
Advances in Petri Net Theory
and Applications

Edited by Tauseef Aized

Edited by Tauseef Aized

The world is full of events which cause, end or affect other events. The study of these
events, from a system point of view, is very important. Such systems are called

discrete event dynamic systems and are of a subject of immense interest in a variety
of disciplines, which range from telecommunication systems and transport systems

to manufacturing systems and beyond. There has always been an intense need to
formulate methods for modelling and analysis of discrete event dynamic systems. Petri
net is a method which is based on a well-founded mathematical theory and has a wide

application. This book is a collection of recent advances in theoretical and practical
applications of the Petri net method and can be useful for both academia and industry

related practitioners.

Photo by v_alex / iStock

ISBN 978-953-307-108-4

A
dvances in Petri N

et Th
eory and A

pplications

Advances in Petri Net
Theory and Applications
edited by
Dr. Tauseef Aized

SCIYO

Advances in Petri Net
Theory and Applications
edited by
Dr. Tauseef Aized

SCIYO

Advances in Petri Net Theory and Applications
http://dx.doi.org/10.5772/289
Edited by Tauseef Aized

© The Editor(s) and the Author(s) 2010
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2010 by INTECH d.o.o.
eBook (PDF) Published by IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Advances in Petri Net Theory and Applications
Edited by Tauseef Aized

p. cm.

ISBN 978-953-307-108-4

eBook (PDF) ISBN 978-953-51-5963-6

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

4,200+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International authors and editors

125M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

Meet the editor

Dr. Tauseef Aized received his Ph.D. from Tokyo Institute of Technology.
He held two research fellowships; first Endeavour Research Fellowship at
Monash University and the second Commonwealth Fellowship at the Uni-
versity of Cambridge. He has a number of papers in reputed journals and
conferences. His teaching and research interest include energy technology
and policy, computer integrated manufacturing and operations manage-
ment. Currently, he is a professor and chair of department of mechanical
engineering, UET-KSK campus, Lahore-Pakistan.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Preface IX

Production Process Object Model Research Based
on Petri Net Techniques 1
Chen You-ling Sun Ya-nan Yang Qing-qing Xie Shu-hong

Synthesis of Coloured Petri Nets
from Natural-like Language Descriptions 21
Enrique Arjona, Graciela Bueno and Ernesto López-Mellado

Petri Net as a Manufacturing System Scheduling Tool 43
Dr. Tauseef Aized, Professor and Chair

Petri Net Model Based Implementation
of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells 59
Gen’ichi Yasuda

Intelligent Production Systems Reconfi guration
by Means of Petri Nets and the Supervisory Control Theory 75
Zapata M. Germán, Chacón R. Edgar and Palacio B. Juan

Parameter Perturbation Analysis through Stochastic Petri Nets:
Application to an Inventory System 103
Labadi Karim, Darcherif Moumen, Haoxun Chen

Modelling Multimedia Synchronization
using a Time Petri Net Based Approach 123
Abdelghani Ghomari and Chabane Djeraba

Hybrid Petri Nets and Metaheuristic
Approach to Farm Work Scheduling 137
Senlin Guan, Morikazu Nakamura and Takeshi Shikanai

Parallel Application Scheduling Model Based
on Petri Net with Changeable Structure 153
Xiangang Zhao, Caiying Wei, Manyun Lin, Xiaohu Feng and Wei Lan

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Preface XI

Production Process Object Model Research Based
on Petri Net Techniques 1
Chen You-ling Sun Ya-nan Yang Qing-qing Xie Shu-hong

Synthesis of Coloured Petri Nets
from Natural-like Language Descriptions 21
Enrique Arjona, Graciela Bueno and Ernesto López-Mellado

Petri Net as a Manufacturing System Scheduling Tool 43
Dr. Tauseef Aized, Professor and Chair

Petri Net Model Based Implementation
of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells 59
Gen’ichi Yasuda

Intelligent Production Systems Reconfi guration
by Means of Petri Nets and the Supervisory Control Theory 75
Zapata M. Germán, Chacón R. Edgar and Palacio B. Juan

Parameter Perturbation Analysis through Stochastic Petri Nets:
Application to an Inventory System 103
Labadi Karim, Darcherif Moumen, Haoxun Chen

Modelling Multimedia Synchronization
using a Time Petri Net Based Approach 123
Abdelghani Ghomari and Chabane Djeraba

Hybrid Petri Nets and Metaheuristic
Approach to Farm Work Scheduling 137
Senlin Guan, Morikazu Nakamura and Takeshi Shikanai

Parallel Application Scheduling Model Based
on Petri Net with Changeable Structure 153
Xiangang Zhao, Caiying Wei, Manyun Lin, Xiaohu Feng and Wei Lan

Contents

Chapter 10

Chapter 11

Petri Nets Hierarchical Modelling Framework
of Active Products’ Community 175
Ahmed Zouinkhi, Eddy Bajic,
Eric Rondeau and Mohamed Naceur Abdelkrim

Assessment Method of Business Process Model of EKD 197
Sílvia Inês Dallavalle de Pádua and Ricardo Yassushi Inamasu

X

Time-driven systems such as living organisms, ecological systems and world population have
long been modeled and analyzed through differential equations. Man-made technological
environments such as computer, transportation and telecommunication networks or
manufacturing and logistics systems represent systems whose behaviors are governed by events
occurring asynchronously over time. Events may be controlled or uncontrolled. Event-driven
systems are of increasing importance in today’s world because they are growing in number,
size and sophistication. It is therefore imperative to have systematic design methodologies
in order to achieve desirable performance and to avoid catastrophic failures. These systems
may be asynchronous and sequential, exhibiting many characteristics: concurrency, con ict,
mutual exclusion and non-determinism. These characteristics are dif cult to describe using
traditional control theory which deals with systems of continuous or synchronous discrete
variables modelled by differential or difference equations. In addition, inappropriate control
of the occurrence of events may lead to system deadlock, capacity over ows or may otherwise
degrade system performance. These systems are typically referred to as discrete event
dynamical systems (DEDS). In order to capture the properties of DEDS, several mechanisms
have been proposed and developed for modelling such systems. These are state machines,
Petri nets, communicating sequential processes and nitely recursive processes. In order
to conduct performance analysis of these kinds of systems, methods such as perturbation
analysis, queuing network theory and Markov processes have been formulated and applied.
Petri net as a graphical tool provides a uni ed method for design of discrete event systems
from hierarchical systems description to physical realizations.

This reading is a selection of articles authored by distinguished researchers and academics
working in Petri net eld and gives an in-depth treatment on selected topics. In order to fully
comprehend the material presented, the readers are expected to have background knowledge
in the eld. This collection of articles attempts to give a state-of-the-art implementation of
Petri net theory which may encourage the readers to apply Petri net in their own way.

July 31, 2010.

Editor

Dr. Tauseef Aized, Professor and Chair
Department of Mechanical, Mechatronics and Manufacturing Engineering,

KSK Campus, University of Engineering and Technology, Lahore,
Pakistan

Preface

1

Production Process Object Model Research
Based on Petri Net Techniques

Chen You-ling Sun Ya-nan Yang Qing-qing Xie Shu-hong
Chongqing University

China

1. Introduction
A bottleneck in production process is a link which hindered business process to increase
effective output greater or reduce inventory and cost [1]. Solve the bottleneck of the
traditional method of production is usually through improved technology, increased scale
of production [2], increasing capital investment, etc. to achieve. However, this method is
usually the bottleneck occurs in quite a long time before they can be discovered and
resolved, often resulting in wasted production capacity.
In recent years, with a variety of simulation techniques become more sophisticated, people
started to recognize the use of simulation technology to address bottleneck in business
results are quite remarkable [3]. Such as the use of SIMOGRAMS method to determine the
production process bottleneck workshop and improve the bottleneck cell [4]; use Em-plant
to build production line simulation model and optimize production line configuration and
layout [5] [6];the use of WITNESS studied the production efficiency of the system issues to
improve the initiative and creativity of workers [7].
To some extent the use of simulation technology can solve production bottleneck problem,
but the simulation model building takes longer, is not strong universal and the need of
trained professional model talent, so it is not conducive for the production process widely
used in various sectors. Through research, the production process conduct the dynamic
system model Petri net techniques [8], combined with simulation software, and put forward
the production process object model (referred to as PPOM) method.

2. Production Process Object Model (PPOM)
2.1 PPOM thought
PPOM is a production process object model method, which combines object-oriented
thought (Object Oriented, OO) and Petri net techniques, make each processing site in the
production process, production cell or working procedure to a high degree of abstraction
[9],then abstract entity place sub-module, combined with the actual situation of production,
optimize the abstract entity place sub-module, establish an PPOM abstract model of
production system and form an organic production system, build production capacity
analysis objective function model, using simulation annealing algorithm to find out the
minimum production cell and detect the bottleneck cell of the production system.

1

Production Process Object Model Research
Based on Petri Net Techniques

Chen You-ling Sun Ya-nan Yang Qing-qing Xie Shu-hong
Chongqing University

China

1. Introduction
A bottleneck in production process is a link which hindered business process to increase
effective output greater or reduce inventory and cost [1]. Solve the bottleneck of the
traditional method of production is usually through improved technology, increased scale
of production [2], increasing capital investment, etc. to achieve. However, this method is
usually the bottleneck occurs in quite a long time before they can be discovered and
resolved, often resulting in wasted production capacity.
In recent years, with a variety of simulation techniques become more sophisticated, people
started to recognize the use of simulation technology to address bottleneck in business
results are quite remarkable [3]. Such as the use of SIMOGRAMS method to determine the
production process bottleneck workshop and improve the bottleneck cell [4]; use Em-plant
to build production line simulation model and optimize production line configuration and
layout [5] [6];the use of WITNESS studied the production efficiency of the system issues to
improve the initiative and creativity of workers [7].
To some extent the use of simulation technology can solve production bottleneck problem,
but the simulation model building takes longer, is not strong universal and the need of
trained professional model talent, so it is not conducive for the production process widely
used in various sectors. Through research, the production process conduct the dynamic
system model Petri net techniques [8], combined with simulation software, and put forward
the production process object model (referred to as PPOM) method.

2. Production Process Object Model (PPOM)
2.1 PPOM thought
PPOM is a production process object model method, which combines object-oriented
thought (Object Oriented, OO) and Petri net techniques, make each processing site in the
production process, production cell or working procedure to a high degree of abstraction
[9],then abstract entity place sub-module, combined with the actual situation of production,
optimize the abstract entity place sub-module, establish an PPOM abstract model of
production system and form an organic production system, build production capacity
analysis objective function model, using simulation annealing algorithm to find out the
minimum production cell and detect the bottleneck cell of the production system.

 Advances in Petri Net Theory and Applications

2

PPOM method not only can analyse the dynamic production capacity of the production
process and working procedure,but also has the advantages of modular, object-oriented as
well as visually and clear hierarchy, also suitable for model of various processing cells.in
each cell, production capacity is estimated that production systems will help to predict the
bottleneck in advance, and to improve the processing cell to make a timely manner in order
to shorten the production cycle, increase productivity and efficiency of production systems.
As OO thought emphasizes the specific data and operations are encapsulated in black boxes,
no need to consider the object's internal operations and state change, but only care about the
message exchange through the interface between objects, therefore, putting forward the
PPOM Theoretical Basis is feasible.

2.2 PPOM definition
Petri nets can be used to describe the system’s complex event logic and sequential
relationship graphically, but also can analyse the system based on mathematical methods of
quantitative, so in the manufacturing system analysis, model and control, they are widely
used [10]. As system complexity increases, the system PN model and analysis become very
complicated, due to the lack of modular, reusability and other shortcomings, increases the
reconstruction time of PN model.To this end, in the production process model, the
introduction of PPOM thought, combined with high-level Petri net (OPN) techniques,
putting forward Production process object modeling-Object-oriented Petri nets (PPOM −
OPN) method.
Application of the concept of OPN, regard the production system as a series of objects and
message transmisson between the objects, use CPNs (colored Petri net) describing the object,
The CPNs model of the object obtained was called Object-oriented Petri nets (OPN);
message transmission between objects was described by network diagram, which was built
by transition and directed arc,also called Message Passing Relation nets(MPRN).
Definition 1.1 PPOM Definiton
Seven-tuple is expressed as

 { }, ; , , , ,i i i i i i i iPPOM OPN SP AT IM OM I O C− = (1.1)
Thereinto:
1. iSP —State Place finite set
2. iAT —Activity transition finite set
3. iIM —input message place finite set
4. iOM —output message place finite set
5. ()iC SP —state place color Collection
6. ()iC AT —Activity transition color collection
7. ()iC IM —input message place color collection
8. ()iC OM —output message place color collection
9. (,)iI P T —from place P to transition T input mapping function : () ()C P C T N× → (Non-

negative integer), Corresponds to the color directed arc from P to T,here
i iP SP IM= ∪ ， iT AT= ， (,)I P T for the matrix.

10. (,)iO P T —from transition T to the place P output mapping function: () ()C T C P N× →
(Non-negative integer), Corresponds to the color directed arc from T to P.here

i iP SP OM= ∪ ， iT AT= ， (,)O P T for the matrix.

Production Process Object Model Research Based on Petri Net Techniques

3

iPPOM OPN− The internal state place and activity transition describes the dynamic
properties of OPN object model, that the production process or working procedure bring
changes in the internal state of the production cell, while the input message received from
other objects (as the previous production cell) of message and through output message
place gate on the activities of production cells to the next incoming process or
procedure(that is the input message place).

Definition 1.2 Message Passing Relation nets among production cells

In the production process, message Passing Relation nets from message exporter iOb to
message inporter jOb (i j≠) are expressed as:

 { }, , , (), (), (), ,ij i ij i i j ij ij ijR OM g IM C OM C IM C g I O= (1.2)

Thereinto:
1. iOM —Object iOb input message place finite set
2. jIM —Object jOb output message place finite set
3. ijg —from iOb to jOb message transmission gate finite set
4. ()iC OM — iOb output message place color collection
5. ()jC IM — jOb input message place color collection
6. ()ijC g — ijg color collection
7. (,)ij i ijI OM g —from output message place iOM to the gate ijg input mapping

function,it’s () ()i ijC OM C g N× → (Non-negative integer), corresponds to the color
directed arc from iOM to the ijg .

SP1

IM1

OM1
I12 g12

SPj

IMj

SP2

IM2

OM2

gij

OMj

O12

Oij
Iij

Ontput

productive unit sub-module

Message place

gate transition

state place

Fig. 1. Relation nets among production cells

 Advances in Petri Net Theory and Applications

2

PPOM method not only can analyse the dynamic production capacity of the production
process and working procedure,but also has the advantages of modular, object-oriented as
well as visually and clear hierarchy, also suitable for model of various processing cells.in
each cell, production capacity is estimated that production systems will help to predict the
bottleneck in advance, and to improve the processing cell to make a timely manner in order
to shorten the production cycle, increase productivity and efficiency of production systems.
As OO thought emphasizes the specific data and operations are encapsulated in black boxes,
no need to consider the object's internal operations and state change, but only care about the
message exchange through the interface between objects, therefore, putting forward the
PPOM Theoretical Basis is feasible.

2.2 PPOM definition
Petri nets can be used to describe the system’s complex event logic and sequential
relationship graphically, but also can analyse the system based on mathematical methods of
quantitative, so in the manufacturing system analysis, model and control, they are widely
used [10]. As system complexity increases, the system PN model and analysis become very
complicated, due to the lack of modular, reusability and other shortcomings, increases the
reconstruction time of PN model.To this end, in the production process model, the
introduction of PPOM thought, combined with high-level Petri net (OPN) techniques,
putting forward Production process object modeling-Object-oriented Petri nets (PPOM −
OPN) method.
Application of the concept of OPN, regard the production system as a series of objects and
message transmisson between the objects, use CPNs (colored Petri net) describing the object,
The CPNs model of the object obtained was called Object-oriented Petri nets (OPN);
message transmission between objects was described by network diagram, which was built
by transition and directed arc,also called Message Passing Relation nets(MPRN).
Definition 1.1 PPOM Definiton
Seven-tuple is expressed as

 { }, ; , , , ,i i i i i i i iPPOM OPN SP AT IM OM I O C− = (1.1)
Thereinto:
1. iSP —State Place finite set
2. iAT —Activity transition finite set
3. iIM —input message place finite set
4. iOM —output message place finite set
5. ()iC SP —state place color Collection
6. ()iC AT —Activity transition color collection
7. ()iC IM —input message place color collection
8. ()iC OM —output message place color collection
9. (,)iI P T —from place P to transition T input mapping function : () ()C P C T N× → (Non-

negative integer), Corresponds to the color directed arc from P to T,here
i iP SP IM= ∪ ， iT AT= ， (,)I P T for the matrix.

10. (,)iO P T —from transition T to the place P output mapping function: () ()C T C P N× →
(Non-negative integer), Corresponds to the color directed arc from T to P.here

i iP SP OM= ∪ ， iT AT= ， (,)O P T for the matrix.

Production Process Object Model Research Based on Petri Net Techniques

3

iPPOM OPN− The internal state place and activity transition describes the dynamic
properties of OPN object model, that the production process or working procedure bring
changes in the internal state of the production cell, while the input message received from
other objects (as the previous production cell) of message and through output message
place gate on the activities of production cells to the next incoming process or
procedure(that is the input message place).

Definition 1.2 Message Passing Relation nets among production cells

In the production process, message Passing Relation nets from message exporter iOb to
message inporter jOb (i j≠) are expressed as:

 { }, , , (), (), (), ,ij i ij i i j ij ij ijR OM g IM C OM C IM C g I O= (1.2)

Thereinto:
1. iOM —Object iOb input message place finite set
2. jIM —Object jOb output message place finite set
3. ijg —from iOb to jOb message transmission gate finite set
4. ()iC OM — iOb output message place color collection
5. ()jC IM — jOb input message place color collection
6. ()ijC g — ijg color collection
7. (,)ij i ijI OM g —from output message place iOM to the gate ijg input mapping

function,it’s () ()i ijC OM C g N× → (Non-negative integer), corresponds to the color
directed arc from iOM to the ijg .

SP1

IM1

OM1
I12 g12

SPj

IMj

SP2

IM2

OM2

gij

OMj

O12

Oij
Iij

Ontput

productive unit sub-module

Message place

gate transition

state place

Fig. 1. Relation nets among production cells

 Advances in Petri Net Theory and Applications

4

8. (,)ij j ijO IM g —The gate ijg to the input message place jIM output mapping
function,it’s () ()ij jC g C IM N× → (Non-negative integer), corresponds to the color
directed arc from ijg to iOM .

Known by definition 1.2, the production sub-module are through input / output mapping
functions and message transmission gate to fulfill message transmission and feedback.
Message gate is a special transiton in OPN that express message transmission between
different OPN "incident", as shown in Figure 1.

3. Bottleneck detection based on PPOM
3.1 Bottleneck detection based on PPOM
PPOM is a dynamic model method of production process, this method not only for the pre-
estimation of the bottleneck before products into production, and is also suitable to explore
the new bottleneck cell after bottleneck transfer occurred. PPOM bottleneck detection
process is as follows:

Analyse production process

Count productive unit capacity
with The simulated annealing

algorithm

Set up PPOM object function

Set up PPOM model

Excavate capacity bottleneck unit

Is there a new
bottleneck unit?

No

Yes

The historical
data and actual
production data

Production site
statistics

Excavate
bottleneck

Finish bottleneck
excavation

improve bottleneck unit capacity

PPOM
modeling

Fig. 2. Bottleneck detecting process based on PPOM

Production Process Object Model Research Based on Petri Net Techniques

5

1. PPOM abstract model
2. PPOM objective function model
3. Use simulated annealing algorithm to calculate the production cell capacity
4. Find the minimum production capacity process cell
5. Detect bottleneck production capacity cell
6. Put forward improvement measures accordingly
7. Analyse whether appear new bottleneck in production cells, if it exists, back to Step 2 to

re-cycle, otherwise end the bottleneck detection process, specifically shown in Figure 2.

3.2 Abstract model based on PPOM
3.2.1 Abstract model
The production process has the specific entitity object PPOM OPN− on the level of OPN
from its inherited class, reflecting the succession of OPN method, that is the object class has
its own properties and methods. Therefore, in the build-time of PPOM OPN− , not only to
examine entity object state place SP and activities transition AT as to establish common PN,
but also know all input message place IM and output message place OM of entities.
Use PPOM method, abstract each processing cell in the production process to closed entity
place Mi, IMi shows i production cell input message place, OMi shows i production cell
output message place after operation, SPi shows i-production cell state place, that is
intermediate processing status of production place Mi. Methods using PPOM abstract model
shown in Figure 3.

SP1

IM1

OM1
I12

T12

SPj
IMj

SP2

IM2

OM2

OMj

O12

M1 M2

SPk

IMk

OMk

Mi

Buf

Production
Process sub-

module

Message
place

State
place

Gate
transition

Tki

SPi

IMi

OMi

Mk

“or” relation

Tkj

Fig. 3. Abstract model construction based on PPOM

 Advances in Petri Net Theory and Applications

4

8. (,)ij j ijO IM g —The gate ijg to the input message place jIM output mapping
function,it’s () ()ij jC g C IM N× → (Non-negative integer), corresponds to the color
directed arc from ijg to iOM .

Known by definition 1.2, the production sub-module are through input / output mapping
functions and message transmission gate to fulfill message transmission and feedback.
Message gate is a special transiton in OPN that express message transmission between
different OPN "incident", as shown in Figure 1.

3. Bottleneck detection based on PPOM
3.1 Bottleneck detection based on PPOM
PPOM is a dynamic model method of production process, this method not only for the pre-
estimation of the bottleneck before products into production, and is also suitable to explore
the new bottleneck cell after bottleneck transfer occurred. PPOM bottleneck detection
process is as follows:

Analyse production process

Count productive unit capacity
with The simulated annealing

algorithm

Set up PPOM object function

Set up PPOM model

Excavate capacity bottleneck unit

Is there a new
bottleneck unit?

No

Yes

The historical
data and actual
production data

Production site
statistics

Excavate
bottleneck

Finish bottleneck
excavation

improve bottleneck unit capacity

PPOM
modeling

Fig. 2. Bottleneck detecting process based on PPOM

Production Process Object Model Research Based on Petri Net Techniques

5

1. PPOM abstract model
2. PPOM objective function model
3. Use simulated annealing algorithm to calculate the production cell capacity
4. Find the minimum production capacity process cell
5. Detect bottleneck production capacity cell
6. Put forward improvement measures accordingly
7. Analyse whether appear new bottleneck in production cells, if it exists, back to Step 2 to

re-cycle, otherwise end the bottleneck detection process, specifically shown in Figure 2.

3.2 Abstract model based on PPOM
3.2.1 Abstract model
The production process has the specific entitity object PPOM OPN− on the level of OPN
from its inherited class, reflecting the succession of OPN method, that is the object class has
its own properties and methods. Therefore, in the build-time of PPOM OPN− , not only to
examine entity object state place SP and activities transition AT as to establish common PN,
but also know all input message place IM and output message place OM of entities.
Use PPOM method, abstract each processing cell in the production process to closed entity
place Mi, IMi shows i production cell input message place, OMi shows i production cell
output message place after operation, SPi shows i-production cell state place, that is
intermediate processing status of production place Mi. Methods using PPOM abstract model
shown in Figure 3.

SP1

IM1

OM1
I12

T12

SPj
IMj

SP2

IM2

OM2

OMj

O12

M1 M2

SPk

IMk

OMk

Mi

Buf

Production
Process sub-

module

Message
place

State
place

Gate
transition

Tki

SPi

IMi

OMi

Mk

“or” relation

Tkj

Fig. 3. Abstract model construction based on PPOM

 Advances in Petri Net Theory and Applications

6

Figure 3 shows the abstract model of the entire production process PPOM OPN− , the
concrete operation of the various production cells are encapsulated in rounded rectangular
frame, each production cell sub-module through input / output mapping functions and
message transmission gate to fulfill message transition and feedback. Message gate is a special
transiton in OPN that express message transmission between different OPN "incident".

3.2.2 Capacity analysis of abstract model
1. Deadly embrace analysis
Manufacturing system dynamics characteristics can be described by various objects
OPN(Obi) of manufacturing system OPN and the relationship between objects (Rij),the
various sub-objects can inherit from its parent class property.Therefore,by constructing
Object Communication Net(OCN) between object classes, the use of non-variable analysis
can be carried out for deadly embrace detection. An analysis of the capability of each object
class OCN, also mastered the situation of the whole production system. If an object class
OCN exists deadly embrace , there may be message transmission between object classes
result. For any sub-module object of abstract model, using the module objects to constructe
the corresponding OCN (OCi). Construction of sub-module object class OCN steps:
1. Start from any output message place ()iom om OM∈ of iO , identify the connected

relationship (, ,)ij i ij jR OM g IM= and defining input message place ()jim im IM∈
corresponding to jO . Meanwhile, with the state place ()jsp sp SP∈ by using abstract
objects ()ijAO sp instead of objects jO ,here sp is decided by input / output relationship

j j jIM AT SP− − .
2. Through stimulating transition ()ijg g g∈ immediately connects om and ()ijAO sp of Oi.
3. For the abstract object jO ,from it’s definition input / output relationship

j j jSP AT OM− − to find output message place ()jom om OM∈ ;
4. If what 3) found of om is equal to the start output message place from Oi, then stop (that

is the object OCN has been built). Otherwise, the next step;
5. According to the corresponding mutual connection relationship ' ' ' '(, ,)jj j jj jR OM g IM

' , 1,2, ,j j j I= = ,through stimulating transition g immediately to find input message
place '()jim im IM∈ Corresponding to jO .meanwhile, with the state place ()jsp sp SP∈
by using abstract object '()jjA sp instead of object jO ,here sp was decided by input /
output relationship j j jIM AT SP− − .

6. Through connection gate transition '()jjg g g∈ to connect om and '()jjAO sp of jO ;
7. Use 'j to place j , and back to (3).
In summary, if each activity transition and the gate of abstract sub-module object OCN is in
the initial identification, through appropriate transition and the gate can be stimulated, it
indicates there is no deadly embrace; similarly, if all the abstract sub-module objects can
stimulate OCN, it indicates there is no deadly embrace abstract model.
2. Conflict Analysis
Abstracting model of the production system is highly abstract, and manufacturing system is
the limited capacity of the resource allocation system, a resource may be object for a few
services, but often only as a resource at the same time object for one service, which will lead
to conflict occurred. In addition, some constraints of the system will lead to conflict. These
conflicts can occur within OPN object (such as the number of simultaneous transitions at the
same time only one can be stimulated), OPN may also occur in the mutual connection (as a

Production Process Object Model Research Based on Petri Net Techniques

7

time to the operation of two or more requests for the same resources). OPN on the abstract
model for conflict analysis is intended to first identify all possible conflicts, and then offer all
kinds of conflict most appropriate conflict resolution / decision-making programs to ensure
the system agility, flexibility and reliability. In OPN, the conflict generally fall into two
categories: input and output conflict [11].
1. input conflict: this kind of conflict happens when two or more transitions share the

same input message place. (Figure 4(a) shows); or one transition has two or more input
message places, and these input message places through ”(OR)” logic to connect with
the transition(Figure4(b)shows). In the manufacturing system, several processing tasks
competing for the same resource will enter the conflict.

Directed arc
State location
or message

location

Gate
transition

“or” relation

P

t1

t2

P1

P2

t

input conflict(a) input conflict(b)

Fig. 4. A Petri net with input conflict
2. output conflict: this kind of conflict happens when one transition has two or more

output message places,and the place through “(OR)” logic to connect with the
transition(Figure 5 shows). In the manufacturing system, when the current processing is
completed, there are several resources available to complete the next processing task,
the output of conflict arises.

p1

p2

t

Fig. 5. A Petri net with output conflict
3. Conservation analysis
Conservation is another important feature of the model, as System resources are limited, if
the model is not conservative, then the system exists overflow phenomenon, otherwise it
will be security. According to the literature [14], when there is a P invariant for a non-
negative integer vector x of n × 1, so xTC = 0 (C is the incidence matrix), then the Petri net is
strictly binding. On the analysis of the actual situation, as long as the actual data system
satisfies literature [14] required, then the Petri net is strictly binding, that is conservative and
bounded, overflow phenomenon will not occur.

 Advances in Petri Net Theory and Applications

6

Figure 3 shows the abstract model of the entire production process PPOM OPN− , the
concrete operation of the various production cells are encapsulated in rounded rectangular
frame, each production cell sub-module through input / output mapping functions and
message transmission gate to fulfill message transition and feedback. Message gate is a special
transiton in OPN that express message transmission between different OPN "incident".

3.2.2 Capacity analysis of abstract model
1. Deadly embrace analysis
Manufacturing system dynamics characteristics can be described by various objects
OPN(Obi) of manufacturing system OPN and the relationship between objects (Rij),the
various sub-objects can inherit from its parent class property.Therefore,by constructing
Object Communication Net(OCN) between object classes, the use of non-variable analysis
can be carried out for deadly embrace detection. An analysis of the capability of each object
class OCN, also mastered the situation of the whole production system. If an object class
OCN exists deadly embrace , there may be message transmission between object classes
result. For any sub-module object of abstract model, using the module objects to constructe
the corresponding OCN (OCi). Construction of sub-module object class OCN steps:
1. Start from any output message place ()iom om OM∈ of iO , identify the connected

relationship (, ,)ij i ij jR OM g IM= and defining input message place ()jim im IM∈
corresponding to jO . Meanwhile, with the state place ()jsp sp SP∈ by using abstract
objects ()ijAO sp instead of objects jO ,here sp is decided by input / output relationship

j j jIM AT SP− − .
2. Through stimulating transition ()ijg g g∈ immediately connects om and ()ijAO sp of Oi.
3. For the abstract object jO ,from it’s definition input / output relationship

j j jSP AT OM− − to find output message place ()jom om OM∈ ;
4. If what 3) found of om is equal to the start output message place from Oi, then stop (that

is the object OCN has been built). Otherwise, the next step;
5. According to the corresponding mutual connection relationship ' ' ' '(, ,)jj j jj jR OM g IM

' , 1,2, ,j j j I= = ,through stimulating transition g immediately to find input message
place '()jim im IM∈ Corresponding to jO .meanwhile, with the state place ()jsp sp SP∈
by using abstract object '()jjA sp instead of object jO ,here sp was decided by input /
output relationship j j jIM AT SP− − .

6. Through connection gate transition '()jjg g g∈ to connect om and '()jjAO sp of jO ;
7. Use 'j to place j , and back to (3).
In summary, if each activity transition and the gate of abstract sub-module object OCN is in
the initial identification, through appropriate transition and the gate can be stimulated, it
indicates there is no deadly embrace; similarly, if all the abstract sub-module objects can
stimulate OCN, it indicates there is no deadly embrace abstract model.
2. Conflict Analysis
Abstracting model of the production system is highly abstract, and manufacturing system is
the limited capacity of the resource allocation system, a resource may be object for a few
services, but often only as a resource at the same time object for one service, which will lead
to conflict occurred. In addition, some constraints of the system will lead to conflict. These
conflicts can occur within OPN object (such as the number of simultaneous transitions at the
same time only one can be stimulated), OPN may also occur in the mutual connection (as a

Production Process Object Model Research Based on Petri Net Techniques

7

time to the operation of two or more requests for the same resources). OPN on the abstract
model for conflict analysis is intended to first identify all possible conflicts, and then offer all
kinds of conflict most appropriate conflict resolution / decision-making programs to ensure
the system agility, flexibility and reliability. In OPN, the conflict generally fall into two
categories: input and output conflict [11].
1. input conflict: this kind of conflict happens when two or more transitions share the

same input message place. (Figure 4(a) shows); or one transition has two or more input
message places, and these input message places through ”(OR)” logic to connect with
the transition(Figure4(b)shows). In the manufacturing system, several processing tasks
competing for the same resource will enter the conflict.

Directed arc
State location
or message

location

Gate
transition

“or” relation

P

t1

t2

P1

P2

t

input conflict(a) input conflict(b)

Fig. 4. A Petri net with input conflict
2. output conflict: this kind of conflict happens when one transition has two or more

output message places,and the place through “(OR)” logic to connect with the
transition(Figure 5 shows). In the manufacturing system, when the current processing is
completed, there are several resources available to complete the next processing task,
the output of conflict arises.

p1

p2

t

Fig. 5. A Petri net with output conflict
3. Conservation analysis
Conservation is another important feature of the model, as System resources are limited, if
the model is not conservative, then the system exists overflow phenomenon, otherwise it
will be security. According to the literature [14], when there is a P invariant for a non-
negative integer vector x of n × 1, so xTC = 0 (C is the incidence matrix), then the Petri net is
strictly binding. On the analysis of the actual situation, as long as the actual data system
satisfies literature [14] required, then the Petri net is strictly binding, that is conservative and
bounded, overflow phenomenon will not occur.

 Advances in Petri Net Theory and Applications

8

4. Production system objective function model based on PPOM
Owing to production system widely refers to the aspects of capacity, cost, stock and
efficiency, etc, which covers a wide rage The following contents will only regard the
capacity, which is mainly concerned by the companies, as the main study object, and build
up the objective function model. According to the TOC theory, Bottleneck site or the
capacity of bottleneck process decides the maximum capacity of production system.
Detecting the bottleneck cell in time and improving its capacity are vital to capacity
maximize and benefit maximize of the whole production capacity system.

4.1 Calculation of capacity
In the mass and single production enterprises, capacity is usually calculated in unit of the
production cell or processing site. The equipment cells which constitutes the production
cells have the nature of interchangeability, namely, any equipment in production cells can
complete any same procedure assigned to this cell and meet its quality requirements. The
calculation of production cell capacity is as follows [12]:

 eSFM
t

= (1.3)

1

1 n

i i
i

t t
n

θ
=

= ⋅∑ (1.4)

In the formula, M is the capacity of a production cell, Fe is the effective working time of one
single equipment, S is the equipment number of a production cell, t is the average number
of required equipments per hour of one single product, ti is the average number of required
equipments per hour of No. I product in virtual factory, θi is the proportion of the output of No. I
product in the planned total output, n is the variety number of products in virtual factory.
The effective working hours of production cell per day:

 () 8 (1)ϕ δ δ λ= × − (1.5)

Thereinto, λ is allowance rating (including allowance time like going to the WC, exercise
during breaks and drinking,etc), δ is the frequency of the changing shifts of factory, in
general, { }1, 2, 3δ = , δ =1 means the factory takes the single shift producing mode. δ =2
means the factory takes the double-shift producing mode, δ =3 means the factory takes the
three shifts producing mode.

 (1) ()eF ST DT PM PC ϕ δ= − − − − × (1.6)

In the formula (1.6), ST is the probability of Set up time occurs in the total working time per
day, DT is the probability of Down time occurs in the total working time per day, PM is the
probability of Preventive Maintenance time occurs in the total working time per day, PC is the
probability of presupposed Protective capacity time occurs in the total working time per day.
From the formula (1.3) ~ (1.6) we can know:

1

(1) ()
1 n

i i
i

S ST DT PM PCM
t

n

ϕ δ

θ
=

× − − − − ×
=

⋅∑
 (1.7)

Production Process Object Model Research Based on Petri Net Techniques

9

In the actual production process, ST obeys the binomial distribution.
order ()~ ,X ST B n p= , then

 () () x x n x
nf x P X C p q −= = (1.8)

thereinto 0 1, 1p p q< < + = , 0, 1,2, ,x n=
As machines break down randomly in processing cell, it obeys the normal distribution
commonly. Order ()2~ ,Y DT N μ σ= , so

 ()
()2

221
2

y

f y e
μ

σ

πσ

−
−

= , y−∞ < < +∞ (1.9)

The routine preventive maintenance of enterprises includes week maintenance, mouth
maintenance, season maintenance and year maintenance, get rid of producing anomaly,
PM consistent with gamma distribution basically.order ()~ ,Z PM Gamma β α= , then

 ()
1 /

0
()

0

zz e z
f z

others

α α ββ
α

− − −⎧
>⎪= Γ⎨

⎪
⎩

 (1.10)

thereinto, Γ is the gamma function, its expression is:

1()
0

tt e dtαα − −∞
Γ = ∫

For actual factory production, Protective Capacity PC corresponds to the Buffer builded up
for Bottleneck process, order f(q) = PC, and then f(q) obeys the condition functions as follows:

()
0
q if the production cell is bottleneck

f q
others

 ⎧⎪= ⎨
⎪⎩

 (1.11)

Synthesize formula(1.8)~(1.11), we can conclude the capacity calculation formula of
production cell is:

1

[1 () () () ()] ()
1 n

i i
i

S f x f y f z f qM
t

n

ϕ δ

θ
=

× − − − − ×
=

⋅∑
 (1.12)

4.2 The expanding capacity analysis function
According to the actual production situation of factory, the equipment number, Protective
Capacity, daily effective working hours, average number of required equipments per hour

of each virtual product
1

n

i i
i

t θ
=

⋅∑ , in a period of time, can be simplified as constants .Then

build up the PPOM objective function model of capacity combines with the capacity
calculation formula (1.12),

 Advances in Petri Net Theory and Applications

8

4. Production system objective function model based on PPOM
Owing to production system widely refers to the aspects of capacity, cost, stock and
efficiency, etc, which covers a wide rage The following contents will only regard the
capacity, which is mainly concerned by the companies, as the main study object, and build
up the objective function model. According to the TOC theory, Bottleneck site or the
capacity of bottleneck process decides the maximum capacity of production system.
Detecting the bottleneck cell in time and improving its capacity are vital to capacity
maximize and benefit maximize of the whole production capacity system.

4.1 Calculation of capacity
In the mass and single production enterprises, capacity is usually calculated in unit of the
production cell or processing site. The equipment cells which constitutes the production
cells have the nature of interchangeability, namely, any equipment in production cells can
complete any same procedure assigned to this cell and meet its quality requirements. The
calculation of production cell capacity is as follows [12]:

 eSFM
t

= (1.3)

1

1 n

i i
i

t t
n

θ
=

= ⋅∑ (1.4)

In the formula, M is the capacity of a production cell, Fe is the effective working time of one
single equipment, S is the equipment number of a production cell, t is the average number
of required equipments per hour of one single product, ti is the average number of required
equipments per hour of No. I product in virtual factory, θi is the proportion of the output of No. I
product in the planned total output, n is the variety number of products in virtual factory.
The effective working hours of production cell per day:

 () 8 (1)ϕ δ δ λ= × − (1.5)

Thereinto, λ is allowance rating (including allowance time like going to the WC, exercise
during breaks and drinking,etc), δ is the frequency of the changing shifts of factory, in
general, { }1, 2, 3δ = , δ =1 means the factory takes the single shift producing mode. δ =2
means the factory takes the double-shift producing mode, δ =3 means the factory takes the
three shifts producing mode.

 (1) ()eF ST DT PM PC ϕ δ= − − − − × (1.6)

In the formula (1.6), ST is the probability of Set up time occurs in the total working time per
day, DT is the probability of Down time occurs in the total working time per day, PM is the
probability of Preventive Maintenance time occurs in the total working time per day, PC is the
probability of presupposed Protective capacity time occurs in the total working time per day.
From the formula (1.3) ~ (1.6) we can know:

1

(1) ()
1 n

i i
i

S ST DT PM PCM
t

n

ϕ δ

θ
=

× − − − − ×
=

⋅∑
 (1.7)

Production Process Object Model Research Based on Petri Net Techniques

9

In the actual production process, ST obeys the binomial distribution.
order ()~ ,X ST B n p= , then

 () () x x n x
nf x P X C p q −= = (1.8)

thereinto 0 1, 1p p q< < + = , 0, 1,2, ,x n=
As machines break down randomly in processing cell, it obeys the normal distribution
commonly. Order ()2~ ,Y DT N μ σ= , so

 ()
()2

221
2

y

f y e
μ

σ

πσ

−
−

= , y−∞ < < +∞ (1.9)

The routine preventive maintenance of enterprises includes week maintenance, mouth
maintenance, season maintenance and year maintenance, get rid of producing anomaly,
PM consistent with gamma distribution basically.order ()~ ,Z PM Gamma β α= , then

 ()
1 /

0
()

0

zz e z
f z

others

α α ββ
α

− − −⎧
>⎪= Γ⎨

⎪
⎩

 (1.10)

thereinto, Γ is the gamma function, its expression is:

1()
0

tt e dtαα − −∞
Γ = ∫

For actual factory production, Protective Capacity PC corresponds to the Buffer builded up
for Bottleneck process, order f(q) = PC, and then f(q) obeys the condition functions as follows:

()
0
q if the production cell is bottleneck

f q
others

 ⎧⎪= ⎨
⎪⎩

 (1.11)

Synthesize formula(1.8)~(1.11), we can conclude the capacity calculation formula of
production cell is:

1

[1 () () () ()] ()
1 n

i i
i

S f x f y f z f qM
t

n

ϕ δ

θ
=

× − − − − ×
=

⋅∑
 (1.12)

4.2 The expanding capacity analysis function
According to the actual production situation of factory, the equipment number, Protective
Capacity, daily effective working hours, average number of required equipments per hour

of each virtual product
1

n

i i
i

t θ
=

⋅∑ , in a period of time, can be simplified as constants .Then

build up the PPOM objective function model of capacity combines with the capacity
calculation formula (1.12),

 Advances in Petri Net Theory and Applications

10

1

[1 () () () ()] ()
1

k
k n

i i
i

S f x f y f z f qF
t

n

ϕ δ

θ
=

× − − − − ×
=

⋅∑
 (1.13)

2

2
()

2

1 /

() , 0,1,2,...,

1() ,
2

. . () , 0
()

() 8 (1), 0 1
(1,2,3)

x x n x

y

z

f x Cn p q x n

f y e y

z eS T f z z

μ
σ

α α β
πσ

β
α

ϕ δ δ λ λ
δ

−

−
−

− − −

= =

= − ∞ < < +∞

= >
Γ

= × − < <
∈
, , 0, 0 1 ik i ω θ

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪

> < <⎪⎩

4.3 Bottleneck detection cell based on PPOM
According to the capacity calculation objective function (1.13), combines with the historical
data and actual situation of the factory, calculate the capacity of production cell 1:

1 1 1 1
1

1

[1 () () () ()] ()
1 n

i i
i

S f x f y f z f qf
t

n

ϕ δ

θ
=

× − − − − ×
=

⋅∑

Similarly, calculate the capacity of each production cell respectively:

2 2 2 2
2

1

[1 () () () ()] ()
1 n

i i
i

S f x f y f z f qf
t

n

ϕ δ

θ
=

× − − − − ×
=

⋅∑

1

[1 () () () ()] ()
1

n n n n
n n

i i
i

S f x f y f z f qf
t

n

ϕ δ

θ
=

× − − − − ×
=

⋅∑

After that, using the simulated annealing algorithm and Matlab to write the programming
code, making comparisons between 1f , 2f , , nf respectively. According to TOC theory,
define the minumum function of production cell as the bottleneck cell in the production
process. This cell decides the maximum production capacity and actual production
efficiency of factory. In the actual production process, we should meet the actual demand of
bottleneck cell as far as possible and make efforts to improve its capacity.

5. The application of PPOM
5.1 The description of the power transformer production process in M company
M company was founded in August 1999,it was invested a total investment of 30 million
U.S. dollars by A company ---- the top 500 enterprises in the world, as the third power
transformers joint venture established in China. Its main business is to design, product, sale

Production Process Object Model Research Based on Petri Net Techniques

11

and maintain of 110KV/220KV medium and large power transformer. In 2008, M
company’s sales revenue had been reached more than 1.4 billion Yuan and the production
capacity had been reached 12000MVA with more than 460 employees. The M company had
also received the awards of The Top 100 Electric Company in China, and had been selected
as the Top Ten Growth Competitiveness Enterprises of China's Electric Power Industrial. In
2009, as the company undertook parts of the national power grids’ alteration and
Wenchuang earthquake reconstruction projects, its production order number had jumped to
64 per year, the annual effective capacity requisition had reached to 15160 MVA.
Here we will take the most representative product 240MVA/220KV transformer of this
company as the example to analyze. The production process of Power transformer starts
from raw material, and through cells of Coil Winding, High Frequency Welding (HFW),

Coil Winding

Oven

Winding press

 High Frequency Welding

Core and Winding

Is there a new
bottleneck unit?

No

Yes

Raw material

Final product

VPD Gas drying

Bake

Final assembly

Test

Disassembly and pack

Silicon rolls

Silicon Cut

Silicon lamination

Fig. 6. Power Transformer production process of M company

 Advances in Petri Net Theory and Applications

10

1

[1 () () () ()] ()
1

k
k n

i i
i

S f x f y f z f qF
t

n

ϕ δ

θ
=

× − − − − ×
=

⋅∑
 (1.13)

2

2
()

2

1 /

() , 0,1,2,...,

1() ,
2

. . () , 0
()

() 8 (1), 0 1
(1,2,3)

x x n x

y

z

f x Cn p q x n

f y e y

z eS T f z z

μ
σ

α α β
πσ

β
α

ϕ δ δ λ λ
δ

−

−
−

− − −

= =

= − ∞ < < +∞

= >
Γ

= × − < <
∈
, , 0, 0 1 ik i ω θ

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪

> < <⎪⎩

4.3 Bottleneck detection cell based on PPOM
According to the capacity calculation objective function (1.13), combines with the historical
data and actual situation of the factory, calculate the capacity of production cell 1:

1 1 1 1
1

1

[1 () () () ()] ()
1 n

i i
i

S f x f y f z f qf
t

n

ϕ δ

θ
=

× − − − − ×
=

⋅∑

Similarly, calculate the capacity of each production cell respectively:

2 2 2 2
2

1

[1 () () () ()] ()
1 n

i i
i

S f x f y f z f qf
t

n

ϕ δ

θ
=

× − − − − ×
=

⋅∑

1

[1 () () () ()] ()
1

n n n n
n n

i i
i

S f x f y f z f qf
t

n

ϕ δ

θ
=

× − − − − ×
=

⋅∑

After that, using the simulated annealing algorithm and Matlab to write the programming
code, making comparisons between 1f , 2f , , nf respectively. According to TOC theory,
define the minumum function of production cell as the bottleneck cell in the production
process. This cell decides the maximum production capacity and actual production
efficiency of factory. In the actual production process, we should meet the actual demand of
bottleneck cell as far as possible and make efforts to improve its capacity.

5. The application of PPOM
5.1 The description of the power transformer production process in M company
M company was founded in August 1999,it was invested a total investment of 30 million
U.S. dollars by A company ---- the top 500 enterprises in the world, as the third power
transformers joint venture established in China. Its main business is to design, product, sale

Production Process Object Model Research Based on Petri Net Techniques

11

and maintain of 110KV/220KV medium and large power transformer. In 2008, M
company’s sales revenue had been reached more than 1.4 billion Yuan and the production
capacity had been reached 12000MVA with more than 460 employees. The M company had
also received the awards of The Top 100 Electric Company in China, and had been selected
as the Top Ten Growth Competitiveness Enterprises of China's Electric Power Industrial. In
2009, as the company undertook parts of the national power grids’ alteration and
Wenchuang earthquake reconstruction projects, its production order number had jumped to
64 per year, the annual effective capacity requisition had reached to 15160 MVA.
Here we will take the most representative product 240MVA/220KV transformer of this
company as the example to analyze. The production process of Power transformer starts
from raw material, and through cells of Coil Winding, High Frequency Welding (HFW),

Coil Winding

Oven

Winding press

 High Frequency Welding

Core and Winding

Is there a new
bottleneck unit?

No

Yes

Raw material

Final product

VPD Gas drying

Bake

Final assembly

Test

Disassembly and pack

Silicon rolls

Silicon Cut

Silicon lamination

Fig. 6. Power Transformer production process of M company

 Advances in Petri Net Theory and Applications

12

Coil Oven, Iron Cut, Iron Lamination, Down-lead, Walkthrough, Core, Winding Assembly,
Oven, Final Assembly, Test, Pack, etc. Then is the finally transformer. The production
process of Power transformer in M company shown in Figure 6.

5.2 Power transformer production abstract model based on PPOM
5.2.1 Power transformer production abstract model
For the actual situation of M company power transformer production, use PPOM method,
we can abstract raw material warehouse, coil winding cell, HFW cell, Winding press cell,
Coil Oven cell, Winding assembly cell, Iron Cut cell, Iron Lamination cell, Down-lead
Walkthrough cell, Core and Winding Assembly cell, Oven cell, Final Assembly cell, Test cell
and knocked-down packing cell to 14 place sub-module P1 ~ P14,then optimize these 14 place
sub-modules according to production process, and build M company power transformer
production abstract model, as shown in figure 7.
The particularization for each place and transition in figure 7 are shown as table 1.

5.2.2 Power Transformer production abstract model capacity analysis
1. deadly embrace analysis
The occurrence of deadly embrace would lead to suspension of the entire power transformer
production abstract model system running and seriously affect system capacity. Therefore,

P1

IM1

OM1
I1

T1

P2

IM2

OM2

O1

M1 M2

Buf

Output

P3

IM3

OM3

I2
T2

P4

IM4

OM4

O2

M3

M4

Input

T3

I4
T4

O4
P5

IM5

OM5 M5T5
P6

IM6

OM6

M6

I5O5

P7

IM7

OM7

M7

I7
T7

O7
P8

IM8

OM8 M8

T8

P10

IM10

OM10

M10

T6

O8

I10
T9

P11

IM11

OM11

O10

M11

P12

IM12

I11
T10

O11

M12

OM12

Input

I3

O3

P9

IM9

OM9M9

I12
T11

P13

IM13

OM13

O12

M13

P14

IM14

OM14

I13
T12

O13

M14

Input

I6
I8

Ik

I9

I14

Production unit
sub-module

message
place state place gate

transition “or” relation

P15

IM15

OM15

I15

.

Fig. 7. Power Transformer production abstract model based on PPOM

Production Process Object Model Research Based on Petri Net Techniques

13

Production
cell mean place mean transition mean

M1 Raw material
storage P1 Transformer material

preparing T1 Material has been prepared

M2 Coil Winding P2 Vertical and
Horizontal winding T2 Coil winding finished

M3 HFW
 P3 High winding HFW T3 High winding HFW finished

M4 Winding press
 P4 Winding press size

adjustment T4 Press finished and prepared to
oven

M5 Coil Oven P5 Coil to oven T5 Coil oven finished and prepared
to assembly

M6 Winding
assembly P6 Coil assembly T6

Coil assembly finished,goes to
Core and Winding Assembly or
Buffer Core and Winding
Assembly

M7 Iron Cut P7 Georg cut T7 Iron Cut finished

M8
Iron
Lamination
assembly

P8 Iron Lamination
 T8

Lamination
Finished and enter to Core and
Winding Assembly worktable

M9 Down-lead
Walkthrough P9 Down-lead

Walkthrough T9 Core and Winding Assembly
finished and prepared to VPD

M10
Core and
Winding
Assembly

P10 Core and Winding
Assembly T10 Out of oven and prepared to

Final Assembly

M11 VDP Oven P11 VDP Oven T11 Final Assembly finished and
prepared to test hall

M12 Final Assembly P12 Final Assembly

M13 Test P13 Transformer capacity
test

M14 knocked-down
packing P14 knocked-down

packing pre-rollout

Buf assembly
buffer cell P15 Assembly buffer

T12

Transformer test finished,if it up
to grade,goes direct to
knocked-down packing;if
not,back to transfomer final
Assembly cell to re-assembly or
roll to coil cell to re-coil

Table 1. Meaning of places and transitions in Fig.7

after the power transformer production process PPOM T− model is established, the system
must determine whether there exists deadly embrace, and find out all possible deadly
embrace situation, to avoid its occurrence before the excitation system controls. For
convenience, OCN incidence matrix of the transformer production process PPOM T−
model and initial marking are listed in tabular form, as shown in Table 2.
 Set the following stock preparation module T1 transition of power transformer production
raw materials as an example, use Invariant theory: 0vC = , 0im im= (v is p invariant, C is
the incidence matrix)to do capacity analysis.
Incidence matrix between power Transformer production PPOM T− model place and
transitions is 15 12[]ijC c ×= , thereinto:

 Advances in Petri Net Theory and Applications

12

Coil Oven, Iron Cut, Iron Lamination, Down-lead, Walkthrough, Core, Winding Assembly,
Oven, Final Assembly, Test, Pack, etc. Then is the finally transformer. The production
process of Power transformer in M company shown in Figure 6.

5.2 Power transformer production abstract model based on PPOM
5.2.1 Power transformer production abstract model
For the actual situation of M company power transformer production, use PPOM method,
we can abstract raw material warehouse, coil winding cell, HFW cell, Winding press cell,
Coil Oven cell, Winding assembly cell, Iron Cut cell, Iron Lamination cell, Down-lead
Walkthrough cell, Core and Winding Assembly cell, Oven cell, Final Assembly cell, Test cell
and knocked-down packing cell to 14 place sub-module P1 ~ P14,then optimize these 14 place
sub-modules according to production process, and build M company power transformer
production abstract model, as shown in figure 7.
The particularization for each place and transition in figure 7 are shown as table 1.

5.2.2 Power Transformer production abstract model capacity analysis
1. deadly embrace analysis
The occurrence of deadly embrace would lead to suspension of the entire power transformer
production abstract model system running and seriously affect system capacity. Therefore,

P1

IM1

OM1
I1

T1

P2

IM2

OM2

O1

M1 M2

Buf

Output

P3

IM3

OM3

I2
T2

P4

IM4

OM4

O2

M3

M4

Input

T3

I4
T4

O4
P5

IM5

OM5 M5T5
P6

IM6

OM6

M6

I5O5

P7

IM7

OM7

M7

I7
T7

O7
P8

IM8

OM8 M8

T8

P10

IM10

OM10

M10

T6

O8

I10
T9

P11

IM11

OM11

O10

M11

P12

IM12

I11
T10

O11

M12

OM12

Input

I3

O3

P9

IM9

OM9M9

I12
T11

P13

IM13

OM13

O12

M13

P14

IM14

OM14

I13
T12

O13

M14

Input

I6
I8

Ik

I9

I14

Production unit
sub-module

message
place state place gate

transition “or” relation

P15

IM15

OM15

I15

.

Fig. 7. Power Transformer production abstract model based on PPOM

Production Process Object Model Research Based on Petri Net Techniques

13

Production
cell mean place mean transition mean

M1 Raw material
storage P1 Transformer material

preparing T1 Material has been prepared

M2 Coil Winding P2 Vertical and
Horizontal winding T2 Coil winding finished

M3 HFW
 P3 High winding HFW T3 High winding HFW finished

M4 Winding press
 P4 Winding press size

adjustment T4 Press finished and prepared to
oven

M5 Coil Oven P5 Coil to oven T5 Coil oven finished and prepared
to assembly

M6 Winding
assembly P6 Coil assembly T6

Coil assembly finished,goes to
Core and Winding Assembly or
Buffer Core and Winding
Assembly

M7 Iron Cut P7 Georg cut T7 Iron Cut finished

M8
Iron
Lamination
assembly

P8 Iron Lamination
 T8

Lamination
Finished and enter to Core and
Winding Assembly worktable

M9 Down-lead
Walkthrough P9 Down-lead

Walkthrough T9 Core and Winding Assembly
finished and prepared to VPD

M10
Core and
Winding
Assembly

P10 Core and Winding
Assembly T10 Out of oven and prepared to

Final Assembly

M11 VDP Oven P11 VDP Oven T11 Final Assembly finished and
prepared to test hall

M12 Final Assembly P12 Final Assembly

M13 Test P13 Transformer capacity
test

M14 knocked-down
packing P14 knocked-down

packing pre-rollout

Buf assembly
buffer cell P15 Assembly buffer

T12

Transformer test finished,if it up
to grade,goes direct to
knocked-down packing;if
not,back to transfomer final
Assembly cell to re-assembly or
roll to coil cell to re-coil

Table 1. Meaning of places and transitions in Fig.7

after the power transformer production process PPOM T− model is established, the system
must determine whether there exists deadly embrace, and find out all possible deadly
embrace situation, to avoid its occurrence before the excitation system controls. For
convenience, OCN incidence matrix of the transformer production process PPOM T−
model and initial marking are listed in tabular form, as shown in Table 2.
 Set the following stock preparation module T1 transition of power transformer production
raw materials as an example, use Invariant theory: 0vC = , 0im im= (v is p invariant, C is
the incidence matrix)to do capacity analysis.
Incidence matrix between power Transformer production PPOM T− model place and
transitions is 15 12[]ijC c ×= , thereinto:

 Advances in Petri Net Theory and Applications

14

C T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 m0
P1 -1 0 0 0 0 0 0 0 0 0 0 -1 1
P2 1 -1 0 0 0 0 0 0 0 0 0 0 0
P3 0 1 -1 0 0 0 0 0 0 0 0 0 0
P4 0 0 1 -1 0 0 0 0 0 0 0 0 0
P5 0 0 0 1 -1 0 0 0 0 0 0 0 0
P6 0 0 0 0 1 -1 0 0 0 0 0 0 0
P7 0 0 0 0 0 0 -1 0 0 0 0 0 0
P8 0 0 0 0 0 0 1 -1 0 0 0 0 0
P9 0 0 0 0 0 0 0 -1 0 0 0 0 0
P10 0 0 0 0 0 1 0 1 -1 0 0 0 0
P11 0 0 0 0 0 0 0 0 1 -1 0 0 0
P12 0 0 0 0 0 0 0 0 0 1 -1 -1 0
P13 0 0 0 0 0 0 0 0 0 0 1 -1 0
P14 -1 0 0 0 0 0 0 0 0 0 0 1 0
Buf 0 0 0 0 0 1 0 -1 0 0 0 0 1

Table 2. OCN matrix of transformer abstract model

, {1,2,...,15}, {1,2,...,12}ij ij ijc c c i j+ −= − ∈ ∈ ,

{ } { }1 (,) 1,2, ,15 , 1,2, ,12
0

j i
ij

t p F i j
c

others
+ ⎧ ∈ ∈ ∈⎪= ⎨

⎪⎩

{ } { }1 (,) 1,2, ,15 , 1,2, ,12
0

i j
ij

p t F i j
c

others
− ⎧ ∈ ∈ ∈⎪= ⎨

⎪⎩

So, the incidence matrix C

-1 0 0 0 0 0 0 0 0 0 0 -1
1 -1 0 0 0 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 0 0 0 0 0
0 0 1 -1 0 0 0 0 0 0 0 0
0 0 0 1 -1 0 0 0 0 0 0 0
0 0 0 0 1 -1 0 0 0 0 0 0
0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 1 -1 0 0 0 0
0 0 0 0 0 0 0 -1 -1 0 0 0
0 0 0 0 0 1 0 1 -1 0 0 0
0 0 0 0 0 0 0 0 1 -1 0 0
0 0 0 0 0 0 0 0 0 1 -1 -1
0 0 0 0 0 0 0 0 0 0 1 -1
-1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 -1 0 0 0 0

C =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Production Process Object Model Research Based on Petri Net Techniques

15

From Invariant theory,we can get OCN incidence matrix of power Transformer production
abstract model is () 15rank C = ,from 0

T Tx m x m= (x is the vector of 1n × , 0m is Initial state)
gets,all the m can be reached by m0.
From Petri net definition identification knows, ()im P shows the number of tokens in Pi.so

1 1 2 14 1 2 14 14() 1, () () () () () () () 0()m P m P m P m P m IM m OM m IM m OM X= + + + − + + − = , now
T1 can be stimulated.
Similarly, other transitions T2, T3 …, T14 of Power Transformer production abstract model
OCN in the initial identification m0, through appropriate action all can be stimulated, thus
shows the power transformer production abstract model exists no deadly embrace.

2. Conflict analysis
In the power transformer production abstract model petri net, the abstract model PPOM-T is
a highly abstraction of transformer production system, while in the production process,
between the production processing cells or working procedures, production capacity can be
of different sizes, time differences, which leads to conflict. In addition, certain constraints of
the system, such as materials needed for the transformer production, aid tools, staff and
other resources may service for a few sets in the production of transformer, will lead to
conflict.in the power transformer production PPOM-T model, transiton T12 exists output
conflict, as shown in Figure 8.

P12

IM12 M12

OM12
I12

T11

P13

IM13

OM13

O12

M13

P14

IM14

OM14

I13
T12

O13

M14

I14

Production unit
sub-module

message
place

state place gate
transition “or” relation

Fig. 8. A conflict model in T12

As the power transformer production system is a complex system, when it encounter
conflicts, the system should be based on characteristics of power transformers and the actual
production and use appropriate conflict resolutiono in a timely manner.as Figure 8
mentioned above, transition T12 exists output conflict,we can adopt the follow-up working
procedure minimum priority principle,give priority to follow-up working procedure
minimum production cell M12,that is returned to transformer final assembly cell to re-
assembly for those which can not meet test capacity requirements of components; and then
consider the cell M1 (it has the most follow-up working procedures).

3. Conservation Tests

Conservation analysis is another important feature of the model, it shows whether the
system exists overflow phenomenon and security. According to the literature [14], when
there is a P invariant for a non-negative integer vector x of 1n × , so 0Tx C = (C is the
incidence matrix), then the Petri net is strictly binding, that is conservative and bounded,
overflow phenomenon will not occur.

 Advances in Petri Net Theory and Applications

14

C T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 m0
P1 -1 0 0 0 0 0 0 0 0 0 0 -1 1
P2 1 -1 0 0 0 0 0 0 0 0 0 0 0
P3 0 1 -1 0 0 0 0 0 0 0 0 0 0
P4 0 0 1 -1 0 0 0 0 0 0 0 0 0
P5 0 0 0 1 -1 0 0 0 0 0 0 0 0
P6 0 0 0 0 1 -1 0 0 0 0 0 0 0
P7 0 0 0 0 0 0 -1 0 0 0 0 0 0
P8 0 0 0 0 0 0 1 -1 0 0 0 0 0
P9 0 0 0 0 0 0 0 -1 0 0 0 0 0
P10 0 0 0 0 0 1 0 1 -1 0 0 0 0
P11 0 0 0 0 0 0 0 0 1 -1 0 0 0
P12 0 0 0 0 0 0 0 0 0 1 -1 -1 0
P13 0 0 0 0 0 0 0 0 0 0 1 -1 0
P14 -1 0 0 0 0 0 0 0 0 0 0 1 0
Buf 0 0 0 0 0 1 0 -1 0 0 0 0 1

Table 2. OCN matrix of transformer abstract model

, {1,2,...,15}, {1,2,...,12}ij ij ijc c c i j+ −= − ∈ ∈ ,

{ } { }1 (,) 1,2, ,15 , 1,2, ,12
0

j i
ij

t p F i j
c

others
+ ⎧ ∈ ∈ ∈⎪= ⎨

⎪⎩

{ } { }1 (,) 1,2, ,15 , 1,2, ,12
0

i j
ij

p t F i j
c

others
− ⎧ ∈ ∈ ∈⎪= ⎨

⎪⎩

So, the incidence matrix C

-1 0 0 0 0 0 0 0 0 0 0 -1
1 -1 0 0 0 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 0 0 0 0 0
0 0 1 -1 0 0 0 0 0 0 0 0
0 0 0 1 -1 0 0 0 0 0 0 0
0 0 0 0 1 -1 0 0 0 0 0 0
0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 1 -1 0 0 0 0
0 0 0 0 0 0 0 -1 -1 0 0 0
0 0 0 0 0 1 0 1 -1 0 0 0
0 0 0 0 0 0 0 0 1 -1 0 0
0 0 0 0 0 0 0 0 0 1 -1 -1
0 0 0 0 0 0 0 0 0 0 1 -1
-1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 -1 0 0 0 0

C =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Production Process Object Model Research Based on Petri Net Techniques

15

From Invariant theory,we can get OCN incidence matrix of power Transformer production
abstract model is () 15rank C = ,from 0

T Tx m x m= (x is the vector of 1n × , 0m is Initial state)
gets,all the m can be reached by m0.
From Petri net definition identification knows, ()im P shows the number of tokens in Pi.so

1 1 2 14 1 2 14 14() 1, () () () () () () () 0()m P m P m P m P m IM m OM m IM m OM X= + + + − + + − = , now
T1 can be stimulated.
Similarly, other transitions T2, T3 …, T14 of Power Transformer production abstract model
OCN in the initial identification m0, through appropriate action all can be stimulated, thus
shows the power transformer production abstract model exists no deadly embrace.

2. Conflict analysis
In the power transformer production abstract model petri net, the abstract model PPOM-T is
a highly abstraction of transformer production system, while in the production process,
between the production processing cells or working procedures, production capacity can be
of different sizes, time differences, which leads to conflict. In addition, certain constraints of
the system, such as materials needed for the transformer production, aid tools, staff and
other resources may service for a few sets in the production of transformer, will lead to
conflict.in the power transformer production PPOM-T model, transiton T12 exists output
conflict, as shown in Figure 8.

P12

IM12 M12

OM12
I12

T11

P13

IM13

OM13

O12

M13

P14

IM14

OM14

I13
T12

O13

M14

I14

Production unit
sub-module

message
place

state place gate
transition “or” relation

Fig. 8. A conflict model in T12

As the power transformer production system is a complex system, when it encounter
conflicts, the system should be based on characteristics of power transformers and the actual
production and use appropriate conflict resolutiono in a timely manner.as Figure 8
mentioned above, transition T12 exists output conflict,we can adopt the follow-up working
procedure minimum priority principle,give priority to follow-up working procedure
minimum production cell M12,that is returned to transformer final assembly cell to re-
assembly for those which can not meet test capacity requirements of components; and then
consider the cell M1 (it has the most follow-up working procedures).

3. Conservation Tests

Conservation analysis is another important feature of the model, it shows whether the
system exists overflow phenomenon and security. According to the literature [14], when
there is a P invariant for a non-negative integer vector x of 1n × , so 0Tx C = (C is the
incidence matrix), then the Petri net is strictly binding, that is conservative and bounded,
overflow phenomenon will not occur.

 Advances in Petri Net Theory and Applications

16

-1 0 0 0 0 0 0 0 0 0 0 -1
1 -1 0 0 0 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 0 0 0 0 0
0 0 1 -1 0 0 0 0 0 0 0 0
0 0 0 1 -1 0 0 0 0 0 0 0
0 0 0 0 1 -1 0 0 0 0 0 0
0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 1 -1 0 0 0 0
0 0 0 0 0 0 0 -1 -1 0 0 0
0 0 0 0 0 1 0 1 -1 0 0 0
0 0 0 0 0 0 0 0 1 -1 0 0
0 0 0 0 0 0 0 0 0 1 -1 -1
0 0 0 0 0 0 0 0 0 0 1 -1
-1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 -1 0

Tif x ⋅ =0,

0 0 0

then

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Non-zero positive vector 1 1 1 1 1 6 1 2 1 1 1 2Tx = ⎡ ⎤⎣ ⎦ , so that 0Tx C = .

Therefore, this power transformer production abstract model exists
1 1 1 1 1 6 1 2 1 1 1 2Tx = ⎡ ⎤⎣ ⎦ , so that 0Tx C = . From this we know, the power

transformer production process abstract model object OCN is conservation bounded,
overflow will not occur, and the model has good performance.

5.3 The objective function model of the power transformer
According to M company’s power transformer’s actual production situation, combines with
the capacity calculation formula (1.13), the objective function model of the power
transformer can be built up as:

1

[1 () () () ()] ()
1

k
PPOM Tk n

i i
i

S f x f y f z f qF
t

n

ϕ δ

θ
−

=

× − − − − ×
=

⋅∑
 (1.14)

() { }

()
()

()

{ }

2

22

1 /

, 0,1, ,

1 ,
2

. . , 0
()

() , 0 1
() 8 (1), 2

, , 0, 0 , 1

x x n x
n

y

z

i

f x C p q x n

f y e y

z eS T f z z

f q q q

k i

μ

σ

α α β
πσ

β
α

ϕ δ δ λ δ
ω θ λ

−

−
−

− − −

⎧ = ∈
⎪
⎪
⎪ = − ∞ < < +∞⎪
⎪⎪
⎨ = >
⎪ Γ
⎪

= ≤ <⎪
⎪ = × − ∈⎪
⎪ > < <⎩

Production Process Object Model Research Based on Petri Net Techniques

17

Thereinto, Sk is the equipment number contained by the production cell, ()f x is the
distribution function of Set up time, ()f y is the distribution function of Down time, ()f z is
the distribution function of Routine maintenance time , ()ϕ δ is the function of the daily
effective working hours of production cell, λ is allowance rating (including allowance time
like going to the WC, exercise during breaks and drinking,ect)，δ is the frequency of
changing shifts of factory, ti is the average number of required equipments per hour of No.i
product in virtual factory, iθ is the proportion of the output of No.i product in the planned
total output, ω is the variety number of products.

5.4 Power transformer to detect the production process bottleneck cell
In the Period of time, the number of equipment per production process cell, protective
capacity, the effective working hours per day and average number of required equipments

per hour for virtual product
1

n

i i
i

t θ
=

⋅∑ , Can be considered as constant to simplify handling.

oder
1

1 n

k i i
i

t t
n

θ
=

= ⋅∑ (1.15)

 () () () ()k f x f y f z f qψ = + + + (1.16)
And as () 8 2 (1 15%) 13.6ϕ δ = × × − = h
Use the formula (1.15) (1.16) into formula (1.14) can make power transformer production
capacity objective function model (1.14) simplified to:

 13.6 (1)k k
k

k

SF
t

ψ× −
= (1.17)

1

() () ()
1. .

0 (), (), () 1, , , , , 0,

k
n

k i i
i

f x f y f z

S T t t
n
f x f y f z x z k t n y R

ψ

θ
=

= + +⎧
⎪
⎪ = ⋅⎨
⎪
⎪ < < > ∈⎩

∑

Then, using the simulated annealing algorithm in the production function to calculate the
minimum producion capacity, that is the bottleneck of the production process cell.
1. Solution space: Solution space S is just counted once for each site,is a set of all

permulations of { }1,2, ,15k∈ , the members of s denoted by ()1 2 15, , ,s s s ,and notes
1 1=ns s+ , optional for the initial solution can be ()1,2, ,15 .

2. objective function: defining transformer capacity function as cost function

 ()1 2 15
13.6 (1), , , k k

k
k

SF s s s
t

ψ× −
= (1.18)

3. difference cost function: set ()1 2 15, , ,s s s transformed to ()1 2 15, , ,η η η ,then the
difference cost function is

 () ()1 2 15 1 2 15, , , , , ,F F F s s sη η ηΔ = − (1.19)

Use Matlab Write code as follows:

 Advances in Petri Net Theory and Applications

16

-1 0 0 0 0 0 0 0 0 0 0 -1
1 -1 0 0 0 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 0 0 0 0 0
0 0 1 -1 0 0 0 0 0 0 0 0
0 0 0 1 -1 0 0 0 0 0 0 0
0 0 0 0 1 -1 0 0 0 0 0 0
0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 1 -1 0 0 0 0
0 0 0 0 0 0 0 -1 -1 0 0 0
0 0 0 0 0 1 0 1 -1 0 0 0
0 0 0 0 0 0 0 0 1 -1 0 0
0 0 0 0 0 0 0 0 0 1 -1 -1
0 0 0 0 0 0 0 0 0 0 1 -1
-1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 -1 0

Tif x ⋅ =0,

0 0 0

then

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Non-zero positive vector 1 1 1 1 1 6 1 2 1 1 1 2Tx = ⎡ ⎤⎣ ⎦ , so that 0Tx C = .

Therefore, this power transformer production abstract model exists
1 1 1 1 1 6 1 2 1 1 1 2Tx = ⎡ ⎤⎣ ⎦ , so that 0Tx C = . From this we know, the power

transformer production process abstract model object OCN is conservation bounded,
overflow will not occur, and the model has good performance.

5.3 The objective function model of the power transformer
According to M company’s power transformer’s actual production situation, combines with
the capacity calculation formula (1.13), the objective function model of the power
transformer can be built up as:

1

[1 () () () ()] ()
1

k
PPOM Tk n

i i
i

S f x f y f z f qF
t

n

ϕ δ

θ
−

=

× − − − − ×
=

⋅∑
 (1.14)

() { }

()
()

()

{ }

2

22

1 /

, 0,1, ,

1 ,
2

. . , 0
()

() , 0 1
() 8 (1), 2

, , 0, 0 , 1

x x n x
n

y

z

i

f x C p q x n

f y e y

z eS T f z z

f q q q

k i

μ

σ

α α β
πσ

β
α

ϕ δ δ λ δ
ω θ λ

−

−
−

− − −

⎧ = ∈
⎪
⎪
⎪ = − ∞ < < +∞⎪
⎪⎪
⎨ = >
⎪ Γ
⎪

= ≤ <⎪
⎪ = × − ∈⎪
⎪ > < <⎩

Production Process Object Model Research Based on Petri Net Techniques

17

Thereinto, Sk is the equipment number contained by the production cell, ()f x is the
distribution function of Set up time, ()f y is the distribution function of Down time, ()f z is
the distribution function of Routine maintenance time , ()ϕ δ is the function of the daily
effective working hours of production cell, λ is allowance rating (including allowance time
like going to the WC, exercise during breaks and drinking,ect)，δ is the frequency of
changing shifts of factory, ti is the average number of required equipments per hour of No.i
product in virtual factory, iθ is the proportion of the output of No.i product in the planned
total output, ω is the variety number of products.

5.4 Power transformer to detect the production process bottleneck cell
In the Period of time, the number of equipment per production process cell, protective
capacity, the effective working hours per day and average number of required equipments

per hour for virtual product
1

n

i i
i

t θ
=

⋅∑ , Can be considered as constant to simplify handling.

oder
1

1 n

k i i
i

t t
n

θ
=

= ⋅∑ (1.15)

 () () () ()k f x f y f z f qψ = + + + (1.16)
And as () 8 2 (1 15%) 13.6ϕ δ = × × − = h
Use the formula (1.15) (1.16) into formula (1.14) can make power transformer production
capacity objective function model (1.14) simplified to:

 13.6 (1)k k
k

k

SF
t

ψ× −
= (1.17)

1

() () ()
1. .

0 (), (), () 1, , , , , 0,

k
n

k i i
i

f x f y f z

S T t t
n
f x f y f z x z k t n y R

ψ

θ
=

= + +⎧
⎪
⎪ = ⋅⎨
⎪
⎪ < < > ∈⎩

∑

Then, using the simulated annealing algorithm in the production function to calculate the
minimum producion capacity, that is the bottleneck of the production process cell.
1. Solution space: Solution space S is just counted once for each site,is a set of all

permulations of { }1,2, ,15k∈ , the members of s denoted by ()1 2 15, , ,s s s ,and notes
1 1=ns s+ , optional for the initial solution can be ()1,2, ,15 .

2. objective function: defining transformer capacity function as cost function

 ()1 2 15
13.6 (1), , , k k

k
k

SF s s s
t

ψ× −
= (1.18)

3. difference cost function: set ()1 2 15, , ,s s s transformed to ()1 2 15, , ,η η η ,then the
difference cost function is

 () ()1 2 15 1 2 15, , , , , ,F F F s s sη η ηΔ = − (1.19)

Use Matlab Write code as follows:

 Advances in Petri Net Theory and Applications

18

begin
init-of-T; { T is Initial temperature}
 S={1, 2, …,15}; {S is Initial value}
 termination=false;
 while termination=false
 begin
 for i=1 to L do
 begin
 generate(S′form S); { from the current loop circuit S to generate new S'}
 Δt:=F(S′))-F(S);{ F (S) is capacity value for each site}
 if(Δt<0) or (exp (-Δt/T)>Random-of-[0,1])
 S=S′;
 if the-halt-condition-is-TRUE THEN
 termination=true;
 End;
 T_lower;
 End;
End

After using the simulated annealing algorithm, it can quickly detect the minimum
production process capacity, as winding assembly is the Z power transformer company's
capacity bottleneck cell of production system.

5.5 The proposion of improvement measures
As the daily capacity of production cell of Winding assembly is:

() 6 6
6

6

13.6 (1) 13.6 4 (1 13.8%) 0.204
229.67

SF s
t

ψ× − × × −
= = = (unitage/day)

Take the product 240MVA and the annual working days as 250 days for
Calculation, the annual production capacity cell of Winding assembly is

()6 0.204 250 240 12250.48YF s = × × = (MVA/year)

Obviously, the calculation of the annual production capacity cell of Winding assembly
()6YF s is less than the M company’s actual required annual production capacity of 15160

MVA. According to the actual situation of the enterprise, the Winding assembly cell takes
the early, middle and late three shifts, thereby, the daily production capacity cell of
Winding assembly can be calculate out:

()' 6 6
6

6

(1) 8 3 (1 15%) 4 (1 13.8%) 20.4 0.306
229.67

SF s
t

ψ× − × × × − × − ×
= = = (unitage /day)

The annual production capacity cell of Winding assembly is:

()'
6 0.306 250 240 18375.72YF s = × × = (MVA/year)

Production Process Object Model Research Based on Petri Net Techniques

19

At this point, the annual production capacity cell of Winding assembly of 18375.72MVA was
greater than the actual requirements of the 15160 MVA, the capacity requirements problem
was resolved. At the same time, the capacity bottleneck might be transferred to other
production cells, therefore, the changed actual data is needed to re-simulated annealing
calculation (shown in Figure 7), and analyze the capacity of the possible new bottleneck
cells, taking the improvement measures for these new bottleneck capacity cell and recycling
until all production capacity cells have meet the actual requirements

5.6 The results of improvements
After the PPOM method had been implied in M company, we detect the bottleneck
production capacity cell, proposed improvement measures in time and made the annual
production capacity of Winding assembly cell increased (76.5 57.8) 57.8− ÷ = 32.47% than
the original annual production capacity of 57.8 , besides, the production cycle time TPT was
shortened correspondingly. Concrete results are shown in Table 3.

Items Before
improvement

After
implied
PPOM

Effects

Production cycle time TPT(h) 724.1 646.4 77.7

Annual production capacity 57.8 76.5 18.7

Increased production efficiency per year (million) —— —— 202.14

Table 3. Effect statistics

1. The average production cycle time of each power transformer reduced 77.7h;
2. The production capacity increased 32.47%;
3. The production efficiency increased 2.0214 million Yuan per year.

6. Conclusion
Each production system will has the minimum capacity bottleneck site, which restricted the
production system to further enhance the capacity, it is important for production scheduling
at the bottleneck core site. In this paper,combine with Petri net technology, OO method and
agile manufacturing ideas, put forward agile production scheduling PPOM, described using
capacity bottleneck core site as the scheduling core and to the other times (or re) production
bottleneck site divergence PPOM production scheduling model method, and finally through
empirical research methods to further validate correctness and feasibility of PPOM.
The method extends the traditional capacity calculation function model and is closer to
actual production, the enterprise production process model are of considerable practical
value.
PPOM method of the production process for the manufacturing enterprise model provides a
scientific basis and an operational new method,it is an exploratory study focuing on
manufacturing production process model,for sub-modules internal computing methods of
the PPOM abstract model and existing ERP system links and PPOM information system
development, also need to produce in-depth exploration of the actual situation..

 Advances in Petri Net Theory and Applications

18

begin
init-of-T; { T is Initial temperature}
 S={1, 2, …,15}; {S is Initial value}
 termination=false;
 while termination=false
 begin
 for i=1 to L do
 begin
 generate(S′form S); { from the current loop circuit S to generate new S'}
 Δt:=F(S′))-F(S);{ F (S) is capacity value for each site}
 if(Δt<0) or (exp (-Δt/T)>Random-of-[0,1])
 S=S′;
 if the-halt-condition-is-TRUE THEN
 termination=true;
 End;
 T_lower;
 End;
End

After using the simulated annealing algorithm, it can quickly detect the minimum
production process capacity, as winding assembly is the Z power transformer company's
capacity bottleneck cell of production system.

5.5 The proposion of improvement measures
As the daily capacity of production cell of Winding assembly is:

() 6 6
6

6

13.6 (1) 13.6 4 (1 13.8%) 0.204
229.67

SF s
t

ψ× − × × −
= = = (unitage/day)

Take the product 240MVA and the annual working days as 250 days for
Calculation, the annual production capacity cell of Winding assembly is

()6 0.204 250 240 12250.48YF s = × × = (MVA/year)

Obviously, the calculation of the annual production capacity cell of Winding assembly
()6YF s is less than the M company’s actual required annual production capacity of 15160

MVA. According to the actual situation of the enterprise, the Winding assembly cell takes
the early, middle and late three shifts, thereby, the daily production capacity cell of
Winding assembly can be calculate out:

()' 6 6
6

6

(1) 8 3 (1 15%) 4 (1 13.8%) 20.4 0.306
229.67

SF s
t

ψ× − × × × − × − ×
= = = (unitage /day)

The annual production capacity cell of Winding assembly is:

()'
6 0.306 250 240 18375.72YF s = × × = (MVA/year)

Production Process Object Model Research Based on Petri Net Techniques

19

At this point, the annual production capacity cell of Winding assembly of 18375.72MVA was
greater than the actual requirements of the 15160 MVA, the capacity requirements problem
was resolved. At the same time, the capacity bottleneck might be transferred to other
production cells, therefore, the changed actual data is needed to re-simulated annealing
calculation (shown in Figure 7), and analyze the capacity of the possible new bottleneck
cells, taking the improvement measures for these new bottleneck capacity cell and recycling
until all production capacity cells have meet the actual requirements

5.6 The results of improvements
After the PPOM method had been implied in M company, we detect the bottleneck
production capacity cell, proposed improvement measures in time and made the annual
production capacity of Winding assembly cell increased (76.5 57.8) 57.8− ÷ = 32.47% than
the original annual production capacity of 57.8 , besides, the production cycle time TPT was
shortened correspondingly. Concrete results are shown in Table 3.

Items Before
improvement

After
implied
PPOM

Effects

Production cycle time TPT(h) 724.1 646.4 77.7

Annual production capacity 57.8 76.5 18.7

Increased production efficiency per year (million) —— —— 202.14

Table 3. Effect statistics

1. The average production cycle time of each power transformer reduced 77.7h;
2. The production capacity increased 32.47%;
3. The production efficiency increased 2.0214 million Yuan per year.

6. Conclusion
Each production system will has the minimum capacity bottleneck site, which restricted the
production system to further enhance the capacity, it is important for production scheduling
at the bottleneck core site. In this paper,combine with Petri net technology, OO method and
agile manufacturing ideas, put forward agile production scheduling PPOM, described using
capacity bottleneck core site as the scheduling core and to the other times (or re) production
bottleneck site divergence PPOM production scheduling model method, and finally through
empirical research methods to further validate correctness and feasibility of PPOM.
The method extends the traditional capacity calculation function model and is closer to
actual production, the enterprise production process model are of considerable practical
value.
PPOM method of the production process for the manufacturing enterprise model provides a
scientific basis and an operational new method,it is an exploratory study focuing on
manufacturing production process model,for sub-modules internal computing methods of
the PPOM abstract model and existing ERP system links and PPOM information system
development, also need to produce in-depth exploration of the actual situation..

 Advances in Petri Net Theory and Applications

20

7. Acknowledgement
Foundation items: Project supported by Natural Science Foundation of Chongqing
Municipality, China(No.2009BB3362), the Science & Technology Research of Chongqing
Municipal Education Commission, Chain(No.KJ08A06), and the Chongqing University
Innovative Talent Training Program During the 3rd Stage of 211 Project,China(No.S-09107).

8. References
[1] LI Bing; Bottleneck Analysis of Manufacturing Cell based on Simulation[J]; Modular

Machine Tool & Automatic Manufacturing Technique;2009-01-029.
[2] XU Han-chuan; XU Xiao-fei; ZHAN De-chen; WANG Hong-yu; A heuristic procedure of

master production scheduling for balanced and optimized utilization of bottleneck
capacities[J];Journal of Harbin Institute of Technology;2009-01-019

[3] ZHANG Shao-yang~1; WANG Xuan-cang~2; Bottle-neck Identification of Resources in
Highway Construction and Its Elimination Methods Based on Petri Nets[J]; Journal
of Chang'an University(Natural Science Edition;2006, 26(1);38~42.

[4] Guo Fu; Zhang Guo-jun; Applications of SIMOGRAMS to Resolve the Bottleneck of the
Production Line[J]; Industrial Engineering and Management; 2006(6); 107~113.

[5] JIA Chen-hui~1; ZHANG Hao~2; LU Jian-feng~1; Planning and Simulation of Virtual
Production System[J]; Modular Machine Tool & Automatic Manufacturing
Technique,2006(8): 94~97.

[6] Heinicke, Matthias U.; Hickman, Alan. Eliminate bottlenecks with integrated analysis
tools in eM-Plant[J]. Winter Simulation Conference Proceedings, v 1, p 229-231,
2000

[7] SHI Guo-hong; ZHANG Hua; Simulation of human-oriented production systems based
on cooperration[J]; Machinery Design & Manufacture,2005 (1): 88~90.

[8] JIA Guo-zhu; Optimized Method of Petri Net Modeling and Simulation for Production
Systems[J];Journal of System Simulation , 2006, 18(2): 559~562.

[9] Zhang Yong-yang, Chen You-ling, Qin Cheng-hai, et al. Research on Production Process
Model Simulation in Manufacturing Enterprise Based on Petri Nets[C]// Xia
Guoping. Proceedings of the 38th International Conference on Computers and
Industrial Engineering. Beijing: Publishing House of Electronics Industry, 2008:
1798-1802.

[10] Jiang Zhi-bin. Petri nets and its applications in manufacturing system modeling and
control [M]. BeiJing: Mechanical industry press, 2004: 138-157.

[11] Wu Zhe-hui. Petri net introductory theory[M]. BeiJing: Mechanical industry press, 2004:
138-157.

[12] WANG Liya, CHEN Youling, MA Hanwu, et al. Production planning and control[M].
Beijing: Tsinghua University Press, 2007:135-139(in Chinese).

[13] Chen You-ling, ZHANG Yong-yang, QIN Cheng-hai, et al. Production process object
model based on Petri nets[J]. Computer Integrated Manufacuring Systems, 2009,
15(6):1075-1080(in Chinese).

[14] Liu C M, Wu F C. Using Petri nets to solve FMS problems[J]. International Journal
Computer Integrated Manufacturing, 1993, 6 (3):175-185.

2

Synthesis of Coloured Petri Nets from Natural-
like Language Descriptions

Enrique Arjona1, Graciela Bueno1 and Ernesto López-Mellado2
1Colegio de Postgraduados Campus Montecillo

 2CINVESTAV-IPN Unidad Guadalajara
México

1. Introduction
Coloured Petri nets (CPN) (Jensen, 1981) have been widely used for the modelling of tasks
in flexible manufacturing systems at different levels of functioning (Aized et al., 2007; Da
Silva et al., 2008; Diaz, 2009). Since their conception, there have been several attempts to take
advantage of the formalism of CPN to adapt them as a universal, discrete-event modelling
language by extending their original definition (Jensen, 1991; Yeung et al., 1999; MengChu,
2009). Despite these attempts, however, complex and large-scale models are very hard to
build using CPN or their extensions.
In order to ease the modelling of complex systems using Petri nets, some synthesis methods
have been proposed, both for ordinary Petri nets (Der Jeng & Di Cesare, 1990; Zhou et al.,
1992; He et al., 2000; Badouel & Darondeau, 2004; Zhi-Jun et al., 2008; etc.) and for CPN
(Micovsky et al., 1990; Baldassari & Bruno, 1991; Ezpeleta, 1993; Shang et al., 2004; Khadka,
2007; etc.). These methods can be classified into two groups.
The first group (Der Jeng & Di Cesare, 1990; Zhou et al., 1992; Ezpeleta, 1993; He et al., 2000;
Badouel & Darondeau, 2004; Khadka, 2007) includes those methods that preserve the formal
nature of Petri nets. In order to achieve this, the methods impose restrictions on the type of
situations that can be modelled and do not include the indiscriminate use of shared
resources and complex ordering and selecting criteria (AND's, OR's, NOT's, and their
combinations). Therefore, the range of applicability of the methods is very limited. Der Jeng
& Di Cesare (1990) review some representative methods, all of them are of low level and do
not allow the modelling of shared resources or the modelling of ordering and selecting
criteria. Zhou et al. (1992) present a method that allows the modelling of some particular
types of shared resources but does not allow the modelling of ordering and selecting
criteria. Ezpeleta (1993) includes a method for the synthesis of models expressed by a
restricted class of CPN called simple sequential processes; in this method, ordering and
selecting criteria are limited to the use of FIFO policies. The other methods included in this
group use an interface to facilitate the modeling of the systems and a fixed catalogue of
subnets for the synthesis of the corresponding Petri net; in none of these methods is allowed
the modelling of ordering and selecting criteria. He et al. (2000) define manufacturing
processes in an interface called IDEF3 (Integrated Definition 3) and transform the model
obtained to a Petri net using a sequential cluster identification algorithm. Badouel &
Darondeau (2004) establish relations that the system to model has with a predefined set of

 Advances in Petri Net Theory and Applications

20

7. Acknowledgement
Foundation items: Project supported by Natural Science Foundation of Chongqing
Municipality, China(No.2009BB3362), the Science & Technology Research of Chongqing
Municipal Education Commission, Chain(No.KJ08A06), and the Chongqing University
Innovative Talent Training Program During the 3rd Stage of 211 Project,China(No.S-09107).

8. References
[1] LI Bing; Bottleneck Analysis of Manufacturing Cell based on Simulation[J]; Modular

Machine Tool & Automatic Manufacturing Technique;2009-01-029.
[2] XU Han-chuan; XU Xiao-fei; ZHAN De-chen; WANG Hong-yu; A heuristic procedure of

master production scheduling for balanced and optimized utilization of bottleneck
capacities[J];Journal of Harbin Institute of Technology;2009-01-019

[3] ZHANG Shao-yang~1; WANG Xuan-cang~2; Bottle-neck Identification of Resources in
Highway Construction and Its Elimination Methods Based on Petri Nets[J]; Journal
of Chang'an University(Natural Science Edition;2006, 26(1);38~42.

[4] Guo Fu; Zhang Guo-jun; Applications of SIMOGRAMS to Resolve the Bottleneck of the
Production Line[J]; Industrial Engineering and Management; 2006(6); 107~113.

[5] JIA Chen-hui~1; ZHANG Hao~2; LU Jian-feng~1; Planning and Simulation of Virtual
Production System[J]; Modular Machine Tool & Automatic Manufacturing
Technique,2006(8): 94~97.

[6] Heinicke, Matthias U.; Hickman, Alan. Eliminate bottlenecks with integrated analysis
tools in eM-Plant[J]. Winter Simulation Conference Proceedings, v 1, p 229-231,
2000

[7] SHI Guo-hong; ZHANG Hua; Simulation of human-oriented production systems based
on cooperration[J]; Machinery Design & Manufacture,2005 (1): 88~90.

[8] JIA Guo-zhu; Optimized Method of Petri Net Modeling and Simulation for Production
Systems[J];Journal of System Simulation , 2006, 18(2): 559~562.

[9] Zhang Yong-yang, Chen You-ling, Qin Cheng-hai, et al. Research on Production Process
Model Simulation in Manufacturing Enterprise Based on Petri Nets[C]// Xia
Guoping. Proceedings of the 38th International Conference on Computers and
Industrial Engineering. Beijing: Publishing House of Electronics Industry, 2008:
1798-1802.

[10] Jiang Zhi-bin. Petri nets and its applications in manufacturing system modeling and
control [M]. BeiJing: Mechanical industry press, 2004: 138-157.

[11] Wu Zhe-hui. Petri net introductory theory[M]. BeiJing: Mechanical industry press, 2004:
138-157.

[12] WANG Liya, CHEN Youling, MA Hanwu, et al. Production planning and control[M].
Beijing: Tsinghua University Press, 2007:135-139(in Chinese).

[13] Chen You-ling, ZHANG Yong-yang, QIN Cheng-hai, et al. Production process object
model based on Petri nets[J]. Computer Integrated Manufacuring Systems, 2009,
15(6):1075-1080(in Chinese).

[14] Liu C M, Wu F C. Using Petri nets to solve FMS problems[J]. International Journal
Computer Integrated Manufacturing, 1993, 6 (3):175-185.

2

Synthesis of Coloured Petri Nets from Natural-
like Language Descriptions

Enrique Arjona1, Graciela Bueno1 and Ernesto López-Mellado2
1Colegio de Postgraduados Campus Montecillo

 2CINVESTAV-IPN Unidad Guadalajara
México

1. Introduction
Coloured Petri nets (CPN) (Jensen, 1981) have been widely used for the modelling of tasks
in flexible manufacturing systems at different levels of functioning (Aized et al., 2007; Da
Silva et al., 2008; Diaz, 2009). Since their conception, there have been several attempts to take
advantage of the formalism of CPN to adapt them as a universal, discrete-event modelling
language by extending their original definition (Jensen, 1991; Yeung et al., 1999; MengChu,
2009). Despite these attempts, however, complex and large-scale models are very hard to
build using CPN or their extensions.
In order to ease the modelling of complex systems using Petri nets, some synthesis methods
have been proposed, both for ordinary Petri nets (Der Jeng & Di Cesare, 1990; Zhou et al.,
1992; He et al., 2000; Badouel & Darondeau, 2004; Zhi-Jun et al., 2008; etc.) and for CPN
(Micovsky et al., 1990; Baldassari & Bruno, 1991; Ezpeleta, 1993; Shang et al., 2004; Khadka,
2007; etc.). These methods can be classified into two groups.
The first group (Der Jeng & Di Cesare, 1990; Zhou et al., 1992; Ezpeleta, 1993; He et al., 2000;
Badouel & Darondeau, 2004; Khadka, 2007) includes those methods that preserve the formal
nature of Petri nets. In order to achieve this, the methods impose restrictions on the type of
situations that can be modelled and do not include the indiscriminate use of shared
resources and complex ordering and selecting criteria (AND's, OR's, NOT's, and their
combinations). Therefore, the range of applicability of the methods is very limited. Der Jeng
& Di Cesare (1990) review some representative methods, all of them are of low level and do
not allow the modelling of shared resources or the modelling of ordering and selecting
criteria. Zhou et al. (1992) present a method that allows the modelling of some particular
types of shared resources but does not allow the modelling of ordering and selecting
criteria. Ezpeleta (1993) includes a method for the synthesis of models expressed by a
restricted class of CPN called simple sequential processes; in this method, ordering and
selecting criteria are limited to the use of FIFO policies. The other methods included in this
group use an interface to facilitate the modeling of the systems and a fixed catalogue of
subnets for the synthesis of the corresponding Petri net; in none of these methods is allowed
the modelling of ordering and selecting criteria. He et al. (2000) define manufacturing
processes in an interface called IDEF3 (Integrated Definition 3) and transform the model
obtained to a Petri net using a sequential cluster identification algorithm. Badouel &
Darondeau (2004) establish relations that the system to model has with a predefined set of

 Advances in Petri Net Theory and Applications

22

paths and use a bijection to construct a Petri net of the system. Khadka (2007) uses a
sequence chart to represent the system and transforms the chart to a CPN using a tool called
LSCTOCPN (Live Sequence Charts to CPN).
The second group (Micovsky et al., 1990; Baldassari & Bruno, 1991; Shang et al., 2004; Zhi-
Jun et al., 2008) comprises those methods that do not preserve the nature of Petri nets. They
use Petri net extensions that include facilities of procedural nature that allow great flexibility
with respect to the situations that can be modelled, but the models obtained cannot be
formally analyzed because these models are hybrids composed of subnets and/or computer
procedures. Micovsky et al. (1990) propose a method that uses modified CPN that are
interpreted using a proprietary language called DOOR that is implemented in a TPL
(typeless procedural language); the programs obtained are used as input of a simulator.
Baldassari & Bruno (1991) present a method that obtains computer programs to the
situations that can be modelled, but the models obtained cannot be formally analyzed
because these models are hybrids composed of modified CPN subnets called PROT nets and
computer object-oriented concepts. Shang et al. (2004) synthesize system behavioural
specifications into a mixture of labeled Petri nets and CPN. Finally, Zhi-Jun et al. (2008)
present a method to combine existing web service models and synthesize them into a
mixture of control flow nets and Petri nets.
This chapter presents a method of synthesis of CPN for the formal specification of simple
and complex tasks in flexible manufacturing systems. The method differs significantly from
other published methods in that it preserves the formalism of CPN without imposing
restrictions on the system modelled, and therefore it allows the modelling of shared
resources and complex ordering and selecting criteria. The proposed method allows one to
systematically obtain CPN models from declarative descriptions of a very high level of
abstraction. These descriptions are activity models (ABAM) expressed in a natural-like
language. The language is not extensive and it is easy to master. In the language, the
stochastic occurrence of many events is implicitly embedded in exogenous and endogenous
variable conditions, and material and resource flows can be easily modelled using a single
flow statement. ABAM are built using the activity-based approach, a non formal modelling
tool for discrete event systems, which has proven to be valuable for the modelling of
complex systems and also to be user friendly, to such an extent that some event- and
process-based simulation languages have input interfaces that use this approach.
The CPN generated can be structurally validated, analyzed, and used for control or
simulation.
The remainder of the chapter is divided in 6 sections and an appendix. Section 2 is a brief
account of similarities and differences between ABAM and CPN. Section 3 presents basic
support modules for the CPN synthesis and the mathematical proofs of their validity.
Section 4 discusses the main features of the natural-like language. Section 5 gives an outline
of the proposed method to build CPN. Section 6 illustrates the synthesis method through an
example of an automotive workshop, its complete specification in the natural-like language
and the CPN synthesized. Section 7 discusses some conclusions. Finally, an appendix
includes the formal grammar of the language.

2. ABAM and CPN
Formally, both ABAM and CPN can be defined as directed bipartite graphs (Jensen, 1981;
Kreutzer, 1986) that include two kinds of nodes (ABAM have activities and waiting lines,

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

23

CPN have places and transitions), sets of objects associated to those nodes (admissible
entities in the case of ABAM, colours in the case CPN), input and output functions, and time
functions (these are included only in temporized models). Pictorially, nodes are represented
with circles and rectangles and functions as directed arcs that have associated symbolic
expressions (see figs. 1 and 4).
At first glance it may appear that by associating waiting lines to places and activities to
transitions ABAM and CPN are equivalent, nevertheless there are fundamental differences
between them. (1) The expressive power (level of abstraction) of CPN is lower than that of
ABAM because the former does not allow all kinds of input and output functions. (2)
Transitions in CPN may represent events or activities, depending on the interpretation of
the model. (3) In CPN there is no explicit association of objects to colours. (4) When the CPN
definition includes time, temporization can be carried out indistinctly in the places or in the
transitions. (5) Input and output functions in CPN are always expressed in mathematical
and not in declarative form (despite the fact that functions in a CPN can be temporarily
stated in declarative form, they must be able to be expressed as linear functions).

3. Modules for CPN synthesis
As was stated before, CPN definition does not allow for direct specification of all kinds of
input and output functions. To facilitate the building of CPN, for systems where complex
situations arise, a bottom-up synthesis process is proposed. CPN models are built using a set
of CPN predefined modules, each one of them representing a particular situation.
Predefined modules can be embedded between them to represent two or more particular
situations simultaneously.
To determine a partition of the situations that can arise when modelling discrete event
systems with CPN, and thus define the necessary modules for the synthesis, we performed
an analysis of the models that can be obtained using the activity-based approach. This does
not impose any restrictions because if on the one hand we cannot assume that in general
ABAM are CPN, the reverse is true. Complex situations in CPN arise when we try to
associate ordering criteria to places and individual or multiple selecting criteria to input-
output functions of transitions (for example, when we want to include in a CPN an input
function that has priorities in the selection of colours, and the number of these is not fixed
but variable).
In total, 13 CPN modules were defined for the synthesis process, and their validity was
proved using induction. Two of the simplest modules are the CPN that correspond to a
FIFO and a LIFO waiting lines. Their pictorial representations are given in figs. 1 and 2.
Figure 1 depicts a CPN module that simulates a FIFO ordering of entities in a place P that
has a capacity of n. Transitions TIN and TOUT are used to store/remove entities in/from
the place. Transition TMOVE is used to move entities in the place. The colour sets used in
the module are:

 E = { <e,i> ; i=1,...,m }
 S = { <s,j> ; j=1,...,n }
 ES = E×S

Colour set E represents the entity types that can be admitted in the place, colour set S
represents numbered spaces in the place, and colour set ES represents entities stored in
numbered spaces. The colour sets associated to the place and the transitions are:

 Advances in Petri Net Theory and Applications

22

paths and use a bijection to construct a Petri net of the system. Khadka (2007) uses a
sequence chart to represent the system and transforms the chart to a CPN using a tool called
LSCTOCPN (Live Sequence Charts to CPN).
The second group (Micovsky et al., 1990; Baldassari & Bruno, 1991; Shang et al., 2004; Zhi-
Jun et al., 2008) comprises those methods that do not preserve the nature of Petri nets. They
use Petri net extensions that include facilities of procedural nature that allow great flexibility
with respect to the situations that can be modelled, but the models obtained cannot be
formally analyzed because these models are hybrids composed of subnets and/or computer
procedures. Micovsky et al. (1990) propose a method that uses modified CPN that are
interpreted using a proprietary language called DOOR that is implemented in a TPL
(typeless procedural language); the programs obtained are used as input of a simulator.
Baldassari & Bruno (1991) present a method that obtains computer programs to the
situations that can be modelled, but the models obtained cannot be formally analyzed
because these models are hybrids composed of modified CPN subnets called PROT nets and
computer object-oriented concepts. Shang et al. (2004) synthesize system behavioural
specifications into a mixture of labeled Petri nets and CPN. Finally, Zhi-Jun et al. (2008)
present a method to combine existing web service models and synthesize them into a
mixture of control flow nets and Petri nets.
This chapter presents a method of synthesis of CPN for the formal specification of simple
and complex tasks in flexible manufacturing systems. The method differs significantly from
other published methods in that it preserves the formalism of CPN without imposing
restrictions on the system modelled, and therefore it allows the modelling of shared
resources and complex ordering and selecting criteria. The proposed method allows one to
systematically obtain CPN models from declarative descriptions of a very high level of
abstraction. These descriptions are activity models (ABAM) expressed in a natural-like
language. The language is not extensive and it is easy to master. In the language, the
stochastic occurrence of many events is implicitly embedded in exogenous and endogenous
variable conditions, and material and resource flows can be easily modelled using a single
flow statement. ABAM are built using the activity-based approach, a non formal modelling
tool for discrete event systems, which has proven to be valuable for the modelling of
complex systems and also to be user friendly, to such an extent that some event- and
process-based simulation languages have input interfaces that use this approach.
The CPN generated can be structurally validated, analyzed, and used for control or
simulation.
The remainder of the chapter is divided in 6 sections and an appendix. Section 2 is a brief
account of similarities and differences between ABAM and CPN. Section 3 presents basic
support modules for the CPN synthesis and the mathematical proofs of their validity.
Section 4 discusses the main features of the natural-like language. Section 5 gives an outline
of the proposed method to build CPN. Section 6 illustrates the synthesis method through an
example of an automotive workshop, its complete specification in the natural-like language
and the CPN synthesized. Section 7 discusses some conclusions. Finally, an appendix
includes the formal grammar of the language.

2. ABAM and CPN
Formally, both ABAM and CPN can be defined as directed bipartite graphs (Jensen, 1981;
Kreutzer, 1986) that include two kinds of nodes (ABAM have activities and waiting lines,

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

23

CPN have places and transitions), sets of objects associated to those nodes (admissible
entities in the case of ABAM, colours in the case CPN), input and output functions, and time
functions (these are included only in temporized models). Pictorially, nodes are represented
with circles and rectangles and functions as directed arcs that have associated symbolic
expressions (see figs. 1 and 4).
At first glance it may appear that by associating waiting lines to places and activities to
transitions ABAM and CPN are equivalent, nevertheless there are fundamental differences
between them. (1) The expressive power (level of abstraction) of CPN is lower than that of
ABAM because the former does not allow all kinds of input and output functions. (2)
Transitions in CPN may represent events or activities, depending on the interpretation of
the model. (3) In CPN there is no explicit association of objects to colours. (4) When the CPN
definition includes time, temporization can be carried out indistinctly in the places or in the
transitions. (5) Input and output functions in CPN are always expressed in mathematical
and not in declarative form (despite the fact that functions in a CPN can be temporarily
stated in declarative form, they must be able to be expressed as linear functions).

3. Modules for CPN synthesis
As was stated before, CPN definition does not allow for direct specification of all kinds of
input and output functions. To facilitate the building of CPN, for systems where complex
situations arise, a bottom-up synthesis process is proposed. CPN models are built using a set
of CPN predefined modules, each one of them representing a particular situation.
Predefined modules can be embedded between them to represent two or more particular
situations simultaneously.
To determine a partition of the situations that can arise when modelling discrete event
systems with CPN, and thus define the necessary modules for the synthesis, we performed
an analysis of the models that can be obtained using the activity-based approach. This does
not impose any restrictions because if on the one hand we cannot assume that in general
ABAM are CPN, the reverse is true. Complex situations in CPN arise when we try to
associate ordering criteria to places and individual or multiple selecting criteria to input-
output functions of transitions (for example, when we want to include in a CPN an input
function that has priorities in the selection of colours, and the number of these is not fixed
but variable).
In total, 13 CPN modules were defined for the synthesis process, and their validity was
proved using induction. Two of the simplest modules are the CPN that correspond to a
FIFO and a LIFO waiting lines. Their pictorial representations are given in figs. 1 and 2.
Figure 1 depicts a CPN module that simulates a FIFO ordering of entities in a place P that
has a capacity of n. Transitions TIN and TOUT are used to store/remove entities in/from
the place. Transition TMOVE is used to move entities in the place. The colour sets used in
the module are:

 E = { <e,i> ; i=1,...,m }
 S = { <s,j> ; j=1,...,n }
 ES = E×S

Colour set E represents the entity types that can be admitted in the place, colour set S
represents numbered spaces in the place, and colour set ES represents entities stored in
numbered spaces. The colour sets associated to the place and the transitions are:

 Advances in Petri Net Theory and Applications

24

 C(P) = ES ∪ S
 C(TIN) = C(TOUT) = E
 C(TMOVE) = ES - { <<e,i>,<s,1>> ; i=1,...,m }

Fig. 1. A CPN module for FIFO ordering of entities in a place

The input/output functions of the transitions are given in Figure 1. Place P must be
initialized with a set of n tokens (colour instances) taken from S and ES. All the elements of S
that appear in these tokens must be different. That is, all the spaces of the place, occupied or
unoccupied, must be included in the initialization. At any moment, the cardinality of the set
of tokens in place P is equal to the maximum length of the waiting line.
The module execution is as follows: transition TIN stores an entity in the last position of the
place (space n). Transition TMOVE moves an entity from its actual position to the previous
one whenever possible. Transition TOUT removes the entity stored in the first position of
the place.
A proof of the proper execution of the module using mathematical induction is the following:
Assume that the place contains k (k<n) ordered entities according to a FIFO criterion, and that
an entity arrives and is not properly ordered. This means that the entity was moved by
transition TMOVE from the position n to a position p such that p>k+1 or p<=k. In the first
case, transition TMOVE ceased firing in spite that the position p-1 was empty (by the
induction hypothesis only the first k positions were occupied and p-1>k). In the second case,
transition TMOVE moved the arriving entity to an occupied position (by the induction
hypothesis first k positions were occupied and p<=k). Both cases lead to contradictions
because transition TMOVE moves an entity if, and only if, the previous position is empty.
Figure 2 depicts a CPN module that simulates a LIFO ordering of entities in a place P that
has a capacity of n. Transitions TIN and TOUT are used to store/remove entities in/from
the place. Transition TMOVE is used to move entities in the place. The colour sets used in
the module are:

 E = { <e,i> ; i=1,...,m }
 S = { <s,j> ; j=1,...,n }
 DS= { <s,n+1> }
 ES = E×S

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

25

Fig. 2. A CPN module for LIFO ordering of entities in a place

Colour set E represents the entity types that can be admitted in the place, colour set S
represents numbered spaces in the place, and colour set ES represents entities stored in
numbered spaces. Colour set DS represents a dummy extra space used by transition TOUT
when the place is full. The colour sets associated to the place and the transitions are:

 C(P) = ES ∪ S ∪ DS
 C(TIN) = C(TOUT) = E
 C(TMOVE) = ES - { <<e,i>,<s,1>> ; i=1,...,m }

The input/output functions of the transitions are given in Figure 2. Place P must be
initialized with a set of n+1 tokens. One token is taken from DS. The other n tokens are
taken from S and ES. All the elements of S that appear in these n tokens must be different.
That is, all the spaces of the place, including the dummy space, must be included in the
initialization. At any moment, the cardinality of the set of tokens in place P is equal to the
maximum length of the waiting line plus one.
The module execution is as follows: Transition TIN stores an entity in the last position of the
place (space n). Transition TMOVE moves an entity from its actual position to the previous
one whenever possible. Transition TOUT takes the entity stored in the last non-empty
position of the place. This entity is easily recognized because the position next to it is always
empty, even when the place is full. In this case, the empty position is the dummy space.
Note that priority of transition TMOVE must be higher than the priority of transition TOUT.
The proof of the proper execution of the module is similar to the proof given for the FIFO
module.
The other modules deal with more complex situations, namely ascendant/descendent
ordering criteria with respect to a given attribute, extraction of m items, contained from
position i, of a n-position waiting line (0 <= i <= n — m; m <= n; m predefined or variable),
and accessing of a specific position of a FIFO/LIFO waiting line. In (Arjona & Bueno, 2007)
are included two of the CPN modules for the modelling of complex selecting criteria (the
selection of a constant and a variable number of entities from a set of places), mathematical
proofs of their validity, and an example of their application to a real life simulation model
of a sugarcane plantation.

 Advances in Petri Net Theory and Applications

24

 C(P) = ES ∪ S
 C(TIN) = C(TOUT) = E
 C(TMOVE) = ES - { <<e,i>,<s,1>> ; i=1,...,m }

Fig. 1. A CPN module for FIFO ordering of entities in a place

The input/output functions of the transitions are given in Figure 1. Place P must be
initialized with a set of n tokens (colour instances) taken from S and ES. All the elements of S
that appear in these tokens must be different. That is, all the spaces of the place, occupied or
unoccupied, must be included in the initialization. At any moment, the cardinality of the set
of tokens in place P is equal to the maximum length of the waiting line.
The module execution is as follows: transition TIN stores an entity in the last position of the
place (space n). Transition TMOVE moves an entity from its actual position to the previous
one whenever possible. Transition TOUT removes the entity stored in the first position of
the place.
A proof of the proper execution of the module using mathematical induction is the following:
Assume that the place contains k (k<n) ordered entities according to a FIFO criterion, and that
an entity arrives and is not properly ordered. This means that the entity was moved by
transition TMOVE from the position n to a position p such that p>k+1 or p<=k. In the first
case, transition TMOVE ceased firing in spite that the position p-1 was empty (by the
induction hypothesis only the first k positions were occupied and p-1>k). In the second case,
transition TMOVE moved the arriving entity to an occupied position (by the induction
hypothesis first k positions were occupied and p<=k). Both cases lead to contradictions
because transition TMOVE moves an entity if, and only if, the previous position is empty.
Figure 2 depicts a CPN module that simulates a LIFO ordering of entities in a place P that
has a capacity of n. Transitions TIN and TOUT are used to store/remove entities in/from
the place. Transition TMOVE is used to move entities in the place. The colour sets used in
the module are:

 E = { <e,i> ; i=1,...,m }
 S = { <s,j> ; j=1,...,n }
 DS= { <s,n+1> }
 ES = E×S

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

25

Fig. 2. A CPN module for LIFO ordering of entities in a place

Colour set E represents the entity types that can be admitted in the place, colour set S
represents numbered spaces in the place, and colour set ES represents entities stored in
numbered spaces. Colour set DS represents a dummy extra space used by transition TOUT
when the place is full. The colour sets associated to the place and the transitions are:

 C(P) = ES ∪ S ∪ DS
 C(TIN) = C(TOUT) = E
 C(TMOVE) = ES - { <<e,i>,<s,1>> ; i=1,...,m }

The input/output functions of the transitions are given in Figure 2. Place P must be
initialized with a set of n+1 tokens. One token is taken from DS. The other n tokens are
taken from S and ES. All the elements of S that appear in these n tokens must be different.
That is, all the spaces of the place, including the dummy space, must be included in the
initialization. At any moment, the cardinality of the set of tokens in place P is equal to the
maximum length of the waiting line plus one.
The module execution is as follows: Transition TIN stores an entity in the last position of the
place (space n). Transition TMOVE moves an entity from its actual position to the previous
one whenever possible. Transition TOUT takes the entity stored in the last non-empty
position of the place. This entity is easily recognized because the position next to it is always
empty, even when the place is full. In this case, the empty position is the dummy space.
Note that priority of transition TMOVE must be higher than the priority of transition TOUT.
The proof of the proper execution of the module is similar to the proof given for the FIFO
module.
The other modules deal with more complex situations, namely ascendant/descendent
ordering criteria with respect to a given attribute, extraction of m items, contained from
position i, of a n-position waiting line (0 <= i <= n — m; m <= n; m predefined or variable),
and accessing of a specific position of a FIFO/LIFO waiting line. In (Arjona & Bueno, 2007)
are included two of the CPN modules for the modelling of complex selecting criteria (the
selection of a constant and a variable number of entities from a set of places), mathematical
proofs of their validity, and an example of their application to a real life simulation model
of a sugarcane plantation.

 Advances in Petri Net Theory and Applications

26

4. Specification of models in a natural-like language
The specification of a model in the natural-like language consists of definition of entities,
waiting lines, variables, and activities. Definition of entities and variables can include
attributes, and definition of waiting lines can include ordering criteria. Activity definitions
consist of the specification of starting and ending conditions, flows, and attribute
modifications. Besides declarations, the language only uses two types of statements: the first
one is for flow specifications and the second one for explicit state change specifications
when events occur. These statements can model all individual and multiple flows
mentioned in the preceding section.
Although the purpose of the natural-like language developed was to model flexible
manufacturing systems, as a matter of fact, it is domain independent and was designed
taking into consideration all kinds of possible material and resource flows in discrete event
systems. This proved to be very useful for modelling very complex situations in real
systems. In the appendix it is included the complete formal grammar of the language with
an explanation of the symbols used to define it. In section 6 it is included an example of the
language usage.

5. CPN synthesis from models specified in a natural-like language
The CPN modules and the natural-like language mentioned above have been utilized as the
basis of a method for CPN synthesis. In this method, instead of using a bottom-up approach
as before, a top-down technique is utilized. The CPN are synthesized by successive
refinements of analysis of ABAM specified in the language.
The CPN synthesis process comprises six steps. The first five steps do not take into
consideration complex situations in the input model and determine successively the place
set, transition set, place set, transition colour set, and input and output functions. The sixth
step performs refinements to the CPN already obtained in order to take into account
complex situations.
Step 1. Determination of the Place Set. For the determination of the place set, entities and

their attribute values in the input model are analyzed. There will be as many places
as different states of the entities are actually used in the activities of the model. This
avoids, to the extent possible, combinatorial explosion of the number of places and
comprises a reduction process that unifies states, makes implicit some information
(information that is not fundamental for the real-time execution of the model), and
eliminates superfluous information (entities and attribute values that were defined
but never used in the activities).
In the reduction process, entities and attributes are classified internally according to
their use in the input model. Entities can be individual or multiple, depending on
whether they represent a single resource of the system or a set of resources that
have some logical or physical association. Attributes can be of constant or variable
value. Attributes of constant value distinguish only members of the same family of
resources and never represent the state of an entity. Attributes of variable value can
be used to indicate contents, position, or physical characteristics. Attributes that
indicate contents, independently of their values, can represent only two states of the
entity to which they belong. Other attributes of variable value can represent as
many states as values of the former are used in the activities. The number of places

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

27

corresponding to an entity will be the product of the number of states that its
attributes represent. When an entity has no attributes, it will be modelled with one
place that represents its availability.

Step 2. Determination of the Transition Set. Transitions in a CPN correspond to state changes,
and therefore there will be one transition in the transition set for each possible
configuration of the system that allows the start of an activity. The number of input
places of the transition will be the number of concurrent entities that the activity
requires to start. The number of output places of the transition will be the number
of entities that go out from the activity when it ends.

Step 3. Determination of the Place Colour Set. Because places represent a state of an entity, the
colour set associated to a place will take into consideration only attributes of constant
value, or of variable value that indicate contents and whose values are not uniquely
represented by the state of the entity. The colour set consists of n-tuples with as many
components as attributes of these types the entity has defined.

Step 4. Determination of the Transition Colour Set. The number of ways in which a transition
can be fired depends on the different colours admissible in its input places.
Therefore, the colour set associated to a transition will be the set of the n first
natural numbers where n is the maximum of the cardinalities of the colour sets of
its input places.

Step 5. Determination of the Input and Output Functions. Input (output) functions of a
transition are the sum of individual functions associated to its input (output) places.
The individual function of a place is the composition of two functions: the first one
maps the set of colours of the place with the set of colours of the transition, and the
second one determines which colours of the place are taken for each colour of the
transition.

Step 6. Refinements to Include Complex Situations. In the last step of the synthesis process,
complex situations in the input model are analyzed and the CPN already obtained
is refined by introducing, one by one, the necessary modules. These refinements do
not change the basic properties of the net, and its analysis can be done before this
step is performed.

6. An example of CPN synthesis
Next, an example of the application of the synthesis process is included; it is taken from
(Colom et al., 1990), where a CPN model is presented. The system considered is a puttying
car body workshop designed and operated by a European automobile firm, whose layout is
depicted in fig. 3.
The workshop has 12 working posts divided into two groups of 6. There is a conveying
system that consists of roller tables where each table can contain one car body. Roller tables
RT only convey. Roller tables TT in front of stations, in addition to conveying, rotate for
loading and unloading. Roller tables ST, in addition to conveying, can also slide and allow
distribution between groups of tables. A working post consists of three tables, one for
loading (LT), one for processing (puttying) (PT), and one for unloading (UT). Loading and
unloading tables in each workstation are integrated in a sliding bench that changes position
for loading and unloading. At any moment a workstation can contain at most two car
bodies. Car bodies in the conveying system have assigned the workstation number where
they will be processed.

 Advances in Petri Net Theory and Applications

26

4. Specification of models in a natural-like language
The specification of a model in the natural-like language consists of definition of entities,
waiting lines, variables, and activities. Definition of entities and variables can include
attributes, and definition of waiting lines can include ordering criteria. Activity definitions
consist of the specification of starting and ending conditions, flows, and attribute
modifications. Besides declarations, the language only uses two types of statements: the first
one is for flow specifications and the second one for explicit state change specifications
when events occur. These statements can model all individual and multiple flows
mentioned in the preceding section.
Although the purpose of the natural-like language developed was to model flexible
manufacturing systems, as a matter of fact, it is domain independent and was designed
taking into consideration all kinds of possible material and resource flows in discrete event
systems. This proved to be very useful for modelling very complex situations in real
systems. In the appendix it is included the complete formal grammar of the language with
an explanation of the symbols used to define it. In section 6 it is included an example of the
language usage.

5. CPN synthesis from models specified in a natural-like language
The CPN modules and the natural-like language mentioned above have been utilized as the
basis of a method for CPN synthesis. In this method, instead of using a bottom-up approach
as before, a top-down technique is utilized. The CPN are synthesized by successive
refinements of analysis of ABAM specified in the language.
The CPN synthesis process comprises six steps. The first five steps do not take into
consideration complex situations in the input model and determine successively the place
set, transition set, place set, transition colour set, and input and output functions. The sixth
step performs refinements to the CPN already obtained in order to take into account
complex situations.
Step 1. Determination of the Place Set. For the determination of the place set, entities and

their attribute values in the input model are analyzed. There will be as many places
as different states of the entities are actually used in the activities of the model. This
avoids, to the extent possible, combinatorial explosion of the number of places and
comprises a reduction process that unifies states, makes implicit some information
(information that is not fundamental for the real-time execution of the model), and
eliminates superfluous information (entities and attribute values that were defined
but never used in the activities).
In the reduction process, entities and attributes are classified internally according to
their use in the input model. Entities can be individual or multiple, depending on
whether they represent a single resource of the system or a set of resources that
have some logical or physical association. Attributes can be of constant or variable
value. Attributes of constant value distinguish only members of the same family of
resources and never represent the state of an entity. Attributes of variable value can
be used to indicate contents, position, or physical characteristics. Attributes that
indicate contents, independently of their values, can represent only two states of the
entity to which they belong. Other attributes of variable value can represent as
many states as values of the former are used in the activities. The number of places

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

27

corresponding to an entity will be the product of the number of states that its
attributes represent. When an entity has no attributes, it will be modelled with one
place that represents its availability.

Step 2. Determination of the Transition Set. Transitions in a CPN correspond to state changes,
and therefore there will be one transition in the transition set for each possible
configuration of the system that allows the start of an activity. The number of input
places of the transition will be the number of concurrent entities that the activity
requires to start. The number of output places of the transition will be the number
of entities that go out from the activity when it ends.

Step 3. Determination of the Place Colour Set. Because places represent a state of an entity, the
colour set associated to a place will take into consideration only attributes of constant
value, or of variable value that indicate contents and whose values are not uniquely
represented by the state of the entity. The colour set consists of n-tuples with as many
components as attributes of these types the entity has defined.

Step 4. Determination of the Transition Colour Set. The number of ways in which a transition
can be fired depends on the different colours admissible in its input places.
Therefore, the colour set associated to a transition will be the set of the n first
natural numbers where n is the maximum of the cardinalities of the colour sets of
its input places.

Step 5. Determination of the Input and Output Functions. Input (output) functions of a
transition are the sum of individual functions associated to its input (output) places.
The individual function of a place is the composition of two functions: the first one
maps the set of colours of the place with the set of colours of the transition, and the
second one determines which colours of the place are taken for each colour of the
transition.

Step 6. Refinements to Include Complex Situations. In the last step of the synthesis process,
complex situations in the input model are analyzed and the CPN already obtained
is refined by introducing, one by one, the necessary modules. These refinements do
not change the basic properties of the net, and its analysis can be done before this
step is performed.

6. An example of CPN synthesis
Next, an example of the application of the synthesis process is included; it is taken from
(Colom et al., 1990), where a CPN model is presented. The system considered is a puttying
car body workshop designed and operated by a European automobile firm, whose layout is
depicted in fig. 3.
The workshop has 12 working posts divided into two groups of 6. There is a conveying
system that consists of roller tables where each table can contain one car body. Roller tables
RT only convey. Roller tables TT in front of stations, in addition to conveying, rotate for
loading and unloading. Roller tables ST, in addition to conveying, can also slide and allow
distribution between groups of tables. A working post consists of three tables, one for
loading (LT), one for processing (puttying) (PT), and one for unloading (UT). Loading and
unloading tables in each workstation are integrated in a sliding bench that changes position
for loading and unloading. At any moment a workstation can contain at most two car
bodies. Car bodies in the conveying system have assigned the workstation number where
they will be processed.

 Advances in Petri Net Theory and Applications

28

Fig. 3. Workshop layout

In this example, we consider only the section in the dashed rectangle. In general, the model
will work as follows: car bodies arrive at the section on roller table number 1. Upon arrival,
a pass with a number that corresponds to the workstation where it will be processed is
assigned to the car body (in the complete model, passes are assigned elsewhere outside the
section). Car bodies are moved from one roller table to the next until they arrive at the
workstation to which they have been assigned. Upon arrival, they are transferred
successively to the loading, processing, and unloading tables of the workstation, and again
to the roller table in front of the workstation. After this, the car bodies will be moved from
one roller table to the next until they arrive at roller table number 6, from where they leave
the section.
An activity-based approach input model is depicted in fig. 4; it consists of three entities,
three waiting lines, and seven activities. Entities considered are: passes (PASS AV), with
one attribute that represents their number (its admissible values are integers from 1 to 6);
roller tables (RT) with two attributes, the first represents its number (its admissible values
are integers from 1 to 6) and the second the workstation number where the car body on the
roller table will be or was processed and that we will call body destination (its admissible
values are integers from -6 to 6, zero indicates that a roller table is free and a negative
number that the body has already been processed); and workstations (WS) with four
attributes, the first representing its number (its admissible values are integers from 1 to 6)
and the others the states of its loading, processing, and unloading tables (its admissible
values are integers 0 or 1). The bodies were not considered entities because the passes are
sufficient to represent them. Also, the numbers of the passes were not considered in the
attributes of the workstations because, as was stated above, pass numbers always coincide
with the number of the workstations where the bodies are processed.
The waiting lines correspond to the inactive states of the entities and are: available passes,
inactive roller tables, and workstation pool.
The activities are: body arrival (BA), body conveyance (BC), load from roller table (LFRT),
load from loading table (LFLT), unload from processing table (UFPT), unload from
unloading table (UFUT), and body leaving (BL). Following it is given the complete
description of the model in the natural-like language.

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

29

Fig. 4. Activity model of the workshop

MODEL NAME:
 AUTOMOTIVE_WORKSHOP.
ENTITIES:
 PASS WITH THE FOLLOWING ATTRIBUTES:
 NUMBER (ADMISSIBLE VALUES 1 TO 6).
 ROLLER_TABLE WITH THE FOLLOWING ATTRIBUTES:
 NUMBER (ADMISSIBLE VALUES 1 TO 6)
 BODY_DESTINATION (ADMISSIBLE VALUES -6 TO 6).
 WORKSTATION WITH THE FOLLOWING ATTRIBUTES:
 NUMBER (ADMISSIBLE VALUES 1 TO 6)
 STATE_OF_LOADING_TABLE (ADMISSIBLE VALUES 0 TO 1)
 STATE_OF_PROCESSING_TABLE (ADMISSIBLE VALUES 0 TO 1)
 STATE_OF_UNLOADING_TABLE (ADMISSIBLE VALUES 0 TO 1).
WAITING LINES:
 AVAILABLE_PASSES CONTAINS PASSES.
 INACTIVE_ROLLER_TABLES CONTAINS ROLLER TABLES.
 WORKSTATION_POOL CONTAINS WORKSTATIONS.
EXTERNAL VARIABLES:
 START_OF_BODY_CONVEYANCE.
 END_OF_BODY_CONVEYANCE.
 START_OF_LOAD_FROM_ROLLER_TABLE.
 END_OF_LOAD_FROM_ROLLER_TABLE.
 START_OF_LOAD_FROM_LOADING_TABLE.
 END_OF_LOAD_FROM_LOADING_TABLE
 START_OF_UNLOAD_FROM_PROCESSING_TABLE.
 END_OF_ UNLOAD_FROM_PROCESSING_TABLE.
 START_OF_UNLOAD_FROM_UNLOADING_TABLE.
 END_OF_UNLOAD_FROM_UNLOADING_TABLE.

 Advances in Petri Net Theory and Applications

28

Fig. 3. Workshop layout

In this example, we consider only the section in the dashed rectangle. In general, the model
will work as follows: car bodies arrive at the section on roller table number 1. Upon arrival,
a pass with a number that corresponds to the workstation where it will be processed is
assigned to the car body (in the complete model, passes are assigned elsewhere outside the
section). Car bodies are moved from one roller table to the next until they arrive at the
workstation to which they have been assigned. Upon arrival, they are transferred
successively to the loading, processing, and unloading tables of the workstation, and again
to the roller table in front of the workstation. After this, the car bodies will be moved from
one roller table to the next until they arrive at roller table number 6, from where they leave
the section.
An activity-based approach input model is depicted in fig. 4; it consists of three entities,
three waiting lines, and seven activities. Entities considered are: passes (PASS AV), with
one attribute that represents their number (its admissible values are integers from 1 to 6);
roller tables (RT) with two attributes, the first represents its number (its admissible values
are integers from 1 to 6) and the second the workstation number where the car body on the
roller table will be or was processed and that we will call body destination (its admissible
values are integers from -6 to 6, zero indicates that a roller table is free and a negative
number that the body has already been processed); and workstations (WS) with four
attributes, the first representing its number (its admissible values are integers from 1 to 6)
and the others the states of its loading, processing, and unloading tables (its admissible
values are integers 0 or 1). The bodies were not considered entities because the passes are
sufficient to represent them. Also, the numbers of the passes were not considered in the
attributes of the workstations because, as was stated above, pass numbers always coincide
with the number of the workstations where the bodies are processed.
The waiting lines correspond to the inactive states of the entities and are: available passes,
inactive roller tables, and workstation pool.
The activities are: body arrival (BA), body conveyance (BC), load from roller table (LFRT),
load from loading table (LFLT), unload from processing table (UFPT), unload from
unloading table (UFUT), and body leaving (BL). Following it is given the complete
description of the model in the natural-like language.

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

29

Fig. 4. Activity model of the workshop

MODEL NAME:
 AUTOMOTIVE_WORKSHOP.
ENTITIES:
 PASS WITH THE FOLLOWING ATTRIBUTES:
 NUMBER (ADMISSIBLE VALUES 1 TO 6).
 ROLLER_TABLE WITH THE FOLLOWING ATTRIBUTES:
 NUMBER (ADMISSIBLE VALUES 1 TO 6)
 BODY_DESTINATION (ADMISSIBLE VALUES -6 TO 6).
 WORKSTATION WITH THE FOLLOWING ATTRIBUTES:
 NUMBER (ADMISSIBLE VALUES 1 TO 6)
 STATE_OF_LOADING_TABLE (ADMISSIBLE VALUES 0 TO 1)
 STATE_OF_PROCESSING_TABLE (ADMISSIBLE VALUES 0 TO 1)
 STATE_OF_UNLOADING_TABLE (ADMISSIBLE VALUES 0 TO 1).
WAITING LINES:
 AVAILABLE_PASSES CONTAINS PASSES.
 INACTIVE_ROLLER_TABLES CONTAINS ROLLER TABLES.
 WORKSTATION_POOL CONTAINS WORKSTATIONS.
EXTERNAL VARIABLES:
 START_OF_BODY_CONVEYANCE.
 END_OF_BODY_CONVEYANCE.
 START_OF_LOAD_FROM_ROLLER_TABLE.
 END_OF_LOAD_FROM_ROLLER_TABLE.
 START_OF_LOAD_FROM_LOADING_TABLE.
 END_OF_LOAD_FROM_LOADING_TABLE
 START_OF_UNLOAD_FROM_PROCESSING_TABLE.
 END_OF_ UNLOAD_FROM_PROCESSING_TABLE.
 START_OF_UNLOAD_FROM_UNLOADING_TABLE.
 END_OF_UNLOAD_FROM_UNLOADING_TABLE.

 Advances in Petri Net Theory and Applications

30

 START_OF_BODY_LEAVING.
 END_OF_BODY_LEAVING.
ACTIVITY:
 BODY_ARRIVAL.
 ENTITY FLOWS:
 GET A PASS FROM AVAILABLE_PASSES.
 GET A ROLLER_TABLE WITH NUMBER=1 AND BODY_DESTINATION=0
 FROM INACTIVE_ROLLER_TABLES AND AT END OF ACTIVITY PUT BACK
 IN INACTIVE_ROLLER_TABLES.
 ATTRIBUTE MODIFICATIONS:
 BODY_DESTINATION OF ROLLER_TABLE := NUMBER OF PASS.
ACTIVITY:
 BODY_CONVEYANCE.
 ENDING_CONDITIONS:
 END_OF_BODY_CONVEYANCE=1.
 ENTITY FLOWS (1 OF THE FOLLOWING FLOWS):
 GET A ROLLER_TABLE WITH BODY_DESTINATION >=
 NUMBER OF ROLLER_TABLE FROM INACTIVE_ROLLER_TABLES AND
 AT END OF ACTIVITY PUT BACK IN INACTIVE_ROLLER_TABLES.
 GET A ROLLER_TABLE WITH BODY_DESTINATION < 0
 FROM INACTIVE_ROLLER_TABLES AND AT END OF ACTIVITY PUT BACK
 IN INACTIVE_ROLLER_TABLES.
 ENTITY FLOWS:
 GET A ROLLER_TABLE WITH NUMBER = NUMBER OF
 ROLLER_TABLE (#1) + 1 AND BODY_DESTINATION = 0
 FROM INACTIVE_ROLLER_TABLES AND AT END OF ACTIVITY
 PUT BACK IN INACTIVE_ROLLER_TABLES.
 ATTRIBUTE MODIFICATIONS:
 START_OF_BODY_CONVEYANCE := 1.
 BODY_DESTINATION OF ROLLER TABLE (#2) :=
 BODY_DESTINATION OF ROLLER TABLE (#1).
 BODY_DESTINATION OF ROLLER TABLE (#1) := 0.
ACTIVITY:
 LOAD_FROM_ROLLER_TABLE.
 ENDING_CONDITIONS:
 END_OF_LOAD_FROM_ROLLER_TABLE=1.
 ENTITY FLOWS (SELECTING BODY_DESTINATION OF ROLLER_TABLE IN
 INACTIVE_ROLLER_TABLES = NUMBER OF WORKSTATION IN
 WORKSTATION_POOL) :
 GET A ROLLER_TABLE FROM INACTIVE_ROLLER_TABLES AND
 AT END OF ACTIVITY PUT BACK IN INACTIVE_ROLLER_TABLES.
 GET A WORKSTATION WITH STATE_OF_LOADING_TABLE = 0 AND
 STATE_OF_LOADING_TABLE + STATE_OF_PROCESSING_TABLE +
 STATE_OF_UNLOADING_TABLE <= 1 FROM WORKSTATION_POOL AND AT
 END OF ACTIVITY PUT BACK IN WORKSTATION_POOL.
 ATTRIBUTE MODIFICATIONS:

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

31

 START_OF_LOAD_FROM_ROLLER_TABLE := 1.
 STATE_OF_LOADING_TABLE OF WORKSTATION := 1.
 BODY_DESTINATION OF ROLLER_TABLE := 0.
ACTIVITY:
 LOAD_FROM_LOADING_TABLE.
 ENDING_CONDITIONS:
 END_OF_LOAD_FROM_LOADING_TABLE=1.
 ENTITY FLOWS:
 GET A WORKSTATION WITH STATE_OF_PROCESSING_TABLE = 0
 AND STATE_OF_LOADING_TABLE = 1 FROM WORKSTATION_POOL
 AND AT END OF ACTIVITY PUT BACK IN WORKSTATION_POOL.
 ATTRIBUTE MODIFICATIONS:
 START_OF_LOAD_FROM_LOADING_TABLE := 1.
 STATE_OF_LOADING_TABLE OF WORKSTATION := 0.
 STATE_OF_PROCESSING_TABLE OF WORKSTATION := 1.
ACTIVITY:
 UNLOAD_FROM_PROCESSING_TABLE.
 ENDING_CONDITIONS:
 END_OF_UNLOAD_FROM_PROCESSING_TABLE=1.
 ENTITY FLOWS:
 GET A WORKSTATION WITH STATE_OF_PROCESSING_TABLE = 1
 AND STATE_OF_UNLOADING_TABLE = 0 FROM WORKSTATION_POOL
 AND AT END OF ACTIVITY PUT BACK IN WORKSTATION_POOL.
 ATTRIBUTE MODIFICATIONS:
 START_OF_UNLOAD_FROM_PROCESSING_TABLE := 1.
 STATE_OF_PROCESSING_TABLE OF WORKSTATION := 0.
 STATE_OF_UNLOADING_TABLE OF WORKSTATION := 1.
ACTIVITY:
 UNLOAD_FROM_UNLOADING_TABLE.
 ENDING_CONDITIONS:
 END_OF_UNLOAD_FROM_UNLOADING_TABLE=1.
 ENTITY FLOWS:
 GET A WORKSTATION WITH STATE_OF_UNLOADING_TABLE = 1
 FROM WORKSTATION_POOL AND AT END OF ACTIVITY
 PUT BACK IN WORKSTATION_POOL.
 GET A ROLLER_TABLE WITH NUMBER = NUMBER OF
 WORKSTATION AND BODY_DESTINATION = 0
 FROM INACTIVE_ROLLER_TABLES AND AT END OF ACTIVITY
 PUT BACK IN INACTIVE_ROLLER_TABLES.
 ATTRIBUTE MODIFICATIONS:
 START_OF_UNLOAD_FROM_UNLOADING_TABLE := 1.
 STATE_OF_UNLOADING_TABLE OF WORKSTATION := 0.
 BODY_DESTINATION OF ROLLER_TABLE := - NUMBER OF WORKSTATION.
ACTIVITY:
 BODY_LEAVING.
 ENDING_CONDITIONS:

 Advances in Petri Net Theory and Applications

30

 START_OF_BODY_LEAVING.
 END_OF_BODY_LEAVING.
ACTIVITY:
 BODY_ARRIVAL.
 ENTITY FLOWS:
 GET A PASS FROM AVAILABLE_PASSES.
 GET A ROLLER_TABLE WITH NUMBER=1 AND BODY_DESTINATION=0
 FROM INACTIVE_ROLLER_TABLES AND AT END OF ACTIVITY PUT BACK
 IN INACTIVE_ROLLER_TABLES.
 ATTRIBUTE MODIFICATIONS:
 BODY_DESTINATION OF ROLLER_TABLE := NUMBER OF PASS.
ACTIVITY:
 BODY_CONVEYANCE.
 ENDING_CONDITIONS:
 END_OF_BODY_CONVEYANCE=1.
 ENTITY FLOWS (1 OF THE FOLLOWING FLOWS):
 GET A ROLLER_TABLE WITH BODY_DESTINATION >=
 NUMBER OF ROLLER_TABLE FROM INACTIVE_ROLLER_TABLES AND
 AT END OF ACTIVITY PUT BACK IN INACTIVE_ROLLER_TABLES.
 GET A ROLLER_TABLE WITH BODY_DESTINATION < 0
 FROM INACTIVE_ROLLER_TABLES AND AT END OF ACTIVITY PUT BACK
 IN INACTIVE_ROLLER_TABLES.
 ENTITY FLOWS:
 GET A ROLLER_TABLE WITH NUMBER = NUMBER OF
 ROLLER_TABLE (#1) + 1 AND BODY_DESTINATION = 0
 FROM INACTIVE_ROLLER_TABLES AND AT END OF ACTIVITY
 PUT BACK IN INACTIVE_ROLLER_TABLES.
 ATTRIBUTE MODIFICATIONS:
 START_OF_BODY_CONVEYANCE := 1.
 BODY_DESTINATION OF ROLLER TABLE (#2) :=
 BODY_DESTINATION OF ROLLER TABLE (#1).
 BODY_DESTINATION OF ROLLER TABLE (#1) := 0.
ACTIVITY:
 LOAD_FROM_ROLLER_TABLE.
 ENDING_CONDITIONS:
 END_OF_LOAD_FROM_ROLLER_TABLE=1.
 ENTITY FLOWS (SELECTING BODY_DESTINATION OF ROLLER_TABLE IN
 INACTIVE_ROLLER_TABLES = NUMBER OF WORKSTATION IN
 WORKSTATION_POOL) :
 GET A ROLLER_TABLE FROM INACTIVE_ROLLER_TABLES AND
 AT END OF ACTIVITY PUT BACK IN INACTIVE_ROLLER_TABLES.
 GET A WORKSTATION WITH STATE_OF_LOADING_TABLE = 0 AND
 STATE_OF_LOADING_TABLE + STATE_OF_PROCESSING_TABLE +
 STATE_OF_UNLOADING_TABLE <= 1 FROM WORKSTATION_POOL AND AT
 END OF ACTIVITY PUT BACK IN WORKSTATION_POOL.
 ATTRIBUTE MODIFICATIONS:

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

31

 START_OF_LOAD_FROM_ROLLER_TABLE := 1.
 STATE_OF_LOADING_TABLE OF WORKSTATION := 1.
 BODY_DESTINATION OF ROLLER_TABLE := 0.
ACTIVITY:
 LOAD_FROM_LOADING_TABLE.
 ENDING_CONDITIONS:
 END_OF_LOAD_FROM_LOADING_TABLE=1.
 ENTITY FLOWS:
 GET A WORKSTATION WITH STATE_OF_PROCESSING_TABLE = 0
 AND STATE_OF_LOADING_TABLE = 1 FROM WORKSTATION_POOL
 AND AT END OF ACTIVITY PUT BACK IN WORKSTATION_POOL.
 ATTRIBUTE MODIFICATIONS:
 START_OF_LOAD_FROM_LOADING_TABLE := 1.
 STATE_OF_LOADING_TABLE OF WORKSTATION := 0.
 STATE_OF_PROCESSING_TABLE OF WORKSTATION := 1.
ACTIVITY:
 UNLOAD_FROM_PROCESSING_TABLE.
 ENDING_CONDITIONS:
 END_OF_UNLOAD_FROM_PROCESSING_TABLE=1.
 ENTITY FLOWS:
 GET A WORKSTATION WITH STATE_OF_PROCESSING_TABLE = 1
 AND STATE_OF_UNLOADING_TABLE = 0 FROM WORKSTATION_POOL
 AND AT END OF ACTIVITY PUT BACK IN WORKSTATION_POOL.
 ATTRIBUTE MODIFICATIONS:
 START_OF_UNLOAD_FROM_PROCESSING_TABLE := 1.
 STATE_OF_PROCESSING_TABLE OF WORKSTATION := 0.
 STATE_OF_UNLOADING_TABLE OF WORKSTATION := 1.
ACTIVITY:
 UNLOAD_FROM_UNLOADING_TABLE.
 ENDING_CONDITIONS:
 END_OF_UNLOAD_FROM_UNLOADING_TABLE=1.
 ENTITY FLOWS:
 GET A WORKSTATION WITH STATE_OF_UNLOADING_TABLE = 1
 FROM WORKSTATION_POOL AND AT END OF ACTIVITY
 PUT BACK IN WORKSTATION_POOL.
 GET A ROLLER_TABLE WITH NUMBER = NUMBER OF
 WORKSTATION AND BODY_DESTINATION = 0
 FROM INACTIVE_ROLLER_TABLES AND AT END OF ACTIVITY
 PUT BACK IN INACTIVE_ROLLER_TABLES.
 ATTRIBUTE MODIFICATIONS:
 START_OF_UNLOAD_FROM_UNLOADING_TABLE := 1.
 STATE_OF_UNLOADING_TABLE OF WORKSTATION := 0.
 BODY_DESTINATION OF ROLLER_TABLE := - NUMBER OF WORKSTATION.
ACTIVITY:
 BODY_LEAVING.
 ENDING_CONDITIONS:

 Advances in Petri Net Theory and Applications

32

 END_OF_BODY_LEAVING=1.
ENTITY FLOWS:
 GET A ROLLER_TABLE WITH NUMBER=6 AND BODY_DESTINATION < 0
 FROM INACTIVE_ROLLER_TABLES AND AT END OF ACTIVITY PUT BACK
 IN INACTIVE_ROLLER_TABLES.
 AT END OF ACTIVITY PUT A PASS IN AVAILABLE_PASSES.
ATTRIBUTE MODIFICATIONS:
 END_OF_BODY_LEAVING :=1.
 NUMBER OF PASS := - BODY_DESTINATION OF ROLLER_TABLE.
 BODY_DESTINATION OF ROLLER_TABLE := 0.
END OF MODEL.

Figs. 5 to 8 depict the synthesis process of a CPN corresponding to the above model.
The result of step 1 is shown in fig. 5. The place set includes only one place for the passes
because its only attribute is of constant value.

Fig. 5. Place set generated

Only two places were included for the roller tables because, in spite of the fact that the
attribute corresponding to body destination can take 13 values, the roller table can only be in
two states: free (RT S1) or occupied (RT S2). Workstations have seven different states (WS S1
to WS S7).
Fig. 6 depicts the transition sets corresponding to each one of the activities (step 2). There is
one transition for each valid configuration of the system that allows the start of an activity.
For example, activity LFRT is represented by the transitions LFRT1, LFRT2 and LFRT3.

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

33

Fig. 6. Transition set generated by all activities

Fig. 7 summarizes the place and the transition colour sets (steps 3 and 4). First 10 colour sets
correspond to places. All the places except one, the one corresponding to a roller table in an
occupied state, have simple colours assigned because the values of the entity-variable
attributes are uniquely determined by the states that the places represent. All the transitions
have simple colours except transition BC that can fire in 36 different ways.

Fig. 7. Associated colours sets to places and transitions

Fig. 8 depicts the input and output functions (step 5). Because many of the colour sets of the
transitions coincide with the colour sets of their input places, many of the functions are
identity functions. Identity functions are represented by dashed arcs.

 C(PASS AV)={<i>} i=1,…,6 C(BC)={<I,j>} i=1,…,6; j=1,…,6
 C(RT S1)={<i>} i=1,…,6 C(LFRT1)={<i>} i=1,…,6
 C(RT S2)={<i,j>} i=1,…,6; j=1,…,6 C(LFRT2)={<i>} i=1,…,6
 C(WS S1)={<i>} i=1,…,6 C(LFRT3)={<i>} i=1,…,6
 C(WS S2)={<i>} i=1,…,6 C(LFLT1)={<i>} i=1,…,6
 C(WS S3)={<i>} i=1,…,6 C(LFLT2)={<i>} i=1,…,6
 C(WS S4)={<i>} i=1,…,6 C(UFPT1)={<i>} i=1,…,6
 C(WS S5)={<i>} i=1,…,6 C(UFPT2)={<i>} i=1,…,6
 C(WS S6)={<i>} i=1,…,6 C(UFUT1)={<i>} i=1,…,6
 C(WS S7)={<i>} i=1,…,6 C(UFUT2)={<i>} i=1,…,6
 C(BA)={<i>} i=1,…,6 C(UFUT3)={<i>} i=1,…,6
 C(BL)={<i>} i=1,…,6

 Advances in Petri Net Theory and Applications

32

 END_OF_BODY_LEAVING=1.
ENTITY FLOWS:
 GET A ROLLER_TABLE WITH NUMBER=6 AND BODY_DESTINATION < 0
 FROM INACTIVE_ROLLER_TABLES AND AT END OF ACTIVITY PUT BACK
 IN INACTIVE_ROLLER_TABLES.
 AT END OF ACTIVITY PUT A PASS IN AVAILABLE_PASSES.
ATTRIBUTE MODIFICATIONS:
 END_OF_BODY_LEAVING :=1.
 NUMBER OF PASS := - BODY_DESTINATION OF ROLLER_TABLE.
 BODY_DESTINATION OF ROLLER_TABLE := 0.
END OF MODEL.

Figs. 5 to 8 depict the synthesis process of a CPN corresponding to the above model.
The result of step 1 is shown in fig. 5. The place set includes only one place for the passes
because its only attribute is of constant value.

Fig. 5. Place set generated

Only two places were included for the roller tables because, in spite of the fact that the
attribute corresponding to body destination can take 13 values, the roller table can only be in
two states: free (RT S1) or occupied (RT S2). Workstations have seven different states (WS S1
to WS S7).
Fig. 6 depicts the transition sets corresponding to each one of the activities (step 2). There is
one transition for each valid configuration of the system that allows the start of an activity.
For example, activity LFRT is represented by the transitions LFRT1, LFRT2 and LFRT3.

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

33

Fig. 6. Transition set generated by all activities

Fig. 7 summarizes the place and the transition colour sets (steps 3 and 4). First 10 colour sets
correspond to places. All the places except one, the one corresponding to a roller table in an
occupied state, have simple colours assigned because the values of the entity-variable
attributes are uniquely determined by the states that the places represent. All the transitions
have simple colours except transition BC that can fire in 36 different ways.

Fig. 7. Associated colours sets to places and transitions

Fig. 8 depicts the input and output functions (step 5). Because many of the colour sets of the
transitions coincide with the colour sets of their input places, many of the functions are
identity functions. Identity functions are represented by dashed arcs.

 C(PASS AV)={<i>} i=1,…,6 C(BC)={<I,j>} i=1,…,6; j=1,…,6
 C(RT S1)={<i>} i=1,…,6 C(LFRT1)={<i>} i=1,…,6
 C(RT S2)={<i,j>} i=1,…,6; j=1,…,6 C(LFRT2)={<i>} i=1,…,6
 C(WS S1)={<i>} i=1,…,6 C(LFRT3)={<i>} i=1,…,6
 C(WS S2)={<i>} i=1,…,6 C(LFLT1)={<i>} i=1,…,6
 C(WS S3)={<i>} i=1,…,6 C(LFLT2)={<i>} i=1,…,6
 C(WS S4)={<i>} i=1,…,6 C(UFPT1)={<i>} i=1,…,6
 C(WS S5)={<i>} i=1,…,6 C(UFPT2)={<i>} i=1,…,6
 C(WS S6)={<i>} i=1,…,6 C(UFUT1)={<i>} i=1,…,6
 C(WS S7)={<i>} i=1,…,6 C(UFUT2)={<i>} i=1,…,6
 C(BA)={<i>} i=1,…,6 C(UFUT3)={<i>} i=1,…,6
 C(BL)={<i>} i=1,…,6

 Advances in Petri Net Theory and Applications

34

Fig. 8. Input-output functions generated

Function f takes from place RT SI the token that corresponds to roller table 1. Function g
puts in place RT S2 a token that corresponds to roller table 1 occupied with a car body.
The body destination was taken by transition BA from place PASS AV (passes available).
Functions x and u take from places RT S2 and RT SI, respectively, tokens corresponding to
two consecutive roller tables, the first one occupied and the second one free. Functions y
and v put tokens corresponding to those roller tables, but with the first one free and the
second occupied, in places RT SI and RT S2, respectively. Function r, used in transitions
corresponding to activity loading from roller table, takes from place RT S2 a token
corresponding to a roller table whose number and body destination coincide. Function s,
used in transitions corresponding to activity unloading from roller table, puts in place RT S2
a token corresponding to a roller table with a car body just processed, that is, the number of
the roller table is the opposite of its body destination. In this example complex situations are
not present in the input model, and therefore refinements (step 6) were not made to the net
of fig. 8. This model is very close to that presented in (Colom et al., 1990), from where the
real-life example is taken, but the functions of this model are simpler than those obtained by
Colom.

7. Conclusion
A synthesis method for CPN was presented, a top-down technique in which the starting
specifications of tasks are high-level expressed and predefined CPN modules are utilized.
The method differs significantly from other methods published in that it preserves the
formalism of CPN without imposing restrictions on the system modelled, and therefore it
allows the modelling of shared resources and complex ordering and selecting criteria. The
analysis of situations that can occur during the synthesis process is conducted using the
philosophy of the activity-based approach for discrete-event systems. Input models of the
synthesis process are specified in a natural-like language interface, which greatly facilitates

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

35

the expression of situations involving complex manipulations of items in waiting lines.
These features also establish an advantage over other published methods.
The predefined modules, which deal with complex situations, are live and bounded;
nevertheless the synthesized CPN model must be analyzed with existing mathematical
methods for their validation and proof of properties; then it can be used for real-time control
and simulation.

8. References
Aized, T., Takahashi, K. & Hagiwara I. (2007). Advanced multiple product flexible

manufacturing system modelling using Coloured Petri Net. Journal of Advanced
Computational Intelligence and Intelligent Informatics. Vol. 11, No. 6, pp. 715-723, ISSN:
1343-0130.

Arjona, E. & Bueno, G. (2007). Using simulation to integrate ordering and complex selecting
criteria into Coloured Petri Net Models. Agrociencia Vol. 41, No. 8, pp. 883-901,
ISSN: 1405-3195.

Badouel, E. & Darondeau, P. (2004). The synthesis of Petri nets from path-automatic
specifications. Information and Computation Vol. 193, pp. 117-135, ISSN: 0890-5401.

Baldasari, M. & Bruno, G. (1991). PROTOB: an object oriented methodology for developing
discrete event dynamic systems. Computer Languages, Vol. 16, No. 1, pp. 39-63,
ISSN: 0096-0551.

Colom, J.M., Esparza, J., Martinez, J. & Silva, M. (1990). DEMON: Design methods based on
nets, Esprit Basic Research Action 3148, University of Zaragoza, Spain, June 1990.

Da Silva, A., Montgomery, E. & Lima E. (2008). Flexible manufacturing systems modelling
using high level Petri Nets. Proceedings of ABCM Symposium Series in Mechatronics,
Vol. 3, pp. 405-413.

Der Jeng, M. & DiCesare, F. (1990). A review of synthesis techniques for Petri nets. Proc. of
the IEEE 2nd. International Conference on Computer Integrated Manufacturing, pp. 348-
355, Troy, NY, May 1990.

Diaz, M. (2009). Petri Nets: Fundamental Models, Verification and Applications, Wiley-ISTE,
ISBN: 1848210795.

Ezpeleta, J. (1993). Análisis y síntesis de modelos libres de bloqueos para sistemas
concurrentes, doctoral diss., University of Zaragoza, Spain.

He, D.W., Strege, B., Tolle, H. & Kusiak, A. (2000). Decomposition in automatic generation
of Petri Nets for manufacturing system control and scheduling. International Journal
of Production Research, Vol. 38, No. 6, pp. 1437-1457, ISSN: 0020-7543.

Jensen, K. (1981). Coloured Petri nets and the invariant method. Theoretical Computer Science,
Vol. 14, pp. 317-336, ISSN: 0304-3975.

Jensen, K. (1991). Coloured Petri nets: A high level language for system design and analysis,
In: Lecture Notes in Computer Science, Advances in Petri nets 1990, G. Rosenberg, Ed.,
pp. 342-416, Springer-Verlag, ISBN: 978-3-540-53863-9, Berlin.

Khadka, B. (2007). Transformation of live sequence charts to Colored Petri Nets, masters
project report, University of Massachusetts Dartmouth, USA.

Kreutzer, W. (1986). System Simulation Programming Styles and Languages, Addison-Wesley,
ISBN: 0-201-12914-0, Reading, MA, USA.

MengChu, Z. (2009). System modeling and control with resource-oriented Petri Nets, CRC Press,
ISBN: 978-1-4398-0884-9, Boca Raton, FL, USA.

 Advances in Petri Net Theory and Applications

34

Fig. 8. Input-output functions generated

Function f takes from place RT SI the token that corresponds to roller table 1. Function g
puts in place RT S2 a token that corresponds to roller table 1 occupied with a car body.
The body destination was taken by transition BA from place PASS AV (passes available).
Functions x and u take from places RT S2 and RT SI, respectively, tokens corresponding to
two consecutive roller tables, the first one occupied and the second one free. Functions y
and v put tokens corresponding to those roller tables, but with the first one free and the
second occupied, in places RT SI and RT S2, respectively. Function r, used in transitions
corresponding to activity loading from roller table, takes from place RT S2 a token
corresponding to a roller table whose number and body destination coincide. Function s,
used in transitions corresponding to activity unloading from roller table, puts in place RT S2
a token corresponding to a roller table with a car body just processed, that is, the number of
the roller table is the opposite of its body destination. In this example complex situations are
not present in the input model, and therefore refinements (step 6) were not made to the net
of fig. 8. This model is very close to that presented in (Colom et al., 1990), from where the
real-life example is taken, but the functions of this model are simpler than those obtained by
Colom.

7. Conclusion
A synthesis method for CPN was presented, a top-down technique in which the starting
specifications of tasks are high-level expressed and predefined CPN modules are utilized.
The method differs significantly from other methods published in that it preserves the
formalism of CPN without imposing restrictions on the system modelled, and therefore it
allows the modelling of shared resources and complex ordering and selecting criteria. The
analysis of situations that can occur during the synthesis process is conducted using the
philosophy of the activity-based approach for discrete-event systems. Input models of the
synthesis process are specified in a natural-like language interface, which greatly facilitates

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

35

the expression of situations involving complex manipulations of items in waiting lines.
These features also establish an advantage over other published methods.
The predefined modules, which deal with complex situations, are live and bounded;
nevertheless the synthesized CPN model must be analyzed with existing mathematical
methods for their validation and proof of properties; then it can be used for real-time control
and simulation.

8. References
Aized, T., Takahashi, K. & Hagiwara I. (2007). Advanced multiple product flexible

manufacturing system modelling using Coloured Petri Net. Journal of Advanced
Computational Intelligence and Intelligent Informatics. Vol. 11, No. 6, pp. 715-723, ISSN:
1343-0130.

Arjona, E. & Bueno, G. (2007). Using simulation to integrate ordering and complex selecting
criteria into Coloured Petri Net Models. Agrociencia Vol. 41, No. 8, pp. 883-901,
ISSN: 1405-3195.

Badouel, E. & Darondeau, P. (2004). The synthesis of Petri nets from path-automatic
specifications. Information and Computation Vol. 193, pp. 117-135, ISSN: 0890-5401.

Baldasari, M. & Bruno, G. (1991). PROTOB: an object oriented methodology for developing
discrete event dynamic systems. Computer Languages, Vol. 16, No. 1, pp. 39-63,
ISSN: 0096-0551.

Colom, J.M., Esparza, J., Martinez, J. & Silva, M. (1990). DEMON: Design methods based on
nets, Esprit Basic Research Action 3148, University of Zaragoza, Spain, June 1990.

Da Silva, A., Montgomery, E. & Lima E. (2008). Flexible manufacturing systems modelling
using high level Petri Nets. Proceedings of ABCM Symposium Series in Mechatronics,
Vol. 3, pp. 405-413.

Der Jeng, M. & DiCesare, F. (1990). A review of synthesis techniques for Petri nets. Proc. of
the IEEE 2nd. International Conference on Computer Integrated Manufacturing, pp. 348-
355, Troy, NY, May 1990.

Diaz, M. (2009). Petri Nets: Fundamental Models, Verification and Applications, Wiley-ISTE,
ISBN: 1848210795.

Ezpeleta, J. (1993). Análisis y síntesis de modelos libres de bloqueos para sistemas
concurrentes, doctoral diss., University of Zaragoza, Spain.

He, D.W., Strege, B., Tolle, H. & Kusiak, A. (2000). Decomposition in automatic generation
of Petri Nets for manufacturing system control and scheduling. International Journal
of Production Research, Vol. 38, No. 6, pp. 1437-1457, ISSN: 0020-7543.

Jensen, K. (1981). Coloured Petri nets and the invariant method. Theoretical Computer Science,
Vol. 14, pp. 317-336, ISSN: 0304-3975.

Jensen, K. (1991). Coloured Petri nets: A high level language for system design and analysis,
In: Lecture Notes in Computer Science, Advances in Petri nets 1990, G. Rosenberg, Ed.,
pp. 342-416, Springer-Verlag, ISBN: 978-3-540-53863-9, Berlin.

Khadka, B. (2007). Transformation of live sequence charts to Colored Petri Nets, masters
project report, University of Massachusetts Dartmouth, USA.

Kreutzer, W. (1986). System Simulation Programming Styles and Languages, Addison-Wesley,
ISBN: 0-201-12914-0, Reading, MA, USA.

MengChu, Z. (2009). System modeling and control with resource-oriented Petri Nets, CRC Press,
ISBN: 978-1-4398-0884-9, Boca Raton, FL, USA.

 Advances in Petri Net Theory and Applications

36

Micovsky, A., Sesera, L., Veishab, M. & Albert, M. (1990). TORA: A Petri net based tool for
rapid prototyping of FMS control systems. Computers in Industry, Vol. 15, No. 4, pp.
279-292, ISSN: 0166-3615.

Shang, D., Burns, F., Koelmans, A., Yakovlev, A. & Xia, F. (2004). Asynchronous system
synthesis based on direct mapping using VHDL and Petri nets. IEE Proceedings
Computers and Digital Techniques, Vol. 151, No. 3, ISSN: 1751-8601.

Yeung, D.S., Shiu, S.C.K. & Tsang, E.C.C. (1999). Modelling flexible manufacturing systems
using weighted Fuzzy Coloured Petri Nets. Journal of Intelligent and Fuzzy Systems,
Vol. 7, No. 2, pp. 137-149, ISSN: 1064-1246.

Zhi-Jun, D., Jun-Li, W & Chang-Jun, J. (2008). An approach for synthesis Petri nets for
modeling and verifying composite web service, Journal of Information Science and
Engineering, Vol. 24, pp. 1309-1328, ISSN: 1016-23.

Zhou, M., DiCesare, F., & Desrochers, A. (1992). A hybrid methodology for synthesis of Petri
net models for manufacturing systems. IEEE Trans. on Robotics and Automation, Vol.
8, No. 3, pp. 350-361, ISSN: 1042-296X.

Appendix. Formal Grammar of the Language
Before giving the grammar of the language, we will explain the logic behind it, describe the
different ways in which its elements can be used, and give some general examples of its use.
These examples complement the language features showed in the automotive workshop
example given in section 6.
The language was designed analyzing all possible situations that can occur when modeling
a real life system using the activity-approach paradigm. As was said before, besides of
declarations, the language uses only two types of statements. The first one is used for entity
(material and resource) flows and the second one for attribute (state) modifications.
Interactive actions are modeled by explicit starting and ending conditions in the activities
and these conditions can use both internal and external variables. Only one type of
statement is used for entity flows because the number of different ways in which is possible
to store, or retrieve, an entity in a waiting line (storage areas, buffers, and queues) is very
small. Storing and retrieving depend heavily on the ordering criteria of the waiting lines
involved and, excluding nonsense ordering criteria, a waiting line can be ordered in only a
few ways. Only one type of statement is used for attribute modifications because the only
modifications that attributes are susceptible to are assignments. Flows of entities from
waiting lines to activities can be individual or multiple. Individual flows can be
unconditional or conditioned to attribute values of entities or to entity positions in waiting
lines when these have associated ordering criteria (overriding). Conditions on attribute
values can be absolute, relative to attribute values of other entities that already are in the
activity, or relative to values of the model variables. Multiple flows consist of a fixed or
variable number of individual flows. Priorities can be given to the entities required for a
particular activity (alternate flows). Flows of entities from activities to waiting lines can only
be individual. Alternate storage waiting lines can be specified based on attribute values of
the entities. Also, when the output waiting lines have associated ordering criteria, a position
for the storage of an entity can be specified (overriding). Assignments can be conditional or
unconditional. Values assigned are the result of the evaluation of expressions that may have
as operands attribute names, constants, variable names, and intrinsic and extrinsic
functions. One assign statement will affect all similar entities that satisfy the conditions of

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

37

the statement (implicit repeat). There is an intrinsic function (#) for the counting of entities
included in an activity and that meet specific attribute characteristics. This function is of
particular importance when using multiple flows with a variable (unknown) number of
individual flows.
Specification of a model consists of six parts or sections. In the first section is given the name
of the model. In the second section are given the names of the entities and attributes and the
admissible values of the attributes. In the third section are given the names of the waiting
lines, and their ordering criteria and admissible entities. In sections four and five, are given
the names of the internal and external variables of the system. In the sixth section, the
activities that make up the system are described. All declarations and statements must end
with a point. Declarations are used in all sections, and statements are used only in the sixth
section that corresponds to activity descriptions. All the names should start with an
alphabetic character and may be followed by a string of alphanumeric or underscore
characters. Entities may have or not attributes. Variables are defined in a similar way as
entities. Internal variables correspond to endogenous variables and external variables
correspond to exogenous or interactive variables. Variables for which admissible values are
not specified are assumed boolean whose default admissible values are zero and one.
Waiting lines can have an ordering criterion or a length specified. When it is not specified an
ordering criterion the waiting line is ordered FIFO. The names of entities allowed in waiting
lines can be pluralized to improve readability. Activities can have multiplicity. Activity
multiplicity must be evaluated to an integer number that indicates the maximum number of
concurrent occurrences of the activity; default multiplicity is one. Starting and ending
conditions are boolean expressions that use relational expressions of variables and
constants. Ending conditions and activity durations are mutually exclusive. Activity
durations can be obtained from random variates using external variables or intrinsic
functions. A flow statement may consist of one or more individual entity flows. Each
individual flow can be a generator, a transmitter or a consumer of entities. The number of
individual flows in a flow statement can be constant or variable. Priorities can be specified
between individual flows as well as alternate choices. Entities in a flow can be conditioned
by means of their attribute values to a constant or to other entities attribute values, in an
absolute or a relative way. In addition, it is possible to override ordering criteria of the
waiting lines from where the entities are removed, and it is possible to specify alternate
destination waiting lines for the storage of entities. The scope of a flow statement is used to
select a subset of a set of individual flows. The cardinality of the subset can be fixed or
variable within a range. The selecting option is used to define local relations among entities.
Repetition factors condense model specifications when identical flows are used. Many of the
words included in the flow statements are optional. Finally, attribute modifications can only
consist of a conditional or an unconditional assignment.
Examples of valid entity definitions are the following:

ENTITIES:
 CAR WITH THE FOLLOWING ATTRIBUTES:
 MAKE (ADMISSIBLE VALUES FORD OR CHRYSLER)
 PASSENGER_CAPACITY (ADMISSIBLE VALUES 2 TO 5).
 ELEVATOR.
 CRANE.

 Advances in Petri Net Theory and Applications

36

Micovsky, A., Sesera, L., Veishab, M. & Albert, M. (1990). TORA: A Petri net based tool for
rapid prototyping of FMS control systems. Computers in Industry, Vol. 15, No. 4, pp.
279-292, ISSN: 0166-3615.

Shang, D., Burns, F., Koelmans, A., Yakovlev, A. & Xia, F. (2004). Asynchronous system
synthesis based on direct mapping using VHDL and Petri nets. IEE Proceedings
Computers and Digital Techniques, Vol. 151, No. 3, ISSN: 1751-8601.

Yeung, D.S., Shiu, S.C.K. & Tsang, E.C.C. (1999). Modelling flexible manufacturing systems
using weighted Fuzzy Coloured Petri Nets. Journal of Intelligent and Fuzzy Systems,
Vol. 7, No. 2, pp. 137-149, ISSN: 1064-1246.

Zhi-Jun, D., Jun-Li, W & Chang-Jun, J. (2008). An approach for synthesis Petri nets for
modeling and verifying composite web service, Journal of Information Science and
Engineering, Vol. 24, pp. 1309-1328, ISSN: 1016-23.

Zhou, M., DiCesare, F., & Desrochers, A. (1992). A hybrid methodology for synthesis of Petri
net models for manufacturing systems. IEEE Trans. on Robotics and Automation, Vol.
8, No. 3, pp. 350-361, ISSN: 1042-296X.

Appendix. Formal Grammar of the Language
Before giving the grammar of the language, we will explain the logic behind it, describe the
different ways in which its elements can be used, and give some general examples of its use.
These examples complement the language features showed in the automotive workshop
example given in section 6.
The language was designed analyzing all possible situations that can occur when modeling
a real life system using the activity-approach paradigm. As was said before, besides of
declarations, the language uses only two types of statements. The first one is used for entity
(material and resource) flows and the second one for attribute (state) modifications.
Interactive actions are modeled by explicit starting and ending conditions in the activities
and these conditions can use both internal and external variables. Only one type of
statement is used for entity flows because the number of different ways in which is possible
to store, or retrieve, an entity in a waiting line (storage areas, buffers, and queues) is very
small. Storing and retrieving depend heavily on the ordering criteria of the waiting lines
involved and, excluding nonsense ordering criteria, a waiting line can be ordered in only a
few ways. Only one type of statement is used for attribute modifications because the only
modifications that attributes are susceptible to are assignments. Flows of entities from
waiting lines to activities can be individual or multiple. Individual flows can be
unconditional or conditioned to attribute values of entities or to entity positions in waiting
lines when these have associated ordering criteria (overriding). Conditions on attribute
values can be absolute, relative to attribute values of other entities that already are in the
activity, or relative to values of the model variables. Multiple flows consist of a fixed or
variable number of individual flows. Priorities can be given to the entities required for a
particular activity (alternate flows). Flows of entities from activities to waiting lines can only
be individual. Alternate storage waiting lines can be specified based on attribute values of
the entities. Also, when the output waiting lines have associated ordering criteria, a position
for the storage of an entity can be specified (overriding). Assignments can be conditional or
unconditional. Values assigned are the result of the evaluation of expressions that may have
as operands attribute names, constants, variable names, and intrinsic and extrinsic
functions. One assign statement will affect all similar entities that satisfy the conditions of

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

37

the statement (implicit repeat). There is an intrinsic function (#) for the counting of entities
included in an activity and that meet specific attribute characteristics. This function is of
particular importance when using multiple flows with a variable (unknown) number of
individual flows.
Specification of a model consists of six parts or sections. In the first section is given the name
of the model. In the second section are given the names of the entities and attributes and the
admissible values of the attributes. In the third section are given the names of the waiting
lines, and their ordering criteria and admissible entities. In sections four and five, are given
the names of the internal and external variables of the system. In the sixth section, the
activities that make up the system are described. All declarations and statements must end
with a point. Declarations are used in all sections, and statements are used only in the sixth
section that corresponds to activity descriptions. All the names should start with an
alphabetic character and may be followed by a string of alphanumeric or underscore
characters. Entities may have or not attributes. Variables are defined in a similar way as
entities. Internal variables correspond to endogenous variables and external variables
correspond to exogenous or interactive variables. Variables for which admissible values are
not specified are assumed boolean whose default admissible values are zero and one.
Waiting lines can have an ordering criterion or a length specified. When it is not specified an
ordering criterion the waiting line is ordered FIFO. The names of entities allowed in waiting
lines can be pluralized to improve readability. Activities can have multiplicity. Activity
multiplicity must be evaluated to an integer number that indicates the maximum number of
concurrent occurrences of the activity; default multiplicity is one. Starting and ending
conditions are boolean expressions that use relational expressions of variables and
constants. Ending conditions and activity durations are mutually exclusive. Activity
durations can be obtained from random variates using external variables or intrinsic
functions. A flow statement may consist of one or more individual entity flows. Each
individual flow can be a generator, a transmitter or a consumer of entities. The number of
individual flows in a flow statement can be constant or variable. Priorities can be specified
between individual flows as well as alternate choices. Entities in a flow can be conditioned
by means of their attribute values to a constant or to other entities attribute values, in an
absolute or a relative way. In addition, it is possible to override ordering criteria of the
waiting lines from where the entities are removed, and it is possible to specify alternate
destination waiting lines for the storage of entities. The scope of a flow statement is used to
select a subset of a set of individual flows. The cardinality of the subset can be fixed or
variable within a range. The selecting option is used to define local relations among entities.
Repetition factors condense model specifications when identical flows are used. Many of the
words included in the flow statements are optional. Finally, attribute modifications can only
consist of a conditional or an unconditional assignment.
Examples of valid entity definitions are the following:

ENTITIES:
 CAR WITH THE FOLLOWING ATTRIBUTES:
 MAKE (ADMISSIBLE VALUES FORD OR CHRYSLER)
 PASSENGER_CAPACITY (ADMISSIBLE VALUES 2 TO 5).
 ELEVATOR.
 CRANE.

 Advances in Petri Net Theory and Applications

38

Examples of valid variable definitions are the following:

INTERNAL VARIABLES:
 PRODUCT_GENERATED.
EXTERNAL VARIABLES:
 USER_ANSWER (ADMISSIBLE VALUES HIGH OR MEDIUM OR LOW).

Examples of valid waiting line definitions are the following:

WAITING LINES:
 WAREHOUSE CONTAINS BOXES.
 ASSEMBLY_LINE (FIFO) CONTAINS CAR_BODIES AND ITS MAXIMUN LENGHT IS
 10.
 WAITING_ROOM CONTAINS PATIENTS ON DESCENDING ORDER BY
 ILLNESS_CONDITION.

Examples of valid starting and ending conditions definitions of activities are:

ACTIVITY:
 BEST_QUALITY_CONTROL.
 STARTING CONDITIONS:
 USER_ANSWER=HIGH.
 ACTIVITY DURATION: 3.

ACTIVITY:
 DIRECT_ASSEMBLY.
 STARTING CONDITIONS:
 INFRARED_SENSOR=1.AND.RECOGNITION_TO_BE_DONE=0.
 ENDING CONDITIONS:
 END_OF_ASSEMBLY=1.

Examples of valid flow statements are the following:

ENTITY FLOWS:
 GET A WORKER WITH SKILL>2 FROM CREW.
 GET A BIT WITH SIZE=1/2 FROM THE BIT_PALETTE AND AT END OF ACTIVITY PUT
 BACK IN THE BIT_PALETTE.
 AT END OF ACTIVITY PUT A PASS IN AVAILABLE_PASSES.

ENTITY FLOWS (FROM 30 TO 150 OF THE FOLLOWING FLOWS):
 (AT MOST 20 TIMES) GET A PASSENGER WITH CLASS=FIRST FROM
 PASSENGER_LIST AND AT END OF ACTIVITY PUT IN IMMIGRATION_LANE.
 (AT MOST 130 TIMES) GET A PASSENGER WITH CLASS=SECOND.OR.CLASS=THIRD
 FROM PASSENGER_LIST AND AT END OF ACTIVITY PUT IN IMMIGRATION_LANE.

ENTITY FLOWS (SELECTING ASSEMBLY_STATE OF ASSEMBLY_SITE IN
 ASSEMBLY_TABLE = TYPE_OF_PART OF PART IN STORAGE_TABLE -1):
 GET A PART FROM STORAGE_TABLE.
 GET AN ASSEMBLY_SITE FROM ASSEMBLY_TABLE AND AT END OF ACTIVITY
 PUT BACK IN ASSEMBLY_TABLE.

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

39

Examples of valid attribute modifications are the following:

ATTRIBUTE MODIFICATIONS:
 TOTAL_NUMBER_OF_JOBS := TOTAL_NUMBER_OF_JOBS +1.
 JOBS_DONE OF WORKER := JOBS_DONE OF WORKER +1.
 COLOR OF CAR := COLOR OF PAINT_ORDER.
 IF ASSEMBLY_STATE OF ASSEMBLY_SITE = 4 THEN POSITION OF ROBOT1 := 3.

Now, we will give the definition of the language. A computer language is defined by its
formal grammar. A formal grammar defines rules for building syntactically correct
sentences in the language. Sentences are made up of strings of characters that are logically
combined into grammar elements using grammar rules. Grammar rules are specified by
means of productions that state how a grammar element can be composed from other
grammar elements. Each production defines a grammar element and has two sides
separated by the symbol “::=”. The left hand side of the production is the grammar element
defined (represented by a nonempty string of characters enclosed in triangular parenthesis)
and the right hand side its definition. This definition consists of grammar elements,
character strings (letter, digits, keywords, punctuation marks, operators, etc.), and auxiliary
symbols with specific meanings (square brackets indicate optional items, three periods
indicate that the preceding element can be repeated one or more times, and a vertical bar
indicate a choice of items). For example, the productions:

<identifier> ::= <letter> [<letter> | <digit> | _] ...
<letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T |
 U | V | W | X | Y | Z
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<global criterion of ordering> ::= FIFO | LIFO

state that the grammar element called “identifier” is built up using a letter that may be
followed by one or more letters or digits or the underscore character, and that the grammar
element called “global criterion of ordering” consists of one of the keywords FIFO or LIFO.
Note that the grammar elements called “letter” and “digit” used in the first production need
to be defined because words or phrases used to represent grammar elements do not have
any real meaning until defined.
Following, it is given the formal grammar of the language.

<model>::=MODEL NAME:<model name><period>
 <entities definition>
 [<internal variables definition>]
 [<external variables definition>]
 <waiting lines definition>
 <activity definition>...
 END OF MODEL <period>
<model name> ::= <identifier>
<identifier> ::= <letter> [<letter> | <digit> | _] ...
<letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T |
 U | V | W | X | Y | Z
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 Advances in Petri Net Theory and Applications

38

Examples of valid variable definitions are the following:

INTERNAL VARIABLES:
 PRODUCT_GENERATED.
EXTERNAL VARIABLES:
 USER_ANSWER (ADMISSIBLE VALUES HIGH OR MEDIUM OR LOW).

Examples of valid waiting line definitions are the following:

WAITING LINES:
 WAREHOUSE CONTAINS BOXES.
 ASSEMBLY_LINE (FIFO) CONTAINS CAR_BODIES AND ITS MAXIMUN LENGHT IS
 10.
 WAITING_ROOM CONTAINS PATIENTS ON DESCENDING ORDER BY
 ILLNESS_CONDITION.

Examples of valid starting and ending conditions definitions of activities are:

ACTIVITY:
 BEST_QUALITY_CONTROL.
 STARTING CONDITIONS:
 USER_ANSWER=HIGH.
 ACTIVITY DURATION: 3.

ACTIVITY:
 DIRECT_ASSEMBLY.
 STARTING CONDITIONS:
 INFRARED_SENSOR=1.AND.RECOGNITION_TO_BE_DONE=0.
 ENDING CONDITIONS:
 END_OF_ASSEMBLY=1.

Examples of valid flow statements are the following:

ENTITY FLOWS:
 GET A WORKER WITH SKILL>2 FROM CREW.
 GET A BIT WITH SIZE=1/2 FROM THE BIT_PALETTE AND AT END OF ACTIVITY PUT
 BACK IN THE BIT_PALETTE.
 AT END OF ACTIVITY PUT A PASS IN AVAILABLE_PASSES.

ENTITY FLOWS (FROM 30 TO 150 OF THE FOLLOWING FLOWS):
 (AT MOST 20 TIMES) GET A PASSENGER WITH CLASS=FIRST FROM
 PASSENGER_LIST AND AT END OF ACTIVITY PUT IN IMMIGRATION_LANE.
 (AT MOST 130 TIMES) GET A PASSENGER WITH CLASS=SECOND.OR.CLASS=THIRD
 FROM PASSENGER_LIST AND AT END OF ACTIVITY PUT IN IMMIGRATION_LANE.

ENTITY FLOWS (SELECTING ASSEMBLY_STATE OF ASSEMBLY_SITE IN
 ASSEMBLY_TABLE = TYPE_OF_PART OF PART IN STORAGE_TABLE -1):
 GET A PART FROM STORAGE_TABLE.
 GET AN ASSEMBLY_SITE FROM ASSEMBLY_TABLE AND AT END OF ACTIVITY
 PUT BACK IN ASSEMBLY_TABLE.

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

39

Examples of valid attribute modifications are the following:

ATTRIBUTE MODIFICATIONS:
 TOTAL_NUMBER_OF_JOBS := TOTAL_NUMBER_OF_JOBS +1.
 JOBS_DONE OF WORKER := JOBS_DONE OF WORKER +1.
 COLOR OF CAR := COLOR OF PAINT_ORDER.
 IF ASSEMBLY_STATE OF ASSEMBLY_SITE = 4 THEN POSITION OF ROBOT1 := 3.

Now, we will give the definition of the language. A computer language is defined by its
formal grammar. A formal grammar defines rules for building syntactically correct
sentences in the language. Sentences are made up of strings of characters that are logically
combined into grammar elements using grammar rules. Grammar rules are specified by
means of productions that state how a grammar element can be composed from other
grammar elements. Each production defines a grammar element and has two sides
separated by the symbol “::=”. The left hand side of the production is the grammar element
defined (represented by a nonempty string of characters enclosed in triangular parenthesis)
and the right hand side its definition. This definition consists of grammar elements,
character strings (letter, digits, keywords, punctuation marks, operators, etc.), and auxiliary
symbols with specific meanings (square brackets indicate optional items, three periods
indicate that the preceding element can be repeated one or more times, and a vertical bar
indicate a choice of items). For example, the productions:

<identifier> ::= <letter> [<letter> | <digit> | _] ...
<letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T |
 U | V | W | X | Y | Z
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<global criterion of ordering> ::= FIFO | LIFO

state that the grammar element called “identifier” is built up using a letter that may be
followed by one or more letters or digits or the underscore character, and that the grammar
element called “global criterion of ordering” consists of one of the keywords FIFO or LIFO.
Note that the grammar elements called “letter” and “digit” used in the first production need
to be defined because words or phrases used to represent grammar elements do not have
any real meaning until defined.
Following, it is given the formal grammar of the language.

<model>::=MODEL NAME:<model name><period>
 <entities definition>
 [<internal variables definition>]
 [<external variables definition>]
 <waiting lines definition>
 <activity definition>...
 END OF MODEL <period>
<model name> ::= <identifier>
<identifier> ::= <letter> [<letter> | <digit> | _] ...
<letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T |
 U | V | W | X | Y | Z
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 Advances in Petri Net Theory and Applications

40

<period> ::= .
<entities definition> ::= ENTITIES: <entity> <period> [<entity> <period>]...
<entity> ::= <entity name> [WITH THE FOLLOWING ATTRIBUTES: <attributes>]
<entity name> ::= <identifier>
<attributes> ::= <name and admissible values of the attribute>
 [<name and admissible values of the attribute>]...
<name and admissible values of the attribute> ::= <attribute name> [(<admissible values>)]
<attribute name> ::= <identifier>
<admissible values> ::= [ADMISSIBLE VALUES] <range of values> |
 [ADMISSIBLE VALUES] <specific values>
<range of values> ::= <integer> TO <integer>
<integer> ::= [+|-] <string of digits>
<string of digits> ::= <digit> [<digit>]...
<specific values> ::= <integer or literal> [OR <integer or literal>]...
<integer or literal> ::= <integer> | <literal>
<literal> ::= <identifier>
<internal variables definition> ::= INTERNAL VARIABLES: <internal variable><period>
 [<internal variable> <period>]...
<internal variable> ::= <internal variable name> [(<admissible values>)]
<internal variable name> ::= <identifier>
<external variables definition> ::= EXTERNAL VARIABLES: <external variable> <period>
 [<external variable> <period>]...
<external variable> ::= <external variable name> [(<admissible values>)]
<external variable name> ::= <identifier>
<waiting lines definition>::= WAITING LINES: <waiting line> <period> [<waiting line>
 <period>]...
<waiting line> ::= <waiting line name>
 [(<global criterion of ordering>)]
 CONTAINS <admissible entity> [AND <admissible entity>]...
 [AND ITS MAXIMUM LENGTH IS <integer>]
<waiting line name> ::= <identifier>
<global criterion of ordering> ::= FIFO | LIFO
<admissible entity> ::= <pluralized entity name> [<local criterion of ordering> BY
 <attribute name>]
<pluralized entity name> ::= <entity name> [S | ES]
<local criterion of ordering> ::= ON ASCENDING ORDER | ON DESCENDING ORDER
<activity definition> ::= ACTIVITY: <activity name> <period>
 [MULTIPLICITY: <expression of variables> <period>]
 [STARTING CONDITIONS: <condition of variables> <period>]
 [ENDING CONDITIONS: <condition of variables> <period>]
 <flow statement> <period> [<flow statement> <period>]...
 [<attribute modifications>]
 [ACTIVITY DURATION: <expression of variables> <period>]
<activity name> ::= <identifier>
<condition of variables> ::= <boolean term of variables>
 [.AND.<boolean term of variables>]

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

41

<boolean term of variables> ::= <boolean factor of variables>
 [.OR.<boolean factor of variables>]
<boolean factor of variables> ::= <relation of variables> | (<condition of variables>)
<relation of variables> ::= <expression of variables> <relational operator>
 <expression of variables>
<expression of variables> ::= <term of variables>
 [+<term of variables> | -<term of variables>]
<term of variables> ::= <factor of variables>
 [*<factor of variables> | /<factor of variables>]
<factor of variables> ::= <atom of variables> | <factor of variables> @ <atom of variables>
<atom of variables> ::= <constant> |
 <internal variable name> |
 <external variable name> |
 <function of variables> |
 (<expression of variables>)
<relational operator> ::= > | < | = | <> | >= | <=
<constant> ::= <integer number> | [+|-].<string of digits> |
 <integer number>.<string of digits> | <literal>
<function of variables> ::= <function name> (<expression of variables>)
<function name> ::= <identifier>
<flow statement> ::= ENTITY FLOWS
 [(<scope and select condition>)]:
 <flow specification>...
<scope and select condition> ::= <scope> |<scope> <select condition> | <select condition>
<scope> ::= [ONLY] <expression> OF THE FOLLOWING FLOWS |
 FROM <expression> TO <expression> OF THE FOLLOWING FLOWS
<select condition> ::= SELECTING <relation of entities>
 [AND <relation of entities>]...
<relation of entities> ::= <expression of entities> <relational operator>
 <expression of entities>
<expression of entities> ::= <term of entities> [+<term of entities> |-<term of entities>]
<term of entities> ::= <factor of entities> [*<factor of entities> | /<factor of entities>]
<factor of entities> ::= <atom of entities> | <factor of entities> @ <atom of entities>
<atom of entities> ::= <constant> | <attribute name> OF <entity name>
 IN <waiting line name>
<flow specification> ::= [<repetition factor>] [IF <condition>] <flow>
<repetition factor> ::= ([AT MOST] <expression> TIMES)
<condition> ::= <boolean term> [.AND. <boolean term>]
<boolean term> ::= <boolean factor> [.OR. <boolean factor>]
<boolean factor> ::= <relation> | (<condition>)
<relation> ::= <expression> <relational operator> <expression>
<expression> ::= <term> [+<term> | -<term>]
<term> ::= <factor> [*<factor> | /<factor>]
<factor> ::= <atom> | <factor> @ <atom>
<atom> ::= <constant> |
 <internal variable name> |

 Advances in Petri Net Theory and Applications

40

<period> ::= .
<entities definition> ::= ENTITIES: <entity> <period> [<entity> <period>]...
<entity> ::= <entity name> [WITH THE FOLLOWING ATTRIBUTES: <attributes>]
<entity name> ::= <identifier>
<attributes> ::= <name and admissible values of the attribute>
 [<name and admissible values of the attribute>]...
<name and admissible values of the attribute> ::= <attribute name> [(<admissible values>)]
<attribute name> ::= <identifier>
<admissible values> ::= [ADMISSIBLE VALUES] <range of values> |
 [ADMISSIBLE VALUES] <specific values>
<range of values> ::= <integer> TO <integer>
<integer> ::= [+|-] <string of digits>
<string of digits> ::= <digit> [<digit>]...
<specific values> ::= <integer or literal> [OR <integer or literal>]...
<integer or literal> ::= <integer> | <literal>
<literal> ::= <identifier>
<internal variables definition> ::= INTERNAL VARIABLES: <internal variable><period>
 [<internal variable> <period>]...
<internal variable> ::= <internal variable name> [(<admissible values>)]
<internal variable name> ::= <identifier>
<external variables definition> ::= EXTERNAL VARIABLES: <external variable> <period>
 [<external variable> <period>]...
<external variable> ::= <external variable name> [(<admissible values>)]
<external variable name> ::= <identifier>
<waiting lines definition>::= WAITING LINES: <waiting line> <period> [<waiting line>
 <period>]...
<waiting line> ::= <waiting line name>
 [(<global criterion of ordering>)]
 CONTAINS <admissible entity> [AND <admissible entity>]...
 [AND ITS MAXIMUM LENGTH IS <integer>]
<waiting line name> ::= <identifier>
<global criterion of ordering> ::= FIFO | LIFO
<admissible entity> ::= <pluralized entity name> [<local criterion of ordering> BY
 <attribute name>]
<pluralized entity name> ::= <entity name> [S | ES]
<local criterion of ordering> ::= ON ASCENDING ORDER | ON DESCENDING ORDER
<activity definition> ::= ACTIVITY: <activity name> <period>
 [MULTIPLICITY: <expression of variables> <period>]
 [STARTING CONDITIONS: <condition of variables> <period>]
 [ENDING CONDITIONS: <condition of variables> <period>]
 <flow statement> <period> [<flow statement> <period>]...
 [<attribute modifications>]
 [ACTIVITY DURATION: <expression of variables> <period>]
<activity name> ::= <identifier>
<condition of variables> ::= <boolean term of variables>
 [.AND.<boolean term of variables>]

Synthesis of Coloured Petri Nets from Natural-like Language Descriptions

41

<boolean term of variables> ::= <boolean factor of variables>
 [.OR.<boolean factor of variables>]
<boolean factor of variables> ::= <relation of variables> | (<condition of variables>)
<relation of variables> ::= <expression of variables> <relational operator>
 <expression of variables>
<expression of variables> ::= <term of variables>
 [+<term of variables> | -<term of variables>]
<term of variables> ::= <factor of variables>
 [*<factor of variables> | /<factor of variables>]
<factor of variables> ::= <atom of variables> | <factor of variables> @ <atom of variables>
<atom of variables> ::= <constant> |
 <internal variable name> |
 <external variable name> |
 <function of variables> |
 (<expression of variables>)
<relational operator> ::= > | < | = | <> | >= | <=
<constant> ::= <integer number> | [+|-].<string of digits> |
 <integer number>.<string of digits> | <literal>
<function of variables> ::= <function name> (<expression of variables>)
<function name> ::= <identifier>
<flow statement> ::= ENTITY FLOWS
 [(<scope and select condition>)]:
 <flow specification>...
<scope and select condition> ::= <scope> |<scope> <select condition> | <select condition>
<scope> ::= [ONLY] <expression> OF THE FOLLOWING FLOWS |
 FROM <expression> TO <expression> OF THE FOLLOWING FLOWS
<select condition> ::= SELECTING <relation of entities>
 [AND <relation of entities>]...
<relation of entities> ::= <expression of entities> <relational operator>
 <expression of entities>
<expression of entities> ::= <term of entities> [+<term of entities> |-<term of entities>]
<term of entities> ::= <factor of entities> [*<factor of entities> | /<factor of entities>]
<factor of entities> ::= <atom of entities> | <factor of entities> @ <atom of entities>
<atom of entities> ::= <constant> | <attribute name> OF <entity name>
 IN <waiting line name>
<flow specification> ::= [<repetition factor>] [IF <condition>] <flow>
<repetition factor> ::= ([AT MOST] <expression> TIMES)
<condition> ::= <boolean term> [.AND. <boolean term>]
<boolean term> ::= <boolean factor> [.OR. <boolean factor>]
<boolean factor> ::= <relation> | (<condition>)
<relation> ::= <expression> <relational operator> <expression>
<expression> ::= <term> [+<term> | -<term>]
<term> ::= <factor> [*<factor> | /<factor>]
<factor> ::= <atom> | <factor> @ <atom>
<atom> ::= <constant> |
 <internal variable name> |

 Advances in Petri Net Theory and Applications

42

 <external variable name> |
 <number of entities> |
 <entity attribute> |
 <function> |
 (<expression>)
<number of entities> ::= # <pluralized entity name> [WITH <entity condition>]
<entity condition> ::= <expression of attributes> <relational operator> <expression> [AND
 <expression of attributes> <relational operator> <expression>]... |
 (<entity condition>)
<expression of attributes> ::= <term of attributes> [+<term of attributes> |
 -<term of attributes>]
<term of attributes> ::= <factor of attributes>
 [*<factor of attributes> | /<factor of attributes>]
<factor of attributes> ::= <atom of attributes> | <factor of attributes> @ <atom of attributes>
<atom of attributes> ::= <constant> | <attribute name>
<entity attribute> ::= <attribute name> OF <entity name> [(# <string of digits>)]
<function> ::= <function name> (<expression>)
<flow> ::= <consumption flow> | <transmission flow> | <generation flow>
<consumption flow> ::= <input flow> <period>
<input flow> ::= GET [A|AN] <entity name>[WITH <entity condition>]
 FROM [THE] [<position> OF THE] <name of waiting line>
<position> ::= FRONT | END
<transmission flow> ::= <input flow> AND [AT END OF <identifier>]
 PUT [BACK] <output flow> [,<output flow>]... <period>
<output flow> ::= IN [<position> OF] <name of waiting line> [IF <condition>]
<generation flow> ::= [AT END OF <identifier>] PUT [A | AN]
 <entity name> <output flow>
<attribute modification> ::= ATTRIBUTE MODIFICATIONS:
 <modification statement> <period>
 [<modification statement> <period>]...
<modification statement> ::= [IF <condition> THEN]
 <left side of assignment> := <expression>
<left side of assignment> ::= <internal variable name> | <external variable name> |
 <entity attribute>

End of the formal grammar definition.

3

Petri Net as a Manufacturing
System Scheduling Tool

Dr. Tauseef Aized, Professor and Chair
Department of Mechanical, Mechatronics and Manufacturing Engineering,

KSK Campus, University of Engineering and Technology, Lahore,
Pakistan

1. Introduction
Scheduling problems arise when different types of jobs are processed by shared resources
according to their technological precedence conditions. There is a need to determine the
optimal input sequence of jobs and resource usage for a given job mix. Production
scheduling problems are very complex and have been proved to be NP-hard problems.
Different approaches to production planning and scheduling have been adopted which are
as follows:
1. Heuristic dispatching rules. Good rules are obtained based on experience. These rules

work but often not at the optimum level. They are also developed based on the system
simulation models. But simulation models are often too specific to particular situations
and hence the results cannot be very well generalized.

2. Mathematical programming methods: These have been extensively studied and can
produce good results for specific systems. The mathematical models have to ignore
many practical conditions in order to solve these models efficiently. These practical
conditions such as material handling capacity, complex resource sharing and routing,
and sophisticated discrete-event dynamics are very difficult to be mathematically and
concisely described. The optimality will not hold if any parameters or structures change
during an operational stage.

3. Computational intelligence based approaches: These include knowledge based
systems, neural networks, and genetic algorithms. Knowledge-based systems have
difficulty in acquiring the efficient rules and knowledge and the results cannot be
guaranteed the best.

4. Other methods: Other approaches such as algebraic models and control theoretic
methods are difficult to offer efficient solution methodologies. The methods based on
CPM/PERT and queuing networks provide efficient solution methodologies but cannot
describe shared resources, synchronization, and lot sizes easily.

Time-driven systems such as living organisms, ecological systems and world population
have long been modeled and analyzed through difference/ differential equations. Since
such equations have become a universal modeling framework for time-driven systems,
analytical and numerical techniques have been developed to solve the equations in order to
understand, control and optimize system behavior. Man-made technological environments
such as computer, transportation and telecommunication networks or manufacturing and

 Advances in Petri Net Theory and Applications

42

 <external variable name> |
 <number of entities> |
 <entity attribute> |
 <function> |
 (<expression>)
<number of entities> ::= # <pluralized entity name> [WITH <entity condition>]
<entity condition> ::= <expression of attributes> <relational operator> <expression> [AND
 <expression of attributes> <relational operator> <expression>]... |
 (<entity condition>)
<expression of attributes> ::= <term of attributes> [+<term of attributes> |
 -<term of attributes>]
<term of attributes> ::= <factor of attributes>
 [*<factor of attributes> | /<factor of attributes>]
<factor of attributes> ::= <atom of attributes> | <factor of attributes> @ <atom of attributes>
<atom of attributes> ::= <constant> | <attribute name>
<entity attribute> ::= <attribute name> OF <entity name> [(# <string of digits>)]
<function> ::= <function name> (<expression>)
<flow> ::= <consumption flow> | <transmission flow> | <generation flow>
<consumption flow> ::= <input flow> <period>
<input flow> ::= GET [A|AN] <entity name>[WITH <entity condition>]
 FROM [THE] [<position> OF THE] <name of waiting line>
<position> ::= FRONT | END
<transmission flow> ::= <input flow> AND [AT END OF <identifier>]
 PUT [BACK] <output flow> [,<output flow>]... <period>
<output flow> ::= IN [<position> OF] <name of waiting line> [IF <condition>]
<generation flow> ::= [AT END OF <identifier>] PUT [A | AN]
 <entity name> <output flow>
<attribute modification> ::= ATTRIBUTE MODIFICATIONS:
 <modification statement> <period>
 [<modification statement> <period>]...
<modification statement> ::= [IF <condition> THEN]
 <left side of assignment> := <expression>
<left side of assignment> ::= <internal variable name> | <external variable name> |
 <entity attribute>

End of the formal grammar definition.

3

Petri Net as a Manufacturing
System Scheduling Tool

Dr. Tauseef Aized, Professor and Chair
Department of Mechanical, Mechatronics and Manufacturing Engineering,

KSK Campus, University of Engineering and Technology, Lahore,
Pakistan

1. Introduction
Scheduling problems arise when different types of jobs are processed by shared resources
according to their technological precedence conditions. There is a need to determine the
optimal input sequence of jobs and resource usage for a given job mix. Production
scheduling problems are very complex and have been proved to be NP-hard problems.
Different approaches to production planning and scheduling have been adopted which are
as follows:
1. Heuristic dispatching rules. Good rules are obtained based on experience. These rules

work but often not at the optimum level. They are also developed based on the system
simulation models. But simulation models are often too specific to particular situations
and hence the results cannot be very well generalized.

2. Mathematical programming methods: These have been extensively studied and can
produce good results for specific systems. The mathematical models have to ignore
many practical conditions in order to solve these models efficiently. These practical
conditions such as material handling capacity, complex resource sharing and routing,
and sophisticated discrete-event dynamics are very difficult to be mathematically and
concisely described. The optimality will not hold if any parameters or structures change
during an operational stage.

3. Computational intelligence based approaches: These include knowledge based
systems, neural networks, and genetic algorithms. Knowledge-based systems have
difficulty in acquiring the efficient rules and knowledge and the results cannot be
guaranteed the best.

4. Other methods: Other approaches such as algebraic models and control theoretic
methods are difficult to offer efficient solution methodologies. The methods based on
CPM/PERT and queuing networks provide efficient solution methodologies but cannot
describe shared resources, synchronization, and lot sizes easily.

Time-driven systems such as living organisms, ecological systems and world population
have long been modeled and analyzed through difference/ differential equations. Since
such equations have become a universal modeling framework for time-driven systems,
analytical and numerical techniques have been developed to solve the equations in order to
understand, control and optimize system behavior. Man-made technological environments
such as computer, transportation and telecommunication networks or manufacturing and

 Advances in Petri Net Theory and Applications

44

logistics systems represent systems whose behavior is governed by events occurring
asynchronously over time. Events may be controlled (e.g.; release of a new job in a
manufacturing facility) or uncontrolled (e. g; arrival of a customer request at the same
manufacturing facility). Such systems are usually encountered whenever a set of tasks is to
be performed by a set of resources requiring coordination of events, resource contention
management and performance monitoring and optimization. Event-driven systems are of
increasing importance in today’s world because they are growing in number, size and
sophistication. It is therefore imperative to have systematic design methodologies in order
to achieve desirable performance and to avoid catastrophic failures. These systems may be
asynchronous and sequential, exhibiting many characteristics: concurrency, conflict, mutual
exclusion and non-determinism. These characteristics are difficult to describe using
traditional control theory which deals with systems of continuous or synchronous discrete
variables modeled by differential or difference equations. In addition, inappropriate control
of the occurrence of events may lead to system deadlock, capacity overflows or may
otherwise degrade system performance. These systems typically referred to as discrete event
dynamical systems (DEDS).The following are the characteristics embedded in DEDS.
• Event-driven: A discrete event system is characterized by a discrete state space where

changes in state are triggered by event occurrences. Precedence is a key relation
between events, that is, any event may be dependent on the occurrence of other events.

• Asynchronous: The asynchronous characteristic of discrete event systems is one of the
most important properties by which they differ from traditional systems described by
differential or difference equations. In time discretization of sampled systems, each
change or step is synchronized by a global clock. In continuous systems, parameters
vary continuously with time. However, in discrete event systems the events often occur
asynchronously.

• Sequential Relation: Given a set of events, there may exist some sequential
relationships among them. There is a sequential relation between two events if one
event can occur only after the occurrence of the other.

• Concurrency: It means that there are no sequential relationships among the concerned
events. For instance, two events are concurrent if either event may occur before the other.

• Conflict: It may occur when two or more processes require a common resource at the
same time.

• Mutual exclusion: when conflict occurs, the events become mutually exclusive in the
sense that they can not occur at the same time, whereas after one is complete, the other
can occur.

• Non-determinism: Two kinds of non-determinism may occur. The first kind results
from uncertain events’ occurrence. For instance, if there is a conflict between two
events, either of two events can occur randomly. The second kind of non-determinism
results from small changes in process parameters, e.g.; processing time of an operation
differ from time to time due to randomness , hence it can not be predicted accurately
when an event will occur.

• System deadlock: A state may reach when none of the processes can continue. This can
happen with the sharing of two resources between two processes and is usually the
result of system design.

In order to capture the above properties, several mechanisms have been proposed and
developed for modeling such systems. These are state machines, Petri nets, communicating

Petri Net as a Manufacturing System Scheduling Tool

45

sequential processes and finitely recursive processes. In order to conduct performance analysis
of these kinds of systems, methods such as perturbation analysis, queuing network theory and
Markov processes have been formulated and applied .An event-driven system can be
abstracted as a state machine in which the states change when events occur. The finite state
machine or automaton models results when the total number of states in a system is finite.
However, when they are used to model discrete event system in a straight forward manner,
the exponential increase in the number of states makes it very difficult to implement discrete
event systems. Graphical representation is almost impossible and thus graphical visualization
can not be easily realized .Some other models have also been developed for modeling and
control of discrete event systems, e.g., supervisory control theory and finitely recursive
processes. In supervisory control, the theory is elegant and is independent of the models used
for applications. In most applications, each discrete event process is assumed to be modeled by
an automaton or a state machine and its behavior is completely described by the language
generated by the automaton. Many interesting theoretical results have been reported on
controllability, observability and modular synthesis. However, the applicability to real-world
distributed systems may be limited by the use of state machine representation. This approach
encounters the state space explosion problem. Therefore, when a state machine is used to
describe a complicated system, the design problem can easily become unmanageable. In
addition, specifying the desirable language for a system is not easy. Finitely recursive
processes (FRP) are mainly based on Hoare’s communicating sequential processes. In the FRP
formulation, given a set of events, a process is defined as a triple which consists of three
components: a set of traces which the process can execute, an event function and a termination
function. One of the important feature is that each process can be described as a set of
recursive equations which implies that the description of a system can be implemented using
equation forms. However, many problems remain open, e.g., the use of such equations to
design supervisory controllers for real world systems.

2. Petri net as a DEDS modelling and scheduling mechanism
Petri net, as a graphical tool, provide a unified method for design of discrete event systems
from hierarchical systems description to physical realizations. Compared with other models
discussed above, they have the following advantages.
• Ease of modeling discrete event system characteristics: concurrency, asynchronous and

synchronous features, conflicts, mutual exclusion, precedence relation, non-
determinism and system deadlock,

• Ability to generate supervisory control code directly from the graphical Petri net
representation,

• Ability to check the system for undesirable properties such as deadlock and instability,
• Performance analysis without simulation is possible for many systems. Production

rates, resource utilization, reliability and performability can be evaluated.
• Discrete event simulation that can be driven from the model.
• Status information that allow for real-time monitoring
• Usefulness of scheduling because the Petri net model contains the system precedence

relations as well as constraints on discrete event performance.
As a single representation tool, Petri net can aid in modelling, analysis, validation,
verification, simulation, scheduling and performance evaluation at design stage. Once the
system shows desirable behaviour, the net can be converted into control and monitor

 Advances in Petri Net Theory and Applications

44

logistics systems represent systems whose behavior is governed by events occurring
asynchronously over time. Events may be controlled (e.g.; release of a new job in a
manufacturing facility) or uncontrolled (e. g; arrival of a customer request at the same
manufacturing facility). Such systems are usually encountered whenever a set of tasks is to
be performed by a set of resources requiring coordination of events, resource contention
management and performance monitoring and optimization. Event-driven systems are of
increasing importance in today’s world because they are growing in number, size and
sophistication. It is therefore imperative to have systematic design methodologies in order
to achieve desirable performance and to avoid catastrophic failures. These systems may be
asynchronous and sequential, exhibiting many characteristics: concurrency, conflict, mutual
exclusion and non-determinism. These characteristics are difficult to describe using
traditional control theory which deals with systems of continuous or synchronous discrete
variables modeled by differential or difference equations. In addition, inappropriate control
of the occurrence of events may lead to system deadlock, capacity overflows or may
otherwise degrade system performance. These systems typically referred to as discrete event
dynamical systems (DEDS).The following are the characteristics embedded in DEDS.
• Event-driven: A discrete event system is characterized by a discrete state space where

changes in state are triggered by event occurrences. Precedence is a key relation
between events, that is, any event may be dependent on the occurrence of other events.

• Asynchronous: The asynchronous characteristic of discrete event systems is one of the
most important properties by which they differ from traditional systems described by
differential or difference equations. In time discretization of sampled systems, each
change or step is synchronized by a global clock. In continuous systems, parameters
vary continuously with time. However, in discrete event systems the events often occur
asynchronously.

• Sequential Relation: Given a set of events, there may exist some sequential
relationships among them. There is a sequential relation between two events if one
event can occur only after the occurrence of the other.

• Concurrency: It means that there are no sequential relationships among the concerned
events. For instance, two events are concurrent if either event may occur before the other.

• Conflict: It may occur when two or more processes require a common resource at the
same time.

• Mutual exclusion: when conflict occurs, the events become mutually exclusive in the
sense that they can not occur at the same time, whereas after one is complete, the other
can occur.

• Non-determinism: Two kinds of non-determinism may occur. The first kind results
from uncertain events’ occurrence. For instance, if there is a conflict between two
events, either of two events can occur randomly. The second kind of non-determinism
results from small changes in process parameters, e.g.; processing time of an operation
differ from time to time due to randomness , hence it can not be predicted accurately
when an event will occur.

• System deadlock: A state may reach when none of the processes can continue. This can
happen with the sharing of two resources between two processes and is usually the
result of system design.

In order to capture the above properties, several mechanisms have been proposed and
developed for modeling such systems. These are state machines, Petri nets, communicating

Petri Net as a Manufacturing System Scheduling Tool

45

sequential processes and finitely recursive processes. In order to conduct performance analysis
of these kinds of systems, methods such as perturbation analysis, queuing network theory and
Markov processes have been formulated and applied .An event-driven system can be
abstracted as a state machine in which the states change when events occur. The finite state
machine or automaton models results when the total number of states in a system is finite.
However, when they are used to model discrete event system in a straight forward manner,
the exponential increase in the number of states makes it very difficult to implement discrete
event systems. Graphical representation is almost impossible and thus graphical visualization
can not be easily realized .Some other models have also been developed for modeling and
control of discrete event systems, e.g., supervisory control theory and finitely recursive
processes. In supervisory control, the theory is elegant and is independent of the models used
for applications. In most applications, each discrete event process is assumed to be modeled by
an automaton or a state machine and its behavior is completely described by the language
generated by the automaton. Many interesting theoretical results have been reported on
controllability, observability and modular synthesis. However, the applicability to real-world
distributed systems may be limited by the use of state machine representation. This approach
encounters the state space explosion problem. Therefore, when a state machine is used to
describe a complicated system, the design problem can easily become unmanageable. In
addition, specifying the desirable language for a system is not easy. Finitely recursive
processes (FRP) are mainly based on Hoare’s communicating sequential processes. In the FRP
formulation, given a set of events, a process is defined as a triple which consists of three
components: a set of traces which the process can execute, an event function and a termination
function. One of the important feature is that each process can be described as a set of
recursive equations which implies that the description of a system can be implemented using
equation forms. However, many problems remain open, e.g., the use of such equations to
design supervisory controllers for real world systems.

2. Petri net as a DEDS modelling and scheduling mechanism
Petri net, as a graphical tool, provide a unified method for design of discrete event systems
from hierarchical systems description to physical realizations. Compared with other models
discussed above, they have the following advantages.
• Ease of modeling discrete event system characteristics: concurrency, asynchronous and

synchronous features, conflicts, mutual exclusion, precedence relation, non-
determinism and system deadlock,

• Ability to generate supervisory control code directly from the graphical Petri net
representation,

• Ability to check the system for undesirable properties such as deadlock and instability,
• Performance analysis without simulation is possible for many systems. Production

rates, resource utilization, reliability and performability can be evaluated.
• Discrete event simulation that can be driven from the model.
• Status information that allow for real-time monitoring
• Usefulness of scheduling because the Petri net model contains the system precedence

relations as well as constraints on discrete event performance.
As a single representation tool, Petri net can aid in modelling, analysis, validation,
verification, simulation, scheduling and performance evaluation at design stage. Once the
system shows desirable behaviour, the net can be converted into control and monitor

 Advances in Petri Net Theory and Applications

46

operations at run time. Therefore, Petri nets can be regarded as a powerful mathematical
and graphical tool for design of various discrete events systems.

3. Petri net as a manufacturing system modelling mechanism
Modern manufacturing systems are highly parallel and distributed. They need to be
analyzed from qualitative and quantitative points of view. Qualitative analysis looks for
properties like the absence of deadlocks, the absence of overflows, or the presence of certain
mutual exclusions in the use of shared resources. Its ultimate goal is to prove the correctness
of the modeled system. Quantitative analysis looks for performance properties like
throughput, responsiveness properties e.g., average completion times or utilization
properties like utilization rates. Petri nets allow the construction of models amenable both
for correctness and efficiency analysis. It can be considered as a graph theoretic tool
especially suited to model and analyze Discrete Event Dynamical Systems (DEDS) which
exhibit parallel evolutions and whose behavior are characterized by synchronization and
sharing phenomena. Their suitability for modeling this type of system has led to their
application in a wide range of fields. Examples of such DEDS are communication networks,
computer systems and manufacturing systems. Petri nets have proven to be very useful in
modeling, simulation and control of manufacturing systems. They provide very useful
models for the following reasons:
• Petri nets capture the precedence relations and structural interactions of stochastic,

concurrent and asynchronous events. In addition, their graphical nature helps to
visualize such complex systems.

• Conflicts and buffer sizes can be modeled easily and efficiently.
• Deadlock in a system can be detected.
• Petri net models represent a hierarchical modeling tool with a well-developed

mathematical and practical foundation.
• Various extensions of Petri nets allow for both qualitative and quantitative analyses of

resource utilization, effect of failures and throughput rate.
• Petri net models give a structured framework for carrying out a systematic analysis of

complex systems.
• Petri net models can also be used to implement real-time control for a flexible

manufacturing system.
In this chapter, Petri net method is applied to model a semi-conductor manufacturing
system, which is typically called multiple cluster tool system.

4. Multiple cluster tool system description
In a simple cluster tool, a material lot is loaded into a load-lock, pumped down to vacuum,
and routed through a sequence of one or more modules in the cluster. After a wafer is
completed, it is returned to the load-lock and after the completion of a lot, it is vented to
atmosphere. In case loading/unloading time constitutes a significant component of total
processing time, an improvement can be achieved by doubling the load-locks known as
double load-lock cluster tool which can have throughput twice that of a single load-lock tool
if material processing time is comparable with the sum of loading and unloading time. If
the processing time is significantly greater than the loading/ unloading time, then the
performance advantage of a double load-lock tool is rather insignificant. Processing

Petri Net as a Manufacturing System Scheduling Tool

47

chambers normally consist of two or more processing modules. For instance, chemical
vapour deposition (CVD) cluster tools usually have six or eight modules which are process
modules with an aligner and a cooler module. Also, one or more of the process modules
may behave as bottleneck with the maximum service demand because of longest processing
time. An obvious approach for improving throughput of such a system is to duplicate the
critical chamber and use both chambers alternatively to increase the throughput of the tool.
A Cluster tool may be a single/ double or a multiple -blade tool. A single blade tool is one in
which a robotic transporter can carry only one wafer at a time whereas a double blade
cluster tool can carry two wafers at the same time. For cluster tools with many chambers, it
may be beneficial to use several robots, each of which services a group of chambers. A
cluster tool is operated by control software called a cluster tool controller which manages
the job data, communicates with the process modules and wafer handling robots and
coordinates their activities.
The considered multiple cluster tool system in this paper has four cluster tools. Each cluster
has four processing modules for material processing and two load-locks one of which is for
incoming material and the other is for outgoing material. Each cluster tool has a double-
blade tool. The angle between two arms of the robotic transporter, that is, double blade-tool
is always 180 degrees. The material between successive cluster tools is transported using
automated guided vehicles as shown in Figure 1.

Fig. 1. The multiple cluster tool system.
Legend: Pij – processing module ‘j’ of ith cluster tool, Rik- robot arm ‘k’ for ith cluster tool, LL-I
--load-lock for incoming material, LL-O -- load-lock for outgoing material, AGV-automated
guided vehicle

LL-I LL-O LL-I LL-O
AGV 1

AGV 2
AGV 3

P21

P22 P23

P24
P11

P12 P13

P14

P31

P32P33

P34P41

P42P43

P44

R12

R11

R22

R21

R31

R32

R41

R42

LL-ILL-OLL-ILL-O

 Advances in Petri Net Theory and Applications

46

operations at run time. Therefore, Petri nets can be regarded as a powerful mathematical
and graphical tool for design of various discrete events systems.

3. Petri net as a manufacturing system modelling mechanism
Modern manufacturing systems are highly parallel and distributed. They need to be
analyzed from qualitative and quantitative points of view. Qualitative analysis looks for
properties like the absence of deadlocks, the absence of overflows, or the presence of certain
mutual exclusions in the use of shared resources. Its ultimate goal is to prove the correctness
of the modeled system. Quantitative analysis looks for performance properties like
throughput, responsiveness properties e.g., average completion times or utilization
properties like utilization rates. Petri nets allow the construction of models amenable both
for correctness and efficiency analysis. It can be considered as a graph theoretic tool
especially suited to model and analyze Discrete Event Dynamical Systems (DEDS) which
exhibit parallel evolutions and whose behavior are characterized by synchronization and
sharing phenomena. Their suitability for modeling this type of system has led to their
application in a wide range of fields. Examples of such DEDS are communication networks,
computer systems and manufacturing systems. Petri nets have proven to be very useful in
modeling, simulation and control of manufacturing systems. They provide very useful
models for the following reasons:
• Petri nets capture the precedence relations and structural interactions of stochastic,

concurrent and asynchronous events. In addition, their graphical nature helps to
visualize such complex systems.

• Conflicts and buffer sizes can be modeled easily and efficiently.
• Deadlock in a system can be detected.
• Petri net models represent a hierarchical modeling tool with a well-developed

mathematical and practical foundation.
• Various extensions of Petri nets allow for both qualitative and quantitative analyses of

resource utilization, effect of failures and throughput rate.
• Petri net models give a structured framework for carrying out a systematic analysis of

complex systems.
• Petri net models can also be used to implement real-time control for a flexible

manufacturing system.
In this chapter, Petri net method is applied to model a semi-conductor manufacturing
system, which is typically called multiple cluster tool system.

4. Multiple cluster tool system description
In a simple cluster tool, a material lot is loaded into a load-lock, pumped down to vacuum,
and routed through a sequence of one or more modules in the cluster. After a wafer is
completed, it is returned to the load-lock and after the completion of a lot, it is vented to
atmosphere. In case loading/unloading time constitutes a significant component of total
processing time, an improvement can be achieved by doubling the load-locks known as
double load-lock cluster tool which can have throughput twice that of a single load-lock tool
if material processing time is comparable with the sum of loading and unloading time. If
the processing time is significantly greater than the loading/ unloading time, then the
performance advantage of a double load-lock tool is rather insignificant. Processing

Petri Net as a Manufacturing System Scheduling Tool

47

chambers normally consist of two or more processing modules. For instance, chemical
vapour deposition (CVD) cluster tools usually have six or eight modules which are process
modules with an aligner and a cooler module. Also, one or more of the process modules
may behave as bottleneck with the maximum service demand because of longest processing
time. An obvious approach for improving throughput of such a system is to duplicate the
critical chamber and use both chambers alternatively to increase the throughput of the tool.
A Cluster tool may be a single/ double or a multiple -blade tool. A single blade tool is one in
which a robotic transporter can carry only one wafer at a time whereas a double blade
cluster tool can carry two wafers at the same time. For cluster tools with many chambers, it
may be beneficial to use several robots, each of which services a group of chambers. A
cluster tool is operated by control software called a cluster tool controller which manages
the job data, communicates with the process modules and wafer handling robots and
coordinates their activities.
The considered multiple cluster tool system in this paper has four cluster tools. Each cluster
has four processing modules for material processing and two load-locks one of which is for
incoming material and the other is for outgoing material. Each cluster tool has a double-
blade tool. The angle between two arms of the robotic transporter, that is, double blade-tool
is always 180 degrees. The material between successive cluster tools is transported using
automated guided vehicles as shown in Figure 1.

Fig. 1. The multiple cluster tool system.
Legend: Pij – processing module ‘j’ of ith cluster tool, Rik- robot arm ‘k’ for ith cluster tool, LL-I
--load-lock for incoming material, LL-O -- load-lock for outgoing material, AGV-automated
guided vehicle

LL-I LL-O LL-I LL-O
AGV 1

AGV 2
AGV 3

P21

P22 P23

P24
P11

P12 P13

P14

P31

P32P33

P34P41

P42P43

P44

R12

R11

R22

R21

R31

R32

R41

R42

LL-ILL-OLL-ILL-O

 Advances in Petri Net Theory and Applications

48

5. Coloured Petri net
A semi-conductor manufacturing system is a discrete event dynamical (DEDS) system, which
is asynchronous, parallel, and event driven in its nature. A DEDS can be characterized by
events and conditions, which can be described by Petri net method easily. In a semi-conductor
manufacturing system, events are occurring in a parallel way that can be modelled compactly
by coloured Petri net method. A Petri net consists of places, transitions and directed arcs
represented by circles, rectangular bars and arrows, respectively. Arcs run between places and
transitions. Places may contain any number of tokens. A distribution of tokens over the places
of a net is called a marking. Transitions act on input tokens by a process known as firing. A
transition can fire if it is enabled, i.e., there are tokens in every input place. When a transition
fires, it consumes the tokens from its input places, perform some processing task and places a
specified number of tokens into each of its output places. The conditions of a DEDS are
described by places, events are described by transitions, relations between events and
conditions are described by arcs and holding of conditions are described by tokens in places.
The occurrences of events are described by firing of transitions which remove tokens from
input places and add tokens to output places and the behaviour of a system is described by
firing of transitions and movements of tokens. Places, transitions and tokens must be assigned
a meaning for proper interpretation of a model. In manufacturing systems, normally places
represent resources like machines, materials etc. and the existence of one or more tokens in a
place represents the availability of a particular resource, while no token indicates that the
resource is unavailable. A transition firing represents an activity or process execution, for
instance, a machining process. Places and transitions together represent conditions and
precedence relationships in a system’s operation.
Sorensen and Janssens (2004) presented a Petri net model of a continuous flow transfer line
with unreliable machines. This study proposed a Petri net in which a place represents the
state of a machine or of a buffer. For each machine, four places are added indicating that the
machine is up, down, blocked or starved. The proposed scheme is not suitable for practical
manufacturing systems which have a great many conditions and events and modelling
through Sorensen and Janssens (2004) method will generate a too complex and intractable
models. Gharbi and Loualalen (2006) provided a detailed analysis of finite-source retrial
systems with multiple servers subject to random breakdowns and repairs using generalized
stochastic Petri net models. Cao et al. (2007) presented a queuing generalized stochastic
coloured timed Petri net (QGSCTPN) based approach for modelling of semiconductor wafer
fabrication. In the proposed QGSCTPN, Cao et al. (2007) introduced two kinds of places
and five kinds of transitions and presented a small minfab model re-entrant line with three
machine groups. The study emphasized to further explore methods to model large
semiconductor manufacturing systems with practical constraints like random failures. Zhou
and Venkatesh (1999) presented augmented timed Petri net for modelling and analysing
manufacturing systems with breakdowns with the help of deactivation places, transitions
and arcs but resource breakdowns can be handled compactly and more effectively through
non-hierarchical and hierarchical coloured Petri net , defined in (Jensen, 1992), and is
explained in the following paragraph. Additionally, in contrast to the papers mentioned
where resource breakdowns have been modelled either before or after a processing activity,
this study proposes a modelling approach which can model not only before or after a
processing operation but also a resource breakdown activity can take place when a resource
is carrying out its operation. This approach is more practical as resources are subject to
breakdowns while they are performing their operations.

Petri Net as a Manufacturing System Scheduling Tool

49

In this study, the random failures of all material processing modules are modelled in the
same way and is elaborated by an example shown in Figure 2. This modelling feature is
carried out through a transition ‘Processing1’. There is a code segment attached to this
transition which is executed each time the transition occurs (fires). This code is used to
declare two values, that is, value exec time (execution time) and value time break (time until
breakdown) as exponential distribution functions. As this code is executed, the exponential
functions generate values for execution time and time until breakdown based on mean
execution or processing time of the module. These two values are compared in such a way
that if execution time is less than time until breakdown then the result is success; otherwise
it is failure. The success means the operation has been executed successfully and the failure
means that the module has been breakdown during execution. The arc variables correspond
to the relevant places in Figure 2. The scheduled maintenance is modelled in such a way that
process modules are allowed to perform a fix number of processing operations after which
the modules become unavailable and are repaired/ maintained and then again modules can
perform processing operations for a specific number of times. This process-repair-process
cycle repeats itself indefinitely. Figure 3 shows the snapshot of the CPN model taken from
CPN Tools whereas Table 1 describes places and transitions used in the model.

(m,c)

(m,c,res,a1)
(m,c,1)

(m,c)

(m,c,a1)

[res=breakdown]

Processing1

@+round
(exponential
(Processtime()))

Result1PM1

PM1

output (res,t);
action
let
 val executionTime = expDelay(1.0/1.0)
 val timeUntilBreakdown = expDelay(1.0/10.0)
in
 if executionTime < timeUntilBreakdown
 then (complete, executionTime)
 else (breakdown, timeUntilBreakdown)
end;

Module1

Module

(m,c,res,a1)@+t

@+round
(exponential
(1.0/1.0))

capacity

(m,c,a1)

(c,PM_1,a1+1)

(m,c,res,a1)

(c,PM_1,a1)

Breakdown1PM1_
breakRepairing1

@+round
(exponential
(Robtime()))

[Z2 (bp1,bp2)
(res)
(a2)]

@+round
(exponential
(Robtime()))

[Z1 (bp1,bp2)
(a1)]

Mod

(c,PM_1,1)
(c,PM_1,a1)

[a1=SM2]

@+round
(exponential
(1.0/1.0))

Capacity_PM1

Scheduled
Maintenance 1

Scheduled maintenece

Random
failure

Fig. 2. The random failure and scheduled maintenance using CPN Tools.

6. Model development
The model is developed using CPN Tools which is a CPN-based program developed on the
basis of CPN ML language. The CPN ML language is derived from Standard ML which is a
general purpose functional language. All material loading/unloading, processing, repair

 Advances in Petri Net Theory and Applications

48

5. Coloured Petri net
A semi-conductor manufacturing system is a discrete event dynamical (DEDS) system, which
is asynchronous, parallel, and event driven in its nature. A DEDS can be characterized by
events and conditions, which can be described by Petri net method easily. In a semi-conductor
manufacturing system, events are occurring in a parallel way that can be modelled compactly
by coloured Petri net method. A Petri net consists of places, transitions and directed arcs
represented by circles, rectangular bars and arrows, respectively. Arcs run between places and
transitions. Places may contain any number of tokens. A distribution of tokens over the places
of a net is called a marking. Transitions act on input tokens by a process known as firing. A
transition can fire if it is enabled, i.e., there are tokens in every input place. When a transition
fires, it consumes the tokens from its input places, perform some processing task and places a
specified number of tokens into each of its output places. The conditions of a DEDS are
described by places, events are described by transitions, relations between events and
conditions are described by arcs and holding of conditions are described by tokens in places.
The occurrences of events are described by firing of transitions which remove tokens from
input places and add tokens to output places and the behaviour of a system is described by
firing of transitions and movements of tokens. Places, transitions and tokens must be assigned
a meaning for proper interpretation of a model. In manufacturing systems, normally places
represent resources like machines, materials etc. and the existence of one or more tokens in a
place represents the availability of a particular resource, while no token indicates that the
resource is unavailable. A transition firing represents an activity or process execution, for
instance, a machining process. Places and transitions together represent conditions and
precedence relationships in a system’s operation.
Sorensen and Janssens (2004) presented a Petri net model of a continuous flow transfer line
with unreliable machines. This study proposed a Petri net in which a place represents the
state of a machine or of a buffer. For each machine, four places are added indicating that the
machine is up, down, blocked or starved. The proposed scheme is not suitable for practical
manufacturing systems which have a great many conditions and events and modelling
through Sorensen and Janssens (2004) method will generate a too complex and intractable
models. Gharbi and Loualalen (2006) provided a detailed analysis of finite-source retrial
systems with multiple servers subject to random breakdowns and repairs using generalized
stochastic Petri net models. Cao et al. (2007) presented a queuing generalized stochastic
coloured timed Petri net (QGSCTPN) based approach for modelling of semiconductor wafer
fabrication. In the proposed QGSCTPN, Cao et al. (2007) introduced two kinds of places
and five kinds of transitions and presented a small minfab model re-entrant line with three
machine groups. The study emphasized to further explore methods to model large
semiconductor manufacturing systems with practical constraints like random failures. Zhou
and Venkatesh (1999) presented augmented timed Petri net for modelling and analysing
manufacturing systems with breakdowns with the help of deactivation places, transitions
and arcs but resource breakdowns can be handled compactly and more effectively through
non-hierarchical and hierarchical coloured Petri net , defined in (Jensen, 1992), and is
explained in the following paragraph. Additionally, in contrast to the papers mentioned
where resource breakdowns have been modelled either before or after a processing activity,
this study proposes a modelling approach which can model not only before or after a
processing operation but also a resource breakdown activity can take place when a resource
is carrying out its operation. This approach is more practical as resources are subject to
breakdowns while they are performing their operations.

Petri Net as a Manufacturing System Scheduling Tool

49

In this study, the random failures of all material processing modules are modelled in the
same way and is elaborated by an example shown in Figure 2. This modelling feature is
carried out through a transition ‘Processing1’. There is a code segment attached to this
transition which is executed each time the transition occurs (fires). This code is used to
declare two values, that is, value exec time (execution time) and value time break (time until
breakdown) as exponential distribution functions. As this code is executed, the exponential
functions generate values for execution time and time until breakdown based on mean
execution or processing time of the module. These two values are compared in such a way
that if execution time is less than time until breakdown then the result is success; otherwise
it is failure. The success means the operation has been executed successfully and the failure
means that the module has been breakdown during execution. The arc variables correspond
to the relevant places in Figure 2. The scheduled maintenance is modelled in such a way that
process modules are allowed to perform a fix number of processing operations after which
the modules become unavailable and are repaired/ maintained and then again modules can
perform processing operations for a specific number of times. This process-repair-process
cycle repeats itself indefinitely. Figure 3 shows the snapshot of the CPN model taken from
CPN Tools whereas Table 1 describes places and transitions used in the model.

(m,c)

(m,c,res,a1)
(m,c,1)

(m,c)

(m,c,a1)

[res=breakdown]

Processing1

@+round
(exponential
(Processtime()))

Result1PM1

PM1

output (res,t);
action
let
 val executionTime = expDelay(1.0/1.0)
 val timeUntilBreakdown = expDelay(1.0/10.0)
in
 if executionTime < timeUntilBreakdown
 then (complete, executionTime)
 else (breakdown, timeUntilBreakdown)
end;

Module1

Module

(m,c,res,a1)@+t

@+round
(exponential
(1.0/1.0))

capacity

(m,c,a1)

(c,PM_1,a1+1)

(m,c,res,a1)

(c,PM_1,a1)

Breakdown1PM1_
breakRepairing1

@+round
(exponential
(Robtime()))

[Z2 (bp1,bp2)
(res)
(a2)]

@+round
(exponential
(Robtime()))

[Z1 (bp1,bp2)
(a1)]

Mod

(c,PM_1,1)
(c,PM_1,a1)

[a1=SM2]

@+round
(exponential
(1.0/1.0))

Capacity_PM1

Scheduled
Maintenance 1

Scheduled maintenece

Random
failure

Fig. 2. The random failure and scheduled maintenance using CPN Tools.

6. Model development
The model is developed using CPN Tools which is a CPN-based program developed on the
basis of CPN ML language. The CPN ML language is derived from Standard ML which is a
general purpose functional language. All material loading/unloading, processing, repair

 Advances in Petri Net Theory and Applications

50

(m
,c

,1
)

(m
,c

)
(m

,c
)

(m
,c

,1
)

(m
,c

)

(m
,c

)

(m
,c

,r
es

,a
3)

(m
,c

,1
)

(m
,c

)

(m
,c

)

(m
,c

,r
es

,a
2)

(c
,P

M
_4

,1
)

(c
,P

M
_4

,a
4)

(c
,P

M
_3

,1
)

(c
,P

M
_3

,a
3)

(c
,P

M
_1

,1
)

(c
,P

M
_1

,a
1)

(m
,c

,1
)

(m
,c

)

(m
,c

)

(m
,c

,r
es

,a
1)

b

1`
{M

at
=

m
,A

t=
i}

(m
,c

)

(m
,c

)

(m
,c

,
re

s,
a4

)

(m
,c

,r
es

,a
4)

@
+

t

(m
,c

,r
es

,a
3)

(m
,c

,r
es

,a
2)

@
+

t

(m
,c

,a
2)

(m
,c

,r
es

,a
1)

(m
,c

,r
es

,a
1)

@
+

t

(m
,c

,a
1)

if
c=

C(
1)

th

en
 1

`(
m

+
1,

c)

el
se

 e
m

pt
y

if
c=

C(
4)

 t
he

n
1`

(m
,c

)
el

se
 e

m
pt

y

(c
,O

B)

(c
,O

B)

(m
,c

)

(m
,c

)

(c
,P

M
_4

,a
4+

1)
(c

,P
M

_2
,a

2+
1)

(c
,P

M
_1

,a
1)

(m
,c

,a
4)

(m
,c

,a
3)

(m
,c

,a
2)

(m
,c

,a
1)

(m
,c

)

@
+

ro
un

d
(e

xp
on

en
tia

l
(M

TT
R)

)
[r

es
=

br
ea

kd
ow

n]

@
+

ro
un

d
(e

xp
on

en
tia

l
(M

TT
R)

)
[r

es
=

br
ea

kd
ow

n]

Re
pa

iri
ng

2

@
+

ro
un

d
(e

xp
on

en
tia

l
(M

TT
R)

)
[r

es
=

br
ea

kd
ow

n]

[a
4=

SM
2]

Sc
he

du
le

d
M

ai
nt

en
an

ce
 3

[a
3=

SM
2]

Sc
he

du
le

d
M

ai
nt

en
an

ce
 2

[a
2=

SM
2]

[a
1=

SM
2]

[r
es

=
br

ea
kd

ow
n]

O
ut

pu
t

Pr
oc

es
si

ng
4

Pr
oc

es
si

ng
2

@
+

ro
un

d
(e

xp
on

en
tia

l
(P

ro
ce

ss
tim

e(
))

)

Pr
oc

es
si

ng
1

AG
V Ro

bo
t

Po
si

tio
n

 C
ha

ng
e

@
+

ro
un

d
(e

xp
on

en
tia

l
(R

ob
tim

e(
))

)

[Z
3

(b
p1

,b
p2

)
(r

es
)(

a3
)]

@
+

ro
un

d
(e

xp
on

en
tia

l
(R

ob
tim

e(
))

)

@
+

ro
un

d
(e

xp
on

en
tia

l
(R

ob
tim

e(
))

)

[Z
1

(b
p1

,b
p2

)
(a

1)
]

M
od

ul
e

M
od

ul
e

PM
2_

br
ea

k M
od

ul
e

1`
1@

+
48

0

IN
T3

M
od

ul
e

in
ve

nt
or

y

M
od

ul
e1

Re
su

lt3

M
od

ul
e1

Re
su

lt2

M
od

ul
e1

Re
su

lt1

B

M
od

ul
e

ca
pa

ci
ty

1

LL
_O

M
od

ul
e

D
ou

bl
e_

Bl
ad

e_
Ro

bo
t

ca
pa

ci
ty

ca
pa

ci
ty

_P
M

3 ca
pa

ci
ty

ca
pa

ci
ty

_P
M

2

ca
pa

ci
ty

ca
pa

ci
ty

PM
4 M
od

PM
3

PM
3

M
od

PM
2

PM
2

M
od

PM
1

PM
1

M
od

LL
_I

M
od

ul
e

[Z
2

(b
p1

,
bp

2)
(r

es
)

(a
2)

]

M
od

ul
e1

@
+

ro
un

d
(e

xp
on

en
tia

l
(P

ro
ce

ss
tim

e(
))

)

{c
lu

st
er

=
c,

B1
=

bp
1,

B2
=

bp
2,

co
un

t=
1}

[Z
4

(b
p1

,b
p2

)
(r

es
)

(a
4)

]

Br
ea

kd
ow

n2

@
+

ro
un

d
(e

xp
on

en
tia

l
(M

TT
R)

)

Sc
he

du
le

d
M

ai
nt

en
an

ce
 4

Re
pa

iri
ng

4
Br

ea
kd

ow
n4

@
+

ro
un

d
(e

xp
on

en
tia

l
(P

ro
ce

ss
tim

e(
))

)
PM

4

@
+

ro
un

d
(e

xp
on

en
tia

l
(R

ob
tim

e(
))

)

[Z
5(

bp
1,

bp
2)

(r
es

)]

@
+

ro
un

d
(e

xp
on

en
tia

l
(R

ob
tim

e(
))

)

Re
su

lt4(m
,c

,
re

s,
a4

)

PM
4_

br
ea

k

(m
,c

,a
4)

)1
+3a,3_

MP,c(
)3a,3_

MP,c(

Br
ea

kd
ow

n3
PM

3_
br

ea
k

Re
pa

iri
ng

3

@
+

ro
un

d
(e

xp
on

en
tia

l
(P

ro
ce

ss
tim

e(
))

)

(m
,c

,
re

s,
a3

)
@

+
t

Pr
oc

es
si

ng
3

(m
,

c, a3
)

(m
,c

,r
es

,a
2)

@
+

ro
un

d
(e

xp
on

en
tia

l
(M

TT
R)

)

@
+

ro
un

d
(e

xp
on

en
tia

l
(M

TT
R)

)

(c
,P

M
_2

,1
)

(c
,P

M
_2

,a
2)

Sc
he

du
le

d
M

ai
nt

en
an

ce
 1

@
+

ro
un

d
(e

xp
on

en
tia

l
(M

TT
R)

)

Ca
pa

ci
ty

_P
M

1
(c

,P
M

_1
,a

1+
1)

PM
1_

br
ea

k
Br

ea
kd

ow
n1

Re
pa

iri
ng

1

@
+

ro
un

d
(e

xp
on

en
tia

l
(M

TT
R)

)

M
od

ul
e

(c
,P

M
_2

,a
2)

(c
,P

M
_4

,a
4)

if
bp

1=
LL

 t
he

n
1`

{c
lu

st
er

=
c,

B1
=

PM
_1

,
B2

=
PM

_4
,c

ou
nt

=
2}

el
se

 1
`{

cl
us

te
r=

c,
B1

=
PM

_4
,

B2
=

PM
_1

,c
ou

nt
=

2}

ca
pa

ci
ty

_P
M

4

Ro
bo

t_
Bl

ad
e_

Po
si

tio
n

D
ou

bl
e

Bl
ad

e
Ro

bo
t

{c
lu

st
er

=
c,

B1
=

bp
1,

B2
=

bp
2,

co
un

t=
1}

if
bp

1=
PM

_4
 t

he
n

1`
{c

lu
st

er
=

c,
B1

=
O

B,
B2

=
PM

_2
,c

ou
nt

=
2}

el
se

 1
`{

cl
us

te
r=

c,
B1

=
PM

_2
,

B2
=

O
B,

co
un

t=
2}

ca
pa

ci
ty

_O
B

{c
lu

st
er

=
c,

B1
=

bp
1,

B2
=

bp
2,

co
un

t=
1}

if
bp

1=
PM

_2
 t

he
n

1`
{c

lu
st

er
=

c,
B1

=
PM

_3
,

B2
=

LL
,c

ou
nt

=
2}

el
se

 1
`{

cl
us

te
r=

c,
B1

=
LL

,
B2

=
PM

_3
,c

ou
nt

=
2}

{c
lu

st
er

=
c,

B1
=

bp
1,

B2
=

bp
2,

co
un

t=
1}

if
bp

1=
PM

_1
 t

he
n

1`
{c

lu
st

er
=

c,
B1

=
PM

_2
,

B2
=

O
B,

co
un

t=
2}

el
se

 1
`{

cl
us

te
r=

c,
B1

=
O

B,
B2

=
PM

_2
,c

ou
nt

=
2}

{c
lu

st
er

=
c,

B1
=

bp
1,

B2
=

bp
2,

co
un

t=
1}

if
bp

1=
LL

 t
he

n
1`

{c
lu

st
er

=
c,

B1
=

PM
_1

,B
2=

PM
_4

,c
ou

nt
=

1}
el

se
 1

`{
cl

us
te

r=
c,

B1
=

PM
_4

,B
2=

PM
_1

,c
ou

nt
=

1}

ou
tp

ut
 (

re
s,

t)
;

ac
tio

n
le

t
 v

al
 e

xe
cu

tio
nT

im
e

=
 e

xp
D

el
ay

(1
.0

/1
.0

)
 v

al
 t

im
eU

nt
ilB

re
ak

do
w

n
=

 e
xp

D
el

ay
(1

.0
/1

.0
)

in i
f e

xe
cu

tio
nT

im
e

<
 t

im
eU

nt
ilB

re
ak

do
w

n
 t

he
n

(c
om

pl
et

e,
 e

xe
cu

tio
nT

im
e)

 e
ls

e
(

br
ea

kd
ow

n,
 t

im
eU

nt
ilB

re
ak

do
w

n)
en

d;

ou
tp

ut
 (

re
s,

t)
;

ac
tio

n
le

t
 v

al
 e

xe
cu

tio
nT

im
e

=
 e

xp
D

el
ay

(1
.0

/1
.0

)
 v

al
 t

im
eU

nt
ilB

re
ak

do
w

n
=

 e
xp

D
el

ay
(1

.0
/1

.0
)

in i
f e

xe
cu

tio
nT

im
e

<
 t

im
eU

nt
ilB

re
ak

do
w

n
 t

he
n

(c
om

pl
et

e,
 e

xe
cu

tio
nT

im
e)

 e
ls

e
(

br
ea

kd
ow

n,
 t

im
eU

nt
ilB

re
ak

do
w

n)
en

d;

{c
lu

st
er

=
c,

B1
=

bp
1,

B2
=

bp
2,

co
un

t=
2}

ca
se

 b
p1

 o
f

LL
 =

>
 1

`{
cl

us
te

r=
c,

B1
=

PM
_1

,B
2=

PM
_4

,c
ou

nt
=

1}
|(

PM
_1

)
=

>
1`

{c
lu

st
er

=
c,

B1
=

PM
_2

,B
2=

O
B,

co
un

t=
1}

|(
PM

_2
)

=
>

1`
{c

lu
st

er
=

c,
B1

=
PM

_3
,B

2=
LL

,c
ou

nt
=

1}
|(

PM
_3

)
=

>
1`

{c
lu

st
er

=
c,

B1
=

PM
_4

,B
2=

PM
_1

,c
ou

nt
=

1}
|(

PM
_4

)
=

>
1`

{c
lu

st
er

=
c,

B1
=

O
B,

B2
=

PM
_2

,c
ou

nt
=

1}
|(

O
B)

 =
>

1`
{c

lu
st

er
=

c,
B1

=
LL

,B
2=

PM
_3

,c
ou

nt
=

1}
|_

=
>

em
pt

y

ou
tp

ut
 (

re
s,

t)
;

ac
tio

n
le

t
 v

al
 e

xe
cu

tio
nT

im
e

=
 e

xp
D

el
ay

(1
.0

/1
.0

)
 v

al
 t

im
eU

nt
ilB

re
ak

do
w

n
=

 e
xp

D
el

ay
(1

.0
/1

.0
)

in i
f e

xe
cu

tio
nT

im
e

<
 t

im
eU

nt
ilB

re
ak

do
w

n
 t

he
n

(c
om

pl
et

e,
 e

xe
cu

tio
nT

im
e)

 e
ls

e
(

br
ea

kd
ow

n,
 t

im
eU

nt
ilB

re
ak

do
w

n)
en

d;

ou
tp

ut
 (

re
s,

t)
;

ac
tio

n
le

t
 v

al
 e

xe
cu

tio
nT

im
e

=
 e

xp
D

el
ay

(1
.0

/1
.0

)
 v

al
 t

im
eU

nt
ilB

re
ak

do
w

n
=

 e
xp

D
el

ay
(1

.0
/1

.0
)

in i
f e

xe
cu

tio
nT

im
e

<
 t

im
eU

nt
ilB

re
ak

do
w

n
 t

he
n

(c
om

pl
et

e,
 e

xe
cu

tio
nT

im
e)

 e
ls

e
(

br
ea

kd
ow

n,
 t

im
eU

nt
ilB

re
ak

do
w

n)
en

d;

Th
ro

ug
hp

ut

b+
1@

+
48

0

Th
ro

ug
hp

ut

em
pt

y

ca
pa

ci
ty

_L
L_

O

@
+

ro
un

d
(e

xp
on

en
tia

l
(1

.0
/1

.0
))

O
ut

pu
t

Cy
cl

e_
Ti

m
e_

M
on

ito
r

@
+

ro
un

d
(e

xp
on

en
tia

l
(R

ob
tim

e(
))

)

Cy
cl

e
Ti

m
eM

on
ito

r

ca
se

 c
 o

f
C(

1)
=

>
 1

`(
m

,C
(2

))
|C

(2
)=

>
1`

(m
,C

(3
))

|C
(3

)=
>

 1
`(

m
,C

(4
))

|_
=

>
em

pt
y

if
(m

 >
=

17
 a

nd
al

so
 c

=
C(

1)
)

th
en

1`
{M

at
=

m
,A

t=
in

tT
im

e(
)}

 e
ls

e
em

pt
y

1`
(1

7,
C(

1)
)

CP
N

'R
ep

lic
at

io
ns

.n
re

pl
ic

at
io

ns
 1

0

si
m

ul
at

eC
on

fig
s(

6)

Fig. 3. The multiple cluster tool system model developed using CPN Tools.

Petri Net as a Manufacturing System Scheduling Tool

51

Places Description Transitions Description

LL_I Load-lock for incoming
material Processing 1,2,3,4

Processing activity in
progress at module
1,2,3,4

LL_O Load-lock for outgoing
material Breakdown1,2,3,4 Process modules

breakdowns

PM1,2,3,4 Processing modules 1,2,3
and 4 Repairing1,2,3,4 Process module

1,2,3,4 under repair

Result1,2,3,4

Result of processing
modules 1,2,3,4
respectively (Material
processing successful or
module breakdown
during processing)

Scheduled
Maintenance1,2,3,4

Process module
1,2,3,4 under
scheduled
maintenance

PM1,2,3,4_Break Processing module 1,2,3,4
in breakdown condition AGV

Material
transportation
between successive
cluster tools

Capacity_PM1,2,3,4 Capacity specification for
Processing module 1,2,3,4

Robot Position
Change

Change of position
of double blade
robot tool

Capacity_LL_O
Capacity specification for
load-lock for outgoing
material

Blade_Position_Robot Orientation specification
of double blade tool

Cycle Time Monitor Monitoring cycle time

Table1. Places and transitions description

and transportation operations have been modelled using exponential distribution functions.
The following simulation assumptions have been used in developing the model:
• The raw material is always available.
• All material handling robot times are the same.
• All module processing times are the same.
• All module repair times are the same.
• The automated guided vehicles for material transportation between clusters are always

available.
These assumptions can be easily relaxed in coloured Petri net modelling, if required. Before
collecting the resulting data, it is important to detect the warm-up period to access the
steady state behaviour of the system. This study uses four stage SPC approach (Robinson,
2002) to find out the steady state results. The warning Limit (WL) and action Limit (AL) are
calculated as under:

1.96 /WL nμ σ= ± , 3.09 /AL nμ σ= ±

Where μ is mean value, σ is standard deviation and n is number of replications. As the
input factors vary for individual simulation runs in this study, hence the warm-up period is

 Advances in Petri Net Theory and Applications

50

(m
,c

,1
)

(m
,c

)
(m

,c
)

(m
,c

,1
)

(m
,c

)

(m
,c

)

(m
,c

,r
es

,a
3)

(m
,c

,1
)

(m
,c

)

(m
,c

)

(m
,c

,r
es

,a
2)

(c
,P

M
_4

,1
)

(c
,P

M
_4

,a
4)

(c
,P

M
_3

,1
)

(c
,P

M
_3

,a
3)

(c
,P

M
_1

,1
)

(c
,P

M
_1

,a
1)

(m
,c

,1
)

(m
,c

)

(m
,c

)

(m
,c

,r
es

,a
1)

b

1`
{M

at
=

m
,A

t=
i}

(m
,c

)

(m
,c

)

(m
,c

,
re

s,
a4

)

(m
,c

,r
es

,a
4)

@
+

t

(m
,c

,r
es

,a
3)

(m
,c

,r
es

,a
2)

@
+

t

(m
,c

,a
2)

(m
,c

,r
es

,a
1)

(m
,c

,r
es

,a
1)

@
+

t

(m
,c

,a
1)

if
c=

C(
1)

th

en
 1

`(
m

+
1,

c)

el
se

 e
m

pt
y

if
c=

C(
4)

 t
he

n
1`

(m
,c

)
el

se
 e

m
pt

y

(c
,O

B)

(c
,O

B)

(m
,c

)

(m
,c

)

(c
,P

M
_4

,a
4+

1)
(c

,P
M

_2
,a

2+
1)

(c
,P

M
_1

,a
1)

(m
,c

,a
4)

(m
,c

,a
3)

(m
,c

,a
2)

(m
,c

,a
1)

(m
,c

)

@
+

ro
un

d
(e

xp
on

en
tia

l
(M

TT
R)

)
[r

es
=

br
ea

kd
ow

n]

@
+

ro
un

d
(e

xp
on

en
tia

l
(M

TT
R)

)
[r

es
=

br
ea

kd
ow

n]

Re
pa

iri
ng

2

@
+

ro
un

d
(e

xp
on

en
tia

l
(M

TT
R)

)
[r

es
=

br
ea

kd
ow

n]

[a
4=

SM
2]

Sc
he

du
le

d
M

ai
nt

en
an

ce
 3

[a
3=

SM
2]

Sc
he

du
le

d
M

ai
nt

en
an

ce
 2

[a
2=

SM
2]

[a
1=

SM
2]

[r
es

=
br

ea
kd

ow
n]

O
ut

pu
t

Pr
oc

es
si

ng
4

Pr
oc

es
si

ng
2

@
+

ro
un

d
(e

xp
on

en
tia

l
(P

ro
ce

ss
tim

e(
))

)

Pr
oc

es
si

ng
1

AG
V Ro

bo
t

Po
si

tio
n

 C
ha

ng
e

@
+

ro
un

d
(e

xp
on

en
tia

l
(R

ob
tim

e(
))

)

[Z
3

(b
p1

,b
p2

)
(r

es
)(

a3
)]

@
+

ro
un

d
(e

xp
on

en
tia

l
(R

ob
tim

e(
))

)

@
+

ro
un

d
(e

xp
on

en
tia

l
(R

ob
tim

e(
))

)

[Z
1

(b
p1

,b
p2

)
(a

1)
]

M
od

ul
e

M
od

ul
e

PM
2_

br
ea

k M
od

ul
e

1`
1@

+
48

0

IN
T3

M
od

ul
e

in
ve

nt
or

y

M
od

ul
e1

Re
su

lt3

M
od

ul
e1

Re
su

lt2

M
od

ul
e1

Re
su

lt1

B

M
od

ul
e

ca
pa

ci
ty

1

LL
_O

M
od

ul
e

D
ou

bl
e_

Bl
ad

e_
Ro

bo
t

ca
pa

ci
ty

ca
pa

ci
ty

_P
M

3 ca
pa

ci
ty

ca
pa

ci
ty

_P
M

2

ca
pa

ci
ty

ca
pa

ci
ty

PM
4 M
od

PM
3

PM
3

M
od

PM
2

PM
2

M
od

PM
1

PM
1

M
od

LL
_I

M
od

ul
e

[Z
2

(b
p1

,
bp

2)
(r

es
)

(a
2)

]

M
od

ul
e1

@
+

ro
un

d
(e

xp
on

en
tia

l
(P

ro
ce

ss
tim

e(
))

)

{c
lu

st
er

=
c,

B1
=

bp
1,

B2
=

bp
2,

co
un

t=
1}

[Z
4

(b
p1

,b
p2

)
(r

es
)

(a
4)

]

Br
ea

kd
ow

n2

@
+

ro
un

d
(e

xp
on

en
tia

l
(M

TT
R)

)

Sc
he

du
le

d
M

ai
nt

en
an

ce
 4

Re
pa

iri
ng

4
Br

ea
kd

ow
n4

@
+

ro
un

d
(e

xp
on

en
tia

l
(P

ro
ce

ss
tim

e(
))

)
PM

4

@
+

ro
un

d
(e

xp
on

en
tia

l
(R

ob
tim

e(
))

)

[Z
5(

bp
1,

bp
2)

(r
es

)]

@
+

ro
un

d
(e

xp
on

en
tia

l
(R

ob
tim

e(
))

)

Re
su

lt4(m
,c

,
re

s,
a4

)

PM
4_

br
ea

k

(m
,c

,a
4)

)1
+3a,3_

MP,c(
)3a,3_

MP,c(

Br
ea

kd
ow

n3
PM

3_
br

ea
k

Re
pa

iri
ng

3

@
+

ro
un

d
(e

xp
on

en
tia

l
(P

ro
ce

ss
tim

e(
))

)

(m
,c

,
re

s,
a3

)
@

+
t

Pr
oc

es
si

ng
3

(m
,

c, a3
)

(m
,c

,r
es

,a
2)

@
+

ro
un

d
(e

xp
on

en
tia

l
(M

TT
R)

)

@
+

ro
un

d
(e

xp
on

en
tia

l
(M

TT
R)

)

(c
,P

M
_2

,1
)

(c
,P

M
_2

,a
2)

Sc
he

du
le

d
M

ai
nt

en
an

ce
 1

@
+

ro
un

d
(e

xp
on

en
tia

l
(M

TT
R)

)

Ca
pa

ci
ty

_P
M

1
(c

,P
M

_1
,a

1+
1)

PM
1_

br
ea

k
Br

ea
kd

ow
n1

Re
pa

iri
ng

1

@
+

ro
un

d
(e

xp
on

en
tia

l
(M

TT
R)

)

M
od

ul
e

(c
,P

M
_2

,a
2)

(c
,P

M
_4

,a
4)

if
bp

1=
LL

 t
he

n
1`

{c
lu

st
er

=
c,

B1
=

PM
_1

,
B2

=
PM

_4
,c

ou
nt

=
2}

el
se

 1
`{

cl
us

te
r=

c,
B1

=
PM

_4
,

B2
=

PM
_1

,c
ou

nt
=

2}

ca
pa

ci
ty

_P
M

4

Ro
bo

t_
Bl

ad
e_

Po
si

tio
n

D
ou

bl
e

Bl
ad

e
Ro

bo
t

{c
lu

st
er

=
c,

B1
=

bp
1,

B2
=

bp
2,

co
un

t=
1}

if
bp

1=
PM

_4
 t

he
n

1`
{c

lu
st

er
=

c,
B1

=
O

B,
B2

=
PM

_2
,c

ou
nt

=
2}

el
se

 1
`{

cl
us

te
r=

c,
B1

=
PM

_2
,

B2
=

O
B,

co
un

t=
2}

ca
pa

ci
ty

_O
B

{c
lu

st
er

=
c,

B1
=

bp
1,

B2
=

bp
2,

co
un

t=
1}

if
bp

1=
PM

_2
 t

he
n

1`
{c

lu
st

er
=

c,
B1

=
PM

_3
,

B2
=

LL
,c

ou
nt

=
2}

el
se

 1
`{

cl
us

te
r=

c,
B1

=
LL

,
B2

=
PM

_3
,c

ou
nt

=
2}

{c
lu

st
er

=
c,

B1
=

bp
1,

B2
=

bp
2,

co
un

t=
1}

if
bp

1=
PM

_1
 t

he
n

1`
{c

lu
st

er
=

c,
B1

=
PM

_2
,

B2
=

O
B,

co
un

t=
2}

el
se

 1
`{

cl
us

te
r=

c,
B1

=
O

B,
B2

=
PM

_2
,c

ou
nt

=
2}

{c
lu

st
er

=
c,

B1
=

bp
1,

B2
=

bp
2,

co
un

t=
1}

if
bp

1=
LL

 t
he

n
1`

{c
lu

st
er

=
c,

B1
=

PM
_1

,B
2=

PM
_4

,c
ou

nt
=

1}
el

se
 1

`{
cl

us
te

r=
c,

B1
=

PM
_4

,B
2=

PM
_1

,c
ou

nt
=

1}

ou
tp

ut
 (

re
s,

t)
;

ac
tio

n
le

t
 v

al
 e

xe
cu

tio
nT

im
e

=
 e

xp
D

el
ay

(1
.0

/1
.0

)
 v

al
 t

im
eU

nt
ilB

re
ak

do
w

n
=

 e
xp

D
el

ay
(1

.0
/1

.0
)

in i
f e

xe
cu

tio
nT

im
e

<
 t

im
eU

nt
ilB

re
ak

do
w

n
 t

he
n

(c
om

pl
et

e,
 e

xe
cu

tio
nT

im
e)

 e
ls

e
(

br
ea

kd
ow

n,
 t

im
eU

nt
ilB

re
ak

do
w

n)
en

d;

ou
tp

ut
 (

re
s,

t)
;

ac
tio

n
le

t
 v

al
 e

xe
cu

tio
nT

im
e

=
 e

xp
D

el
ay

(1
.0

/1
.0

)
 v

al
 t

im
eU

nt
ilB

re
ak

do
w

n
=

 e
xp

D
el

ay
(1

.0
/1

.0
)

in i
f e

xe
cu

tio
nT

im
e

<
 t

im
eU

nt
ilB

re
ak

do
w

n
 t

he
n

(c
om

pl
et

e,
 e

xe
cu

tio
nT

im
e)

 e
ls

e
(

br
ea

kd
ow

n,
 t

im
eU

nt
ilB

re
ak

do
w

n)
en

d;

{c
lu

st
er

=
c,

B1
=

bp
1,

B2
=

bp
2,

co
un

t=
2}

ca
se

 b
p1

 o
f

LL
 =

>
 1

`{
cl

us
te

r=
c,

B1
=

PM
_1

,B
2=

PM
_4

,c
ou

nt
=

1}
|(

PM
_1

)
=

>
1`

{c
lu

st
er

=
c,

B1
=

PM
_2

,B
2=

O
B,

co
un

t=
1}

|(
PM

_2
)

=
>

1`
{c

lu
st

er
=

c,
B1

=
PM

_3
,B

2=
LL

,c
ou

nt
=

1}
|(

PM
_3

)
=

>
1`

{c
lu

st
er

=
c,

B1
=

PM
_4

,B
2=

PM
_1

,c
ou

nt
=

1}
|(

PM
_4

)
=

>
1`

{c
lu

st
er

=
c,

B1
=

O
B,

B2
=

PM
_2

,c
ou

nt
=

1}
|(

O
B)

 =
>

1`
{c

lu
st

er
=

c,
B1

=
LL

,B
2=

PM
_3

,c
ou

nt
=

1}
|_

=
>

em
pt

y

ou
tp

ut
 (

re
s,

t)
;

ac
tio

n
le

t
 v

al
 e

xe
cu

tio
nT

im
e

=
 e

xp
D

el
ay

(1
.0

/1
.0

)
 v

al
 t

im
eU

nt
ilB

re
ak

do
w

n
=

 e
xp

D
el

ay
(1

.0
/1

.0
)

in i
f e

xe
cu

tio
nT

im
e

<
 t

im
eU

nt
ilB

re
ak

do
w

n
 t

he
n

(c
om

pl
et

e,
 e

xe
cu

tio
nT

im
e)

 e
ls

e
(

br
ea

kd
ow

n,
 t

im
eU

nt
ilB

re
ak

do
w

n)
en

d;

ou
tp

ut
 (

re
s,

t)
;

ac
tio

n
le

t
 v

al
 e

xe
cu

tio
nT

im
e

=
 e

xp
D

el
ay

(1
.0

/1
.0

)
 v

al
 t

im
eU

nt
ilB

re
ak

do
w

n
=

 e
xp

D
el

ay
(1

.0
/1

.0
)

in i
f e

xe
cu

tio
nT

im
e

<
 t

im
eU

nt
ilB

re
ak

do
w

n
 t

he
n

(c
om

pl
et

e,
 e

xe
cu

tio
nT

im
e)

 e
ls

e
(

br
ea

kd
ow

n,
 t

im
eU

nt
ilB

re
ak

do
w

n)
en

d;

Th
ro

ug
hp

ut

b+
1@

+
48

0

Th
ro

ug
hp

ut

em
pt

y

ca
pa

ci
ty

_L
L_

O

@
+

ro
un

d
(e

xp
on

en
tia

l
(1

.0
/1

.0
))

O
ut

pu
t

Cy
cl

e_
Ti

m
e_

M
on

ito
r

@
+

ro
un

d
(e

xp
on

en
tia

l
(R

ob
tim

e(
))

)

Cy
cl

e
Ti

m
eM

on
ito

r

ca
se

 c
 o

f
C(

1)
=

>
 1

`(
m

,C
(2

))
|C

(2
)=

>
1`

(m
,C

(3
))

|C
(3

)=
>

 1
`(

m
,C

(4
))

|_
=

>
em

pt
y

if
(m

 >
=

17
 a

nd
al

so
 c

=
C(

1)
)

th
en

1`
{M

at
=

m
,A

t=
in

tT
im

e(
)}

 e
ls

e
em

pt
y

1`
(1

7,
C(

1)
)

CP
N

'R
ep

lic
at

io
ns

.n
re

pl
ic

at
io

ns
 1

0

si
m

ul
at

eC
on

fig
s(

6)

Fig. 3. The multiple cluster tool system model developed using CPN Tools.

Petri Net as a Manufacturing System Scheduling Tool

51

Places Description Transitions Description

LL_I Load-lock for incoming
material Processing 1,2,3,4

Processing activity in
progress at module
1,2,3,4

LL_O Load-lock for outgoing
material Breakdown1,2,3,4 Process modules

breakdowns

PM1,2,3,4 Processing modules 1,2,3
and 4 Repairing1,2,3,4 Process module

1,2,3,4 under repair

Result1,2,3,4

Result of processing
modules 1,2,3,4
respectively (Material
processing successful or
module breakdown
during processing)

Scheduled
Maintenance1,2,3,4

Process module
1,2,3,4 under
scheduled
maintenance

PM1,2,3,4_Break Processing module 1,2,3,4
in breakdown condition AGV

Material
transportation
between successive
cluster tools

Capacity_PM1,2,3,4 Capacity specification for
Processing module 1,2,3,4

Robot Position
Change

Change of position
of double blade
robot tool

Capacity_LL_O
Capacity specification for
load-lock for outgoing
material

Blade_Position_Robot Orientation specification
of double blade tool

Cycle Time Monitor Monitoring cycle time

Table1. Places and transitions description

and transportation operations have been modelled using exponential distribution functions.
The following simulation assumptions have been used in developing the model:
• The raw material is always available.
• All material handling robot times are the same.
• All module processing times are the same.
• All module repair times are the same.
• The automated guided vehicles for material transportation between clusters are always

available.
These assumptions can be easily relaxed in coloured Petri net modelling, if required. Before
collecting the resulting data, it is important to detect the warm-up period to access the
steady state behaviour of the system. This study uses four stage SPC approach (Robinson,
2002) to find out the steady state results. The warning Limit (WL) and action Limit (AL) are
calculated as under:

1.96 /WL nμ σ= ± , 3.09 /AL nμ σ= ±

Where μ is mean value, σ is standard deviation and n is number of replications. As the
input factors vary for individual simulation runs in this study, hence the warm-up period is

 Advances in Petri Net Theory and Applications

52

also varying depending on the particular input factor settings. In general, ten independent
replications have been carried out for each input factor settings and the warm-up period has
been determined. This period has been excluded while collecting data from the simulation
runs and the length of the steady state period has been determined according to the
recommendations given in (Robinson, 2002) and hence simulation results are repeatable.

7. Results and discussion
There are three process execution input factors in this model, which are mean material
handling robot loading/unloading time, MLT (minutes), mean module processing time,
MPT (minutes) and mean time to repair related to processing module, MTTR (minutes) and
two input factors represent resource breakdowns which are scheduled maintenance, SM
(number of jobs) and mean time to failure, MTF (minutes). The impact of these factors on
throughput (mean number of products per day) and cycle Time (mean number of minutes)
is studied. The simulation results are given in Table 2.
In order to avoid the effects of different values, the same values are considered for
respective ten levels of input factors. The throughput is decreasing as mean loading/
unloading time (MLT) is increasing because an increase in MLT requires materials to stay in
the system for a longer time which causes an increase in cycle time and a corresponding
decrease in throughput. The throughput is also decreasing with an increase of mean
processing time (MPT) because more processing time means an increase in cycle time which
causes a decrease in throughput. Mean loading/ unloading time has more adverse effect
than mean processing time because for each module processing operation, there is one
loading and another unloading operation. But this only holds true if the values of both MLT
and MPT are the same. In an event where MPT is far more than MLT, it can impact
throughput more adversely than MLT. Figures 4 and 5 show the impact of MLT and MPT
on throughput and cycle time respectively.
SM and MTF are the measures of scheduled maintenance and random failures respectively.
The scheduled maintenance is modelled in such a way that each processing module is down
after a specific number of processing operations and is repaired after which it is again up for
further processing. Figures 6 and 7 show an increase in throughput with a corresponding
decrease in cycle time when the value of SM increases because an increase in SM value
indicates that the processing module is capable of more operations before it needs to be
repaired. MTF which represents random failure of modules during process execution has a
more significant impact on throughput and cycle time. MTF is the mean time computed
from the moment when a module starts process execution to the moment when that module
breaks down provided the process execution is in progress. Hence MTF is computed each
time when a module starts execution of a process and it is compared with process execution
time to decide a success or failure of a process. If a module is processing a material/part and
it breaks down during process execution, the material/part has to be unloaded from the
resource and has to be reloaded on it after repair. This causes time wastage and increases
cycle time and hence causes a decrease in throughput. Thus the values of MTF must be kept
higher than mean values of process executions like MLT and MPT in order to achieve higher
throughput and lower cycle time. At value 1, the values of MTF and process execution times
are equal and hence throughput is lower due to a greater probability of resource breakdown
during process execution. As the value of MTF increases up to value 2, there is a significant
gain in throughput and decrease in cycle time because of a lower probability of resource

Petri Net as a Manufacturing System Scheduling Tool

53

Mean 95% CI St.Dev Mean 95% CI St Dev
1 28.05 0.11 0.15 837.18 195.78 273.71
2 20.87 0.08 0.11 1027.28 113.47 158.63
3 15.67 0.06 0.09 1208.48 153.98 215.26
4 12.28 0.05 0.06 1570.60 997.06 175.30
5 10.01 0.05 0.07 1614.59 169.19 236.53
6 8.39 0.05 0.07 1641.79 149.16 208.53
7 7.20 0.05 0.08 2011.48 179.98 251.61
8 6.30 0.02 0.03 2227.57 166.52 232.79
9 5.59 0.04 0.06 2256.77 117.27 163.95

10 5.00 0.03 0.05 2276.05 193.72 270.82
1 28.09 28.09 0.16 831.39 94.86 132.62
2 21.32 0.09 0.13 893.37 174.07 243.35
3 16.96 0.07 0.10 948.82 173.09 241.98
4 13.94 0.08 0.11 997.06 242.91 339.58
5 11.87 0.06 0.09 1290.65 222.99 311.74
6 10.26 0.09 0.13 1497.57 298.12 416.78
7 9.04 0.09 0.13 1571.07 270.30 377.88
8 8.12 0.06 0.08 2059.10 379.50 530.54
9 7.31 0.07 0.10 2109.55 339.60 474.75

10 6.73 0.08 0.11 2199.64 237.52 332.05
1 27.92 0.08 0.11 873.00 111.12 155.34
2 20.68 0.13 0.18 1019.70 141.58 197.92
3 16.07 0.11 0.15 1240.12 252.58 353.11
4 13.17 0.05 0.07 1277.15 158.13 221.07
5 11.09 0.08 0.11 1473.04 228.37 319.26
6 9.52 0.08 0.11 1726.99 262.69 367.23
7 8.37 0.05 0.07 1818.93 146.24 204.44
8 7.46 0.07 0.10 1957.89 305.50 427.09
9 6.74 0.06 0.08 2089.78 239.70 335.10

10 6.12 0.05 0.07 2265.71 393.50 550.11
1 28.081 0.11 0.15 802.21 155.72 217.69
2 29.373 0.08 0.12 761.51 132.57 185.33
3 30.109 0.14 0.20 701.59 69.79 97.57
4 30.95 0.12 0.16 663.18 190.21 265.91
5 31.82 0.14 0.19 619.23 131.63 184.02
6 33.04 0.20 0.28 576.98 144.21 201.61
7 33.56 0.14 0.19 524.36 142.07 198.62
8 34.06 0.10 0.14 490.37 137.48 192.19
9 34.26 0.15 0.20 466.82 144.05 201.38

10 34.59 0.09 0.13 449.38 142.16 198.73
1 28.09 0.12 0.17 811.88 124.32 173.80
2 36.24 0.10 0.14 583.03 83.10 116.18
3 39.06 0.12 0.17 513.19 78.09 109.17
4 40.24 0.10 0.15 460.94 85.71 119.82
5 40.99 0.13 0.18 416.65 55.59 77.71
6 41.47 0.09 0.13 380.64 84.47 118.09
7 41.82 0.06 0.09 343.11 79.31 110.88
8 41.96 0.07 0.10 319.81 84.10 117.57
9 42.20 0.11 0.16 309.41 84.56 118.22

10 42.34 0.16 0.22 298.08 40.01 55.94

Mean time to failure
(MTF)

Mean time to repair
(MTTR)

Throughput Cycle Time

Robot
loading/unloading

time (MLT)

Module processing
time (MPT)

Scheduled
maintenance (SM)

Table 2. The simulation results (CI: Confidence interval)

 Advances in Petri Net Theory and Applications

52

also varying depending on the particular input factor settings. In general, ten independent
replications have been carried out for each input factor settings and the warm-up period has
been determined. This period has been excluded while collecting data from the simulation
runs and the length of the steady state period has been determined according to the
recommendations given in (Robinson, 2002) and hence simulation results are repeatable.

7. Results and discussion
There are three process execution input factors in this model, which are mean material
handling robot loading/unloading time, MLT (minutes), mean module processing time,
MPT (minutes) and mean time to repair related to processing module, MTTR (minutes) and
two input factors represent resource breakdowns which are scheduled maintenance, SM
(number of jobs) and mean time to failure, MTF (minutes). The impact of these factors on
throughput (mean number of products per day) and cycle Time (mean number of minutes)
is studied. The simulation results are given in Table 2.
In order to avoid the effects of different values, the same values are considered for
respective ten levels of input factors. The throughput is decreasing as mean loading/
unloading time (MLT) is increasing because an increase in MLT requires materials to stay in
the system for a longer time which causes an increase in cycle time and a corresponding
decrease in throughput. The throughput is also decreasing with an increase of mean
processing time (MPT) because more processing time means an increase in cycle time which
causes a decrease in throughput. Mean loading/ unloading time has more adverse effect
than mean processing time because for each module processing operation, there is one
loading and another unloading operation. But this only holds true if the values of both MLT
and MPT are the same. In an event where MPT is far more than MLT, it can impact
throughput more adversely than MLT. Figures 4 and 5 show the impact of MLT and MPT
on throughput and cycle time respectively.
SM and MTF are the measures of scheduled maintenance and random failures respectively.
The scheduled maintenance is modelled in such a way that each processing module is down
after a specific number of processing operations and is repaired after which it is again up for
further processing. Figures 6 and 7 show an increase in throughput with a corresponding
decrease in cycle time when the value of SM increases because an increase in SM value
indicates that the processing module is capable of more operations before it needs to be
repaired. MTF which represents random failure of modules during process execution has a
more significant impact on throughput and cycle time. MTF is the mean time computed
from the moment when a module starts process execution to the moment when that module
breaks down provided the process execution is in progress. Hence MTF is computed each
time when a module starts execution of a process and it is compared with process execution
time to decide a success or failure of a process. If a module is processing a material/part and
it breaks down during process execution, the material/part has to be unloaded from the
resource and has to be reloaded on it after repair. This causes time wastage and increases
cycle time and hence causes a decrease in throughput. Thus the values of MTF must be kept
higher than mean values of process executions like MLT and MPT in order to achieve higher
throughput and lower cycle time. At value 1, the values of MTF and process execution times
are equal and hence throughput is lower due to a greater probability of resource breakdown
during process execution. As the value of MTF increases up to value 2, there is a significant
gain in throughput and decrease in cycle time because of a lower probability of resource

Petri Net as a Manufacturing System Scheduling Tool

53

Mean 95% CI St.Dev Mean 95% CI St Dev
1 28.05 0.11 0.15 837.18 195.78 273.71
2 20.87 0.08 0.11 1027.28 113.47 158.63
3 15.67 0.06 0.09 1208.48 153.98 215.26
4 12.28 0.05 0.06 1570.60 997.06 175.30
5 10.01 0.05 0.07 1614.59 169.19 236.53
6 8.39 0.05 0.07 1641.79 149.16 208.53
7 7.20 0.05 0.08 2011.48 179.98 251.61
8 6.30 0.02 0.03 2227.57 166.52 232.79
9 5.59 0.04 0.06 2256.77 117.27 163.95

10 5.00 0.03 0.05 2276.05 193.72 270.82
1 28.09 28.09 0.16 831.39 94.86 132.62
2 21.32 0.09 0.13 893.37 174.07 243.35
3 16.96 0.07 0.10 948.82 173.09 241.98
4 13.94 0.08 0.11 997.06 242.91 339.58
5 11.87 0.06 0.09 1290.65 222.99 311.74
6 10.26 0.09 0.13 1497.57 298.12 416.78
7 9.04 0.09 0.13 1571.07 270.30 377.88
8 8.12 0.06 0.08 2059.10 379.50 530.54
9 7.31 0.07 0.10 2109.55 339.60 474.75

10 6.73 0.08 0.11 2199.64 237.52 332.05
1 27.92 0.08 0.11 873.00 111.12 155.34
2 20.68 0.13 0.18 1019.70 141.58 197.92
3 16.07 0.11 0.15 1240.12 252.58 353.11
4 13.17 0.05 0.07 1277.15 158.13 221.07
5 11.09 0.08 0.11 1473.04 228.37 319.26
6 9.52 0.08 0.11 1726.99 262.69 367.23
7 8.37 0.05 0.07 1818.93 146.24 204.44
8 7.46 0.07 0.10 1957.89 305.50 427.09
9 6.74 0.06 0.08 2089.78 239.70 335.10

10 6.12 0.05 0.07 2265.71 393.50 550.11
1 28.081 0.11 0.15 802.21 155.72 217.69
2 29.373 0.08 0.12 761.51 132.57 185.33
3 30.109 0.14 0.20 701.59 69.79 97.57
4 30.95 0.12 0.16 663.18 190.21 265.91
5 31.82 0.14 0.19 619.23 131.63 184.02
6 33.04 0.20 0.28 576.98 144.21 201.61
7 33.56 0.14 0.19 524.36 142.07 198.62
8 34.06 0.10 0.14 490.37 137.48 192.19
9 34.26 0.15 0.20 466.82 144.05 201.38

10 34.59 0.09 0.13 449.38 142.16 198.73
1 28.09 0.12 0.17 811.88 124.32 173.80
2 36.24 0.10 0.14 583.03 83.10 116.18
3 39.06 0.12 0.17 513.19 78.09 109.17
4 40.24 0.10 0.15 460.94 85.71 119.82
5 40.99 0.13 0.18 416.65 55.59 77.71
6 41.47 0.09 0.13 380.64 84.47 118.09
7 41.82 0.06 0.09 343.11 79.31 110.88
8 41.96 0.07 0.10 319.81 84.10 117.57
9 42.20 0.11 0.16 309.41 84.56 118.22

10 42.34 0.16 0.22 298.08 40.01 55.94

Mean time to failure
(MTF)

Mean time to repair
(MTTR)

Throughput Cycle Time

Robot
loading/unloading

time (MLT)

Module processing
time (MPT)

Scheduled
maintenance (SM)

Table 2. The simulation results (CI: Confidence interval)

 Advances in Petri Net Theory and Applications

54

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut

MLT, M PT

MLT

MPT

Fig. 4. The impact of robot loading/ unloading time and module processing time on
throughput.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

C
yc

le
 T

im
e

MLT, M PT

MLT

MPT

Fig. 5. The impact of robot loading/ unloading time and module processing time on Cycle
time.

Petri Net as a Manufacturing System Scheduling Tool

55

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut

SM, MTF

Scheduled
maintenence
random failure

Fig. 6. The impact of scheduled maintenance and random failures on throughput.

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1 2 3 4 5 6 7 8 9 10

C
yc

le
 T

im
e

SM, MTF

Scheduled
maintenance
random failure

Fig. 7. The impact of scheduled maintenance/ random breakdowns on Cycle Time.

 Advances in Petri Net Theory and Applications

54

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut

MLT, M PT

MLT

MPT

Fig. 4. The impact of robot loading/ unloading time and module processing time on
throughput.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

C
yc

le
 T

im
e

MLT, M PT

MLT

MPT

Fig. 5. The impact of robot loading/ unloading time and module processing time on Cycle
time.

Petri Net as a Manufacturing System Scheduling Tool

55

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut

SM, MTF

Scheduled
maintenence
random failure

Fig. 6. The impact of scheduled maintenance and random failures on throughput.

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1 2 3 4 5 6 7 8 9 10

C
yc

le
 T

im
e

SM, MTF

Scheduled
maintenance
random failure

Fig. 7. The impact of scheduled maintenance/ random breakdowns on Cycle Time.

 Advances in Petri Net Theory and Applications

56

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut

MTTR

Fig. 8. The impact processing module mean time to repair on throughput.

0.00

500.00

1000.00

1500.00

2000.00

2500.00

1 2 3 4 5 6 7 8 9 10

C
yc

le
 ti

m
e

MTTR

Fig. 9. The impact processing module mean time to repair on Cycle time.

Petri Net as a Manufacturing System Scheduling Tool

57

breakdown during execution. This trend continues as MTF approaches higher values but the
rate of increase in throughput and decrease in cycle time is reduced because after a certain
value, value ‘7’ in Figures 6 and 7, the probability of resource breakdown during execution
is quite low. A resource with very high value of MTF, for instance 10, compared with its
execution time means that it is highly reliable for the process. Such a resource is usually
costly for the process and cannot contribute significantly, for instance compared with 7, 8
and 9 towards throughput and cycle time as is shown in Figures 6 and 7.
Figures 8 and 9 show the impact of processing module mean time to repair (MTTR) on
throughput and cycle time. An increase in MTTR means more time is required to repair the
processing module which decreases the working time to down time ratio of processing
modules. The decrease in working to down times of processing modules forces the materials
to stay a longer time in the system; thus increasing cycle time which deteriorates throughput
of the system. In order to achieve higher throughput and lower cycle time values, the repair
time of processing modules must be kept as low as possible.

8. Conclusion
Multiple cluster tool systems have emerged as an important semiconductor manufacturing
system technology with the benefits of higher yield, shorter cycle time and tighter process
control. This study has described a modelling technique using coloured Petri net to capture
random failures of multiple cluster tool system and has shown that random failure is an
important system limitation as far as throughput and cycle time are concerned. The random
failures of cluster tools may be avoided by achieving a higher value of mean time between
failures of process modules compared with process execution times. This multiple cluster
tool system problem under discussion can be extended to incorporate the random failure
modelling of internal robotic arms and AGV based transporters between clusters.

9. Acknowledgement
This chapter is partially based on the following publications.
1. Tauseef Aized “CPN and DoE based modeling and performance maximization of

multiple product flexible manufacturing system with resource breakdowns”. published
by LAMBERT Academic Publishing, Germany,2010, ISBN: 978-3-8383-3888-0

2. Tauseef Aized “Modeling and analysis of multiple cluster tools system with random
failures using colored Petri net” accepted, International Journal of Advanced
Manufacturing Technology published by Springer ISSN: 0268-3768 (print version),
ISSN: 1433-3015 (electronic version).

3. MengChu Zhou and Kurapati Venkatesh, “Modeling, Simulation and Control of
Flexible manufacturing system: A Petri net approach”. Published by World Scientific,
1999.

10. References
Sorensen, K. and Janssens, G.K. (2004). A Petri net model of a continuous flow transfer line

with unreliable machines. European Journal of operational research, 152, pp. 248-
262.

 Advances in Petri Net Theory and Applications

56

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut

MTTR

Fig. 8. The impact processing module mean time to repair on throughput.

0.00

500.00

1000.00

1500.00

2000.00

2500.00

1 2 3 4 5 6 7 8 9 10

C
yc

le
 ti

m
e

MTTR

Fig. 9. The impact processing module mean time to repair on Cycle time.

Petri Net as a Manufacturing System Scheduling Tool

57

breakdown during execution. This trend continues as MTF approaches higher values but the
rate of increase in throughput and decrease in cycle time is reduced because after a certain
value, value ‘7’ in Figures 6 and 7, the probability of resource breakdown during execution
is quite low. A resource with very high value of MTF, for instance 10, compared with its
execution time means that it is highly reliable for the process. Such a resource is usually
costly for the process and cannot contribute significantly, for instance compared with 7, 8
and 9 towards throughput and cycle time as is shown in Figures 6 and 7.
Figures 8 and 9 show the impact of processing module mean time to repair (MTTR) on
throughput and cycle time. An increase in MTTR means more time is required to repair the
processing module which decreases the working time to down time ratio of processing
modules. The decrease in working to down times of processing modules forces the materials
to stay a longer time in the system; thus increasing cycle time which deteriorates throughput
of the system. In order to achieve higher throughput and lower cycle time values, the repair
time of processing modules must be kept as low as possible.

8. Conclusion
Multiple cluster tool systems have emerged as an important semiconductor manufacturing
system technology with the benefits of higher yield, shorter cycle time and tighter process
control. This study has described a modelling technique using coloured Petri net to capture
random failures of multiple cluster tool system and has shown that random failure is an
important system limitation as far as throughput and cycle time are concerned. The random
failures of cluster tools may be avoided by achieving a higher value of mean time between
failures of process modules compared with process execution times. This multiple cluster
tool system problem under discussion can be extended to incorporate the random failure
modelling of internal robotic arms and AGV based transporters between clusters.

9. Acknowledgement
This chapter is partially based on the following publications.
1. Tauseef Aized “CPN and DoE based modeling and performance maximization of

multiple product flexible manufacturing system with resource breakdowns”. published
by LAMBERT Academic Publishing, Germany,2010, ISBN: 978-3-8383-3888-0

2. Tauseef Aized “Modeling and analysis of multiple cluster tools system with random
failures using colored Petri net” accepted, International Journal of Advanced
Manufacturing Technology published by Springer ISSN: 0268-3768 (print version),
ISSN: 1433-3015 (electronic version).

3. MengChu Zhou and Kurapati Venkatesh, “Modeling, Simulation and Control of
Flexible manufacturing system: A Petri net approach”. Published by World Scientific,
1999.

10. References
Sorensen, K. and Janssens, G.K. (2004). A Petri net model of a continuous flow transfer line

with unreliable machines. European Journal of operational research, 152, pp. 248-
262.

 Advances in Petri Net Theory and Applications

58

Gharbi, N., Loualalen, M. (2006). GSPN analysis of retrial systems with servers breakdowns
and repairs. Applied mathematics and computation, 174, pp. 1151-1168.

Cao, Z.C., Qaio, F., Wu, Q. (2007). Queuing generalized stochastic colored timed Petri nets-
based approach to modelling for semiconductor wafer fabrication. IEEE
International Conf. on Control and Automation, Guangzhou. China, pp. 2834-2838.

MengChu Zhou and Kurapati Venkatesh. (1999). Modeling, simulation and control of
flexible manufacturing systems. World Scientific Press.

Robinson, S. (2002). A statistical process control approach for estimating the warm-up
period. Proceedings of 2002 winter simulation conference, pp. 439-445.

Jensen, K. (1992). Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,
Vol. 1, Springer-Verlag.

4

Petri Net Model Based Implementation of
Hierarchical and Distributed Control for Discrete

Event Robotic Manufacturing Cells
Gen’ichi Yasuda

Nagasaki Institute of Applied Science
Japan

1. Introduction
Manufacturing systems, where the materials which are handled are mainly composed of
discrete entities, for example parts that are machined and/or assembled, are called discrete
manufacturing systems. The rapid development of industrial techniques makes the
manufacturing systems larger and more complex, in which system control is divided into a
hierarchy of control levels: planning, scheduling, coordination and local control (Silva,
1990). At the upper level, the global system is considered and its representation is strongly
aggregated. Each low level is a disaggregation of the upper one; the portion of the system
considered is smaller, but more details are taken into account. The time horizon of the low
level is shorter, and real-time constraints are progressively hard. At the coordination level
(shop, cell), the function is to update the state representation of the workshop in real-time, to
supervise it, and make real-time decisions. The decision making system has to schedule and
synchronize the machine utilizations to decide at each instant what has to be done and on
which machine.
Frequently, a flexible manufacturing system is structured into manufacturing cells. A cell is
an elementary manufacturing system consisting of flexible machine tools (or assembly
devices), some local storage facilities for tools and parts and some handling devices such as
robots in order to transfer parts and tools between the cell and the global transport system.
Elementary manufacturing cells are called workstations. In a manufacturing cell, some
devices operate concurrently and cooperatively or interfere to each other. Conventional
representation methods such as time chart and state transition graph can not cope with the
system like this. So a powerful method which can represent a discrete event system
including nondeterministic parallel and concurrent action is desired.
As computer technology has been continuing to be upgraded to higher level year by year,
the control system architecture has changed from centralized processing to distributed
processing in order to reduce the development cost and to improve reliability. In developing
distributed processing systems, major difficulties are that adequate expression methods and
analyzing techniques for control mechanisms have not sufficiently been established. In the
field of manufacturing systems that are typical examples of the event driven system,
demands for the automatic control has diversified and the control logic has become
extremely complicated. To deal with the complexity, a new methodology on control system
design based on the discrete event driven system is necessary.

 Advances in Petri Net Theory and Applications

58

Gharbi, N., Loualalen, M. (2006). GSPN analysis of retrial systems with servers breakdowns
and repairs. Applied mathematics and computation, 174, pp. 1151-1168.

Cao, Z.C., Qaio, F., Wu, Q. (2007). Queuing generalized stochastic colored timed Petri nets-
based approach to modelling for semiconductor wafer fabrication. IEEE
International Conf. on Control and Automation, Guangzhou. China, pp. 2834-2838.

MengChu Zhou and Kurapati Venkatesh. (1999). Modeling, simulation and control of
flexible manufacturing systems. World Scientific Press.

Robinson, S. (2002). A statistical process control approach for estimating the warm-up
period. Proceedings of 2002 winter simulation conference, pp. 439-445.

Jensen, K. (1992). Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,
Vol. 1, Springer-Verlag.

4

Petri Net Model Based Implementation of
Hierarchical and Distributed Control for Discrete

Event Robotic Manufacturing Cells
Gen’ichi Yasuda

Nagasaki Institute of Applied Science
Japan

1. Introduction
Manufacturing systems, where the materials which are handled are mainly composed of
discrete entities, for example parts that are machined and/or assembled, are called discrete
manufacturing systems. The rapid development of industrial techniques makes the
manufacturing systems larger and more complex, in which system control is divided into a
hierarchy of control levels: planning, scheduling, coordination and local control (Silva,
1990). At the upper level, the global system is considered and its representation is strongly
aggregated. Each low level is a disaggregation of the upper one; the portion of the system
considered is smaller, but more details are taken into account. The time horizon of the low
level is shorter, and real-time constraints are progressively hard. At the coordination level
(shop, cell), the function is to update the state representation of the workshop in real-time, to
supervise it, and make real-time decisions. The decision making system has to schedule and
synchronize the machine utilizations to decide at each instant what has to be done and on
which machine.
Frequently, a flexible manufacturing system is structured into manufacturing cells. A cell is
an elementary manufacturing system consisting of flexible machine tools (or assembly
devices), some local storage facilities for tools and parts and some handling devices such as
robots in order to transfer parts and tools between the cell and the global transport system.
Elementary manufacturing cells are called workstations. In a manufacturing cell, some
devices operate concurrently and cooperatively or interfere to each other. Conventional
representation methods such as time chart and state transition graph can not cope with the
system like this. So a powerful method which can represent a discrete event system
including nondeterministic parallel and concurrent action is desired.
As computer technology has been continuing to be upgraded to higher level year by year,
the control system architecture has changed from centralized processing to distributed
processing in order to reduce the development cost and to improve reliability. In developing
distributed processing systems, major difficulties are that adequate expression methods and
analyzing techniques for control mechanisms have not sufficiently been established. In the
field of manufacturing systems that are typical examples of the event driven system,
demands for the automatic control has diversified and the control logic has become
extremely complicated. To deal with the complexity, a new methodology on control system
design based on the discrete event driven system is necessary.

 Advances in Petri Net Theory and Applications

60

For the flexibility and expandability of the event driven system software, a programming
paradigm based on a network model is considered to be useful, because the network model
can describe the execution order of sequential/parallel processes or works directly without
ambiguity. For this class of problems, Petri nets have intrinsic favorable qualities and it is
very easy to model sequences, choices between alternatives, rendezvous and concurrent
activities by means of Petri nets (Thuriot et al., 1983). Moreover, the formalism allowing a
validation of the main properties of the Petri net control structure (liveness, boundedness,
etc.) guarantees that the control system will not fall in a deadlocked situation. Petri net
based programming technique makes it possible to realize systematic and high-level
description of system specification (Gentina & Corbeel, 1987), (Jockovic et al., 1990), (Wang
& Saridis, 1990). Furthermore, a real-time implementation of the Petri net specification by a
software called the token game player can avoid implementation errors, because the
specification is directly executed by the token game player and the implementation of these
control sequences preserves the properties of the model.
The Petri net has been applied to a variety of system developments such as real-time
systems, manufacturing systems, communication systems, and so on, as an effective tool for
describing control specifications and realizing the control system in a uniform manner.
However, there are some problems to be solved as follows.
1. Although the description capability of the Petri net is very high, in case of flexible

manufacturing systems the network model becomes very complicated and it lacks for
the readability and comprehensibility.

2. Although the specification analysis stage has been supported, the support for the
control software coding stage is insufficient. The flexibility and expandability are not
satisfactory in order to deal with the specification change of the control system.

This paper discusses problems of the system realization by using Petri nets and proposes a
design method for hierarchical and distributed manufacturing control systems. The Petri net
model can be used from the conceptual, the global design of the system to the detailed
design of its partial systems so that the modeling, simulation and control of large and
complex discrete event manufacturing systems can be consistently realized by Petri nets.
The complex control system can be easily designed and realized by using the global Petri net
as an upper controller which controls lower controllers designed by detailed Petri nets. The
cooperation of each controller is implemented so that the aggregated behavior of the
distributed system is the same as that of the original system and the task specification is
completely satisfied. At this point of view, this paper shows the efficiency of the proposed
hierarchical and distributed control method by the simulation experiments of cooperative
transferring tasks with mechanical arm robots.

2. Manufacturing systems and Petri nets
At each level of discrete manufacturing system control, any modeling has to be based on the
concepts of events and states (Fogel & Sebestyenova, 1992), (Holt & Rodd, 1994), (Kasturia &
Dicesare, 1988), (Rogers & Williams, 1988). An event corresponds to a state change. When
using Petri nets, events are associated with transitions. Activities are associated to the firing
of transitions and to the marking of places which represents the state of the system. In
addition to its graphic representation differentiating events and states, Petri nets allows the
modeling of true parallelism and the possibility of progressive modeling by using stepwise
refinements or modular composition. Libraries of well-tested subnets allow components

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

61

reusability leading to significant reductions in the modeling effort. The possibility of
progressive modeling is absolutely necessary for flexible manufacturing systems because
they are usually large and complex systems. The refinement mechanism allows the building
of hierarchically structured net models which leads to the implementation of hierarchical
and distributed control.
Formally, a Petri net has two types of nodes, called places and transitions. A place is
represented by a circle and a transition by a bar. The places and transitions are connected by
arcs. The number of places and transitions are finite and not zero. An arc is connected
directly from one place to a transition or a transition to a place. In other words a Petri net is
a bipartite graph, i.e. places and transitions alternate on a path made up of consecutive arcs.
An ordinary Petri net (Murata, 1989) is represented by the 5-tuple { , , , , }oG P T I O M= such
that:

1 2{ , ,..., }nP p p p= is a finite, not empty, set of places;

1 2{ , ,..., }mT t t t= is a finite, not empty, set of transitions;
P T φ∩ = , i.e. the sets P and T are disjointed;

: {1,2,3, }I P T× → is the input weight function;
: {1,2,3, }O P T× → is the output weight function;

: {0,1,2,3, }oM P → is the initial marking;
The pre-incidence matrix of a Petri net is []ijC c− −= where (,)ij i jc I p t− = ; the post–incidence
matrix is []ijC c+ += where (,)ij i jc O p t+ = , then the incidence matrix of the Petri net
C C C+ −= − .
Each place contains some (positive or zero) marks or tokens. The number of tokens in each
place is defined by the marked vector or marking 1 2(, ,...,)T

nM m m m= . The number of
tokens in one place ip is called ()iM p . The marking at a certain moment defines the state of
the Petri net, or the state of the system described by the Petri net. The evolution of the state
therefore corresponds to an evolution of the marking, caused by the firing of transitions.
In an ordinary Petri net, where the current marking is kM , a transition jt is enabled if

, () (,)i k i i jp P M p I p t∀ ∈ ≥ . An enabled transition can be fired reaching a new marking
1kM + which can be computed as 1k kM M C V+ = + ⋅ ; this equation is called state equation of

the Petri net, where 1 2(, ,...,)T
mV v v v= is the transition vector such that jv =1 if transition jt

fires and 0 if not. When a transition is enabled, this does not imply that it will be
immediately fired; this only remains a possibility. The firing of a transition is indivisible; the
firing of a transition has duration of zero.
The firing of an enabled transition will change the token distribution (marking) in a net
according to the transition firability rule. A sequence of firings will result in a sequence of
markings. A marking nM is said to be reachable from a marking 0M if there exists a
sequence of firings that transforms 0M to nM . The set of all possible markings reachable
from 0M is denoted 0()R M . A Petri net is said to be k -bounded or simply bounded if the
number of tokens in each place does not exceed a finite number k for any marking
reachable from 0M , i.e., ()iM p k≤ for every place ip and every marking 0()M R M∈ . A
Petri net is said to be safe if it is 1-bounded. Bumping occurs when despite the holding of a
condition, the preceding event occurs. This can result in the multiple holding of that
condition. From the viewpoint of discrete event process control, bumping phenomena
should be excluded.

 Advances in Petri Net Theory and Applications

60

For the flexibility and expandability of the event driven system software, a programming
paradigm based on a network model is considered to be useful, because the network model
can describe the execution order of sequential/parallel processes or works directly without
ambiguity. For this class of problems, Petri nets have intrinsic favorable qualities and it is
very easy to model sequences, choices between alternatives, rendezvous and concurrent
activities by means of Petri nets (Thuriot et al., 1983). Moreover, the formalism allowing a
validation of the main properties of the Petri net control structure (liveness, boundedness,
etc.) guarantees that the control system will not fall in a deadlocked situation. Petri net
based programming technique makes it possible to realize systematic and high-level
description of system specification (Gentina & Corbeel, 1987), (Jockovic et al., 1990), (Wang
& Saridis, 1990). Furthermore, a real-time implementation of the Petri net specification by a
software called the token game player can avoid implementation errors, because the
specification is directly executed by the token game player and the implementation of these
control sequences preserves the properties of the model.
The Petri net has been applied to a variety of system developments such as real-time
systems, manufacturing systems, communication systems, and so on, as an effective tool for
describing control specifications and realizing the control system in a uniform manner.
However, there are some problems to be solved as follows.
1. Although the description capability of the Petri net is very high, in case of flexible

manufacturing systems the network model becomes very complicated and it lacks for
the readability and comprehensibility.

2. Although the specification analysis stage has been supported, the support for the
control software coding stage is insufficient. The flexibility and expandability are not
satisfactory in order to deal with the specification change of the control system.

This paper discusses problems of the system realization by using Petri nets and proposes a
design method for hierarchical and distributed manufacturing control systems. The Petri net
model can be used from the conceptual, the global design of the system to the detailed
design of its partial systems so that the modeling, simulation and control of large and
complex discrete event manufacturing systems can be consistently realized by Petri nets.
The complex control system can be easily designed and realized by using the global Petri net
as an upper controller which controls lower controllers designed by detailed Petri nets. The
cooperation of each controller is implemented so that the aggregated behavior of the
distributed system is the same as that of the original system and the task specification is
completely satisfied. At this point of view, this paper shows the efficiency of the proposed
hierarchical and distributed control method by the simulation experiments of cooperative
transferring tasks with mechanical arm robots.

2. Manufacturing systems and Petri nets
At each level of discrete manufacturing system control, any modeling has to be based on the
concepts of events and states (Fogel & Sebestyenova, 1992), (Holt & Rodd, 1994), (Kasturia &
Dicesare, 1988), (Rogers & Williams, 1988). An event corresponds to a state change. When
using Petri nets, events are associated with transitions. Activities are associated to the firing
of transitions and to the marking of places which represents the state of the system. In
addition to its graphic representation differentiating events and states, Petri nets allows the
modeling of true parallelism and the possibility of progressive modeling by using stepwise
refinements or modular composition. Libraries of well-tested subnets allow components

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

61

reusability leading to significant reductions in the modeling effort. The possibility of
progressive modeling is absolutely necessary for flexible manufacturing systems because
they are usually large and complex systems. The refinement mechanism allows the building
of hierarchically structured net models which leads to the implementation of hierarchical
and distributed control.
Formally, a Petri net has two types of nodes, called places and transitions. A place is
represented by a circle and a transition by a bar. The places and transitions are connected by
arcs. The number of places and transitions are finite and not zero. An arc is connected
directly from one place to a transition or a transition to a place. In other words a Petri net is
a bipartite graph, i.e. places and transitions alternate on a path made up of consecutive arcs.
An ordinary Petri net (Murata, 1989) is represented by the 5-tuple { , , , , }oG P T I O M= such
that:

1 2{ , ,..., }nP p p p= is a finite, not empty, set of places;

1 2{ , ,..., }mT t t t= is a finite, not empty, set of transitions;
P T φ∩ = , i.e. the sets P and T are disjointed;

: {1,2,3, }I P T× → is the input weight function;
: {1,2,3, }O P T× → is the output weight function;

: {0,1,2,3, }oM P → is the initial marking;
The pre-incidence matrix of a Petri net is []ijC c− −= where (,)ij i jc I p t− = ; the post–incidence
matrix is []ijC c+ += where (,)ij i jc O p t+ = , then the incidence matrix of the Petri net
C C C+ −= − .
Each place contains some (positive or zero) marks or tokens. The number of tokens in each
place is defined by the marked vector or marking 1 2(, ,...,)T

nM m m m= . The number of
tokens in one place ip is called ()iM p . The marking at a certain moment defines the state of
the Petri net, or the state of the system described by the Petri net. The evolution of the state
therefore corresponds to an evolution of the marking, caused by the firing of transitions.
In an ordinary Petri net, where the current marking is kM , a transition jt is enabled if

, () (,)i k i i jp P M p I p t∀ ∈ ≥ . An enabled transition can be fired reaching a new marking
1kM + which can be computed as 1k kM M C V+ = + ⋅ ; this equation is called state equation of

the Petri net, where 1 2(, ,...,)T
mV v v v= is the transition vector such that jv =1 if transition jt

fires and 0 if not. When a transition is enabled, this does not imply that it will be
immediately fired; this only remains a possibility. The firing of a transition is indivisible; the
firing of a transition has duration of zero.
The firing of an enabled transition will change the token distribution (marking) in a net
according to the transition firability rule. A sequence of firings will result in a sequence of
markings. A marking nM is said to be reachable from a marking 0M if there exists a
sequence of firings that transforms 0M to nM . The set of all possible markings reachable
from 0M is denoted 0()R M . A Petri net is said to be k -bounded or simply bounded if the
number of tokens in each place does not exceed a finite number k for any marking
reachable from 0M , i.e., ()iM p k≤ for every place ip and every marking 0()M R M∈ . A
Petri net is said to be safe if it is 1-bounded. Bumping occurs when despite the holding of a
condition, the preceding event occurs. This can result in the multiple holding of that
condition. From the viewpoint of discrete event process control, bumping phenomena
should be excluded.

 Advances in Petri Net Theory and Applications

62

The Petri net was modified so that the system is safe. The weight of the input and output
weight functions ,I O is 1 if the arc exists and 0 if not. Because the modified Petri net is safe,
for each place ip , im = 0 or 1, and a transition jt is enabled if the two following conditions
are met:
1. For each place kp , such that (,) 1k jI p t = , 1km =

2. For each place lp such that (,) 1l jO p t = , 0lm =

Besides the guarantee of safeness, considering not only the modeling of the systems but also
the actual manufacturing system control, the additional capability of input/output signals
from/to the machines are required (Hasegawa et al., 1984). So gate arcs are classified as
permissive or inhibitive, and internal or external. An external gate connects a transition with
a signal source, and depending on the signal, it either permits or inhibits the occurrence of
the event which corresponds to the connected transition. An internal signal arc sends the
signal from a place to a machine. Thus a transition is enabled if and only if it satisfies all the
following conditions:
1. It does not have any output place filled with a token.
2. It does not have any empty input place.
3. It does not have any internal permissive arc signaling 0.
4. It does not have any internal inhibitive arc signaling 1.
An enabled transition may fire when it does not have any external permissive arc signaling
0 nor any external inhibitive arc signaling 1.
When an enabled transition jt fires, the marking M is changed to M′ , where
1. For each place kp , such that (,) 1k jI p t = ， 0km′ =

2. For each place lp such that (,) 1l jO p t = ， 1lm′ =

To summarize it, the firing of a transition removes a token from each input place and put a
token in each output place connected to it. As a natural requirement, in any initial marking,
there must not exist more than one token in a place. According to these rules, the number of
tokens in a place never exceeds one. Thus, the Petri net is essentially a safe graph; the system
is free from the bumping phenomenon. The assignment of token into the places of a Petri net
is called marking and it represents the system state.
If a place has two or more input transitions or output transitions, these transitions may be in
conflict for firing. When two or more transitions are firable only one transition should fire
using some arbitration rule. By the representation of the activity contents and control
strategies in detail, features of discrete event manufacturing systems such as ordering,
parallelism, asynchronism, concurrency and conflict can be concretely described through the
extended Petri net.
The extended Petri net is a tool for the study of condition-event systems and used to model
discrete event manufacturing systems through its graphical representation. Analysis of the
net reveals important information about the structure and the dynamic behavior of a
modeled manufacturing system. This information can then be used to evaluate the
manufacturing system and suggest improvements or changes. The flow chart of simulation
to check the dynamic behavior of the system quantitatively is shown in Fig. 1.
Implementation methods to do the real-time control are classified into two kinds (hardware
and software). Hardware implementation realizes the places and transitions by hardware in
a modular form, which are mutually connected in the same way as the Petri net model.

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

63

 Start

Input incidence matrix and initial marking 0M

Extract enabled transitions

Determine firing transitions V considering conflicts

Number of enabled transitions = 0 ?
(deadlock)

Input internal gate conditions

0MM n =

Input external gate conditions

VCMM nn ⋅+=+1

Output 1+nM

Extract enabled transitions considering gate conditions

1+= nn MM

Yes

Fig. 1. Flow chart of extended Petri net simulator

Signals from controlled objects (machines and external sensors) are connected to the
transitions as external gate conditions. When a token exists in a place, the control
information assigned to the place is transmitted to the machine. The simulation is performed
by monitoring the marking. Hardware implementation by decomposing the net model into
several state transition diagrams, which are easily realized using conventional sequential
controllers, and combining them with interlock signals, can be effective in many industrial
applications.
On the other hand software implementation is performed by developing control software
based on the logical structure of the Petri net model (Taubner, 1988). Simulation is
performed by program called a token game player with graphic display, and real-time
control is performed through the computer interface. Centralized schemes can be

 Advances in Petri Net Theory and Applications

62

The Petri net was modified so that the system is safe. The weight of the input and output
weight functions ,I O is 1 if the arc exists and 0 if not. Because the modified Petri net is safe,
for each place ip , im = 0 or 1, and a transition jt is enabled if the two following conditions
are met:
1. For each place kp , such that (,) 1k jI p t = , 1km =

2. For each place lp such that (,) 1l jO p t = , 0lm =

Besides the guarantee of safeness, considering not only the modeling of the systems but also
the actual manufacturing system control, the additional capability of input/output signals
from/to the machines are required (Hasegawa et al., 1984). So gate arcs are classified as
permissive or inhibitive, and internal or external. An external gate connects a transition with
a signal source, and depending on the signal, it either permits or inhibits the occurrence of
the event which corresponds to the connected transition. An internal signal arc sends the
signal from a place to a machine. Thus a transition is enabled if and only if it satisfies all the
following conditions:
1. It does not have any output place filled with a token.
2. It does not have any empty input place.
3. It does not have any internal permissive arc signaling 0.
4. It does not have any internal inhibitive arc signaling 1.
An enabled transition may fire when it does not have any external permissive arc signaling
0 nor any external inhibitive arc signaling 1.
When an enabled transition jt fires, the marking M is changed to M′ , where
1. For each place kp , such that (,) 1k jI p t = ， 0km′ =

2. For each place lp such that (,) 1l jO p t = ， 1lm′ =

To summarize it, the firing of a transition removes a token from each input place and put a
token in each output place connected to it. As a natural requirement, in any initial marking,
there must not exist more than one token in a place. According to these rules, the number of
tokens in a place never exceeds one. Thus, the Petri net is essentially a safe graph; the system
is free from the bumping phenomenon. The assignment of token into the places of a Petri net
is called marking and it represents the system state.
If a place has two or more input transitions or output transitions, these transitions may be in
conflict for firing. When two or more transitions are firable only one transition should fire
using some arbitration rule. By the representation of the activity contents and control
strategies in detail, features of discrete event manufacturing systems such as ordering,
parallelism, asynchronism, concurrency and conflict can be concretely described through the
extended Petri net.
The extended Petri net is a tool for the study of condition-event systems and used to model
discrete event manufacturing systems through its graphical representation. Analysis of the
net reveals important information about the structure and the dynamic behavior of a
modeled manufacturing system. This information can then be used to evaluate the
manufacturing system and suggest improvements or changes. The flow chart of simulation
to check the dynamic behavior of the system quantitatively is shown in Fig. 1.
Implementation methods to do the real-time control are classified into two kinds (hardware
and software). Hardware implementation realizes the places and transitions by hardware in
a modular form, which are mutually connected in the same way as the Petri net model.

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

63

 Start

Input incidence matrix and initial marking 0M

Extract enabled transitions

Determine firing transitions V considering conflicts

Number of enabled transitions = 0 ?
(deadlock)

Input internal gate conditions

0MM n =

Input external gate conditions

VCMM nn ⋅+=+1

Output 1+nM

Extract enabled transitions considering gate conditions

1+= nn MM

Yes

Fig. 1. Flow chart of extended Petri net simulator

Signals from controlled objects (machines and external sensors) are connected to the
transitions as external gate conditions. When a token exists in a place, the control
information assigned to the place is transmitted to the machine. The simulation is performed
by monitoring the marking. Hardware implementation by decomposing the net model into
several state transition diagrams, which are easily realized using conventional sequential
controllers, and combining them with interlock signals, can be effective in many industrial
applications.
On the other hand software implementation is performed by developing control software
based on the logical structure of the Petri net model (Taubner, 1988). Simulation is
performed by program called a token game player with graphic display, and real-time
control is performed through the computer interface. Centralized schemes can be

 Advances in Petri Net Theory and Applications

64

sequentially or concurrently implemented (Silva, 1990). Practically centralized sequential
schemes are employed at the local control level frequently in special purpose real-time
computers named Programmable Logic Controller (PLC) (Atabakhche et al., 1986) by means
of converting the Petri net directly into a Boolean equation. Centralized concurrent
implementations are basically composed of many specific tasks (possibly one per transition)
and a coordinator. The coordinator plays the token game on the net model, initiating the
execution of the tasks attached to the fired transitions. When a task ends its activity, it
informs the coordinator to proceed with the next activations. The coordinator is an active
task with a high priority that acts as the kernel of the application multitasking level. It
provides indirect synchronization between the activities of specific tasks associated with the
firing of transitions. The simplicity and easy modification of the
synchronization/communication scheme are among the advantages of centralized
implementation. The basic problems with this kind of solution are relatively inefficient
execution (memory occupation and execution time) and weakness for safety. Decentralized
implementation schemes are usually built by decomposing the net into a set of sequential
processes and the required primitives concerning synchronization/communication between
these processes are directly inserted, where required, in the body of the sequential processes
(Georgeff, 1983), (Yasuda, 1999). The classical synchronization/communication mechanisms
are based on synchronous rendezvous between tasks and asynchronous message passing
implemented by means of buffers or mailboxes. In decentralized implementations,
synchronization and communication between sequential processes are direct; there is no
intermediate active element. In this paper, a hierarchical and distributed implementation is
proposed, where a system controller with the global Petri net model coordinates several
local controllers with detailed Petri net models.

3. Specification of manufacturing tasks using Petri nets
A Petri net model based consistent method for specification and implementation of
hierarchical and distributed control of robotic manufacturing systems is proposed. A
specification procedure for discrete event manufacturing systems based on Petri nets is as
follows. First, the conceptual level activities of the manufacturing system are defined
through a Petri net model considering the task specification corresponding to the aggregate
manufacturing process. To deal with the problems related to the description of discrete
event manufacturing systems using Petri nets, the system specification can be decomposed
into two aspects: manufacturing sequence and resource allocation. A Petri net is associated
to each aspect, and these two nets are strongly synchronized with the mechanism similar to
transitions merging between the nets.
First, activities of manufacturing sequence must be executed to reach a given goal. For
example a part is carried from a machine to another machine because the next operation has
been scheduled on the machine. This activity modifies the physical state of the part
according to the scheduled fabrication. In the Petri net specification, the location of the token
shows the fabrication step of the part. An evolution of the process can be represented by
distinct activities (starting event, effects and finishing event). Second, with respect to
resource allocation, to execute the required activity, the process must be in a special state.
For example, before executing a machining activity, on a given part, a machine must be free,
and the required tool must be available, etc. These constraints depend on the layout and
rules of operation of the process. They must be respected whatever the manufacturing

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

65

sequence. In the Petri net specification, the location of the tokens models the state of the
resources. The general representation of conceptual Petri net model by the above procedure
is shown in Fig. 2, where the activity of each equipment as well as each subtask composing
the task specification is represented as a place of the Petri net.

Process2 Process1 Process5 Process3 Process4

A A,B,C C B,C,D D

Process2 Process1 Process5 Process3 Process4

Machine C

Machine A

Machine B Machine D

Machine E

Fig. 2. General representation of conceptual Petri net model

4. Hierarchical representation of Petri nets
The detailed Petri nets are deduced to represent the control activities of associated
machines. The macro representation of the manufacturing process is effectively used for
achieving a top-down interpretation down to the concrete lower level activities using Petri
nets. This procedure is repeated up to an appropriate level corresponding to the control
level of the equipment responsible for the activity execution. At each step of detailed
representation, a place of the Petri net are substituted by a subnet in a manner which
maintains the structural properties such as liveness.
Petri nets for machine activity control are the loop structures because they eventually return
to each home position. As required control strategies between equipment, the following two
are frequently used: cooperative control and selective control. In cooperative control as
shown in Fig. 3, transitions t1 and t2 indicate that two machines 1 and 2 should be
controlled to start their actions synchronously. In selective control as shown in Fig. 4, where
transitions t1and t2 are in conflict, one of two manufacturing processes is selected by an
arbiter program which is substantially executed in the “Test” place.
For an example system of transferring task (Perez & Koutsourelis, 1987) by two robots (work
transfer from the robot R1 to the robot R2), the conceptual Petri net model is shown in Fig. 5.
Then Fig. 6 shows the detailed Petri net model, where places of work reception and work
placement in the conceptual model are made detailed. The “Hand over” operation is
accomplished through cooperative synchronized actions by two robots. The procedure of
machine activity control is as follows. When a workpiece comes up to the initial position,
which is represented as an external gate signal, the robot R1 takes the object, transfers it to the

 Advances in Petri Net Theory and Applications

64

sequentially or concurrently implemented (Silva, 1990). Practically centralized sequential
schemes are employed at the local control level frequently in special purpose real-time
computers named Programmable Logic Controller (PLC) (Atabakhche et al., 1986) by means
of converting the Petri net directly into a Boolean equation. Centralized concurrent
implementations are basically composed of many specific tasks (possibly one per transition)
and a coordinator. The coordinator plays the token game on the net model, initiating the
execution of the tasks attached to the fired transitions. When a task ends its activity, it
informs the coordinator to proceed with the next activations. The coordinator is an active
task with a high priority that acts as the kernel of the application multitasking level. It
provides indirect synchronization between the activities of specific tasks associated with the
firing of transitions. The simplicity and easy modification of the
synchronization/communication scheme are among the advantages of centralized
implementation. The basic problems with this kind of solution are relatively inefficient
execution (memory occupation and execution time) and weakness for safety. Decentralized
implementation schemes are usually built by decomposing the net into a set of sequential
processes and the required primitives concerning synchronization/communication between
these processes are directly inserted, where required, in the body of the sequential processes
(Georgeff, 1983), (Yasuda, 1999). The classical synchronization/communication mechanisms
are based on synchronous rendezvous between tasks and asynchronous message passing
implemented by means of buffers or mailboxes. In decentralized implementations,
synchronization and communication between sequential processes are direct; there is no
intermediate active element. In this paper, a hierarchical and distributed implementation is
proposed, where a system controller with the global Petri net model coordinates several
local controllers with detailed Petri net models.

3. Specification of manufacturing tasks using Petri nets
A Petri net model based consistent method for specification and implementation of
hierarchical and distributed control of robotic manufacturing systems is proposed. A
specification procedure for discrete event manufacturing systems based on Petri nets is as
follows. First, the conceptual level activities of the manufacturing system are defined
through a Petri net model considering the task specification corresponding to the aggregate
manufacturing process. To deal with the problems related to the description of discrete
event manufacturing systems using Petri nets, the system specification can be decomposed
into two aspects: manufacturing sequence and resource allocation. A Petri net is associated
to each aspect, and these two nets are strongly synchronized with the mechanism similar to
transitions merging between the nets.
First, activities of manufacturing sequence must be executed to reach a given goal. For
example a part is carried from a machine to another machine because the next operation has
been scheduled on the machine. This activity modifies the physical state of the part
according to the scheduled fabrication. In the Petri net specification, the location of the token
shows the fabrication step of the part. An evolution of the process can be represented by
distinct activities (starting event, effects and finishing event). Second, with respect to
resource allocation, to execute the required activity, the process must be in a special state.
For example, before executing a machining activity, on a given part, a machine must be free,
and the required tool must be available, etc. These constraints depend on the layout and
rules of operation of the process. They must be respected whatever the manufacturing

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

65

sequence. In the Petri net specification, the location of the tokens models the state of the
resources. The general representation of conceptual Petri net model by the above procedure
is shown in Fig. 2, where the activity of each equipment as well as each subtask composing
the task specification is represented as a place of the Petri net.

Process2 Process1 Process5 Process3 Process4

A A,B,C C B,C,D D

Process2 Process1 Process5 Process3 Process4

Machine C

Machine A

Machine B Machine D

Machine E

Fig. 2. General representation of conceptual Petri net model

4. Hierarchical representation of Petri nets
The detailed Petri nets are deduced to represent the control activities of associated
machines. The macro representation of the manufacturing process is effectively used for
achieving a top-down interpretation down to the concrete lower level activities using Petri
nets. This procedure is repeated up to an appropriate level corresponding to the control
level of the equipment responsible for the activity execution. At each step of detailed
representation, a place of the Petri net are substituted by a subnet in a manner which
maintains the structural properties such as liveness.
Petri nets for machine activity control are the loop structures because they eventually return
to each home position. As required control strategies between equipment, the following two
are frequently used: cooperative control and selective control. In cooperative control as
shown in Fig. 3, transitions t1 and t2 indicate that two machines 1 and 2 should be
controlled to start their actions synchronously. In selective control as shown in Fig. 4, where
transitions t1and t2 are in conflict, one of two manufacturing processes is selected by an
arbiter program which is substantially executed in the “Test” place.
For an example system of transferring task (Perez & Koutsourelis, 1987) by two robots (work
transfer from the robot R1 to the robot R2), the conceptual Petri net model is shown in Fig. 5.
Then Fig. 6 shows the detailed Petri net model, where places of work reception and work
placement in the conceptual model are made detailed. The “Hand over” operation is
accomplished through cooperative synchronized actions by two robots. The procedure of
machine activity control is as follows. When a workpiece comes up to the initial position,
which is represented as an external gate signal, the robot R1 takes the object, transfers it to the

 Advances in Petri Net Theory and Applications

66

working space of the robot R2, and there waits for the robot R2 to taking the object. When the
robot R1 stops, the robot R2 grasps it, then the robot R1 opens the hand. Then the robot R2
transfers it to the buffer and there releases it, and finally returns to the initial position.

 Machine 1

Machine 2

t1 t2

Machine 1

Machine 2

t1 t2

 (a) Loop structure (b) Parallel structure

Fig. 3. Example representation of cooperative control between two machines

 Return

Return

Waiting Test

t1

t2

Fig. 4. Example representation of selective control between two manufacturing processes

Waiting Placement Hand overReception

Robot R1

Robot R2

Fig. 5. Conceptual Petri net model of work transfer task by two robots

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

67

Transfer Waiting Waiting Release

Waiting

TransferReturn

ReturnWaiting
(Robot R1)

(Robot R2)

work sensor on

Release

Hold Waiting

Hold

Fig. 6. Detailed Petri net model of work transfer task by two robots

The more detailed Petri net model at the actuator level of “Hold” and “Transfer” action,
which is composed of opening, grasping and movement of each motor axis to the specified
position, is shown in Fig. 7. In this figure, the “Dummy” place represents that its input and
output transitions are start and end of unit action, respectively. This means that macro
representation of a Petri net model can be achieved by replacing a detailed net with a
dummy place.

Grasp

Wrist+

Dummy

Open

Waiting

−θ

Y+

Waiting

Grasp

Waiting

X-

(Hold)

(Transfer)

Fig. 7. Detailed Petri net model of “Hold” and “Transfer” action

The basic procedure of coordination by the communication between the coordinator and the
local controllers is explained in detail as follows. As shown in Fig. 8, when a place in a Petri
net model represents an “action”, then the coordinator sends a “start” command with the
parameter pointing to the detailed Petri net. The local controllers receive the command and
the corresponding local controller executes the detailed subnet. When the execution is
finished, the local controller returns the “end” signal to the coordinator. When a place

 Advances in Petri Net Theory and Applications

66

working space of the robot R2, and there waits for the robot R2 to taking the object. When the
robot R1 stops, the robot R2 grasps it, then the robot R1 opens the hand. Then the robot R2
transfers it to the buffer and there releases it, and finally returns to the initial position.

 Machine 1

Machine 2

t1 t2

Machine 1

Machine 2

t1 t2

 (a) Loop structure (b) Parallel structure

Fig. 3. Example representation of cooperative control between two machines

 Return

Return

Waiting Test

t1

t2

Fig. 4. Example representation of selective control between two manufacturing processes

Waiting Placement Hand overReception

Robot R1

Robot R2

Fig. 5. Conceptual Petri net model of work transfer task by two robots

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

67

Transfer Waiting Waiting Release

Waiting

TransferReturn

ReturnWaiting
(Robot R1)

(Robot R2)

work sensor on

Release

Hold Waiting

Hold

Fig. 6. Detailed Petri net model of work transfer task by two robots

The more detailed Petri net model at the actuator level of “Hold” and “Transfer” action,
which is composed of opening, grasping and movement of each motor axis to the specified
position, is shown in Fig. 7. In this figure, the “Dummy” place represents that its input and
output transitions are start and end of unit action, respectively. This means that macro
representation of a Petri net model can be achieved by replacing a detailed net with a
dummy place.

Grasp

Wrist+

Dummy

Open

Waiting

−θ

Y+

Waiting

Grasp

Waiting

X-

(Hold)

(Transfer)

Fig. 7. Detailed Petri net model of “Hold” and “Transfer” action

The basic procedure of coordination by the communication between the coordinator and the
local controllers is explained in detail as follows. As shown in Fig. 8, when a place in a Petri
net model represents an “action”, then the coordinator sends a “start” command with the
parameter pointing to the detailed Petri net. The local controllers receive the command and
the corresponding local controller executes the detailed subnet. When the execution is
finished, the local controller returns the “end” signal to the coordinator. When a place

 Advances in Petri Net Theory and Applications

68

represents the “waiting” state, then the coordinator sends a “ready” command with the
parameter pointing to the next detailed Petri net. The local controller receives the command
and executes the corresponding initialization. When the execution is finished, the local
controller returns the “ack” signal to the coordinator.

start

Action Waiting

end
ready

ack

Fig. 8. Communication control between coordinator and local controllers
For the actual control, the operations of each machine are broken down into a series of unit
motions, which is also represented by mutual connection between places and transitions. A
place means a concrete unit motion of a machine. From these places, output signal arcs are
connected to the machines, and external gate arcs from the machines are connected to the
transitions of the Petri net when needed, for example, to synchronize and coordinate
operations. When a token enters a place that represents a unit motion, the machine defined
by the machine code is informed to execute a determined motion with a determined data;
these are defined as the place parameters.

5. Implementation of hierarchical and distributed control
Transferring task by four robots (work transfer from the robot R1 to the robot R2, then
transfer from the robot R2 to the robot R3 or R4 according to the type of workpiece) has been
modeled and implemented as an experimental system. The configuration of the system
contains four robots, one incoming and two outgoing conveyors, and a set of sensors. The
sensor’s set consists of touch sensors on robots, which indicate whether a robot has or has
not grasped a workpiece, and limit switch sensors for robot arm positioning. The layout of
the experimental system is shown in Fig. 9.
The cell works in the following way: Workpieces come on the incoming conveyor CV1 up to
the take up position 1-1. The robot R1 waits in front of the conveyor CV1 in position 1-2
which is defined by the limit switch for positioning the arm, and on conveyor stopping the
robot R1 approaches in position 1-1, grips the workpiece with an energized magnetic hand
and a touch sensor and returns to position 1-2. Then the robot R1 turns to position 1-3, goes
into the working space of the robot R2 and there waits for the robot R2 to taking the
workpiece. When the robot R2 comes to position 2-1, the robot R1 hands over the workpiece
to the robot R2 by deenergizing the hand. The robot R1 detects it with the touch sensor. The
robot R2 tests the workpiece with the touch sensor, transfers it to the robot R3 or R4
according to the result. Then, the robot R2 hands over the workpiece to the robot R3 or R4 in
position 2-2 or 2-3, while the robot R3 or R4 takes it in position 3-1 or 4-1 by energizing the
hand. Finally, the robot R3 or R4 carries the workpiece over to position 3-2 or 4-2 and there
leaves it, while the robot R2 returns to position 2-1. The conceptual Petri net model and the
detailed model are shown in Fig. 10 and Fig. 11, respectively.

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

69

Robot R1

Robot R2 Robot R3 Robot R4

1-1 1-2

1-3

2-1

2-2 2-3 3-1

3-2

4-1

4-2

: Limit switch for positioning

Conveyor CV1

Conveyor CV2
Conveyor CV3

Fig. 9. Layout for work transfer task by four robots

Transfer Waiting

Waiting

Hand over

Transfer

Work test Waiting Loading

Hand over Unloading

Hand over Unloading

Robot R1

Robot R2 Robot R3

Robot R4

Fig. 10. Conceptual Petri net model of work transfer task by four robots

It is natural to implement a hierarchical and distributed control system, where one controller is
allocated to each control layer or block. For the manufacturing system, an example structure of
hierarchical and distributed control is composed of one system controller and several local
controllers as shown in Fig. 12. The detailed Petri net is decomposed into subnets, which are
executed by each local controller. The system controller is composed of the Petri net based
controller and the coordinator. The conceptual Petri net model is allocated to the Petri net
based controller in the system controller for management of the overall system. The
coordinator monitors the overall system using external sensors and coordinates the local
controllers by sending the commands and receiving the status. The detailed Petri net models
are allocated to the Petri net based controllers in the local controllers. Each local controller
directly monitors and controls the sensors and actuators of its machine. In the example system,
one local controller is assigned to each robot and conveyor.

 Advances in Petri Net Theory and Applications

68

represents the “waiting” state, then the coordinator sends a “ready” command with the
parameter pointing to the next detailed Petri net. The local controller receives the command
and executes the corresponding initialization. When the execution is finished, the local
controller returns the “ack” signal to the coordinator.

start

Action Waiting

end
ready

ack

Fig. 8. Communication control between coordinator and local controllers
For the actual control, the operations of each machine are broken down into a series of unit
motions, which is also represented by mutual connection between places and transitions. A
place means a concrete unit motion of a machine. From these places, output signal arcs are
connected to the machines, and external gate arcs from the machines are connected to the
transitions of the Petri net when needed, for example, to synchronize and coordinate
operations. When a token enters a place that represents a unit motion, the machine defined
by the machine code is informed to execute a determined motion with a determined data;
these are defined as the place parameters.

5. Implementation of hierarchical and distributed control
Transferring task by four robots (work transfer from the robot R1 to the robot R2, then
transfer from the robot R2 to the robot R3 or R4 according to the type of workpiece) has been
modeled and implemented as an experimental system. The configuration of the system
contains four robots, one incoming and two outgoing conveyors, and a set of sensors. The
sensor’s set consists of touch sensors on robots, which indicate whether a robot has or has
not grasped a workpiece, and limit switch sensors for robot arm positioning. The layout of
the experimental system is shown in Fig. 9.
The cell works in the following way: Workpieces come on the incoming conveyor CV1 up to
the take up position 1-1. The robot R1 waits in front of the conveyor CV1 in position 1-2
which is defined by the limit switch for positioning the arm, and on conveyor stopping the
robot R1 approaches in position 1-1, grips the workpiece with an energized magnetic hand
and a touch sensor and returns to position 1-2. Then the robot R1 turns to position 1-3, goes
into the working space of the robot R2 and there waits for the robot R2 to taking the
workpiece. When the robot R2 comes to position 2-1, the robot R1 hands over the workpiece
to the robot R2 by deenergizing the hand. The robot R1 detects it with the touch sensor. The
robot R2 tests the workpiece with the touch sensor, transfers it to the robot R3 or R4
according to the result. Then, the robot R2 hands over the workpiece to the robot R3 or R4 in
position 2-2 or 2-3, while the robot R3 or R4 takes it in position 3-1 or 4-1 by energizing the
hand. Finally, the robot R3 or R4 carries the workpiece over to position 3-2 or 4-2 and there
leaves it, while the robot R2 returns to position 2-1. The conceptual Petri net model and the
detailed model are shown in Fig. 10 and Fig. 11, respectively.

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

69

Robot R1

Robot R2 Robot R3 Robot R4

1-1 1-2

1-3

2-1

2-2 2-3 3-1

3-2

4-1

4-2

: Limit switch for positioning

Conveyor CV1

Conveyor CV2
Conveyor CV3

Fig. 9. Layout for work transfer task by four robots

Transfer Waiting

Waiting

Hand over

Transfer

Work test Waiting Loading

Hand over Unloading

Hand over Unloading

Robot R1

Robot R2 Robot R3

Robot R4

Fig. 10. Conceptual Petri net model of work transfer task by four robots

It is natural to implement a hierarchical and distributed control system, where one controller is
allocated to each control layer or block. For the manufacturing system, an example structure of
hierarchical and distributed control is composed of one system controller and several local
controllers as shown in Fig. 12. The detailed Petri net is decomposed into subnets, which are
executed by each local controller. The system controller is composed of the Petri net based
controller and the coordinator. The conceptual Petri net model is allocated to the Petri net
based controller in the system controller for management of the overall system. The
coordinator monitors the overall system using external sensors and coordinates the local
controllers by sending the commands and receiving the status. The detailed Petri net models
are allocated to the Petri net based controllers in the local controllers. Each local controller
directly monitors and controls the sensors and actuators of its machine. In the example system,
one local controller is assigned to each robot and conveyor.

 Advances in Petri Net Theory and Applications

70

(Robot R1)

(Robot R2)

(Robot R3)

(Robot R4)

Transfer

Waiting

Return

Transfer Waiting

Waiting

Waiting

Transfer

Work test

Waiting

Hold

Release Waiting

Waiting

Return

Loading

Waiting

Waiting

Hold

Release

Waiting

Waiting

Waiting

Hold

Release

Return

Waiting

Transfer Release Return

Transfer Release Return

Fig. 11. Detailed Petri net model of work transfer task by four robots

 System controller

Local controller 1 Local controller 2 Local controller N

Machine 1 Machine 2 Machine N ••••

••••

Fig. 12. Hierarchical and distributed control structure composed of system controller and
local controllers

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

71

In the decomposition procedure, a transition may be divided and distributed into different
local controllers as shown in Fig. 13. The local controllers should be coordinated so that
these transitions fire simultaneously. Decomposed transitions are called global transitions,
and other transitions are called local transitions.
As another example, loading a workpiece necessitates the cooperative or synchronized
activities between the conveyor and the robot as shown in Fig. 14. First, “Carry in” operation
to carry a workpiece is performed by the conveyor. At the end of the operation, when the
robot is free, the “loading” operation is started. The conveyor starts waiting, the robot starts
moving to grasp the workpiece. After holding the workpiece, the robot starts transferring it to
another position and the conveyor is free. To exploit the above results, a coordinator program
for simultaneous firing of decomposed transitions has been introduced so that the aggregate
behavior of decomposed subnets is the same as that of the original Petri net.

Waiting Release

Hold Waiting

(Robot R2)

t1 t3
Waiting Release

Hold Waiting

(Robot R1)

(Robot R2)

t11 t31

t12 t32

(Robot R1)

decomposition

: global transition

t2
t21

t22

Fig. 13. Decomposition of transitions in “Hand over” operation

Grasp Transfer

Waiting

Moving

(Conveyor CV1)

(Robot R1)

Waiting

Carring in t4 t5

 Grasp TransferMoving

(Robot R1)

Waiting

(Conveyor CV1)

: local transition : global transition

t41 t42 t51 t52Waiting Carring in

decomposition

Fig. 14. Decomposition of transitions in the “Loading” operation

 Advances in Petri Net Theory and Applications

70

(Robot R1)

(Robot R2)

(Robot R3)

(Robot R4)

Transfer

Waiting

Return

Transfer Waiting

Waiting

Waiting

Transfer

Work test

Waiting

Hold

Release Waiting

Waiting

Return

Loading

Waiting

Waiting

Hold

Release

Waiting

Waiting

Waiting

Hold

Release

Return

Waiting

Transfer Release Return

Transfer Release Return

Fig. 11. Detailed Petri net model of work transfer task by four robots

 System controller

Local controller 1 Local controller 2 Local controller N

Machine 1 Machine 2 Machine N ••••

••••

Fig. 12. Hierarchical and distributed control structure composed of system controller and
local controllers

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

71

In the decomposition procedure, a transition may be divided and distributed into different
local controllers as shown in Fig. 13. The local controllers should be coordinated so that
these transitions fire simultaneously. Decomposed transitions are called global transitions,
and other transitions are called local transitions.
As another example, loading a workpiece necessitates the cooperative or synchronized
activities between the conveyor and the robot as shown in Fig. 14. First, “Carry in” operation
to carry a workpiece is performed by the conveyor. At the end of the operation, when the
robot is free, the “loading” operation is started. The conveyor starts waiting, the robot starts
moving to grasp the workpiece. After holding the workpiece, the robot starts transferring it to
another position and the conveyor is free. To exploit the above results, a coordinator program
for simultaneous firing of decomposed transitions has been introduced so that the aggregate
behavior of decomposed subnets is the same as that of the original Petri net.

Waiting Release

Hold Waiting

(Robot R2)

t1 t3
Waiting Release

Hold Waiting

(Robot R1)

(Robot R2)

t11 t31

t12 t32

(Robot R1)

decomposition

: global transition

t2
t21

t22

Fig. 13. Decomposition of transitions in “Hand over” operation

Grasp Transfer

Waiting

Moving

(Conveyor CV1)

(Robot R1)

Waiting

Carring in t4 t5

 Grasp TransferMoving

(Robot R1)

Waiting

(Conveyor CV1)

: local transition : global transition

t41 t42 t51 t52Waiting Carring in

decomposition

Fig. 14. Decomposition of transitions in the “Loading” operation

 Advances in Petri Net Theory and Applications

72

When some of the transitions in conflict are firable at the same time, only one of them must
fire while the others become disabled. The choice for firing is done arbitrarily using an
arbiter program. If arbitration of the transitions is performed independently in separate
subnets, the results may be inconsistent with the original rule of arbitration. Therefore the
transitions should be arbitrated together as a group by the system controller. On the other
hand, arbitration of local transitions in conflict is performed by local controllers. When a
robot can do several subtasks in cooperation with conveyors and machining tools in a
flexible manufacturing system, transitions connected to the machine activities are found to
be in conflict, in which the input place of the transitions represents the activity of the robot.
In the decomposition of the detailed Petri net, these transitions also are decomposed and
assigned to different machines. The global transitions should be arbitrated together as a
group by the coordinator. Based on the decision of arbitration, the local controllers
determine the firing transitions.
The overall control structure of an example robotic manufacturing system was implemented
on a local area network of microcomputers. Each Petri net based local controller is
implemented on a dedicated microcomputer (Renesas H8/3069) under the real-time OS
ITRON 4.0. The local controller in charge of robot control executes robot motion control
through the transmission of command and the reception of status report with serial interface
to the real robot controller. The upper level coordinator is implemented on another
microcomputer. Communications among the controllers are performed using TCP/IP
protocol. The coordinator sends the commands based on the conceptual, global Petri net
model and coordinates the global transitions, which are accessed by the system and local
controllers as a shared file, such that decomposed transitions fire simultaneously.
In the simulation experiments, the names of global transitions and their conflict relations are
loaded into the upper level controller. The connection structure of a decomposed Petri net
model and conflict relations among local transitions are loaded into the Petri net based local
controller. In the connection structure, a transition of a Petri net model is defined using the
names of its input places and output places; for example, t1-1=b1-1, -b1-11, where the
transition no.1 (t1-1) of controller no.1 is connected to the input place no.1 and the output
place no.11. Using the names of transitions in the controllers, global transitions are defined;
for example, in Fig. 13, global transitions are G1: t1-11, t2-12, G2: t1-21, t2-22, G3: t1-31, t2-32,
and in Fig. 14, global transitions are G4: t5-41, t1-42, G5: t5-51, t1-52.
By executing the coordinator and Petri net based controllers algorithms based on loaded
information, simulation experiments have been performed. The Petri net simulator initiates
the execution of the unit actions attached to the fired transitions through the serial interface
to the robots or other external machines. When the action ends its activity, it informs the
simulator to proceed with the next activations by the external permissive gate arc.
Experimental results show that the decomposed transitions fire at the same time as the
original transition of the detailed Petri net of the whole system task. Firing transitions and
marking of tokens can be directly observed on the display at each time sequence using the
simulator (Yasuda, 2009).

6. Conclusions
A methodology to construct hierarchical and distributed control systems has been proposed.
By introduction of the coordinator, the Petri net based controllers are arranged according to
the hierarchical and distributed nature of the manufacturing system. The coordination

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

73

mechanism between the upper level and the lower level controllers is based on firability test
of global transitions, and its software can be easily implemented using the token game
player.
An example robotic work cell containing four industrial robot arms was constructed and
system control experiments including synchronization control and selective task control
were successfully performed. The Petri net model in each Petri net based local controller is
not so large and easily manageable. The local controller provides a common interface for
programming robots and other intelligent machines made by different manufacturers, and
can be implemented using conventional programmable logic controllers (PLC). The control
method can be expanded to large and complex, discrete event manufacturing systems. Thus,
modeling, simulation and control of large and complex manufacturing systems can be
performed consistently using Petri nets. The proposed methodology is now being adapted
to advanced multiple robot applications such as exploration robots, rescue robots and home
assist robots, besides industrial applications.

7. References
Atabakhche, H.; Barbalho, D. S., Valette, R. & Courvoisier, M. (1986). From Petri net based

PLCs to knowledge based control, Proceedings of IEEE International Conference on
Industrial Electronics, Control and Instrumentation (IECON’86), 817-822

Fogel, J. & Sebestyenova, J. (1992). An object oriented conception of a real-time control of
FMS, Proceedings of IFAC Workshop on Algorithms and Architectures for Real-Time
Control, 351-356

Gentina, J. C. & Corbeel, D. (1987). Coloured adaptive structured Petri net : A tool for the
automatic synthesis of hierarchical control of flexible manufacturing systems
(F.M.S.), Proceedings of 1987 IEEE International Conference on Robotics and Automation,
1166-1173

Georgeff, M. (1983). Communication and interaction in multi-agent planning, Proceedings of
International Conference of AAAI-83, 125-129

Hasegawa, K.; Takahashi, K., Masuda, R., & Ohno, H. (1984). Proposal of Mark Flow Graph
for discrete system control. Transactions of SICE, Vol. 20, No. 2, 122-129

Holt, J. D. & Rodd, M. D. (1994). An architecture for real-time distributed AI-based control
systems, Proceedings of IFAC Distributed Computer Control Systems 1994, 47-52

Jockovic, M.; Vukobratovic, M. & Ognjanovic, Z. (1990). An approach to the modeling of the
highest control level of flexible manufacturing cell. Robotica, Vol. 8, 125-130

Kasturia, E. & Dicesare, F. (1988). Real time control of multilevel manufacturing systems
using colored Petri nets, Proceedings of 1988 IEEE International Conference on Robotics
and Automation, 1114-1119

Murata, T. (1989). Petri Nets: Properties, analysis and applications. Proceedings of the IEEE,
Vol.77, No.4, 541-580

Perez, R. A. & Koutsourelis, D. I. (1987). A command language for multiple robot arm
coordination. IEEE Transactions on Education, Vol. E-30, No. 2, 109-112

Rogers, P. & Williams, D. (1988). A knowledge-based system linking to real-time control for
manufacturing cells, Proceedings of 1988 IEEE International Conference on Robotics and
Automation, 1291-1293

 Advances in Petri Net Theory and Applications

72

When some of the transitions in conflict are firable at the same time, only one of them must
fire while the others become disabled. The choice for firing is done arbitrarily using an
arbiter program. If arbitration of the transitions is performed independently in separate
subnets, the results may be inconsistent with the original rule of arbitration. Therefore the
transitions should be arbitrated together as a group by the system controller. On the other
hand, arbitration of local transitions in conflict is performed by local controllers. When a
robot can do several subtasks in cooperation with conveyors and machining tools in a
flexible manufacturing system, transitions connected to the machine activities are found to
be in conflict, in which the input place of the transitions represents the activity of the robot.
In the decomposition of the detailed Petri net, these transitions also are decomposed and
assigned to different machines. The global transitions should be arbitrated together as a
group by the coordinator. Based on the decision of arbitration, the local controllers
determine the firing transitions.
The overall control structure of an example robotic manufacturing system was implemented
on a local area network of microcomputers. Each Petri net based local controller is
implemented on a dedicated microcomputer (Renesas H8/3069) under the real-time OS
ITRON 4.0. The local controller in charge of robot control executes robot motion control
through the transmission of command and the reception of status report with serial interface
to the real robot controller. The upper level coordinator is implemented on another
microcomputer. Communications among the controllers are performed using TCP/IP
protocol. The coordinator sends the commands based on the conceptual, global Petri net
model and coordinates the global transitions, which are accessed by the system and local
controllers as a shared file, such that decomposed transitions fire simultaneously.
In the simulation experiments, the names of global transitions and their conflict relations are
loaded into the upper level controller. The connection structure of a decomposed Petri net
model and conflict relations among local transitions are loaded into the Petri net based local
controller. In the connection structure, a transition of a Petri net model is defined using the
names of its input places and output places; for example, t1-1=b1-1, -b1-11, where the
transition no.1 (t1-1) of controller no.1 is connected to the input place no.1 and the output
place no.11. Using the names of transitions in the controllers, global transitions are defined;
for example, in Fig. 13, global transitions are G1: t1-11, t2-12, G2: t1-21, t2-22, G3: t1-31, t2-32,
and in Fig. 14, global transitions are G4: t5-41, t1-42, G5: t5-51, t1-52.
By executing the coordinator and Petri net based controllers algorithms based on loaded
information, simulation experiments have been performed. The Petri net simulator initiates
the execution of the unit actions attached to the fired transitions through the serial interface
to the robots or other external machines. When the action ends its activity, it informs the
simulator to proceed with the next activations by the external permissive gate arc.
Experimental results show that the decomposed transitions fire at the same time as the
original transition of the detailed Petri net of the whole system task. Firing transitions and
marking of tokens can be directly observed on the display at each time sequence using the
simulator (Yasuda, 2009).

6. Conclusions
A methodology to construct hierarchical and distributed control systems has been proposed.
By introduction of the coordinator, the Petri net based controllers are arranged according to
the hierarchical and distributed nature of the manufacturing system. The coordination

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

73

mechanism between the upper level and the lower level controllers is based on firability test
of global transitions, and its software can be easily implemented using the token game
player.
An example robotic work cell containing four industrial robot arms was constructed and
system control experiments including synchronization control and selective task control
were successfully performed. The Petri net model in each Petri net based local controller is
not so large and easily manageable. The local controller provides a common interface for
programming robots and other intelligent machines made by different manufacturers, and
can be implemented using conventional programmable logic controllers (PLC). The control
method can be expanded to large and complex, discrete event manufacturing systems. Thus,
modeling, simulation and control of large and complex manufacturing systems can be
performed consistently using Petri nets. The proposed methodology is now being adapted
to advanced multiple robot applications such as exploration robots, rescue robots and home
assist robots, besides industrial applications.

7. References
Atabakhche, H.; Barbalho, D. S., Valette, R. & Courvoisier, M. (1986). From Petri net based

PLCs to knowledge based control, Proceedings of IEEE International Conference on
Industrial Electronics, Control and Instrumentation (IECON’86), 817-822

Fogel, J. & Sebestyenova, J. (1992). An object oriented conception of a real-time control of
FMS, Proceedings of IFAC Workshop on Algorithms and Architectures for Real-Time
Control, 351-356

Gentina, J. C. & Corbeel, D. (1987). Coloured adaptive structured Petri net : A tool for the
automatic synthesis of hierarchical control of flexible manufacturing systems
(F.M.S.), Proceedings of 1987 IEEE International Conference on Robotics and Automation,
1166-1173

Georgeff, M. (1983). Communication and interaction in multi-agent planning, Proceedings of
International Conference of AAAI-83, 125-129

Hasegawa, K.; Takahashi, K., Masuda, R., & Ohno, H. (1984). Proposal of Mark Flow Graph
for discrete system control. Transactions of SICE, Vol. 20, No. 2, 122-129

Holt, J. D. & Rodd, M. D. (1994). An architecture for real-time distributed AI-based control
systems, Proceedings of IFAC Distributed Computer Control Systems 1994, 47-52

Jockovic, M.; Vukobratovic, M. & Ognjanovic, Z. (1990). An approach to the modeling of the
highest control level of flexible manufacturing cell. Robotica, Vol. 8, 125-130

Kasturia, E. & Dicesare, F. (1988). Real time control of multilevel manufacturing systems
using colored Petri nets, Proceedings of 1988 IEEE International Conference on Robotics
and Automation, 1114-1119

Murata, T. (1989). Petri Nets: Properties, analysis and applications. Proceedings of the IEEE,
Vol.77, No.4, 541-580

Perez, R. A. & Koutsourelis, D. I. (1987). A command language for multiple robot arm
coordination. IEEE Transactions on Education, Vol. E-30, No. 2, 109-112

Rogers, P. & Williams, D. (1988). A knowledge-based system linking to real-time control for
manufacturing cells, Proceedings of 1988 IEEE International Conference on Robotics and
Automation, 1291-1293

 Advances in Petri Net Theory and Applications

74

Silva, M. (1990). Petri nets and flexible manufacturing, In: Advances in Petri Nets 1989,
Lecture Notes in Computer Science, Vol. 424, Rozenberg, G., (Ed.), 374-417,
Springer-Verlag, Berlin

Taubner, D. (1988). On the implementation of Petri nets, In: Advances in Petri Nets 1988,
Lecture Notes in Computer Science, Vol. 340, Rozenberg, G., (Ed.), 418-439,
Springer-Verlag, Berlin

Thuriot, E.; Valette, R., & Courvoisier, M. (1983). Implementation of a centralized
synchronization concept for production systems, Proceedings of IEEE Real-time
Systems Symposium, 163-171

Yasuda, G. (1999). An object-oriented multitasking control environment for multirobot
system programming and execution with 3D graphic simulation. International
Journal of Production Economics, Vol. 60/61, 241-250

Yasuda, G. (2009). Implementation of distributed cooperative control for industrial robot
systems using Petri nets, Preprints of the 9th IFAC Symposium on Robot Control
(SYROCO ’09), 433-438

Wang, F. & Saridis, G. N. (1990). A coordination theory for intelligent machines, Proceedings
of 11th IFAC World Congress, 235-240

5

Intelligent Production Systems
Reconfiguration by Means of Petri Nets

and the Supervisory Control Theory
Zapata M. Germán1, Chacón R. Edgar2 and Palacio B. Juan3

1Universidad Nacional de Colombia, sede Medellín
2Universidad de Los Andes, Mérida

3Universidad Nacional de Colombia, sede Medellín
1,3Colombia
2Venezuela

1. Introduction
The current trend in industrial production processes is to have agile and flexible systems
that respond quickly to the permanent changes and disturbances in the production
environment. This trend has created an important volume of research and papers aimed at
having production control, supervision and programming systems that respond to these
demands. Most of the proposals are grouped inside what has been labeled as Intelligent
Manufacturing Systems (IMS). Among them are virtual, fractal, bionic, holonic
manufacturing. These proposals initially appeared for discrete manufacturing processes.
However, continuous production processes such as oil and gas, chemical plants, and power
generation, also face demands for flexibility and rapid response. Therefore the IMS
proposals can be applied to these types of processes.
Holonic Production Systems (HPS) is one of the proposals that has advanced the most. It
already shows evidence of its application in industrial systems.
In general terms, a HPS is formed by autonomous entities that cooperate proactively to
reach a common goal. These entities are labeled holons and, through aggregation
relationships, they can form groups to form the so called holarchies. The grouping of
various holons or holarchies with the objective of carrying out a productive process is called
a Holonic Production Unit (HPU).
The principal attributes of holons are: autonomy, cooperation, proactiveness, and reactivity.
Other key characteristics are the distribution of intelligence and self-similarity to build
complex structures from simpler systems.
In order to achieve agility and flexibility, HPSs need distributed coordination and
supervision functions. These functions enable them to dynamically reconfigure the
production structure and the control laws to accommodate to the new operative conditions.
Reconfiguration can only be faced if the production system has flexibility with regards to
the allocation of manufacturing operations and of control architectures, which enable using
different control policies for different types of services, or adapting control strategies to
achieve new requirements.

 Advances in Petri Net Theory and Applications

74

Silva, M. (1990). Petri nets and flexible manufacturing, In: Advances in Petri Nets 1989,
Lecture Notes in Computer Science, Vol. 424, Rozenberg, G., (Ed.), 374-417,
Springer-Verlag, Berlin

Taubner, D. (1988). On the implementation of Petri nets, In: Advances in Petri Nets 1988,
Lecture Notes in Computer Science, Vol. 340, Rozenberg, G., (Ed.), 418-439,
Springer-Verlag, Berlin

Thuriot, E.; Valette, R., & Courvoisier, M. (1983). Implementation of a centralized
synchronization concept for production systems, Proceedings of IEEE Real-time
Systems Symposium, 163-171

Yasuda, G. (1999). An object-oriented multitasking control environment for multirobot
system programming and execution with 3D graphic simulation. International
Journal of Production Economics, Vol. 60/61, 241-250

Yasuda, G. (2009). Implementation of distributed cooperative control for industrial robot
systems using Petri nets, Preprints of the 9th IFAC Symposium on Robot Control
(SYROCO ’09), 433-438

Wang, F. & Saridis, G. N. (1990). A coordination theory for intelligent machines, Proceedings
of 11th IFAC World Congress, 235-240

5

Intelligent Production Systems
Reconfiguration by Means of Petri Nets

and the Supervisory Control Theory
Zapata M. Germán1, Chacón R. Edgar2 and Palacio B. Juan3

1Universidad Nacional de Colombia, sede Medellín
2Universidad de Los Andes, Mérida

3Universidad Nacional de Colombia, sede Medellín
1,3Colombia
2Venezuela

1. Introduction
The current trend in industrial production processes is to have agile and flexible systems
that respond quickly to the permanent changes and disturbances in the production
environment. This trend has created an important volume of research and papers aimed at
having production control, supervision and programming systems that respond to these
demands. Most of the proposals are grouped inside what has been labeled as Intelligent
Manufacturing Systems (IMS). Among them are virtual, fractal, bionic, holonic
manufacturing. These proposals initially appeared for discrete manufacturing processes.
However, continuous production processes such as oil and gas, chemical plants, and power
generation, also face demands for flexibility and rapid response. Therefore the IMS
proposals can be applied to these types of processes.
Holonic Production Systems (HPS) is one of the proposals that has advanced the most. It
already shows evidence of its application in industrial systems.
In general terms, a HPS is formed by autonomous entities that cooperate proactively to
reach a common goal. These entities are labeled holons and, through aggregation
relationships, they can form groups to form the so called holarchies. The grouping of
various holons or holarchies with the objective of carrying out a productive process is called
a Holonic Production Unit (HPU).
The principal attributes of holons are: autonomy, cooperation, proactiveness, and reactivity.
Other key characteristics are the distribution of intelligence and self-similarity to build
complex structures from simpler systems.
In order to achieve agility and flexibility, HPSs need distributed coordination and
supervision functions. These functions enable them to dynamically reconfigure the
production structure and the control laws to accommodate to the new operative conditions.
Reconfiguration can only be faced if the production system has flexibility with regards to
the allocation of manufacturing operations and of control architectures, which enable using
different control policies for different types of services, or adapting control strategies to
achieve new requirements.

 Advances in Petri Net Theory and Applications

76

The selection of a new configuration is basically a problem of state reachability in discrete
dynamics systems. Therefore, Petri nets and the supervisory control theory have been
deemed appropriate to find solutions that perform well in real time. Due to the demands for
temporary performance, reconfiguration has been considered a function of real time in
control architecture.
The work that is presented is inspired in the holonic paradigm, and supported by Petri nets
and the supervisory control theory, to define, in real time, a new configuration for the
production structure that adjusts to new requirements or disturbances.
For the holonic paradigm perspective, each production resource is seen as a HPU, with
skills, availability and capacities. The HPU makes offers and negotiates its objectives or
missions. Each holon, for a determined operation condition, offers its services based on its
current capacities and state and, in this manner, a highly reconfigurable system is formed.
Petri Nets (PN) are a mathematical and graphic tool with the ability to capture precedence
relationships and structural relationships, to model blocking, sequences, concurrent
processes, conflicts and restrictions.
Products manufactured by an HPU can also be modeled through PN, because of the ease to
represent precedence relationships. A global HPU model is established through PN
composition operations, composing the resources with the products. The initial marking of
this global PN is generated from the state of the resources in real time which, in order to
conduct a production mission, presents offers based on current operative conditions.
Once the initial marking for the resources state is established, the PN is executed and the
complete state space of the possible HPU behavior is generated. The states space, or
reachability tree, is an finite automata and the trajectories between states define the possible
configurations to reach the objective. The configuration selected must be feasible and
controllable and must also guarantee that there neither blocking nor forbidden states in the
system. Besides, the selected trajectory must lead to a satisfactory termination of the
product. The supervisory control theory (SCT) is suitable to solve this type of problems
which are present in DES – Discrete Event Systems.
By guaranteeing properties as boundedness, a finite states space and the obtaining of a
solution in finite time are assured.
Once a configuration to reach an objective, based on the capacities and the state of resources
is selected, the holarchies are formed.
Generated for each holarchy, in a recursive manner, is a PN model of its behavior, following
the same construction structure explained for the HPU. When a disturbance occurs, the
holarchy tries to solve it internally by adjusting its production structure and following the
proposed analysis technique. If the holarchy is incapable of achieving its mission for the
new operative condition, it requests cooperation from the rest of the HPU. The new mission
redistribution is carried out by following the same analysis technique, generating a global
PN model formed by holarchies, and a marking for the current condition.
In this manner, a proposal for determining a new configuration, which shows the
advantages of using the recursivity of the holonic paradigm and the description and
analysis power of Petri nets, has been developed. Real time performance is noticeably
improved as the reachability tree is considerably reduced.
This chapter is structured as follows. The first part presents related works highlighting
research made from the holonic paradigm or making use of PN and SCT. Theoretical
concepts are presented in the second part. The third part presents the construction of the
HPU’s global model and the obtaining of the reachability tree from the marking determined

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

77

by resources states, and continuing with the definition of the holarchies. Once the holarchies
are established, it is shown how the HPU responds to disturbances and how it reconfigures
itself to cover the fault conditions. Finally, an application and implementation example is
presented through CPNTools.

2. Previous works
It was only in 1989 that the concept of Holon proposed by Koestler in 1968 (Koestler, 1968),
was applied to manufacturing concepts. Suda, in his work, proposes a "plug and play"
proposal to design and operate manufacturing systems that combined optimum global
performance with robustness to face disturbances. This gave birth to what is labeled Holonic
Manufacturing Systems (HMS) (Suda, 1989). As a concept, HMS represents a methodology,
tools and norms to design manufacturing control systems that are flexible and
reconfigurable. A work that will always be a fixed reference, as it is a forerunning proposal,
is the work presented by Jo Wyns in (Wyns, 1999), labeled PROSA: Product - Resource -
Order – Staff Architecture. Concerning the control system’s flexibility, PROSA, through the
formation of temporary holarchies, establishes that mixed scenarios that combine
hierarchies with heterarchies are the most optimal. Recently, PROSA began to add auto-
organization capacities taken from biological systems and labeled its architecture PROSA +
ANTS (Leitao et al., 2009).
ADACOR architecture (Adaptive Holonic Control Architecture) (Leitao, 2004), presents the
holonic approach to introduce dynamic adaptation and agility to face disturbances. This
architecture is based in a group of autonomous, intelligent and cooperative entities to
represent Factory components. In this approach it is important to highlight the modeling of
holon dynamics through Petri Nets.
Other architectures that can be highlighted include: Holobloc Fischer John (n.d.),
Metamorph (Maturana et al., n.d.), Holonic Control Device (Brennan et al., 2003), Interrap
(Holonic Manufacturing Systems, 2008), Holonic Component Based Architecture (Chirn &
McFarlane, n.d.), HoMuCS (Langer, 1999), MaSHReC (El Kebbe, 2002) and HOMASCOW
(Adam et al., n.d.).
The largest volume of research is centered around discrete manufacturing systems. In
reality, there have only been a few works in which the holonic approach was applied in the
industry of continuous processes. Nevertheless, these industries are also subject to the
demands of today´s markets. Mass production personalization trends, rapid response times,
shorter product life cycles, and the efficient use of energy and resources, force the process
industry to consider aspects as flexibility, agility reconfigurability, decentralization and
integration.
The works of (Chokshi & McFarlane, 2008b), can be cited as references of the holonic
approach in continuous processes (Chokshi & McFarlane, n.d.) (McFarlane, 1995) (Agre et
al., 1994) (Chacón & Colmenares, 2005). They mention that the principal works are
conducted by groups aimed at automating the chemical industries, specially concerning for
planning and production scheduling.
A group from Universidad de los Andes de Venezuela has proposed the concept of Holonic
Production Unit- HPU for its acronym in Spanish - in which holonic principles are brought
into continuous processes. Some of the works related are found in (Chacón et al., 2008)
(Chacón & Colmenares, 2005) (Lobo, 2003) (Peréz, n.d.) (Durán, 2006) (Chacón &
Colmenares, 2005) (Chacón et al., 2003).

 Advances in Petri Net Theory and Applications

76

The selection of a new configuration is basically a problem of state reachability in discrete
dynamics systems. Therefore, Petri nets and the supervisory control theory have been
deemed appropriate to find solutions that perform well in real time. Due to the demands for
temporary performance, reconfiguration has been considered a function of real time in
control architecture.
The work that is presented is inspired in the holonic paradigm, and supported by Petri nets
and the supervisory control theory, to define, in real time, a new configuration for the
production structure that adjusts to new requirements or disturbances.
For the holonic paradigm perspective, each production resource is seen as a HPU, with
skills, availability and capacities. The HPU makes offers and negotiates its objectives or
missions. Each holon, for a determined operation condition, offers its services based on its
current capacities and state and, in this manner, a highly reconfigurable system is formed.
Petri Nets (PN) are a mathematical and graphic tool with the ability to capture precedence
relationships and structural relationships, to model blocking, sequences, concurrent
processes, conflicts and restrictions.
Products manufactured by an HPU can also be modeled through PN, because of the ease to
represent precedence relationships. A global HPU model is established through PN
composition operations, composing the resources with the products. The initial marking of
this global PN is generated from the state of the resources in real time which, in order to
conduct a production mission, presents offers based on current operative conditions.
Once the initial marking for the resources state is established, the PN is executed and the
complete state space of the possible HPU behavior is generated. The states space, or
reachability tree, is an finite automata and the trajectories between states define the possible
configurations to reach the objective. The configuration selected must be feasible and
controllable and must also guarantee that there neither blocking nor forbidden states in the
system. Besides, the selected trajectory must lead to a satisfactory termination of the
product. The supervisory control theory (SCT) is suitable to solve this type of problems
which are present in DES – Discrete Event Systems.
By guaranteeing properties as boundedness, a finite states space and the obtaining of a
solution in finite time are assured.
Once a configuration to reach an objective, based on the capacities and the state of resources
is selected, the holarchies are formed.
Generated for each holarchy, in a recursive manner, is a PN model of its behavior, following
the same construction structure explained for the HPU. When a disturbance occurs, the
holarchy tries to solve it internally by adjusting its production structure and following the
proposed analysis technique. If the holarchy is incapable of achieving its mission for the
new operative condition, it requests cooperation from the rest of the HPU. The new mission
redistribution is carried out by following the same analysis technique, generating a global
PN model formed by holarchies, and a marking for the current condition.
In this manner, a proposal for determining a new configuration, which shows the
advantages of using the recursivity of the holonic paradigm and the description and
analysis power of Petri nets, has been developed. Real time performance is noticeably
improved as the reachability tree is considerably reduced.
This chapter is structured as follows. The first part presents related works highlighting
research made from the holonic paradigm or making use of PN and SCT. Theoretical
concepts are presented in the second part. The third part presents the construction of the
HPU’s global model and the obtaining of the reachability tree from the marking determined

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

77

by resources states, and continuing with the definition of the holarchies. Once the holarchies
are established, it is shown how the HPU responds to disturbances and how it reconfigures
itself to cover the fault conditions. Finally, an application and implementation example is
presented through CPNTools.

2. Previous works
It was only in 1989 that the concept of Holon proposed by Koestler in 1968 (Koestler, 1968),
was applied to manufacturing concepts. Suda, in his work, proposes a "plug and play"
proposal to design and operate manufacturing systems that combined optimum global
performance with robustness to face disturbances. This gave birth to what is labeled Holonic
Manufacturing Systems (HMS) (Suda, 1989). As a concept, HMS represents a methodology,
tools and norms to design manufacturing control systems that are flexible and
reconfigurable. A work that will always be a fixed reference, as it is a forerunning proposal,
is the work presented by Jo Wyns in (Wyns, 1999), labeled PROSA: Product - Resource -
Order – Staff Architecture. Concerning the control system’s flexibility, PROSA, through the
formation of temporary holarchies, establishes that mixed scenarios that combine
hierarchies with heterarchies are the most optimal. Recently, PROSA began to add auto-
organization capacities taken from biological systems and labeled its architecture PROSA +
ANTS (Leitao et al., 2009).
ADACOR architecture (Adaptive Holonic Control Architecture) (Leitao, 2004), presents the
holonic approach to introduce dynamic adaptation and agility to face disturbances. This
architecture is based in a group of autonomous, intelligent and cooperative entities to
represent Factory components. In this approach it is important to highlight the modeling of
holon dynamics through Petri Nets.
Other architectures that can be highlighted include: Holobloc Fischer John (n.d.),
Metamorph (Maturana et al., n.d.), Holonic Control Device (Brennan et al., 2003), Interrap
(Holonic Manufacturing Systems, 2008), Holonic Component Based Architecture (Chirn &
McFarlane, n.d.), HoMuCS (Langer, 1999), MaSHReC (El Kebbe, 2002) and HOMASCOW
(Adam et al., n.d.).
The largest volume of research is centered around discrete manufacturing systems. In
reality, there have only been a few works in which the holonic approach was applied in the
industry of continuous processes. Nevertheless, these industries are also subject to the
demands of today´s markets. Mass production personalization trends, rapid response times,
shorter product life cycles, and the efficient use of energy and resources, force the process
industry to consider aspects as flexibility, agility reconfigurability, decentralization and
integration.
The works of (Chokshi & McFarlane, 2008b), can be cited as references of the holonic
approach in continuous processes (Chokshi & McFarlane, n.d.) (McFarlane, 1995) (Agre et
al., 1994) (Chacón & Colmenares, 2005). They mention that the principal works are
conducted by groups aimed at automating the chemical industries, specially concerning for
planning and production scheduling.
A group from Universidad de los Andes de Venezuela has proposed the concept of Holonic
Production Unit- HPU for its acronym in Spanish - in which holonic principles are brought
into continuous processes. Some of the works related are found in (Chacón et al., 2008)
(Chacón & Colmenares, 2005) (Lobo, 2003) (Peréz, n.d.) (Durán, 2006) (Chacón &
Colmenares, 2005) (Chacón et al., 2003).

 Advances in Petri Net Theory and Applications

78

The techniques of Discrete Even Systems (DES) have been used in some works related to
holonic or similar systems - as multi-agent systems or distributed systems - to model
dynamics, to model production control functions and to test/prove performance properties.
In (Caramihai, n.d.) a unified theory base is presented, based on the theory of DES, to model
interactions between agents by composing Petri Nets (PNs). This method uses the
Supervisory Control Theory (SCT) of DES through PNs, in the sense that all interactions
among agents are obtained by analyzing the states space generated by the execution of the
PN, and through the specification of undesired states such as blockings. A supervisory
model eliminates the interactions that lead to those states.
For Celaya, the development of theoretical bases to guarantee the properties of a Multi-
agent system (MAS) is critical. These systems can be considered as DES and use PNs to
model interactions and to guarantee that the structural properties of these interactions are
met. Blockings of the MAS are avoided, evaluating the properties of liveness and
boundedness (Celaya et al., 2009).
According to Balasubramanian, control of holonic systems in real time requires responses
that are radically different. These must adapt automatically and reconfigure according to the
constantly changing requirements of the production system. It presents the architecture for
dynamically reconfigurable systems based on IEC 61499 and in a structure of control levels
driven by events. (Balasubramanian et al., n.d.)
A work by Hsieh (Hsieh, 2006) establishes a fusion of PNs with Contract Net, because of the
difficulty of this protocol to avoid undesired states, such as blockings in the HMS. The
modeling and analysis capacities of PNs with Contract Net are combined for the distribution
of tasks among holons and the so-called collaborative Petri Nets are proposed. The complete
process of production orders is proposed as a problem of supervisory control as different
orders must compete for limited resources. These generate conflict situations that need to be
solved through the coordination of PNs. The condition of liveness (non blocking) must be
guaranteed in order to facilitate the feasibility of agreements.
The problem of configurations for scheduling and rescheduling has been deeply explored in
(Ramos, n.d.), (Sousa & Ramos, 1998), (Bongaerts, 1998) and (Cheng et al., 2004). In
(McFarlane, 1995), a Holon Configuration, which acts to reconfigure the system when
required, is proposed.
A review of the works concerning distributed planning and scheduling of reconfigurable
holons can be consulted at (Mcfarlane & Bussman, 2000), (Chokshi & McFarlane, 2008a) and
(Chokshi & McFarlane, 2008b). These propose a distributed architecture, based on the
holonic paradigm, for the reconfigurable control of operations in continuous processes. This
approach distributes the functionalities of planning, scheduling, coordination and control.
PNs have gained the spotlight as a solution for the problem of scheduling and rescheduling
in discrete and in continuous and batch processes (Tuncel & Bayhan, 2007),
(http://research.curtin.edu.au/, 2010), (Fu-Shiung, n.d.), (Ghaeli et al., 2005), (Tittus &
Akesson, 1999), (Tittus & Lennartson, 1997), (Zhou, 1995) and (Tittus et al., n.d.).
According to (Tuncel & Bayhan, 2007), PN based methods directly describe the current
dynamic behavior and the control system’s logic. The most significant advantage of using
PNs, is their ability to capture precedence and structural relationships, and to model
blockings, conflicts, buffer sizes and multi-resource restrictions. Concurrent and
asynchronous activities, shared resources, route flexibility, limited buffers and complex
restrictions in the process sequences can be, specifically and concisely, modeled through
PNs.

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

79

Furthermore, according to (Music & D., 1998), synthesis methods based on PNs exploit the
nets’ structures avoiding the need to explore all the states spaces.
The characteristics of PN models have lead many authors to propose reconfiguration as a
problem of supervisory control (Ramadge & Wonham, 1989), (Akesson, 2002), (Pétin et al.,
2007) and (Tittus & Akesson, 1999). From this theory, a feasible combination of the resources
in the time to reach an objective must be found. Therefore, a minimal restrictive supervisor
that makes the system synchronize the optimal use of the resources by the products is
synthesized. This guarantees behavior specifications and the reachability of the objective,
preventing the system from going into blocked states or into forbidden states. Solutions
based on this approach, that elaborate a model composed by products and resources
through PNs and develop a synthesis from the supervisory control theory through an
analysis of the reachability tree, can be found in (Tittus & Akesson, 1999), (Lennartson,
Tittus & Fabian, n.d.), (Akesson, 2002), (Pétin et al., 2007), (Falkman et al., 2009), (Music &
D., 1998), (Reveliotis, 1999) and (Lennartson, Fabian & Falkman, n.d.) . This last paper
established that the supervisor must guarantee that the system remains alive (enabled to
reach states where all products are produced) and safe (it never reaches undesired states).
Production scheduling based on Petri Nets and in the theory of supervisory control, along
with the holonic concept of the formation of holarchies, can be appropriate for the
rescheduling of continuous production systems with high demands for re-configurability.

3. Theoretical bases
3.1 Holonic Production Systems (HPS)
An HPS is understood as a system composed by individual autonomous units that
cooperate proactively through temporary reconfigurable hierarchies to obtain a global goal.
Each autonomous component is called a Holon and a group of holons is called a Holarchy.
The aggregation of holons and holarchies, through properties of auto similarity, enables the
construction of very complex systems as shown in 1. The added holons are defined as a set
of grouped holons, forming a major holon with its own identity and a structure that is
similar to the holons that form it.

Fig. 1. Holarchy

 Advances in Petri Net Theory and Applications

78

The techniques of Discrete Even Systems (DES) have been used in some works related to
holonic or similar systems - as multi-agent systems or distributed systems - to model
dynamics, to model production control functions and to test/prove performance properties.
In (Caramihai, n.d.) a unified theory base is presented, based on the theory of DES, to model
interactions between agents by composing Petri Nets (PNs). This method uses the
Supervisory Control Theory (SCT) of DES through PNs, in the sense that all interactions
among agents are obtained by analyzing the states space generated by the execution of the
PN, and through the specification of undesired states such as blockings. A supervisory
model eliminates the interactions that lead to those states.
For Celaya, the development of theoretical bases to guarantee the properties of a Multi-
agent system (MAS) is critical. These systems can be considered as DES and use PNs to
model interactions and to guarantee that the structural properties of these interactions are
met. Blockings of the MAS are avoided, evaluating the properties of liveness and
boundedness (Celaya et al., 2009).
According to Balasubramanian, control of holonic systems in real time requires responses
that are radically different. These must adapt automatically and reconfigure according to the
constantly changing requirements of the production system. It presents the architecture for
dynamically reconfigurable systems based on IEC 61499 and in a structure of control levels
driven by events. (Balasubramanian et al., n.d.)
A work by Hsieh (Hsieh, 2006) establishes a fusion of PNs with Contract Net, because of the
difficulty of this protocol to avoid undesired states, such as blockings in the HMS. The
modeling and analysis capacities of PNs with Contract Net are combined for the distribution
of tasks among holons and the so-called collaborative Petri Nets are proposed. The complete
process of production orders is proposed as a problem of supervisory control as different
orders must compete for limited resources. These generate conflict situations that need to be
solved through the coordination of PNs. The condition of liveness (non blocking) must be
guaranteed in order to facilitate the feasibility of agreements.
The problem of configurations for scheduling and rescheduling has been deeply explored in
(Ramos, n.d.), (Sousa & Ramos, 1998), (Bongaerts, 1998) and (Cheng et al., 2004). In
(McFarlane, 1995), a Holon Configuration, which acts to reconfigure the system when
required, is proposed.
A review of the works concerning distributed planning and scheduling of reconfigurable
holons can be consulted at (Mcfarlane & Bussman, 2000), (Chokshi & McFarlane, 2008a) and
(Chokshi & McFarlane, 2008b). These propose a distributed architecture, based on the
holonic paradigm, for the reconfigurable control of operations in continuous processes. This
approach distributes the functionalities of planning, scheduling, coordination and control.
PNs have gained the spotlight as a solution for the problem of scheduling and rescheduling
in discrete and in continuous and batch processes (Tuncel & Bayhan, 2007),
(http://research.curtin.edu.au/, 2010), (Fu-Shiung, n.d.), (Ghaeli et al., 2005), (Tittus &
Akesson, 1999), (Tittus & Lennartson, 1997), (Zhou, 1995) and (Tittus et al., n.d.).
According to (Tuncel & Bayhan, 2007), PN based methods directly describe the current
dynamic behavior and the control system’s logic. The most significant advantage of using
PNs, is their ability to capture precedence and structural relationships, and to model
blockings, conflicts, buffer sizes and multi-resource restrictions. Concurrent and
asynchronous activities, shared resources, route flexibility, limited buffers and complex
restrictions in the process sequences can be, specifically and concisely, modeled through
PNs.

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

79

Furthermore, according to (Music & D., 1998), synthesis methods based on PNs exploit the
nets’ structures avoiding the need to explore all the states spaces.
The characteristics of PN models have lead many authors to propose reconfiguration as a
problem of supervisory control (Ramadge & Wonham, 1989), (Akesson, 2002), (Pétin et al.,
2007) and (Tittus & Akesson, 1999). From this theory, a feasible combination of the resources
in the time to reach an objective must be found. Therefore, a minimal restrictive supervisor
that makes the system synchronize the optimal use of the resources by the products is
synthesized. This guarantees behavior specifications and the reachability of the objective,
preventing the system from going into blocked states or into forbidden states. Solutions
based on this approach, that elaborate a model composed by products and resources
through PNs and develop a synthesis from the supervisory control theory through an
analysis of the reachability tree, can be found in (Tittus & Akesson, 1999), (Lennartson,
Tittus & Fabian, n.d.), (Akesson, 2002), (Pétin et al., 2007), (Falkman et al., 2009), (Music &
D., 1998), (Reveliotis, 1999) and (Lennartson, Fabian & Falkman, n.d.) . This last paper
established that the supervisor must guarantee that the system remains alive (enabled to
reach states where all products are produced) and safe (it never reaches undesired states).
Production scheduling based on Petri Nets and in the theory of supervisory control, along
with the holonic concept of the formation of holarchies, can be appropriate for the
rescheduling of continuous production systems with high demands for re-configurability.

3. Theoretical bases
3.1 Holonic Production Systems (HPS)
An HPS is understood as a system composed by individual autonomous units that
cooperate proactively through temporary reconfigurable hierarchies to obtain a global goal.
Each autonomous component is called a Holon and a group of holons is called a Holarchy.
The aggregation of holons and holarchies, through properties of auto similarity, enables the
construction of very complex systems as shown in 1. The added holons are defined as a set
of grouped holons, forming a major holon with its own identity and a structure that is
similar to the holons that form it.

Fig. 1. Holarchy

 Advances in Petri Net Theory and Applications

80

The Consortium HMS defines a holon as: "a constitutive, autonomous and cooperative
component of a manufacturing system whose purpose is to transport, transform, store,
and/or validate information or physical objects"(HMS, 2004).
The principal attributes of a holon are: decentralization for taking decisions, autonomy,
cooperation, and capacity to auto-organize. These enable a dynamic evolution and the
reconfiguration of the organizational control structure, which in turn combine global
optimization of production and agile reaction, to face unpredictable disturbances. Holons
are also systems with objective oriented behaviors. HMS Consortium defined the following
basic attributes:

Autonomy: The capability of an entity to create, control, and supervise the execution of its
own behavior plans and/or strategies.

Cooperation: a set of entities that develop mutually acceptable plans and strategies and
execute them in order to achieve common goals or objectives.

Proactiviness: the capability to anticipate changes in its plans and objectives.
Reactivity: the capability to react to stimuli in the environment.

In order to bring holonic attributes and characteristics into continuous production systems
had been presented the Holonic Production Unit proposal (HPU).
Presented in this proposal, from an integrated vision of the productive process, is the
conception of the production unit as a holon. Representation techniques must enable the
understanding of relationships among them, for each one of the different components: graphic
representations, capability attributes, availability, reliability and evolution of dynamics.
The HPU is conceived as the composition of a set of elemental units or resources that are
organized and configured in a manner that enables performing the transformation processes
in the value chain. The objective is to obtain the demanded products. The HPU takes its own
decisions with regards to achieving its objective, but is obliged to inform its state in the
compliance of a goal, or if such goal cannot be accomplished due to a fault or to errors in its
behavior.
The HPU is formed by the following components:
• Mission, which describes the objective of production.
• Resources, which describe the necessary components for obtaining the products, which

in turn can also be another HPU being consequent with the paradigm´s recursiveness.
• Engineering, which describes the necessary knowledge to obtain the products.
The relationship among these components is shown in Figure 2. Figure 3 shows the class
diagram of the HPU proposal (Chacón et al., 2008).
Highlighted in this proposal are a component of Control and Supervision that measures,
modifies, controls and supervises the production process; and the relationships that exist
between the Configuration and the Production Method, and between the Process and the
Resources.
The behavior of the HPU is presented in (Chacón & Colmenares, 2005) from the Supervisory
Control Theory (SCT), describing its dynamics as a Discrete Event System (DES). The global
behavior of the HPU is the result of coupling the behavior of the control system (supervisor)
and the behavior of the process and the resources. Each component of a HPU is model
through a Petri Net (PN).
In this manner, the behavior of a HPU focused in reaching a production goal, can be
formulated as a supervisory control problem. In such, an entity (supervisor) restricts the
behavior of a system so it achieves the desired states and does not go into forbidden states.

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

81

Fig. 2. HPU Components

Fig. 3. Holonic Production Unit (From (Chacón et al., 2008))

3.2 Automata and languages
A Discrete Event System (DES) is defined as a dynamic system with a states spaces that is
finite and numerable and that evolves because of the occurrence of spontaneous events. The
decisions to "select" a configuration of the production resources to obtain a product in a
continuous process, is classified in the DES category.

 Advances in Petri Net Theory and Applications

80

The Consortium HMS defines a holon as: "a constitutive, autonomous and cooperative
component of a manufacturing system whose purpose is to transport, transform, store,
and/or validate information or physical objects"(HMS, 2004).
The principal attributes of a holon are: decentralization for taking decisions, autonomy,
cooperation, and capacity to auto-organize. These enable a dynamic evolution and the
reconfiguration of the organizational control structure, which in turn combine global
optimization of production and agile reaction, to face unpredictable disturbances. Holons
are also systems with objective oriented behaviors. HMS Consortium defined the following
basic attributes:

Autonomy: The capability of an entity to create, control, and supervise the execution of its
own behavior plans and/or strategies.

Cooperation: a set of entities that develop mutually acceptable plans and strategies and
execute them in order to achieve common goals or objectives.

Proactiviness: the capability to anticipate changes in its plans and objectives.
Reactivity: the capability to react to stimuli in the environment.

In order to bring holonic attributes and characteristics into continuous production systems
had been presented the Holonic Production Unit proposal (HPU).
Presented in this proposal, from an integrated vision of the productive process, is the
conception of the production unit as a holon. Representation techniques must enable the
understanding of relationships among them, for each one of the different components: graphic
representations, capability attributes, availability, reliability and evolution of dynamics.
The HPU is conceived as the composition of a set of elemental units or resources that are
organized and configured in a manner that enables performing the transformation processes
in the value chain. The objective is to obtain the demanded products. The HPU takes its own
decisions with regards to achieving its objective, but is obliged to inform its state in the
compliance of a goal, or if such goal cannot be accomplished due to a fault or to errors in its
behavior.
The HPU is formed by the following components:
• Mission, which describes the objective of production.
• Resources, which describe the necessary components for obtaining the products, which

in turn can also be another HPU being consequent with the paradigm´s recursiveness.
• Engineering, which describes the necessary knowledge to obtain the products.
The relationship among these components is shown in Figure 2. Figure 3 shows the class
diagram of the HPU proposal (Chacón et al., 2008).
Highlighted in this proposal are a component of Control and Supervision that measures,
modifies, controls and supervises the production process; and the relationships that exist
between the Configuration and the Production Method, and between the Process and the
Resources.
The behavior of the HPU is presented in (Chacón & Colmenares, 2005) from the Supervisory
Control Theory (SCT), describing its dynamics as a Discrete Event System (DES). The global
behavior of the HPU is the result of coupling the behavior of the control system (supervisor)
and the behavior of the process and the resources. Each component of a HPU is model
through a Petri Net (PN).
In this manner, the behavior of a HPU focused in reaching a production goal, can be
formulated as a supervisory control problem. In such, an entity (supervisor) restricts the
behavior of a system so it achieves the desired states and does not go into forbidden states.

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

81

Fig. 2. HPU Components

Fig. 3. Holonic Production Unit (From (Chacón et al., 2008))

3.2 Automata and languages
A Discrete Event System (DES) is defined as a dynamic system with a states spaces that is
finite and numerable and that evolves because of the occurrence of spontaneous events. The
decisions to "select" a configuration of the production resources to obtain a product in a
continuous process, is classified in the DES category.

 Advances in Petri Net Theory and Applications

82

To specify a DES model, it is necessary to specify the set of states, the set of events and the
structure of the system’s transition. Formally, a DES is represented through an Automata G
= (Q,Σ, δ, q0,Qm) , where Q is the finite set of states; Σ is the finite set of events formed by two
sub-sets: Σnc of non-controllable events and Σc of controllable events; a transition function
δ : Σ × Q → Q that establishes the dynamic of the system; an initial state q0 ∈ Q; and a set Qm

∈ Q of final or marked states. In addition, a set of co-reachable states Qco, is described as the
set formed by q states for which there is at least one path to take them from q to a marked
state.
The behavior of a DES is characterized by a sequence of events produced during its
operation. An event is called a string and is formed through the concatenation of events.
Kleene closure is a set defined as the set of all strings formed through the concatenation of
the elements of the set in any combination, including the identity element for the
concatenation operator denoted ε and called the silent event. Kleene closure of the set of
events is denoted by Σ*.
A prefix of a string s is a sequence of events, which is also an initial sequence of s. This is
s ∈Σ*, u is a prefix of s if uw = s for some w ∈ Σ*.
The set that includes all the prefixes of all its elements is said to be a prefix-closed. It is clear
that Σ* is a prefix-closed. The prefix closure of a set A is defined, and A is denoted as the set
that contains all the prefixes of the elements of A.
A language is a set of strings (or words) formed by the concatenation of events. The
language generated by automata G, denoted by L(G), is the set of strings L(G) = {s|s ∈ Σ*,
δ(s, q0) is defined}
The marked language, denoted by Lm(G),is a subset of L(G) formed by all strings that lead to
marked states. Formally: Lm(G) = {s|s ∈ Σ*, δ(s, q0) is defined, δ(s, q0) ∈ Qm}

3.3 Supervisory control theory
The results of the theory of automata and languages were used by Ramadge and Wonham
(Ramadge & Wonham, 1989) to propose a theory for DES control called Supervisory Control
Theory (SCT). In this theory, a supervisor controls the behavior of an automata representing
the plant - enabling and disabling events - affecting the actual sequence and a trajectory to
reach the desired states and avoid the forbidden ones.
To synthesize a supervisor, one departs from a language k called Specification which
expresses the plant’s desired behavior. The supervisor must guarantee that all marked states
are reached from any reachable state. This property is called nonblocking and is defined by
expressing that an automata is reachable and nonblocking if it is capable of reaching a
marked state from any reachable state. It is formally described as: ()mL G = L(G).
Furthermore, controllable specifications with regards to the plant must be guaranteed.
Therefore, to verify this property, the following must apply: k Σnc ∩ L(G) ⊆ k .
The nonblocking property is fundamental for the reconfiguration of a production system as,
when a disturbance occurs and the failed system abandons a marked state, the control
system must be able to bring it from the new state to another state q ∈Qm.
Along these lines, algorithms for synthesis of the DES supervisor are used in this work to
establish a trajectory that leads the system to satisfactory termination states of the product
when a disturbance occurs.
In synthesis, from a global behavior of the system, the forbidden states are removed through
a purge function, the states that led to blockings are suppressed, and controllability is

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

83

verified. It is expressed in the following algorithm where A is an automata, MA is the set of
marked states of A, XA is the set of forbidden states of A, Qx is the set of blockable states plus
the previous forbidden states.

purge(S0);
i = 1;
repeat
 QCO = MA; QA = X; Q = Ø;
 repeat
 Q = 0 ∀ Q ∈ [QA \(Qco ∪ Qx)]

 IF [QA \(Qco ∪ Qx)] = Ø THEN
 END
 ELSE
 ∃σ ∈ ΣA/{[δ(q,σ) ∈ Qx] or [∀δ(q,σ) not defined]}
 Qx = Qx ∪ {q};

 Qco = Qco ∪ Q;
 END IF
 UNTIL Q = Ø;
 Qsi = Qco\Qx;
 REPEAT
 XA = QA\Qco;
 Qx = XA; Q = Ø;
 ∀q ∈ QA\Qx IF ∃σ ∈ Σnc/δ(q,σ) ∈ Qx THEN
 Q = Q ∪ {q};

 Qx = Qx ∪ Q;
 UNTIL Q = Ø;
 XA = Qx;
 Qsi+1 = Qco\XA;
 i = i + 1;
UNTIL Qsi = Qsi+1;
Qs = Qsi //those are states of Supervisor

3.4 Petri nets as language generators
Petri Nets relate to the theory of supervisory control theory through automata and
languages. The most appropriate PNs for language generation are the ones called labeled
PN. Through attaining all the states spaces of the PN labeled, called reachability tree or
graph, the net’s automata and the languages generated and marked are obtained.
A Petri net can be presented through a tuple of the form R = 〈P,T,A,B〉, where P is the set of
states of the system, T is the transitions set, A is the input incidence matrix, that represent
arcs from a pi to a transition tj with weight a(pi, tj) ∈ N, B output incidence matrix, that
represents arcs from tj to pi with weight b(pi, tj).
A labeled PN is a tuple N = 〈P,T, F, l〉, where P and T have the same meaning as in the
previous case, F ⊆ (P × T) ∪ (T × P) is the set or arcs and l is a label that assigns to each
transition an event l : T → 2Σ

 ∪ ε.

 Advances in Petri Net Theory and Applications

82

To specify a DES model, it is necessary to specify the set of states, the set of events and the
structure of the system’s transition. Formally, a DES is represented through an Automata G
= (Q,Σ, δ, q0,Qm) , where Q is the finite set of states; Σ is the finite set of events formed by two
sub-sets: Σnc of non-controllable events and Σc of controllable events; a transition function
δ : Σ × Q → Q that establishes the dynamic of the system; an initial state q0 ∈ Q; and a set Qm

∈ Q of final or marked states. In addition, a set of co-reachable states Qco, is described as the
set formed by q states for which there is at least one path to take them from q to a marked
state.
The behavior of a DES is characterized by a sequence of events produced during its
operation. An event is called a string and is formed through the concatenation of events.
Kleene closure is a set defined as the set of all strings formed through the concatenation of
the elements of the set in any combination, including the identity element for the
concatenation operator denoted ε and called the silent event. Kleene closure of the set of
events is denoted by Σ*.
A prefix of a string s is a sequence of events, which is also an initial sequence of s. This is
s ∈Σ*, u is a prefix of s if uw = s for some w ∈ Σ*.
The set that includes all the prefixes of all its elements is said to be a prefix-closed. It is clear
that Σ* is a prefix-closed. The prefix closure of a set A is defined, and A is denoted as the set
that contains all the prefixes of the elements of A.
A language is a set of strings (or words) formed by the concatenation of events. The
language generated by automata G, denoted by L(G), is the set of strings L(G) = {s|s ∈ Σ*,
δ(s, q0) is defined}
The marked language, denoted by Lm(G),is a subset of L(G) formed by all strings that lead to
marked states. Formally: Lm(G) = {s|s ∈ Σ*, δ(s, q0) is defined, δ(s, q0) ∈ Qm}

3.3 Supervisory control theory
The results of the theory of automata and languages were used by Ramadge and Wonham
(Ramadge & Wonham, 1989) to propose a theory for DES control called Supervisory Control
Theory (SCT). In this theory, a supervisor controls the behavior of an automata representing
the plant - enabling and disabling events - affecting the actual sequence and a trajectory to
reach the desired states and avoid the forbidden ones.
To synthesize a supervisor, one departs from a language k called Specification which
expresses the plant’s desired behavior. The supervisor must guarantee that all marked states
are reached from any reachable state. This property is called nonblocking and is defined by
expressing that an automata is reachable and nonblocking if it is capable of reaching a
marked state from any reachable state. It is formally described as: ()mL G = L(G).
Furthermore, controllable specifications with regards to the plant must be guaranteed.
Therefore, to verify this property, the following must apply: k Σnc ∩ L(G) ⊆ k .
The nonblocking property is fundamental for the reconfiguration of a production system as,
when a disturbance occurs and the failed system abandons a marked state, the control
system must be able to bring it from the new state to another state q ∈Qm.
Along these lines, algorithms for synthesis of the DES supervisor are used in this work to
establish a trajectory that leads the system to satisfactory termination states of the product
when a disturbance occurs.
In synthesis, from a global behavior of the system, the forbidden states are removed through
a purge function, the states that led to blockings are suppressed, and controllability is

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

83

verified. It is expressed in the following algorithm where A is an automata, MA is the set of
marked states of A, XA is the set of forbidden states of A, Qx is the set of blockable states plus
the previous forbidden states.

purge(S0);
i = 1;
repeat
 QCO = MA; QA = X; Q = Ø;
 repeat
 Q = 0 ∀ Q ∈ [QA \(Qco ∪ Qx)]

 IF [QA \(Qco ∪ Qx)] = Ø THEN
 END
 ELSE
 ∃σ ∈ ΣA/{[δ(q,σ) ∈ Qx] or [∀δ(q,σ) not defined]}
 Qx = Qx ∪ {q};

 Qco = Qco ∪ Q;
 END IF
 UNTIL Q = Ø;
 Qsi = Qco\Qx;
 REPEAT
 XA = QA\Qco;
 Qx = XA; Q = Ø;
 ∀q ∈ QA\Qx IF ∃σ ∈ Σnc/δ(q,σ) ∈ Qx THEN
 Q = Q ∪ {q};

 Qx = Qx ∪ Q;
 UNTIL Q = Ø;
 XA = Qx;
 Qsi+1 = Qco\XA;
 i = i + 1;
UNTIL Qsi = Qsi+1;
Qs = Qsi //those are states of Supervisor

3.4 Petri nets as language generators
Petri Nets relate to the theory of supervisory control theory through automata and
languages. The most appropriate PNs for language generation are the ones called labeled
PN. Through attaining all the states spaces of the PN labeled, called reachability tree or
graph, the net’s automata and the languages generated and marked are obtained.
A Petri net can be presented through a tuple of the form R = 〈P,T,A,B〉, where P is the set of
states of the system, T is the transitions set, A is the input incidence matrix, that represent
arcs from a pi to a transition tj with weight a(pi, tj) ∈ N, B output incidence matrix, that
represents arcs from tj to pi with weight b(pi, tj).
A labeled PN is a tuple N = 〈P,T, F, l〉, where P and T have the same meaning as in the
previous case, F ⊆ (P × T) ∪ (T × P) is the set or arcs and l is a label that assigns to each
transition an event l : T → 2Σ

 ∪ ε.

 Advances in Petri Net Theory and Applications

84

A marking vector is M : P →N ∪ {0} which assigns to each place a non-negative number of
tokens. The net (N,M0) is a net marked con initial marking M0. Notation M0[σ〉M is used to
express that the trigger of σ in the marking M0 leads to M.
To convert a PN to an automata, it is used the procedure that is shown bellow
Formally, the equivalent automata of a net (N,M0) can be expressed as G = (Q,Σ, δ, q0,Qm),
with Q= R(N,M0), meaning all reachable states in the Petri net N from M0; Σ=Ut∈Tl(t)\{ε}, δ so
that M’ ∈ δ(M,σ) iff M[t〉M’ and σ ∈ l(t), q0 = M0, obtaining thereby the reachability graph of
(N,M0) expressed as automata.
Now, the link between Petri nets and languages it is given by marked or closed language
(Lm(G))and generated lenguage (L(G)).

* * * *
0 0() { () | , [} and () { () | , [}m mL G l T M M Q L G l T M M Mσ σ σ σ σ σ′ ′= ∈ Σ ∈ 〉 ∈ = ∈Σ ∈ ∃ 〉�

Both lenguages can be found since the state space and that is way how PN, automata and
lenguages have relation. It is had the PN behavior such an automata so it is posible to use
Supervisory control theory (SCT) to restrict the system. In order to have finite and non
blockeable graph, PN have to satisfy boundedness and liveness properties. However, by the
re-scheduling characteristic of this proposal, PN have to be safe. The Net (N,M0) is:
• Bounded, if there exist a non negative integer k such that M(p) ≤ k for every place p and

for every marking M × R(N,M0).
• Safe, if M(p) ≤1 for every place p and for every marking M × R(N,M0).
• Live, if for every marking M × R(N,M0) there exist a firing sequence containing all

transitions.

3.5 Composition through fusion places
The idea with composition methods is that from modular models, represented by automatas
or PNs, a global model is determined without change the system´s dynamic evolution and,
in this manner, the reachability tree of the whole system is obtained.
The fusion places has been proposed by Silva (n.d.) as a simplification method and by
Jensen (2003) as a method for the hierarchical PNs.
In Jensen’s proposal the idea with fusion is that places that undergo fusion represent the same
place, even if they are represented as individual places. For instance, in figure 4(a) there are
two modular models in which places labeled as A belong to the same fusion set, meaning that
they are the same place and the model of figure 4(b) can be composed from them.

4. Description of the reconfiguration proposal
The proposal for the reconfiguration of continuous production systems uses models
obtained through Petri Nets (PN), that combine holonic production resources with the
products that they are in capacity to produce. The products are divided into operations and
if a holon resource (HR) is able to perform an operation, then such holon is said to have the
skill for this operation. A global PN of the Holon Production Unit (HPU) is built through
models of the products and the HRs. When the HPU receives a mission, expressed as a
production order, a negotiation process with the holon resources that form it is launched. If
an HR has the skills to perform the operation for which the proposal is sent, it sends an offer
that includes its availability, capacity and the cost of the operation. This enables determining
the initial marking of the PN.

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

85

Fig. 4. Fusion Places

Established in the first phase of the negotiation is the existence of configurations in the HPU
to develop the product, and the feasibility of the mission from the perspective of
configuration. Configurations are obtained from a reachability tree of the PN, applying the
supervisor synthesis algorithm that leads to satisfactory terminations of the product. If there
are several possible configurations, the criteria of optimization are used to select the definite
configuration of the HPU for the mission under negotiation. This phase of the negotiation is
conducted out of line and it enables forming the holarchies that will be responsible for the
production objective. A PN is generated for each holarchy following the same construction
principles applied for the HPU. This evidences the recursivity of the holonic paradigm.
Once production is launched and disturbances appear response mechanisms are launched
based on the attributes of autonomy and cooperation between holarchies. PN models are
executed in each one of the cooperation levels in order to determine the new configuration
that enables continuing with mission compliance despite the failure situation.

4.1 PN model construction
4.1.1 Product model
Construction of the global PN is based on the product´s model. There will be a model for
each product made by the HPU, and each product will be specified independently of any
production system. The required operational sequences required to obtain the product, are
obtained in the model. P-Graphs proposed by Fiedler (Chokshi & McFarlane, 2008b), which
are bigraphs used to model net structures, are used for the representation of products in
continuous production processes. The graph´s vertices represent operations and raw
material, and the connections represent material flow (see Figure 5).
The product’s discrete dynamic is considered to determine a configuration. Its continuous
dynamic is not used for this. This means that to obtain a product, the availability of raw
material, and of the process node that performs the operation, are necessary. The model
does not consider flows of mass and energy, but only the necessary conditions to produce
them. Process nodes represent transformation operations as "heat", "cool", "mix", "separate",
"pressurize" and these operations indicate the skills demanded from the resources that must
perform them.
Product representation through a PN is made following the structure of figure 6, which
shows the raw material, the operation required (resource skill) and the product obtained.

 Advances in Petri Net Theory and Applications

84

A marking vector is M : P →N ∪ {0} which assigns to each place a non-negative number of
tokens. The net (N,M0) is a net marked con initial marking M0. Notation M0[σ〉M is used to
express that the trigger of σ in the marking M0 leads to M.
To convert a PN to an automata, it is used the procedure that is shown bellow
Formally, the equivalent automata of a net (N,M0) can be expressed as G = (Q,Σ, δ, q0,Qm),
with Q= R(N,M0), meaning all reachable states in the Petri net N from M0; Σ=Ut∈Tl(t)\{ε}, δ so
that M’ ∈ δ(M,σ) iff M[t〉M’ and σ ∈ l(t), q0 = M0, obtaining thereby the reachability graph of
(N,M0) expressed as automata.
Now, the link between Petri nets and languages it is given by marked or closed language
(Lm(G))and generated lenguage (L(G)).

* * * *
0 0() { () | , [} and () { () | , [}m mL G l T M M Q L G l T M M Mσ σ σ σ σ σ′ ′= ∈ Σ ∈ 〉 ∈ = ∈Σ ∈ ∃ 〉�

Both lenguages can be found since the state space and that is way how PN, automata and
lenguages have relation. It is had the PN behavior such an automata so it is posible to use
Supervisory control theory (SCT) to restrict the system. In order to have finite and non
blockeable graph, PN have to satisfy boundedness and liveness properties. However, by the
re-scheduling characteristic of this proposal, PN have to be safe. The Net (N,M0) is:
• Bounded, if there exist a non negative integer k such that M(p) ≤ k for every place p and

for every marking M × R(N,M0).
• Safe, if M(p) ≤1 for every place p and for every marking M × R(N,M0).
• Live, if for every marking M × R(N,M0) there exist a firing sequence containing all

transitions.

3.5 Composition through fusion places
The idea with composition methods is that from modular models, represented by automatas
or PNs, a global model is determined without change the system´s dynamic evolution and,
in this manner, the reachability tree of the whole system is obtained.
The fusion places has been proposed by Silva (n.d.) as a simplification method and by
Jensen (2003) as a method for the hierarchical PNs.
In Jensen’s proposal the idea with fusion is that places that undergo fusion represent the same
place, even if they are represented as individual places. For instance, in figure 4(a) there are
two modular models in which places labeled as A belong to the same fusion set, meaning that
they are the same place and the model of figure 4(b) can be composed from them.

4. Description of the reconfiguration proposal
The proposal for the reconfiguration of continuous production systems uses models
obtained through Petri Nets (PN), that combine holonic production resources with the
products that they are in capacity to produce. The products are divided into operations and
if a holon resource (HR) is able to perform an operation, then such holon is said to have the
skill for this operation. A global PN of the Holon Production Unit (HPU) is built through
models of the products and the HRs. When the HPU receives a mission, expressed as a
production order, a negotiation process with the holon resources that form it is launched. If
an HR has the skills to perform the operation for which the proposal is sent, it sends an offer
that includes its availability, capacity and the cost of the operation. This enables determining
the initial marking of the PN.

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

85

Fig. 4. Fusion Places

Established in the first phase of the negotiation is the existence of configurations in the HPU
to develop the product, and the feasibility of the mission from the perspective of
configuration. Configurations are obtained from a reachability tree of the PN, applying the
supervisor synthesis algorithm that leads to satisfactory terminations of the product. If there
are several possible configurations, the criteria of optimization are used to select the definite
configuration of the HPU for the mission under negotiation. This phase of the negotiation is
conducted out of line and it enables forming the holarchies that will be responsible for the
production objective. A PN is generated for each holarchy following the same construction
principles applied for the HPU. This evidences the recursivity of the holonic paradigm.
Once production is launched and disturbances appear response mechanisms are launched
based on the attributes of autonomy and cooperation between holarchies. PN models are
executed in each one of the cooperation levels in order to determine the new configuration
that enables continuing with mission compliance despite the failure situation.

4.1 PN model construction
4.1.1 Product model
Construction of the global PN is based on the product´s model. There will be a model for
each product made by the HPU, and each product will be specified independently of any
production system. The required operational sequences required to obtain the product, are
obtained in the model. P-Graphs proposed by Fiedler (Chokshi & McFarlane, 2008b), which
are bigraphs used to model net structures, are used for the representation of products in
continuous production processes. The graph´s vertices represent operations and raw
material, and the connections represent material flow (see Figure 5).
The product’s discrete dynamic is considered to determine a configuration. Its continuous
dynamic is not used for this. This means that to obtain a product, the availability of raw
material, and of the process node that performs the operation, are necessary. The model
does not consider flows of mass and energy, but only the necessary conditions to produce
them. Process nodes represent transformation operations as "heat", "cool", "mix", "separate",
"pressurize" and these operations indicate the skills demanded from the resources that must
perform them.
Product representation through a PN is made following the structure of figure 6, which
shows the raw material, the operation required (resource skill) and the product obtained.

 Advances in Petri Net Theory and Applications

86

Fig. 5. Process graphs (P-graphs)

Fig. 6. PN product model

Example: the production line shown in Figure 7 enables obtaining a product with a model
represented in Figure 8. The PN model of the discrete dynamic of the product is shown in
Figure 9.

Fig. 7. Production line

4.1.2 Model of a Holon Resource
It is necessary to know the availability and skills of the HR to determine its configuration.
Availability enables establishing the initial marking of the PN, and skills enable the link
with the product’s model.
Determined from the Petri Net of the HR the availability of resource (if it is on operation, or
if it presents a failure or if it is on maintenance). Figure 10 shows the model and Table 1
presents the states and the events.

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

87

Fig. 8. P-graph of the production line

Fig. 9. PN of the production line

 Advances in Petri Net Theory and Applications

86

Fig. 5. Process graphs (P-graphs)

Fig. 6. PN product model

Example: the production line shown in Figure 7 enables obtaining a product with a model
represented in Figure 8. The PN model of the discrete dynamic of the product is shown in
Figure 9.

Fig. 7. Production line

4.1.2 Model of a Holon Resource
It is necessary to know the availability and skills of the HR to determine its configuration.
Availability enables establishing the initial marking of the PN, and skills enable the link
with the product’s model.
Determined from the Petri Net of the HR the availability of resource (if it is on operation, or
if it presents a failure or if it is on maintenance). Figure 10 shows the model and Table 1
presents the states and the events.

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

87

Fig. 8. P-graph of the production line

Fig. 9. PN of the production line

 Advances in Petri Net Theory and Applications

88

Fig. 10. PN Resource Model

States Description
rja resource j available
rjua resource j unavailable
op skills
rjb resource j booked
Events Description
σnar non-availability
σar availability
σbr booked
σubr unbooked

Table 1. Resource model States and events description

4.1.3 Connections Model
Connections guarantee the flow of a product between resources and their availability, or
lack of, affects the definition of the configuration. Connection models are obtained based on
the operational and physical restrictions imposed by the process. Each resource has input
and output ports. The PN for the connections is shown in Figure 11.
• Asynchronous Junction (Multi-product): enables the distribution, simultaneous or

individual, of a product to two destinations. See figure 12
• Synchronous Junction (Separation): enables material flow only to one destination at a

time. See figure 13
• Asynchronous Union (Multi-feeding): receives material flow from two sources,

simultaneously or individually. See figure 14
• Synchronous Union (Mix): receives material flow from just one source at a time. See

figure 15
Taken into account to connect resources is that an upstream resource enables the output
port, and that connection is an additional condition to enable a downstream resource. The
PN showing two resources connected is given in Figure 16.

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

89

Fig. 11. Connections model

Fig. 12. Asynchronous Junction

Fig. 13. Synchronous Junction

 Advances in Petri Net Theory and Applications

88

Fig. 10. PN Resource Model

States Description
rja resource j available
rjua resource j unavailable
op skills
rjb resource j booked
Events Description
σnar non-availability
σar availability
σbr booked
σubr unbooked

Table 1. Resource model States and events description

4.1.3 Connections Model
Connections guarantee the flow of a product between resources and their availability, or
lack of, affects the definition of the configuration. Connection models are obtained based on
the operational and physical restrictions imposed by the process. Each resource has input
and output ports. The PN for the connections is shown in Figure 11.
• Asynchronous Junction (Multi-product): enables the distribution, simultaneous or

individual, of a product to two destinations. See figure 12
• Synchronous Junction (Separation): enables material flow only to one destination at a

time. See figure 13
• Asynchronous Union (Multi-feeding): receives material flow from two sources,

simultaneously or individually. See figure 14
• Synchronous Union (Mix): receives material flow from just one source at a time. See

figure 15
Taken into account to connect resources is that an upstream resource enables the output
port, and that connection is an additional condition to enable a downstream resource. The
PN showing two resources connected is given in Figure 16.

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

89

Fig. 11. Connections model

Fig. 12. Asynchronous Junction

Fig. 13. Synchronous Junction

 Advances in Petri Net Theory and Applications

90

Fig. 14. Asynchronous Union

Fig. 15. Synchronous Union

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

91

Fig. 16. Two connected resources

4.1.4 Service resources
Its function is to provide services to the HPU such as water, gas, steam and fuel. They have a
unique skill and do not negotiate their capacity, thus the model used by them is equivalent
to the one used be the connections.

4.1.5 Global model
The Petri Net model of the HPU is obtained through the composition of the models of the
product, the resources and the connections. For the composition of the Product with the
Resource the following construction is made: at the output of the transition ”send_req” the
"skill" places are created (see Figure 17). These are fusion places used by the product to call
upon the HRs that have the skill to execute the operation. The product’s "skill" places are
fused with the "skill" places of the corresponding HRs, obtaining the model in Figure 18. The
transition ”send_req” is labeled as a silent event so it does not affect the generated and
marked languages of the model, and the place "product" is activated when the resource goes
into operation. This indicates the presence of a product.
Example: A continuous production plant as the one shown in Figure 19 is present. Table 2
shows resource skills. Figure 21 shows one of the products and its model in PN starting
from figure 20. The structure of the connections is of asynchronous bifurcation/
asynchronous union. The plant’s complete model is shown in Figure 22.

Fig. 17. Global model construction

 Advances in Petri Net Theory and Applications

90

Fig. 14. Asynchronous Union

Fig. 15. Synchronous Union

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

91

Fig. 16. Two connected resources

4.1.4 Service resources
Its function is to provide services to the HPU such as water, gas, steam and fuel. They have a
unique skill and do not negotiate their capacity, thus the model used by them is equivalent
to the one used be the connections.

4.1.5 Global model
The Petri Net model of the HPU is obtained through the composition of the models of the
product, the resources and the connections. For the composition of the Product with the
Resource the following construction is made: at the output of the transition ”send_req” the
"skill" places are created (see Figure 17). These are fusion places used by the product to call
upon the HRs that have the skill to execute the operation. The product’s "skill" places are
fused with the "skill" places of the corresponding HRs, obtaining the model in Figure 18. The
transition ”send_req” is labeled as a silent event so it does not affect the generated and
marked languages of the model, and the place "product" is activated when the resource goes
into operation. This indicates the presence of a product.
Example: A continuous production plant as the one shown in Figure 19 is present. Table 2
shows resource skills. Figure 21 shows one of the products and its model in PN starting
from figure 20. The structure of the connections is of asynchronous bifurcation/
asynchronous union. The plant’s complete model is shown in Figure 22.

Fig. 17. Global model construction

 Advances in Petri Net Theory and Applications

92

Fig. 18. Product - Resource composition

Holon Skill
HR1 op1
HR2 op1

HR3 op2
HR4 op2

R1 op3
R2 op3

Table 2. Holon’s skills

Fig. 19. Continuous Production plant

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

93

Fig. 20. P-Graph for a product of continuous plant

Fig. 21. PN product model for the example

 Advances in Petri Net Theory and Applications

92

Fig. 18. Product - Resource composition

Holon Skill
HR1 op1
HR2 op1

HR3 op2
HR4 op2

R1 op3
R2 op3

Table 2. Holon’s skills

Fig. 19. Continuous Production plant

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

93

Fig. 20. P-Graph for a product of continuous plant

Fig. 21. PN product model for the example

 Advances in Petri Net Theory and Applications

94

Fig. 22. Global PN model

The model obtained must comply with the properties of boundedness, safeness and
liveness. This model was analyzed and simulated in CPNTools (Jensen, 2003) and the
properties analysis gives a report where says that these properties are achieved.

4.2 Determination of configurations
When the negotiation process of a mission is launched, each holon sends a proposal that
includes its availability, capacity and the cost of the operation. With the state (available /
unavailable) the initial marking M0 is determined. The PN is executed obtaining a
reachability tree. The tree’s arcs represent labeled events that enable determining the
configurations through an operation of concatenation of the events.

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

95

For the example shown in Figure 19, if the following initial resource state is present ("1" for
available).

HR1 = 1 HR2 = 1 HR3 = 1
HR4 = 0 R1 = 1 R2 = 1

Connection stretch l3 = 0, which leads to the following state of the connections:

HR1 → HR4 = 0
HR2 → HR3 = 0

All other connections are available. The initial marking for this operative condition with a
token in all states that represents an available resource and zero in the other one resources.
Shown in the figure 23 are all the possible configurations of the HPU. The capacity of the
configuration is shown in the units of the output variable or product of the HPU. Once the
PN is obtained, the reachability tree of Figure 24 is found by means of CPNTools.

Fig. 23. Configurations

 Advances in Petri Net Theory and Applications

94

Fig. 22. Global PN model

The model obtained must comply with the properties of boundedness, safeness and
liveness. This model was analyzed and simulated in CPNTools (Jensen, 2003) and the
properties analysis gives a report where says that these properties are achieved.

4.2 Determination of configurations
When the negotiation process of a mission is launched, each holon sends a proposal that
includes its availability, capacity and the cost of the operation. With the state (available /
unavailable) the initial marking M0 is determined. The PN is executed obtaining a
reachability tree. The tree’s arcs represent labeled events that enable determining the
configurations through an operation of concatenation of the events.

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

95

For the example shown in Figure 19, if the following initial resource state is present ("1" for
available).

HR1 = 1 HR2 = 1 HR3 = 1
HR4 = 0 R1 = 1 R2 = 1

Connection stretch l3 = 0, which leads to the following state of the connections:

HR1 → HR4 = 0
HR2 → HR3 = 0

All other connections are available. The initial marking for this operative condition with a
token in all states that represents an available resource and zero in the other one resources.
Shown in the figure 23 are all the possible configurations of the HPU. The capacity of the
configuration is shown in the units of the output variable or product of the HPU. Once the
PN is obtained, the reachability tree of Figure 24 is found by means of CPNTools.

Fig. 23. Configurations

 Advances in Petri Net Theory and Applications

96

Fig. 24. Reachability tree

Analyzing the tree, the following is found:

• Nodes 13, 14, 15 y 32 lead to satisfactory terminations of the product, therefore, Qm =
{13, 14, 15,32}

• Nodes 17 and 31 do not lead to satisfactory terminations of the product, due to they
enable R2 with out HR4 enable thus are forbidden states. Language L = {HR2,R2,HR1,R1}
is not permitted.

• The supervisor synthesis algorithm is applied, and the forbidden states and those
leading to blockings are removed. The non-blocking property is verified with the base
in the expression ()mL G = L(G)

• The possible configurations are established through the languages obtained from the
initial state to the final states, following all trajectories. For instance, language L =
{HR1,R1,HR3,HR2} conduces to final state 32, thus 10 configuration is valid.

• Configurations incapable of achieving the mission are discarded, based in the capacity
offers presented by the holons.

• The criteria of optimization are applied over the remaining configurations to select the
definite configuration. This uses the operation cost information sent by the holon in the
negotiation phase.

• The valid configurations for the example shown are: 1, 2, 3, 4, 10.

4.3 Holarchy formation
The holon resources that end up connected among themselves to enable cooperation, form a
holarchy. The languages of the configurations enable establishing connections between

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

97

holons and thus establish holarchies. For instance, from language L = {HR1,R1,HR3} the
holarchy H1 is obtained, formed by HR1 and HR3, in which these holons are connected by R1.
From language L = {HR1,R1,HR3,HR4,HR2} an HPU formed by holon HR2 and holarchy H =
HR1 + HR3 + HR4 is obtained, connected through R1.

5. Reconfiguracion
The holonic approach establishes the following disturbance response framework:
• If there is failure, the holon tries to adjust its control laws and its infrastructure to take

care of the disturbance (autonomy attribute).
• If it is not capable, it turns to the holarchy to interiorly solve the situation through the

cooperation of holons (cooperation attribute).
• And if the holarchy is not able to solve it, it turns to to other holarchies in the HPU.
• If the disturbance cannot be taken care of by the holarchies that form the HPU, a

mission renegotiation is requested.
In the work presented, a PN of each holarchy is created, and the procedure presented for the
determination of the HPU´s configurations is followed for reconfiguration.
Suppose, for the example presented, that the HPU operates with the configuration of Figure
25. The PN model of the holarchy is that of Figure 26. If it is presented a failure in HR4, the
PN marking is [1111001011010110000000. . .] (following the net from left to right and from
top to bottom) and the tree it is in figure 27. And the HPU gets the configuration shown in
figure 28.
The allowed states are 4 and 13. These states determine all possible configuration is HR1 +
HR3 or HR1 and the holarchy can resolve the disturbance inside. The criteria of optimization
are applied to redistribute the mission among the holons. The holarchy has been
reconfigured according to the method proposed which uses PNs and the supervisory
control theory.

Fig. 25. Holarchy

 Advances in Petri Net Theory and Applications

96

Fig. 24. Reachability tree

Analyzing the tree, the following is found:

• Nodes 13, 14, 15 y 32 lead to satisfactory terminations of the product, therefore, Qm =
{13, 14, 15,32}

• Nodes 17 and 31 do not lead to satisfactory terminations of the product, due to they
enable R2 with out HR4 enable thus are forbidden states. Language L = {HR2,R2,HR1,R1}
is not permitted.

• The supervisor synthesis algorithm is applied, and the forbidden states and those
leading to blockings are removed. The non-blocking property is verified with the base
in the expression ()mL G = L(G)

• The possible configurations are established through the languages obtained from the
initial state to the final states, following all trajectories. For instance, language L =
{HR1,R1,HR3,HR2} conduces to final state 32, thus 10 configuration is valid.

• Configurations incapable of achieving the mission are discarded, based in the capacity
offers presented by the holons.

• The criteria of optimization are applied over the remaining configurations to select the
definite configuration. This uses the operation cost information sent by the holon in the
negotiation phase.

• The valid configurations for the example shown are: 1, 2, 3, 4, 10.

4.3 Holarchy formation
The holon resources that end up connected among themselves to enable cooperation, form a
holarchy. The languages of the configurations enable establishing connections between

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

97

holons and thus establish holarchies. For instance, from language L = {HR1,R1,HR3} the
holarchy H1 is obtained, formed by HR1 and HR3, in which these holons are connected by R1.
From language L = {HR1,R1,HR3,HR4,HR2} an HPU formed by holon HR2 and holarchy H =
HR1 + HR3 + HR4 is obtained, connected through R1.

5. Reconfiguracion
The holonic approach establishes the following disturbance response framework:
• If there is failure, the holon tries to adjust its control laws and its infrastructure to take

care of the disturbance (autonomy attribute).
• If it is not capable, it turns to the holarchy to interiorly solve the situation through the

cooperation of holons (cooperation attribute).
• And if the holarchy is not able to solve it, it turns to to other holarchies in the HPU.
• If the disturbance cannot be taken care of by the holarchies that form the HPU, a

mission renegotiation is requested.
In the work presented, a PN of each holarchy is created, and the procedure presented for the
determination of the HPU´s configurations is followed for reconfiguration.
Suppose, for the example presented, that the HPU operates with the configuration of Figure
25. The PN model of the holarchy is that of Figure 26. If it is presented a failure in HR4, the
PN marking is [1111001011010110000000. . .] (following the net from left to right and from
top to bottom) and the tree it is in figure 27. And the HPU gets the configuration shown in
figure 28.
The allowed states are 4 and 13. These states determine all possible configuration is HR1 +
HR3 or HR1 and the holarchy can resolve the disturbance inside. The criteria of optimization
are applied to redistribute the mission among the holons. The holarchy has been
reconfigured according to the method proposed which uses PNs and the supervisory
control theory.

Fig. 25. Holarchy

 Advances in Petri Net Theory and Applications

98

Fig. 26. Holarchy PN model

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

99

Fig. 27. New reachability tree

Fig. 28. New configuration

 Advances in Petri Net Theory and Applications

98

Fig. 26. Holarchy PN model

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

99

Fig. 27. New reachability tree

Fig. 28. New configuration

 Advances in Petri Net Theory and Applications

100

6. Conclusions and future papers
The work presented has shown the potential of the holonic paradigm by combining Petri
Nets and the Supervisory Control Theory to solve configuration problems of continuous
production processes in real time. The decrease in the problem´s complexity by applying the
concept of holarchies is evident. This enables generating solutions with good temporary
performances. Improving response times to face disturbances, an advantage of the holonic
approach, is complied with in this manner.
In order to preserve the criteria of global optimization in the determination of the initial
configuration, a composed model of the complete HPU is used. This model may not have a
good performance in real time because it may be subject to explosion of the states. However,
the determination of the initial configuration is part of the production scheduling function
which can occur out of line. In this manner, another characteristic of the holonic approach is
complied with: to conserve hierarchical structures that guarantee global optimums.
With regards to future papers, it is important to advance in the automatic generation of PNs
from P-Graph models of the product, resource models and connections between them, and
their automatic execution based on Petri Net engines.
The proposed methodology has been successfully proven in academic applications of
production scheduling in thermal energy power plants.

7. References
Adam, E., Mandiau, R. & Kolski, C. (n.d.). Homascow: a holonic multi-agent system for

cooperative work, Database and Expert Systems Applications, 2000. Proceedings. 11th
International Workshop on, pp. 247–253.

Agre, J., MCFarlane, D., Elsley, G., Cheng, J. & Gunn, B. (1994). Holonic control of a water
cooling system for a steel rod mill.

Akesson, K. (2002). Methods and Tools in Supervisory Control Theory, PhD thesis.
Balasubramanian, S., Brennan, R. W. & Norrie, D. H. (n.d.). Requirements for holonic

manufacturing systems control, Database and Expert Systems Applications, 2000.
Proceedings. 11th International Workshop on, pp. 214–218.

Bongaerts, L. (1998). Integration of scheduling and control in holonic manufacturing
systems.

Brennan, R. W., Hall, K., Marik, V., Maturana, F. & Norrie, D. H. (2003). A Real-Time Interface
for Holonic Control Devices, pp. 1088–1088.

Caramihai, S. (n.d.). An agent-based des supported modeling framework for enterprises.
Celaya, R., Desrochers, A. & Graves, R. (2009). Modeling and analysis of multi-agent

systems using petri nets., Journal of Computers. 4: 981 – 996.
Chacón, E., Besembel, I., Narciso, F., Moltival & J y Colina, E. (2003). An integration

architecture for the automation of a continuous production complex.
Chacón, E., Besembel, I., Rivero, D. & Cardillo, J. (2008). The holonic production unit: an

approach for an architecture of embedded production process, Advances in Robotics,
Automation and Control .

Chacón, E. & Colmenares,W. (2005). A way to implement supervisors for holonic
production units.

Cheng, F.-T., Chang, C.-F. & Wu, S.-L. (2004). Development of holonic manufacturing
execution systems, Journal of Intelligent Manufacturing 15(2): 253–267.

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

101

Chirn, J. & McFarlane, D. (n.d.). Evaluating holonic control systems: A case study.
Chokshi, N. & McFarlane, D. (2008a). A distributed architecture for reconfigurable control of

continuous process operations, Journal of Intelligent Manufacturing 19(2): 215–232.
Chokshi, N. N. & McFarlane, D. C. (2008b). A Distributed Coordination Approach to

Reconfigurable Process Control, Springer Series in Advanced Manufacturing,
Springer, Hardcover.

Chokshi, N. N. & McFarlane, D. C. (n.d.). Rationales for holonic manufacturing systems in
chemical process industries, Database and Expert Systems Applications, 2001.
Proceedings. 12th International Workshop on, pp. 616–620.

Durán, J. (2006). Técnicas emergentes para la automatización integrada de procesos de
producción integraciÓn en automatizaciÓn- reporte técnico 2.

El Kebbe, D. (2002). Towards the MaSHReC Manufacturing System under real time constraints: a
contribution to the application of real time system advances to production control, PhD
thesis.

Falkman, P., Lennartson, B. & Tittus, M. (2009). Specification of a batch plant using process
algebra and petri nets, Control Engineering Practice 17(9): 1004–1015.

Fischer John, B. T. O. (n.d.). Workbook for Designing Distributed Control Applications using
Rockwell Automation’s HOLOBLOC Prototyping Software.

Fu-Shiung, H. (n.d.). Collaborative timed petri net for holonic process planning, American
Control Conference, 2003. Proceedings of the 2003, Vol. 1, pp. 344–349 vol.1.

Ghaeli, M., Bahri, P. A., Lee, P. & Gu, T. (2005). Petri-net based formulation and algorithm
for short-term scheduling of batch plants, Computers & Chemical Engineering
29(2): 249–259.

HMS (2004). Holonic manufacturing systems consortium. http://hms.ifw.uni-hannover.de.
Holonic Manufacturing Systems (2008). pp. 7–20.
Hsieh, F.-S. (2006). Analysis of contract net in multi-agent systems, Automatica 42(5): 733 740.
http://research.curtin.edu.au/ (2010). Chemical engineering example a. summary of

proposed research program for doctor of philosophy, scheduling of batch and
mixed batch/continuous process plants using petri-nets.

URL:http://research.curtin.edu.au/guides/hdrguidelines/docs/CandEx_ChemEng_A.pdf
Jensen, K. (2003). Coloured Petri Nets : Basic Concepts, Analysis Methods and Practical Use.

Volume 1 (Monographs in Theoretical Computer Science. An EATCS Series), Springer.
Koestler, A. (1968). The ghost in the machine.
Langer, G. (1999). Homucs - a methodology and architecture for holonic multi - cell control

systems.
Leitao, P. (2004). An Agile and Adaptive Holonic Architecture for Manufacturing Control

Dissertation, PhD thesis.
Leitao, P., Valckenaers, P. & Emmanuel, A. (2009). Self-adaptation for robustness and

cooperation in holonic multi-agent systems.
Lennartson, B., Fabian, M. & Falkman, F. (n.d.). Control architecture for flexible production

systems, Automation Science and Engineering, 2005. IEEE International Conference on,
pp. 307–312.

Lennartson, B., Tittus, M. & Fabian, M. (n.d.). Modeling, specification and controller
synthesis for discrete event systems, Systems, Man, and Cybernetics, 1998. 1998 IEEE
International Conference on, Vol. 1, pp. 698–703 vol.1.

Lobo, C. (2003). Sistema multiagente para coordinar unidades de producción.

 Advances in Petri Net Theory and Applications

100

6. Conclusions and future papers
The work presented has shown the potential of the holonic paradigm by combining Petri
Nets and the Supervisory Control Theory to solve configuration problems of continuous
production processes in real time. The decrease in the problem´s complexity by applying the
concept of holarchies is evident. This enables generating solutions with good temporary
performances. Improving response times to face disturbances, an advantage of the holonic
approach, is complied with in this manner.
In order to preserve the criteria of global optimization in the determination of the initial
configuration, a composed model of the complete HPU is used. This model may not have a
good performance in real time because it may be subject to explosion of the states. However,
the determination of the initial configuration is part of the production scheduling function
which can occur out of line. In this manner, another characteristic of the holonic approach is
complied with: to conserve hierarchical structures that guarantee global optimums.
With regards to future papers, it is important to advance in the automatic generation of PNs
from P-Graph models of the product, resource models and connections between them, and
their automatic execution based on Petri Net engines.
The proposed methodology has been successfully proven in academic applications of
production scheduling in thermal energy power plants.

7. References
Adam, E., Mandiau, R. & Kolski, C. (n.d.). Homascow: a holonic multi-agent system for

cooperative work, Database and Expert Systems Applications, 2000. Proceedings. 11th
International Workshop on, pp. 247–253.

Agre, J., MCFarlane, D., Elsley, G., Cheng, J. & Gunn, B. (1994). Holonic control of a water
cooling system for a steel rod mill.

Akesson, K. (2002). Methods and Tools in Supervisory Control Theory, PhD thesis.
Balasubramanian, S., Brennan, R. W. & Norrie, D. H. (n.d.). Requirements for holonic

manufacturing systems control, Database and Expert Systems Applications, 2000.
Proceedings. 11th International Workshop on, pp. 214–218.

Bongaerts, L. (1998). Integration of scheduling and control in holonic manufacturing
systems.

Brennan, R. W., Hall, K., Marik, V., Maturana, F. & Norrie, D. H. (2003). A Real-Time Interface
for Holonic Control Devices, pp. 1088–1088.

Caramihai, S. (n.d.). An agent-based des supported modeling framework for enterprises.
Celaya, R., Desrochers, A. & Graves, R. (2009). Modeling and analysis of multi-agent

systems using petri nets., Journal of Computers. 4: 981 – 996.
Chacón, E., Besembel, I., Narciso, F., Moltival & J y Colina, E. (2003). An integration

architecture for the automation of a continuous production complex.
Chacón, E., Besembel, I., Rivero, D. & Cardillo, J. (2008). The holonic production unit: an

approach for an architecture of embedded production process, Advances in Robotics,
Automation and Control .

Chacón, E. & Colmenares,W. (2005). A way to implement supervisors for holonic
production units.

Cheng, F.-T., Chang, C.-F. & Wu, S.-L. (2004). Development of holonic manufacturing
execution systems, Journal of Intelligent Manufacturing 15(2): 253–267.

Intelligent Production Systems Reconfiguration by Means
of Petri Nets and the Supervisory Control Theory

101

Chirn, J. & McFarlane, D. (n.d.). Evaluating holonic control systems: A case study.
Chokshi, N. & McFarlane, D. (2008a). A distributed architecture for reconfigurable control of

continuous process operations, Journal of Intelligent Manufacturing 19(2): 215–232.
Chokshi, N. N. & McFarlane, D. C. (2008b). A Distributed Coordination Approach to

Reconfigurable Process Control, Springer Series in Advanced Manufacturing,
Springer, Hardcover.

Chokshi, N. N. & McFarlane, D. C. (n.d.). Rationales for holonic manufacturing systems in
chemical process industries, Database and Expert Systems Applications, 2001.
Proceedings. 12th International Workshop on, pp. 616–620.

Durán, J. (2006). Técnicas emergentes para la automatización integrada de procesos de
producción integraciÓn en automatizaciÓn- reporte técnico 2.

El Kebbe, D. (2002). Towards the MaSHReC Manufacturing System under real time constraints: a
contribution to the application of real time system advances to production control, PhD
thesis.

Falkman, P., Lennartson, B. & Tittus, M. (2009). Specification of a batch plant using process
algebra and petri nets, Control Engineering Practice 17(9): 1004–1015.

Fischer John, B. T. O. (n.d.). Workbook for Designing Distributed Control Applications using
Rockwell Automation’s HOLOBLOC Prototyping Software.

Fu-Shiung, H. (n.d.). Collaborative timed petri net for holonic process planning, American
Control Conference, 2003. Proceedings of the 2003, Vol. 1, pp. 344–349 vol.1.

Ghaeli, M., Bahri, P. A., Lee, P. & Gu, T. (2005). Petri-net based formulation and algorithm
for short-term scheduling of batch plants, Computers & Chemical Engineering
29(2): 249–259.

HMS (2004). Holonic manufacturing systems consortium. http://hms.ifw.uni-hannover.de.
Holonic Manufacturing Systems (2008). pp. 7–20.
Hsieh, F.-S. (2006). Analysis of contract net in multi-agent systems, Automatica 42(5): 733 740.
http://research.curtin.edu.au/ (2010). Chemical engineering example a. summary of

proposed research program for doctor of philosophy, scheduling of batch and
mixed batch/continuous process plants using petri-nets.

URL:http://research.curtin.edu.au/guides/hdrguidelines/docs/CandEx_ChemEng_A.pdf
Jensen, K. (2003). Coloured Petri Nets : Basic Concepts, Analysis Methods and Practical Use.

Volume 1 (Monographs in Theoretical Computer Science. An EATCS Series), Springer.
Koestler, A. (1968). The ghost in the machine.
Langer, G. (1999). Homucs - a methodology and architecture for holonic multi - cell control

systems.
Leitao, P. (2004). An Agile and Adaptive Holonic Architecture for Manufacturing Control

Dissertation, PhD thesis.
Leitao, P., Valckenaers, P. & Emmanuel, A. (2009). Self-adaptation for robustness and

cooperation in holonic multi-agent systems.
Lennartson, B., Fabian, M. & Falkman, F. (n.d.). Control architecture for flexible production

systems, Automation Science and Engineering, 2005. IEEE International Conference on,
pp. 307–312.

Lennartson, B., Tittus, M. & Fabian, M. (n.d.). Modeling, specification and controller
synthesis for discrete event systems, Systems, Man, and Cybernetics, 1998. 1998 IEEE
International Conference on, Vol. 1, pp. 698–703 vol.1.

Lobo, C. (2003). Sistema multiagente para coordinar unidades de producción.

 Advances in Petri Net Theory and Applications

102

Maturana, F. P., Tichy, P., Slechta, P., Staron, R. J., Discenzo, F. M., Hall, K. & Marik, V.
(n.d.). Cost-based dynamic reconfiguration system for intelligent agent negotiation,
Intelligent Agent Technology, 2003. IAT 2003. IEEE/WIC International Conference on,
pp. 629– 632.

McFarlane, D. (1995). Holonic manufacturing systems in continuous processing: concepts
and control requirements, In Proceedings of ASI’ 95 p. 11.

Mcfarlane, D. C. & Bussman, S. (2000). Developments in holonic production planning and
control, Production Planning & Control 11(6).

Music, G. & D., M. (1998). Petri net based supervisory control of flexible batch plants.
Peréz, L. (n.d.).
Pétin, J.-F., Gouyon, D. & Morel, G. (2007). Supervisory synthesis for product-driven

automation and its application to a flexible assembly cell, Control Engineering
Practice 15(5): 595–614.

Ramadge, P. J. G. & Wonham, W. M. (1989). The control of discrete event systems,
Proceedings of the IEEE 77(1): 81–98.

Ramos, C. (n.d.). A holonic approach for task scheduling in manufacturing systems, Robotics
and Automation, 1996. Proceedings., 1996 IEEE International Conference on, Vol. 3, pp.
2511–2516 vol.3.

Reveliotis, S. (1999). Real-time control of flexibly automated production systems,
AutoSimulations Symposium ’99 .

Silva, M. (n.d.). Las redes de petri en la automática y la informática, Technical report.
Sousa, P. & Ramos, C. (1998). A dynamic scheduling holon for manufacturing orders, Journal

of Intelligent Manufacturing 9(2): 107–112.
Suda, H. (1989). Future factory system formulated in japan, Japanese Journal of Advanced

Automation Technology 1.
Tittus, M. & Akesson, K. (1999). Petri net models in batch control.
Tittus, M., Akesson & K (n.d.). Deadlock avoidance in batch processes.
Tittus, M. & Lennartson, B. (1997). Hierarchical supervisory control for batch processes,

Control Systems Technology, IEEE Transactions on 7(5): 542–554.
Tuncel, G. & Bayhan, G. (2007). Applications of petri nets in production scheduling: a

review, The International Journal of Advanced Manufacturing Technology 34(7): 762–
773.

Wyns, J. (1999). Reference architecture for holonic manufacturing systems.
Zhou, M. (1995). Petri nets in flexible and agile automation.

6

Parameter Perturbation Analysis through
Stochastic Petri Nets:

Application to an Inventory System
Labadi Karim1, Darcherif Moumen1, Haoxun Chen2

1EPMI (ECS EA 3649), Ecole d’Electricité, de Production et de Méthodes Industrielles
Cergy-Pontoise,

2UTT (LOSI- FRE CNRS 2848), Université de Technologie de Troyes, Troyes,
France

1. Introduction
Sensitivity analysis is used to determine how “sensitive” a performance measure of a model
is with respect to a change in the value of the parameters of the model. Parameter sensitivity
analysis of a model is usually performed as a series of tests in which the model analyst sets
different values for the parameters of the model to see how a change in the parameters
causes a change in the dynamic behavior of the model. Broadly speaking, this analysis is to
see what happens when the value of some crucial parameters of a model changes. If a small
change in the value of a parameter leads to a big change in the performance of the model,
the parameter needs a closer look. It is a useful tool for performance evaluation of a model
as well as its model building. Hence, sensitivity analysis can help the modeler to understand
the dynamics of a system.
Sensitivity analysis is often used to estimate the sensitivity of a performance measure of a
system with respect to its decision variables (parameters) by evaluating the gradient
(derivatives) of the performance measure at each given value of the parameters. With the
gradient, the system performance measure can be optimized by using a gradient method.
Moreover, sensitivity analysis can be used to identify key parameters of a system by
discovering the parameters whose small change in value leads to a big change in the
behavior of the system. In model building, sensitivity analysis can be used to validate a
model with unkown parameters by studying the uncertainties of the model associated with
the parameters.
In the past, sensitivity analysis was usually based on simulation. One of the major research
fields in this area is perturbation analysis (PA). The approach firstly applied to an
engineering problem was proposed by Ho, Eyler and Chien in 1979. With great efforts made
by many researchers in more than one decade, fundamental results for PA have been
obtained. Currently, formal sensitivity analysis approaches based on stochastic processes
were proposed in the literature. Particularly, efficient algorithms were developed to
compute the performance derivates of Markov processes with respect to infinitesimal
changes of their parameters (infinitesimal generators) (Cao et al., 1998, 1997). Besides the
fundamental works in developing its theory and algorithms, perturbation analysis has also

 Advances in Petri Net Theory and Applications

102

Maturana, F. P., Tichy, P., Slechta, P., Staron, R. J., Discenzo, F. M., Hall, K. & Marik, V.
(n.d.). Cost-based dynamic reconfiguration system for intelligent agent negotiation,
Intelligent Agent Technology, 2003. IAT 2003. IEEE/WIC International Conference on,
pp. 629– 632.

McFarlane, D. (1995). Holonic manufacturing systems in continuous processing: concepts
and control requirements, In Proceedings of ASI’ 95 p. 11.

Mcfarlane, D. C. & Bussman, S. (2000). Developments in holonic production planning and
control, Production Planning & Control 11(6).

Music, G. & D., M. (1998). Petri net based supervisory control of flexible batch plants.
Peréz, L. (n.d.).
Pétin, J.-F., Gouyon, D. & Morel, G. (2007). Supervisory synthesis for product-driven

automation and its application to a flexible assembly cell, Control Engineering
Practice 15(5): 595–614.

Ramadge, P. J. G. & Wonham, W. M. (1989). The control of discrete event systems,
Proceedings of the IEEE 77(1): 81–98.

Ramos, C. (n.d.). A holonic approach for task scheduling in manufacturing systems, Robotics
and Automation, 1996. Proceedings., 1996 IEEE International Conference on, Vol. 3, pp.
2511–2516 vol.3.

Reveliotis, S. (1999). Real-time control of flexibly automated production systems,
AutoSimulations Symposium ’99 .

Silva, M. (n.d.). Las redes de petri en la automática y la informática, Technical report.
Sousa, P. & Ramos, C. (1998). A dynamic scheduling holon for manufacturing orders, Journal

of Intelligent Manufacturing 9(2): 107–112.
Suda, H. (1989). Future factory system formulated in japan, Japanese Journal of Advanced

Automation Technology 1.
Tittus, M. & Akesson, K. (1999). Petri net models in batch control.
Tittus, M., Akesson & K (n.d.). Deadlock avoidance in batch processes.
Tittus, M. & Lennartson, B. (1997). Hierarchical supervisory control for batch processes,

Control Systems Technology, IEEE Transactions on 7(5): 542–554.
Tuncel, G. & Bayhan, G. (2007). Applications of petri nets in production scheduling: a

review, The International Journal of Advanced Manufacturing Technology 34(7): 762–
773.

Wyns, J. (1999). Reference architecture for holonic manufacturing systems.
Zhou, M. (1995). Petri nets in flexible and agile automation.

6

Parameter Perturbation Analysis through
Stochastic Petri Nets:

Application to an Inventory System
Labadi Karim1, Darcherif Moumen1, Haoxun Chen2

1EPMI (ECS EA 3649), Ecole d’Electricité, de Production et de Méthodes Industrielles
Cergy-Pontoise,

2UTT (LOSI- FRE CNRS 2848), Université de Technologie de Troyes, Troyes,
France

1. Introduction
Sensitivity analysis is used to determine how “sensitive” a performance measure of a model
is with respect to a change in the value of the parameters of the model. Parameter sensitivity
analysis of a model is usually performed as a series of tests in which the model analyst sets
different values for the parameters of the model to see how a change in the parameters
causes a change in the dynamic behavior of the model. Broadly speaking, this analysis is to
see what happens when the value of some crucial parameters of a model changes. If a small
change in the value of a parameter leads to a big change in the performance of the model,
the parameter needs a closer look. It is a useful tool for performance evaluation of a model
as well as its model building. Hence, sensitivity analysis can help the modeler to understand
the dynamics of a system.
Sensitivity analysis is often used to estimate the sensitivity of a performance measure of a
system with respect to its decision variables (parameters) by evaluating the gradient
(derivatives) of the performance measure at each given value of the parameters. With the
gradient, the system performance measure can be optimized by using a gradient method.
Moreover, sensitivity analysis can be used to identify key parameters of a system by
discovering the parameters whose small change in value leads to a big change in the
behavior of the system. In model building, sensitivity analysis can be used to validate a
model with unkown parameters by studying the uncertainties of the model associated with
the parameters.
In the past, sensitivity analysis was usually based on simulation. One of the major research
fields in this area is perturbation analysis (PA). The approach firstly applied to an
engineering problem was proposed by Ho, Eyler and Chien in 1979. With great efforts made
by many researchers in more than one decade, fundamental results for PA have been
obtained. Currently, formal sensitivity analysis approaches based on stochastic processes
were proposed in the literature. Particularly, efficient algorithms were developed to
compute the performance derivates of Markov processes with respect to infinitesimal
changes of their parameters (infinitesimal generators) (Cao et al., 1998, 1997). Besides the
fundamental works in developing its theory and algorithms, perturbation analysis has also

 Advances in Petri Net Theory and Applications

104

been successfully applied to a number of practical engineering problems (Brooks & Varaiya,
1994; Caramanis & Liberopouls, 1992; Haurie et al., 1994; Xiao et al., 1994; Yan & Zhou 1994).
In this chapter, we deal with sensitivity analysis with respect to timing parameters based on
stochastic Petri nets. Besides the great scientific and practical interest of the sensitivity
analysis, this work is motivated by two reasons:
• Petri nets (Murata, 1989) are a powerful graphical and mathematical formalism which

has been gaining popularity as a tool particularly suitable for modelling and analysis of
discrete event systems. The literature on Petri nets is ample and their applications in
practical manufacturing problems are numerous (Zhou and Kurapati, 1999; Zurawski
and Zhou, 1994; Silva and Teruel, 1997). Several books were published in 1990s
(Ajmone Marsan et al., 1995; Haas, 2002; Lindeman, 1998; Zhou and DiCesare 1993).

• Although the literature on Petri nets is plentiful, very little work deals with sensitivity
analysis or perturbation analysis of Petri net models. Few exceptions are: a perturbation
analysis method based on stochastic Petri net models to estimate the derivatives of
performance measures with respect to timing parameters can be found in (Xie 1998;
Archetti et al., 1993). For Markov regenerative stochastic Petri nets, a mathematical
formulation for sensitivity of the steady state probabilities is developed in (Mainkar and
al. 1993). Furthermore, performance sensitivity formulas are given by exploring
structural characteristics of Petri nets (Feng, Desrochers, 1993; Proth et al., 1993).

In this chapter, we try to apply a perturbation analysis method based on stochastic Petri nets
for parameter sensitivity analysis to the performance analysis of an inventory system. The
remainder of the chapter is organized in two parts as follows:
• The first part of the chapter addresses the sensitivity analysis of stochastic discrete

event systems described by Stochastic Petri nets (SPN) as a performance evaluation tool
of the systems. By exploring some existing results on perturbation analysis of Markov
processes (Cao et al., 1997-1998; Dai, 1995-1996) and by a natural extension of them to
the underlying stochastic processes of SPNs, a stochastic Petri net-based sensitivity
analysis method with respect to timing parameters is presented. The approach is widely
applicable because stochastic Petri nets (Ajmone Marsan et al., 1995; Haas, 2002;
Lindeman, 1998) have been proven to be one of the most fundamental models for
stochastic discrete-event systems.

• The second part of the chapter is dedicated to a case study on an inventory system.
Previously, the modeling and performances evaluation of the system were performed
by using Batch stochastic Petri nets recently introduced in the literature (Labadi et al.,
2007). In this part, the sensitivity analysis method developed in the first part of the
chapter is used to estimate the sensitivity of performance measures with respect to the
decision parameters of the inventory system.

2. Stochastic Petri nets models
Petri nets (PN), as a graphical and mathematical model, have been used for the study of
qualitative properties of discrete event systems exhibiting concurrency and synchronization
characteristics. A Petri net may be defined as a particular bipartite directed graph consisting of
places, transitions, and arcs. Input arcs are ones connecting a place to a transition, whereas
output arcs are ones connecting a transition to a place. A positive weight may be assigned to
each arc. A place may contain tokens and the current state (the marking) of the modeled
system is specified by the number of tokens in each place. Each transition usually models an

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

105

activity whose occurrence is represented by its firing. A transition can be fired only if it is
enabled, which means that all preconditions for the corresponding activity are fulfilled (there
are enough tokens available in the input places of the transition). When the transition is fired,
tokens will be removed from its input places and added to its output places. The number of
tokens removed/added is determined by the weight of the arc connecting the transition with
the corresponding place. Graphically, places are represented by circles, transitions by bars or
thin rectangles (filled or not filled), tokens by dots, respectively.
The use of PN-based techniques for the quantitative analysis of a system may require the
introduction of temporal specifications in its basic untimed model. Time is then introduced
in Petri nets by associating each transition with a firing delay (time). This delay specifies the
duration during which the transition has to be enabled before it can actually be fired. In a
stochastic Petri net, the time delays associated with certain transitions are random variables
and the underlying marking process (state evolution process) of the net is a stochastic
process. There are several variants of this model type, among them we have stochastic Petri
net (SPN) models where each transition is associated with an exponentially distributed time
delay. Stochastic Petri net models were proposed with the goal of developing a tool which
integrates formal description, proof of correctness, and performance evaluation of systems.
For what concerns the performance evaluation, many previous proposals aimed at
establishing an equivalence between SPN and Markov models. Stochastic Petri net-based
Markov modelling is thus a potentially very powerful and generic approach for
performance evaluation of a variety of systems such as computer systems, communication
networks and manufacturing systems.

2.1 The basic SPN model
The SPNs are obtained by associating each transition with an exponentially distributed
firing time whose firing rate (average firing time) may be marking dependent.
A formal definition of SPN is thus given by:

 SPN = (P, T, I, O, M0, Λ) (1)

where (P, T, I, O, M0) is the marked untimed PN underlying the SPN, which as usual
comprises:
P = (p1, p2,..., pn) is a finite set of places, where n > 0; T = (t1, t2,…, tm) is a finite set of
exponentially distributed transitions, where m > 0, with P ∪ T ≠ ∅ and P ∩ T ≠ ∅; I: P × T →
N is an input function that defines the set of directed arcs from P to T where N is the set of
natural numbers; O: T × P → N is an output function that defines the set of directed arcs
from T to P; M0 is the initial marking of the net whose ith component represents the number
of tokens in the ith place and Λ = (λ1, λ2,…, λn) is an array of firing rates associated with
transitions. Each rate is defined as the inverse of the average firing time of the
corresponding transition.

2.2 Stochastic behaviour analysis
According to (Molloy, 1982), the SPNs are isomorphic to continuous time Markov chains
(CTMC) due to the memoryless property of the exponential distributions of the firings times
of their transitions. The SPN markings correspond to the states of the corresponding Markov
chain so that the SPN model allows the calculation of the steady state probabilities of its
states. As in Markov analysis, ergodic (irreducible) property of SPN is of special interest. For

 Advances in Petri Net Theory and Applications

104

been successfully applied to a number of practical engineering problems (Brooks & Varaiya,
1994; Caramanis & Liberopouls, 1992; Haurie et al., 1994; Xiao et al., 1994; Yan & Zhou 1994).
In this chapter, we deal with sensitivity analysis with respect to timing parameters based on
stochastic Petri nets. Besides the great scientific and practical interest of the sensitivity
analysis, this work is motivated by two reasons:
• Petri nets (Murata, 1989) are a powerful graphical and mathematical formalism which

has been gaining popularity as a tool particularly suitable for modelling and analysis of
discrete event systems. The literature on Petri nets is ample and their applications in
practical manufacturing problems are numerous (Zhou and Kurapati, 1999; Zurawski
and Zhou, 1994; Silva and Teruel, 1997). Several books were published in 1990s
(Ajmone Marsan et al., 1995; Haas, 2002; Lindeman, 1998; Zhou and DiCesare 1993).

• Although the literature on Petri nets is plentiful, very little work deals with sensitivity
analysis or perturbation analysis of Petri net models. Few exceptions are: a perturbation
analysis method based on stochastic Petri net models to estimate the derivatives of
performance measures with respect to timing parameters can be found in (Xie 1998;
Archetti et al., 1993). For Markov regenerative stochastic Petri nets, a mathematical
formulation for sensitivity of the steady state probabilities is developed in (Mainkar and
al. 1993). Furthermore, performance sensitivity formulas are given by exploring
structural characteristics of Petri nets (Feng, Desrochers, 1993; Proth et al., 1993).

In this chapter, we try to apply a perturbation analysis method based on stochastic Petri nets
for parameter sensitivity analysis to the performance analysis of an inventory system. The
remainder of the chapter is organized in two parts as follows:
• The first part of the chapter addresses the sensitivity analysis of stochastic discrete

event systems described by Stochastic Petri nets (SPN) as a performance evaluation tool
of the systems. By exploring some existing results on perturbation analysis of Markov
processes (Cao et al., 1997-1998; Dai, 1995-1996) and by a natural extension of them to
the underlying stochastic processes of SPNs, a stochastic Petri net-based sensitivity
analysis method with respect to timing parameters is presented. The approach is widely
applicable because stochastic Petri nets (Ajmone Marsan et al., 1995; Haas, 2002;
Lindeman, 1998) have been proven to be one of the most fundamental models for
stochastic discrete-event systems.

• The second part of the chapter is dedicated to a case study on an inventory system.
Previously, the modeling and performances evaluation of the system were performed
by using Batch stochastic Petri nets recently introduced in the literature (Labadi et al.,
2007). In this part, the sensitivity analysis method developed in the first part of the
chapter is used to estimate the sensitivity of performance measures with respect to the
decision parameters of the inventory system.

2. Stochastic Petri nets models
Petri nets (PN), as a graphical and mathematical model, have been used for the study of
qualitative properties of discrete event systems exhibiting concurrency and synchronization
characteristics. A Petri net may be defined as a particular bipartite directed graph consisting of
places, transitions, and arcs. Input arcs are ones connecting a place to a transition, whereas
output arcs are ones connecting a transition to a place. A positive weight may be assigned to
each arc. A place may contain tokens and the current state (the marking) of the modeled
system is specified by the number of tokens in each place. Each transition usually models an

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

105

activity whose occurrence is represented by its firing. A transition can be fired only if it is
enabled, which means that all preconditions for the corresponding activity are fulfilled (there
are enough tokens available in the input places of the transition). When the transition is fired,
tokens will be removed from its input places and added to its output places. The number of
tokens removed/added is determined by the weight of the arc connecting the transition with
the corresponding place. Graphically, places are represented by circles, transitions by bars or
thin rectangles (filled or not filled), tokens by dots, respectively.
The use of PN-based techniques for the quantitative analysis of a system may require the
introduction of temporal specifications in its basic untimed model. Time is then introduced
in Petri nets by associating each transition with a firing delay (time). This delay specifies the
duration during which the transition has to be enabled before it can actually be fired. In a
stochastic Petri net, the time delays associated with certain transitions are random variables
and the underlying marking process (state evolution process) of the net is a stochastic
process. There are several variants of this model type, among them we have stochastic Petri
net (SPN) models where each transition is associated with an exponentially distributed time
delay. Stochastic Petri net models were proposed with the goal of developing a tool which
integrates formal description, proof of correctness, and performance evaluation of systems.
For what concerns the performance evaluation, many previous proposals aimed at
establishing an equivalence between SPN and Markov models. Stochastic Petri net-based
Markov modelling is thus a potentially very powerful and generic approach for
performance evaluation of a variety of systems such as computer systems, communication
networks and manufacturing systems.

2.1 The basic SPN model
The SPNs are obtained by associating each transition with an exponentially distributed
firing time whose firing rate (average firing time) may be marking dependent.
A formal definition of SPN is thus given by:

 SPN = (P, T, I, O, M0, Λ) (1)

where (P, T, I, O, M0) is the marked untimed PN underlying the SPN, which as usual
comprises:
P = (p1, p2,..., pn) is a finite set of places, where n > 0; T = (t1, t2,…, tm) is a finite set of
exponentially distributed transitions, where m > 0, with P ∪ T ≠ ∅ and P ∩ T ≠ ∅; I: P × T →
N is an input function that defines the set of directed arcs from P to T where N is the set of
natural numbers; O: T × P → N is an output function that defines the set of directed arcs
from T to P; M0 is the initial marking of the net whose ith component represents the number
of tokens in the ith place and Λ = (λ1, λ2,…, λn) is an array of firing rates associated with
transitions. Each rate is defined as the inverse of the average firing time of the
corresponding transition.

2.2 Stochastic behaviour analysis
According to (Molloy, 1982), the SPNs are isomorphic to continuous time Markov chains
(CTMC) due to the memoryless property of the exponential distributions of the firings times
of their transitions. The SPN markings correspond to the states of the corresponding Markov
chain so that the SPN model allows the calculation of the steady state probabilities of its
states. As in Markov analysis, ergodic (irreducible) property of SPN is of special interest. For

 Advances in Petri Net Theory and Applications

106

an ergodic SPN, the steady state probability of the model in any state always exists and is
independent of the initial state. If the firing rates of all transitions do not depend upon time,
a stationary (homogeneous) Markov chain is obtained. In particular, k bounded SPNs are
isomorphic to finite Markov chains.
The reachability graph of an SPN is identical to that of the underlying untimed PN. The
nodes of the graph represent all markings reachable from the initial marking. Each arc is
labelled by its corresponding fired transition. The CTMC state space S = {S0, S1, ..., Sm}
corresponds to the set of all markings in the reachability graph M* = {M0, M1, ..., Mm}. The
transition rate from state Si (Mi) to state Sj (Mj) is obtained as the sum of the firing rates of
the transitions that are enabled in Mi and whose firing produces the marking Mj. The
steady-state solution of the model is then obtained by solving a system of linear equations:

 = 0

0

1
m

i
i

Aπ

π

× =⎧
⎪
⎨ =⎪
⎩
∑

 (2)

where:
• ()0 1, ,..., mπ π π π= denotes the steady-state probability of each marking Mi (and of state

Si as well, since there is a one-to-one correspondence between markings and states).
• A = (1) (1)[]ij m ma + × + is the transition rate matrix of the CTMC. For i = 0, 1, 2, …m, the ith

row, i.e., the elements aij, j = 0, 1, 2, …, m, are obtained as follows:
- If j ≠ i, aij is the sum of the firing rates of all the outgoing arcs from state Mi to Mj.
- If i = j, aij represents the sum of the firing rates of all transitions enabled at Mi.

2.3 Performance evaluation
The analysis of an SPN model usually aims at the computation of more aggregate
performance indices than the steady-state probabilities of individual markings. Several
aggregate performance indices are easily obtained from the steady-state distribution of
reachable markings.
The required performance estimates of a system modelled by an SPN can be computed
using a unifying approach in which proper index functions (also called reward functions)
are defined over the markings of the SPN and an average reward for each reward function is
derived using the steady-state probability distribution of the SPN. Assuming that f
represents one of such reward functions, its average reward can be computed using the
following weighted sum:

 0

.
m

i i
i

P f fπ π
=

= = ⋅∑ (3)

where fi is incurred per unit time at each reachable marking Mi of the underlying stochastic
process of the SPN.

3. Parameter sensitivity analysis
3.1 Perturbation realization
Consider first the nominal behavior of a system modeled as an SPN. Let Pθ a performance
function defined over the marking process of the net under a nominal parameter vector θ

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

107

which is a set of parameters of the system (here, it represents the firing rates associated with
the transitions of the net). That is:

1

.
m

i i
i

P f fθ π π
=

= = ⋅∑ (4)

where πi denotes the steady-state probability of each marking Mi and fi is a measure of the
performance function f incurred at the marking Mi of the stochastic marking process of the net.
Consider now a perturbation δ on one or more parameters of the underlying Markov
process that is equivalent to a perturbation in the transition rates matrix A. With the
perturbation, the transition matrix A changes to:

 δA A Qδ = + ⋅ (5)

where Aδ is the transition rate matrix of the perturbed behavior system, δ is a very small
positive real number and Q = [qij] is a matrix representing the direction of the perturbation.
• qij equals 0 indicates that the matrix entry Aij is not perturbed.
• qij equals x different from 0 indicates that the matrix entry Aij is perturbed by an amount

xδ.
The only condition on the structure of Q is that the matrix Aδ is also a transition matrix i.e.
the sum of each row equals 0.
Under this formulation, Aδ is also a well-defined infinitesimal generator, and hence its
steady state probabilities πδ = (πδ0, πδ1,…,π δm), of the perturbed marking process is also
defined. That is:

 = 0

0 and 1
m

i
i

Aδ δ δπ π× = =∑ (6)

Then, the stationary performance measure of the perturbed Markov process (that is the
Markov process with transition matrix Aδ) can be defined as:

 ,
 0

.
m

i i
i

P f fδ δ δπ π
=

= = ⋅∑ (7)

3.2 Computation of sensitivity measures
Many solutions have been proposed in the literature to evaluate sensitivity measures
corresponding to partial derivates.
1. Exact solutions rely on Frank’s approach (Frank, 1978): the classical set of differential

equations is extended to a bigger set of equations including the sensitivity factor
equations. However, this approach is computationally burdensome and almost
unusable or highly inefficient on realistic-size systems because the state space
dimension is too great. To cope with this problem, some approximate solutions have
been proposed (Ou et al., 2003) but applicable to a limited class of systems.

2. Many simulation methods have been also proposed to estimate derivative measure. See
for example (Glynn 1990; Glassermann et al., 1992). Concerning Markov process
modelling and stationary performance measure, perturbation realization is well
adapted (Cao et al., 1997-1998; Dai, 1996). It allows:

 Advances in Petri Net Theory and Applications

106

an ergodic SPN, the steady state probability of the model in any state always exists and is
independent of the initial state. If the firing rates of all transitions do not depend upon time,
a stationary (homogeneous) Markov chain is obtained. In particular, k bounded SPNs are
isomorphic to finite Markov chains.
The reachability graph of an SPN is identical to that of the underlying untimed PN. The
nodes of the graph represent all markings reachable from the initial marking. Each arc is
labelled by its corresponding fired transition. The CTMC state space S = {S0, S1, ..., Sm}
corresponds to the set of all markings in the reachability graph M* = {M0, M1, ..., Mm}. The
transition rate from state Si (Mi) to state Sj (Mj) is obtained as the sum of the firing rates of
the transitions that are enabled in Mi and whose firing produces the marking Mj. The
steady-state solution of the model is then obtained by solving a system of linear equations:

 = 0

0

1
m

i
i

Aπ

π

× =⎧
⎪
⎨ =⎪
⎩
∑

 (2)

where:
• ()0 1, ,..., mπ π π π= denotes the steady-state probability of each marking Mi (and of state

Si as well, since there is a one-to-one correspondence between markings and states).
• A = (1) (1)[]ij m ma + × + is the transition rate matrix of the CTMC. For i = 0, 1, 2, …m, the ith

row, i.e., the elements aij, j = 0, 1, 2, …, m, are obtained as follows:
- If j ≠ i, aij is the sum of the firing rates of all the outgoing arcs from state Mi to Mj.
- If i = j, aij represents the sum of the firing rates of all transitions enabled at Mi.

2.3 Performance evaluation
The analysis of an SPN model usually aims at the computation of more aggregate
performance indices than the steady-state probabilities of individual markings. Several
aggregate performance indices are easily obtained from the steady-state distribution of
reachable markings.
The required performance estimates of a system modelled by an SPN can be computed
using a unifying approach in which proper index functions (also called reward functions)
are defined over the markings of the SPN and an average reward for each reward function is
derived using the steady-state probability distribution of the SPN. Assuming that f
represents one of such reward functions, its average reward can be computed using the
following weighted sum:

 0

.
m

i i
i

P f fπ π
=

= = ⋅∑ (3)

where fi is incurred per unit time at each reachable marking Mi of the underlying stochastic
process of the SPN.

3. Parameter sensitivity analysis
3.1 Perturbation realization
Consider first the nominal behavior of a system modeled as an SPN. Let Pθ a performance
function defined over the marking process of the net under a nominal parameter vector θ

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

107

which is a set of parameters of the system (here, it represents the firing rates associated with
the transitions of the net). That is:

1

.
m

i i
i

P f fθ π π
=

= = ⋅∑ (4)

where πi denotes the steady-state probability of each marking Mi and fi is a measure of the
performance function f incurred at the marking Mi of the stochastic marking process of the net.
Consider now a perturbation δ on one or more parameters of the underlying Markov
process that is equivalent to a perturbation in the transition rates matrix A. With the
perturbation, the transition matrix A changes to:

 δA A Qδ = + ⋅ (5)

where Aδ is the transition rate matrix of the perturbed behavior system, δ is a very small
positive real number and Q = [qij] is a matrix representing the direction of the perturbation.
• qij equals 0 indicates that the matrix entry Aij is not perturbed.
• qij equals x different from 0 indicates that the matrix entry Aij is perturbed by an amount

xδ.
The only condition on the structure of Q is that the matrix Aδ is also a transition matrix i.e.
the sum of each row equals 0.
Under this formulation, Aδ is also a well-defined infinitesimal generator, and hence its
steady state probabilities πδ = (πδ0, πδ1,…,π δm), of the perturbed marking process is also
defined. That is:

 = 0

0 and 1
m

i
i

Aδ δ δπ π× = =∑ (6)

Then, the stationary performance measure of the perturbed Markov process (that is the
Markov process with transition matrix Aδ) can be defined as:

 ,
 0

.
m

i i
i

P f fδ δ δπ π
=

= = ⋅∑ (7)

3.2 Computation of sensitivity measures
Many solutions have been proposed in the literature to evaluate sensitivity measures
corresponding to partial derivates.
1. Exact solutions rely on Frank’s approach (Frank, 1978): the classical set of differential

equations is extended to a bigger set of equations including the sensitivity factor
equations. However, this approach is computationally burdensome and almost
unusable or highly inefficient on realistic-size systems because the state space
dimension is too great. To cope with this problem, some approximate solutions have
been proposed (Ou et al., 2003) but applicable to a limited class of systems.

2. Many simulation methods have been also proposed to estimate derivative measure. See
for example (Glynn 1990; Glassermann et al., 1992). Concerning Markov process
modelling and stationary performance measure, perturbation realization is well
adapted (Cao et al., 1997-1998; Dai, 1996). It allows:

 Advances in Petri Net Theory and Applications

108

• The evaluation of sensitivity of performance measures formulated under the
marking process of a stochastic Petri net model:
The sensitivity of a performance measure P of a system due to the introduced
changes in the infinitesimal generator A, can be analyzed by computing the
derivate of Pδ in the direction of Q (noted below by SPerf). It can be defined as:

0

SPerf lim P PdP
dQ

δ
δ δ→

−
= = (8)

• The evaluation of sensitivity of steady-state probabilities of the marking process:
The sensitivity of steady sate probabilities can also be defined as:

0

SProb limd
dQ

δ
δ

π ππ
δ→

−
= = (9)

3.3 Calculation of the performance derivates
The particular structure of the Chapman-Kolmogorov equations and the linearity of the
performance measure lead to the following expression of the measure derivatives (Cao et al.,
1997-1998):

 #SPerf dP Q A f
dQ

π= = − ⋅ ⋅ ⋅ (10)

where:
#A is defined as:

 # 1()A A e eπ π−= + − (11)

where:
• e = (1, 1, …)T is a column vector of size (m × 1) with ,1 1ie = for any i.
• #g A f= − ⋅ is called the performance potential vector.
Then, according to the equation (8), SPerf can be written as:

 #SPerf dP Q A f Q g
dQ

π π= = − ⋅ ⋅ ⋅ = ⋅ ⋅ (12)

Similarly, according to the equation (9), the steady state derivate, SProb, can be computed
using the following formula:

 #SProb d Q A
dQ δ
π π= = − ⋅ ⋅ (13)

4. Inventory system modelling and performance analysis
This part of the chapter is dedicated to a case study on an inventory system represented in Fig.
1. The presented approach in the previous section is then applied to estimate the sensitivity of
performance measures with respect to some parameters of the inventory system.

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

109

4.1 Modelling of the inventory system
Consider the continuous review (s, S) inventory system shown in Fig. 1. In this application,
it is assumed that the system has the following characteristics: the inventory replenishment
time is subject to an exponential distribution; customer demand is Poisson and in batch; and
the system has no backorder.
The modeling and performance evaluation of the system will be performed by using Batch
stochastic Petri nets introduced in the literature as a powerful modelling tool for both
analysis and simulation of logistic systems. The capability of the model to meet real needs is
shown through applications dedicated to modelling and performance optimization of
inventory control systems (see Labadi et al., 2007) and a real-life supply chain (see Chen et
al., 2005; Amodeo et al., 2007).

 Customer 1

Customer n

Stock

Inventory Control
Policy (s, S)

Supplier

Replenishment order

Replenishment

Customer demand (i)

Delivry (i)

Fig. 1. A continuous (s, S) inventory system

We model the dynamics of the above mentioned supply chain by using a Batch Stochastic
Petri net represented in Fig. 2. In the model, discrete place p1 represents the on-hand
inventory of the considered stock and place p3 represents outstanding orders. Discrete place
p2 represents the on-hand inventory of the stock plus its outstanding orders (the orders that
are placed by stock p1 but not filled yet), that is, M(p2) = M(p1) + M(p3). The operations of
the system such as generation of replenishment orders (t3), inventory replenishment (t2),
and order delivery (t1) are performed in a batch way because of the batch nature of
customer orders (generated by the batch place p4 and the batch transition t1) and the batch
nature of the outstanding orders recorded in batch place p3. The fulfillment of a customer
order will decrease on-hand inventory of the stock as well as its inventory level. This is
described by the arcs from places p1, p4 and p2 to transition t1. Batch customer demand is
assumed to be a Poisson process, which is specified by the batch transition t1 whose firing
time is subject to an exponential distribution. We assume that transition t1 generates
randomly with the same probability batch customer orders of two different sizes (1 or 2)
available in batch place p4 (i.e.; µ(p4) = {1, 2}). The inventory control policy used in the
system is a continuous review (s, S) policy specified by the immediate transition t3. It is
assumed that the reorder point and the order-up-to-level of the policy are taken as s = 4 and
S = 6 respectively, and the initial µ-marking of the net is µ0 = (6, 6, ∅, {1, 2}). Furthermore,
the firing delays of batch transitions t1 and t2 (the demand rate and the inventory
replenishment rate) are assumed to be exponentially distributed with rates λ1[q] = λ1 and λ2[q]
= λ2 respectively for any feasible batch firing index q.

 Advances in Petri Net Theory and Applications

108

• The evaluation of sensitivity of performance measures formulated under the
marking process of a stochastic Petri net model:
The sensitivity of a performance measure P of a system due to the introduced
changes in the infinitesimal generator A, can be analyzed by computing the
derivate of Pδ in the direction of Q (noted below by SPerf). It can be defined as:

0

SPerf lim P PdP
dQ

δ
δ δ→

−
= = (8)

• The evaluation of sensitivity of steady-state probabilities of the marking process:
The sensitivity of steady sate probabilities can also be defined as:

0

SProb limd
dQ

δ
δ

π ππ
δ→

−
= = (9)

3.3 Calculation of the performance derivates
The particular structure of the Chapman-Kolmogorov equations and the linearity of the
performance measure lead to the following expression of the measure derivatives (Cao et al.,
1997-1998):

 #SPerf dP Q A f
dQ

π= = − ⋅ ⋅ ⋅ (10)

where:
#A is defined as:

 # 1()A A e eπ π−= + − (11)

where:
• e = (1, 1, …)T is a column vector of size (m × 1) with ,1 1ie = for any i.
• #g A f= − ⋅ is called the performance potential vector.
Then, according to the equation (8), SPerf can be written as:

 #SPerf dP Q A f Q g
dQ

π π= = − ⋅ ⋅ ⋅ = ⋅ ⋅ (12)

Similarly, according to the equation (9), the steady state derivate, SProb, can be computed
using the following formula:

 #SProb d Q A
dQ δ
π π= = − ⋅ ⋅ (13)

4. Inventory system modelling and performance analysis
This part of the chapter is dedicated to a case study on an inventory system represented in Fig.
1. The presented approach in the previous section is then applied to estimate the sensitivity of
performance measures with respect to some parameters of the inventory system.

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

109

4.1 Modelling of the inventory system
Consider the continuous review (s, S) inventory system shown in Fig. 1. In this application,
it is assumed that the system has the following characteristics: the inventory replenishment
time is subject to an exponential distribution; customer demand is Poisson and in batch; and
the system has no backorder.
The modeling and performance evaluation of the system will be performed by using Batch
stochastic Petri nets introduced in the literature as a powerful modelling tool for both
analysis and simulation of logistic systems. The capability of the model to meet real needs is
shown through applications dedicated to modelling and performance optimization of
inventory control systems (see Labadi et al., 2007) and a real-life supply chain (see Chen et
al., 2005; Amodeo et al., 2007).

 Customer 1

Customer n

Stock

Inventory Control
Policy (s, S)

Supplier

Replenishment order

Replenishment

Customer demand (i)

Delivry (i)

Fig. 1. A continuous (s, S) inventory system

We model the dynamics of the above mentioned supply chain by using a Batch Stochastic
Petri net represented in Fig. 2. In the model, discrete place p1 represents the on-hand
inventory of the considered stock and place p3 represents outstanding orders. Discrete place
p2 represents the on-hand inventory of the stock plus its outstanding orders (the orders that
are placed by stock p1 but not filled yet), that is, M(p2) = M(p1) + M(p3). The operations of
the system such as generation of replenishment orders (t3), inventory replenishment (t2),
and order delivery (t1) are performed in a batch way because of the batch nature of
customer orders (generated by the batch place p4 and the batch transition t1) and the batch
nature of the outstanding orders recorded in batch place p3. The fulfillment of a customer
order will decrease on-hand inventory of the stock as well as its inventory level. This is
described by the arcs from places p1, p4 and p2 to transition t1. Batch customer demand is
assumed to be a Poisson process, which is specified by the batch transition t1 whose firing
time is subject to an exponential distribution. We assume that transition t1 generates
randomly with the same probability batch customer orders of two different sizes (1 or 2)
available in batch place p4 (i.e.; µ(p4) = {1, 2}). The inventory control policy used in the
system is a continuous review (s, S) policy specified by the immediate transition t3. It is
assumed that the reorder point and the order-up-to-level of the policy are taken as s = 4 and
S = 6 respectively, and the initial µ-marking of the net is µ0 = (6, 6, ∅, {1, 2}). Furthermore,
the firing delays of batch transitions t1 and t2 (the demand rate and the inventory
replenishment rate) are assumed to be exponentially distributed with rates λ1[q] = λ1 and λ2[q]
= λ2 respectively for any feasible batch firing index q.

 Advances in Petri Net Theory and Applications

110

p1

p2p3

t1t2

t3 S-M(p2)

s

S-M(p2)

Stock

Inventory position
 of the stock

p4

Replenishment

Outstanding orders Batch order

Delivry

1
2

Source
of batch
orders

Fig. 2. Batch stochastic Petri net model of the supply chain with (s, S) inventory control
policy

4.2 Dynamic behaviour analysis
The state space of the Petri net is represented by its µ-reachability graph shown in Fig. 3. In
the graph, each directed edge is associated with a label representing the transition whose
firing generates the successor µ-marking. Each batch transition is marked by its
corresponding batch firing index q.

t2[3]

t1[1]

t1[1]

t2[3]

t1[2]

t2[3] t2[4]

t2[4]

t2[4]

µ0= [6, 6, ∅,{1,2}]

µ1= [5, 5, ∅,{1,2}]

µ2= [4, 4, ∅,{1,2}]

µ4= [2, 6, {4},{1,2}]

µ5= [2, 5, {3},{1,2}]µ6= [1, 5, {4},{1,2}]

µ7= [1, 4, {3},{1,2}]µ8= [0, 4, {4},{1,2}]

µ9= [0, 3, {3},{1,2}]

µ3= [3, 6, {3},{1,2}]

t1[1]

t1[1]

t1[1]

t1[1]

t1[1]

t1[2]

t1[2]

t1[2]

t1[2]

t1[1]

t1[2]

t2[3]

µ’= [2, 2, ∅,{1,2}] µ= [3, 3, ∅,{1,2}]

t3 t3

Fig. 3. The µ-reachability graph of the batch stochastic Petri net model shown in Fig. 2

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

111

The µ-markings obtained can be classified into vanishing and tangible µ-markings. A
vanishing µ-marking is one in which at least one immediate transition is enabled, and a
tangible µ-marking is one in which no immediate transition is enabled. In the µ-reachability
graph, the vanishing µ-markings µi (i = 0 to 9) are represented by rectangles and two
tangible µ-markings µ and µ’ are represented by dotted rectangles. After eliminating the
vanishing µ-markings by merging them with their successor tangible µ-markings and
converting the reduced µ-reachability graph to its corresponding stochastic process, we get a
continuous timed Markov chain (CTMC) represented in Fig. 4.
By solving the linear equations system (14) where A is the infinitesimal generator matrix
(transition rate matrix) of the CTMC, the steady-state probabilities π = (π1, π2,…, π9) can be
explicitly obtained as functions of parameters λ1 and λ2 given in Table 1.

 9

0

0

1i
i

Aπ

π
=

× =⎧
⎪
⎨ =⎪
⎩
∑

 (14)

λ2[3]

λ1[1]

λ1[1]

λ2[3]

λ1[2]

λ2[3] λ2[4]

λ2[4]

λ2[4]

µ0

µ1

µ2

µ4

µ5µ6

µ7µ8

µ9

µ3

λ1[1]

λ1[1]

λ1[1]

λ1[1]

λ1[1]

λ1[2]

λ1[2]

λ1[2]

λ1[2]

λ1[1]

λ1[2]

λ2[3]

Fig. 4. The underlying Markov chain of the batch stochastic Petri net model shown in Fig. 2

4.3. Performance analysis of the system
With the steady state probabilities π = (π1, π2, …, π9), we can easily compute several
important performance measures of the supply chain such as the average inventory level,
the stockout rate, the average inventory turnover, etc.

 Advances in Petri Net Theory and Applications

110

p1

p2p3

t1t2

t3 S-M(p2)

s

S-M(p2)

Stock

Inventory position
 of the stock

p4

Replenishment

Outstanding orders Batch order

Delivry

1
2

Source
of batch
orders

Fig. 2. Batch stochastic Petri net model of the supply chain with (s, S) inventory control
policy

4.2 Dynamic behaviour analysis
The state space of the Petri net is represented by its µ-reachability graph shown in Fig. 3. In
the graph, each directed edge is associated with a label representing the transition whose
firing generates the successor µ-marking. Each batch transition is marked by its
corresponding batch firing index q.

t2[3]

t1[1]

t1[1]

t2[3]

t1[2]

t2[3] t2[4]

t2[4]

t2[4]

µ0= [6, 6, ∅,{1,2}]

µ1= [5, 5, ∅,{1,2}]

µ2= [4, 4, ∅,{1,2}]

µ4= [2, 6, {4},{1,2}]

µ5= [2, 5, {3},{1,2}]µ6= [1, 5, {4},{1,2}]

µ7= [1, 4, {3},{1,2}]µ8= [0, 4, {4},{1,2}]

µ9= [0, 3, {3},{1,2}]

µ3= [3, 6, {3},{1,2}]

t1[1]

t1[1]

t1[1]

t1[1]

t1[1]

t1[2]

t1[2]

t1[2]

t1[2]

t1[1]

t1[2]

t2[3]

µ’= [2, 2, ∅,{1,2}] µ= [3, 3, ∅,{1,2}]

t3 t3

Fig. 3. The µ-reachability graph of the batch stochastic Petri net model shown in Fig. 2

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

111

The µ-markings obtained can be classified into vanishing and tangible µ-markings. A
vanishing µ-marking is one in which at least one immediate transition is enabled, and a
tangible µ-marking is one in which no immediate transition is enabled. In the µ-reachability
graph, the vanishing µ-markings µi (i = 0 to 9) are represented by rectangles and two
tangible µ-markings µ and µ’ are represented by dotted rectangles. After eliminating the
vanishing µ-markings by merging them with their successor tangible µ-markings and
converting the reduced µ-reachability graph to its corresponding stochastic process, we get a
continuous timed Markov chain (CTMC) represented in Fig. 4.
By solving the linear equations system (14) where A is the infinitesimal generator matrix
(transition rate matrix) of the CTMC, the steady-state probabilities π = (π1, π2,…, π9) can be
explicitly obtained as functions of parameters λ1 and λ2 given in Table 1.

 9

0

0

1i
i

Aπ

π
=

× =⎧
⎪
⎨ =⎪
⎩
∑

 (14)

λ2[3]

λ1[1]

λ1[1]

λ2[3]

λ1[2]

λ2[3] λ2[4]

λ2[4]

λ2[4]

µ0

µ1

µ2

µ4

µ5µ6

µ7µ8

µ9

µ3

λ1[1]

λ1[1]

λ1[1]

λ1[1]

λ1[1]

λ1[2]

λ1[2]

λ1[2]

λ1[2]

λ1[1]

λ1[2]

λ2[3]

Fig. 4. The underlying Markov chain of the batch stochastic Petri net model shown in Fig. 2

4.3. Performance analysis of the system
With the steady state probabilities π = (π1, π2, …, π9), we can easily compute several
important performance measures of the supply chain such as the average inventory level,
the stockout rate, the average inventory turnover, etc.

 Advances in Petri Net Theory and Applications

112

π0
2(λ2)2[45(λ2)2(λ1)2+25λ2(λ1)3+32(λ2)3λ1+8(λ2)4+4(λ1)4] ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π1
(λ2)2[69(λ2)2(λ1)2+46λ2(λ1)3+40(λ2)3λ1+8(λ2)4+8(λ1)4] ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π2
(4(λ1+λ2)2(λ2)2).[9λ1λ2+7(λ1)2+3(λ2)2] ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π3
2λ1λ2[29(λ2)2(λ1)2+18λ2(λ1)3+20(λ2)3λ1+5(λ2)4+4(λ1)4] ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π4
(2(λ1+λ2)(λ2)2λ1).[9λ1λ2+7(λ1)2+3(λ2)3] ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π5
λ2(λ1)2[15(λ2)2λ1+14λ2(λ1)2+5(λ2)3+4(λ1)3] ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π6
(λ2)2(λ1)2.[9(λ2λ1+7(λ1)2+3(λ2)2] ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π7
0.5.(12(λ1)3+38λ2(λ1)2+35(λ2)2λ1+10(λ2)3) (λ1)2λ2 ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π8
λ2(λ1)2(9λ2λ1+7(λ1)2+3(λ2)2)(2λ1+λ1) ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π9
0.5(λ1)3[52λ1(λ1)2+15(λ2)3+50(λ2)2λ1+16(λ1)3] ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

Table 1. µ-markings (states) probabilities

• The average inventory level of the system Savg(λ1, λ2) which corresponds to the mean
number of tokens in discrete place p1 can be calculated by applying the formula:

 () ()
9

0
1, 2 (1) 1avg i

i
S µ p µ pλ λ π

=
= = ×∑ (15)

()
() ()() () () () () () () ()

() () () () () () () () () () () ()

5 4 4 2 3 3 2 5
2 2 1 2 1 2 1 2 1 2 1

6 5 4 2 3 3 2 4 5 6
1 1 2 1 2 2 1 1 2 2 1 2

0.5 368 +1732 +780 +3038 +2385 +76

8 +58 +184 +342 +351 +180 +36

1, 2avgS

λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ

⎡ ⎤×⎢ ⎥⎣ ⎦

=

• The stockout rate is the probability of the emptiness of the stock. In the µ-marking graph
of the Petri net model in Fig. 3, the marking of the discrete place p1 is equal to zero
(M(p1) = 0) in two µ-markings which are µ8 and µ9. Thus the stock-out rate of the
inventory system ProbS=0(λ1, λ2) is given by the formula:

 ()S=0 8 9Prob 1, 2 = 0 = Prob (1) 0µ pλ λ π π= = +⎡ ⎤⎣ ⎦ (16)

()
() () () () () ()() () ()

() () () () () () () () () () () ()

2 3 2 2 3 4 4
1 1 2 1 2 1 2 2 1

6 5 4 2 3 3 2 4 5 6
1 1 2 1 2 2 1 1 2 2 1 2

S=0

0.5 80 +100 +45 +6 +16

8 +58 +184 +342 +351 +180 +36

Prob 1, 2

λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ
⎡ ⎤×⎢ ⎥⎣ ⎦

=

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

113

• The average replenishment frequency of the stock, FAavg(λ1,λ2) corresponds to the average
firing frequency of batch transition t2. Thus, it is the sum of the average firing
frequencies F(t2[3]) and F(t2[4]) of the transitions t2[3] and t2[4] respectively. These
transitions are generated by batch transition t2 with two different batch firing indexes.
FAavg(λ1, λ2) is thus given as follows:

() [] []()

[]() []()
3 4

3 4

3 4
(2) (2)

1, 2 (2) 2

2 2
i i

avg

i i
i µ S t i µ S t

FA F t F tλ λ

λ π λ π
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∈ ∈

= + =

× + ×∑ ∑
 (17)

where S(t2[3]) = {µ3, µ5, µ7, µ9} is the set of the µ-markings in which batch transition t2 is
fired with index 3 (firing of t2[3]) and S(t2[4]) = {µ4, µ6, µ8} is the set of the µ-markings in
which batch transition t2 is fired with index 4 (firing of t2[4]).

Since λ2[3] = λ2[4] = λ2, we obtain that:

() [] []

3 4

3 4
(2) (2)

3 4 5 6 7 8 9

1, 2 (2) (2) 2

 () 2
i

avg i
i µ S t S t

FA F t F tλ λ π λ

π π π π π π π λ
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∈ ∩
= + = ×

= + + + + + + ×

∑
 (18)

()
() () () () () () () () () ()()

() () () () () () () () () () () ()

5 5 3 2 2 3 4 4
1 2 1 2 1 2 1 2 1 2 1

6 5 4 2 3 3 2 4 5 6
1 1 2 1 2 2 1 1 2 2 1 2

2 8 +4 +77 +70 +40 +29

8 +58 +184 +342 +351 +180 +36

1, 2avgFA

λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ

⎡ ⎤×⎢ ⎥⎣ ⎦

=

The average inventory level, the stock-out rate, and the average replenishment frequency of
the stock as functions of parameters λ1 and λ2 are depicted in Fig. 5, Fig. 6, and Fig. 7,
respectively.

Replenishment
 rate (λ2)

Demand
Rate (λ1)

Average stock
level

Fig. 5. Average inventory level of the stock

 Advances in Petri Net Theory and Applications

112

π0
2(λ2)2[45(λ2)2(λ1)2+25λ2(λ1)3+32(λ2)3λ1+8(λ2)4+4(λ1)4] ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π1
(λ2)2[69(λ2)2(λ1)2+46λ2(λ1)3+40(λ2)3λ1+8(λ2)4+8(λ1)4] ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π2
(4(λ1+λ2)2(λ2)2).[9λ1λ2+7(λ1)2+3(λ2)2] ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π3
2λ1λ2[29(λ2)2(λ1)2+18λ2(λ1)3+20(λ2)3λ1+5(λ2)4+4(λ1)4] ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π4
(2(λ1+λ2)(λ2)2λ1).[9λ1λ2+7(λ1)2+3(λ2)3] ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π5
λ2(λ1)2[15(λ2)2λ1+14λ2(λ1)2+5(λ2)3+4(λ1)3] ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π6
(λ2)2(λ1)2.[9(λ2λ1+7(λ1)2+3(λ2)2] ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π7
0.5.(12(λ1)3+38λ2(λ1)2+35(λ2)2λ1+10(λ2)3) (λ1)2λ2 ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π8
λ2(λ1)2(9λ2λ1+7(λ1)2+3(λ2)2)(2λ1+λ1) ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

π9
0.5(λ1)3[52λ1(λ1)2+15(λ2)3+50(λ2)2λ1+16(λ1)3] ÷

[351(λ2)4(λ1)2+180(λ2)5(λ1)+342(λ2)3(λ1)3+184(λ1)4(λ2)2+58(λ1)5(λ2)+8(λ1)6+36(λ2)6]

Table 1. µ-markings (states) probabilities

• The average inventory level of the system Savg(λ1, λ2) which corresponds to the mean
number of tokens in discrete place p1 can be calculated by applying the formula:

 () ()
9

0
1, 2 (1) 1avg i

i
S µ p µ pλ λ π

=
= = ×∑ (15)

()
() ()() () () () () () () ()

() () () () () () () () () () () ()

5 4 4 2 3 3 2 5
2 2 1 2 1 2 1 2 1 2 1

6 5 4 2 3 3 2 4 5 6
1 1 2 1 2 2 1 1 2 2 1 2

0.5 368 +1732 +780 +3038 +2385 +76

8 +58 +184 +342 +351 +180 +36

1, 2avgS

λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ

⎡ ⎤×⎢ ⎥⎣ ⎦

=

• The stockout rate is the probability of the emptiness of the stock. In the µ-marking graph
of the Petri net model in Fig. 3, the marking of the discrete place p1 is equal to zero
(M(p1) = 0) in two µ-markings which are µ8 and µ9. Thus the stock-out rate of the
inventory system ProbS=0(λ1, λ2) is given by the formula:

 ()S=0 8 9Prob 1, 2 = 0 = Prob (1) 0µ pλ λ π π= = +⎡ ⎤⎣ ⎦ (16)

()
() () () () () ()() () ()

() () () () () () () () () () () ()

2 3 2 2 3 4 4
1 1 2 1 2 1 2 2 1

6 5 4 2 3 3 2 4 5 6
1 1 2 1 2 2 1 1 2 2 1 2

S=0

0.5 80 +100 +45 +6 +16

8 +58 +184 +342 +351 +180 +36

Prob 1, 2

λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ
⎡ ⎤×⎢ ⎥⎣ ⎦

=

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

113

• The average replenishment frequency of the stock, FAavg(λ1,λ2) corresponds to the average
firing frequency of batch transition t2. Thus, it is the sum of the average firing
frequencies F(t2[3]) and F(t2[4]) of the transitions t2[3] and t2[4] respectively. These
transitions are generated by batch transition t2 with two different batch firing indexes.
FAavg(λ1, λ2) is thus given as follows:

() [] []()

[]() []()
3 4

3 4

3 4
(2) (2)

1, 2 (2) 2

2 2
i i

avg

i i
i µ S t i µ S t

FA F t F tλ λ

λ π λ π
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∈ ∈

= + =

× + ×∑ ∑
 (17)

where S(t2[3]) = {µ3, µ5, µ7, µ9} is the set of the µ-markings in which batch transition t2 is
fired with index 3 (firing of t2[3]) and S(t2[4]) = {µ4, µ6, µ8} is the set of the µ-markings in
which batch transition t2 is fired with index 4 (firing of t2[4]).

Since λ2[3] = λ2[4] = λ2, we obtain that:

() [] []

3 4

3 4
(2) (2)

3 4 5 6 7 8 9

1, 2 (2) (2) 2

 () 2
i

avg i
i µ S t S t

FA F t F tλ λ π λ

π π π π π π π λ
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∈ ∩
= + = ×

= + + + + + + ×

∑
 (18)

()
() () () () () () () () () ()()

() () () () () () () () () () () ()

5 5 3 2 2 3 4 4
1 2 1 2 1 2 1 2 1 2 1

6 5 4 2 3 3 2 4 5 6
1 1 2 1 2 2 1 1 2 2 1 2

2 8 +4 +77 +70 +40 +29

8 +58 +184 +342 +351 +180 +36

1, 2avgFA

λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ

⎡ ⎤×⎢ ⎥⎣ ⎦

=

The average inventory level, the stock-out rate, and the average replenishment frequency of
the stock as functions of parameters λ1 and λ2 are depicted in Fig. 5, Fig. 6, and Fig. 7,
respectively.

Replenishment
 rate (λ2)

Demand
Rate (λ1)

Average stock
level

Fig. 5. Average inventory level of the stock

 Advances in Petri Net Theory and Applications

114

Replenishment
rate (λ2)

Demand rate
(λ1)

Probability
stockout rate

Fig. 6. Stock-out rate of the stock

Average
replenishment

frequency

Replenishment
rate (λ2)

Demand rate
(λ 1)

Fig. 7. Average frequency replenishment of the stock

4.4 Parameter sensitivity analysis of the system
This section is dedicated to sensitivity analysis of the inventory system. We consider the
following parameters for it: λ1[1] = λ1[2] = λ1 = 0.5 and λ2[3] = λ2[4] = λ2 = 0.5. Its transition
rate matrix is thus as follows:

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

115

1 0.5 0.5 0 0 0 0 0 0 0
0 1 0.5 0.5 0 0 0 0 0 0
0 0 1 0.5 0.5 0 0 0 0 0

0.5 0 0 1.5 0 0.5 0 0.5 0 0
0.5 0 0 0 1.5 0 0.5 0 0.5 0
0 0.5 0 0 0 1.5 0 0.5 0 0.5
0 0.5 0 0 0 0 1 0 0.5 0
0 0 0.5 0 0 0 0 1 0 0.5
0 0 0.5 0 0 0 0 0 0.5 0
0 0 0 0.5 0 0 0 0 0 0.5

A =

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎝ ⎠

In this case, the steady state probabilities, denoted by πi, i = 0, …,9, obtained by solving the
corresponding equations system (14) is :

()0.1025 0.09075 0.1915 0.1411 0.0638 0.0471 0.0320 0.0942 0.0958 0.1411π =

4.4.1 Sensitivity analysis with respect to one parameter
• Sensitivity analysis of the average inventory level of the stock with respect to the

customer demand rate
In the Petri net model, the stock is modeled by the discrete place p1. In other words, the
inventory level of the stock, in each state, corresponds to M(p1), the marking of the place p1.
Thus, the corresponding performance function is:

()6 5 4 3 2 2 1 1 0 0f =

where f(i), i = 0, 1, …, 9, corresponds to the marking of the place p1, M(p1), (the inventory
level) at the state Mi (see the marking graph of the Petri net model in Fig. 3).
Consider now the perturbation on a parameter λ1 (customer demand rate associated with
the transition t1) and its influence on the directional matrix Q given as follows:

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Q

δ δ δ
δ δ δ

δ δ δ
δ δ δ

δ δ δ
δ δ δ

δ δ
δ δ

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟=

−⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

where δ is a very small positive real number corresponding to an infinitesimal change of the
parameter λ1. The perturbation is illustrated in Fig. 8.

 Advances in Petri Net Theory and Applications

114

Replenishment
rate (λ2)

Demand rate
(λ1)

Probability
stockout rate

Fig. 6. Stock-out rate of the stock

Average
replenishment

frequency

Replenishment
rate (λ2)

Demand rate
(λ 1)

Fig. 7. Average frequency replenishment of the stock

4.4 Parameter sensitivity analysis of the system
This section is dedicated to sensitivity analysis of the inventory system. We consider the
following parameters for it: λ1[1] = λ1[2] = λ1 = 0.5 and λ2[3] = λ2[4] = λ2 = 0.5. Its transition
rate matrix is thus as follows:

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

115

1 0.5 0.5 0 0 0 0 0 0 0
0 1 0.5 0.5 0 0 0 0 0 0
0 0 1 0.5 0.5 0 0 0 0 0

0.5 0 0 1.5 0 0.5 0 0.5 0 0
0.5 0 0 0 1.5 0 0.5 0 0.5 0
0 0.5 0 0 0 1.5 0 0.5 0 0.5
0 0.5 0 0 0 0 1 0 0.5 0
0 0 0.5 0 0 0 0 1 0 0.5
0 0 0.5 0 0 0 0 0 0.5 0
0 0 0 0.5 0 0 0 0 0 0.5

A =

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎝ ⎠

In this case, the steady state probabilities, denoted by πi, i = 0, …,9, obtained by solving the
corresponding equations system (14) is :

()0.1025 0.09075 0.1915 0.1411 0.0638 0.0471 0.0320 0.0942 0.0958 0.1411π =

4.4.1 Sensitivity analysis with respect to one parameter
• Sensitivity analysis of the average inventory level of the stock with respect to the

customer demand rate
In the Petri net model, the stock is modeled by the discrete place p1. In other words, the
inventory level of the stock, in each state, corresponds to M(p1), the marking of the place p1.
Thus, the corresponding performance function is:

()6 5 4 3 2 2 1 1 0 0f =

where f(i), i = 0, 1, …, 9, corresponds to the marking of the place p1, M(p1), (the inventory
level) at the state Mi (see the marking graph of the Petri net model in Fig. 3).
Consider now the perturbation on a parameter λ1 (customer demand rate associated with
the transition t1) and its influence on the directional matrix Q given as follows:

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Q

δ δ δ
δ δ δ

δ δ δ
δ δ δ

δ δ δ
δ δ δ

δ δ
δ δ

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟=

−⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

where δ is a very small positive real number corresponding to an infinitesimal change of the
parameter λ1. The perturbation is illustrated in Fig. 8.

 Advances in Petri Net Theory and Applications

116

λ2

λ1+δ

λ1+δ

λ2

λ1+δ

λ2 λ2

λ2

λ2

µ0

µ1

µ2

µ4

µ5µ6

µ7µ8

µ9

µ3

λ1+δ

λ1+δ

λ1+δ

λ1+δ

λ1+δ

λ1+δ

λ1+δ

λ1+δ

λ1+δ

λ1+δ

λ1+δ

λ2

Fig. 8. Perturbation on customer demand rate (λ1)
By applying the equation (12), the derivate of the considered performance (average
inventory level of the stock) with respect to the parameter λ1 is given by the following linear
function represented in Fig. 9.

3.2381.SPerf δ= −

Fig. 9. Sensitivity of the average inventory level of the stock with respect to the customer
demand rate (λ1)

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

117

Clearly, this derivate means that if the customer demand rate λ1 of the inventory system is
increased by an amount δ, then average inventory level of the stock will decrease by an
amount 3,2381⋅δ.
• Sensitivity analysis of the stockout rate with respect to the supplier replenishment

rate
The stockout rate is defined in the previous section as the probability of the emptiness of the
stock. In the µ-marking graph of the Petri net model in Fig. 3, the marking of the discrete
place p1 is equal to zero (M(p1) = 0) in two markings which are µ8 and µ9. Thus, the
corresponding performance function is:

()0 0 0 0 0 0 0 0 1 1f =

where f(i) = 1 for only i = 8 and i = 9 corresponding to the two µ-markings µ8 and µ9 where
the marking of the place p1 (the inventory level), M(p1) is equal to zero (see the µ-marking
graph of the Petri net model in Fig. 3).
Consider now the perturbation on a parameter λ2 (replenishment rate associated with the
transition t2) and its influence on the directional matrix Q given as follows:

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Q

δ δ
δ δ

δ δ
δ δ

δ δ
δ δ

δ δ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟=

−⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎝ ⎠

By applying the equation (12), the derivate of the considered performance (stockout rate)
with respect to the parameter λ2 is given by the following linear function represented in Fig.
10.

5.5736.SPerf δ= −

Clearly, this derivate means that if the supplier replenishment rate λ2 of the supply chain is
increased by an amount δ, then the stockout out rate will decrease by an amount 5,5736⋅δ.

4.4.2 Sensitivity analysis with respect to a group of parameters
Here, the perturbations on a group of parameters are illustrated. The sensitivity level in
these directions can be used to identify the relative importance of each parameter in the
group. For instance in our system, the directional matrix Q corresponding to the
perturbation of the parameters λ1 (the customer demand rate) and λ2 (the supplier
replenishment rate) at the same time is:

 Advances in Petri Net Theory and Applications

116

λ2

λ1+δ

λ1+δ

λ2

λ1+δ

λ2 λ2

λ2

λ2

µ0

µ1

µ2

µ4

µ5µ6

µ7µ8

µ9

µ3

λ1+δ

λ1+δ

λ1+δ

λ1+δ

λ1+δ

λ1+δ

λ1+δ

λ1+δ

λ1+δ

λ1+δ

λ1+δ

λ2

Fig. 8. Perturbation on customer demand rate (λ1)
By applying the equation (12), the derivate of the considered performance (average
inventory level of the stock) with respect to the parameter λ1 is given by the following linear
function represented in Fig. 9.

3.2381.SPerf δ= −

Fig. 9. Sensitivity of the average inventory level of the stock with respect to the customer
demand rate (λ1)

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

117

Clearly, this derivate means that if the customer demand rate λ1 of the inventory system is
increased by an amount δ, then average inventory level of the stock will decrease by an
amount 3,2381⋅δ.
• Sensitivity analysis of the stockout rate with respect to the supplier replenishment

rate
The stockout rate is defined in the previous section as the probability of the emptiness of the
stock. In the µ-marking graph of the Petri net model in Fig. 3, the marking of the discrete
place p1 is equal to zero (M(p1) = 0) in two markings which are µ8 and µ9. Thus, the
corresponding performance function is:

()0 0 0 0 0 0 0 0 1 1f =

where f(i) = 1 for only i = 8 and i = 9 corresponding to the two µ-markings µ8 and µ9 where
the marking of the place p1 (the inventory level), M(p1) is equal to zero (see the µ-marking
graph of the Petri net model in Fig. 3).
Consider now the perturbation on a parameter λ2 (replenishment rate associated with the
transition t2) and its influence on the directional matrix Q given as follows:

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Q

δ δ
δ δ

δ δ
δ δ

δ δ
δ δ

δ δ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟=

−⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎝ ⎠

By applying the equation (12), the derivate of the considered performance (stockout rate)
with respect to the parameter λ2 is given by the following linear function represented in Fig.
10.

5.5736.SPerf δ= −

Clearly, this derivate means that if the supplier replenishment rate λ2 of the supply chain is
increased by an amount δ, then the stockout out rate will decrease by an amount 5,5736⋅δ.

4.4.2 Sensitivity analysis with respect to a group of parameters
Here, the perturbations on a group of parameters are illustrated. The sensitivity level in
these directions can be used to identify the relative importance of each parameter in the
group. For instance in our system, the directional matrix Q corresponding to the
perturbation of the parameters λ1 (the customer demand rate) and λ2 (the supplier
replenishment rate) at the same time is:

 Advances in Petri Net Theory and Applications

118

Fig. 10. Sensitivity of the stockout rate with respect to the supplier replenishment rate (λ2)

1 1 1

1 1 1

1 1 1

2 1 2 1 1

2 1 2 1 1

2 1 2 1 1

2 1 2 1

2 1 2 1

2 2

2 2

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0

0 0 2 0 0 0 0
0 0 0 2 0 0 0

0 0 0 0 2 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Q

δ δ δ
δ δ δ

δ δ δ
δ δ δ δ δ
δ δ δ δ δ

δ δ δ δ δ
δ δ δ δ

δ δ δ δ
δ δ

δ δ

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

− −⎜ ⎟
⎜ ⎟− −⎜ ⎟=

− −⎜ ⎟
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎝ ⎠

By using this directional matrix, and the function f expressed in the previous sub-section, the
stockout rate derivate with respect to the two parameters λ1 and λ2 can be expressed as the
following linear function:

1 25.57 ()SPerf δ δ= −

Note that because of the linear structure of equation (12), if a perturbation matrix Q is a
linear function of elementary perturbations matrixes Qi, it is possible to evaluate the
multidirectional sensitivity measures related to Q on the basis of the elementary
perturbation measures related to the Qi.
In our example, it is clear that:

 (1, 2) (1) (2)Q Q Qλ λ λ λ= +

Then, we can write that:

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

119

Fig. 11. Sensitivity of the stockout rate with respect to two parameters λ1 (the customer
demand rate) and λ2 (the supplier replenishment rate).

()
()

() ()
() ()()

1, 2

1 2

#

1, 2

#

1 2

SPerf

dP Q A f
dQ

dP dP A f Q Q
dQ dQ

λ λ

λ λ

λ λ

λ λ

π

π

= = − ⋅ ⋅ ⋅

= + = − ⋅ ⋅ ⋅ +

Previously, we obtained that 1 2 1 25.57 () 5.57 5.57SPerf δ δ δ δ= − = − . In this function, we can
identify two terms which are:
• The term (25.57δ−) correspond to the sensitivity measure with respect to the parameter

λ2 computed in the previous sub-section.
• The term (15.57δ−) correspond to the sensitivity measure with respect to the parameter

λ1.

6. Conclusion
The theoretical results presented in this chapter are a natural extension of the recent
development on sensitivity analysis of stochastic processes. The main idea is to obtain the
derivates of a performance measure of a discrete event dynamic system based on its
stochastic Petri model. In this work, the SPN model is studied. A Parameter Sensitivity
analysis approach for the model is developed and an application to a supply chain is
studied. We note that the proposed methodology is also applicable to GSPN (Generalized
Stochastic Petri Nets) models since the marking process of a bounded GSPN is also a
Markov process. The development of sensitivity analysis methods for non Markovian

Sensitivity of the stockout rate with respect to the customer
demand and supplier replenishment rate

δ1 (perturbation of λ1) δ2(perturbation of λ2)

dP/dQ

 Advances in Petri Net Theory and Applications

118

Fig. 10. Sensitivity of the stockout rate with respect to the supplier replenishment rate (λ2)

1 1 1

1 1 1

1 1 1

2 1 2 1 1

2 1 2 1 1

2 1 2 1 1

2 1 2 1

2 1 2 1

2 2

2 2

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0

0 0 2 0 0 0 0
0 0 0 2 0 0 0

0 0 0 0 2 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Q

δ δ δ
δ δ δ

δ δ δ
δ δ δ δ δ
δ δ δ δ δ

δ δ δ δ δ
δ δ δ δ

δ δ δ δ
δ δ

δ δ

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

− −⎜ ⎟
⎜ ⎟− −⎜ ⎟=

− −⎜ ⎟
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎝ ⎠

By using this directional matrix, and the function f expressed in the previous sub-section, the
stockout rate derivate with respect to the two parameters λ1 and λ2 can be expressed as the
following linear function:

1 25.57 ()SPerf δ δ= −

Note that because of the linear structure of equation (12), if a perturbation matrix Q is a
linear function of elementary perturbations matrixes Qi, it is possible to evaluate the
multidirectional sensitivity measures related to Q on the basis of the elementary
perturbation measures related to the Qi.
In our example, it is clear that:

 (1, 2) (1) (2)Q Q Qλ λ λ λ= +

Then, we can write that:

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

119

Fig. 11. Sensitivity of the stockout rate with respect to two parameters λ1 (the customer
demand rate) and λ2 (the supplier replenishment rate).

()
()

() ()
() ()()

1, 2

1 2

#

1, 2

#

1 2

SPerf

dP Q A f
dQ

dP dP A f Q Q
dQ dQ

λ λ

λ λ

λ λ

λ λ

π

π

= = − ⋅ ⋅ ⋅

= + = − ⋅ ⋅ ⋅ +

Previously, we obtained that 1 2 1 25.57 () 5.57 5.57SPerf δ δ δ δ= − = − . In this function, we can
identify two terms which are:
• The term (25.57δ−) correspond to the sensitivity measure with respect to the parameter

λ2 computed in the previous sub-section.
• The term (15.57δ−) correspond to the sensitivity measure with respect to the parameter

λ1.

6. Conclusion
The theoretical results presented in this chapter are a natural extension of the recent
development on sensitivity analysis of stochastic processes. The main idea is to obtain the
derivates of a performance measure of a discrete event dynamic system based on its
stochastic Petri model. In this work, the SPN model is studied. A Parameter Sensitivity
analysis approach for the model is developed and an application to a supply chain is
studied. We note that the proposed methodology is also applicable to GSPN (Generalized
Stochastic Petri Nets) models since the marking process of a bounded GSPN is also a
Markov process. The development of sensitivity analysis methods for non Markovian

Sensitivity of the stockout rate with respect to the customer
demand and supplier replenishment rate

δ1 (perturbation of λ1) δ2(perturbation of λ2)

dP/dQ

 Advances in Petri Net Theory and Applications

120

stochastic Petri nets and the application of perturbation realization to the sensitivity analysis
of dynamic systems with unbounded stochastic processes are two important research issues.
Simulation methods based on Petri nets models are also worthy to be studied further.

6. References
Ajmone Marsan M., Balbo G., Conte G., Donatelli, S., Franceschinis G., (1995) “Modelling

with generalized stochastic Petri Nets”, John Wiley and Sons.
Amodeo L., Chen H., El Hadji A., “Multiobjective supply chain optimization: An industrial

case study”, Evoworkshops 2007, Lecture Notes in Computer Science, 4448, pp 732-741,
2007.

Archetti, E., Gaivoronski, A., Sciomachen, A., (1993), Sensitivity Analysis and Optimization
of Stochastic Petri Nets, Discrete Event Dynamic Systems: Theory and Applications 3,
pp.5-37.

Brooks, C. A. and Varaiya, P., (1994), “Using perturbation analysis to solve the capacity and
flow assignment problem for general and ATM networks,” in Proc. IEEE Globcom.

Cao. X. R et Chen. H. F, (1997), Potentials, Perturbation Realization and sensitivity analysis
of Markov processes, IEEE, Trans Automat Control, vol.42, pp. 1382-1393.

Cao. X. R. et Wan. Y. W., (1998), "Algorithms for sensitivity analysis of markov systems
through potentials and perturbation realization", IEEE, Transactions on control
systems technology, vol.6, n°4, pp.482-494.

Caramanis, M., and Liberopoulos, G., (1992), Perturbation analysis for the design of flexible
manufacturing system flow controllers,” Operations Res., vol.40, pp. 1107-1125.

Chen H., Amodeo L., Chu F., Labadi K., « Performance Evaluation and Optimization of
Supply Chains Modelled by Batch Deterministic and Stochastic Petri » IEEE
transactions on Automation Science and Engineering, vol. 2, N° 2, pp. 132-144, April
2005.

Chiola, G., Franceschinis, G., Gaeta, R., and Ribaudo, M., (1995), GreatSPN1.7: Graphical
Editor and Analyzer for Timed and Stochastic Petri Nets, Performance Evaluation 24,
Special Issues on Performance Modelling Tools.

Ciardo, G., Muppala, J., and Trivedi, K.S., (1993), SPNP: stochastic Petri net package, In
proceedings International Workshop on Petri Nets and Performance Models- PNPM89,
IEEE Computer Society, pp.142-151.

Dai L.Y., and Ho, Y.C., (1995), “Structural infinitesimal perturbation analysis (SIPA) for
derivative estimation of discrete event dynamic systems,” IEEE Trans. Automat.
Contr., vol. 40, pp. 1154–1166.

Dai, L. (1996) Sensitivity analysis of stationary performance measures for Markov chains,
Mathematical and Computer Modelling, vol. 23, n°11-12, pp. 143–160.

David R. et Alla H., (1992) “Du Grafcet aux réseaux de Petri”, Editions Hermès, Paris.
Do Van, P., Barros, A., and Bérenguer, C. (2008) Reliability importance analysis of

Markovian systems at steady state using perturbation analysis. Reliability
engineering & systems safety, vol. 93, n°1, pp.1605- 1615.

Feng, C., Desrochers, A.A., (1993), Sensitivity analysis of a FMS by a Petri net-based
perturbation method, IEEE International Conference on Robotics and Automation,
Proceedings, 1993, vol.3, pp. 564-569.

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

121

Frank P., (1978), Introduction to system sensitivity. New York: Academic Press.
Glasserman P. (1992), Derivative estimates from simulation of continuous-time Markov

chains, Oper Res; 40(2), pp. 292–308.
Glynn PW., (1990), Likelihood ratio gradient estimation for stochastic systems, Commun

ACM 1990; 33: pp. 75–84.
Haas P. J., (2002), “Stochastic Petri nets: modelling, stability, simulation”, Springer-Verlag, New

York.
Haurie, A., L’Ecuyer, P., and Van Delft, C., (1994) “Convergence of stochastic approximation

coupled with perturbation analysis in a class of manufacturing flow control
models,” Discrete Event Dynamic Syst.: Theory Appl., vol. 4, pp. 87–111.

Ho, Y.C., Eyler, M.A., Chien, T.T, (1979), A gradient technique for general buffer storage
design in a production line, Int. J. of production Research, vol. 17 n°6, pp. 557-580.

Labadi K., Chen H., Amodeo L., « Modelling and Performance Evaluation of Inventory
Systems Using Batch Deterministic and Stochastic Petri Nets », IEEE Transactions
on Systems, Man and Cybernetics, Part C: Applications and reviews, vol. 37, N° 6,
November 2007.

Lindeman, C., (1995), DSPNexpress: a software package for the efficient solution of
deterministic and stochastic Petri nets. Performance Evaluation 22, pp. 3-21.

Lindeman, C., (1998) “Performance modelling with deterministic and stochastic Petri nets”, John
Wiley and Sons Edition.

Mainkar, V., Choi, H., Trivedi, K., (1993), Sensitivity Analysis of Markov Regenerative
Stochastic Petri Nets, Fifth International Workshop on Petri Nets and Performance
Models (PNPM’93), Toulouse France, pp. 180-189.

Molloy M.K., (1982), Performance analysis using Stochastic Petri Nets, IEEE Transactions on
Computers, C-31(9): pp. 913-917.

Murata T., (1989), Petri nets: Properties, analysis, and applications, in Proc. of the IEEE, vol.77,
no.4, pp. 541-580.

Ou Y., Bechta-Dugan, J., (1994), Realization Probabilities: The Dynamics of Queueing Systems,
New York: Springer-Verlag.

Proth, J-M, Sauer, N., Wardi, Y., and Xie, X., (1993), Marking Optimization of Stochastic
Timed Event Graphs using IPA, Proceedings of the 32nd Conference on Decision Control,
pp. 686-691.

Silva M., Teruel E., (1997) “Petri nets for the design and operation of manufacturing
systems”. European Journal of Control, 3(3): pp. 182-199.

Wang Jiacun, (1998) “Timed Petri Nets: Theory and Application”, Kluwer Academic Publishers.
Xiao, N., Wu, F. F., and Lun, S.M., “Dynamic bandwidth allocation using infinitesimal

perturbation analysis,” IEEE Infocom’94, pp. 383–389.
Xie, X., (1998), Perturbation analysis of stochastic Petri nets, IEEE Transactions on Automatic

Control, vol.43, n°1, pp. 76-80.
Yan H., and Zhou, X.Y., (1994), “Finding optimal number of Kanbans in a manufacturing

system via perturbation analysis,” Lecture Notes in Control and Information Sciences,
vol. 199. New York: Springer-Verlag, pp. 572–578.

 Advances in Petri Net Theory and Applications

120

stochastic Petri nets and the application of perturbation realization to the sensitivity analysis
of dynamic systems with unbounded stochastic processes are two important research issues.
Simulation methods based on Petri nets models are also worthy to be studied further.

6. References
Ajmone Marsan M., Balbo G., Conte G., Donatelli, S., Franceschinis G., (1995) “Modelling

with generalized stochastic Petri Nets”, John Wiley and Sons.
Amodeo L., Chen H., El Hadji A., “Multiobjective supply chain optimization: An industrial

case study”, Evoworkshops 2007, Lecture Notes in Computer Science, 4448, pp 732-741,
2007.

Archetti, E., Gaivoronski, A., Sciomachen, A., (1993), Sensitivity Analysis and Optimization
of Stochastic Petri Nets, Discrete Event Dynamic Systems: Theory and Applications 3,
pp.5-37.

Brooks, C. A. and Varaiya, P., (1994), “Using perturbation analysis to solve the capacity and
flow assignment problem for general and ATM networks,” in Proc. IEEE Globcom.

Cao. X. R et Chen. H. F, (1997), Potentials, Perturbation Realization and sensitivity analysis
of Markov processes, IEEE, Trans Automat Control, vol.42, pp. 1382-1393.

Cao. X. R. et Wan. Y. W., (1998), "Algorithms for sensitivity analysis of markov systems
through potentials and perturbation realization", IEEE, Transactions on control
systems technology, vol.6, n°4, pp.482-494.

Caramanis, M., and Liberopoulos, G., (1992), Perturbation analysis for the design of flexible
manufacturing system flow controllers,” Operations Res., vol.40, pp. 1107-1125.

Chen H., Amodeo L., Chu F., Labadi K., « Performance Evaluation and Optimization of
Supply Chains Modelled by Batch Deterministic and Stochastic Petri » IEEE
transactions on Automation Science and Engineering, vol. 2, N° 2, pp. 132-144, April
2005.

Chiola, G., Franceschinis, G., Gaeta, R., and Ribaudo, M., (1995), GreatSPN1.7: Graphical
Editor and Analyzer for Timed and Stochastic Petri Nets, Performance Evaluation 24,
Special Issues on Performance Modelling Tools.

Ciardo, G., Muppala, J., and Trivedi, K.S., (1993), SPNP: stochastic Petri net package, In
proceedings International Workshop on Petri Nets and Performance Models- PNPM89,
IEEE Computer Society, pp.142-151.

Dai L.Y., and Ho, Y.C., (1995), “Structural infinitesimal perturbation analysis (SIPA) for
derivative estimation of discrete event dynamic systems,” IEEE Trans. Automat.
Contr., vol. 40, pp. 1154–1166.

Dai, L. (1996) Sensitivity analysis of stationary performance measures for Markov chains,
Mathematical and Computer Modelling, vol. 23, n°11-12, pp. 143–160.

David R. et Alla H., (1992) “Du Grafcet aux réseaux de Petri”, Editions Hermès, Paris.
Do Van, P., Barros, A., and Bérenguer, C. (2008) Reliability importance analysis of

Markovian systems at steady state using perturbation analysis. Reliability
engineering & systems safety, vol. 93, n°1, pp.1605- 1615.

Feng, C., Desrochers, A.A., (1993), Sensitivity analysis of a FMS by a Petri net-based
perturbation method, IEEE International Conference on Robotics and Automation,
Proceedings, 1993, vol.3, pp. 564-569.

Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System

121

Frank P., (1978), Introduction to system sensitivity. New York: Academic Press.
Glasserman P. (1992), Derivative estimates from simulation of continuous-time Markov

chains, Oper Res; 40(2), pp. 292–308.
Glynn PW., (1990), Likelihood ratio gradient estimation for stochastic systems, Commun

ACM 1990; 33: pp. 75–84.
Haas P. J., (2002), “Stochastic Petri nets: modelling, stability, simulation”, Springer-Verlag, New

York.
Haurie, A., L’Ecuyer, P., and Van Delft, C., (1994) “Convergence of stochastic approximation

coupled with perturbation analysis in a class of manufacturing flow control
models,” Discrete Event Dynamic Syst.: Theory Appl., vol. 4, pp. 87–111.

Ho, Y.C., Eyler, M.A., Chien, T.T, (1979), A gradient technique for general buffer storage
design in a production line, Int. J. of production Research, vol. 17 n°6, pp. 557-580.

Labadi K., Chen H., Amodeo L., « Modelling and Performance Evaluation of Inventory
Systems Using Batch Deterministic and Stochastic Petri Nets », IEEE Transactions
on Systems, Man and Cybernetics, Part C: Applications and reviews, vol. 37, N° 6,
November 2007.

Lindeman, C., (1995), DSPNexpress: a software package for the efficient solution of
deterministic and stochastic Petri nets. Performance Evaluation 22, pp. 3-21.

Lindeman, C., (1998) “Performance modelling with deterministic and stochastic Petri nets”, John
Wiley and Sons Edition.

Mainkar, V., Choi, H., Trivedi, K., (1993), Sensitivity Analysis of Markov Regenerative
Stochastic Petri Nets, Fifth International Workshop on Petri Nets and Performance
Models (PNPM’93), Toulouse France, pp. 180-189.

Molloy M.K., (1982), Performance analysis using Stochastic Petri Nets, IEEE Transactions on
Computers, C-31(9): pp. 913-917.

Murata T., (1989), Petri nets: Properties, analysis, and applications, in Proc. of the IEEE, vol.77,
no.4, pp. 541-580.

Ou Y., Bechta-Dugan, J., (1994), Realization Probabilities: The Dynamics of Queueing Systems,
New York: Springer-Verlag.

Proth, J-M, Sauer, N., Wardi, Y., and Xie, X., (1993), Marking Optimization of Stochastic
Timed Event Graphs using IPA, Proceedings of the 32nd Conference on Decision Control,
pp. 686-691.

Silva M., Teruel E., (1997) “Petri nets for the design and operation of manufacturing
systems”. European Journal of Control, 3(3): pp. 182-199.

Wang Jiacun, (1998) “Timed Petri Nets: Theory and Application”, Kluwer Academic Publishers.
Xiao, N., Wu, F. F., and Lun, S.M., “Dynamic bandwidth allocation using infinitesimal

perturbation analysis,” IEEE Infocom’94, pp. 383–389.
Xie, X., (1998), Perturbation analysis of stochastic Petri nets, IEEE Transactions on Automatic

Control, vol.43, n°1, pp. 76-80.
Yan H., and Zhou, X.Y., (1994), “Finding optimal number of Kanbans in a manufacturing

system via perturbation analysis,” Lecture Notes in Control and Information Sciences,
vol. 199. New York: Springer-Verlag, pp. 572–578.

 Advances in Petri Net Theory and Applications

122

Zhou Mengchu and Kurapati Venkatesh., (1999), “Modeling, simulation, and control of
flexible manufacturing systems: A Petri net approach”, vol 6 of Series in Intelligent
Control and Intelligent Automation, World Scientific.

Zhou MengChu, and DiCesare Frank., (1993), “Petri net synthesis for discrete control of
manufacturing systems”, Kluwer Academic Publishers.

Zurawski R., and Zhou Mengchu., (1994), “Petri nets and industrial applications: A
tutorial”, IEEE Transactions on Industrial Electronics, vol. 41, no. 6, pp. 567-583.

7

Modelling Multimedia Synchronization using a
Time Petri Net Based Approach

Abdelghani Ghomari1 and Chabane Djeraba2
 1Department of Computer Science, University of Es-Senia Oran

2University of sciences and Technologies of Lille 1
1Algeria
2France

1. Introduction
Multimedia refers to the presentation of collections of both static and dynamic data (i.e.,
data with natural time dependencies e.g., audio or video) in a specified order and time.
Therefore, their mutual synchronization must assure a proper temporal order of
presentation events. Multimedia synchronization can be defined as a mutual assignment of
data items and time instants. These time instants may be known in advance (e.g., standard
consumer data players) or they can be also results of some unknown function of time (event
driven synchronization) or known with some limited accuracy (e.g., random network
delays).
The modelling and the presentation of multimedia scenarios are challenges of multimedia
applications. Multimedia scenarios are results of temporal composition and user interactions
of multimedia objects in an application domain, and lot of works discussed this notion
(Adjeroh & Lee, 1995; Perez-Luque & Little, 1996). Temporal compositions consist in
presenting multimedia objects which requires synchronization among different media.
Most of specification models are based on Allen’s relations (Allen, 1983). Allen defined
seven basic relations between two temporal intervals. For example, a TV program starts at
9:00 pm, and finishes at 11:00 pm. The TV program can be considered as one of multimedia
objects. In addition, “interval” is considered as a range from 9:00 pm to 11:00 pm, and
“duration” as two hours. Allen’s relations require this duration of the interval. Before
designing the specification model, interval duration must be known. This means that
multimedia database systems must determine duration of multimedia objects, because
presentations are almost dependent of duration.
Our approach defines a tool that has two important inter-dependent features:
User temporal specification based on an appropriate temporal specification language, which
is itself based on an extension of Allen’s temporal relations (Allen, 1983). This extension
models both existing temporal arrangement and dependency relations between multimedia
objects, and this is an interesting point of our work.
Automatic generation of a time Petri net based on the previous temporal specification. The
time Petri net is stored in an object called “scenario object”. The user may request the
simulation and the interpretation of the scenario object which leads to scenario

 Advances in Petri Net Theory and Applications

122

Zhou Mengchu and Kurapati Venkatesh., (1999), “Modeling, simulation, and control of
flexible manufacturing systems: A Petri net approach”, vol 6 of Series in Intelligent
Control and Intelligent Automation, World Scientific.

Zhou MengChu, and DiCesare Frank., (1993), “Petri net synthesis for discrete control of
manufacturing systems”, Kluwer Academic Publishers.

Zurawski R., and Zhou Mengchu., (1994), “Petri nets and industrial applications: A
tutorial”, IEEE Transactions on Industrial Electronics, vol. 41, no. 6, pp. 567-583.

7

Modelling Multimedia Synchronization using a
Time Petri Net Based Approach

Abdelghani Ghomari1 and Chabane Djeraba2
 1Department of Computer Science, University of Es-Senia Oran

2University of sciences and Technologies of Lille 1
1Algeria
2France

1. Introduction
Multimedia refers to the presentation of collections of both static and dynamic data (i.e.,
data with natural time dependencies e.g., audio or video) in a specified order and time.
Therefore, their mutual synchronization must assure a proper temporal order of
presentation events. Multimedia synchronization can be defined as a mutual assignment of
data items and time instants. These time instants may be known in advance (e.g., standard
consumer data players) or they can be also results of some unknown function of time (event
driven synchronization) or known with some limited accuracy (e.g., random network
delays).
The modelling and the presentation of multimedia scenarios are challenges of multimedia
applications. Multimedia scenarios are results of temporal composition and user interactions
of multimedia objects in an application domain, and lot of works discussed this notion
(Adjeroh & Lee, 1995; Perez-Luque & Little, 1996). Temporal compositions consist in
presenting multimedia objects which requires synchronization among different media.
Most of specification models are based on Allen’s relations (Allen, 1983). Allen defined
seven basic relations between two temporal intervals. For example, a TV program starts at
9:00 pm, and finishes at 11:00 pm. The TV program can be considered as one of multimedia
objects. In addition, “interval” is considered as a range from 9:00 pm to 11:00 pm, and
“duration” as two hours. Allen’s relations require this duration of the interval. Before
designing the specification model, interval duration must be known. This means that
multimedia database systems must determine duration of multimedia objects, because
presentations are almost dependent of duration.
Our approach defines a tool that has two important inter-dependent features:
User temporal specification based on an appropriate temporal specification language, which
is itself based on an extension of Allen’s temporal relations (Allen, 1983). This extension
models both existing temporal arrangement and dependency relations between multimedia
objects, and this is an interesting point of our work.
Automatic generation of a time Petri net based on the previous temporal specification. The
time Petri net is stored in an object called “scenario object”. The user may request the
simulation and the interpretation of the scenario object which leads to scenario

 Advances in Petri Net Theory and Applications

124

presentations with domain expert interactions. The Petri net permits a formal specification
and a proof of scenarios. The simulation and the proofs are two advantages of the Petri net.
A first version of our approach (Ghomari & Djeraba, 2003) considers multimedia objects of
known or unknown duration and interactive relations, but doesn’t consider dependency
temporal relations between multimedia objects and the management of multimedia scenario
in a database system. This is the main differences between the first version of our approach
and the second one that will be described in this chapter. This approach provides the
following benefits (Ghomari & Djeraba, 2010):
1. The ability to deal with non-deterministic time intervals, e.g. objects with an unknown

duration, objects whose reproduction can fail and objects that represent user interactions.
2. The possibility of automatic detection of inconsistent synchronization conditions such

as “A precedes B, B precedes C, C precedes A”.
3. A graphical notation to describe and simulate the presentation.
4. An editor which abstracts the internal Petri net representation and allows the user to

think in familiar terms such as “precedence” or “overlap”.
5. Automatic generation of a MP-RdPT net based on the previous temporal specification.
6. Automatic analysis of the multimedia scenarios properties, like: safeness, liveness,

reversibility and consistency.
In this chapter, we highlight the following points: related works (Section 2), our scenario
temporal specification (Section 3), the multimedia p-time Petri net (Section 4), object
oriented database modelling of the multimedia specification (Section 5), and the architecture
of the system prototype (Section 6).

2. Related work
Existing temporal models for multimedia may be decomposed into two classes: instant-
based and interval-based (Hamblin, 1972; Blakowski & Steinmetz, 1996). In instant-based
models, the elementary units are instants in a time space. Each event in the model has its
associated time instants. The time instants arranged according to some relations such as
precede, simultaneous or after form complex multimedia presentations. An example of the
instant-based approach is timeline, in which media objects are placed on several time axes
called tracks, one per each media type. All events such as the beginning or the end of a
segment are totally ordered on the time line.
Several approaches support instant-based models such as Hy-Time (ISO, 1992). The model is
well suited for temporal composition of media segments of known durations; however it
falls short for unknown durations.
Interval-based models consider elementary media entities as time intervals ordered
according to some relations. Existing models are mainly based on the relations defined by
Allen for expressing the knowledge about time (Allen, 1983). However, using Allen’s
relations for multimedia composition faces several problems. First, the relations were
designed to express existing relationships between intervals of fixed duration and not for
specifying relationships that must be always satisfied even when interval durations are
changed. Consider for example an existing relation before between intervals a and b (see Fig.
1). When we increase the duration of interval a, the relation changes from before to during
passing through intermediate relations meets, overlaps, and finishes. This drawback makes the
Allen relations not suitable for specifying composition of intervals with unknown duration.

Modelling Multimedia Synchronization using a Time Petri Net Based Approach

125

a b a b b

a before meets

overlaps

b

a

finishes

b

a

during

Fig. 1. Relations change when the interval duration is modified

Another problem with the Allen’s relations is their descriptive character. They allow
expression of an existing, a posteriori arrangement of intervals, but they do not express any
causal or functional relation between intervals. For example, relation meets only states that
the end of the first interval coincides with the end of the second one, but it does not say
whether the first interval starts the second one, whether the second interval stops the first
one or whether it is a pure coincidence (see Fig. 2). So, the Allen’s relations can be useful for
characterizing an existing, instantiated presentation (a presentation for which all start and
termination instants of media segments are known).

a b
meets

a

b

a starts b

a

b

b stops a

a

b

a and b
unrelated

Fig. 2. Meets represents temporal coincidence not a functional relationship.

The third problem with the Allen’s relations is related to inconsistent specifications that can
be introduced in a multimedia presentation. Detecting inconsistent specification requires
algorithms of complexity [O(N2)], where N is the number of intervals (Allen, 1983).
Many approaches are based on time interval-based model. For example:
- King (King, 1994), proposes a different formalism based on a temporal logic. He/She

shows how the Allen’s relations can be expressed using temporal logic formulae.
Although his formalism has solid mathematical bases, composition of multimedia
presentations using declarative formulae is awkward. Logic formulae are difficult to
use by any author unaware of formal methods. Moreover, to be useful, the formalism
must be supported by a consistency checker and an interpreter to execute a given
temporal specification.

- Courtiat and De Oliveira (Courtiat and Oliveira, 1996), presented a synchronization
model for the formal description of multimedia documents that consider network

 Advances in Petri Net Theory and Applications

124

presentations with domain expert interactions. The Petri net permits a formal specification
and a proof of scenarios. The simulation and the proofs are two advantages of the Petri net.
A first version of our approach (Ghomari & Djeraba, 2003) considers multimedia objects of
known or unknown duration and interactive relations, but doesn’t consider dependency
temporal relations between multimedia objects and the management of multimedia scenario
in a database system. This is the main differences between the first version of our approach
and the second one that will be described in this chapter. This approach provides the
following benefits (Ghomari & Djeraba, 2010):
1. The ability to deal with non-deterministic time intervals, e.g. objects with an unknown

duration, objects whose reproduction can fail and objects that represent user interactions.
2. The possibility of automatic detection of inconsistent synchronization conditions such

as “A precedes B, B precedes C, C precedes A”.
3. A graphical notation to describe and simulate the presentation.
4. An editor which abstracts the internal Petri net representation and allows the user to

think in familiar terms such as “precedence” or “overlap”.
5. Automatic generation of a MP-RdPT net based on the previous temporal specification.
6. Automatic analysis of the multimedia scenarios properties, like: safeness, liveness,

reversibility and consistency.
In this chapter, we highlight the following points: related works (Section 2), our scenario
temporal specification (Section 3), the multimedia p-time Petri net (Section 4), object
oriented database modelling of the multimedia specification (Section 5), and the architecture
of the system prototype (Section 6).

2. Related work
Existing temporal models for multimedia may be decomposed into two classes: instant-
based and interval-based (Hamblin, 1972; Blakowski & Steinmetz, 1996). In instant-based
models, the elementary units are instants in a time space. Each event in the model has its
associated time instants. The time instants arranged according to some relations such as
precede, simultaneous or after form complex multimedia presentations. An example of the
instant-based approach is timeline, in which media objects are placed on several time axes
called tracks, one per each media type. All events such as the beginning or the end of a
segment are totally ordered on the time line.
Several approaches support instant-based models such as Hy-Time (ISO, 1992). The model is
well suited for temporal composition of media segments of known durations; however it
falls short for unknown durations.
Interval-based models consider elementary media entities as time intervals ordered
according to some relations. Existing models are mainly based on the relations defined by
Allen for expressing the knowledge about time (Allen, 1983). However, using Allen’s
relations for multimedia composition faces several problems. First, the relations were
designed to express existing relationships between intervals of fixed duration and not for
specifying relationships that must be always satisfied even when interval durations are
changed. Consider for example an existing relation before between intervals a and b (see Fig.
1). When we increase the duration of interval a, the relation changes from before to during
passing through intermediate relations meets, overlaps, and finishes. This drawback makes the
Allen relations not suitable for specifying composition of intervals with unknown duration.

Modelling Multimedia Synchronization using a Time Petri Net Based Approach

125

a b a b b

a before meets

overlaps

b

a

finishes

b

a

during

Fig. 1. Relations change when the interval duration is modified

Another problem with the Allen’s relations is their descriptive character. They allow
expression of an existing, a posteriori arrangement of intervals, but they do not express any
causal or functional relation between intervals. For example, relation meets only states that
the end of the first interval coincides with the end of the second one, but it does not say
whether the first interval starts the second one, whether the second interval stops the first
one or whether it is a pure coincidence (see Fig. 2). So, the Allen’s relations can be useful for
characterizing an existing, instantiated presentation (a presentation for which all start and
termination instants of media segments are known).

a b
meets

a

b

a starts b

a

b

b stops a

a

b

a and b
unrelated

Fig. 2. Meets represents temporal coincidence not a functional relationship.

The third problem with the Allen’s relations is related to inconsistent specifications that can
be introduced in a multimedia presentation. Detecting inconsistent specification requires
algorithms of complexity [O(N2)], where N is the number of intervals (Allen, 1983).
Many approaches are based on time interval-based model. For example:
- King (King, 1994), proposes a different formalism based on a temporal logic. He/She

shows how the Allen’s relations can be expressed using temporal logic formulae.
Although his formalism has solid mathematical bases, composition of multimedia
presentations using declarative formulae is awkward. Logic formulae are difficult to
use by any author unaware of formal methods. Moreover, to be useful, the formalism
must be supported by a consistency checker and an interpreter to execute a given
temporal specification.

- Courtiat and De Oliveira (Courtiat and Oliveira, 1996), presented a synchronization
model for the formal description of multimedia documents that consider network

 Advances in Petri Net Theory and Applications

126

performances. This model automatically translates the user formalization into a real-
time LOTOS formal specification and verifies a multimedia document aiming to
identify potential temporal inconsistencies.

- Blakowski and Steinmetz (Blakowski & Steinmetz, 1996), recognized an event-based
representation of a multimedia scenario as one of the four categories for modelling a
multimedia presentation. Events are represented in the Hypermedia/Time-Based
Structuring Language (HyTime) and Hypermedia Office Document Architecture
(HyperODA). Events are defined in HyTime as presentations of media objects along
with the playout specifications and finite coordinate system (FCS) coordinates.
HyperODA events happen instantaneously and mainly correspond to start and end of
media objects or timers. This approach suffers from poor semantics conveyed by the
events and moreover it does not provide any scheme for composition and consumption
architectures.

Another group of approaches consider the PN tool for multimedia synchronization. For
example:
- Object Composition Petri Net Model (OCPN) (Little and Ghafoor, 1993). However, the

OCPN approach does not inherently support modelling of interaction.
- Hierarchical Time Stream Petri Net (HTSPN) Model (Senac et al., 1995). However, in the

HTSPN approach, it is unspecified what would happen to tokens representing streams
left behind the synchronization. If those “dead tokens” were remained in the state, a
semantic inconsistency between the model and the real system would be produced.

- Multimedia Organization Employing a Network Approach (MORENA) (Botafogo and
Moss, 1995). However, since MORENA does not fully follow PN theory, it may not be
easy to analyse the output model using the existing techniques developed in the Petri
net field.

- High-Level Petri Net-Based Hypermedia System (Na Cheo and Furuta, 2001). However,
the authoring environment used to specify multimedia scenarios with coloured timed
Petri nets is not user-friendly, like in the user community.

- Dynamic Fuzzy Multimedia Petri Net (DFMN) (Chen and Huang, 2005). However, in
the approach of Shterev (Shterev, 2005) using the DFMN model for modelling of
interaction on multimedia streams and objects, none analysis or simulation tools of
multimedia presentation are provided.

Special attention should be paid to the upcoming standard Synchronized Multimedia
Integration Language (SMIL) (W3C, 2001). SMIL is a meta-language for authoring and
presentation of multimedia documents. However, SMIL is a script language and does not
support analysis to the same degree that Petri-net-based systems do.
An interesting survey on authoring models and approaches are presented in (Jourdan et al.
1997; Roisin & Sèdes, 2004; Boronat et al., 2008).
Our approach is a compromise between formal specification useful for checking
inconsistency and high level language for user specification.

3. Our scenario temporal specification
We will present a model for temporal composition of multimedia objects. The model is
based on time-interval and Weiss relations (Weiss et al., 1995). We consider the seven
relations of Allen (Allen, 1983) (equals, meets, before, finishes, starts, overlaps, during) with the
following features:

Modelling Multimedia Synchronization using a Time Petri Net Based Approach

127

Firstly, the temporal relations are designed to specify relations between multimedia objects
of both determined and undetermined duration. Secondly, the temporal relations describe
both existing arrangement of multimedia objects, and dependency relations between
multimedia objects. For example, x meets y means that the end of multimedia object x
coincides with the start of multimedia object y, but it doesn't describe whether multimedia
object x starts multimedia object y, or whether multimedia object y stops multimedia object
x. Thirdly, the detection of inconsistent specification is not necessary.

3.1 Interval
Our elementary entities are time intervals. Time interval I is defined by the end points
(I.begin ≤ I.end) as I = {t |I.begin≤ t ≤ I.end }. The duration of interval I is d = I.end – I.begin
and can be constant (e.g. 5 seconds), dependent on the intrinsic playing time of the medium
(e.g. playing time of a video segment) or unspecified (e.g. user interaction or live feed). In
this paper each interval corresponds to the presentation of one object (e.g. an image or a
music selection). In that sense, the beginning and the end of an interval are logical times
which will really correspond to physical time during the effective presentation to the user.

3.2 Temporal relations
Several relationships have been defined on time intervals: equals, before, meets, finishes, starts,
during, overlaps, (Allen, 1983). Usually, they are binary relationships but can be easily
extended to n-ary ones (Little & Ghafoor, 1993). Sequential relationships combine intervals
which share the same timeline (mutual exclusion), occurring one after the other with
(before) or without delay (meet) between them. Parallel relationships relate intervals which
have their own timeline. In our model these relations are used for composing and
synchronizing multimedia objects in presentations.
Temporal aspects are also discussed in standards like HyTime (ISO, 1992) where the concept
of finite coordinate system is used to define a set of axes of finite dimensions. The system
designer defines both the number of axes and the units of dimension used along each of
them. Hence, an x-y-time coordinate system can be used to model spatial as well as
temporal aspects for database objects belonging to presentations.
A program of our temporal specification language is divided into four parts: declaration,
assignation, temporal and interactive relations.
Declaration: the declaration part contains the declarations of multimedia objects and returns
as a result: multimedia-object (min, opt, max): media-type.
Assignation: the assign part contains the assign functions between the objects declared in
the first part and the data streams. For example, the data streams may be mpeg or jpeg
when storing video or images objects respectively. For example: assign (video1,
“file1.mpeg”); or assign (image1, “file2.jpeg”).
When using several equal multimedia objects of the same media, we have to declare several
multimedia objects with the same duration assigned to the same physical support. For
example, if video3 and video4 share the same physical object with the same duration, we
will have: video3 (min, opt, max): VIDEO; video4 (min, opt, max): VIDEO; assign (video3,
“file3.mpeg”); assign (video4, “file3.mpeg”).
When using several multimedia objects of the same media with different duration, we have
to declare several multimedia objects with different duration assigned to the same physical
support. For example, if video3 and video4 share the same physical object with different

 Advances in Petri Net Theory and Applications

126

performances. This model automatically translates the user formalization into a real-
time LOTOS formal specification and verifies a multimedia document aiming to
identify potential temporal inconsistencies.

- Blakowski and Steinmetz (Blakowski & Steinmetz, 1996), recognized an event-based
representation of a multimedia scenario as one of the four categories for modelling a
multimedia presentation. Events are represented in the Hypermedia/Time-Based
Structuring Language (HyTime) and Hypermedia Office Document Architecture
(HyperODA). Events are defined in HyTime as presentations of media objects along
with the playout specifications and finite coordinate system (FCS) coordinates.
HyperODA events happen instantaneously and mainly correspond to start and end of
media objects or timers. This approach suffers from poor semantics conveyed by the
events and moreover it does not provide any scheme for composition and consumption
architectures.

Another group of approaches consider the PN tool for multimedia synchronization. For
example:
- Object Composition Petri Net Model (OCPN) (Little and Ghafoor, 1993). However, the

OCPN approach does not inherently support modelling of interaction.
- Hierarchical Time Stream Petri Net (HTSPN) Model (Senac et al., 1995). However, in the

HTSPN approach, it is unspecified what would happen to tokens representing streams
left behind the synchronization. If those “dead tokens” were remained in the state, a
semantic inconsistency between the model and the real system would be produced.

- Multimedia Organization Employing a Network Approach (MORENA) (Botafogo and
Moss, 1995). However, since MORENA does not fully follow PN theory, it may not be
easy to analyse the output model using the existing techniques developed in the Petri
net field.

- High-Level Petri Net-Based Hypermedia System (Na Cheo and Furuta, 2001). However,
the authoring environment used to specify multimedia scenarios with coloured timed
Petri nets is not user-friendly, like in the user community.

- Dynamic Fuzzy Multimedia Petri Net (DFMN) (Chen and Huang, 2005). However, in
the approach of Shterev (Shterev, 2005) using the DFMN model for modelling of
interaction on multimedia streams and objects, none analysis or simulation tools of
multimedia presentation are provided.

Special attention should be paid to the upcoming standard Synchronized Multimedia
Integration Language (SMIL) (W3C, 2001). SMIL is a meta-language for authoring and
presentation of multimedia documents. However, SMIL is a script language and does not
support analysis to the same degree that Petri-net-based systems do.
An interesting survey on authoring models and approaches are presented in (Jourdan et al.
1997; Roisin & Sèdes, 2004; Boronat et al., 2008).
Our approach is a compromise between formal specification useful for checking
inconsistency and high level language for user specification.

3. Our scenario temporal specification
We will present a model for temporal composition of multimedia objects. The model is
based on time-interval and Weiss relations (Weiss et al., 1995). We consider the seven
relations of Allen (Allen, 1983) (equals, meets, before, finishes, starts, overlaps, during) with the
following features:

Modelling Multimedia Synchronization using a Time Petri Net Based Approach

127

Firstly, the temporal relations are designed to specify relations between multimedia objects
of both determined and undetermined duration. Secondly, the temporal relations describe
both existing arrangement of multimedia objects, and dependency relations between
multimedia objects. For example, x meets y means that the end of multimedia object x
coincides with the start of multimedia object y, but it doesn't describe whether multimedia
object x starts multimedia object y, or whether multimedia object y stops multimedia object
x. Thirdly, the detection of inconsistent specification is not necessary.

3.1 Interval
Our elementary entities are time intervals. Time interval I is defined by the end points
(I.begin ≤ I.end) as I = {t |I.begin≤ t ≤ I.end }. The duration of interval I is d = I.end – I.begin
and can be constant (e.g. 5 seconds), dependent on the intrinsic playing time of the medium
(e.g. playing time of a video segment) or unspecified (e.g. user interaction or live feed). In
this paper each interval corresponds to the presentation of one object (e.g. an image or a
music selection). In that sense, the beginning and the end of an interval are logical times
which will really correspond to physical time during the effective presentation to the user.

3.2 Temporal relations
Several relationships have been defined on time intervals: equals, before, meets, finishes, starts,
during, overlaps, (Allen, 1983). Usually, they are binary relationships but can be easily
extended to n-ary ones (Little & Ghafoor, 1993). Sequential relationships combine intervals
which share the same timeline (mutual exclusion), occurring one after the other with
(before) or without delay (meet) between them. Parallel relationships relate intervals which
have their own timeline. In our model these relations are used for composing and
synchronizing multimedia objects in presentations.
Temporal aspects are also discussed in standards like HyTime (ISO, 1992) where the concept
of finite coordinate system is used to define a set of axes of finite dimensions. The system
designer defines both the number of axes and the units of dimension used along each of
them. Hence, an x-y-time coordinate system can be used to model spatial as well as
temporal aspects for database objects belonging to presentations.
A program of our temporal specification language is divided into four parts: declaration,
assignation, temporal and interactive relations.
Declaration: the declaration part contains the declarations of multimedia objects and returns
as a result: multimedia-object (min, opt, max): media-type.
Assignation: the assign part contains the assign functions between the objects declared in
the first part and the data streams. For example, the data streams may be mpeg or jpeg
when storing video or images objects respectively. For example: assign (video1,
“file1.mpeg”); or assign (image1, “file2.jpeg”).
When using several equal multimedia objects of the same media, we have to declare several
multimedia objects with the same duration assigned to the same physical support. For
example, if video3 and video4 share the same physical object with the same duration, we
will have: video3 (min, opt, max): VIDEO; video4 (min, opt, max): VIDEO; assign (video3,
“file3.mpeg”); assign (video4, “file3.mpeg”).
When using several multimedia objects of the same media with different duration, we have
to declare several multimedia objects with different duration assigned to the same physical
support. For example, if video3 and video4 share the same physical object with different

 Advances in Petri Net Theory and Applications

128

duration, we will have : video3 (min1, opt1, max1) : VIDEO; video4 (min2, opt2, max2) :
VIDEO; assign(video3,“file3.mpeg”);assign(video4,“file3.mpeg”.
The temporal relations part contains a set of temporal relations, each one representing a
binary Allen’s relation between multimedia objects. These multimedia objects are either
declared objects and assigned to physical supports, or objects resulting from temporal
relations. A relation takes two multimedia objects as arguments and returns a multimedia
object as a result: temporal-relation (multimedia object1, multimedia object2) -> multimedia
object3. The resulting multimedia object may be used as an argument of another temporal
relation. Example: equal (start (meets (video1, video2), meets (text1, text2)), image1). The Fig. 3
summarizes the Backus-Naur Form (BNF) of the grammar of our temporal specification
language.

Fig. 3. BNF form of the grammar

3.2.1 Temporal interaction
Our approach synchronizes the scenario with the user (i.e an expert of the application
domain). The interaction takes the form of temporal interaction (start, stop, pause, reverse,
forward) and browsing interactions.
Temporal interactions concern user elementary operations such as pause/resume, reverse and
forward. In pause/resume operations, the system records the current state of presentation
modelled by a p-time Petri net, and when resume operation is executed, the system loads

<Scenario> ::= Scenario <ScenarioName> : Idf elements <Declaration_assignation> <Var1> Relations
<Interactive _temporal_relation> End.
<Declaration_assignation > ::= <Declaration > | <Declaration >; <Scenario>
<Declaration> ::= <Declaration> | <Assignation>
<Declaration> ::= idf (min, opt, max) : <Type> : Path ; <Post_decl>
<Post_decl> ::= <Declaration> | λ
<Assignation> ::= Assign (Idf, Path); <Post_assign>
<Post_assign> ::= <Assignation> | λ
<Var1> ::= Variables <Var2> | λ
<Var2> ::= <Mise> <Post_mise>
<Mise> ::= idf ::= <Temporal_interactive_Relation >
<Post_mise> ::= <Var2> |λ
<Type> ::= Audio | Video | Image | Text | Button
< Interactive _temporal_relation > ::= (<Temporal _Relation >|<Interactive_Relation >); <Post_ Interactive
_temporal_relation >
<Temporal_Relation> ::= <Relation> <Post_relation> |<NomScenario>
<Relation> ::= <Equal> | <meet> | <before> | <begin> | <during> | <finish> | <overlap>
<Post-relation> ::= <Temporal_Relation> | λ
<equals> ::= equals (<Relation>, <Relation>)
<meets> ::= meets (<Relation>, <Relation>)
<before> ::= before (<Relation>, <Relation>, <Delay>)
<starts> ::= starts (<Relation>, <Relation>, <Delay>)
<during> ::= during (<Relation>, <Relation>, <Delay>)
<finishes> ::= finishes (<Relation>, <Relation>, <Delay>)
<overlaps> ::= overlaps (<Relation>, <Relation>, <Delay>)
<Interactive_Relation> ::= <Relation_int> <Post_link> | <ScenarioName>
<relation_int> ::=par-min | par-max | par-master |
<post_link> ::= <relation_int> | λ
with :
Idf = [a-zA-Z]([a-zA-Z]|[0-9])*
Path = [a-zA-Z0-9]+\. [a-zA-Z0-9]+
min, opt, max, delai = [1-9][0-9]*
λ = empty expression

Modelling Multimedia Synchronization using a Time Petri Net Based Approach

129

the amount of time that the presentation had paused, and starts the presentation again from
where it stopped. The reverse operation is specified in terms of temporal skip given by the
user. Example “go back 15 minutes”.
When the reverse operation is requested, then the Petri net deals with objects associated
with places currently being presented. If the reverse operation involves objects that are
further behind a place Pi in the presentation graph, the presentation graph is traversed
backward until the target object is reached. The forward operation is similar to the reverse
operation.

3.2.2 Browsing interaction
In browsing interactions, the user branches out of the current presentations, so he/she
effectively modifies the current presentation. Let us consider a multimedia database
representing scenes from a visitor while visiting art objects in a gallery. The highlight on a
spatial art object is possible through animation. When the database contains images of all
possible art objects, visiting may include highlight and corresponding jumps out of the
sequential nature of the sequence of images corresponding to art objects. To approach this
problem, we use the hierarchical modelling capability of the Petri net representation. A
place can be another Petri net. So, there is a global Petri net that is composed of sub-nets of
smaller Petri nets corresponding to presentations.
Branching to different presentation graph is then equivalent to following a hypermedia
relation, so the user can select a branch to any part of the global presentation graph, or
follow the presentation schedule as previously defined in the current presentation graph.
The entry point into a branch is represented as a hypermedia node with a link to the desired
presentation. Thus for the node where there is a branch, the object represented by the Petri
net place at that node is just a hypermedia button indicating a branch to different
presentations.
At each branching point, our approach models a hypermedia node, in parallel to the object
that the branch presentation is related to. Before the branch presentation is chosen, the
hypermedia node appears as a hypermedia button, with an internal duration independent
of the multimedia object duration of the button. So, if the branch is not selected by the user,
the presentation represented by the sub-net will not be presented, and the Petri net
associated with it will not be executed. We declare the branch node as follow:
branch-node (0,-,+∝) : HYPERMEDIA;
video1 (20,30,40): VIDEO;

4. The multimedia p-time Petri net (Mp-RdPT)
4.1 Differences with other approaches
Our Petri net may be considered as a variant of the temporal Petri net developed in several
works (Little & Ghafoor, 1990), (Adjeroh & Lee, 1995), (Senac et al., 1995) with these
interesting features:
First, the Petri net is generated automatically on the basis of the user’s temporal
specifications that help him to define temporal relations naturally and simply without any
considerations of the Petri net details.
Secondly, the Petri net models relations that consider both existing temporal arrangement
and causal temporal relations between multimedia objects.

 Advances in Petri Net Theory and Applications

128

duration, we will have : video3 (min1, opt1, max1) : VIDEO; video4 (min2, opt2, max2) :
VIDEO; assign(video3,“file3.mpeg”);assign(video4,“file3.mpeg”.
The temporal relations part contains a set of temporal relations, each one representing a
binary Allen’s relation between multimedia objects. These multimedia objects are either
declared objects and assigned to physical supports, or objects resulting from temporal
relations. A relation takes two multimedia objects as arguments and returns a multimedia
object as a result: temporal-relation (multimedia object1, multimedia object2) -> multimedia
object3. The resulting multimedia object may be used as an argument of another temporal
relation. Example: equal (start (meets (video1, video2), meets (text1, text2)), image1). The Fig. 3
summarizes the Backus-Naur Form (BNF) of the grammar of our temporal specification
language.

Fig. 3. BNF form of the grammar

3.2.1 Temporal interaction
Our approach synchronizes the scenario with the user (i.e an expert of the application
domain). The interaction takes the form of temporal interaction (start, stop, pause, reverse,
forward) and browsing interactions.
Temporal interactions concern user elementary operations such as pause/resume, reverse and
forward. In pause/resume operations, the system records the current state of presentation
modelled by a p-time Petri net, and when resume operation is executed, the system loads

<Scenario> ::= Scenario <ScenarioName> : Idf elements <Declaration_assignation> <Var1> Relations
<Interactive _temporal_relation> End.
<Declaration_assignation > ::= <Declaration > | <Declaration >; <Scenario>
<Declaration> ::= <Declaration> | <Assignation>
<Declaration> ::= idf (min, opt, max) : <Type> : Path ; <Post_decl>
<Post_decl> ::= <Declaration> | λ
<Assignation> ::= Assign (Idf, Path); <Post_assign>
<Post_assign> ::= <Assignation> | λ
<Var1> ::= Variables <Var2> | λ
<Var2> ::= <Mise> <Post_mise>
<Mise> ::= idf ::= <Temporal_interactive_Relation >
<Post_mise> ::= <Var2> |λ
<Type> ::= Audio | Video | Image | Text | Button
< Interactive _temporal_relation > ::= (<Temporal _Relation >|<Interactive_Relation >); <Post_ Interactive
_temporal_relation >
<Temporal_Relation> ::= <Relation> <Post_relation> |<NomScenario>
<Relation> ::= <Equal> | <meet> | <before> | <begin> | <during> | <finish> | <overlap>
<Post-relation> ::= <Temporal_Relation> | λ
<equals> ::= equals (<Relation>, <Relation>)
<meets> ::= meets (<Relation>, <Relation>)
<before> ::= before (<Relation>, <Relation>, <Delay>)
<starts> ::= starts (<Relation>, <Relation>, <Delay>)
<during> ::= during (<Relation>, <Relation>, <Delay>)
<finishes> ::= finishes (<Relation>, <Relation>, <Delay>)
<overlaps> ::= overlaps (<Relation>, <Relation>, <Delay>)
<Interactive_Relation> ::= <Relation_int> <Post_link> | <ScenarioName>
<relation_int> ::=par-min | par-max | par-master |
<post_link> ::= <relation_int> | λ
with :
Idf = [a-zA-Z]([a-zA-Z]|[0-9])*
Path = [a-zA-Z0-9]+\. [a-zA-Z0-9]+
min, opt, max, delai = [1-9][0-9]*
λ = empty expression

Modelling Multimedia Synchronization using a Time Petri Net Based Approach

129

the amount of time that the presentation had paused, and starts the presentation again from
where it stopped. The reverse operation is specified in terms of temporal skip given by the
user. Example “go back 15 minutes”.
When the reverse operation is requested, then the Petri net deals with objects associated
with places currently being presented. If the reverse operation involves objects that are
further behind a place Pi in the presentation graph, the presentation graph is traversed
backward until the target object is reached. The forward operation is similar to the reverse
operation.

3.2.2 Browsing interaction
In browsing interactions, the user branches out of the current presentations, so he/she
effectively modifies the current presentation. Let us consider a multimedia database
representing scenes from a visitor while visiting art objects in a gallery. The highlight on a
spatial art object is possible through animation. When the database contains images of all
possible art objects, visiting may include highlight and corresponding jumps out of the
sequential nature of the sequence of images corresponding to art objects. To approach this
problem, we use the hierarchical modelling capability of the Petri net representation. A
place can be another Petri net. So, there is a global Petri net that is composed of sub-nets of
smaller Petri nets corresponding to presentations.
Branching to different presentation graph is then equivalent to following a hypermedia
relation, so the user can select a branch to any part of the global presentation graph, or
follow the presentation schedule as previously defined in the current presentation graph.
The entry point into a branch is represented as a hypermedia node with a link to the desired
presentation. Thus for the node where there is a branch, the object represented by the Petri
net place at that node is just a hypermedia button indicating a branch to different
presentations.
At each branching point, our approach models a hypermedia node, in parallel to the object
that the branch presentation is related to. Before the branch presentation is chosen, the
hypermedia node appears as a hypermedia button, with an internal duration independent
of the multimedia object duration of the button. So, if the branch is not selected by the user,
the presentation represented by the sub-net will not be presented, and the Petri net
associated with it will not be executed. We declare the branch node as follow:
branch-node (0,-,+∝) : HYPERMEDIA;
video1 (20,30,40): VIDEO;

4. The multimedia p-time Petri net (Mp-RdPT)
4.1 Differences with other approaches
Our Petri net may be considered as a variant of the temporal Petri net developed in several
works (Little & Ghafoor, 1990), (Adjeroh & Lee, 1995), (Senac et al., 1995) with these
interesting features:
First, the Petri net is generated automatically on the basis of the user’s temporal
specifications that help him to define temporal relations naturally and simply without any
considerations of the Petri net details.
Secondly, the Petri net models relations that consider both existing temporal arrangement
and causal temporal relations between multimedia objects.

 Advances in Petri Net Theory and Applications

130

Thirdly, during the generation of the Petri net on the basis of the temporal specification, it is
not necessary to detect temporal inconsistencies like in the current approaches based on
time interval.
Fourthly, after the generation of the Petri net, the system returns, when requested by the
user, the simulation of the scenario that corresponds to the Petri net generated and may
detect two kinds of errors: graph design errors (i.e. a multimedia object that is declared but
never used) and allocation resource errors (i.e. allocation of the same resource to several
multimedia objects, it is the classical problem of mutual exclusion on a critical resource).
Fifthly, in our approach, all scenarios can be expressed and executed by using our
specification language, some authors, such as (Weiss et al. 1995), say that the resulting graph
becomes complicated and difficult to manipulate and to modify. In our approach, the
modification is very simple, because it does not concern the Petri net, but the temporal
specification which is natural and simple to use.
We think that few approaches implement these features together. We can find some features
of our Petri net in a powerful Hierarchical Time Stream Petri Net model HTSPN of (Senac et
al., 1995).

4.2 Formal definition of Mp-RdPT
Petri nets (PN) (Peterson, 1977) are designed to model systems with interacting concurrent
components. The basic PN structure is composed of four parts: a set of places P, a set of
transitions T, an input or (backward) function B and an output or (forward) function F. The
input and output functions relate transitions and places. A basic PN graph is graphically
represented as a bipartite directed graph, in which the circular nodes are called places and
the bar nodes are called transitions. A dot in a place represents a token, and a place
containing one or more tokens is said to be marked.
Allen’s relations have the problem that multimedia objects expressions are dependent of
multimedia objects duration. The temporal relations are designed to specify relations
between multimedia objects of determined duration. Therefore, they are not appropriate for
undetermined duration. If creators produce a video digest from several multimedia objects,
they need to modify the temporal relations between multimedia objects after their duration
changes. In order to solve this problem, the system should represent relations between
multimedia objects with unknown duration. We must study the model of temporal relations
independently of duration changes. PN is one of graph representations and considers
multimedia objects with known or unknown duration; also, the simulation of the scenario
may detect errors, such as: specification errors, graph design errors, graph configuration
errors, or allocation resources errors.
The PN tool has been chosen as a tool of synchronization and analysis because PN allows
modelling the dynamic behavior of multimedia scenarios that can be characterized by the
qualitative properties of PN corresponding. These properties are liveness, boundedness,
reversibility and consistency. In the context of a temporal synchronization modelling, a class
of enhanced PN model has been developed which assign a firing delay to each place and a
type of synchronization to a transition (Ghomari & Djeraba, 2003; Ghomari & Djeraba, 2010).
This model is called Multimedia p-Time Petri Nets (Mp-RdPT) and it is defined as follows:
A Mp-RdPT is a tuple (P, T, B, F, M0, IS, SYN, MP, R), where:
• (P, T, B, F, M0) defines a PN, where P is a non empty finite set of places, T is a non

empty finite set of transitions, with P ∩ T = ∅, B: P x T → N is the backward function,

Modelling Multimedia Synchronization using a Time Petri Net Based Approach

131

similarly, F : P x T → N is the forward function, M0 : P → N is the initial marking. As
usual, we denote by •t = {p ∈ P \ B (p, t) ≥ 1} the set of ingoing places and t•= { p ∈P \
F(p, t) ≥ 1 } the set of outgoing places of a transition t. Similarly, •p = { t ∈T \ F(p, t) ≥ 1 }
and p• = { t ∈ T \ B(p, t) ≥ 1 } are the sets of ingoing transitions and outgoing
transitions of a place p.
The set of markings a Mp-RdPT can reach from its initial marking M0 will be denoted as
S (M0).
- ∀p ∈ P, ∀M∈ S (M0), M(p) ≤ 1 (Mp-RdPT is safe),
- IS: is the static interval function, IS: P → (Q+ ∪ 0) ∪ (Q+ ∪ 0) ∪ (Q+ ∪ ∝),

The IS function associates with each ingoing place a static validity time interval,
where (a, n, b), associated with a place, represents respectively the earliest, the
nominal and the latest firing times. The firing time of a place is a timing interval
during which the newly created tokens are valid to fire a transition.

- SYN is the synchronization function that defines the firing rule associated to a
transition.

• SYN: T → Rules, with Rules =def {strong-or, weak-and, master}, the set of synchronization
rules. This synchronization semantics defines synchronization instants from a place
statically or dynamically chosen.
MP is the function which indicates the master place of each transition from which the
rule of transition requires a master, defined by: MP : Tmaster=def {t \ SYN(t) = master },
- The strong-or synchronization rule is driven by the earliest media. If either one of

the two media objects finishes, the other one has to stop, and [Min(ai), Min(bi)] is
the sensibilisation interval.

- The weak-and synchronization rule is driven by the latest media. All the media
objects are presented completely and [Max (ai), Max (bi)] is the sensibilisation
interval.

- The master synchronization rule is driven by the master media. If two multimedia
objects are presented simultaneously, when the higher priority media finishes, the
other has to stop.

The multimedia presentation continues after that, and [am, bm] is the sensibilisation interval,
with Pm indicating the master place.
We define am, bm by: let MP (t) = pm and IS (pm) = [am, bm].
• R: P → {r1, r2 . . . rn}, a mapping from the set of places to a set of resources (e.g.,

audio/video card, processor, virtual memory, and others operating system resources).

4.3 Mp-RdPT generation
To create the temporal Petri net, each temporal relation is associated with a Petri net as
illustrated by (Hamblin, 1972), and modelled in several approaches, such as in OCPN (Little
and Ghafoor, 1990). This mapping is helpful for automatic creation of a time Petri net. In the
Fig. 4, Tα, Tβ, Tδ model respectively the duration of places Pα, Pβ and Pδ.

4.4 Rules of translations
The created Mp-RdPT net is then translated to an equivalent t-time Petri net (Merlin and
Farber, 1976) for analyzing by the tool Tina (Berthomieu et al., 2004). For this, we use three
rules of translation (see Fig. 5) inspired from (Senac et al., 1995).

 Advances in Petri Net Theory and Applications

130

Thirdly, during the generation of the Petri net on the basis of the temporal specification, it is
not necessary to detect temporal inconsistencies like in the current approaches based on
time interval.
Fourthly, after the generation of the Petri net, the system returns, when requested by the
user, the simulation of the scenario that corresponds to the Petri net generated and may
detect two kinds of errors: graph design errors (i.e. a multimedia object that is declared but
never used) and allocation resource errors (i.e. allocation of the same resource to several
multimedia objects, it is the classical problem of mutual exclusion on a critical resource).
Fifthly, in our approach, all scenarios can be expressed and executed by using our
specification language, some authors, such as (Weiss et al. 1995), say that the resulting graph
becomes complicated and difficult to manipulate and to modify. In our approach, the
modification is very simple, because it does not concern the Petri net, but the temporal
specification which is natural and simple to use.
We think that few approaches implement these features together. We can find some features
of our Petri net in a powerful Hierarchical Time Stream Petri Net model HTSPN of (Senac et
al., 1995).

4.2 Formal definition of Mp-RdPT
Petri nets (PN) (Peterson, 1977) are designed to model systems with interacting concurrent
components. The basic PN structure is composed of four parts: a set of places P, a set of
transitions T, an input or (backward) function B and an output or (forward) function F. The
input and output functions relate transitions and places. A basic PN graph is graphically
represented as a bipartite directed graph, in which the circular nodes are called places and
the bar nodes are called transitions. A dot in a place represents a token, and a place
containing one or more tokens is said to be marked.
Allen’s relations have the problem that multimedia objects expressions are dependent of
multimedia objects duration. The temporal relations are designed to specify relations
between multimedia objects of determined duration. Therefore, they are not appropriate for
undetermined duration. If creators produce a video digest from several multimedia objects,
they need to modify the temporal relations between multimedia objects after their duration
changes. In order to solve this problem, the system should represent relations between
multimedia objects with unknown duration. We must study the model of temporal relations
independently of duration changes. PN is one of graph representations and considers
multimedia objects with known or unknown duration; also, the simulation of the scenario
may detect errors, such as: specification errors, graph design errors, graph configuration
errors, or allocation resources errors.
The PN tool has been chosen as a tool of synchronization and analysis because PN allows
modelling the dynamic behavior of multimedia scenarios that can be characterized by the
qualitative properties of PN corresponding. These properties are liveness, boundedness,
reversibility and consistency. In the context of a temporal synchronization modelling, a class
of enhanced PN model has been developed which assign a firing delay to each place and a
type of synchronization to a transition (Ghomari & Djeraba, 2003; Ghomari & Djeraba, 2010).
This model is called Multimedia p-Time Petri Nets (Mp-RdPT) and it is defined as follows:
A Mp-RdPT is a tuple (P, T, B, F, M0, IS, SYN, MP, R), where:
• (P, T, B, F, M0) defines a PN, where P is a non empty finite set of places, T is a non

empty finite set of transitions, with P ∩ T = ∅, B: P x T → N is the backward function,

Modelling Multimedia Synchronization using a Time Petri Net Based Approach

131

similarly, F : P x T → N is the forward function, M0 : P → N is the initial marking. As
usual, we denote by •t = {p ∈ P \ B (p, t) ≥ 1} the set of ingoing places and t•= { p ∈P \
F(p, t) ≥ 1 } the set of outgoing places of a transition t. Similarly, •p = { t ∈T \ F(p, t) ≥ 1 }
and p• = { t ∈ T \ B(p, t) ≥ 1 } are the sets of ingoing transitions and outgoing
transitions of a place p.
The set of markings a Mp-RdPT can reach from its initial marking M0 will be denoted as
S (M0).
- ∀p ∈ P, ∀M∈ S (M0), M(p) ≤ 1 (Mp-RdPT is safe),
- IS: is the static interval function, IS: P → (Q+ ∪ 0) ∪ (Q+ ∪ 0) ∪ (Q+ ∪ ∝),

The IS function associates with each ingoing place a static validity time interval,
where (a, n, b), associated with a place, represents respectively the earliest, the
nominal and the latest firing times. The firing time of a place is a timing interval
during which the newly created tokens are valid to fire a transition.

- SYN is the synchronization function that defines the firing rule associated to a
transition.

• SYN: T → Rules, with Rules =def {strong-or, weak-and, master}, the set of synchronization
rules. This synchronization semantics defines synchronization instants from a place
statically or dynamically chosen.
MP is the function which indicates the master place of each transition from which the
rule of transition requires a master, defined by: MP : Tmaster=def {t \ SYN(t) = master },
- The strong-or synchronization rule is driven by the earliest media. If either one of

the two media objects finishes, the other one has to stop, and [Min(ai), Min(bi)] is
the sensibilisation interval.

- The weak-and synchronization rule is driven by the latest media. All the media
objects are presented completely and [Max (ai), Max (bi)] is the sensibilisation
interval.

- The master synchronization rule is driven by the master media. If two multimedia
objects are presented simultaneously, when the higher priority media finishes, the
other has to stop.

The multimedia presentation continues after that, and [am, bm] is the sensibilisation interval,
with Pm indicating the master place.
We define am, bm by: let MP (t) = pm and IS (pm) = [am, bm].
• R: P → {r1, r2 . . . rn}, a mapping from the set of places to a set of resources (e.g.,

audio/video card, processor, virtual memory, and others operating system resources).

4.3 Mp-RdPT generation
To create the temporal Petri net, each temporal relation is associated with a Petri net as
illustrated by (Hamblin, 1972), and modelled in several approaches, such as in OCPN (Little
and Ghafoor, 1990). This mapping is helpful for automatic creation of a time Petri net. In the
Fig. 4, Tα, Tβ, Tδ model respectively the duration of places Pα, Pβ and Pδ.

4.4 Rules of translations
The created Mp-RdPT net is then translated to an equivalent t-time Petri net (Merlin and
Farber, 1976) for analyzing by the tool Tina (Berthomieu et al., 2004). For this, we use three
rules of translation (see Fig. 5) inspired from (Senac et al., 1995).

 Advances in Petri Net Theory and Applications

132

Pα

Strong-or

Pβ

Pα

Pα

Pα

Pα

Pα

Pα

Pβ

Pβ

Pβ

Pβ

Pβ

before(Pα,Pβ, Tδ)
Pβ

meets(Pα, Pβ)

begin(Pα, Pβ)

Pα Pδ Pβ

equal(Pα, Pβ)

Pα PβPβ

Pα

Pβ

Pα Pδ

Pβ

Tδ

Tδ

Pα

Pβ

Pα

Pβ

finishes(Pα,Pβ, Tδ)

during(Pα, Pβ, Tδ)

Tδ
Pα Pδ

Pβ

Pα

Pδ Pβ

Tδ

overlaps(Pα, Pβ, Tδ)

Weak and

Weak and

Master

Master

Tα Tδ
 Tβ

Tα Tβ

Tα

Tβ

Tα

Tβ

Tδ

Tα

Tβ

Tδ

Tα

Tβ

Tδ

Tβ

Tα

Weak-and

Weak-and

Pα

Temporal relations MP-RdPT

Par-min(Pα, Pβ)

Pβ

Pα

Pβ
Weak-and

Pα

Pβ

Tα

Tβ

Pα

Pβ

Pδ

Strong-or

Pα

Pβ
Par-max(Pα, Pβ)

Tα

Tβ

Pα

Pβ Pδ

Pα

Master

Tα

Tβ

Par-master(Pα, Pβ)

Causal relations MP-RdPT

Fig. 4. Diagram of association

P2

P1

(a)

P3
SYN(t)

(x1, n1, y1)

(x2, n2, y2)

(b)

P3

P1
’’

(0, ∝)

(x1,y1)

 P2 (x2, y2) P’
2 (y2-x2,y2-x2) P2

’’

(0, 0)

(0,∝)

P1

(0, ∝)

 P’1(y2-x2, y2-x2)

(x1, y1) P1

 P2 (x2, y2) P’
2 (y2-x2,y2-x2) P2

’’

P1
’ (y1-x1, y1-x1) P1

’’
(0, 0)

(0, ∝)
(0, ∝)

(0, ∝)

(c)

P3

 P2 (x2, y2) P’
2 (y2-x2, y2-x2) P2

P1

(d)

P3

(x1, y1)
P1

’’

(0, 0)

(0,+∝)

P1
’ (y2-x2, y2-x2)

(0, 0)

(0, 0)

(0, 0)

(0,+∝)

Fig. 5. Translation of an inter-stream synchronization schema of a Mp-RdPT net (a) in the form
of a t-time Petri net (b, c, d) according to inter-stream synchronization (b) transition of the type
«master », (c) transition of the type « weak_and», (d) transition of the type « strong_or ».

Modelling Multimedia Synchronization using a Time Petri Net Based Approach

133

5. Analysis of multimedia scenarios using the tool Tina
Tina (Time Petri Net Analyser) (Berthomieu et al., 2004) is a software environment to edit and
analyze Petri Net and t-time Petri Net (Merlin and Farber, 1976). In addition to the usual
editing and analysis facilities of such environments (computation of marking reachability sets,
coverability trees, semi-flows), Tina offers various abstract state spaces constructions that
preserve specific classes of properties of the concrete state spaces of the nets. Classes of
properties may be general properties (reachability properties, deadlock freeness, liveness),
specific properties relying on the linear structure of the concrete space state properties
relying on the linear concrete space state (linear time temporal logic properties).
After generating the t-time Petri net, the author investigates the scenario specification before
it is delivered to the reader by using the analysis tool Tina. Currently, the following
characteristics can be verified by the analysis tool: terminate state existence (i.e., if a state m
exists in which non transitions are enabled), safeness (i.e., if every place has only one token),
liveness (i.e., if blocking will never occur), reversibility (i.e., if the Petri net come back to its
initial state whatever state it reaches), consistency (is a necessary condition for the
reversibility that is a difficult property to establish.

6. Object oriented modelling
Our multimedia framework looks to the framework proposed in (Gibbs et al., 1993). It is
composed of abstract classes serving to specify interfaces, and suggested procedures for
using the classes. The abstract classes are specialized for different multimedia platforms. So,
applications using the abstract classes may adapt to variations in platform functionality.
The classes of our framework belong to two distinct groups: media classes and scenario
classes. Media classes correspond to audio, video, image, text, and other media types, their
basic properties and operations, and scenario classes model temporal composition of media
objects. In this paper, we will focus on scenario classes which are a main difference with the
framework presented in (Gibbs et al., 1993).
Scenarios are divided into types corresponding to application domains. Each type is
represented by a class. These are called scenario classes and form a hierarchy (see Fig. 6).
Nodes depict classes and edges depict superclass/subclass relationships. An edge points
from the superclass to the subclass. Instances of scenario classes are called scenario objects.
A scenario class models scenario object properties and operations.

7. Architecture of the system prototype
The system prototype is implemented on Compaq Intel Pentium 4 platform using the
programming language C++ and Oracle DBMS, and run in a window environment.
According to the architecture of the system prototype (depicted in Fig. 7) the following
components can be described: (1) Authoring tool which use an editing language of temporal
and causal relations; (2) parser which reads and analyses the specification file that contains
the temporal specification language; (3) generator which generate the Mp-RdPT model; (4)
Translator which translate the Mp-RdPT model to t-time PN; (5) Analysis tool Tina which
analyses and verifies properties of the time PN. Manager which manages the multimedia
scenarios, such as: the generation, the simulation and the interpretation of Mp-RdPT, object-
relational oracle database which stores media objects as large binary objects (BLOBs) in
mpeg, gif or jpeg files.

 Advances in Petri Net Theory and Applications

132

Pα

Strong-or

Pβ

Pα

Pα

Pα

Pα

Pα

Pα

Pβ

Pβ

Pβ

Pβ

Pβ

before(Pα,Pβ, Tδ)
Pβ

meets(Pα, Pβ)

begin(Pα, Pβ)

Pα Pδ Pβ

equal(Pα, Pβ)

Pα PβPβ

Pα

Pβ

Pα Pδ

Pβ

Tδ

Tδ

Pα

Pβ

Pα

Pβ

finishes(Pα,Pβ, Tδ)

during(Pα, Pβ, Tδ)

Tδ
Pα Pδ

Pβ

Pα

Pδ Pβ

Tδ

overlaps(Pα, Pβ, Tδ)

Weak and

Weak and

Master

Master

Tα Tδ
 Tβ

Tα Tβ

Tα

Tβ

Tα

Tβ

Tδ

Tα

Tβ

Tδ

Tα

Tβ

Tδ

Tβ

Tα

Weak-and

Weak-and

Pα

Temporal relations MP-RdPT

Par-min(Pα, Pβ)

Pβ

Pα

Pβ
Weak-and

Pα

Pβ

Tα

Tβ

Pα

Pβ

Pδ

Strong-or

Pα

Pβ
Par-max(Pα, Pβ)

Tα

Tβ

Pα

Pβ Pδ

Pα

Master

Tα

Tβ

Par-master(Pα, Pβ)

Causal relations MP-RdPT

Fig. 4. Diagram of association

P2

P1

(a)

P3
SYN(t)

(x1, n1, y1)

(x2, n2, y2)

(b)

P3

P1
’’

(0, ∝)

(x1,y1)

 P2 (x2, y2) P’
2 (y2-x2,y2-x2) P2

’’

(0, 0)

(0,∝)

P1

(0, ∝)

 P’1(y2-x2, y2-x2)

(x1, y1) P1

 P2 (x2, y2) P’
2 (y2-x2,y2-x2) P2

’’

P1
’ (y1-x1, y1-x1) P1

’’
(0, 0)

(0, ∝)
(0, ∝)

(0, ∝)

(c)

P3

 P2 (x2, y2) P’
2 (y2-x2, y2-x2) P2

P1

(d)

P3

(x1, y1)
P1

’’

(0, 0)

(0,+∝)

P1
’ (y2-x2, y2-x2)

(0, 0)

(0, 0)

(0, 0)

(0,+∝)

Fig. 5. Translation of an inter-stream synchronization schema of a Mp-RdPT net (a) in the form
of a t-time Petri net (b, c, d) according to inter-stream synchronization (b) transition of the type
«master », (c) transition of the type « weak_and», (d) transition of the type « strong_or ».

Modelling Multimedia Synchronization using a Time Petri Net Based Approach

133

5. Analysis of multimedia scenarios using the tool Tina
Tina (Time Petri Net Analyser) (Berthomieu et al., 2004) is a software environment to edit and
analyze Petri Net and t-time Petri Net (Merlin and Farber, 1976). In addition to the usual
editing and analysis facilities of such environments (computation of marking reachability sets,
coverability trees, semi-flows), Tina offers various abstract state spaces constructions that
preserve specific classes of properties of the concrete state spaces of the nets. Classes of
properties may be general properties (reachability properties, deadlock freeness, liveness),
specific properties relying on the linear structure of the concrete space state properties
relying on the linear concrete space state (linear time temporal logic properties).
After generating the t-time Petri net, the author investigates the scenario specification before
it is delivered to the reader by using the analysis tool Tina. Currently, the following
characteristics can be verified by the analysis tool: terminate state existence (i.e., if a state m
exists in which non transitions are enabled), safeness (i.e., if every place has only one token),
liveness (i.e., if blocking will never occur), reversibility (i.e., if the Petri net come back to its
initial state whatever state it reaches), consistency (is a necessary condition for the
reversibility that is a difficult property to establish.

6. Object oriented modelling
Our multimedia framework looks to the framework proposed in (Gibbs et al., 1993). It is
composed of abstract classes serving to specify interfaces, and suggested procedures for
using the classes. The abstract classes are specialized for different multimedia platforms. So,
applications using the abstract classes may adapt to variations in platform functionality.
The classes of our framework belong to two distinct groups: media classes and scenario
classes. Media classes correspond to audio, video, image, text, and other media types, their
basic properties and operations, and scenario classes model temporal composition of media
objects. In this paper, we will focus on scenario classes which are a main difference with the
framework presented in (Gibbs et al., 1993).
Scenarios are divided into types corresponding to application domains. Each type is
represented by a class. These are called scenario classes and form a hierarchy (see Fig. 6).
Nodes depict classes and edges depict superclass/subclass relationships. An edge points
from the superclass to the subclass. Instances of scenario classes are called scenario objects.
A scenario class models scenario object properties and operations.

7. Architecture of the system prototype
The system prototype is implemented on Compaq Intel Pentium 4 platform using the
programming language C++ and Oracle DBMS, and run in a window environment.
According to the architecture of the system prototype (depicted in Fig. 7) the following
components can be described: (1) Authoring tool which use an editing language of temporal
and causal relations; (2) parser which reads and analyses the specification file that contains
the temporal specification language; (3) generator which generate the Mp-RdPT model; (4)
Translator which translate the Mp-RdPT model to t-time PN; (5) Analysis tool Tina which
analyses and verifies properties of the time PN. Manager which manages the multimedia
scenarios, such as: the generation, the simulation and the interpretation of Mp-RdPT, object-
relational oracle database which stores media objects as large binary objects (BLOBs) in
mpeg, gif or jpeg files.

 Advances in Petri Net Theory and Applications

134

Scenario

DerivedMedia

MediaBase

TemporalMedia

Audio VideoAnimation

Text GraphicImage
Scenario Scenario

Scenario Scenario

ViewMedia

Media

TemporalNode

Terminal
Node

TemporalRelation

Start Equal Finish

0..* 1..*1..*

MP-RdPT

Weak-and Strong-or Master

Generalization Place TransitionMediaBase Composite
11..*

1..*

1

Button

Fig. 6. A class diagram with UML formalism

8. Conclusion and future work
We have presented an approach for multimedia scenario generation in an object oriented
database. Our language features consider: - object-oriented concepts for multimedia and
scenario modelling; - temporal specification based on temporal and interactive relation; the
temporal relations are based on both existing temporal arrangement and causal relations
between multimedia objects; - powerful time Petri net automatic generation based on
temporal specifications; - and finally user interactions based on composite time Petri net.
In the future, we will perform the algorithms that detect inconsistencies in the Mp-RdPT net
generated, and we will provide a support for the programmer to develop distributed
multimedia applications using the object-oriented model. It is important to provide
communication of various types of data over the high speed ATM network and the
synchronization of the multimedia objects at the target system. The target system is the
location in which the final synchronization is executed respecting the network delay with
insignificant modifications of the earlier synchronization.

Modelling Multimedia Synchronization using a Time Petri Net Based Approach

135

Authoring T ool of Multimedia Scenarios

(User Interface)

G enerator of MP-RdPT Nets Trans lator to

T-Time Petri Nets

Analysis T ool Tina

Object-Relational O racle

DataBase

Multimedia Scenarios Manager

Parser

Fig. 7. System prototype architecture

9. References
Adjeroh, D.A & Lee, M.C. (1995). " Synchronization Mechanisms for Distributed Multimedia

Presentation Systems, Proceedings of IWMDMS, (1995), August, Blue-Mountain
Lake, Newark.

Allen, J.F. (1983). "Maintaining Knowledge about Temporal Intervals ". Communications of the
ACM, 26(11):832–843.

Berthomieu, B.et al., (2004). “The tool TINA – Construction of Abstract State Spaces for Petri
Nets and Time Petri Nets”. International Journal of Production Research. Vol. 42(4)
http://www.laas.fr/tina

Blakowski, G. & Steinmetz, R. (1996). " A Media Synchronization Survey : Reference Model,
Specification, and Case Studies ", IEEE journal on selected areas in communications,
Vol. 14(1).

Boronat, F et al. (2008). " Multimedia group and inter-stream synchronization techniques : A
comparative study". Journal of Information Systems.

Botafogo, B & Moss, D. (1995). "The MORENA model for hypermedia authoring”.
Proceedings of the international conference on multimedia computing and systems, (1995),
IEEE Computer Society Press, Los Alamitos, CA.

Chen J-N & Huang, Y-M. (2005). " Using dynamic fuzzy Petri nets for navigation learning.
Exploring Innovation in Education and Research, Tainan, Taiwan.

 Advances in Petri Net Theory and Applications

134

Scenario

DerivedMedia

MediaBase

TemporalMedia

Audio VideoAnimation

Text GraphicImage
Scenario Scenario

Scenario Scenario

ViewMedia

Media

TemporalNode

Terminal
Node

TemporalRelation

Start Equal Finish

0..* 1..*1..*

MP-RdPT

Weak-and Strong-or Master

Generalization Place TransitionMediaBase Composite
11..*

1..*

1

Button

Fig. 6. A class diagram with UML formalism

8. Conclusion and future work
We have presented an approach for multimedia scenario generation in an object oriented
database. Our language features consider: - object-oriented concepts for multimedia and
scenario modelling; - temporal specification based on temporal and interactive relation; the
temporal relations are based on both existing temporal arrangement and causal relations
between multimedia objects; - powerful time Petri net automatic generation based on
temporal specifications; - and finally user interactions based on composite time Petri net.
In the future, we will perform the algorithms that detect inconsistencies in the Mp-RdPT net
generated, and we will provide a support for the programmer to develop distributed
multimedia applications using the object-oriented model. It is important to provide
communication of various types of data over the high speed ATM network and the
synchronization of the multimedia objects at the target system. The target system is the
location in which the final synchronization is executed respecting the network delay with
insignificant modifications of the earlier synchronization.

Modelling Multimedia Synchronization using a Time Petri Net Based Approach

135

Authoring T ool of Multimedia Scenarios

(User Interface)

G enerator of MP-RdPT Nets Trans lator to

T-Time Petri Nets

Analysis T ool Tina

Object-Relational O racle

DataBase

Multimedia Scenarios Manager

Parser

Fig. 7. System prototype architecture

9. References
Adjeroh, D.A & Lee, M.C. (1995). " Synchronization Mechanisms for Distributed Multimedia

Presentation Systems, Proceedings of IWMDMS, (1995), August, Blue-Mountain
Lake, Newark.

Allen, J.F. (1983). "Maintaining Knowledge about Temporal Intervals ". Communications of the
ACM, 26(11):832–843.

Berthomieu, B.et al., (2004). “The tool TINA – Construction of Abstract State Spaces for Petri
Nets and Time Petri Nets”. International Journal of Production Research. Vol. 42(4)
http://www.laas.fr/tina

Blakowski, G. & Steinmetz, R. (1996). " A Media Synchronization Survey : Reference Model,
Specification, and Case Studies ", IEEE journal on selected areas in communications,
Vol. 14(1).

Boronat, F et al. (2008). " Multimedia group and inter-stream synchronization techniques : A
comparative study". Journal of Information Systems.

Botafogo, B & Moss, D. (1995). "The MORENA model for hypermedia authoring”.
Proceedings of the international conference on multimedia computing and systems, (1995),
IEEE Computer Society Press, Los Alamitos, CA.

Chen J-N & Huang, Y-M. (2005). " Using dynamic fuzzy Petri nets for navigation learning.
Exploring Innovation in Education and Research, Tainan, Taiwan.

 Advances in Petri Net Theory and Applications

136

Courtiat, J-P. & de Oliveira. R. C. (1996). "Proving Temporal Consistency in a New
Multimedia Synchronization Model". Proceedings of the ACM International
Conference on Multimedia, (1996), Boston, MA.

Gibbs, S. et al. (1993)." Audio/Video Databases : An Object-Oriented Approach ". Proceedings
of IEEE Ninth International Conference on Data Engineering, (1993), Vienna, Austria.

Ghomari, A & Djeraba, C. (2003). "Towards a Timed-Petri Net Based Approach for the
synchronization of a Multimedia Scenario". Proceedings of the 5th International
Conference on Enterprise Information Systems, April, (2003), Angers, France.

Ghomari, A. & Djeraba, C. (2010). “ An approach for synchronization and management of
multimedia scenarios in an object-oriented database ". Proceedings of the International
Conference on Research Challenges in Information Science (RCIS), Ed. IEEE, ISBN #978-
1-4244-4840-1, May (2010), Nice, France.

Hamblin, C. L. " Instants and Intervals ". Proceedings of the 1st Conference of the International
Society for the Study of Time, (1972), New York.

ISO, (1992) " International Standard. Information Technology Hypermedia/Time-Based
Structuring Language (HyTime)". ISO/IEC IS 10744:1997.

Jourdan M. et al. (1997). " A Survey on Authoring Techniques for Temporal Scenarios of
Multimedia Documents ", In Handbook on multimedia computing, CRC Press.

King, P.R. (1994). “Towards a temporal logic based formalism for expressing temporal
constraints in multimedia documents, Technical Report 942, Orsay, France: LRI,
Université de Paris-Sud.

Little, T.D.C. & Gafoor, A. (1990). "Synchronization and Storage Models for Multimedia
Objects ", IEEE Journal on Selected Areas in Communication, vol.8(3).

Little, T.D.C. & Ghafoor, A. (1993). " Interval-Based Conceptual Models for Time-Dependant
Multimedia Data ". IEEE Transactions on Knowledge and Data Engineering, 5(4).

Merlin, P.M. & Farber, D.J. (1976): “Recoverability of communication protocols:
Implications of a theoretical study ”. IEEE Trans. Comm. 24(9).

Na Cheo, J-C. & Furuta, R. (2001) " Dynamic documents: authoring, browsing, and analysis
using a high-level Petri net-based hypermedia system. Proceedings of the ACM
Symposium on Document Engineering, (2001), Atlanta, CA .

Peterson, J.L. "Petri Nets", Computing Surveys, 9(3), 225-252, 1977.
Perez-Luque, M.J. & Little. T.D.C. (1996): “A Temporal Reference Framework for

Multimedia Synchronization”, IEEE Journal on Selected Areas in Communications
(Special Issue: Synchronization Issues in Multimedia Communication), Vol. 14(1).

Roisin, C & Sèdes, F. (2004). " Time and Documents, Numeric Document, 8(4), 23-39.
Shterev, J. "Modelling of Interaction on multimedia Stream and objects by application of

Petri nets. Proceedings of the International Conference on Computer Systems and
Technologies, (2005), Varna, Bulagria.

Senac, P. et al. (1995). “Hierarchical Time Stream Petri Net : Amodel for Hypermedia
Systems”. Proceedings of Application and Theory of Petri Nets, (1995), Giogio de
Michelis, Michel Diaz (eds). Lecture Notes in Computer Science N° 935.

Weiss, R. et al. (1995). " Composition and Search with a Video Algebra ". IEEE Multimedia, 2(1).
 W3C. (2001). "Working draft specification of SMIL, URL: http://www.w3.org/TR/SMIL

2.0

8

Hybrid Petri Nets and Metaheuristic
Approach to Farm Work Scheduling

Senlin Guan1, Morikazu Nakamura1 and Takeshi Shikanai2
1Faculty of Engineering,
2Faculty of Agriculture,

University of the Ryukyus, 1 Senbaru Nishihara,
Okinawa

Japan

1. Introduction
Scheduling problems for general cases are characterized as NP hard, and the computation
time required to obtain the optimal schedule will grow exponentially with the problem size.
The scheduling problems that consider the limited or shared resources, alterable constraints
or environmental changes become very complex in both formulation and solution. Since the
solution for these problems has great serviceability and reliability against environmental
changes, much research has been devoted in optimization strategy in the presence of a wide
range of uncertainties (Li & Ierapetritou, 2008). Such research with application is applicable
to not only the manufacturing in industry, but also production in agriculture. Modeling and
scheduling in the agricultural domain may be more promising because of the requirement of
new approaches to handling the uncertainties in the nature environment.
In agriculture, a system that aims to produce maximum amount of profit from available
land by high inputs of capital, labour, or efficient usage of machinery, is defined as intensive
farming (or intensive agriculture). Like common businesses, many intensive farming units
are operating their businesses by the ways to improving profits in farming while reducing
costs. In Japan, there are over 190,000 intensive farming units such as farmers’ cooperatives/
agricultural corporations that aim at efficient and large-scale farm management (The
Ministry of Agriculture, Forestry and Fisheries of Japan, 2006). These corporations lease and
consolidate agricultural lands in vicinal regions, manage large-scale farmland with full
mechanization, and carry out farm works entrusted by vicinal farmers. The farmlands
managed by these corporations sometimes number over thousands and are scattered within
a wide area. In order to gain substantial economic increase and further development, these
corporations need to improve the daily work management, extend the contracts of leasing
farmland, lease more farmlands, and carry out more extra works. As a consequence, they
considerably require wise management decisions such as timeliness in all operations,
equipment adjustments, crop rotations, land rent, taxes and so on. The best decision
certainly conduces to the increase of yield, profitability, and work efficiency.
Solving the farm work scheduling problem requires appropriate approaches to modeling
and optimization. There are plenty of mathematical models and approaches have addressed

 Advances in Petri Net Theory and Applications

136

Courtiat, J-P. & de Oliveira. R. C. (1996). "Proving Temporal Consistency in a New
Multimedia Synchronization Model". Proceedings of the ACM International
Conference on Multimedia, (1996), Boston, MA.

Gibbs, S. et al. (1993)." Audio/Video Databases : An Object-Oriented Approach ". Proceedings
of IEEE Ninth International Conference on Data Engineering, (1993), Vienna, Austria.

Ghomari, A & Djeraba, C. (2003). "Towards a Timed-Petri Net Based Approach for the
synchronization of a Multimedia Scenario". Proceedings of the 5th International
Conference on Enterprise Information Systems, April, (2003), Angers, France.

Ghomari, A. & Djeraba, C. (2010). “ An approach for synchronization and management of
multimedia scenarios in an object-oriented database ". Proceedings of the International
Conference on Research Challenges in Information Science (RCIS), Ed. IEEE, ISBN #978-
1-4244-4840-1, May (2010), Nice, France.

Hamblin, C. L. " Instants and Intervals ". Proceedings of the 1st Conference of the International
Society for the Study of Time, (1972), New York.

ISO, (1992) " International Standard. Information Technology Hypermedia/Time-Based
Structuring Language (HyTime)". ISO/IEC IS 10744:1997.

Jourdan M. et al. (1997). " A Survey on Authoring Techniques for Temporal Scenarios of
Multimedia Documents ", In Handbook on multimedia computing, CRC Press.

King, P.R. (1994). “Towards a temporal logic based formalism for expressing temporal
constraints in multimedia documents, Technical Report 942, Orsay, France: LRI,
Université de Paris-Sud.

Little, T.D.C. & Gafoor, A. (1990). "Synchronization and Storage Models for Multimedia
Objects ", IEEE Journal on Selected Areas in Communication, vol.8(3).

Little, T.D.C. & Ghafoor, A. (1993). " Interval-Based Conceptual Models for Time-Dependant
Multimedia Data ". IEEE Transactions on Knowledge and Data Engineering, 5(4).

Merlin, P.M. & Farber, D.J. (1976): “Recoverability of communication protocols:
Implications of a theoretical study ”. IEEE Trans. Comm. 24(9).

Na Cheo, J-C. & Furuta, R. (2001) " Dynamic documents: authoring, browsing, and analysis
using a high-level Petri net-based hypermedia system. Proceedings of the ACM
Symposium on Document Engineering, (2001), Atlanta, CA .

Peterson, J.L. "Petri Nets", Computing Surveys, 9(3), 225-252, 1977.
Perez-Luque, M.J. & Little. T.D.C. (1996): “A Temporal Reference Framework for

Multimedia Synchronization”, IEEE Journal on Selected Areas in Communications
(Special Issue: Synchronization Issues in Multimedia Communication), Vol. 14(1).

Roisin, C & Sèdes, F. (2004). " Time and Documents, Numeric Document, 8(4), 23-39.
Shterev, J. "Modelling of Interaction on multimedia Stream and objects by application of

Petri nets. Proceedings of the International Conference on Computer Systems and
Technologies, (2005), Varna, Bulagria.

Senac, P. et al. (1995). “Hierarchical Time Stream Petri Net : Amodel for Hypermedia
Systems”. Proceedings of Application and Theory of Petri Nets, (1995), Giogio de
Michelis, Michel Diaz (eds). Lecture Notes in Computer Science N° 935.

Weiss, R. et al. (1995). " Composition and Search with a Video Algebra ". IEEE Multimedia, 2(1).
 W3C. (2001). "Working draft specification of SMIL, URL: http://www.w3.org/TR/SMIL

2.0

8

Hybrid Petri Nets and Metaheuristic
Approach to Farm Work Scheduling

Senlin Guan1, Morikazu Nakamura1 and Takeshi Shikanai2
1Faculty of Engineering,
2Faculty of Agriculture,

University of the Ryukyus, 1 Senbaru Nishihara,
Okinawa

Japan

1. Introduction
Scheduling problems for general cases are characterized as NP hard, and the computation
time required to obtain the optimal schedule will grow exponentially with the problem size.
The scheduling problems that consider the limited or shared resources, alterable constraints
or environmental changes become very complex in both formulation and solution. Since the
solution for these problems has great serviceability and reliability against environmental
changes, much research has been devoted in optimization strategy in the presence of a wide
range of uncertainties (Li & Ierapetritou, 2008). Such research with application is applicable
to not only the manufacturing in industry, but also production in agriculture. Modeling and
scheduling in the agricultural domain may be more promising because of the requirement of
new approaches to handling the uncertainties in the nature environment.
In agriculture, a system that aims to produce maximum amount of profit from available
land by high inputs of capital, labour, or efficient usage of machinery, is defined as intensive
farming (or intensive agriculture). Like common businesses, many intensive farming units
are operating their businesses by the ways to improving profits in farming while reducing
costs. In Japan, there are over 190,000 intensive farming units such as farmers’ cooperatives/
agricultural corporations that aim at efficient and large-scale farm management (The
Ministry of Agriculture, Forestry and Fisheries of Japan, 2006). These corporations lease and
consolidate agricultural lands in vicinal regions, manage large-scale farmland with full
mechanization, and carry out farm works entrusted by vicinal farmers. The farmlands
managed by these corporations sometimes number over thousands and are scattered within
a wide area. In order to gain substantial economic increase and further development, these
corporations need to improve the daily work management, extend the contracts of leasing
farmland, lease more farmlands, and carry out more extra works. As a consequence, they
considerably require wise management decisions such as timeliness in all operations,
equipment adjustments, crop rotations, land rent, taxes and so on. The best decision
certainly conduces to the increase of yield, profitability, and work efficiency.
Solving the farm work scheduling problem requires appropriate approaches to modeling
and optimization. There are plenty of mathematical models and approaches have addressed

 Advances in Petri Net Theory and Applications

138

optimization for scheduling for different demands (Bassett et al., 1997; Balasubramanian &
Grossmann, 2003; Janak & Floudas, 2006; Lin et al., 2004; Till et al., 2007; Wang, 2004;
Santiago- Mozos et al., 2005; Suliman, 2000). In agriculture, the existing researches on
scheduling in the cropping system involve such as the farming and planning systems for
paddy rice production (Nanseki, 1998; Nanseki et al., 2003; Daikoku, 2005), a stochastic farm
work scheduling algorithm based on short-range weather variation (Astika et al., 1999),
several models simulating a single operation (Arjona et al., 2001; Higgins & Davies, 2005)
and operating with one or more crops (Chen & McClendon, 1985; Tsai et al., 1987; Lal et al.,
1991; Haffar & Khoury, 1992), and so on. However, none of these studies paid attention to
the scheduling in the intensive farming system by using a more promising tool - Petri nets
model. A Petri net is a very applicable to model distributed, concurrent, nondeterministic
and/or stochastic events, and considerably accommodates nondeterministic events in the
farming system such as machine breakdown and labor absence, or concurrent activities such
as cooperative works.
In this study, we proposed a hybrid Petri nets and metaheuristic approach to the farm work
scheduling in the cropping system. We used sugarcane farming as an example to
demonstrate the approache to constructing an efficient farm work plan. The farm work
scheduling comprises a model for modeling the farm works and a scheduling system for
optimizing the farm work schedule. The model, which is a hybrid Petri nets first introduced
into agricultural production (Guan et al., 2008), graphically formulates the farm work flow
and simulates the overall status of the progress of farm work and the state of resources. The
scheduling system performs the resource assignment and the computation for a long-term
schedule (Guan et al., 2009). A part of contents and experiment data in this chapter are
originally published in these two articles.

2. Modeling and formulating the farm work scheduling
In this section, we neglect the basic definition of discrete Petri net and continuous Petri net
and briefly review the key concepts of hybrid Petri nets.

2.1 Hybrid Petri nets
As defined in Murata (1989), a Petri net is a graphical and mathematical modeling tool for
describing and simulating the distributed systems. A hybrid Petri nets informally contains a
discrete part and a continuous part (Fig. 2). The discrete part of hybrid Petri nets usually
models the state of resource, and the continuous part simulates the process over time.
A hybrid Petri net system is defined as N = 〈P,T,Pre,Post,m0, h〉, where P is a set of places; T, a
set of transitions; Pre (Post), the pre- (post-) incidence function representing the input (output)
arcs; m0, a function representing the initial number of tokens in each place; h, a hybrid function
that indicates a discrete or continuous node. In a hybrid Petri net, all discrete input places must
also be output places with arcs of the same weight, and vice-versa.
Figure 1 illustrates a hybrid Petri nets. The double circles, boxes and blue arcs are the
continuous part of Petri nets. At time t = 0, continuous transition T11 starts firing because of
the existence of a token in discrete place P1. Discrete transition T1 fires when the token in
continuous place P11 decreases to 2100 at time t = 3, and the system is in the break state.
After T2 fires at t = 3.25, the system switches to the working state again. Likewise, a
continuous transition can be flexibly broken and well controlled by handling with the
tokens in the discrete places.

Hybrid Petri Nets and Metaheuristic Approach to Farm Work Scheduling

139

Fig. 1. A hybrid Petri nets system

In a hybrid Petri net that time is associated either with the places or with the transitions, the
marking m at time t of hybrid Petri nets can be written as:

 ()0() (0) · () ()·tm t m A n t v dτ τ= + + ∫ (1)

where A is the incidence matrix, and n(t) denotes the number of firings of the discrete
transitions from the initial time to time t. v(τ) is the firing speed of the continuous transitions
at an arbitrary time τ.

2.2 Hybrid Petri nets modeling for farm work flow
In order to model the variable farming process due to environmental changes, we applied
the hybrid Petri net to model the discrete and continuous farming activities. For example,
the major works for sugarcane production involve tilling, planting, irrigating, weeding,
fertilizing and harvesting. Each work starts when satisfying the conditions such as
timeliness of operation, availability of farmland, machinery, labor and so on. After
completion of the work, the farmland shifts into the next state, and the resources such as the
machinery and the labor are released and ready for the other works. In our proposed model,
the farm work is defined as the transition; the condition, or state of a farmland or a resource
as the place, and resources like labor or machinery as the tokens. The transitions
corresponding to the farm work and the places corresponding to the farmland are the
continuous part of the model; otherwise, the places are discrete. A farming process is a
continuous transition which the working speed is determined by the capability of the labor,
the efficiency of the machinery or a combination of both of them. Uncertainties such as
machinery breakdown and breaks, and the state of resources, farmland and machine are
considered as discrete objects. The work flow of producing sugarcane by certain resources
and the simple model for modeling the work flow in one farmland are illustrated in Fig. 2.
In the figure, continuous places Pij and transitions Tij represent the status of the farmland
and execution of the farm work, respectively. The discrete places correspond the status of
the resources such as the tractor, rotary tiller, labor, and so on. Pij is a timed continuous
place associated with time window for timeliness of operation. The real number in places Pij
means the amount the farm work. Note that the resources are assigned to only two works of
the tilling and harvesting in this figure. At the initial state, the existence of the token in P11
indicates that the farmland is ready for the work of tilling. Along with the execution of the
subsequent work with the available resources of R1,R2,R3, the value in P11 decreases while

 Advances in Petri Net Theory and Applications

138

optimization for scheduling for different demands (Bassett et al., 1997; Balasubramanian &
Grossmann, 2003; Janak & Floudas, 2006; Lin et al., 2004; Till et al., 2007; Wang, 2004;
Santiago- Mozos et al., 2005; Suliman, 2000). In agriculture, the existing researches on
scheduling in the cropping system involve such as the farming and planning systems for
paddy rice production (Nanseki, 1998; Nanseki et al., 2003; Daikoku, 2005), a stochastic farm
work scheduling algorithm based on short-range weather variation (Astika et al., 1999),
several models simulating a single operation (Arjona et al., 2001; Higgins & Davies, 2005)
and operating with one or more crops (Chen & McClendon, 1985; Tsai et al., 1987; Lal et al.,
1991; Haffar & Khoury, 1992), and so on. However, none of these studies paid attention to
the scheduling in the intensive farming system by using a more promising tool - Petri nets
model. A Petri net is a very applicable to model distributed, concurrent, nondeterministic
and/or stochastic events, and considerably accommodates nondeterministic events in the
farming system such as machine breakdown and labor absence, or concurrent activities such
as cooperative works.
In this study, we proposed a hybrid Petri nets and metaheuristic approach to the farm work
scheduling in the cropping system. We used sugarcane farming as an example to
demonstrate the approache to constructing an efficient farm work plan. The farm work
scheduling comprises a model for modeling the farm works and a scheduling system for
optimizing the farm work schedule. The model, which is a hybrid Petri nets first introduced
into agricultural production (Guan et al., 2008), graphically formulates the farm work flow
and simulates the overall status of the progress of farm work and the state of resources. The
scheduling system performs the resource assignment and the computation for a long-term
schedule (Guan et al., 2009). A part of contents and experiment data in this chapter are
originally published in these two articles.

2. Modeling and formulating the farm work scheduling
In this section, we neglect the basic definition of discrete Petri net and continuous Petri net
and briefly review the key concepts of hybrid Petri nets.

2.1 Hybrid Petri nets
As defined in Murata (1989), a Petri net is a graphical and mathematical modeling tool for
describing and simulating the distributed systems. A hybrid Petri nets informally contains a
discrete part and a continuous part (Fig. 2). The discrete part of hybrid Petri nets usually
models the state of resource, and the continuous part simulates the process over time.
A hybrid Petri net system is defined as N = 〈P,T,Pre,Post,m0, h〉, where P is a set of places; T, a
set of transitions; Pre (Post), the pre- (post-) incidence function representing the input (output)
arcs; m0, a function representing the initial number of tokens in each place; h, a hybrid function
that indicates a discrete or continuous node. In a hybrid Petri net, all discrete input places must
also be output places with arcs of the same weight, and vice-versa.
Figure 1 illustrates a hybrid Petri nets. The double circles, boxes and blue arcs are the
continuous part of Petri nets. At time t = 0, continuous transition T11 starts firing because of
the existence of a token in discrete place P1. Discrete transition T1 fires when the token in
continuous place P11 decreases to 2100 at time t = 3, and the system is in the break state.
After T2 fires at t = 3.25, the system switches to the working state again. Likewise, a
continuous transition can be flexibly broken and well controlled by handling with the
tokens in the discrete places.

Hybrid Petri Nets and Metaheuristic Approach to Farm Work Scheduling

139

Fig. 1. A hybrid Petri nets system

In a hybrid Petri net that time is associated either with the places or with the transitions, the
marking m at time t of hybrid Petri nets can be written as:

 ()0() (0) · () ()·tm t m A n t v dτ τ= + + ∫ (1)

where A is the incidence matrix, and n(t) denotes the number of firings of the discrete
transitions from the initial time to time t. v(τ) is the firing speed of the continuous transitions
at an arbitrary time τ.

2.2 Hybrid Petri nets modeling for farm work flow
In order to model the variable farming process due to environmental changes, we applied
the hybrid Petri net to model the discrete and continuous farming activities. For example,
the major works for sugarcane production involve tilling, planting, irrigating, weeding,
fertilizing and harvesting. Each work starts when satisfying the conditions such as
timeliness of operation, availability of farmland, machinery, labor and so on. After
completion of the work, the farmland shifts into the next state, and the resources such as the
machinery and the labor are released and ready for the other works. In our proposed model,
the farm work is defined as the transition; the condition, or state of a farmland or a resource
as the place, and resources like labor or machinery as the tokens. The transitions
corresponding to the farm work and the places corresponding to the farmland are the
continuous part of the model; otherwise, the places are discrete. A farming process is a
continuous transition which the working speed is determined by the capability of the labor,
the efficiency of the machinery or a combination of both of them. Uncertainties such as
machinery breakdown and breaks, and the state of resources, farmland and machine are
considered as discrete objects. The work flow of producing sugarcane by certain resources
and the simple model for modeling the work flow in one farmland are illustrated in Fig. 2.
In the figure, continuous places Pij and transitions Tij represent the status of the farmland
and execution of the farm work, respectively. The discrete places correspond the status of
the resources such as the tractor, rotary tiller, labor, and so on. Pij is a timed continuous
place associated with time window for timeliness of operation. The real number in places Pij
means the amount the farm work. Note that the resources are assigned to only two works of
the tilling and harvesting in this figure. At the initial state, the existence of the token in P11
indicates that the farmland is ready for the work of tilling. Along with the execution of the
subsequent work with the available resources of R1,R2,R3, the value in P11 decreases while

 Advances in Petri Net Theory and Applications

140

Tractor:1
Rotary tiller: 1
Labor: 1

Tractor:1
Planter: 1
Labor: 2-3

Fertilizer
 distributor:1
Labor: 1

Truck:1
Labor: 1-2

Harvester:1
Labor: 2-3

Tank truck: 1
Labor: 1-2 Tilling Planting

Fertilizing Weeding Harvesting

Irrigating

Fig. 2. Hybrid Petri nets modeling for farm work flow in sugarcane production

that in P12 increases. When the work of tilling is completed, the token in P11 and P12 reach 0
and 3,000, respectively, and the resources are released and ready for the works in the other
farmlands. The model for modeling the farm works in multiple farmlands is based on this
elementary model.

2.3 Formulating the farm work scheduling on hybrid Petri nets
A farm work schedule is to plan the farm works in the farmlands with the necessary
resources over time. The farm works in a farmland range from the tilling to harvesting in a
crop growth cycle. Since more than one of machinery and labor are available for any work,
the cooperative work sometimes takes place for early completion of the work.
Figure 3 simulates the scheduled farm work on the hybrid Petri nets model. A continuous
transition denotes the execution of task wijk. Not only cooperative work but also breaks are

Hybrid Petri Nets and Metaheuristic Approach to Farm Work Scheduling

141

modeled in the figure. From the initial state, the first work in farmland F1 is started
cooperatively by resource R1 and R2. At the same time, the first work in F2 is also started by
only one resource R3. The break time includes the normal break time and the time that may
be consumed by uncertainties such as machinery breakdown, poor weather, and so on. For
each resource Rk, the break and resumption for task wijk are modeled by the discrete part of
Petri net connected to a continuous transition, which consists two discrete places and two
timed discrete transitions.
The model acts as modeling the farm work process as well as simulating farm work
schedule. Since the marking of hybrid Petri net implies the farming progress and the state of
farmlands and resources, we can monitor the entire state of the system by the marking
migration according to Equation (1).
Generating the hybrid Petri nets in Fig. 3 requires assigning resources to the discrete places
and designating the firing sequence of the transitions in advance. We stipulate the rules for
resource assignment and firing operation of hybrid Petri nets as follows:
1. The number of assigned resources for the cooperative work is limited from at least one

to the total number of available resources for this work. In the dynamically generated
hybrid Petri nets, the number of continuous transitions is equal to the number of
assigned resources. If the resource assignment is determined, the hybrid Petri nets
model including the continuous places, continuous transitions, and discrete places
except the arcs from the continuous transition to the discrete place can be generated.
The cooperative work may cause a deadlock that a resource is scheduled to an already
completed work. For this case in the computing process, this resource will be
rescheduled to the next task.

2. The firing operation of the hybrid Petri nets stops when all tasks are completed.
3. A resource cannot be assigned to two works at the same time.
4. The timed continuous places and transitions are enabled during the time window and

over the waiting time, respectively.
5. The firing operation suffers from the precedence constrained relationship. For example,

tasks w124 and w125 cannot be started if the token in P12 is less than 2880.
6. The moving time of the resource between farmlands is associated to the discrete

transition.
7. Arbitrary breaks are possible during the farm work.

2.4 Formulating the farm work scheduling in mathematical method
In this subsection, we redefine the farm work scheduling problem in mathematical method
and compare it with the one by hybrid Petri nets. The variables for the farm work
scheduling and their descriptions are listed in Table 1. In the table, resource Rk is not an
individual resource but rather a set of the minimum machinery and labor required for the
work. mij represents the amount of scheduled work Wj in farmland Fi. Wj can be carried out
only if mij > 0 and Iij =1. Waiting time Oij and time window Uj are used to define an
appropriate cultivation time. The execution time of task wijk is subject to the completion time
of the pervious work, waiting time Oij and the period of [Uj(s), Uj(e)]. The relations between
these variables are shown in Fig. 4.
In Fig. 4, wbjk may be performed in cooperation with other resources. Such cooperative work
is defined as a process where multiple machineries perform the same work, and the entry
time of a resource to perform cooperative farming work is arbitrary. The execution of work

 Advances in Petri Net Theory and Applications

140

Tractor:1
Rotary tiller: 1
Labor: 1

Tractor:1
Planter: 1
Labor: 2-3

Fertilizer
 distributor:1
Labor: 1

Truck:1
Labor: 1-2

Harvester:1
Labor: 2-3

Tank truck: 1
Labor: 1-2 Tilling Planting

Fertilizing Weeding Harvesting

Irrigating

Fig. 2. Hybrid Petri nets modeling for farm work flow in sugarcane production

that in P12 increases. When the work of tilling is completed, the token in P11 and P12 reach 0
and 3,000, respectively, and the resources are released and ready for the works in the other
farmlands. The model for modeling the farm works in multiple farmlands is based on this
elementary model.

2.3 Formulating the farm work scheduling on hybrid Petri nets
A farm work schedule is to plan the farm works in the farmlands with the necessary
resources over time. The farm works in a farmland range from the tilling to harvesting in a
crop growth cycle. Since more than one of machinery and labor are available for any work,
the cooperative work sometimes takes place for early completion of the work.
Figure 3 simulates the scheduled farm work on the hybrid Petri nets model. A continuous
transition denotes the execution of task wijk. Not only cooperative work but also breaks are

Hybrid Petri Nets and Metaheuristic Approach to Farm Work Scheduling

141

modeled in the figure. From the initial state, the first work in farmland F1 is started
cooperatively by resource R1 and R2. At the same time, the first work in F2 is also started by
only one resource R3. The break time includes the normal break time and the time that may
be consumed by uncertainties such as machinery breakdown, poor weather, and so on. For
each resource Rk, the break and resumption for task wijk are modeled by the discrete part of
Petri net connected to a continuous transition, which consists two discrete places and two
timed discrete transitions.
The model acts as modeling the farm work process as well as simulating farm work
schedule. Since the marking of hybrid Petri net implies the farming progress and the state of
farmlands and resources, we can monitor the entire state of the system by the marking
migration according to Equation (1).
Generating the hybrid Petri nets in Fig. 3 requires assigning resources to the discrete places
and designating the firing sequence of the transitions in advance. We stipulate the rules for
resource assignment and firing operation of hybrid Petri nets as follows:
1. The number of assigned resources for the cooperative work is limited from at least one

to the total number of available resources for this work. In the dynamically generated
hybrid Petri nets, the number of continuous transitions is equal to the number of
assigned resources. If the resource assignment is determined, the hybrid Petri nets
model including the continuous places, continuous transitions, and discrete places
except the arcs from the continuous transition to the discrete place can be generated.
The cooperative work may cause a deadlock that a resource is scheduled to an already
completed work. For this case in the computing process, this resource will be
rescheduled to the next task.

2. The firing operation of the hybrid Petri nets stops when all tasks are completed.
3. A resource cannot be assigned to two works at the same time.
4. The timed continuous places and transitions are enabled during the time window and

over the waiting time, respectively.
5. The firing operation suffers from the precedence constrained relationship. For example,

tasks w124 and w125 cannot be started if the token in P12 is less than 2880.
6. The moving time of the resource between farmlands is associated to the discrete

transition.
7. Arbitrary breaks are possible during the farm work.

2.4 Formulating the farm work scheduling in mathematical method
In this subsection, we redefine the farm work scheduling problem in mathematical method
and compare it with the one by hybrid Petri nets. The variables for the farm work
scheduling and their descriptions are listed in Table 1. In the table, resource Rk is not an
individual resource but rather a set of the minimum machinery and labor required for the
work. mij represents the amount of scheduled work Wj in farmland Fi. Wj can be carried out
only if mij > 0 and Iij =1. Waiting time Oij and time window Uj are used to define an
appropriate cultivation time. The execution time of task wijk is subject to the completion time
of the pervious work, waiting time Oij and the period of [Uj(s), Uj(e)]. The relations between
these variables are shown in Fig. 4.
In Fig. 4, wbjk may be performed in cooperation with other resources. Such cooperative work
is defined as a process where multiple machineries perform the same work, and the entry
time of a resource to perform cooperative farming work is arbitrary. The execution of work

 Advances in Petri Net Theory and Applications

142

Wj requires at least one resource, and the total number of assigned resources is less than or
equal to the number of resources available to perform Wk (Σk Sjk). The number of assigned
resources for the execution of work Wj, ,k jkS′Σ , corresponds to the following condition:

Fig. 3. Hybrid Petri nets model simulates the scheduled farm work

Hybrid Petri Nets and Metaheuristic Approach to Farm Work Scheduling

143

Notation Definition
NF

NW

NR

Fi

Wj

Rk

Ai

Iij

mij

Sjk

jkS′
vk

Oij

Uj

wijk

tijk

kv′

Dab

Total number of farmlands
Total number of works in a crop growth cycle
Total number of available resources for a work
Farmland i, i ∈ {1,..., NF}
Work j, j ∈ {1,..., NW }
Resource k, k ∈ {1,..., NR}
Area of Fi

Iij ∈ {0,1}, 1: Wj should be performed in Fi; otherwise, 0
Amount of scheduled work Wj in Fi, mij ∈ [0, Ai]
Sjk ∈ {0,1}, 1: Rk is available to perform Wj; otherwise, 0

jkS′ ∈ {0,1}, 1: Rk is scheduled to perform Wj; otherwise, 0
Average working speed of Rk

Waiting time between end time of Wj−1 and start time of Wj in Fi

Time window [start time Uj(s), end time Uj(e)] for Wj

Task in Fj by Rk, for Wj

Working time [Start time tijk (s), end time tijk(e)] of Wj in Fi by Rk

Moving speed of Rk

Distance between Fa and Fb, a, b ∈ {1,..., NF}

Table 1. Notations for farm work scheduling

Uj
Uj (e)Uj (s)

Fa

Fb

Oaj

Obj

Dab /v’ktaj k

tbj k

wa(j − 1)k 1

wb(j − 1)k 2
wbj k

waj k

Cooperative work

Time

Fig. 4. Defined variables on time axis

 1 jk jkk kS S′≤ ≤∑ ∑ (2)

The amount of scheduled work mij must be completed by certain resources Rk during tijk at
working speed vk. As a consequence, the following equation exists:

1

2
1 2ij ij ijk ij

k

v
v

t t t m

v

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3)

 Advances in Petri Net Theory and Applications

142

Wj requires at least one resource, and the total number of assigned resources is less than or
equal to the number of resources available to perform Wk (Σk Sjk). The number of assigned
resources for the execution of work Wj, ,k jkS′Σ , corresponds to the following condition:

Fig. 3. Hybrid Petri nets model simulates the scheduled farm work

Hybrid Petri Nets and Metaheuristic Approach to Farm Work Scheduling

143

Notation Definition
NF

NW

NR

Fi

Wj

Rk

Ai

Iij

mij

Sjk

jkS′
vk

Oij

Uj

wijk

tijk

kv′

Dab

Total number of farmlands
Total number of works in a crop growth cycle
Total number of available resources for a work
Farmland i, i ∈ {1,..., NF}
Work j, j ∈ {1,..., NW }
Resource k, k ∈ {1,..., NR}
Area of Fi

Iij ∈ {0,1}, 1: Wj should be performed in Fi; otherwise, 0
Amount of scheduled work Wj in Fi, mij ∈ [0, Ai]
Sjk ∈ {0,1}, 1: Rk is available to perform Wj; otherwise, 0

jkS′ ∈ {0,1}, 1: Rk is scheduled to perform Wj; otherwise, 0
Average working speed of Rk

Waiting time between end time of Wj−1 and start time of Wj in Fi

Time window [start time Uj(s), end time Uj(e)] for Wj

Task in Fj by Rk, for Wj

Working time [Start time tijk (s), end time tijk(e)] of Wj in Fi by Rk

Moving speed of Rk

Distance between Fa and Fb, a, b ∈ {1,..., NF}

Table 1. Notations for farm work scheduling

Uj
Uj (e)Uj (s)

Fa

Fb

Oaj

Obj

Dab /v’ktaj k

tbj k

wa(j − 1)k 1

wb(j − 1)k 2
wbj k

waj k

Cooperative work

Time

Fig. 4. Defined variables on time axis

 1 jk jkk kS S′≤ ≤∑ ∑ (2)

The amount of scheduled work mij must be completed by certain resources Rk during tijk at
working speed vk. As a consequence, the following equation exists:

1

2
1 2ij ij ijk ij

k

v
v

t t t m

v

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3)

 Advances in Petri Net Theory and Applications

144

In order to avoid the superposition of work time by a same resource, we have the following
equation:

, , , , , , , {1,..., }, {1,..., }

 () () (if) ()
F W

ijk pqk ijk pqk

i j p q k i p j q p N q N
t e t s t s t s

∀ ≠ ≠ ∈ ∈
< <

 (4)

For the timeliness of the work, the start working time tijk(s) and the end working time tijk(e)
are subject to the additional conditions stated in Equation (5).

 (1)

, , , , {1,..., }
 () ((), ())

 () ()

R

ijk j i j k ij

ijk j

i j k k k N
t s max U s t e O

t e U e
′−

′ ′∀ ∈
≥ +

≤

 (5)

In a farmland, work Wj can only start after the completion of the former one Wj−1, which is
defined in the form

 (1) , , , , () () ijk i j ki j k k t s t e−′∀ > (6)

Considering the moving time between farmlands, we have

, , , ,

 () () / if () ()ajk bjk ab k ajk bjk

a b j k a b
t s t e D v t e t s

∀ ≠
′≥ + <

 (7)

2.5 Comparison between the two formulation methods
Although the objectives of the farm work scheduling can take many forms such as
minimizing the make-span, maximizing plant throughput, maximizing profit or minimizing
production costs, we only consider minimizing the idle time between works for both
formulation methods in this paper. For the formulation by mathematical definition, the
objective function is written as

 , , ,min ([() ()])bjk ajka b j k t s t e−∑ (8)

where task wbjk is a latter task of wajk (tbjk(s) ≥ tajk(e)). It is apparent that the problem defined by
Equations (2) - (8) corresponds to a mixed integer nonlinear programming (MINLP). In
contrast with mathematical definition, the scheduling objective for the formulation by
hybrid Petri nets is to find a firing sequence in that the idle time is minimum.
The firing rules or natural characteristics of Petri nets completely accommodate the
constraints defined in the above equations. For example, Rule 1, 2, 3, 4, 5 and 6 accord with
Equation (2), (3), (4), (5), (6) and (7), respectively. Rule 7 is reserved for the real-time
scheduling and has not defined in mathematical method. The corresponding relation
indicates that the formulation by the hybrid Petri nets substantially reduce the complexity of
problem, which is also agued in Ghaeli et al. (2006); Sadrieh et al. (2007). Furthermore, the
scheduling by the hybrid Petri nets is more representable and comprehensible for the farm
work corporations than that in the form of mathematical equations.

Hybrid Petri Nets and Metaheuristic Approach to Farm Work Scheduling

145

3. Metaheuristic approach for optimization
Generating a farm work schedule on the hybrid Petri nets includes the two phases for
assigning resources and arranging the work sequence. In the first phase, a scheme of
resource assignment to each task is supposed and optimized by a simulated annealing (SA)
algorithm; and in the second phase, the seeking for the best work sequence based on the
resource assignment obtained in the first phase is executed by the procedure of a genetic
algorithm (GA). The work sequence here is designated as a priority list in which works are
arranged according to a specific priority. The second phase is in charge of inheriting the
present best task sequence, dynamically creating Petri nets, simulating the activities on Petri
nets, and evaluating the schedule. At the end of the GA procedure, the present best resource
assignment scheme is obtained, and it will be inherited in the continuing first phase.

3.1 SA for optimizing resource assignment
The cooperative work during the farm work process has to be taken into account. The
number of assignable resources is defined in Rule 1 or Equation (2). An independent
variable x in the SA procedure is set to a resource assignment scheme. x’, that is, another
independent variable in the neighboring region of x, represents an alterable resource
assignment scheme. The pseudo code of the SA in the first phase is described as:

00: begin
01: initialize temperature Γ, neighboring space n;
02: initialize resource assignment x, and minimum fitness min;
03: evaluate fitness fx (= gaPls(x)) in 2nd phase;
04: while (not termination-condition) do
05: for i = 1 to n
06: generate another resource assignment x’;
07: evaluate fitness fx’ (= gaPls(x’)) in 2nd phase;
08: if (fx’ < fx) then
09: replace x with x’;
10: else
11: if (random(0,1) < exp(fx − fx’)/Γ) then
12: replace x with x’;
13: end if
14: end if
15: if (fx’ < min) then
16: update min with fx’, and memorize x’;
17: end if
18: end for
19: replace Γ with (Γ − Γ ∗ α); //0 < α < 1
20: end while
21: end

At the end of the first phase, a resource assignment is obtained. And then, the length of
chromosomes in the GA in the next phase can be designated, and the places and transitions
of the hybrid Petri nets can be constructed before the iteration computation by the GA.

 Advances in Petri Net Theory and Applications

144

In order to avoid the superposition of work time by a same resource, we have the following
equation:

, , , , , , , {1,..., }, {1,..., }

 () () (if) ()
F W

ijk pqk ijk pqk

i j p q k i p j q p N q N
t e t s t s t s

∀ ≠ ≠ ∈ ∈
< <

 (4)

For the timeliness of the work, the start working time tijk(s) and the end working time tijk(e)
are subject to the additional conditions stated in Equation (5).

 (1)

, , , , {1,..., }
 () ((), ())

 () ()

R

ijk j i j k ij

ijk j

i j k k k N
t s max U s t e O

t e U e
′−

′ ′∀ ∈
≥ +

≤

 (5)

In a farmland, work Wj can only start after the completion of the former one Wj−1, which is
defined in the form

 (1) , , , , () () ijk i j ki j k k t s t e−′∀ > (6)

Considering the moving time between farmlands, we have

, , , ,

 () () / if () ()ajk bjk ab k ajk bjk

a b j k a b
t s t e D v t e t s

∀ ≠
′≥ + <

 (7)

2.5 Comparison between the two formulation methods
Although the objectives of the farm work scheduling can take many forms such as
minimizing the make-span, maximizing plant throughput, maximizing profit or minimizing
production costs, we only consider minimizing the idle time between works for both
formulation methods in this paper. For the formulation by mathematical definition, the
objective function is written as

 , , ,min ([() ()])bjk ajka b j k t s t e−∑ (8)

where task wbjk is a latter task of wajk (tbjk(s) ≥ tajk(e)). It is apparent that the problem defined by
Equations (2) - (8) corresponds to a mixed integer nonlinear programming (MINLP). In
contrast with mathematical definition, the scheduling objective for the formulation by
hybrid Petri nets is to find a firing sequence in that the idle time is minimum.
The firing rules or natural characteristics of Petri nets completely accommodate the
constraints defined in the above equations. For example, Rule 1, 2, 3, 4, 5 and 6 accord with
Equation (2), (3), (4), (5), (6) and (7), respectively. Rule 7 is reserved for the real-time
scheduling and has not defined in mathematical method. The corresponding relation
indicates that the formulation by the hybrid Petri nets substantially reduce the complexity of
problem, which is also agued in Ghaeli et al. (2006); Sadrieh et al. (2007). Furthermore, the
scheduling by the hybrid Petri nets is more representable and comprehensible for the farm
work corporations than that in the form of mathematical equations.

Hybrid Petri Nets and Metaheuristic Approach to Farm Work Scheduling

145

3. Metaheuristic approach for optimization
Generating a farm work schedule on the hybrid Petri nets includes the two phases for
assigning resources and arranging the work sequence. In the first phase, a scheme of
resource assignment to each task is supposed and optimized by a simulated annealing (SA)
algorithm; and in the second phase, the seeking for the best work sequence based on the
resource assignment obtained in the first phase is executed by the procedure of a genetic
algorithm (GA). The work sequence here is designated as a priority list in which works are
arranged according to a specific priority. The second phase is in charge of inheriting the
present best task sequence, dynamically creating Petri nets, simulating the activities on Petri
nets, and evaluating the schedule. At the end of the GA procedure, the present best resource
assignment scheme is obtained, and it will be inherited in the continuing first phase.

3.1 SA for optimizing resource assignment
The cooperative work during the farm work process has to be taken into account. The
number of assignable resources is defined in Rule 1 or Equation (2). An independent
variable x in the SA procedure is set to a resource assignment scheme. x’, that is, another
independent variable in the neighboring region of x, represents an alterable resource
assignment scheme. The pseudo code of the SA in the first phase is described as:

00: begin
01: initialize temperature Γ, neighboring space n;
02: initialize resource assignment x, and minimum fitness min;
03: evaluate fitness fx (= gaPls(x)) in 2nd phase;
04: while (not termination-condition) do
05: for i = 1 to n
06: generate another resource assignment x’;
07: evaluate fitness fx’ (= gaPls(x’)) in 2nd phase;
08: if (fx’ < fx) then
09: replace x with x’;
10: else
11: if (random(0,1) < exp(fx − fx’)/Γ) then
12: replace x with x’;
13: end if
14: end if
15: if (fx’ < min) then
16: update min with fx’, and memorize x’;
17: end if
18: end for
19: replace Γ with (Γ − Γ ∗ α); //0 < α < 1
20: end while
21: end

At the end of the first phase, a resource assignment is obtained. And then, the length of
chromosomes in the GA in the next phase can be designated, and the places and transitions
of the hybrid Petri nets can be constructed before the iteration computation by the GA.

 Advances in Petri Net Theory and Applications

146

3.2 GA for scheduling
Based on the assigned resources, the second metaheuristic GA seeks priority lists to generate
the present optimal schedules. The priority list is encoded into a chromosome, in which the
tasks (genes) are grouped by the same works Wj. Be similar to operations in traditional GAs,
the one-point order crossover, one-bit reverse mutation, roulette selection and an elite
selection are incorporated in the GA procedure. The crossover and mutation operations are
restricted to those between the tasks in the same works Wj. The fitness function is to
evaluate the sum of the moving time and the idle time between the tasks. This objective is
achieved by firing the hybrid Petri nets until no continuous transition can fire. When the
firing operation stops, the generated schedule will be memorized along with the priority list
if it has the current best fitness. The pseudo code of the GA is briefly described in procedure
gaPls(x), followed by the procedure of evaluating the fitness.

00: procedure gaPls(x)
01: begin
02: initialize population c with the chromosomes inherited
 from the present best priority list;
03: construct continuous part of hybrid Petri nets;
04: evaluation(c);
05: while not-termination-condition do
06: selection;
07: crossover;
08: mutation;
09: evaluation(c);
10: end while
11: end

00: procedure evaluation(c)
01: begin
02: for r = 1 to popSize
03: construct the discrete part of the hybrid Petri nets;
04: initial time interval δ; current time s = 0;
05: while tasks-are-not-completed do
06: if (firing-conditions-are-satisfied) then
07: firing and update the amount of tokens in the corresponding places;
08: end if
09: update s with s + δ;
10: update the sum of moving time and idle time;
11: end while
12: if (best-fitness-found) then
13: update current best fitness, priority list, and schedule;
14: end if
15: end for
16: end

Hybrid Petri Nets and Metaheuristic Approach to Farm Work Scheduling

147

3.3 Deadlock removal
A deadlock in farm work scheduling is a situation where two or more competing works
await the release of resources and neither obtains the necessary resources. In general,
conflicts on resource use have to be examined for deadlock removal in a conventional
optimization. For example, assigning a resource to a work in a conventional optimization
have to check whether or not the resource is already being used for another work
simultaneously; if no resource is available for the work, the computing will shift into a
waiting state until some resource is released. Since the computation time in the GA iteration
is the product of the size of the population, generation, and evaluation, a long evaluation
time that is wasted in resolving the deadlock of resource use results in an inefficient search.
Furthermore, some randomly generated individuals in the iterations may be infeasible
solutions if the work is scheduled across the time window for cultivation.
In contrast, assigning resources in the first phase before the GA iterations may remarkably
prevent deadlocks caused by resource conflict. The assigned resources are independent each
other, and the inheriting operation in the second phase avoids resuming a search from an
unknown origin; therefore, the searching efficiency is improved.

4. Computational results
We conducted a simulation experiment on the farm work scheduling, and the experiment
data was mainly obtained from a sugarcane-producing agricultural corporation. The major
farm works of cultivating spring-growth sugarcane in 76 farmlands, defined as Wj, involved
from the work of the tilling to the harvesting within a predefined time window. The number
of available resources required for these works W1, W2, ...W6 was assumed to 2, 1, 1, 1, 1, and
3, respectively. The program was written in the C language, and a Mac Pro with Quad-Core
Intel Xeon and 4GB RAM running Mac OS X 10.5 was used as the computing platform. The
computation time relied on the parameters of the SA, GA, and time increment in the hybrid
Petri nets. The terminate condition was set as Γ < 0.1 and total computation time ≤ 2 h when
n = 200, α = 0.02 in the SA; population size = 20 and the number of generations = 200 in the
GA; and time increment = 10 min in the hybrid Petri nets.

4.1 Optimizing resource assignment and priority list
The impact on evolutionary solution by the particular emphasis on resource assignment was
examined in the experiment. Figure 5 shows the contrastive effect on optimizing resource
assignment and priority list by the different generation sizes of the GA. The curves are
plotted with the current best solution over the computation time. Curve ”gen-100”
represents the evolution process for the high frequency of optimizing resource assignment
but a short computation time for the GA iterations. Compared with curve ”gen-100”, curve
”gen-1000” emphasizes optimizing the priority list in the GA but results in a reduction in
the frequency for optimizing resource assignment in the SA at the same computation time.
As shown in the figure, not only a fast evolution but also a good solution quality appears in
curve ”gen-100” in the evolution. This reveals that increasing the frequency of optimizing
resource assignment is conductive to a fast evolution and convergence, and is more efficient
than the optimization computation on the priority list.

 Advances in Petri Net Theory and Applications

146

3.2 GA for scheduling
Based on the assigned resources, the second metaheuristic GA seeks priority lists to generate
the present optimal schedules. The priority list is encoded into a chromosome, in which the
tasks (genes) are grouped by the same works Wj. Be similar to operations in traditional GAs,
the one-point order crossover, one-bit reverse mutation, roulette selection and an elite
selection are incorporated in the GA procedure. The crossover and mutation operations are
restricted to those between the tasks in the same works Wj. The fitness function is to
evaluate the sum of the moving time and the idle time between the tasks. This objective is
achieved by firing the hybrid Petri nets until no continuous transition can fire. When the
firing operation stops, the generated schedule will be memorized along with the priority list
if it has the current best fitness. The pseudo code of the GA is briefly described in procedure
gaPls(x), followed by the procedure of evaluating the fitness.

00: procedure gaPls(x)
01: begin
02: initialize population c with the chromosomes inherited
 from the present best priority list;
03: construct continuous part of hybrid Petri nets;
04: evaluation(c);
05: while not-termination-condition do
06: selection;
07: crossover;
08: mutation;
09: evaluation(c);
10: end while
11: end

00: procedure evaluation(c)
01: begin
02: for r = 1 to popSize
03: construct the discrete part of the hybrid Petri nets;
04: initial time interval δ; current time s = 0;
05: while tasks-are-not-completed do
06: if (firing-conditions-are-satisfied) then
07: firing and update the amount of tokens in the corresponding places;
08: end if
09: update s with s + δ;
10: update the sum of moving time and idle time;
11: end while
12: if (best-fitness-found) then
13: update current best fitness, priority list, and schedule;
14: end if
15: end for
16: end

Hybrid Petri Nets and Metaheuristic Approach to Farm Work Scheduling

147

3.3 Deadlock removal
A deadlock in farm work scheduling is a situation where two or more competing works
await the release of resources and neither obtains the necessary resources. In general,
conflicts on resource use have to be examined for deadlock removal in a conventional
optimization. For example, assigning a resource to a work in a conventional optimization
have to check whether or not the resource is already being used for another work
simultaneously; if no resource is available for the work, the computing will shift into a
waiting state until some resource is released. Since the computation time in the GA iteration
is the product of the size of the population, generation, and evaluation, a long evaluation
time that is wasted in resolving the deadlock of resource use results in an inefficient search.
Furthermore, some randomly generated individuals in the iterations may be infeasible
solutions if the work is scheduled across the time window for cultivation.
In contrast, assigning resources in the first phase before the GA iterations may remarkably
prevent deadlocks caused by resource conflict. The assigned resources are independent each
other, and the inheriting operation in the second phase avoids resuming a search from an
unknown origin; therefore, the searching efficiency is improved.

4. Computational results
We conducted a simulation experiment on the farm work scheduling, and the experiment
data was mainly obtained from a sugarcane-producing agricultural corporation. The major
farm works of cultivating spring-growth sugarcane in 76 farmlands, defined as Wj, involved
from the work of the tilling to the harvesting within a predefined time window. The number
of available resources required for these works W1, W2, ...W6 was assumed to 2, 1, 1, 1, 1, and
3, respectively. The program was written in the C language, and a Mac Pro with Quad-Core
Intel Xeon and 4GB RAM running Mac OS X 10.5 was used as the computing platform. The
computation time relied on the parameters of the SA, GA, and time increment in the hybrid
Petri nets. The terminate condition was set as Γ < 0.1 and total computation time ≤ 2 h when
n = 200, α = 0.02 in the SA; population size = 20 and the number of generations = 200 in the
GA; and time increment = 10 min in the hybrid Petri nets.

4.1 Optimizing resource assignment and priority list
The impact on evolutionary solution by the particular emphasis on resource assignment was
examined in the experiment. Figure 5 shows the contrastive effect on optimizing resource
assignment and priority list by the different generation sizes of the GA. The curves are
plotted with the current best solution over the computation time. Curve ”gen-100”
represents the evolution process for the high frequency of optimizing resource assignment
but a short computation time for the GA iterations. Compared with curve ”gen-100”, curve
”gen-1000” emphasizes optimizing the priority list in the GA but results in a reduction in
the frequency for optimizing resource assignment in the SA at the same computation time.
As shown in the figure, not only a fast evolution but also a good solution quality appears in
curve ”gen-100” in the evolution. This reveals that increasing the frequency of optimizing
resource assignment is conductive to a fast evolution and convergence, and is more efficient
than the optimization computation on the priority list.

 Advances in Petri Net Theory and Applications

148

 150

 200

 250

 300

 350

 400

 450

 0 1000 2000 3000 4000 5000 6000 7000

Fi
tn

es
s

Execution time (s)

gen-100
gen-1000

Fig. 5. Evolution based on optimizing resource assignment and priority list

4.2 Inheriting operation
Inheriting the present best work sequence starts with initializing the population for the
second scheme of resource assignment. Before the inheriting operation, the procedure
gaPls(x) is completed, and the present best work sequence for each resource is ascertained.
In general, an inheriting operation can reserve and further improve the solution quality.
Accordingly, the inheriting rate for the present best work sequence may impact the
evolutionary computation. In order to clarify this, we have investigated the effect of
inheriting operation at different inheriting rates and show the comparison of the obtained
results in Fig. 6.
In the figure, curve ”cpr-0%” indicates that the inheriting rate is zero, and the chromosomes
in the initial population are entirely randomly generated. Similarly, curve ”cpr-10%” implies
that 10% of the chromosomes are inherited from the best priority list from the previous
scheme of resource assignment, and the remaining chromosomes are randomly generated.
Although several curves intersect at the beginning of the evolution, the best fitness is finally
arranged in the descending order of the inheriting rate. The comparison result demonstrates
that both the better solution and evolution speed is obtained by the higher inheriting rate.
Conventionally, the inheriting operation for all chromosomes in the initial population may
be disadvantageous because of a lack of variety in the chromosomes. Nevertheless, in our
experiment, the inherited chromosomes continue to exhibit varieties because the resource
assignment is renewed and the partial genes in the chromosomes are generated randomly
after the inheriting operation.

Hybrid Petri Nets and Metaheuristic Approach to Farm Work Scheduling

149

 150

 200

 250

 300

 350

 400

 450

 0 1000 2000 3000 4000 5000 6000 7000

Fi
tn

es
s

Execution time (s)

cpr-0%
cpr-20%
cpr-50%
cpr-80%

cpr-100%

Fig. 6. Effect of inheriting the present best priority list

4.3 Scheduling result
The information on the schedule with the best fitness is listed in Table 2. Resources R1 → R2,
R7 → R9 are available to perform W1 and W6 in cooperation, respectively. Such cooperative
works are performed eight times. The idle time caused by waiting time Oij is very short; and
the average rate of utilization for each resource reaches 94.0%, which does not involve the
moving time. The schedule length, which is the time period between the start of the first
task and the completion of the last task, is applicable to the farm works in a growth cycle
because a sugarcane-producing agricultural corporation usually requires time to carry out
extra farm works. In order to reserve the time for these extra farm works and the risks such
as rain and other uncertainties, we calculate the unscheduled time for each resource. This is
very valuable to make an estimate of how much extra works the agricultural corporation
can carry out.

Resource R1 R2 R3 R4 R5 R6 R7 R8 R9
Moving time (h) 14.7 19.7 15.8 25.8 24.7 26.5 14.2 15.8 10.0
Idle time (h) 1.0 0.3 0.0 0.0 0.0 1.8 0.0 0.0 0.0
Number of tasks 47 56 47 76 71 74 47 39 41
Work duration (h) 292.5 289.2 310.8 432.5 405.2 464.2 209.5 207 209.7
Rate of utilization 95.0 93.2 94.9 94.0 93.9 94.3 93.2 92.4 95.2
Unscheduled time 91.2 95.2 79.3 0.0 0.0 8.3 94.0 108.3 101.2

Times of performing work cooperatively 8
Total area of farmland (hectare) 9.36
Total amount of work (hectare) 48.9

Schedule length (h) 2128.8
Table 2. Information on generated schedule

 Advances in Petri Net Theory and Applications

148

 150

 200

 250

 300

 350

 400

 450

 0 1000 2000 3000 4000 5000 6000 7000

Fi
tn

es
s

Execution time (s)

gen-100
gen-1000

Fig. 5. Evolution based on optimizing resource assignment and priority list

4.2 Inheriting operation
Inheriting the present best work sequence starts with initializing the population for the
second scheme of resource assignment. Before the inheriting operation, the procedure
gaPls(x) is completed, and the present best work sequence for each resource is ascertained.
In general, an inheriting operation can reserve and further improve the solution quality.
Accordingly, the inheriting rate for the present best work sequence may impact the
evolutionary computation. In order to clarify this, we have investigated the effect of
inheriting operation at different inheriting rates and show the comparison of the obtained
results in Fig. 6.
In the figure, curve ”cpr-0%” indicates that the inheriting rate is zero, and the chromosomes
in the initial population are entirely randomly generated. Similarly, curve ”cpr-10%” implies
that 10% of the chromosomes are inherited from the best priority list from the previous
scheme of resource assignment, and the remaining chromosomes are randomly generated.
Although several curves intersect at the beginning of the evolution, the best fitness is finally
arranged in the descending order of the inheriting rate. The comparison result demonstrates
that both the better solution and evolution speed is obtained by the higher inheriting rate.
Conventionally, the inheriting operation for all chromosomes in the initial population may
be disadvantageous because of a lack of variety in the chromosomes. Nevertheless, in our
experiment, the inherited chromosomes continue to exhibit varieties because the resource
assignment is renewed and the partial genes in the chromosomes are generated randomly
after the inheriting operation.

Hybrid Petri Nets and Metaheuristic Approach to Farm Work Scheduling

149

 150

 200

 250

 300

 350

 400

 450

 0 1000 2000 3000 4000 5000 6000 7000

Fi
tn

es
s

Execution time (s)

cpr-0%
cpr-20%
cpr-50%
cpr-80%

cpr-100%

Fig. 6. Effect of inheriting the present best priority list

4.3 Scheduling result
The information on the schedule with the best fitness is listed in Table 2. Resources R1 → R2,
R7 → R9 are available to perform W1 and W6 in cooperation, respectively. Such cooperative
works are performed eight times. The idle time caused by waiting time Oij is very short; and
the average rate of utilization for each resource reaches 94.0%, which does not involve the
moving time. The schedule length, which is the time period between the start of the first
task and the completion of the last task, is applicable to the farm works in a growth cycle
because a sugarcane-producing agricultural corporation usually requires time to carry out
extra farm works. In order to reserve the time for these extra farm works and the risks such
as rain and other uncertainties, we calculate the unscheduled time for each resource. This is
very valuable to make an estimate of how much extra works the agricultural corporation
can carry out.

Resource R1 R2 R3 R4 R5 R6 R7 R8 R9
Moving time (h) 14.7 19.7 15.8 25.8 24.7 26.5 14.2 15.8 10.0
Idle time (h) 1.0 0.3 0.0 0.0 0.0 1.8 0.0 0.0 0.0
Number of tasks 47 56 47 76 71 74 47 39 41
Work duration (h) 292.5 289.2 310.8 432.5 405.2 464.2 209.5 207 209.7
Rate of utilization 95.0 93.2 94.9 94.0 93.9 94.3 93.2 92.4 95.2
Unscheduled time 91.2 95.2 79.3 0.0 0.0 8.3 94.0 108.3 101.2

Times of performing work cooperatively 8
Total area of farmland (hectare) 9.36
Total amount of work (hectare) 48.9

Schedule length (h) 2128.8
Table 2. Information on generated schedule

 Advances in Petri Net Theory and Applications

150

5. Conclusions and future works
In this study, a hybrid Petri nets model was developed for modeling and formulating the
farm work scheduling, and a metaheuristic approach for optimizing the schedule. A
comparison on the formulating method between by hybrid Petri nets and mathematical
definition was clarified according to their corresponding relations. In the experiment, the
computational result revealed that a fast evolution and good solution quality were obtained
by emphasizing the resource assignment optimization, and initializing the priority lists
inherited from the present best task sequence in the previous resource assignment.
Assigning resources first in the two-phase optimization for deadlocks removal considerably
improved searching efficiency. Finally, the generated schedule had a high ratio of resource
utilization, and it was applicable for devising a practical farm work plan in the agricultural
corporation.
We put emphasis on the methodology of formulating and solving the farm work scheduling
problem. The generated schedule was for the long-term schedule in a crop growth cycling,
but not for the real-time schedule in which the schedule should be calculated in a short time.
The proposed model has adequate compatibility and expansibility for modeling the discrete,
continuous, concurrent, static, and dynamic events in farming processes. The stochastic
event such as the data of weather can be also formulated on the Petri nets model by
associating a time vector with a probability distribution to transitions. Although such
environmental changes or breaks were ignored in the experiment, they will be considered in
the real-time scheduling on a mobile device in our continuing work.
With respect to the computation time, the maximum time was required for the GA iterations
and the simulation computation for the firing of the hybrid Petri nets. We are considering
some approaches to reduction of computation time such as improved the crossover of the
GA operations, parallel computing and an alterable strategy for simulating the firing
operations of the hybrid Petri nets.

6. References
Arjona, E., Bueno, G. & Salazar, L. (2001). An activity simulation model for the analysis of

the harvesting and transportation systems of a sugarcane plantation, Computers and
Electronics in Agriculture 32: 247–264.

Astika, I. W., Sasao, A., Sakai, K. & Shibusawa, S. (1999). Stochastic farm work scheduling
algorithm based on short range weather variation, Journal of the Japanese Society of
Agricultural Machinery 61: (2)157–164, (3)83–94, (4)141–150.

Balasubramanian, J. & Grossmann, I. E. (2003). Scheduling optimization under uncertainty -
an alternative approach, Computers and Chemical Engineering 27(4): 469 – 490.

Bassett, M. H., Pekny, J. F. & Reklaitis, G. V. (1997). Using detailed scheduling to obtain
realistic operating policies for a batch processing facility, Industrial Engineering and
Chemical Research 36: 1717–1726.

Chen, L. H. & McClendon, R. W. (1985). Soybean and wheat double cropping simulation
model, Transaction of the ASAE 28(1): 65–69.

Daikoku, M. (2005). Development of computer-assisted system for planning work schedule
of paddy and transplanting in distributed fields, Japanese Journal of Farm Work
Research 40(4): 210–214. (In Japanese).

Hybrid Petri Nets and Metaheuristic Approach to Farm Work Scheduling

151

Ghaeli, M., Bahri, P. A. & Lee, P. L. (2006). Timed arc hybrid Petri nets based scheduling
of mixed batch/continuous plants, Proceedings of the 17th IMACS World
Congress.

Guan, S., Nakamura, M., Shikanai, T. & Okazaki, T. (2008). Hybrid petri nets modeling for
farm work flow, Computers and Electronics in Agriculture 62(2): 149–158.

Guan, S., Nakamura, M., Shikanai, T. & Okazaki, T. (2009). Resource assignment and
scheduling based on a two-phase metaheuristic for cropping system, Computers and
Electronics in Agriculture 66(2): 181–190.

Haffar, I. & Khoury, R. (1992). A computer model for field machinery selection under
multiple cropping, Computers and Electronics in Agriculture 7: 219–229.

Higgins, A. & Davies, I. (2005). A simulation model for capacity planning in sugarcane
transport, Computers and Electronics in Agriculture 47: 85–102.

Janak, S. L. & Floudas, C. A. (2006). Production scheduling of a large-scale industrial batch
plant. II. Reactive scheduling, Industrial and Engineering Chemistry Research 45(25):
8253–8269.

Lal, H., Peart, R. M., Jones, J. W. & Shoup, W. D. (1991). An object-oriented field operation
simulator in PROLOG, Transaction of the ASAE 34(3): 1031–1039.

Li, Z. & Ierapetritou, G. (2008). Process scheduling under uncertainty: Review and
challenges, Computers and Chemical Engineering 32: 715–727.

Lin, X., Janak, S. & Floudas, C. (2004). A new robust optimization approach for scheduling
under uncertainty: I. Bounded uncertainty, Computers and Chemical Engineering 28:
1069–1085.

Murata, T. (1989). Petri nets: Properties, analysis and applications, Proceedings of the IEEE
77(4): 541–580.

Nanseki, T. (1998). Operations of FAPS97: A decision support system for evaluating
agricultural technology and farm planning, Miscellaneous Publication Tohoku
National Agricultural Experiment Station 21: 1–119. (In Japanese).

Nanseki, T., Matsushita, S. & Ikeda, M. (2003). A farming-systems database for farm
planning, Agricultural Information Research 12: 133–152. (In Japanese).

Sadrieh, S., Ghaeli, M., Bahri, P. & Lee, P. (2007). An integrated Petri nets and GA based
approach for scheduling of hybrid plants, Computers in Industry 58: 519–530.

Santiago-Mozos, R., Salcedo-Sanz, S., DePrado-Cumpli, M. & Bousono-Calzon, C. (2005). A
two-phase heuristic evolutionary algorithm for personalizing course timetables: A
case study in a Spanish university, Computers and Operations Research 32(7): 1761–
1776.

Suliman, S. (2000). A two-phase heuristic approach to the permutation flow-shop scheduling
problem, International Journal of Production Economics 64: 143–152.

The Ministry of Agriculture, Forestry and Fisheries of Japan (2006). Japan’s
post-war agricultural land reform and subsequent agricultural land system,
National Report for the International Conference on Agrarian Reform and Rural
Development .

Till, J., Sand, G., Urselmann, M. & Engell, S. (2007). A hybrid evolutionary algorithm for
solving two-stage stochastic integer programs in chemical batch scheduling,
Computers and Chemical Engineering 31: 630–647.

 Advances in Petri Net Theory and Applications

150

5. Conclusions and future works
In this study, a hybrid Petri nets model was developed for modeling and formulating the
farm work scheduling, and a metaheuristic approach for optimizing the schedule. A
comparison on the formulating method between by hybrid Petri nets and mathematical
definition was clarified according to their corresponding relations. In the experiment, the
computational result revealed that a fast evolution and good solution quality were obtained
by emphasizing the resource assignment optimization, and initializing the priority lists
inherited from the present best task sequence in the previous resource assignment.
Assigning resources first in the two-phase optimization for deadlocks removal considerably
improved searching efficiency. Finally, the generated schedule had a high ratio of resource
utilization, and it was applicable for devising a practical farm work plan in the agricultural
corporation.
We put emphasis on the methodology of formulating and solving the farm work scheduling
problem. The generated schedule was for the long-term schedule in a crop growth cycling,
but not for the real-time schedule in which the schedule should be calculated in a short time.
The proposed model has adequate compatibility and expansibility for modeling the discrete,
continuous, concurrent, static, and dynamic events in farming processes. The stochastic
event such as the data of weather can be also formulated on the Petri nets model by
associating a time vector with a probability distribution to transitions. Although such
environmental changes or breaks were ignored in the experiment, they will be considered in
the real-time scheduling on a mobile device in our continuing work.
With respect to the computation time, the maximum time was required for the GA iterations
and the simulation computation for the firing of the hybrid Petri nets. We are considering
some approaches to reduction of computation time such as improved the crossover of the
GA operations, parallel computing and an alterable strategy for simulating the firing
operations of the hybrid Petri nets.

6. References
Arjona, E., Bueno, G. & Salazar, L. (2001). An activity simulation model for the analysis of

the harvesting and transportation systems of a sugarcane plantation, Computers and
Electronics in Agriculture 32: 247–264.

Astika, I. W., Sasao, A., Sakai, K. & Shibusawa, S. (1999). Stochastic farm work scheduling
algorithm based on short range weather variation, Journal of the Japanese Society of
Agricultural Machinery 61: (2)157–164, (3)83–94, (4)141–150.

Balasubramanian, J. & Grossmann, I. E. (2003). Scheduling optimization under uncertainty -
an alternative approach, Computers and Chemical Engineering 27(4): 469 – 490.

Bassett, M. H., Pekny, J. F. & Reklaitis, G. V. (1997). Using detailed scheduling to obtain
realistic operating policies for a batch processing facility, Industrial Engineering and
Chemical Research 36: 1717–1726.

Chen, L. H. & McClendon, R. W. (1985). Soybean and wheat double cropping simulation
model, Transaction of the ASAE 28(1): 65–69.

Daikoku, M. (2005). Development of computer-assisted system for planning work schedule
of paddy and transplanting in distributed fields, Japanese Journal of Farm Work
Research 40(4): 210–214. (In Japanese).

Hybrid Petri Nets and Metaheuristic Approach to Farm Work Scheduling

151

Ghaeli, M., Bahri, P. A. & Lee, P. L. (2006). Timed arc hybrid Petri nets based scheduling
of mixed batch/continuous plants, Proceedings of the 17th IMACS World
Congress.

Guan, S., Nakamura, M., Shikanai, T. & Okazaki, T. (2008). Hybrid petri nets modeling for
farm work flow, Computers and Electronics in Agriculture 62(2): 149–158.

Guan, S., Nakamura, M., Shikanai, T. & Okazaki, T. (2009). Resource assignment and
scheduling based on a two-phase metaheuristic for cropping system, Computers and
Electronics in Agriculture 66(2): 181–190.

Haffar, I. & Khoury, R. (1992). A computer model for field machinery selection under
multiple cropping, Computers and Electronics in Agriculture 7: 219–229.

Higgins, A. & Davies, I. (2005). A simulation model for capacity planning in sugarcane
transport, Computers and Electronics in Agriculture 47: 85–102.

Janak, S. L. & Floudas, C. A. (2006). Production scheduling of a large-scale industrial batch
plant. II. Reactive scheduling, Industrial and Engineering Chemistry Research 45(25):
8253–8269.

Lal, H., Peart, R. M., Jones, J. W. & Shoup, W. D. (1991). An object-oriented field operation
simulator in PROLOG, Transaction of the ASAE 34(3): 1031–1039.

Li, Z. & Ierapetritou, G. (2008). Process scheduling under uncertainty: Review and
challenges, Computers and Chemical Engineering 32: 715–727.

Lin, X., Janak, S. & Floudas, C. (2004). A new robust optimization approach for scheduling
under uncertainty: I. Bounded uncertainty, Computers and Chemical Engineering 28:
1069–1085.

Murata, T. (1989). Petri nets: Properties, analysis and applications, Proceedings of the IEEE
77(4): 541–580.

Nanseki, T. (1998). Operations of FAPS97: A decision support system for evaluating
agricultural technology and farm planning, Miscellaneous Publication Tohoku
National Agricultural Experiment Station 21: 1–119. (In Japanese).

Nanseki, T., Matsushita, S. & Ikeda, M. (2003). A farming-systems database for farm
planning, Agricultural Information Research 12: 133–152. (In Japanese).

Sadrieh, S., Ghaeli, M., Bahri, P. & Lee, P. (2007). An integrated Petri nets and GA based
approach for scheduling of hybrid plants, Computers in Industry 58: 519–530.

Santiago-Mozos, R., Salcedo-Sanz, S., DePrado-Cumpli, M. & Bousono-Calzon, C. (2005). A
two-phase heuristic evolutionary algorithm for personalizing course timetables: A
case study in a Spanish university, Computers and Operations Research 32(7): 1761–
1776.

Suliman, S. (2000). A two-phase heuristic approach to the permutation flow-shop scheduling
problem, International Journal of Production Economics 64: 143–152.

The Ministry of Agriculture, Forestry and Fisheries of Japan (2006). Japan’s
post-war agricultural land reform and subsequent agricultural land system,
National Report for the International Conference on Agrarian Reform and Rural
Development .

Till, J., Sand, G., Urselmann, M. & Engell, S. (2007). A hybrid evolutionary algorithm for
solving two-stage stochastic integer programs in chemical batch scheduling,
Computers and Chemical Engineering 31: 630–647.

 Advances in Petri Net Theory and Applications

152

Tsai, Y. J., Jones, J. & Mishoe, J. (1987). Optimizing multiple cropping systems: A systems
approach, Transaction of the ASAE 30(6): 1554–1561.

Wang, J. (2004). A fuzzy robust scheduling approach for product development projects,
European Journal of Operational Research 152: 180–194.

9

Parallel Application Scheduling Model Based on
Petri Net with Changeable Structure

Xiangang Zhao, Caiying Wei, Manyun Lin,
Xiaohu Feng and Wei Lan

National Satellite Meteorological Center
China

1. Introduction
In Parallel computing environments, each user can submit his job that is represented as a
workflow composed of tasks that require multiple types of computational resources. How to
develop a mechanism that ensures the success of these workflows is a challenging issue
because the resources they use are dynamic and heterogeneous.
In order to schedule these workflows conveniently, a model is needed to describe them in a
simple, intuitive way. Script-based method is a simple way to describe workflows.
However, because those scripts often consist of so many elements with complex syntax that
the users cannot understand them quickly. The graphic description for a workflow is an
intuitive way, such as directed acyclic graph (DAG) and Petri Net. Compared to script-
based descriptions, DAG is easier to use and more intuitional. However, DAG offers only a
limited expressiveness [1], e.g. loops cannot be expressed directly. Moreover, as DAG only
has a single node type, data flowing through the net cannot be modeled easily.
Petri net [2] is a modeling tool used for modeling discrete, dynamic, parallel and
asynchronous system. Because of the function of simple graphical description and
interpretation ability, Petri net is widely used for system modeling and performance
analysis in recent years. Many researches have already introduced this method to model
workflow [3-5].
In this paper, we model scheduling nets and job nets based on Petri Net techniques. To be
convenient to analyze the performance of parallel jobs and to make net models compact and
intuitional, we separate the scheduling net from the job net and model them respectively. A
hierarchical colored Petri Net is proposed for the scheduling net that is designed into four
levels according to the granularity of parallel applications. The hierarchical scheduling
model makes each level scheduling only pay attention to its responsibility and it can reduce
the structure complexity of the scheduling net at the same time. This paper also designs a
extended Petri net with changeable structure for the job net model, which can change its
structure dynamically according to the real-time state of running job. This model supports
the mergence and division of subtasks and has ability to deal with the abnormity of
subtasks. The models are validated with reachability tree techniques and their performances
are analyzed with transition trees.

 Advances in Petri Net Theory and Applications

152

Tsai, Y. J., Jones, J. & Mishoe, J. (1987). Optimizing multiple cropping systems: A systems
approach, Transaction of the ASAE 30(6): 1554–1561.

Wang, J. (2004). A fuzzy robust scheduling approach for product development projects,
European Journal of Operational Research 152: 180–194.

9

Parallel Application Scheduling Model Based on
Petri Net with Changeable Structure

Xiangang Zhao, Caiying Wei, Manyun Lin,
Xiaohu Feng and Wei Lan

National Satellite Meteorological Center
China

1. Introduction
In Parallel computing environments, each user can submit his job that is represented as a
workflow composed of tasks that require multiple types of computational resources. How to
develop a mechanism that ensures the success of these workflows is a challenging issue
because the resources they use are dynamic and heterogeneous.
In order to schedule these workflows conveniently, a model is needed to describe them in a
simple, intuitive way. Script-based method is a simple way to describe workflows.
However, because those scripts often consist of so many elements with complex syntax that
the users cannot understand them quickly. The graphic description for a workflow is an
intuitive way, such as directed acyclic graph (DAG) and Petri Net. Compared to script-
based descriptions, DAG is easier to use and more intuitional. However, DAG offers only a
limited expressiveness [1], e.g. loops cannot be expressed directly. Moreover, as DAG only
has a single node type, data flowing through the net cannot be modeled easily.
Petri net [2] is a modeling tool used for modeling discrete, dynamic, parallel and
asynchronous system. Because of the function of simple graphical description and
interpretation ability, Petri net is widely used for system modeling and performance
analysis in recent years. Many researches have already introduced this method to model
workflow [3-5].
In this paper, we model scheduling nets and job nets based on Petri Net techniques. To be
convenient to analyze the performance of parallel jobs and to make net models compact and
intuitional, we separate the scheduling net from the job net and model them respectively. A
hierarchical colored Petri Net is proposed for the scheduling net that is designed into four
levels according to the granularity of parallel applications. The hierarchical scheduling
model makes each level scheduling only pay attention to its responsibility and it can reduce
the structure complexity of the scheduling net at the same time. This paper also designs a
extended Petri net with changeable structure for the job net model, which can change its
structure dynamically according to the real-time state of running job. This model supports
the mergence and division of subtasks and has ability to deal with the abnormity of
subtasks. The models are validated with reachability tree techniques and their performances
are analyzed with transition trees.

 Advances in Petri Net Theory and Applications

154

2. Related work
Jia Yu and Rajkumar Buyya et al[6-8] have done many researches on workflow in parallel
environments. They propose a taxonomy that characterizes and classifies various
approaches for building and executing workflows on Grids. They model workflow
applications as a DAG and present many algorithms to address scheduling optimization
problems in workflow applications based on QoS constraints. The emphases of their
researches are the development of workflow management systems and scheduling
algorithms.
BPEL4WS[9] builds on top of XML and web services specifications and provides a rich
method for modeling web services based on the description of business process. However,
its representation is script-based and it only composes workflows from web services.
Jin Hai et al[10] propose a workflow model based on colored Petri net for grid service
composition, in which the image date transmission was taken as requirements for the
service flow to improve the efficiency of settling service flow and reduce tasks’ execution
time. However, the model does not take the failure of task into consideration and does not
support dynamic structures.
A general scheduling framework[11] modeled by Petri net is proposed, which locates on the
layer of Grid scheduler and is used for independent tasks in computational Grid.
A three-level scheduling scheme[12] is proposed based on a high-level timed Petri net. The
scheme divides Grid scheduling into three levels: Grid scheduler, Local Scheduler and
Home Scheduler. It constructs different Petri net models for these levels. However, this
scheme only focuses on independent tasks. In order to deal with the scheduling problem of
task that consists of a set of communicating subtasks, an extended timed Petri net model[3]
is proposed. Based on composition and reduction of Petri nets, the model can reduce the
complexity of model and solve the state explosion problem in reachability analysis of Petri
nets. But this model does not concern about the abnormity of running tasks and has no
ability to change structure dynamically.

3. Definitions of extended Petri Nets
The jobs are dynamic and hierarchical in a parallel environment. According to these
characteristics, we design two types of enhanced Petri Net, which are extended from the
original Petri Net.
Definition 1 A Hierarchical Color Petri Net (HCPN) is designed into 9-tuple.

{ }0, ; , , , , , ,HCPN P T F D C I O K M=

1. P is a finite set of places.
2. T is a finite set of transitions and { }s cT T T= ∪ , where sT is a set of simple transitions,

cT is a set of complex transitions and ()()P T P T∪ ≠∅ Λ ∩ =∅ .

3. F is a finite set of arcs and () ()()F P S S P⊆ × ∪ × .

4. D is a finite set of colors.
5. C is a finite set of color functions. : ()C P T Dψ∪ → , where ()Dψ is the power set of

colors.
6. I and O are the input and output arc functions respectively.

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

155

() () () () (), , MSMS L
p t P T I p t C p C t⎡ ⎤∀ ∈ × ⇒ ∈ →⎣ ⎦

() () () () (), , MS MS L
t p T P O t p C t C p⎡ ⎤∀ ∈ × ⇒ ∈ →⎣ ⎦

When a transition needs to consume all tokens in a place, the input arc function is
(), ()I p t C pγ= .

7. K is a set of capacity functions. :K P N ω→ ∪ , { }1,2,3,N = and ω denotes infinite.
8. 0 : MSM P D→ is the initial token marking. () ()0:

MS
p P M p C p∀ ∈ ∈ , where ()MS

C p is
the multiple set of the color tokens in p .

Definition 2
1. { }, |p t p t T• = < > ∈ , { }, |p p t t T• = < > ∈ ,

{ }p p p• • • •= ∪ .

2. { }| ,p t t p F⊗ = < >∈ , { }| ,p t p t F⊗ = < >∈ .

3. { }| ,t p p t F⊗ = < >∈ , { }| ,t p t p F⊗ = < >∈ .

4. { | , }t t p t t p F⊗⊗ ⊗′ ′= ∈ ∧ < >∈ ,

{ | , }t t p t p t F⊗⊗ ⊗′ ′= ∈ ∧ < >∈ .
5. In HCPN , the firing rules of transition is

: () (,) :
() (,) ().

p t M p O p t p t
M p I p t K p

⊗ ⊗∀ ∈ ≥ ∧∀ ∈
+ ≤

6. There exist only one kp and one lp in HCPN , which satisfy the
condition: k l k lp p p p⊗ ⊗= ∅ ∧ =∅ ∧ ≠ . kp and lp are called Beginning Place and End
Place of HCPN respectively.

Definition 3
Any complex transition in HCPN can be extended to a subnet. The subnet of complex
transition it is defined as:

{ }0, ; , , , , , , i
i i i i i i i i iS HCPN P T F D C I O K M− = .

1. { }, ,i i
i begin end iP p p P′= is a set of places. iP′ is the set of inner places in iS HCPN− . i

beginp

and i
endp are additional places used to denote the beginning and end places of

iS HCPN− .
i
beginp• = ∅， ()i

endp • = ∅ ;

1() { ()| }i m
begin k k k iC p C p p t⊗

== ∪ ∈ ;

1() { ()| }i m
end k k k iC p C p p t⊗== ∪ ∈ .

2. { }()i i
i begin end iF p p F• • ′= ∪ ∪ is a set of arcs. iF′ is the set of inner arcs in iS HCPN− .

3. iT , iD , iC , iI , iO , iK and 0
iM are the sets of transitions, colors, color functions, input

arc functions, output arc functions, capacity functions and initial token marking
respectively.

Definition 4
A Petri Net with changeable structure is designed to11-tuple.

 Advances in Petri Net Theory and Applications

154

2. Related work
Jia Yu and Rajkumar Buyya et al[6-8] have done many researches on workflow in parallel
environments. They propose a taxonomy that characterizes and classifies various
approaches for building and executing workflows on Grids. They model workflow
applications as a DAG and present many algorithms to address scheduling optimization
problems in workflow applications based on QoS constraints. The emphases of their
researches are the development of workflow management systems and scheduling
algorithms.
BPEL4WS[9] builds on top of XML and web services specifications and provides a rich
method for modeling web services based on the description of business process. However,
its representation is script-based and it only composes workflows from web services.
Jin Hai et al[10] propose a workflow model based on colored Petri net for grid service
composition, in which the image date transmission was taken as requirements for the
service flow to improve the efficiency of settling service flow and reduce tasks’ execution
time. However, the model does not take the failure of task into consideration and does not
support dynamic structures.
A general scheduling framework[11] modeled by Petri net is proposed, which locates on the
layer of Grid scheduler and is used for independent tasks in computational Grid.
A three-level scheduling scheme[12] is proposed based on a high-level timed Petri net. The
scheme divides Grid scheduling into three levels: Grid scheduler, Local Scheduler and
Home Scheduler. It constructs different Petri net models for these levels. However, this
scheme only focuses on independent tasks. In order to deal with the scheduling problem of
task that consists of a set of communicating subtasks, an extended timed Petri net model[3]
is proposed. Based on composition and reduction of Petri nets, the model can reduce the
complexity of model and solve the state explosion problem in reachability analysis of Petri
nets. But this model does not concern about the abnormity of running tasks and has no
ability to change structure dynamically.

3. Definitions of extended Petri Nets
The jobs are dynamic and hierarchical in a parallel environment. According to these
characteristics, we design two types of enhanced Petri Net, which are extended from the
original Petri Net.
Definition 1 A Hierarchical Color Petri Net (HCPN) is designed into 9-tuple.

{ }0, ; , , , , , ,HCPN P T F D C I O K M=

1. P is a finite set of places.
2. T is a finite set of transitions and { }s cT T T= ∪ , where sT is a set of simple transitions,

cT is a set of complex transitions and ()()P T P T∪ ≠∅ Λ ∩ =∅ .

3. F is a finite set of arcs and () ()()F P S S P⊆ × ∪ × .

4. D is a finite set of colors.
5. C is a finite set of color functions. : ()C P T Dψ∪ → , where ()Dψ is the power set of

colors.
6. I and O are the input and output arc functions respectively.

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

155

() () () () (), , MSMS L
p t P T I p t C p C t⎡ ⎤∀ ∈ × ⇒ ∈ →⎣ ⎦

() () () () (), , MS MS L
t p T P O t p C t C p⎡ ⎤∀ ∈ × ⇒ ∈ →⎣ ⎦

When a transition needs to consume all tokens in a place, the input arc function is
(), ()I p t C pγ= .

7. K is a set of capacity functions. :K P N ω→ ∪ , { }1,2,3,N = and ω denotes infinite.
8. 0 : MSM P D→ is the initial token marking. () ()0:

MS
p P M p C p∀ ∈ ∈ , where ()MS

C p is
the multiple set of the color tokens in p .

Definition 2
1. { }, |p t p t T• = < > ∈ , { }, |p p t t T• = < > ∈ ,

{ }p p p• • • •= ∪ .

2. { }| ,p t t p F⊗ = < >∈ , { }| ,p t p t F⊗ = < >∈ .

3. { }| ,t p p t F⊗ = < >∈ , { }| ,t p t p F⊗ = < >∈ .

4. { | , }t t p t t p F⊗⊗ ⊗′ ′= ∈ ∧ < >∈ ,

{ | , }t t p t p t F⊗⊗ ⊗′ ′= ∈ ∧ < >∈ .
5. In HCPN , the firing rules of transition is

: () (,) :
() (,) ().

p t M p O p t p t
M p I p t K p

⊗ ⊗∀ ∈ ≥ ∧∀ ∈
+ ≤

6. There exist only one kp and one lp in HCPN , which satisfy the
condition: k l k lp p p p⊗ ⊗= ∅ ∧ =∅ ∧ ≠ . kp and lp are called Beginning Place and End
Place of HCPN respectively.

Definition 3
Any complex transition in HCPN can be extended to a subnet. The subnet of complex
transition it is defined as:

{ }0, ; , , , , , , i
i i i i i i i i iS HCPN P T F D C I O K M− = .

1. { }, ,i i
i begin end iP p p P′= is a set of places. iP′ is the set of inner places in iS HCPN− . i

beginp

and i
endp are additional places used to denote the beginning and end places of

iS HCPN− .
i
beginp• = ∅， ()i

endp • = ∅ ;

1() { ()| }i m
begin k k k iC p C p p t⊗

== ∪ ∈ ;

1() { ()| }i m
end k k k iC p C p p t⊗== ∪ ∈ .

2. { }()i i
i begin end iF p p F• • ′= ∪ ∪ is a set of arcs. iF′ is the set of inner arcs in iS HCPN− .

3. iT , iD , iC , iI , iO , iK and 0
iM are the sets of transitions, colors, color functions, input

arc functions, output arc functions, capacity functions and initial token marking
respectively.

Definition 4
A Petri Net with changeable structure is designed to11-tuple.

 Advances in Petri Net Theory and Applications

156

{ }1
0 0, ; , , , , , , , ,k k

k k k k k k k k k kCSCTPN P T F D C I O Q M M −= Γ

4. kP , kT , kF , kD , kC , kI , and kO are the sets of places, transitions, arcs, colors, color
functions, input arc functions and output arc functions respectively after the structure
of CSCTPN is changed k times.

5. 2) kΓ is a set of times after CSCTPN have changed k times. Its element is defined as
, , ,i b l dt τ τ τ< > , which denotes the earliest start time, the latest start time and duration

time of transition it are bτ , lτ , and dτ respectively. ()b i bt τΓ = , ()l i lt τΓ = , ()d i dt τΓ = .
6. kQ is a set of cost after CSCTPN have changed k times. Its element is defined as

, ,i r mt q q< > , which denotes that the maximal cost of transition it is mq and the real cost
is rq . ()r i rQ t q= , ()m i mQ t q= , and r mq q≤

7. 0
kM is the initial token marking after CSCTPN have changed k times and 1 0

0 0M M− = .

4. Parallel application scheduling model
In this section, we propose a four-level scheduling model firstly according to the
characteristics of parallel jobs. Then, Parallel job net is designed based on Petri Net with
changeable structure and the conversion rules of the job net are presented at the same time.

4.1 Four-level scheduling net
In a Parallel environment, users use resources by submitting their applications. A user
application is called a parallel job that can implement some functions specifically. A parallel
job is usually composed of many steps and each step has certain input and output sets. Each
step is called a subjob that can be divided into two types: computing subjob and data
transferring subjob. A computing subjob needs to transfer its inputs firstly and then perform
computing operation, so a computing subjob can be divided into transferring tasks and
computing tasks. Similarly, a data transferring subjob often has many data inputs and it can
be divided into many transferring tasks. A data transferring task has only one input and one
output. The input data of a computing task is already transferred to local computing node.
Because a data resource may have many replicas that locate on different nodes, to speed up
the transfer a data transferring task can be divided into many subtasks according to the
number of replicas and the QoS requirements of the user. Each subtask transfers a part of
data from different replicas. If a computing task can be processed in parallel we call it a
parallel computing task, otherwise we call it an unparallel computing task. A parallel
computing task can be divided into many subtasks that run on different computing node.
According to job, subjob, task and subtask, the parallel allocation scheduling model is
designed into four levels: job scheduling net, subjob scheduling net, task scheduling net and
subtask scheduling net. Only subtasks use computing or data resources directly, so all
resource allocations take place in subtask scheduling net.

4.1.1 Job scheduling net.
The job scheduling net mainly manages the states of jobs. Its function includes job selection
and monitoring. There are four states of a job: waiting, running, completed and failed. When
all subjobs of a job are completed, the job is completed. If any subjob failes, the state of the
job is failed. When a job has running subjobs and has no failed subjobs, the state of the job is
running. The job scheduling net is modeled based on HCPN, which is shown as Fig.4-1. The
detailed definition is shown as follows:

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

157

{ }0, ; , , , , , ,HCPN P T F D C I O K M=
1. { |1 7}iP p i= ≤ ≤ ;
2. { |1 7}iT t i= ≤ ≤ , 1t : select a job for running; 2t : start a job; 3t : select a job for

monitoring; 4t : check the states of jobs, which is a complex transition; 5t : mark a job;

6t : return a completed job; 7t : return a failed job.
3. { |1 8}iD d i= ≤ ≤ , 1d : jobs submitted by users; 2d : jobs waiting to be started; 3d :

running jobs; 4d : jobs waiting for being checked; 5d : jobs validated to run normally;

6d : completed jobs; 7d :failed jobs; 8d : returned jobs; 9d : tokens used for restricting
the number of jobs that are running at the same time.

4. 1 1() { }C p d= , 2 2() { }C p d= , 3 3() { }C p d= , 4 4() { }C p d= , 5 5 6 7() { , , }C p d d d= ,

6 9() { }C p d= , 7 8() { }C p d= ; 1 1() { }C t d= , 2 2 9() { , }C t d d= ,

3 3() { }C t d= , 4 4() { }C t d= , 5 5() { }C t d= , 6 6() { }C t d= , 7 7() { }C t d= .
5. 1 2() ()K p K p m= = , 3()K p n= , 4 5() () 1K p K p= = , 6()K p n= , 7()K p ω= .

0 { ,0,0,0,0, ,0}M k n= , where 1 k m≤ ≤ .

1p
7p

5p4p3p2p

1t 2t 3t 4t

5t

6t

7t

3{ }d1{ }d 2{ }d 4{ }d2{ }d 3{ }d 4{ }d

3{ }d

5 6 7{ , , }d d d

5{ }d

6{ }d

7{ }d

8{ }d

8{ }d
9{ }d

9{ }d
6p

Fig. 4.1. Job Scheduling Net

4.1.2 Subjob scheduling net.
The subjob scheduling net is a subnet of the job scheduling net, which is extended from the
complex transition t4. The subjob scheduling net mainly manages the states of subjob and is
used to analyze jobs, create subjobs, order the running sequence of subjobs and monitor the
states of subjobs. The subjob scheduling net is shown as Fig.4-2, which is modeled based on
S_HCPN and the detailed definition is shown as follows:

{ }4
4 4 4 4 4 4 4 4 4 0, ; , , , , , ,S HCPN P T F D C I O K M− =

1. 4 4 4
4 { , , |1 10}begin end iP p p p i= ≤ ≤ .

2. 4
4 { |1 15}iT t i= ≤ ≤ , 4

1t : check whether a job is initialized; 4
2t : analyze a job net; 4

3t : get
the set of running subjobs; 4

4t : start subjobs; 4
5t : select a subjob for monitoring; 4

6t :
monitor subjobs, which is a complex transition; 4

7t : creat a token for clearing out all
subjobs; 4

8t : mark a normal subjob; 4
9t : mark a completed subjob; 4

10t : check whether all
subjobs of the job have already been checked in this scheduling round; 4

11t : creat a
token for selecting a subjob; 4

12t : mark a failed job; 4
13t : check whether all subjobs of the

job have already accomplished. 4
14t : mark a completed job; 4

15t : mark a normal job.

 Advances in Petri Net Theory and Applications

156

{ }1
0 0, ; , , , , , , , ,k k

k k k k k k k k k kCSCTPN P T F D C I O Q M M −= Γ

4. kP , kT , kF , kD , kC , kI , and kO are the sets of places, transitions, arcs, colors, color
functions, input arc functions and output arc functions respectively after the structure
of CSCTPN is changed k times.

5. 2) kΓ is a set of times after CSCTPN have changed k times. Its element is defined as
, , ,i b l dt τ τ τ< > , which denotes the earliest start time, the latest start time and duration

time of transition it are bτ , lτ , and dτ respectively. ()b i bt τΓ = , ()l i lt τΓ = , ()d i dt τΓ = .
6. kQ is a set of cost after CSCTPN have changed k times. Its element is defined as

, ,i r mt q q< > , which denotes that the maximal cost of transition it is mq and the real cost
is rq . ()r i rQ t q= , ()m i mQ t q= , and r mq q≤

7. 0
kM is the initial token marking after CSCTPN have changed k times and 1 0

0 0M M− = .

4. Parallel application scheduling model
In this section, we propose a four-level scheduling model firstly according to the
characteristics of parallel jobs. Then, Parallel job net is designed based on Petri Net with
changeable structure and the conversion rules of the job net are presented at the same time.

4.1 Four-level scheduling net
In a Parallel environment, users use resources by submitting their applications. A user
application is called a parallel job that can implement some functions specifically. A parallel
job is usually composed of many steps and each step has certain input and output sets. Each
step is called a subjob that can be divided into two types: computing subjob and data
transferring subjob. A computing subjob needs to transfer its inputs firstly and then perform
computing operation, so a computing subjob can be divided into transferring tasks and
computing tasks. Similarly, a data transferring subjob often has many data inputs and it can
be divided into many transferring tasks. A data transferring task has only one input and one
output. The input data of a computing task is already transferred to local computing node.
Because a data resource may have many replicas that locate on different nodes, to speed up
the transfer a data transferring task can be divided into many subtasks according to the
number of replicas and the QoS requirements of the user. Each subtask transfers a part of
data from different replicas. If a computing task can be processed in parallel we call it a
parallel computing task, otherwise we call it an unparallel computing task. A parallel
computing task can be divided into many subtasks that run on different computing node.
According to job, subjob, task and subtask, the parallel allocation scheduling model is
designed into four levels: job scheduling net, subjob scheduling net, task scheduling net and
subtask scheduling net. Only subtasks use computing or data resources directly, so all
resource allocations take place in subtask scheduling net.

4.1.1 Job scheduling net.
The job scheduling net mainly manages the states of jobs. Its function includes job selection
and monitoring. There are four states of a job: waiting, running, completed and failed. When
all subjobs of a job are completed, the job is completed. If any subjob failes, the state of the
job is failed. When a job has running subjobs and has no failed subjobs, the state of the job is
running. The job scheduling net is modeled based on HCPN, which is shown as Fig.4-1. The
detailed definition is shown as follows:

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

157

{ }0, ; , , , , , ,HCPN P T F D C I O K M=
1. { |1 7}iP p i= ≤ ≤ ;
2. { |1 7}iT t i= ≤ ≤ , 1t : select a job for running; 2t : start a job; 3t : select a job for

monitoring; 4t : check the states of jobs, which is a complex transition; 5t : mark a job;

6t : return a completed job; 7t : return a failed job.
3. { |1 8}iD d i= ≤ ≤ , 1d : jobs submitted by users; 2d : jobs waiting to be started; 3d :

running jobs; 4d : jobs waiting for being checked; 5d : jobs validated to run normally;

6d : completed jobs; 7d :failed jobs; 8d : returned jobs; 9d : tokens used for restricting
the number of jobs that are running at the same time.

4. 1 1() { }C p d= , 2 2() { }C p d= , 3 3() { }C p d= , 4 4() { }C p d= , 5 5 6 7() { , , }C p d d d= ,

6 9() { }C p d= , 7 8() { }C p d= ; 1 1() { }C t d= , 2 2 9() { , }C t d d= ,

3 3() { }C t d= , 4 4() { }C t d= , 5 5() { }C t d= , 6 6() { }C t d= , 7 7() { }C t d= .
5. 1 2() ()K p K p m= = , 3()K p n= , 4 5() () 1K p K p= = , 6()K p n= , 7()K p ω= .

0 { ,0,0,0,0, ,0}M k n= , where 1 k m≤ ≤ .

1p
7p

5p4p3p2p

1t 2t 3t 4t

5t

6t

7t

3{ }d1{ }d 2{ }d 4{ }d2{ }d 3{ }d 4{ }d

3{ }d

5 6 7{ , , }d d d

5{ }d

6{ }d

7{ }d

8{ }d

8{ }d
9{ }d

9{ }d
6p

Fig. 4.1. Job Scheduling Net

4.1.2 Subjob scheduling net.
The subjob scheduling net is a subnet of the job scheduling net, which is extended from the
complex transition t4. The subjob scheduling net mainly manages the states of subjob and is
used to analyze jobs, create subjobs, order the running sequence of subjobs and monitor the
states of subjobs. The subjob scheduling net is shown as Fig.4-2, which is modeled based on
S_HCPN and the detailed definition is shown as follows:

{ }4
4 4 4 4 4 4 4 4 4 0, ; , , , , , ,S HCPN P T F D C I O K M− =

1. 4 4 4
4 { , , |1 10}begin end iP p p p i= ≤ ≤ .

2. 4
4 { |1 15}iT t i= ≤ ≤ , 4

1t : check whether a job is initialized; 4
2t : analyze a job net; 4

3t : get
the set of running subjobs; 4

4t : start subjobs; 4
5t : select a subjob for monitoring; 4

6t :
monitor subjobs, which is a complex transition; 4

7t : creat a token for clearing out all
subjobs; 4

8t : mark a normal subjob; 4
9t : mark a completed subjob; 4

10t : check whether all
subjobs of the job have already been checked in this scheduling round; 4

11t : creat a
token for selecting a subjob; 4

12t : mark a failed job; 4
13t : check whether all subjobs of the

job have already accomplished. 4
14t : mark a completed job; 4

15t : mark a normal job.

 Advances in Petri Net Theory and Applications

158

3. 4 4 4
4 { () () }begin endD C p C p d= ∪ ∪ , where
4 4{ |1 15}id d i= ≤ ≤ , 4

1d : initialized jobs; 4
2d : uninitialized jobs; 4

3d : subjob nets;
4
4d :running subjobs; 4

5d : subjobs waiting to be checked; 4
6d : subjobs running normally;

4
7d : completed subjobs; 4

8d : failed subjobs; 4
9d : marked subjobs; 4

10d : jobs whose
subjobs have been checked completely in this scheduling round; 4

11d : jobs whose
subjobs have been checked incompletely in this scheduling round; 4

12d : tokens for
selecting a subjob; 4

13d : tokens for clearing out all subjobs; 4
14d : jobs whose subjobs have

accomplished completely; 4
15d : jobs whose subjobs have accomplished incompletely.

4. 4
4() { }beginC p d= , 4

5 6 7() { , , }endC p d d d= ,
4 4 4
1 1 2() { , }C p d d= , 4 4

2 3() { }C p d= , 4 4
3 4() { }C p d= , 4 4

4 5() { }C p d= , 4 4 4 4
5 6 7 8() { , , }C p d d d= , 4 4

6 9() { }C p d= ,
4 4 4
7 10 11() { , }C p d d= , 4 4

8 12() { }C p d= , 4 4
9 13() { }C p d= , 4 4 4

10 14 15() { , }C p d d= ; 4
1 4() { }C t d= , 4 4

2 2() { }C t d=

, 4 4
3 1() { }C t d= , 4 4

4 3() { }C t d= , 4 4 4
5 4 12() { , }C t d d= , 4 4

6 5() { }C t d= , 4 4
7 8() { }C t d= , 4 4

8 6() { }C t d= ,
4 4
9 7() { }C t d= , 4 4

10 9() { }C t d= , 4 4
11 11() { }C t d= , 4 4 4

12 4 13() { , }C t d d= 4 4
13 10() { }C t d= , 4 4

14 14() { }C t d= ,
4 4
15 15() { }C t d= .

5. 4
3()K p n= and others are 1.

6. 4
0 {1,0,0,0,0,0,0,0,0,0,0,0}M = .

4
beginp

4
endp

4
2p

4
1p

4
1t

4{ }d 4 4
1 2{ , }d d

4
3p

4
2t

4
3t

4
4t

4
5t

4
6t4

4p
4
5p 4

6p

4
7p

4
8p

4
9p

4
10p

4
8t

4
9t

4
10t

4
11t

4
7t

4
12t

4
13t

4
14t

4
15t

4
1{ }d

4
2{ }d 4

3{ }d 4
3{ }d 4

4{ }nd

4
4{ }nd

4
4{ }dλ

4
4{ }d 4

5{ }d 4
5{ }d 4 4 4

6 7 8{ , , }d d d

4
8{ }d

4
6{ }d

4
7{ }d

4
9{ }d

4
9{ }d

4
9{ }d

4 4
10 11{ , }d d

4
10{ }d4

11{ }d4
12{ }d4

12{ }d

4
13{ }d

4
13{ }d

7{ }d

4 4
14 15{ , }d d

4
14{ }d

4
15{ }d

6{ }d

5{ }d

4
12{ }d

Fig. 4.2. Subjob Scheduling Net

4.1.3 Task scheduling net.
The task scheduling net is a subnet of the subjob scheduling net, which is extended from the
complex transition 4

6t . The task scheduling net mainly manages the states of tasks and is
used to analyze subjobs, create tasks, order the running sequence of task and monitor the
states of tasks. A task scheduling net is shown as Fig. 4-3, which is modeled based on
S_HCPN and the detailed definition is shown as follows:

{ }4,6
4,6 4,6 4,6 4,6 4,6 4,6 4,6 4,6 4,6 0, ; , , , , , ,S HCPN P T F D C I O K M− =

1. 4,6 4,6 4,6
4,6 { , , |1 10}begin end iP p p p i= ≤ ≤ .

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

159

2. 4,6
4,6 { |1 15}iT t i= ≤ ≤ , 4

4 { |1 15}iT t i= ≤ ≤ , 4,6
1t : check whether a subjob is initialized;

4,6
2t : transform a subjob scheduling net into a job scheduling net; 4,6

3t : get the set of
running tasks; 4,6

4t : start tasks; 4,6
5t : select a task for monitoring; 4,6

6t : monitor tasks,
which is a complex transition; 4,6

7t : create a token for clearing out all tasks; 4,6
8t : mark a

normal task; 4,6
9t : mark a completed task; 4,6

10t : check whether all tasks of the subjob
have already been checked in this scheduling round; 4,6

11t : create a token for selecting a
task; 4,6

12t : mark a failed task; 4,6
13t : check whether all tasks of the subjob have already

accomplished. 4,6
14t : mark a completed subjob; 4,6

15t : mark a normal subjob.
3. 4,6 4,6 4,6

4,6 { () () }begin endD C p C p d= ∪ ∪ , where
4,6 4,6{ |1 15}id d i= ≤ ≤ , 4,6

1d : initialized subjobs; 4,6
2d :uninitialized subjobs; 4,6

3d : task
net; 4,6

4d : running tasks; 4,6
5d : tasks waiting to be checked; 4,6

6d : tasks running
normally; 4,6

7d : completed tasks; 4,6
8d : failed tasks; 4,6

9d : marked tasks; 4,6
10d : subjobs

whose tasks have been checked completely in this scheduling round; 4,6
11d : subjobs

whose tasks have been checked incompletely in this scheduling round; 4,6
12d : tokens for

selecting a task; 4,6
13d : tokens for clearing out all tasks; 4,6

14d : subjobs whose tasks have
accomplished completely; 4,6

15d : subjobs whose tasks have accomplished incompletely.
4. 4,6 4

5() { }beginC p d= , 4,6 4 4 4
6 7 8() { , , }endC p d d d= , 4,6 4,6 4,6

1 1 2() { , }C p d d= , 4,6 4,6
2 3() { }C p d= ,

4,6 4,6
3 4() { }C p d= , 4,6 4,6

4 5() { }C p d= , 4,6 4,6 4,6 4,6
5 6 7 8() { , , }C p d d d= , 4,6 4,6

6 9() { }C p d= ,
4,6 4,6 4,6
7 10 11() { , }C p d d= , 4,6 4,6

8 12() { }C p d= , 4,6 4,6
9 13() { }C p d= , 4,6 4,6 4,6

10 14 15() { , }C p d d= ;
4,6 4
1 5() { }C t d= , 4,6 4,6

2 2() { }C t d= , 4,6 4,6
3 1() { }C t d= , 4,6 4,6

4 3() { }C t d= , 4,6 4,6 4,6
5 4 12() { , }C t d d= ,

4,6 4,6
6 5() { }C t d= , 4,6 4,6

7 8() { }C t d= , 4,6 4,6
8 6() { }C t d= , 4,6 4,6

9 7() { }C t d= , 4,6 4,6
10 9() { }C t d= ,

4,6 4,6
11 11() { }C t d= , 4,6 4,6 4,6

12 4 13() { , }C t d d= , 4,6 4,6
13 10() { }C t d= , 4,6 4,6

14 14() { }C t d= , 4,6 4,6
15 15() { }C t d= .

5. 4,6
3()K p n= and others are 1.

6. 4,6
0 {1,0,0,0,0,0,0,0,0,0,0,0}M = .

4,6
beginp

4,6
endp

4,6
2p

4,6
1p

4,6
1t

4
5{ }d 4,6 4,6

1 2{ , }d d

4,6
3p

4,6
2t

4,6
3t

4,6
4t

4,6
5t

4,6
6t4,6

4p 4,6
5p

4,6
6p4,6

8p

4,6
9p

4,6
10p

4,6
8t

4,6
9t

4,6
10t

4,6
11t

4,6
7t

4,6
12t

4,6
13t

4,6
14t

4,6
15t

4,6
1{ }d

4,6
2{ }d 4,6

3{ }d 4,6
3{ }d 4,6

4{ }nd

4,6
4{ }nd

4,6
4{ }dλ

4,6
4{ }d 4,6

5{ }d 4,6
5{ }d 4,6 4,6 4,6

6 7 8{ , , }d d d

4,6
8{ }d

4,6
6{ }d

4,6
7{ }d

4
7{ }d

4
6{ }d

4,6 4,6
10 11{ , }d d

4,6
10{ }d

4,6
11{ }d4,6

12{ }d

4,6
12{ }d

4,6
13{ }d

4,6
13{ }d 4,6 4,6

14 15{ , }d d

4,6
14{ }d

4,6
15{ }d

4,6
9{ }d

4
8{ }d

4,6
9{ }d

4,6
9{ }d

4,6
7p4,6

12{ }d

Fig. 4.3. Task Scheduling Net

 Advances in Petri Net Theory and Applications

158

3. 4 4 4
4 { () () }begin endD C p C p d= ∪ ∪ , where
4 4{ |1 15}id d i= ≤ ≤ , 4

1d : initialized jobs; 4
2d : uninitialized jobs; 4

3d : subjob nets;
4
4d :running subjobs; 4

5d : subjobs waiting to be checked; 4
6d : subjobs running normally;

4
7d : completed subjobs; 4

8d : failed subjobs; 4
9d : marked subjobs; 4

10d : jobs whose
subjobs have been checked completely in this scheduling round; 4

11d : jobs whose
subjobs have been checked incompletely in this scheduling round; 4

12d : tokens for
selecting a subjob; 4

13d : tokens for clearing out all subjobs; 4
14d : jobs whose subjobs have

accomplished completely; 4
15d : jobs whose subjobs have accomplished incompletely.

4. 4
4() { }beginC p d= , 4

5 6 7() { , , }endC p d d d= ,
4 4 4
1 1 2() { , }C p d d= , 4 4

2 3() { }C p d= , 4 4
3 4() { }C p d= , 4 4

4 5() { }C p d= , 4 4 4 4
5 6 7 8() { , , }C p d d d= , 4 4

6 9() { }C p d= ,
4 4 4
7 10 11() { , }C p d d= , 4 4

8 12() { }C p d= , 4 4
9 13() { }C p d= , 4 4 4

10 14 15() { , }C p d d= ; 4
1 4() { }C t d= , 4 4

2 2() { }C t d=

, 4 4
3 1() { }C t d= , 4 4

4 3() { }C t d= , 4 4 4
5 4 12() { , }C t d d= , 4 4

6 5() { }C t d= , 4 4
7 8() { }C t d= , 4 4

8 6() { }C t d= ,
4 4
9 7() { }C t d= , 4 4

10 9() { }C t d= , 4 4
11 11() { }C t d= , 4 4 4

12 4 13() { , }C t d d= 4 4
13 10() { }C t d= , 4 4

14 14() { }C t d= ,
4 4
15 15() { }C t d= .

5. 4
3()K p n= and others are 1.

6. 4
0 {1,0,0,0,0,0,0,0,0,0,0,0}M = .

4
beginp

4
endp

4
2p

4
1p

4
1t

4{ }d 4 4
1 2{ , }d d

4
3p

4
2t

4
3t

4
4t

4
5t

4
6t4

4p
4
5p 4

6p

4
7p

4
8p

4
9p

4
10p

4
8t

4
9t

4
10t

4
11t

4
7t

4
12t

4
13t

4
14t

4
15t

4
1{ }d

4
2{ }d 4

3{ }d 4
3{ }d 4

4{ }nd

4
4{ }nd

4
4{ }dλ

4
4{ }d 4

5{ }d 4
5{ }d 4 4 4

6 7 8{ , , }d d d

4
8{ }d

4
6{ }d

4
7{ }d

4
9{ }d

4
9{ }d

4
9{ }d

4 4
10 11{ , }d d

4
10{ }d4

11{ }d4
12{ }d4

12{ }d

4
13{ }d

4
13{ }d

7{ }d

4 4
14 15{ , }d d

4
14{ }d

4
15{ }d

6{ }d

5{ }d

4
12{ }d

Fig. 4.2. Subjob Scheduling Net

4.1.3 Task scheduling net.
The task scheduling net is a subnet of the subjob scheduling net, which is extended from the
complex transition 4

6t . The task scheduling net mainly manages the states of tasks and is
used to analyze subjobs, create tasks, order the running sequence of task and monitor the
states of tasks. A task scheduling net is shown as Fig. 4-3, which is modeled based on
S_HCPN and the detailed definition is shown as follows:

{ }4,6
4,6 4,6 4,6 4,6 4,6 4,6 4,6 4,6 4,6 0, ; , , , , , ,S HCPN P T F D C I O K M− =

1. 4,6 4,6 4,6
4,6 { , , |1 10}begin end iP p p p i= ≤ ≤ .

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

159

2. 4,6
4,6 { |1 15}iT t i= ≤ ≤ , 4

4 { |1 15}iT t i= ≤ ≤ , 4,6
1t : check whether a subjob is initialized;

4,6
2t : transform a subjob scheduling net into a job scheduling net; 4,6

3t : get the set of
running tasks; 4,6

4t : start tasks; 4,6
5t : select a task for monitoring; 4,6

6t : monitor tasks,
which is a complex transition; 4,6

7t : create a token for clearing out all tasks; 4,6
8t : mark a

normal task; 4,6
9t : mark a completed task; 4,6

10t : check whether all tasks of the subjob
have already been checked in this scheduling round; 4,6

11t : create a token for selecting a
task; 4,6

12t : mark a failed task; 4,6
13t : check whether all tasks of the subjob have already

accomplished. 4,6
14t : mark a completed subjob; 4,6

15t : mark a normal subjob.
3. 4,6 4,6 4,6

4,6 { () () }begin endD C p C p d= ∪ ∪ , where
4,6 4,6{ |1 15}id d i= ≤ ≤ , 4,6

1d : initialized subjobs; 4,6
2d :uninitialized subjobs; 4,6

3d : task
net; 4,6

4d : running tasks; 4,6
5d : tasks waiting to be checked; 4,6

6d : tasks running
normally; 4,6

7d : completed tasks; 4,6
8d : failed tasks; 4,6

9d : marked tasks; 4,6
10d : subjobs

whose tasks have been checked completely in this scheduling round; 4,6
11d : subjobs

whose tasks have been checked incompletely in this scheduling round; 4,6
12d : tokens for

selecting a task; 4,6
13d : tokens for clearing out all tasks; 4,6

14d : subjobs whose tasks have
accomplished completely; 4,6

15d : subjobs whose tasks have accomplished incompletely.
4. 4,6 4

5() { }beginC p d= , 4,6 4 4 4
6 7 8() { , , }endC p d d d= , 4,6 4,6 4,6

1 1 2() { , }C p d d= , 4,6 4,6
2 3() { }C p d= ,

4,6 4,6
3 4() { }C p d= , 4,6 4,6

4 5() { }C p d= , 4,6 4,6 4,6 4,6
5 6 7 8() { , , }C p d d d= , 4,6 4,6

6 9() { }C p d= ,
4,6 4,6 4,6
7 10 11() { , }C p d d= , 4,6 4,6

8 12() { }C p d= , 4,6 4,6
9 13() { }C p d= , 4,6 4,6 4,6

10 14 15() { , }C p d d= ;
4,6 4
1 5() { }C t d= , 4,6 4,6

2 2() { }C t d= , 4,6 4,6
3 1() { }C t d= , 4,6 4,6

4 3() { }C t d= , 4,6 4,6 4,6
5 4 12() { , }C t d d= ,

4,6 4,6
6 5() { }C t d= , 4,6 4,6

7 8() { }C t d= , 4,6 4,6
8 6() { }C t d= , 4,6 4,6

9 7() { }C t d= , 4,6 4,6
10 9() { }C t d= ,

4,6 4,6
11 11() { }C t d= , 4,6 4,6 4,6

12 4 13() { , }C t d d= , 4,6 4,6
13 10() { }C t d= , 4,6 4,6

14 14() { }C t d= , 4,6 4,6
15 15() { }C t d= .

5. 4,6
3()K p n= and others are 1.

6. 4,6
0 {1,0,0,0,0,0,0,0,0,0,0,0}M = .

4,6
beginp

4,6
endp

4,6
2p

4,6
1p

4,6
1t

4
5{ }d 4,6 4,6

1 2{ , }d d

4,6
3p

4,6
2t

4,6
3t

4,6
4t

4,6
5t

4,6
6t4,6

4p 4,6
5p

4,6
6p4,6

8p

4,6
9p

4,6
10p

4,6
8t

4,6
9t

4,6
10t

4,6
11t

4,6
7t

4,6
12t

4,6
13t

4,6
14t

4,6
15t

4,6
1{ }d

4,6
2{ }d 4,6

3{ }d 4,6
3{ }d 4,6

4{ }nd

4,6
4{ }nd

4,6
4{ }dλ

4,6
4{ }d 4,6

5{ }d 4,6
5{ }d 4,6 4,6 4,6

6 7 8{ , , }d d d

4,6
8{ }d

4,6
6{ }d

4,6
7{ }d

4
7{ }d

4
6{ }d

4,6 4,6
10 11{ , }d d

4,6
10{ }d

4,6
11{ }d4,6

12{ }d

4,6
12{ }d

4,6
13{ }d

4,6
13{ }d 4,6 4,6

14 15{ , }d d

4,6
14{ }d

4,6
15{ }d

4,6
9{ }d

4
8{ }d

4,6
9{ }d

4,6
9{ }d

4,6
7p4,6

12{ }d

Fig. 4.3. Task Scheduling Net

 Advances in Petri Net Theory and Applications

160

4.1.4 Subtask scheduling net.
The subtask scheduling net is a subnet of the task scheduling net, which is extended from
the complex transition 4,6

6t . The subtask scheduling net mainly manages the states of
subtasks and is used to analyze tasks, create subtasks, allocate and reallocate resources,
order the running sequence of subtask and monitor the states of subtasks. The subtask
scheduling net is shows as Fig.4-4, which is modeled based on S_HCPN and the detailed
definition is shown as follows:

{ }4,6,6
4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 0, ; , , , , , ,S HCPN P T F D C I O K M− =

1. 4,6,6 4,6,6 4,6,6
4,6,6 { , , |1 14}begin end iP p p p i= ≤ ≤ .

2. 4,4,6
4,4,6 { |1 21}iT t i= ≤ ≤ , 4,4,6

1t : check whether a task is initialized; 4,4,6
2t : get the set of

running subtasks; 4,4,6
3t : search resources; 4,4,6

4t : select resources; 4,4,6
5t : create

subtasks; 4,4,6
6t : start subtasks; 4,4,6

7t : select a subtask for monitoring; 4,4,6
8t : check a

subtask; 4,4,6
9t : mark a completed subtask; 4,4,6

10t : mark a normal subtask; 4,4,6
11t : check

whether all subtasks of the task have already been checked in this scheduling round;
4,4,6
12t : create a token for selecting a subtask; 4,4,6

13t : reallocate a subtask; 4,4,6
14t : start

subtasks after reallocation; 4,4,6
15t : mark subtasks running normally after reallocation;

4,4,6
16t : create a token for clearing out all subtasks; 4,4,6

17t : mark a failed subtask; 4,4,6
18t :

check whether all subtasks of the task have already accomplished. 4,4,6
19t : mark a normal

task; 4,4,6
20t : mark a completed task; 4,4,6

21t : mark a failed task.
3. 4,4,6 4,4,6 4,4,6

4,4,6 { () () }begin endD C p C p d= ∪ ∪ , where
4,4,6 4,4,6{ |1 15}id d i= ≤ ≤ , 4,6,6

1d : uninitialized tasks; 4,6,6
2d : initialized tasks; 4,6,6

3d :
running subtasks; 4,6,6

4d : resource list; 4,6,6
5d : selected resources; 4,6,6

6d : subtasks that
have no inadequate resources; 4,6,6

7d : subtask net; 4,6,6
8d : tokens for selecting a subtask;

4,6,6
9d : subtasks waiting for monitoring; 4,6,6

10d : subtasks running normally; 4,6,6
11d :

completed subtasks; 4,6,6
12d : subtasks running abnormally; 4,6,6

13d : marked subtasks;
4,6,6
14d : tasks whose subtasks have not been checked completely in this scheduling

round; 4,6,6
15d : tasks whose subtasks have been checked completely in this scheduling

round; 4,6,6
16d : tasks whose subtasks have already been accomplished; 4,6,6

17d : tasks
whose subtasks have not been accomplished completely; 4,6,6

18d : subtasks reallocated
successfully; 4,6,6

19d : subtasks reallocated unsuccessfully; 4,6,6
20d : subtasks running

normally after reallocation; 4,6,6
21d : tokens for clearing out all subtasks.

4. 4,6,6 4,6
5() { }beginC p d= , 4,6,6 4,6 4,6 4,6

6 7 8() { , , }endC p d d d= , 4,6,6 4,6,6 4,6,6
1 1 2() { , }C p d d= ,

4,6,6 4,6,6
2 3() { }C p d= , 4,6,6 4,6,6

3 4() { }C p d= , 4,6,6 4,6,6 4,6,6
4 5 6() { , }C p d d= , 4,6,6 4,6,6

5 7() { }C p d= ,
4,6,6 4,6,6
6 9() { }C p d= , 4,6,6 4,6,6 4,6,6 4,6,6

7 10 11 12() { , , }C p d d d= , 4,6,6 4,6,6
8 13() { }C p d= ,

4,6,6 4,6,6 4,6,6
9 14 15() { , }C p d d= , 4,6,6 4,6,6

10 8() { }C p d= , 4,6,6 4,6,6 4,6,6
11 18 19() { , }C p d d= ,

4,6,6 4,6,6
12 21() { }C p d= , 4,6,6 4,6,6

13 20() { }C p d= , 4,6,6 4,6,6 4,6,6
14 16 17() { , }C p d d= ;

4,6,6 4,6
1 5() { }C t d= , 4,6,6 4,6,6

2 2() { }C t d= , 4,6,6 4,6,6
3 1() { }C t d= , 4,6,6 4,6,6

4 4() { }C t d= ,
4,6,6 4,6,6
5 5() { }C t d= , 4,6,6 4,6,6

6 7() { }C t d= , 4,6,6 4,6,6 4,6,6
7 3 8() { , }C t d d= , 4,6,6 4,6,6

8 9() { }C t d= ,

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

161

4,6,6
beginp

4,6,6
endp

4,6,6
2p

4,6,6
1p

4,6,6
1t

4,6
5{ }d 4,6,6 4,6,6

1 2{ , }d d

4,6,6
3p

4,6,6
2t

4,6,6
3t

4,6,6
4t 4,6,6

5t

4,6,6
6t

4,6,6
5p

4,6,6
6p

4,6,6
8p

4,6,6
9p

4,6,6
10p

4,6,6
8t

4,6,6
9t

4,6,6
10t

4,6,6
11t

4,6,6
7t

4,6,6
12t

4,6,6
13t

4,6,6
14t

4,6,6
1{ }d

4,6,6
2{ }d 4,6,6

3{ }nd

4,6,6 4,6,6
5 6{ , }d d

4,6,6
4{ }d 4,6,6

7{ }d

4,6,6
6{ }d

4,6,6
3{ }d 4,6,6

9{ }d 4,6,6
9{ }d 4,6,6 4,6,6 4,6,6

10 11 12{ , , }d d d

4,6,6
12{ }d

4,6,6
10{ }d

4,6,6
11{ }d

4,6
6{ }d

4,6,6 4,6,6
14 15{ , }d d

4,6,6
15{ }d

4,6,6
14{ }d4,6,6

8{ }d

4,6,6
8{ }d

4,6
8{ }d

4,6,6
5{ }d

4,6,6
4,6,6

16
17

{
,

}
d

d

4,6,6
20{ }d

4,6,6
13{ }d

4,6,6
13{ }d

4,6,6
13{ }d

4,6,6
7p

4,6,6
15t

4,6,6
16t

4,6,6
17t

4,6,6
18t

4,6,6
19t4,6,6

20t

4,6,6
4p

4,6,6
11p

4,6,6
12p 4,6,6

13p

4,6,6
14p

4,6,6
21t

4,6,6 4,6,6
18 19{ , }d d4,6,6

19{ }d

4,6
7{ }d

4,6,6
3{ }d

4,6,6
3{ }dλ

4,6,6
4{ }d 4,6,6

7{ }d

4,6,6
3{ }nd

4,6,6
18{ }d

4,6,6
20{ }d

4,6,6
3{ }d

4,6,6
16{ }d 4,6,6

17{ }d

4,6,6
8{ }d

4,6
8{ }d

4,6
6{ }d

Fig. 4.4. Subtask Scheduling Net

4,6,6 4,6,6
9 11() { }C t d= , 4,6,6 4,6,6

10 10() { }C t d= , 4,6,6 4,6,6
11 13() { }C t d= , 4,6,6 4,6,6

12 14() { }C t d= ,
4,6,6 4,6,6
13 12() { }C t d= , 4,6,6 4,6,6

14 18() { }C t d= , 4,6,6 4,6,6
15 20() { }C t d= , 4,6,6 4,6,6

16 19() { }C t d= ,
4,6,6 4,6,6 4,6,6
17 3 21() { , }C t d dλ= , 4,6,6 4,6,6

18 15() { }C t d= , 4,6,6 4,6,6
19 17() { }C t d= , 4,6,6 4,6,6

20 16() { }C t d= ,
4,6,6 4,6,6
21 6() { }C t d= .

5. 4,6,6
2()K p n= and others are 1.

6. 4,6,6
0 {1,0,0,0,0,0,0,0,0,0,0,0}M = .

4.2 Job Net
The job net describes the flow of parallel application submitted by users, which is a kind of
workflow net and defines the relation of each step strictly. The job net is modeled based on
CSCTPN and its detailed definition is shows as follows:

{ }1
0 0, ; , , , , , , , ,k k

k k k k k k k k k kCSCTPN P T F D C I O Q M M −= Γ

0CSCTPN is the initial structure of the job net. In this level, we only concern about the time
limit, cost, input and output of a job, which are defined as follows:
1. 0 { , }in outP p p= , they are places of input and output respectively;
2. 1

0 0{ }T t= , there is only a transition that denotes the whole process of the job;
3. 0 { , }in outD d d= ，they are the input and output of the job;
4. 1

0 0{ , , , }b l dt τ τ τΓ = < > , it denotes the time limit of 1
0t ;

5. 1
0 0{ , , }r mQ t q q= < > , it denotes the cost limit of 1

0t .
There are four types of data in the job net: remote data, local data, outer data and inner data.
For a job, outer data has already existed in the parallel environment and it is not produced
by the job. The data produced temporarily by the jobs is called inner data.

 Advances in Petri Net Theory and Applications

160

4.1.4 Subtask scheduling net.
The subtask scheduling net is a subnet of the task scheduling net, which is extended from
the complex transition 4,6

6t . The subtask scheduling net mainly manages the states of
subtasks and is used to analyze tasks, create subtasks, allocate and reallocate resources,
order the running sequence of subtask and monitor the states of subtasks. The subtask
scheduling net is shows as Fig.4-4, which is modeled based on S_HCPN and the detailed
definition is shown as follows:

{ }4,6,6
4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 4,6,6 0, ; , , , , , ,S HCPN P T F D C I O K M− =

1. 4,6,6 4,6,6 4,6,6
4,6,6 { , , |1 14}begin end iP p p p i= ≤ ≤ .

2. 4,4,6
4,4,6 { |1 21}iT t i= ≤ ≤ , 4,4,6

1t : check whether a task is initialized; 4,4,6
2t : get the set of

running subtasks; 4,4,6
3t : search resources; 4,4,6

4t : select resources; 4,4,6
5t : create

subtasks; 4,4,6
6t : start subtasks; 4,4,6

7t : select a subtask for monitoring; 4,4,6
8t : check a

subtask; 4,4,6
9t : mark a completed subtask; 4,4,6

10t : mark a normal subtask; 4,4,6
11t : check

whether all subtasks of the task have already been checked in this scheduling round;
4,4,6
12t : create a token for selecting a subtask; 4,4,6

13t : reallocate a subtask; 4,4,6
14t : start

subtasks after reallocation; 4,4,6
15t : mark subtasks running normally after reallocation;

4,4,6
16t : create a token for clearing out all subtasks; 4,4,6

17t : mark a failed subtask; 4,4,6
18t :

check whether all subtasks of the task have already accomplished. 4,4,6
19t : mark a normal

task; 4,4,6
20t : mark a completed task; 4,4,6

21t : mark a failed task.
3. 4,4,6 4,4,6 4,4,6

4,4,6 { () () }begin endD C p C p d= ∪ ∪ , where
4,4,6 4,4,6{ |1 15}id d i= ≤ ≤ , 4,6,6

1d : uninitialized tasks; 4,6,6
2d : initialized tasks; 4,6,6

3d :
running subtasks; 4,6,6

4d : resource list; 4,6,6
5d : selected resources; 4,6,6

6d : subtasks that
have no inadequate resources; 4,6,6

7d : subtask net; 4,6,6
8d : tokens for selecting a subtask;

4,6,6
9d : subtasks waiting for monitoring; 4,6,6

10d : subtasks running normally; 4,6,6
11d :

completed subtasks; 4,6,6
12d : subtasks running abnormally; 4,6,6

13d : marked subtasks;
4,6,6
14d : tasks whose subtasks have not been checked completely in this scheduling

round; 4,6,6
15d : tasks whose subtasks have been checked completely in this scheduling

round; 4,6,6
16d : tasks whose subtasks have already been accomplished; 4,6,6

17d : tasks
whose subtasks have not been accomplished completely; 4,6,6

18d : subtasks reallocated
successfully; 4,6,6

19d : subtasks reallocated unsuccessfully; 4,6,6
20d : subtasks running

normally after reallocation; 4,6,6
21d : tokens for clearing out all subtasks.

4. 4,6,6 4,6
5() { }beginC p d= , 4,6,6 4,6 4,6 4,6

6 7 8() { , , }endC p d d d= , 4,6,6 4,6,6 4,6,6
1 1 2() { , }C p d d= ,

4,6,6 4,6,6
2 3() { }C p d= , 4,6,6 4,6,6

3 4() { }C p d= , 4,6,6 4,6,6 4,6,6
4 5 6() { , }C p d d= , 4,6,6 4,6,6

5 7() { }C p d= ,
4,6,6 4,6,6
6 9() { }C p d= , 4,6,6 4,6,6 4,6,6 4,6,6

7 10 11 12() { , , }C p d d d= , 4,6,6 4,6,6
8 13() { }C p d= ,

4,6,6 4,6,6 4,6,6
9 14 15() { , }C p d d= , 4,6,6 4,6,6

10 8() { }C p d= , 4,6,6 4,6,6 4,6,6
11 18 19() { , }C p d d= ,

4,6,6 4,6,6
12 21() { }C p d= , 4,6,6 4,6,6

13 20() { }C p d= , 4,6,6 4,6,6 4,6,6
14 16 17() { , }C p d d= ;

4,6,6 4,6
1 5() { }C t d= , 4,6,6 4,6,6

2 2() { }C t d= , 4,6,6 4,6,6
3 1() { }C t d= , 4,6,6 4,6,6

4 4() { }C t d= ,
4,6,6 4,6,6
5 5() { }C t d= , 4,6,6 4,6,6

6 7() { }C t d= , 4,6,6 4,6,6 4,6,6
7 3 8() { , }C t d d= , 4,6,6 4,6,6

8 9() { }C t d= ,

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

161

4,6,6
beginp

4,6,6
endp

4,6,6
2p

4,6,6
1p

4,6,6
1t

4,6
5{ }d 4,6,6 4,6,6

1 2{ , }d d

4,6,6
3p

4,6,6
2t

4,6,6
3t

4,6,6
4t 4,6,6

5t

4,6,6
6t

4,6,6
5p

4,6,6
6p

4,6,6
8p

4,6,6
9p

4,6,6
10p

4,6,6
8t

4,6,6
9t

4,6,6
10t

4,6,6
11t

4,6,6
7t

4,6,6
12t

4,6,6
13t

4,6,6
14t

4,6,6
1{ }d

4,6,6
2{ }d 4,6,6

3{ }nd

4,6,6 4,6,6
5 6{ , }d d

4,6,6
4{ }d 4,6,6

7{ }d

4,6,6
6{ }d

4,6,6
3{ }d 4,6,6

9{ }d 4,6,6
9{ }d 4,6,6 4,6,6 4,6,6

10 11 12{ , , }d d d

4,6,6
12{ }d

4,6,6
10{ }d

4,6,6
11{ }d

4,6
6{ }d

4,6,6 4,6,6
14 15{ , }d d

4,6,6
15{ }d

4,6,6
14{ }d4,6,6

8{ }d

4,6,6
8{ }d

4,6
8{ }d

4,6,6
5{ }d

4,6,6
4,6,6

16
17

{
,

}
d

d

4,6,6
20{ }d

4,6,6
13{ }d

4,6,6
13{ }d

4,6,6
13{ }d

4,6,6
7p

4,6,6
15t

4,6,6
16t

4,6,6
17t

4,6,6
18t

4,6,6
19t4,6,6

20t

4,6,6
4p

4,6,6
11p

4,6,6
12p 4,6,6

13p

4,6,6
14p

4,6,6
21t

4,6,6 4,6,6
18 19{ , }d d4,6,6

19{ }d

4,6
7{ }d

4,6,6
3{ }d

4,6,6
3{ }dλ

4,6,6
4{ }d 4,6,6

7{ }d

4,6,6
3{ }nd

4,6,6
18{ }d

4,6,6
20{ }d

4,6,6
3{ }d

4,6,6
16{ }d 4,6,6

17{ }d

4,6,6
8{ }d

4,6
8{ }d

4,6
6{ }d

Fig. 4.4. Subtask Scheduling Net

4,6,6 4,6,6
9 11() { }C t d= , 4,6,6 4,6,6

10 10() { }C t d= , 4,6,6 4,6,6
11 13() { }C t d= , 4,6,6 4,6,6

12 14() { }C t d= ,
4,6,6 4,6,6
13 12() { }C t d= , 4,6,6 4,6,6

14 18() { }C t d= , 4,6,6 4,6,6
15 20() { }C t d= , 4,6,6 4,6,6

16 19() { }C t d= ,
4,6,6 4,6,6 4,6,6
17 3 21() { , }C t d dλ= , 4,6,6 4,6,6

18 15() { }C t d= , 4,6,6 4,6,6
19 17() { }C t d= , 4,6,6 4,6,6

20 16() { }C t d= ,
4,6,6 4,6,6
21 6() { }C t d= .

5. 4,6,6
2()K p n= and others are 1.

6. 4,6,6
0 {1,0,0,0,0,0,0,0,0,0,0,0}M = .

4.2 Job Net
The job net describes the flow of parallel application submitted by users, which is a kind of
workflow net and defines the relation of each step strictly. The job net is modeled based on
CSCTPN and its detailed definition is shows as follows:

{ }1
0 0, ; , , , , , , , ,k k

k k k k k k k k k kCSCTPN P T F D C I O Q M M −= Γ

0CSCTPN is the initial structure of the job net. In this level, we only concern about the time
limit, cost, input and output of a job, which are defined as follows:
1. 0 { , }in outP p p= , they are places of input and output respectively;
2. 1

0 0{ }T t= , there is only a transition that denotes the whole process of the job;
3. 0 { , }in outD d d= ，they are the input and output of the job;
4. 1

0 0{ , , , }b l dt τ τ τΓ = < > , it denotes the time limit of 1
0t ;

5. 1
0 0{ , , }r mQ t q q= < > , it denotes the cost limit of 1

0t .
There are four types of data in the job net: remote data, local data, outer data and inner data.
For a job, outer data has already existed in the parallel environment and it is not produced
by the job. The data produced temporarily by the jobs is called inner data.

 Advances in Petri Net Theory and Applications

162

In the job net, a user needs to indicate the maximum cost and the deadline of his job. In
addition, the user needs to estimate the cost and durable time of each subjob according to
his experiences, which are shown in the description file of the job. This is helpful to assign
the cost and time characteristics of subjobs. Otherwise, the assignment methods of these
values are the same with tasks and subtasks. For tasks and subtasks, we need to assign their
cost and time characteristics dynamically within their limits according to the allocation
results. The cost is proportional to the transferring traffic and the computing load [13,14] in
our assignation strategy. Compared with cost assignation, time assignation is more complex
than cost assignation. We refer to a method[15] to assign the times of tasks and subtasks
within fixed-time constraints.

4.2.1 Subjob net.
A job consists of many subjobs that have own inputs, outputs and operations. The subjob
net is 1CSCTPN that is built by analyzing the description file of a job.

{ }1 0
1 1 1 1 1 1 1 1 1 1 0 0, ; , , , , , , , ,CSCTPN P T F D C I O Q M M= Γ

1. 1P : a set of places for inputs and outputs of subjobs.
2. 1 t cT J J= ∪ , where tJ is a set of transferring subjobs and cJ is a set of computing

subjobs.
3. 1 { |1 4}iD d i= ≤ ≤ , where 1d : remote data from outside; 2d : local data from outside; 3d :

remote data from inside; 4d : local data from inside.
4. 1Γ : a time set of subjobs, 1 1

1 1 1 1 0 0(() () () ())i i i
l d l dt T t t t t∀ ∈ Γ + Γ ≤ Γ + Γ .

5. 1Q :a cost set of subjobs, 1
1 1 0() ()m i

i m mQ t Q t= =∑ , where m is the number of transitions in
1T .

4.2.2 Task net.
The task net is 2CSCTPN that is built by decomposing the subjob net. 2CSCTPN is defined
as follows.

{ }2 1
2 2 2 2 2 2 2 2 2 2 0 0, ; , , , , , , , ,CSCTPN P T F D C I O Q M M= Γ

1. 2P : a set of places for inputs and outputs of tasks.
2. 2 t npc dpc dnpcT T T T T= ∪ ∪ ∪ , where tT : a set of data transferring tasks; npcT : a set of

computing tasks that can not run in parallel; dpcT : a set of computing tasks whose data
inputs can be divided; ndpcT : a set of computing tasks whose data input can not be
divided.

3. 2 { |1 4}iD d i= ≤ ≤ , where 1d : remote data from outside; 2d : local data from outside;
3d : remote data from inside; 4d : local data from inside.

4. 2Γ : a time set of tasks, 1 1
2 2 2 2 0 0(() () () ())i i i

l d l dt T t t t t∀ ∈ Γ + Γ ≤ Γ + Γ .
5. 2Q : a cost set of tasks, 1

1 2 0() ()m i
i m mQ t Q t= =∑ , where m is the number of transitions in

2T .
According to the input and output, a subjob can be divided into several tasks. Based on the
types of subjobs, the division rules are defined as follows.

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

163

1. data transferring subjob
A data transferring subjob often has many data inputs and they may need to be transferred
at the same time. In order to be convenient to deal with them, a data transferring subjob
needs to be divided into many tasks and each task has only one data input. The division
result is shown as Fig.4-5. The process satifies these conditions:

,
1 2 1() ()s k i r i

r m mQ t Q t+
= =∑ ,

,
2 1(1 () () ())i h i

b lh h s k t t∃ ≤ ≤ + ∧ Γ ≤ Γ

,
2 1(1 () () ())i h i

b bh h s k t t∀ ≤ ≤ + → Γ ≥ Γ

,1 ,1 , ,
2 2 2 2

1 1

max(() (), , () ())

() ())

i i i s k i s k
l d l d

i i
l d

t t t t

t t

+ +Γ + Γ Γ + Γ

≤ Γ + Γ

2
mp

,1
2
it

1
1{ }d

1{ }sd
1
3{ }d

3{ }kd 3{ }kd

2
np

,
2
i st
, 1

2
i st +

,
2
i s kt +

1
np 1

it
1 3{ , }s d k d× × 1

mp
2 4{ , }s d k d× ×

1 1 1 3() () { , }n iC p C t d d= =

1
2{ }d

2{ }sd
1
4{ }d

1 2 4() { , }mC p d d=

divide
(b) data transferring tasks(a) data transferring subjob

Fig. 4.5. Division result of data transferring subjob
2. computing subjob
Generally, a computing subjob has remote data inputs and these data need to be transferred
to local node firstly. The division result for a computing subjob is show as Fig.4-6 and it
satisfies these conditions:

,
1 2 2 1() () ()s k i r i i

r m m mQ t Q t Q t+
= + =∑

,
2 1(1 () () ())i h i

b lh h s k t t∃ ≤ ≤ + ∧ Γ ≤ Γ

,
2 1(1 () () ())i h i

b bh h s k t t∀ ≤ ≤ + → Γ ≥ Γ

,1 ,1 , ,
2 2 2 2 2 2() max(() (), , () ()) ()i i i i s k i s k i

b l d l d lt t t t t t+ +Γ ≤ Γ + Γ Γ + Γ ≤ Γ

 2 2 1 1() () () ()i i i i
l d l dt t t tΓ + Γ ≤ Γ + Γ

4.2.3 Subtask net.
Subtask net is iCSCTPN (3i ≥)that is built by decomposing task net, which is defined as
follows.

 Advances in Petri Net Theory and Applications

162

In the job net, a user needs to indicate the maximum cost and the deadline of his job. In
addition, the user needs to estimate the cost and durable time of each subjob according to
his experiences, which are shown in the description file of the job. This is helpful to assign
the cost and time characteristics of subjobs. Otherwise, the assignment methods of these
values are the same with tasks and subtasks. For tasks and subtasks, we need to assign their
cost and time characteristics dynamically within their limits according to the allocation
results. The cost is proportional to the transferring traffic and the computing load [13,14] in
our assignation strategy. Compared with cost assignation, time assignation is more complex
than cost assignation. We refer to a method[15] to assign the times of tasks and subtasks
within fixed-time constraints.

4.2.1 Subjob net.
A job consists of many subjobs that have own inputs, outputs and operations. The subjob
net is 1CSCTPN that is built by analyzing the description file of a job.

{ }1 0
1 1 1 1 1 1 1 1 1 1 0 0, ; , , , , , , , ,CSCTPN P T F D C I O Q M M= Γ

1. 1P : a set of places for inputs and outputs of subjobs.
2. 1 t cT J J= ∪ , where tJ is a set of transferring subjobs and cJ is a set of computing

subjobs.
3. 1 { |1 4}iD d i= ≤ ≤ , where 1d : remote data from outside; 2d : local data from outside; 3d :

remote data from inside; 4d : local data from inside.
4. 1Γ : a time set of subjobs, 1 1

1 1 1 1 0 0(() () () ())i i i
l d l dt T t t t t∀ ∈ Γ + Γ ≤ Γ + Γ .

5. 1Q :a cost set of subjobs, 1
1 1 0() ()m i

i m mQ t Q t= =∑ , where m is the number of transitions in
1T .

4.2.2 Task net.
The task net is 2CSCTPN that is built by decomposing the subjob net. 2CSCTPN is defined
as follows.

{ }2 1
2 2 2 2 2 2 2 2 2 2 0 0, ; , , , , , , , ,CSCTPN P T F D C I O Q M M= Γ

1. 2P : a set of places for inputs and outputs of tasks.
2. 2 t npc dpc dnpcT T T T T= ∪ ∪ ∪ , where tT : a set of data transferring tasks; npcT : a set of

computing tasks that can not run in parallel; dpcT : a set of computing tasks whose data
inputs can be divided; ndpcT : a set of computing tasks whose data input can not be
divided.

3. 2 { |1 4}iD d i= ≤ ≤ , where 1d : remote data from outside; 2d : local data from outside;
3d : remote data from inside; 4d : local data from inside.

4. 2Γ : a time set of tasks, 1 1
2 2 2 2 0 0(() () () ())i i i

l d l dt T t t t t∀ ∈ Γ + Γ ≤ Γ + Γ .
5. 2Q : a cost set of tasks, 1

1 2 0() ()m i
i m mQ t Q t= =∑ , where m is the number of transitions in

2T .
According to the input and output, a subjob can be divided into several tasks. Based on the
types of subjobs, the division rules are defined as follows.

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

163

1. data transferring subjob
A data transferring subjob often has many data inputs and they may need to be transferred
at the same time. In order to be convenient to deal with them, a data transferring subjob
needs to be divided into many tasks and each task has only one data input. The division
result is shown as Fig.4-5. The process satifies these conditions:

,
1 2 1() ()s k i r i

r m mQ t Q t+
= =∑ ,

,
2 1(1 () () ())i h i

b lh h s k t t∃ ≤ ≤ + ∧ Γ ≤ Γ

,
2 1(1 () () ())i h i

b bh h s k t t∀ ≤ ≤ + → Γ ≥ Γ

,1 ,1 , ,
2 2 2 2

1 1

max(() (), , () ())

() ())

i i i s k i s k
l d l d

i i
l d

t t t t

t t

+ +Γ + Γ Γ + Γ

≤ Γ + Γ

2
mp

,1
2
it

1
1{ }d

1{ }sd
1
3{ }d

3{ }kd 3{ }kd

2
np

,
2
i st
, 1

2
i st +

,
2
i s kt +

1
np 1

it
1 3{ , }s d k d× × 1

mp
2 4{ , }s d k d× ×

1 1 1 3() () { , }n iC p C t d d= =

1
2{ }d

2{ }sd
1
4{ }d

1 2 4() { , }mC p d d=

divide
(b) data transferring tasks(a) data transferring subjob

Fig. 4.5. Division result of data transferring subjob
2. computing subjob
Generally, a computing subjob has remote data inputs and these data need to be transferred
to local node firstly. The division result for a computing subjob is show as Fig.4-6 and it
satisfies these conditions:

,
1 2 2 1() () ()s k i r i i

r m m mQ t Q t Q t+
= + =∑

,
2 1(1 () () ())i h i

b lh h s k t t∃ ≤ ≤ + ∧ Γ ≤ Γ

,
2 1(1 () () ())i h i

b bh h s k t t∀ ≤ ≤ + → Γ ≥ Γ

,1 ,1 , ,
2 2 2 2 2 2() max(() (), , () ()) ()i i i i s k i s k i

b l d l d lt t t t t t+ +Γ ≤ Γ + Γ Γ + Γ ≤ Γ

 2 2 1 1() () () ()i i i i
l d l dt t t tΓ + Γ ≤ Γ + Γ

4.2.3 Subtask net.
Subtask net is iCSCTPN (3i ≥)that is built by decomposing task net, which is defined as
follows.

 Advances in Petri Net Theory and Applications

164

2
mp

,1
2
it1

1{ }d

1{ }sd
1
3{ }d

3{ }kd 3{ }kd

2
np

,
2
i st

, 1
2
i st +

,
2
i s kt +

1
np 1

it
1 3{ , }s d k d× × 1

mp
4{ }l d× 1 1 1 3() () { , }n iC p C t d d= =

1
2{ }d

2{ }sd
1
4{ }d

1 4() { }mC p d=

2
it

1 3{ , }s d k d× × 4{ }l d×

1
2
nmp

divide (b) transferring and
 computing tasks

(a) computing subjob

(a)

(b)

Fig. 4.6. Division result of computing subjob

{ }1
0 0, ; , , , , , , , ,i i

i i i i i i i i i iCSCTPN P T F D C I O Q M M −= Γ

1. iP : a set of places for inputs and outputs of subtasks.
2. i t cT J J= ∪ , where tJ : a set of transferring subtasks; cJ : a set of computing subtasks.
3. { |1 5}i iD d i= ≤ ≤ , where 1d : remote data from outside; 2d : local data from outside;

3d : remote data from inside; 4d : local data from inside; 5d : computing resources.
4. iΓ : a time set of subtasks, 1 1

2 2 2 0 0(() () () ())i i i
i l d l dt T t t t t∀ ∈ Γ + Γ ≤ Γ + Γ .

5. iQ : a cost set of subtasks, 1
1 2 0() ()m i

i m mQ t Q t= =∑ , where m is the number of transitions
in iT .

According to the number of data replicas or computing resources, a task can be divided into
many subtasks. Based on the types of tasks, the division rules are defined as follows.
1. tasks transferring outer data
Outer data may have many replicas in a parallel environment, so a task transferring outer
data can transfer parts of data from different replicas firstly in order to reduce the total
transferring time. Then, these parts of data are merged into one by a merging subtask.
Though a merging subtask is a computing subtask here, we do not allocate computing
resource for it specially and it runs on the node that the data lies on. The detailed division is
shown as Fig.4-7. 2

it is a task transferring outer data. ,
3 (1)i rt r k≤ ≤ denotes the transferring

subtasks running in parallel. 3
it is the merging subtask. 1()j

kR d denotes the task uses k
replicas of 1

jd , and 1 1() { ()|0 }j ji
k kR d R d i k= ≤ ≤ . ()j

k mE b denotes data j
mb is divided into k

pieces and () { ()|0 }j ji
k m k mE b E b i k= ≤ ≤ . The division satisfies these conditions:

,
1 3 3 2() () ()k i r i i

r r r mQ t Q t Q t= + ≤∑

,
3 2(1 () ())i h i

b lh h k t t∃ ≤ ≤ ∧ Γ ≤ Γ

,
3 2(1 () ())i h i

b bh h k t t∀ ≤ ≤ →Γ ≥ Γ

,1 ,1 , ,
3 3 3 3 3 3() max(() (), , () ()) ()i i i i k i k i

b l d l d lt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ Γ 3 3 2 2() () () ()i i i i
l d l dt t t tΓ + Γ ≤ Γ + Γ

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

165

2
np 2

it
1
1{ }d 2

mp1
2{ }d 3

mp
,1

3
it1 1

1()kR d
3
np

,
3
i kt

1
1()k

kR d

0 1
2()kE d

1
2()k

kE d

1
3
nmp 3

it
1
2()kE d 1

2{ }d
1

2 2 1() () { }n iC p C t d= =
1

2 2() { }mC p d=

divide (b) transferring and
 merging subtasks

(a) task transferring
 outer data

Fig. 4.7. Division result of task transferring outer data

m
lp

,1i
lt

n
lp

, 1i k
lt

−

,i k
lt

, 1i k s
lt

+ −

i
lt1nm

lp
1 1

1 1()k sR d+ −

1
2{ }d1

1 2()k sE d+ −

1 1
1 1()k

k sR d−
+ −

1
1 1()k

k sR d+ −

1 1
1 1()k s

k sR d+ −
+ −

1 1
1 2()k sE d+ −1 1

1 2()k
k sE d−
+ −

1
1 2()k

k sE d+ −

1 1
1 2()k s

k sE d+ −
+ −

Fig. 4.8. Structure change of subtask net when subtasks transferring outer data become
abnormal
When a subtask becomes abnormal because the data resources it uses are out of service or
their performances decrease, this subtask needs to be reallocated in order to ensure it can be
accomplished on time. The reallocation can lead to the structure change of the subtask net.
The detail is shown as Fig.4-8. The number of subtasks that the abnormal subtask is divided
into is s . The division accords with these conditions:

1 ,
1 2() () ()k s i r i i

r r l r l mQ t Q t Q t+ −
= + ≤∑

,
2(1 (1) () ())i h i

b l lh h k s t t∃ ≤ ≤ + − ∧ Γ ≤ Γ

,
2(1 (1) () ())i h i

b l bh h k s t t∀ ≤ ≤ + − →Γ ≥ Γ

,1 ,1 , ,
3 3() max(() (), , () ()) ()i i i i k i k i

l l l d l l l d l lt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ Γ 3 3 2 2() () () ()i i i i
l d l dt t t tΓ + Γ ≤ Γ + Γ

2. tasks transferring inner data
Inner data is produced by computing subtasks and it has no replicas. Therefore, a task
transferring inner data has only one subtask. When its resource is out of service, the task
fails because there are no other resources to use. Its division result is shown as Fig.4-9.

2
np 2

it
1
3{ }d 2

mp1
4{ }d 3

np 3
it

1
3{ }d 3

mp1
4{ }d

(a) task transferring
 inner data

(b) transferring
 subtasks

divide

Fig. 4.9. Division result of task transferring inner data

 Advances in Petri Net Theory and Applications

164

2
mp

,1
2
it1

1{ }d

1{ }sd
1
3{ }d

3{ }kd 3{ }kd

2
np

,
2
i st

, 1
2
i st +

,
2
i s kt +

1
np 1

it
1 3{ , }s d k d× × 1

mp
4{ }l d× 1 1 1 3() () { , }n iC p C t d d= =

1
2{ }d

2{ }sd
1
4{ }d

1 4() { }mC p d=

2
it

1 3{ , }s d k d× × 4{ }l d×

1
2
nmp

divide (b) transferring and
 computing tasks

(a) computing subjob

(a)

(b)

Fig. 4.6. Division result of computing subjob

{ }1
0 0, ; , , , , , , , ,i i

i i i i i i i i i iCSCTPN P T F D C I O Q M M −= Γ

1. iP : a set of places for inputs and outputs of subtasks.
2. i t cT J J= ∪ , where tJ : a set of transferring subtasks; cJ : a set of computing subtasks.
3. { |1 5}i iD d i= ≤ ≤ , where 1d : remote data from outside; 2d : local data from outside;

3d : remote data from inside; 4d : local data from inside; 5d : computing resources.
4. iΓ : a time set of subtasks, 1 1

2 2 2 0 0(() () () ())i i i
i l d l dt T t t t t∀ ∈ Γ + Γ ≤ Γ + Γ .

5. iQ : a cost set of subtasks, 1
1 2 0() ()m i

i m mQ t Q t= =∑ , where m is the number of transitions
in iT .

According to the number of data replicas or computing resources, a task can be divided into
many subtasks. Based on the types of tasks, the division rules are defined as follows.
1. tasks transferring outer data
Outer data may have many replicas in a parallel environment, so a task transferring outer
data can transfer parts of data from different replicas firstly in order to reduce the total
transferring time. Then, these parts of data are merged into one by a merging subtask.
Though a merging subtask is a computing subtask here, we do not allocate computing
resource for it specially and it runs on the node that the data lies on. The detailed division is
shown as Fig.4-7. 2

it is a task transferring outer data. ,
3 (1)i rt r k≤ ≤ denotes the transferring

subtasks running in parallel. 3
it is the merging subtask. 1()j

kR d denotes the task uses k
replicas of 1

jd , and 1 1() { ()|0 }j ji
k kR d R d i k= ≤ ≤ . ()j

k mE b denotes data j
mb is divided into k

pieces and () { ()|0 }j ji
k m k mE b E b i k= ≤ ≤ . The division satisfies these conditions:

,
1 3 3 2() () ()k i r i i

r r r mQ t Q t Q t= + ≤∑

,
3 2(1 () ())i h i

b lh h k t t∃ ≤ ≤ ∧ Γ ≤ Γ

,
3 2(1 () ())i h i

b bh h k t t∀ ≤ ≤ →Γ ≥ Γ

,1 ,1 , ,
3 3 3 3 3 3() max(() (), , () ()) ()i i i i k i k i

b l d l d lt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ Γ 3 3 2 2() () () ()i i i i
l d l dt t t tΓ + Γ ≤ Γ + Γ

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

165

2
np 2

it
1
1{ }d 2

mp1
2{ }d 3

mp
,1

3
it1 1

1()kR d
3
np

,
3
i kt

1
1()k

kR d

0 1
2()kE d

1
2()k

kE d

1
3
nmp 3

it
1
2()kE d 1

2{ }d
1

2 2 1() () { }n iC p C t d= =
1

2 2() { }mC p d=

divide (b) transferring and
 merging subtasks

(a) task transferring
 outer data

Fig. 4.7. Division result of task transferring outer data

m
lp

,1i
lt

n
lp

, 1i k
lt

−

,i k
lt

, 1i k s
lt

+ −

i
lt1nm

lp
1 1

1 1()k sR d+ −

1
2{ }d1

1 2()k sE d+ −

1 1
1 1()k

k sR d−
+ −

1
1 1()k

k sR d+ −

1 1
1 1()k s

k sR d+ −
+ −

1 1
1 2()k sE d+ −1 1

1 2()k
k sE d−
+ −

1
1 2()k

k sE d+ −

1 1
1 2()k s

k sE d+ −
+ −

Fig. 4.8. Structure change of subtask net when subtasks transferring outer data become
abnormal
When a subtask becomes abnormal because the data resources it uses are out of service or
their performances decrease, this subtask needs to be reallocated in order to ensure it can be
accomplished on time. The reallocation can lead to the structure change of the subtask net.
The detail is shown as Fig.4-8. The number of subtasks that the abnormal subtask is divided
into is s . The division accords with these conditions:

1 ,
1 2() () ()k s i r i i

r r l r l mQ t Q t Q t+ −
= + ≤∑

,
2(1 (1) () ())i h i

b l lh h k s t t∃ ≤ ≤ + − ∧ Γ ≤ Γ

,
2(1 (1) () ())i h i

b l bh h k s t t∀ ≤ ≤ + − →Γ ≥ Γ

,1 ,1 , ,
3 3() max(() (), , () ()) ()i i i i k i k i

l l l d l l l d l lt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ Γ 3 3 2 2() () () ()i i i i
l d l dt t t tΓ + Γ ≤ Γ + Γ

2. tasks transferring inner data
Inner data is produced by computing subtasks and it has no replicas. Therefore, a task
transferring inner data has only one subtask. When its resource is out of service, the task
fails because there are no other resources to use. Its division result is shown as Fig.4-9.

2
np 2

it
1
3{ }d 2

mp1
4{ }d 3

np 3
it

1
3{ }d 3

mp1
4{ }d

(a) task transferring
 inner data

(b) transferring
 subtasks

divide

Fig. 4.9. Division result of task transferring inner data

 Advances in Petri Net Theory and Applications

166

3. parallel computing tasks
There are two kinds of parallel computing tasks: tasks whose data inputs can be divided and
tasks whose data inputs can not be divided. According to the number of computing
resources and QoS requirements, the former can be divided into many subtasks that only
compute parts of the input data. Because these subtasks run on different nodes, the input
data needs to be transferred into local node firstly. The detailed process is shown as Fig.4-10.

2
it is a parallel computing task. , ,

3 (1 ,1)i r ht r s h k≤ ≤ ≤ ≤ are the transferring subtasks
running in parallel. ,

3 (1)i rt r s≤ ≤ are the computing subtasks running in parallel. 3
it is a

merging subtask. The division accords with these conditions:

, , ,
1 3 3 3 21 1() () () ()s ks i r i r h i i

r r r r mr hQ t Q t Q t Q t= = =
+ + ≤∑ ∑ ∑

, ,
3 2, (1 1 () ())i h u i

b lh u h s u k t t∃ ≤ ≤ ∧ ≤ ≤ ∧ Γ ≤ Γ

, ,
3 2, (1 1 () ())i h u i

b bh u h s u k t t∀ ≤ ≤ ∧ ≤ ≤ →Γ ≥ Γ

 ,1 ,1 , ,
3 3 3 3 3 3() max(() (), , () ()) ()i i i i s i s i

b l d l d lt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ Γ

3 3 2 2() () () ()i i i i
l d l dt t t tΓ + Γ ≤ Γ + Γ

, ,1
3
i st

2
np 2

it
1{ }k d× 2

mp
4{ }l d×

3
mp

,1,1
3
it

3
np

,1,
3
i kt

,1
3
it

, ,
3
i s kt

3
it(1)

3
nm sp +

1
5{ }d

4{ }l d×41 ()l r
sr E d

=∑
1

1()ksE d

1()s k
sE d

1 1
1()sE d

1
1()s

sE d
5{ }sd

1 1
2()sE d

1
2()ksE d

1
2()s

sE d

2()s k
sE d

1
21 ()k r

sr E d
=∑

,
3
i st21 ()k s r

sr E d
=∑

1
41 ()l r

sr E d
=∑

41 ()l s r
sr E d

=∑

2 2 1() () { }n iC p C t d= = 2 4() { }mC p d=

1
3
nmp

3
nmsp

(a) parallel computing task whose
 data inputs can be divided

(b) transferring and computing
 subtasks

divide

(a)

(b)

Fig. 4.10. Division result of parallel computing task whose data inputs can be divided

When one subtask of a parallel computing task becomes abnormal because the computing
resource it uses is out of service or its performance decreases, this subtask needs to be
reallocated in order to ensure it can be accomplished on time. The reallocation can lead to
the structure change of the subtask net. The detail is shown as Fig.4-11. s is the number of
subtasks that the abnormal subtask is divided into according to the number of computing
resources and QoS requirements. The division accords with these conditions:

11 , , ,
1 21 1() () () ()k s vv s i r h i r i i

r r z r z r z mh rQ t Q t Q t Q t+ −+ −
= = =

+ + ≤∑ ∑ ∑

, ,
2, (1 (1) 1 () ())i h u i

b z lh u h s v u k t t∃ ≤ ≤ + − ∧ ≤ ≤ ∧ Γ ≤ Γ

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

167

,1,1i
zt

n
zp

,1,i k
zt

,1i
zt

i
zt

0nm
zp

1
5{ }d

4{ }l d×41 ()l r
sr E d

=∑

1 1
1 1()s vE d+ −

1
5{ }sd −

1 1
1 2()s vE d+ −

1
1 2()ks vE d+ −

1 1
1 2()s

s vE d−
+ −

1
1 2()s k

s vE d−
+ −

1
1 21 ()k r

s vr E d+ −=∑

, 1i s
zt

−1
1 21 ()k s r

s vr E d−
+ −=∑

1
1 41 ()l r

s vr E d+ −=∑

1
1 41 ()l s r

s vr E d−
+ −=∑

,i s
zt

5{ }sd

1
5{ }s vd + −

1
1 2()s

s vE d+ −

1 2()s k
s vE d+ −

1 1
1 2()s v

s vE d+ −
+ −

1
1 2()s v k

s vE d+ −
+ −

1 21 ()k s r
s vr E d+ −=∑

, 1i s v
zt

+ −1
1 21 ()k s v r

s vr E d+ −
+ −=∑

1
1 1()ks vE d+ −

1 1
1 1()s

s vE d−
+ −
1

1 1()s k
s vE d−
+ −

1
1 1()s

s vE d+ −

1 1()s k
s vE d+ −

1 1
1 1()s v

s vE d+ −
+ −

1
1 1()s v k

s vE d+ −
+ −

1nm
zp

m
zp

(1)nm s
zp

−

nms
zp

(1)nm s v
zp

+ −

, 1,1i s
zt

−

, 1,i s k
zt

−

, ,1i s
zt
, ,i s k
zt

, 1,1i s v
zt

+ −

, 1,i s v k
zt

+ −

1 41 ()l s r
s vr E d+ −=∑

1
1 41 ()l s v r

s vr E d+ −
+ −=∑

Fig. 4.11. Structure change of the subtask net when parallel computing subtasks become
abnormal

, ,
2, (1 (1) 1 () ())i h u i

b z bh u h s v u k t t∃ ≤ ≤ + − ∧ ≤ ≤ ∧ Γ ≥ Γ

, , ,1

, ,1 , , , , ,

(1 (1) () max(()

(), , () ()) ())

i h i h
b z l z

i h i h k i h k i h
d z l z d z l z

h h s v t t

t t t t

∀ ≤ ≤ + − → Γ ≤ Γ +

Γ Γ + Γ ≤ Γ

,1 ,1 , ,() max(() (), , () ()) ()i i i i s i s i
b z l z d z l z d z l zt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ Γ

2 2() () () ()i i i i
l z d z l dt t t tΓ + Γ ≤ Γ + Γ

The division of a parallel computing task whose data inputs can not be divided is similar to
a task whose data inputs can be divided. The difference between them is that the input data
of transferring subtask is the data or parts of it.
4. computing tasks that cannot run in parallel
A computing task that can not run in parallel only has a subtask and Fig.4-12 shows the
division result.

2
np 2

it
3{ }k d× 2

mp
4{ }l d× 3

np 3
it

(a) computing task that can
 not run in parallel

3
mp

3 5{ , }k d d× 4{ }l d×

divide
(b) computing subtask

Fig. 4.12. Division result of computing task that can not run in parallel

 Advances in Petri Net Theory and Applications

166

3. parallel computing tasks
There are two kinds of parallel computing tasks: tasks whose data inputs can be divided and
tasks whose data inputs can not be divided. According to the number of computing
resources and QoS requirements, the former can be divided into many subtasks that only
compute parts of the input data. Because these subtasks run on different nodes, the input
data needs to be transferred into local node firstly. The detailed process is shown as Fig.4-10.

2
it is a parallel computing task. , ,

3 (1 ,1)i r ht r s h k≤ ≤ ≤ ≤ are the transferring subtasks
running in parallel. ,

3 (1)i rt r s≤ ≤ are the computing subtasks running in parallel. 3
it is a

merging subtask. The division accords with these conditions:

, , ,
1 3 3 3 21 1() () () ()s ks i r i r h i i

r r r r mr hQ t Q t Q t Q t= = =
+ + ≤∑ ∑ ∑

, ,
3 2, (1 1 () ())i h u i

b lh u h s u k t t∃ ≤ ≤ ∧ ≤ ≤ ∧ Γ ≤ Γ

, ,
3 2, (1 1 () ())i h u i

b bh u h s u k t t∀ ≤ ≤ ∧ ≤ ≤ →Γ ≥ Γ

 ,1 ,1 , ,
3 3 3 3 3 3() max(() (), , () ()) ()i i i i s i s i

b l d l d lt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ Γ

3 3 2 2() () () ()i i i i
l d l dt t t tΓ + Γ ≤ Γ + Γ

, ,1
3
i st

2
np 2

it
1{ }k d× 2

mp
4{ }l d×

3
mp

,1,1
3
it

3
np

,1,
3
i kt

,1
3
it

, ,
3
i s kt

3
it(1)

3
nm sp +

1
5{ }d

4{ }l d×41 ()l r
sr E d

=∑
1

1()ksE d

1()s k
sE d

1 1
1()sE d

1
1()s

sE d
5{ }sd

1 1
2()sE d

1
2()ksE d

1
2()s

sE d

2()s k
sE d

1
21 ()k r

sr E d
=∑

,
3
i st21 ()k s r

sr E d
=∑

1
41 ()l r

sr E d
=∑

41 ()l s r
sr E d

=∑

2 2 1() () { }n iC p C t d= = 2 4() { }mC p d=

1
3
nmp

3
nmsp

(a) parallel computing task whose
 data inputs can be divided

(b) transferring and computing
 subtasks

divide

(a)

(b)

Fig. 4.10. Division result of parallel computing task whose data inputs can be divided

When one subtask of a parallel computing task becomes abnormal because the computing
resource it uses is out of service or its performance decreases, this subtask needs to be
reallocated in order to ensure it can be accomplished on time. The reallocation can lead to
the structure change of the subtask net. The detail is shown as Fig.4-11. s is the number of
subtasks that the abnormal subtask is divided into according to the number of computing
resources and QoS requirements. The division accords with these conditions:

11 , , ,
1 21 1() () () ()k s vv s i r h i r i i

r r z r z r z mh rQ t Q t Q t Q t+ −+ −
= = =

+ + ≤∑ ∑ ∑

, ,
2, (1 (1) 1 () ())i h u i

b z lh u h s v u k t t∃ ≤ ≤ + − ∧ ≤ ≤ ∧ Γ ≤ Γ

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

167

,1,1i
zt

n
zp

,1,i k
zt

,1i
zt

i
zt

0nm
zp

1
5{ }d

4{ }l d×41 ()l r
sr E d

=∑

1 1
1 1()s vE d+ −

1
5{ }sd −

1 1
1 2()s vE d+ −

1
1 2()ks vE d+ −

1 1
1 2()s

s vE d−
+ −

1
1 2()s k

s vE d−
+ −

1
1 21 ()k r

s vr E d+ −=∑

, 1i s
zt

−1
1 21 ()k s r

s vr E d−
+ −=∑

1
1 41 ()l r

s vr E d+ −=∑

1
1 41 ()l s r

s vr E d−
+ −=∑

,i s
zt

5{ }sd

1
5{ }s vd + −

1
1 2()s

s vE d+ −

1 2()s k
s vE d+ −

1 1
1 2()s v

s vE d+ −
+ −

1
1 2()s v k

s vE d+ −
+ −

1 21 ()k s r
s vr E d+ −=∑

, 1i s v
zt

+ −1
1 21 ()k s v r

s vr E d+ −
+ −=∑

1
1 1()ks vE d+ −

1 1
1 1()s

s vE d−
+ −
1

1 1()s k
s vE d−
+ −

1
1 1()s

s vE d+ −

1 1()s k
s vE d+ −

1 1
1 1()s v

s vE d+ −
+ −

1
1 1()s v k

s vE d+ −
+ −

1nm
zp

m
zp

(1)nm s
zp

−

nms
zp

(1)nm s v
zp

+ −

, 1,1i s
zt

−

, 1,i s k
zt

−

, ,1i s
zt
, ,i s k
zt

, 1,1i s v
zt

+ −

, 1,i s v k
zt

+ −

1 41 ()l s r
s vr E d+ −=∑

1
1 41 ()l s v r

s vr E d+ −
+ −=∑

Fig. 4.11. Structure change of the subtask net when parallel computing subtasks become
abnormal

, ,
2, (1 (1) 1 () ())i h u i

b z bh u h s v u k t t∃ ≤ ≤ + − ∧ ≤ ≤ ∧ Γ ≥ Γ

, , ,1

, ,1 , , , , ,

(1 (1) () max(()

(), , () ()) ())

i h i h
b z l z

i h i h k i h k i h
d z l z d z l z

h h s v t t

t t t t

∀ ≤ ≤ + − → Γ ≤ Γ +

Γ Γ + Γ ≤ Γ

,1 ,1 , ,() max(() (), , () ()) ()i i i i s i s i
b z l z d z l z d z l zt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ Γ

2 2() () () ()i i i i
l z d z l dt t t tΓ + Γ ≤ Γ + Γ

The division of a parallel computing task whose data inputs can not be divided is similar to
a task whose data inputs can be divided. The difference between them is that the input data
of transferring subtask is the data or parts of it.
4. computing tasks that cannot run in parallel
A computing task that can not run in parallel only has a subtask and Fig.4-12 shows the
division result.

2
np 2

it
3{ }k d× 2

mp
4{ }l d× 3

np 3
it

(a) computing task that can
 not run in parallel

3
mp

3 5{ , }k d d× 4{ }l d×

divide
(b) computing subtask

Fig. 4.12. Division result of computing task that can not run in parallel

 Advances in Petri Net Theory and Applications

168

Within an unparallel computing task, when a subtask becomes abnormal because the
computing resource it uses is out of service or its performance decreases, this subtask needs
to be reallocated in order to ensure it can be accomplished on time. For unparallel
computing tasks, the reallocation can not lead to the structure change of the subtask net, but
it can result in the states change. The detail is shown as Fig.4-13. Because the computing
node is replaced, the data needs to be transferred to a new computing node. i

zt is the new
computing subtask and , (1)i r

zt r k≤ ≤ denotes transferring subtasks. The change accords
with these conditions:

,
1 2() () ()k i r i i

r r z r z mQ t Q t Q t= + ≤∑

,
3 2(1 () ())i h i

b lh h k t t∃ ≤ ≤ ∧ Γ ≤ Γ

,
3 2(1 () ())i h i

b bh h k t t∀ ≤ ≤ →Γ ≥ Γ

,1 ,1 , ,() max(() (), , () ()) ()i i i i k i k i
b z l z d z l z d z l zt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ Γ

2 2() () () ()i i i i
l z d z l dt t t tΓ + Γ ≤ Γ + Γ

n
zp

,1i
zt m

zp1
1{ }d 1

2{ }d

1{ }kd 2{ }kd
5{ }d,i k

zt

2{ }k d× 4{ }l d×

i
zt1nm

zp

Fig. 4.13. Structure change of subtask net when computing subtasks that can not run in
parallel become abnormal

5. Analysis and optimization
In this section, we adjust the structure of subtask net firstly in order to optimize the process
of subtasks. Then, we analyze the validity of the scheduling net and the job net. Finally, we
analyze the performance of the job net.

5.1 Structure optimization
In order to keep the consistency of the model and make the process of structure change clear
and intuitive, we divide parallel computing tasks in standard way. However, this way
results in redundant data transfer within a subjob and this part of subtask net need to be
optimized further.
Suppose the number of remote data inputs in a computing subjob 1

it is k . 1
it has remote

data inputs 1{ |1 }rd r k≤ ≤ and a computing task 2
it whose subtasks are ,

3 (1)i rt r s≤ ≤ . b
ah is

the number of replicas of number b data that number a subtask uses. Within a subjob, the
optimization result is shown as Fig.5-1. Compared with the former, the total number of

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

169

reduced transitions is k , the saved money is ,
21 ()k i r

rr Q t
=∑ and the reduced time is

,1 ,
2 2max((), , ())i i k

d dt tΓ Γ .

,1,1,1
3
it

3
np

1
1,1,1,

3
i ht

,1,1
3
it

0
3
nmp

,1,
3
i kt

, ,1
3
i st

, ,
3
i s kt

(1)
3
nm sp +

3
mp

()
3
nm s kp +

(1)
3
nm s kp × +

()
3
nm s k kp × +

,1, ,1
3
i kt

, ,1,1
3
i st

1, ,1,
3

si s ht
, , ,1

3
i s kt
, , ,

3

k
si s k ht

3
it

,1
3
it

,
3
i st

1
3
nmp

3
nmsp

1,1, ,
3

ki k ht

Fig. 5.1. Structure optimization of parallel computing subtasks

5.2 Validity analysis
Validity analysis is necessary for a model based on Petri Net to ensure the success of model
in practice. For the scheduling net, we analyze its structure to verify its correctness. For the
job net, besides structure analysis we also need to analyze its time reachability to validate
that the time limits of transitions are reasonable.

{3,0,0,0,0,2,0}

{2,1,0,0,0,2,0}

{2,0,1,0,0,1,0}

{2,0,0,1,0,1,0}

{2,0,0,0,1,1,0}

{1,1,1,0,0,1,0}

{1,1,0,1,0,1,0}

{2,0,0,0,0,2,1} {1,1,0,0,1,1,0}

{1,1,0,0,0,2,1}

{1,0,1,0,0,1,1}

{1,0,0,1,0,1,1} {0,1,1,0,0,1,1}

{1,0,0,0,1,1,1} {0,1,0,1,0,1,1}

{1,0,0,0,0,2,2}

{0,1,0,0,0,2,2}

{0,0,1,0,0,1,2}

{0,0,0,1,0,1,2}

{0,0,0,0,1,1,2}

{0,0,0,0,0,2,3} {0,0,1,0,0,1,2}

{1,0,1,0,0,1,1}{0,1,0,0,1,1,1}

{0,0,0,0,0,2,3} {0,0,0,0,0,2,3}

Fig. 5.2. A sample of reachability trees

 Advances in Petri Net Theory and Applications

168

Within an unparallel computing task, when a subtask becomes abnormal because the
computing resource it uses is out of service or its performance decreases, this subtask needs
to be reallocated in order to ensure it can be accomplished on time. For unparallel
computing tasks, the reallocation can not lead to the structure change of the subtask net, but
it can result in the states change. The detail is shown as Fig.4-13. Because the computing
node is replaced, the data needs to be transferred to a new computing node. i

zt is the new
computing subtask and , (1)i r

zt r k≤ ≤ denotes transferring subtasks. The change accords
with these conditions:

,
1 2() () ()k i r i i

r r z r z mQ t Q t Q t= + ≤∑

,
3 2(1 () ())i h i

b lh h k t t∃ ≤ ≤ ∧ Γ ≤ Γ

,
3 2(1 () ())i h i

b bh h k t t∀ ≤ ≤ →Γ ≥ Γ

,1 ,1 , ,() max(() (), , () ()) ()i i i i k i k i
b z l z d z l z d z l zt t t t t tΓ ≤ Γ + Γ Γ + Γ ≤ Γ

2 2() () () ()i i i i
l z d z l dt t t tΓ + Γ ≤ Γ + Γ

n
zp

,1i
zt m

zp1
1{ }d 1

2{ }d

1{ }kd 2{ }kd
5{ }d,i k

zt

2{ }k d× 4{ }l d×

i
zt1nm

zp

Fig. 4.13. Structure change of subtask net when computing subtasks that can not run in
parallel become abnormal

5. Analysis and optimization
In this section, we adjust the structure of subtask net firstly in order to optimize the process
of subtasks. Then, we analyze the validity of the scheduling net and the job net. Finally, we
analyze the performance of the job net.

5.1 Structure optimization
In order to keep the consistency of the model and make the process of structure change clear
and intuitive, we divide parallel computing tasks in standard way. However, this way
results in redundant data transfer within a subjob and this part of subtask net need to be
optimized further.
Suppose the number of remote data inputs in a computing subjob 1

it is k . 1
it has remote

data inputs 1{ |1 }rd r k≤ ≤ and a computing task 2
it whose subtasks are ,

3 (1)i rt r s≤ ≤ . b
ah is

the number of replicas of number b data that number a subtask uses. Within a subjob, the
optimization result is shown as Fig.5-1. Compared with the former, the total number of

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

169

reduced transitions is k , the saved money is ,
21 ()k i r

rr Q t
=∑ and the reduced time is

,1 ,
2 2max((), , ())i i k

d dt tΓ Γ .

,1,1,1
3
it

3
np

1
1,1,1,

3
i ht

,1,1
3
it

0
3
nmp

,1,
3
i kt

, ,1
3
i st

, ,
3
i s kt

(1)
3
nm sp +

3
mp

()
3
nm s kp +

(1)
3
nm s kp × +

()
3
nm s k kp × +

,1, ,1
3
i kt

, ,1,1
3
i st

1, ,1,
3

si s ht
, , ,1

3
i s kt
, , ,

3

k
si s k ht

3
it

,1
3
it

,
3
i st

1
3
nmp

3
nmsp

1,1, ,
3

ki k ht

Fig. 5.1. Structure optimization of parallel computing subtasks

5.2 Validity analysis
Validity analysis is necessary for a model based on Petri Net to ensure the success of model
in practice. For the scheduling net, we analyze its structure to verify its correctness. For the
job net, besides structure analysis we also need to analyze its time reachability to validate
that the time limits of transitions are reasonable.

{3,0,0,0,0,2,0}

{2,1,0,0,0,2,0}

{2,0,1,0,0,1,0}

{2,0,0,1,0,1,0}

{2,0,0,0,1,1,0}

{1,1,1,0,0,1,0}

{1,1,0,1,0,1,0}

{2,0,0,0,0,2,1} {1,1,0,0,1,1,0}

{1,1,0,0,0,2,1}

{1,0,1,0,0,1,1}

{1,0,0,1,0,1,1} {0,1,1,0,0,1,1}

{1,0,0,0,1,1,1} {0,1,0,1,0,1,1}

{1,0,0,0,0,2,2}

{0,1,0,0,0,2,2}

{0,0,1,0,0,1,2}

{0,0,0,1,0,1,2}

{0,0,0,0,1,1,2}

{0,0,0,0,0,2,3} {0,0,1,0,0,1,2}

{1,0,1,0,0,1,1}{0,1,0,0,1,1,1}

{0,0,0,0,0,2,3} {0,0,0,0,0,2,3}

Fig. 5.2. A sample of reachability trees

 Advances in Petri Net Theory and Applications

170

The top level of scheduling net is a job scheduling net, which consists of circular structures
and cannot stop without outside force. The end place and other places in the job scheduling
net can have tokens at the same time. The maximal number of jobs that the job scheduling
net can schedule simultaneously is 3()K p and these jobs are classified by the net according
to their states.
The three lower levels of the scheduling net are workflow nets, which are driven by the job
scheduling net and only schedule one subjob, one task or one subtask at the same time. The
job net is also a workflow net and its validity [16] is described as follows:
1. For each state M reachable from state i , there exists a firing sequence leading from state

M to state o.
2. State o is the only state reachable from state i with at least one token in place o.
3. There are no dead transitions in net.
The main work in structure analysis is reachability analysis. We can build reachability trees
[17, 18] for the scheduling net and the job net to validate their reachability and three
conditions above. There are too many reachability trees, so we only list a sample of them
here. Fig.5-2 shows a sample of reachability tree built according to a job scheduling net,
which has 3 jobs in the beginning and the maximal number of running jobs that scheduler
can deal with simultaneity is 2. Therefore, 0M ={3,0,0,0,0,2,0} and the end state is
{0,0,0,0,0,2,3} . For a job scheduling net with 0M ={m,0,0,0,0,n,0} , its reachability tree is
similar to Fig.4-15. The root of this tree is {m,0,0,0,0,n,0} and all leaves are {0,0,0,0,0,n,m} .
The number of tokens in the tree satisfies these conditions:

1 2 3 4 5 7| () | | () | | () | | () | | () | | () |ms ms ms ms ms msC p C p C p C p C p C p m+ + + + + =

6 3 4 5| () | | () | | () | | () |ms ms ms msC p C p C p C p n+ + + =

2 4 50 | () |,| () |,| () | 1ms ms msC p C p C p≤ ≤

3 6| () |,| () |ms msC p C p n≤

Time reachability is that the time requirements of transitions are satisfied within time
limitations. After analyzing the validity of structure, we can validate the time reachability
easily. In the job net, if (() () () ())l d l dt T t t t t t t⊗⊗′ ′ ′∀ ∈ ∀ ∈ →Γ + Γ ≤ Γ + Γ , the time reachability
of the net is satisfied. Otherwise, the time reachability is not satisfied.
Validity analysis is necessary for a model based on Petri Net to ensure the success of model
in practice. For the scheduling net, we analyze its structure to verify its correctness. For the
job net, besides structure analysis we also need to analyze its time reachability to validate
that the time limits of transitions are reasonable.
The top level of scheduling net is a job scheduling net, which consists of circular structures
and cannot stop without outside force. The end place and other places in the job scheduling
net can have tokens at the same time. The maximal number of jobs that the job scheduling
net can schedule simultaneously is K(p3) and these jobs are classified by the net according to
their states.
The three lower levels of the scheduling net are workflow nets, which are driven by the job
scheduling net and only schedule one subjob, one task or one subtask at the same time. The
job net is also a workflow net and its validity [16] is described as follows:

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

171

{3,0,0,0,0,2,0}

{2,1,0,0,0,2,0}

{2,0,1,0,0,1,0}

{2,0,0,1,0,1,0}

{2,0,0,0,1,1,0}

{1,1,1,0,0,1,0}

{1,1,0,1,0,1,0}

{2,0,0,0,0,2,1} {1,1,0,0,1,1,0}

{1,1,0,0,0,2,1}

{1,0,1,0,0,1,1}

{1,0,0,1,0,1,1} {0,1,1,0,0,1,1}

{1,0,0,0,1,1,1} {0,1,0,1,0,1,1}

{1,0,0,0,0,2,2}

{0,1,0,0,0,2,2}

{0,0,1,0,0,1,2}

{0,0,0,1,0,1,2}

{0,0,0,0,1,1,2}

{0,0,0,0,0,2,3} {0,0,1,0,0,1,2}

{1,0,1,0,0,1,1}{0,1,0,0,1,1,1}

{0,0,0,0,0,2,3} {0,0,0,0,0,2,3}

Fig. 5.3. A sample of reachability trees
1. For each state M reachable from state i , there exists a firing sequence leading from state

M to state o.
2. State o is the only state reachable from state i with at least one token in place o.
3. There are no dead transitions in net.
The main work in structure analysis is reachability analysis. We can build reachability trees
[17, 18] for the scheduling net and the job net to validate their reachability and three
conditions above. There are too many reachability trees, so we only list a sample of them
here. Fig.4-15 shows a sample of reachability tree built according to a job scheduling net,
which has 3 jobs in the beginning and the maximal number of running jobs that scheduler
can deal with simultaneity is 2. Therefore, 0M ={3,0,0,0,0,2,0} and the end state is
{0,0,0,0,0,2,3} . For a job scheduling net with 0M ={m,0,0,0,0,n,0} , its reachability tree is
similar to Fig.5-3. The root of this tree is {m,0,0,0,0,n,0} and all leaves are {0,0,0,0,0,n,m} .
The number of tokens in the tree satisfies these conditions:

1 2 3 4 5 7| () | | () | | () | | () | | () | | () |ms ms ms ms ms msC p C p C p C p C p C p m+ + + + + =

6 3 4 5| () | | () | | () | | () |ms ms ms msC p C p C p C p n+ + + =

2 4 50 | () |,| () |,| () | 1ms ms msC p C p C p≤ ≤

3 6| () |,| () |ms msC p C p n≤

Time reachability is that the time requirements of transitions are satisfied within time
limitations. After analyzing the validity of structure, we can validate the time reachability
easily. In the job net, if (() () () ())l d l dt T t t t t t t⊗⊗′ ′ ′∀ ∈ ∀ ∈ →Γ + Γ ≤ Γ + Γ , the time reachability
of the net is satisfied. Otherwise, the time reachability is not satisfied.

 Advances in Petri Net Theory and Applications

170

The top level of scheduling net is a job scheduling net, which consists of circular structures
and cannot stop without outside force. The end place and other places in the job scheduling
net can have tokens at the same time. The maximal number of jobs that the job scheduling
net can schedule simultaneously is 3()K p and these jobs are classified by the net according
to their states.
The three lower levels of the scheduling net are workflow nets, which are driven by the job
scheduling net and only schedule one subjob, one task or one subtask at the same time. The
job net is also a workflow net and its validity [16] is described as follows:
1. For each state M reachable from state i , there exists a firing sequence leading from state

M to state o.
2. State o is the only state reachable from state i with at least one token in place o.
3. There are no dead transitions in net.
The main work in structure analysis is reachability analysis. We can build reachability trees
[17, 18] for the scheduling net and the job net to validate their reachability and three
conditions above. There are too many reachability trees, so we only list a sample of them
here. Fig.5-2 shows a sample of reachability tree built according to a job scheduling net,
which has 3 jobs in the beginning and the maximal number of running jobs that scheduler
can deal with simultaneity is 2. Therefore, 0M ={3,0,0,0,0,2,0} and the end state is
{0,0,0,0,0,2,3} . For a job scheduling net with 0M ={m,0,0,0,0,n,0} , its reachability tree is
similar to Fig.4-15. The root of this tree is {m,0,0,0,0,n,0} and all leaves are {0,0,0,0,0,n,m} .
The number of tokens in the tree satisfies these conditions:

1 2 3 4 5 7| () | | () | | () | | () | | () | | () |ms ms ms ms ms msC p C p C p C p C p C p m+ + + + + =

6 3 4 5| () | | () | | () | | () |ms ms ms msC p C p C p C p n+ + + =

2 4 50 | () |,| () |,| () | 1ms ms msC p C p C p≤ ≤

3 6| () |,| () |ms msC p C p n≤

Time reachability is that the time requirements of transitions are satisfied within time
limitations. After analyzing the validity of structure, we can validate the time reachability
easily. In the job net, if (() () () ())l d l dt T t t t t t t⊗⊗′ ′ ′∀ ∈ ∀ ∈ →Γ + Γ ≤ Γ + Γ , the time reachability
of the net is satisfied. Otherwise, the time reachability is not satisfied.
Validity analysis is necessary for a model based on Petri Net to ensure the success of model
in practice. For the scheduling net, we analyze its structure to verify its correctness. For the
job net, besides structure analysis we also need to analyze its time reachability to validate
that the time limits of transitions are reasonable.
The top level of scheduling net is a job scheduling net, which consists of circular structures
and cannot stop without outside force. The end place and other places in the job scheduling
net can have tokens at the same time. The maximal number of jobs that the job scheduling
net can schedule simultaneously is K(p3) and these jobs are classified by the net according to
their states.
The three lower levels of the scheduling net are workflow nets, which are driven by the job
scheduling net and only schedule one subjob, one task or one subtask at the same time. The
job net is also a workflow net and its validity [16] is described as follows:

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

171

{3,0,0,0,0,2,0}

{2,1,0,0,0,2,0}

{2,0,1,0,0,1,0}

{2,0,0,1,0,1,0}

{2,0,0,0,1,1,0}

{1,1,1,0,0,1,0}

{1,1,0,1,0,1,0}

{2,0,0,0,0,2,1} {1,1,0,0,1,1,0}

{1,1,0,0,0,2,1}

{1,0,1,0,0,1,1}

{1,0,0,1,0,1,1} {0,1,1,0,0,1,1}

{1,0,0,0,1,1,1} {0,1,0,1,0,1,1}

{1,0,0,0,0,2,2}

{0,1,0,0,0,2,2}

{0,0,1,0,0,1,2}

{0,0,0,1,0,1,2}

{0,0,0,0,1,1,2}

{0,0,0,0,0,2,3} {0,0,1,0,0,1,2}

{1,0,1,0,0,1,1}{0,1,0,0,1,1,1}

{0,0,0,0,0,2,3} {0,0,0,0,0,2,3}

Fig. 5.3. A sample of reachability trees
1. For each state M reachable from state i , there exists a firing sequence leading from state

M to state o.
2. State o is the only state reachable from state i with at least one token in place o.
3. There are no dead transitions in net.
The main work in structure analysis is reachability analysis. We can build reachability trees
[17, 18] for the scheduling net and the job net to validate their reachability and three
conditions above. There are too many reachability trees, so we only list a sample of them
here. Fig.4-15 shows a sample of reachability tree built according to a job scheduling net,
which has 3 jobs in the beginning and the maximal number of running jobs that scheduler
can deal with simultaneity is 2. Therefore, 0M ={3,0,0,0,0,2,0} and the end state is
{0,0,0,0,0,2,3} . For a job scheduling net with 0M ={m,0,0,0,0,n,0} , its reachability tree is
similar to Fig.5-3. The root of this tree is {m,0,0,0,0,n,0} and all leaves are {0,0,0,0,0,n,m} .
The number of tokens in the tree satisfies these conditions:

1 2 3 4 5 7| () | | () | | () | | () | | () | | () |ms ms ms ms ms msC p C p C p C p C p C p m+ + + + + =

6 3 4 5| () | | () | | () | | () |ms ms ms msC p C p C p C p n+ + + =

2 4 50 | () |,| () |,| () | 1ms ms msC p C p C p≤ ≤

3 6| () |,| () |ms msC p C p n≤

Time reachability is that the time requirements of transitions are satisfied within time
limitations. After analyzing the validity of structure, we can validate the time reachability
easily. In the job net, if (() () () ())l d l dt T t t t t t t⊗⊗′ ′ ′∀ ∈ ∀ ∈ →Γ + Γ ≤ Γ + Γ , the time reachability
of the net is satisfied. Otherwise, the time reachability is not satisfied.

 Advances in Petri Net Theory and Applications

172

5.3 Validity analysis
Performance analysis mainly analyzes the time and cost characteristics of a job net. The total
cost of a job net is the cost sum of all transitions in the net: ()rQ t∑ . If

1 1
0 0() () ()r r mQ t Q t Q t= ≤∑ , the cost allocation succeeds, otherwise the cost allocation fails and

the job net can not run correctly.
In order to be convenient to analyze time characteristics of a job net, we propose a transition
tree algorithm that translates the transitions in a job net into a transition tree. The conversion
rules are shown as follows:
1. The root of a transition tree is roott whose time limits and cost are 0;

2. beginp is the beginning place in the job net and all transitions in beginp⊗ are the leaves of

roott .

3. For each leaf t , find t⊗⊗ and all transitions in t⊗⊗ are the leaves of t ;
4. repeat step 3 until each leaf t satisfies the condition: t⊗⊗ = ∅ .
5. The tree with root roott is the corresponding transition tree of the job net.
According to the transition tree, it is convenient to analyze the time characteristics of the job
net and optimize the allocation process for subtasks.
The maximum number of serial transitions is 1TD − , where TD is the depth of the transition
tree.
To reduce the waiting time of transitions, for each transition ({ |1 })it t t i k⊗⊗ = ≤ ≤ in a job
net, let 1 1() () max(() (), , () ())l b l d l k d kt t t t t tΓ = Γ = Γ + Γ Γ + Γ .
Suppose there are s leaves { |1 }rt r s′ ≤ ≤ in a transition tree and each leaf has a path from it

to root : () { |1 }r
i i ip t t r l′ = ≤ ≤ ,where il is the number of transitions in ()ip t′ . Each path has a

total time of transitions: 1() ()il r
i d irt t

=
′Γ = Γ∑ , the total durable time of the net is ()rt′Γ ,

1() max((), , ())r kt t t′ ′ ′Γ = Γ Γ . The corresponding path of rt′ is the key path and rl is the
number of transitions on the key path.
The key path decides the total durable time of a job net and it is important for subtask
allocation optimization. For each subtask, we should choose those resources with high
performance. All computing subtask on the key path can run on the same node and this can
reduce the data transferring time.

6. Conclusions and future work
This paper proposes two different models for the scheduling net and the job net based on
the idea that the scheduling net is separated from the job net. This method makes models
compact and intuitional. In addition, the separation benefits the analysis of the job net and
the scheduling net respectively. According to the granularity of parallel applications, the
scheduling net is designed to four levels, which is convenient to deploy distributed
schedulers in parallel environment and is beneficial to the management of different parallel
application granularities. Based on Petri Net with changeable structure, the job net model
can change its structure dynamically according to the allocation results or states of jobs.
Therefore, the model supports dynamic mergence and division of subtasks and can deal
with the abnormity of subtasks. We validate the scheduling net and the job net using

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

173

reachability tree technologies. In addition, a transition tree algorithm is designed for
analyzing the performances of the job net and optimizing the allocations of subtasks
according to the key path in the job net.
In the future, we will optimize these models further and put emphasis upon researching
algorithms used for optimizing resource allocations.

7. References
[1] M. Alt, S. Gorlatch, A. Hoheisel, H. W. Pohl, "Using High-Level Petri Nets for

Hierarchical Grid Workflows," presented at Second IEEE International Conference
on e-Science and Grid Computing, Amsterdam, The Netherlands 2006, pp. 13-13.

[2] M. Silva,L. Recalde, "Petri nets and integrality relaxations: A view of continuous Petri net
models," IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and
Reviews, vol. 32, pp. 314-327, 2002 (4).

[3] H. Yaojun,L. Xuemei, "Modeling and Performance Analysis of Grid Task Scheduling
Based on Composition and Reduction of Petri Nets," 2006, pp. 331-334.

[4] S. Distefano, A. Puliafito, M. Scarpa, "GridSPN: a grid-based non Markovian Petri nets
tool," presented at IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprise, 2005, pp. 331-336.

[5] X. Jiefeng, W. Zhaohui, C. Huajun, "Distributed Petri Net for Knowledge Base Grid
reasoning," presented at IEEE International Conference on Systems, Man and
Cybernetics, Hangzhou, China, 2003, pp. 593-597 vol.1.

[6] J. Yu, R. Buyya, C. K. Tham, "QoS-based Scheduling of Workflow Applications on
Service Grids," presented at Proceedings of the 1st IEEE International Conference
on e-Science and Grid Computing Melbourne, Australia, 2005.

[7] J. Yu,R. Buyya, "A Taxonomy of Scientific Workflow Systems for Grid Computing,"
Special Issue on Scientific Workflows, SIGMOD Record, vol. 34, pp. 44-49, 2005 (3).

[8] J. Yu,R. Buyya, "A Budget Constrained Scheduling of Workflow Applications on Utility
Grids using Genetic Algorithms," presented at Workshop on Workflows in Support
of Large-Scale Science, Proceedings of the 15th IEEE International Symposium on
High Performance Distributed Computing Paris, France, 2006.

[9] BPEL4WS, "http://www.ebpml.org/bpel4ws.htm,"
[10] J. Hai,W. Shuzhen, "Grid workflow model based on colored Petri net," J . Huazhong

Univ. of Sci. & Tech. (Nature Science Edition), vol. 34, pp. 39-41, 2006 (7).
[11] Z. Hu, R. Hu, W. Gui, J. Chen, "General scheduling framework in computational Grid

based on Petri net " Journal of Central South University of Technology, vol. 12, pp. 232-
237, 2005

[12] H. Yaojun, J. Changjun, L. Xuemei, "Resource scheduling model for grid computing
based on sharing synthesis of Petri net," 2005, pp. 367-372 Vol. 1.

[13] M. Dobber, R. van der Mei, G. Koole, "Effective Prediction of Job Processing Times in a
Large-Scale Grid Environment," presented at 15th IEEE International Symposium
on High Performance Distributed Computing, 2006, pp. 359-360.

[14] Z. Yuanyuan, S. Wei, Y. Inoguchi, "Predicting Running Time of Grid Tasks based on
CPU Load Predictions," presented at 7th IEEE/ACM International Conference on
Grid Computing, Barcelona, Spain, 2006, pp. 286-292.

 Advances in Petri Net Theory and Applications

172

5.3 Validity analysis
Performance analysis mainly analyzes the time and cost characteristics of a job net. The total
cost of a job net is the cost sum of all transitions in the net: ()rQ t∑ . If

1 1
0 0() () ()r r mQ t Q t Q t= ≤∑ , the cost allocation succeeds, otherwise the cost allocation fails and

the job net can not run correctly.
In order to be convenient to analyze time characteristics of a job net, we propose a transition
tree algorithm that translates the transitions in a job net into a transition tree. The conversion
rules are shown as follows:
1. The root of a transition tree is roott whose time limits and cost are 0;

2. beginp is the beginning place in the job net and all transitions in beginp⊗ are the leaves of

roott .

3. For each leaf t , find t⊗⊗ and all transitions in t⊗⊗ are the leaves of t ;
4. repeat step 3 until each leaf t satisfies the condition: t⊗⊗ = ∅ .
5. The tree with root roott is the corresponding transition tree of the job net.
According to the transition tree, it is convenient to analyze the time characteristics of the job
net and optimize the allocation process for subtasks.
The maximum number of serial transitions is 1TD − , where TD is the depth of the transition
tree.
To reduce the waiting time of transitions, for each transition ({ |1 })it t t i k⊗⊗ = ≤ ≤ in a job
net, let 1 1() () max(() (), , () ())l b l d l k d kt t t t t tΓ = Γ = Γ + Γ Γ + Γ .
Suppose there are s leaves { |1 }rt r s′ ≤ ≤ in a transition tree and each leaf has a path from it

to root : () { |1 }r
i i ip t t r l′ = ≤ ≤ ,where il is the number of transitions in ()ip t′ . Each path has a

total time of transitions: 1() ()il r
i d irt t

=
′Γ = Γ∑ , the total durable time of the net is ()rt′Γ ,

1() max((), , ())r kt t t′ ′ ′Γ = Γ Γ . The corresponding path of rt′ is the key path and rl is the
number of transitions on the key path.
The key path decides the total durable time of a job net and it is important for subtask
allocation optimization. For each subtask, we should choose those resources with high
performance. All computing subtask on the key path can run on the same node and this can
reduce the data transferring time.

6. Conclusions and future work
This paper proposes two different models for the scheduling net and the job net based on
the idea that the scheduling net is separated from the job net. This method makes models
compact and intuitional. In addition, the separation benefits the analysis of the job net and
the scheduling net respectively. According to the granularity of parallel applications, the
scheduling net is designed to four levels, which is convenient to deploy distributed
schedulers in parallel environment and is beneficial to the management of different parallel
application granularities. Based on Petri Net with changeable structure, the job net model
can change its structure dynamically according to the allocation results or states of jobs.
Therefore, the model supports dynamic mergence and division of subtasks and can deal
with the abnormity of subtasks. We validate the scheduling net and the job net using

Parallel Application Scheduling Model Based on Petri Net with Changeable Structure

173

reachability tree technologies. In addition, a transition tree algorithm is designed for
analyzing the performances of the job net and optimizing the allocations of subtasks
according to the key path in the job net.
In the future, we will optimize these models further and put emphasis upon researching
algorithms used for optimizing resource allocations.

7. References
[1] M. Alt, S. Gorlatch, A. Hoheisel, H. W. Pohl, "Using High-Level Petri Nets for

Hierarchical Grid Workflows," presented at Second IEEE International Conference
on e-Science and Grid Computing, Amsterdam, The Netherlands 2006, pp. 13-13.

[2] M. Silva,L. Recalde, "Petri nets and integrality relaxations: A view of continuous Petri net
models," IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and
Reviews, vol. 32, pp. 314-327, 2002 (4).

[3] H. Yaojun,L. Xuemei, "Modeling and Performance Analysis of Grid Task Scheduling
Based on Composition and Reduction of Petri Nets," 2006, pp. 331-334.

[4] S. Distefano, A. Puliafito, M. Scarpa, "GridSPN: a grid-based non Markovian Petri nets
tool," presented at IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprise, 2005, pp. 331-336.

[5] X. Jiefeng, W. Zhaohui, C. Huajun, "Distributed Petri Net for Knowledge Base Grid
reasoning," presented at IEEE International Conference on Systems, Man and
Cybernetics, Hangzhou, China, 2003, pp. 593-597 vol.1.

[6] J. Yu, R. Buyya, C. K. Tham, "QoS-based Scheduling of Workflow Applications on
Service Grids," presented at Proceedings of the 1st IEEE International Conference
on e-Science and Grid Computing Melbourne, Australia, 2005.

[7] J. Yu,R. Buyya, "A Taxonomy of Scientific Workflow Systems for Grid Computing,"
Special Issue on Scientific Workflows, SIGMOD Record, vol. 34, pp. 44-49, 2005 (3).

[8] J. Yu,R. Buyya, "A Budget Constrained Scheduling of Workflow Applications on Utility
Grids using Genetic Algorithms," presented at Workshop on Workflows in Support
of Large-Scale Science, Proceedings of the 15th IEEE International Symposium on
High Performance Distributed Computing Paris, France, 2006.

[9] BPEL4WS, "http://www.ebpml.org/bpel4ws.htm,"
[10] J. Hai,W. Shuzhen, "Grid workflow model based on colored Petri net," J . Huazhong

Univ. of Sci. & Tech. (Nature Science Edition), vol. 34, pp. 39-41, 2006 (7).
[11] Z. Hu, R. Hu, W. Gui, J. Chen, "General scheduling framework in computational Grid

based on Petri net " Journal of Central South University of Technology, vol. 12, pp. 232-
237, 2005

[12] H. Yaojun, J. Changjun, L. Xuemei, "Resource scheduling model for grid computing
based on sharing synthesis of Petri net," 2005, pp. 367-372 Vol. 1.

[13] M. Dobber, R. van der Mei, G. Koole, "Effective Prediction of Job Processing Times in a
Large-Scale Grid Environment," presented at 15th IEEE International Symposium
on High Performance Distributed Computing, 2006, pp. 359-360.

[14] Z. Yuanyuan, S. Wei, Y. Inoguchi, "Predicting Running Time of Grid Tasks based on
CPU Load Predictions," presented at 7th IEEE/ACM International Conference on
Grid Computing, Barcelona, Spain, 2006, pp. 286-292.

 Advances in Petri Net Theory and Applications

174

[15] C. Jinjun,Y. Yun, "Assigning Local Fixed-time Constraints in Grid Workflow Systems,"
presented at Fifth International Conference on Grid and Cooperative Computing
Workshops. WSGE '06. , Changsha, China, 2006, pp. 227-234.

[16] Z. Liang, "Research on Workflow Patterns based on Petri nets," presented at 2006 IEEE
Conference on Robotics, Automation and Mechatronics, Bangkok, 2006, pp. 1-6.

[17] J. Mu Der,P. Mao Yu, "Augmented reachability trees for 1-place-unbounded generalized
Petri nets," IEEE Transactions on Systems, Man and Cybernetics, Part A, vol. 29, pp.
173-183, 1999 (2).

[18] Y. Ru, W. Wu, C. N. Hadjicostis, "Comments on "A Modified Reachability Tree
Approach to Analysis of Unbounded Petri Nets"," IEEE Transactions on Systems,
Man and Cybernetics, Part B, vol. 36, pp. 1210-1210, 2006 (5).

10

Petri Nets Hierarchical Modelling Framework of
Active Products’ Community

Ahmed Zouinkhi1,2, Eddy Bajic1,
Eric Rondeau1 and Mohamed Naceur Abdelkrim2

1Research Center for Automatic Control - CRAN - CNRS UMR 7039, Henri Poincaré
University, Nancy, BP 239, 54506 Vandoeuvre-les-Nancy,

2Unit of research MACS (Modelling, Analysis and Control of Systems)
National school of engineers of Gabes, Street Omar Ibn Elkhattab,Zrig–Gabes 6029,

1France
2Tunisia

1. Introduction
Nowadays in industrial process area it is necessary to manage in real time all informations
related to the interactions between resources, products, processes and operators along the
process zone. Amongst the main constraints and objectives in industrial processes is the
security issue. Especially, in industrial environment workers have to deal with unavoidable
threats from products, resources and machines that are parts of work risks. Currently, many
security systems depend on safety measurements that are token by interacting devices
eventually exposing people lives to unpredictable situation as an example in storage and
transport activities of hazardous chemical substances.
Our research approach to study such fully distributed and discrete industrial environment
is based on communicating object’s concept which represents a physical product equipped
with perception, communication, actuation and decision making capabilities. Products and
resources when upgraded so to communicate with objects then become active products that
are communicating with each others. So to cope with such a complete active products’
community we propose to define a Petri nets hierarchical modelling framework in order to
analyse and to solve cooperation and communication functionalities of active products.
The communicating object’s approach has attracted the interest of several research projects
as COBIS project (Collaborative Business Items) (CoBIs, 2008) that has developed a new
approach to business processes involving physical entities such as goods and tools in
enterprise. The intention is to embed business logic in the physical entities. Also, the
computing department at Lancaster University (Strohbach et al., 2005) conceived
cooperative products with perception, analysis and communication capacities that operate
by information sharing principle.
Also, (Quanz et al., 2008) is considering the problem of Object Safety: how objects endowed
with processing, communicating, and sensing capabilities can determine their safety. He
assigned an agent to each object capable of looking out for its own self interests, while
concurrently collaborating with its neighbours and learning / reinforcing its beliefs from

 Advances in Petri Net Theory and Applications

174

[15] C. Jinjun,Y. Yun, "Assigning Local Fixed-time Constraints in Grid Workflow Systems,"
presented at Fifth International Conference on Grid and Cooperative Computing
Workshops. WSGE '06. , Changsha, China, 2006, pp. 227-234.

[16] Z. Liang, "Research on Workflow Patterns based on Petri nets," presented at 2006 IEEE
Conference on Robotics, Automation and Mechatronics, Bangkok, 2006, pp. 1-6.

[17] J. Mu Der,P. Mao Yu, "Augmented reachability trees for 1-place-unbounded generalized
Petri nets," IEEE Transactions on Systems, Man and Cybernetics, Part A, vol. 29, pp.
173-183, 1999 (2).

[18] Y. Ru, W. Wu, C. N. Hadjicostis, "Comments on "A Modified Reachability Tree
Approach to Analysis of Unbounded Petri Nets"," IEEE Transactions on Systems,
Man and Cybernetics, Part B, vol. 36, pp. 1210-1210, 2006 (5).

10

Petri Nets Hierarchical Modelling Framework of
Active Products’ Community

Ahmed Zouinkhi1,2, Eddy Bajic1,
Eric Rondeau1 and Mohamed Naceur Abdelkrim2

1Research Center for Automatic Control - CRAN - CNRS UMR 7039, Henri Poincaré
University, Nancy, BP 239, 54506 Vandoeuvre-les-Nancy,

2Unit of research MACS (Modelling, Analysis and Control of Systems)
National school of engineers of Gabes, Street Omar Ibn Elkhattab,Zrig–Gabes 6029,

1France
2Tunisia

1. Introduction
Nowadays in industrial process area it is necessary to manage in real time all informations
related to the interactions between resources, products, processes and operators along the
process zone. Amongst the main constraints and objectives in industrial processes is the
security issue. Especially, in industrial environment workers have to deal with unavoidable
threats from products, resources and machines that are parts of work risks. Currently, many
security systems depend on safety measurements that are token by interacting devices
eventually exposing people lives to unpredictable situation as an example in storage and
transport activities of hazardous chemical substances.
Our research approach to study such fully distributed and discrete industrial environment
is based on communicating object’s concept which represents a physical product equipped
with perception, communication, actuation and decision making capabilities. Products and
resources when upgraded so to communicate with objects then become active products that
are communicating with each others. So to cope with such a complete active products’
community we propose to define a Petri nets hierarchical modelling framework in order to
analyse and to solve cooperation and communication functionalities of active products.
The communicating object’s approach has attracted the interest of several research projects
as COBIS project (Collaborative Business Items) (CoBIs, 2008) that has developed a new
approach to business processes involving physical entities such as goods and tools in
enterprise. The intention is to embed business logic in the physical entities. Also, the
computing department at Lancaster University (Strohbach et al., 2005) conceived
cooperative products with perception, analysis and communication capacities that operate
by information sharing principle.
Also, (Quanz et al., 2008) is considering the problem of Object Safety: how objects endowed
with processing, communicating, and sensing capabilities can determine their safety. He
assigned an agent to each object capable of looking out for its own self interests, while
concurrently collaborating with its neighbours and learning / reinforcing its beliefs from

 Advances in Petri Net Theory and Applications

176

them. Each product is represented by "an object safety agent", it deals with information from
environmental sensors, in a known situation. When the agent detects a threat, it seeks
confirmation from its neighbours.
Mainly focused on a security purpose but although extensible to other process management
issue, our work involves transforming products with dangerous nature into communicating
entities assuming the surveillance of its environment while collecting information from its
surrounding. The aim of this work is to propose a Petri nets hierarchical modelling
framework with internal cooperation model of active products by using the High Level Petri
Nets (HLPN) formalism. Conceptual modelling was validated by the simulation software
CPN-Tools from Aarhus University (Ratzer et al., 2003).
Our paper is organized as follows: after the introduction, the second part presents the
concept of the active product for the security management. The third part presents the
communication between active products. Modeling by Petri nets will be illustrated on
section 4. Finally the last part will expose the Petri Nets modelling of a cooperation of active
products. Future research developments will be discussed in the conclusion.

2. Active product
The concept of active product consists in endowing a product with the capacities of
communicating, informing, acquiring, deciding and reacting to the stimulus and disruptions
of its environment in order to allow the product to adjust, to influence, to cooperate, and to
transform the behavior of its environment. The product is thus an intelligent and proactive
actor in its ambient environment with which it interacts by means of wireless
communication and its embarked sensors which allow the data entry of its environment
(Zouinkhi et al., 2009).
This concept is shown in our application by integrating a sensor platform in every chemical
container with a hazardous substance, therefore, upgrading it with interaction capacities in
the middle of its action environment. If two active products are in the same proximity, they
communicate through messages sent by radio frequency waves (See figure 1). So, an active
product can communicate with the manager and the operator in the same way.

Fig. 1. Active Security management system

To insure a good security monitoring, three safety levels were established from Good to
Dangerous (B: Good, M: Average and D: Dangerous). Determining security levels results

Manager

Active Products

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

177

after applying security rules (logical and analytical) we have designed which are divided
into three categories: (Zouinkhi et al., 2009)
- Static Rules: engage the product alone in its environment, this product measures some

values defining its safety level (such as temperature, humidity, shock, luminosity …
these can be used e.g. for fire detection) in order to keep itself in a stable sane state,
these values should not exceed certain min or/and max limits.

Fig. 2. Static rules

- Dynamic rules: these are rules related to the product by itself considering its state
evolution through time. For example some product could not be affected if they reach a
certain temperature threshold but the fact of reaching it several times in a period of time
can bring the product in an alarming state.

Fig. 3. Dynamic rules

- Community rules: depending on compatibility constraints with other products.
Incompatibility is established from the security symbols and also from risk and safety
phrases according to the European directives 67/548/EEC concerning chemical
interaction. Also manipulation of product may require an operator with a specific
fitness and aptitude; consequently, a product needs a well determined operator quality.

HiLimit -Δ

Security level

HiLimit LoLimit LoLimit + Δ

D D M M B

T°

Security level

t[s]

 Advances in Petri Net Theory and Applications

176

them. Each product is represented by "an object safety agent", it deals with information from
environmental sensors, in a known situation. When the agent detects a threat, it seeks
confirmation from its neighbours.
Mainly focused on a security purpose but although extensible to other process management
issue, our work involves transforming products with dangerous nature into communicating
entities assuming the surveillance of its environment while collecting information from its
surrounding. The aim of this work is to propose a Petri nets hierarchical modelling
framework with internal cooperation model of active products by using the High Level Petri
Nets (HLPN) formalism. Conceptual modelling was validated by the simulation software
CPN-Tools from Aarhus University (Ratzer et al., 2003).
Our paper is organized as follows: after the introduction, the second part presents the
concept of the active product for the security management. The third part presents the
communication between active products. Modeling by Petri nets will be illustrated on
section 4. Finally the last part will expose the Petri Nets modelling of a cooperation of active
products. Future research developments will be discussed in the conclusion.

2. Active product
The concept of active product consists in endowing a product with the capacities of
communicating, informing, acquiring, deciding and reacting to the stimulus and disruptions
of its environment in order to allow the product to adjust, to influence, to cooperate, and to
transform the behavior of its environment. The product is thus an intelligent and proactive
actor in its ambient environment with which it interacts by means of wireless
communication and its embarked sensors which allow the data entry of its environment
(Zouinkhi et al., 2009).
This concept is shown in our application by integrating a sensor platform in every chemical
container with a hazardous substance, therefore, upgrading it with interaction capacities in
the middle of its action environment. If two active products are in the same proximity, they
communicate through messages sent by radio frequency waves (See figure 1). So, an active
product can communicate with the manager and the operator in the same way.

Fig. 1. Active Security management system

To insure a good security monitoring, three safety levels were established from Good to
Dangerous (B: Good, M: Average and D: Dangerous). Determining security levels results

Manager

Active Products

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

177

after applying security rules (logical and analytical) we have designed which are divided
into three categories: (Zouinkhi et al., 2009)
- Static Rules: engage the product alone in its environment, this product measures some

values defining its safety level (such as temperature, humidity, shock, luminosity …
these can be used e.g. for fire detection) in order to keep itself in a stable sane state,
these values should not exceed certain min or/and max limits.

Fig. 2. Static rules

- Dynamic rules: these are rules related to the product by itself considering its state
evolution through time. For example some product could not be affected if they reach a
certain temperature threshold but the fact of reaching it several times in a period of time
can bring the product in an alarming state.

Fig. 3. Dynamic rules

- Community rules: depending on compatibility constraints with other products.
Incompatibility is established from the security symbols and also from risk and safety
phrases according to the European directives 67/548/EEC concerning chemical
interaction. Also manipulation of product may require an operator with a specific
fitness and aptitude; consequently, a product needs a well determined operator quality.

HiLimit -Δ

Security level

HiLimit LoLimit LoLimit + Δ

D D M M B

T°

Security level

t[s]

 Advances in Petri Net Theory and Applications

178

Fig. 4. Community rules

Our works promote a cooperation mechanism that integrates two approaches later
centralized administration and decentralized cooperation between active products by the
exchange of messages. Active products work together and exchange real-time information
about the environment and the security level by a product that can manage asset’s safety
and security of its environment.

3. Communication between active products
Communication between products works by using several types of messages which are sent
by a broadcasting mode and are classified according to their role that are intended to
perform.
Product’s announcement in the products’ community has a great importance for the overall
security management. For this, we propose two types of messages:
CTR (Control Timestamp Request): message which declares to the manager the arrival of a
new product.
AckCTR: the acknowledgement message from the manager.
After the registration of the product which needs a setup configuration to allow it to interact
within the community. This configuration concerns the type of product regarding its
hazardous classification (safety symbols) and its static, dynamic and community related
rules as well. When a product was not configured, a it announces its status with three types
of messages.
NCF0: Product has no hazardous classification and no security rules configuration.
NCF1: Product has only hazardous classification configuration.
NCF2: Product has only security rules configuration.
Then the system manager answers by an appropriate product configuration command
message respectively:
CMD1: Configuration of the product classification.
CMD3: Configuration of the security rules.

Active Product 1 Active Product 2

Incompatibility

Manager

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

179

Once the product is correctly configured; it becomes completely capable of surveying its
neighbourhood: it is now an effective Active Product.
Any environment modification or event that break individual or mutual security rules must
be detected by products diagnosed and has to generate external actions allowing to recover
the normal safety level by actions or directed information of the ambient environment.
These interactions are made by means of the following messages:
GRE: Greeting Message carrying specific product information (name, safety symbols) and
has a further role contributing to the calculation process of the distance separating two
active products.
RSI: a message sent after the reception of a GRE message, indicates the APs Inter-distance
value calculated with the power loss of received signal.
INA: this message carries the ambient sensors values embedded in the active product.
CFG: a message emitted by active product after an manager request, contains the specific
configuration in the active product.
SER: a broadcast message containing the active product security rules values.
ALE: an alert message to report to the manager about a threat or a defective security state
and can be sent as a rapp_D message if the state of active product is dangerous or rapp_M if
the state is average.
The manager participates on the communication part by specific command messages.
CMD2: Manager requires the configuration of the active product through this message.
CMD4: Manager asks for Security rules Configurations.
CMD5: Manager asks for specific ambient information of active products.

4. Modeling by Petri Nets
The Petri nets are used for a long time as modeling tools of discrete events systems.
Petri Nets (PN) and particularly, Colored Petri Nets (CPN) (Jensen et al., 1997), are a
powerful and a recognized modelling tool, endowed with a big expressiveness and allowing
to represent the two aspects of system: static thanks to the PN structure and dynamic thanks
to the token distribution evolution (Bouali and al., 2009).
Petri net (Murata, 1989) is an effective tool for modeling manufacturing systems. The
advantages of applying Petri nets formalism are summarized as follows. First of all, the
graphical nature of Petri nets can visualize sequences of firing via token passing over the
net. Second, Petri nets have well-established formal mechanisms for modelling and analysis
of manufacturing systems (Rudas et al., 1997) (Hsieh, 2004) (Zurawski, 2005). Third, the
mathematical foundation of Petri nets can analyze structural and dynamic behaviours of a
system. These advantages make Petri nets a suitable modelling and analysis tool.
(Song et al., 2008) define the Petri net as a tool modelling events that require a special
synchronization as wireless sensor network. The system modelled is a safety system
(evacuation) used in the mines of a coke which locates the positron of miners in an accident.
The modelsation is devided into two phases: modeling of a particle (service and
communication) and generalizing model to a large scale (performance evaluation and
interaction between particles).
(Fu-Shiung, 2009) presents a concept of verification and resolution problem due to the
mechanism of cooperation and interaction of Multiagent systems. These systems are often
modeled by Petri nets and the approach consists in controling the vivacity of network, a
character illustrating the efficiency of the interaction between particles.

 Advances in Petri Net Theory and Applications

178

Fig. 4. Community rules

Our works promote a cooperation mechanism that integrates two approaches later
centralized administration and decentralized cooperation between active products by the
exchange of messages. Active products work together and exchange real-time information
about the environment and the security level by a product that can manage asset’s safety
and security of its environment.

3. Communication between active products
Communication between products works by using several types of messages which are sent
by a broadcasting mode and are classified according to their role that are intended to
perform.
Product’s announcement in the products’ community has a great importance for the overall
security management. For this, we propose two types of messages:
CTR (Control Timestamp Request): message which declares to the manager the arrival of a
new product.
AckCTR: the acknowledgement message from the manager.
After the registration of the product which needs a setup configuration to allow it to interact
within the community. This configuration concerns the type of product regarding its
hazardous classification (safety symbols) and its static, dynamic and community related
rules as well. When a product was not configured, a it announces its status with three types
of messages.
NCF0: Product has no hazardous classification and no security rules configuration.
NCF1: Product has only hazardous classification configuration.
NCF2: Product has only security rules configuration.
Then the system manager answers by an appropriate product configuration command
message respectively:
CMD1: Configuration of the product classification.
CMD3: Configuration of the security rules.

Active Product 1 Active Product 2

Incompatibility

Manager

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

179

Once the product is correctly configured; it becomes completely capable of surveying its
neighbourhood: it is now an effective Active Product.
Any environment modification or event that break individual or mutual security rules must
be detected by products diagnosed and has to generate external actions allowing to recover
the normal safety level by actions or directed information of the ambient environment.
These interactions are made by means of the following messages:
GRE: Greeting Message carrying specific product information (name, safety symbols) and
has a further role contributing to the calculation process of the distance separating two
active products.
RSI: a message sent after the reception of a GRE message, indicates the APs Inter-distance
value calculated with the power loss of received signal.
INA: this message carries the ambient sensors values embedded in the active product.
CFG: a message emitted by active product after an manager request, contains the specific
configuration in the active product.
SER: a broadcast message containing the active product security rules values.
ALE: an alert message to report to the manager about a threat or a defective security state
and can be sent as a rapp_D message if the state of active product is dangerous or rapp_M if
the state is average.
The manager participates on the communication part by specific command messages.
CMD2: Manager requires the configuration of the active product through this message.
CMD4: Manager asks for Security rules Configurations.
CMD5: Manager asks for specific ambient information of active products.

4. Modeling by Petri Nets
The Petri nets are used for a long time as modeling tools of discrete events systems.
Petri Nets (PN) and particularly, Colored Petri Nets (CPN) (Jensen et al., 1997), are a
powerful and a recognized modelling tool, endowed with a big expressiveness and allowing
to represent the two aspects of system: static thanks to the PN structure and dynamic thanks
to the token distribution evolution (Bouali and al., 2009).
Petri net (Murata, 1989) is an effective tool for modeling manufacturing systems. The
advantages of applying Petri nets formalism are summarized as follows. First of all, the
graphical nature of Petri nets can visualize sequences of firing via token passing over the
net. Second, Petri nets have well-established formal mechanisms for modelling and analysis
of manufacturing systems (Rudas et al., 1997) (Hsieh, 2004) (Zurawski, 2005). Third, the
mathematical foundation of Petri nets can analyze structural and dynamic behaviours of a
system. These advantages make Petri nets a suitable modelling and analysis tool.
(Song et al., 2008) define the Petri net as a tool modelling events that require a special
synchronization as wireless sensor network. The system modelled is a safety system
(evacuation) used in the mines of a coke which locates the positron of miners in an accident.
The modelsation is devided into two phases: modeling of a particle (service and
communication) and generalizing model to a large scale (performance evaluation and
interaction between particles).
(Fu-Shiung, 2009) presents a concept of verification and resolution problem due to the
mechanism of cooperation and interaction of Multiagent systems. These systems are often
modeled by Petri nets and the approach consists in controling the vivacity of network, a
character illustrating the efficiency of the interaction between particles.

 Advances in Petri Net Theory and Applications

180

(Khoukhi et al., 2010) notes that the classic Petri nets is unable to model uncertain systems
what motivated the researchers to combine between the Petri nets and fuzzy logic to reach a
Fuzzy Petri nets used in various application such as robotics and real-time control systems.
We choose High Level Petri Nets (HLPN) formalism to model the cooperation between
active products. This model uses a generic and modular approach which requires the use of
colouring and hierarchy.
Others authors used this formalism to model the Ethernet switch (Marsal, 2006). (Brahimi
and al., 2008) are used HLPN formalism to propose an integrated modelling environment to
represent globally the Networked Control Systems behaviour.
Hierarchical Coloured Petri Nets are used for modelling communication because Petri Nets
are a formal method enabling to express parallelism, synchronisation, interaction, resource
sharing, temporal (and stochastic) properties, and to achieve qualitative analysis (checking
of the logic of the non temporal and/or temporal mechanisms) and quantitative analysis
(performance evaluation and/or reliability). Then this formalism offers a framework well
adapted and progressive for the representation and the analysis of the communication
systems (Brahimi and al., 2008).

5. Model of cooperation between active products
The cooperation model has several components (P1, P2,...Pi, Manager) that communicate
among themselves, within a wireless network. Each element is represented by a transition
(hierarchical) which shows the services and the appropriate patches listed in detail in what
follows.
As the figure 5, each element has two Capacities: "Net Input msg" and "Net Output msg"
which are respectively output buffers of each product and the input.
These buffers have role in order to temporarily store messages received from network
before being treated and those issued by products in the network.
The objective of our work is to represent the behaviour of the active product and the stream
of messages through a wireless network in order to achieve cooperation interaction between
products; we opted for colored Petri Nets models designed, validated with CPN-Tools
software. CPN-Tools allow creating hierarchical models in order to simplify complex ones
and divide it into other sub-models. What is meant here that in the hierarchical Petri net
model certain transitions represent another Petri net sub-model.

5.1 Active products level
Figure 6 represents an internal model of an active product P1, in this structure the
transitions hold a description of a functioning part of the product. The place “net Input msg
P1” corresponds to the wireless communication network and collects messages emitted and
received from all active products; let us note that the messages are sent in broadcasting
mode. This characteristic is carried out by a transition which puts tokens in all the places
corresponding to the various products. Messages intended for a specific active product will
fire its own “net output msg P1” place. Circulating messages will be represented by colored
tokens.
Each active product represents some internal and external tasks of which some conform the
centralized approach however the others follow the approach of omnipresence, each
transition in this network has a hierarchical structure described explicitly later.

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

181

P3
P3

P2
P2

network

network

cart
cart

manager
manager

OP
OP

P1
P1

net input msg manager

MESSAGE

net output msg manager

MESSAGE

net input msg
cart

MESSAGE

net output msg
cart

MESSAGE

net output msg OP

MESSAGE

net input msg OP

MESSAGE

net output msg P3

MESSAGE

net input msg P3

MESSAGE

net output msg P2

MESSAGE

net input msg P2

MESSAGE

net input msg P1

MESSAGE

net output msg P1

MESSAGE

P1

OP

manager

cart

network

P2

P3

Fig. 5. Global cooperation model

 Advances in Petri Net Theory and Applications

180

(Khoukhi et al., 2010) notes that the classic Petri nets is unable to model uncertain systems
what motivated the researchers to combine between the Petri nets and fuzzy logic to reach a
Fuzzy Petri nets used in various application such as robotics and real-time control systems.
We choose High Level Petri Nets (HLPN) formalism to model the cooperation between
active products. This model uses a generic and modular approach which requires the use of
colouring and hierarchy.
Others authors used this formalism to model the Ethernet switch (Marsal, 2006). (Brahimi
and al., 2008) are used HLPN formalism to propose an integrated modelling environment to
represent globally the Networked Control Systems behaviour.
Hierarchical Coloured Petri Nets are used for modelling communication because Petri Nets
are a formal method enabling to express parallelism, synchronisation, interaction, resource
sharing, temporal (and stochastic) properties, and to achieve qualitative analysis (checking
of the logic of the non temporal and/or temporal mechanisms) and quantitative analysis
(performance evaluation and/or reliability). Then this formalism offers a framework well
adapted and progressive for the representation and the analysis of the communication
systems (Brahimi and al., 2008).

5. Model of cooperation between active products
The cooperation model has several components (P1, P2,...Pi, Manager) that communicate
among themselves, within a wireless network. Each element is represented by a transition
(hierarchical) which shows the services and the appropriate patches listed in detail in what
follows.
As the figure 5, each element has two Capacities: "Net Input msg" and "Net Output msg"
which are respectively output buffers of each product and the input.
These buffers have role in order to temporarily store messages received from network
before being treated and those issued by products in the network.
The objective of our work is to represent the behaviour of the active product and the stream
of messages through a wireless network in order to achieve cooperation interaction between
products; we opted for colored Petri Nets models designed, validated with CPN-Tools
software. CPN-Tools allow creating hierarchical models in order to simplify complex ones
and divide it into other sub-models. What is meant here that in the hierarchical Petri net
model certain transitions represent another Petri net sub-model.

5.1 Active products level
Figure 6 represents an internal model of an active product P1, in this structure the
transitions hold a description of a functioning part of the product. The place “net Input msg
P1” corresponds to the wireless communication network and collects messages emitted and
received from all active products; let us note that the messages are sent in broadcasting
mode. This characteristic is carried out by a transition which puts tokens in all the places
corresponding to the various products. Messages intended for a specific active product will
fire its own “net output msg P1” place. Circulating messages will be represented by colored
tokens.
Each active product represents some internal and external tasks of which some conform the
centralized approach however the others follow the approach of omnipresence, each
transition in this network has a hierarchical structure described explicitly later.

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

181

P3
P3

P2
P2

network

network

cart
cart

manager
manager

OP
OP

P1
P1

net input msg manager

MESSAGE

net output msg manager

MESSAGE

net input msg
cart

MESSAGE

net output msg
cart

MESSAGE

net output msg OP

MESSAGE

net input msg OP

MESSAGE

net output msg P3

MESSAGE

net input msg P3

MESSAGE

net output msg P2

MESSAGE

net input msg P2

MESSAGE

net input msg P1

MESSAGE

net output msg P1

MESSAGE

P1

OP

manager

cart

network

P2

P3

Fig. 5. Global cooperation model

 Advances in Petri Net Theory and Applications

182

1`(P1,P2,GRE)++
1`(P1,P3,GRE)++
1`(P1,GES,GRE)

internal
suveillance

internal suveillance

surveillance and
communication

surveillance and communication

configration
configration

Announcement

Announcement

net output msg P1

In MESSAGE

switch on

1`()

UNIT

Ps configured

UNIT

P configured

UNIT

P_Registered

UNIT

net input msg P1

Out MESSAGEOutIn

Announcement configrationsurveillance and communication

internal suveillance

Fig. 6. Active product model

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

183

5.2 Product’s dependence tasks
Two tasks represented of hierarchical transition: announcement (Figure 7) and configuration
(Figure 8), illustrate the centralized approach where each product must refer to the manager
initially to announce themselves (to enter in the network and to have an ID) and also to
configure themselves (to ask the manager for the safety rules).

P_Registered
Out UNITOut

net input msg P2

Out MESSAGEOut
net output msg P2

In MESSAGE

(man,P1,AckCTR)

In

switch on
In UNIT

1`()

In

CTR sent

UNIT

P1 activated

UNIT

MESSAGE

sending CTR

ACK

[H=(man,P1,AckCTR)]

ACK_bar

[H<>(man,P1,AckCTR)]

activate P1

x

x

x

x

(P1,man,CTR)

x

x

x

x

(man,P1,AckCTR)

(man,P1,AckCTR)

H

(P2,P1,GRE) H

Fig. 7. Announcement model

Announcement is used to introduce a foreign product into the community of the other
intelligent products. The need to launch out in this community requires announcement
towards the manager so that this last detects it and adds it in its database which contains the
products already existing.
The configuration’s role is to provide to the intelligent product the necessary configurations
enabling him to cooperate in the interaction with the community (the neighborhoods), each
product must check that it has its safety rules (its ambient critical variable) as symbol of
safety (which are the products that presents a threat to him).
And as shows in the figure ones announced the active product has to be configured by
checking if it has a safety rules and safety symbols, in dead we have to notice 4 probable case:
c_s (rules + symbols), c_ns (rules + messing symbols), nc_s (messing rules + symbols) and
nc_ns (messing rule + massing symbols) so in each case the active product has to react in order

 Advances in Petri Net Theory and Applications

182

1`(P1,P2,GRE)++
1`(P1,P3,GRE)++
1`(P1,GES,GRE)

internal
suveillance

internal suveillance

surveillance and
communication

surveillance and communication

configration
configration

Announcement

Announcement

net output msg P1

In MESSAGE

switch on

1`()

UNIT

Ps configured

UNIT

P configured

UNIT

P_Registered

UNIT

net input msg P1

Out MESSAGEOutIn

Announcement configrationsurveillance and communication

internal suveillance

Fig. 6. Active product model

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

183

5.2 Product’s dependence tasks
Two tasks represented of hierarchical transition: announcement (Figure 7) and configuration
(Figure 8), illustrate the centralized approach where each product must refer to the manager
initially to announce themselves (to enter in the network and to have an ID) and also to
configure themselves (to ask the manager for the safety rules).

P_Registered
Out UNITOut

net input msg P2

Out MESSAGEOut
net output msg P2

In MESSAGE

(man,P1,AckCTR)

In

switch on
In UNIT

1`()

In

CTR sent

UNIT

P1 activated

UNIT

MESSAGE

sending CTR

ACK

[H=(man,P1,AckCTR)]

ACK_bar

[H<>(man,P1,AckCTR)]

activate P1

x

x

x

x

(P1,man,CTR)

x

x

x

x

(man,P1,AckCTR)

(man,P1,AckCTR)

H

(P2,P1,GRE) H

Fig. 7. Announcement model

Announcement is used to introduce a foreign product into the community of the other
intelligent products. The need to launch out in this community requires announcement
towards the manager so that this last detects it and adds it in its database which contains the
products already existing.
The configuration’s role is to provide to the intelligent product the necessary configurations
enabling him to cooperate in the interaction with the community (the neighborhoods), each
product must check that it has its safety rules (its ambient critical variable) as symbol of
safety (which are the products that presents a threat to him).
And as shows in the figure ones announced the active product has to be configured by
checking if it has a safety rules and safety symbols, in dead we have to notice 4 probable case:
c_s (rules + symbols), c_ns (rules + messing symbols), nc_s (messing rules + symbols) and
nc_ns (messing rule + massing symbols) so in each case the active product has to react in order

 Advances in Petri Net Theory and Applications

184

to get messing feature from manager by sending a request for that. So we notice that we have a
classification stage (c_s, c_ns, nc_s, nc_ns) to pick out in each case we are, ones classified and
depending on the messing feature one token is going to be sent to the manager.

net input msg P2
Out

MESSAGE
Out

net output msg P2

In MESSAGEIn

P configured
Out UNITOut

Ps configured
Out UNITOut

P_Registered
In UNITIn

P1 nc_s

UNIT

P1 nc_ns

UNIT

NCF1 sent

UNIT

NCF2 sent

UNIT

NCF0 sent

UNIT

P1 c_ns

UNIT

CMD3 recu

UNIT

CMD1 recu

UNIT

P1 configured

UNIT

UNIT

UNIT

UNITUNIT

UNIT UNIT
cmd3_1

UNITUNITUNIT

ncf0
UNIT

c_s c_ns nc_s nc_ns

send NCF1 send NCF2 send NCF0

CMD3 CMD1

send ACK_CMD3 send ACK_CMD1

procedes de calcul

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1x1

(GES,P1,CMD3) (GES,P1,CMD1)

(P1,GES,NCF0)(P1,GES,NCF2)(P1,GES,NCF1)

1`()

1`()

x1

x1

1`(P1,GES,Ack_CMD1)

1`(P1,GES,Ack_CMD3)

x

1`()

1`() 1`() 1`()
1`()

1`()

x1

1`()

x1

1`()
x1

x1 x1

x1

1`()

1`()1`()

x1

1`()

1`()

x1

1`()1`()

1`()

x1

x1
x1

1`()1`() 1`()

Fig. 8. Configuration model

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

185

5.3 Product’s autonomic tasks
The two other hierarchical transitions represented in figure 6: surveillance and
communication and internal surveillance, follow the distributed approach where each
product is equipped with a decision capacity (autonomy) which illustrates the concept of
reactivity.
The surveillance and communication model represented in figure 9, also illustrates the
distributed intelligence by the concept of sociability.

Fig. 9. Surveillance and communication model

 Advances in Petri Net Theory and Applications

184

to get messing feature from manager by sending a request for that. So we notice that we have a
classification stage (c_s, c_ns, nc_s, nc_ns) to pick out in each case we are, ones classified and
depending on the messing feature one token is going to be sent to the manager.

net input msg P2
Out

MESSAGE
Out

net output msg P2

In MESSAGEIn

P configured
Out UNITOut

Ps configured
Out UNITOut

P_Registered
In UNITIn

P1 nc_s

UNIT

P1 nc_ns

UNIT

NCF1 sent

UNIT

NCF2 sent

UNIT

NCF0 sent

UNIT

P1 c_ns

UNIT

CMD3 recu

UNIT

CMD1 recu

UNIT

P1 configured

UNIT

UNIT

UNIT

UNITUNIT

UNIT UNIT
cmd3_1

UNITUNITUNIT

ncf0
UNIT

c_s c_ns nc_s nc_ns

send NCF1 send NCF2 send NCF0

CMD3 CMD1

send ACK_CMD3 send ACK_CMD1

procedes de calcul

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1x1

(GES,P1,CMD3) (GES,P1,CMD1)

(P1,GES,NCF0)(P1,GES,NCF2)(P1,GES,NCF1)

1`()

1`()

x1

x1

1`(P1,GES,Ack_CMD1)

1`(P1,GES,Ack_CMD3)

x

1`()

1`() 1`() 1`()
1`()

1`()

x1

1`()

x1

1`()
x1

x1 x1

x1

1`()

1`()1`()

x1

1`()

1`()

x1

1`()1`()

1`()

x1

x1
x1

1`()1`() 1`()

Fig. 8. Configuration model

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

185

5.3 Product’s autonomic tasks
The two other hierarchical transitions represented in figure 6: surveillance and
communication and internal surveillance, follow the distributed approach where each
product is equipped with a decision capacity (autonomy) which illustrates the concept of
reactivity.
The surveillance and communication model represented in figure 9, also illustrates the
distributed intelligence by the concept of sociability.

Fig. 9. Surveillance and communication model

 Advances in Petri Net Theory and Applications

186

In this model the accepted messages are CMD2, CMD4 and CMD5: received from manager
(proactive concept) and RSSI messages: received from other products neighbourhood
(sociability concept). RSSI Messages illustrate the collaboration between products: each time
a product receives a GRE message and due to a module RSSI (Received Signal Strength
Indicator) that product will estimate the distance that separates it from the sender
product. This distance is compared to two values: L_inf and L_sup (received during the
configuration). These messages are illustrated in figure 10. After the reception of these
messages, a knowledge base serves for treating the different messages.

message analysed
Out MESSAGEOut

Msg received
In MESSAGEIn

Access to the knowledge base

MESSAGE

GRE

[#3 E=GRE]

RSI

[#3 E=RSI]

CMD5

[#3 E=CMD5]

CMD4

[#3 E=CMD4]

CMD2

[#3 E=CMD2]

Ack_rapp_D

[#3 E=Ack_rapp_D]

processing in Knowledge Base
processing in Knowledge Baseprocessing in Knowledge Base

EEE E E

E E
E

E E

E

E

Fig. 10. Analysis and message processing model

The processing in knowledge base transition of the figure 10 represent a sub model that is
represented by figure 11.
After the determination of the distance between incompatible products, three cases can be
distinguished:

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

187

• If distance > L_supp: indicates that we have a comfort distance between the two
products.

• If L_inf < distance < L_sup: indicates that the product is in bad condition which
resulted in the sending of a message rapp_M (bad report).

• If D < L_inf: illustrates a state of danger because the distance between the two products
are a critical distance where one has a risk of a dangerous chemical reaction, therefore a
message rapp_D will be sent to the manager.

Access to the knowledge base
In MESSAGEIn

message analysed
Out MESSAGEOut

result concluded

comp

results concluded

dist

comp Incomp

calculating and
processing GRE

[#3 M3=GRE]

calculating and
processing RSI

[#3 M3=RSI]

reading the
cofiguration's parameters

[#3 M3=CMD2]

Reading
security's rules

[#3 M3=CMD4]

Reading
ambient values

[#3 M3=CMD5]

L_sup<L_inf<d<L_sup<L_inf

ack danger
report received

[#3 M3=Ack_rapp_D]

1`imc

1`compatibilite()

1`c
1`L_inf_sup 1`L_sup

1`distance()

1`L_inf

M3
M3

M3
M3

M3

M3 M3 M3

(P1,GES,rapp_D)

M3

M3

(P1,GES,rapp_D) (P1,GES,rapp_M)

Fig. 11. Processing in knowledge base model

The sub model of sending message transition represented in figure 9 as follow; After
analyzing the different messages received, the product reacts by sending a corresponding
message;
- If the product receives a CMD2 message, it sends a CFG message.
- If the product receives a CMD4 message, it sends a SER message.
- If the product receives a CMD5 message, it sends an INA message.
If the product is in a danger state, a report will be sent to the manager and an alarm is
activated until it receives an acknowledgment of the manager.

 Advances in Petri Net Theory and Applications

186

In this model the accepted messages are CMD2, CMD4 and CMD5: received from manager
(proactive concept) and RSSI messages: received from other products neighbourhood
(sociability concept). RSSI Messages illustrate the collaboration between products: each time
a product receives a GRE message and due to a module RSSI (Received Signal Strength
Indicator) that product will estimate the distance that separates it from the sender
product. This distance is compared to two values: L_inf and L_sup (received during the
configuration). These messages are illustrated in figure 10. After the reception of these
messages, a knowledge base serves for treating the different messages.

message analysed
Out MESSAGEOut

Msg received
In MESSAGEIn

Access to the knowledge base

MESSAGE

GRE

[#3 E=GRE]

RSI

[#3 E=RSI]

CMD5

[#3 E=CMD5]

CMD4

[#3 E=CMD4]

CMD2

[#3 E=CMD2]

Ack_rapp_D

[#3 E=Ack_rapp_D]

processing in Knowledge Base
processing in Knowledge Baseprocessing in Knowledge Base

EEE E E

E E
E

E E

E

E

Fig. 10. Analysis and message processing model

The processing in knowledge base transition of the figure 10 represent a sub model that is
represented by figure 11.
After the determination of the distance between incompatible products, three cases can be
distinguished:

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

187

• If distance > L_supp: indicates that we have a comfort distance between the two
products.

• If L_inf < distance < L_sup: indicates that the product is in bad condition which
resulted in the sending of a message rapp_M (bad report).

• If D < L_inf: illustrates a state of danger because the distance between the two products
are a critical distance where one has a risk of a dangerous chemical reaction, therefore a
message rapp_D will be sent to the manager.

Access to the knowledge base
In MESSAGEIn

message analysed
Out MESSAGEOut

result concluded

comp

results concluded

dist

comp Incomp

calculating and
processing GRE

[#3 M3=GRE]

calculating and
processing RSI

[#3 M3=RSI]

reading the
cofiguration's parameters

[#3 M3=CMD2]

Reading
security's rules

[#3 M3=CMD4]

Reading
ambient values

[#3 M3=CMD5]

L_sup<L_inf<d<L_sup<L_inf

ack danger
report received

[#3 M3=Ack_rapp_D]

1`imc

1`compatibilite()

1`c
1`L_inf_sup 1`L_sup

1`distance()

1`L_inf

M3
M3

M3
M3

M3

M3 M3 M3

(P1,GES,rapp_D)

M3

M3

(P1,GES,rapp_D) (P1,GES,rapp_M)

Fig. 11. Processing in knowledge base model

The sub model of sending message transition represented in figure 9 as follow; After
analyzing the different messages received, the product reacts by sending a corresponding
message;
- If the product receives a CMD2 message, it sends a CFG message.
- If the product receives a CMD4 message, it sends a SER message.
- If the product receives a CMD5 message, it sends an INA message.
If the product is in a danger state, a report will be sent to the manager and an alarm is
activated until it receives an acknowledgment of the manager.

 Advances in Petri Net Theory and Applications

188

message sent
Out UNITOut

net input msg P2
Out MESSAGEOut

message analysed
In

MESSAGE

In

report
sent

UNIT

alarm triggered

UNIT

MESSAGE
1`(P2,P3,GRE)

sending CFG

[M2=(GES,P1,CMD2)]

sending SER

[M2=(GES,P1,CMD4)]

sending INA

[M2=(GES,P1,CMD5)]

sending bad
state report

[#3 M2=rapp_M]

sending dangerous
state report

[#3 M2=rapp_D]

sending RSI

[#3 M2=RSI]

Alarm
outbreak

Ack_danger_state_bar

[S<>(GES,P1,Ack_rapp_D)]

Ack_danger_state

[S=(GES,P1,Ack_rapp_D)]

[M2=(GES,P1,Ack_rapp_D)]

M2

M2 M2

(P1,GES,CFG)
(P1,GES,SER) (P1,GES,INA)

(P1,GES,rapp_M)

(P1,GES,rapp_D)
(P1,#2 M2,RSI)1`()

1`()
1`()

1`()
1`()

1`()

M2
M2 M2

1`()

x6

x6
x6

x6

x6

x4
x4S

S

M2

(GES,P1,Ack_rapp_D)

Fig. 12. Sending message in Surveillance and communication model

For the internal surveillance model represented in figure 13, each time, the product collects
information from the sensors (temperature, light and moisture) and evaluates (for each
variables) the safety level, so that, if a dangerous level is reached, the product sends a
rapp_D message (dangerous report) to the manager to inform him that one of its sensor’s
variables reached a critical level (Zouinkhi et al., 2009).

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

189

Ps configured
In UNITIn

net input msg P2
Out MESSAGEOut

security level calculated

etat

Decision
DecisionDecision

evaluation of sensor's value
and calculation of security's level

evaluation of sensor's value and calculation of security's levelevaluation of sensor's value and calculation of security's level

Fig. 13. Internal surveillance model

The decision transition can be represented by figure 14. After determining the security level,
a state of the product is evaluated.
- If the state is average (bad), a GRE message is sent in broadcast in which the security

level is indicated.
- If the state is dangerous, a rapp_M message is sent to the manager.

 Advances in Petri Net Theory and Applications

188

message sent
Out UNITOut

net input msg P2
Out MESSAGEOut

message analysed
In

MESSAGE

In

report
sent

UNIT

alarm triggered

UNIT

MESSAGE
1`(P2,P3,GRE)

sending CFG

[M2=(GES,P1,CMD2)]

sending SER

[M2=(GES,P1,CMD4)]

sending INA

[M2=(GES,P1,CMD5)]

sending bad
state report

[#3 M2=rapp_M]

sending dangerous
state report

[#3 M2=rapp_D]

sending RSI

[#3 M2=RSI]

Alarm
outbreak

Ack_danger_state_bar

[S<>(GES,P1,Ack_rapp_D)]

Ack_danger_state

[S=(GES,P1,Ack_rapp_D)]

[M2=(GES,P1,Ack_rapp_D)]

M2

M2 M2

(P1,GES,CFG)
(P1,GES,SER) (P1,GES,INA)

(P1,GES,rapp_M)

(P1,GES,rapp_D)
(P1,#2 M2,RSI)1`()

1`()
1`()

1`()
1`()

1`()

M2
M2 M2

1`()

x6

x6
x6

x6

x6

x4
x4S

S

M2

(GES,P1,Ack_rapp_D)

Fig. 12. Sending message in Surveillance and communication model

For the internal surveillance model represented in figure 13, each time, the product collects
information from the sensors (temperature, light and moisture) and evaluates (for each
variables) the safety level, so that, if a dangerous level is reached, the product sends a
rapp_D message (dangerous report) to the manager to inform him that one of its sensor’s
variables reached a critical level (Zouinkhi et al., 2009).

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

189

Ps configured
In UNITIn

net input msg P2
Out MESSAGEOut

security level calculated

etat

Decision
DecisionDecision

evaluation of sensor's value
and calculation of security's level

evaluation of sensor's value and calculation of security's levelevaluation of sensor's value and calculation of security's level

Fig. 13. Internal surveillance model

The decision transition can be represented by figure 14. After determining the security level,
a state of the product is evaluated.
- If the state is average (bad), a GRE message is sent in broadcast in which the security

level is indicated.
- If the state is dangerous, a rapp_M message is sent to the manager.

 Advances in Petri Net Theory and Applications

190

net input msg P2
Out MESSAGEOut

UNIT UNIT UNIT

security level calculated

In etatIn

Danger bad good

send GRE sendGREsend alarm

1`()1`()1`()

1`() 1`()1`()

1`danger 1`mauvais 1`bon

1`(P2,GES,GRE)1`(P2,GES,GRE)1`(P2,GES,rapp_D)

Fig. 14. Decision level in internal surveillance model

5.4 Manager model
The manager’s model (Figure 15) can be subdivided in two parts according to the concept
characterizing the product: reactif or pro-actif.
The manager’s reactivity (Strobach et Al., 2005): when a token containing a message arrives
to the entry’s buffer of manager, this message passes by a stage of classification as the figure
indicates it according to the nature of message (INA, CFG, LIKING, NCF0, NCF1,
Ack_CMD1, NCF2, Ack_CMD3, CTR, RAPP_D, RAPP_M, NCFOP, CMP). According to
each message received the manager must react either by updating his database or by
sending messages to provide informations to the other products (safety rules,
acknowledgment of the received reports…).
Pro-activity of manager (KASHIT et al., 2009): As figure 15 indicates it, the manager
anticipates sometimes by asking randomly for the variable’s information of product’s
environment by sending (CMD5, CMD4 and CMD2) to a hazardous chosen products.

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

191

message
managing

UNIT

MESSAGE

GRE
recieved

MESSAGE

NCF0 recieved
MESSAGE

CTR received

MESSAGE

statu recieved

MESSAGE

net output msg manager
In MESSAGEIn

update 3

UNIT

AckCTR
sent

MESSAGE

AckComp
sent

UNIT

net input msg manager
Out

MESSAGE
Out

NCF1 received

MESSAGE

CMD1
sent

MESSAGE

NCF2 received

MESSAGE

CMD3
sent

MESSAGE

CFG
Recieved

MESSAGE

INA
recieved

MESSAGE

update 2

UNIT

update 1
UNIT

repport recieved

MESSAGE

AckRSI
sent

UNIT

alert received

MESSAGE

update
+showing data

UNIT

information request

UNIT

power swich on

UNIT

1`()

MESSAGE

1`(P1,P2,GRE)

MESSAGE

1`(P1,P2,GRE)

Ack_CMD1

MESSAGE

NCFOP received

MESSAGE

consultation base
de donnees

MESSAGE

safty
comp

MESSAGE
1`(P1,P2,GRE)

reception

GRE
[#3 M5=GRE]

NCF0

[#3 M5=NCF0]
CTR

[#3 M5=CTR]

rap_statu_D

[#3 M5=rapp_D]

t19 send AckCTR send Ack_rapp_D

NCF1

[#3 M5=NCF1]

NCF2

[#3 M5=NCF2]

send CMD3

@+80

send CMD1

CFG

[#3 M5=CFG]

INA

[#3 M5=INA]

t18t17

rap_statu_M

[#3 M5=rapp_M]

send Ack_rapp_M

ALE_C

[#3 M5=INA]

send CMD2send CMD4send CMD5

manager activation

Ack_CMD1

[#3 M5=Ack_CMD1]

Ack_CMD3

[#3 M5=Ack_CMD3]

Ackcmd1_bar

[#3L<>Ack_CMD1]

Ack_CMD3_bar

[#3Z<>Ack_CMD3]

NCFOP

[#3 M5=NCFOP]

send CMDOP

CMP

[#3 M5=CMP]

decision

cmptible incmpble

s1

M5

M5
M5

M5
M5

M5

M5

M5

M5

M5

M5

M5

M5

1`()

M5
1`()

(GES,#1 M5,AckCTR)

(GES,#1 M5,Ack_rapp_D)

M5 M5

M5

M5

M5

M5

M5

M5

M5

M5

1`()

M5

M5

1`()

M5
M5

(GES,#1 M5,CMD1)

(GES,#1 M5,CMD3)

M5

M5

1`()

M5

M5

1`()

M5 M5

(GES,#1 M5,Ack_rapp_M)
1`(GES,Prc(),CMD2)

1`(GES,Prc(),CMD4)

1`(GES,Prc(),CMD5)

1`()

1`()

1`()

s4

1`()

1`()

s2
s2

s1

M5

M5

M5

M5

M5

L

n5n5 n4n4

M5

M5

M5
Z

M5

M5

M5

M5

M5

M5

M5

M5

1`(GES,OP,CMDOP)

M5

M5

M5

compatibilite()

1`c
1`imc

1`(GES,OP,CP) 1`(GES,OP,INCP)

RR

if RR<>M5
then 1`(RES,GES,CTR)
else empty

Fig. 15. Manager model

5.5 Network level
In this part, we will present the network’s model where the sensor’s products interact;
firstly, we are going to model the hierarchical transition network which is represented by
the figure 5 as a perfect network (without any disturbance) to evaluate the impact of
progressive increasing of product’s number existing in this network, and thereafter, we will
create a disturbance in this network to check the robustness of allover the system.

5.5.1 Perfect network
The figure 16 indicates the lower level of the Network: the higher places Net input indicate
the output’s buffers of the product where the messages are stored before being emitted in
the network; these messages pass by a classification’s stage which classify them according to

 Advances in Petri Net Theory and Applications

190

net input msg P2
Out MESSAGEOut

UNIT UNIT UNIT

security level calculated

In etatIn

Danger bad good

send GRE sendGREsend alarm

1`()1`()1`()

1`() 1`()1`()

1`danger 1`mauvais 1`bon

1`(P2,GES,GRE)1`(P2,GES,GRE)1`(P2,GES,rapp_D)

Fig. 14. Decision level in internal surveillance model

5.4 Manager model
The manager’s model (Figure 15) can be subdivided in two parts according to the concept
characterizing the product: reactif or pro-actif.
The manager’s reactivity (Strobach et Al., 2005): when a token containing a message arrives
to the entry’s buffer of manager, this message passes by a stage of classification as the figure
indicates it according to the nature of message (INA, CFG, LIKING, NCF0, NCF1,
Ack_CMD1, NCF2, Ack_CMD3, CTR, RAPP_D, RAPP_M, NCFOP, CMP). According to
each message received the manager must react either by updating his database or by
sending messages to provide informations to the other products (safety rules,
acknowledgment of the received reports…).
Pro-activity of manager (KASHIT et al., 2009): As figure 15 indicates it, the manager
anticipates sometimes by asking randomly for the variable’s information of product’s
environment by sending (CMD5, CMD4 and CMD2) to a hazardous chosen products.

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

191

message
managing

UNIT

MESSAGE

GRE
recieved

MESSAGE

NCF0 recieved
MESSAGE

CTR received

MESSAGE

statu recieved

MESSAGE

net output msg manager
In MESSAGEIn

update 3

UNIT

AckCTR
sent

MESSAGE

AckComp
sent

UNIT

net input msg manager
Out

MESSAGE
Out

NCF1 received

MESSAGE

CMD1
sent

MESSAGE

NCF2 received

MESSAGE

CMD3
sent

MESSAGE

CFG
Recieved

MESSAGE

INA
recieved

MESSAGE

update 2

UNIT

update 1
UNIT

repport recieved

MESSAGE

AckRSI
sent

UNIT

alert received

MESSAGE

update
+showing data

UNIT

information request

UNIT

power swich on

UNIT

1`()

MESSAGE

1`(P1,P2,GRE)

MESSAGE

1`(P1,P2,GRE)

Ack_CMD1

MESSAGE

NCFOP received

MESSAGE

consultation base
de donnees

MESSAGE

safty
comp

MESSAGE
1`(P1,P2,GRE)

reception

GRE
[#3 M5=GRE]

NCF0

[#3 M5=NCF0]
CTR

[#3 M5=CTR]

rap_statu_D

[#3 M5=rapp_D]

t19 send AckCTR send Ack_rapp_D

NCF1

[#3 M5=NCF1]

NCF2

[#3 M5=NCF2]

send CMD3

@+80

send CMD1

CFG

[#3 M5=CFG]

INA

[#3 M5=INA]

t18t17

rap_statu_M

[#3 M5=rapp_M]

send Ack_rapp_M

ALE_C

[#3 M5=INA]

send CMD2send CMD4send CMD5

manager activation

Ack_CMD1

[#3 M5=Ack_CMD1]

Ack_CMD3

[#3 M5=Ack_CMD3]

Ackcmd1_bar

[#3L<>Ack_CMD1]

Ack_CMD3_bar

[#3Z<>Ack_CMD3]

NCFOP

[#3 M5=NCFOP]

send CMDOP

CMP

[#3 M5=CMP]

decision

cmptible incmpble

s1

M5

M5
M5

M5
M5

M5

M5

M5

M5

M5

M5

M5

M5

1`()

M5
1`()

(GES,#1 M5,AckCTR)

(GES,#1 M5,Ack_rapp_D)

M5 M5

M5

M5

M5

M5

M5

M5

M5

M5

1`()

M5

M5

1`()

M5
M5

(GES,#1 M5,CMD1)

(GES,#1 M5,CMD3)

M5

M5

1`()

M5

M5

1`()

M5 M5

(GES,#1 M5,Ack_rapp_M)
1`(GES,Prc(),CMD2)

1`(GES,Prc(),CMD4)

1`(GES,Prc(),CMD5)

1`()

1`()

1`()

s4

1`()

1`()

s2
s2

s1

M5

M5

M5

M5

M5

L

n5n5 n4n4

M5

M5

M5
Z

M5

M5

M5

M5

M5

M5

M5

M5

1`(GES,OP,CMDOP)

M5

M5

M5

compatibilite()

1`c
1`imc

1`(GES,OP,CP) 1`(GES,OP,INCP)

RR

if RR<>M5
then 1`(RES,GES,CTR)
else empty

Fig. 15. Manager model

5.5 Network level
In this part, we will present the network’s model where the sensor’s products interact;
firstly, we are going to model the hierarchical transition network which is represented by
the figure 5 as a perfect network (without any disturbance) to evaluate the impact of
progressive increasing of product’s number existing in this network, and thereafter, we will
create a disturbance in this network to check the robustness of allover the system.

5.5.1 Perfect network
The figure 16 indicates the lower level of the Network: the higher places Net input indicate
the output’s buffers of the product where the messages are stored before being emitted in
the network; these messages pass by a classification’s stage which classify them according to

 Advances in Petri Net Theory and Applications

192

their transmitting products before being stored in the place “message sent through
network”. The network being perfect (without any disturbance), then all the messages will
pass directly through the transition network (which is not simple transition) towards the
buffers from exit of the network messages received thus, all the messages will be to
reclassify again according to their destination before being emitted towards the entry’s
buffers of the products.

net output msg
cartOut MESSAGEOut

net input msg P2
In MESSAGEIn

net output msg manager
Out MESSAGEOut

net output msg P1
Out MESSAGEOut

net output msg P3Out

MESSAGE

Out

net input msg P3In

MESSAGE

In

net output msg OP
Out MESSAGEOut

net input msg OP
In MESSAGEIn

net input msg
cart

In MESSAGEIn

net output msg P2

Out MESSAGEOut

net input msg manager
In MESSAGEIn

net input msg P1
In MESSAGEIn

Message sent through network

MESSAGE

Message recieved

MESSAGE

msg from op msg from cart msg from manager msg from P1 msg from P2 msg from P3

msg to op

[#2 M4=OP]

msg to cart

[#2 M4=RES]

msg to manager

[#2 M4=GES]

msg to P1

[#2 M4=P1]

msg to P2

[#2 M4=P2]

msg to P3

[#2 M4=P3]

network

g1

g2 g3

g4

g5

g6

g6
g5

g4g3
g2

g1

M4

M4

M4

M4
M4 M4

M4
M4

M4 M4 M4

M4

M4

M4

Fig. 16. Perfect Network model

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

193

5.5.2 Disturbed network
The network model presented on the figure 17 defines a disturbed network where there is a
risk of loss of message. As figure indicates, each token (message), which is presented in the
place (" message sent through network") of figure 16 must cross the transition where it will
be to assign to another place, in this moment this token will be lost or passed, after this
passage, this token enters a buffer of entry and afterwards enters a buffer of exit to be finally
in the place " message received". This disturbance in network was presented by (Bitam et al.,
2006) where they modeled a line of transmission with disturbance.

Fig. 17. Disturbed network model

This modeling of loss in a line of communication indicated in figure 17: when a message
(token) is in place P1 and another is in place P2, the transition T'1 may fire (is passable), So
this message will go to the place P3, at this moment there are two directions crossing T''1
(this message will be lost) or passing of T1 (the message will be issued) and after it passes to
input buffer then that to output buffer (after crossing T2). This phenomenon is explained as
follows: at times the processing speed of an active product is much slower than receiving. So
some messages will not get the chance to be treated by the active product of the limitation of
the input place E.
The hierarchical model with different level is represented by figure 18. In this figure are
shown different levels namely; Network level, product level, internal functions of an active
product and message functions of an active product.

lost messages

Input
buffer

Output
buffer

 Advances in Petri Net Theory and Applications

192

their transmitting products before being stored in the place “message sent through
network”. The network being perfect (without any disturbance), then all the messages will
pass directly through the transition network (which is not simple transition) towards the
buffers from exit of the network messages received thus, all the messages will be to
reclassify again according to their destination before being emitted towards the entry’s
buffers of the products.

net output msg
cartOut MESSAGEOut

net input msg P2
In MESSAGEIn

net output msg manager
Out MESSAGEOut

net output msg P1
Out MESSAGEOut

net output msg P3Out

MESSAGE

Out

net input msg P3In

MESSAGE

In

net output msg OP
Out MESSAGEOut

net input msg OP
In MESSAGEIn

net input msg
cart

In MESSAGEIn

net output msg P2

Out MESSAGEOut

net input msg manager
In MESSAGEIn

net input msg P1
In MESSAGEIn

Message sent through network

MESSAGE

Message recieved

MESSAGE

msg from op msg from cart msg from manager msg from P1 msg from P2 msg from P3

msg to op

[#2 M4=OP]

msg to cart

[#2 M4=RES]

msg to manager

[#2 M4=GES]

msg to P1

[#2 M4=P1]

msg to P2

[#2 M4=P2]

msg to P3

[#2 M4=P3]

network

g1

g2 g3

g4

g5

g6

g6
g5

g4g3
g2

g1

M4

M4

M4

M4
M4 M4

M4
M4

M4 M4 M4

M4

M4

M4

Fig. 16. Perfect Network model

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

193

5.5.2 Disturbed network
The network model presented on the figure 17 defines a disturbed network where there is a
risk of loss of message. As figure indicates, each token (message), which is presented in the
place (" message sent through network") of figure 16 must cross the transition where it will
be to assign to another place, in this moment this token will be lost or passed, after this
passage, this token enters a buffer of entry and afterwards enters a buffer of exit to be finally
in the place " message received". This disturbance in network was presented by (Bitam et al.,
2006) where they modeled a line of transmission with disturbance.

Fig. 17. Disturbed network model

This modeling of loss in a line of communication indicated in figure 17: when a message
(token) is in place P1 and another is in place P2, the transition T'1 may fire (is passable), So
this message will go to the place P3, at this moment there are two directions crossing T''1
(this message will be lost) or passing of T1 (the message will be issued) and after it passes to
input buffer then that to output buffer (after crossing T2). This phenomenon is explained as
follows: at times the processing speed of an active product is much slower than receiving. So
some messages will not get the chance to be treated by the active product of the limitation of
the input place E.
The hierarchical model with different level is represented by figure 18. In this figure are
shown different levels namely; Network level, product level, internal functions of an active
product and message functions of an active product.

lost messages

Input
buffer

Output
buffer

 Advances in Petri Net Theory and Applications

194

Fig. 18. Hierarchical models framework of an active product’s community

1`(P1,P2,GRE)++
1`(P1,P3,GRE)++
1`(P1,GES,GRE)

1`()

1`()
x

x

suveillance et
communication

suveillance et communication
configration P1

configration P1

annoncement P1
annoncement P1

suveillance
interne P1

suveillance interne P1

net output msg P1

In MESSAGE

mise en marche

1`()

UNIT

P1 configure S_I

UNIT

P1 Configure S_C

1`()

UNIT

P1 inscri

UNIT

net input msg P1

Out MESSAGEOutIn

suveillance interne P1

annoncement P1 configration P1suveillance et communication

h1

M4

h1

h1

h1

h1

h1

h1

M4

M4

M4

M4

M4

M4

M4

M4

perdu

passe

1`()

UNIT

1`()

UNIT

1`()

UNIT

MESSAGE

MESSAGE

MESSAGE

Message emis en reseau
In MESSAGE

Message recu
Out MESSAGEOut

In

H
(P2,P1,GRE)

H

(GES,P1,AckCTR)

(GES,P1,AckCTR)

x

x

x

x

(P1,GES,CTR)

x

x

x

x

mise sous tension P1

ACK_bar

[H<>(GES,P1,AckCTR)]

ACK

[H=(GES,P1,AckCTR)]

envoi CTR

MESSAGE

P1 sous tension

UNIT

CTR envoye

UNIT

mise en marche
In

1`()

UNIT

net output msg P1

In

(GES,P1,AckCTR)

MESSAGE

net input msg P1

Out MESSAGE

P1 inscri
Out UNITOut

OutIn

In

1`()

1`()

1`()

1`()

E

E

E

E

1`()

1`()

ms1

1`()

1`()

ms1

Analyse et traitement de message
Analyse et traitement de message

envoi message
envoi message

Reception msg

[#3 ms1=GRE
orelse #3 ms1=RSI
orelse #3 ms1=CMD4
orelse #3 ms1=CMD5
orelse #3 ms1=CMD2
orelse #3 ms1=Ack_rapp_D]

configuration complete

Purge

UNIT

message envoye

UNIT

message traite et analyse

MESSAGE

Msg recu

MESSAGE

Pdt actif UNIT

P1 Configure S_C
In UNIT

net input msg P1
Out

MESSAGE

net output msg P1
In

MESSAGE
InOut

In

envoi message

Analyse et traitement de message 1`()

1`()
1`()

x1

x1

x1

1`()

1`() 1`()

x1

1`()

1`()

x1

1`() 1`()

1`()

x1

x1x1

x1

1`()

x1

1`()

x1

1`()

1`()
1`()1`()1`()

1`()

x

1`(P1,GES,Ack_CMD3)

1`(P1,GES,Ack_CMD1)

x1

x1

1`()

1`()

(P1,GES,NCF1)
(P1,GES,NCF2)

(P1,GES,NCF0)

(GES,P1,CMD1)

(GES,P1,CMD3)

x1 x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

procedes de calcul

envoi ACK_CMD1envoi ACK_CMD3

CMD1CMD3

envoi NCF0envoi NCF2envoi NCF1

nc_nsnc_sc_nsc_s

ncf0
UNITUNIT UNIT

cmd3_1
UNITUNITUNIT

UNIT UNIT

UNIT

UNIT

P1 configure

UNIT

CMD1 recu

UNIT

CMD3 recu

UNIT

P1 c_ns

UNIT

NCF0 envoye

UNIT

NCF2 envoye

UNIT

NCF1 envoye

UNIT

P1 nc_ns

UNIT

P1 nc_s

UNIT

P1 inscri
In UNIT

P1 configure S_I
Out UNIT

P1 Configure S_C
Out UNIT

net output msg P1

In MESSAGE

net input msg P1
Out

MESSAGE
Out

In

Out Out

In

message envoye
Out UNITOut

net input msg P1
Out MESSAGEOut

message traite et analyse
In

MESSAGE

In

rapport
 envoye

UNIT

alarme declanche

UNIT

MESSAGE
1`(P2,P3,GRE)

Envoi CFG

[M2=(GES,P1,CMD2)]

Envoi SER

[M2=(GES,P1,CMD4)]

Envoi INA

[M2=(GES,P1,CMD5)]

envoi rapport
etat mauvais

[#3 M2=rapp_M]
Envoi rapport
etat de danger

[#3 M2=rapp_D]

envoi RSI

[#3 M2=RSI]

declanchement
Alarm

Ack_etat_danger_bar

[S<>(GES,P1,Ack_rapp_D)]

Ack_etat_danger

[S=(GES,P1,Ack_rapp_D)]

[M2=(GES,P1,Ack_rapp_D)]

M2 M2 M2

(P1,GES,CFG)
(P1,GES,SER) (P1,GES,INA) (P1,GES,rapp_M)

(P1,GES,rapp_D) (P1,#2 M2,RSI)1`()

1`() 1`()

1`() 1`()

1`()

M2 M2 M2

1`()

x6

x6 x6

x6

x6

x4
x4S

S

M2

(GES,P1,Ack_rapp_D)

P1
P3

P2
P2

network

network

cart
cart

manager
manager

OP
OP

Pi
P1

net input msg manager

MESSAGE

net output msg manager

MESSAGE

net input msg
cart

MESSAGE

net output msg
cart

MESSAGE

net output msg OP

MESSAGE

net input msg OP

MESSAGE

net output msg P3

MESSAGE

net input msg P3

MESSAGE

net output msg P2

MESSAGE

net input msg P2

MESSAGE

net input msg P1

MESSAGE

net output msg P1

MESSAGE

P1

OP

manager

cart

network

P2

P3

I. Network
Level

II. Product
Level

III. Internal
functions of Active

Product

IV. Messaging
functions of an Active

Product

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

195

6. Conclusion
In this work, we define the concept of an active security management in a distributed
system, with Hierarchical Petri nets modelling of active product's behaviour. The target
application is dedicated to security management of hazardous products but the concept is
extensible to other application areas.
We proposed an active product's behaviour model represented by hierarchical coloured
Petri nets. This hierarchy includes sub-models where each one allows displaying the
evolution of every state of the active product (registration, configuration, surveillance and
communication and internal surveillance). With Petri Nets, we have verified the consistency
and non-blocking states of our model. Cooperation between active products is provided by
exchange of messages in order to manage and control dynamically in real-time the global
active security level. The proposed Active Product model will help in future steps of our
work to study by large simulation the influence of the communication network on the
system functioning (bounded time, messages loss, …).
The proposed approach is very promising for the study and analysis of distributed system
using the communicating object’s approach or active product concept.

7. References
Bouali, M.; Barger, P. & Schon, W. (2009). Colored Petri Net inversion for Backward

Reachability Analysis, In: Second IFAC Workshop on Depandable Control of
Descrete Systems, Bari, Italy.

Brahimi, B. ; Rondeau, E. & Aubrun, C. (2008). Integrated Approach based on High Level
Petri Nets for Evaluating Networked Control Systems, In: 16th Mediterranean
Conference on Control an Automation, MED’08, Ajaccio, France.

CoBIs (2008). Collaborative business items. European Community FP6 STREP Project, IST
004270, Technical report.

Fu-Shiung, H. (2009). Developing cooperation mechanism for multi-agent systems with
Petri nets. Engineering Applications of Artificial Intelligence vol. 22 (2009) pp. 616–
627.

Hsieh, F.S.(2004). Fault tolerant deadlock avoidance algorithm for assembly processes, IEEE
Transaction on System, Man and Cybernetics, Part A 34 (1), 65–79

Jensen, K. (992 à 1997). Colored petri nets - basic concepts, analysis methods and practical
use. Basic Concepts, EATCS Monographs on Theoretical Computer Scienc.
Springer-Verlag, Vol. 1 à 3, 1992 - 1997.

Kashif S.; Norsheila F.; Sharifah H.; Sharifah K. & Rozeha R. (2009). Autonomously
Intelligent WSN Routing Protocol based on Ant Colony Optimization. In:
Proceedings of 7th International Conference on Robotics, Vision, Signal Processing,
& Power Applications (RoViSP 2009). Awana Porto Malai, Langkawi, Kedah,
Malaysia.

Khoukhi, L. & Cherkaoui, S. (2010). Intelligent QoS management for multimedia services
support in wireless mobile ad hoc networks. Journal of Computer Networks,
Elsevier Edition.

Marsal, G. (2006). Evaluation of time performances of Ethernet-based Automation system by
simulation of High Level Petri Nets, PhD dissertation de l’Ecole Normale
Supérieure de Cachan et de l’Université de Kaiserslautern, Décembre 2006.

 Advances in Petri Net Theory and Applications

194

Fig. 18. Hierarchical models framework of an active product’s community

1`(P1,P2,GRE)++
1`(P1,P3,GRE)++
1`(P1,GES,GRE)

1`()

1`()
x

x

suveillance et
communication

suveillance et communication
configration P1

configration P1

annoncement P1
annoncement P1

suveillance
interne P1

suveillance interne P1

net output msg P1

In MESSAGE

mise en marche

1`()

UNIT

P1 configure S_I

UNIT

P1 Configure S_C

1`()

UNIT

P1 inscri

UNIT

net input msg P1

Out MESSAGEOutIn

suveillance interne P1

annoncement P1 configration P1suveillance et communication

h1

M4

h1

h1

h1

h1

h1

h1

M4

M4

M4

M4

M4

M4

M4

M4

perdu

passe

1`()

UNIT

1`()

UNIT

1`()

UNIT

MESSAGE

MESSAGE

MESSAGE

Message emis en reseau
In MESSAGE

Message recu
Out MESSAGEOut

In

H
(P2,P1,GRE)

H

(GES,P1,AckCTR)

(GES,P1,AckCTR)

x

x

x

x

(P1,GES,CTR)

x

x

x

x

mise sous tension P1

ACK_bar

[H<>(GES,P1,AckCTR)]

ACK

[H=(GES,P1,AckCTR)]

envoi CTR

MESSAGE

P1 sous tension

UNIT

CTR envoye

UNIT

mise en marche
In

1`()

UNIT

net output msg P1

In

(GES,P1,AckCTR)

MESSAGE

net input msg P1

Out MESSAGE

P1 inscri
Out UNITOut

OutIn

In

1`()

1`()

1`()

1`()

E

E

E

E

1`()

1`()

ms1

1`()

1`()

ms1

Analyse et traitement de message
Analyse et traitement de message

envoi message
envoi message

Reception msg

[#3 ms1=GRE
orelse #3 ms1=RSI
orelse #3 ms1=CMD4
orelse #3 ms1=CMD5
orelse #3 ms1=CMD2
orelse #3 ms1=Ack_rapp_D]

configuration complete

Purge

UNIT

message envoye

UNIT

message traite et analyse

MESSAGE

Msg recu

MESSAGE

Pdt actif UNIT

P1 Configure S_C
In UNIT

net input msg P1
Out

MESSAGE

net output msg P1
In

MESSAGE
InOut

In

envoi message

Analyse et traitement de message 1`()

1`()
1`()

x1

x1

x1

1`()

1`() 1`()

x1

1`()

1`()

x1

1`() 1`()

1`()

x1

x1x1

x1

1`()

x1

1`()

x1

1`()

1`()
1`()1`()1`()

1`()

x

1`(P1,GES,Ack_CMD3)

1`(P1,GES,Ack_CMD1)

x1

x1

1`()

1`()

(P1,GES,NCF1)
(P1,GES,NCF2)

(P1,GES,NCF0)

(GES,P1,CMD1)

(GES,P1,CMD3)

x1 x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

procedes de calcul

envoi ACK_CMD1envoi ACK_CMD3

CMD1CMD3

envoi NCF0envoi NCF2envoi NCF1

nc_nsnc_sc_nsc_s

ncf0
UNITUNIT UNIT

cmd3_1
UNITUNITUNIT

UNIT UNIT

UNIT

UNIT

P1 configure

UNIT

CMD1 recu

UNIT

CMD3 recu

UNIT

P1 c_ns

UNIT

NCF0 envoye

UNIT

NCF2 envoye

UNIT

NCF1 envoye

UNIT

P1 nc_ns

UNIT

P1 nc_s

UNIT

P1 inscri
In UNIT

P1 configure S_I
Out UNIT

P1 Configure S_C
Out UNIT

net output msg P1

In MESSAGE

net input msg P1
Out

MESSAGE
Out

In

Out Out

In

message envoye
Out UNITOut

net input msg P1
Out MESSAGEOut

message traite et analyse
In

MESSAGE

In

rapport
 envoye

UNIT

alarme declanche

UNIT

MESSAGE
1`(P2,P3,GRE)

Envoi CFG

[M2=(GES,P1,CMD2)]

Envoi SER

[M2=(GES,P1,CMD4)]

Envoi INA

[M2=(GES,P1,CMD5)]

envoi rapport
etat mauvais

[#3 M2=rapp_M]
Envoi rapport
etat de danger

[#3 M2=rapp_D]

envoi RSI

[#3 M2=RSI]

declanchement
Alarm

Ack_etat_danger_bar

[S<>(GES,P1,Ack_rapp_D)]

Ack_etat_danger

[S=(GES,P1,Ack_rapp_D)]

[M2=(GES,P1,Ack_rapp_D)]

M2 M2 M2

(P1,GES,CFG)
(P1,GES,SER) (P1,GES,INA) (P1,GES,rapp_M)

(P1,GES,rapp_D) (P1,#2 M2,RSI)1`()

1`() 1`()

1`() 1`()

1`()

M2 M2 M2

1`()

x6

x6 x6

x6

x6

x4
x4S

S

M2

(GES,P1,Ack_rapp_D)

P1
P3

P2
P2

network

network

cart
cart

manager
manager

OP
OP

Pi
P1

net input msg manager

MESSAGE

net output msg manager

MESSAGE

net input msg
cart

MESSAGE

net output msg
cart

MESSAGE

net output msg OP

MESSAGE

net input msg OP

MESSAGE

net output msg P3

MESSAGE

net input msg P3

MESSAGE

net output msg P2

MESSAGE

net input msg P2

MESSAGE

net input msg P1

MESSAGE

net output msg P1

MESSAGE

P1

OP

manager

cart

network

P2

P3

I. Network
Level

II. Product
Level

III. Internal
functions of Active

Product

IV. Messaging
functions of an Active

Product

Petri Nets Hierarchical Modelling Framework of Active Products’ Community

195

6. Conclusion
In this work, we define the concept of an active security management in a distributed
system, with Hierarchical Petri nets modelling of active product's behaviour. The target
application is dedicated to security management of hazardous products but the concept is
extensible to other application areas.
We proposed an active product's behaviour model represented by hierarchical coloured
Petri nets. This hierarchy includes sub-models where each one allows displaying the
evolution of every state of the active product (registration, configuration, surveillance and
communication and internal surveillance). With Petri Nets, we have verified the consistency
and non-blocking states of our model. Cooperation between active products is provided by
exchange of messages in order to manage and control dynamically in real-time the global
active security level. The proposed Active Product model will help in future steps of our
work to study by large simulation the influence of the communication network on the
system functioning (bounded time, messages loss, …).
The proposed approach is very promising for the study and analysis of distributed system
using the communicating object’s approach or active product concept.

7. References
Bouali, M.; Barger, P. & Schon, W. (2009). Colored Petri Net inversion for Backward

Reachability Analysis, In: Second IFAC Workshop on Depandable Control of
Descrete Systems, Bari, Italy.

Brahimi, B. ; Rondeau, E. & Aubrun, C. (2008). Integrated Approach based on High Level
Petri Nets for Evaluating Networked Control Systems, In: 16th Mediterranean
Conference on Control an Automation, MED’08, Ajaccio, France.

CoBIs (2008). Collaborative business items. European Community FP6 STREP Project, IST
004270, Technical report.

Fu-Shiung, H. (2009). Developing cooperation mechanism for multi-agent systems with
Petri nets. Engineering Applications of Artificial Intelligence vol. 22 (2009) pp. 616–
627.

Hsieh, F.S.(2004). Fault tolerant deadlock avoidance algorithm for assembly processes, IEEE
Transaction on System, Man and Cybernetics, Part A 34 (1), 65–79

Jensen, K. (992 à 1997). Colored petri nets - basic concepts, analysis methods and practical
use. Basic Concepts, EATCS Monographs on Theoretical Computer Scienc.
Springer-Verlag, Vol. 1 à 3, 1992 - 1997.

Kashif S.; Norsheila F.; Sharifah H.; Sharifah K. & Rozeha R. (2009). Autonomously
Intelligent WSN Routing Protocol based on Ant Colony Optimization. In:
Proceedings of 7th International Conference on Robotics, Vision, Signal Processing,
& Power Applications (RoViSP 2009). Awana Porto Malai, Langkawi, Kedah,
Malaysia.

Khoukhi, L. & Cherkaoui, S. (2010). Intelligent QoS management for multimedia services
support in wireless mobile ad hoc networks. Journal of Computer Networks,
Elsevier Edition.

Marsal, G. (2006). Evaluation of time performances of Ethernet-based Automation system by
simulation of High Level Petri Nets, PhD dissertation de l’Ecole Normale
Supérieure de Cachan et de l’Université de Kaiserslautern, Décembre 2006.

 Advances in Petri Net Theory and Applications

196

Murata, T. (1989). Petri nets: properties, analysis and applications, Proceedings of the IEEE
77 (4), 541–580.

Quanz, B. & Tsatsoulis, C. (2008). Determining Object Safety using a Multiagent
Collaborative System, Workshop at Second IEEE International Conference on Self-
Adaptive and Self-Organizing Systems, Venice, Italy, October 20-24.

Ratzer, A.V.; Wells, L.; Larsen, H.M.; Laursen, M.; Qvortrup, J.F.; Stissing, M.S.;
Westergaard, M.; Christensen, S. & Jensen, K. (2003). Cpn-tools for editing,
simulating, and analysing coloured petri net. LNC, 2679, pages 450– 462.

Rudas, I.J. & Horvath, L. (1997). Modeling of manufacturing processes using a Petri net
representation, Engineering Applications of Artificial Intelligence 10(3), 243–255.

Song, C., Qi-Wei, G., Qian-Ming, S. & Qian, Z. (2008). Modeling and performance analysis of
wireless sensor network systems using Petri nets. The 23rd International Technical
Conference on Circuits/Systems, Computers and Communications (ITC-CSCC
2008), July 6-9, 2008, Kaikyo Messe Shimonoseki, Shimonoseki City, Yamaguchi-
Pref., Japan, pp 1689-1692

Strohbach, M.; Kortuem, G. & Gellersen, H. (2005). Cooperative artefacts-a framework for
embedding knowledge in realworld objects. International Workshop on Smart
Object Systems, UbiComp, pages 91–99, Tokyo, Japan.

Zouinkhi, A.; Bajic, E.; ZIDI, R.; Ben Gayed, M.; RONDEAU, E. & Abdelkrim, M.N. (2009).
Petri Net Modeling of active products cooperation for active security management.
Sixth IEEE International Multi-Conférence on System, Signals & Devices (SSD’09),
Tunisia.

Zurawski, R. (2005). Petri net models, functional abstractions, and reduction techniques:
applications to the design of automated manufacturing systems. IEEE Transactions
on Industrial Electronics 52 (2), 595–609.

11

Assessment Method of
Business Process Model of EKD

Sílvia Inês Dallavalle de Pádua1 and Ricardo Yassushi Inamasu2
11University of São Paulo- College of Economics, Business and Accounting at Ribeirão

Preto – FEARP-USP- Brazil
12Embrapa - Brazilian Agricultural Research Corporation

Brazil

1. Introduction
The business processes are the fundamental building blocks for a successful organization.
The information technology (IT), when directed to the management and improvement of
business processes, has helped the organization to complete its enterprise vision and
improve its competitive position. The needs of the business should be provided by
information technology looking forward to achieve business goals as competition,
competitiveness and strategies. Systems that do not meet the needs of the organization may
impede the development of the business.
The organizational modeling, in this context, facilitates the comprehension of business
environment and it is recognized as a valuable activity for the development information
system in accordance to Nurcan and Barrios (2003) and Persson (2000). The process of
organizational modeling should bring answers to these questions: why, what, who, which,
when, where and how. For so many, there are several modeling techniques in the literature
with a significant range of notations.
The approach that will be used in this work is the EKD - Enterprise Knowledge Development -
a methodology that provides a systematic and controlled way to analyze, understand, develop
and document an organization and its components, using the Organizational Modeling
(Rolland et at, (2000), Bubenko et al. (1998) and Nurcan (1998)). The EKD also contributes to
make a decision in modern organizations that are highly dependent on information
technology (Nurcan and Barrios (2003) and Nurcan and Rolland (2003)). According to
Bubenko et al. (1998), the types of submodels of EKD method are: Goals Model, Business rules
model, Concepts Model, Business Process Model, Actors and Resources Model and
Requirements and Technicians Components Model. This methodology is explained in detail
by: Pádua et al (2004a), Dallavalle and Cazarini (2001), and Pádua (2001). The main problem of
the approach of Organizational Modeling, including the EKD, is the lack of a more complex
technical analysis. It has been discussed by several authors the problem of informal structure
of organizational techniques and business processes models.
Among them, some can be mentioned: Dongen et al (2007); Lenz et al. (2005); Mevius and
Oberw (2005); Padua et al. (2004b); Koubarakis and Plexousakis (2002); Junginger et al.

1The paper was published in: Gest. Prod. vol.15 no.3 São Carlos Sept./Dec. 2008 in portuguese language

 Advances in Petri Net Theory and Applications

196

Murata, T. (1989). Petri nets: properties, analysis and applications, Proceedings of the IEEE
77 (4), 541–580.

Quanz, B. & Tsatsoulis, C. (2008). Determining Object Safety using a Multiagent
Collaborative System, Workshop at Second IEEE International Conference on Self-
Adaptive and Self-Organizing Systems, Venice, Italy, October 20-24.

Ratzer, A.V.; Wells, L.; Larsen, H.M.; Laursen, M.; Qvortrup, J.F.; Stissing, M.S.;
Westergaard, M.; Christensen, S. & Jensen, K. (2003). Cpn-tools for editing,
simulating, and analysing coloured petri net. LNC, 2679, pages 450– 462.

Rudas, I.J. & Horvath, L. (1997). Modeling of manufacturing processes using a Petri net
representation, Engineering Applications of Artificial Intelligence 10(3), 243–255.

Song, C., Qi-Wei, G., Qian-Ming, S. & Qian, Z. (2008). Modeling and performance analysis of
wireless sensor network systems using Petri nets. The 23rd International Technical
Conference on Circuits/Systems, Computers and Communications (ITC-CSCC
2008), July 6-9, 2008, Kaikyo Messe Shimonoseki, Shimonoseki City, Yamaguchi-
Pref., Japan, pp 1689-1692

Strohbach, M.; Kortuem, G. & Gellersen, H. (2005). Cooperative artefacts-a framework for
embedding knowledge in realworld objects. International Workshop on Smart
Object Systems, UbiComp, pages 91–99, Tokyo, Japan.

Zouinkhi, A.; Bajic, E.; ZIDI, R.; Ben Gayed, M.; RONDEAU, E. & Abdelkrim, M.N. (2009).
Petri Net Modeling of active products cooperation for active security management.
Sixth IEEE International Multi-Conférence on System, Signals & Devices (SSD’09),
Tunisia.

Zurawski, R. (2005). Petri net models, functional abstractions, and reduction techniques:
applications to the design of automated manufacturing systems. IEEE Transactions
on Industrial Electronics 52 (2), 595–609.

11

Assessment Method of
Business Process Model of EKD

Sílvia Inês Dallavalle de Pádua1 and Ricardo Yassushi Inamasu2
11University of São Paulo- College of Economics, Business and Accounting at Ribeirão

Preto – FEARP-USP- Brazil
12Embrapa - Brazilian Agricultural Research Corporation

Brazil

1. Introduction
The business processes are the fundamental building blocks for a successful organization.
The information technology (IT), when directed to the management and improvement of
business processes, has helped the organization to complete its enterprise vision and
improve its competitive position. The needs of the business should be provided by
information technology looking forward to achieve business goals as competition,
competitiveness and strategies. Systems that do not meet the needs of the organization may
impede the development of the business.
The organizational modeling, in this context, facilitates the comprehension of business
environment and it is recognized as a valuable activity for the development information
system in accordance to Nurcan and Barrios (2003) and Persson (2000). The process of
organizational modeling should bring answers to these questions: why, what, who, which,
when, where and how. For so many, there are several modeling techniques in the literature
with a significant range of notations.
The approach that will be used in this work is the EKD - Enterprise Knowledge Development -
a methodology that provides a systematic and controlled way to analyze, understand, develop
and document an organization and its components, using the Organizational Modeling
(Rolland et at, (2000), Bubenko et al. (1998) and Nurcan (1998)). The EKD also contributes to
make a decision in modern organizations that are highly dependent on information
technology (Nurcan and Barrios (2003) and Nurcan and Rolland (2003)). According to
Bubenko et al. (1998), the types of submodels of EKD method are: Goals Model, Business rules
model, Concepts Model, Business Process Model, Actors and Resources Model and
Requirements and Technicians Components Model. This methodology is explained in detail
by: Pádua et al (2004a), Dallavalle and Cazarini (2001), and Pádua (2001). The main problem of
the approach of Organizational Modeling, including the EKD, is the lack of a more complex
technical analysis. It has been discussed by several authors the problem of informal structure
of organizational techniques and business processes models.
Among them, some can be mentioned: Dongen et al (2007); Lenz et al. (2005); Mevius and
Oberw (2005); Padua et al. (2004b); Koubarakis and Plexousakis (2002); Junginger et al.

1The paper was published in: Gest. Prod. vol.15 no.3 São Carlos Sept./Dec. 2008 in portuguese language

 Advances in Petri Net Theory and Applications

198

(2001); Jonkers et al. (2003); Dehnert (2003), Padua (2004); Padua et al. (2003), Padua et al.
(2002) and Aalst (1999).
According to Padua (2004), the syntax and the semantics of the EKD business processes
model are not well defined formally and rigorously. As a result, the EKD business processes
model may be ambiguous and of difficult analysis mainly in more complex systems, not
being possible to check the consistency and completeness of the model. The absence of
formal semantics also makes difficult the use of more efficient techniques analysis. In this
work, these problems were studied under an approach based on Petri nets. The formalism of
Petri nets makes it a powerful technique of modeling for representation of processes,
allowing display of: competition, parallelism, synchronization, non-determinism and
mutual exclusion. The main concepts of Petri nets are discussed by Padua et.al. (2002)
Many works have valued the formal structure of Petri nets for business processes
representation, among them some can be mentioned: Verbeek et al. (2007), Guan et. al. (2006),
Zhang and Shuzen (2006), Ou-Yang and Lin (2007), Aalst and Hee (2002), Padua (2004), Padua
et al (2003), Padua et al (2004), Padua et al. (2002) and Aalst (1999). Therefore, this work
presents a method of assessment of the Business Processes Model of the EKD. In order to the
method could be created, it was necessary to develop the formalization of the business
processes model of the EKD and the mapping of the business processes model on Petri nets.
The method of evaluation was applied in the process model of the human resources strategic
plan developed in the project ESPRIT ELEKTRA (“Electrical Enterprise Transforming
Knowledge for Applications”) (BUBENKO et al 1998). The model mapped on Petri nets was
simulated on the tool “Petri Net Tools” developed and implemented at the Simulation and
Discrete Control Systems Laboratory at University of São Paulo in São Carlos (Soares, 2001).
The editor had six modules. Four modules were in operation: Petri network L/T
(local/transition), MFG (Mark Flow Graph), SFC (Sequential Flow Chart) and stochastic PN.
The editor allows the following types of analysis: reachability tree; incidence matrix;
limitation; vivacity; verification of the final state, transitions and invariant places.
In the studies of Aalst and Hee (2002), Verbeek et al. (2002), Salimifard and Wright (2001)
Aalst (1999), Aalst and Hofstede (2000), Voorhoeve (2000) and Mold and Valk (2000) the
business processes are directly modeled on Petri nets.
 In this study, the construction of the business processes model followed the EKD
organizational modeling method and not directly onto Petri nets. The procedure of mapping
the business processes model onto Petri nets was developed based on Petri nets
place/transition. The power of analysis of the properties of the model would be reduced in
case the mapping was based on extended and high-level nets. Methods to assess Petri colored
net are computationally expensive and feasible only for simple models (Jensen, 1997).
The work is structured in nine sections, including this introduction. On section two
important concepts related to nets of Petri in the context of business processes model will be
introduced. In section three, a presentation of the formal model of business processes is
made. Sections four and five will present the model of business processes on Petri nets map
and assessment method of the EKD business processes model. The section six shows the
application method. The ending considerations are outlined on section seven.

2. Petri Net and business process model
According to Hofstede and Aalst (2000), some mistakes are easily identified on the models
of Petri nets like deadlock, when it is not possible performing any task; livelock, when a case

Assessment Method of Business Process Model of EKD

199

is in infinite loop, being possible performing tasks, but no progress is possible and deadtask,
when a task can never be run on any situation.
Some studies investigate the use of subclasses of Petri nets to increase the decision-making
power without reducing the power of modeling of Petri networks. In these subclasses some
structural restrictions are made on Petri nets. The subclass of Petri nets denominated free-
choice enables the modeling of the parallelism conflict and the synchronization. When a
place is an input of several transitions, this place is the only input of these transitions.
Thus, all transitions will be qualified or no one will be, making possible the choice of the
event freely. Formally, the definition of free-choice is: Be a Petri net = (P, T, I, O, K). I is the
set of inputs to the transitions and O is the set of the outputs of the transitions. K is the
capacity of places. This network is classified as a network of free-choice if, and only if, I(tj) =
{pi} ou O(pi) ={tj}, ∀ tj ∈ T and pi ∈ I (tj).
The main problem of the approach of Organizational modeling, including the EKD, is the
lack of objective technical analysis. In this case, Petri nets have an excellent potential to
solve this problem, since they have graphics representation, they are easy to learn, they
work as a language of communication among experts from several areas, allowing the
description of static and dynamic aspects of the system to be represented, and still have the
Mathematical formalism that allows the use of methods of analysis. The several applications
of Petri nets on Engineering are presented in Padua et al. (2003). Since Zisman (1977) used
Petri nets to model workflow for the first time, many authors have published studies that
also looked for the integration of the two subjects. Among them, some can be mentioned:
Chrzastowski-Wachtel et al. (2003), Rinderle et al. (2003), Dehnert (2003), Grigorova (2003)
and Verbeck et al. (2002), Aalst and Hee (2002) and Padua et al. (2004), explain that there are
several reasons to use Petri nets for business processes modeling: formal semantics, graphic
nature, expressiveness, properties, analysis and the advantage of not being dependent on
the supplier.
The criterion of verifying correctness defined to workflow-nets is called soundness. Sound is
synonymous of correct according to Aalst and Hee (2002). Aalst (1997) developed a
technique that verifies that the procedure meets the following requirements (of soundness):
no task should exist that does not contribute to the processing of cases; for any case, the
procedure eventually will end and at the moment that the procedure ends for specific cases,
all references to this case should be removed.

2.1 Formalizing the business processes model
To perform the mapping of the Business Processes Model onto Petri Nets, based on Aalst
(1999), a formal definition of the Model of Business Processes of the EKD (BPM-EKD) was
created.
In this way, it was possible to describe the requirements that a Business Processes Model
should meet in order to do the mapping be development. Seeking for formal definition of
the Model of Business Processes, it was created a set of connectors to the Business Processes
Model of EKD. The set of connectors is represented by C and it is composed by CAND, COR,
CJ, CS, CIP and CPI. The connectors COR and CAND were created to identify exclusive choice
and parallelism in order that the cases of parallelism and choice won’t be modeled exactly in
the same way, creating ambiguities and difficulties of comprehension. The connectors CJ
and CS define the connectors type join and split. To describe the nature of the flow of
processes and their interactions, there is a set of terms, used in Workflow Management
Coalition (1996) and in Aalst and Hee (2002), which are presented as follows:

 Advances in Petri Net Theory and Applications

198

(2001); Jonkers et al. (2003); Dehnert (2003), Padua (2004); Padua et al. (2003), Padua et al.
(2002) and Aalst (1999).
According to Padua (2004), the syntax and the semantics of the EKD business processes
model are not well defined formally and rigorously. As a result, the EKD business processes
model may be ambiguous and of difficult analysis mainly in more complex systems, not
being possible to check the consistency and completeness of the model. The absence of
formal semantics also makes difficult the use of more efficient techniques analysis. In this
work, these problems were studied under an approach based on Petri nets. The formalism of
Petri nets makes it a powerful technique of modeling for representation of processes,
allowing display of: competition, parallelism, synchronization, non-determinism and
mutual exclusion. The main concepts of Petri nets are discussed by Padua et.al. (2002)
Many works have valued the formal structure of Petri nets for business processes
representation, among them some can be mentioned: Verbeek et al. (2007), Guan et. al. (2006),
Zhang and Shuzen (2006), Ou-Yang and Lin (2007), Aalst and Hee (2002), Padua (2004), Padua
et al (2003), Padua et al (2004), Padua et al. (2002) and Aalst (1999). Therefore, this work
presents a method of assessment of the Business Processes Model of the EKD. In order to the
method could be created, it was necessary to develop the formalization of the business
processes model of the EKD and the mapping of the business processes model on Petri nets.
The method of evaluation was applied in the process model of the human resources strategic
plan developed in the project ESPRIT ELEKTRA (“Electrical Enterprise Transforming
Knowledge for Applications”) (BUBENKO et al 1998). The model mapped on Petri nets was
simulated on the tool “Petri Net Tools” developed and implemented at the Simulation and
Discrete Control Systems Laboratory at University of São Paulo in São Carlos (Soares, 2001).
The editor had six modules. Four modules were in operation: Petri network L/T
(local/transition), MFG (Mark Flow Graph), SFC (Sequential Flow Chart) and stochastic PN.
The editor allows the following types of analysis: reachability tree; incidence matrix;
limitation; vivacity; verification of the final state, transitions and invariant places.
In the studies of Aalst and Hee (2002), Verbeek et al. (2002), Salimifard and Wright (2001)
Aalst (1999), Aalst and Hofstede (2000), Voorhoeve (2000) and Mold and Valk (2000) the
business processes are directly modeled on Petri nets.
 In this study, the construction of the business processes model followed the EKD
organizational modeling method and not directly onto Petri nets. The procedure of mapping
the business processes model onto Petri nets was developed based on Petri nets
place/transition. The power of analysis of the properties of the model would be reduced in
case the mapping was based on extended and high-level nets. Methods to assess Petri colored
net are computationally expensive and feasible only for simple models (Jensen, 1997).
The work is structured in nine sections, including this introduction. On section two
important concepts related to nets of Petri in the context of business processes model will be
introduced. In section three, a presentation of the formal model of business processes is
made. Sections four and five will present the model of business processes on Petri nets map
and assessment method of the EKD business processes model. The section six shows the
application method. The ending considerations are outlined on section seven.

2. Petri Net and business process model
According to Hofstede and Aalst (2000), some mistakes are easily identified on the models
of Petri nets like deadlock, when it is not possible performing any task; livelock, when a case

Assessment Method of Business Process Model of EKD

199

is in infinite loop, being possible performing tasks, but no progress is possible and deadtask,
when a task can never be run on any situation.
Some studies investigate the use of subclasses of Petri nets to increase the decision-making
power without reducing the power of modeling of Petri networks. In these subclasses some
structural restrictions are made on Petri nets. The subclass of Petri nets denominated free-
choice enables the modeling of the parallelism conflict and the synchronization. When a
place is an input of several transitions, this place is the only input of these transitions.
Thus, all transitions will be qualified or no one will be, making possible the choice of the
event freely. Formally, the definition of free-choice is: Be a Petri net = (P, T, I, O, K). I is the
set of inputs to the transitions and O is the set of the outputs of the transitions. K is the
capacity of places. This network is classified as a network of free-choice if, and only if, I(tj) =
{pi} ou O(pi) ={tj}, ∀ tj ∈ T and pi ∈ I (tj).
The main problem of the approach of Organizational modeling, including the EKD, is the
lack of objective technical analysis. In this case, Petri nets have an excellent potential to
solve this problem, since they have graphics representation, they are easy to learn, they
work as a language of communication among experts from several areas, allowing the
description of static and dynamic aspects of the system to be represented, and still have the
Mathematical formalism that allows the use of methods of analysis. The several applications
of Petri nets on Engineering are presented in Padua et al. (2003). Since Zisman (1977) used
Petri nets to model workflow for the first time, many authors have published studies that
also looked for the integration of the two subjects. Among them, some can be mentioned:
Chrzastowski-Wachtel et al. (2003), Rinderle et al. (2003), Dehnert (2003), Grigorova (2003)
and Verbeck et al. (2002), Aalst and Hee (2002) and Padua et al. (2004), explain that there are
several reasons to use Petri nets for business processes modeling: formal semantics, graphic
nature, expressiveness, properties, analysis and the advantage of not being dependent on
the supplier.
The criterion of verifying correctness defined to workflow-nets is called soundness. Sound is
synonymous of correct according to Aalst and Hee (2002). Aalst (1997) developed a
technique that verifies that the procedure meets the following requirements (of soundness):
no task should exist that does not contribute to the processing of cases; for any case, the
procedure eventually will end and at the moment that the procedure ends for specific cases,
all references to this case should be removed.

2.1 Formalizing the business processes model
To perform the mapping of the Business Processes Model onto Petri Nets, based on Aalst
(1999), a formal definition of the Model of Business Processes of the EKD (BPM-EKD) was
created.
In this way, it was possible to describe the requirements that a Business Processes Model
should meet in order to do the mapping be development. Seeking for formal definition of
the Model of Business Processes, it was created a set of connectors to the Business Processes
Model of EKD. The set of connectors is represented by C and it is composed by CAND, COR,
CJ, CS, CIP and CPI. The connectors COR and CAND were created to identify exclusive choice
and parallelism in order that the cases of parallelism and choice won’t be modeled exactly in
the same way, creating ambiguities and difficulties of comprehension. The connectors CJ
and CS define the connectors type join and split. To describe the nature of the flow of
processes and their interactions, there is a set of terms, used in Workflow Management
Coalition (1996) and in Aalst and Hee (2002), which are presented as follows:

 Advances in Petri Net Theory and Applications

200

• AND-Split: point where, from a single line of flow, two or more lines start and are
performed in parallel.

• AND-Join: point where two or more activities, running in parallel, converge on a single
line of common flow.

• OR-Split: point where a single line of flow makes a decision among a number of
options.

• OR-Join: point at which an activity that has a number of alternatives, directs itself to a
single option

According to these settings AND-Split, AND-Join, OR-Split and OR-Join the construction of
Figure 1 are not allowed on formal BPM-EKD.

inf-set

AND

Processo Processo
…

inf-set

…
inf-set

OR

Processo Processo
…

inf-set

…

inf-set

OR

Processo Processo

… inf-set

…

inf-set

AND

Processo Processo

… inf-set

…

Fig. 1. Constructions that are not allowed in a formal BPM-EKD

The connectors CIP and CPI show that a connector C is a path from one inf-set to one process
or a path from a process to an inf-set.
The initial and final states are not specified on Business Processes Model of EKD, it was
necessary to create such states in order that the formalization could be effectively
accomplished. This situation will be explained during the course of this chapter.
Definition 1. A BPM-EKD is a quintuple (I, P, C, Q, A):
- I is a finite set of inf-set (set of information).
- P is a finite set of processes,
- C is a finite set of logical connectors,
- Q ∈ C → {AND, OR} é is a function that maps each connector within an specific type of

connector.
- A ⊆ (I × P) ∪ (P × I) ∪ (I × C) ∪ (C × I) ∪(P × C) ∪(C × P) is a set of arcs.
A BPM-EKD is composed of three types of elements: inf-set -set of information (I), processes
(P) and connectors (C). The type of each connector is given by the function Q: Q(c) is the
type (AND or OR) of a connector c ∈ C. The connection A specifies a set of arcs connecting
processes, set of information (inf-set) and connectors. The definition 1 shows that it is not
allowed to have an arc connecting two processes or two inf-sets or two connectors.
Definition 2. A directed path p from a node n1 to a node nk,is a sequence <n1, n2, ...nK>
sequence, such as <ni, ni+1> ∈ A for 1 ≤ i ≤ k – 1. p is elementary if, and only if, for any of the
nodes ni and nj in p, i ≠ j → ni ≠ nj.

Assessment Method of Business Process Model of EKD

201

The definition of directed path will be used to limit the number of construction of routes
that can be used. This definition allows the definition of CIP (set of connectors from one inf-
set to one process) and CPI (set of connectors from one process to one inf-set). CIP and CPI

divide the set of connectors C. Based on the Q function, the C is portioned in CAND and COR.
The set CJ and CS is used to classify (rank) the connectors in connectors join or split.
Definition 3. Considering BPM-EKD = (I, P, C, Q, A) a:
- N = I ∪ P ∪ C is a set of nodes of BPM-EKD
- CAND = {c ∈ C| Q(c) = AND};
- COR = {c ∈ C| Q(c) = OR};
- Para n ∈ N: •n = {m|(m,n) ∈ A} is the set of input nodes, and n• ={m|(n,m) ∈ A} is the

set of output nodes
- CJ = {c ∈ C | |•c| ≥ 2} is the set of join connectors
- Cs = {c ∈ C | |c•| ≥ 2} is the set of join connectors
- CIP ⊆ C such that c ∈ CIP, if and only if there is a path p = <n1, n2, n3>, tal que n1 ∈ I,

n2∈ C, n3 ∈ P; and
- CPI ⊆ C such that c ∈ CPI if and only if there is a path p p = <n1, n2, n3>, tal que n1 ∈ P,

n2 ∈ C, n3 ∈ I.
Definition 3 enables to specify the additional requirements an BPM-EKD chain should satisfy.
Definition 4. A Business Process Model of EKD meets the following requirements:
- The sets I, P and C are pairwise disjoint, i.e, I ∩ P = ∅, I ∩ C = ∅, and P ∩ C = ∅;
- For each i ∈ I: |•i| ≤ 1 and |i•| ≤ 1;
- There is at least one inf set i ∈ I, such that |•i| = 0 (inf-set start);
- There is at least one inf-set i ∈ I, such that|i•| = 0 (inf-set end);
- For each p ∈ P: |•p| = 1 and |p•| = 1;
- For each c ∈ C: |•c| ≥ 1 and |c•| ≥ 1;
- The graph induced by BPM-EKD C is weakly connected, if for every two nodes n1, n2 ∈

N, (n1, n2) ∈ (A ∪ A-1)*;
- CJ and Cs partition de C, i.e., CJ ∩Cs = ∅ and CJ ∪Cs = C; e
- CIP and CPI partition de C, i.e., CIP ∩CPI = ∅ and CIP ∪ CPI = C.
In the line of Aalst (1999), the first requirement states that each component has a unique
identifier (name). The connector names are omitted in the diagram of an BPM-EKD. The
other requirements correspond to restrictions on the relation A. Inf Sets cannot have
multiple input arcs and there is at least one start inf set and one final inf set. Each function
has exactly one input arc and one output arc. For every two nodes n1 and n2 there is a path
from n1 to n2 (ignoring the direction of the arcs). A connector c is either a join connector
((|c•| = 1 and |•c| ≥ 2) jc or a split connector (|•c| = 1 and |c•| ≥ 2). The last requirement
states that a connector c is either on a path from an inf set to a process or on a path from a
process to an inf set. The BPM-EKD is syntactically correct, if all the requirements stated in
Definition 4 are satisfied.

3.2 The business processes model on Petri Nets mapping
In this section, the Business Processes Model on Petri nets mapping procedure will be
presented. The mapping procedure was developed based on Petri nets place / transition.
The definitions (1) and (4) presented only report the syntax of the Business Processes Model
of EKD and not the semantics.

 Advances in Petri Net Theory and Applications

200

• AND-Split: point where, from a single line of flow, two or more lines start and are
performed in parallel.

• AND-Join: point where two or more activities, running in parallel, converge on a single
line of common flow.

• OR-Split: point where a single line of flow makes a decision among a number of
options.

• OR-Join: point at which an activity that has a number of alternatives, directs itself to a
single option

According to these settings AND-Split, AND-Join, OR-Split and OR-Join the construction of
Figure 1 are not allowed on formal BPM-EKD.

inf-set

AND

Processo Processo
…

inf-set

…
inf-set

OR

Processo Processo
…

inf-set

…

inf-set

OR

Processo Processo

… inf-set

…

inf-set

AND

Processo Processo

… inf-set

…

Fig. 1. Constructions that are not allowed in a formal BPM-EKD

The connectors CIP and CPI show that a connector C is a path from one inf-set to one process
or a path from a process to an inf-set.
The initial and final states are not specified on Business Processes Model of EKD, it was
necessary to create such states in order that the formalization could be effectively
accomplished. This situation will be explained during the course of this chapter.
Definition 1. A BPM-EKD is a quintuple (I, P, C, Q, A):
- I is a finite set of inf-set (set of information).
- P is a finite set of processes,
- C is a finite set of logical connectors,
- Q ∈ C → {AND, OR} é is a function that maps each connector within an specific type of

connector.
- A ⊆ (I × P) ∪ (P × I) ∪ (I × C) ∪ (C × I) ∪(P × C) ∪(C × P) is a set of arcs.
A BPM-EKD is composed of three types of elements: inf-set -set of information (I), processes
(P) and connectors (C). The type of each connector is given by the function Q: Q(c) is the
type (AND or OR) of a connector c ∈ C. The connection A specifies a set of arcs connecting
processes, set of information (inf-set) and connectors. The definition 1 shows that it is not
allowed to have an arc connecting two processes or two inf-sets or two connectors.
Definition 2. A directed path p from a node n1 to a node nk,is a sequence <n1, n2, ...nK>
sequence, such as <ni, ni+1> ∈ A for 1 ≤ i ≤ k – 1. p is elementary if, and only if, for any of the
nodes ni and nj in p, i ≠ j → ni ≠ nj.

Assessment Method of Business Process Model of EKD

201

The definition of directed path will be used to limit the number of construction of routes
that can be used. This definition allows the definition of CIP (set of connectors from one inf-
set to one process) and CPI (set of connectors from one process to one inf-set). CIP and CPI

divide the set of connectors C. Based on the Q function, the C is portioned in CAND and COR.
The set CJ and CS is used to classify (rank) the connectors in connectors join or split.
Definition 3. Considering BPM-EKD = (I, P, C, Q, A) a:
- N = I ∪ P ∪ C is a set of nodes of BPM-EKD
- CAND = {c ∈ C| Q(c) = AND};
- COR = {c ∈ C| Q(c) = OR};
- Para n ∈ N: •n = {m|(m,n) ∈ A} is the set of input nodes, and n• ={m|(n,m) ∈ A} is the

set of output nodes
- CJ = {c ∈ C | |•c| ≥ 2} is the set of join connectors
- Cs = {c ∈ C | |c•| ≥ 2} is the set of join connectors
- CIP ⊆ C such that c ∈ CIP, if and only if there is a path p = <n1, n2, n3>, tal que n1 ∈ I,

n2∈ C, n3 ∈ P; and
- CPI ⊆ C such that c ∈ CPI if and only if there is a path p p = <n1, n2, n3>, tal que n1 ∈ P,

n2 ∈ C, n3 ∈ I.
Definition 3 enables to specify the additional requirements an BPM-EKD chain should satisfy.
Definition 4. A Business Process Model of EKD meets the following requirements:
- The sets I, P and C are pairwise disjoint, i.e, I ∩ P = ∅, I ∩ C = ∅, and P ∩ C = ∅;
- For each i ∈ I: |•i| ≤ 1 and |i•| ≤ 1;
- There is at least one inf set i ∈ I, such that |•i| = 0 (inf-set start);
- There is at least one inf-set i ∈ I, such that|i•| = 0 (inf-set end);
- For each p ∈ P: |•p| = 1 and |p•| = 1;
- For each c ∈ C: |•c| ≥ 1 and |c•| ≥ 1;
- The graph induced by BPM-EKD C is weakly connected, if for every two nodes n1, n2 ∈

N, (n1, n2) ∈ (A ∪ A-1)*;
- CJ and Cs partition de C, i.e., CJ ∩Cs = ∅ and CJ ∪Cs = C; e
- CIP and CPI partition de C, i.e., CIP ∩CPI = ∅ and CIP ∪ CPI = C.
In the line of Aalst (1999), the first requirement states that each component has a unique
identifier (name). The connector names are omitted in the diagram of an BPM-EKD. The
other requirements correspond to restrictions on the relation A. Inf Sets cannot have
multiple input arcs and there is at least one start inf set and one final inf set. Each function
has exactly one input arc and one output arc. For every two nodes n1 and n2 there is a path
from n1 to n2 (ignoring the direction of the arcs). A connector c is either a join connector
((|c•| = 1 and |•c| ≥ 2) jc or a split connector (|•c| = 1 and |c•| ≥ 2). The last requirement
states that a connector c is either on a path from an inf set to a process or on a path from a
process to an inf set. The BPM-EKD is syntactically correct, if all the requirements stated in
Definition 4 are satisfied.

3.2 The business processes model on Petri Nets mapping
In this section, the Business Processes Model on Petri nets mapping procedure will be
presented. The mapping procedure was developed based on Petri nets place / transition.
The definitions (1) and (4) presented only report the syntax of the Business Processes Model
of EKD and not the semantics.

 Advances in Petri Net Theory and Applications

202

The places represent inf-sets or are necessary constructions to model the behavior of
connector of BPM-EKD. The transitions represent processes or are representing the behavior
of the connector. Each connector c ∈ C corresponds to places, transitions and / or arcs.
The connector can correspond to a number of arcs of Petri net or to a small network of
places and transitions. The connector OR corresponds to a behavior of a place. The AND
connector corresponds to a transition behavior. On definition 5 the element Place of Petri
nets will be represented by L to avoid confusion with the P of BPM-EKD process. The
definition 5, presented as follows, shows how the mapping of the connectors of BPM-EKD is
developed in this study.
On the BPM-EKD context the arcs always have equal weight as 1 because places correspond
to conditions. On a Petri net, which corresponds to one correct (sound) BPM-EKD, a place
will never contain multiple brands. The net is secure. The states with multiple brands in one
place are results of projects errors and to identify these errors it is necessary to consider non-
secure nets.
Definition 5. Let BPM-EKD = (I,P,C,Q,A). N(EKD)=(LPN, TPN, FPN) is the Petri net generated
by EPC BPM-EKD:

LPN = I ∪(
c C∈
∪ LcPN)

The set of places (LPN) is formed by the union of all inf-sets with places that were included to
represent connectors (

c C∈
∪ LcPN).

TPN = P ∪(
c C∈
∪ TcPN)

The set of transitions (TPN) is formed by the union of all Processes with transitions that were
included to represent connectors (

c C∈
∪ TcPN).

FPN = (A ∩ ((I × P) ∪ (P × I))) ∪ (
c C∈
∪ FcPN)

The set of arcs of the net (FPN) is formed by arcs of model that range from I to P and from P
to I and the union of arcs included to represent connectors (

c C∈
∪ FcPN).

Following, the definitions of LcPN, TcPN and FcPN will be presented according to the mapping
rules related to the type of connectors of BPM-EKD. Right after each definition, examples
that represent the utilized (applied) rules for mapping the connectors of EKD-MPN on Petri
nets are presented.

Rule 1

c ∈ C IP∩CJ∩CAND

When the connector c belongs to CIP (path from inf-set to process) intersection of CJ (join)
intersection of Cand, the definitions of LcPN, TcPN and FcPN are the following:
1. LcPN = ∅
2. TcPN = ∅

Assessment Method of Business Process Model of EKD

203

3. FcPN = {(x, y)|x∈•c e y∈c•}
The equation I states that it is not necessary to add places to represent this connector. The
equation II states that it is necessary to add transitions to represent this connector. The
equation III states that the arcs that go from the set of the connector input to the set of the
connector output.
In this case, it is noticed that the connector AND-join corresponds to two or more arcs on
Petri nets if, and only if, the output is a process. On Figure 2 an example of mapping of the
connector c ∈ C IP∩CJ∩CAND is presented.

Fig. 2. Example of CAND Mapping among two or more inf-sets for one process.
Rule 2

c ∈ C PI∩CJ∩CAND

When the connector c belongs to CPI (path from process to inf-set) intersection of CJ (join)
intersection of CAND, the definitions of LcPN, TcPN e FcPN are the following:
1. LcPN = { lxc | x ∈ •c}
2. TcPN = {tc}
3. FcPN = {(x,lxc)|x ∈•c}∪ {(lxc, tc)|x ∈•c}∪ {(tc, x)|x ∈c•}
On equation I it is stated that to represent this connector it is necessary to add one place for
each process of the connector input. On equation II it is indicated that to represent this
connector it is necessary to add a transition. On equation III it is stated that to represent the
connector it is necessary to add arcs that connect the transitions to the places of the
connector inputs, among the places and the corresponding transitions to the connector and
between the transition and the place of the connector output.
In this case, the connector AND-join behaves as a transition. It is added one place for each
process of the connector input. On figure 3 one example of the connector mapping c ∈C
PI∩CJ∩CAND is presented.

Rule 3

c ∈ C IP∩CJ∩COR

inf-set

Processo

inf-set

AND

… …

 Advances in Petri Net Theory and Applications

202

The places represent inf-sets or are necessary constructions to model the behavior of
connector of BPM-EKD. The transitions represent processes or are representing the behavior
of the connector. Each connector c ∈ C corresponds to places, transitions and / or arcs.
The connector can correspond to a number of arcs of Petri net or to a small network of
places and transitions. The connector OR corresponds to a behavior of a place. The AND
connector corresponds to a transition behavior. On definition 5 the element Place of Petri
nets will be represented by L to avoid confusion with the P of BPM-EKD process. The
definition 5, presented as follows, shows how the mapping of the connectors of BPM-EKD is
developed in this study.
On the BPM-EKD context the arcs always have equal weight as 1 because places correspond
to conditions. On a Petri net, which corresponds to one correct (sound) BPM-EKD, a place
will never contain multiple brands. The net is secure. The states with multiple brands in one
place are results of projects errors and to identify these errors it is necessary to consider non-
secure nets.
Definition 5. Let BPM-EKD = (I,P,C,Q,A). N(EKD)=(LPN, TPN, FPN) is the Petri net generated
by EPC BPM-EKD:

LPN = I ∪(
c C∈
∪ LcPN)

The set of places (LPN) is formed by the union of all inf-sets with places that were included to
represent connectors (

c C∈
∪ LcPN).

TPN = P ∪(
c C∈
∪ TcPN)

The set of transitions (TPN) is formed by the union of all Processes with transitions that were
included to represent connectors (

c C∈
∪ TcPN).

FPN = (A ∩ ((I × P) ∪ (P × I))) ∪ (
c C∈
∪ FcPN)

The set of arcs of the net (FPN) is formed by arcs of model that range from I to P and from P
to I and the union of arcs included to represent connectors (

c C∈
∪ FcPN).

Following, the definitions of LcPN, TcPN and FcPN will be presented according to the mapping
rules related to the type of connectors of BPM-EKD. Right after each definition, examples
that represent the utilized (applied) rules for mapping the connectors of EKD-MPN on Petri
nets are presented.

Rule 1

c ∈ C IP∩CJ∩CAND

When the connector c belongs to CIP (path from inf-set to process) intersection of CJ (join)
intersection of Cand, the definitions of LcPN, TcPN and FcPN are the following:
1. LcPN = ∅
2. TcPN = ∅

Assessment Method of Business Process Model of EKD

203

3. FcPN = {(x, y)|x∈•c e y∈c•}
The equation I states that it is not necessary to add places to represent this connector. The
equation II states that it is necessary to add transitions to represent this connector. The
equation III states that the arcs that go from the set of the connector input to the set of the
connector output.
In this case, it is noticed that the connector AND-join corresponds to two or more arcs on
Petri nets if, and only if, the output is a process. On Figure 2 an example of mapping of the
connector c ∈ C IP∩CJ∩CAND is presented.

Fig. 2. Example of CAND Mapping among two or more inf-sets for one process.
Rule 2

c ∈ C PI∩CJ∩CAND

When the connector c belongs to CPI (path from process to inf-set) intersection of CJ (join)
intersection of CAND, the definitions of LcPN, TcPN e FcPN are the following:
1. LcPN = { lxc | x ∈ •c}
2. TcPN = {tc}
3. FcPN = {(x,lxc)|x ∈•c}∪ {(lxc, tc)|x ∈•c}∪ {(tc, x)|x ∈c•}
On equation I it is stated that to represent this connector it is necessary to add one place for
each process of the connector input. On equation II it is indicated that to represent this
connector it is necessary to add a transition. On equation III it is stated that to represent the
connector it is necessary to add arcs that connect the transitions to the places of the
connector inputs, among the places and the corresponding transitions to the connector and
between the transition and the place of the connector output.
In this case, the connector AND-join behaves as a transition. It is added one place for each
process of the connector input. On figure 3 one example of the connector mapping c ∈C
PI∩CJ∩CAND is presented.

Rule 3

c ∈ C IP∩CJ∩COR

inf-set

Processo

inf-set

AND

… …

 Advances in Petri Net Theory and Applications

204

Fig. 3. Example of CAND Mapping among two or more processes for one inf-set.

When the connector c belongs to CIP (path from inf-set to process) intersection of CJ (join)
intersection of COR, the definitions of LcPN, TcPN and FcPN are the following:
1. LcPN = {lc}
2. TcPN = { txc | x ∈ •c}
3. FcPN = {(x, txc)|x ∈•c}∪ {(txc,lc)|x ∈•c}∪ {(lc,x)|x ∈c•}
On equation I it is stated that to represent the connector it is necessary to add one place. On
equation II it is established that to represent this connector it is necessary to add one
transition for each inf-set of the connector input. On equation III it is stated that to represent
this connector it is necessary to add a set of arcs from the places to the transitions of the
connector input, among the transitions and the place that corresponds to the connector and
between the place and the transition of the connector output.
The connector OR-join has the behavior of a place when the connector is CIP. On Figure 4 an
example of mapping of the connector c ∈ C IP∩CJ∩COR. is presented.

Fig. 4. Example COR Mapping among two or more inf-sets for one process.
Rule 4

c ∈ C PI∩CJ∩COR

inf-set

AND

Processo Processo

… …

inf-set

OR

Processo

inf-set ……

Assessment Method of Business Process Model of EKD

205

When the connector c belongs to CPI (path from process to inf-set) intersection of CJ (join)
intersection of COR,, the definitions of LcPN, TcPN and FcPN and Fc PN are the following:
1. LcPN = ∅
2. TcPN = ∅
3. FcPN = {(x, y)|x∈•c e y∈c•}
On equation I it is presented that it is not necessary to add places to represent this connector.
On equation II it is stated that it is not necessary to add transitions to represent this
connector. On equation III it is presented that the arcs set is between the input set and the
output set.
The connector OR-join corresponds to two or more arcs on Petri nets if, and only if, the
connector is CPI. On Figure 5 an example of mapping of the connector c ∈ C PI∩CJ∩COR is
presented

Fig. 5. Example of COR Mapping among two or more process for an inf-set.
Rule 5

c ∈ CIP ∩Cs∩CAND

When the connector c belongs to CIP (path from inf-set to process) intersection of CS (join)
intersection of CAND, the definitions of LcPN, TcPN and FcPN are the following:
1. LcPN = { lxc | x ∈ c•}
2. TcPN = {tc}
3. FcPN = {(x, tc)|x∈•c}∪ {(tc, lxc)|x∈c•}∪ {(lxc, x)|x∈c•}
On equation I it is presented that it is necessary to add one place for each connector output.
On equation II it is stated that to represent this connector it is necessary to add one
transition. On equation III it is presented that the arcs set needed to represent this connector
must be between the place and one corresponding transition to the connector, among one
transition and the places of the connector output and among the places of the connector
output and the transition.
Thus, the connector AND-split of type CIP behaves as a transition followed by a number of
places equal to a number of processes. On figure 6 one example of mapping of the connector
c ∈ CIP ∩Cs∩CAND is presented.

inf-set

OR

Processo Processo

… …

 Advances in Petri Net Theory and Applications

204

Fig. 3. Example of CAND Mapping among two or more processes for one inf-set.

When the connector c belongs to CIP (path from inf-set to process) intersection of CJ (join)
intersection of COR, the definitions of LcPN, TcPN and FcPN are the following:
1. LcPN = {lc}
2. TcPN = { txc | x ∈ •c}
3. FcPN = {(x, txc)|x ∈•c}∪ {(txc,lc)|x ∈•c}∪ {(lc,x)|x ∈c•}
On equation I it is stated that to represent the connector it is necessary to add one place. On
equation II it is established that to represent this connector it is necessary to add one
transition for each inf-set of the connector input. On equation III it is stated that to represent
this connector it is necessary to add a set of arcs from the places to the transitions of the
connector input, among the transitions and the place that corresponds to the connector and
between the place and the transition of the connector output.
The connector OR-join has the behavior of a place when the connector is CIP. On Figure 4 an
example of mapping of the connector c ∈ C IP∩CJ∩COR. is presented.

Fig. 4. Example COR Mapping among two or more inf-sets for one process.
Rule 4

c ∈ C PI∩CJ∩COR

inf-set

AND

Processo Processo

… …

inf-set

OR

Processo

inf-set ……

Assessment Method of Business Process Model of EKD

205

When the connector c belongs to CPI (path from process to inf-set) intersection of CJ (join)
intersection of COR,, the definitions of LcPN, TcPN and FcPN and Fc PN are the following:
1. LcPN = ∅
2. TcPN = ∅
3. FcPN = {(x, y)|x∈•c e y∈c•}
On equation I it is presented that it is not necessary to add places to represent this connector.
On equation II it is stated that it is not necessary to add transitions to represent this
connector. On equation III it is presented that the arcs set is between the input set and the
output set.
The connector OR-join corresponds to two or more arcs on Petri nets if, and only if, the
connector is CPI. On Figure 5 an example of mapping of the connector c ∈ C PI∩CJ∩COR is
presented

Fig. 5. Example of COR Mapping among two or more process for an inf-set.
Rule 5

c ∈ CIP ∩Cs∩CAND

When the connector c belongs to CIP (path from inf-set to process) intersection of CS (join)
intersection of CAND, the definitions of LcPN, TcPN and FcPN are the following:
1. LcPN = { lxc | x ∈ c•}
2. TcPN = {tc}
3. FcPN = {(x, tc)|x∈•c}∪ {(tc, lxc)|x∈c•}∪ {(lxc, x)|x∈c•}
On equation I it is presented that it is necessary to add one place for each connector output.
On equation II it is stated that to represent this connector it is necessary to add one
transition. On equation III it is presented that the arcs set needed to represent this connector
must be between the place and one corresponding transition to the connector, among one
transition and the places of the connector output and among the places of the connector
output and the transition.
Thus, the connector AND-split of type CIP behaves as a transition followed by a number of
places equal to a number of processes. On figure 6 one example of mapping of the connector
c ∈ CIP ∩Cs∩CAND is presented.

inf-set

OR

Processo Processo

… …

 Advances in Petri Net Theory and Applications

206

Fig. 6. Example of CAND mapping a inf-set for to or more process.
Rule 6

c ∈ C PI∩Cs∩CAND

When the connector c belongs to CIP (path from process to inf-set) intersection of CS (join)
intersection of CAND, the definitions of LcPN, TcPN e FcPN are the following:
1. LcPN = ∅
2. TcPN = ∅
3. FcPN = {(x, y)|x∈•c e y∈c•}
On equation I it is presented that it is not necessary to add places to represent this connector.
On equation II it is stated that it is not necessary to add transitions to represent this
connector. On equation III it is presented that the arcs set is between the input set and the
output set.
The connector AND-split corresponds to a number of arcs on Petri nets if, and only if, the
output is two or more inf-sets. On Figure 7 an example of the connector mapping c ∈ C
PI∩CS∩CAND is presented.

Fig. 7. Example of CAND Mapping based one process to two or more inf-sets.

inf-set

AND

Processo Processo

…
…

inf-set

AND

Processo

inf-set

…

…

Assessment Method of Business Process Model of EKD

207

Rule 7

c ∈ C IP∩Cs∩COR

When the connector c belongs to CIP (path from inf-set to process) intersection of CS (join)
intersection of COR, the definitions of LcPN, TcPN and FcPN are the following:
1. LcPN = ∅
2. TcPN = ∅
3. FcPN = {(x, y)|x∈•c e y∈c•}
On equation I it is presented that it is not necessary to add places to represent this connector.
On equation II it is stated that it is not necessary to add transitions to represent this
connector. On equation III it is presented that the arcs set is between the input set and the
output set.
The connector OR-split corresponds to a number of arcs on Petri nets if, and only if, the
output is two or more processes On Figure 9 an example of the connector mapping c ∈ C
IP∩Cs∩COR. is presented.

Fig. 8. Example of COR Mapping from one inf-set to two or more processes
Rule 8

c ∈ C PI∩Cs∩COR

When the connector c belongs to CPI (path from process to inf-set)
intersection of CS (join) intersection of COR, the definitions of LcPN, TcPN e FcPN are the
following:
1. LcPN = {lc}
2. TcPN = { txc | x ∈ c•}
3. FcPN = {(x,lc)|x∈•c}∪ {(lc,txc)|x∈c•}∪ {(txc, x)|x∈c•}
On equation I it is stated that to represent this connector it is necessary to add one place. On
equation II it is presented that it is necessary to add a transition for each inf-set of the
connector output. On equation III it is stated that the set of arcs should be between the initial
transition and the correspondent place to the connector, among the place and the transitions

inf-set

OR

Processo Processo
…

…

 Advances in Petri Net Theory and Applications

206

Fig. 6. Example of CAND mapping a inf-set for to or more process.
Rule 6

c ∈ C PI∩Cs∩CAND

When the connector c belongs to CIP (path from process to inf-set) intersection of CS (join)
intersection of CAND, the definitions of LcPN, TcPN e FcPN are the following:
1. LcPN = ∅
2. TcPN = ∅
3. FcPN = {(x, y)|x∈•c e y∈c•}
On equation I it is presented that it is not necessary to add places to represent this connector.
On equation II it is stated that it is not necessary to add transitions to represent this
connector. On equation III it is presented that the arcs set is between the input set and the
output set.
The connector AND-split corresponds to a number of arcs on Petri nets if, and only if, the
output is two or more inf-sets. On Figure 7 an example of the connector mapping c ∈ C
PI∩CS∩CAND is presented.

Fig. 7. Example of CAND Mapping based one process to two or more inf-sets.

inf-set

AND

Processo Processo

…
…

inf-set

AND

Processo

inf-set

…

…

Assessment Method of Business Process Model of EKD

207

Rule 7

c ∈ C IP∩Cs∩COR

When the connector c belongs to CIP (path from inf-set to process) intersection of CS (join)
intersection of COR, the definitions of LcPN, TcPN and FcPN are the following:
1. LcPN = ∅
2. TcPN = ∅
3. FcPN = {(x, y)|x∈•c e y∈c•}
On equation I it is presented that it is not necessary to add places to represent this connector.
On equation II it is stated that it is not necessary to add transitions to represent this
connector. On equation III it is presented that the arcs set is between the input set and the
output set.
The connector OR-split corresponds to a number of arcs on Petri nets if, and only if, the
output is two or more processes On Figure 9 an example of the connector mapping c ∈ C
IP∩Cs∩COR. is presented.

Fig. 8. Example of COR Mapping from one inf-set to two or more processes
Rule 8

c ∈ C PI∩Cs∩COR

When the connector c belongs to CPI (path from process to inf-set)
intersection of CS (join) intersection of COR, the definitions of LcPN, TcPN e FcPN are the
following:
1. LcPN = {lc}
2. TcPN = { txc | x ∈ c•}
3. FcPN = {(x,lc)|x∈•c}∪ {(lc,txc)|x∈c•}∪ {(txc, x)|x∈c•}
On equation I it is stated that to represent this connector it is necessary to add one place. On
equation II it is presented that it is necessary to add a transition for each inf-set of the
connector output. On equation III it is stated that the set of arcs should be between the initial
transition and the correspondent place to the connector, among the place and the transitions

inf-set

OR

Processo Processo
…

…

 Advances in Petri Net Theory and Applications

208

of the connector output and among the transitions of the connector output and the places.
The only way to exist a place with more than one output arc is the mapping of the connector
OR-split from a process to two or more inf-sets. The rules of mapping ensure that the
number of transitions is equal to the number of places. The net is free choice. On figure 9
one example of mapping of the connector c ∈ CPI∩CS∩COR is presented.

Fig. 9. Example of COR Mapping from one process to two or more inf-sets

The BPM-EKD (I, P, C, Q, A) is a Business process model of EKD and
PN = N (BPM-EKD) the Petri net generated by BPM-EKD. PN is free choice.
Definition 6 . A BPM-EKD is a regular only if:
- BPM-EKD has two inf-sets special: istart and ifinal. inf-set istart is a node sourcee: •istart= ∅.

inf-set ifinal is end node: ifinal •= ∅.
- Every node n ∈ N is on a path from iinício to ifinal.
In the same line of Aalst (1999), the identification of inf-set start and e_inf-set final allows for
a clear definition of the initial state and the final state. The BPM-EKD with multiple start inf-
sets (i.e.inf-sets without any input arcs) or multiple final inf-sets (i.e. inf-sets without any
output arcs) can easily be extended with an initialization and/or a termination part such
that the first requirement is satisfied.
The second requirement demands that every inf-set is in the scope bordered by inf-set start
and inf-set inicial. If the original BPM-EKD is extended with an initialization and/or a
termination part such that the first requirement is satisfied, then the second requirement is
quite natural. If the second requirement is not satisfied, then the BPM-EKD is:
1. composed of completely disjointed parts,
2. it has parts which are never activated or
3. parts of the event-driven process chain form a trap.
How does BPM-EKD describes the process instance, the two requirements are reasonable.
The life cycle should have a clear start inf-set, an end inf-set, and all the steps should be on a
path between these two events. As in Aalst (1999), in remainder of this chapter, the BPM-
EKD will be assumed to be regular.
One BPM-EKD describes a procedure with an initial state and a final state. The procedure
should be designed in such a way that always it ends properly. Moreover, it should be
possible to run any process following the proper route of BPM-EKD.

inf-set

OR

Processo

inf-set

…
…

Assessment Method of Business Process Model of EKD

209

Definition 7. A regular BPM-EKD is “sound” if, and only if:
1. For each M marking reachable from the initial state (for example, the state, where the

iinitial inf-set is the only inf-set that exists), there is a sequence of shots taking from the M
marking to the final marking (for example, where the ifinal inf-set is the only inf-set that
exists).

2. The only existing mark at the end of the process is in the final state ifinal.
3. There are no dead processes, for example, for each process p there is a shot sequence,

which runs p.
The conformity, according to the ones of Petri nets, is the minimum requirement, so that any
BPM-EKD should meet. A BPM-EKD sound is free of potential deadlocks and livelocks. If
assuming fairness, then the first two requirements imply that eventually the final mark will
be achieved (it is noticed that this is a result of the combination of ownership of soundness
and free choice. The property free choice implies that for each transition t1 e t2, •t1 ∩ •t2 ≠ ∅
that implies that •t = •t2.
The complex BPM-EKD found in practice, the verification of property soundness is not
simple. Fortunately, techniques and tools based on Petri nets can be used to analyze this
property. The inspection of the tree coverage of Petri net that corresponds to BPM-EKD is
sufficient to verify soundness. For complex BPM-EKD, the tree coverage can become very
big. This phenomenon is known as the “explosion problem of state." One BPM-EKD with 80
processes can easily have more than 200,000 markings. Although the computers currently
have trouble to analyze trees coverage of that size, there are many advanced techniques that
explore the structure of Petri nets, in this case generated by one BPM-EKD. These techniques
allow efficient procedures decision. Before presenting such procedure, primarily it is
necessary to list some properties present in any Petri net generated by one BPM-EKD sound.
The BPM-EKD = (I, P, C, Q, A) is sound and PN = N (BPM-EKD) the Petri net generated by
the BPM-EKD. Consider PN be as PN with an additional t transition connecting ifinal to iinitial
and let M to be the initial marking with a mark in iinitial (Aalst, 1999).
- PN is strongly connected;
- PN is susceptible of coverage;
- (PN, M) is live and
- (PN, M) is limited.
A Petri net is strongly connected if, and only if, for each pair of nodes (places and
transitions) x and y, there is a path from x until y (Aalst, 1999). PN is strongly connected
because all nodes are on the path from the iinitial to the ifinal and ifinal is connected in iinitial
through additional t. PN is WF-net according to Aalst (1997). Therefore, soundness
coincides with vivacity and limitation. (PN, M) is free choice, alive and limited and,
according to Aalst and Hee (2002), implies that PN is susceptible of coverage and (PN, M) is
secure. Building the results presented in Aalst (1997), the property of soundness can be
verified in polynomial time. One BPM-EKD corresponds to a WF-net free choice. One WF-
net is sound if, and only if, the extended net is alive and limited. Vivacity and limitation can
be verified in time polynomial. For that reason soundness can be verified in polynomial
time.
In this way, it is possible to extend tools with efficient decision procedures to verify the
soundness property of one BPM-EKD. For guiding the user to look for defects and fix them
in a project of one BPM-EKD it is also possible to supply additional diagnoses based on the
structure of BPM-EKD/Petri nets.

 Advances in Petri Net Theory and Applications

208

of the connector output and among the transitions of the connector output and the places.
The only way to exist a place with more than one output arc is the mapping of the connector
OR-split from a process to two or more inf-sets. The rules of mapping ensure that the
number of transitions is equal to the number of places. The net is free choice. On figure 9
one example of mapping of the connector c ∈ CPI∩CS∩COR is presented.

Fig. 9. Example of COR Mapping from one process to two or more inf-sets

The BPM-EKD (I, P, C, Q, A) is a Business process model of EKD and
PN = N (BPM-EKD) the Petri net generated by BPM-EKD. PN is free choice.
Definition 6 . A BPM-EKD is a regular only if:
- BPM-EKD has two inf-sets special: istart and ifinal. inf-set istart is a node sourcee: •istart= ∅.

inf-set ifinal is end node: ifinal •= ∅.
- Every node n ∈ N is on a path from iinício to ifinal.
In the same line of Aalst (1999), the identification of inf-set start and e_inf-set final allows for
a clear definition of the initial state and the final state. The BPM-EKD with multiple start inf-
sets (i.e.inf-sets without any input arcs) or multiple final inf-sets (i.e. inf-sets without any
output arcs) can easily be extended with an initialization and/or a termination part such
that the first requirement is satisfied.
The second requirement demands that every inf-set is in the scope bordered by inf-set start
and inf-set inicial. If the original BPM-EKD is extended with an initialization and/or a
termination part such that the first requirement is satisfied, then the second requirement is
quite natural. If the second requirement is not satisfied, then the BPM-EKD is:
1. composed of completely disjointed parts,
2. it has parts which are never activated or
3. parts of the event-driven process chain form a trap.
How does BPM-EKD describes the process instance, the two requirements are reasonable.
The life cycle should have a clear start inf-set, an end inf-set, and all the steps should be on a
path between these two events. As in Aalst (1999), in remainder of this chapter, the BPM-
EKD will be assumed to be regular.
One BPM-EKD describes a procedure with an initial state and a final state. The procedure
should be designed in such a way that always it ends properly. Moreover, it should be
possible to run any process following the proper route of BPM-EKD.

inf-set

OR

Processo

inf-set

…
…

Assessment Method of Business Process Model of EKD

209

Definition 7. A regular BPM-EKD is “sound” if, and only if:
1. For each M marking reachable from the initial state (for example, the state, where the

iinitial inf-set is the only inf-set that exists), there is a sequence of shots taking from the M
marking to the final marking (for example, where the ifinal inf-set is the only inf-set that
exists).

2. The only existing mark at the end of the process is in the final state ifinal.
3. There are no dead processes, for example, for each process p there is a shot sequence,

which runs p.
The conformity, according to the ones of Petri nets, is the minimum requirement, so that any
BPM-EKD should meet. A BPM-EKD sound is free of potential deadlocks and livelocks. If
assuming fairness, then the first two requirements imply that eventually the final mark will
be achieved (it is noticed that this is a result of the combination of ownership of soundness
and free choice. The property free choice implies that for each transition t1 e t2, •t1 ∩ •t2 ≠ ∅
that implies that •t = •t2.
The complex BPM-EKD found in practice, the verification of property soundness is not
simple. Fortunately, techniques and tools based on Petri nets can be used to analyze this
property. The inspection of the tree coverage of Petri net that corresponds to BPM-EKD is
sufficient to verify soundness. For complex BPM-EKD, the tree coverage can become very
big. This phenomenon is known as the “explosion problem of state." One BPM-EKD with 80
processes can easily have more than 200,000 markings. Although the computers currently
have trouble to analyze trees coverage of that size, there are many advanced techniques that
explore the structure of Petri nets, in this case generated by one BPM-EKD. These techniques
allow efficient procedures decision. Before presenting such procedure, primarily it is
necessary to list some properties present in any Petri net generated by one BPM-EKD sound.
The BPM-EKD = (I, P, C, Q, A) is sound and PN = N (BPM-EKD) the Petri net generated by
the BPM-EKD. Consider PN be as PN with an additional t transition connecting ifinal to iinitial
and let M to be the initial marking with a mark in iinitial (Aalst, 1999).
- PN is strongly connected;
- PN is susceptible of coverage;
- (PN, M) is live and
- (PN, M) is limited.
A Petri net is strongly connected if, and only if, for each pair of nodes (places and
transitions) x and y, there is a path from x until y (Aalst, 1999). PN is strongly connected
because all nodes are on the path from the iinitial to the ifinal and ifinal is connected in iinitial
through additional t. PN is WF-net according to Aalst (1997). Therefore, soundness
coincides with vivacity and limitation. (PN, M) is free choice, alive and limited and,
according to Aalst and Hee (2002), implies that PN is susceptible of coverage and (PN, M) is
secure. Building the results presented in Aalst (1997), the property of soundness can be
verified in polynomial time. One BPM-EKD corresponds to a WF-net free choice. One WF-
net is sound if, and only if, the extended net is alive and limited. Vivacity and limitation can
be verified in time polynomial. For that reason soundness can be verified in polynomial
time.
In this way, it is possible to extend tools with efficient decision procedures to verify the
soundness property of one BPM-EKD. For guiding the user to look for defects and fix them
in a project of one BPM-EKD it is also possible to supply additional diagnoses based on the
structure of BPM-EKD/Petri nets.

 Advances in Petri Net Theory and Applications

210

3.3 Assessment method of Business Processes Model of EKD
The assessment method of Business Processes Model of EKD consists of:
1. developing the organizational model EKD using the guidelines presented in Bubenko et
al. (1998).
2. Developing Business Processes Model according to the formalization the BPM-EKD
presented in this work. Check if the model meets the following requirements:
2.1. All processes must have input and output conditions. When a case doesn’t have any
input condition, it will not be clear when it may be performed. When a process doesn’t have
any output conditions, it does not contribute for the success of the process and can be
omitted.
2.2. There must be at least one final inf-set and one initial inf-set.
2.3. The input of the process should be equal to 1.
2.4. The output of the process should be equal to 1.
2.5. The output of an inf-set should be equal or less than 1. In case it is less than 1, it is a final
inf-set.
2.6. The input of inf-set should be equal or less than 1. In case it is less than 1, it is an initial
inf-set.
2.7. The entry of the connector should be larger than or equal to 1.
2.8. The output of the connector should be larger or equal to 1.
2.9. Every connector should be OR or AND type.
2.10. Every connector should be Split or Join type.
2.11. Every connector should be PI or IP type.
2.12. A split-type connector should have the input equal to 1.
2.13. A split-type connector should have the output equal to 2 or larger than 2.
2.14. A join-type connector should have the input larger than 2 or equal to 2.
2.15. A join-type connector should have the output equal to 1.
2.16. It is not allowed to connect process to process.
2.17. It is not allowed to connect inf-set to inf-set.
2.18. It is not allowed to use the connector linking process(es) to process(es) and inf-set (s) to
inf-set (s).
2.19. It is not allowed the connection of connector (s) with connector(s).
2.20. All the inf-sets that were not generated by the process should be enabled.
3. Model mapping on Petri nets. The inf-sets are represented by places and the processes are
represented by transitions. For the connectors mapping it is necessary to follow the rules
presented as follows:
3.1. The set of places is formed by the union of all inf-sets with places that were included to
represent the connectors.
3.2. The set of transitions is formed by the union of all Processes with transitions that were
included to represent connectors.
3.3. The set of net arcs is formed by model arcs that range from I (inf-set) to P (process) and
from P to I and the union of the arcs included to represent connectors.
3.4. Rule 1 states that when the connector c belongs to CIP (path from inf-set to process)
intersection of CJ (join) intersection of CAND, the connector (c ∈ C IP∩CJ∩CAND) corresponds
to two or more arcs on Petri nets.
3.5. Rule 2 states that when the connector c belongs to C PI (path from process to inf-set)
intersection of CJ (join) intersection of CAND, the connector (c ∈ C PI∩CJ∩CAND) behaves as
one transition. A place for each connector input process is added.

Assessment Method of Business Process Model of EKD

211

3.6. Rule 3 states that when the connector c belongs to CIP (path from inf-set to process)
intersection of CJ (join) intersection of COR, the connector (c ∈C IP∩CJ∩COR) behaves as one
place.
3.7. Rule 4 states that when the connector c belongs to C PI (path from process to inf-set)
intersection of CJ (join) intersection of COR,, the connector (c ∈C PI∩CJ∩COR) corresponds to
two or more arcs onto Petri nets.
3.8. Rule 5 states that when the connector c belongs to CIP (path from inf-set to process)
intersection of CS (split) intersection of CAND, the connector (c ∈CIP∩CS∩CAND) behaves as
one transition followed by a number of places equal to the number of processes.
3.9. Rule 6 states that when the connector c belongs to C PI (path from process to inf-set)
intersection of CS (Split) intersection of CAND, the connector (c ∈ C PI∩CS∩CAND) corresponds
to a number of arcs onto Petri nets.
3.10. Rule 7 states that when the connector c belongs to CIP (path from inf-set to process)
intersection of CS (Split) intersection of COR, the connector (c ∈ C IP∩CS∩COR) corresponds to
a number of arcs onto Petri nets.
3.11. Rule 8 states that when the connector c belongs to C PI (path from process to inf-set)
intersection of CS (Split) intersection of COR, the connector (c ∈ C PI∩CS∩COR) corresponds to
one place followed by a number of transitions equal to the number of processes of the
output of the connector.
4. Building the tree of reachability Through the tree of reachability is possible to verify
several errors that may occur in the definition of process, even without specific knowledge
of the business process. In lack of editing tool of Petri nets it is possible to verify the
soundness property through the inspection of the reachability tree that corresponds to the
BPM-EKD.
5. After making the mapping on Petri nets, assessing the model using an editing tool on
Petri networks. In this work, Petri Net Tools have been used. The following items should be
considered:
5.1. The verification of possible deadlock, as to say whenever it is not possible to run any
task.
5.2. The elimination of cases that are in infinite loop (livelock).
5.3. The verification of possible tasks that can not be executed (deadtask).
5.4. The elimination of conflicts.
5.5. The verification of possible paths.
5.6. Checking the existence of marks in other places after the end condition order was
completed. Once the mark appears at the end place, all other marks must have disappeared.
6. To present the report of the problems founded.

4. The application method.
The model that will be presented was developed on project ESPRIT ELEKTRA (Electrical
Enterprise Knowledge for Transforming Applications) (ELEKTRA, 2000). The ELEKTRA
project focuses mainly on application of EKD method for the management problems of
changes within organizations from Greece and Sweden, generating a set of generic practices
in order to apply them to other companies.
The Vattenfall case was chosen on ELEKTRA project. The project was based on a careful
analysis not only of current practice and process but also of problems, of needs, of
opportunities and realized future goals.

 Advances in Petri Net Theory and Applications

210

3.3 Assessment method of Business Processes Model of EKD
The assessment method of Business Processes Model of EKD consists of:
1. developing the organizational model EKD using the guidelines presented in Bubenko et
al. (1998).
2. Developing Business Processes Model according to the formalization the BPM-EKD
presented in this work. Check if the model meets the following requirements:
2.1. All processes must have input and output conditions. When a case doesn’t have any
input condition, it will not be clear when it may be performed. When a process doesn’t have
any output conditions, it does not contribute for the success of the process and can be
omitted.
2.2. There must be at least one final inf-set and one initial inf-set.
2.3. The input of the process should be equal to 1.
2.4. The output of the process should be equal to 1.
2.5. The output of an inf-set should be equal or less than 1. In case it is less than 1, it is a final
inf-set.
2.6. The input of inf-set should be equal or less than 1. In case it is less than 1, it is an initial
inf-set.
2.7. The entry of the connector should be larger than or equal to 1.
2.8. The output of the connector should be larger or equal to 1.
2.9. Every connector should be OR or AND type.
2.10. Every connector should be Split or Join type.
2.11. Every connector should be PI or IP type.
2.12. A split-type connector should have the input equal to 1.
2.13. A split-type connector should have the output equal to 2 or larger than 2.
2.14. A join-type connector should have the input larger than 2 or equal to 2.
2.15. A join-type connector should have the output equal to 1.
2.16. It is not allowed to connect process to process.
2.17. It is not allowed to connect inf-set to inf-set.
2.18. It is not allowed to use the connector linking process(es) to process(es) and inf-set (s) to
inf-set (s).
2.19. It is not allowed the connection of connector (s) with connector(s).
2.20. All the inf-sets that were not generated by the process should be enabled.
3. Model mapping on Petri nets. The inf-sets are represented by places and the processes are
represented by transitions. For the connectors mapping it is necessary to follow the rules
presented as follows:
3.1. The set of places is formed by the union of all inf-sets with places that were included to
represent the connectors.
3.2. The set of transitions is formed by the union of all Processes with transitions that were
included to represent connectors.
3.3. The set of net arcs is formed by model arcs that range from I (inf-set) to P (process) and
from P to I and the union of the arcs included to represent connectors.
3.4. Rule 1 states that when the connector c belongs to CIP (path from inf-set to process)
intersection of CJ (join) intersection of CAND, the connector (c ∈ C IP∩CJ∩CAND) corresponds
to two or more arcs on Petri nets.
3.5. Rule 2 states that when the connector c belongs to C PI (path from process to inf-set)
intersection of CJ (join) intersection of CAND, the connector (c ∈ C PI∩CJ∩CAND) behaves as
one transition. A place for each connector input process is added.

Assessment Method of Business Process Model of EKD

211

3.6. Rule 3 states that when the connector c belongs to CIP (path from inf-set to process)
intersection of CJ (join) intersection of COR, the connector (c ∈C IP∩CJ∩COR) behaves as one
place.
3.7. Rule 4 states that when the connector c belongs to C PI (path from process to inf-set)
intersection of CJ (join) intersection of COR,, the connector (c ∈C PI∩CJ∩COR) corresponds to
two or more arcs onto Petri nets.
3.8. Rule 5 states that when the connector c belongs to CIP (path from inf-set to process)
intersection of CS (split) intersection of CAND, the connector (c ∈CIP∩CS∩CAND) behaves as
one transition followed by a number of places equal to the number of processes.
3.9. Rule 6 states that when the connector c belongs to C PI (path from process to inf-set)
intersection of CS (Split) intersection of CAND, the connector (c ∈ C PI∩CS∩CAND) corresponds
to a number of arcs onto Petri nets.
3.10. Rule 7 states that when the connector c belongs to CIP (path from inf-set to process)
intersection of CS (Split) intersection of COR, the connector (c ∈ C IP∩CS∩COR) corresponds to
a number of arcs onto Petri nets.
3.11. Rule 8 states that when the connector c belongs to C PI (path from process to inf-set)
intersection of CS (Split) intersection of COR, the connector (c ∈ C PI∩CS∩COR) corresponds to
one place followed by a number of transitions equal to the number of processes of the
output of the connector.
4. Building the tree of reachability Through the tree of reachability is possible to verify
several errors that may occur in the definition of process, even without specific knowledge
of the business process. In lack of editing tool of Petri nets it is possible to verify the
soundness property through the inspection of the reachability tree that corresponds to the
BPM-EKD.
5. After making the mapping on Petri nets, assessing the model using an editing tool on
Petri networks. In this work, Petri Net Tools have been used. The following items should be
considered:
5.1. The verification of possible deadlock, as to say whenever it is not possible to run any
task.
5.2. The elimination of cases that are in infinite loop (livelock).
5.3. The verification of possible tasks that can not be executed (deadtask).
5.4. The elimination of conflicts.
5.5. The verification of possible paths.
5.6. Checking the existence of marks in other places after the end condition order was
completed. Once the mark appears at the end place, all other marks must have disappeared.
6. To present the report of the problems founded.

4. The application method.
The model that will be presented was developed on project ESPRIT ELEKTRA (Electrical
Enterprise Knowledge for Transforming Applications) (ELEKTRA, 2000). The ELEKTRA
project focuses mainly on application of EKD method for the management problems of
changes within organizations from Greece and Sweden, generating a set of generic practices
in order to apply them to other companies.
The Vattenfall case was chosen on ELEKTRA project. The project was based on a careful
analysis not only of current practice and process but also of problems, of needs, of
opportunities and realized future goals.

 Advances in Petri Net Theory and Applications

212

The model is from the strategic planning process of human resources. The planning process
is conducted on a strategic level. It involves formulation of policies and goals for human
resources planning for Vattenfall treating the metrics on achieving the formulated goals. The
model describes how the human resources planning should be integrated with the business
strategic planning. Initially, based on business planning goals, it is formulated a group of
goals and indicators within the domain of competence, then the goals and indicators are
reported to the business area into the documents: pre-conditions for business planning /
budget guidelines. Paralleled or not, the policies, guidelines and instructions are
formulated from the term of private and political goals. Afterwards, communications of
these policies are effectuated.
The following procedures are: running activities within the substitute (proxy) domain on
competency; returning trimestrially the goals and indicators with the help of System of
Group Review; presenting a summary of achieved goals and indicators; comparing achieved
goals and tendencies with the proposed goals according to the private policies and business
planning and review goals. On Figure 11 the modified described model to be mapped on
Petri nets is presented. The inputs of process 1 have been modified for not meeting the
requirement method that states that the process can only have one input.
Although the method states that one initial and final inf-set should be placed, it was not
possible to place a final inf-set because the end of the procedure was not clear. The
connectors were added.
On Figure 12 the same model mapped on Petri nets is presented according to the method
presented in this work. The connectors of the model of the process of human resources
strategic planning and their corresponding rules mapping are presented on Table 1. The
elements of Petri Nets corresponding to the elements of BPM-EKD are presented on Table 2.
Test result
On Figure 13 the model simulated on Petri Net Tools is presented. A tree of reachability
presented on figure 14 shows that the Pr6 transition will be shot unless there is a mark at IS8
place. As there is not such a mark before the shot of Pr7 transition there will be a deadlock.
Moreover, there is not a clear end condition. The model is not sound.

5. Final considerations
It was emphasized that the main problem of Organizational modeling approaches,
including the EKD, is the absence of techniques for objective analysis. The techniques of
analysis with mathematical rigor are not usual for business area professionals. It was
confirmed that the Petri nets solve this problem, once they have graphic representation, are
easy to learn, function as language of communication among experts from several areas,
allow the description of static and dynamic aspects of the system to be represented, and still
have the mathematical formalism that allows the use of important methods of analysis.
The business processes, regularly, have a simple structure before being introduced in
systems of advanced information, such as system of workflow. This simplicity is due mainly
to the fact that a document can only be in one place at the same moment. The document
serves as a set of marks that ensure the performance sequential tasks. Currently, after
several years of development of systems in a sequential way, it is possible to model
processes in a completely different order, once the information and data can be shared.
Several people can work at the same time in the same case. For this reason it is not always
possible to perform the tasks sequentially. Through the utilization of parallel business

Assessment Method of Business Process Model of EKD

213

processes it is possible to achieve enormous reductions on the performance time. The
business environment is opportune to perform the tasks in parallel according to the
necessity. However, the utilization of sequential, parallel, selective and iterative routes in
the same process makes the assessment of the defined processes difficult.
In this way, the research showed that the Business Processes Model should be developed
with great care, because, in addition to problems resulting from errors in the project being
difficult to detect, the costs of correcting the errors are high. The ambiguities and conflicts
should be eliminated of the models.
It was possible to confirm that ambiguities and confusion cannot be prevented on informal
Business Processes model. To solve this problem, a Business Processes Model with a formal
semantic was developed. To develop this semantic a connector set for Business Processes
Model of EKD was created. The connectors set represented by C and composed by CAND, COR,
CJ, CS, CIP and CPI. The connectors COR and CAND are important to identify (exclusive) choice
and parallelism for the cases of parallelism and choice won’t be exactly modeled in the same
way, avoiding ambiguities and comprehension difficulties. The connectors CJ and CS define
connectors join and split type. The connectors CIP and CPI show that a connector c is a path
from an inf-set to a process or a path from a process to an inf-set.
The initial and final states were included to enable that the formalization be effectively
accomplished. These states are not specified in the Business Processes Model of original EKD.
In this work a procedure of formal mapping of Business Processes Model on
Petri nets was developed. The procedure of mapping was developed based on Petri nets
place transition. Through a business process model mapped on Petri nets in accordance with
this procedure, it was possible to verify some requirements that ensure if the process was
correctly modeled and other requirements that allow the process analysis.
Thus, the Assessment Method of Business Processes Model of EKD was created from the
procedure of formal mapping of the Business Processes Model on Petri nets. The method
consists on a sequence of steps that ranges from the development of organizational model to
the construction of reachability tree and simulation of model in tool.
The application of the method allows verifying the presence of deadlock, in which the
process can never be accomplished. Moreover, there is no clear end condition, so the model
is not sound.
Based on these problems, it can be stated that the care on the modeling process is
fundamental in order that the model represents faithfully the way the process is performed
and that these problems are minimized when the model is developed in accordance with the
method developed in this work.
The great convenience, as previously stated, in using Petri nets in business processes model
is the possibility of a thorough tracking and non-ambiguous on each step of the operation.
Moreover, this work shows that Petri nets enable a formal mathematical representation and
provide mechanisms of analysis that make possible the verification of the model correction
and the checking of their properties.
The fact that some constructions are not allowed can be considered a disadvantage of the
BPM-EKD formalization. But, during the process of modeling these constructions should be
carefully analyzed, being important the discernment of the team or person who is modeling
in order that the model be developed in accordance with the created settings in this work.
It is important to emphasize that the application of assessment method in many Business
Processes Models can be impractical without a tool computer that supports all steps of the
method.

 Advances in Petri Net Theory and Applications

212

The model is from the strategic planning process of human resources. The planning process
is conducted on a strategic level. It involves formulation of policies and goals for human
resources planning for Vattenfall treating the metrics on achieving the formulated goals. The
model describes how the human resources planning should be integrated with the business
strategic planning. Initially, based on business planning goals, it is formulated a group of
goals and indicators within the domain of competence, then the goals and indicators are
reported to the business area into the documents: pre-conditions for business planning /
budget guidelines. Paralleled or not, the policies, guidelines and instructions are
formulated from the term of private and political goals. Afterwards, communications of
these policies are effectuated.
The following procedures are: running activities within the substitute (proxy) domain on
competency; returning trimestrially the goals and indicators with the help of System of
Group Review; presenting a summary of achieved goals and indicators; comparing achieved
goals and tendencies with the proposed goals according to the private policies and business
planning and review goals. On Figure 11 the modified described model to be mapped on
Petri nets is presented. The inputs of process 1 have been modified for not meeting the
requirement method that states that the process can only have one input.
Although the method states that one initial and final inf-set should be placed, it was not
possible to place a final inf-set because the end of the procedure was not clear. The
connectors were added.
On Figure 12 the same model mapped on Petri nets is presented according to the method
presented in this work. The connectors of the model of the process of human resources
strategic planning and their corresponding rules mapping are presented on Table 1. The
elements of Petri Nets corresponding to the elements of BPM-EKD are presented on Table 2.
Test result
On Figure 13 the model simulated on Petri Net Tools is presented. A tree of reachability
presented on figure 14 shows that the Pr6 transition will be shot unless there is a mark at IS8
place. As there is not such a mark before the shot of Pr7 transition there will be a deadlock.
Moreover, there is not a clear end condition. The model is not sound.

5. Final considerations
It was emphasized that the main problem of Organizational modeling approaches,
including the EKD, is the absence of techniques for objective analysis. The techniques of
analysis with mathematical rigor are not usual for business area professionals. It was
confirmed that the Petri nets solve this problem, once they have graphic representation, are
easy to learn, function as language of communication among experts from several areas,
allow the description of static and dynamic aspects of the system to be represented, and still
have the mathematical formalism that allows the use of important methods of analysis.
The business processes, regularly, have a simple structure before being introduced in
systems of advanced information, such as system of workflow. This simplicity is due mainly
to the fact that a document can only be in one place at the same moment. The document
serves as a set of marks that ensure the performance sequential tasks. Currently, after
several years of development of systems in a sequential way, it is possible to model
processes in a completely different order, once the information and data can be shared.
Several people can work at the same time in the same case. For this reason it is not always
possible to perform the tasks sequentially. Through the utilization of parallel business

Assessment Method of Business Process Model of EKD

213

processes it is possible to achieve enormous reductions on the performance time. The
business environment is opportune to perform the tasks in parallel according to the
necessity. However, the utilization of sequential, parallel, selective and iterative routes in
the same process makes the assessment of the defined processes difficult.
In this way, the research showed that the Business Processes Model should be developed
with great care, because, in addition to problems resulting from errors in the project being
difficult to detect, the costs of correcting the errors are high. The ambiguities and conflicts
should be eliminated of the models.
It was possible to confirm that ambiguities and confusion cannot be prevented on informal
Business Processes model. To solve this problem, a Business Processes Model with a formal
semantic was developed. To develop this semantic a connector set for Business Processes
Model of EKD was created. The connectors set represented by C and composed by CAND, COR,
CJ, CS, CIP and CPI. The connectors COR and CAND are important to identify (exclusive) choice
and parallelism for the cases of parallelism and choice won’t be exactly modeled in the same
way, avoiding ambiguities and comprehension difficulties. The connectors CJ and CS define
connectors join and split type. The connectors CIP and CPI show that a connector c is a path
from an inf-set to a process or a path from a process to an inf-set.
The initial and final states were included to enable that the formalization be effectively
accomplished. These states are not specified in the Business Processes Model of original EKD.
In this work a procedure of formal mapping of Business Processes Model on
Petri nets was developed. The procedure of mapping was developed based on Petri nets
place transition. Through a business process model mapped on Petri nets in accordance with
this procedure, it was possible to verify some requirements that ensure if the process was
correctly modeled and other requirements that allow the process analysis.
Thus, the Assessment Method of Business Processes Model of EKD was created from the
procedure of formal mapping of the Business Processes Model on Petri nets. The method
consists on a sequence of steps that ranges from the development of organizational model to
the construction of reachability tree and simulation of model in tool.
The application of the method allows verifying the presence of deadlock, in which the
process can never be accomplished. Moreover, there is no clear end condition, so the model
is not sound.
Based on these problems, it can be stated that the care on the modeling process is
fundamental in order that the model represents faithfully the way the process is performed
and that these problems are minimized when the model is developed in accordance with the
method developed in this work.
The great convenience, as previously stated, in using Petri nets in business processes model
is the possibility of a thorough tracking and non-ambiguous on each step of the operation.
Moreover, this work shows that Petri nets enable a formal mathematical representation and
provide mechanisms of analysis that make possible the verification of the model correction
and the checking of their properties.
The fact that some constructions are not allowed can be considered a disadvantage of the
BPM-EKD formalization. But, during the process of modeling these constructions should be
carefully analyzed, being important the discernment of the team or person who is modeling
in order that the model be developed in accordance with the created settings in this work.
It is important to emphasize that the application of assessment method in many Business
Processes Models can be impractical without a tool computer that supports all steps of the
method.

 Advances in Petri Net Theory and Applications

214

inf-set 1 inf-set 2
Objectives of planning in business Term goals of individuals

and political

inf-set 4
Policies, guidelines and instructions
within the area of supply of skills

inf-set 3
Objectives of the group and indicators
within the domain of competence.

inf-set 6
 Pre-conditions for business plans /
guidelines for budget

inf-set 7
Policies, guidelines and instructions within
the competence in the field of alternate

inf-set 8
Revised objectives and indicators
 within the domain of the
alternate power

inf-set 9
Results of activities to alternate
 in power

inf-set 11
Information on the area of the business to
achieve goals

inf-set 12
Objectives and indicators
aggregates

inf-set 10
Information about
business area

inf-set 5
Proposal for revised indicators
and targets

Process 1

Formulating Group Objectives
and indicators within the
domain of competence

Process 3

Communicate goals and indicators
for the business area in the
documents: pre-conditions for
business planning / budget guidelines

Process 4
Communicate policies
via intranet or folder

Process 8

Return quarterly goals and indicators
with the help of the System Review
Group

Process 5
Review goals and indicators

Process 9
Summarize the objectives
achieved and indicators

Process 10
Goals made and trends compare
with the proposed objectives in
accordance with the policies of
private and business planning

Process 6
Perform activities within
the area of the alternate power

Process 7
Revisão de objetivos e indicadores

AND

OR

OR

Process 2
Formulate policies and
instructions

Process 0
 Start

start

inf-set 0

AND

Fig. 10. Model Procedure for strategic planning of human resources changed.

Assessment Method of Business Process Model of EKD

215

Pr
Adic

 IS
Adic 1

 IS5

Pr
1

 IS8

 IS6

 IS3

Pr
3

Pr
6

Pr 2

 IS1

Pr
9

Pr
5

 IS1

Pr10

Pr
7

 IS7

 IS4

Pr
4

 IS1

 IS9

Pr
8

initial

start

Pr
Adic

 IS 2 IS 1

Fig. 11. Strategic planning model mapped to the Petri nets.

 Advances in Petri Net Theory and Applications

214

inf-set 1 inf-set 2
Objectives of planning in business Term goals of individuals

and political

inf-set 4
Policies, guidelines and instructions
within the area of supply of skills

inf-set 3
Objectives of the group and indicators
within the domain of competence.

inf-set 6
 Pre-conditions for business plans /
guidelines for budget

inf-set 7
Policies, guidelines and instructions within
the competence in the field of alternate

inf-set 8
Revised objectives and indicators
 within the domain of the
alternate power

inf-set 9
Results of activities to alternate
 in power

inf-set 11
Information on the area of the business to
achieve goals

inf-set 12
Objectives and indicators
aggregates

inf-set 10
Information about
business area

inf-set 5
Proposal for revised indicators
and targets

Process 1

Formulating Group Objectives
and indicators within the
domain of competence

Process 3

Communicate goals and indicators
for the business area in the
documents: pre-conditions for
business planning / budget guidelines

Process 4
Communicate policies
via intranet or folder

Process 8

Return quarterly goals and indicators
with the help of the System Review
Group

Process 5
Review goals and indicators

Process 9
Summarize the objectives
achieved and indicators

Process 10
Goals made and trends compare
with the proposed objectives in
accordance with the policies of
private and business planning

Process 6
Perform activities within
the area of the alternate power

Process 7
Revisão de objetivos e indicadores

AND

OR

OR

Process 2
Formulate policies and
instructions

Process 0
 Start

start

inf-set 0

AND

Fig. 10. Model Procedure for strategic planning of human resources changed.

Assessment Method of Business Process Model of EKD

215

Pr
Adic

 IS
Adic 1

 IS5

Pr
1

 IS8

 IS6

 IS3

Pr
3

Pr
6

Pr 2

 IS1

Pr
9

Pr
5

 IS1

Pr10

Pr
7

 IS7

 IS4

Pr
4

 IS1

 IS9

Pr
8

initial

start

Pr
Adic

 IS 2 IS 1

Fig. 11. Strategic planning model mapped to the Petri nets.

 Advances in Petri Net Theory and Applications

216

Conector Rule corresponding
CPI CS CAND Rule 6
CIP CJ COR Rule 3
CIP CJ CAND Rule 1
CIP CS COR Rule 7

Table 1. Connectors used in the model of strategic human resource planning and mapping
corresponding Rule.

PN BPM-EKD
Place inf-set Description
Is1 1 Objectives of planning in business
Is2 2 Term goals of individuals and political
Is3 3 Objectives of the group and indicators within the domain

of competence.
Is4 4 Policies, guidelines and instructions within the area of

supply of skills
Is5 5 Proposal for revised indicators and targets
Is6 6 Pre-conditions for business plans / guidelines for budget
Is7 7 Policies, guidelines and instructions within the

competence in the field of alternate
Is8 8 Revised objectives and indicators within the domain of the

alternate power
Is9 9 Results of activities to alternate in power
Is10 10 Information on area business
Is11 11 Information on the area of the business to achieve goals
Is12 12 Objectives and indicators aggregates
Tr Pr Description
Pr1 1 Formulating Group Objectives and indicators within the

domain of competence
Pr2 2 Formulate policies
Pr3 3 Communicate goals and indicators for the business area in

the documents: pre-conditions for business planning /
budget guidelines

Pr4 4 Communicate policies via intranet or folder
Pr5 5 Review goals and indicators
Pr6 6 Perform activities within the area of the alternate power
Pr7 7 Review of objectives and indicators
Pr8 8 Return quarterly goals and indicators with the help of the

System Review Group
Pr9 9 Overview of goals achieved and indicators
Pr10 10 Goals made and trends compare with the proposed

objectives in accordance with the policies of private and
business planning

Table 2. Elements of Petri networks corresponding to the elements of BPM-EKD of Strategic
Planning

Assessment Method of Business Process Model of EKD

217

Fig. 12. Simulation Model of the Strategic Planning Tool in Petri Net Tools.

6. Acknowledgments
The authors of this paper are especially grateful to Prof. Dr. Adenilso da Silva Simão and the
CAPES.

7. References
AALST, W.M.P.V.D. Formalization and verification of event-driven process chains.

Information and Software Technology, London, v.41, n.10, p.639-650, July, 1999.
______. Verification of workflow nets. In: AZEMA, P.; BALBO, G. (Eds.). Application and

theory of petri nets. Berlin: Springer-Verlag, 1997. (Lectures Notes in Computer
Science).

AALST, W. M. P. V. D; HOFSTEDE, A. H. M. T. Verification of workflow task structures a
petri-net-based approach. Information Systems, Oxford, v.25, n.1, p.43-69, 2000.

AALST, W.V.D.; HEE, V.K. Workflow management: models, methods and systems.
Cambridge: MIT Press, 2002.

BUBENKO JR., J. A.; STIRNA, J.; BRASH, D. EKD user guide, Dpt of computer and systems
sciences. Stockholm: Royal Institute of Technology, 1998.

CHRZASTOWSKI-WACHTEL, P. et al. A top-down petri net-based approach for dynamic
workflow modeling. In: INTERNATIONAL CONFERENCE BPM, 2003, Eindhoven.
Proceeding…Berlin: Springer, 2003. p. 336-353.

 Advances in Petri Net Theory and Applications

216

Conector Rule corresponding
CPI CS CAND Rule 6
CIP CJ COR Rule 3
CIP CJ CAND Rule 1
CIP CS COR Rule 7

Table 1. Connectors used in the model of strategic human resource planning and mapping
corresponding Rule.

PN BPM-EKD
Place inf-set Description
Is1 1 Objectives of planning in business
Is2 2 Term goals of individuals and political
Is3 3 Objectives of the group and indicators within the domain

of competence.
Is4 4 Policies, guidelines and instructions within the area of

supply of skills
Is5 5 Proposal for revised indicators and targets
Is6 6 Pre-conditions for business plans / guidelines for budget
Is7 7 Policies, guidelines and instructions within the

competence in the field of alternate
Is8 8 Revised objectives and indicators within the domain of the

alternate power
Is9 9 Results of activities to alternate in power
Is10 10 Information on area business
Is11 11 Information on the area of the business to achieve goals
Is12 12 Objectives and indicators aggregates
Tr Pr Description
Pr1 1 Formulating Group Objectives and indicators within the

domain of competence
Pr2 2 Formulate policies
Pr3 3 Communicate goals and indicators for the business area in

the documents: pre-conditions for business planning /
budget guidelines

Pr4 4 Communicate policies via intranet or folder
Pr5 5 Review goals and indicators
Pr6 6 Perform activities within the area of the alternate power
Pr7 7 Review of objectives and indicators
Pr8 8 Return quarterly goals and indicators with the help of the

System Review Group
Pr9 9 Overview of goals achieved and indicators
Pr10 10 Goals made and trends compare with the proposed

objectives in accordance with the policies of private and
business planning

Table 2. Elements of Petri networks corresponding to the elements of BPM-EKD of Strategic
Planning

Assessment Method of Business Process Model of EKD

217

Fig. 12. Simulation Model of the Strategic Planning Tool in Petri Net Tools.

6. Acknowledgments
The authors of this paper are especially grateful to Prof. Dr. Adenilso da Silva Simão and the
CAPES.

7. References
AALST, W.M.P.V.D. Formalization and verification of event-driven process chains.

Information and Software Technology, London, v.41, n.10, p.639-650, July, 1999.
______. Verification of workflow nets. In: AZEMA, P.; BALBO, G. (Eds.). Application and

theory of petri nets. Berlin: Springer-Verlag, 1997. (Lectures Notes in Computer
Science).

AALST, W. M. P. V. D; HOFSTEDE, A. H. M. T. Verification of workflow task structures a
petri-net-based approach. Information Systems, Oxford, v.25, n.1, p.43-69, 2000.

AALST, W.V.D.; HEE, V.K. Workflow management: models, methods and systems.
Cambridge: MIT Press, 2002.

BUBENKO JR., J. A.; STIRNA, J.; BRASH, D. EKD user guide, Dpt of computer and systems
sciences. Stockholm: Royal Institute of Technology, 1998.

CHRZASTOWSKI-WACHTEL, P. et al. A top-down petri net-based approach for dynamic
workflow modeling. In: INTERNATIONAL CONFERENCE BPM, 2003, Eindhoven.
Proceeding…Berlin: Springer, 2003. p. 336-353.

 Advances in Petri Net Theory and Applications

218

0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

Pr3

Pr4
Pr1

Pr2 Pr Adic2

Iniciar

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Marcação Inicial

Fig. 13. Tree under the Model of Strategic Planning of Petri nets in mapped.
DALLAVALLE, S. I.; CAZARINI, E. W. Modelagem organizacional desenvolvimento do

conhecimento organizacional, facilitador de desenvolvimento de sistemas de
informação. In: Encontro Nacional de Engenharia de Produção, 11., 2001, Salvador.
Anais... Salvador, 2001. CD-ROM.

DEHNERT, J. Four steps towards sound business process models. In: EHRIG., H. et al.
(Eds.). Petri net technology for communication-based systems- advances in petri
nets. Berlin: Springer, 2003. p. 66-82. (Lecture Notes in Computer Science, 2472).

DONGEN, V. B. F. et al. Verification of the SAP reference models using EPC reduction,
state-space analysis, and invariants. Computers in Industry, Amsterdam, v. 58, n. 6,
p. 578-601, 2007.

ELEKTRA. ELECTRICAL enterprise knowledge for transforming applications. The
ELEKTRA project programme. Disponível em:

 <www.singular .gr/elektra.ekd.htm>. Acesso em: 27 Nov. 2000.
GRIGOROVA, K. Process modelling using petri nets. In: INTERNATIONAL CONFERENCE ON

COMPUTER SYSTEMS AND TECHNOLOGIES: E-Learning, 4., 2003, Rousse.
Disponível em: <http://doi.acm.org/10.1145/973620.973636>. Acesso em: 14 June. 2004.

GUAN, F. et al. Grid-flow: a grid-enabled scientific workflow system with a Petri-net-based
interface. Concurrency and Computation: Practice and Experience, Chichester,
v.18, n.10, p. 1115 – 1140, 2006.

INAMASU, R. Y. Modelo de FMS: uma plataforma para simulação e planejamento.
134p. Tese de Doutorado - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 1995

JACOBSON, I.; BOOCH, G.; RUMBAUGH, J. The unified software development process.
Reading: Addison-Wesley, 1999.

Assessment Method of Business Process Model of EKD

219

JENSEN, K. A Brief Introduction to Coloured Petri Nets. In: Brinksma, E.: Lecture Notes in
Computer Science, Vol. 1217: Tools and Algorithms for the Construction and
Analysis of Systems. Proceedings of the TACAS'97 Workshop, Enschede, The
Netherlands 1997, p. 201-208. Springer-Verlag, 1997.

JONKERS, H. et al. Towards a language for coherent enterprise architecture descriptions.
In: IEEE INTERNATIONAL ENTERPRISE DISTRIBUTED OBJECT COMPUTING
CONFERENCE, 7., 2003, Brisbane. Proceedings… Los Alamintos: IEEE Computer
Society, 2003.

JUNGINGER, S. et al. Building complex workflow applications: how to overcome the
limitations for the waterfall model. In: FISCHER, L. (Ed.). Workflow management
coalition: the workflow handbook 2001. Disponível em:<http://www.boc-
eu.com/english/papers/Complex_Workflow_Appl.pdf>. Acesso em: 16 apr. 2001.

KOUBARAKIS, M.; PLEXOUSAKIS, D. A formal framework for business process modelling
and design. Information Systems, Oxford, v.27, n.5, p. 299-319, jul. 2002

KRUCHTEN, P. The rational unified process. 2nd ed. Harlow: Addison-Wesley, 2000.
LENZ, K.; MEVIUS, M.; OBERWEIS, A. Process-Oriented business performance management

with petri nets. In: CHEUNG, W.; HSU, J. (Eds.). Proceeding of the 2nd IEEE
conference on e-technology, e-commerce and e-service. Hong-Kong, 2005. p. 89-92.

MEVIUS, M.; OBERWEIS, A. A Petri-Net based approach to performance management of
collaborative business processes. In: International Workshop on Database and
Expert Systems Applications (DEXA'05), 16., 2005. Proceeding… Karlsruhe:
University of Karlsruhepp, 2005. 987-991.

MOLD, D.; VALK, R. Object oriented petri net in business process modeling. In: AALST, V.
D. W.; DESEL, J.; OBERWEIS, A. Business process management: models,
techniques, and empirical studies. Berlin: Springer, 2000. p. 254-273. (Lectures
Notes in Computer Sciences, 1806).

MURATA, T. (1989). Petri net: properties, analysis and applications. Proceedings of the
IEEE, v.77, n.4, p.541-579.

NURCAN, A.; ROLLAND, C. A multi-method for defining the organizational change. Journal
of Information and Software Technology, London, v. 45, n. 2, p.61-82, feb. 2003

NURCAN, S. Analysis and design of co-operative work process a framework. Information
and Software Technology, London, v. 40, n. 3, p.143-156, jun. 1998.

NURCAN, S.; BARRIOS, J. Enterprise knowledge and information system modelling in na
evolving enviroment. In: INTERNATIONAL WORKSHOP ON ENGINEERING
METHODS TO SUPORT INFORMATION SYSTEMS EVOLUTION IN
CONJUNCTION WITH, 2003, Geneva. Proceedings… Geneva: Switzerland, 2003
disponível em <http://cui.unige.ch/db-research/EMSISE03/Rp07.pdf>. acesso em
11 apr. 2008.

OU-YANG, C.; LIN Y. D. BPMN-based business process model feasibility analysis: a petri net
approach. International Journal of Production Research, London, v. 45, n. 12, 2007.

PÁDUA, S. I. D. Investigação do processo de desenvolvimento de software a partir da modelagem
organizacional, enfatizando regras do negócio. 145 p. Dissertação (Mestrado) – Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2001.

PÁDUA, S. I. D. Método de avaliação do modelo de processos de negócios. 252 p. Tese
(Doutorado) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São
Carlos, 2004.

PÁDUA, S. I. D.; CAZARINI, E.W..; INAMASU, R. Y. Modelagem organizacional: captura
dos requisitos organizacionais no desenvolvimento de sistemas de informação.
Revista Gestão e Produção, São Carlos, v.11, n.2, p.1-20, maio-ago. 2004a.

 Advances in Petri Net Theory and Applications

218

0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

Pr3

Pr4
Pr1

Pr2 Pr Adic2

Iniciar

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Marcação Inicial

Fig. 13. Tree under the Model of Strategic Planning of Petri nets in mapped.
DALLAVALLE, S. I.; CAZARINI, E. W. Modelagem organizacional desenvolvimento do

conhecimento organizacional, facilitador de desenvolvimento de sistemas de
informação. In: Encontro Nacional de Engenharia de Produção, 11., 2001, Salvador.
Anais... Salvador, 2001. CD-ROM.

DEHNERT, J. Four steps towards sound business process models. In: EHRIG., H. et al.
(Eds.). Petri net technology for communication-based systems- advances in petri
nets. Berlin: Springer, 2003. p. 66-82. (Lecture Notes in Computer Science, 2472).

DONGEN, V. B. F. et al. Verification of the SAP reference models using EPC reduction,
state-space analysis, and invariants. Computers in Industry, Amsterdam, v. 58, n. 6,
p. 578-601, 2007.

ELEKTRA. ELECTRICAL enterprise knowledge for transforming applications. The
ELEKTRA project programme. Disponível em:

 <www.singular .gr/elektra.ekd.htm>. Acesso em: 27 Nov. 2000.
GRIGOROVA, K. Process modelling using petri nets. In: INTERNATIONAL CONFERENCE ON

COMPUTER SYSTEMS AND TECHNOLOGIES: E-Learning, 4., 2003, Rousse.
Disponível em: <http://doi.acm.org/10.1145/973620.973636>. Acesso em: 14 June. 2004.

GUAN, F. et al. Grid-flow: a grid-enabled scientific workflow system with a Petri-net-based
interface. Concurrency and Computation: Practice and Experience, Chichester,
v.18, n.10, p. 1115 – 1140, 2006.

INAMASU, R. Y. Modelo de FMS: uma plataforma para simulação e planejamento.
134p. Tese de Doutorado - Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 1995

JACOBSON, I.; BOOCH, G.; RUMBAUGH, J. The unified software development process.
Reading: Addison-Wesley, 1999.

Assessment Method of Business Process Model of EKD

219

JENSEN, K. A Brief Introduction to Coloured Petri Nets. In: Brinksma, E.: Lecture Notes in
Computer Science, Vol. 1217: Tools and Algorithms for the Construction and
Analysis of Systems. Proceedings of the TACAS'97 Workshop, Enschede, The
Netherlands 1997, p. 201-208. Springer-Verlag, 1997.

JONKERS, H. et al. Towards a language for coherent enterprise architecture descriptions.
In: IEEE INTERNATIONAL ENTERPRISE DISTRIBUTED OBJECT COMPUTING
CONFERENCE, 7., 2003, Brisbane. Proceedings… Los Alamintos: IEEE Computer
Society, 2003.

JUNGINGER, S. et al. Building complex workflow applications: how to overcome the
limitations for the waterfall model. In: FISCHER, L. (Ed.). Workflow management
coalition: the workflow handbook 2001. Disponível em:<http://www.boc-
eu.com/english/papers/Complex_Workflow_Appl.pdf>. Acesso em: 16 apr. 2001.

KOUBARAKIS, M.; PLEXOUSAKIS, D. A formal framework for business process modelling
and design. Information Systems, Oxford, v.27, n.5, p. 299-319, jul. 2002

KRUCHTEN, P. The rational unified process. 2nd ed. Harlow: Addison-Wesley, 2000.
LENZ, K.; MEVIUS, M.; OBERWEIS, A. Process-Oriented business performance management

with petri nets. In: CHEUNG, W.; HSU, J. (Eds.). Proceeding of the 2nd IEEE
conference on e-technology, e-commerce and e-service. Hong-Kong, 2005. p. 89-92.

MEVIUS, M.; OBERWEIS, A. A Petri-Net based approach to performance management of
collaborative business processes. In: International Workshop on Database and
Expert Systems Applications (DEXA'05), 16., 2005. Proceeding… Karlsruhe:
University of Karlsruhepp, 2005. 987-991.

MOLD, D.; VALK, R. Object oriented petri net in business process modeling. In: AALST, V.
D. W.; DESEL, J.; OBERWEIS, A. Business process management: models,
techniques, and empirical studies. Berlin: Springer, 2000. p. 254-273. (Lectures
Notes in Computer Sciences, 1806).

MURATA, T. (1989). Petri net: properties, analysis and applications. Proceedings of the
IEEE, v.77, n.4, p.541-579.

NURCAN, A.; ROLLAND, C. A multi-method for defining the organizational change. Journal
of Information and Software Technology, London, v. 45, n. 2, p.61-82, feb. 2003

NURCAN, S. Analysis and design of co-operative work process a framework. Information
and Software Technology, London, v. 40, n. 3, p.143-156, jun. 1998.

NURCAN, S.; BARRIOS, J. Enterprise knowledge and information system modelling in na
evolving enviroment. In: INTERNATIONAL WORKSHOP ON ENGINEERING
METHODS TO SUPORT INFORMATION SYSTEMS EVOLUTION IN
CONJUNCTION WITH, 2003, Geneva. Proceedings… Geneva: Switzerland, 2003
disponível em <http://cui.unige.ch/db-research/EMSISE03/Rp07.pdf>. acesso em
11 apr. 2008.

OU-YANG, C.; LIN Y. D. BPMN-based business process model feasibility analysis: a petri net
approach. International Journal of Production Research, London, v. 45, n. 12, 2007.

PÁDUA, S. I. D. Investigação do processo de desenvolvimento de software a partir da modelagem
organizacional, enfatizando regras do negócio. 145 p. Dissertação (Mestrado) – Escola de
Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2001.

PÁDUA, S. I. D. Método de avaliação do modelo de processos de negócios. 252 p. Tese
(Doutorado) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São
Carlos, 2004.

PÁDUA, S. I. D.; CAZARINI, E.W..; INAMASU, R. Y. Modelagem organizacional: captura
dos requisitos organizacionais no desenvolvimento de sistemas de informação.
Revista Gestão e Produção, São Carlos, v.11, n.2, p.1-20, maio-ago. 2004a.

 Advances in Petri Net Theory and Applications

220

PÁDUA, S. I. D.; SILVA, A. R. Y.; INAMASU, R. Y.; PORTO, A. J. V. Aplicações e potencial
das redes de Petri na Engenharia de Produção. In: Simpósio de Engenharia de
Produção, 10., 2003. Disponível em:

 http://www.bauru.unesp.br/acontece/simpep.html. Acesso em: 30 nov. 2003.
PÁDUA, S. I. D.; SILVA, A. R. Y.; INAMASU, R. Y.; PORTO, A. J. V. O potencial das redes

de Petri em modelagem e análise de processos de negócios. Revista Gestão e
Produção, São Carlos, v.11, n.1, p.1-11, abr. 2004b.

PÁDUA, S. I. D.; SILVA, A. R. Y.; INAMASU, R. Y.; PORTO, A. J. V. Redes de petri
aplicadas aos sistemas de gerenciamento de Workflow. In: Encontro Nacional de
Engenharia de Produção, 12., 2002, Curitiba. Anais... Curitiba, 2002. CD-ROM.

PERSSON, A. The utility of participative enterprise modelling in IS development: challenges
and research issues. In: INTERNATIONAL WORKSHOP ON THE
REQUIREMENTS ENGINEERING PROCESS, 2., 2000, Greenwich. Proceedings…
Berlin: Springer, 2000. p. 978-982.

PETERSON, J.L. Petri nets: theory and modelling of systems. Englewood Cliffs: Prentice-Hall, 1981.
RINDERLE, S.; REICHERT, M.; DADAM, P. Evaluation of correctness criteria for dynamic

workflow changes. In: INTERNATIONAL CONFERENCE BPM 2003, 2003,
Eindhoven. Proceedings… Berlin: Springer, 2003. p.41-57. (Lecture Notes in
Computer Science, 2678).

ROLLAND, C.; NURCAN, S.; GROSZ, G. A Decision making pattern for guiding the
enterprise knowledge development process. Journal of Information and Software
Technology, London, v.42, n. 5, p.313-331, apr. 2000.

SALIMIFARD, S.; WRIGHT M. Petri net based modelling of workflow systems: an
overview. European Journal of Operational Research, Amsterdam, v.134, n.3, p.664-
676, nov.2001.

SOARES, J.B. Editor de modelos de sistemas de eventos discretos, baseado em redes de Petri
interpretadas. 2001. Dissertação (Mestrado) – Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2001.

VERBBEK H. M. W.; AALST, W. M. P.; HOFSTEDE, A. H. M. Verifying workflows with
cancellation regions and OR-joins: an approach based on relaxed soundness and
invariants. The Computer Journal Advance, Oxford, v. 50, n. 3, p. 294-314, 2007.

VERBEEK, H. M. W.; BASTEN, T.; AALST, W. M. P. Diagnosing workflow using woflan.
Eindhoven: Eindhoven University of Technology, 2002. (BETA Working Paper
Series, WP 48).

VOORHOEVE, M. Compositional modeling and verification of workflow process. In:
AALST,V. D. W.; DESEL, J.; OBERWEIS, A. Business process management: models,
techniques, and empirical studies. Berlin: Springer, 2000. p. 184-200. (Lectures
Notes in Computer Sciences, 1806).

WORKFLOW management coliation: reference model. Hampshire, 1996. (Document
Number WFMC-TC00-1003).

ZHANG, L.; SHUZHEN, Y. Research on workflow patterns based on Petri nets. In: IEEE
CONFERENCE ON CYBERNETICS & INTELLIGENT SYSTEMS (CIS) ROBOTICS,
AUTOMATION AND MECHATRONICS (RAM), 2006, Bangkok. Proceeding…
Bangkok: IEEE Computer Society, 2006. p. 1-6.

ZISMAN, M. D. Representation, specification and automation of office procedures. Thesis (PhD)
- University of Pennsylvania, Wharton School of Business, Pennsylvania, 1977.

 Advances in Petri Net Theory and Applications

220

PÁDUA, S. I. D.; SILVA, A. R. Y.; INAMASU, R. Y.; PORTO, A. J. V. Aplicações e potencial
das redes de Petri na Engenharia de Produção. In: Simpósio de Engenharia de
Produção, 10., 2003. Disponível em:

 http://www.bauru.unesp.br/acontece/simpep.html. Acesso em: 30 nov. 2003.
PÁDUA, S. I. D.; SILVA, A. R. Y.; INAMASU, R. Y.; PORTO, A. J. V. O potencial das redes

de Petri em modelagem e análise de processos de negócios. Revista Gestão e
Produção, São Carlos, v.11, n.1, p.1-11, abr. 2004b.

PÁDUA, S. I. D.; SILVA, A. R. Y.; INAMASU, R. Y.; PORTO, A. J. V. Redes de petri
aplicadas aos sistemas de gerenciamento de Workflow. In: Encontro Nacional de
Engenharia de Produção, 12., 2002, Curitiba. Anais... Curitiba, 2002. CD-ROM.

PERSSON, A. The utility of participative enterprise modelling in IS development: challenges
and research issues. In: INTERNATIONAL WORKSHOP ON THE
REQUIREMENTS ENGINEERING PROCESS, 2., 2000, Greenwich. Proceedings…
Berlin: Springer, 2000. p. 978-982.

PETERSON, J.L. Petri nets: theory and modelling of systems. Englewood Cliffs: Prentice-Hall, 1981.
RINDERLE, S.; REICHERT, M.; DADAM, P. Evaluation of correctness criteria for dynamic

workflow changes. In: INTERNATIONAL CONFERENCE BPM 2003, 2003,
Eindhoven. Proceedings… Berlin: Springer, 2003. p.41-57. (Lecture Notes in
Computer Science, 2678).

ROLLAND, C.; NURCAN, S.; GROSZ, G. A Decision making pattern for guiding the
enterprise knowledge development process. Journal of Information and Software
Technology, London, v.42, n. 5, p.313-331, apr. 2000.

SALIMIFARD, S.; WRIGHT M. Petri net based modelling of workflow systems: an
overview. European Journal of Operational Research, Amsterdam, v.134, n.3, p.664-
676, nov.2001.

SOARES, J.B. Editor de modelos de sistemas de eventos discretos, baseado em redes de Petri
interpretadas. 2001. Dissertação (Mestrado) – Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2001.

VERBBEK H. M. W.; AALST, W. M. P.; HOFSTEDE, A. H. M. Verifying workflows with
cancellation regions and OR-joins: an approach based on relaxed soundness and
invariants. The Computer Journal Advance, Oxford, v. 50, n. 3, p. 294-314, 2007.

VERBEEK, H. M. W.; BASTEN, T.; AALST, W. M. P. Diagnosing workflow using woflan.
Eindhoven: Eindhoven University of Technology, 2002. (BETA Working Paper
Series, WP 48).

VOORHOEVE, M. Compositional modeling and verification of workflow process. In:
AALST,V. D. W.; DESEL, J.; OBERWEIS, A. Business process management: models,
techniques, and empirical studies. Berlin: Springer, 2000. p. 184-200. (Lectures
Notes in Computer Sciences, 1806).

WORKFLOW management coliation: reference model. Hampshire, 1996. (Document
Number WFMC-TC00-1003).

ZHANG, L.; SHUZHEN, Y. Research on workflow patterns based on Petri nets. In: IEEE
CONFERENCE ON CYBERNETICS & INTELLIGENT SYSTEMS (CIS) ROBOTICS,
AUTOMATION AND MECHATRONICS (RAM), 2006, Bangkok. Proceeding…
Bangkok: IEEE Computer Society, 2006. p. 1-6.

ZISMAN, M. D. Representation, specification and automation of office procedures. Thesis (PhD)
- University of Pennsylvania, Wharton School of Business, Pennsylvania, 1977.

Advances in Petri Net Theory
and Applications

Edited by Tauseef Aized

Edited by Tauseef Aized

The world is full of events which cause, end or affect other events. The study of these
events, from a system point of view, is very important. Such systems are called

discrete event dynamic systems and are of a subject of immense interest in a variety
of disciplines, which range from telecommunication systems and transport systems

to manufacturing systems and beyond. There has always been an intense need to
formulate methods for modelling and analysis of discrete event dynamic systems. Petri
net is a method which is based on a well-founded mathematical theory and has a wide

application. This book is a collection of recent advances in theoretical and practical
applications of the Petri net method and can be useful for both academia and industry

related practitioners.

Photo by v_alex / iStock

ISBN 978-953-307-108-4

A
dvances in Petri N

et Th
eory and A

pplications

ISBN 978-953-51-5963-6

	Advances in Petri Net Theory and Applications
	Contents
	Preface
	Chapter 1
Production Process Object Model Research Based on Petri Net Techniques
	Chapter 2
Synthesis of Coloured Petri Nets from Natural-like Language Descriptions
	Chapter 3
Petri Net as a Manufacturing System Scheduling Tool
	Chapter 4
Petri Net Model Based Implementation of Hierarchical and Distributed Control for Discrete Event Robotic Manufacturing Cells
	Chapter 5
Intelligent Production Systems Reconﬁguration by Means of Petri Nets and the Supervisory Control Theory
	Chapter 6
Parameter Perturbation Analysis through Stochastic Petri Nets: Application to an Inventory System
	Chapter 7
Modelling Multimedia Synchronization using a Time Petri Net Based Approach
	Chapter 8
Hybrid Petri Nets and Metaheuristic Approach to Farm Work Scheduling
	Chapter 9
Parallel Application Scheduling Model Based on Petri Net with Changeable Structure
	Chapter 10
Petri Nets Hierarchical Modelling Framework of Active Products’ Community
	Chapter 11
Assessment Method of Business Process Model of EKD

