]. Cox inhibitor colecoxib leads to a decrease of VEGFR expression and
angiogenesis [103]. Next, mTOR inhibitors cause a reduction of angiogenesis and an induction
of cell death by autophagy [86, 104]. Finally, given the important role discussed in the
paragraph 2 on the significance of CSCs subpopulation in radioresistance, an emerging concept
is the combined use of standard chemoradiotherapy with cancer stem cells targeted therapy.
Preclinical study on CD44 expressing HNSCC cells combine radiation with anti-CD44
antibodies; the results show an increase in local tumor control in patients treated with radiation
plus anti-CD44 antibodies compared to those treated with radiation alone in vivo [105].
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Anticancer Agent Type of agent Target of Agent Phase of development in HNSCC

Cetuximab mAb IgG1 EGFR Approved by FDA, phase III/IV

Panitumumab mAb IgG2 EGFR Phase III

Zalutumumab mAb IgG1 EGFR Phase III

Nimotuzumab mAb EGFR Phase III

Gefitinib TKI EGFR Phase I/II

Erlotinib TKI EGFR Phase I/II

Afatinib TKI EGFR/HER2 Phase III

Lapatinib TKI EGFR/HER2 Phase III

Bevacizumab mAb VEGFA Phase III

Vandetanib TKI VEGFR/EGFR Phase I

Sunitinib TKI VEGFR/PDGFR/kit Phase I

Sorafenib TKI VEGFR/PDGFR/Raf Phase I

MM-121 mAb IgG2 HER-2 Preclinical phase

Pertuzumab mAb IgG1 HER-3 Preclinical phase

AV-203 mAb IgG1 HER-3 Phase I

RO5479599 mAb HER-3 Preclinical phase

Motesanib TKI VEGFR/PDGFR/kit Preclinical phase

Dasatinib TKI Src family kinase Phase I/II

Bortezomib Proteasome inhibitor 26S proteasome Phase I

Celecoxib
Nonsteroidal
anti-inflammatory inhibitor

Cox-2 Phase I

Everolimus
Inhibitor derived from
rapamycin

mTor Phase I

Temsirolimus
Inhibitor derived from
rapamycin

mTor Phase I

Onartuzumab mAb c-Met Preclinical phase

Cixutumumab mAB IgG1 IGFR Phase 0/II

Ficlatuzumab mAb IgG1 HGF Phase I

AMG 102 mAb IgG2 HGF Preclinical phase

Fresolimumab mAb IgG4 TGF-β Preclinical phase

Table 2. List of molecular targeted therapies combined with radiotherapy under consideration for treatment of
HNSCC patients (clinicaltrials.gov) [13, 86, 106].

4.4. Therapy by reactivation or elimination of mutant p53 protein

The vast majority of HNSCC show mutations in TP53 gene; several evidences have shown that
mutant p53 protein loses its function as tumor suppressor and acquires new oncogenic
functions by which it promotes resistance to cisplatin and radiation treatment. The transfection
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of wild-type TP53 into cell lines induces growth arrest and reduces tumorigenicity in nude
mice. This suggested that restoring p53 function in HNSCC could inhibit cell growth [107].
HNSCC has been one of the first tumor localities to benefit from gene transfer therapy. Several
strategies have been developed to restore p53 function in HNSCC [14, 108].

Gene therapy: The most used vector for p53 gene therapy in HNSCC is the adenovirus, for its
high affinity with the cells of the upper aerodigestive tract. A series of modified p53 adenovi‐
ruses (Ad-p53) are able to induce apoptosis and sensitize HNSCC cells to radiotherapy [109,
110]. Therefore, a phase I/II clinical trial based on the injection of Ad-p53 in HNSCC patients
was performed and has shown that Ad-p53 is a promising therapeutic strategy [111, 112]. A
phase III study based on the comparison of Ad-p53 to methotrexate treatment in advanced
HNSCC show that overall, there is no significant difference in clinical outcome between these
two subgroups of treated HNSCC, but, interestingly, Ad-p53 treatment was associated with a
significant increase of survival in specific subgroup of HNSCC patients, having TP53 wild type
but inactivated by the upregulation of p53 inhibitors Mdm-2 or Mdm-4 [113]. This evidence
suggests the possibility to select HNSCC patients who are most likely to benefit from Ad-p53
therapy. Another phase III clinical trial based on the use of recombinant Ad-p53 (gendicine)
injection in combination with radiation shows encouraging results [114].

Virus targeting p53 deficient cells: This therapeutic strategy is based on the elimination of
mutant p53. The efficient replication of adenovirus requires the neutralization of p53 function
through E1B viral protein. ONYX-015 is an engineered adenovirus that does not express E1B
protein and consequently is able to induce viral replication and cell death only in tumor cells
carrying TP53 mutations. Phase I/II clinical trials performed in HNSCC patients have shown
that intravenous administration of ONYX-15 is feasible and while the treatment with ONYX-15
alone gave only marginal effects, its combination with cisplatin and 5-fluorouracil had a more
profound impact on the response of patients [115]. Other clinical trials will be necessary to
evaluate its real effectiveness in HNSCC treatment.

Molecules reactivating mutant p53: They are small molecules able to alter the conformation
of mutant p53 to wild type, leading to the restoration of its tumor suppression function. Among
them, glycerol treatment is able to reactivate p53 wild-type functions in HNSCC cell lines
carrying mutant p53 by its ability to refold proteins [116]. Due to its toxicity, glycerol use is
not so feasible in HNSCC patients. As a consequence, a series of other similar molecules was
developed. Among them, PRIMA and CP-31389 were tested in HNSCC cell lines carrying
mutant p53 and have demonstrated to inhibit proliferation and promote apoptosis by the
induction of p53-related genes expression, including p21, Bax, Puma and Noxa [117]. Cur‐
rently, there are no clinical data testing real effectiveness of these molecules in the treatment
of HNSCC patients.

Molecules disrupting p53 inhibitors: In tumor cells, the function of p53 protein can be
compromised not only by the presence of mutation on its gene, but also by upregulation of its
inhibitors. The main p53 natural inhibitor is MDM2, which functions binding p53 protein and
promoting its degradation. Nutlins and their derivate RITA are a class of small molecules able
to prevent the binding MDM2-p53, restoring p53 tumor suppressor function. Therefore,
Nutlins and RITA treatment leads to an increase of nuclear p53 levels, inhibition of prolifera‐
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tion, increase of cell death and antitumor efficacy of cisplatin [108]. Therapy treatment based
on these molecules is more effective in tumor cells carrying p53 wild-type compared with
mutant p53-carrying cells.

In addition, in a subset of HPV-related HNSCC, the activity of p53 can be also inhibited by the
exogenous viral oncoprotein E6. Specifically, it acts by interacting with E6AP protein to
degrade p53 via proteasome pathway and with p300 to prevent p53 acetylation. Treatment of
HNSCC cell lines with the small molecule CH1iB, disrupting the binding of E6 HPV16 protein
and p300, promotes an increase of the p53 acetylation levels and therefore an increase of p53
transcriptional activity. Additionally, Ch1iB shows an anticancer effect also due to its capa‐
bility to reduce cancer stem cells population and by sensitizing tumor cells to cisplatin
treatment in HPV positive cells [14, 108].

4.5. microRNAs as therapeutic agents

The role of microRNAs as predictors and modifiers of chemoradiotherapy in several kinds of
human cancers, including HNSCC, has been shown [118]. For instance, miR-125b transfection
on oral cancer cell lines enhances radiosensitivity to X-ray irradiation [80]. In addition, changes
in the abundance of circulating miRNAs during radiochemotherapy has been detected and
has been shown to reflect the therapy response of primary HNSCC cells after an in vitro
treatment [82]. Finally, in our laboratory, we have demonstrated that the expression of
signatures of TP53 mutation-associated miRNAs, composed of 12 and 4 miRNAs, predicts,
respectively, the risk of local recurrence insurgence and poor outcome, independently from
other relevant prognostic indicators [42]. These evidences suggest the possibility of monitoring
changes in miRNAs expression before to and during treatment in order to estimate the
effectiveness of certain therapies. At the same time, another possibility for future application
of miRNAs in therapy is the modulation of deregulated miRNAs concentration by molecules
that replace downregulated miRNAs or using antagonists that binds overexpressed miRNAs
[119]. Evidence supporting this possibility has been shown for the treatment of HCV infection;
this phase II clinical study is based on the treatment of HCV infected patients with Miravirsen
by which miR-122 is sequestered [120]. Miravirsen is the first miR-targeted drug to receive
Investigation New Drug (IND) acceptance from FDA [121]. To date, there is only one clinical
trial available in cancer patients; in particular, the treatment of liver cancer with MRX34, which
is a molecule mimicking miR-34, is ongoing, in order to evaluate its maximum tolerated dose
and its pharmacokinetics in patients [119].

4.6. TRAIL and Smac mimetics molecules

Recently, two classes of novel therapeutic agents targeting specific molecules involved in
apoptosis pathway have emerged. The first one is the tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL). It is able to induce cell death by binding to its corresponding cell
surface receptor TRAIL-R1/R2 and activating the apoptotic pathways [122-124]. A second class
of targeted anticancer agents is composed by Smac mimetics (SMs). They mimic the function
of endogenous proapoptotic mitochondrial protein Smac/Diablo [125]. In response to a death
stimulus, it is released in the cytoplasm and inhibits the antiapoptotic activity of IAP proteins

Radioresistance in Head and Neck Squamous Cell Carcinoma — Possible Molecular Markers for Local Recurrence…
http://dx.doi.org/10.5772/60081

19



[126]. Both TRAIL and SMs have been tested in several cancer models [123, 125, 127]. A study
testing the sensitivity to TRAIL and SMs treatment on HNSCC cell lines show that both
molecules are highly effective in killing tumor cells. In addition, caspase 8 and TNF-α expres‐
sion was identified as biomarker for predicting, respectively, TRAIL and SMs sensitivity [128].
These preliminary results encourage future investigations on the possibility to use them as
targeted HNSCC treatment.

4.7. Therapeutic activity of molecules derived from plants

Antineoplastic effects of molecules derived from plant extracts have recently gained increasing
attention as an additive to traditional therapies of cancer, including HNSCC.

One of  the most studied molecules derived from plants for HNSCC treatment is  curcu‐
min (diferuloylmethane). It is a polyphenol derived from the Curcuma longa plant, common‐
ly known as turmeric. Curcumin, which has been used extensively in Ayurvedic medicine
for centuries, is a pleiotropic molecule able to interact with multiple molecular targets and
signal transduction pathways, and has a variety of therapeutic properties, including anti-
oxidant, analgesic, anti-inflammatory and antiseptic activity [15]. More recently, curcumin
has  been  found  to  possess  anti-cancer  activities,  acting  on  several  biological  pathways
involved in mutagenesis, oncogene expression, cell cycle regulation, apoptosis, tumorigen‐
esis and metastasis [15]. For instance, it is able to inhibit the transcription factor NF-kB and
downstream gene products  (including c-myc,  bcl-2,  COX-2,  NOS,  cyclin D1,  TNF-alpha,
interleukins and MMP-9). Additionally, curcumin affects a variety of growth factor receptors
and cell adhesion molecules involved in tumor growth, angiogenesis and metastasis [15].
As a natural product, curcumin is no toxic. It is a potent antitumor agent also in HNSCC
and  can  be  used  to  overcome  chemoradiotherapy  resistance.  Indeed,  the  treatment  of
HNSCC cell lines with a molecule derived from curcumin (H-4073) inhibits cell prolifera‐
tion,  angiogenesis  and  significantly  sensitizes  the  cells  to  cisplatin  treatment.  H-4073
mediated its  antitumor effects  by inhibiting JAK/STAT3,  FAK,  Akt  and VEGF signaling
pathways that play important role in cell proliferation, migration, survival and angiogene‐
sis [129]. Another study shows that curcumin sensitizes to radiation HPV-negative HNSCC
cells with high levels of Thioredoxin reductase (TrxRs). Indeed, in this work it has been
demonstrated  that  the  efficacy  of  curcumin  in  sensitizing  tumor  cells  to  radiation  de‐
pends on its ability to inhibit TrxRd1. TrxRs are a family of NADPH-dependent flavopro‐
teins, which are involved in several redox-regulated cellular functions as transcription, DNA
repair, proliferation, angiogenesis and apoptosis. Specifically, high levels of TrxRd1 isoform
were found in HNSCC and were associated with poor outcome [130]. Finally, data from a
very recent study shows that curcumin is more effective, in terms of inhibition of cancer
growth, when combined with another non-flavonoid polyphenol called Resveratrol [131].

Another  intriguing  natural  anticancer  Chinese  medicine  is  Gamboge.  It  acts  as  anti-
inflammatory agent,  detoxifying and apoptotic  inducer  in  different  type  of  cancer  cells.
Interestingly,  the  Gamboge derivate  Compound 2  (C2)  is  able  to  inhibit  growth also  in
HNSCC  stem  cells.  Indeed,  it  can  inhibit  formation  of  tumor  spheres  and  repress  the
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expression  of  multiples  genes  related  to  cancer  stem  cell  phenotype  by  blocking  the
activation  of  EGFR pathways  [132].  Since  one  of  the  main  causes  of  failure  in  HNSCC
treatment is the enrichment of CSCs population, which are resistant to current therapy, the
future  use  of  this  molecule  in  combination  with  chemoradiotherapy  could  prevent  the
selective enrichment of CSCs after HNSCC conventional treatment.

5. Conclusions

Radioresistance strongly affects the clinical outcome of HNSCC patients. The key mechanisms
by which radioresistance occur have been associated with deregulation of several molecular
signaling pathways such as EGFR, VEGFR and p53. Recently, it has been shown that the
enrichment of a small population of tumor cells, named cancer stem cells, also plays an
important role in the failure of conventional HNSCC treatment. In addition, current treatments
are associated with high toxicity and side effects. The basis of treatment decisions are mainly
based on TNM staging, but patients with the same staging have different response to therapy.
Several molecular targeted therapies are actively under investigation in order to improve the
effectiveness of current therapy. Only a few of these strategies have been tested in clinical trials
and to date cetuximab is the unique targeted therapy approved from FDA. However, this
treatment showed efficacy in about 20% of HNSCC patients. In addition, due to the heteroge‐
neous nature of these tumors, the study of molecular prognostic and predictive factors has
been motivated by the necessity to predict radiosensitivity of patients and to define more
homogenous groups of patients for treatment selection. Indeed, personalized treatment plans
based on biomarkers could improve overall survival and reduce morbidity. Although several
evidences have shown that many molecules, as proteins and microRNAs, can potentially
predict response to therapy and clinical outcome, to date, the HNSCC treatment decision is
uniquely based on TNM staging and HPV infection. One of the reasons of the difficulties to
find efficacious biomarkers is the disagreement between these studies; this mainly relies on
the variety of tumor sites, sensitivity of the techniques used, quality of the specimens studied
and the arbitrary cut-off values set.
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1. Introduction

Locally advanced head and neck cancers are usually aggressive tumours, due to the presence
of hypoxia and the ability of the tumour to repopulate during treatment. The aggressive
behaviour generally requires aggressive treatment, which for head and neck carcinomas
consist of altered radiotherapy fractionation schedules combined with chemotherapy.
Treatment fractionation, based on the 4 Rs of radiotherapy [1] is a well-accepted concept that
has been re-adjusted for head and neck cancer decades ago to accommodate new radiobio‐
logical findings. The 4 Rs in terms of repair, repopulation, reoxygenation, and redistribution along
the cell cycle have been promoted to 5 Rs with the aid of radiosensitivity and more recently to
6 Rs with the experimental evidence of remote (bystander) cellular effects.

The paragaphs below aim to describe the major aspects concerning the six Rs of radiotherapy
applied to head and neck cancer.

2. The 5 Rs revisited

The 5 Rs of radiobiology represent a group of processes determining the response of cells and
tissues to radiation, with great impact in fractionated irradiation. Balancing them one against
the other has become one of the pillars of modern radiation therapy to maximise the therapeutic
gain by either increasing radiation damage in the tumour cells or decreasing the damage to
the normal tissues. The impact of the individual Rs varies across the different tissues, but for
head and neck tumours all of them play important roles that have to be taken into account
when designing successful radiotherapy schedules.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and eproduction in any medium, provided the original work is properly cited.



2.1. Repair

Repair is a term covering a number of processes responsible for the identification and correc‐
tion of the damage to the DNA molecule induced by endogenous and exogenous factors.
Sometimes the term “recovery” is used instead of “repair” because other processes are
involved besides the actual repair of damage. The importance of recovery or repair in relation
to irradiation has been determined in a series of experiments employing continuous irradiation
at various dose-rates or split-dose experiments studying the variation of the cell survival with
irradiation time or the time between individual fractions of radiation. Following these types
of experiments radiation damage has been divided into two categories, non-repairable or lethal
damage and repairable or sublethal damage. It should be remarked that these are operational
terms that have not been correlated with any type of radiation-induced damage, with the
possible exception of the irreparable clusters of damage. Sublethal damage could be removed
as part of the cell recovery, unless fixated by interaction with other sublethal lesions or by
being forced to be expressed by the cells. Consequently, cell survival following irradiation
depends not only on the creation of irreparable lesions, but also on the competition between
repair and fixation of sublethal damage that is influenced by many factors including the rate
of generating new lesions and the cellular environment.

When describing the effect of radiation with the help of the well-known cell survival curves,
the repairable component of damage is considered responsible for the shoulder of the curve
as the accumulation of damage in the absence of the repair increases cell kill. Consequently
the recovery capacity of cells could be quantified by relating the “bendiness” of the cell survival
curve to its initial slope that is a measure of the irreparable or lethal damage induced by
radiation. For the linear-quadratic (LQ) model [2,3] this is given by the beta/alpha ratio, which
is low for acutely reacting normal tissues and most tumours including head and neck tumours
and high for late reacting tissues [4]. This indicates the high potential for recovery of late
reacting tissue that should be exploited in head and neck radiotherapy to limit the late
complication rates.

Several models have been proposed to account for the process of recovery, including the
incomplete repair model [5], the lethal-potentially-lethal model [6] or the repairable-condi‐
tionally repairable damage model [7], with the incomplete repair model, based itself on the
LQ formalism, being mostly known and employed in clinical practice. According to the
incomplete repair model [5], the effect of continuous irradiation delivering radiation dose D
in time t is given by equation 1.

E =αḋ t + g(t)β(ḋ t)2 (1)

where α and β are parameters of the LQ model and g is a function describing the repair taking
place in time t. If the repair is described as an exponential process, with repair constant μ, the
g term is described by the expression in equation 2.

g(μt)=2 μt - 1 + exp(-μt )
(μt )2 (2)
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Similar expressions could be derived for the case of fractionated irradiation, when the focus is
on the repair taking place between the individual fractions. Thus, the effect in fractionated
radiation with time t between fractions is given by the expression in equation 3.

E =n αd + h (t)βd 2 (3)

where n is the number of fractions, d is the dose per fraction and the repair term h(t) is given
by the expression in equation 4.

h (t)= 2
n

exp(-μt )
1 - exp(-μt ) n - 1 - exp(-nμt )

1 - exp(-μt ) (4)

These expressions could be used together with the Biological Effective Dose (BED) formalism
[8,9] to calculate the effectiveness of various treatment approaches. Thus, the expressions in
equations 1 and 2 are mostly suited for brachytherapy, while expressions in equations 3 and
4 are suited for fractionated therapy when intra-fraction repair is considered negligible.
Expressions have also been derived to account simultaneously for intra and inter-fraction
repair [10].

A number of studies have determined relevant repair constants from clinical and experimental
data, yielding values between 0.5 and 2 h for the repair half-life, depending on the tissue and
the type of experiment used to derive them [11]. More recent studies indicated that the rate of
repair might depend on the dose or that second order or bi- or even multi-exponential
processes might exist [12-15]. The multi-exponential processes appear to be equally divided
between the fast and the slow components with median repair half-lives of 0.3 h for the fast
component and about 4 h for the slow component (for a summary see [16]). In this context it
has been pointed out that identification of the relevant rates might depend on the design of
the experiment as it has been suggested that split-dose experiments could easily miss a fast
component of repair [16].

Repair or recovery of radiation damage has been extensively exploited to spare late reacting
normal tissues in head and neck radiation therapy. Thus, the low alpha/beta ratio (or high beta/
alpha ratio) of these tissues in comparison to the tumours indicates their high capacity for
repair in fractionated regimes if enough time is allowed between individual fractions for the
recovery of sublethal damage. Consequently, decreasing the dose per fraction can protect late
reacting normal tissues more than the tumour cells, this differential effect allowing an
escalation of the dose to the tumours in comparison to conventional fractionation or a decrease
in the expected complication rates to maximise the therapeutic gain. Indeed, several clinical
studies initiated in the 1980s and 1990s have shown that increased fractionation in head and
neck radiotherapy could increase the control rates for the same levels of complications or could
even reduce the complication rates. Thus, Bourhis et al [17] performed a meta-analysis of
hyperfractionated trials in head and neck cancer, and reported a significant benefit from
hyperfractionation than with conventional fractionation on survival (8% at 5 years) and on
locoregional control (6.4% at 5 years).
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Hyperfractionated regimes employing very small fractions required that they are given twice
or three times per day to keep the overall treatment times to manageable lengths that avoid
problems from tumour repopulation (see section II.2). Some of these treatment schedules
highlighted the clinical implications of not allowing enough time between fractions for
complete recovery of sublethal damage. One of the most known examples is the Continuous
Hyperfractionated Accelerated Radiotherapy (CHART) trial delivering 54 Gy in 36 fractions
in 12 consecutive days [18]. While the trial demonstrated a similar level of local control with
66 Gy in 33 daily fractions for a significant reduction in late treatment-related morbidity, the
reduction was much less than expected from BED calculations. Analyses of the complication
rates in the conventional and hyperfractionated arms showed that the repair half-life might
indeed be 4-5 h, which is quite long for the 6 h interfraction intervals in the hyperfractionated
arm of CHART [19]. The high amount of residual damage after the slow component of recovery
might also explain why twice daily fractionation schemes with 2 Gy per fraction sometimes
led to too high rates of late effects [20]. Nevertheless, twice daily fractionation regimes
employing 1.2 or even 1.6 Gy per fraction have been safely used for treatment [21-24] and
illustrate how the differential recovery potential of late and acutely reacting tissue could be
exploited to increase the therapeutic potential in the radiation therapy of head and neck
cancers.

In fact the potential for improvement of any fractionation scheme employing n fractions of size
d could be evaluated using the BED formalism. Thus, the biologically equivalent of total dose
in 2 Gy fractions (EQD) could be derived for the effects in late reacting tissues using an alpha/
beta ratio of 3 Gy (equation 5) and in tumours and acutely reacting tissues using an alpha/beta
of 10 Gy (equation 6).

EQD3 =nd
1 +

d
3

1 +
2
3

(5)

EQD10 =nd
1 +

d
10

1 +
2

10

(6)

where1 + 2
3  is the relative effectiveness of conventional fractionation regimes in late reacting

tissues and 1 + 2
10  is the relative effectiveness of conventional fractionation regimes in acutely

reacting tissues and tumours. The expressions could be adapted to include the effect of
incomplete recovery between fractions (equations 3 and 4) or for protracted irradiation
(equations 1 and 2). In fact, the loss of effects due to protracted irradiation has been a cause of
concern in some applications like intensity modulated radiotherapy (IMRT), although this loss
might not be significant as long as the delivery time is shorter than the half-life of the quick
component of recovery [16].

Contemporary Issues in Head and Neck Cancer Management38



Hyperfractionated regimes employing very small fractions required that they are given twice
or three times per day to keep the overall treatment times to manageable lengths that avoid
problems from tumour repopulation (see section II.2). Some of these treatment schedules
highlighted the clinical implications of not allowing enough time between fractions for
complete recovery of sublethal damage. One of the most known examples is the Continuous
Hyperfractionated Accelerated Radiotherapy (CHART) trial delivering 54 Gy in 36 fractions
in 12 consecutive days [18]. While the trial demonstrated a similar level of local control with
66 Gy in 33 daily fractions for a significant reduction in late treatment-related morbidity, the
reduction was much less than expected from BED calculations. Analyses of the complication
rates in the conventional and hyperfractionated arms showed that the repair half-life might
indeed be 4-5 h, which is quite long for the 6 h interfraction intervals in the hyperfractionated
arm of CHART [19]. The high amount of residual damage after the slow component of recovery
might also explain why twice daily fractionation schemes with 2 Gy per fraction sometimes
led to too high rates of late effects [20]. Nevertheless, twice daily fractionation regimes
employing 1.2 or even 1.6 Gy per fraction have been safely used for treatment [21-24] and
illustrate how the differential recovery potential of late and acutely reacting tissue could be
exploited to increase the therapeutic potential in the radiation therapy of head and neck
cancers.

In fact the potential for improvement of any fractionation scheme employing n fractions of size
d could be evaluated using the BED formalism. Thus, the biologically equivalent of total dose
in 2 Gy fractions (EQD) could be derived for the effects in late reacting tissues using an alpha/
beta ratio of 3 Gy (equation 5) and in tumours and acutely reacting tissues using an alpha/beta
of 10 Gy (equation 6).

EQD3 =nd
1 +

d
3

1 +
2
3

(5)

EQD10 =nd
1 +

d
10

1 +
2
10

(6)

where1 + 2
3  is the relative effectiveness of conventional fractionation regimes in late reacting

tissues and 1 + 2
10  is the relative effectiveness of conventional fractionation regimes in acutely

reacting tissues and tumours. The expressions could be adapted to include the effect of
incomplete recovery between fractions (equations 3 and 4) or for protracted irradiation
(equations 1 and 2). In fact, the loss of effects due to protracted irradiation has been a cause of
concern in some applications like intensity modulated radiotherapy (IMRT), although this loss
might not be significant as long as the delivery time is shorter than the half-life of the quick
component of recovery [16].

Contemporary Issues in Head and Neck Cancer Management38

2.2. Repopulation

Besides repair, repopulation during treatment is another important factor that could modulate
the response to fractionated regimes. Indeed, as the effects in radiotherapy are related to the
inactivation of cells from tumours and normal tissues, any proliferative process taking place
during treatment will increase the cell population and consequently diminish the effect of
radiation therapy. The effect would therefore depend on the time available for proliferation,
i.e., the overall treatment time, and will particularly be a problem for acutely reacting tissues
and tumours that have significant proliferation. In late reacting tissues in contrast, proliferative
activity is minimal during the few days or weeks required by most treatment schedules and
the treatment duration will not influence the complication rates.

The existence of a time factor in clinical radiation therapy was recognised quite early and gave
rise to the Strandquist plots [25] and the nominal standard dose (NSD) concept [26] attempting
to relate the time, dose and fractionation of equivalent fractionation regimes. However, an
important breakthrough linking the time factor to the proliferation of tumour cells was made
following the publication by Withers and colleagues of a study analysing the total dose needed
to achieve 50% control for squamous tumours of the head and neck as a function of the overall
treatment time [27]. The results showed that there was an increase of the required dose at a
rate of 0.5-0.6 Gy per day for treatments lasting more than about 21-28 days, which was
attributed to accelerated proliferation taking place in tumours after the lag time. This report
was accompanied by the development of the BED concept with proliferation [9]. Thus, the
effect of proliferation with doubling time Tp for a treatment with n fractions of size d being
delivered in time T could be accounted by equation 7

BED =nd 1 + d
α / β - ln (2)

αT p
(T - Tk ) (7)

where Tk is the delay in the onset of proliferation. The equation could be further adapted to
include the effects of repair as described in equations 1-4.

A series of clinical studies have investigated the impact of overall treatment time and prolif‐
eration on the outcome of radiation therapy for head and neck tumours. Studies investigating
only the impact of acceleration, i.e., the delivery of more than 10 Gy per week that is the norm
in conventional fractionation delivered in 5 daily fractions per week, have reported better
control, but also an increase in acute reactions and sometimes an increase in late reactions when
the interfraction interval was too short to allow full repair of sublethal damage [20,28,29]. More
successful were schedules combining hyperfractionation and acceleration by delivering two
or more fractions per day [18,22,30,31]. Nevertheless, an analysis performed by Bourhis and
colleagues found a small but statistically significant benefit of 2% on survival at 5 years from
acceleration itself in comparison to conventional fractionation [17].

The overall treatment time analysis of head and neck tumours indicates proliferation doubling
time of the order of 3 to 5 days. This corresponds to the values determined from measurements
of the potential doubling time of tumours, Tpot [32]. Whether Tp in equation 7 is Tpot is still a
matter of debate. Experimental studies have shown that the effective doubling time for
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proliferation during radiotherapy could be either smaller or larger than Tpot [33]. A large
multicentre analysis also failed to correlate experimental determinations of Tpot with treatment
outcome in head and neck cancers [34]. However, a more recent analysis has shown that pre-
treatment proliferation parameters are better predictors of outcome when other factors like
tumour size, individual radiosensitivity and overall treatment time are taken into account [35].

The increase in acute reactions when shortening the overall treatment time indicates that
compensatory proliferation is also part of the mechanisms available for the rapidly prolifer‐
ating normal tissues to recover from radiation damage. However, it has been found that the
kinetic parameters for acute reactions are significantly different from those from tumours [36].
Thus, acute mucosal reactions that may become a limiting factor in the radiotherapy of head
and neck tumours have a Tk of 7 days and a Tp of 2.5 days. This difference has given the
opportunity to search for an optimum overall treatment time that maximises tumour effect,
without jeopardising the function of late and acute normal tissues [37,38].

Three mechanisms have been proposed to be behind accelerated proliferation, namely
asymmetry loss and acceleration of divisions of the stem cell compartment, as well as abortive
divisions of sterilised cells [39]. Recruitment of quiescent cells into the cell cycle has also been
proposed. The molecular triggers for these mechanisms remain to be elucidated [40], although
there are some indications that epidermal growth factor receptor (EGFR) and protein tyrosine
phosphatase (PTEN) activation might be involved [41-44].

Ample modelling of the aforementioned proliferation mechanisms has been undertaken in
order to quantify the extent of repopulation during treatment, to study the individual contri‐
bution of each mechanism as well as their interplay towards overall tumour repopulation
[45,46]. It was shown that while cell recruitment does contribute towards repopulation to a
small extent, the major mechanism responsible for accelerated proliferation of tumour cells
during radiotherapy is the asymmetry loss of stem cell division.

2.3. Reoxygenation

Tumour oxygenation is known to be one of the main factors that determine the response to
radiotherapy. For advanced head and neck cancer in particular, clinical trials have shown that
pre-treatment polarographic measurements of tumour oxygenation indicating the presence of
tumour hypoxia correlate with poor prognosis [47]. This clinical evidence of the role of tumour
hypoxia in determining the outcome of the treatment has been further confirmed by several
studies in which pre-treatment uptake of nitroimidazole compounds such as 18F-Fluoromiso‐
nidazole (18F-MISO) or Cu-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) used as
Positron Emission Tomography (PET) hypoxia imaging agents was shown to predict the
outcome in head and neck cancer radiotherapy [48]. Furthermore, pre-treatment tumour
hypoxia does not only correlate with poor local control due to the presence of resistant cells
to radiotherapy, but also to chemotherapy and poor long time prognosis because of the loco-
regional spread and formation of distant metastases [49].

The mechanism of resistance of tumour hypoxic cells to radiation can be explained by the so-
called oxygen effect related to the oxygen actions at the level of the free radicals formed after
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the interaction of charged particles with biological material. The free radicals, which are highly
reactive molecules because of their unpaired valence electron, are responsible for the break of
the DNA chemical bonds which might be further made permanent by molecular oxygen. The
resulting biological damage depends thus on the presence or absence of oxygen, well-
oxygenated cells being more sensitive to radiation induced damage than hypoxic cells
deprived of oxygen.

Given the clinically proven impact of the presence of hypoxia on the treatment outcome, it is
important to investigate the mechanisms of the occurrence of tumour hypoxia and its dynam‐
ics. The impaired oxygen supply to tumour cells leading to the formation of tumour hypoxia
originates in the particularities of the tumour vasculature formed mainly through parasitation
of the normal tissue vasculature and angiogenesis. Consequently, the major mechanisms
involved in the formation of hypoxia are related to either the actual architecture of the blood
vessels and the diffusion-limited delivery of oxygen, or to the functional abnormalities of
tumour capillaries leading to perfusion limitations [49]. The two main forms of hypoxia
associated with them are known as chronic (diffusion-limited) or acute (perfusion-limited)
hypoxia. Thus, chronic hypoxia will occur when the distance from the cells to the nearer
capillaries is close to exceeding the maximum oxygen diffusion distance, which under normal
rates of oxygen consumption by the cells is expected to be in the order of 100-150 μm as shown
by the early studies of Thomlinson and Gray [50] and confirmed later by experimental and
modelling studies [51-53]. Acute hypoxia arises near the blood vessels temporary occluded,
and, by its nature, has a transient character, unless the blood vessels remain blocked a long
time period, depriving the cells of oxygen beyond the limit for survival.

For head and neck squamous cell carcinomas (HNSCC) in particular, which appear to be
formed from nonvascularized epithelium, relatively hypoxic under normal conditions,
hypoxia might pose particular reasons of concern. Thus, heterogeneous distributions of
oxygen throughout the cellular microenvironment are expected in HNSCC. The impairment
in the oxygen supply is not only spatially but also temporally heterogeneous.

Regardless the mechanism through which hypoxia occurs in tumours,  there is a general
consensus correlated to the clinical evidence that hypoxia is a negative predictive factor for
the treatment and that patients might benefit from treatment strategies adapted according to
the  oxygenation  of  their  individual  tumours.  However,  it  has  also  been  suggested  that
chronically and acutely hypoxic cells might respond differently to radiation on the grounds
of their energy supply and viability. It is well known that the combined high rate of glycolytic
metabolism and poor availability of glucose result in low energy reserves for tumour cells
reflected by the relative levels of ATP, ADP, AMP, Pi and PCr [54, 55]. The energy supply
of chronically hypoxic cells, however, appears to decrease after a couple of hours of glucose
deprivation [56] while the energy of well oxygenated cells does not decrease significantly
under glucose deprivation. Therefore, one could postulate that chronically hypoxic cells are
less capable to activate their DNA repair mechanisms and therefore would be more radia‐
tion sensitive compared to the acutely hypoxic cell [57] and quote in support studies on
nutrient deprived cells [58,59]. Consequently, particular attention has to be paid to the cells
at intermediate oxygen levels which might possess a dangerous combination of viability and
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partial  radioresistance  that  might  in  turn  be  reflected in  the  poor  outcome to  radiation
treatment [60,61].

The oxygen status of the tumour cells is however not static with respect to both spatial and
temporal patterns. Changes in the cellular oxygenation related to the dynamics of both chronic
and acute hypoxia are generally known as tumour reoxygenation.

Reoxygenation manifests itself following two main patterns. Temporal heterogeneity in
oxygenation arises in relation to acute or perfusion-limited hypoxia. Abnormal vasculature
can lead to fluctuations in the blood flow due to the temporary occlusion or even backflow.
These phenomena have a rather chaotic but transient character and are conventionally referred
to as fast reoxygenation [62] although in some cases the change in oxygen supply might in fact
be from poor to well and back to poor, thus not necessarily leading to an improvement of the
oxygenation of the cells but rather to a re-hypoxiation. The temporal scale of changes in
oxygenation related to acute, perfusion limited hypoxia, ranges from minutes to hours as
demonstrated by several experiments using sequential injection of different fluorescent dyes
for hypoxia and vascular perfusion [63,64]. Furthermore, in presence of irradiation, the
dynamics of the oxygenation might be even more pronounced as shown in a study on human
laryngeal squamous cell carcinoma tumour line grown as xenografts in nude mice by Bussink
et al [51] indicating that irradiation could lead to rapid changes in oxygenation and perfusion.
Chronically hypoxic cells might also change their oxygenation status during the course of
fractionated therapy through the so-called slow reoxygenation. In a mixed tumour cell
population with respect to oxygenation, ionizing radiation will primarily kill the sensitive
well-oxygenated cells. This would result in lower oxygen consumption and hence to larger
distances of oxygen diffusion which independently or in conjunction to overall tumour
shrinkage might lead to the improvement of the tumour oxygenation by reoxygenation of the
chronically hypoxic cells. Furthermore, during long, fractionated, radiotherapy treatments,
extending over several weeks, revascularisation of the tumour through angiogenesis might
also occur resulting in the reoxygenation of cells that were chronically hypoxic.

Taking advantage of the changes in tumour oxygenation and expecting that they will result in
an improvement of radiosensitivity by fractionating the dose and thus increasing the treatment
duration is one of the first approaches clinically used for overcoming tumour hypoxia.
However, the search for the optimal dose per fraction and number of fractions in which the
treatment has to be delivered is far from being over considering that one has to find the right
balance between the fractional dose that might overcome hypoxia and the number of fractions
that will ensure proper reoxygenation accounting at the same time for the normal tissue and
organs at risk.

There are several clinical studies indicating that the oxygenation of head and neck tumours is
indeed dynamic. The early studies of changes in tumour oxygenation in advanced head and
neck carcinoma using polarographic electrodes were inconclusive in proving that reoxygena‐
tion positively correlates to increased local control most likely due to the inherent limitations
of the technique [65-67]. More recent studies, however, using PET imaging, started to shed
more light on the clinical evidence of oxygenation changes and reoxygenation in head and
neck tumours [68-70]. The general consensus is that hypoxic subvolumes identified with the
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use of PET imaging in head and neck cancer are inversely correlated with the response to
radiotherapy and generally with the treatment outcome. The improvement in the tumour
oxygenation together with the observed geometrical stability of the persistent hypoxic regions
during the course of radiotherapy suggest that head and neck tumours are strong candidates
for treatment strategies accounting for tumour hypoxia at the time of treatment planning and/
or treatment adaptation based on hypoxia PET imaging.

Clinical implementation of hypoxia-driven radiotherapy is, however, still in its infancy.
Several strategies for dose-painting approaches based on hypoxia in head and neck tumours
have been proposed and they are under various stages of validation. Among them one could
mention the planning study by Thorwarth et al [71] on dose escalation to head and neck hypoxic
subvolumes based on PET imaging which was followed by a still ongoing clinical trial and the
dose prescription and treatment planning method based on hypoxia PET imaging proposed
by Toma-Dasu et al [72] which is currently under clinical validation.

In addition to dose escalation, treatment strategies focusing on overcoming hypoxia could
include radiosensitizers or hypoxic cytotoxins. Lin and Hahn [48] presented a conceptual
multimodal adaptive clinical trial approach focusing on radiation dose escalation to hypox‐
ic regions highlighting the importance of pretreatment hypoxia imaging in order to proper‐
ly select the patients that would be expected to benefit from hypoxia targeted treatments.
They envisaged that serial imaging should be performed during therapy to evaluate treatment
response and to select in a step-wise manner the highest-risk areas warranting treatment
modifications, such as radiation dose escalation and to select the candidates for radiosensitiz‐
ers.

A special class of strategy in the management of advanced head and neck is represented by
the anti-angiogenic treatment which addresses the vascular endothelial growth factors and
their respective receptors on endothelial cells as well as their role in role in promoting the
growth and progression of carcinoma of the head and neck. Several anti-angiogenic treatments
have shown promising results in the clinical setting such as those using tyrosine kinase
inhibitors or bevacizumab [73]. Nevertheless, the current results suggest that multimodal
therapies combining anti-angiogenic agents with chemo/radiotherapy have the potential to
further increase the overall clinical benefit.

2.4. Redistribution

Similar to other tumour cell populations, squamous cell carcinomas of the head and neck
proliferate in asynchronous growth. Therefore cells will be distributed unevenly through the
cell cycle phases. Yet, the most probable distribution is the exponential one, with the largest
population in G1 and smallest in mitosis. Partial synchronisation can occur as a result of cell
arrest in one or more cycle phases due to the effect of radiotherapy or chemotherapy.

Cellular redistribution or reassortment along the cell cycle plays an important role in the
success of fractionated radiotherapy, given that cells present various radiosensitivities along
the four phases of the cell cycle. Given the relatively short average cell cycle time of squamous
cell carcinomas (around 33 hours) [62], cells that survive a first dose of radiation will tend to
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be in a resistant phase however, within a few hours they may progress into a more sensitive
phase where they can be hit by radiation and killed.

Cells situated in the S phase are known to be about three times more radioresistant than cells
undergoing mitosis. Since the duration of the S phase is about one third of the cell cycle length,
there are large numbers of cells escaping the effect of radiation during a single hit. Fractionated
radiotherapy assists in overcoming this challenge due to cellular redistribution between two
consecutive doses.

Head and neck tumour cells have a high cell turnover, thus a relatively short cell cycle time.
Cellular redistribution along the cell cycle for rapidly proliferating tumours consents to a more
uniform cell kill than in slowly growing tumours. This rationale justifies the implementation
of hyperfractionated radiotherapy schedules in head and neck cancers, which also hinders
tumour repopulation during treatment.

Cells in the quiescent phase also play an important role during treatment as they can be
triggered back into the cycle by cell loss due to radio- or chemotherapy. Quiescent cells are
usually more resistant to radiation than cycling cells, fact that makes cellular recruitment (i.e.
the process whereby quiescent cells re-enter the cell cycle) a double-edged sword: once they
reach mitosis, newly cycling cells can increase the pool of tumour cells via cell division and,
at the same time, cell killing can be more effective among cycling cells (as compared to
quiescent cells) due to an overall higher radiosensitivity.

One of the known risk factors in head and neck cancer is the infection with HPV (human
papillomavirus). A large number of studies have proven that head and neck cancers that are
positive for HPV have higher cellular radiosensitivity than their non-HPV counterparts [74,75].
One of the explanations for this behaviour is the impaired DNA repair ability found among
HPV-positive tumours and a considerable G2 arrest. These experimental studies have shown
that irradiated HPV-positive cells progress faster through the S phase and then accrue in G2/M
[75]. This unusual behaviour alters the expected cellular distribution along the cell cycle,
accumulating the HPV cells in the more radiosensitive phases. Therefore, patients that tested
positive for HPV respond better to the effect of radiotherapy and have a more favourable
prognosis than non-HPV patients [74].

2.5. Radiosensitivity

Radiosensitivity is the tumour feature which aims to account for the fact that tumours respond
differently to radiation therapy in a manner correlated with the intrinsic radiosensitivity of the
cells derived as derived from in vitro experiments.

The intrinsic radiosensitivity influences the overall response of tumours to (chemo-) radio‐
therapy. The origins of the intrinsic radiosensitivity are related to the genetic instability of
individual tumours leading to variations in response even among tumours of the same
histological type [76]. Therefore, identifying a priori the alterations in the intracellular path‐
ways involved in the DNA response, regulation of cell cycle and cell proliferation or respon‐
sible for activating the apoptotic signal, might offer the possibility of identifying the patients
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expected to respond poorly to radiation therapy due to intrinsic radioresistance and custom‐
ising the treatment based on individual radiobiological and genetic features of the tumours.

The most often mentioned pathways that were identified as clinically relevant in relation to
the intrinsic radiosensitivity are the activation of Epidermal Growth Factor Receptor (EGFR),
p53 and Ki-67 proteins signalling cascades.

For head and neck in particular, the activation of the phosphatidylinositol-3-kinase (PI3-K)/
protein kinase B (AKT) pathway has been shown to be associated not only with intrinsic
radioresistance but also with other well-known tumour features responsible to poor outcome,
cell proliferation and tumour hypoxia. This is because the PI3-K/AKT is a key element for the
regulation of several cellular processes like apoptosis, invasion and proliferation. Consequent‐
ly, it has been proposed that the manipulation of this signal-transduction pathway could be
used in the management of head and neck cancers. Given the activation of this pathway by
the stimulation of receptor tyrosine kinases like the EGFR, it has been suggested that markers
for PI3-K/AKT activation should be related to predictors of EGFR sensitivity. Furthermore,
inhibiting the PI3-K/AKT pathway will antagonise radiation-induced cellular defence mech‐
anisms that in turn will result in enhancing the effectiveness of radiation therapy [77].

More recently, a biomarker that encodes the p53 protein, TP53, has been identified as the most
commonly altered gene in squamous cell carcinomas of the head and neck leading to radio‐
resistance [78].

As already mentioned above, the presence of Human Papilloma Virus (HPV) influences the
response of the response to radiotherapy for head and neck squamous cell carcinoma [79].
Thus, the HPV status of the tumour could be regarded as a strong and independent prognostic
factor for the success of the treatment, both in terms of local regional control and overall
survival. This is due the increased cellular radiosensitivity caused by compromised DNA
repair capacity in HPV-positive cells [74]. This might indicate that radiosensitivity and repair
in cells should be correlated. Two main mechanisms have been identified for the repair of the
double strand breaks of the DNA, homologous recombination (HR) and nonhomologous end-
joining (NHEJ). Nevertheless, it has been shown that mutations in genes that impair HR often
cause only modest or no radiation hypersensitivity. In contrast, mutations in NHEJ genes
appear to lead to greater radiation hypersensitivity [80]. These complex relationships may in
fact be the reason for difficulties in finding a correlation between repair and radiosensitivity
[81] and why these are considered as two independent Rs in radiation biology.

3. The 6th R: Remote bystander effects

Remote cellular effects or bystander effects occur when non-irradiated cells that are located
nearby irradiated cells undergo cellular damage similar to the irradiated cells. This experi‐
mental observation contradicts the formerly accepted theory of radiation-induced targeted cell
kill [82]. While targeted cells can be killed by radiation, according to the bystander theory, non-
targeted cells can also present signs of radiation damage that eventually kills the cell. This
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happens as a consequence of cellular communication when radiation-hit cells direct damage
signals through gap junctions to the neighbouring non-targeted cells, which then act as being
hit by radiation.

Bystander effects have been evidenced in both tumour and normal cells, which implies that
such remote effects could have clinical implications. The finding that gamma-ray-induced
bystander effects have influence on epithelial cells and not fibroblasts, suggested that tissue
architecture and also cell communication play a significant role in this process [83]. Since
squamous cell carcinomas originate from epithelial cells, the bystander effect becomes an
important consideration in the treatment of head and neck tumours (table 1).

It is known that in normal tissues, gap junctions physiologically connect one cell to the adjacent
one to enable the transmission of genetic signals between cells. Both metabolic cooperation
between cells and the regulation of normal tissue homeostasis requires the involvement of gap
junctions. This normal phenotype is usually lost during head and neck carcinogenesis.
Although the complete function of gap junctions in head and neck neoplasms is not fully
clarified, experimental studies demonstrate that gap-junctional intercellular communication
(GJIC) could mediate apoptotic cell death in non-targeted squamous cell carcinoma adjacent
to individually targeted squamous cell carcinomas of the head and neck [84].

Novel therapeutic methods like gene therapy are widely used to investigate bystander effects
in cancers including head and neck. A number of viral vectors have been developed that are
able to transfer genes to therapy of tumours known as gene transduction. The occurrence of a
bystander effect after wild-type p53 gene transduction has been investigated for human
squamous cell carcinomas of the head and neck [85]. Wild-type p53 gene transduction for
apoptosis-inducing molecular therapy has been shown capable of producing a bystander effect
in squamous cells in vitro. Additionally, it was demonstrated that this phenomenon requires
intercellular contact between wild-type p53 transduced and bystander, non-transduced cell
populations. The study concluded that other therapies associated with apoptosis (such as
radiotherapy or chemotherapy) might also demonstrate bystander effects.

Enhancing gap-junctional intercellular communication in squamous cell carcinomas of the
head and neck and understanding the other mechanisms behind cancer cell communication
may lead to increased therapeutic efficacy.

Bystander effect Mode of cellular communication Reference

Growth inhibition Intercellular contact between wild-type p53
transduced and non-transduced cell population

Frank et al 1998 [85]

Apoptotic cell death Frank et al 2005 [84]

Genomic instability Cellular interaction influenced by stromal fibroblasts Kamochi et al 2008 [86]

Cell dormancy and
proliferation arrest

Gap-junctional intercellular communication Kucerova et al 2013 [87]

Table 1. Bystander effects in squamous cell carcinoma of the head and neck
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An interesting observation that could have implications in the development of new thera‐
peutical agents for cancer was reported by Cogan et al [88]. The group has shown that bystander
signals from cancer cells after exposure to chromium VI results in DNA damage in neigh‐
bouring cells that is strongly dependent on telomerase (complex enzyme that maintains the
telomere length). Low dose exposure to Cr(VI) was able to induce cancer cells to continuously
secrete bystander signals that caused DNA damage in the neighbouring cells. However, these
bystander signals were telomerase-dependent, meaning that the status of the telomere
(negative or positive) has dictated the affinity of cancer cells for bystander signals.

It is well known that telomere activation has a therapeutic potential for cancer, given that with
each cell division, the length of telomeres shortens, fact that triggers cell senescence. In order
to survive, cancer cells are required to employ a mechanism to stabilise this process of telomere
reduction. There are several reports in the literature showing that telomerase promoter
mutations (TERT) are more prevalent in aggressive cancers and they are a major indicator of
poor prognosis among head and neck cancer patients [89,90]. The effect of chromium VI on
telomerase offers, therefore, a potential anticancer avenue that needs to be further explored.

Bystander effects largely relate to nontargeted effects after exposure to low dose radiation.
While tumours are targeted with high doses, the surrounding normal tissue receives much
lower doses of radiation and organs that are out-of-field even lower doses. Exposure of
nontargeted tissue raises several concerns regarding the risk of second primary cancers.
However, it was shown that low dose exposure of healthy cells (2 - 50 mGy) stimulates
intercellular induction of apoptosis in the precancerous cell population, via cytokine and
reactive oxygen species signalling [91]. This selective elimination of precancerous cells could
reduce the incidence of second cancers following radiotherapy.

There is a limited number of studies on the risk of second cancers after primary head and neck
carcinoma treatment and they reveal the observation that among these patients second cancers
occur, most often, due to smoking [92] and drinking habits [93]. Second cancers are common
among long-term survivals, however they are not necessarily second primaries. Recurrences
occur very often and they arise mostly in the treatment field [94]. Common sites for second
primary cancers are the lung and the esophagus. These occurrences are often linked to the
same risk factors as for the primary head and neck cancer, i.e. tobacco smoking and alcohol
consumption. The radiation-induced incidence of second primary cancers after head and neck
radiotherapy was analysed in a study by Yamamoto et al [95]. The group has concluded that
radiotherapy of the primary tumour is not thought to be associated with an increased risk of
second tumours. Furthermore, it was underlined that a clonal relationship exists between the
primary head and neck cancer and second primaries, suggesting that the latter are a result of
micrometastatic foci migration from the site of origin.

Beside bystander effects, there is another phenomenon that is linked to low dose cellular
exposure, namely the adaptive response. This effect of low dose radiation on cells was first
demonstrated by Olivieri et al [96] after observing that human lymphocytes growing in
radioactive thymidine solution were more resistant to the effect of subsequent high doses of
radiation than the control group grown in non-radioactive culture. Cellular radioresistance to
subsequent doses was materialised through a reduction of chromosomal aberrations.
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In vitro experimental studies have shown that the two low-dose phenomena: the bystander
effect and the adaptive response basically coexist. However, their effect on cells works in
opposition, as bystander effects result in excess cell kill, while the adaptive response confers
resistance to subsequent doses of radiation.

According to the adaptive response model, the isoeffect per dose fraction is not a valid theory
anymore, as the first dose of radiation should kill a higher percent of the tumour cell population
than the subsequent doses. Furthermore, for those patients that undergo pre-treatment
diagnostic examinations that employ low doses, the adaptive response might work even for
the first treatment dose.

More studies are needed to explain these two effects in head and neck cancer cell lines and to
determine their magnitude for the in vivo state.

4. Conclusions

The management of locally advanced head and neck cancers is demanding. Tumour hypoxia,
accelerated repopulation during treatment and inherent radioresistance are the main culprits
for the suboptimal tumour control. The Rs of radiotherapy, as described above, play an
important role in treatment design, particularly when it comes to dose fractionation in
radiotherapy. Questions then arise as to how fractionated the treatment should be and what
other parameters should be taken into consideration in order to achieve a high therapeutic
gain.

As demonstrated by clinical trials, conventionally fractionated treatments are not efficient for
head and neck cancer patients. Instead, altered fractionation schedules should be employed
to overcome the radiobiological challenges. Accelerated fractionation is a rather aggressive
protocol that, however, is needed in response to an aggressive tumour. Treatment breaks are
often scheduled in these situations to allow time for normal tissue repair. Hyperfractionated
radiotherapy is a perfect way to apply the Rs of radiotherapy for rapidly proliferating tumours
such as head and neck carcinomas. By giving more than one dose fraction a day, tumour
repopulation during treatment is minimised and tumour reoxygenation is stimulated.
Hyperfractionated schedules were shown to provide the greatest benefit among these patients.

While hypoxia and repopulation are usual characteristics of head and neck cancers, the extent
of hypoxia and the degree of tumour proliferation differ from patient to patient. These pre-
treatment disparities lead to different post-treatment tumour responses. Decades ago, the idea
of predictive assays for tumour oxygenation, proliferation and radioresistance has been
embraced with high optimism. However, due to several technical and clinical challenges, the
routine implementation of such predictive assays has been hindered and other methods to
characterise the metabolic properties of tumours have been designed. Advanced imaging
techniques such as BOLD-MRI (Blood Oxygen Level Dependent – Magnetic Resonance
Imaging) or PET (Positron Emission Tomography) can give valuable indication regarding
oxygenation and proliferation. The goal to gather such information is to design individualised

Contemporary Issues in Head and Neck Cancer Management48



In vitro experimental studies have shown that the two low-dose phenomena: the bystander
effect and the adaptive response basically coexist. However, their effect on cells works in
opposition, as bystander effects result in excess cell kill, while the adaptive response confers
resistance to subsequent doses of radiation.

According to the adaptive response model, the isoeffect per dose fraction is not a valid theory
anymore, as the first dose of radiation should kill a higher percent of the tumour cell population
than the subsequent doses. Furthermore, for those patients that undergo pre-treatment
diagnostic examinations that employ low doses, the adaptive response might work even for
the first treatment dose.

More studies are needed to explain these two effects in head and neck cancer cell lines and to
determine their magnitude for the in vivo state.

4. Conclusions

The management of locally advanced head and neck cancers is demanding. Tumour hypoxia,
accelerated repopulation during treatment and inherent radioresistance are the main culprits
for the suboptimal tumour control. The Rs of radiotherapy, as described above, play an
important role in treatment design, particularly when it comes to dose fractionation in
radiotherapy. Questions then arise as to how fractionated the treatment should be and what
other parameters should be taken into consideration in order to achieve a high therapeutic
gain.

As demonstrated by clinical trials, conventionally fractionated treatments are not efficient for
head and neck cancer patients. Instead, altered fractionation schedules should be employed
to overcome the radiobiological challenges. Accelerated fractionation is a rather aggressive
protocol that, however, is needed in response to an aggressive tumour. Treatment breaks are
often scheduled in these situations to allow time for normal tissue repair. Hyperfractionated
radiotherapy is a perfect way to apply the Rs of radiotherapy for rapidly proliferating tumours
such as head and neck carcinomas. By giving more than one dose fraction a day, tumour
repopulation during treatment is minimised and tumour reoxygenation is stimulated.
Hyperfractionated schedules were shown to provide the greatest benefit among these patients.

While hypoxia and repopulation are usual characteristics of head and neck cancers, the extent
of hypoxia and the degree of tumour proliferation differ from patient to patient. These pre-
treatment disparities lead to different post-treatment tumour responses. Decades ago, the idea
of predictive assays for tumour oxygenation, proliferation and radioresistance has been
embraced with high optimism. However, due to several technical and clinical challenges, the
routine implementation of such predictive assays has been hindered and other methods to
characterise the metabolic properties of tumours have been designed. Advanced imaging
techniques such as BOLD-MRI (Blood Oxygen Level Dependent – Magnetic Resonance
Imaging) or PET (Positron Emission Tomography) can give valuable indication regarding
oxygenation and proliferation. The goal to gather such information is to design individualised

Contemporary Issues in Head and Neck Cancer Management48

treatments, based on patient-specific parameters. Personalised treatment is therefore the key
solution for the management of advanced head and neck cancers. This will be achieved with
(figure 1):

• routine clinical implementation of predictive assays, which in the current era are often PET-
based,

• protection of normal tissue to diminish adverse effects,

• improved perfusion of oxygen inside the tumour to allow for reoxygenation and better
chemotherapy delivery.

These P’s of head and neck cancer treatment can lead to an enhanced therapeutic ratio by
increasing tumour control and decreasing normal tissue toxicity.

Figure 1. The Ps and Rs of head and neck cancer management towards Personalised Radiotherapy.

A more accurate patient selection for the administration of chemotherapeutical agents or
altered fractionation schedules could lead to a better management of head and neck cancer
with personalised treatment planning and delivery.
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1. Introduction

Typically, the immune system detects and eliminates tumor cells through adaptive immunity,
but that is not always the case in the local tumor microenvironment. In cancer patients, local
tumor cells progress persistently—even though the bloodstream is full of tumor-specific
cytotoxic T lymphocytes (CTLs), which are primed with tumor antigens in the lymph nodes
and are able to kill tumor cells. In about 70% of patients with human papillomavirus (HPV)-
associated head and neck squamous cell carcinoma (HNSCC), CTLs enter into the tumor tissue
and become tumor-infiltrating lymphocytes (TILs). But those TILs fail to kill tumor cells in the
local tumor microenvironment [1-3]. Instead, they become anergic, exhausted, or apoptotic
when they are surrounded by tumor cells, especially when the tumor cells are positive for a
cell surface marker called programmed death ligand 1 (PD-L1). PD-L1 is also known as B7-H1
or CD274 [4-8].

In general, about 20% of cancer patients have tumor cells positive for PD-L1. Moreover, about
20% of patients with HNSCC [9], as well as 80% to 90% of patients with orolaryngeal cancer
[2, 3], are infected by HPV. In patients with HPV-associated HNSCC, PD-L1 positivity is as
high as 70% [1]. PD-L1 expression in tumor cells has been shown to make them aggressive,
with a poor clinical outcome. Patients with renal cell carcinoma with high PD-L1 expression
are 4 to 5 times more likely to die of their disease [7]. However, the clinical outcome may be
better for patients with HPV-associated HNSCC; in such patients, whether PD-L1 positivity
indicates a poor or a better clinical outcome depends on tumor types [10-12].

TILs express CD3, CD8, and programmed death 1 (PD-1) surface marker proteins and are
surrounded by tumor cells. In that local tumor microenvironment, PD-1 on the TIL side is
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and reproduction in any medium, provided the original work is properly cited.



inevitably contacted by PD-L1 on the tumor cell surface and activated by PD-L1. The activation
of PD-1 on TILs inactivates their function. Thus, TILs are incapable of killing tumor cells in the
tumor tissue. Immune negative regulatory pathways, exemplified by the PD-L1/PD-1 path‐
way, probably act in concert to counteract effective immune responses of TILs in the local
tumor microenvironment [6].In such a context, the function of TILs is reshaped and manipu‐
lated by the tumor microenvironment, so that they fail to kill tumor cells.

Tumor cells employ several strategies to evade an immune response. An immunosuppressive
network is known to exist, involving multiple immunosuppressive pathways plus regulatory
cell populations, all of which can act as “checkpoints” to successfully restrict immune cell
activation. The PD-L1/PD-1 pathway is the representative pathway for suppressing immune
responses in tumors [13]. In certain cancer patients, this pathway deeply affects and shapes
cell-based immunity and thus can serve as an immunotherapeutic target [14]. In addition,
regulatory T cells (Treg), natural killer (NK) T cells, and myeloid-derived suppressor cells
(MDSCs) are involved in manipulating immune responses, thereby promoting the develop‐
ment and growth of tumor cells. Naturally occurring immunosurveillance occurs when T-cell
receptors (TCRs) interact with the peptide-major histocompatibility complex (MHC) complex;
yet immunotolerance may occur when PD-L1 activates PD-1 on TILs.

PD-L1 is frequently induced by chronic infections of oncogenic viruses, such as HPV and
hepatitis B virus (HBV) [15].Chronic inflammation can promote the tumorigenesis of HNSCC
in all phases of malignant stages, including susceptibility, initiation, progression, dissemina‐
tion, morbidity, and mortality of tumor cells [16, 17]. Conversely, the normal microenviron‐
ment has antitumorigenic forces that must be overcome by tumor cells. The typical molecule
that can overcome the normal microenvironment’s antitumorigenic forces is PD-L1. Accumu‐
lating evidence demonstrates that the adverse tumor microenvironment facilitates immune
escape of tumor cells through active manipulation of PD-L1. The interaction between PD-L1
and PD-1 inactivates T cells, making them powerless [18].

2. Inflammatory mediators and cytokines

Generally, HNSCC is rich in inflammatory cytokines and mediators in the tumor tissue [19,
20],  especially  when  associated  with  HPV  infection  [21].  HNSCC  is  characterized  by
profound chronic inflammation [20, 22, 23]. It is highly regulated by interferon gamma (IFN-
γ), tumor necrosis factor alpha (TNF-α), and relevant regulatory transcription factors. Those
factors include the inhibitor of differentiation family members, ID1 and ID3 [24], as well
as immune and inflammation relevant transcription factors such as nuclear factor kappa B
(NF-κB) [19, 25, 26].

ID1  is  an  oncoprotein  that  dictates  the  proliferation  of  squamous  cells.  An  immediate-
early gene, it  responds to mitogenic signals,  infectious agents,  and bone morphorgenetic
proteins (BMPs) [27].  It  is an important transcription factor critical for the production of
IFN-γ and TNF-α [28].
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ID3 is a critical transcription factor involved in the proliferation of B cells and in antibody
isotype switching [29]. Both ID1 and ID3 are involved in the adaptive immune response in
HNSCC via the regulation of IFN-γ and TNF-α and via the proliferation of B cells and antibody
isotype switching.

NF-κB is a well-known transcription factor activated by infection, either bacterial or viral.
Clinical studies indicate that NF-κB plays an important role in the carcinogenesis of HNSCC,
in conjunction with ID1 [24, 28, 30]. As shown in our recent studies, ID1 and NF-κB subunit
p65 together transduce immortalized keratinocytes into malignant keratinocytes, both in vitro
and in vivo [31]. In HNSCC specimens, the major inflammatory cytokines in tumor tissues
include interleukin-8 (IL-8), TNF-α, and IFN-γ [19, 24]. HPV-associated HNSCC generally
induces a robust immune response and has emerged as a distinct entity, with a different profile
of risk factors and with a more favorable response to therapy than HPV-negative HNSCC.
More than 50% of patients with HPV-associated HNSCC are infected by HPV type 16 [10-12].
The percentage is similar in patients with HPV-associated cervical carcinoma [32, 33].

Chronic inflammation is involved in tumor development and growth, in both nonimmune and
immune ways, via the following mechanisms: (1) the production of reactive oxygen species,
such as peroxynitrites, which promote DNA mutation; (2) the production of proangiogenic
factors, such as vascular endothelial growth factor (VEGF), which promotes tumor neovascu‐
larization; (3) the production of matrix metalloproteases (MMPs), such as MMP9, which
facilitate invasion and metastasis; and (4) the perturbation of myelopoiesis and hemopoiesis,
thereby causing a deficiency in antigen-presenting cells, as well as dysfunctional cell-based
antitumor immunity [34].

One result  is  the unleashing of  MDSCs to dispose of  dendritic  cells.  MDSCs are imma‐
ture  myeloid  cells  that  inhibit  both  innate  and  adaptive  immunity,  thus  subverting
immunosurveillance. They are thought to be a disturbed differentiation of dendritic cells
by inflammatory mediators, such as VEGF, IL-6, cyclooxygenase-2 (COX-2), and prostaglan‐
din E2 (PGE2) [20]. MDSCs are present in patients with HNSCC [35, 36]—especially those
with oropharyngeal cancer, [37] 80% to 90% of whom are infected by HPV. Inflammatory
cytokines and mediators (e.g., IL-6, VEGF, COX-2, PGE2,) induce the formation of MDSCs
and cause immunosuppression in most cancer patients; MDSCs are an impediment to all
immunotherapies that require an active immune response by the host. Blockade of PD-L1
improves T-cell activation mediated by myeloid dendritic cells, in turn downregulating T-
cell IL-10 and upregulating IL-2 and IFN-γ [38].

Thus, blockade of PD-L1 is indirectly relevant to counteracting the inhibition of Treg cells. A
subset of CD4+ regulatory T lymphocytes, Treg cells inhibit effector T lymphocytes. Tumor
cells and microenvironmental macrophages produce chemokines to attract Treg cells into the
tumor tissue [39]. Even though Treg cells inhibit immune responses, they have no value,
according to many studies, in predicting the prognosis of patients with HNSCC. Nonetheless,
the CD8+/FoxP3+ (effector:regulatory) ratio, the CD8+/CD4+ (effector:helper) ratio, and the Treg
cell subset (CD45RA-FoxP3+) may be useful in predicting the prognosis [40-42]. PD-L1
costimulates the secretion of IL-10, which promotes the function of Treg cells [4].
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2.1. ID1-IFNγ/TNFα-PD-L1 signaling

BMPs induce the expression of ID1 [43, 44]. ID1 regulates the expression of INF-γ and TNF-
α in T cells [28]. IFN-γ and TNF-α are mainly produced by activated T cells and NK cells [45]
responsible for macrophage activation and differentiation [46]. IFN-γ induces transcription of
several proinflammatory genes, such as inducible NO synthase (iNOS), COX-2 [47], and IL-1β,
as well as MHC proteins [46]. In mouse macrophages, IFN-γ regulates TNF-α expression [45].
ID1 is critical for recruiting γδ T cells into the skin tissue via CXC chemokine receptor type 4
(CXCR4), a receptor specific for stromal derived factor 1 (SDF-1). Involved in the “settling
down” of tumor cells in a new organ or tissue, SDF-1 is thus implicated in the metastasis of
tumor cells. ID1-/- mice are more susceptible to skin tumorigenesis (as compared with their
wild-type counterparts) because they lack CXCR4 in their blood vessels [48] and have far fewer
γδ T cells entering into their skin tissue via CXCR4.

Moreover, ID1 and ID3 proteins are required for tumor angiogenesis [49] via VEGF [50, 51].
The activation of the TGF-β1 signaling pathway downregulates ID1 expression [52], whereas
the activation of the BMP pathway upregulates it [43, 44]—although both pathways act
through the SMAD proteins. The effect of inflammation on PD-L1 in the tumor cells is
summarized in Fig. 1.

Figure 1. ID1 drives the expression of PD-L1 on tumor cells. Chronic inflammation induces cytokine expression,
which, in turn, triggers the early responding gene expression of ID1. ID1 then induces IFNγ and TNFα expression in
lymphocytes (T cells and NK cells), eventually inducing PD-L1 expression in the tumor cells.

3. Immunosuppressive microenvironment

At the molecular level, many inhibitory factors are involved in the tumor microenvironment.
In HNSCC, PD-L1 and PD-1 interact with TILs and tumor cells [1, 13], constituting a negative
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signaling pathway for immune responses. The TGF-β signaling pathway inhibits the produc‐
tion of IL-2 and thus suppresses the proliferation of T and B cells, forming another signaling
pathway for immunosuppression in HNSCC. The enzyme CD73 metabolizes adenosine
triphosphate (ATP) into adenosine monophosphate (AMP), which inhibits immune responses
in HNSCC. In addition, galectin-1, indoleamine 2,3-dioxygenase, and arginase might play
specific roles in the carcinogenesis of HNSCC by suppressing local immunity.

Stratified by the presence or absence of PD-L1 expression and of TILs, patients with HNSCC
can be divided into these 4 subsets:

1. TILs+/PD-L1+

2. TILs+/PD-L1-

3. TILs-/PD-L1+

4. TILs-/PD-L1-

About 70% of patients with HPV-associated HNSCC are in subset (1), with about 30% in subset
(2). But those percentages are reversed in patients with HPV-negative HNSCC: about 29% are
in subset (1), with about 71% in subset (2) [1]. In 110 human primary and metastatic melanoma
studies, the distribution of patients was as follows: 38% in subset (1), 1% in subset (2), 20% in
subset (3), and 41% in subset (4) [53-55]. Clearly, immunotolerance is more common in HPV-
associated HNSCC than in HPV-negative HNSCC and in other subtypes.

At the cellular level, Treg cells and MDSCs comprise the inhibitory cellular populations [41].
In patients with HNSCC, as well as with numerous other solid tumors, CD4+FoxP3+/CCR4+Treg
cells have been shown to be upregulated [41]. In patients with HNSCC, such upregulation may
potently suppress effector T-cell responses, in both an antigen-specific and an antigen-
independent fashion, constituting a negative force for innate and adaptive immune responses.
Treg cells make TGF-β; active TGF-β is important in order for Treg cells to mediate immuno‐
suppression and to help maintain peripheral tolerance [56].

4. Tumor-Infiltrating Lymphocytes (TILs)

About 70% of patients with HPV-associated HNSCC have TILs in their tumors [1]. TILs
provide insight into the immunologic activity against tumor cells. The presence of TILs in the
tumor tissue marks an antigen-based immune response in the host. Theoretically, this action
would eliminate tumor cells in the body. But in reality, many coinhibitory signaling pathways
provide feedback to TILs from the tumor side and inhibit their function. For example, the PD-
L1/PD-1 pathway frequently determines and controls the function of TILs or CTLs [18, 57-59].
In most cancer patients, freshly isolated TILs are usually inactive against autologous tumor
cells, although they can be activated after incubation in vitro with IL-2 [60, 61]. A high level of
CD8+ TILs is associated with a favorable outcome [40], yet a low level of Treg cells has no such
influence on the prognosis.
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TILs predispose patients with HNSCC to a favorable response to chemoradiotherapy [42]. TILs
are specific to tumor cells and are able to recognize them through the transmembrane core‐
ceptor CD8, which binds to peptide-loaded MHC class I molecules expressed on the surface
of tumor cells; thus, tumor cells are killed via the cytotoxic action of TILs [62, 63]. However,
MHC class I molecules on the tumor cell surface are frequently downregulated, so the
activation of T-cell cytotoxicity is impaired in the tumor microenvironment. CD3, consisting
of 4 chains (ε, γ, δ, and ζ), is a pan-T cell marker and represents a coreceptor of the TCR (Fig.
2), which delivers activation signals down to subsequent pathways and eventually activates
T cells. At the same time, PD-1 is upregulated when T cells are differentiated and become
activated CD3+CD8+PD-1+ T cells; thus, PD-1 is also a typical cell marker for activated TILs.

Figure 2. TCR and its coreceptor CD3 are expressed on the T-cell surface. CD3 consists of 4 chains (ε, γ, δ, and ζ), with
ζ in the cytosol and ε, γ, and δ on the surface. TCR consists of α and β chains in which signals are converted into the
cytosol via the CD3 ζ chain, thereby activating T cells.

Problematically, PD-1 is a surface receptor for PD-L1, which is highly expressed in patients
with HNSCC, especially those infected by HPV. In that local tumor microenvironment, PD-1
receptors on the surface of TILs are inevitably surrounded by numerous PD-L1 molecules on
the tumor cells and thus are activated by PD-L1. Given the inflammatory nature of HPV-
associated HNSCC, a robust infiltration by CD3+CD8+PD-1+ cytotoxic T cells in the tumor tissue
is quite common. In the literature, this phenomenon is observed in different tumor types,
including HNSCC as well as colorectal, breast, esophageal, renal, lung, ovarian, and anal
carcinoma [40].

5. Immunotherapy

Enhancing the specific antitumor immune response is the primary goal of immunotherapy.
That goal can occasionally be achieved by the nonspecific stimulation of innate immunity, for
example, by activating cytokine-induced killer cells [AS MEANT?] or reinfusing TILs treated
by IL-2 outside of the body. But such nonspecific measures are not effective enough to kill
tumor cells in the body. In the clinical setting, a more plausible option might be to block the
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PD-L1/PD-1 pathway, along with other possible signaling pathways (such as the CTLA-4
pathway), and to retarget T cells [14, 64, 65]. Increasing the number of tumor-specific cytolytic
CD8+T cells available to infiltrate into the tumor is widely believed to be a key component of
effective immunotherapy; therefore, numerous approaches for enhancing the tumor antigen-
specific immune responses are being actively investigated., Combined therapy with 2 anti‐
bodies (anti-PD-1 and anti-CTLA-4 monoclonal antibodies) is highly effective in patients with
advanced melanoma, as compared with anti-PD-L1 or anti-PD-1 monoclonal antibody alone
[66, 67]; in fact, in a recent study, combined therapy reduced tumor size in about 80% of patients
[68]. Similar strategies based on that same principle might apply to the treatment of patients
with HNSCC.

Because ID1 regulates both IFN-γ and TNF-α expression in lymphocytes (including NK cells,
T cells, and B cells), controlling the ID1 expression levels in tumor cells and TILs is important.
Activated NK cells are characterized by both IFN-γ and TNF-α expression. We and others have
demonstrated, in mutant mice, that CD137(4-1BB) is a target for treatment of cancer and that
application of monoclonal antibodies against the 4-1BB molecule eradicates established tumors
by increasing T-cell activity [69-71]. Those earlier findings suggest that the local microenvir‐
onment of HNSCC features inhibitory forces that block the activity of tumor-specific T cells.
At the 2014 American Society of Clinical Oncology (ASCO) annual meeting, results of an early-
phase clinical trial of anti-PD-1 treatment (pembrolizumab, MK-3475) were presented: the best
overall response rate in patients with HNSCC positive for HNSCC was only 20%.

6. Future directions

An effective strategy for reversing specific immunosuppressive mechanisms prominent in the
HNSCC microenvironment is to target immune checkpoints’ that modulate T-cell activity. In
light of our current understanding, PD-1 and cytotoxic T-lymphocyte antigen 4 (CTLA-4)
would be good choices for this purpose [72]. CTLA-4 is a negative costimulatory molecule for
T cells, which are usually immature; it is the target of ipilimumab (Yervoy), an immunother‐
apeutic monoclonal antibody for blocking the immune proteins on the surface of TILs.
Ipilimumab has been approved for the treatment of cutaneous melanoma [73]. Polymorphisms
in CTLA-4 have been shown to influence the prognosis of patients with HNSCC; the implica‐
tion is that CTLA-4 may be a rational target in order to block the negative regulation of TILs
in HNSCC, just as in cutaneous melanoma [74, 75].

PD-1 (the negative receptor for CTLs) and its ligand, PD-L1, are both overexpressed in patients
with HPV-positive HNSCC [1]. In a mouse model of HNSCC, blocking antibody to PD-1 or to
PD-L1 has been shown to confer cell-based immunity [76, 77]. The safety, and evidence of
antitumor efficacy, of anti-PD-1 have been demonstrated in a phase 1 clinical trial of refractory
solid tumors, such as melanoma, non-small-cell lung cancer (NSCLC), and renal carcinoma
[76, 77]. However, that approach has not yet been applied to HNSCC. Given the data gained
from melanoma and NSCLC, a combination of both anti-CTLA-4 and anti-PD-1 monoclonal
antibodies would be ideal for treating HNSCC in the future: CTLs are either inhibited by
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CTLA-4 or suppressed to death by PD-1 (Fig. 3). Particularly in the subset of patients with
HPV-associated HNSCC, in whom TILs are abundant, treatment with anti-PD-1 monoclonal
antibody might enhance the efficacy of chemoradiotherapy.

Figure 3. TILs are inhibited by CTLA-4 or suppressed to death by PD-1 in the tumor microenvironment. Blockade of
both the CTLA-4 and the PD-1 signaling pathways by anti-CTLA-4 or anti-PD-1 monoclonal antibodies would be ideal
for optimal activation of CTLs in the tumor tissue.

7. Conclusion

The majority of HNSCC is full of TILs in the tumor tissue. On one hand, these TILs are
primed with tumor antigens and ready to fight off cancer. On the other hand, these TILs are
suppressed in their functions due to the expression of PD-L1 on the surface of tumor cells.
Immunotherapy is generally effective in those patients when both TILs and PD-L1 are posi‐
tive. More clinical studies are needed to improve the efficacy of immunotherapy with anti-
PD-1 or anti-PD-L1 monoclonal antibody.
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1. Introduction

Head and neck cancer (HNC) is the sixth most common cancer worldwide,[1] which includes
cancers of the aerodigestive tract, including lip, oral cavity, nasal cavity, paranasal sinuses,
pharynx, larynx, oropharynx, hypopharynx, salivary glands, and local lymph nodes.[2] More
than 90% of these are head and neck squamous cell carcinomas (HNSCC), arising from the
mucosal lining in these regions.[3, 4]

Although oral squamous cell carcinomas (OSCC) can arise de novo from clinically normal
appearing mucosa,[5, 6] they are typically preceded by clinically apparent changes in the
tissue, termed oral potentially malignant lesions (OPML) and include leukoplakia, erythro‐
plakia, oral submucous fibrosis, oral lichen planus and actinic keratosis.[7-9] Oral epithelial
dysplasia (OED) is a histopathologic diagnosis that describes this tissue transformation and is
characterised by cellular and morphological changes similar to those in OSCC but are limited
to epithelial cells and remain non-invasive, hence termed premalignant or potentially malig‐
nant.[10] The histological grading system developed by the World Health Organisation is used
widely to describe the degree of OED in oral mucosa – mild, moderate and severe dysplasia,
and carcinoma in situ.[10] The histopathological diagnosis of OED, and its severity as inter‐
preted by pathologists, is used as a predictor of a lesion’s risk of malignant transformation,
and also the type of intervention required – surgical treatment or watchful waiting.[11]
However, a recent study found that this system was not useful for predicting patient outcomes
or determining management strategies and recommended definitive treatment of all OED until
a more reliable progression/transformation system is developed.[10] In addition, the presence
of a non-homogeneous mucosal lesion has been shown to be a significant independent clinical
indicator of underlying OED.[8]
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Despite the reported transformation rate of 31.4% of OPMLs to OSCC,[12] clinical and
histological characteristics have limited potential as predictors of transformation and do not
aid in early diagnosis of HNSCC.[5, 13] It has been shown that as many as 50% of HNSCCs
may arise from apparently clinically normal mucosa, thus posing an inherent diagnostic
challenge.[5, 6] Although it is established that OPML and OED are statistically more likely to
progress to cancer, the actual underlying mechanisms are poorly understood, and it is not
inevitable that a dysplastic lesion will progress to cancer.[5, 6] Thus upon clinical diagnosis of
HNSCC, the disease staging is often advanced with worsened prognosis.[5, 11]

The diagnostic process for OPML, OED or suspected HNSCC involves visual and tactile
inspection using white light and other adjunctive visual aids, histopathological assessment of
a biopsy sample, and one or more diagnostic imaging methods by radiography or molecular
methods (positron emission tomography (PET), computerised tomography (CT), magnetic
resonance imaging (MRI)).[14] All these approaches are necessary to aid in accurate tumour
staging which directs therapeutic planning, and have to overcome significant challenges
including delineation of tumour volume and accurate location, cervical lymph node involve‐
ment, distant metastasis, and presence of second primary tumours.[15] The main treatment
modality for HNSCC, determined at the stage of diagnosis, continues to be surgical resection
in combination with chemoradiotherapy depending on anatomical location.[16] Stratified
treatment approaches exist based on HPV status. Newer treatment modalities involve drug/
molecular targets used in conjunction with radionuclide tracers leading to personalised
medicine.[14, 17] However, despite advanced techniques for early detection and management
of HNSCC, the 5-year survival rate of smoking associated HNSCC is still 30-50%, with
survivors experiencing poor quality of life.[4, 18] Overall, patients with advanced disease
continue to have a poor prognosis and high locoregional and distant recurrences,[19] sup‐
porting the need for hybrid technologies both pre-, post-, and during surgery to attain
maximum information in minimum time.

2. Surgical margin assessment

The aim of cancer surgery is to remove as much diseased tissue and retain as much healthy
tissue as possible.[20] The key issue with surgical management of OSCC is predicting the risk
of locoregional relapse, reported to occur in up to 20% of cases, accounting for ongoing modest
survival rates.[21-24] One key predictor of locoregional relapse is the presence of carcinoma
in or close to the surgical margins of the primary tumour, which is currently not reliably
possible despite surgeon’s conventional gross assessment (limited to white light tissue
reflectance assessing colour and texture) and thorough histopathological examination, as
relapse can occur in cases with clear margins.[19, 20, 24] Histopathological examination reports
margins as clean/clear (>5 mm between carcinoma and margin), involved (carcinoma exists
within 1 mm of the margin), or close (carcinoma exists between 1 to 5 mm from the margin).
[24-26] Even though this method has a reported accuracy ratio of >95%, around 30% of patients
with histologically negative margins undergo treatment failure raising concerns about its
sensitivity.[19, 27-30] In addition, intraoperative histopathological assessment relies on the
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quality of samples and degree of sampling, extends the time of operation and yields incomplete
results.[20]

While in some cases histopathological examination shows tumour cells in the surgical margins
thus implying that residual tumour cells could still exist in patients, most patients with local
relapse have histologically clear surgical margins.[24] In these cases, relapse may be due to
minimal residual disease (MRD) or field cancerisation.[24] In the case of MRD, small clusters
of histopathologically undetectable tumour cells proliferate leading to local recurrence.[24]
The field cancerisation model describes a field of premalignant epithelium, which may be
rather expansive due to the process of lateral cancerisation, containing preneoplastic cells from
which the primary carcinoma may have developed, and second primary tumours (SPT) can
develop, following additional genetic hits.[24, 31] Differentiation between SPT and local
recurrence due to MRD must be made where possible in order to determine appropriate
therapeutic measures – while the latter may be treated with post-surgical radiotherapy or
resection, treatment of the former is more complicated.[24] Surgery is not feasible due to the
large extent of disease and radiotherapy may even be contraindicated as it could aid in the
progression of preneoplastic cells into neoplasia, and thus more intensive surveillance during
follow-up may be the best option.[24]

Most studies demonstrate an association between involved or close margins and a worse
prognosis,[21, 32] with involved margins resulting in shorter disease-free survival,[21, 23, 32]
and shorter overall survival.[33] The presence of close margins has prognostic significance,
with a recent study finding margins at a cut-off of ≤1.6mm from the tumour to be prognostic
of shorter disease-free survival and shorter overall survival.[32] However, molecular changes
indicating early tumour development have been demonstrated in surgical margins of tumours
from the larynx, pharynx, and oral cavity considered histologically ‘normal’.[23, 34, 35] The
rate of local recurrence (and thus failure of treatment) even in margins diagnosed as tumour-
free is quoted in studies to be anywhere from 6.9-22%.[36]

It has been hypothesized that the majority of genetic alterations may occur during the early
cancer progression process and can precede the observation of certain cytological changes.[37]
It is thus believed that if given a reliable set of molecular or genetic biomarkers of epithelial
transition/progression to malignancy, the subsequent removal of the altered tissue may
prevent the future development of malignancy at that site.[38, 39] Such molecular biomarkers
may also be used to assess the margins of tumours subsequent to surgical resection,[24, 40]
allowing a means of objective assessment which may detect MRD, and predict potential for
local recurrence in the surrounding tissues. Furthermore, molecular studies on genetic markers
have shown there is a clonal relationship between the primary tumour and premalignant
epithelium adjacent to the tumour,[24] suggesting that molecular analysis of histologically
negative surgical margins may be a more sensitive method for detecting malignant trans‐
formed cells.[19] Ultimately we would like to propose a shift from conventional histopatho‐
logical assessment of surgical margins to molecular analysis, either through laboratory testing
or imaging techniques.
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3. Biomarkers in HNSCC

Since there is a need to reconsider methods of surgical margin assessment during SCC
resection, margins should not only be examined macroscopically and microscopically, but also
at a molecular level for dysregulated gene expression, which is also applicable in the diagnosis
of OED and OPML. It is currently accepted that genetic and epigenetic changes within a clonal
population of cells drives carcinogenesis by influencing oncogenes and tumour suppressor
genes (TSG).[41-43]

Current modelling postulates that the development of cancer is driven by the accumulation of
genetic and epigenetic changes within a clonal population of cells.[44] These genotypic
alterations can affect hundreds of genes, leading to phenotypic changes in critical cellular
functions such as resistance to cell death, increased proliferation, induction of angiogenesis,
and the ability to invade and metastasize.[45] The mechanisms underlying these genetic and
epigenetic aberrations can include genomic instability through chromosomal rearrangement,
amplification, deletion, methylation, or mutation.[45]

These genetic alterations have been shown to contribute directly to cancer development and
progression, and have a direct effect upon oncogenes and TSGs as well as the phenotypes they
regulate.[41-43] There has been considerable investigation into the genotypic and phenotypic
alterations observed in HNC,[42] and many studies have attempted to identify the genetic and
molecular aberrations occurring in HNC surgical margins as a means of predicting local
recurrence and relapse.

De Carvalho et al. examined 55 HNSCC patients undergoing operative therapy with histolog‐
ically negative surgical margins and found 36.4% of these patients (20/55) showed overex‐
pression of one of three genes they reported to being overexpressed in tumour samples –
MMP9, EPCAM and PTHLH, with MMP9 overexpression correlating with the risk of devel‐
oping SPT.[19] Santhi et al. showed that both cytoplasmic and nuclear NF-κB proteins had a
significant negative correlation from tumour to surgical margin to extra margin (2 cm away
from the actual surgical margin), with COX-2 paralleling its expression, suggesting that these
molecules are involved in tumour progression and may be used as markers in assessing MRD.
[46] In a later study, they compared the expression microRNAs (miRs) in oral tumour pro‐
gression and oral surgical margins.[47] They reported a decreased expression of I-miR-125a,
I-miR-184, and I-miR-16 and an increased expression of I-miR-96 in the progression from
normal mucosa to OED to OSCC, supported by the same pattern of expression retrogressing
from extra margin samples to margin samples to tumour samples.[47]

Potential molecular markers for OSCC or OED include: protein markers (e.g. TP53,[35, 48-53]
MMP9,[54] CDKN2A (p16),[49, 55-57] EIF4E[58), epigenetic markers (promoter hypermethylation),
{Sinha, 2009 #1258, 59-61] microRNA expression (e.g. miR-16, miR-125a, miR-184),[47] DNA
copy number changes, [50, 62-65] and loss of heterozygosity (e.g. 3p, 9p, 13q, 11q, 17p).[63,
66-68] Table 1 summarises studies that have investigated molecular markers with the potential
to predict local relapse. Table 2 details the list of studies investigating the performance of
molecular markers in HNSCC surgical margin analysis using a case (with relapse) and control
(without local relapse) approach, with the development of local relapse being the end-point.
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Study Marker (analysis

method)

Patients and

Tumours

Samples studied Results (number of

positive/total)

Notes

Jin et al.[292] TP53 mutation

(PCR-SSCP)

Laryngeal

carcinoma

(n = 20)

Tumour-adjacent tissue

histologically normal

5/20

Cruz et al.[48] TP53 mutation

(IHC)

OSCC

(n = 42)

Tumour-adjacent tissue

non-malignant mucosa

7/42

Tunca et al.[51] TP53 mutation

(PCR-SSCP and

sequencing)

HNSCC

(n = 15)

Surgical margin tissue 5/15

Van der Toorn et

al.[293]

TP53 mutation

(IHC)

OSCC

(n = 20)

Tumour-free surgical

margin

11/20

Blide et al.[49] TP53 mutation,

CDKN2A (p16),

CHEK2,

LAMA5 (via IHC)

OSCC

(n = 16)

Tumour-free surgical

margin

12/16 (TP53)

11/16 (p16)

1/16 (CHEK2)

0/16 (LAMA5)

Shin et al.[294] TP53 mutation

(IHC)

HNSCC

(n = 31)

Tumour-adjacent

normal epithelium

6/31

Van Houten et al.

[94]

TP53 mutation

(IHC)

HNSCC

(n = 30)

Tumour-free surgical

margin

19/30 Only margin

samples with TP53

mutation in tumour

were investigated

Nathan et al.[54] TP53 mutation,

4E,

MMP-9

(via IHC)

HNSCC

(n = 52)

Tumour-free surgical

margin

- 23/52 (TP53)

- 27/52 (4E)

- 28/52 (MMP-9)

Tabor et al.[82] Microsatellite

(LOH)

HNSCC

(n = 28)

- Tumour-adjacent non-

malignant mucosa

samples (n = 140)

- Tumour-free surgical

margins

(n = 42)

- 10/28

- 7/28

Szukala et al.[295] Microsatellite

(LOH at 13q)

Laryngeal

carcinoma

(n = 65)

Cancer-free surgical

margin

8-20/65

Poh et al.[68] Microsatellite

(LOH at 3p and 9p)

OSCC

(n = 20)

Tumour-adjacent tissue,

cancer free (n = 32)

15/32

Breiger et al.[67] Microsatellite at

3q26

HNSCC

(n = 20)

- Biopsy 1cm from

tumour

(n = 20)

- 4/20

- 3/20
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Study Marker (analysis

method)

Patients and

Tumours

Samples studied Results (number of

positive/total)

Notes

- Biopsy 2cm from

tumour

(n = 20)

Bremmer et al.[63] Microsatellite

(LOH at 3p, 9p, 11q

and 17p),

DNA ploidy,

MLPA

HNSCC

(n = 10)

Cancer-free surgical

margin

- 10/10

- 4/10

- 10/10

Only margins with

TP53 mutations

were analysed

Martone et al.[55] Promoter

hypermethylation

of MGMT,

CDKN2A (p16),

DAPK1

HNSCC

(n = 11)

Cancer-free surgical

margin

5/11 (MGMT)

3/11 (CDKN2A

(p16))

8/11 (DAPK1)

Goldenberg et al.

[34]

Promoter

hypermethylation

MGMT and

CDKN2A (p16)

HNSCC

(n = 6)

Surgical margins 3/6 Intraoperative

margin analysis

Wong et al.[57] Promoter-

methylation

CDKN2A (p16)

and p15

HNSCC

(n = 73)

Tumour-adjacent

mucosa histologically

normal

(n = 29)

5/29 (CDKN2A

(p16))

18/29 (p15)

Supic et al.[61] Promoter

hypermethylation

of p16,

DAPK,

RASSF1A,

APC,

WIF1,

RUNX3,

E-cad,

MGMT,

hMLH1

OSCC

(n = 47)

Tumour-adjacent

mucosa histologically

normal

44/47 (any marker)

27/47 (p16)

14/47 (DAPK)

17/47 (RASSF1A)

6/47 (APC)

19/47 (WIF1)

11/47 (RUNX3)

6/47 (E-cad)

7/47 (MGMT)

6/47 (hMLH1)

Shaw et al.[296] Promoter

hypermethylation

of

p16,

CYGB (via PMA)

OSCC

(n = 20)

Deep margins

histologically tumour-

free

11/20 (p16)

17/20 (CYGB)

Possible

contamination from

adjacent tumour
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Study Marker (analysis

method)

Patients and

Tumours

Samples studied Results (number of

positive/total)

Notes
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Study Marker (analysis

method)

Patients and

Tumours

Samples studied Results (number of

positive/total)

Notes

Roh et al.[60] Promoter

hypermethylation

of

p16,

DCC,

KIF1A,

EDNRB (via qMSP)

HNSCC

(n = 12)

Deep margins grossly

tumour-free

8/12 (any marker)

Kato et al.[72] Promoter

hypermethylation

of

p16,

MGMT (via MSP)

OSCC

(n = 51)

Tumour-adjacent

mucosa histologically

normal

(n = 22)

6/22 (p16)

9/22 (MGMT)

Barrera et al.[297] Chromosome

imbalance

(Interphase-FISH)

HNSCC

(n = 10)

Cell brushings of

clinically normal

tumour-adjacent

margins

10/10 Possible

contamination from

adjacent tumour

Voravud et al.

[298]

Chromosome

imbalance

(Interphase-FISH)

HNSCC

(n = 20)

Epithelium adjacent to

tumour, histologically

normal

8/20

Ott et al.[62] Chromosome

imbalance

(Interphase-FISH)

HNSCC

(n = 20)

Tumour-adjacent

margins

Most cases/20 (any

genomic change)

Various

chromosomes

targeted

Stafford et al.[64] Chromosome

imbalance (CGH)

HNSCC

(n = 19)

Clinically normal

tumour-adjacent

mucosa

0/19

Fabricius et al.

[299]

Telomerase (DNA-

PCR)

HNSCC

(n = 40)

Tumour margin biopsy 13/40

Preuss et al.[65] DNA Ploidy HNSCC

(n = 20)

- Biopsy 1cm from

tumour

(n = 20)

- Biopsy 2cm from

tumour

(n = 20)

Greater DNA

irregularity at 1cm

than 2cm

De Carvalho et al.

[19]

Expression of

PTHLH,

EPCAM,

MMP-9,

HNSCC

(n = 55)

Tumour-adjacent

mucosa histologically

normal

20/55 (any marker)

13/55 (MMP-9)

6/55 (EPCAM)

5/55 (PTHLH)
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Study Marker (analysis

method)

Patients and

Tumours

Samples studied Results (number of

positive/total)

Notes

Graveland et al.

[300]

LY6D (qRT-PCR) HNSCC

(n=55)

‘Clean’ or ‘close’ deep

margins histologically

tumour-free

12/55

Dasgupta et al.

[301]

Mitochondrial

DNA (mtDNA)

mutation

HNSCC

(n = 50)

Histologically normal

margins

(n = 24)

17/24 Only margins with

mtDNA mutation

in tumour were

assessed

Santhi et al.[47] microRNA

expression

OSCC

(n = 84)

- Surgical margin tissues

(histologically mild to

moderate dysplastic)

- Extra margin tissue

(histologically normal)

(n = 56)

- Increased

expression

(miR-125a, miR-184,

miR-16) in margin

vs. tumour

- Decreased

expression (miR-96)

in margin vs.

tumour

Table 1. Molecular markers at HNSCC surgical margins with potential to predict local relapse

Study Marker

(analysis method)

Patients

and margins

(Number of

patients with

positive

molecular

margins/total

patients)

Sensitivity

(positive

margins/

number of cases)

Specificity

(negative

margins/

number of

controls)

Significance Notes

Brennan et al.

[93]

TP53 mutation

(Sanger

sequencing)

HNSCC

(n = 30)

Evaluated

(n = 25)

Margins

(n = 72)

13/25 (48%) 5/5 (100%) 12/20 (60%) Yes

(KM-

logrank)

Van Houten et

al.[97]

TP53 mutation

(Sanger

sequencing)

HNSCC

(n = 179)

Evaluated

(n = 76)

Margins

(4 to 5 per

tumour, 3-4

superficial

50/76 (66%) 9/9 (100%) 25/62 (40%) Yes

(KM-

logrank)
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Study Marker (analysis

method)

Patients and

Tumours

Samples studied Results (number of

positive/total)

Notes

Graveland et al.

[300]

LY6D (qRT-PCR) HNSCC

(n=55)

‘Clean’ or ‘close’ deep

margins histologically

tumour-free

12/55

Dasgupta et al.

[301]

Mitochondrial

DNA (mtDNA)

mutation

HNSCC

(n = 50)

Histologically normal

margins

(n = 24)

17/24 Only margins with

mtDNA mutation

in tumour were

assessed

Santhi et al.[47] microRNA

expression

OSCC

(n = 84)

- Surgical margin tissues

(histologically mild to

moderate dysplastic)

- Extra margin tissue

(histologically normal)

(n = 56)

- Increased

expression

(miR-125a, miR-184,

miR-16) in margin

vs. tumour

- Decreased

expression (miR-96)

in margin vs.

tumour

Table 1. Molecular markers at HNSCC surgical margins with potential to predict local relapse

Study Marker

(analysis method)

Patients

and margins

(Number of

patients with

positive

molecular

margins/total

patients)

Sensitivity

(positive

margins/

number of cases)

Specificity

(negative

margins/

number of

controls)

Significance Notes

Brennan et al.

[93]

TP53 mutation

(Sanger

sequencing)

HNSCC

(n = 30)

Evaluated

(n = 25)

Margins

(n = 72)

13/25 (48%) 5/5 (100%) 12/20 (60%) Yes

(KM-

logrank)

Van Houten et

al.[97]

TP53 mutation

(Sanger

sequencing)

HNSCC

(n = 179)

Evaluated

(n = 76)

Margins

(4 to 5 per

tumour, 3-4

superficial

50/76 (66%) 9/9 (100%) 25/62 (40%) Yes

(KM-

logrank)
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Study Marker

(analysis method)

Patients

and margins

(Number of

patients with

positive

molecular

margins/total

patients)

Sensitivity

(positive

margins/

number of cases)

Specificity

(negative

margins/

number of

controls)

Significance Notes

and 1 deep

mucosal

margin)

Bergshoeff et

al.[50]

TP53 mutation

(IHC),

Chromosome

instability (CIN)

(via Interphase-

FISH)

OSCC

(n = 20)

Evaluated

(n = 19)

8/19 (42%) 3/4 (75%) – TP53

4/4 (100%) - CIN

10/15 (67%) -

TP53

11/15 (73%) - CIN

No – TP53

(Fisher-exact

test)

Yes - CIN

(Fisher-exact

test)

Huang et al.

[302]

TP53 mutation

(Sanger

sequencing)

OSCC

(n = 58)

Evaluated

(n = 25)

16/25 (64%) 11/13 (85%) 7/12 (58%) Yes

(KM-

logrank)

Partridge et al.

[35]

TP53 mutation (p53

phage plaque

assay,

immunocytochemi

stry, FASAY)

OSCC

(n = 18)

Evaluated

(n = 11)

6/11 (55%) 4/5 (80%) 4/6 (67%) Not

performed

Nathan et al.

[110]

TP53 mutation

(IHC),

eIF4E (IHC)

Laryngeal

carcinomas

(n = 54)

6/54 (11%) -

TP53

32/54 (59%) –

EIF4

6/23 (26%) – TP53

21/25 (84%) –

EIF4

31/31 (100%) –

TP53

18/29 (82%) –

EIF4

Yes

(KM-

logrank)

Graveland et

al.[52]

TP53 mutation

(IHC),

LOH (PCR),

Ki-67 (IHC)

HNSCC

(n = 35)

17/35 (49%) -

LOH

11/16 (69%) –

LOH

(75%) – positive

TP53 staining

(62%) – positive

TP53 with >5%

total epithelium

positive

(62%) - LOH 9p

present

(88%) – LOH 9p

and/or >5% TP53

staining positive

6/19 (31%) – LOH

(47%) – positive

TP53 staining

(84%) – positive

TP53 with >5%

total epithelium

positive

(74%) - LOH 9p

present

(63%) – LOH 9p

and/or >5% TP53

staining positive

Yes - LOH

9p and/or

>5% TP53

staining

positive

(KM-

logrank)

No – Ki-67

(KM-

logrank)
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Study Marker

(analysis method)

Patients

and margins

(Number of

patients with

positive

molecular

margins/total

patients)

Sensitivity

(positive

margins/

number of cases)

Specificity

(negative

margins/

number of

controls)

Significance Notes

Pena Murillo

et al.[95]

TP53 mutation,

Ly-6D (qRT-PCR)

OSCC

(n = 142)

Evaluable

(n = 102)

Carcinoma-

free resection

margins

51/102 (50%) –

TP53

14/51 (27%) –

Ly-6D

(92%) – TP53

(42%) – Ly-6D

(70%) –

Combined TP53

and Ly-6D

(56%) – TP53

(81%) – Ly-6D

(70%) –

Combined TP53

and Ly-6D

Yes – TP53

(KM-

logrank)

No – Ly-6D

(KM-

logrank)

46 cases received

post-op

radiotherapy

Only wild-type

TP53 positive

margins were

analysed for Ly-6D

Yi et al.[96] TP53 mutation,

Cyclin D1,

eIF4E (ISH)

Laryngeal

carcinoma

(n = 115)

47/115 (41%) –

TP53

34/115 (30%) -

D1

35/115 (30%) -

eIF4E

21/33 (64%) –

TP53

17/33 (51%) - D1

28/33 (85%) -

eIF4E

56/82 (68%) –

TP53

65/82 (79%) - D1

75/82 (91%) -

eIF4E

Yes

(Chi-square)

Nathan et al.

[58]

eIF4E (IHC) HNSCC

(n = 65)

36/65 (55%) 20/22 (91%) 27/43 (63%) Yes

(KM-

logrank)

Ogbureke et

al. [303]

Bone sialoprotein

(BSP),

Dentin

sialophosphoprotei

n (DSSP),

Osteopontin

(OPN),

MMP-9

(via IHC)

OSCC

(n = 20)

Surgical

margins

(histologically

negative)

(n = 200)

10/20 (50%) –

BSP

14/20 (70%) –

DSPP

14/20 (70%) –

OPN

16/20 (80%)

MMP-9

6/9 (67%) – BSP

8/9 (89%) – DSPP

7/9 (78%) – OPN

6/9 (67%) MMP-9

4/11 (36%) – BSP

6/11 (55%) –

DSPP

7/11 (64%) – OPN

10/10 (100%)

MMP-9

Yes

(KM-

logrank)

Reis et al. [304] 4-gene signature of

MMP-1,

COL4A1,

P4HA2,

THBS2

(via qRT-PCR)

OSCC

(n = 30)

Margins

(n = 136)

Not reported Not reported Not reported Yes

(KM-

logrank)

All four genes were

up-regulated in

margins of patients

with disease

recurrence

compared to those

without recurrence.

Monteobugnol

i et al. [305]

Ki-67 expression OSCC

(n = 42)

13/42 (30%) -

High Ki-67

values

2/4 (50%) - High

Ki-67 values

25/38 (65%) -

High Ki-67 values

Yes

(KM-

logrank)
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Study Marker

(analysis method)

Patients

and margins

(Number of

patients with

positive

molecular

margins/total

patients)

Sensitivity

(positive

margins/

number of cases)

Specificity

(negative

margins/

number of

controls)

Significance Notes

Pena Murillo

et al.[95]

TP53 mutation,

Ly-6D (qRT-PCR)

OSCC

(n = 142)

Evaluable

(n = 102)

Carcinoma-

free resection

margins

51/102 (50%) –

TP53

14/51 (27%) –

Ly-6D

(92%) – TP53

(42%) – Ly-6D

(70%) –

Combined TP53

and Ly-6D

(56%) – TP53

(81%) – Ly-6D

(70%) –

Combined TP53

and Ly-6D

Yes – TP53

(KM-

logrank)

No – Ly-6D

(KM-

logrank)

46 cases received

post-op

radiotherapy

Only wild-type

TP53 positive

margins were

analysed for Ly-6D

Yi et al.[96] TP53 mutation,

Cyclin D1,

eIF4E (ISH)

Laryngeal

carcinoma

(n = 115)

47/115 (41%) –

TP53

34/115 (30%) -

D1

35/115 (30%) -

eIF4E

21/33 (64%) –

TP53

17/33 (51%) - D1

28/33 (85%) -

eIF4E

56/82 (68%) –

TP53

65/82 (79%) - D1

75/82 (91%) -

eIF4E

Yes

(Chi-square)

Nathan et al.

[58]

eIF4E (IHC) HNSCC

(n = 65)

36/65 (55%) 20/22 (91%) 27/43 (63%) Yes

(KM-

logrank)

Ogbureke et

al. [303]

Bone sialoprotein

(BSP),

Dentin

sialophosphoprotei

n (DSSP),

Osteopontin

(OPN),

MMP-9

(via IHC)

OSCC

(n = 20)

Surgical

margins

(histologically

negative)

(n = 200)

10/20 (50%) –

BSP

14/20 (70%) –

DSPP

14/20 (70%) –

OPN

16/20 (80%)

MMP-9

6/9 (67%) – BSP

8/9 (89%) – DSPP

7/9 (78%) – OPN

6/9 (67%) MMP-9

4/11 (36%) – BSP

6/11 (55%) –

DSPP

7/11 (64%) – OPN

10/10 (100%)

MMP-9

Yes

(KM-

logrank)

Reis et al. [304] 4-gene signature of

MMP-1,

COL4A1,

P4HA2,

THBS2

(via qRT-PCR)

OSCC

(n = 30)

Margins

(n = 136)

Not reported Not reported Not reported Yes

(KM-

logrank)

All four genes were

up-regulated in

margins of patients

with disease

recurrence

compared to those

without recurrence.

Monteobugnol

i et al. [305]

Ki-67 expression OSCC

(n = 42)

13/42 (30%) -

High Ki-67

values

2/4 (50%) - High

Ki-67 values

25/38 (65%) -

High Ki-67 values

Yes

(KM-

logrank)
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Study Marker

(analysis method)

Patients

and margins

(Number of

patients with

positive

molecular

margins/total

patients)

Sensitivity

(positive

margins/

number of cases)

Specificity

(negative

margins/

number of

controls)

Significance Notes

29/42 (69%) –

Low Ki-67

values

1/4 (25%) - Low

Ki-67 values

9/38 (24%) - Low

Ki-67 values

Sardi et al.[86] Microsatellite

analysis (MSI and

LOH)

HNSCC

(n = 41)

11/25 (44%) 7/8 (88%) 13/17 (76%) Yes

(KM-

logrank)

Temam et al.

[306]

Microsatellite

analysis (MSI)

HNSCC

(n = 76)

Evaluated

(n = 26)

Margins

(n = 113)

7/26 (27%) 5/5 (100%) 19/21 (90%) Yes

(KM-

logrank)

Handschel et

al.[307]

DNA ploidy HNSCC

(n = 40)

16/40 (40%) 14/20 (70%) 18/20 (90%) Not reported

Zhao et al.

[308]

CD44v6,

BIRC5 (survivin)

(via IHC)

Laryngeal

carcinoma

(n = 146)

Evaluated

(n = 112)

35/112 (31%)

CD44v6

44/112 (39%)

BIRC5

20/41 (49%)

CD44v6

26/41 (63%)

BIRC5

56/71 (79%)

CD44v6

53/71 (75%)

BIRC5

Yes

(univariate

cox-

proportional

hazard)

Schaaij-Visser

et al. [309]

KRT4 (cytokeratin

4),

CRNN (cornulin)

(via IHC)

HNSCC

(n = 46)

23/46 (50%)

23/46 (50%)

17/23 (74%)

16/23 (70%)

17/23 (74%)

16/23 (70%)

Yes

(KM-

logrank)

Sinha et al.[56] Methylation of

CDKN2A (p16)

OSCC

(n = 30)

13/30 (43%) 5/6 (67%) 16/24 (67%) Yes

(KM-

logrank)

Tan et al.[59] Methylation of

CDKN2A (p16,

CCNA1,

DCC

HNSCC

(n = 42)

Evaluated

(n = 27)

11/27 (41%) 5/5 (100%) 16/22 (73%) Yes

(KM-

logrank)

Table 2. Performance of molecular markers in HNSCC surgical margin analysis of patients with (cases) and without
(controls) local relapse [adapted and modified from Braakhuis et al.[24]
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3.1. Epigenetic events

Unlike genetic alterations, epigenetic changes are heritable and potentially reversible.[69]
Epigenetic changes refer to any heritable modifications in gene expression without alterations
of the DNA sequence; they occur more frequently than gene mutations and may persist for
the entire cell life and even for multiple generations.[43] The transcription of each gene may
change from high-level expression to complete silencing, depending on the influence of the
“epimutations” which interfere with the action of activators and suppressors on specific
promoters in the chromatin context.[41] Epigenetic inheritance includes DNA methylation,
histone modifications and RNA-mediated silencing.

Promoter hypermethylation is a well-documented mechanism for tumour-specific alteration
of suppressor gene activity in human malignancy, including head and neck cancer.[70] In
normal tissues, unmethylated cytosine is found in high densities in CpG islands; areas with
high concentration of cytosine and guanine that map close to a promoter region in 40% of
mammalian genes.[41] This unmethylated state is associated with a high rate of transcriptional
activity; vital for maintaining TSG levels. Where hypermethylation of TSG occurs (via the
enzyme DNA methyltransferase), stable transcriptional silencing of tumour suppressor
activity occurs.[42, 69]

Studies have shown that methylation of the p16INK4a gene is a frequent event in primary
HNC, with hypermethylation occurring in 50-73% of cases.[34, 71] In an analysis of 22 OSCC
cases where paired cancerous tissues and the surrounding normal mucosa were simultane‐
ously analysed, methylation of p16 and O6-methylguanine-DNA-methyltransferase (MGMT;
a gene which produces a DNA repair enzyme essential for removing adducts caused by
alkylating agents) were shown in 27-40% of specimen margins considered ‘normal’.[72] In a
recent study on the prognostic significance of tumour-related gene hypermethylation in
cancer-free surgical margins of OSCC, Supic et al. selected a number of genes involved in a
wide range of cellular processes for analysis.[61] These included cell cycle control (p16),
apoptosis (DAPK and RASSF1A), Wnt signalling (APC, WIF1 and RUNX3), cell–cell adhesion
(E-cad), and DNA repair (MGMT and hMLH1).[61] Results showed that whilst DNA hyper‐
methylation in histologically negative surgical margins is a frequent event, hypermethylation
of p16 did not have prognostic significance.[61] Sinha et al. found that patients with positive
molecular margins for p16 hypermethylation had a 6.3-fold increased risk of having local
recurrence compared to patients with negative margins.[56] However, positivity of margins
did not show any significant correlation with T classification, nodal status, histological
presence or status of marginal dysplasia, or any other patient or tumour parameter.[56]
However, in a recent systematic review and meta-analysis of literature, Rainsbury et al.
concluded that based on 6 studies analysed, significantly better overall survival rates was seen
in p16-positive oropharyngeal squamous cell carcinoma (OPSCC) tumours.[73] Differences in
methodologies and cut-off points for analysis between the studies remain a limitation for
analysis, and there remains inadequate evidence at this time to determine whether or not
hypermethylation of p16 can be used as a biomarker for use in determination of clear surgical
resection margins or to predict the risk of local relapse.
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“epimutations” which interfere with the action of activators and suppressors on specific
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high concentration of cytosine and guanine that map close to a promoter region in 40% of
mammalian genes.[41] This unmethylated state is associated with a high rate of transcriptional
activity; vital for maintaining TSG levels. Where hypermethylation of TSG occurs (via the
enzyme DNA methyltransferase), stable transcriptional silencing of tumour suppressor
activity occurs.[42, 69]

Studies have shown that methylation of the p16INK4a gene is a frequent event in primary
HNC, with hypermethylation occurring in 50-73% of cases.[34, 71] In an analysis of 22 OSCC
cases where paired cancerous tissues and the surrounding normal mucosa were simultane‐
ously analysed, methylation of p16 and O6-methylguanine-DNA-methyltransferase (MGMT;
a gene which produces a DNA repair enzyme essential for removing adducts caused by
alkylating agents) were shown in 27-40% of specimen margins considered ‘normal’.[72] In a
recent study on the prognostic significance of tumour-related gene hypermethylation in
cancer-free surgical margins of OSCC, Supic et al. selected a number of genes involved in a
wide range of cellular processes for analysis.[61] These included cell cycle control (p16),
apoptosis (DAPK and RASSF1A), Wnt signalling (APC, WIF1 and RUNX3), cell–cell adhesion
(E-cad), and DNA repair (MGMT and hMLH1).[61] Results showed that whilst DNA hyper‐
methylation in histologically negative surgical margins is a frequent event, hypermethylation
of p16 did not have prognostic significance.[61] Sinha et al. found that patients with positive
molecular margins for p16 hypermethylation had a 6.3-fold increased risk of having local
recurrence compared to patients with negative margins.[56] However, positivity of margins
did not show any significant correlation with T classification, nodal status, histological
presence or status of marginal dysplasia, or any other patient or tumour parameter.[56]
However, in a recent systematic review and meta-analysis of literature, Rainsbury et al.
concluded that based on 6 studies analysed, significantly better overall survival rates was seen
in p16-positive oropharyngeal squamous cell carcinoma (OPSCC) tumours.[73] Differences in
methodologies and cut-off points for analysis between the studies remain a limitation for
analysis, and there remains inadequate evidence at this time to determine whether or not
hypermethylation of p16 can be used as a biomarker for use in determination of clear surgical
resection margins or to predict the risk of local relapse.
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3.2. Loss of heterozygosity

Loss of heterozygosity (LOH) may occur when one copy of a polymorphic marker with two
slightly different alleles is lost or amplified (allelic gain).[45] LOH in key chromosomal loci
represents one of the more promising markers; consistently being identified as a potentially
independent risk predictor, supported by data from several laboratories, including studies by
Sidransky, Califano, Mao, Hong, Lippman, and Lee.[12, 74-78]

Califano and Sidransky developed genetic progression models based on their studies of gene
alterations in squamous cell carcinoma of the head and neck.[79, 80] They reported LOH at
9p21, 3p and 17p13 in squamous hyperplasia, as well as LOH at 13q11, 13q21 and 14q31 in
dysplasia, with loss of chromosomal region 9p21 being the most common genetic alteration in
HNSCC (occurring in 70-80% of dysplastic lesions of the oral mucosa).[75, 79] Consensus has
emerged that LOH at 3p and 9p provides evidence of the accumulation of genetic damage in
potentially malignant lesions.[40, 81, 82] This has led to a number of investigations into the
predictive value of LOH at these specific chromosomal loci in malignant risk of low-grade
OED.[83-85] There is a general trend for lesions with greater disturbance in cellular architecture
and organization to harbor more genetic alterations at 3p and 9p, however this is not noted in
all studies. [40, 74, 76, 80]

Bremmer et al. implemented a range of genetic assays to screen for oral pre-malignant fields
in histologically ‘normal’ mucosa, and concluded that LOH may be a valuable screening tool
to detect oral pre-malignant fields in high risk patients.[63] The utility of LOH to evaluate risk
of local recurrence in surgical margins was also noted by Sardi et al.[86] However, a study by
Szukala et al. found no predictive value of LOH to determine risk of local relapse in laryngeal
cancer patients, with a low frequency of LOH detected in collected ‘clean’ margin samples.[66]

The predictive and prognostic capacity of LOH at 3p and 9p to predict risk of transition from
OED to malignancy has also been recently explored. A study by Zheng et al. in 2012 aimed to
prospectively validate their retrospective “2000 LOH progression model” proposed by Rosin
et al.[84, 87] Using a prospective cohort of 296 subjects with a histologic diagnosis of primary
mild/moderate dysplasia, the authors first validated their original model for predicting
progression to severe dysplasia, carcinoma in situ, or invasive cancer.[84, 88] High-risk (3p
and/or 9p LOH) lesions were found to have a 22.6-fold increased risk of progression when
compared with the low-risk (3p and 9p retention) lesions; findings consistent with the previous
study.[84, 87] By further refining their model with the inclusion of two further markers (4q
and 17p), prospective validation of the new model was performed. It demonstrated that low-
grade lesions showing retention of 9p had approximately a 5% risk of progression over 5 years
to severe dysplasia or more advanced disease.[87] This finding has important implications, as
it could suggest that individuals falling into this category might not require aggressive
treatment or monitoring despite having a histologic diagnosis of dysplasia. Conversely, a high-
progression rate (approximately 65%) for high-risk lesions was found, and would suggest that
this group should be aggressively monitored for clinical progression.[87]

From this study, a number of areas for future investigation arise. It is important to evaluate
the capacity of LOH to predict risk of progression within the immediate surrounding field and
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of secondary oral malignancy, given that a portion of HNSCC may not arise from the exact
site of the visually distinguished pre-malignancy.[85, 88]

Ultimately, comparison amongst existing studies is hindered by methodological differences,
adjustment for confounders, and controls. Whilst early evidence appears promising, the
clinical utility of LOH in 3p and 9p as a predictive tool to screen for progression of OED at
surgical resection margins still requires further long-term prospective validation and/or
investigation.[45, 84]

3.3. p53 family

p53 is a TSG located on chromosome 17p13, and plays a major role in cell-cycle progression,
cellular differentiation and DNA repair and apoptosis.[89, 90] Loss of p53 function impairs the
regulation of cell cycle arrest and apoptosis, thus altering the ability of cells to respond to stress
or damage (such as DNA damage, hypoxia, and oncogene activation).[89, 90] This can then
lead to genomic instability, and the accumulation of additional genetic alterations.[91] Loss of
p53 has long been implicated in early carcinogenesis, including HNSCC.[92]

Several studies have investigated the expression of p53 in HNSCC tumour resection margins.
[24, 49] Three groups have used p53 mutation-specific probes to detect aberrant cells in the
resection margins,[93, 94] with 100% sensitivity achieved in identifying the tumours that had
a local relapse in two independent studies.[93, 94] However, the assays used had a relatively
low specificity (40%),[94] and contamination of margin samples by mutated DNA derived
from cells leaking from the tumour could not be excluded.[93, 94] In a recent study by Bilde et
al., immunohistochemistry was used to analyse surgical specimens from 16 consecutive OSCC
patients with surgical margins deemed negative.[49] Histologically normal epithelium
adjacent to oral carcinomas showed upregulation of both p53 and p16, but with very little
overlap.[49] It was not possible to conclude whether the observed changes represented early
malignant changes or simply a reaction to cellular stress.[49] In case-control comparisons using
immunohistochemistry, p53 appears to have problems with respect to marker sensitivity,
which may be due to the presence of mutations not resulting in protein overexpression.[83,
93, 95-97] Ultimately, there remains insufficient evidence to determine whether p53 alterations
can be used as predictive markers to identify surgical margins at risk of local recurrence.

A number of studies have shown a correlation between p53 expression and early recurrence,
risk for secondary recurrence, metastatic spread and more aggressive disease progression.[49,
98] Studies involving immunohistochemical staining for the p53 tumour suppressor protein,
image cytometry of abnormal DNA content, and promoter methylation of the p16 tumour
suppressor gene have all attempted to establish potential markers for malignant progression.
[99-101] Inactivation of p53 has been associated with a reduction in post-surgical patient
survival in OSCC.[102, 103] Suprabasal p53 staining was found to be correlated with increasing
grades of dysplasia in a recent study by Vered et al.,[104] consistent with an earlier study by
Bortoluzzi et al.[104, 105] However, Cruz et al.[99] did not find a correlation between grade of
dysplasia and p53 expression, with Murti et al.[106] finding a similar level of p53 expression
in biopsies of patients who did or did not progress to OSCC; thus concluding that p53
expression was not predictive of the risk of malignant transformation. p53, in combination
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in biopsies of patients who did or did not progress to OSCC; thus concluding that p53
expression was not predictive of the risk of malignant transformation. p53, in combination
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with p16INK4a and Ki-67 alteration, has been proposed as potential markers to define high
risk leukoplakia, with further validation in larger sample sizes required.[107]

Due to the many differences in study design, methodology and laboratory techniques, there
are currently conflicting reports regarding the value of p53 as a biomarker for the prediction
of relapse in HNSCC surgical margins. There is yet to be sufficient validated evidence on its
utility in adoption for predictive assessment of dysplastic progression.

The proto-oncogene eIF4E (eukaryotic initiation factor 4E) is a eukaryotic translation initiation
factor.[108] eIF4E regulates the translation of cap-dependent mRNAs, and an aberrant increase
in eIF4E shifts the balance in favour of translation of transcripts that promote cell proliferation
and malignancy.[96, 108] eIF4E protein is commonly elevated in HNSCCs,[109] and its
overexpression in surgical margins has been found in a number of studies associated with
increased risk of local recurrence.[96] In an investigation into the prognostic value of p53 and
eIF4E expression in laryngeal carcinoma surgical margins, Nathan et al. concluded that eIF4E
overexpression appeared to be a more sensitive indicator of recurrence, and suggested that it
may occur as an earlier event in the tumourigenesis process.[110] A recent study by Yi et al.
investigating the prognostic value of p53, eIF4E and cyclin D1 in laryngeal carcinoma surgical
margins found similar results, finding that eIF4E overexpression positivity of margins
displayed a greater sensitivity than the other two studied factors.[96] Ultimately, further
studies are still required to validate and assess the clinical utility of eIF4E in the surgical margin
assessment of HNSCC.

Other genes in the p53 family have also been analysed, such as p63, p73 (both structurally and
functionally related to p53) and CDK inhibitor (CDKI) p21. There is again insufficient data to
determine the predictive value of p63 and p73 in the progression of dysplastic HNSCC lesions,
and whilst general trends have been elucidated in the literature, there is no published data
that correlates p63 or p73 expression with the prediction of progression to HNSCC.[104, 111,
112] There are conflicting reports on the expression of p21 in the progression of dysplasia in
HNSCC, with Choi et al. concluding that whilst an increasing trend in p21 expression was
detected in histological progression, there was no significant correlation or progression to
OSCC.[113] Future studies aimed at assessing the p53 pathway as a whole may be beneficial
to further explore the mechanisms of its deregulation in dysplastic progression to HNSCC.

3.4. microRNA

There has been increasing evidence of the role of non-coding microRNAs (miRs) in the
regulation of fundamental processes such as cell cycle, differentiation and apoptosis; and by
extension, the impact of their dysregulation on the process of carcinogenesis.[114-117] MiRs
are single-stranded endogenous, non-coding RNA transcribed from DNA, ranging between
18 and 24 nucleotides in length. They have the ability to regulate expression of other genes on
a post-transcriptional level through various processes by degradation or repression of target
mRNA; influencing organ development, cell differentiation, proliferation, apoptosis and stress
responses.[118, 119] Recent studies have suggested that miRs may also regulate mRNA targets
through less stringent mechanisms, such as binding to non-complementary regions and
binding to sites located within the coding regions of transcripts.[120] Given their pivotal
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function as post-transcriptional regulators of gene expression, miRs affect almost every cellular
process; and have been implicated in numerous disease types, including cancer.[116, 119, 121]

The role of miRs in cancer development was first established by Calin et al. in a study that
reported a specific miR cluster (miR-15/16) was deleted and/or down-regulated in the majority
of chronic lymphocytic leukemia (CLL) cases.[122] The link to cancer was further strengthened
by the discovery that miR genomic positioning appeared to be non-random,[121, 122] and that
a significant number of miR genes were located at fragile sites (unstable regions that have been
shown to promote DNA instability in cancer cells) or genomic regions that have been linked
to cancers.[123] RAS, HMGA2, and MYC oncogenes have been identified as let-7 targets,
indicating significant tumour-suppressive importance for this family of miRs.[118, 123]

There have been many molecular studies investigating the expression and dysregulation of
miRs in HNSCC.[13, 115, 116, 124-126] Using a candidate-gene approach, most have attempted
to examine the role of expression and proposed targets of specific miRs in HNSCC cell lines
compared to normal samples.[13, 125-128] The underlying process by which miR deregulation
affects the process of transition from dysplasia to HNSCC has not yet been fully elucidated,
with a main impediment being the multifactorial aetiology of HNSCC and wide heterogeneity
of lesions. However, Zhang et al. reported that Dicer and Drosha, enzymes involved in
processing miRNA, were upregulated in salivary gland pleomorphic adenomas.[129]

In HNSCC, Li et al. found an increased level of miR-21 expression that was negatively
associated with low levels of tropomyosin 1 (TPM1) and phosphate tensin homologue (PTEN);
TSGs that mediate apoptotic and cell-cycle events.[126] In the same study, miR-21 was found
to facilitate anchorage-independent growth of HNSCC cells, partly through the down-
regulation of TPM1.[126] This finding has been validated in further studies observing elevated
miR-21 expression contribution to neoplastic phenotypes.[130, 131] It is pertinent to note that
most studies to date investigating miR expression profiles in HNSCC have used cancer cell
lines, and only a few have been in solid tumour samples.[13, 132] Cell lines may not reflect the
miR profiles of solid tumours, as particular culture conditions and clonal selection may
radically change miR expression.[128] Of the few studies which have selected specific miRs
for further investigation using patient samples, Childs et al. showed that miR-21 was also found
in neoplastic head and neck cells, and may have potential as a prognostic marker in HNC.[124]

To date, there are limited studies investigating the role of miRs in surgical margins.[47]
Santhi et al. analysed 72 miRs reported to be differentially expressed in OSCC and detected
decreased expression of miR-125a, miR-184 and miR-16 and an increased expression of miR-96
in both progressive oral mucosal samples and dysplastic surgical margin samples.[47]
Langevin et al. found miR-137 promoter hypermethylation to be associated with poor overall
survival in patients with HNSCC, but found no significant associations with surgical resection
margin positivity[133]. Further studies are required to define a broader set of miR profiles
within a wider range of surgical samples, and to correlate results with patient outcomes.
Ultimately, there remains insufficient evidence to determine whether these alterations could
be used as predictive markers to identify dysplastic progression to HNSCC.

Contemporary Issues in Head and Neck Cancer Management90



function as post-transcriptional regulators of gene expression, miRs affect almost every cellular
process; and have been implicated in numerous disease types, including cancer.[116, 119, 121]

The role of miRs in cancer development was first established by Calin et al. in a study that
reported a specific miR cluster (miR-15/16) was deleted and/or down-regulated in the majority
of chronic lymphocytic leukemia (CLL) cases.[122] The link to cancer was further strengthened
by the discovery that miR genomic positioning appeared to be non-random,[121, 122] and that
a significant number of miR genes were located at fragile sites (unstable regions that have been
shown to promote DNA instability in cancer cells) or genomic regions that have been linked
to cancers.[123] RAS, HMGA2, and MYC oncogenes have been identified as let-7 targets,
indicating significant tumour-suppressive importance for this family of miRs.[118, 123]

There have been many molecular studies investigating the expression and dysregulation of
miRs in HNSCC.[13, 115, 116, 124-126] Using a candidate-gene approach, most have attempted
to examine the role of expression and proposed targets of specific miRs in HNSCC cell lines
compared to normal samples.[13, 125-128] The underlying process by which miR deregulation
affects the process of transition from dysplasia to HNSCC has not yet been fully elucidated,
with a main impediment being the multifactorial aetiology of HNSCC and wide heterogeneity
of lesions. However, Zhang et al. reported that Dicer and Drosha, enzymes involved in
processing miRNA, were upregulated in salivary gland pleomorphic adenomas.[129]

In HNSCC, Li et al. found an increased level of miR-21 expression that was negatively
associated with low levels of tropomyosin 1 (TPM1) and phosphate tensin homologue (PTEN);
TSGs that mediate apoptotic and cell-cycle events.[126] In the same study, miR-21 was found
to facilitate anchorage-independent growth of HNSCC cells, partly through the down-
regulation of TPM1.[126] This finding has been validated in further studies observing elevated
miR-21 expression contribution to neoplastic phenotypes.[130, 131] It is pertinent to note that
most studies to date investigating miR expression profiles in HNSCC have used cancer cell
lines, and only a few have been in solid tumour samples.[13, 132] Cell lines may not reflect the
miR profiles of solid tumours, as particular culture conditions and clonal selection may
radically change miR expression.[128] Of the few studies which have selected specific miRs
for further investigation using patient samples, Childs et al. showed that miR-21 was also found
in neoplastic head and neck cells, and may have potential as a prognostic marker in HNC.[124]

To date, there are limited studies investigating the role of miRs in surgical margins.[47]
Santhi et al. analysed 72 miRs reported to be differentially expressed in OSCC and detected
decreased expression of miR-125a, miR-184 and miR-16 and an increased expression of miR-96
in both progressive oral mucosal samples and dysplastic surgical margin samples.[47]
Langevin et al. found miR-137 promoter hypermethylation to be associated with poor overall
survival in patients with HNSCC, but found no significant associations with surgical resection
margin positivity[133]. Further studies are required to define a broader set of miR profiles
within a wider range of surgical samples, and to correlate results with patient outcomes.
Ultimately, there remains insufficient evidence to determine whether these alterations could
be used as predictive markers to identify dysplastic progression to HNSCC.

Contemporary Issues in Head and Neck Cancer Management90

Despite the increasing number of studies into miR expression in HNSCC, there remain few
publications that have investigated the deregulation of miRs in the transition process from
dysplasia to malignancy. In an investigation of miR pre-cursors in oral leukoplakia (OL), Xiao
et al. found up-regulation of both miR-31 and its passenger strand (termed miR-31*).[134]
miR-31* was negatively associated with recurrent/newly formed OL, and they hypothesized
that miR-31* may play an important role during OL progression via the regulation of fibroblast
growth factor 3 (FGF3).[134] This was consistent with miR expression profile findings in a
prospective translational study by Lajer et al., who examined global miR expression in a series
of consecutive tumours and biopsies obtained from patients with OSCC and OPSCC.[128] Of
the one hundred and fourteen miRs differentially expressed between OSCC and normal
epithelium, the upregulation of miR-31 and downregulation of miR-375 were found to be the
most significant aberrations.[128] Thus there is evidence to suggest that the upregulation of
miR-31 may be an early event in the transition process from dysplasia to OSCC; however,
further elucidation of its role in the progression process and its predictive value still requires
further investigation.

Ultimately, whilst early results of molecular prognostic indicators such as LOH and eIF4E
appear promising, the routine use of these markers for HNSCC surgical resection margins
assessment is yet to be validated. Further research is required which can ideally integrate the
convenience of histopathology with the objectivity of molecular panel analysis, supported by
a distinct outline of clinical parameters, baseline data, and sufficiently sizable homogeneous
patient populations amenable to long-term follow-up.

4. Imaging techniques

It has now been established that molecular profiling of tissue changes enable clinicians to
“visualise” more of the disease, indeed diagnose altered tissue early. While macroscopic
changes may be detected under white light examination and tissue/cell level changes through
histopathology, molecular dysregulation may be identified using special imaging techniques.
While most current methods assess tissue in the plane parallel to the lesion, methods aiding
assessment in the vertical cross-section (plane perpendicular to the mucosal surface) are
required to detect lesions below the mucosal surface and evaluate submucosal tumour
invasion.[135]

All optical imaging techniques detect and analyse backscattered photons from mucosa.[135]
Visible light (400-700 nm) is used for conventional white light inspection, however shorter
wavelengths in ultraviolet (UV) and longer wavelengths in the near-infrared (NIR) regions of
the light spectrum can also be used for imaging. UV and blue light are absorbed by biomole‐
cules to produce fluorescence.[135] In order to detect targeted tumour cells, the tumour-
specific signal must be significantly discriminated from the non-specific background signals,
thus optimising the signal-to-background ration (SBR).[136] The visible light spectrum has
relatively short penetration depths useful for imaging (<100 μm) as it is mostly absorbed by
haemoglobin, and is significantly associated with a high level of nonspecific surrounding
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signals, resulting in a low SBR.[135, 136] NIR is less susceptible to tissue scattering and
haemoglobin absorption, yielding penetration depths >1000 μm through the mucosa and a
high SBR, with an optical imaging window of about 650-900 nm in which the absorption
coefficient is at a minimum.[135, 136]

Optical imaging techniques using Optical Fluorescence Imaging (OFI) and Narrow Band
Imaging (NBI) reflect tissue changes at the microscopic and molecular levels. Optical Coher‐
ence Tomography (OCT) and Angle-Resolved Low-Coherence Interferometry (a/LCI) non-
invasively provide information in the vertical and axial planes. Raman spectroscopy is a point
detection technique based on the inelastic scattering of light, also enabling molecular histo‐
pathological examination. Computed Tomography (CT) and Magnetic Resonance Imaging
(MRI) are methods traditionally used to detect carcinoma and metastasis (hence staging), and
assess treatment response, providing anatomical and physiological information. Positron
emission tomography (PET) is a true form of molecular imaging, opening the door for drug
delivery and molecular surgical guidance. Hybrid imaging methods, PET/CT and PET/MRI,
offer the best of both these imaging approaches. All these methods, collectively termed “optical
biopsy”, are non-destructive in situ assays of mucosal histopathologic states using the spectral
and spatial properties of scattered light to measure cellular and/or tissue morphology,
providing an instantaneous diagnosis.[135, 137]

4.1. Optical imaging

4.1.1. Optical coherence tomography

Optical Coherence Tomography (OCT) is based on the principle of low-coherence interfer‐
ometry.[135] It provides high resolution (~1-20 μm) cross-sectional images of tissue in situ,
higher than conventional ultrasound, MRI, or CT, and comparable to conventional histology
but being non-destructive, it aids real-time surgical diagnostics and an “optical biopsy” of the
tissue.[138] Initial success with this modality was with retinal pathology[139] and broncho‐
pulmonary diseases.[140] More recently, it has been deemed useful in diagnosing diseases of
the oropharynx/larynx and other oral tissues.[138, 141, 142]

OCT is similar to ultrasound B-mode imaging except that OCT uses light instead of acoustic
waves, measuring the echo time delay and intensity of backscattered light.[143] The system
uses NIR light, split into reference and sample beams, and plots the back-reflected light from
structures within the tissue against depth (up to 2-3 mm).[139, 143, 144] Since the velocity of
light is extremely high, optical echoes cannot be measured directly by electronic detection, but
instead uses low-coherence interferometry – the back scattered light waves interfere with the
reference beam and this interference pattern is used to measure the light echoes versus the
depth profile of the tissue in vivo.[144] OCT also uses fibre optic technology, allowing for low-
profile imaging to be performed through small optical fibres attached directly to a scalpel,
tissue probe, endoscope, or microscope.[144] The device is compact and portable.[144]

In healthy mucosa, the basement membrane can be easily identified at the junction of the bright
lamina propria and the darker epithelium, which is lost in the presence of invasive cancer.[145]
However, one study had inconsistent results, showing a deceptive change in the histological

Contemporary Issues in Head and Neck Cancer Management92



signals, resulting in a low SBR.[135, 136] NIR is less susceptible to tissue scattering and
haemoglobin absorption, yielding penetration depths >1000 μm through the mucosa and a
high SBR, with an optical imaging window of about 650-900 nm in which the absorption
coefficient is at a minimum.[135, 136]

Optical imaging techniques using Optical Fluorescence Imaging (OFI) and Narrow Band
Imaging (NBI) reflect tissue changes at the microscopic and molecular levels. Optical Coher‐
ence Tomography (OCT) and Angle-Resolved Low-Coherence Interferometry (a/LCI) non-
invasively provide information in the vertical and axial planes. Raman spectroscopy is a point
detection technique based on the inelastic scattering of light, also enabling molecular histo‐
pathological examination. Computed Tomography (CT) and Magnetic Resonance Imaging
(MRI) are methods traditionally used to detect carcinoma and metastasis (hence staging), and
assess treatment response, providing anatomical and physiological information. Positron
emission tomography (PET) is a true form of molecular imaging, opening the door for drug
delivery and molecular surgical guidance. Hybrid imaging methods, PET/CT and PET/MRI,
offer the best of both these imaging approaches. All these methods, collectively termed “optical
biopsy”, are non-destructive in situ assays of mucosal histopathologic states using the spectral
and spatial properties of scattered light to measure cellular and/or tissue morphology,
providing an instantaneous diagnosis.[135, 137]

4.1. Optical imaging

4.1.1. Optical coherence tomography

Optical Coherence Tomography (OCT) is based on the principle of low-coherence interfer‐
ometry.[135] It provides high resolution (~1-20 μm) cross-sectional images of tissue in situ,
higher than conventional ultrasound, MRI, or CT, and comparable to conventional histology
but being non-destructive, it aids real-time surgical diagnostics and an “optical biopsy” of the
tissue.[138] Initial success with this modality was with retinal pathology[139] and broncho‐
pulmonary diseases.[140] More recently, it has been deemed useful in diagnosing diseases of
the oropharynx/larynx and other oral tissues.[138, 141, 142]

OCT is similar to ultrasound B-mode imaging except that OCT uses light instead of acoustic
waves, measuring the echo time delay and intensity of backscattered light.[143] The system
uses NIR light, split into reference and sample beams, and plots the back-reflected light from
structures within the tissue against depth (up to 2-3 mm).[139, 143, 144] Since the velocity of
light is extremely high, optical echoes cannot be measured directly by electronic detection, but
instead uses low-coherence interferometry – the back scattered light waves interfere with the
reference beam and this interference pattern is used to measure the light echoes versus the
depth profile of the tissue in vivo.[144] OCT also uses fibre optic technology, allowing for low-
profile imaging to be performed through small optical fibres attached directly to a scalpel,
tissue probe, endoscope, or microscope.[144] The device is compact and portable.[144]

In healthy mucosa, the basement membrane can be easily identified at the junction of the bright
lamina propria and the darker epithelium, which is lost in the presence of invasive cancer.[145]
However, one study had inconsistent results, showing a deceptive change in the histological

Contemporary Issues in Head and Neck Cancer Management92

layers when compared to conventional biopsy of oral lesions (various anatomical sites).[138]
The authors also noted that OCT image analysis is unique, requiring special training, and
associated with a wide range of variability when interpreting its parameters (mainly epithe‐
lium thickness and status of basement membrane).[138] The authors previously aimed to
generate a bank of normative and pathological OCT data from oral tissues to identify cellular
structures of normal and pathological processes, thus creating a diagnostic algorithm.[146]

While OCT is useful for clinical detection of OSCC and OPML,[147] it also has potential in
evaluating surgical margins for MRD in HNSCC just as it has been proven useful in cancers
of other tissues such as breast,[148, 149] skin,[150, 151] vulva,[152] and prostate.[153]

4.1.2. Angle-resolved low-coherence interferometry

Angle-resolved low-coherence interferometry (a/LCI) is a light scattering technique which
isolates the angle scattering distribution from cellular nuclei at various tissue depths.[137] In
doing so, it is able to provide biomarkers based on morphology that are highly correlated with
the presence of dysplasia.[137] It measures the angular intensity distribution of light scattered
by a tissue sample, quantifying subcellular morphology as a function of depth in the tissue.
[137] For each depth layer, signatures from cell nuclei are extracted by collecting and process‐
ing the angular scattering signal using a Mie theory-based light-scattering model to produce
measurements of average nuclear diameter with submicron-level accuracy.[137] Studies that
have investigated the use of a/LCI have confirmed that neoplastic tissue transformation is
accompanied by an increase in the average cell nuclei size,[137, 154-156] thus detecting
potentially malignant lesions as well as malignant lesions. The diameter of a non-dysplastic
epithelial cell nucleus is typically 5-10 μm, while dysplastic nuclei can be as large as 20 μm
across.[157] When this is optimized to 11.84 μm for the classification of tissue health, a/LCI
yields a sensitivity of 100%, specificity of 84%, overall accuracy of 86%, positive predictive
value of 34% and negative predictive value of 100% in oesophageal epithelium in vivo.[137,
155] This technique has been studied in animal models, ex vivo human studies, and more
recently in in vivo studies, predominantly associated with cases of Barrett’s Oesophagus (which
is associated with an increased risk of oesophageal adenocarcinoma) and oesophageal
epithelium.[137] The system is portable and the probe can be used through the accessory
channel of a standard endoscope, thus providing surgical guidance.[137]

a/LCI could have a role in assessing surgical margins in HNSCC by assessing size of nuclei in
the margins although currently there are no studies that have investigated this.

4.1.3. Optical fluorescence imaging

The basis of optical imaging techniques is the ability of photons to travel through tissue and
interact with tissue components.[158] Fluorescence is the property of certain molecules to
absorb light at a particular wavelength and to emit light of a longer wavelength after a brief
interval called fluorescence lifetime.[158] Fluorescence spectroscopy, a major form of optical
imaging, is a non-invasive diagnostic tool that evaluates the biochemical composition and
structure of tissue autofluorescence (AF).[159] It is relatively simple, fast, accurate, and can aid
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in real-time cancer detection.[159] While microscopic imaging systems for intraoperative
surgical margin assessment based on endogenous contrast or AF are useful, high resolution
of the diseased tissue is limited to a small field of view, making it difficult to survey the entire
surgical excision margin intraoperatively.[20] Extrinsic approaches are more effective, which
use fluorescent dyes detected by probes.[20] The signals can also be integrated into the white
light image, which enables real-time intraoperative visualisation.[20] OFI is advantageous and
convenient as it can be used intraoperatively for surgical guidance in resecting malignant tissue
and for pathological sampling.[160] Various devices implementing OFI, both commercially
available as well as those developed by researchers, using visible light or NIR, with or without
excitable dyes, have been investigated mostly in breast cancer,[160, 161] but is now being tested
in HNSCC as well.[162-166]

Francisco et al.[159] recently showed that fluorescence spectroscopy could discriminate
between oral mucosa, injury, margins, and areas of recurrence, using a homemade fluorescence
spectroscopy system, at 406 nm wavelength [159] without using injectable dyes, and providing
macroscopic visualisation of affected and unaffected tissue. The VELscope™ and Identafi™
are commercially available tools that use the principles of AF and tissue reflectance to
discriminate between normal and abnormal tissue. These tools are described below in order
to illustrate loss of AF (LAF) and diascopic fluorescence as indicators of tissue change, which
provide the clinician with additional information aiding diagnosis. Miyamoto et al. investi‐
gated intraoperative molecular imaging (multispectral fluorescence images) to identify
tumour extensions in a murine HNC model.[167] They reported 86% sensitivity and 100%
specificity in the diagnostic accuracy analysis compared to histology, the gold standard. They
also reported a 60-day improvement in survival rate when using molecular imaging during
surgery, compared to standard surgery (37% versus 5% respectively). Thus fluorescence can
be used both for diagnosis and for surgical guidance to improve patient outcomes.

The Visually Enhanced Lesion Scope (VELscope™; LED Medical Diagnostics Inc., Barnaby
Canada) uses direct tissue AF to enhance oral mucosal abnormalities.[7] An external light
source, in this case blue light excitation between 400-460 nm, is used to excite endogenous
fluorophores (typically nicotinamide adenine dinucleotide (NADH) and flavin adenine
dinucleotide (FAD)) in the oral epithelium and collagen cross-links in the underlying stroma,
which absorb the extrinsic photons and emit lower energy photons which appear clinically as
fluorescence.[168-173] Since each fluorophore is associated with specific excitation and
emission wavelengths, changes in tissue architecture and concentrations of fluorophores (as
in the case of mucosal abnormalities and neoplastic development) results in altered absorption
and scattering properties of the tissue,[7] with decreased tissue AF being reported in OED and
mucosal inflammation.[68, 169, 174] Under the VELscope™, normal oral mucosa appears pale
green when viewed under a filter while abnormal tissue exhibits LAF and appears dark.

While the VELscope™ has assisted in the detection of OED and OSCC not visible by conven‐
tional oral examination (COE) warranting tissue biopsy and aiding in demarcating margins,
[68, 175] clinicians have been advised to use the VELscope™ in conjunction with COE as LAF
may also be displayed in tissues with mucosal inflammation.[176] Complete diascopic
fluorescence, wherein tissues display normal fluorescence pattern with the application of
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pressure, can differentiate inflammatory lesions from neoplastic lesions.[176] However, the
challenge of completely blanching tissues and inter-operator variation in the interpretation of
partial blanching (i.e. low specificity and variable sensitivity) grades the VELscope™ as a
useful clinical tool for clinically visualising abnormalities but not an accurate discriminator of
the condition of the mucosa under inspection.[176] Nevertheless, a recent clinical study
suggested the use of a decision making protocol incorporating the VELscope™ in routine
general dental practice allows for the detection of additional oral mucosal lesions requiring
specialist referral.[177]
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different lights which are to be used sequentially.{#1120;Bhatia, 2013 #729} The light emitting
diode (LED) white light enables superior visualisation of oral tissues but cannot differentiate
between OPML and other more benign abnormalities of the oral mucosa, in a manner similar
to that displayed by Microlux/DL™.[7, 178] Visualisation of oral mucosa under violet light
(405 nm wavelength) through the accompanying photosensitive filter glasses, assesses the AF
properties of tissue, with normal mucosa exhibiting natural fluorescence and abnormal tissues
displaying LAF in a similar fashion to VELscope™.[7] Despite the dubious sensitivity and
specificity of this wavelength of light,[173] areas of LAF visualised were often larger than what
was clinically visible which might be due to the visualisation of deeper neovascularisation and
stromal changes that accompany lesion progression, thus having a potential application in the
determination of surgical margins for lesion excision.[163, 164] The green-amber light (545 nm
wavelength) uses the concept of reflectance spectroscopy to characterise the connective tissue
vasculature.[7] The process of carcinogenesis involves angiogenesis resulting in altered
vascular morphology and it has been suggested that these tissue changes can be used to
determine the prognosis of oral lesions, enabling the differentiation between benign lesions
and OPML.[7, 179-181] Reflectance spectroscopy uses light within the absorption spectrum of
haemoglobin (400-600 nm) which would reflect the degree of angiogenesis in the tissue. A
significantly reduced reflectance spectra is observed in OSCC and OPML due to greater light
absorption from increased microvasculature density and oxygenated haemoglobin content in
neoplastic tissue.[7]

The underlying principles have enormous potential for application. Ongoing clinical trials by
our group have shown excellent lesion visibility compared to COE under incandescent light.
Violet light examination provided improved lesion visibility compared to COE, and improved
visualisation of lesion borders and slight increase in lesion size compared to incandescent and
white light. It also has a high level of clinical utility for evaluating inflammatory pathology.
However, a high level of clinical experience is required to interpret the results of AF exami‐
nation as the violet light displays low sensitivity for detection of OED. The green light helps
uncover subtle vascular and inflammatory patterns providing additional clinical information.

Both these technologies highlight the usefulness of detecting LAF and diascopic fluorescence,
however, additional information is required to diagnose the tissue change. Molecular studies
in this area aid in our understanding of the phenomena of AF, LAF and diascopic fluorescence
in oral tissues, enabling more informed use of such devices and superior interpretation of
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changes in AF patterns. One study in oral cancer patients showed that all their tumour samples
(confirmed by histopathology) had displayed LOH intraorally when a simple hand-held
device, similar to the VELscope™, was used.[68] Molecular analysis in this study on margins
with low-grade or no dysplasia showed a significant association between LAF samples and
LOH at 3p and/or 9p, which is strongly associated with tumour recurrence after tumour
removal.[68] Furthermore, this study found that LAF extended beyond the clinical visible
lesion, and these areas displayed dysplasia/cancer on histology and/or genetic alterations
associated with molecular risk, thus showing that the VELscope™ can distinguish between
dysplasia and normal oral mucosa.[68]

4.1.4. Narrow band imaging

Narrow Band Imaging (NBI; Olympus Medical Systems Corporation, Tokyo, Japan) utilises
the concept that the depth of light penetration is dependent on its wavelength to enhance
mucosal surface texture and underlying vasculature.[182, 183] The spectral bandwidth of the
filtered light is narrowed.[183] The system has two modes, white light and NBI.[7] In NBI
mode, only blue light (400 – 430 nm) and green light (525 – 555 nm) are emitted in parallel
which make blood vessels in the superficial mucosa appear brown, and the deeper larger
vessels in the submucosa appear cyan.[183] Blue light (centred at 415 nm) penetrates shallowly
and corresponds to the peak absorption spectrum of haemoglobin, while green light (centred
at 540 nm) penetrates deeper.[183] In NBI mode, inflammatory lesions have an ill-demarcated
border and can be differentiated from neoplastic lesions which appear as areas with scattered
dark spots and a well-demarcated border.[184, 185] These scattered dark brown spots repre‐
sent superficial blood vessels; interpapillary capillary loops (IPCL).[7] Visualisation of the
vasculature, as well as the degree of dilation, meandering, tortuosity, and calibre of IPCLs all
indicate the true extent of lesions and severity of pathology, thus guiding the position of biopsy
and resection margins.[184, 186-188] Takano et al.’s[184] IPCL classification for oral mucosa is
tabulated in Table 3. It has been recommended that lesions with Types III and IV IPCL patterns
must always be biopsied.[189] The presence of keratinised tissue can pose a hindrance to
optimal visualisation of the lesion itself.[7]

Gono  et  al.[183]  used  NBI  in  colonoscopy  and  upper  gastrointestinal  endoscopy  and
concluded that magnified NBI enhanced the capillary pattern and the crypt pattern on the
mucosa,  which  are  useful  features  for  diagnosing  early  cancer.[190]  Later,  Muto  et  al.
reported that carcinoma in situ at oropharyngeal and hypopharyngeal mucosal sites can be
clinically  recognised  using  magnified  NBI  endoscopy,  confirming  the  usefulness  of
evaluating in situ angiogenesis  in  solid tumours in  the head and neck region.[191,  192]
Yoshida et al. validated the use of NBI with magnifying endoscopy in oesophageal lesions.
[193] A case report by Katada et al. showed the usefulness of NBI combined with gastroin‐
testinal endoscopy (GIE) in detecting OSCC in the floor of the mouth.[187] Further case
reports and investigations also supported the use of NBI in the oropharynx,[194] nasophar‐
ynx,[195,  196]  hypopharynx,[197]  larynx,[198]  and oesophagus.[199]  Its  use  in  determin‐
ing tumour size and margins in gastrointestinal cancers of the bile duct,[200, 201] duodenal
papilla,[202] stomach[203,  204] was also investigated, all  with encouraging results boast‐
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ing higher sensitivities and specificities than the current detection method used at the time.
All these studies hailed NBI as a method with improved detection and diagnostic accura‐
cy of cancers in areas that are difficult to examine, and critically allowing for early diagnosis,
having an impact  on treatment  options,  quality  of  life  and patient  survival.[205]  It  was
considered that NBI would develop into a useful tool in the future pre-, intra-, and post-
operative endoscopic assessment of neoplastic lesions in the upper aerodigestive tract.[206]

Type Description/Features

I

⋅ Normal mucosa
⋅ Regular brown dots – when loops are perpendicular to the surface of the mucosa
⋅ Waved lines – loops are parallel
⋅ Study by Yang et al.[189] – 17% frequency of dysplasia in these lesions, hence remain cautious and
utilise clinical judgement as well

II
⋅ Non neoplastic and inflammatory lesions, but dysplasia present most of the time
⋅ Dilated and crossing IPCL pattern

III
⋅ Non neoplastic lesions, but dysplasia is almost definitely present
⋅ Elongated and meandering IPCL pattern

IV
⋅ Neoplastic lesions
⋅ Large vessels IPCL pattern destruction
⋅ Presence of angiogenesis

Table 3. Summary of IPCL classification for oral mucosa by Takano et al.[184]

In a multicentre, prospective, randomised controlled trial (n = 320), Muto et al.[207] found that
NBI detected superficial cancer more frequently than white light imaging in both the head and
neck region (100% vs 8%) and the oesophagus (97% vs 55%). They reported a sensitivity and
accuracy of 100% and 86.7% in the detection of superficial cancer in the head and neck region
using NBI, and 97.2% and 88.9% in the oesophagus, respectively.[207] Piazza et al.[208] showed
that 27% (26 of 96) of patients with OSCC and OPSCC had a diagnostic advantage by applying
NBI and high definition television (HDTV) compared to white light and HDTV. In a later study,
[209] they concluded that NBI and HDTV were of value in defining superficial tumour
extension, in the detection of synchronous lesions in the pre-/intra-operative settings, and in
post-treatment surveillance for early detection of persistence, recurrence, and metachronous
tumours.

Fielding et al. combined white light and AF to the bronchoscopic and laryngoscopic assess‐
ments of head and neck cancer patients, and reported improved sensitivity but low specificity,
increasing the number of unnecessary biopsies.[210] A later study combined AF and NBI for
the detection of mucosal lesions during panendoscopy in head and neck cancer patients, and
reported higher specificity than when using AF or white light alone, thus directly impacting
on patient management.[211]
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A recently published systematic review by Vu & Farah[212] on the efficacy of NBI for detection
and surveillance of OPML analysed data from a prospective cohort study by Piazza et al.,[209]
and a retrospective cohort study by Yang et al.;[213] both of which aimed to evaluate the
efficacy of NBI endoscopy compared to WL in oral mucosal examination. Vu & Farah con‐
cluded that based on available evidence, there is a demonstrable improvement in the ability
of NBI visualization to stage tumours, assess margins and detect synchronous, metachronous
and recurrent lesions compared to visualization using broadband WL.[212]

A prospective study by Nguyen et al. utilized white light (WL), NBI and AFAF to inspect the
oral cavity, larynx/hypopharynx and bronchus of 73 patients with known HNSCC, patients
with SCC of unknown primary origin, and surgically treated HNSCC patients requiring
panendoscopy for suspected recurrent disease.[211] The authors found a significant improve‐
ment in the detection of moderate dysplasia or worse by NBI compared to WL, and that the
combined use of AF and NBI had significant implications upon mapping and guiding the
surgical resection borders of three assessed oral cases.[211] This study demonstrated increased
specificity with NBI for the detection of mucosal lesions.[211]

While OFI and NBI can detect tissue and molecular changes in a localised region, imaging
modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI)
provide anatomical information, including nodal involvement and metastasis which influence
staging and treatment protocol employed. Ultimately, multimodal imaging can provide
additional diagnostic information than white light illumination or a single imaging modality
alone.[214, 215]

Both CT and MRI involve 3D sectional imaging and have extremely high diagnostic value.
[216] CT scans require ionising radiation (with shorter scan times) while MRI does not but has
a longer scan time.[216] CT is currently the most commonly used modality for head and neck
imaging, and can improve delineation of soft tissue pathologies with intravenously adminis‐
tered contrast media,[216] however MRI provides the most detailed view of soft tissues and
is routinely used to visualise such tumours.[216]

4.2. Molecular imaging

Molecular imaging modalities have the potential to be indispensable in every aspect of cancer
care, from early detection to staging, drug delivery, molecular surgical guidance and treatment
response.[20, 217, 218] Oncological molecular imaging is defined as the non-invasive imaging
of distinctive cellular and sub-cellular events in malignant cells.[20, 219] Molecular imaging
probes target the production of genetically determined biomolecules by cancer cells by
displaying these directly in or on individual malignant cells, in the extracellular matrix, or cells
in the vicinity such as T cells, macrophages, dendritic cells, fibroblasts or endothelial cells.[158,
220, 221] For example, probes paired with positron emitters and novel target-specific anti‐
cancer drugs could be quantitatively imaged by PET, providing information on tumour
biology, guiding drug development, and furthering personalized medicine.[14, 17] Diseased
tissue may also be detected through this imaging modality based on hypoxia [222, 223] or pH
changes.[17, 224] It is clearly useful to detect changes at the cellular and molecular level rather
than rely on anatomical characteristics alone which is commonly the case at present.[20]
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Tumours may be able to be characterised without biopsies or surgery, and allow for accurate
staging, re-staging and drug response monitoring, paving the way towards true personalised
medicine.[20] Molecular imaging modalities may also be used for intraoperative surgical
guidance and evaluation of surgical margins, thus improving outcomes.[20]

4.2.1. Raman spectroscopy

Raman spectroscopy is a non-invasive technique that can analyse the molecular composi‐
tion of a tissue, enabling surgeons to identify, examine and determine the quality of the
tumour’s molecular margins.[145] It is based on the phenomenon that intramolecular bonds
cause light to scatter in a manner that is both measurable and predictable, albeit for a very
short time constituting <1 part per million of the total reflected light.[145] Point detection
techniques can be used to collect molecular information during endoscopy with optical fibre
probes, and they have the potential to be extended to imaging.[135] Raman spectroscopy
produces  inelastic  light  scattering  (returning  photons  have  longer  wavelength  than  the
incident  photons)  and diffuse  NIR photons  (photons  that  return after  several  scattering
events  and  are  useful  for  measuring  fine  pathological  structures)  which  aid  molecular
histopathologic  examination.[135]  It  is  performed  by  illuminating  tissue  with  NIR  pho‐
tons that are absorbed by the vibrational/rotational nodes of molecular bonds associated
with  chemical  functional  groups  specific  to  mucosal  proteins,  lipids,  and  nucleic  acids.
[135,  225,  226]  Some  of  these  photons  are  then  inelastically  scattered,  forming  detailed
spectral  patterns  that  can  be  reduced  to  the  principal  components  using  multivariate
statistics. However, the Raman effect is much weaker than fluorescence and can be easily
obscured by fluorescence from the tissue or optical fibre itself.[136]

Shim et al. demonstrated the use of CCD detector in collecting Raman spectra in vivo in the
gastrointestinal tract.[227] Molckovsky and colleagues showed that Raman spectroscopy
could be used to distinguish between adenomatous and hyperplastic polyps in the colon, with
100% sensitivity, 89% specificity, and 95% accuracy when used in vivo.[228] Haka et al. used
Raman spectroscopy to examine breast tissue in vivo, and reported perfect sensitivity and
specificity when using their diagnostic algorithm.[229] They highlighted the feasibility of using
it for real-time intraoperative margin assessment during partial mastectomy surgery, which
could be similarly used for intraoperative margin assessment in HNSCC cases. Stone et al.
examined biopsy specimens of laryngeal mucosa using Raman spectroscopy and conventional
histopathological analysis, and reported 92% sensitivity and 90% specificity for Raman spectra
generated over 30 seconds in the diagnosis of invasive cancer (compared to reference spectra
generated from histopathologically normal mucosa).[230] In membranous vocal cord speci‐
mens, Lau et al. reported 69% sensitivity and 94% specificity for invasive carcinoma using
Raman spectra recorded over 5 seconds.[231]

Spatially offset Raman spectroscopy (SORS) has been shown to be an effective tool in recov‐
ering Raman spectra from up to several millimetres beneath the surface of turbid media.[232]
Keller et al. found that, using source-detector separations of up to 3.75 mm, SORS can detect
sub-millimetre-thick tumours under a 1mm normal layer, and tumours at least 1 mm thick can
be detected under a 2 mm normal layer using the Monte Carlo simulation model of breast
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tumour margin analysis.[232] Other recent developments within Raman spectroscopy include
surface enhanced Raman spectroscopy (SERS), coherent anti-Stokes Raman spectroscopy
(CARS), and stimulated Raman scatters (SRS),[165, 233] which could all have applications in
HNSCC margin analysis. Visualising molecular information using Raman spectroscopy has
also been shown to aid in identifying patients with prostate cancer who are at risk of cancer
progression from those with no evidence of disease.[234]

Raman spectroscopy provides an objective analysis of the tissue’s molecular structure
compared to the ex vivo histopathological analysis and grading based on tissue morphology.
It may provide a more clinically relevant measure of the tumour margin on which to guide
surgical excision. It has been possible to stage and grade malignancies from a spectral meas‐
urement on the surface of bladder tissue using Raman spectroscopy.[235] Representative
reference spectra need to be developed by analysing a large cohort of histologically diagnosed
mucosal lesions, against which spectra captured in vivo can be compared and leading to
algorithms that can quickly produce a diagnosis.[145]

4.2.2. Positron emission tomography and hybrid technologies

PET provides a 3-D image of the functional processes in the body, wherein (18F)-fluorodeox‐
yglucose (18F-FDG), a glucose analogue, is commonly used as the radiopharmaceutical
delivering the positron-emitting radionuclide (tracer), thus reflecting tissue metabolic activity
by regional glucose uptake, with cancer cells exhibiting increased use of glucose.[20, 236] 18F-
FDG PET highlights metabolic differences between malignant and healthy cells and is the first
true molecular imaging modality.[20]A hand-held PET probe to detect high-energy gamma
rays during breast cancer surgery has been developed for intra-operative evaluation of tumour
localisation and margin status.[162] PET is limited in its use due to high cost, use of ionising
radiation, and relatively low spatial resolution (it is difficult to detect small tumours (<1 cm)
using this hand-held probe).[20, 136] Since PET on its own provides low anatomical informa‐
tion, it is commonly used in conjunction with CT, and more recently, with MRI which has the
advantage of greater soft tissue contrast and fewer artefacts.[14] The PET/MRI hybrid imaging
technology combines the functional sequences of MR with the molecular information of PET
to provide information about tumour biology and microenvironment [237] – hence the best of
both worlds.

A number of studies have evaluated the effectiveness of PET/CT versus PET/MRI in HNSCC.
Many studies have found no significant difference between diagnostic capability and anatomic
localisation of lesions as detected by both modalities,[238-243] however, there is agreement for
tailored use of PET/MRI in the head and neck region since higher soft tissue contrast would
aid in diagnosis.[238, 242, 244, 245] Kanda et al. found that PET/MRI and PET/CT had equal
sensitivities and specificities, and both these were more sensitive compared to MRI alone but
less specific, when investigating these modalities in HNSCC.[244] Kubiessa et al.[239] showed
that PET alone had the highest sensitivity while MRI alone showed best specificity when
comparing PET/CT to PET/MRI in patients with HNSCC. Evangelista et al. evaluated contrast-
enhanced CT (ceCT) with PET in HNSCC cases and found this to be particularly adept at
diagnosing small lymph node metastases in positions usually difficult to interpret in the head
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and neck region.[246] Lee et al. found PET/MRI to have acceptable accuracy in T staging
compared to endoscopic ultrasound and even higher accuracy (although not statistically
significant) than PET/CT in predicting N staging, demonstrating its value as preoperative
diagnostic imaging tool in HNSCC.[245] PET/CT has been deemed useful in staging, identifi‐
cation of second primaries, and monitoring in the head and neck region aiding treatment
planning.[216, 236, 244, 245, 247]

Hybrid technologies can be used to assess treatment response.[246, 248, 249] Adkins et al. found
that PET/CT is better than CT in evaluating tumour response to cetuximab in patients with
incurable HNSCC.[248] PET/CT has also exhibited high sensitivity to detecting distant
metastases, assessing the response to chemotherapy or chemoradiation treatment and in
predicting outcome.[246] PET/CT can be used post-therapeutically to assess treatment
response, detect residual/recurrent tumours, and exclude distant metastases.[15] “Activatable
molecular probes” or “smart” probes may be used to elicit a change in signal upon enzymatic
activity or in response to specific biomolecular interactions.[20, 220] These allow very high
signal-to-background ratios compared to conventional targeted contrast agents, and lead to
the possibility of imaging intracellular targets.[220] Nguyen and Tsien summarise that the use
of these fluorescent-labelled molecularly targeted probes would provide real-time, intraoper‐
ative distinction of the molecular edge between cancer and adjacent normal tissue, and could
aid in discerning and preservation of vital structures such as nerves during surgery.[218]
Bhatnagar et al. reviewed the use of different PET tracers in hybrid imaging modalities such
as PET/CT and PET/MRI to detect and monitor biomarker status to assess effectiveness of
therapy in patients with HNSCC.[250] They suggest that treatment strategies could be
modulated and adapted by comparing an initial baseline measurement of biomarker expres‐
sion before treatment to measurements taken during therapy, thus strategically addressing
treatment response.[250] Some examples of biomarkers that may be used in this instance are
tissue hypoxia, cell proliferation and apoptosis, and epidermal growth factor receptor (EGFR)
status.[250] Examples of PET tracers that may be used in relation to biomarkers of response to
therapy are described below.

4.2.3. Tumour hypoxia

Hypoxia has been established as an indicator of poor prognosis in HNSCC patients, causing
radiation  resistance  in  tumour  cells  by  preventing  irreversible  damage  to  DNA by free
radicals  induced  by  ionising  radiation  (oxygen  is  required  for  the  production  of  free
radicals), thus allowing DNA repair and tumour cell survival.[251, 252] The critical partial
pressure of oxygen below which solid tumours resist radiation therapy is about 10-15mm
Hg.[252] In comparison, three times the amount of radiation needed to kill tumour cells in
normoxic conditions is required to achieve the same in hypoxia. Hypoxia mapping can be
performed with the use of molecular imaging to identify tumours that would benefit from
hypoxia-reducing treatments.[250]

Fluoromisonidazole  (FMISO)  has  been  investigated  widely  as  a  PET  imaging  agent  in
HNSCC.[253-256]  It  has  been  shown  that  FMISO  and  FDG  uptake  do  not  necessarily
correlate, thus representing different tumour properties, with high uptake of FMISO before
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radiation therapy indicative of locoregional treatment failure and associated poor prognosis.
[250, 255, 256] Nevertheless, FMISO may be used in HNSCCs to delineate hypoxic tumour
volumes as an indicator to escalate radiation doses.[257-260] The key challenge though is
that tumour hypoxia is a dynamic process with a constant change in relative contribution
of acute and chronic hypoxia to the total hypoxic volume.[250] One study showed just 46%
correlation between two sequential FMISO scans, just 3 days apart, in 20 HNSCC patients.
[261]  A  smaller  study  with  7  HNSCC  patients  found  correlation  between  hypoxic  vol‐
umes  on  sequential  scans  in  only  three  patients.[262]  Further  research  is  required  to
investigate  the  normal  variation  in  FMISO uptake  and  changes  in  tumour  oxygenation
kinetics  prior  and during  therapy,  before  FMISO imaging  can  clinically  guide  hypoxia-
mediate intensity modulated radiation therapy (IMRT).[250, 259, 263]

Fluorine 18 fluoroazomycin arabinoside (FAZA) is also a hypoxia-specific PET agent that clears
the blood more rapidly than FMISO, thus producing a higher target-to-background signal
ratio.[264] Fluorine 18 fluoroerythronitroimidazole (FETNIM) is in theory a stronger indicator
of hypoxia than FMISO due to its greater hydrophilia and better pharmacokinetics.[265] Both
agents show promise as hypoxia radiotracers, but further research is needed, especially in
comparison to FMISO.

Radioactive copper–labelled diacetyl-bis-(N4- methylthiosemicarbazone), or Cu-ATSM, is a
neutral lipophilic compound that can permeate cell membranes.[250] In hypoxic conditions,
Cu-ATSM molecules are reduced and negatively charged, while they wash out rapidly from
normoxic cells, thus selectively accumulating in hypoxic cells resulting in a high SBR.[266] It
has been shown that Cu-ATSM showed a significant difference in its uptake in HNSCC patients
with residual or recurrent tumour compared to those without, which was not reflected in FDG
uptake.[267] Others have shown that Cu-ATSM may be used to identify hypoxic subvolumes
for IMRT.[268]

4.2.4. Tumour cell proliferation

While radiation therapy and chemotherapy can lead to a rapid decrease in the rate of cellular
proliferation in responding tumours, which precedes a decrease in tumour size, accelerated
tumour cell repopulation is an indicator of underlying radiation resistance and hence,
treatment failure.[251, 269] Early identification of tumour cell repopulation as part of response
assessment through imaging can identify target areas for dose escalation.[250] 3'-Fluoro-3'
deoxythymidine (FLT)-PET is used widely to assess cellular proliferation, and unlike FDG, is
only taken up by actively dividing cells and not surrounding inflammatory cells, allowing for
specific detection of cellular division and subsequent dose escalation in these areas.[270, 271]
Changes in the intensity of FLT uptake can be used to reflect cellular response to treatment,
even prior to changes in tumour volume.[251, 271] However, FLT does not distinguish between
benign and malignant abnormal cervical lymph nodes because its uptake by the germinal
centres of reactive lymph nodes leads to a low positive predictive value.[272]

4.2.5. Apoptosis

Chemotherapy and radiation therapy rely on apoptosis to induce tumour cell death. Radiation
resistance and treatment failure can result from mutations that lead to uncontrolled cellular
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proliferation and dysregulation of apoptotic mechanisms.[273] Technetium 99m (99mTc)–
labelled annexin V is a protein that binds to a major phospholipid constituent of cell mem‐
branes and has been investigated for imaging apoptosis in various malignancies including
HNSCC.[274] The difficulty of radiolabeling annexin V with fluorine 18 has led to the devel‐
opment of other such tracers such as 18F-ML- 10 (2-[5-fluoro-pentyl]-2-methyl-malonic acid)
(Aposense; Petach Tikva, Israel). This is a novel small-molecule probe designed to allow
visualisation of apoptosis related cellular alterations, useful for differentiating between
apoptotic and necrotic cells.[275]

4.2.6. Amino acid transport and protein synthesis

Carbon 11 (11C) methionine is a PET tracer that has been investigated to assess amino acid
transport and accelerated protein synthesis in malignant tissue.[276] 11C-methionine allows
for effective visualisation of HNSCC, demonstrating a good correlation with FDG demon‐
strating similar sensitivities and specificities for tumour detection, but does not distinguish
between histological grade.[277, 278] It has been shown that there is a decline in 11C-methio‐
nine uptake at tumour sites with histology-confirmed complete treatment response in HNSCC
patients, in comparison with sites of residual tumour tissue after radiation therapy.[279] Early
decrease of 11C-methionine uptake correlates to final tumour volume reduction seen at MRI
at the conclusion of treatment in HNSCC patients, suggesting that 11C-methionine can be used
for early treatment adaptation.[280] Conversely, Nuutinen et al. showed a substantial early
decline in 11C-methionine uptake in HNSCC patients after radiation therapy, but the rate of
decrease in tracer uptake was comparable between patients with disease recurrence and those
with preserved local control.[281] At present, there is no clear role for 11C-methionine in the
imaging of HNSCC.[250]

Fluorine 18 fluoroethyltyrosine (FET), an amino acid analogue that is taken up by tumour cells
through amino acid transport systems, has shown high diagnostic accuracy in patients with
brain tumours, but has lower sensitivity (64-75%) when compared to FDG (89-95%) in the
evaluation of HNSCC, making it unsuitable to replace FDG in the initial assessment of HNSCC
despite superior specificity (90-100%) than FDG (50-79%).[282-285] FET could still have a role
in differentiating between residual tumour tissue and inflammatory tissue after therapy.[250]

4.2.7. Cell membrane synthesis

Choline is incorporated with phospholipids during cell membrane synthesis.[286] A prelimi‐
nary study[287] using 11C-choline in HNSCC patients found it to be just as effective as FDG
for detecting malignant head and neck tumours with PET, however, another study[288] did
not find 11C-choline PET/CT to be superior to FDG PET/CT for the detection of recurrent
HNSCC.

While this is useful, carcinogenesis and transformation of tissue in HNSCC involves elaborate
modification of numerous biomarkers. It would be more useful to assess the overall imbalance
in biomarker regulation rather than rely on one marker alone. This considerably complicates
the process of molecular diagnosis and analysis through imaging and requires further research.

OFI techniques can be used intraoperatively, in conjunction with information from pre-
operative MRI, CT or PET, providing a more holistic knowledge of macroscopic and molecular
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level tissue alterations, enabling ideal surgical guidance.[289-291] This will ultimately improve
patient outcome by decreasing MRD in surgical margins.

5. Conclusion

Methods for early detection, molecular assessment of margins and surgical guidance, and
assessment of treatment response are instrumental to changing the rate of local recurrence and
resultant reduced prognosis in patients with HNSCC by enabling personalised medicine.
There are a number of biomarkers that alter expression as tissue transforms. These can be used
to assess MRD in surgical margins. Furthermore, optical and molecular imaging techniques
can be used to identify molecular changes in biomarker expression, enabling immediate
intraoperative decisions on extent of lesion and margin status, reducing the need for repeat
surgery and the risk of recurrence. Multimodal imaging will provide more information about
diseased tissue, enabling the surgeon to visualise the tumour in terms of its molecular extent
and not simply its visual extent (whether with white light or fluorescence). Further research
into molecular biomarkers as potential targets for “smart” probes for assessment of MRD in
surgical margins is required to enhance current molecular imaging modalities which have
applications pre-operatively to delineate lesion location and volume, intra-operatively to
assess surgical margins and for surgical guidance, and post-operatively to assess treatment
response. Research is also required to assess projected improvements in overall recurrence
rates following introduction of these technologies to reveal whether these technologies have
improved outcomes in practice.
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1. Introduction

The oral squamous cell carcinoma is a particular type of cancer classically described as a
tobacco- and alcohol-related disease affecting mostly elderly male patients. However, epide‐
miologic studies have demonstrated an increasing incidence of young individuals with oral
cancer. Interestingly, the clinicopathological profile, etiology, risk factors, and outcome of
patients with early-onset disease seem to present several differences compared to late-onset
oral carcinoma and these discrepancies are discussed below.

2. Clinical manifestations

Retrospective studies including elderly and young patients have shown that the incidence of
squamous cell carcinoma (SCC) of the mouth in young people is low but presents an increasing
tendency [1]. In fact, there is certain heterogeneity of the cutoff age employed in the studies.
Most authors consider young patients as those who are under 40 or 45 years [2-6] whereas few
investigations select individuals under 20 or 30 years [7-9]. The incidence of oral cancer in
patients younger than 40 years of age varies between 0.4–3.6%, but it can reach 6.7% in studies
considering 45 years as the cutoff point [10]. Due to its rarity, most investigations deal with a
small sample of patients, and conflicting results have been published regarding the epide‐
miological aspects of oral SCC.

The clear male predominance found in late-onset lesions is not found in the early-onset
counterparts. Men are still more affected than women but only slightly more, with a F:M ratio

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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varying from 1:1.2 to 1:4.9 [11, 12]. These data show an evident augmentation in the number
of young women affected by oral SCC. The differences between sex distribution previously
observed may be due to smoking and drinking habits, which are more socially acceptable for
both genders currently [10].

The most common oral subsite for SCC in young patients is the tongue, with 39–77% of the
cases [13, 14]. A study conducted in Taiwan found a higher incidence of oral SCC in the buccal
area (53.6%) in comparison with the tongue (42, 8%), but betel chewing was common among
these patients [15]. Other retrospective reports in Germany and Brazil showed a slightly higher
incidence of oral SCC in the floor of the mouth, followed by the mobile tongue [12, 16].

The typical clinical appearance of oral SCC in young patients is an ulcer, often intermixed with
white plaque and/or reddish areas. Kuriakose et al. [17] noted that lesions in young patients
were predominantly invasive as compared with the exophytic lesions found in older patients
[10, 17]. On the other hand, Falaki et al. [18] reported exophytic lesion with ulcer as the most
common clinical presentation in younger individuals.

Figures 1 and 2 illustrate a 35-year-old young man who presented with a white plaque
intermixed with erythroplastic areas in the right border of the tongue. The duration of the
lesion was of one year, and the patient reported slight pain. Moreover, the individual did
neither consume tobacco nor alcohol. Incisional biopsy confirmed the diagnosis of SCC that
was staged lately as T2N0M0. The patient was submitted to partial glossectomy with supra‐
omohyoid selective neck dissection of the same side and radiotherapy. The one-year follow-
up was uneventful.

Figure 1. Clinical features of oral SCC in young patient – presence of white plaque and ulceration at the right lateral
surface of the mobile tongue of a 35-year-old patient.
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Figure 1: Clinical features of oral SCC in young patient – presence of white plaque and ulceration at the right lateral 
surface of the mobile tongue of a 35-year-old patient.

Figure 2: Arrows indicate a slightly elevated and indurated border of the lesion showed in Figure 1, demonstrating the infiltrative
characteristic of the tumor. 

Regarding the symptoms, initial local pain is uncommon [19]. Other signs and symptoms can be dysphagia, weight loss 
and otalgia (26.5%, 26.6% and 37.5%, respectively) [20], but they seem to be related to the size and anatomic location of the tumor. 

Figure 2. Arrows indicate the lesion showed in Figure 1. Elevated and indurated borders were confirmed by palpation,
demonstrating the infiltrative growth of the tumor.

Regarding the symptoms, initial local pain is uncommon [19]. Other signs and symptoms can
be dysphagia, weight loss and otalgia (26.5%, 26.6% and 37.5%, respectively) [20], but they
seem to be related to the size and anatomic location of the tumor. The duration of the symptoms
before diagnosis can vary, but reported data show that most of the patients had early stage
disease at the moment of diagnosis, that is, from 52-95% of the patients presented with lesions
graded as T1 or T2, usually without neck metastasis [13, 21]. Fang et al. [22] reported that 80%
of patients younger than 40 years-old with oral SCC presented lesions staged as T1 or T2 and
only one tumor with positive node metastasis, appearing to be weakly aggressive at diagnosis.
However, the clinical result was poor, as 10 (66.7%) patients exhibited recurrence and five
(33%) patients succumbed to the disease [22].

The delay before diagnosis is usually between few weeks and 10 months [23, 24].

3. Microscopic findings

The microscopic features that define an oral SCC do not differ between young and old patients.
SCC is an invasive epithelial neoplasm with varying degrees of squamous differentiation.
Disorganized stratified squamous epithelium forming strands and islands of bizarre epithelial
cells presenting severe dysplasia infiltrating subjacent submucosa is observed. Dyskeratosis,
polymorphism, hyperchromatism, atypical mitosis and loss of nucleolus-nucleus and nucleus-
cytoplasm ratio are also marked cellular characteristics [25], as shown in Figures 3 and 4.

The tumors are traditionally graded into well, moderately, and poorly differentiated SCC.
According to the World Health Organization (WHO), well-differentiated carcinoma resembles
closely normal squamous epithelium. Moderately differentiated carcinoma contains distinct
nuclear pleomorphism and mitotic activity, including abnormal mitosis, and there is normally
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less keratinization. In poorly differentiated carcinoma, immature cells predominate, with
numerous typical and atypical mitosis, and minimal keratinization. Most of the SCCs are
moderately differentiated [25]. The studies in young population also showed a higher
incidence of moderately differentiated oral tumors, ranging from 40.9% to 70% of the sample
[7, 20, 26-29]. Hilly et al. [8] and Garavello et al. [27] found worse prognosis and higher indexes
of moderately and poor differentiated tumors in their sample. Controversially, Hyam et al. [30]
found similar prognosis associated with 67% of poorly differentiated tumors. Grading by
differentiation is of limited prognostic value, as compared to the pattern of invasion [25].

Figure 3. Neoplastic squamous epithelium infiltrating subjacent submucosa (H&E original magnification X50).

Figure 4. Detail of neoplastic epithelial cells with atypical mitotic figures, dyskeratosis, and loss of nucleolus-nucleus
and nucleus-cytoplasm ratio; neoplastic cells presenting polymorphism and hyperchromatism (H&E original magnifi‐
cation X400).
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4. Etiology/risk factors

4.1. Tobacco and alcohol

In  recent  years,  an  increasing  number  of  young  patients,  who  declare  to  never  having
smoked or consumed alcohol excessively, are diagnosed with oral SCC [17, 31]. Tobacco
smoke and alcohol abuse are considered well-established risk factors for oral SCC in older
population. Otherwise, in young patients, these classical risk factors cannot be considered
as the major ones for oral cancer [10, 17, 32, 33], if the period of abuse is not enough to
create carcinogenesis [10].

On the  other  side,  some studies  report  that  tobacco  use  starts  during  adolescence  [10],
usually before 16 years old, making probable that before the age of 40 years, patients have
an accumulated risk of more than 21 years of consumption, being more susceptible for the
oral cancer [34].

Probably, the pathogenesis of oral SCC in young people involves multiple factors, as genetic
and others new behavioral factors [32, 33]. It seems that tobacco and alcohol consumption are
not the main etiological factors for oral SCC in young patients.

4.2. Genetic factors

Genetic predisposition for cancer development at young age, especially in those patients with
no recognized risk factors seems to be preponderant [34]. Chromosome fragility, DNA ploidy
abnormalities and increased familial risk of head and neck SCC have already been reported
in young patients [26, 34, 35].

Considering the familial risk, a clear significant relative risk of SCC exists in first-degree family
members of those who suffered head and neck cancer [35], especially when there is no
recognized risk factor associated. Oral cancer has been associated with higher chromosome
fragility and instability in youngsters, compared to elderly [36].

Genetic instability is an important molecular mechanism for head and neck cancers [35]. Gain
and loss of specific chromosome regions in DNA are responsible for head and neck cancers,
for example the 3p or 9p21 region, which are early events strictly related with head and neck
cancer development, but that are not commonly seen in young people [35]. It is supposed that
a completely different model of tumorigenesis exists, at a molecular level, in young people.

One essential step for tumorigenesis is deregulation of normal cell cycle regulatory system,
especially in genes that control G1 to 2 phase progression in cell cycle [37]. The amplification
of the gene CCDN1 was noted to be more expressive in young people [31]. CCDN1 is a proto-
oncogene that encodes cyclin D1, a key regulator of G1 phase in cell cycle. The overexpression
of cyclin D1 was found to be more prominent in young people [31], and it was correlated with
disease-free survival in younger and elderly patients. Instead of these findings, larger studies
are required to confirm the prognostic value of CCDN1 in young patients.
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4.3. Behavioral and other factors

4.3.1. Marijuana consumption

Several cases reported in the literature [38, 39] suggest an association between marijuana
smoking and head and neck cancers and respiratory cancers, but this correlation is not
conclusive.

The use of marijuana has been speculated as a risk factor for oral cancer in young people [10].
The main reason is that marijuana smoke contains carcinogens similar to those in tobacco, and
marijuana smoking involves greater inhalation and longer retention of marijuana smoke [34].
However, the potential of carcinogenicity of tetrahydrocannabiol (THC), the major psychoac‐
tive ingredient in marijuana, is not clear yet [40], but it is evident that cannabinoids have an
effect in tumorigenic or antitumorigenic role [41]. The patient with oral SCC illustrated in the
Figures 1 and 2 confirmed frequent marijuana use when he was a teenager.

4.3.2. Immunodeficiencies

Some chronic immunodeficiency states (Bloom syndrome, Wiskott-Aldrich syndrome), or
even immunosuppression regimes following organ transplantation [34] and anemia (Patterson
Kelly/ Plummer Vinson syndrome, Fanconi anemia) [35], might play important roles in
carcinogenesis in young people. Specifically, Fanconi anemia has an associated higher risk for
developing head and neck cancer, estimated to be 40% by the fourth to sixth decade of life.
Mutations in telomerase complex are responsible for Fanconi anemia and regarding its
malignant transformation, telomeres are repeatedly shortened precipitating a genetic insta‐
bility, allowing the progression to a malignant neoplasia [35].

Another distinct group that compound young head and neck cancer patients is those with
cancer during childhood. The probability of a second synchronous tumor or metachronous
primary tumor is estimated in 3–12% in 20 years of survival. Also, chemotherapeutic drugs
and radiation can induce malignancies as side effects [7, 42].

4.3.3. Diet

A well-defined concept is that a diet rich in fruits and vegetables, with antioxidant properties,
has a protective role against oral cancer [43]. A significant reduction in the risk of oral SCC
was found among females consuming three or more portions of fresh fruits and vegetables
daily [43, 44]. However, this factor is preponderant for the population in general and there are
no studies on specific dietary behavior for young people.

4.3.4. Viral infections

The human papillomavirus (HPV) comprises a huge group of more than 50 subtypes of viruses
able to infect the anogenital region and can be divided into two major subgroups: low-risk and
high-risk types for cancer [45]. The low-risk HPVs are usually responsible for genital warts
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that rarely progress into malignancy whereas the high-risk ones have oncogenic capability,
leading to the development of cancer. The HPV-16 and HPV-18 are the major high-risk types
that are present in anogenital and head and neck cancers [45].

Recent changes in the epidemiological profile of oral carcinoma have encouraged the research
for new risk factors related to the development of oral cancer. For example, there has been a
decrease in the tobacco-associated oral cancer and an increase of non-smoking white female
young patients (18–44 years) who presented with oral SCC [46]. These facts, associated with
the established oncogenic power of HPV-16 in cervix carcinoma [47] raised the hypothesis that
HPV could be an etiological factor for oral SCC. Moreover, oral mucosa is highly exposed to
chemical carcinogens, infections, and trauma, making it more vulnerable to carcinogenesis.
Then, it has been postulated that abrasions caused due to this continuous exposure might make
this mucosal surface more susceptible to HPV by making it easier for the virus to gain entry
into the basal cells of oral mucosa [45].

The mechanism by which the high-risk HPVs promote the carcinogenesis has been already
revealed. Once the cell is infected with HPV, the viral oncoproteins E6 and E7 are integrated
to the cell genome and their expressions alter the host genome functions [45, 46]. HPV E6 and
E7 proteins disrupt p53 and pRb tumor suppressor genes as well as numerous cellular proteins
involved in carcinogenesis (BAK, telomerase, INK4A, E2F, cyclins A and E, WAF1, and KIP1)
[46]. These accumulated defects in the genomic expression of the infected cells lead to cell
immortalization and genomic instability by deactivation of control and regulatory mecha‐
nisms of cell apoptosis, cell cycle, and DNA repair [45, 46]. These mechanisms are essential for
the development of cervix carcinoma, once HPV prevalence in this type of cancer is 100% [48].
The same is true for oropharyngeal SCC, with a HPV prevalence up to 90% [49, 50]. In oral
SCC, the role of HPV still remains unclear. The anatomical structures of oropharynx, especially
the base of the tongue and tonsils, seem to be more susceptible to HPV infection when
compared to oral sites [34].

The prevalence of HPV in oral cancer may vary from 0 to 100% [51] and this may not be only
due to ethno-geographical differences but to the sensitivity of the applied diagnostic technique
and to the site of the lesion [51]. The first issue to study the HPV prevalence in these lesions is
the techniques employed to detect it. The most accurate ones seem to be the polymerase chain
reaction for the HPV DNA and in situ hybridization. The immunohistochemistry is also
employed but it can lose its accuracy in old specimens [52].

In well-designed studies selected in an elegant review of the literature on the role of HPV in
oral SCC, only nine split the groups between young and older people [5, 19, 53-59]. The
presence of high-risk HPV had a negative impact for the patient’s survival in four studies [5,
19, 55, 58], was neutral in three [53, 54, 59], and had a positive impact in only one investigation
[57]. Putting together all data, there is a clear need of more studies with larger samples and
more standardized methodology for the virus detection. Despite of the proved role of HPV in
the carcinogenesis of the cervix and oropharynx, it is still difficult to draw any conclusion
regarding the role of the high-risk HPV types 16 and 18 in the oral cancer development.
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5. Treatment

Most cases of oral SCC in young population occur at the mobile tongue. Treatment of tongue
tumors at any age depends on the clinical stage at diagnosis. Surgery and radiotherapy are the
standards of care for early-stage and also for locally advanced tumors in the oral cavity. The
specific treatment is dictated by the TN stage and, if N0 at diagnosis, by the risk of nodal
involvement [60]. For T1N0 tumors, surgical resection is recommended and no adjuvant
therapy is necessary. The T2 to T4 N0 tumors require local surgery and supraomohyoid neck
dissection. Treatment of the neck is expanded according to the worsening of cervical clinical
staging. Postoperative radiotherapy is indicated in the following cases: clinical stage III or IV,
presence of compromised or small surgical margins, presence of vascular or perineural
infiltration, presence of lymph node involvement or extracapsular spread [61]. At present,
there is no recommendation for a different approach on oral tumors in young patients [60].

Kaminagakura et al. [62] described a better overall survival in a group of young patients (<40-
year-old) treated after 1991, when compared to similar patients treated earlier. They attributed
this finding to the more aggressive and adequate treatment approaches applied and also to an
early diagnosis. So, does the treatment of oral SCC of young people need to be more aggressive?
This question can be answered only after understanding the evolution and prognosis of this
disease affecting young people. There is a suggestion that people under the age of 40 should
be treated differently from the older ones. This is based on the finding of high recurrence and
low survival rates between the young. [27]. Also, aggressive therapeutic approach for tongue
cancer was recommended by Myers et al. [20], with no age distinction. Controversially,
Goepfert et al. [6] described that young women (<45 years) with oral SCC had similar prognosis
when compared to older men and women with this disease, highlighting the unnecessary
adoption of adjuvant therapies in this particular group. Is it time to rethink the aggressive
treatments and the use of adjuvant unnecessary therapies [21]?

When over treatment occurs in young people, it may be motivated by emotional aspects
involving the diagnosis of a lethal condition in such a young person. Also, a radical option
may be influenced by the surgeon’s experience rather than by scientific evidence [6]. So, it is
of utmost importance to know if these tumors have worse prognosis to justify a more aggres‐
sive therapy.

6. Prognosis

The outcome for oral SCC occurring in youngsters is a major controversial issue. Various
studies have attempted to elucidate the prognostic significance of patient age at diagnosis.
Unfortunately, there are no prospective studies comparing elderly and younger patients
regarding prognosis. Also, there is no large multicentric research on this topic.

An ordinary question that can greatly affect the results of prognostic studies is the very
definition of what would be a young patient with oral SCC. This age limit is empirical and
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most studies use 40-year-old as the cutoff age [2, 4, 27, 29, 30, 63, 64]. Some outcome analyses
use the age of 30, 35, 45 [3, 5-8, 15, 28, 66] or even 60 years as the limit to be considered young
[67]. Pediatric patients with oral tumors (under 20 years) have also been studied [9]. So, if there
is not much consensus on the age of the patients to be considered young, it is quite difficult to
achieve consistent results, regarding the prognosis, when comparing these studies.

Some retrospective reports attempted to analyze prognosis for young population with oral
SCC, but they did not compare this data to older counterparts [20, 21, 23, 24, 68-76]. Mallet et
al. [68] found a high rate of persistent evolution and tumor recurrence within the first year
after treatment in a group of patients under 35-year-old, and this affected negatively the overall
survival. McGregor et al. [24] reported 80% cure rate among patients less than 40 years, but
similarly to Mallet et al. [68], patients who died from disease usually had a poor response to
initial treatment (within the first 2 years). Exceptionally good overall survival for patients < 40
years had been reported [20, 69]. These results suggest a good survival for young patients,
albeit with a subgroup of patients developing short term recurrence. The lack of comparison
with older counterparts weakened the results, regarding the role of age in prognosis.

The first comparative studies of oral SCC in young and old patients were published in 1998
by Siegelman-Danielli et al. [28] and Friedlander et al. [2]. They found similar outcome between
the groups. Subsequently, another 16 reports compared the evolution of young and older
patients with oral SCC, only 4 of them reporting worse prognosis. Analyzing these results, it
appears that age at diagnosis has no significance in the outcome for oral SCC.

A matched-pair analysis methodology was performed by some of these comparative reports
[2, 3, 5, 6, 15, 27, 62]. This design aims to match similar patients from 2 different groups (old
and young), often by sex and disease stage. So, when matched pairs are analyzed, the matched
variables are controlled, highlighting the patient’s age as an outcome predictor. Only one
matched pair analysis [27] showed worse prognosis for young oral cancer patients. This
literature is summarized on Table 1.

Although many authors recognized that early age at diagnosis is not an individual factor that
worsened outcome, some important information can be extracted from their results. In general,
more young patients have recurred locally and regionally [2, 4, 6, 22, 27, 29, 30, 62-64, 65]. This
finding may be explained by two theories: lack of adequate treatment and biologically different
behavior. Fang et al. [22] found 60% of local recurrence in young patients versus 11% among
the older ones, and both groups were treated similarly. Another study observed that most of
the recurrent young patients had been initially treated with radiotherapy and that this could
be the cause for the high recurrence rate [4]. In fact, the reason for inadequate treatment could
be explained by the intention to cause less morbidity because of the lower age. Aggressiveness
of the surgical procedure is difficult to compare, mainly because it suffers influence of
subjective factors during the surgical act and most of the studies had no information about the
margin size and status. However, because of the similar treatment approaches used in young
and old patients in most of the reports, it is possible that these tumors have a unique biological
behavior that needs to be well understood. Siegelmann-Danieli et al. [28] reported that tumors
developed in the absence of tobacco or alcohol occurred more frequently in young patients
and that patients at any age who developed disease without these risk factors may have a
worse outcome, reinforcing different pathological behavior.
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Authors Year Country Cases/controls Age limit* Study Design Outcome

Siegelmann-Danieli et al. 1998 USA 30/57 45 Non-matched Similar

Fredlander et al. 1998 USA 36/36 40
Matched-pair

analysis
Similar

Pitman et al. 2000 USA 122/150 40 Non-matched Similar

Vargas et al. 2000 USA 17/17 40 Non-matched
Worse

(women)

Hyam et al. 2003 Australia 15/48/60 40 Non-matched Similar

Veness et al. 2003 Australia 22/142 40 Non-matched Similar

Popovtzer et al. 2004 Israel 16/32 45
Matched-pair

analysis
Similar

Liao et al. 2006 Taiwan 76/220 40 Non-matched Similar

Siriwardena et al. 2007 Sri Lanka 56/56 40 Non-matched
Similar/

Undefined

Lee et al. 2007 Taiwan 20/20 45
Matched-pair

analysis
Better

Garavelo et al. 2007 Italy 46/92 40
Matched-pair

analysis
Worse

Ho et al. 2008 Taiwan 28/56 45
Matched-pair

analysis
Better

Morris et al. 2010 USA 10/40 20 Non-matched Similar

Kaminagakura et al. 2010 Brazil 125/250 41
Matched-pair

analysis
Similar

Park et al. 2010 Korea 23/62 45 Non-matched Worse

Soudry et al. 2010 Israel 11/74 30 Non-matched Similar

Hilly et al. 2013 Israel 16/62 30 Non-matched
Worse when

recurrent

Goepfert et al. 2014 USA 18/36 45
Matched-pair

analysis
Similar

Fang et al. 2014 China 15/161 40 Non-matched Similar

*age limit for the young patient’s group.

Table 1. Literature review of comparative studies evaluating younger age as a predictor of outcome in oral SCC.

Another interesting fact is that young patients recurred earlier [3, 64] and a high percentage
of these recurrent young patients died of their disease [2, 3, 8, 22, 27]. A high index of recurrent
disease associated with fatality was observed in the reports of Friedlander et al. [2] and Hilly
et al. [8] (90% and 100%, respectively) and early fatality in 40% was reported by Popovtzer et
al. [3] (within the two first years).
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Moreover, there is some evidence that young patients developed more distant metastasis than
the older counterparts [7, 66]. No strong known predicting factors for distant metastasis was
found [65] and the observation of 100% incidence of death in distant failure patients indicated
that young patients more often present with more advanced disease and may have a distinct
pattern of recurrence [7]. Controversially, Fang et al. [22] observed 66% of locoregional
recurrence without a single distant metastasis in a group of young patients (n=15).

Some recognized microscopic adverse risk features for oral SCC are the extracapsular nodal
spread, positive margins, perineural invasion, and vascular embolism [60]. Unfortunately, there
is lack of information on microscopic status of the tumors in many reports [3, 5, 9, 63, 64, 66].
Perineural invasion was found to be similar between groups of young and old patients [7, 8].
Siegelmann-Danieli et al.[28] found similar extracapsular involvement in both groups, while
Hilly et al. [8] and Soudry et al. [7] found higher, but not significant, index of extracapsular spread
in young patients with nodal disease. There is evidence that cellular differentiation, depth of
tumor, nerve invasion and extracapsular spread of the involved lymph node were risk factors
for distant metastasis in young population with oral cancer. However, these characteristics were
not exclusive for young patients [65]. Studies failed to correlate extracapsular involvement,
differentiation and perineural invasion to worse outcome in the young [7, 8].

The correlation between the expression of Ki-67, cyclin D1, p16, PCNA, EGFR and angiogenesis
with outcome was investigated in young oral cancer population [31, 58, 69, 77, 78]. Overex‐
pression of Ki-67, a cell proliferation marker, was similar in both young and old patients.
Angiogenesis also had a similar rate [77]. Moreover, the high expression of cyclin D1 was an
indicator of worsened prognosis in both young and old groups [31]. P16 was a marker of
favorable prognosis among young population, although not a reliable predictor of HPV
presence [58]. A significantly increased number of mitosis, accompanied by strong PCNA
expression and higher number of metastasis in the older group were found by Siriwardena et
al. [78]. The authors believe that oral SCC in the older group is more proliferative, compared
with younger patients. Low levels of EGFR expression were associated with lower recurrence
rate in young patients, and those with high levels of expression had adverse prognosis [69].
Although there are microscopic factors recognizably influencing prognosis, the available
studies failed to demonstrate them in oral cancer affecting young population. These results
may be partially explained by the small groups analyzed. The immunoprofile of these tumors
are yet to be elucidated, and it appears to be a promising area of research.

A common limitation to all the comparative studies of oral cancer in young people is the small
population analyzed, since SCC of the oral cavity is a rare tumor. The largest group of young
patients in a single hospital was 125 people at Brazil, but unfortunately the high rates of T3
and T4 disease made this group quite different from the other ones [62]. Pitmann et al. [63]
studied 122 cases, but their population was not uniform, since 94 of these patients were
extracted from previous literature reports. The lower the cutoff age, the lower the sample size.
Morris et al. [9] and Soudry et al. [7] studied only 10 patients (< 20 years) and 11 patients (< 20
years), respectively.
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7. Conclusions

Oral SCC in young people accounts for about 0.4–2.6% of the total incidence and has a slight
predominance in men. The most common location for this tumor is the tongue and occurrence
of symptoms is rare unless the lesion reaches a wide size. The delay before diagnosis varies
from few weeks to approximately 10 months.

Concerning the etiological factors for oral SCC in young adults who do not smoke and drink
alcohol frequently, genetic abnormalities seem to have a preponderant role in development of
the tumor. Additionally, human papilloma virus infection, specifically by HPV-16 and
HPV-18, are more frequently detected in this group, but more studies are needed to confirm
its influence in prognosis and clinical outcome of oral SCC in the younger.

In the light of current knowledge, it is possible to affirm that age is not an independent outcome
predictor for oral SCC. However, a group of young patients that develops a more aggressive
disease with a recurrent pattern seems to exist. In this group, early death is common. It is not
possible yet to point out the causes for this aggressive behavior. Supported by published
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studies with standardized treatment protocols are necessary in order to elucidate the contro‐
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Chapter 6

Local Metastasis in Head and Neck Cancer - an Overview

Suwarna Dangore–Khasbage

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/60072

1. Introduction

Head and neck cancer refers to epithelial malignancies of various parts of the orofacial region,
which include paranasal sinuses, nasal cavity, pharynx and larynx, etc. These represent about
6% of all cancer cases and account for a number of new cancer cases and cancer-related deaths
worldwide every year [1, 2]. Amongst those, oral cancer is the most common type of cancer.
Squamous cell carcinoma is the most frequent single entity, constituting 95% of all oral
malignancies [3].

Oral squamous cell carcinoma is an invasive lesion with the presence of perineural growth. It
has a significant recurrence rate and frequently metastasizes to cervical lymph nodes. Since
squamous cell carcinoma constitutes the preponderance of primary malignancies of the head
and neck, it is by far the most common tumour that spreads to the cervical nodes [4]. Reports
from the American Cancer Society indicate that, at the time of initial diagnosis, over 40% of
patients with squamous cell carcinomas of the oral cavity and pharynx present with regional
dissemination of the disease [5].

In oral cancer, tumour dissemination occurs via regional lymphatic to cervical lymph node in
a predictable and sequential fashion. Oral cancer occurring in the posterior aspect of the oral
cavity, oropharynx and inferior of the mouth tends to be associated with a higher incidence of
spread to the lymph nodes at the time of diagnosis. Ipsilateral lymph nodes metastases are
frequent. However, its spreading to contralateral nodes is more common with midline and
posterior lesions [6].

The incidence of spread is influenced by the size of the tumour. Lesions classed as T1 may
show a regional spread in 10 to 20% of cases, T2 lesions in 25 to 30% of cases and T3 to T4
tumours in 50 to 75% [6].

The determination of the presence or absence of metastases in the neck nodes is mandatory
for cancer-bearing patients. This is because the therapeutic rational and prognosis depend on

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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the staging of the cancer. It is stated that the presence of metastatic node reduces the 5-year
survival rate by 50%. Moreover, the presence of another metastatic node on the contralateral
side further reduces the survival rate by 25% [7]. Patients with metastasis need more aggressive
treatments. Therefore, it is important to assess as reliably as possible whether or not a patient
has regional lymph node metastases.

The common cause of metastatic cervical lymphadenopathy is the spread from primary
tumours in the head and neck region. However, in unusual cases, they represent secondary
tumours from primary sites below the clavicles [3]. The diagnosis of such cervical neck tumours
can be decided after a complete clinical and radiological examination, focusing on the organs
or areas where there is a high chance of an existing primary tumour.

2. Mechanism of metastases in head and neck cancer

The most deadly aspect of any cancer is its ability to spread or metastasize. Metastasis is a
complex process involving the detachment of cells from the tumour tissue, the regulation of
cell motility and invasion, and the proliferation and evasion through the lymphatic system or
blood vessels.

There are different views regarding the involvement of regional lymph nodes in metastasis.
The nearby lymph nodes in tumour-bearing hosts are considered as anatomic barriers to the
spread of tumour cells. On the contrary, another concept is that the lymphatic and lymphati‐
covenous shunts bypass the regional lymph nodes and allow both the lymphatic and haema‐
togenous dissemination of malignant cells. [8].

Cancer cells have the ability to overcome the safeguards that are present in the body for the
prevention of metastasis. It is necessary to understand what ways cancer cells have mutated
in order to circumvent the body's defences and travel freely to other locations.

2.1. Lymphatic drainage in head and neck cancer

Several important groups of lymph nodes act as first echelon nodes of the oral cavity. The first
lymph node encountered in the channel, which drains a particular submucosal or subepider‐
mal lymph capillary plexus, is called the first echelon node. This is because it is here that
pathogenic organisms or free tumour cells within the lymph fluid meet their first resistance to
travel. A sentinel lymph node is defined as the first lymph node in a regional lymphatic basin
that receives lymph flow from the primary tumour. Sentinel node imaging provides a “road
map” of the lymphatic drainage from a tumour. However, it does not provide information
regarding the presence or absence of cancer cells in those nodes.

Sometimes, lymphatic metastases do not first develop in the lymph nodes nearest to the
tumour. This is known as skip metastases. The reason for this phenomenon could be venous
lymphatic anastomoses or obliteration of lymphatics by inflammation or radiation. Due to the
obstruction of the lymphatics by tumour cells, the lymph flow is disturbed and the tumour
cells spread against the flow of the lymph. This causes retrograde metastases at unusual sites,
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for example, metastases of carcinoma prostrate to the supraclavicular nodes. It is believed that
lymph nodes in the vicinity of the tumour perform multiple roles – first, acting as an initial
barrier filter and destructing tumour cells, while later providing fertile soil for the growth of
tumour cells [9].

Cervical lymph nodes include the submental, prevascular facial and submandibular group of
lymph nodes. Deep jugular lymph nodes include the jugulodigastric, juguloomohyoid and
supraclavicular group of lymph nodes. Lymph nodes in the posterior triangle of the neck
include the accessory chain of lymph nodes. The mucosa of the upper aerodigestive tract drains
to the cervical lymph nodes in the lateral aspect of the neck. Tumours of the pharynx may drain
to the parapharyngeal and retropharyngeal lymph nodes.

The Delphian lymph node is present in the central compartment of the neck and drains the
larynx and perithyroid lymph nodes adjacent to the thyroid gland. Lymph nodes in the
tracheoesophageal groove provide primary drainage to the thyroid gland, as well as the
hypopharynx, subglottic larynx and cervical oesophagus. Lymph nodes in the anterior
superior mediastinum provide drainage to the thyroid gland and the oesophagus. Further‐
more, they serve as a secondary lymphatic basin for anatomic structures in the central
compartment of the neck. Each anatomic subgroup of lymph nodes described above specifi‐
cally serve as primary echelon lymph nodes, draining a specific site in the head and neck
region. Thus, the location of a palpable metastatic lymph node may often indicate the source
of a primary tumour [8].

2.2. Assumptions about the mechanism of metastases

Lymph node metastasis occurs by haematogenous or by lymphatic routes. The cancer mass
has the same vascularity as that of healthy tissue. Thus, the cancer cells have access to the blood
stream. The malignant cells are detached from the tumour mass and enter the body’s circula‐
tion. Once in the bloodstream, the cancer cells circulate to other parts of the body. Similarly,
the lymphatic system has channels throughout the body, like the circulatory system, through
which a malignant cell can travel and metastasize.

If the cells travel through the lymph system, they may end up in nearby lymph nodes or spread
to other organs. In circulation, the cancer cells may reach to any part of the body where they
begin to grow and form a secondary tumour mass. This spread of cancer to a new part of the
body is called metastasis. The spread of malignancy to nearby lymph nodes is called local or
regional metastasis and the spread of the tumour to a distant organ is called a distant meta‐
stasis.

Cancer cells have to go through several steps in order to spread to new parts of the body:

a. The loose cancer cells have to be able to break away from the parent tumour.

b. They have to gain entry into the bloodstream or lymph system - this can carry them to
another part of the body.

c. They have to attach to the wall of a blood vessel or lymph vessel.
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d. They need to survive in a blood vessel or lymph vessel and move through it into a new
organ.

e. Malignant cells have to emerge from a blood or lymph vessel.

f. They need to be able to multiply and grow to form secondary neoplasm at the new site.

g. They need to be able to avoid attacks from the body’s immune system.

There are various factors that may influence the mechanism of regional metastases and prevent
tumour cells from developing lymph node metastases. These are:

1. The suppression of cellular immune response, in particular T cell function [7].

2. The microvascular invasion, grade of differentiation and tumour thickness in metastases
of squamous cell carcinoma of the oral cavity [10].

3. The lymphatic vessel in and around the tumour tissue and lymph node metastasis in
patients with oral squamous cell carcinoma. The dimension of lymphatic vessels is
significantly greater in the tumour tissue than in the tumour-free tissue. This means that
the function of lymphatic vessels appear to have increased in the tumour tissue, compared
to the tumour-free tissue. This results in regional metastasis [11].

Reviews of literature recommend that there are multiple and diverse reasons for cervical
lymph node metastases in head and neck cancer. However, by any means, the careful evalu‐
ation of these metastatic regional nodes is essential for appropriate treatment and to achieve
the best outcome of the treatment. Certainly, a careful clinical examination must be carried out
at the beginning of the journey regarding the evaluation of the status of cervical lymph nodes
in head and neck cancer.

3. Clinical examination of lymph nodes in head and neck cancer

Customarily, all of the palpable cervical lymph nodes are considered as positive for regional
metastasis in oral cancer. Thus, to treat all necks by considering the significant risk of having
occult lymph node metastases is a traditional approach for the treatment of oral cancer.
However, this approach often involves the unnecessary treatment of necks that ultimately
prove to be pathologically free of cancer. Therefore, appropriate investigations should be
carried out. These will help to determine the treatment plan, prognosis and morbidity by
diminishing the possibility of unnecessary neck dissection.

The location, number, size, shape, tenderness, consistency and fixity to underlying structures
are the criteria routinely used during a clinical examination of the cervical lymph nodes.

Usually, a 1 cm size cut-off in the largest axial diameter is used for metastatic disease. However,
size is not a reliable marker of malignancy as small nodes can harbour small metastases that
do not expand the node and conversely, benign nodes can be enlarged due to hyperplasia or
inflammation. Thus, the nodes of less than 1 cm should also be carefully evaluated, particularly

Contemporary Issues in Head and Neck Cancer Management154



d. They need to survive in a blood vessel or lymph vessel and move through it into a new
organ.

e. Malignant cells have to emerge from a blood or lymph vessel.

f. They need to be able to multiply and grow to form secondary neoplasm at the new site.

g. They need to be able to avoid attacks from the body’s immune system.

There are various factors that may influence the mechanism of regional metastases and prevent
tumour cells from developing lymph node metastases. These are:

1. The suppression of cellular immune response, in particular T cell function [7].

2. The microvascular invasion, grade of differentiation and tumour thickness in metastases
of squamous cell carcinoma of the oral cavity [10].

3. The lymphatic vessel in and around the tumour tissue and lymph node metastasis in
patients with oral squamous cell carcinoma. The dimension of lymphatic vessels is
significantly greater in the tumour tissue than in the tumour-free tissue. This means that
the function of lymphatic vessels appear to have increased in the tumour tissue, compared
to the tumour-free tissue. This results in regional metastasis [11].

Reviews of literature recommend that there are multiple and diverse reasons for cervical
lymph node metastases in head and neck cancer. However, by any means, the careful evalu‐
ation of these metastatic regional nodes is essential for appropriate treatment and to achieve
the best outcome of the treatment. Certainly, a careful clinical examination must be carried out
at the beginning of the journey regarding the evaluation of the status of cervical lymph nodes
in head and neck cancer.

3. Clinical examination of lymph nodes in head and neck cancer

Customarily, all of the palpable cervical lymph nodes are considered as positive for regional
metastasis in oral cancer. Thus, to treat all necks by considering the significant risk of having
occult lymph node metastases is a traditional approach for the treatment of oral cancer.
However, this approach often involves the unnecessary treatment of necks that ultimately
prove to be pathologically free of cancer. Therefore, appropriate investigations should be
carried out. These will help to determine the treatment plan, prognosis and morbidity by
diminishing the possibility of unnecessary neck dissection.

The location, number, size, shape, tenderness, consistency and fixity to underlying structures
are the criteria routinely used during a clinical examination of the cervical lymph nodes.

Usually, a 1 cm size cut-off in the largest axial diameter is used for metastatic disease. However,
size is not a reliable marker of malignancy as small nodes can harbour small metastases that
do not expand the node and conversely, benign nodes can be enlarged due to hyperplasia or
inflammation. Thus, the nodes of less than 1 cm should also be carefully evaluated, particularly

Contemporary Issues in Head and Neck Cancer Management154

if they are in expected drainage sites of the primary tumour. In clinical practice, the size of the
lymph node is only considered useful when there is an increase in nodal size on serial
examinations in a patient with a known primary tumour, which is highly suggestive of
metastasis.

Metastatic disease can change the shape of the node by infiltrating nodal tissue and expanding
the nodal capsule. Rounded nodes are more suspicious than oval nodes. As the disease
progresses, ill-defined irregular margins in a lymph node are a sign of malignancy and may
represent an extracapsular spread of tumour.

Metastatic lymph nodes are usually painless and thus, remain undetected by the patient until
they reach considerable dimensions. Characteristically, these nodes are stony-hard and freely
movable until the tumour cells penetrate the node capsule and invade the surrounding tissue.
Then, they become fixed and the expanding tumour may amalgamate surrounding nodes into
one larger, stony-hard and fixed mass. Sometimes, the small tumours in the nasal cavities,
nasopharynx and larynx may go undetected. The only evidence of their presence is the
metastatic tumour.

Oral cavity tumours usually cause metastasis in the submandibular and upper cervical regions.
Rarely, lymph nodes in the posterior triangle may also be involved. The malignancy of the
tongue base and tonsillar fossa is often the reason for metastatic lymphadenopathy in the
posterior triangle of neck.

Figure 1. Ulceroproliferative growth with rolled edges, involving buccal and lingual vestibule and alveolar ridge in a
62-year-old male. There was a history of tobacco-lime quid keeping in the same region since 30 years of age.
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Figure 2. Showing an enlarged (4 × 4 cm), hard and fixed submandibular lymph node in a patient with a malignancy of
bucco- lingual vestibule and alveolar ridge (extra oral photograph of the same 62-year-old male, shown in Figure 1)

4. Clinical staging of cervical lymph nodes in head and neck cancer

In the 1940s, the tumour-node-metastasis (TNM) staging system was reported by Pierre
Denoix. The TNM staging system is an anatomic staging system that describes the anatomic
extent of the primary tumour, the involvement of regional lymph nodes and distant metastasis.

As head and neck cancers consist of tumours arising from a variety of anatomic sites, such as
the oral cavity, nasal cavity, paranasal sinuses, nasopharynx, oropharynx, hypopharynx,
larynx, oesophagus, thyroid gland, salivary glands, etc., and miscellaneous tumours, such as
neurogenic tumours, it is impossible to generate a uniform staging system that would be
relevant for all tumours arising in the head and neck region. In current practice, information
obtained from the clinical examination and radiologic imaging is used to assign a clinical stage
(cTNM). This is then used to stratify patients for a selection of therapy and to report outcomes
of the treatment.

For many decades, the AJCC-UICC TNM staging system has been used worldwide for staging
head and neck cancer [12, 13]. This system has been periodically revised for improvement.
According to this, the cervical lymph nodes are divided into seven levels or groups, which are
based on the extent and level of cervical nodal involvement by metastatic tumour. Although
this classification of cervical lymph nodes is commonly used, especially by surgeons and
oncologists, some important lymph nodes, such as parotid and retropharyngeal nodes, are not
included in this classification.
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Stage Criteria

Nx Regional lymph nodes cannot be assessed.

No No regional lymph node metastasis.

N1 Metastasis in a single ipsilateral lymph node, < 3 cm in greatest dimension.

N2a Metastasis in a single ipsilateral lymph node, > 3 cm but < 6 cm in greatest dimension.

N2b Metastasis in multiple ipsilateral lymph nodes, none > 6 cm in greatest dimension.

N2c Metastasis in bilateral or contralateral lymph nodes, none > 6 cm in greatest dimension.

N3 Metastasis in a lymph node > 6 cm in greatest dimension.

Table 1. N staging for all Head and neck sites except the nasopharynx and thyroid - AJCC/UICC 2002 [12, 13].

Stage Criteria

Nx Regional lymph nodes cannot be assessed.

No No regional lymph node metastasis.

N1
Unilateral metastasis in lymph node(s), 6 cm or less in greatest dimension, above the
supraclavicular fossa. *

N2
Bilateral metastasis in lymph node(s), 6 cm or less in greatest dimension, above the
supraclavicular fossa. *

N3 Metastasis in a lymph node(s) > 6 cm and/or to supraclavicular fossa.

N3a Greater than 6 cm in dimension.

N3b Extension to the supraclavicular fossa. *

*Midline nodes are considered ipsilateral nodes.

Table 2. N staging for tumours of the nasopharynx - AJCC/UICC 2002 [12, 13].

Stage Criteria

Nx Regional lymph nodes cannot be assessed.*

No No regional lymph node metastasis.

N1 Regional lymph node metastasis.

N1a Metastasis to Level VI (pretracheal, paratracheal and prelaryngeal/Delphian lymph nodes).

N1b Metastasis to unilateral, bilateral, or contralateral cervical or superior mediastinal lymph nodes.

*Regional nodes are the central compartment, lateral cervical, and upper mediastinal lymph nodes.

Table 3. N staging for tumours of the thyroid - AJCC/UICC 2002 [12, 13].
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The TNM staging system is widely used to assess prognosis, determine treatment and compare
results from different protocols. However, it has a few pitfalls. The palpable lymph node in
the neck does not always mean that it is metastatic and a non-palpable does not always mean
that it is non-metastatic. They may contain micrometastases and may be discovered on a
histological examination, which were thought to be normal on palpation and imaging.

One or more non-painful nodes in asymptomatic patients or patients with an already diag‐
nosed malignancy in the T1-T2 stage in satellite or non-satellite locations are considered as
risky nodes. Furthermore, in patients with an already diagnosed malignancy in the T3-T4 stage,
three or more > 2 cm nodes in a satellite location are called end–stage nodes [14].

TNM staging systems are based on clinical findings. However, imaging should be a necessary
part of this staging or it should always be used to support the staging. If the imaging comple‐
ments the clinical examination, the following staging conversions can occur: N0 will become
N1 neck, N1 will become N2 neck, N1 will become N3c neck or N0 will become N3c neck [15].

5. Diagnosis and investigations for metastatic lymph nodes in head and
neck cancer

Imaging plays an important role in the evaluation of disease in the cervical lymph nodes and
should be a part of any thorough workup of patients with head and neck cancer. The contin‐
uous advances in techniques have led to the increased sensitivity of the imaging modalities in
the detection of lymph nodes. Various imaging techniques are used for the detection of
enlarged nodes, including ultrasound, Colour Doppler ultrasound, computed tomography,
magnetic resonance imaging positron emission tomography (PET), lymphoscintigraphy and
USG-guided fine-needle cytology, etc. Each imaging modality has advantages and disadvan‐
tages [16].

5.1. Ultrasound and colour doppler ultrasound examination of neck in head and neck cancer

Ultrasound (US)  is  a  non-invasive,  easily  accessible  and comparatively cheaper  imaging
modality, which is used for the evaluation of cervical lymphadenopathy. The sonologist is
often the first person to identify the presence of an abnormal node. Several studies have
shown that  sonography has  a  markedly  higher  sensitivity  than palpation for  the  detec‐
tion of  enlarged lymph nodes in patients  with suspected regional  lymph node metasta‐
ses, particularly in the presence of severe postoperative scarring. The use of sonography
also allows the assessment of the infiltration of blood vessels and organs, such as the thyroid
gland,  by  adjacent  nodal  metastases  and  an  accurate  follow-up  of  patients  receiving
chemotherapy or radiation therapy [17].

The AJCC classification for cervical lymph nodes in head and neck cancer is not specific for
the ultrasound examination. This is because some lymph nodes in the classification, such as
prelaryngeal, paratracheal and upper mediastinal nodes, may not be accessible via ultrasound.
In 1986, Hajek et al. established another classification of cervical lymph nodes in order to
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The AJCC classification for cervical lymph nodes in head and neck cancer is not specific for
the ultrasound examination. This is because some lymph nodes in the classification, such as
prelaryngeal, paratracheal and upper mediastinal nodes, may not be accessible via ultrasound.
In 1986, Hajek et al. established another classification of cervical lymph nodes in order to
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simplify ultrasound examinations of the neck. According to this, the cervical lymph nodes are
classified into eight regions based on their location in the neck, as shown in Figure 3 [18].
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Figure 3. Classification of cervical lymph nodes for US examination [18].

In an ultrasound examination of neck lymphadenopathy, the distribution, size, shape, nodal
border, echogenic hilus, intranodal necrosis and calcification are the evaluated features.

The size of normal cervical lymph nodes differs with the location in the various regions of the
neck and thus, it cannot be used as an absolute criterion for the diagnosis of metastatic
lymphadenopathy. The inflammatory nodes can be as large as malignant nodes, whilst a
malignancy can be found in small nodes. It has been reported that the lymph nodes in the
upper neck tend to be larger than those in the lower neck.

The shape of lymph nodes is usually assessed by the short axis diameter: long axis diameter
(S:L ratio). A lymph node with an S:L ratio less than 0.5 is oval in shape, whereas an S:L ratio
greater than or equal to 0.5 indicates round node. An oval node indicates normality, whereas
malignant nodes tend to be round in shape as shown in Figure 4 and 5.

There is a difference in the border of malignant and reactive or normal nodes. The metastatic
and lymphomatous nodes have sharp borders, whereas unsharp borders are seen in reactive
or normal nodes. The presence of a sharp border in malignant nodes is believed to be due to
the infiltrating tumour cells replacing the normal intranodal lymphoid tissue. This causes an
increase in the acoustic impedance difference between the lymph nodes and surrounding
tissues.

As far as the presence of hilum is concerned, the absence of it in a lymph node is a sign of
metastasis or malignant lymphadenopathy, as shown in Figure 6 and 7.
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In an ultrasound examination of lymph nodes, sonologists examine intranodal necrosis and
calcification. However, these examinations contribute little to the diagnosis of malignant
characteristics of lymph nodes. The reason for this is that intranodal necrosis may be present
in other conditions like tuberculous lymphadenopathy. Similarly, intranodal calcification also
does not aid the diagnosis of malignant lymphadenopathy. This is because there are other well
known causes of lymph node calcification including BCG vaccination, sarcoidosis, cat scratch
disease, tuberculosis, lymphoma and fungal infections, which have been previously treated
with radiation therapy.
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One of the advancements in ultrasonography, Colour Doppler ultrasound, can be used to
define the morphologic and vascular characteristics of lymphadenopathies. Colour Doppler
sonography provides information about the presence of intranodal vascularity and estimates
the intravascular resistance. In Colour Doppler sonography, the pattern of vascular flow and
presence of high intranodal vascular resistance have been used as key features to differentiate
benign from malignant nodes.

The status of the vasculature of the lymph nodes provides additional information in the
sonographic examination of cervical lymph nodes. The vascularity of the lymph node gives
direction for diagnosing the cause of lymphadenopathy. This is because vascularity is directly
related to the actual pathology present within the lymph node.
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The characteristic event in tumour formation is angiogenesis. The morphologic and haemo‐
dynamic changes that occur in tumour vessels help to differentiate between malignant and
benign lymph nodes in a Colour Doppler evaluation. In malignant or metastatic nodes,
vascular structures are usually deformed due to the destruction caused by tumour infiltration
and neovascularization induced by angiogenesis factor [19].

Tumour neovascularity has a particular set of characteristics. The vessels in the tumour are
abnormal and show an irregular course without the progressive diminution in calibre.
Furthermore, they may demonstrate arteriovenous shunting and bizarre thin walled vessels
lined by tumour cells may end in amorphous spaces. The characteristic feature of tumours
stimulating the growth of new vessels assists in the evaluation of metastatic nodes via Doppler
sonography. The tumour vessels have a relative paucity of smooth muscle in their walls,
compared to their calibre. This lack of muscular elements is reflected in the low impedance to
flow, leading to a high diastolic flow and, in some tumours, the absence of systolic/diastolic
flow variation [19, 20].

Both the angioarchitecture and haemodynamic differ among various cervical nodal diseases.
Blood vessel morphology in metastatic nodes is usually deranged as internal nodal architec‐
ture, which is destroyed by neoplastic infiltration. Small arteries in metastatic nodes may be
destroyed by tumour tissue, whereas inflammation causes the dilatation of intranodal vessels
due to local humoral agents. All of these intranodal vascular alterations aid in the differentia‐
tion of malignant lymph nodes by CDUS. This is because reactive or benign nodes tend to have
prominent hilar/central vascularity and metastatic or malignant nodes have peripheral or no
vascularity [21]. See Figure 8 and 9.
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Figure 9 - Color Doppler sonogram showing a lymph node with absence of vascular flow. 

Figure 8. Color Doppler sonogram showing a lymph node with central vascular flow.
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Figure 9. Color Doppler sonogram showing a lymph node with absence of vascular flow.

In advanced stages of the disease, tumour cells grow and replace a large portion of the lymph
node. When the lymph node is totally replaced by the tumour cells, the tumour cells compress
vessels in the lymph node. This vascular compression by the tumour cells increases vascular
resistance, causing an increase in resistive index. These higher resistive indices can be observed
in the metastatic/malignant lymph nodes by CDUS [21], as shown in Figure 10.
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It is important to estimate the status of regional lymph nodes in cancer of any body part. In head 
and neck cancer, various imaging modalities should also be performed for the detection of local 
metastases. This is because imaging is more accurate than clinical examination. However, the 
assessment of nodal disease by imaging can be challenging for the radiologist. This is because there are 
multiple sites to review and differing opinions regarding the criteria for abnormal nodes. Hoang et al. [25] 
have mentioned a systematic four-step approach for the evaluation of metastatic cervical lymph nodes on 
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Figure 10. Colour Doppler sonogram with Doppler spectral waveform, showing a malignant cervical lymph node with
peripheral Colour Doppler flow and a high resistivity index and pulsatility index.

Although Colour Doppler evaluation cannot replace the histopathological procedure in
knowing the status of cervical lymphadenopathy, it plays a definite role as an adjunct to the
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clinical evaluation of cervical lymphadenopathy and proves its value as an important inves‐
tigation [22].

5.2. Role of CT or MRI in diagnosis of local metastases in head and neck cancer

The radiographic evaluation of the status of lymph nodes is routinely performed on the basis
of size, morphology, shape and margins of the nodes.

Several studies have described the radio-morphologic characteristics of lymph node metasta‐
ses in computed tomography (CT) and in magnetic resonance imaging (MRI). In computed
tomography, the presence of a central hypodensity in a lymph node metastasis of a squamous
epithelial carcinoma is considered a sign of nodal necrosis. In magnetic resonance imaging, a
central necrosis appears in the T1-weighted as a central hypointensity and in the T2-weighted
image as a central hyperintensity [23].

On a CT and MRI, axial scans are usually performed. These only demonstrate the nodes in the
transverse plane, where they tend to appear round or oval. Although images can be recon‐
structed to coronal and sagittal plane, it is time consuming and in a CT, the resolution of images
is usually lower. Nodal shape does not have any value in the differentiation of reactive from
malignant nodes on a CT and MRI [24].
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Figure 11 - A CT scan of a skull with contrast reveals: homogenously enhancing lesion present in the left 
buccinator space, left submandibular and left jugulodigastric region lymphadenopathy. These are 
suggestive of a malignant lesion.  

 

 

 

Figure 12 ‐ MRI reveals intense enhancing soft tissue mass involving gingiva, alveolus, submandibular 
gland and mandible suggestive of malignant lesion. It also reveals well‐defined enhancing soft tissue 
lesion suggestive of lymphadenopathy (Axial view ‐ T2‐weighted image). 

 

Figure 11. A CT scan of a skull with contrast reveals: homogenously enhancing lesion present in the left buccinator
space, left submandibular and left jugulodigastric region lymphadenopathy. These are suggestive of a malignant le‐
sion.
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It is important to estimate the status of regional lymph nodes in cancer of any body part. In
head and neck cancer, various imaging modalities should also be performed for the detection
of local metastases. This is because imaging is more accurate than clinical examination.
However, the assessment of nodal disease by imaging can be challenging for the radiologist.
This is because there are multiple sites to review and differing opinions regarding the criteria
for abnormal nodes. Hoang et al. [25] have mentioned a systematic four-step approach for the
evaluation of metastatic cervical lymph nodes on cross-sectional neck imaging.
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lesion, suggestive of lymphadenopathy (coronal view ‐ T1‐weighted image). 

 

In doubtful cases of CT or MRI criteria, ultrasound is an excellent second-line tool, which can be 
used for evaluating these suspicious nodes and can also guide fine-needle aspiration to obtain cytology.  

In oncology, the use of 18-fluorodeoxyglucose (FDG) PET has grown rapidly. This is a metabolic 
imaging tool that provides information beyond the anatomical constraints of conventional imaging. It can 
establish whether or not enlarged lymph nodes contain a tumour or are reactive. In 2005, Hain stated that 

Figure 12. MRI reveals intense enhancing soft tissue mass involving gingiva, alveolus, submandibular gland and man‐
dible suggestive of malignant lesion. It also reveals well-defined enhancing soft tissue lesion suggestive of lymphaden‐
opathy (Axial view - T2-weighted image).

In doubtful cases of CT or MRI criteria, ultrasound is an excellent second-line tool, which can
be used for evaluating these suspicious nodes and can also guide fine-needle aspiration to
obtain cytology.

In oncology, the use of 18-fluorodeoxyglucose (FDG) PET has grown rapidly. This is a
metabolic imaging tool that provides information beyond the anatomical constraints of
conventional imaging. It can establish whether or not enlarged lymph nodes contain a tumour
or are reactive. In 2005, Hain stated that PET has found more than 40% of metastases in lymph
nodes smaller than 1 cm. However, the disadvantage of PET is that false positives can be found
in infected nodes [26].

Kubicek et al. stated that PET and PET/CT scans have the potential to improve treatment
outcomes by providing improved lymph node staging and prognostic factors [27].

Lymphoscintigraphy has been used to evaluate lymph node function. It is less invasive for
delineating drainage and can help to visualize changes in the function [28].
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Elsewhere in the body, lymphangiography and lymphoscintigraphy are useful as these
investigations provide a combination of anatomic and physiological information about lymph
nodes. However, these are of no use in the neck. Both of these are invasive and can be
technically difficult. MR imaging performed after the administration of superparamagnetic
iron oxide particles, another hybrid of anatomic and physiological assessment, has still not
been fully evaluated and is not widely available. Metabolic (functional or physiological)
imaging with fluorine-18-fluorodeoxyglucose positron emission tomography is new and
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nodes. According to them, it has been reported that 15% of specimens from US guided FNA
did not provide an accurate diagnosis due to an uncertain diagnosis or inadequate sample. In
the neck, FNA is usually difficult in a lymph node that is situated in the deep submandibular
area.

Sato et al. [31] stated that puncturing the metastatic node with a needle could not be indicated
in all situations because of the risks of micro dissemination of cancer cells, rupture of the
capsule of the metastatic node and infection after FNAB.

6. Treatment related significance of cervical lymphadenopathy in head and
neck cancer

Localized tumours that do not metastasize have the best prognosis. Cancers that have
metastasized usually indicate a later stage disease and treatment becomes more complicated,
with poorer outcomes. During the surgical treatment of a tumour, the nearby lymph nodes are
also removed. This is because these are frequently the first sites of the cancer metastasis.

Current treatment strategies in oral cancer rely on staging based on the imaging techniques to
detect regional metastasis. However, no strategies challenge the gold standard of histopatho‐
logical examination of the neck dissection [32]. Nevertheless, various imaging madalities may
direct the surgeons to convert the treatment plan to choose a more conservative neck dissection
or, after frozen section control, to convert the treatment to a more radical dissection.

In conclusion, the presence of local metastases influences the treatment and prognosis of head
and neck cancer. The traditional approach of treating all necks by considering the significant
risk of having occult lymph node metastases may result in the unnecessary removal of regional
lymph nodes, which ultimately prove to be pathologically free of cancer. Imaging plays a vital
role in detecting the status of regional lymph nodes. For each and every patient of head and
neck cancer, pretreatment imaging should be a protocol used to help to decide the appropriate
treatment. Imaging performed before surgical treatment will aid in reducing mortality and
morbidity.

7. Conclusion

In conclusion, the traditional approach in head neck cancer is to treat all necks by consider‐
ing the significant risk of having occult lymph node metastases. Unfortunately, this ap‐
proach often involves the unnecessary treatment of necks that ultimately prove to be
pathologically free of cancer. So, we recommend the policy that for each and every patient
of head and neck cancer, careful thorough evaluation should be performed by means of var‐
ious imaging modalities. This will help to decide most appropriate treatment as well as re‐
duce overall morbidity.

Local Metastasis in Head and Neck Cancer - an Overview
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