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Preface

Neurochemistry is a flourishing academic field that contributes to our understanding of mo-
lecular, cellular and medical neurobiology. As a scientific discipline, neurochemistry studies
the role of chemicals that build the nervous system, explores the function of neurons and
glial cells in health and disease, discovers aspects of cell metabolism and neurotransmission,
and reveals how degenerative processes are at work in the nervous system. Accordingly,
this book contains chapters from a variety of topics that fall into the following broad sec-
tions: I. Neural Membranes and Intracellular Signaling, II. Neural Processing and Intercellu-
lar Signaling, IIl. Growth, Development and Differentiation, and IV. Neurodegenerative
Diseases. The book presents comprehensive reviews in these different areas written by ex-
perts in their respective fields. Neurodegeneration and neuronal diseases are featured prom-
inently and are a recurring theme throughout most chapters. This book will be a most
valuable resource for neurochemists and other scientists alike. In addition, it will contribute
to the training of current and future neurochemists and, hopefully, will lead us on the path
to curing some of the biggest challenges in human health.

Section One of the book, I. Neural Membranes and Intracellular Signaling, starts with a dis-
cussion of the blood brain barrier by Dalvi et al. (chapter 1: “The Blood Brain Barrier: Regula-
tion of Fatty acid and Drug Transport’) to introduce the reader to chemicals that enter the
brain. The chapter has a strong focus on tight junctions. Dalvi et al. describe the various
tight junction proteins and transport systems and provide a solid account of the role of fatty
acids in blood brain barrier permeability.

In chapter 2 (“TRP Channels in Neuronal and Glial Signal Transduction’), Harteneck and
Leuner provide a comprehensive review of transient receptor potential (TRP) channels and
their relation to various neurological and psychiatric diseases. Many TRP channels are ex-
pressed in the brain and contribute to neuronal and glial functions. The authors offer de-
tailed accounts of the many channel variants and their functional roles in CNS physiology.

In chapter 3 (‘Cytosolic Calcium Homeostasis in Neurons: Control Systems, Modulation by
Reactive Oxygen and Nitrogen Species, and Space and Time Fluctuations’), Gutierrez-Meri-
no et al. review the critical role of calcium in neuronal activity and function of the nervous
systems. The authors discuss cellular oxidative stress and metabolic deregulations in the
process of neuronal death. Calcium transport systems control cytosolic calcium homeostasis
within nanodomains of the neuronal plasma membrane associated with lipid rafts. The co-
localization of ROS/RNS enzyme sources within nanodomains is of particular relevance for
neurodegenerative insults and diseases.

In chapter 4, Section Two, II. Neural Processing and Intercellular Signaling, Tsetlin and Ka-
sheverov (‘Peptide and Protein Neurotoxin Toolbox in Research on Nicotinic Acetylcholine
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Receptors’) examine nicotinic acetylcholine receptors and the neurotoxins that helped re-
searchers to identify their structure and function. The chapter takes the reader on a historical
journey of the discovery of the receptor and its various peptide and protein neurotoxins.

In chapter 5 (‘Synaptic Soluble and Membrane-Bound Choline Acetyltransferase as a Marker
of Cholinergic Function in Vitro and in Vivo’), Zakharova and Dudchenko address the syn-
apse as a unique, most dynamic and labile structure and discuss the use of synaptosomes to
study neural transmission, specifically at cholinergic synapses. The authors explore the
brain cholinergic system because of its role in cognitive, attention and motor functions as
well as dysfunctions related to several neurological disorders.

Chapter 6 by Heinbockel ("Neurochemical Communication: The Case of Endocannabinoids’)
reviews the progress made in our understanding of a relatively novel neuronal signaling
system, the endocannabinoid system which comprises endogenously produced cannabi-
noids and their specific receptors, cannabinoid receptors. This signaling system plays a criti-
cal role in neuronal communication in many brain areas and has been shown to crosstalk
with other neurotransmitter system.

In chapter 7 (‘High Temporal Resolution Brain Microdialysis as a Tool to Investigate the Dy-
namics of Interactions Between Olfactory Cortex and Amygdala in Odor Fear Condition-
ing’), Hegoboru et al. report how a specific experimental tool, in vivo microdialysis of major
amino acid neurotransmitters, allows studying the interaction of two brain areas in a behav-
ioral context.

Section Three, IlI. Growth, Development and Differentiation, houses two chapters. Chapter
8 by Pushchina et al. (‘Participation of Neurochemical Signaling in Adult Neurogenesis and
Differentiation’) explores the organization and relationships of signal transduction systems
that produce classic neurotransmitters or gaseous transmitters in the brain of fish and evalu-
ates their participation in the processes of the postembryonic morphogenesis the CNS.

For quite some time, amyloid plaques in the body have been accepted as a cause of the neu-
rodegeneration observed in Alzheimer’s disease based on the hypothesis that the amyloid
beta peptide is a toxic factor that impairs neuronal function and leads to cell death, see Sec-
tion IV. In chapter 9 ("Physiological Role of Amyloid Beta in Neural Cells: The Cellular Tro-
phic Activity’), Cardenas-Aguayo et al. challenge this hypothesis by reviewing the
physiological roles of amyloid beta and suggest that amyloid beta might even help to en-
hance synaptic plasticity and memory at appropriate concentration levels.

The last section, Section IV, is dedicated to Neurodegenerative Diseases. In chapter 10 (‘Alz-
heimer Disease: the Role of AP in the Glutamatergic System’), Campos-Pefia and Meraz-
Rios review the neurodegenerative process that occurs in Alzheimer’s disease. The authors
discuss the role of the glutamatergic system and the use of safe disease-modifying drugs in
the treatment of Alzheimer’s disease.

In chapter 11, the authors (Campos-Pefia, Gémez, Meraz-Rios) continue with a discussion of
the ‘Genetics of Alzheimer’s Disease’. They review the evidence for a genetic basis of fami-
lial Alzheimer’s disease, also known as early onset Alzheimer’s disease which is associated
with mutations in different genes. In contrast, sporadic Alzheimer’s disease or late onset
Alzheimer’s disease is much more common and the cause for it might be a combination of
lifestyle, environmental and some genetic factors which could favor the development of the
disease.
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In chapter 12 ("Accumulation of Abnormally Processed Tau Protein in Neuronal Cells as a
Biomarker for Dementia’), Luna-Mufoz et al. inform the reader about the problem of early
detection and better treatment of neurodegenerative disorders such as Alzheimer’s and Par-
kinson’s disease. They discuss the development of better therapeutic tools that are able to
modify the disease progression based on reliable biomarkers to detect the disease at early
stages to prevent the irreversible neuronal degeneration.

In the final chapter of the book (ch. 13, “Energy—Dependent Mechanisms of Cholinergic Neu-
rodegeneration’), Jankowska-Kulawy et al. point out that a characteristic feature of some
neurodegenerative diseases is the preferential loss of cholinergic neurons which correlate
with the degree of energy metabolism inhibition. Even though neurons constitute only 10%
of all brain cells, they produce and consume about 80% of its energy. The authors raise the
critical issue that effective functioning of neurons is dependent on the continuous supply of
glucose and oxygen. The authors discuss energy homeostasis of the brain as a complex proc-
ess because of the high sensitivity of neurons to metabolic stress, the isolation of the brain
due to the existence of the blood brain barrier, the high energy requirements of the brain,
and the existence of limited glycogen stores as a dynamic source of energy. Despite these
constraints, dysfunction of mitochondria, the cellular source of energy, is the first step in
neurodegeneration.

I am grateful to InTech — Open Access Publisher for initiating this book project and for ask-
ing me to serve as its editor. Many thanks go to Iva Lipovi¢ at InTech for guiding me
through the publication process and for moving the book ahead in a timely fashion. Thanks
are due to all contributors of this book for taking the time to first write a chapter proposal,
compose their chapter and, lastly, make my requested revisions to it. Hopefully, all contrib-
utors will continue their neurochemistry research with many intellectual challenges and ex-
citing new directions. I would like to thank my wife Dr. Vonnie D.C. Shields, Professor,
Towson University, Towson, MD and our son Torben Heinbockel for allowing me to spend
time on this book project during the past year. Finally, I am grateful to my parents Erich and
Renate Heinbockel for their support over many years.

Thomas Heinbockel, Ph.D.

Associate Professor and Director of Graduate Studies
Department of Anatomy

Howard University College of Medicine
Washington, DC, USA
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Chapter 1

The Blood Brain Barrier — Regulation of Fatty Acid and
Drug Transport

Siddhartha Dalvi, Ngoc On, Hieu Nguyen,
Michael Pogorzelec, Donald W. Miller and
Grant M. Hatch

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/57604

1. Introduction

1.1. The blood brain barrier

The blood brain barrier (BBB) is a selectively permeable cellular boundary between the brain
and the peripheral circulation. The principal component of the BBB is the capillary or micro-
vessel endothelial cell (Figure 1). The endothelial cells in the brain capillaries differ from those
in the peripheral vasculature in several key features:

1. Presence of tight junctions (TJ]) that limit the paracellular passage of macromolecules.

2. Restricted rate of fluid-phase endocytosis that limits the transcellular passage of macro-
molecules [1]

3. Presence of specific transporter and carrier molecules [2]

4. Lack of fenestrations [3]

5. Increased mitochondrial content [3]

Thus, the endothelial cells of the BBB are less “leaky” than those of the peripheral vessels.
However, it has been shown that if the endothelial cells of the brain capillaries are removed
from their natural environment and allowed to vascularize the peripheral tissue, they become

more leaky [1]. In contrast, the endothelial cells from the periphery form tight junctions when
allowed to vascularize the brain parenchyma. Morphologically, the tight junctions of the BBB

I m EC H © 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Astrocytes

Gap junctions

Figure 1. Neurovascular Unit of the blood brain barrier consists of the endothelial cells (pink) surrounded by base-
ment membrane (gray), pericytes (yellow) and astrocyte foot processes. The tight junctions (black lines) formed be-
tween two endothelial cells restrict the paracellular diffusion of compounds.

resemble the tight junctions between epithelial cells rather than those between peripheral
vascular endothelial cells [4].

The unique tight junctions of the BBB are responsible for producing very high transendothelial
electrical resistance (TEER) of 1500 — 2000 Qcm? [2,5,6]. Though the microvessel endothelial
cells play a primary role in the formation of the BBB, several other cells are equally important
in maintaining the integrity of the BBB. These cells, namely, the astrocytes, pericytes, neurons
and other glial cells are said to form a “neurovascular unit” [7]. Integrity of the BBB is of utmost
importance in maintaining the homeostasis of the brain microenvironment. Disruption of the
BBB is seen in various states of inflammation (multiple sclerosis), neoplasia, infections
(meningitis, encephalitis), trauma and Alzheimer disease [8,9]. It would be highly desirable to
develop therapeutic strategies to reverse this disruption and tighten the BBB. At the same time,
a transient opening of the BBB would be advantageous for delivery of drugs into the brain in
conditions like epilepsy or Parkinson disease [2].
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1.2. Functions of the BBB

The BBB is responsible for maintaining the appropriate ionic composition of the interstitial
fluid of the brain that is required for optimum functioning of the neurons. To achieve this, the
BBB functions as a transport barrier by facilitating the uptake of the required nutrients, while
preventing the uptake of, or actively effluxing certain other molecules or toxic by-products of
metabolism [10] The BBB also functions as a metabolic barrier by virtue of possessing intracel-
lular and extracellular enzymes. For example, extracellular enzymes such as peptidases and
nucleotidases break down peptides and ATP, respectively. Intracellular enzymes like cyto-
chrome P450 (CYP450), primarily CYP1A and CYP2B degrade noxious substances and prevent
their entry into the brain parenchyma [10].

1.3. Role of astrocytes in the BBB

It is now known that the astrocytes play a key role in the conditioning and development of the
brain microvessel endothelial cells (BMEC). Astrocytes are one of the glial cells of the central
nervous system (CNS) that play several important roles in the structure and function of the
CNS. They are intimately associated with the BMEC such that their foot processes ensheath
99% of the external surface of the BMEC [11]. Astrocytes have been shown to alter the
properties of cocultured brain endothelial cells in the following ways [11,12].

1. Increase in barrier-related marker enzyme activities, such as that of y-glutamyl transpep-
tidase (GGT) and alkaline phosphatase.

2. Enhanced expression of a glucose transporter.

3. Elevation of trans-endothelial electrical resistance (TEER).

4. Tightening of the BBB as seen by decreased paracellular permeability of sucrose.
5. Increase in tight junction number, length and complexity.

It has also been shown that BMEC monolayers are less leaky if grown in the presence of
astrocyte-conditioned medium (ACM) [1,11]. The precise molecular nature of the astrocyte-
derived factors that is responsible for the tightness of the BBB have yet to be unequivocally
elucidated. However, several factors have been postulated to play a role including glial cell-
derived neurotrophic factor (GDNF), transforming growth factor-beta (TGF-{), and src-
suppressed C-kinase substrate (55eCKS) that leads to increased angiopoietin-1 secretion. The
BMEC themselves are known to secrete factors that help in the maintenance of astrocyte health.
One such putative factor is the leukemia-inhibitory factor (LIF), a cytokine known to be
involved in astrocyte differentiation [11].

1.4. Role of pericytes in the BBB

The pericytes are specialized cells of mesenchymal lineage that have multiple organ-specific
roles. For example, they are present in the kidney as mesangial cells, in the liver as perisinu-
soidal stellate cells and in the bone as osteoblasts [13,14]. The pericytes in the central nervous
system are closely associated with the BMEC and play an important role in the maintenance
of the BBB. Their functions include [14].
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1. Cerebrovascular autoregulation and blood flow distribution
Differentiation of the BBB

Formation and maintenance of the tight junctions of the BBB.

=W d

Initiation of the extrinsic (tissue factor) pathway of blood coagulation following cerebro-
vascular injury

Brain angiogenesis via secretion of angiopoietin-1
Phagocytic and scavenging (macrophage-like) functions

Production of immunoregulatory cytokines like IL-13, IL-6 and GM-CSF

® X @

Regulation of leukocyte transmigration, antigen presentation and T-cell activation.

2. Molecular components of the tight junctions

The tight junctions consist of both membrane proteins as well as cytoplasmic proteins [15]
(Figure 2). The integral membrane proteins are Claudins, Occludin and Junctional adhesion
molecules (JAM). There are also several cytoplasmic accessory proteins that form a plaque and
function as adapter proteins to link the membrane proteins to the actin cytoskeleton of the cell
[16,17]. These include Zonula occludens proteins (ZO-1, ZO-2, ZO-3), Cingulin, AF-6, 7H6
antigen and Symplekin. These tight junctional complexes are not static structures but rather
very dynamic entities that can “bend without breaking”, thereby maintaining structural

integrity [8].

2.1. Claudins

The claudins are a large family of transmembrane phosphoproteins [15]. Twenty-four
members have been characterized so far, claudins 1-24 [18,19]. Of these, claudins 1, 3, 5
and 12 have been shown to form the tight junctions of the BBB [9,17,20,21]. Claudin-5
appears to be specific to the tight junctions of the endothelial cells and is called the
“endothelial claudin” [17]. Each claudin molecule has 4 transmembrane domains. The
claudin on one cell binds homotypically to the claudin on the adjacent cell to form the seal
of the tight junction. The claudins, along with occludin and the JAMs, form the tight
Junctional strands that keep the cells together and prevent paracellular flux of macromole-
cules from the apical to the basolateral side of polarized cells like BMEC [18]. The cytoplas-
mic carboxy terminal of the claudins binds to the cytoplasmic ZO proteins [20]. Claudin-1
is an integral component of the tight junctions and its loss is associated with certain
pathologic conditions like tumours, strokes and inflammatory diseases [21].

2.2. Occludin

Occludin is a 65-kDa transmembrane phosphoprotein and is distinct from the claudins.
However, its subcellular localization parallels that of claudins and, like the claudins, it has
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Apical side

_ L | ocdudin
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Tight Junction

( Caudin-5

. ’ ' Catening

Adherens Junction s Cadherin

Basolateral side

Figure 2. Schematic representation of proteins that are involved in the formation of the tight junction and adherens
junctions in brain microvessel endothelial cells.

four transmembrane domains. The expression of occludin is higher in the adult BMEC
compared to the peripheral endothelial cells. However, it is not expressed in the fetal or
newborn human brain. Occludin plays an important structural, as well as a functional, role
in the regulation of BBB permeability. As is the case with several other tight junction-
associated proteins, phosphorylation or dephosphorylation of serine, threonine or tyro-
sine residues on the occludin molecule is crucial for its proper functioning [17,18,22,23]. For
example, phosphorylation of occludin at serine and tyrosine residues correlates with tight
junction assembly or tightening [8].

Occludin and the claudins interact intricately on the BMEC membrane. Together, they form
channels that tightly regulate the paracellular flow of ions and other hydrophilic molecules.
Thus, they are both essential in the formation, maintenance and regulation of the BBB [16,18].

2.3. Junctional Adhesion Molecules (JAM)

These molecules play an important role in the regulation of tight junction permeability in
endothelial and epithelial cells [24]. These glycoproteins are members of the immunoglobulin
superfamily of proteins. Three different JAMs have been characterized in humans, JAM-1,

7



8 Neurochemistry

JAM-2 and JAM-3, also referred to as JAM-A, JAM-B and JAM-C, respectively. Besides
endothelial and epithelial cells, these molecules are also found on the surface of erythrocytes,
leukocytes and platelets and are thought to contribute to various processes like leukocyte
migration, platelet activation, angiogenesis and binding of reovirus [25]. The JAMs have short
cytoplasmic tails that interact with cytoplasmic accessory proteins like ZO-1 and may require
activation by phosphorylation, mediated by certain atypical protein kinases.

2.4. Cytoplasmic accessory proteins

Several cytoplasmic proteins appear to be essential components of the tight junctions. Among
them, the zonula occludens proteins (ZO-1, ZO-2, ZO-3) play an important role. These 3
proteins have a molecular mass of 220, 160 and 130 kDa, respectively. They belong to a family
of proteins called MAGUK (membrane-associated guanylate kinase-like protein) and form the
submembranous plaque of the tight junction [2,15]. They are structurally complex proteins
with several domains that make direct contact with claudins, occludin and JAM on one side
and the actin cytoskeleton on the other [15]. Cingulin is a double-stranded myosin-like protein
that serves as scaffolding and links the TJ accessory proteins with the cytoskeleton [8]. Actin,
the cytoskeletal protein, plays a central role in the maintenance of the T]. Actin-degrading
macromolecules, such as cytochalasin-D, phalloidin and certain cytokines lead to disruption
of the actin cytoskeleton and hence, of the tight junctions [8].

The tight junctional proteins can be modulated by several intracellular processes that involve
calcium-signaling, phosphorylation, G-proteins, proteases and by TNF-a [4,8]. The tight
junctional complexes also help localize the proteins and lipids of the apical and basolateral cell
membranes in their respective compartments and prevent free mixing of these cell membrane
macromolecules between the two domains. Thus, the BMEC owe much of their polarity to the
TJ complexes [2,26].

3. Regulation of BBB permeability

Various factors play a role in regulating the permeability of the BBB as follows [2]:

1. Post-translational modifications of the TJ proteins. For example, phosphorylation and
dephosphorylation mediated by protein kinases and phosphatases, respectively.

2. Alteration of the actin cytoskeleton.

3. Proteolytic degradation of certain T] components like occludin, mediated by metallopro-
teinases.

4. In vitro models to study the BBB

In vitro models of the BBB have proven very effective to study the transport of endogenous
macromolecules like fatty acids across the BMEC. They have also been used extensively in
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pharmaceutical research to study the passage of therapeutic molecules across the BMEC [5-7].
Several studies have shown that the BMEC lose many of their special properties when removed
from their natural environment and show “dedifferentiation” behaviour. Thus, one potential
limitation of in vitro BBB models is that the BMEC may not behave as site-specific specialized
endothelial cells in vitro, but rather as common peripheral endothelial cells [7]. In spite of this
shortcoming, several successful in vitro models of the BBB have been described [27]. Many of
these have used human, bovine, and porcine or rat endothelial cells:

1. Alone [5,6,28-30], or

2. in combination with astrocyte conditioned medium supplemented with agents that
elevate intracellular cAMP [1], or

3. Co-culture of endothelial cells on one side of a filter, with astrocytes on the other [31].

5. FA transport across the BBB and effects of FA on BBB permeability

Fatty acids (FA) are key components of membranes and exhibit many biological functions in
a variety of tissues, including the key energy source for mitochondrial -oxidation [32,33].
Cells acquire fatty acids through de novo synthesis, hydrolysis of triglycerides (TG) or uptake
from exogenous sources [33]. Minimal amount of FA are derived from TG hydrolysis and most
cells are dependent upon fatty acid uptake from the peripheral blood [32,34]. FA from the diet
are absorbed by enterocytes in the small intestine and packaged into chylomicrons as TG. The
liver also produces very low density lipoprotein (VLDL), a rich source of endogenously
generated TG. Circulating chylomicrons and VLDL particles are hydrolyzed by lipoprotein
lipase in the capillary lumen of tissues and the released FA from these lipoproteins may be
taken up by tissues in the body [35]. FA that enter into cells are then esterified and stored as
TG or transported to the mitochondria for $-oxidation. The importance of FA for the devel-
oping and adult brain has been recently reviewed [6]. FA transport from blood into paren-
chymal neurons is much more difficult than other cells since the tight junctions of the BBB
severely restrict passage into the brain. FA must first move via transcellular transport across
both the luminal (apical) and abluminal (basolateral) membranes of the endothelial cells and
then across the plasma membrane of the neural cells [36-38].

The mechanism of FA transport into the brain remains controversial. Several studies support
the notion that FA can move across membranes by diffusion [39,40]. Alternatively, others
studies indicate that FA may enter into cells via specific protein-mediated transport [32,41,42].
In the diffusion model, once bound to the outer membrane leaflet, they quickly reach ionization
equilibrium and the non-ionized form of fatty acids move across the membrane more rapidly
than the ionized form [43]. The main problem with the FA diffusion model has always been
whether diffusion is rapid enough to supply cells, which have a high long-chain FA metabolic
requirement with sufficient amount of FA for -oxidation [44]. In the protein-mediated
transport model selective transport of FA occurs via specific protein transporters found on the
cell membrane [33,41,45-47]. The mechanism of FA transport into the brain and the involve-
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ment of FA protein transporters has been reviewed [6]. We recently showed that the transport
of various FA across confluent layers of HBMEC was, in part, mediated by fatty acid transport
proteins (FATPs) [5,6]. Knock down of FATP-1 and CD36 resulted in reduced FA transport. In
addition, transport appeared to be dependent upon fatty acyl chain length and degree of
unsaturation.

The role of FA, such as arachidonic acid (AA), on BBB permeability is well documented and
controversial. Studies have indicated that a rapid influx of AA into the brain occurs upon
plasma infusion with AA [48,49]. In addition, a permeability-enhancing and neurotoxic effect
of AA has been observed [50-52]. AA is a precursor for the formation of various bioactive
molecules including prostaglandins, such as PGE,, and leukotrienes. Several studies have
indicated that the increase in BBB permeability is correlated with the formation of PGE, [29,30,
53-56]. The prostaglandin EP2 receptor was shown to be responsible for mediating the
neuroinflammatory and neurodegenerative effects of PGE, in a mouse model of status
epilepticus [57]. The permeability increase caused by AA in pial microvessels of rats was
effectively blocked by a combination of indomethacin (COX inhibitor) and nordihyroguaria-
retic acid (LOX inhibitor) but not singly by either agent [58]. In that same study, AA-mediated
permeability increase was blocked by superoxide dismutase and catalase. These authors
concluded that free radicals generated by either COX or LOX pathways were responsible for
the permeability response to AA. In a mouse model of diabetic retinopathy 12-HETE and 15-
HETE, products of the lipoxygenase pathway, were shown to be responsible for increasing the
permeability of retinal endothelial cell barrier via an NADPH oxidase-dependent mechanism
[59]. Interestingly, AA inhibited the cytokine-induced up-regulation of several genes involved
in endothelial cell inflammation [60].

However, other studies have suggested that AA metabolites, such as PGE,, have a protective
role in the microvessels of the CNS and that PGE, prevents permeability increases. For
example, the permeability increase caused by bradykinin was prevented or attenuated by
exogenously added PGE, and iloprost, a prostacyclin analog [61]. In that study, COX-inhibitor
drugs potentiated the permeability increases caused by bradykinin, thus suggesting an
inhibitory role of PGE, in increasing endothelial cell permeability. In addition, PGE,, acting
via EP4 receptors, inhibited the increase in BBB permeability in a mouse model of experimental
autoimmune encephalomyelitis [62]. Moreover, PGE,, acting via EP2 receptors, has neuropro-
tective properties and limits ischemic damage in mice stroke models [63]. It has been postulated
in these studies [61,62] that engagement of EP2 and EP4 receptors by PGE, leads to an increase
in cAMP levels. This cAMP accumulation has been shown to potentiate cadherin-mediated
cell-cell contact and enhance endothelial barrier function. Thus, PGE, may promote BBB
integrity via direct action on endothelial cells [62].

Several studies have demonstrated that microvessel endothelial cells from various organs have
the capacity to produce a range of eicosanoids, notably, PGE,, PG, and PGF,,. In most of these
studies the endothelial cells were stimulated with the calcium ionophore A23187 in addition
to exogenously added AA [64-66]. However, in one study endothelial cells exposed to plasma
from preeclamptic women showed increased production of prostaglandins [67]. In addition,



The Blood Brain Barrier — Regulation of Fatty Acid and Drug Transport
http://dx.doi.org/10.5772/57604

bovine brain microvessel endothelial cells (BBMEC) exposed to TNF-areleased large amounts
of PGE, over a 12-hour period [29].

Previous work has shown that docosahexanoic acid (DHA) is converted to its vasodilator
metabolite, 17S-HDoHE in endothelial cells [68]. DHA is a precursor in the formation of several
bioactive molecules in human blood cells and in glial cells [69]. However, in those experiments,
the cells were exposed to stimulants like zymosan A or the calcium ionophore, A23187 to
facilitate the release of DHA metabolites. These metabolites have been shown to have several
biological effects like inhibition of inflammation and platelet aggregation, mediation of
vasodilation, anti-arrhythmic effects and lowering of triglyceride levels [70].

6. Drug transport across the BBB

The tight junction complex that connects brain microvascular endothelial cells in the BBB as
well as the epithelial cells of the choroid plexus that form the blood-cerebral spinal fluid barrier
(BCSFB) serve as a physical barrier preventing the paracellular diffusion of endogenous and
exogenous compounds. The presence of these tight junctions is essential for maintaining the
proper environment required for neuronal transmission. However, paracellular diffusion of
nutrients and metabolites between the blood and the extracellular compartment of the brain
is also highly restricted. Consequently, the uptake of essential molecules, such as glucose and
amino acids, to meet the metabolic requirements of the brain occurs through specific trans-
porter proteins located on the plasma membrane of the endothelial cells. In addition to
transporters that facilitate the entry of various solutes into the brain, the brain endothelial cells
also express numerous efflux transporters [71]. These transporters are members of the ATP-
binding cassette (ABC) protein family and utilize energy from adenosine triphosphate (ATP)
hydrolysis to actively remove compounds from the cells against a concentration gradient.

From a drug transport perspective, there are several transporters that are critically involved
in the movements of drugs across the BBB. These include organic anion-transporting poly-
peptide 1A2 (OATP1A2/SLO1A2), organic anion transporter 3 (OAT3/SLC22A8), monocar-
boxylate transporter 1 (MCT1/SLC16Al), from the solute transporter family, and P-
glycoprotein (P-gp; MDR1/ABCB1), breast-cancer-resistance protein (BCRP/ABCG2) and
multidrug-resistance-associated proteins 1-9(MRP1-9/ABCC1-9) from the ABC transporter
family [72]. The localization of these transporters in both the BBB and BCSF barrier are shown
in Figure 3 with each individual transporter is being discussed in greater detail below.

6.1. Organic Anion Transporting Polypeptide (OATP)

Organic anion transporting polypeptides (OATPs) are members of the solute carrier organic
anion transporter family (SLCO) [73]. The OATPs accommodate the transport of a wide variety
of amphipathic solutes, including bile salts, anionic peptides, steroid conjugates, thyroid
hormones and an increasing number of pharmaceutical drugs and xenobiotics [74]. Members
of the OATP family, of which there are currently 11 known to be expressed in humans
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Figure 3. The localization of transporters in the blood brain barrier (BBB) and blood cerebral spinal fluid barrier
(BCSFB) of CNS.

(OATP1A2, 1B1, 1B3, 1C1, 2A1, 2B1, 3A1, 4A1, 4C1, 5A1, and 6A1), share a great deal of amino
acid sequence identity and transport solutes in a sodium independent manner [75].

Of the various OATPs, both OATP1A2 and OATP1A4 are expressed in the BBB. Organic anion
transport protein 1A2 was the first member of the OATP family to be reported in humans,
while OATP1A4 is a more recently discovered homolog of hepatic [76]. At the protein level,
OATP1A2 (previously designated OATP-A) is expressed in many organs including the liver,
intestine, kidney, lung, testes, and the brain. Within the brain, this transporter is localized in
the frontal cortex and specifically confined to the endothelial cells of the BBB [74]. Its locali-
zation on the luminal side of brain microvessel endothelial cells suggests that OATP1A2 aids
in the entry of various solutes and therapeutic agents into the brain [74]. While OATP1A4 is
mainly concentrated in the liver, the transporter has also been detected within the brain
microvessel endothelial cells [74]. In contrast to OATP1A2, immunohistochemical localization
studies indicate that OATP1A4 is expressed on both the apical and basolateral side of the
endothelial cells of the BBB and thus, mediates the uptake of compounds from both the brain
and the blood compartments [77].

6.2. Organic Anion Transporter (OAT)

Organic anion transporters (OATs) belong to the SLC22A gene family. Similarly to OATPs,
the OATs transport a broad range of chemically unrelated endogenous and exogenous
compounds. There are at least 10 families of OATs designated by Arabic numbers (eg. OAT1).
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OAT1 is predominantly expressed in the kidney although a very small amount is also found
in the brain particularly concentrated in regions such as cortex, hypothalamus, hippocampus
and cerebellum [78]. This transporter is known to interact with a broad range of drugs
including antibiotics (penicillins, benzylpenicillin and carbenicillin), antineoplastics (metho-
trexate) and even cholesterol lowering drugs including the statins and fibrates such as
fluvastatin, pravastatin, and bezafibrate, respectively [78]. OAT2, on the other hand, is
predominantly expressed in the liver and very little is found in the kidney and brain. The
expression level of this transporter in a particular tissue can be influenced by a variety of
factors; including gender and species differences [79]. For example, in the adult male rat, the
mRNA for OAT2 expression is greater in the liver than the kidney, and the opposite is true for
the adult female rat where the mRNA level in the kidney is greater than in the liver [79].
However, this phenomenon has not been observed in humans. Furthermore, the expression
level of OAT?2 is also influenced by hepatocyte nuclear factors and endogenous gas molecules
including nitric oxide [80,81]. Given the similar molecular structure to OAT1, OAT2 also
mediates the transport of a broad range of solutes including cholesterol lowering drugs (i.e.
statins), antibiotics such as cephalosporins, and antineoplastic drugs like 5-fluorouracil [78].

From a CNS perspective, OAT3 appears to have the greatest expression levels in the brain [78].
Within the CNS, OAT3 is primarily localized in the brain capillaries and in epithelial cells of
the choroid plexus, specifically on the basolateral side of the plasma membrane of the cells [82].
The predominantly basolateral localization of OAT3 in the BBB and BCSFB implies that the
primary function of OAT3 is to aid in the removal of compounds from the brain. Endogenous
products of neurotransmitter and hormone metabolism are potential candidates for OAT3-
mediated removal. Potential therapeutic agents that may be transported out of the brain
through OAT3-dependent processes at the BBB and BCSFB include the various statins,
diuretics, antibiotics and antivirals [78]. As OAT3 interacts with a large number of therapeutic
agents, drug-drug interactions may be of potential concern in the BBB, although specific
examples are at present not known.

6.3. Glucose Transporters (GLUT)

Glucose is the major source of energy for most mammalian cells, particularly in the brain.
Despite the high dependence of the brain on glycolysis, the source of glucose comes entirely
from the blood and is dependent on passage through the BBB. The entry of glucose into the
brain is mediated by facilitative glucose transporter proteins. There are currently seven known
isoforms, with the designation of GLUT1-7 [83]. The main isoforms found within the CNS are
GLUT1 and GLUTS3 that bring glucose into the cell through sodium independent transport
mechanisms. A summary of the various GLUTs and their distribution within the CNS is shown
in Figure 4. GLUT1 within the CNS exists as two distinct forms, which differ only by the extent
of glycosylation [84]. A glycosylated, 55 KDa GLUT1 is found primarily in the endothelial cells
of the BBB while the non-vascular, non-glycosylated 45 KDa form is mainly found in neural
cells as well as the basolateral plasma of epithelial cells isolated from the choroid plexus [83].
Aside from the prominent expression found in the microvessels and choroid plexus, GLUT1
has also been detected in small cells with dark stained nuclei characteristic of glia cells [85].
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Immunohistochemistry staining also showed a positive detection of GLUT1 in astrocytes that
are in direct contact with the cerebral microvessels of rat brain slices. Electron microscopy also
revealed dense distribution of GLUT1 within the astrocyte foot processes surrounding the
microvessels of the gray matter and synaptic contacts [86].
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Figure 4. Cellular localization of different isoforms of glucose transporter in the CNS.

The main glucose transporter in the BBB is GLUT1. This same transporter is also highly
expressed in the blood-retinal barrier, the placental barrier, and blood-CSF barrier (BCSFB)
[87-89] highlighting its importance in regulation of glucose levels in these tissues. The transport
of glucose through GLUT1 in the BBB is the rate-limiting step for glucose utilization in the
brain and is highly responsive to metabolic changes within the brain. For example, GLUT1
expression in the BBB at both the mRNA and protein level can increase or decrease depending
on the ambient concentration of hexose. High concentration of hexose decreases the expression
of GLUT1 while low hexose concentration causes an up-regulation of both GLUT1 mRNA and
protein levels [90]. Following brain injury such as a stroke and brain tumors, both mRNA and
protein levels of GLUT1 are significantly increased [83,85,91].

The endothelial cells forming the BBB also express sodium glucose cotransporter (SGLT) [92].
Unlike GLUT]1, glucose transport through SGLT is sodium-dependent. A functional role for
SGLT in glucose homeostasis in the brain has not been established; however, it has been
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speculated that SGLT may help maintain intracellular glucose levels in the brain under
stressful conditions such as hypoglycemia [92].

6.4. Monocarboxylate Transporter (MCT)

Monocarboxylic acids, including lactate, pyruvate, and ketones play an important role in
energy metabolism within the body. Monocarboxylates such as pyruvate, lactate, and ketone
bodies (i.e acetoacetate and -hydroxybutyarate) can be utilized by neurons, in the absence of
glucose, to generate a substantial amount of energy for the brain [93]. Under pathological and
physiological conditions including diabetes, prolonged starvation, hypoglycemia, or even
intense exercise, the build-up of lactate provides an energy source, which can be utilized by
the brain [3,94,95]. In addition, monocarboxylates including lactic acid are a metabolic by-
product produced and released within the CNS by neurons [96,97], astrocytes [96] and
oligodendrocytes [98]. As monocarboxylates are hydrophilic compounds that cannot readily
diffuse cross the BBB, specific transporter systems are required to maintain proper levels of
these endogenous metabolic products in the brain [93].

Sequence homology indicates that the monocarboxylate transporter family (previous known
as SLC16 gene family) consists of 14 members identified as MCT1-9, MCT11-14 and T-type
amino acid transporter 1 (TAT1) [99]. MCT1-4 is a symporter mediating the co-transport of
monocarboxylate and proton in a one to one stoichiometry ratio. MCT1-4 is present in almost
all tissues including the muscles, liver, kidney, heart, testes, and brain [93,99]. While MCT1
and MCT2 are found in the muscles, liver, kidney, heart and CNS, [93], MCTS3 is exclusively
expressed on the basolateral side of the retinal pigment epithelium and MCT4 is highly
expressed in the skeletal muscles and also in the brain. Within the BBB, MCT1 was the first
monocarboxylic acid transporter identified in the brain microvessel endothelial cells and in
the ependycytes lining the ventricles [100]. Both electron microscopy and immunohistochem-
istry revealed a small amount of MCT1 in astrocytic end-feet surrounding the capillaries
[100,101]. The presence of MCT1 was found in the cytoplasm of astrocyte and also associated
with the plasma membrane [93]. In contrast, MCT2 is found in endothelial cells forming the
BBB, but absent in astrocytes [93,100]. MCT4, on the other hand, was exclusively expressed in
the astrocytes and glial cells of rodent brain. Furthermore, when the hippocampus and the
corpus callosum were labeled, the expression of MCT4 was restricted to astrocytes [93]. MCT8
was recently recognized as thyroid hormone transporter as opposed to monocarboxylate [102].

6.5. ATP-Binding Cassette Transporters (ABC)

The ATP-binding cassette (ABC) superfamily of transporter proteins are responsible for the
active transport of a wide variety of compounds including phospholipids, ions, peptides,
steroids, polysaccharides, amino acids, organic anions, bile acids, drugs and other xenobiotic
compounds across cellular membranes. There are roughly 48 genes encoding the various
human ABC transporters, each is organized into seven subfamilies designated ABCA to ABCG
[103]. Over-expression of ABC transporters are major contributors to the development of
multidrug resistance (MDR) in cancer cells. For instance, when the MDR gene that codes for
an efflux transporter is being transfected into drug sensitive cells, the transfectant cells become
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resistant to the drugs that are substrates for the transporters resulting in a decrease in the
intracellular concentration of the drugs, thereby conferring multidrug resistance [104]. MDR
in tumor cell lines is often linked to an ATP-dependent decrease in cellular accumulation of
drugs namely through p-glycoprotein (p-gp encoded by ABCBI), multidrug resistance
proteins (MRP encoded by ABCC), and breast cancer resistance protein (BCRP encoded by
ABCG2) drug efflux transporters [105]. In addition to their function as multidrug resistance
proteins, these transporters are also expressed in normal tissue such as intestines, liver, kidney
and the BBB and BCSFB, suggesting that they also have a protective function in limiting
accumulation and distribution and speeding the elimination of xenobiotic compounds which
could result in tissue toxicity [106].

6.6. Multidrug Resistance Protein (MRP)

The multidrug resistance-associated proteins (MRPs) are a subfamily of ABC transporters.
There are currently 12 members of this subfamily designated as ABCC1-12. Of the 12, 9 have
demonstrated drug efflux transporter function and play an important role in absorption,
distribution and elimination of various drugs and metabolites. While all MRPs have the
capability to transport amphiphatic organic anions, transport substrates are not limited to
anionic species. Examples of this include the transport of nucleotide based analogs by MRP4
and MRP5, efflux of prostaglandins by MRP1, co-transport of neutral or cationic solutes as
well as glucoronide drug conjugates by MRP1 and MRP2 [107]. Within the MRPs and other
ABC transport proteins there tends to be substantial substrate affinity overlap. This is a
fascinating feature considering most members are structurally and functionally distinct from
other ABC binding cassette transporters. For example, there is only approximately 15% amino
acid sequence homology between MRPs and P-gp [108]. In addition, when comparing amino
acid sequence between different members within the MRP subfamily to MRP1, amino acid
sequence homology ranges between 33% for MRP8 and 58% for MRP3 [109].

The brain endothelial cells that form the BBB express several different MRP. Collectively the
MRP efflux transporters function to restrict the uptake and aid in the elimination of drugs,
xenobiotics and endogenous compounds from the brain. Currently, members of the MRP
family that have been reported in the BBB include MRP1, 2,4-9. The evidence for the localiza-
tion and function of each of the MRPs within the BBB are discussed below.

6.6.1. MRP1

MRP1 is expressed in primary cultured bovine, murine [110], rat [111] and porcine [112] brain
microvessel endothelial cells. While studies by Seetharaman and coworkers [113] suggested
up-regulation of MRP1 expression in human culture brain microvessel endothelial cells
compared to freshly isolated human brain capillaries, more recent studies support robust
expression of MRP1 within the brain capillaries isolated from human brain tissue [114]. Two
independent studies reported that MRP1 is localized primarily to the apical (luminal) plasma
membrane in brain microvessel endothelial cells [114,115]. This is in contrast to studies by
Roberts et al. [116] suggesting MRP1 has a basolateral (abluminal) plasma membrane locali-
zation in rat brain microvessels. As MRP1 shows high transporter activity for conjugated
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compounds such as estradiol 173 glucuronides [117], it is interesting to note that Sugiyama
and colleagues [118] demonstrated a reduction in elimination of estradiol 173 glucuronide
from the brain of Mrp1 knockout mice compared to that observed in the wild-type controls
with functional MRP1. These functional studies support the luminal expression of MRP1 and
suggest a role in limiting brain exposure to drugs and endogenous solutes.

6.6.2. MRP2

The expression and localization of MRP2 within the BBB is the subject of much debate. Studies
by Miller et al. [119] indicated MRP2 was expressed in the luminal plasma membrane of
isolated rat brain capillaries. These initial findings were supported by reports of MRP2
expression in both human brain capillaries as well as zebrafish [120,121]. In contrast, no
detectable expression of MRP2 was found, at either the mRNA or protein level, in bovine brain
microvessel endothelial cells [122,123] or mouse brain microvessel endothelial cells [110,118].
Furthermore, studies examining MRP2 protein expression in isolated human brain capillaries
were below detection limits [114,124]. Interestingly, expression of MRP2 in rat brain endothe-
lial cells was inducible by activation of either pregnane X receptor (PXR) or constitutive
androstane receptor (CAR) pathways [125,126].

Functionally, MRP2 mediates the transport of glucuronide and GSH conjugates to a lesser
extent than MRP1 [127]. It also actively transports chemotherapeutics such as methotrexate,
vinca alkaloids, anthracyclins, antiepileptics such as phenytoin and endogenous agents like
leukotriene C4 [107,109,128,129]. Thus if MRP2 is expressed in the BBB, it could have a
profound effect on the brain distribution of many therapeutic agents. However, there are few
studies showing a significant impact of MRP2 on the BBB permeability. One such study
demonstrated an increased accumulation of phenytoin in the brain of Mrp2 deficient rats
compared to controls [129]. There is also evidence for MRP2-mediated changes in brain
penetration of drugs in epileptic animals. Based on available information, most evidence
indicates that MRP2 expression in the BBB is low or below detectable limits and as such has
negligible effects on solute and macromolecule distribution into the brain. However, as MRP2
expression appears highly inducible, there is a possibility that MRP?2 activity in the BBB could
be of importance during pathological events within the CNS.

6.6.3. MRP3

Studies by Zhang et al. [122] identified low and variable expression of MRP3 in bovine brain
microvessel endothelial cells. Subsequent proteomics based studies of both mouse [130] and
human [131] BBB indicated that MRP3 expression was below detection limits.

6.6.4. MRP4

Evidence supporting a significant functional role for MRP4 in the BBB is perhaps the
strongest of all the MRPs. The first evidence of MRP4 expression in the BBB was the studies
by Zhang et al. [122] in bovine brain microvessel endothelial cells. Follow-up studies
examining the localization of MRP4 suggested both luminal and abluminal presence of the
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transporter [115]. The expression of MRP4 has since been reported in human, mouse and
rat BBB [114,116,132]. Comparison of MRP4 expression in the brains of wild-type and Mrp4
knockout mice confirmed BBB localization as well as expression in the choroid plexus
epithelial cells forming the BCSFB [132].

Functionally, MRP4 can transport a wide variety of substrates and is important in the efflux
of many nucleotide analog based chemotherapeutics. As with MRP1 and MRP2, MRP4
transports the endogenous substrate leukotriene C4 [133,134]. However, in addition, MRP4
can also transport endogenous nucleotides such as cAMP and cGMP [135]. Common chemo-
therapeutic purine nucleotide anion analogs that are effluxed by this transporter include
bis(pivaloyloxymethyl)-9-[2-(phosphonomethoxy)ethyl]-adenine (PMEA), and active metab-
olites of 6-mercaptopurine and 6-thioguanine [72,107,136]. Using Mrp4 -/- knockout mice
significant increases in topotecan [132] and PMEA [137] accumulation in the brain was
observed.

6.6.5. MRP5 and MRP6

Within the BBB, MRP5 is highly expressed, whereas MRP6 is expressed to a lesser extent [122].
Presently their locations within the BBB remain unclear. Previous studies by Zhang et al. [115]
found MRP5 protein expression to be primarily in the apical membrane fraction of brain
microvessel endothelial cells. These findings were supported by Nies et al. [114]. In contrast,
Roberts et al. [116] found low levels of abluminal MRP5 expression when staining in rat brain
microvessel endothelial cells. Currently, the location of MRP6 remains to be seen because no
specific MRP6 antibody is available at this time [115].

MRP5 can transport purine nucleotide analogs [127] and is the primary active transporter of
c¢GMP and cAMP [138]. Therefore MRP5 and -4 may work in concert to regulate cGMP and
cAMP levels [127] in the brain. MRP6 can transport anionic organic ions but cannot transport
glucuronide or GSH [127] and has been shown to transport leukotrinene C4 [139].

6.6.6. MRP7, -8 and -9

Currently, little is known about these transporters with regards to the BBB. MRP7, -8 and -9
have been found to be expressed in brain [140]. MRP7 can transport glucuronide E2 17betaG
and exhibits high levels of resistance to taxane docetaxel, approximately 9 to 13 fold [140].
MRPS is able to transport nucleotide analogues such as PMEA, glutathione conjugates and
methotrexate [140]. No substrates for MRP9 have been identified at this time [109].

When looking at drug resistant efflux transport in the literature, major focus has been put on
P-gp and BCRP and limited research has been focused on members within the MRP subfamily
as it relates to the BBB. As has been demonstrated here, many of these MRP transporters can
transport substrates that are important both physiologically and in the clinic. Particularly
within the CNS, it is important to decipher any discrepancies in location and expression of
MRP members within the BBB because they can have relevant impact on CNS drug concen-
trations reaching therapeutic levels within the brain and thus can affect our ability to treat
important brain pathologies.
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6.7. Breast Cancer Resistance Protein (BCRP)

BCRP was originally discovered in the MCF-7 AdrVp breast cancer cell line after observing
that the cells are resistant to chemotherapeutic drugs including mitoxantrone, doxorubicin,
and daunorubicin [141]. The gene sequence of the protein was isolated shortly after and was
classified as the group G subfamily of ABC transporters. There are at least 5 members of ABCG
subfamily identified in humans (ABCG1, ABCG2, ABCG4, ABCG5, and ABCGS8). However,
the primary form that plays a crucial role in the transport of substances between the blood and
the CNSis ABCG2 [141]. At the protein level, ABCG2 is approximately 72-kDa with 665 amino
acids and is considered as a half-transporter as shown in Figure 5. Other ABC transporters
have two sets of membrane spanning regions (6 transmembrane a-helices) and two nucleotide
binding domains (NBD); the G subfamily of protein consists of only one set of membrane
spanning domain 6 transmembrane a-helices and only one NBD [141]. In order to function, it
is believed that these half-transporters form homodimers [142].

The specific localization of ABCG2 within the CNS is primarily confined to the luminal plasma
membrane of the brain microvessel endothelial cells. Given the localization within the BBB
and the compounds that are transported by ABCG2, it has been suggested that ABCG2 most
likely protects the brain from xenobiotics and toxins similar to other ABC transporters [141].
Furthermore, ABCG2 also plays a role in the accumulation and disposition of various endog-
enous substrates including sulfate and glucuronide conjugates of estrone and dehydroepian-
drosterone [143,144]. In addition to endogenous substrates, ABCG2 also binds and recognizes
a broad range of structurally-unrelated drugs and xenobiotics [141]. Many of these transport
substrates also interact with other ABC transporters including ABCB1 and the ABCC subfam-
ily; thus, the accumulation and distribution of drugs can be significantly altered.

6.8. P-glycoprotein (P-gp)

P-glycoprotein (P-gp) was the first ABC transporter to be characterized. First identified by
Juliano and Ling [145] in 1976 using Chinese hamster ovary cells with selected resistance to
colchicine, they discovered that the drug resistance properties of the mutated cells were
consistently correlated with a high molecular weight component found in the plasma mem-
brane with an approximate weight of 170,000 Da [145]. They also observed that the component
was likely a glycoprotein associated with the plasma membrane of the mutated cells and was
consistently absent or expressed at a lower level in the wild-type cells. Furthermore, they also
noticed that the mutant cells with high levels of glycoprotein displayed an alter drug perme-
ability; thus, they designated it as “P-glycoprotein” [145]. P-gp is also expressed in numerous
tissues, including adrenal glands, kidneys, liver, colon, small intestine, heart, testes, peripheral
nerves, and the brain. At the BBB, it is the most extensively studied ABC transporter being
expressed in the luminal plasma membrane of brain endothelial cells [104]. Under normal
conditions, the presence of P-gp in the BBB limits a broad range of substances from penetrating
the brain tissue. Some notable drug classes with reduced brain penetration due to P-gp efflux
at the BBB include anti-epileptics, anti-cancer drugs, anti-histamines and HIV protease
inhibitors [103]. Numerous studies using drugs such as cyclosporine, digoxin, domperidone,
etoposide, loperamide, ondansetron, taxol and vinblastine have shown the important role of
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Figure 5. Structures of (A) MRP transporter, (B) BCRP transporter, and (C) P-glycoprotein transporter.

P-gp in the pharmacokinetics of P-gp substrates in multiple parts of the body. Table 1 shows
some of the drugs that are known substrates for P-gp.

Similar to other ABC transporters, P-gp is a transmembrane protein with a molecular weight
of 170 KDa formed by two homologous subunits that function as an efflux pump in an ATP-
dependent manner (shown in Figure 5). The protein is assembled in two halves connected by
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a 75 amino acid linker region. Each half contains 6 transmembrane segments, an intracellular
nucleotide binding domain, and both intracellular N and C terminal regions. The exact
localization of P-gp had been a subject of some debate with evidence supporting both luminal
and abluminal expression of the protein. Luminal P-gp expression had been observed in rat
and mouse brain capillaries [115,146,147]. Furthermore, the luminal expression of P-gp has
also been isolated in human brain microvessels [113,148]. In contrast, electron microscope
techniques have shown an enhanced expression of P-gp on the abluminal side of the rat brain
endothelial cells [149]. Nevertheless, recent studies using immunoreactivity support the
localization of P-gp on the luminal side of the endothelial cells [116].

Cancer Immuno- Lipid Steroids HIV Cardiac | Anti- Anti- Anti-Bacterial | Anti-

Drugs suppressive Lowering Protease | Drugs Diarrheal Gout Agents Helminthic
Drugs Agent Inhibitors Drugs Agent Agent

Doxorubicin Cyelosporin A Lovastatin | Aldasterone Amprenavir | Digoxin Laperamide Calchicine | Erythromiyecin Ivermectin

Daunourbicin | FK506 Cortisol Indinavir Quinidine | Antiemetics Rifampin Abamectin

Vinblastine Tacrolimus Corticosterane | Nelfinavir Domperidone Valinomycin

Vineristine Hydrocortisone | Ritonavir Ondansetron Gramicidin

Vindesing Dexamethaxone | Saquinavir Grepafloxacin

Vinorelbine Triamcinolone Lapinavir

Paclitaxel

Etoposide

Teniposide

Epirubicin

Irinotecan

Tamexifen

Methotrexate

Amsacrine

Imatinik

Table 1 Representative compounds that are known to be P-glycoprotein substrates. (Adapted from [156] )

Numerous studies have attempted to identify and characterize P-gp substrates. Unlike
conventional transporters, which recognize specific substrates, P-gp recognizes a broad range
of compounds and has the capacity to extractits substrates directly from the plasma membrane
[150]. Some of the most common features of P-gp substrates include their lipophilic nature that
enables them to cross the lipid bilayer of the cell membrane. Furthermore, many P-gp sub-
strates commonly consist of two aromatic rings and a basic nitrogen atom. These molecules
can be uncharged or basic in nature, although some acidic compounds including methotrexate
and phenytoin can also bind to P-gp but at a lower rate. Molecules with molecular weight
ranges from 300 to 2000 Da are capable of binding to the protein and being transported [151].
Peptide substrates consisting of 3 to 15 amino acids with molecular weight ranges from 380 to
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1880 Da can also interact with P-gp [151]. Most recently, beta amyloid protein, the component
found in amyloid plaques in Alzheimer’s disease was reported to be a transport substrate of
both P-gp but not BCRP [152,153].

One method for overcoming the limited permeability of P-gp transport substrates is to
pharmacologically inhibit Pgp. P-glycoprotein inhibitors are themselves non-cytotoxic agents
that can be used in combination with P-gp substrates to maintain the intracellular drug
concentration. An inhibitor binds to P-gp and prevents the transport of P-gp substrates. There
are at least three generations of P-gp inhibitors. The first generation compounds are less potent
and non-selective with undesirable side effects at inhibitory concentrations. Examples of first
generation inhibitors include the calcium channel blocker, verapamil, and the immunosup-
pressive agent cyclosporin A. First generation P-gp inhibitors act as competitive inhibitors of
P-gp transport [154].

The second-generation compounds including dexverapamil or dexniguldipine were devel-
oped to reduce the toxicity associated with P-gp inhibition. They eliminate the undesirable
side effects while retaining the ability to inhibit P-gp. The third generation inhibitors including
tariquidar and elacridar are much more specific and more potent than earlier compounds.
Unlike the first and second generation of P-gp inhibitors, the third generation of drugs acts as
non-competitive inhibitors of P-gp, and the compounds themselves are not transported by P-
gp [155]. Table 2 summarizes representative P-gp inhibitors [104].

Cyclopropylib i PF Calcuim | Progesterone | Antiarrhythmic = Antifungal | Acrid b
ressant channel | antagonist agent agent derivative
blocker
L¥335979 Cyclosporin A Verapamil | Mefiprostone | Quinidine Ketoconzzole | GGI18 (GFL20618) Xenova (XR 5944)
{RU2BE)
Valspodar
(PSC833)

Table 2 Representative compounds that are known to be P-glycoprotein inhibitors. (Adapted from [156] )

The ability of P-gp to extrude xenobiotics provides protection and detoxification of cells under
normal conditions. For example, knockout mice (MDR1a”) have been shown to be more
sensitive to ivermectin and are susceptible to serious neurotoxicity compared to wild type
control mice [156]. Considering the broad range of P-gp substrates and the expression of P-gp
in tissues responsible for absorption, distribution and elimination of drugs, it is no surprise
that this particular drug efflux transporter can significantly affect the absorption and distri-
bution of drugs. This is especially true for cancer therapies used in the treatment of brain
tumors. The tight junctions of the BBB restrict paracellular diffusion of chemotherapeutic
agents into the CNS, while the presence of the various drug efflux transporters, such as P-gp,
within the endothelial cells of the BBB reduces transcellular passage of chemotherapeutic
agents into the brain and tumor sites.
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7. Conclusion

The brain capillaries are structurally and functionally different from capillaries formed in the
other organs. The selectiveness and permissiveness of the endothelial cell monolayer within
the CNS is dependent on the tight junctions as wells as the numerous transporter systems
located on the luminal and the abluminal surface of the endothelial cells forming the BBB. The
restrictive nature of the tight junctions along with transporter systems expressed in the BBB
can significantly altered the accumulation and distribution of fatty acids and drugs in the CNS
under pathological conditions. Improved delivery to the brain can be achieved by reversibly
disrupting the physical tight junctions and/or inhibiting the activity of efflux transporter
systems.
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1. Introduction

Many physiological processes like muscle contraction, hormone secretion and intracellular
signalling processes are triggered by calcium as intracellular signalling molecule. The signal
transduction capacity of calcium depends on the 10,000-fold gradient across the plasma
membrane with 2.5 mM extracellular and resting intracellular calcium ion concentration of
approximately 100 nM. Low intracellular calcium concentrations are managed by the extrusion
of calcium by ATPases and transporters [1, 2], whereas rapid and distinct increases in intra-
cellular calcium up to micromolar concentrations are mediated by calcium-permeable ion
channels of the plasma membrane as well intracellular calcium storage compartments.
Calcium mediates its biological functions by protein structures capable to bind calcium. These
calcium-binding domains are building blocks of the proteins modulated by calcium directly
or part of calcium sensor proteins (calmodulin, calcium binding protein, calcineurin, S100, NCS
etc) mediating calcium-dependent modulation by protein-protein interaction [3].

In excitable cells like neurons, heart or skeletal or smooth muscle cells, calcium currents first
identified are mediated by voltage-gated calcium channels [4-6]. Later, additional calcium-
permeable ion channels have been identified mediating hormone-induced calcium entry also
in non-excitable cells like endothelial, epithelial, immune cells. The identity of these channels
has been unravelled via analysis of phototransduction in flies [7]. Montell and Rubin cloned
Transient Receptor Potential (TRP) from Drosophila melanogaster and described TRP as a
phospholipase C-modulated, calcium-permeable ion channel [8]. Mammalian TRP-homolo-
gous channels have been identified by comparing the Drosophila TRP sequences with sequences
resulting from the upcoming genome and expression profiling projects at that time. The first
channel protein showing the highest degree of sequence similarities with Drosophila TRP were
named classic TRP family (TRPC1) [9-11]. Additional TRP-homologous proteins establishing
the melastatin-like and vanilloid-like TRP subfamilies, TRPM and TRPV, respectively, were
identified by other approaches [12-14]. An additional fascinating feature of TRP channels
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became obvious with the identification of TRPV1 (vanilloid receptor 1, VR1) as molecular
target of capsaicin [15]. Capsaicin is the active molecule of chilli peppers and an irritant that
is responsible for providing a sensation of burning, e.g., on the tongue. TRPV1 characterization
revealed that TRP channels are targets of many secondary plant compounds and are involved
in sensory functions [16]. Last but not least, the TRP superfamily comprises the mucolipin
[TRPML [17]] and the polycystin [TRPP [18]] calcium-permeable channel proteins sharing a
comparable transmembrane topology and features like ion permeability [13, 14, 19]. TRP
channels are integrated in many cellular signal transduction pathways and a variety of
physiological processes as discussed below.

TRP channels have been identified and characterized by common biochemical, immunochem-
ical and physiological methods. The function of TRP channels can be directly studied by patch
clamp electrophysiology as well as imaging techniques. Patch clamp techniques enable to
monitor currents across the plasma membrane mediated by TRP channels using small
electrodes in small pipettes together with the ground electrode in the bath solution [20]. In this
configuration, the electrical activity of ion channels in the plasma membrane can be monitored.
Depending on configuration and access of the electrode within the patch pipette, different
configurations can be discriminated (cell-attached, whole cell, inside-out or outside-out). On
the other hand, a growing number of methods has been developed to monitor changes in ion
concentrations in intact cells using small chemical compounds or artificial proteins constructs
[21]. Fura-2 is one of the best known calcium dyes, a small chemical compound changing its
fluorescence features depending on calcium concentration [22]. In the meantime a variety of
new compounds have been developed characterized by changed ion selectivity, changes in
Kd values or fluorescence intensities. The intracellular concentration of the indicator dyes
depend on the activity and capability of organic solute carrier to export the dyes and thereby
lowering intracellular dye concentrations. This disadvantage can be overcome by the use of
the new protein-based probes. These artificial proteins are constructs of ion binding domains
conjugated with fluorescence protein domains transcribed transiently from transfected
plasmids or permanently from genomic localized expression cassettes [23, 24].

The following review will give an introduction in the broad field of TRP channel research
related to their expression in the central nervous system (CNS), their physiological function
in neurons as well as in glia cells, and their role in neurological and psychiatric CNS disorders.
The involvement of TRP channels in the pathophysiology of glioma and the sensing of pain is
not discussed here [for comprehensive reviews please refer to [25, 26]].

2. TRP channels in the brain

2.1. TRPC channels

The classic TRP channel family comprises seven different genes with proteins showing the
highest sequence similarity to the prototypic Drosophila TRP [8, 12, 19]. The mammalian
channel proteins are involved in receptor-regulated calcium entry [27]. Receptor activation by
hormones, neurotransmitter and in Drosophila light results in the phospholipase C-mediated
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breakdown of phosphatidylinositides leading to the formation of inositol 1,4,5-trisphosphate
and diacylglycerol (Figure 1). Inositol 1,4,5-trisphosphate induces calcium release from
intracellular stores via the activation of inositol 1,4,5-trisphosphate receptors (IP3 receptor),
whereas diacylglycerol directly activates mammalian classic transient receptor potential
(TRPC) channels (TRPC2, TRPC3, TRPC6 and TRPC?) in a protein kinase C-independent
manner [27, 28]. The prerequisite of phospholipase C stimulation has been shown for TRPC1,
TRPC4 and TRPC5 currents, however the molecular mechanism is still unclear [27].

TRPC2 TRPC1

TRPC3 TRPC4

RTK TRPC6 TRPCS
GPCR TRPC7

Na+. Cg * Na+, Caﬂ

Figure 1. Receptor-induced activation mechanisms of TRP channels in mammals. RTK: receptor tyrosine kinase;
GPCR: G protein-coupled receptor; PLC: phospholipase C; PIP2: phosphatidylinositol-4,5-bisphosphate; IP3: inosi-
tol-1,4,5-trisphosphate; DAG: diacylglycerol.

In the brain, TRPC1 expression was confirmed using a set of techniques ranging from RT-PCR,
western blotting to confocal and electron microscopy. TRPC1 was detected in different brain
regions of adult mice including the cerebellum, the hippocampus, the basal ganglia, the
amygdala and the forebrain [29-31]. Striibing et al. showed that TRPC1 and TRPC5 channels
are expressed in similar brain areas suggesting that they might form heteromers for example
in the hippocampus [31]. However, empirical evidence for the existence of these heteromers
is still lacking [32]. Only little is known about the distribution of TRPC channels in neurons.
TRPC5 channels were suggested to be expressed mainly in distal dendrites and dendritic
spines in lateral septal neurons. However, the expression pattern might differ in different brain
areas and neurons [33]. Interestingly, TRPC1 protein was not only detected in neurons such
as in the hippocampal CA1 or CA3 pyramidal cells [31], but also in astrocytes and oligoden-
drocyte progenitor cells [34-36]. Furthermore, mRNA for all TRPC channels including TRPC1
was found in the cortex of the mouse developing brain [37]. TRPCI, together with TRPC3 and
TRPC5 were the main isoforms detected in this study. This expression pattern might be time
dependent and species specific because TRPC4 and TRPC5 were the most prominent isoforms
in the adult rat prefrontal cortex [38], whereas TRPC3 and TRPC6 channels are major TRPC
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mRNAs detected in adult mice [29]. TRPC2 being expressed in the rodent vomeronasal organ
is clearly an exception [39]. In humans, TRPC2 is a pseudogene; the transcribed mRNA is
functionless due to various stop codons [40]. In rodents, the transcription of the TRPC2 gene
results in a functionally active protein involved in sensory responses to pheromones [39].
Genetic inactivation of TRPC2 in mice leads to loss of sex discrimination of male mice [41-43].
TRPC4 mRNA expression was observed in the adult mouse brain in the cortex, the hippo-
campus, the thalamus, the amygdala, the basal ganglia as well as the prefrontal cortex [29, 30,
38, 44]. TRPC4 protein expression was shown in the hippocampus, the cortex as well as the
cerebellum [38, 44]. Using in situ hybridisation or immunocytochemistry, the expression of
TRPC4 channels in different brain areas was specified. For example, TRPC4 was detected in
cell layers of the prefrontal cortex [38] or in pyramidal CAl and CA3 neurons of the hippo-
campus. In lateral septal neurons, TRPC4 channels were found on the cell surface of the soma
and primary dendrites [33].

TRPC3 and TRPC6 mRNAs were demonstrated in the basal ganglia, the cerebellum, hippo-
campus as well as the forebrain [29]. TRPC3 protein expression in the brain especially in the
prefrontal cortex and cerebellum was not only shown in rat and mouse tissues but also in
human tissue obtained from subjects of different age groups [45]. TRPC3 channel expression
was higher in the developing cortex compared to the adult cortex, whereas TRPC3 cerebral
expression was not age-dependent. The protein expression of TRPC6 channels in the hippo-
campus is controversial. While several groups using pharmacological approaches or RT-PCR
or western blot analyses describe TRPC6 channels being expressed in all hippocampal regions
[46-51], Nagy and co-workers as well as Chung and colleagues show expression of TRPC6
channels selectively in the dentate gyrus and interneurons [52, 53]. Interestingly, in contrast
to Tai et al. 2008, who described TRPC6 expression in hippocampal CA1 soma as well as in
dendrites, Nagy’s data suggest that TRPC6 channels are mainly expressed in dendrites of
interneurons and neurons from the dentate gyrus [49, 53]. In the developing brain TRPC6
channels protein expression peaked between postnatal day 7 and 14, a period known to be
important for maximal dendritic growth [49]. For TRPC7, only low mRNA expression levels
were published [29, 30]. TRPC3 channels are also expressed in astrocytes [54].

2.2. TRPM channels

Melastatin, the founding member of the melastatin-like TRP family, was identified within a
screen for proteins differentially regulated in melanocytes and melanoma cells [55]. Analysis
of clinical data showed that the presence of melastatin expression in melanoma patients
inversely correlates with the severity and survival [56-58]. Although melastatin is the first
member of the TRPM family its activation mechanism and physiological role is still unclear.
In line with the first description as protein involved in melanocyte physiology several reports
confirmed this view. A completely unexpected function, the integration in retinal signal
processing, has recently been discovered by the identification of TRPM1 expression in retinal
ON bipolar cells [59]. The critical role of TRPM1 in mammalian phototransduction is also
highlighted by several reports describing TRPM1 mutations in patients suffering from
congenital stationary night blindness [60-63]. Only very little is known about TRPM1 function
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and expression in the CNS. Rather low mRNA TRPM1 expression was found in three studies
in the brain [29, 64, 65].

From sequence similarity, TRPM3 is phylogenetically the closest neighbour to melastatin.
TRPM3 is a polymodal ion channel activated by a variety of different stimuli like hypotonicity
[66], sphingolipids [67], steroids [68, 69], nifedipine [69], and heat [70]. TRPM3 is activated by
hypotonic extracellular solution and represents together with TRPV4, the volume-regulated
TRP channels in the kidney [71, 72]. With the help of pharmacological tools, calcium entry
induced by the application of hypotonic extracellular solutions can be assigned to TRPV4 and
TRPMS3 [71, 73-75]. While TRPV4 is activated by 4a-Isomers of phorbolesters and is blocked
by ruthenium red, TRPMS3 is activated by sphingosine and by pregnenolone-sulphate and
blocked by gadolinium ions. TRPM3 is expressed in different areas of the CNS such as the
hippocampus, the corpus callosum, the cortex or the hippocampus. These findings were
reproduced in different studies using RT-PCR [29], northern blot [66, 76], as well as immuno-
histochemistry [77, 78]. TRPM3 channels are found in neurons (cerebral Purkinje neurons) as
well as in oligodendrocytes [76-78]. Interestingly, neuronal expression of TRPM3 is present
throughout development. However, it is almost lost in the adult brain [77]. In contrast, TRPM3
is highly expressed in oligodendrocytes in the adult brain.

The phylogenetically next neighbours to TRPM1 and TRPM3 are TRPM6 and TRPM?7 [79]. The
latter ones are involved in the body magnesium homeostasis [80]. While TRPM? is ubiqui-
tously expressed, TRPM6 is expressed in epithelial cells of the gut and the kidney and
responsible for magnesium absorption and reabsorption. Loss-of-function mutations in
TRPMS6 are linked to autosomal-recessive hypomagnesemia with secondary hypocalcemia [81,
82]. TRPM6, TRPM7 and TRPM2 share a common structural feature. All three genes code for
chimeric proteins combining a hexahelical transmembrane channel forming domain with a C-
terminal enzymatic active domain [83]. In the case of TRPM6 and TRPM7, the pore-forming
domains are fused to atypical alpha kinase-like structures. The functional role for the enzy-
matic domain is still under dispute. TRPM6 and TRPM7 are permeable for magnesium and
for other essential divalent cations like Ca*, Zn?, Mn?*, Co*" as well as toxic cations like Ba%,
Sr?, Ni?*, Cd* [84, 85]. While TRPM6 mRNA was detected at low level in different brain areas
[29], nothing is known about its role in the CNS. In contrast to TRPM6 channels, TRPM7 mRNA
is highly expressed in the brain [29, 86]. In primary hippocampal neurons as well as in
pyramidal hippocampal CA1 neurons in rat brain slices, TRPM7 was detected by different
groups using immunocyto- and immunohistochemistry [87-89].

While divalent ions are the preferentially carried ion of TRPM6- and TRPM7-mediated
currents, TRPM4 and TRPM5 form ion pores impermeable for divalent ions and allow
selectively sodium to pass [90]. As sodium channels, TRPM4 and TRPM5 are paradoxically
activated by increased intracellular calcium concentrations and represent calcium-activated
sodium channels. TRPM4 is expressed in different brain regions including the thalamus, the
hypothalamus, the medulla oblongata, the hippocampus and the spinal cord in mouse, rat as
well as human brain (Lein et al., 2007; [29, 91]. In contrast to TRPM4, the expression of TRPM5
is restricted to a few cell types. TRPMS is expressed in taste buds of the tongue and involved
in the sensation of bitter and sweet taste [92, 93].
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The remaining two TRPM channels proteins, TRPM2 and TRPMS, can also be discussed in the
light of sensory functions. As already mentioned, TRPM2 represents a chimeric protein
integrating an ADP-ribose hydrolase domain C-terminal to the pore-forming transmembrane
domains [83]. Simultaneously to the ADP-ribose hydrolysing activity of the C-terminal
enzymatic domain, TRPM2 is activated by ADP-ribose and it has been shown that the C-
terminal part is essential for the function of the pore forming channel protein [94, 95]. Increased
intracellular ADP-ribose concentrations are linked to genotoxic and/or oxidative stress of cells
leading to the activation of the poly(ADP-ribose) polymerase (PARP) modulating protein
stability by the mono and poly ADP-ribosylation of proteins [96]. This process of protein
stability regulation is additionally controlled by an enzyme called poly(ADP-ribose) gluco-
hydrolase (PARG). PARG reduces the post-translational poly ADP-ribose modifications to
mono ADP-ribosylation, thereby increasing the intracellular ADP-ribose concentration
leading to the activation of TRPM2. In whole cell calcium imaging experiments, the extracel-
lular application of hydrogen peroxide results in the activation of TRPM2 validating its
function as redox sensor. TRPM2 channels are preferentially expressed in microglia cells, the
host macrophages of the CNS [97, 98]. In addition, in several brain regions such as the
hippocampus, the cortex and the substantia nigra TRPM2 channels were also detected in
neurons using RT-PCR, western blotting as well as immunohistochemistry [99, 100]. It was
suggested that TRPM2 and TRPM?7 channels form heteromers because knock-down of TRPM7
with siRNA is accompanied by down-regulation of TRPM2 channels [101]. TRPMS, the cold
sensor, is mainly expressed in sensory neurons. TRPMS is activated at temperatures between
8 °C to 28 °C as well as the secondary plant compound menthol and synthetic cooling com-
pounds. Together with TRPA1, TRPMS represent the cold sensors in human. Noxious cold is
mediated by TRPA1 [26, 102].

2.3. TRP channels in the brain - TRPV channels

Vanilloid structures, derivates of vanillin comprising eugenol, zingerone and capsaicin, are
found in many spice plants and known for their individual characteristic flavour. Beside the
use as spice, vanilloid containing plant extracts are used as remedy in the various traditions
of folk medicines. Therapeutic and experimental use of capsaicin in pain treatment inspired
research resulting in the unravelling of the molecular target of capsaicin. The molecular target,
an ion channel related to Drosophila TRP, was named capsaicin or vanilloid receptor and
became eponym of the subgroup or structurally related ion channels of the TRP channel
superfamily [15]. The vanilloid-like TRP channels comprise six members, four proteins (TRPV1
to TRPV4) like TRPV1 are non selective ion channels involved in thermosensation [14, 73, 74,
102, 103], while two ion channels (TRPV5 and TRPV6) represent highly calcium-selective ion
channels [75, 104].

The warm and heat sensors (TRPV1 to TRPV4) and the cold sensors (TRPMS8 and TRPA1)
represent the thermosensors of the human body and cover the complete temperature range
necessary for human life. As warning sensors expressed in dorsal root ganglia, the thermo
TRPs are also involved in sensation and modulation of pain and therefore interesting as
molecular targets for new pain-treating drugs. Most studies dealing with the structural and



TRP Channels in Neuronal and Glial Signal Transduction
http://dx.doi.org/10.5772/58232

functional properties of the TRPV channel family in the CNS are focused on TRPV1. However,
TRPV2, TRPV3 and TRPV4 are also detected in the CNS. In contrast for TRPV5 and TRPVS,
there is no evidence for their expression in the CNS.

Localization Function References
Hippocampus (interneurons, dentate  involved in anxiety and fear [132,151]
gyrus)
involved in LTD [152, 153]
involved in LTP [152]
involved in pathogenesis of epilepsy [126, 127]
hypothalamus central osmoregulation [154,155]
central regulation of temperature [108]
Locus coeruleus potentiation of glutamate,
adrenaline or norepinephrine release [151]
Cortex involved in cortical excitability [156]
involved in pathogenesis of epilepsy [126]
Striatum facilitation of glutamatergic [157]
postsynaptic neurotransmission [158]
glutamate release [159]

Table 1 Localization and putative function of TRPV1 channels

TRPV1 expression in the CNS was investigated using a variety of methods ranging from
pharmacological characterization and immunohistochemistry [105] to RT-PCR [106], western
blotting to radio ligand binding [107]. Beside the great variety of methods and studies the
expression of TRPV1 in the brain remains controversial. Several studies showed a wide spread
TRPV1 expression in the CNS suggesting an expression of TRPV1 in pyramidal neurons of the
CA1, CA3 area of the hippocampus, the dentate gyrus, the locus coeruleus, the hypothalamus,
the substantia nigra, the cerebellum, the cortex and other limbic structures [108]. Other studies
reported TRPV1 expression which was highly restricted to primary sensory ganglia with
minimal expression in few brain regions which are adjacent to the caudal hypothalamus [107]
(expression profiles and methods are summarized in Table 1). However several groups used
TRPV1 agonists or antagonists as well as TRPV1 knock-out mice to define the role of TRPV1
channels in the CNS and reported versatile functions in different brain regions such as the
hippocampus, the substantia nigra, the cortex or the hypothalamus. TRPV1 channels are not
only activated by capsaicin but also by the CB1 agonist anandamide [109], other endovanilloids
such as N-acyldopamines or the endogenous lipoxygenase derivates HPETE which are
released for example in the hippocampus after mGluR1 activation [108]. Importantly, coloc-
alization of TRPV1 and CB1 receptors was found in different mouse brain regions including
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the pyramidal cells of the hippocampus and basal glia [110, 111]. Regarding its cellular
localisation, TRPV1 channels were detected in neuronal cell bodies, presynaptic terminals as
well as in dendrites on postsynaptic spines [105, 106, 112, 113]. Furthermore, these channels
are also present in pericytes and at the feet of astrocytes surrounding small vessels [105, 114].

TRPV2 channels are widely distributed in the brain compromising the colocalisation with
TRPV1 in the cortex [19, 112, 115, 116]. TRPV3 mRNA was detected throughout the cortex,
hippocampus, thalamus, striatum and cerebellum [117, 118]. TRPV4 mRNA is present in the
hypothalamus, the cerebellum, basal ganglia, as well as in pyramidal neurons of the hippo-
campus [29, 119, 120]. Importantly, TRPV1-4 were also found in astrocytes [121, 122].

3. TRP channels in CNS diseases

3.1. Developmental disorders — Rett syndrome

Rett syndrome (RTT) is severe X-linked neurodevelopmental disorder which is unique among
genetic, chromosomal and other developmental disorders because of its extreme female
gender bias, early normal development, and subsequent developmental regression with loss
of motor and language skills. RTT is caused by heterozygosity for mutations in the X-linked
gene MECP2, which encodes methyl-CpG binding protein 2. Rett syndrome patients suffer
from stereotypic wringing hand movements, social withdrawal, communication dysfunction,
cognitive impairment, respiratory dysfunction as well as failing locomotion [123]. MeCP2
regulates expression of multiple genes, including BDNF. BDNF signaling was strongly altered
in Mecp2 mutant mice [48].

Importantly, TRPC3 and TRPC6 channel expression and function was significantly lower in
the hippocampus and several other brain regions of Mecp2 mutant mice revealing a cellular
phenotype certainly contributing to hippocampal dysfunction in Mecp2 mutant mice as well
as Rett syndrome etiology. These results suggest that compounds which enhance BDNF release
or boost TRPC3/TRPC6 channel function might be an interesting new preclinical concept
which needs to be evaluated in Rett mouse models [124, 125].

3.2. Epilepsy

Recent data suggests that TRPV1 channels might contribute to the pathophysiology of
epilepsy. In the cortex and hippocampus from patients suffering from mesial temporal lobe
epilepsy, the most common form of chronic and intractable epilepsy, TRPV1 mRNA and
protein expression was significantly increased compared to healthy controls [126]. In a mouse
model of temperal lobe epilepsy, these findings were supported [127]. The expression of
TRPV1 in the dentate gyrus was significantly enhanced. Furthermore, capsaicin and ananda-
mide significantly enhanced glutamate release in a TRPV1-dependent manner in mice with
temperal lobe epilepsy [128, 129]. In contrast, the TRPV1 antagonist capsazepine reduced 4-
aminopyridine-induced seizure-like activity in mice [128].
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Beside TRPV1 channels, data from knockout mice point to a role of TRPC1/4/5 as well as for
TRPC3/6 channels in the pathophysiology of epilepsy. Phelan et al. described a major role of
TRPC1 and TRPC4 channels in the plateau potential of lateral septal neurons which show a
high vulnerability to seizure-induced neuronal death as well as direct excitotoxicity by the
application of group I mGluR receptor agonists [33]. In vivo results using the pilocarpine-
induced status epileptics in TRPC1/TRPC4 double knockout animals showed surprising
results. Cell death was significantly reduced in the lateral septum but also in the CA1 region
of the hippocampus after severe seizures. However, the severity of the seizures per se was not
altered. The authors concluded that this conundrum might be explained by the hypothesis that
TRPC5 channels might be important for epileptiform burst in other limbic brain areas. This
hypothesis was recently supported using TRPC5 knockout mice [32]. They exhibit significantly
reduced seizures and minimal seizure-induced cell death in the CA1 region of the hippocam-
pus. Importantly, spatial learning was not affected making TRPC5 channels an attractive novel
target for the treatment of epilepsy.

TRPC3 channels are also discussed to play a “toxic” role in status epilepticus [46, 130]. After
pilocarpine-induced status epilepticus in rats, TRPC3 expression was significantly enhanced
in CA1, CA3 pyramidal neurons as well as dentate granule cells, whereas TRPC6 channel
expression was reduced in these areas. Using two pharmacological approaches, first the
inhibition of TRPC3 with the selective antagonist Pyr3 and second activation of TRPC6
channels with the TRPC6 activator hyperforin protected against neuronal damages following
the status epilepticus [46].

3.3. Migraine

TRP channels might be involved in several processes relevant for the pathophysiology of
migraine such as altered central calcium homeostasis, multimodal sensory and pain percep-
tion, or central or peripheral sensitization. Therefore, a recent study investigated single
nucleotide polymorphisms (SNPs) in TRP genes in 1040 patients and 1037 healthy controls in
Spain. For TRPV1, anominal association was found for TRPV1 rs 222741 in the overall migraine
group, for TRPV3 a correlation with TRPV31s7217270 was detected in the migraine group with
aura [131].

3.4. Mood disorders — anxiety, unipolar and bipolar depression

TRPV1 and TRPV3 channels might be involved in fear and anxiety [107, 132]. TRPV1 knockout
mice showed decreased anxiety-related behavior in several behavior paradigms such as the
elevated plus maze test or the light dark test [107, 132]. Furthermore, fear and stress reaction
were also reduced in TRPV1 knockout mice [107]. Therefore, TRPV1 antagonists such as
capsazepine were investigated when they were applied directly into the ventral hippocampus
or the periaqueductal grey. In both studies capsazepine showed anxiolytic effects. Recent
studies investigated if compounds which act on both TRPV1 as well as CB1 receptors might
be more effective than selective TRPV1 blocker [133]. N-arachidonoyl-serotonin which blocks
TRPV1 channels and indirectly activates CB1 receptors and Arachidonyl-2-chloroethylamide
(ACEA) which activates both TRPV1 as well as CB1 receptors were investigated. N-arachi-
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donyl-serotonin was more effective than arachidonyl-2-chloroethylamide in behavioral
paradigms for anxiety [134, 135]. The TRPV1/CB1 agonist ACEA showed anxiolytic effects in
a bell shaped dose dependency in a mouse model using electrical stimulation of a brain area,
the medial dorsal periaqueductal gray, which has an important role in orchestrating anxiety-
and panic-related responses [133, 136]. The panicolytic effects are dependent on CB1 receptors.
Importantly, in higher concentrations ACEA loses its anxiolytic effect probably via TRPC1
activation. This assumption is supported by the finding that ACEA effects in higher concen-
trations can be unmasked by the addition of the TRPV1 antagonist capsazepine. TRPV1
blockade per se also showed panicolytic effects suggesting opposite functions for TRPV1 and
CB, receptors in the modulation of panic-like responses [136].

The evidence for the role of TRPC6 channels in depression comes from the active antidepres-
sant constituent of St. Johns wort, hyperforin. Hyperforin resembles in its effects several
classical antidepressants and neurotrophic factors such brain derived neurotrophic factor
(BDNF) or nerve growth factor (NGF) [137-140]. Hyperforin inhibits neurotransmitter
reuptake and improves synaptic plasticity ranging from increased neuritic outgrowth in PC12
cells to altered spine morphology in CAl and CA3 neurons of the hippocampus via the
activation of TRPC6 channels [137-139]. Recently, we showed that several signal cascades are
involved in the alteration of synaptic plasticity such as Ras/MEK/ERK, PI3K/Akt as well as
CAMKIV which finally result in CREB phorsphorylation [137]. In addition, enhanced CREB
phosphorylation and TRPC6 channel expression was detected in the cortex but not the
hippocampus after chronic hyperforin treatment for 4 weeks in adult mice [141]. However,
hippocampal neurogenesis remained unchanged. Bouron et al. suggests that not only the
hyperforin-mediated calcium influx but also its effects on intracellular zinc might be important
for its antidepressant activity [142, 143]

Oxidative stress, mitochondrial dysfunction, and disrupted intracellular Ca* homeostasis are
discussed to play a role in bipolar disorder (BD). TRPM2 channels, as a regulator and connector
between reactive oxygen species (ROS) and intracellular Ca?, seem to be implicated in bipolar
disorder. In B-lymphocytes from patients, TRPM2 channel expression is elevated associated
with enhanced intracellular Ca* levels [144]. In addition, several groups reported genetic
association between several intronic and extronic single nucleotide polymorphisms in TRPM2
and BD [145-149]. In a recent study using B-lymphocytes from small group of patients (n = 6)
suffering from bipolar disorder, no change in TRPM2 expression could be detected. However,
they were more susceptible to oxidative stress when stimulated with H,O, [150],

3.5. Multiple sclerosis

Multiple sclerosis is a neurodegenerative disease caused by chronic inflammation of the CNS.
Schattling et al. recently demonstrated that TRPM4 channels are involved in the pathogenesis
of multiple sclerosis by using TRPM4 knockout mice and inducing an experimental autoim-
mune encephalomyelitis (EAE) in these animals [91]. TRPM4 channels are located in hippo-
campal neurons from mice and humans as well as in the spinal cord and cortex. TRPM4
deficiency reduced overall disease severity. Importantly, deficiency or pharmacological
inhibition of TRPM4 resulted in reduced axonal and neuronal degeneration without altering
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EAE relevant immune function. In addition, axonal TRPM4 expression in axons was signifi-
cantly elevated in demyelinating white matter brain lesions of patients with multiple sclerosis
in comparison to healthy controls. The authors further demonstrate that TRPV4 channels are
involved in toxic effects of high glutamate levels which are a major contributor to neurode-
generation in multiple sclerosis.

4. Conclusion

Transient receptor potential (TRP) channels comprise a large family of non selective, calcium-
permeable channel proteins which are activated and regulated by different mechanisms. TRP
channels respond to secondary plant compounds as well as intracellular stimuli such as
calcium, metabolites of the arachidonic acid or phosphatidylinositol signal transduction
pathways. TRP channels sense environmental stimuli such as changes in temperature,
osmolarity and pH and represent the molecular target of pheromones, taste and secondary
plant compounds. The broad function of TRP channels in CNS physiology becomes apparent
through their involvement in several psychiatric and neurological CNS disorders. This makes
them an interesting topic for further research and drug development. The diversity of the
chemical structures and the selectivity of the naturally occurring compounds modulating TRP
channels show the possibility for pharmacological modulation of TRP channels and inspire
the development of new synthetic structures for TRP channel interference at bench and
bedside.
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1. Introduction

Cytosolic calcium plays a major and central role in neuronal activity and functions both in
brain and in peripheral nervous systems, and its sustained alteration is a critical event that
leads to neuronal death. On these grounds, it is not surprising that a sustained alteration of
intracellular calcium homeostasis in neurons is a point of convergence of the cellular mecha-
nisms underlying many neurodegenerative processes in the brain. Indeed, this has been shown
to be the case for the brain’s neurodegenerative diseases of higher incidence to humans, like
Alzheimer’s and Parkinson’s, or in the acute neurodegeneration observed in amyotrophic
lateral sclerosis, and also for major brain insults, such as excitotoxicity in trauma and ischemia-
reperfusion, inflammation and neurotoxicity by drugs and environmental chemicals.

Sustained deregulation of cytosolic calcium concentration have been reported in neuronal
apoptosis and necrosis, the two major cellular death pathways involved in brain neurodegen-
eration. It has been experimentally demonstrated and confirmed by many investigations using
cell cultures that a sustained rise of cytosolic calcium concentration in the neuronal soma
within the range 0.5-1 uM elicits a rapid necrotic neuronal death, mediated by calcium-
dependent proteases activation, like calpains. On the other hand, long-term sustained cytosolic
calcium concentrations below 60-70 nM in the neuronal soma promote the slow development
of apoptotic neuronal death of neurons in culture [1,2]. Since the central role of calcium in
neurotransmitter secretion and neuronal plasticity is also well known, the basal steady state
cytosolic calcium concentration in the neuronal soma can be considered as a bioenergetics
marker of neuronal activity and survival. We shall then present the major calcium transport

I m EC H © 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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systems that control the cytosolic calcium homeostasis in the wider space within neurons, i.e.
in the neuronal soma. Owing to the large subcellular regionalization of neuronal processes
essential for the normal activity of neurons and especially in neuronal signal transduction
pathways, we shall also place a particular emphasis in the subcellular compartmentation of
these calcium transport systems.

Noteworthy, neurodegenerative processes in the brain also share another common metabolic
deviation, namely, that neurons are also exposed to an enhanced oxidative stress in the
brain. Using different types of neuronal cultures, many investigators have shown during
the last 15 years that the cellular oxidative stress produced by reactive oxygen species (ROS)
and reactive nitrogen species (RNS) and a sustained alteration of the intracellular calcium
homeostasis are metabolic deregulations usually observed during the early stages of the
development of the process of neuronal death and before the cell viability loss induced
entry in the irreversible steps characterized by the activation of proteases. In addition, it
has been proposed that alterations of the intracellular calcium homeostasis of glial cells can
also contribute to inflammation and damage in the brain in neurodegenerative processes
[3]. Therefore, a better knowledge of the major molecular pathways contributing to induce
the oxidative stress in the brain and the deregulation of intracellular calcium homeostasis
in neurons should be expected to lead to the development of novel and more efficient
therapies against brain neurodegeneration.

The fact that the most relevant calcium transport systems for the fine tuning of cytosolic
calcium homeostasis in neurons have been shown to be molecular targets for ROS/RNS
generated in neurodegenerative insults and diseases will be analyzed next in this context. As
most of neurotoxic ROS/RNS species react with many intracellular molecules and these species
are short-lived within the cells, the extent of chemical modification of each calcium transport
system by ROS/RNS is strongly dependent on its relative proximity to the ROS/RNS source.
In functional terms, it has been shown by many studies that ROS/RNS can elicit estimulation
or inhibition of key proteins of calcium signalling pathways in neurons, and that these effects
are strongly dependent on the specific protein, on the ROS/RNS concentration in the micro-
environment and on the accummulated dose of ROS/RNS (time of exposure). Therefore,
clustering of these systems within subcellular microdomains plays a major role in cross-
modulation between calcium and ROS/RNS intracellular signalling, and this point will be
specifically addressed thereafter in this chapter.

Furthermore, the accummulated experimental evidences pointing out that there is an intimate
cross-talk between calcium and ROS/RNS intracellular signalling pathways are now ovel-
whelming, including the modulation of ROS/RNS sources by calcium in neurons and the redox
modulation of calcium transport systems. Both, calcium and ROS/RNS intracellular signalling
show a clear pattern of local and focalized transients of intracellular concentration (peaks).
Therefore, clustering of calcium transport systems responsible of the rise of cytosolic calcium
and ROS/RNS sources within the same subcellular microcompartments will generate over-
lapping focalized points of high concentration of calcium and ROS/RNS. In addition, this
clustering will produce transient and highly focalized cytosolic calcium concentration peaks
near the calcium entry points and associated calcium concentration waves owing to the rapid
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diffusion coefficient of calcium ions. Thus, we shall discuss the space and time fluctuations of
cytosolic calcium concentrations that are known to be produced by the activity of calcium
transport systems more relevant for the control of cytosolic calcium homeostasis in the
neuronal soma. Finally, the last section of this chapter is focussed in the most relevant calcium
buffering systems expressed in neurons and their modulation by oxidative stress, since calcium
buffering systems of the neuronal cytosol play a major role to attenuate the local gradients of
calcium concentration.

2. Neuronal cytosolic calcium homeostasis is attained by functional
coupling between different types of calcium transport systems

A highly efficient spatial and temporal coupling between the activity of transport systems
producing calcium entry to the cytosol and those extruding calcium out of the cytosol is a basic
bioenergetics need for brain neurons, as they establish many functional synapses and have to
maintain and rapidly restore cytosolic calcium in the neuronal soma within the narrow
concentration window that allows for neuron survival. Extensive experimental studies carried
out during last thirty years have settled the major molecular actors that allow neurons to
achieve this goal, see for example the reviews [4-7], and these are schematically presented in
the diagram of the Figure 1. Thus, the control of cytosolic calcium homeostasis in neurons is
primarily the result of the activity of transport systems at the plasma membrane acting in
concert, with the help of calcium transport systems located in intracellular stores, mainly in
the endoplasmic reticulum and mitochondria. The concentration gradient of calcium ions
across the neuronal plasma membrane in the brain is by far larger than the concentration
gradients of other ions involved in the control of neuronal excitability, like potassium, sodium
and chloride. In addition, cytosolic calcium binding proteins provide the neurons with
buffering capacity to attenuate the peak height of free cytosolic calcium concentration spikes
after focal neuronal stimulation by some neurotransmitters or after high frequency repetitive
neuronal stimulation [8].

In primary cultures of cerebellar granule neurons, calcium entry through L-type voltage-
operated calcium channel (L-VOCC) accounts for more than 75% of the increase of the steady-
state cytosolic calcium in the neuronal soma after partial depolarization of the plasma
membrane upon raising the extracellular potassium concentration from 5 to 25 mM [9]. The
particular relevance of this observation for neuronal survival is highlighted by the fact that the
apoptosis of these neurons induced by low potassium (5 mM) in the extracellular medium can
be blocked simply by raising the extracellular potassium concentration up to 25 mM [1,10].

Many other experimental data accumulated along the last two decades point out that the
transport systems more potent to elicit a fast and sustained increase of cytosolic calcium in
neurons are located at the plasma membrane, i.e. ionotropic receptors and VOCC. These
calcium transport systems are activated by extracellular stimuli, neurotransmitters or neuro-
modulators, either directly or indirectly through plasma membrane depolarization. Let us
recall here, for example, that high frequency stimulation of neurons by application of electrical
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Figure 1. Diagrammatic image illustrating the major calcium transport systems controlling the concentration of cyto-
solic calcium in the neuronal soma. Yellow and white arrows indicate cytosolic calcium entry and extrusion transport
systems, respectively. The thickness of the arrow indicates the relative relevance. Abbreviations: Endopl.Ret., endoplas-
mic reticulum (green space); NMDAr, NMDA receptor; AMPAr, AMPA receptor; L-VOCC, L-type voltage- operated calci-
um channel; PMCA, plasma membrane calcium pump; NCX, sodium-calcium exchanger; MR, metabotropic receptor;
RyR, ryanodine receptor; IP;R, IP; receptor; SERCA, endoplasmic reticulum calcium pump; PTP, mitochondrial permea-
bility transition pore; CaUP, mitochondrial calcium uniporter.

depolarizing pulses or of the appropriate neurotransmitter (chemical stimulation) can lead to
neuronal tetanic activity. Because of their focalized distribution pattern in the neurons and
also because of the large differences in the intensity of calcium currents across activated
ionotropic receptors and VOCC, significant calcium concentration gradients between different
cytosolic regions of the neuron during normal neuronal activity are expected to develop at
least transiently. In contrast, the rise of IP; following activation of phospholipase C after
stimulation of members of the large family of G-coupled neurotransmitter receptors [5], also
located at the plasma membrane, promoted calcium release from intracellular stores display-
ing calcium spikes of smaller intensity and a more widespread increase of calcium concentra-
tion within the cytosol.

Taking into consideration the large number of different chemical molecules that promote
neuronal stimulation within the brain and the high frequency of the stimulation events, it is
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wonderful for its simplicity that the concerted action of only a few calcium transport systems
can maintain neurons functional and alive for so many years during human lifetime. Why such
asimple design? As the evolution selects the living structures and organisms that optimize the
use of metabolic energy [11] and the bioenergetics costs for building a complex structural
design is always higher than the costs for building simpler structures, probably the answer is:
to optimize the use of the metabolic energy in neurons. Let us recall here that the large needs
of metabolic energy to continuously restore the electric potential of the plasma membrane of
active brain neurons, which is essential for their proper biological functions, would not allow
them to develop a safe system for the control of cytosolic calcium homeostasis of a high-
bioenergetics cost of maintenance and repair. Noteworthy, maximal energy optimization
within the cells can be attained when the coupling between molecules involved in energy
transduction makes use of the information or entropic energy stored in subcellular structures,
i.e. minimizing stochastic collisional events that dissipate a large amount of energy, and this
seems to be the case. For example, the subcellular distribution of the calcium transport systems
in neurons enables them to use cytosolic calcium for highly polarized, rapid and specific
synaptic responses, and also for more slowly developing adaptative responses, like long term
post-synaptic potentiation or depression [4,5]. Furthermore, the different levels of expression
of ionotropic and metabotropic receptors in distinct types of neurons allows for differential
selectivity and sensitivity in calcium modulation of neuronal threshold excitability, thereby
linking regionalization of neuronal responses within the brain structures with the major
neurotransmitter pathways.

2.1. The calcium entry systems of the neuronal plasma membrane

All neurons express different types of functional VOCC. On the basis of their unitary conduc-
tance, on their rate of inactivation and their subcellular location the most relevant for neuronal
calcium homeostasis are the L-VOCC. The L-VOCC unitary conductance has been reported to
be in the range of 20-25 pS, while reported unitary conductances for N-, P/Q- and R-type range
between 10 and 20 pS, and L-VOCC inactivation kinetics is slower than that of the other VOCC
types [12-17]. In addition, L-VOCC are polarised in the neuronal soma and at the conical neck
leading to neurite extensions [18], whereas N-, P/Q and R-types of VOCC are largely enriched
in the presynaptic plasma membranes and its activation serves largely to elicit neurotrans-
mitter release at the synapses [14,19-21]. On these grounds, taking also into consideration the
rate of kinetics inactivation of the P/Q-VOCC, these channels should afford a contribution to
the cytosolic calcium homeostasis of the neuronal soma much lower than that of L-VOCC but
higher than that of N-, R- and T-types of VOCC. Indeed, using specific channels blockers we
have experimentally assessed that the sum of the contributions of non-L-VOCC calcium
channels to the cytosolic calcium homeostasis of the neuronal soma of primary cultures of
cerebellar granule neurons in a standard Locke’s medium with 25 mM K is lower than 20%,
while the L-VOCC contribution is 80% or higher (unpublished results).

L-VOCC, which are expressed in all neurons, are by far the most relevant calcium channels
not only for the tuning of steady-state cytosolic calcium homeostasis in neurons (see above),
but also for the overall threshold neuronal excitability, see [22-24]. The L-VOCC family, also
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known as Cay1, has four subtypes: Cay1.1, Cay1.2, Cay1.3 and Cay1.4 [25]. Cay1.2 and Cay1.3
are expressed in neurons, cardiac and endocrine cells, while Cay1.1 and Cay1.4 are specific of
skeletal muscle and retina, respectively [26]. In brain, near 80% of L-VOCC belongs to the
Cay1.2 subtype and 10-25% to the subtype Cay1.3 [27]. It has been reported that inactivation
of the gene encoding for Cay1.2 in the hippocampus and neocortex of mouse (Cay1.2HKO)
leads to a selective loss of N-methyl-D-aspartate (NMDA) receptors-independent long-term
potentiation [28]. The activity of these calcium channels is modulated not only by the plasma
membrane potential but it is also dependent upon their phosphorylation by protein kinases.
Meanwhile the activation of different isoforms of protein kinase C (PKC) has been reported to
produce stimulation or inhibition of L-VOCC activity in different cellular types [29], the
activation of protein kinase A (PKA) and of calcium/calmodulin-dependent protein kinase II
(CaMKII) have been shown to increase the activity of L-VOCC. Moreover, both PKA and
CaMKII have been shown to form complexes with L-VOCC subunits. In brain, PKA associates
with L-VOCC subunit alc [30]. L-VOCC subunits alc and 2 are phosphorylated by PKA
[31-34], and this produces an increase of L-VOCC activity. It has been demonstrated that this
increase of L-VOCC activity is mediated by phosphorylation of Ser478 and Ser479 of the f3-
subunit and also by phosphorylation of Ser1928 of the alc-subunit, as their mutations led to
complete elimination of the PKA-induced increase of calcium currents catalyzed by L-VOCC
[29,35]. Regarding CaMKI]I, the amino acids sequence near Thr498 of the L-VOCC subunit 32a
shows a high homology with the self-inhibitory domain of the CaMKII and with the binding
domain of this kinase in the NR2B subunit of NMDA receptors [36]. Indeed, it has been shown
the co-localization within neurons of the L-VOCC (Cay1.2 type) and CaMKII [37] and also of
the L-VOCC subunit f2a with CaMKII, and this has led to the suggestion that the L-VOCC
subunit 32a can act as an associated protein of CaMKII in vivo [36]. Phosphorylation of L-VOCC
by CaMKII takes place not only in Thr498 of the 32a subunit but also in Ser1512 and Ser1570
of the al subunit and leads to an increase of the intensity of calcium currents through these
channels [36, 38-40]. It has been proposed that the modulation of L-VOCC by CaMKII can be
relevant to potentiate the raise of cytosolic calcium concentration in response to hormones and
growth factors [41,42]. In contrast, the excessive activation of the L-VOCC (Cay1.3 type) by
CaMKII over-stimulation has been correlated with the loss of dendritic spines in the striatum
observed after dopamine depletion in animal models of parkinsonism [43].

The most potent calcium ionotropic receptors present in the neurons of the mammalian brain
are L-glutamate receptors of the NMDA and a-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid (AMPA) subtypes, except those AMPA receptors formed only with GluR2
subunits [44,45], and P,y-purinergic receptors [46]. NMDA and AMPA receptors are present
in most fast excitatory synapses in the brain, allowing for neuronal responses in the millisec-
onds time scale range, and P,x-purinergic receptors display also a widespread distribution in
the brain. The more limited distribution in brain of L-glutamate receptors of the kainate
subtype, its low ionic selectivity for calcium and the slight calcium currents generated upon
its activation compared to those observed upon activation of AMPA and NMDA receptors [47],
suggest that they can play at most a secondary role in the tuning of cytosolic calcium homeo-
stasis of a very limited number of brain neurons.
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The L-glutamate receptors are expressed in the vast majority of glutamatergic neurons, and
they are present in the major structures of mammalian brain (neocortex, striatum, hippocam-
pus and cerebellum). NMDA, AMPA and kainate receptors are oligomeric integral membrane
proteins, being their calcium channel structure predominantly formed by a combination of
different, though highly homologous, subunits [48]. Among these receptors, NMDA receptors
play an outstanding role in neurosciences, as supported by many experimental evidences in
studies of brain development [49], long term post-synaptic potentiation [4] or brain damage
after ischemia-reperfusion [44,45]. Three major reasons allows to explain the dominant role of
NMDA receptors over AMPA and kainate receptors in the brain: (1) the NMDA single channel
conductance is higher than AMPA single channel conductance, 40-50 pS versus ~20 pS [16,50];
(2) their higher affinity for the endogenous agonist L-glutamate, e.g. the EC5, for L-glutamate
is ~10 uM for NMDA receptors and ~200 uM for AMPA receptors, and (3) the slower desen-
sitization rate of NMDA receptors, e.g. several hundreds of milliseconds for NMDA receptors
while it is ~10 milliseconds for AMPA receptors [48]. Nevertheless, the maximal activation of
NMDA receptors not only requires the presence of L-glutamate but also co-stimulation by
glycine or D-serine in the brain and relief of Mg? inhibition [48,51]. Both, AMPA and P,,
receptors can potentiate NMDA receptor activation in the brain. AMPA receptors co-localiza-
tion with NMDA receptors allows that plasma membrane depolarization induced by activa-
tion of AMPA receptors elicits the relief of Mg* inhibition of NMDA receptors.
Phosphorylation by PKC and CaMKII promotes synaptic incorporation of AMPA receptors
during long-term post-synaptic potentiation (LTP), and the latter kinase also enhances the
channel conductance of this receptor [52-54]. On the other hand, it has been shown that
facilitation of L-glutamate release by P, activation can lead to a stronger NMDA receptor
activation. The calcium channel in the NMDA-receptor structure can be formed by different
combinations of subunit 1 (NR1) and one of the isoforms of subunit 2 (NR2A, NR2B, NR2C
and NR2D) [55]. The expression of functional NMDA receptors is a relatively slow process
during the maturation of neurons [56]. Therefore, in molecular terms there are different
isoforms of functional NMDA receptors whose level of expression varies from one type of
neurons to another, and also during neuronal maturation. In addition, NMDA receptors are
found in synaptic and in extra-synaptic locations [56-58]. As activation of extra-synaptic
NMDA receptors can lead to a less focalized increase of cytosolic calcium, the extra-synaptic
NMDA receptors are likely to play a role more relevant than synaptic NMDA receptors in the
control of cytosolic calcium homeostasis in the neuronal soma. Phosphorylation of NMDA
receptors in vitro by PKA and by some PKC isoforms increases their activity [59]. The co-
stimulation of PKA and PKC elicits the phosphorylation of Ser896 and Ser897 leading to
activation of NMDA receptors, while phosphorylation of Ser890 by only PKC leads to a
subcellular re-localization of the NR1 subunit of NMDA receptors, which is reverted upon
dephosphorylation [60].

2.2. Transport systems that release calcium from intracellular stores

The long-term control of neuronal calcium homeostasis also involves several major calcium
transport systems of the subcellular organelles that behave as relevant neuronal intracellular
stores, namely, endoplasmic reticulum and mitochondria.
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The endoplasmic reticulum Ca?-ATPase (SERCA) helps to pump calcium out from the cytosol
to the endoplasmic reticulum internal space [5], while calcium release from the endoplasmic
reticulum involves the activation of IP; receptors and/or ryanodine receptors in different
neuronal responses and in synaptic plasticity [5,61-63]. Although the neuronal endoplasmic
reticulum can accumulate much lower amounts of calcium than the sarcoplasmic reticulum of
muscle cells, it is still significant for hippocampal neurons as shown in several studies, see e.g.
[4,64]. In these cases, calcium release from the endoplasmic reticulum can sustain a moderate
increase of cytosolic calcium, which has been shown to play a significant role in the process of
LTP in hippocampal neurons [4,64]. By itself, calcium filling of the endoplasmic reticulum is
relevant for neuronal survival to ensure the correct protein folding of many proteins, partic-
ularly proteins of the plasma membrane or to be secreted to the extracellular space, as the
activity of several endoplasmic reticulum protein-chaperones is dependent on the calcium
concentration in the internal space of the endoplasmic reticulum [65]. Depletion of calcium in
the endoplasmic reticulum has been shown to elicit the opening of specific calcium channels
of the plasma membrane, the store-operated calcium entry (SOCE) [5,66-67]. The presence of
SOCE in neurons has been documented during last years [4,68], and its opening elicits a
transient increase of cytosolic calcium under neuronal stress conditions to restore the calcium
levels of intracellular stores. The inhibition of SERCA by selective inhibitors, thapsigargin or
cyclopiazonic acid, is needed to induce the large calcium depletion in the endoplasmic
reticulum required for SOCE in experiments with cells in culture. Thus, this process can be
seen as a 'rescue call' at the cellular level and operates under conditions of severe energetic
depletion of the neurons. Indeed, it is to be recalled here that these channels and in particular
the isoforms TRPC-3 and -6 have been also involved in neuronal survival of CGN [69]. More
recently, Selvaraj et al. [70] have demonstrated that in a mouse neurotoxin-based model of
Parkinson’s disease, reduced Ca?" influx through transient receptor potential C1 (TRPC1)
channels in the plasma membrane of dopaminergic neurons triggers a cell death-inducing
endoplasmic reticulum-stress response. These latter results highlighted for the first time the
relevance of calcium homeostasis in Parkinson’s disease.

In contrast, the large population of neuronal mitochondria can store relatively large amounts
of calcium, high enough to elicit a large increase of cytosolic calcium as shown by several
studies, see e.g. [71,72]. Nevertheless, the rate of calcium fluxes across the mitochondrial
membrane transporters in normal cells is much slower than that measured for the major
endoplasmicreticulum calcium transport systems listed above. However, calcium release from
mitochondria high enough to promote a large and sustained rise of cytosolic calcium in
neurons has been observed only during the development of neuronal cell death, as a conse-
quence of the steady opening of the high permeability mitochondrial transition pore [73]. On
these grounds, large calcium release from mitochondria has been proposed to be part of the
molecular mechanism that triggers irreversible events in neuronal cell death through calpains
activation. On the other hand, the uptake of calcium by mitochondria takes place through a
calcium uniporter [71,73], with a rate of uptake in the submicromolar calcium range much
lower than the major cytosolic calcium extrusion pathways, namely, PMCA and SERCA in
neurons [4,6].



Cytosolic Calcium Homeostasis in Neurons — Control Systems, Modulation by Reactive Oxygen and...
http://dx.doi.org/10.5772/57576

2.3. The transport systems involved in calcium extrusion from the cytosol

The major plasma membrane calcium extrusion systems, PMCA and Na'/Ca*-exchanger
(NCX) are expressed in all neuronal types. PMCA provides the major extrusion pathway
operating in neurons for the maintenance of cytosolic calcium concentrations below the
neurotoxic calcium range, i.e. <0.4 uM cytosolic calcium [6,74,75]. As PMCA is active at
cytosolic calcium concentrations below 0.4 uM [6,74], neurons must spend a significant amount
of metabolic energy (ATP) to maintain cytosolic calcium within the short concentration range
which is required for neuronal survival. Therefore, the cytosolic calcium concentration can be
considered a key bioenergetics marker of neuronal activity and survival. In contrast, NCX is
more potent than the PMCA at cytosolic calcium concentrations >0.5 uM [6,76]. On these
grounds, NCX can be seen as a safety system to minimise neuronal damage associated with
cytosolic calcium >0.4 uM, as its activation when cytosolic calcium reaches this range allows
neurons to rapidly reset cytosolic calcium to the concentration window that allows neuronal
survival, see above. The expression levels of different neuronal isoforms of PMCA undergo
significant changes during neuronal maturation [77], and a similar observation has been
reported for NCX isoforms [78]. This has been seen as a neuronal adaptative response to the
fine set of free cytosolic calcium concentration and control of cytosolic calcium homeostasis,
since it has been demonstrated that different PMCA isoforms show different affinity for
calcium [79]. On the other hand, although both PMCA and NCX are found in the plasma
membrane of the neuronal soma and neuronal dendrites, recent data cast doubt on the current
assumption that both PMCA and NCX are homogeneously distributed in the plasma mem-
brane. For example, regulatory effects of actin cytoskeleton have been recently reported on the
NCX activity [80], and actin filaments are components of caveolin-rich structures associated
with 'lipid rafts' [81].

SERCA, which catalyzes the ATP-dependent calcium uptake by this subcellular organelle,
plays only a secondary role as a system for calcium extrusion from the cytosol because in
neurons PMCA is a calcium pump more potent than SERCA [4]. The calcium uptake by
mitochondria is performed mainly via the Ca* uniporter driven by the large mitochondrial
inner membrane potential [73], although the contribution of an alternate transport system yet
ill-defined in molecular terms cannot be excluded under conditions of high frequency of
cytosolic calcium peaks [82]. Nevertheless, in neurons the rate of calcium uptake by mito-
chondria is much slower than the rate of calcium extrusion from the cytosol via the plasma
membrane systems, i.e. the PMCA and NCX, and via the SERCA.

3. Compartmentation of calcium transport systems relevant for the control
of cytosolic calcium homeostasis in nanodomains of the neuronal plasma
membrane and functional implications

Many recent experimental evidences have demonstrated that the calcium transport systems
of the neuronal plasma membrane more relevant for the control of cytosolic calcium homeo-
stasis are clustered within focalized nanodomains of a diameter size lower or equal to few

67



68 Neurochemistry

hundreds of nanometers. Lipid rafts of the plasma membrane are dynamic nanodomains of a
dimension between 10 and 200 nm [83], which define cellular sub-microdomains of the plasma
membrane anchoring caveolins, see e.g. [81], and it has been suggested that caveolin-rich
nanodomains associated with neuronal plasma membrane lacking the morphological appear-
ance of “caveola invaginations” can serve to focalize signal transduction in neurons [84].
Indeed, the putative implication of lipid rafts in the regulation of intracellular calcium
homeostasis and calcium signalling pathways was already suggested in the 1970’s [85,86], but
only during the last decade this hypothesis has been experimentally demonstrated, see [87,88].

Lipid rafts are enriched in cholesterol and sphingolipids [83], including a lipid family partic-
ularly enriched in the plasma membrane of neurons: the gangliosides [89], and define nano-
domains of the plasma membrane for the anchoring of caveolins, flotillin, actin microfilaments
and also an increasingly higher number of palmitoylated or farnesylated proteins, see [81].
The isoform caveolin-1 binds to cholesterol and sphingolipids [90-92], and also promotes the
transport of cholesterol from the endoplasmic reticulum to the plasma membrane [93]. These
nanodomains are merging as unique platforms for intracellular signalling in neurons, as
pointed out in [84,94,95], and their stability is currently rationalized in terms of specific protein/
protein or protein/lipid interactions. Noteworthy, as caveolins can act as scaffolding proteins
in protein/protein interactions within these nanodomains [96,97], these interactions also bear
functional relevance for the protein partners and, therefore, these nanodomains cannot be
solely seen as structural elements of the plasma membrane. In this regard, it has been reported
that cholesterol depletion with methyl-B-cyclodextrin, a chemical widely used to solubilise
lipid rafts, alters the basal current of L-VOCC in foetal mouse skeletal muscle cells and
cardiomyocytes [98,99]. Also the calcium-dependent exocytosis in synaptosomes is sensible to
the cholesterol content of the plasma membrane [100], and probably one of the best docu-
mented functions of caveolins is their implication in the maintenance of intracellular choles-
terol homeostasis [101].

Noteworthy, using hippocampal neurons in culture it has been demonstrated the regulation
of caveolins expression by L-glutamate [102], and an increased level of caveolins expression
has been reported in Alzheimer’s disease which has been correlated with the increased level
of cellular cholesterol observed in these patients [103]. On the other hand, knockout mice in
caveolin-1 have impaired nitric oxide and calcium signalling pathways, displaying severe
vascular and pulmonary anomalies and uncontrolled cellular proliferation [104], and caveolins
mutations has been associated with muscle disorders and cancer [96]. Moreover, lipid rafts
alterations have been reported in a significant number of pathologies [105,106].

The association of the muscle type of L-VOCC with lipid rafts sub-microdomains in cardio-
myocytes was established nearly 10 years ago [81,107]. Later, we have demonstrated L-VOCC
association with lipid rafts nanodomains in mature primary cultures of cerebellar granule
neurons using FRET microscopy imaging [108]. This association of L-VOCC with lipid rafts
nanodomains has a major functional relevance for the regulation by protein kinases of the
calcium influx through these channels in neurons. First, as noted previously in this chapter
within the brain the alc subunit of L-VOCC forms a complex with PKA [30] and Razani et al.
[109] have demonstrated the co-localization and direct interaction between the scaffolding
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domain of caveolin-1 and the catalytic subunit of PKA in vivo and in vitro, respectively. Second,
some experimental data have suggested the possibility of direct association of CaMKII with
lipid rafts [110], which is consistent with the reported co-localization of Cay1.2, the predomi-
nant L-VOCC subtype in the brain, and CaMKII [37]. Functional regulation of L-VOCC by
lipid rafts is also supported by the modulation of the level of phosphorylation of L-VOCC by
cholesterol depletion in cardiomyocytes [99].

Since the two major subtypes of L-VOCC present in the brain, namely Cay1.2 and Cay1.3,
directly interact with many proteins having the PDZ binding domain [111,112], proteins that
also bind to the NMDA receptor [113], the association of these receptors with lipid rafts
nanodomains is not an unexpected finding. The presence of NMDA receptors in isolated lipid
rafts has been shown by different investigators [114-117], and using fluorescence resonance
energy transfer (FRET) microscopy imaging their association with lipid rafts nanodomains in
mature primary cultures of cerebellar granule neurons has been demonstrated in a recent work
of our laboratory [117]. The critical role of proteins with PDZ domains in the association of
NMDA receptors with neuronal lipid rafts has been experimentally demonstrated using
genetically modified mice, as mutations in the NR2A and NR2B subunits which impair their
interaction with PDZ domains led to a reduction of NMDA receptors association with lipid
rafts [118]. Ithas been suggested that the clustering of NMDA receptors in lipid rafts-associated
sub-microdomains can potentiate the activation of these receptors, thereby serving as a
molecular mechanism for potentiation of the synaptic efficiency in neuronal connections
[116,117]. Because AMPA receptor clustering near NMDA receptors plays a key role for
NMDA receptor activation and LTP induction, it is of special neurophysiological relevance to
note here that the association of AMPA receptors with molecular components of the lipid rafts
of neuronal plasma membranes has also been experimentally demonstrated [114,119,120].

The association with lipid rafts of the major systems of the neuronal plasma membrane for
extrusion of calcium from the cytosol, PMCA and NCX, has also been experimentally assessed,
although to the best of our knowledge only in the case of PMCA this has been reported with
neuronal plasma membranes at the time this chapter was written. PMCA association with lipid
rafts has been shown using preparations of synaptic plasma membranes [121] and also in
primary cultures of rat cortical and hippocampal neurons [122]. Earlier, it was shown that the
C-terminal domain of the PMCA interacts with proteins with PDZ domains [123]. Moreover,
Jiang et al. [122] showed that disruption of lipid rafts domains by chronic depletion of choles-
terol elicited a marked decrease of PMCA activity, suggesting that PMCA associated with lipid
rafts is more active than PMCA bound to non-raft domains. NCX has been shown to be
associated with lipid rafts in the smooth muscle of coronary arteries [124], it has also been
shown to be present in membrane fractions of vascular endothelial cells enriched in the lipid
rafts markers caveolin-1 and e-NOS [125] and the direct interaction of cardiac NCX with
caveolin-3 has been demonstrated by co-precipitation [126].

On these grounds, lipid rafts nanodomains of the neuronal plasma membrane can be seen as
microchip-like structures for the fine coupling and control of systems playing a major role in
the maintenance of a cytosolic calcium homeostasis within the range that allows for survival
and normal functionality of neurons. Because of the relevance of oxidative stress in neurode-
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generation it is of utmost importance to note that two enzymatic sources of ROS/RNS have
been shown to be also associated with these lipid rafts nanodomains in the neuronal plasma
membrane, namely, neuronal nitric oxide synthase (nNOS) and cytochrome b; reductase
(CbsR). Sato et al. [127] showed that two domains of the nNOS, the oxygenase and the reductase
domains, interact with the scaffolding domain of caveolin-1. More recently, using FRET
microscopy imaging our group has shown that nNOS is associated with lipid rafts nanodo-
mains enriched in NMDA receptors and L-VOCC in mature cultures of primary cerebellar
granule neurons [117]. Since nitric oxide play a very important role in neuromodulation, this
association bears a special relevance as protein/protein interactions regulate the enzyme
activity of nNOS as well as define anchoring points for the subcellular location of this protein
[127,128]. Indeed, it has been shown that the interaction of nNOS with caveolin-3 in skeletal
muscle modulates the catalytic activity of NOS [128]. In addition, previous works of our
laboratory have shown that the Ch;R, whose deregulation at the onset of neuronal apoptosis
generates a burst of superoxide anion that stimulates the entry in the irreversible phase
characterized by caspases activation [10,129-131], is also associated with lipid rafts nanodo-
mains enriched in L-VOCC and NMDA receptors in mature cultures of primary cerebellar
granule neurons [108,130,131]. Moreover, the association with these lipid rafts nanodomains
of a source of nitric oxide (nNOS) and of a source of superoxide anion (Cb;R) point out that
these nanodomains may play also a major role in the focalized generation of the harmful
oxidant peroxynitrite in the plasma membrane when the neurons are exposed to sustained
cellular stress conditions. Let us recall here also that some mitochondria, a widely accepted
major ROS-producing subcellular compartment, are also close to the plasma membrane in
many neuronal types, because the cell nucleus occupies a large volume of the neuronal soma.

This protein clustering associated with lipid rafts nanodomains of the neuronal plasma
membrane is summarized in the Table 1, where proteins of the cytoskeleton typically associ-
ated with lipid rafts are also included. Noteworthy, ROS significantly alter the actin polymer-
isation/depolymerisation dynamics, reviewed in [132]. Because actin microfilaments are part
of the structural protein network of proteins associated with lipid rafts nanodomains, ROS are
expected to produce a significant distortion of this protein network, like nNOS which has been
shown to associate with the neuronal cytoskeleton in synaptic terminals [133]. Indeed,
regulatory effects of actin cytoskeleton have been reported on NMDA receptors activation
[134], on the distribution of L-type calcium channels in myocytes [135], and on the activity of
NCX [80].

Structural elements Calcium transport systems ROS/RNS sources Regulatory kinases
Cholesterol, Caveolins,  L-VOCC, nNOS and CbsR PKA and CaMKII
Sphingolipids, Flotillin, ~ NMDA and AMPA receptors,

Actin microfilaments, PMCA and NCX

PDZ-binding proteins

Table 1 Molecules associated with lipid rafts in the neuronal plasma membrane of special relevance for cytosolic
calcium homeostasis and ROS/RNS-calcium signalling cross-modulation.
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In spite of the well known relevance of L-glutamate AMPA and NMDA receptors clustering
in LTP, the regulation of incorporation and dissociation of proteins in nanodomains or sub-
microdomains associated with lipid rafts is still poorly understood and, thus, it is a pending
issue. It is to be noted also that knowledge of the time scale range of the clustering dynamics
of proteins within these nanodomains is a basic need to properly understand their formation
and plasticity, and this is particularly relevant to reach firm conclusions regarding their role
as structural or adaptive elements in rapid and slow neuronal responses.

In conclusion, a close spatial location of these calcium transport proteins in the neuronal
plasma membrane can also afford a fast and fine tuning of cytosolic calcium concentrations.
Moreover, as major redox centers producing ROS are also tighly associated with lipid rafts
nanodomains, this compartmentation allows also to rationalize on simple grounds the intimate
cross-talk between ROS and calcium signalling in neurons, as well as between oxidative stress
and sustained cytosolic calcium deregulation, reviewed in [136,137].

4. Sustained alteration of cytosolic calcium homeostasis in neuronal death

Neuronal survival is extremely dependent of the fine tuning of cytosolic calcium homeosta-
sis, because cytosolic calcium concentration has to be maintained within a relatively narrow
window for neuronal survival [1], for example, between 70 and 200 nM for cerebellar granule
neurons in culture [9,138]. An overwhelming amount of experimental data reported by many
investigators from different countries show that sustained deviations of cytosolic calcium
concentration out of this narrow window lead to neuronal cell death. Besides rapid necrotic
neuronal death induced by sustained cytosolic calcium concentration higher than 0.4 puM for
periods in the minutes time scale range [1,9,44,45,138,139], it has also been shown that apoptot-
ic neuronal death can be induced when cytosolic calcium concentration remains very low for
longer periods of time, in the hours time scale range [1,2]. As the extracellular free calcium
concentration is approximately 1 mM, this implies that neurons need to sustain a large calcium
gradient across their plasma membranes. Owing to the large number of synaptic connections
established by neuronsin the brain, these cellsneed to spend alarge amount of metabolicenergy
to maintain their cytosolic calcium homeostasis, because during synaptic activity calcium entry
is activated through VOCC and some ionotropic receptors, mainly NMDA receptors. In
addition, many neuronal processes are extremely dependent upon cytosolic calcium concentra-
tion, such as neurotransmitter secretion and synaptic plasticity [140], neurite growth and
sprouting [141] and signalling pathways which mediate the metabolic neuronal responses to a
large number of relevant extracellular stimuli [4,5]. Therefore, the cytosolic calcium concentra-
tion should be considered a major bioenergetic marker for neuronal activity and survival.

The increase of oxidative stress in brain is a biochemical marker associated with neurodege-
nerative insults, like ischemia-reperfusion or inflammation, or neurodegenerative diseases of
high prevalence and relevance to humans, for example, Alzheimer’s, Parkinson’s, amyotrophic
lateral sclerosis and Huntington’s diseases. Many studies have shown that cellular oxidative
stress is caused by an imbalance between endogenous antioxidant defences and ROS produc-
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tion in favour of the latter, which results in an excessive exposure of cells to harmful ROS/RNS.
On the other hand, it is well established now that the calcium transport systems most relevant
for the cytosolic calcium homeostasis in neurons are molecular targets for ROS/RNS and that
their chemical modification by these reactive species lead to their functional impairment.
Indeed, oxidative chemical modifications of these calcium transport systems have been
reported to take place in vivo. Moreover, many experimental studies reported during last 10
years led to the conclusion that ROS produce a sustained deregulation of cytosolic calcium
homeostasis in neurons. For example, neuronal death mediated by calpains activation can be
taken as a biological marker of a sustained rise of cytosolic calcium concentration [142-144].
Another examples are provided by the central role of L-VOCC and ROS in the apoptosis
induced by low extracellular potassium concentration [2,9,10,129,131,145], and also by L-
glutamate excitoxicity-induced neuronal death [44,45,146]. Thus, sustained alterations of
neuronal cytosolic calcium are expected to be a convergent cellular mechanism in brain
neurodegeneration. Consistent with this hypothesis, alterations of neuronal calcium homeo-
stasis and brain oxidative stress have been reported in the case for the brain neurodegenerative
diseases of higher incidence to humans, like Alzheimer’s [147,148] and Parkinson’s [149,150],
or in the acute neurodegeneration observed in amyotrophic lateral sclerosis [146,151], and also
for major brain insults, such as excitotoxicity in trauma and ischemia-reperfusion [44,45],
inflammation [152,153] and neurotoxicity by drugs and environmental chemicals [139,154].

Most ROS/RNS that are produced in cellular oxidative stress in mammalian tissues have been
demonstrated to be strongly neurotoxic to neurons in vitro. This is a relatively large list of ROS/
RNS, and we shall concentrate in this chapter in those most studied as agents in brain neuro-
degeneration, namely, superoxide anion, H,O,, hydroxyl radicals, lipid hydroperoxides, and
nitric oxide-derived ROS, mainly peroxynitrite and nitrogen dioxide. Because of the calcium
dependence of the activity of nNOS, the main enzymatic system responsible for the production
of nitric oxide in neurons [133], RNS should be expected to play a particularly relevant role as
intracellular biomarkers of the level of coordination or deregulation of calcium and ROS
signalling pathways in neurons. However, it is still a matter of debate whether in vivo all of
these ROS/RNS can reach concentrations high enough to act as causal agents or merely as
agents that potentiate or accelerate the rate of an ongoing neuronal death process in the brain.
Moreover, the analysis and dissection of the chemical reaction pathways of each one of this
ROS/RNS is further complicated by the fact that in vivo they generate radicalic chain chemical
reactions. Therefore, it is critical to identify the major subcellular primary sources of these ROS/
RNS in different neurons and in different degenerative processes in the brain, and this is an
issue yet to be settled in many cases, as during lasts years the experimental evidences have
pointed out that the relative relevance of different ROS/RNS seems to be largely dependent
on the neurodegenerative disease or brain insult.

5. Modulation by ROS/RNS of calcium transport systems relevant for the
control of neuronal cytosolic calcium homeostasis

ROS and RNS producing oxidative stress to neurons can be generated by neuronal and also
by non-neuronal cells, like microglia or endothelial cells of the brain blood vessels. It is to be
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noted that oxidative stress-induced brain degeneration is a relatively slow process, in most
neurodegenerative diseases developing in periods of time of years and in acute brain ischemia-
reperfusion in a time range from minutes to several days, depending upon the intensity of the
oxidative stress insult. Thus, in a brain suffering oxidative stress neurons are exposed for
relatively large time periods to either extracellularly and/or intracellularly generated ROS/
RNS. Because the extracellular liquid bathing the brain and stem neurons is poorer in antiox-
idants than the blood, due to the low permeability and high selectivity of the blood-brain
barrier, the extracellular antioxidant protection in the brain is notably lower than that of other
organs and tissues in mammals. Under these environmental conditions the plasma membrane
of neurons, where major calcium transport systems controlling the cytosolic calcium homeo-
stais are located, is particularly sensitive to the oxidative stress generated in the brain by vicinal
neuronal and non-neuronal cells. The major ROS/RNS reported to play a significant role in the
enhanced brain oxidative stress associated with neurodegenerative diseases and insults like
ischemia-reperfusion and inflammation can be split into three major groups: (i) primary
biochemical ROS/RNS, i.e. chemical species directly generated by some enzymes or proteins
during brain activity in normal or pathophysiological conditions, (ii) secondary biochemical
ROS/RNS, chemical species derived by rapid reaction between the primary biochemical ROS/
RNS or by systems involved in their detoxification, and (iii) radicalic chain ROS/RNS, chemical
radicals involved in the initiation of radical reaction chains or that are largely generated within
radical reaction chains.

Superoxide anion is a primary biochemical ROS that plays a key role in the generation of many
of the more harmful ROS and RNS detected in the oxidative stress-induced degeneration of
the brain. Superoxide anion can be produced by neuronal and non-neuronal cells within the
brain. Because of the relatively low permeability to superoxide anion of lipid bilayers [155],
extracellular superoxide anion must be largely generated by redox centres of the plasma
membrane of neuronal and non-neuronal cells. In glial, macrophages and endothelial cells
there are NADPH oxidases of the NOX family, which are under the control of transcriptional
antioxidant-responsive elements (ARE), reviewed in [156]. In contrast, we found that in the
plasma membrane of neurons the NADH-dependent production of superoxide anion associ-
ated with their NADH oxidase activity was nearly ten-fold higher than their NADPH activity
[157,158]. Indeed, an overshot of superoxide anion production at the plasma membrane is an
early event in the apoptosis of cerebellar granule neurons induced by extracellular K*
deprivation [10,131], an overshot that we have found to be largely catalyzed by deregulation
of cytochrome b; reductase associated with plasma membrane lipid rafts sub-microdomains
[130,131]. Mitochondria is now widely accepted as the major source of intracellular superoxide
anion in oxidative stress-induced neuronal death in cultures in vitro, particularly by complexes
I 'and III of the mitochondrial respiratory chain [159]. In addition, non-mitochondrial enzymes
that use oxygen as substrate can also become a source of intracellular superoxide anion in
neurons, such as the conversion of xanthine dehydrogenase into xanthine oxidase either by
direct oxidation and/or by proteolytic activation during oxidative stress-induced neuronal
death [160].
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Nitric oxide is the major primary biochemical RNS produced in oxidative stress-induced
brain degeneration, and although not harmful by itself, its reaction with superoxide anion
yields peroxynitrite (a secondary biochemical ROS/RNS), probably the most neurotoxic ROS/
RNS generated during oxidative stress-mediated brain neurodegeneration, see e.g. [161,162].
The reaction between nitric oxide and superoxide anion is very fast, such that it is considered
a diffusion-controlled chemical reaction due to the very high value of the bimolecular rate
constant, (4-7) 10° M s? [163]. Peroxynitrite, in spite of its short lifetime within the cells
[162], has been shown to be a very harmful ROS/RNS involved in the brain damage
produced by ischemia-reperfusion [161], by inflammation and spinal cord injury [164,165]
and also in neurodegenerative diseases and aging [166,167]. Peroxynitrite can elicit
functional damage of biomolecules and subcellular structures acting either as a potent
oxidant (E” = 1.2-1.4 V) or through the generation of harmful radicals such as hydroxyl and
nitrogen dioxide free radicals, reviewed in [162,168]. Due to this, peroxynitrite can produce
oxidation of protein cysteines to disulfide bonds, sulfenic and sulfinic acids eventually
leading to sulfonic acids, oxidation of protein methionines, nitration of protein tyrosines
and lipids, lipid peroxidation, coenzyme Q oxidation, and DNA and RNA oxidation.
Because the activation of neuronal nitric oxide synthase requires an increase of cytosolic
calcium, peroxynitrite is one of the more harmful ROS/RNS produced in the oxidative stress
accompanied by sustained alterations of the neuronal cytosolic calcium homeostasis. Indeed,
this has been shown to be the case for the excitotoxic neuronal death elicited by L-
glutamate through activation of NMDA receptors [166,169].

ROS/RNS initiating lipid oxidation and peroxidation, i.e. self-accelerating chemical radical
chains, are the other group of ROS/RNS playing a major role in brain damage by oxidative
stress. Among them, H,0, has required a large attention because is one of the major products
generated under conditions that elicit over-production of superoxide anion, as it is a product
of superoxide dismutase activity. In addition, intracellular traces of metal ions such as Fe* or
Cu* can catalyse Fenton-like reactions in neurons, generating hydroxyl radical from super-
oxide and H,0, [170]. Hydroxyl radical is one of the most potent cytotoxic oxygen radicals,
which can attack a large variety of important biomolecules, from small biomolecules such as
coenzyme Q or a-tocopherol [171] up to large biomolecules like proteins, RNA and DNA
[170,172]. Since hydroxyl radical can be also generated from peroxynitrite decomposition (see
above), it turns out that it is a converging point between the oxidative stress pathways
involving ROS and RNS derived from nitric oxide. The involvement of hydroxyl radical in
oxidative stress-induced neuronal damage has been suggested, for example, in the pathophy-
siological case of spinal cord trauma [173], amyotrophic lateral sclerosis [174] and Parkinson's
disease [170,175].

Lipid ROS are a family of harmful ROS detected in oxidative stress-mediated brain degener-
ation that also catalyze chemical radical reaction chains. They can be produced as primary
biochemical ROS by cyclooxygenases (COX) and lipoxygenases in some brain oxidative stress
insults, such as ischemia-reperfusion [176], or Parkinson's disease [177]. Indeed, inhibitors of
the neuronal COX-2 isoform have been reported to attenuate brain damage after ischemia-
reperfusion [176]. Moreover, the oxidation of dopamine by the microglial COX-1 isoform and
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also by COX-2 isoform in the dopaminergic neurons of the substantia nigra has been involved
in the pathogenesis of Parkinson's disease [177]. It is to be noted though that lipid ROS are also
generated during hydroxyl radical- and hydrogen peroxide-induced lipid oxidation and
peroxidation, respectively [170]. In addition, lipid oxidation and peroxidation also release the
aldehydes malondialdehyde and 4-hydroxynonenal, which have been shown to be highly
neurotoxic compounds [178,179]. Because of the self-propagating properties of lipid radical
chains once they are initiated, and also due to the high toxicity for neurons of lipid breakdown
compounds released, the possibility of cell rescue after the threshold antioxidant barrier
against lipid oxidation/peroxidation is surpassed can be considered negligible. The extent of
lipid oxidation marking the 'point of no return' for neurons survival has not been firmly
established yet, but it is likely to be at most only a few per cent of the total lipids [180]. On
these grounds, an enhanced lipid oxidation should be expected to be a late and largely
irreversible step in neuronal death. This view is consistent with the many reports showing that
largely damaged brain areas after an ischemia-reperfusion insult display a marked increase of
lipid peroxidation.

5.1. Modulation by ROS/RNS of the major calcium entry systems of the neuronal plasma
membrane

5.1.1. Voltage-operated calcium channels

As indicated above in the section 2 of this chapter, the L-type are the most relevant VOCC in
the fine tuning of the steady state level of cytosolic calcium concentration in the neuronal soma
and, thus, in the fine tuning of threshold neuronal excitability [22-24]. L-type VOCC as a
primary target for ROS in brain is also supported by the hypoxic up-regulation of these
channels, which is mediated by Alzheimer's amyloid peptides [181]. L-VOCC contain two
vicinal cysteines at positions 271 and 272 which are involved in their interaction with syntaxin
1A, thereby playing a major role in their regional localization in plasma membrane microdo-
mains [182]. In addition, three cysteines are located in the calcium-pore region (Cys*?,
Cys' and Cys'**) [183]. Therefore, L-VOCC contains redox centres that have been shown to
react with ROS/RNS in other proteins, for example, in NMDA-receptors (see below).

Studies with neurons in culture have provided ample experimental evidences of direct
modulation of L-VOCC by the major ROS/RNS involved in brain ischemia-reperfusion,
inflammation and/or neurodegeneration. The L-VOCC antagonist nifedipine has been
reported to protect CNS neurons against hydrogen peroxide-induced death, which is mediated
by a sustained increase of cytosolic calcium, pointing out activation of L-type VOCC by H,O,
[184]. H,O, was shown later to activate recombinant calcium channel a,. subunit stably
expressed in HEK 293 cells [185]. In addition, nitric oxide has been reported to induce activation
of L-VOCC in hippocampal neurons by plasma membrane depolarization [186] or to inhibit
calcium channel gating via activation of cGMP-dependent protein kinases [187]. In contrast,
exposure to peroxynitrite has been reported to produce decrease of calcium influx through L-
VOCC at low submicromolar doses in rat cerebellar granule neurons in culture and increase
of calcium influx through L-VOCC at higher micromolar doses in rat cerebellar granule
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neurons in culture [9] and in mouse cerebral cortical neurons [188]. Hydroxyl radicals, a radical
produced during the decomposition of peroxynitrite, have been reported to suppress the
calcium influx through L-VOCC in mouse cortical neurons [189]. Consistent with these results,
dihydropyridine L-VOCC blockers afford protection against neuronal death induced by
exposure of neurons in vitro to the peroxynitrite-releasing agent SIN-1 [9,190]. Because of the
short lifetime and high reactivity of these radicals this is likely to be due to direct chemical
modification of L-VOCC, although it is to be noted that this chemical modification is yet
unknown. In addition, it has been reported that eicosanoids and ROS generated during
arachidonic acid oxidative metabolism also activate L-VOCC [191], and that the lipid peroxi-
dation product 4-hydroxynonenal causes opening of the L-VOCC, resulting in an increase of
cytosolic calcium and neuronal death which is prevented by the L-VOCC blocker nimodipine
[192]. Direct redox modulation of L-VOCC is further supported by its activation by hydrogen
sulphide [138]. Further studies are needed to reach firm conclusions regarding the molecular
mechanisms of modulation of different neuronal L-VOCC subtypes by ROS.

Only very scarce experimental studies have been done on the putative modulation of N-,
P/Q- and R-type VOCC by ROS/RNS, despite the fact that N- and R-type of calcium channels
are blocked by heavy metals such as Pb* and Hg* that are likely to interact with thiols [193].
Cay2.2 (N-type) channel gating is inhibited by nitric oxide via cGMP-dependent protein kinase,
as it is also the Cay1 (L-type) channel [187]. Also, the lipid peroxidation product 4-hydroxy-
nonenal increased the calcium influx through L-type and other ill-defined types of VOCC [178].

5.1.2. NMDA and other ionotropic receptors with calcium channel activity

It is well known the relevant role of NMDA-receptor mediated excitotoxic neuronal death in
ischemia-reperfusion brain injury, see [44,45], in multiple chemical sensitivity in brain [194],
in neuronal glutathione depletion [195] and in hydrogen sulfide-induced neuronal death
[138,196]. Therefore, it is not surprising that the redox modulation of the NMDA-receptor is
by far the most studied within the group of ionotropic receptors. The redox modulatory site
of the NMDA-receptor consists of thiols groups that are vicinal in the three-dimensional
structure and may form disulfide bonds under the cellular oxidative stress conditions induced
by ROS [197], and it acts as a gain control for current flux through the NMDA-receptor
[197,198]. Moreover, a significant number of NMDA-receptor cysteines are in the domains of
this receptor facing the extracellular space, including at least one pair of vicinal thiols [199].
Thus, this receptor can also play a major role in the rapid neuronal adaptation to changes of
the redox potential in the extracellular fluids within the brain, and the different types of
NMDA-receptors display a redox response that is dependent on the type of NR2 forming the
channels [55]. The differential redox-sensitivity of NMDA receptors isoforms led to the
discovery of two redox modulatory centres within the NMDA-receptor structure, one formed
by Cys744 and Cys798 on the subunit NR1 and a second one on the subunit NR2A [200,201].
Whereas the redox centre of the subunit NR1 plays a major role in the redox modulation of
NR1/NR2C- and NR1/NR2B-containing receptors, the redox centre of subunit NR2A is
sufficient for the expression of redox sensitivity in NR1/NR2A-containing receptors [201].
Redox active compounds modulate NMDA-receptors such that reduction of NMDA-receptor
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increases NMDA-receptor activity and their oxidation leads to a decrease of NMDA-receptor
activity [202].

Because of the high physiological relevance of nitric oxide and of NMDA receptors in the brain,
the modulation of NMDA receptors by nitric oxide is of particular relevance. Nitric oxide
inhibition of NMDA-receptor response in cortical neurons in culture has been rationalized in
terms of NO-induced disulfide bonds between vicinal thiols of the NMDA-receptor, and was
proposed to afford neuronal protection against L-glutamate excitotoxicity [203]. Indeed, it has
also been reported that thiol-reducing agents such as dithiothreitol increase the open dwell-
time and opening frequency of NR1/NR2A channels [55,201]. Consistent with these findings,
it has been reported that the novel neuromodulator hydrogen sulphide potentiates NMDA-
receptor response in hippocampal neurons [204] and in cerebellar granule neurons [138], and
that over-stimulation of NMDA-receptors by hydrogen sulphide can lead to excitotoxic
neuronal death [138,196]. Glutamate-induced excitotoxic neuronal death has been shown to
mediate brain injury after a transient focal cerebral ischemia episode [44,45]. Inhibitors of the
H,S-producing enzymes cystathionine -synthase and cystathionine vy-lyase reduced the
infarct volume in a dose-dependent manner, while administration of sodium hydrosulfide
significantly increased the infarct volume after a transient focal cerebral ischemia insult [205].
Exposure of neurons to peroxynitrite also leads to activation of calcium entry through NMDA-
receptors [166,169]. This effect of peroxynitrite has been rationalized in terms of the rise of L-
glutamate concentration within the synaptic cleft, either due to potentiation by nitric oxide
and/or peroxynitrite of L-glutamate secretion in synaptic terminals [194,206] or of inhibition
of L-glutamate transporters catalyzing its re-uptake [207].

Besides the major role of NMDA-receptors on the neuronal damage elicited by ROS and/or
oxidative stress, AMPA receptors have been also involved in the neurotoxicity of ROS. It has
been reported that the increase of cytosolic calcium associated with the influx of Ca*" through
the ionotropic AMPA-receptors can stimulate nNOS leading to an enhanced production of
nitric oxide within L-glutamatergic neurons [208]. Moreover, antagonists of AMPA/kainate-
receptors have been reported to prevent the loss of cell viability induced by the peroxynitrite-
releasing agent SIN-1 in mixed cortical cell cultures containing both neurons and astrocytes
[209]. AMPA-receptors contain a disulfide bond between cysteines 260 and 315 in the ligand
binding domain of receptor subunit GIluRD, which has been proposed to act as a redox centre
implicated in direct redox modulation of these receptors [210]. Nevertheless, the redox
modulation of AMPA-receptors is a topic that will require further studies to develop an
integrative view of its modulation by the different ROS that has been implicated in brain
damage.

Finally, the response of the purinergic ionotropic P2X-receptors has been shown to be altered
by acute hypoxia, an effect that has been proposed to be mediated by ROS because H,O,
attenuated the effect of hypoxia on homomeric P2X2 whole-cell currents, which are reversibly
reduced to 38% of control by H,O, [211]. Yet, studies regarding the putative modulation of
P2X-receptors by other ROS are a pending issue.
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5.2. Modulation by ROS/RNS of the transport systems that release calcium from
intracellular stores

5.2.1. Endoplasmic reticulum

ROS/RNS have been shown to elicit a potent stimulation of calcium release from the endo-
plasmic reticulum, through activation of IP; and ryanodine receptors.

Superoxide anion and H,0O, have been reported to induce calcium release from the endoplas-
mic reticulum of neurons through activation of IP; receptors [212,213]. Oxidized glutathione
and the alkyl mercury compound thimerosal, a thiol specific agent, increase the affinity of
IP; receptors for IP;,, thereby sensitizing this receptor to basal IP;level in the cell and promoting
calcium release from the endoplasmic reticulum to the cytosol [214,215]. Cysteine clusters
highly reactive against ROS have been recently identified in the IP; receptors [216]. IP;
receptors are inhibited by interaction with luminal endoplasmic reticulum proteins through
luminal-facing domains of the receptor containing reduced cysteines, and oxidation of these
cysteines weakens these interactions leading to IP; receptor activation [63,217]. Moreover,
nitric oxide-induced increase of IP; binding to the IP; receptor in hypoxic brain has been
proposed to mediate IP; receptors activation in calcium-dependent neuronal apoptotic death
induced by hypoxia [218].

Although all ryanodine receptor isoforms are expressed in the brain, the isoform 2 is the most
heavily expressed [219, 220]. Many studies have addressed the redox modulation of the
ryanodine receptors in myocytes and in neurons, reviewed in [62,64,221]. Nitric oxide activates
the skeletal and cardiac ryanodine receptors [222,223]. The activation of the ryanodine receptor
by nitric oxide has been shown to be due to the presence of highly reactive cysteines of the
receptor, which are S-nitrosylated upon exposure to nitric oxide [222-224]. The cysteines that
are S-nitrosylated upon in vitro exposure to nitric oxide have been identified [225]. However,
in vivo the extent of S-nitrosylation of ryanodine receptor cysteines is highly modulated by the
physiological oxygen tension, leading to the concept that ryanodine receptors can operate as
a coupled redox sensor for oxygen and nitric oxide [226,227]. In vitro studies have shown that
these cysteines of the ryanodine receptor are highly sensitive to oxidative stress and are likely
to mediate the redox ryanodine receptor response to another ROS, as they are also prone to
reversible S-glutathionylation or oxidation to disulfide bonds [225]. The ryanodine receptors
are also activated by hydroxyl radical, H,0,, the disulfide bond-forming agent diamide and
also by oxidized glutathione [221,224,228]. Overall, oxidizing conditions favor the opening of
the ryanodine receptor calcium channel, and on these grounds it has been proposed that
activation of these calcium channels are also involved in the pathology of brain ischemia-
reperfusion [229] and Alzheimer’s disease [230]. Noteworthy, a moderate and sustained
stimulation of the ryanodine receptors in the hippocampus has been involved in the sustained
increase of cytosolic calcium needed for the induction of the long-term postsynaptic potentia-
tion associated with memory formation [231,232].

Calcium accumulation within the luminal space of the endoplasmic reticulum is performed
by Ca*-ATPases (SERCA), whose activity is inhibited by exposure to H,O,, superoxide anion
and peroxynitrite [233-236], the major ROS produced in brain insults such as ischemia-
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reperfusion or inflammation and in neurodegeneration. Despite that the isoforms of SERCA
most sensitive to ROS, i.e. SERCA2 isoforms, are expressed in brain, the relevance of the
impairment of their activity to alterations of neuronal cytosolic calcium homeostasis has yet
to be conclusively demonstrated, probably because in neurons the PMCA is a calcium pump
more potent than SERCA for calcium extrusion from the cytosol.

The apparently higher susceptibility to ROS/RNS of the calcium release systems of the
endoplasmic reticulum, ryanodine and IP; receptors, should lead under oxidative stress
conditions to at least a partial depletion of the calcium concentration within the luminal
space of this subcellular compartment, see for example [237]. It should be noted, though,
that in neurons the amount of calcium stored in the endoplasmic reticulum is small
compared with the amount of calcium entering through plasma membrane calcium channels
and ionotropic receptors. However, in most severe cases the depletion of calcium can elicit
the opening of plasma membrane SOCE, see section 2.2 of this chapter. Thus, the rele-
vance of calcium release from the endoplasmic reticulum or of inhibition of the SERCA to
the observed alterations by ROS/RNS of cytosolic calcium homeostasis will strongly depend
on the differential expression of SOCE isoforms in different type of neurons. On the other
hand, the depletion of calcium of the endoplasmic reticulum may lead to a dysfunctional
endoplasmic reticulum by itself, because of the relevance of the endoplasmic calcium
concentration for the correct folding and processing of membrane and secretory proteins
[65, 238]. On these grounds, these authors have proposed that ROS/RNS-induced endoplas-
mic reticulum dysfunction can be a mechanism underlying slow-developing cell injury in
ischemia-reperfusion, epileptic seizures and degenerative diseases of the brain like
Alzheimer's and Parkinson's diseases. In addition, it has been recently shown that muta-
tions in presenilin-1 and -2 observed in nearly 40% of familial Alzheimer's disease lead to
calcium release from the endoplasmic reticulum [239]. Moreover, presenilins by them-
selves can form calcium leak channels in the endoplasmic reticulum whose properties are
altered in mutant presenilins linked to Alzheimer's disease [240].

5.2.2. Mitochondria

A key role has been proposed for mitochondrial dysfunctions in the onset or development of
neuronal death in the brain mediated by the enhanced oxidative stress observed in relevant
neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, amyotrophic
lateral sclerosis and Friedreich's ataxia, and in harmful brain insults like ischemia-reperfusion
and glutamate excitotoxicity, reviewed in [166,241,242]. Mitochondrial calcium overload is
observed in excitotoxic conditions that produce a sustained increase of neuronal cytosolic
calcium or high frequency repetitive cytosolic calcium peaks [73]. ROS/RNS have been shown
to promote opening of the permeability transition pore of mitochondria and this effect of ROS/
RNS is enhanced by mitochondrial calcium overload [71,73,166]. Opening of the permeability
transition pore leads to a significant calcium release from mitochondria which contributes to
foster excitotoxic neuronal death [71, 243], and also is an important factor in necrotic cell death
following ischemia-reperfusion [73] or in neurons exposed to transient hypoglycemia [244].
Consistently, calcium-dependent mitochondrial dysfunction by peroxynitrite has been
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demonstrated to elicit necrotic cell death via activation of calpains [245]. In addition, opening
of this pore has also been shown to mediate the neuronal apoptosis elicited by 3-nitropropionic
acid, an agent which has been used to mimic in model rodents the brain neurodegeneration
observed in Huntington's disease [246]. Despite that most of studies concerning ROS-stimu-
lated release of calcium from mitochondria point out a major role of the permeability transition
pore, it should be recalled that the inner membrane Na*/Ca?*-exchanger, i.e. the other major
mitochondrial calcium release system [71], is also sensitive to oxidative stress. It has been
reported that oxidative stress mediated by H,O, modulates this exchanger and can lead to
activation of caspase 3-dependent apoptosis due to mitochondrial Na* overload [247].

The permeability transition pore opening induced by ROS/RNS is mediated by oxidation of
critical thiols of proteins forming the pore, as it can be elicited by a relatively large number of
oxidizing agents such as diamide, dithiopyridine, singlet oxygen, diazoxide, nitric oxide, S-
nitrosothiols and selenium [221]. The adenine nucleotide transporter of the inner mitochon-
drial membrane and the voltage-dependent anion channel of the outer mitochondrial
membrane have been proposed to be part of the molecular structure of the permeability
transition pore, and both proteins have shown to be modulated by oxidative stress and
exposure of mitochondria to chemically defined ROS, such that oxidation of thiols of the
adenine nucleotide transporter facing to the mitochondrial matrix have been shown to elicit
the opening of the permeability transition pore, reviewed in [73].

5.3. Modulation by ROS/RNS of the transport systems involved in calcium extrusion from
the cytosol

Much of the interest on modulation of PMCA and Na*/Ca*-exchanger of neurons by ROS is
based on the reported decrease of these activities in synaptic plasma membranes in aging, and
the possibility that this could lead to a sustained increase of the steady state cytosolic calcium
in aged animals with respect to young animals [248,249].

5.3.1. PMCA

It has been shown that incubation of brain synaptic plasma membranes with Fe?*/EDTA,
H,0,, peroxyl radicals generated by azo-initiators and peroxynitrite resulted in a significant
loss of PMCA activity [250-253]. Inhibition of purified PMCA by H,O, has been proposed to
be due to oxidation of two cysteines of this protein [253]. Also, lipid peroxidation and the lipid
peroxidation product 4-hydroxynonenal have been shown to inhibit the PMCA actvity [254].
In the case of incubation with peroxynitrite, the loss of Ca*-ATPase activity was paralleled by
decrease of ATP-dependent calcium uptake activity and by a significant increase of tyrosine
nitration of the PMCA [252]. However, it is to be noted that all these studies were carried out
in vitro with purified plasma membranes in an altered environment with respect to the normal
redox cytosolic environment in living neurons, and this has to be taken into account since
endogenous antioxidant levels of reduced glutathione has been shown to largely attenuate the
inhibition of PMCA by peroxynitrite [252]. In addition, the concentrations of H,O, and
peroxynitrite producing approximately 50% inhibition of the PMCA in these studies, higher
than 100 uM in both cases, were much higher than those reported to be attained in brain after
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transient focal ischemia or inflammation. For the case of neuronal exposure to peroxynitrite
fluxes mimicking those attained in inflammation or ischemia-reperfusion, in a previous work
of our laboratory it was shown that in cerebellar granule neurons in culture the PMCA is
significantly inhibited in less than 2 hours exposure to micromolar concentrations of peroxy-
nitrite, although it was also noted that the PMCA has nearly ten-fold lower sensitivity to
peroxynitrite than L-VOCC [9].

Na*/ Ca2+—exchanger (NCX)

The NCX has been reported to be less sensitive to inhibition by the peroxyl radical azo initiator
2,2'- azobis (2-amidinopropane) dihydrochloride (AAPH) and peroxynitrite than the PMCA
[251], and also to be insensitive to inhibition by up to 700 uM of H,O, [255]. The Na*/Ca*-
exchanger activity of synaptic brain plasma membranes and in transfected CHO-K1 cells has
been reported to be inhibited by exposure to AAPH and also to peroxynitrite [255], although
it must be noted that peroxynitrite only afforded a partial inhibition of the exchanger caused
by decrease of its affinity for calcium without a significant change of the V .. The inhibition
induced by both oxidants correlated with the formation of higher molecular weight aggregates
of the Na'/Ca?"-exchanger, and in addition AAPH also caused fragmentation of the exchanger
protein.

In contrast, in cardiac muscle myocytes, hypoxia inhibits the Na*/Ca*-exchanger and ROS are
required for its rapid reactivation upon reoxygenation [256]. This is consistent with the earlier
demonstration in ventricular myocytes of stimulation of the Na*/Ca?-exchanger by H,O, and
superoxide anion [257]. Owing to the different pattern of Na‘/Ca*-exchanger isoforms
expression in brain cells and cardiac myocytes, more experimental studies are needed to reach
solid conclusions regarding the effects of oxidative stress on the activity of this exchanger in
different neuronal types and also in the glial cells of the brain.

6. Space and time fluctuations of cytosolic calcium in the neuronal soma

As indicated previously in this chapter, protein compartmentation within microdomains
allows for a more efficient and rapid functional coupling between influx and efflux calcium
transport systems, and this is particularly relevant for neuronal activity, as neurons have to
deliver fast responses to many repetitive and simultaneous extracellular stimuli coming from
different neighbour cells. Studies on calcium signalling in neurons have played a pioneer role
to demonstrate the outstanding role of subcellular compartmentation in the control of neuronal
activity, see for example [5]. As analyzed in more detail in the section 3 of this chapter more
recently reported experimental data point out that the calcium transport systems of the plasma
membrane more relevant for the control of cytosolic calcium homeostasis in neurons are
associated with lipid rafts sub-microdomains or nanodomains. This is an emerging scenario
that opens new perspectives for the rationalization of the modulation of cytosolic calcium
peaks amplitude and also of the rate of attenuation of calcium local gradients in neurons, as
both parameters are strongly dependent on the spatial proximity between systems controlling
calcium entry and extrusion from the cytosol. For example, the rationalization of the transient
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calcium gradients observed between different regions of the neuronal cytosol can be done on
simple grounds taking into account a polarised or focalized distribution of the major calcium
transport systems of the neuronal plasma membrane. Note that, as indicated before in this
chapter, sustained cytosolic calcium concentrations higher than 0.4 uM are strongly cytotoxic
to neurons, but it is a need for neurons to reach these concentrations in the environment of
cytosolic proteins and enzymes having ECy, values for calcium between 0.4 and 1 uM. Indeed,
some of these proteins play a key role in neuronal plasticity and functional responses critical
for proper brain development and function, like calmodulin, nNOS, GAP-43 and CaMK, to
cite only a few of well-established examples.

The calcium concentration reaches values in the micromolar range upon activation of L-VOCC
and NMDA receptors in small volume elements close to the cytosolic side of their calcium
channel structures [258], see also the Figure 2a. This generates a calcium concentration wave
that diffuses within the cytosolic space, because the protein cytosolic buffering systems are not
fast enough to trap all incoming calcium ions through these calcium channels [259, 260]. Due
to the rapid diffusion of calcium ions in the aqueous space of the cytoplasm, ~300 um? s?, the
calcium entry through the high conductance L-VOCC and NMDA receptors channels will
rapidly raise the calcium concentration to the micromolar range within the associated lipid
rafts nanodomains. As these nanodomains have sizes lower than 200 nm, it can be derived that
in less than 1 microsecond the incoming calcium ions will diffuse within the whole space of
the nanodomain, i.e. in the time scale range characteristic for fast conformational relaxation in
proteins. Thus, this clustering serves to built up a very efficient molecular switch for signal
transduction in calcium signalling pathways within neurons, with a time response as fast as
the rapid conformational relaxations elicited by regulatory direct protein/protein interactions.
However, nanodomains can be seen as multi-port exit molecular devices that can serve to many
uni-port exit molecular devices, through regulatory direct protein/protein interactions.
Therefore, the localized calcium rise within these nanodomains not only serves to guarantee
the maximal possible activation of proteins or enzymes with EC5; values >0.4 micromolar, such
as those listed above, but also to elicit rapid integrative cellular responses. We shall next briefly
analyze several integrative responses of relevance for the rapid and fine control of cytosolic
calcium homeostasis in neurons elicited by the localized calcium rise within the nanodomains
associated with lipid rafts.

The association of CaMKII with L-VOCC subunit f2a and with NMDA receptors subunit
NR2B, mentioned in the section 2.1 of this chapter, implies that this protein is present in
neuronal nanodomains associated with lipid rafts. A direct consequence of the steep calcium
concentration gradient generated by calcium entry through L-VOCC and NMDA receptors is
the stronger selective activation of the pool of CaMKII that lies in their vicinity over other
CaMKII pools present in neurons. Thus, this will selectively potentiate phosphorylation of
CaMKII substrates present in lipid rafts associated nanodomains. Regarding the cytosolic
calcium homeostasis in neurons, the more relevant effect is the activation of L-VOCC upon
phosphorylation by CaMKI], as this potentiates the increase of the local gradient of calcium
concentration within these nanodomains, leading to a longer lasting increase of the concen-
tration of cytosolic calcium with the concomitant increase in neuronal secretory activity and
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excitability (Figure 2b). Indeed, it has been shown that L-VOCC plays a relevant physiological
role in NMDA receptors-independent long-term potentiation [28]. The activation and synaptic
clustering of AMPA receptors upon phosphorylation by CaMKII has been shown to potentiate
NMDA receptors activation in the induction of LTP [53]. Noteworthy, L-VOCC blockers like
nifedipine and nimodipine and AMPA antagonists/inhibitors have been shown to have anti-
epileptic therapeutic effects, pointing out that overstimulation of L-VOCC and/or AMPA
underlies, at least, some types of epileptic seizures.

The high concentration of calcium attained within the nanodomains associated with lipid rafts
allows for a stronger and faster selective stimulation of the pool of nNOS localized therein.
Because of the rapid diffusion coefficient of nitric oxide, these nanodomains can be seen as the
most relevant plasma membrane points for focalized nitric oxide generation in neurons and,
therefore, define the sub-microcompartments of neurons where higher transient concentra-
tions of nitric oxide are attained upon nNOS stimulation. This fact and the vicinal location of
nNOS and NMDA receptors within these nanodomains, i.e. separated by a distance lower than
40 nm [117], makes of NMDA receptors a major cellular target for the chemical reactivity of
released nitric oxide. As the calcium currents through NMDA receptors are inhibited by
exposure of these receptors to nitric oxide, see the section 5.1 of this chapter, the co-localization
of nNOS and NMDA receptors within these nanodomains serves to potentiate a feedback
retroinhibition mechanism for the attenuation of excessive NMDA receptors activity which
would lead to neuronal excitotoxicity [117], i.e. these nanodomains can be also seen as a
molecular microchip-like structure designed for neuronal protection against the harmful
consequences of overstimulation by L-glutamate (Figure 2c). On these grounds, the reported
stimulation of L-VOCC by nitric oxide, see the section 5.1 of this chapter, can be rationalized
as a molecular compensatory mechanism for the fine tuning of NMDA receptor activity, as it
will lead to an increase of L-glutamate secretion near these nanodomains and this should avoid
excessive depression of NMDA receptor activity in the neuron.

The latter point already highlights a major role of the nanodomains associated with lipid rafts
in the intimate cross-talk between calcium and nitric oxide signalling for the normal physio-
logical activity of neurons, but also points out that excessive calcium entry through L-VOCC
or NMDA receptors should rapidly lead to unusually large peaks of nitric oxide generation in
these nanodomains. As indicated above in this chapter, it is well established now that the
sustained rise of intracellular calcium and/or nitric oxide can induce neuronal death and are
common features in brain degeneration. Many experimental evidences accumulated up to date
reveal that in some cases the induction of oxidative stress in brain neurodegeneration takes
place before a sustained cytosolic calcium homeostasis deregulation can be observed. For
example, in the case of inflammation of a brain area induced either by a traumatic shock injury
or cerebral stroke the neurons are exposed to a ROS/RNS overshot largely generated by vicinal
glial and vascular endothelial cells. The major sources for the overshot of ROS/RNS observed
in this inflammation episode are the increase of iNOS expression, which produces a nitric oxide
overshot, and activation of plasma membrane NADPH oxidases, which produces a superoxide
anion overshot. Therefore, within the brain area affected by inflammation neurons suffer a
long-lasting exposure to an extracellular microenvironment where the simultaneous presence
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High eytosollc
C#* buffering

Figure 2. Functional implications of the association of calcium transport systems and ROS/RNS-sources in the neuro-
nal plasma membrane. (a) Generation of transients of micromolar calcium concentrations within nano- or sub-micro-
volume elements. The size attained by these volume elements is strongly dependent on the intensity of the total
calcium inward current through the calcium transport systems clusters within lipid rafts-associated nanodomains and
on the cytosolic calcium buffering capacity (see the text). (b) Faster and long-lasting potentiation of NMDA receptors
(NMDA). Calcium entry through L-VOCC triggers the activation of associated CaMKIl, which elicits (i) a feedback acti-
vation of L-VOCC potentiating calcium entry and (i) a recruitment of activated AMPA receptors (AMPAr). (c) Potentia-
tion of NO -mediated protection against L-glutamate excitotoxicity. The co-localization of nNOS allows to reach
higher NO concentrations near NMDA receptors and L-VOCC potentiating its effects on these calcium transport sys-
tems. (d) Peroxynitrite-induced sustained cytosolic calcium deregulation. A dramatic consequence of an unbalanced
overstimulation of calcium transport systems that raise the cytosolic calcium concentration. Other abbreviations used
in this figure: PM, plasma membrane; Mit, mitochondria; ER, endoplasmic reticulum; ONOO", peroxynitrite;, protein
phosphorylation; @, stimulation; > and X, inhibition or blockade.

of high nitric oxide and superoxide anion concentrations generate significant amounts of
peroxynitrite, see e.g. [162,169]. In this oxidative scenario, the calcium-entry transport systems
more relevant for the control of neuronal cytosolic calcium homeostasis associated with lipid
rafts nanodomains, NMDA and AMPA receptors and L-VOCC, are strongly activated by
peroxynitrite, see the section 5.1 of this chapter. This produces a large peak of calcium
concentration within these nanodomains, large enough to elicit a large increase of cytosolic
calcium and a strong stimulation of nNOS, leading to an intracellular burst of nitric oxide, and
stimulation of the neuronal metabolic activity and associated intracellular superoxide anion
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generation, oxidative conditions that generate intracellular peroxynitrite. In turn, these
intracellular oxidative conditions produce the release of calcium from endoplasmic reticulum
and mitochondria (see the section 5.2 of this chapter), contributing to a further and more
widespread rise of cytosolic calcium concentration, and partial inactivation of the extrusion
systems of the neuronal plasma membrane, PMCA and NCX (see the section 5.3 of this
chapter). These latter effects lead to impairment of the ability of neurons to restore the low
cytosolic calcium concentration needed for their normal function, and as a result lead to a long-
lasting rise of cytosolic calcium concentration which can eventually reach the level that elicits
a rapid necrotic death. Thus, impairment of the calcium transport systems of nanodomains
associated with lipid rafts results in generation of an intracellular ROS/RNS oxidative stress
that amplifies the oxidative stress suffered by exposure of neurons to a combined ROS/RNS
extracellular oxidative stress (Figure 2d). Indeed, many experimental studies have shown that
pharmacological compounds that inhibit the calcium currents through NMDA and AMPA
receptors and L-VOCC behave as protection agents against neuronal death in inflammatory
brain insults.

Experimental evidences have pointed out that there is a large mesh/network of lipid rafts-
associated nanodomains in the plasma membrane of the soma of primary cultures of cerebellar
granule neurons, where they are particularly enriched in neuron/neuron contact areas [130],
and microscopy images have also shown a distribution map that closely overlap with the
distribution map of flavoproteins bound to the plasma membrane [130,261], consistent with
the association of the flavoproteins nNOS and cytochrome b; reductase with these nanodo-
mains. Because of the strong impairment of the activity of calcium transport systems present
in these nanodomains by many ROS/RNS that can be generated in the neuronal cytoplasm
under a variety of cellular stress conditions, it should be expected that even exposure of
neurons to a relatively mild oxidative stress should elicit a partial failure of the control of
calcium homeostasis within these neurons. Owing to the large intracellular space occupied by
nuclei in these neurons, partial failure in the control of cytosolic calcium homeostasis should
elicit significant fluctuations of the cytosolic calcium concentration even in the absence of
neuronal stimulation. The occurrence of basal endogenous oscillations of the cytosolic calcium
concentration have been reported in in vitro cultures of different types of neurons, see for
example [186,262-264]. We have recorded synchronized fluctuations of the cytosolic calcium
concentration in primary cultures of rat cerebellar granule neurons, of an average amplitude
of +0.15 units of the ratio 340/380 in cells loaded with fura-2, by simply increasing the intensity
of UV-irradiation in the epifluorescence microscope [Marques-da-Silva D and Gutierrez-
Merino C, unpublished results], conditions that promote an increase of H,O, production by
cellular flavoproteins. The implication of nanodomains associated with lipid rafts in the
generation of these cytosolic calcium fluctuations is unravelled by their attenuation by specific
inhibitors or blockers of the calcium transport systems associated with these nanodomains. In
this particular case the calcium entry through L-VOCC plays a major role in the modulation
of the amplitude of the UV-induced fluctuations of cytosolic calcium concentrations. However,
it is to be noted that other calcium transport systems associated with lipid rafts can also play
a major role under different experimental conditions, as it has been shown that NCX interac-
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tions with another proteins bound to lipid rafts can elicit cytosolic calcium oscillations in
oocytes [265].

6.1. The role and relevance of cytosolic calcium buffering systems

The activation of a channel with a typical conductance of 2.6 pS, like that of some calcium
channels, can generate a calcium diffusion sub-microcompartment where the calcium con-
centration is higher than 1 uM, but the effective dimensions of this volume element is largely
dependent upon the calcium buffering capacity of the microenvironment, increasing from only
several nanometers with a millimolar calcium buffering capacity up to 82 nm in presence of a
calcium buffering capacity equal to that afforded by 0.1 mM fura-2 [258]. The higher the
conductance of the calcium channel, the higher the effective dimension of this sub-microcom-
partment. Using the equations derived in [260], for channels with unitary calcium conductan-
ces in the range of 20 to 40 pS, i.e. that of L-VOCC and NMDA receptors (section 2.1 of this
chapter), effective dimensions of a sub-microcompartment with calcium concentrations higher
than 1 uM can extend to several hundreds of nanometers taking into account that only
micromolar concentrations of calcium buffering systems are present in the neuronal cytosol
(Figure 2a). Because of the high neurotoxicity of cytosolic calcium concentrations in the
micromolar range, a decrease of the calcium buffering capacity of the cytosol shall increase the
propensity for rapid degeneration of neurons.

On these grounds, it can be easily understood that the role of the cytosolic calcium buffering
in neurons has attracted considerable interest, not only because of the abundance of calcium-
binding proteins in the nervous system but also because of the specificity of their regional
distribution in the brain. It is also relevant herein to note that an altered expression of the major
calcium-binding proteins has been noticed in damaged brain regions of patients suffering from
acute insults, such as stroke or epileptic seizures, and from chronic human neurodegenerative
disorders which develop with an enhanced oxidative stress in the brain, such as Alzheimer's,
Huntington's, Parkinson's and Pick's diseases [266]. Several of the major calcium-buffering
proteins present in the brain have been reported to show altered expression levels in degen-
erating brain regions, namely, parvalbumin, calbindin-D28K and 5100, all of them members
of the EF-hand calcium binding proteins like the calcium-binding protein calmodulin ubiqui-
tously expressed in all mammalian cells. Furthermore, it has been proposed that the lack of
calcium buffering proteins parvalbumin and calbindin-D28K may be considered one of the
factors that render human motor neurons particularly vulnerable to calcium toxicity following
glutamate receptor activation in amyotrophic lateral sclerosis [267]. Consistently, it has been
reported that parvalbumin overexpression delays disease onset in a transgenic model of
familial amyotrophic lateral sclerosis [268], a devastating and oxidative stress-mediated
neurodegenerative disease of the brain.

Because of the high relevance of calmodulin as a multifunctional modulator of cellular calcium
homeostasis and also of cellular calcium signalling pathways [4-6], this is the calcium binding
protein of the EF-hand family whose functional and structural alterations by ROS have been
more extensively studied [269]. In this regard, calmodulin-dependent proteins particularly
relevant for the control of calcium homeostasis in neurons are the calcium transport systems
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PMCA and IP;-receptors, see above. In addition, calmodulin modulates signalling pathways
controlling neuronal activity and synaptic plasticity like the protein phosphatase calcineurin,
CaMK and IQ motif-containing proteins, such as myosins, Ras exchange proteins and GAP-43
among others [141,270,271]. Noteworthy, the activity of calcineurin has been reported to be
decreased in sporadic and familial amyotrophic lateral sclerosis [272]. Calmodulin has been
shown to become more oxidized in aged animals [269], pointing out that the physiological
oxidative stress developed in the tissues is enough to lead to a sustained chemical modification
of this protein. In vitro calmodulin suffers chemical oxidative modifications upon exposure to
either H,O, or peroxynitrite, for a review on this topic see [269]. Two vicinal methionine
residues close to the carboxyl-terminus of calmodulin, Met-144 and Met145, are oxidized to
methionine sulfoxide in aged tissues and also by H,0, and more efficiently by peroxynitrite.
Calmodulin oxidation leads to inhibition of the target proteins by non-productive association
and stabilization of their inactive state. This has been experimentally demonstrated for the
PMCA [273-275]. The oxidation of these methionines is reversible in vivo, as methionine
sulfoxide reductases can efficiently reduce them back to methionine, restoring normal
calmodulin function [269]. The fact that in aged tissues this oxidation is not fully reverted
indicates a functional loss of this recycling process during aging. Thus, oxidation of calmodulin
leads to a transient inactivation of neuronal PMCA. On these grounds, the fact that high levels
of expression of calcium binding proteins are observed in neurons expressing nNOS [276-279]
can be seen as a protective mechanism to attenuate long-lasting calcium transients in these
neurons, which could eventually elicit cell death through calpains activation.

The widespread expression of calmodulin in the brain, its high level of expression in neurons
relative to other cell types and its pleiotropic cellular functions confer a high relevance to the
oxidative modifications of this protein by ROS/RNS. Regarding specifically the calcium
transport systems associated with lipid rafts nanodomains, a loss of functional calmodulin
leads to a marked decrease of the CaMK activity and this, in turn, leads to a decrease of the
activity of the calcium entry systems L-VOCC and AMPA and NMDA receptors. As a result,
the calcium concentration within these sub-microcompartments will be lowered up to levels
closer to those found in the overall cytosol. Although the PMCA will also be inhibited, this
inhibition by itself cannot compensate a large decrease of the inward calcium currents for two
major reasons: (i) in neurons PMCA is also stimulated by phosphatidylserine and in these cells
calmodulin stimulation is weak relative to other cell types [280], and (ii) the higher potency
for transport across the open calcium channels of L-VOCC and NMDA receptors with respect
to that of PMCA. Therefore, these nanodomains can eventually enter in a latent state regarding
calcium and nitric oxide signalling in neurons. A simple and rational hypothesis merges from
this conclusion, namely, that this could be a molecular mechanism underlying the observed
loss of neuronal threshold excitability in aging and brain neurodegeneration. Owing to its
putative relevance for the search of new therapeutic drugs and treatments for slow-developing
neurodegenerative processes, this hypothesis deserve to be experimentally assessed in future
studies.
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7. Concluding remarks

The organization of the major calcium transport systems controlling the cytosolic calcium
homeostasis within nanodomains of the neuronal plasma membrane associated with lipid rafts
is opening new perspectives for regulation and deregulation of calcium signalling in neurons.
In addition to the relevance of this fact for the efficient neuronal function in brain associative
structures, like the concerted activity in neuronal circuits and LTP, the co-localization of ROS/
RNS enzyme sources within these nanodomains is of particular relevance for neurodegener-
ative insults and diseases. The basic reason for this conclusion is that the calcium transport
systems playing a major role in cytosolic calcium homeostasis and calcium-mediated neuronal
activity are highly sensitive to modulation by ROS/RNS, and that oxidative stress is a common
feature observed during the development of brain damage elicited in the most frequent brain
insults and neurodegenerative diseases of high prevalence in humans. Yet, the actual knowl-
edge of the molecular structure and plasticity of these nanodomains is still very limited, both
in terms of their molecular composition in different types of neurons and of the factors
controlling its formation and structural organization. Moreover, the molecular mechanisms
leading to deregulation of the ROS/RNS enzyme sources associated with these nanodomains
remain to be established, as well as the structural changes induced in these nanodomains by
exposure to the different ROS/RNS that are generated in neurodegenerative insults and
diseases. Because of the central role of cytosolic calcium in the control of neuronal activity,
plasticity and survival it can be foreseen that these nanodomains will become a relevant
pharmacological target in the search for alternate and novel therapies aiming to prevent or
slowdown neurodegenerative processes in the brain.

Abbreviations used in the text

AAPH, 2,2'- azobis (2-amidinopropane) dihydrochloride; AMPA, a-amino-3-hydroxy-5-
methylisoxazole-4-propionic acid; CaMKII, calcium/calmodulin-dependent protein kinase,
isoform IT; Ch;R, cytochrome b; reductase; cGMP, 3’,5’-cyclic guanosine monophosphate; CNS,
central nervous system; COX, cyclooxygenase; EDTA, ethylenediamine-tetraacetic acid; FRET,
fluorescence resonance energy transfer; LTP, long-term post-synaptic potentiation; NCX,
sodium-calcium exchanger; NMDA, N-methyl-D-aspartate; nNOS, neuronal nitric oxide
synthase; NOX, ROS-generating NADPH oxidases; PKA, protein kinase A; PKC, protein
kinase C; PMCA, plasma membrane calcium pump; ROS, reactive oxygen species; RNS,
reactive nitrogen species; SIN-1, 3-morpholinosydnonimine; SOCE, store-operated calcium
entry; UV, ultraviolet; VOCC, voltage-operated caclium channels (L-VOCC, L-type VOCC; N-
VOCC, N-type VOCC; etc).
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1. Introduction

The chapter briefly covers the history of protein and peptide neurotoxins in research on
nicotinic acetylcholine receptors (nAChR). It all started with a great help of a-bungarotoxin
and other similar a-neurotoxins from snake venoms in isolation from the Torpedo ray electric
organ of the muscle-type nAChR as a first individual membrane receptor. The next contribu-
tion of a-neurotoxins was the discovery with their aid of the first neuronal nAChR in the brain
now known as homooligomeric a7 nAChR. An overview of various a-neurotoxins (so-called
three-finger toxins) is presented below showing the structural differences between them, as
well as the benefits of their current application for identification and quantification of different
nAChR subtypes at normal state and at various pathologies such as Alzheimer’s and Parkin-
son’s diseases, psychiatric diseases and nicotine addiction. A special emphasis is placed on the
work at our institute, starting with the first detection of nAChRs as targets for the so-called
weak or “non-conventional” neurotoxins. Recently, in proteomic studies of snake venoms,
novel structural types have been discovered, such as covalently connected dimeric a-cobra-
toxin or, on the contrary - azemiopsin, the first peptide from venoms which does not contain
disulfide bonds but still blocks selectively the muscle-type nAChR.

A generous source for sophisticated tools in research on nAChRs is combinatorial peptide
libraries from the venoms of Conus marine snails. In particular, they contain a-conotoxins
which not only distinguish muscle nAChRs from neuronal ones, but some of them block
specifically distinct neuronal nAChR subtypes. At present, combinations of snake and snail
toxins are widely used in fundamental research and in pharmacological studies.

The chapter briefly summarizes information on the spatial organization and subunit compo-
sition of different nAChR subtypes, but considers in more detail important contributions of
peptide and protein neurotoxins into elucidation of the topography of the nAChR binding

I m EC H © 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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sites. The information mainly came from the X-ray structures of their complexes with the
acetylcholine-binding protein (AChBP), an excellent structural model of the ligand-binding
domain of nAChRs. These complexes are considered as initial blocks for design of novel drugs.

2. Muscle-type, neuronal and “non-neuronal” nAChRs — Brief overview

Before considering in detail protein and peptide neurotoxins on which the Chapter is mostly
focused, it is reasonable to give very shortly the information about various types of nAChR
which will make easier later discussions of the specificity of one or another toxin to a particular
nAChR subtype.

As mentioned in the Introduction, a-bungarotoxin made possible identification and isolation
in a pure form of the nAChR from the Torpedo ray electric organ. Later it was found that this
receptor is composed of 5 subunits arranged around the central axis along which an ion channel
should be arranged (Figure 1, A). The subunits in the order of their increasing molecular masses
(estimated from the SDS-gel electrophoresis) have been named a, 3, Y and 6. The molecular
mass of the receptor complex is around 250 kD and it should contain two a subunits and by
one of the “non- a” subunits. When nucleotide sequences of the Torpedo nAChR subunits and
of those from mammalian muscles were established it became clear that those receptors are
highly homologous. In fact, the mammalian embryonic nAChR has the same subunit stoichi-
ometry (2a, 3, v and ), but in the mature form it has an ¢ subunit instead of . Although the
relevant information at present is available in numerous biochemistry books and reviews [1-4],
it should be mentioned here that nAChRs are ligand-gated ion channels: binding of a ligand
(acetylcholine, nicotine or other specific agonists) will result in the channel opening and
passing sodium or calcium ions will activate a variety of signaling cascades. On the other hand,
binding at the same sites of competitive antagonists such as a-bungarotoxin will prevent both
binding of agonists and subsequent channel opening; some so-called non-competitive
antagonists, like phencyclidine, bind directly to the channel moiety but they are not discussed
here.

Earlier it was thought that the ligand-binding sites of nAChRs lie within the a-subunits, hence
there should be two binding sites on the muscle-type nAChRs. To-day we know that, indeed,
the main contributions to binding of agonists or competitive antagonists are donated by the
a-subunits. Moreover, even isolated a-subunit and its fragment in the amino-acid region
170-200 can bind a-bungarotoxin, although with lower affinity than the whole-size receptors
[5,6]. However, now it is well established that the binding sites are situated at the interfaces of
the a-subunits with their neighbors, and it is the variability of functional groups brought to
the binding sites by less conservative “non-alpha” subunits which underlies the differences in
specificity between individual nAChR subtypes [4].

What are the types and subtypes of nicotinic acetylcholine receptors? As mentioned above,
binding of radioactive a-bungarotoxin to brain membranes finally brought to life the nAChR
presently known as homopentameric a7 nAChR that is composed of five identical a7-subunits.
Thus, we have an example of homooligomeric receptor belonging to the family of neuronal
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nAChRs. Neuronal heteromeric nAChRs are composed of two types of subunits: o and . At
present there are 9 types of neuronal a-subunits (a2-a10) and three types of 3 subunits ((32-
[4); oo and P subunits in the muscle-type receptors presumed to be al and 1 ones. The
characteristic feature of a-subunit is a vicinal disulfide between two neighboring Cys residues
in the binding site (Cys192-Cys193 in the amino-acid sequence of the Torpedo a-subunit) which
is not present in  or other “non-a” subunits. In recent years it became clear that diverse
nAChRs are very much widespread and play different functional roles also outside the neuro-
muscular junctions or central nervous system. In fact, neuronal nAChR subunits were found
on the immune system cells, skin, lung tissue and other. The respective receptors got the name
of “non-neuronal” nAChRs thus making a third group of nicotinic acetylcholine receptors (see
reviews [7,8]).

acetylcholine,

c=neurotoxins, ECD

c-conotoxins
T™MD
(MI1-AfipE
ICD

Figure 1. Spatial organization of nAChRs. A — Schematic presentation of Torpedo nAChR, consisting of 5 subunits with
the ion channel along the central axis. Two binding sites of agonists (acetylcholine and others) and competitive antag-
onist (a-neurotoxins from snakes, a-conotoxins from Conus mollusks and others) are located at the interfaces of the
al/y and al1/8-subunits and marked with asterisks. B — Spatial organization of Torpedo marmorata nAChR derived
from its cryo-electron microscopy structure. Subunits al, 1, y and & are colored in red, green, cyanic and blue, respec-
tively. Three main domains of the receptor — extracellular (ECD), transmembrane (TMD), consisting of 4 a-helical frag-
ments (M1-M4), and intracellular (ICD) are shown. C — Schematic presentation of two representatives of neuronal
nAChRs — homooligomeric and heterooligomeric ones. The probable binding sites of agonists and competitive antag-
onist are marked with black circles.

Structurally, the Torpedo nAChR is a prototype for all members of the nAChR family. First of
all, it is a pentamer (composed of 5 subunits) as follows from the cryo-electron microscopy
structure of the Torpedo marmorata receptor (see Figure 1, B). There are no structural data of
this sort for any other nAChR, but their pentameric composition was presumed from computer
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modeling and from some indirect data like electrophysiology analysis. At present there are no
doubts that all nAChRs are indeed either pentameric homooligomers (made exclusively of 5
a-type subunits, like a7 nAChR, a9 nAChR or a9/a10 nAChR) or pentameric heterooligomers
(composed of a and other subunits) (Figure 1, C) — for example, one of the best presented in
the brain is a4p32 nAChR [9]. As already mentioned, all nAChRs should be built similarly to
Torpedo nAChR: namely, four transmembrane fragments M1-M4 in each subunit, the most
inner ones M2 fragments lining the channel, the N-terminal extracellular fragments of each
subunit together forming the ligand-binding domain excellently imitated by the X-ray
structure of the acetylcholine-binding protein (AChBP) (see below). The long intracellular
loops between transmembrane fragments M3 and M4 of each subunit together form the
cytoplasmic (intracellular) domain.

The first and the most direct structural evidence for a common three-dimensional organization
of all nAChRs came from the crystal structure of AChBP [10]. Today even more convincing
are the recently solved high-resolution X-ray structures of the whole-size prokaryotic mem-
brane proteins belonging to the same superfamily of Cys-loop ligand-gated ion channels as
nAChRs [11-13]. These proteins, each composed of 5 identical subunits, do not have large
cytoplasmic domains (which apparently made their crystallization much more simple than of
nAChRs or other mammalian Cys-loop receptors), but in the transmembrane and ligand-
binding domains they are surprisingly similar to Torpedo nAChR. Moreover, the same type of
structure was found for a Cys-loop receptor from Caenorhabditis elegans [14]. Now, after having
these major facts about nicotinic acetylcholine receptors, we can open our toolbox and have a
closer look on protein and peptide neurotoxins.

3. Snake venom neurotoxins utilized in research on nAChRs — Primary
and three-dimensional structure

The word “toolbox” in the chapter title in the first place is related to the snake venom proteins,
at least historically. It was the component of Bungarus multicinctus venom which was found to
block very efficiently the muscle-type nAChRs and could be considered as a good marker of
those receptors. The history of the discovery of such a tool, namely protein neurotoxin a-
bungarotoxin, is presented in a recent review [15]. There Prof. Chang shares his memories
about this discovery (exactly 50 years ago!) which played such a crucial role in understanding
the structure and function of both snake neurotoxins and of one of their targets, namely
nAChRs. Soon after the discovery of a-bungarotoxin, similar proteins were found in other
snakes, in particular in cobra venoms and the whole family got the name of a-neurotoxins (see
reviews [15-17]).

3.1. a-Neurotoxins

There are two structural types of a-neurotoxins: short-chain a-neurotoxins (60-62 amino acid
residues, 4 disulfide bridges) and long-chain ones (66-75 amino acid residues, 5 disulfide
bonds). The first X-ray structures have been determined for the short-chain a-neurotoxins,
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namely for erabutoxins a and b [18,19] (see Figure 2, A). The molecule has three loops, with a
predominant (3-structure, fixed in the space by 4 disulfide bridges forming a sort of a knot.
This folding gave the name of “three-finger proteins” to a-neurotoxins. Later spatial structures
have been determined both by NMR and X-ray crystallography for different short- and long-
chain a-neurotoxins, including a-bungarotoxin [20,21]. Long-chain a-neurotoxins have the
same three -finger folding as the short ones, but contain a longer C-terminal tail and an
additional 5" disulfide in the central loop II (Figure 2, B). In the structures of some long-chain
a-neurotoxins (a-bungarotoxin, a-cobratoxin [22] or neurotoxin I from Naja oxiana [23]) a short
a-helical fragment was found at the tip of the loop II (see Figure 2, B).

Figure 2. Spatial structures of snake ‘three-finger’ toxins interacting with nAChRs. The ‘fingers’ are marked with Ro-
man numbers; N-termini are labeled as well. A - erabutoxin a (PDB ID: 5EBX). B — a-bungarotoxin (1KFH); the 5t disul-
fide bridge in loop Il is colored in magenta (contrary to all other disulfides in orange) and a-helix at tip of this loop is
colored intentionally in contrast green. C — k-bungarotoxin (1KBA); 5t disulfide bridges in loops Il are colored in red. D
- haditoxin (3HH7). E — dimeric a-cobratoxin (4AEA), where disulfide bridges between Cys3 from one monomer and
Cys20 from the second monomer stabilize the dimeric molecule; two monomers are shown in blue and magenta, re-
spectively. F - irditoxin (2H7Z); ‘non-conventional’ disulfides in loops | are colored in red and disulfide bond between
the monomers is shown in blue. G - candoxin (1JGK); disulfide in loop I is shown in red.

One of the characteristic features of a-neurotoxins is the stability of their three-dimensional
structure fixed by 4 or 5 disulfide bridges. This conclusion is supported by high similarity of
spatial structures determined by NMR at different conditions (varying pH and temperatures)
and by X-ray crystallography. This may be one of the crucial factors explaining high efficiency
of a-neurotoxin interactions with their targets, nicotinic acetylcholine receptors. As will be
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shown later, a-neurotoxins essentially preserve their conformation in complexes with the
AChBP [24], with the ligand-binding domain of individual a1 subunit of nAChR [25] and with
the chimera of AChBP and a7 nAChR extracellular domain [26].

3.2. Dimeric three-finger neurotoxins

First of all, we should mention here k-bungarotoxins and several homologous neurotoxins
which are dimers, but do not have covalent intermolecular bonds between monomers [27].
Each monomer is very similar to a typical long-chain a-neurotoxin: the same additional 5"
disulfide at the tip of the central loop II, but a slightly shorter C-terminal tail (total number of
amino acid residues 66 but not 75 as in a-bungarotoxin) (see Figure 2, C). The molecular targets
of k-bungarotoxins are neuronal nAChRs, but contrary to a-neurotoxins they have high
affinity to neuronal a32 nAChR [28]. Interestingly, it was established about 20 years ago that
there is one common property of a-neurotoxins and k-neurotoxins, namely the additional
disulfide in the loop II is essential for recognition of neuronal nAChRs. It was found that
selective reduction of that disulfide and subsequent alkylation or removal of the respective
cysteines in both types of toxins abolished their high affinity binding to a7 and a332 nAChRs,
respectively (without decreasing the affinity of long-chain a-neurotoxins to muscle-type
nAChRs [29,30]). On the other hand, introduction of additional disulfide into the central loop
of short-chain a-neurotoxins considerably increased their affinity for a7 nAChR [31,32].

It is not yet absolutely clear why 1-bungarotoxins have preference for heteromeric nAChRs.
There was a hypothesis that an important role in selectivity of k-bungarotoxins towards a3[32
nAChRs belongs to the residue Lys26 [24]. However, its introduction to a-neurotoxin having
a high affinity for a7 nAChRs only decreased considerably binding to this receptor but did not
bring any affinity for a332 nAChRs [32]. Apparently, dimerization as such is important to force
a protein, composed of two classical a-neurotoxins, to recognize a heteromeric neuronal
nAChRs as can be seen on the example of other recently discovered dimeric neurotoxins.

One toxin, haditoxin from the King cobra venom [33] looks very similar to k-bungarotoxin.
Haditoxin is a non-covalent dimer composed of two short-chain a-neurotoxins, rather than of
long-chain ones, and the monomers adopt a topological arrangement (Figure 2, D) reminiscent
of that observed earlier for monomers in k-bungarotoxin. Haditoxin can block not only muscle-
type nAChRs, as typically observed for short-chain a-neurotoxins, but surprisingly it also
blocks homooligomeric a7 and heterooligomeric a3(32 nAChRs. This finding appears to be in
contradiction with the earlier found necessity of the additional disulfide in the central loop for
recognition of neuronal nAChRs. However, it should be kept in mind that blocking of neuronal
nAChRs by haditoxin was observed only at very high toxin concentrations [33]. It should be
also mentioned that, strictly speaking, haditoxin cannot be assigned to classical short-chain
a-neurotoxins because its homology to erabutoxin is only 50%, whereas it is 75-80% with the
muscarinic toxin-like proteins (MTLP) having different targets [34].

Novel types of dimeric a-neurotoxins were recently discovered: contrary to k-bungarotoxin
or haditoxin, these are covalently bound where two molecules of a-cobratoxin are connected
by two intermolecular disulfide bonds [35]. Before describing a biological activity of this new
tool, it should be mentioned that such intermolecular disulfide is the first case of this post-
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translational modification found for the whole huge family of three-finger toxins. Dimeric a-
cobratoxin retained, although at a lower level, the capacity to block a7 and muscle-type
nAChRs and in addition acquired the ability to block a332 nAChR - again, with lower potency
than did k-bungarotoxin [35]. Interestingly, selective reduction of the disulfides in the loop II
of dimeric a-cobratoxin abolished its activity against a7 nAChR. It could be expected in view
of earlier described similar modification of a-cobratoxin itself, but this chemical modification
even increased the affinity for a332 nAChR [36]. Since dimeric a-cobratoxin is present in the
Naja kaouthia cobra venom only in minute amounts (0.01% in crude venom, as compared to
10% for a-cobratoxin itself or to 0.1% for k-bungarotoxin), unequivocal localization of inter-
molecular disulfides by chemical means could not be done. Fortunately, dimeric a-cobratoxin
has been recently crystallized (Figure 2, E) and the high-resolution X-ray structure revealed
the disposition of the intermolecular disulfide bridges: the disulfide Cys3-Cys20 or Cys3'-
Cys20’ in each monomer is not formed, but Cys3 of one monomer finds Cys20’ of another
monomer, while Cys3’ of the latter makes a disulfide with Cys20 of the former [36].

As will be shown later, the main contribution to binding of a-neurotoxins both to nAChRs and
to their models comes from the tip of the central loop II of a-neurotoxins. In dimeric a-
cobratoxin the two tips are in close proximity and computer modeling showed impossibility
of docking such a structure to AChBP, suggesting that some conformational changes should
occur in the dimeric a-cobratoxin to ensure its binding observed in radioligand and electro-
physiology experiments [36].

The discovery of dimeric a-cobratoxin was followed by finding another three-fingered toxin
where monomers are connected by a disulfide bridge [37]. It was irditoxin isolated from
Colubrid snake Boiga irregularis. In contrast to dimeric a-cobratoxin present in venom in minor
amounts, irditoxin is a main component of boiga venom. Again, strictly speaking, irditoxin is
neither a short- nor a long-chain a-neurotoxin: the monomers forming this toxin belong to non-
conventional toxin type (see below) and each monomer contains an extra cysteine residue
forming one disulfide bridge between two monomers (or protomers). None of these cysteines
is present in classical a-neurotoxins. In the first protomer, the additional cysteine is located in
loop I whereas in the second protomer it is in loop II. The three-dimensional structure of
irditoxin [37] (see Figure 2, F) shows that the central loops II of the two protomers are oriented
in a similar way as the central loops of dimeric a-cobratoxin (Figure 2, E).

3.3. Weak (non-conventional) three-fingered neurotoxins

A characteristic feature of this group of three-fingered toxins is the presence of additional
disulfide bridge not in the central loop II, as in long-chain a-neurotoxins or in k-bungarotoxins,
but in the N- terminal loop I. Some representatives of this group were known long ago, but
many of them did not have a strong toxicity (that is why their name was “weak toxins”) and
their targets were unknown. At present this group of toxins, consisting of 62-68 amino acid
residues, is quite well investigated and has a more general name “non-conventional neuro-
toxins” [38]. The toxicities for the most of group members are very low (5-80 mg/kg) in contrast
to classical a-neurotoxin with toxicities in the range from 0.04 to 0.3 mg/kg. However, some
very potent toxins (like y-bungarotoxin with LD50 of 0.15 mg/kg) are also included in the
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group of non-conventional toxins. Since, as mentioned above, molecular targets of weak (non-
conventional) toxins for a long time were unknown, an important step in this field was the
work [39] where was discovered that weak toxin (WTX) from Naja kaouthia cobra venom
interacted with micromolar affinity with the a7 and muscle-type nAChRs, the binding being
practically irreversible. Later it was found [40] that candoxin (Figure 2, G), another non-
conventional toxin, interacted both with a7 and muscle-type nAChR with high affinity. An
interesting feature of candoxin is that its attachment to the muscle-type receptor was easily
reversible. Even more impressing species specificity was reported for denmotoxin, a non-
conventional toxin isolated from Colubrid snake Boiga dendrophila: it was able to interact
irreversibly and with high affinity with chick muscle nAChR, but only with low affinity with
mouse receptors [41].

3.4. Three-finger snake neurotoxins having other targets than nicotinic acetylcholine
receptors

Before considering in detail the mechanisms of interactions between a-neurotoxins and
nAChRs and describing their earlier and current roles of tools, it is appropriate to say a few
words about the whole family of three-finger proteins from snake venoms (see reviews [16,17]).
They all have the same “three-finger” fold but are decorated with quite different functionally
active amino-acid residue and, as a result, attack distinct targets. For example, in the preceding
paragraph we considered WTX from Naja kaouthia venom which blocked nicotinic acetylcho-
line receptors. Its very low toxicity allowed testing of its behavioural activity on rats which
suggested action on muscarinic acetylcholine receptors [42]. Indeed, subsequent radioligand
analyses revealed the WTX interaction with the different subtypes of muscarinic acetylcholine
receptors [43]. It should be noted here that we have a dualism of action for this group of the
three-finger proteins from snake venom: namely, blocking of one acetylcholine receptor (the
nicotinic one) belonging to the family of ligand-gated ion channels and another acetylcholine
receptor, the muscarinic one which is a member of the superfamily of G-protein-coupled
receptors (GPCR).

Much more strong effects on muscarinic acetylcholine receptors exert so-called muscarinic
neurotoxins isolated from the green mamba Dendroaspis angusticeps [44-46]. Structurally these
proteins are of the same type as short-chain a-neurotoxins. Interestingly, they can distinguish
different subtypes (M1-M7) of muscarinic acetylcholine receptors and on some of them exert
not the inhibitory, but the potentiating effects. There is not yet much information about how
muscarinic toxins recognize their targets. A large series of mutations was performed both on
the muscarinic toxin MT7 and on the M1 muscarinic receptor and the results of this pair-wise
mutagenesis, analyzed by computer modelling, indicated that all three loops I-III should be
involved in the interaction and the main binding site for this allosteric modulator is located in
the extracellular loops of the receptor [46].

There are also several three-finger proteins from snake venoms (calciceptin, FS2) blocking
Ca* channels [47,48]. We should also mention here fasciculin, a three-finger protein with 4
disulfides, targeting the acetylcholinesterase. Interestingly, the X-ray structures of fasciculin
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in complex with acetylcholinesterases were the first examples presenting a three-finger toxin
bound to its biological target [49,50].

One of the most well-represented groups in the snake venoms are so-called cytotoxins (some
of them were earlier called cardiotoxins) which apparently do not have a single well-defined
target but disrupt the cell membranes thus inducing a multitude of effects (see reviews [51,52]).
Asaresult of proteomic studies new three-finger proteins are being found in the snake venoms,
and one of the minor components in the Naja kaouthia cobra venom was identified as a
glycosylated cytotoxin I [53]. This post-translational modification, for the first time discovered
for the family of three-finger toxins, considerably decreased the cytotoxicity of this protein,
whereas enzymatic deglycosylation restored it to the level of cytotoxin I activity [53]. Another
really a minor component of that venom (less than 0.01% in the crude venom) was a dimer of
cytotoxin and a-cobratoxin connected by two intermolecular disulfide bridges which revealed
a weak activity against neuronal nicotinic acetylcholine receptors [35].

We also would like to mention here the recent discovery of three-finger neurotoxins which
interact with another group of GPCR, namely with the adrenoreceptors [54,55]. These toxins
are most similar to muscarinic toxins and were also isolated from the eastern green mamba
Dendroaspis angusticeps. One such toxin (g-Dala) has a very high affinity (0.35 nM) for the al
adrenoreceptor, while another one (0-Dalb) has a lower affinity but is more selective towards
a2 types [55]. Interestingly, these toxins are considered as possible drugs against prostate
hypertrophy.

Although it is not the topic of the present review, it is appropriate to mention here that there
are three-finger proteins in nervous and immune system of mammals and insects belonging
to the Ly6 family and some of them bind to nicotinic acetylcholine receptors and regulate their
functioning in vivo (see [56-59] and recent publications from our institute [60-63]).

3.5. Peptides from snake venoms acting on nicotinic acetylcholine receptors

Such peptides are not as numerous as a-neurotoxins or non-conventional toxins targeting
different subtypes of nAChR. Until recently the only group was that of waglerins isolated from
the venom of South Asian snake Tropidolaemus wagleri which consist of 22-24 amino acids and
contain one disulfide bridge [64,65]. These toxins bind with high affinity to muscle-type
nAChR [66]. Interestingly, waglerins can distinguish embryonic (al,1 yd) and “mature”
(a1,31ed) muscle-type nAChR: waglerin-1 efficiently blocks the e-containing form, but not the
v-form of this receptor [67]. While snake venom a-neurotoxins bind with practically equal
efficiency to the two binding sites (formed by two a-subunits with their non-a neighbors) in
the muscle-type nAChRs, waglerin-1 binds 2100-fold more tightly to the a-¢ than to the -0
binding site of the mouse nAChR [68]. Several amino acid residues in the nAChR subunits
participating in waglerin binding were identified by site directed mutagenesis [69], namely
Aspb9 and Asp173 were shown to be important for waglerin binding at both sites. On the other
hand, the disulfide in waglerin was found to be essential for its activity, as well as several
residues in its N-terminal part of the amino acid sequence [70].
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A new peptide was recently found in the snake venom possessing a capacity to block muscle-
type nAChR [71]. It is azemiopsin, isolated from the Azemiops feae viper venom, which consists
of 21 amino acid residues. By the chain length azemiopsin is similar to waglerins and,
moreover, shares with them a homologous C-terminal fragment. However, it possesses a
unique structural feature: contrary to all earlier known proteins and peptides from the venoms
of snakes or poisonous Conus mollusks (see below), whose structure is fixed by one or several
S-5-bonds, azemiopsin contains no disulfides. It dose-dependently blocked acetylcholine-
induced currents in Xenopus oocytes heterologously expressing human muscle nAChR, and
was more potent against the adult (a1,31€d) than the fetal (a1,$1yd) form. Ala-scanning and
analysis of competition with a-bungarotoxin for binding to Torpedo nAChR resulted in
identification of the azemiopsin residues essential for its activity which in general were found
to be different from those responsible for the waglerin activity [71].

4. a-Conotoxins, peptides from poisonous marine snails Conus, acting on
nicotinic acetylcholine receptors

Historically, snake venom a-neurotoxins were the first extremely important tools which made
possible “digging out” in a purified form the first representative of the nAChR family, namely
the muscle-type receptor from the Torpedo ray electric organ. Then, in the early 80%, the peptide
toxins were discovered in the marine mollusk Conus geographus venom which caused postsy-
naptic inhibition at the neuromuscular junction in frog and got the name of conotoxins [72].
The following studies brought to life a tremendous number of so-called conotoxins or cono-
peptides from different species of Conus snails. The number of Conus species living in different
seas and oceans is about 1000 and the available data show that the venom of each species
should contain in excess of 1000 conopeptides. Thus, Conus mollusks provide researchers with
huge combinatorial libraries of peptides. The main task of slowly moving Conus mollusks is
to immobilize their preys (small fishes, worms etc.), that is why their venoms contain a variety
of peptides paralyzing the nervous systems of their targets. Evolutionary each Conus species
is adjusted to a particular area and a distinct food source, hence the individuality of each
venom. There are several types of conotoxins differing in their targets: a-conotoxins block
nAChRs, p-conotoxins are acting on Na*-channels, k-conotoxins interact with K*-channels, w-
conotoxins block specifically certain Ca*-channels and one of such w-conotoxins became a
very potent analgesic (trade name Ziconotide or Prialt; see more about these and many other
conotoxins and conopeptides in recent reviews [73-75]). The number of discovered conotoxins
is rapidly increasing because nowadays they appear not so much due to isolation from Conus
venoms (usually available only in minute amounts) but due to deciphering mRNAs obtained
from the venom glands.

Since this chapter is devoted to neurotoxic proteins and peptides interacting with nicotinic
acetylcholine receptors, below we will consider only those conotoxins which target these
receptors. The major group is a-conotoxins, competitive antagonists of nAChRs. They have
12-19 amino-acid residues, as a rule amidated C-terminus and two disulfide bonds between
Cys residues C'-C* and C?>-C* (see Table). There are also several other groups of conotoxins
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acting on nAChRs (-, aA-, aAg-, aC-, aS- and aD), but they are not numerous, are not as
widely used as a-conotoxins and will not be considered here.

Toxin Conus species Amino acid sequence ' Selectivity

3/5 a-conotoxins

Gl C. geographus ECCNPACGRHYSC* alBly/ed
MI C. magus GRCCHPACGKNYSC* alply/ed
SIA C. striatus YCCHPACGKNFDC* alBly/ed

4/3 a- conotoxins

Iml C. imperialis GCCSDPRCAWRC* a7,a9a10; a3p2; a3p4

RglA C. regius GCCSDPRCRYRCR a9a10

4/4 a- conotoxins

BulA C. bullatus GCCSTPPCAVLYC* a3(a6)B2, a3(ab)p4

4/6 a- conotoxins

AulB C. aulicus GCCSYPPCFATNPDC* a3p4

4/7 a- conotoxins

PnlA C. pennaceus GCCSLPPCAANNPDYC* a3p2
PniB C. pennaceus GCCSLPPCALSNPDYC* a7; a3p4
Mil C. magus GCCSNPVCHLEHSNLC* a3B2(B3); ab-containing
Vel.1 C. victoriae GCCSDPRCNYDHPEIC* 09a10; a3p4, a3(a5)p2
TxIA C. textile GCCSRPPCIANNPDLC* a3p2
ArlB C. arenatus DECCSNPACRVNNPHVCRRR a7, a6a3p2p3, a3p2
'Scheme of disulfide closing for naturally-occurring a-conotoxins —

Eor]

* indicates an amidated C-terminus; the names of a-conotoxins typed in italics mean that their structures were
identified in cDNA libraries.

Table 1. Most studied members of naturally-occurring a-conotoxins.

a-Conotoxins are structurally subdivided into subgroups depending on the number of amino
acid residues between the C>-C® and C*-C* cysteines (see Table) forming the first and second
loops, respectively. This structural feature affects the a-conotoxin specificity to particular
nAChR subtypes. All at present known 3/5 a-conotoxins are potent blockers of muscle type
nAChRs (and conventionally can be called ‘muscle’” a-conotoxins). The members of other
subgroups (4/3, 4/4, 4/6, 4/7) act on various neuronal nAChR subtypes (and can be called
‘neuronal’ a-conotoxins). It is very rare when naturally occurring neuronal a-conotoxin blocks
specifically only one neuronal nAChR subtype, usually neuronal a-conotoxins interact with
two or more nAChR subtypes (see Table).
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Most of muscle 3/5 a-conotoxins can discriminate species-specifically two binding sites on
muscle or Torpedo nAChRs. For example, a-conotoxins MI, GI or SIA have up to10000 times
higher affinity for a1/0- over al/y site in muscle nAChR [76,77]; in contrast to more effective
binding of these peptides, although not with such a great difference, to al/y site in Torpedo
receptor [78,79].

“Mutagenesis” studies of a-conotoxins (in fact not the mutagenesis as such, but substitutions
of amino acid residues by solid-phase peptide synthesis) gave information about those
residues which are the basis of the high affinity and selectivity to a particular receptor or
receptor subgroup. For example, the crucial role of Arg9 in a-conotoxin GI, as well as of Pro6
and Tyr12 in a-conotoxin MI for discriminating the a1/y- and a1/0-sites was revealed [80-82].
Interestingly, Arg9 proved important for a neuronal 4/3 a-conotoxin RgIA for its a9a10nAChR
specificity [83]. Similar “mutagenesis” studies resulting in revelation of residues crucial for
activity were done also for many other a-conotoxins (ImlI, PnIA, MII, GID, Vc1.1, AulB) [84-89].

Like in the analysis of interactions between different nAChR types and snake venom neuro-
toxins, when much efforts has been spent by many laboratories to establish the topography of
their binding, similar studies have been undertaken to elucidate the mechanism of nAChR
recognition by a-conotoxins. Among them were above-mentioned multiple substitutions in
the amino acid sequences of naturally occurring a-conotoxins, making their structures more
rigid, syntheses of radioactive, fluorescent and photoactivatable derivatives. Combination
with mutagenesis of the receptor subunits (pair-wise mutagenesis) gave information about
possible contact points between a-neurotoxins and nAChRs, as well as between a-conotoxins
and nAChRs. The relevant information can be found in numerous reviews (see, for example,
[90-92]), but will not be considered in detail here, because this chapter contains a special section
where crystal structures of a-neurotoxins and a-conotoxins in complexes with the relevant
biological targets will be discussed.

5. Three-dimensional structures of peptide and protein neurotoxins in
complexes with the nicotinic receptor models and fragments

It was already mentioned that the crystal structure of the acetylcholine-binding protein
(AChBP) provided an impressing jump in the structural analysis of not only nicotinic acetyl-
choline receptors but of all other members of the Cys-loop receptor family. This water-soluble
protein was found to modulated synaptic transmission in glia of Lymnaea stagnalis fresh-water
mollusk and was purified using affinity chromatography on a column with the attached a-
bungarotoxin [93]. Sufficient amounts of AChBP were obtained by heterologous expression
and the crystal structure was determined at 2.7 A resolution [10]. This structure clearly showed
that AChBP is an excellent structural model of N-terminal ligand-binding domains of all
nAChRs: crystal AChBP was in a pentameric state, similarly to the whole-size nAChRs. In spite
of low homology with the amino-acid sequences of extracellular domains of nAChR subunits
(not more than 25%), AChBP contains all those amino acid residues which earlier in receptor
studies were found essential for interacting with the cholinergic agonists and antagonist. The
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AChBP crystal structure revealed that such residues are all clustered in the middle of AChBP,
at the interfaces between its subunits (or protomers). At present, the X-ray structures of several
molluscan AChBPs are known (from Lymnaea stagnalis, Aplysia californica, Bulinus truncatus),
as well of their complexes with a wide variety of agonists and antagonists which gave quite a
detailed picture of the respective binding sites in these AChBPs and of their contacts with
ligands. Biochemical data and computer modeling show convincingly that these structures
shed light on the receptor binding sites per se and on the ligand disposition in the binding sites
of muscle and neuronal nAChRs. The relevant information can be found in recent original
papers [94-97] and reviews [98,99], and below we will consider in detail only the crystal
structures of complexes with protein and peptide neurotoxins.

Interestingly, the first AChBP crystal structure in complex with a competitive antagonist was
that of Lymanaea stagnalis AChBP with bound a-cobratoxin [24]. (In parentheses it may be
mentioned that later more structures were solved for the Aplysia californica AChBP complexes,
but L. stagnalis AChBP has a much higher affinity for a-neurotoxins than AChBPs from other
species). First of all, X-ray analysis revealed 5 a-cobratoxin molecules attached at the interfaces
between 5 identical subunits (or protomers) of AChBP (Figure 3, A). The major role in the
organization of the binding site is played by aromatic residues (so-called “aromatic box”) of
AChBP. Long before crystallographic studies, protein chemistry and mutagenesis revealed
that these aromatic residues were important for binding different agonists and antagonists to
diverse muscle-type and neuronal nAChRs. It was proposed that the binding sites are formed
by three fragments (A, B, C) of polypeptide chain of one subunit and by three fragments (D,
E, F) of the polypeptide chain of the other one on which these aromatic residues are located
(see review [100]). The first three fragments in real receptors are on the a-subunits and form
the main (principal) binding surface, while the last three are on non-a-subunits and compose
the complementary binding surface. In the case of homopentameric receptors like a7 ones, the
A-C loops are on the “front surface” of one a7-subunit and D-F on the “back surface” of the
neighboring identical subunit. In general, the X-ray structure of the AChBP complex with a-
cobratoxin is in accord with the earlier ideas on the a-neurotoxin binding to nAChRs formu-
lated on the basis of chemical modification of a-neurotoxins, their mutagenesis, photoaffinity
labeling and mutagenesis of receptors (see reviews [101,102]). Indeed, there is a multipoint
binding of a-cobratoxin and the major role, as earlier shown by “wet biochemistry” methods,
is played by the toxin central loop II.

The comparison with the NMR and X-ray structures for a-neurotoxins revealed that a-
cobratoxin did not need to change its conformation dramatically to be accommodated in the
binding region of AChBP. On the contrary, the AChBP loop C containing the disulfide between
the neighboring cysteines (which is also a characteristic feature of all nAChR a-subunits) had
to move to periphery up to 10 A from the position which it occupied in the AChBP containing
no bound ligand. (This movement should be supplemented with essential changes in confor-
mation of loop F from complementary AChBP protomer.) Moreover, the earlier solved
structure of AChBP with such agonist as nicotine revealed that, when agonist comes to the
binding site, loop C embraces it and moves closer to the central axis of the molecule [94]. At
present there are many crystal structures of various AChBPs in complexes with versatile
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specific or nonselective agonists and antagonists of the muscle-type and neuronal nAChRs
and it appears to be a general rule: antagonists versus agonists induce movements of the loop
C in the opposite directions.

5.1. X-ray structure of the extracellular domain of muscle nAChR a1l subunit in complex
with a-bungarotoxin

Until now we were considering the X-ray and Electron microscopy structures of closely related
but independent objects of studies: acetylcholine binding proteins and Torpedo nAChR. It
should be emphasized that the structures of bound cholinergic agonists and antagonists until
recently were available only for their complexes with AChBPs. That is why when researchers
wished to analyze in three-dimensions the interactions of agonists or antagonists with the
muscle-type or neuronal nAChRs, they had to rely on computer modeling. Fortunately, one
of the bridges between the AChBPs and nAChRs spatial structures has been recently open: the
X-ray structure has been determined for the a-bungarotoxin complex with heterologously
expressed ligand-binding domain of mouse muscle nAChR a1 subunit [25]. Many laboratories
have earlier tried, with the aid of heterologous expression, to obtain ligand-binding domains
of al or a7 subunits as individual proteins and to determine their three-dimensional structure.
Although in certain cases those proteins could bind a-bungarotoxin with relatively high
affinity (but not with the nanomolar constants as intact receptors) [103-106], in no case the
proteins could be crystallized. In view of the above-said, the work [25] is clearly a break-
through. Using random mutagenesis, the authors have chosen a protein with a low tendency
to aggregation. In spite of its having the mutation of Trp149 (localized in loop B and known
to be important for binding agonists and antagonists), the protein could bind a-bungarotoxin.
It was namely the complex of a-bungarotoxin rather than the free domain which was success-
fully crystallized. (Thus, in addition to helping isolate the Torpedo nAChR and L.stagnalis
AChBP, a-neurotoxins played again an important role, this time in crystallization of the
nAChR subunit ligand-binding domain.) The structure of the complex has been solved at a
very high resolution (1.94 A) (see Figure 3, B).

Although this domain is a monomer, its spatial structure is very similar to an AChBP protomer
in a pentameric complex. A molecule of bound a-bungarotoxin occupies the position similar
to that of a-cobratoxin in complex with L. stagnalis AChBP (compare Figure 3, A and B). It
should be emphasized that in the complex with al domain, a-bungarotoxin utilized for
interaction only the principal side, while a-cobratoxin in complex with pentameric AChBP has
contacts with both principal and complementary sides at the subunit interface. However,
instead of this, a-bungarotoxin forms contacts with the sugar moiety present in the nAChR
domain but absent in AChBPs.

5.2. X-ray structure of a-bungarotoxin with a chimera of L. stagnalis AChBP/ligand-binding
domain of the human a7 subunit

This work can be considered as a further development of the recent breakthrough in the
analysis of ligand binding domains of nAChRs when an important step was done in
ascending from models to true receptors. The authors of [107] managed to substitute about
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Figure 3. Crystal structures of the AChBP/nAChR domain-toxin complexes. Top and side views are in upper and lower
lines, respectively. A - a-Cobratoxin bound to L. stagnalis AChBP (PDB ID: 1Y15); toxins and proteins are shown in blue
and green. B — a-Bungarotoxin bound to the N-terminal domain of nAChR a1 subunit (2QC1); toxin and subunit are
shown in blue and red; the sugar moiety presented in this complex were excluded for clarity. C - a-Bungarotoxin
bound to the chimeric protein composed of N-terminal domain of nAChR a7 subunit and L. stagnalis AChBP (4HQP);
toxins and chimeras are shown in blue and magenta.

70% of the amino-acid residues in L. stagnalisAChBP (not touching the less hydrophobic
Cys-loop) for residues of the a7 subunit and crystallized this protein in free form and in
complex with epibatidine, an potent but nonselective nAChR agonist[108]. The observed
pentaoligomeric structure can be considered as the closest proximation to the 3D struc-
ture of the ligand-binding domain of the true a7 nAChR. Practically the same a7/AChBP
chimera has been used to crystallize a complex with a-bungarotoxin [26]. Again, it was a
pentaoligomer with 5 attached a-bungarotoxin molecules (see Figure 3, C). In general,
disposition of a-bungarotoxin is very close to what was observed for a-bungarotoxin in
complex with the al domain or for a-cobratoxin complex with the L. stagnalis AChBP
(compare with Figure 3, B and A). Basing on the high-resolution structure of the a7/AChBP-
a-bungarotoxin chimera, the authors designed a series of a7 nAChR mutants and from the
analysis of their activities and efficiency of a-bungarotoxin binding collected a very detailed
information about the intermolecular interactions which ensure the high affinity for a-
bungarotoxin binding [26]. In particular, they not only confirmed the role of the “aromat-
ic box”, but also revealed the importance of amino-acid residues which in the amino acid
sequence are direct neighbors of those aromatic residues.

5.3. X-ray structure structures of AChBP complexes with a-conotoxins

The first X-ray structure of the AChBP complex with a-conotoxin [109] has been solved soon
after elucidation of the X-ray structure of the L. stagnalis AChBP complex with a-cobratoxin.
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Figure 4. Spatial organization of complexes of a-conotoxins from different groups and A. californica AChBP derived
from their crystal structures. Only two adjacent monomers of AChBP colored in cyan and yellow for clarity in side views
are presented. All a-conotoxins are shown in magenta. A — complex with a-conotoxin PnIA[A10L, D14K] variant from
4/7 a-conotoxin group (PDB ID: 2BR8). B — complex with a-conotoxin Iml from 4/3 a-conotoxin group (2C9T). C - com-
plex with a-conotoxin BulA from 4/4 a-conotoxin group (4EZ1).

In this case it was another AChBP, namely the protein from the marine mollusk Aplysia
californica [110]. First of all, contrary to the a-cobratoxin complex, it was a high-resolution (2.4
A) structure and, secondly, it was the first X-ray structure for a representative of the huge
conotoxin library in complex with a biological target. The crystals were raised for the complex
of a-conotoxin PnlA analog having two substitutions ([A10L] and [D14K]) which had high
affinity both for L. stagnalis and A. californica AChBPs and potently inhibited acetylcholine-

induced currents in a7 nAChRs expressed in oocytes [109].

Hydrophobic contacts were found to play the major role in the interaction of a-conotoxin
PnIA[A10L, D14K] with A. californica AChBP (Figure 4, A). As in other AChBP complexes
with agonists or antagonists, at the principal side the contacts are formed mainly by highly
conserved aromatic amino acid residues - Trp145, Tyrl86, Tyr193. At the complementary
side the contributions are from aliphatic residues (Vall06, Met114, Ile116). It should be
stressed again that loop C in the complex with a-conotoxin moves to the periphery of the
AChBP molecule by more than 10 A, as compared with its disposition in the “apo” form
of A. californica AChBP. A similar shift was also observed, as mentioned above, for the a-
cobratoxin complex [24], as well as for the majority of AChBP complexes with other
antagonists (see reviews [98,111,112]). Thus, the conclusion that the most obvious distinc-
tion between the first steps in the binding modes of agonists versus antagonists is the
induced movement of the loop C (to the central axis for the former and outwards for the
latter) appears to be correct. However, there are some deviations from this trend: for
example, strychnine is an antagonist both of the nAChRs and glycine receptors, but in the
case of its complex with the A. californica AChBP, the loop C shift to the periphery was
only very slight [113]. The changes in the disposition of the loop C were not pronounced
also for AChBP complexes with partial agonists [96].

Another interesting feature of AChBP complexes was for the first time observed with partial
agonists: in distinct binding sites within a pentameric AChBP molecule these compounds
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had different orientations [96]. Such multiplicity was first thought to be inherent only in
partial agonists, but later altering dispositions in the 5 AChBP binding sites were ob-
served for the complexes of such alkaloid antagonists as strychnine and d-tubocurarine
[113]. Moreover, in several binding sites two alkaloid molecules managed to be accommo-
dated simultaneously [113].

Variations of the ligand orientation in the binding sites of AChBPs and nAChRs are of
undoubted interest. In the A. californica AChBP complex, all 5 bound a-conotoxin PnIA[A10L,
D14K] molecules had the same conformation and orientation. This was also true for the later
solved structures of a-conotoxin ImI complexes [114,115] (see Figure 4, B). These structures
(very similar to those of a-conotoxin PnIA[A10L, D14K]) confirmed that, although bound a-
conotoxin PnlA analog had two substitutions and was in this respect “unnatural a-conotoxin”,
the X-ray structure of its complex correctly revealed the structural principles of the a-cono-
toxin-AChBP recognition. Fine adjustments of such a recognition were brought to light by the
structure of A. californica AChBP complex with the a-conotoxin TxIA[A10L] [116]. In general,
the structure of this complex was very similar to those of a-conotoxin PnIA[A10L, D14K] or
a-conotoxin Iml, but with a noticeable difference: this a-conotoxin derivative occupied exactly
the same region as the two above-mentioned a-conotoxins, but it was turned around the central
axis by about 20 degrees. The authors proposed that such rotation reflects certain differences
in the selectivity of this particular a-conotoxin [116]. The latest published structure of the
AChBP complex with a-conotoxin (November 2013) is announced by the Protein Data Bank
(PDB) the structure with ID - 4EZ1. This is a complex of A. californica AChBP with a-conotoxin
BulA [117]. Despite the fact that a-conotoxin BulA is a member of other subgroup of a-
conotoxins (4/4) its position and orientation in the complex with AChBP (Figure 4, C) very
close to that of both a-conotoxin PnIA analog (4/7 subgroup) and a-conotoxin Iml (4/3
subgroup) (compare Figure 4, A, B and C). In any case, from the four solved X-ray structures
for AChBP complexes with a-conotoxins it followed that some variations in their attachment
are possible. It might be expected that variations may be even more pronounced when a-
conotoxins interact with true nAChRs, especially with heteroligomeric ones having different
subunit interfaces.

Indeed, interpretation of the cross-linking of photoactivatable derivative of a-conotoxin GI to
Torpedo californica nAChR in terms of the model built on the basis of the X-ray structure of the
AChBP complex with a-conotoxin PnIA[A10L, D14K], suggested that for bound a-conotoxin
two orientations are possible where the disposition of photoactivatable group differs by about
90 degrees [118]. Later a similar situation was demonstrated for an agonist, namely for the
photoactivatable derivative of epibatidine [119]. This compound was shown to bind to only
one site in the T. californicanAChR, but to 2 sites in the neuronal 432 nAChR which presumes
two different dispositions of the bound ligand [119]. Naturally, cross-linking is not such a direct
evidence as the X-ray structure, but the latter are available only for the AChBP complexes and
the multiplicity of alkaloid antagonist orientations in the frames of one AChBP molecule [113]
has been already mentioned.
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6. Summary

In this chapter we tried to briefly present almost a 50-year history of using protein and peptide
neurotoxins in fundamental and practical studies of nicotinic acetylcholine receptors
(nAChRs). It was shown that the discovery of a-neurotoxins in the snake venoms was an
extremely important step which made possible identification and isolation in individual form
of the first nAChR from the Torpedo ray electric organ. Many laboratories comprehensively
analyzed this receptor and it soon became clear that it is an appropriate model for nAChRs of
all classes, namely muscle, neuronal and the so-called “non-neuronal” ones. Later, in addition
to the three-finger a-neurotoxins, new shorter and smaller but not less efficient tools were
found: namely, among a huge family of various peptides in the venoms of marine Conus
mollusks, one particular group happened to be invaluable for research on nAChRs. Here we
speak about a-conotoxins which not only discriminate the muscle-type from neuronal
nAChRs, but some of them even are selective towards a particular neuronal nAChR subtype.
One should not think that the discovery of a-conotoxins put the a-neurotoxins into archives.
First of all, even to-day a-bungarotoxin and its radioactive and fluorescent derivatives are the
most reliable tools for identification and measuring the levels of the functional a7 nAChRs.
Secondly, a-neurotoxins played another leading role a decade ago helping to purify the
acetylcholine-binding protein (AChBP). The discovery and the X-ray structure of this protein,
an ideal model for the ligand-binding domains of all nAChRs, was the major breakthrough in
elucidating the three-dimensional structure of nAChRs and especially of their ligand-binding
site topography. Our chapter also presented the data on the crystal structures of AChBP
complexes both with a-neurotoxins and a-conotoxins that gave information about the
topography of their interactions with the key residues in the binding site, thus providing a
basis for new drug design. The next step was the establishment of the crystal structures of -
neurotoxins with chimera of AChBP and a7 nAChR ligand-binding domain, which can be
considered as a good mimic of the true a7 receptor, as well as the X-ray structure of the a-
bungarotoxin complex with a mutated nAChR a1 subunit extracellular domain. In this chapter
we were not discussing the bacterial pentameric ligand-gated ion channels (belonging to the
same family as nAChRs), but at present not only high-resolution X-ray structures are available
for them, but also for their complexes with different ligands. In particular, one of such receptors
(ELIC) happened to be a close analog of the mammalian GABA-A receptors. We might hope
that one day high resolution structures become available for nAChRs or their homologs in
complexes with a-neurotoxins and/or a-conotoxins, to which the chapter is devoted. It will
give new life to these still invaluable tools in fundamental research on nAChRs and in
numerous practical applications.
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Synaptic Soluble and Membrane-Bound Choline
Acetyltransferase as a Marker of Cholinergic Function In
Vitro and In Vivo
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1. Introduction

1.1. Synaptosomes — Definition, a bit of history

The synaptosome is the presynaptic part of the nerve ending with, as a rule, a postsynaptic
membrane in the region of the junction of the pre- and postsynaptic membranes that remains
with the presynapse during homogenization and centrifugation. The presynaptic part of the
synaptosome is a membrane-bound structure with a preserved cytoplasm (synaptoplasm),
synaptic vesicles, mitochondria and some other cellular components. The term synaptosome
was adopted by V.P. Whittaker and coworkers [1]. Together, V.P. Whittaker and C.O. Hebb
first isolated and identified nerve endings in nervous tissue [2].

Subcellular fractionation emerged in the 1930s and 1940s and has since established itself as a
major technique in experimental biology. The first attempts at the fractionation of nervous
tissue were made in the early 1950s. A few years later, the fraction of synaptosomes was
successful, using discontinuous sucrose-density gradient centrifugation [2-4]. After this,
researchers achieved the preparation of the synaptic components, including the synaptic
membranes, synaptoplasm, synaptic vesicles [1, 5, 6] (Figure 1) and membrane junction
complex [7, 8]. These studies were a powerful impetus for investigations into the biochemistry
of synapses and in the development of new methods of synaptic fractionation. Synaptosomes,
as nerve endings, are heterogeneous in density, size and mediator specificity. Therefore, a
number of the methods were developed for separating the synaptosomal fraction into two
fractions [4], as well as into many fractions using a continuous sucrose-density linear gradient
[9-11]. Among the many publications at this time, two books stand out. In the first one, D.J.
Jones recounts the story of subcellular fractionation techniques, and presents the entire set of

I m EC H © 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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modern synaptic and subsynaptic fractionation techniques and data about the ultrastructure
of synaptosomes and synaptic components, their sedimentary characteristics and biomarkers
[12]. In the second one, R.N. Glebov is focused on the achievements of that time in the field of
the functional neurochemistry of synapses, their molecular structure as well as on the metab-
olism and biochemistry of "classic" neurotransmitters and on the concepts of mediator
secretion [13].
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To the left of the tubes are marked the density of sucrose layers (in moles). Fractions obtained from crude mitochond-
rion fraction (by the method of De Robertis et al., 1962): myelin (A), neuronal and glial membrane and possibly small
synaptosomes (B), light (C) and heavy (D) synaptosomes, cell mitochondria (E). Subsynaptic fractions obtained from
light and heavy synaptosomes fractions (by the method of Whittaker et al., 1964): synaptoplasm (Sp), synaptic vesicles
(1), synaptic membranes (2, 3, 4), non-disrupted synaptosomes (5), synaptic mitochondria (6).

Figure 1. Scheme of distribution of the fractions and subfractions of synaptosomes in discontinuous sucrose-density
gradients.
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2. Synaptosomes as an object of study in vitro and in vivo

Since these techniques were developed, new technologies in brain research have emerged.
However, synaptosomes and their components remain a unique object of study. The reasons
for this are as follows:

* the synapse is a unique structure specialized in the chemical transmission of nerve signals
(chemical synapses are mainly in the mammalian brain).

* the synapse is always at the center of concepts about the adaptive properties of nervous
tissue, such as learning and memory.

* the synapse is the most dynamic and labile structure of the nerve cell, and is an indicator of
the reaction of the neuron to external stimuli.

* the synapse is an inherent structure of the neuron only.

It is now known that neurotransmitters and their key metabolic enzymes exist in some non-
neuronal mammalian and human cells, including some cells of the neuroglia and vascular
endothelium, epithelium and blood. In these cells, neurotransmitters perform specialized
functions such as proliferation, differentiation, migration, organization of the cytoskeleton,
cell-cell contact, secretion and transport of ions and water, blood-brain barrier maintenance
and anti-inflammatory functions [14-17]. So, synaptomoses are the only object of molecular
and biochemical studies that guarantees the investigation of neuronal function. Therefore, new
technologies for the isolation of synaptosomes and their components continue to be developed,
consistent with the purpose of science [18-20].

Using synaptosomes, one may study in vitro the molecular mechanisms of neurotransmitter
secretion and the metabolism of neurotransmitter systems using the entire complexity of the
molecular processes or using models of functional or pathological conditions in vitro and ex
vivo.

Studies on synaptosomes in vivo are rarer but they are not less important. The brain is a very
complicated organ in which a neuron exists in a permanent relationship with many other
neurons. These interactions occur mainly through synapses. It is important not to forget about
the signaling molecules that come into the brain through the blood, cerebrospinal fluid and
intracellular matrix. The functional response of presynapses reflects the integrated response
of the neuron to a stimulus. Therefore, it is important to know whether the patterns of synaptic
functions are identical in vitro and in vivo.

In vivo models are used to investigate effects on the entire organism such as learning models
and models of adapting and neuropathology. Then, the synaptosomes or subsynaptic com-
ponents from the brain structures can be isolated. It is usually impossible to analyze the totality
of the synaptic molecular and metabolic processes in these studies. The synaptic reaction is
measured by the synaptic key indicators identified in studies in vitro. It is important that the
biochemical methods allow the estimation of very fine metabolic and functional changes in
synapses. The connection between nervous system function and synaptic processes has been
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investigated this way. It is possible to research the reaction of certain brain structures and even
certain neuronal populations to external influences. Using neuromediators as markers, one
can identify the participation of neuromediator systems in the mechanisms of various brain
functions.

Furthermore, the in vivo study of synaptosomes has additional scope. Using biochemical
parameters, not only metabolic changes can be evaluated, but also quantitative (synaptogen-
esis, reduction, degeneration) and morpho-structural (transformation) reorganizations in the
synaptic pool. This is possible in comparative studies on the synaptic membrane and synap-
toplasm subfractions. Subfractions of synaptic membranes and the synaptoplasm are the
largest integral parts of the presynapse. Therefore, a correlation between the biochemical
membrane (m) and cytosolic (c) biochemical parameters may reflect the reaction of the
presynapse as a structural unit.

3. Natural markers of the neuronal systems

Neurotransmitters and some molecules of neurotransmitter metabolism are used as neuronal
markers. These are natural indicators of functionally specialized brain systems, given to us by
nature. Therefore, neuronal markers are widely used in biochemical studies, both in vitro and
in vivo.

Neurotransmitter systems are named based on the main transmitter (glutamatergic, GABAer-
gic, dopaminergic, etc.). Each mediator system consists of several neuronal populations. The
neuronal populations in the brain are distributed topographically. Depending on the locus in
the brain, neurons form specific neuronal connections using a specific combination of recep-
tors. Moreover, these neurons can have specific metabolism dependent on their functional
destination. Therefore, topography determines their metabolic and functional effects. Addi-
tionally, different neuronal populations often express comediators. These comediators
influence the effects of mediators and metabolic pathways of the neuron in certain ways. It
seems that future prospects in the study of brain function will be the investigation of the
functional, metabolic and molecular features of distinct neuronal populations. It is necessary
to understand the true mechanisms of the regulation, maintenance and recovery of brain
functions. It should be noted that studies on synaptic fraction levels were carried out along
these lines from the beginning [4, 18, 21-31].

In particular, regarding the cholinergic brain system, studies on this neurotransmitter system
have been performed on synaptic fractions in vitro and in vivo. This review will present data
from investigations into the molecular properties and metabolic and functional characteristics
of cytosolic (c) and membrane-bound (m) choline acetyltransferase (ChAT) and of the use of
cChAT and mChAT as cholinergic markers to establish brain function mechanisms. For the
sake of completeness regarding modern notion, the characteristics of the molecular forms of
ChAT will be presented using data from tissue cultures as well.

But first, a brief description of the cholinergic brain system.
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4. Cholinergic brain system, cholinergic neuronal populations and their
importance in health and disease

Cholinergic neurons use the classical neurotransmitter acetylcholine (ACh). ACh is a famous
mediator. It was the first neurotransmitter discovered, by Otto Loewy in 1921-1926, and it
proved the validity of the chemical nature of nervous communication [32]. ACh was quantified
in P. Fatt’s and B. Katz’s experiments when the quantum nature of chemical neurotransmission
was discovered [33]. S.O. Hebb and V.P. Whittaker used ACh and ChAT as indicators when
they searched for and found subneuronal structures (synaptosomes) which accumulate
mediators [2]. ACh was the first among the neuromediators found in the non-neuronal cells
of mammals [34]. It would perhaps be helpful to add that ACh is also called "gentleman number
one", for its non-neuronal function as well. It is clear that ACh is the most thoroughly examined
neurotransmitter.

4.1. Metabolism of acetylcholine

ACh is an ester of acetic acid and choline with the chemical formula CH;COO(CH,),N+
(CH;); and systematic name 2-acetoxy-N,N,N-trimethylethanaminium.The cycle of ACh
synthesis, storage, release and degradation has been well-characterized at the cellular and
molecular levels [26, 35, 36]. Briefly (Figure 2), ACh is synthesized in the cytoplasm of
cholinergic neurons from the precursors choline and acetyl-coenzyme A by the enzyme choline
acetyltransferase (ChAT), and is then taken up into synaptic vesicles for storage by the
vesicular acetylcholine transporter (VAChT). Depolarization of the nerve terminal causes the
fusion of synaptic vesicles with the presynaptic membrane at specialized release sites called
active zones (named the junction complex in the subsynaptic fraction). Depositing and
releasing ACh is a calcium-dependent process that involves the coordinated actions of many
presynaptic proteins [26, 37]. When vesicles are linked up with the presynaptic membrane,
ACh diffuses into the synaptic cleft where it can bind to subtypes of nicotinic and muscarinic
receptors located on both post- and presynaptic membranes. ACh signaling is terminated by
its diffusion away from the synaptic cleft and by its rapid hydrolysis into choline and acetate
by acetylcholinesterase (AChE). The choline derived from ACh hydrolysis is recycled into the
presynaptic terminal by the sodium-dependent high-affinity choline transporter (CHT) for
resynthesis of ACh. After secretion of ACh, synaptic vesicles are recycled and are refilled with
the neurotransmitter for another round of the depolarization-induced release. It should be
noted that the details of the molecular mechanism of the regulation of these processes in both
health and disease are lacking.

4.2. Topography and functions of cholinergic neuronal populations

Knowledge of the topography of mediator systems is basic for neurobiologists. The topogra-
phy of the populations of cholinergic neurons and their projections has been studied in detail.
ChAT has long been used as a marker of cholinergic structures in immunohistochemical
studies. Initially, AChE was used as the cholinergic marker, but it was found that AChE
coincides with ChAT only partially [38]. Later, colocalization of AChE was revealed in non-
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The idea of the scheme is taken from Black and Rylett [Black & Rylett, 2011]. Abbreviations: Presynapse, presynaptic
part of nerve ending; SV, synaptic vesicle; ACh, acetylcholine; AcetylCo-A, acetylCoenzyme-A; cChAT and mChAT, cyto-
plasmic and membrane-bound choline acetyltransferase correspondingly; mAChE and cAChE, membrane-bound (ex-
tracellular isoform) and cytoplasmic acetylcholinesterase correspondingly; CHT, sodium-dependent, high-affinity
choline transporter; M, muscarinic receptor; N, nicotinic receptor; VAChT, vesicular ACh transporter.

Some details of molecular mechanisms of the regulation of these processes are set out in sub-chapter 4.1.

Figure 2. Mechanisms involved in the synthesis, storage, release and degradation of ACh at the cholinergic synapse.

cholinergic neurons. For example, 36% of AChE-positive cells are GABA-immunoreactive [39].
VACHT, discovered after ChAT, is also used as a marker [40]. However, some discrepancies
between VAChT and ChAT have been found [41].

Cholinergic neurons innervate almost all areas of the nervous system, both the central and
peripheral systems. These areas can be innervated by either extrinsic projective neurons or by
intrinsic interneurons. A very famous and major group of cholinergic projective neurons is
found in the basal forebrain, which is comprised the nucleus basalis magnocellularis, also
called the Meynert nucleus in primates and humans (a large bundle of cholinergic neurons
encompassing the magnocellular preoptic nucleus, substantia innominata and globus pal-
lidus), the medial septal nucleus and the vertical limb nucleus of the diagonal band of Broca.



Synaptic Soluble and Membrane-Bound Choline Acetyltransferase as a Marker of Cholinergic Function...
http://dx.doi.org/10.5772/58307

The cortex, amygdaloid complex, hippocampus and olfactory bulb receive their cholinergic
innervation principally from cholinergic projection neurons of the basal forebrain [40-49]. It is
known that basal forebrain cholinergic projective neurons play a role in attention, learning,
memory and consciousness. Another group of cholinergic projective neurons is found in the
upper brainstem, which is comprised the pedunculopontine nucleus of the pontomesence-
phalic reticular formation and within the laterodorsal tegmental gray of the periventricular
area. The thalamus and medulla receive their cholinergic innervation principally from
cholinergic projection neurons of these brainstem nuclei. These neurons also present a minor
component of the corticopetal cholinergic innervation of the frontal and visual cortical areas
[43, 49-51]. The cholinergic projective neurons of the mesopontine region play a role in the
primary treatment of some sensory information and memory (in the thalamus) and, hypo-
thetically, in the central mechanisms regulating respiration and blood circulation (in the
medulla). All immunohistochemical studies indicate the topographical arrangement of
cholinergic projections. On the basis of connectivity patterns, M.M. Mesulam and coworkers
proposed that the central cholinergic projective neurons to subdivide into six major sectors
designated Ch1-Ch6 [43]. Moreover, the rostrocaudal and layerwise topographical arrange-
ment of the cholinergic projections is indicated in the cerebral cortex [44-46, 48].

The most famous cholinergic interneurons are localized in the striatum, and they are involved
in motor function and cognition [49]. As well, cholinergic interneurons have been detected in
the cerebral cortex [46, 48, 52] and in the hippocampus [53-55]. Cortical and hippocampal
interneurons perform associative functions and are presumably involved in learning and
memory. Numerous electrophysiological studies have indicated this, but regarding choliner-
gic cortical and hippocampal neurons, such data are absent. In the human cerebral cortex,
ChAT-immunoreactivity was found in some of the giant Betz and Meynert's pyramidal
neurons [56].Cortical pyramidal neurons carry out motor functions. The medullar reticular
formation has ChAT-positive neurons and their participation in the respiratory center is
assumed [50].

Finally, ACh as a neurotransmitter is widely presented in the peripheral nerve system [40, 49,
57]. Acetylcholine is one of many neurotransmitters in the autonomic nervous system and is
the only neurotransmitter used in the motor division of the somatic nervous system. The
parasympathetic motoneurons of as the cranial nuclei of the caudal brainstem and postgan-
glionic neurons and preganglionic sympathetic motoneurons of the spinal cord nuclei are
ChAT- and VAChT-positive. Their efferents innervate all vegetative organs and glands,
parasympathetic directly and sympathetic indirectly. ChAT- and VAChT-immunoreactivity
has also been detected in the cell bodies of the spinal nerve motor neurons as well as in their
axons and the endplates of the skeletal muscles.

It was found recently that the vagus (parasympathetic) nerve, involved in the control of heart
rate, bronchomotor tone, hormone secretion and gastrointestinal motility, is also an immuno-
modulator. Its stimulation attenuates the production of proinflammatory cytokines and
inhibits the inflammatory process via the a7 nicotinic acetylcholine receptor [58, 59]. It is
possible that these studies are beginning to describe a new function of the cholinergic nerve
system.
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4.3. Comediators and other neuroactive components in some cholinergic neuronal
populations

The functional effects of ACh are unique to each cholinergic population due to its targets and
chemical composition. As a whole, ACh functions more often as a modulator in the central
nervous system and as a mediator in the peripheral nervous system. Some populations of
cholinergic neurons co-express vasoactive intestinal peptide (VIP) or/and nitric oxide (NO) or
substance P. VIP has been found in cholinergic interneurons of the cortex [48, 60, 61] and in
the parasympathetic efferents to the airways [62, 63]. Substance P is present in the majority of
projections to the medial frontal cortex from ChAT-positive neurons in the midbrain [48].
ChAT-VIP-, NO synthase-ChAT- and NO synthase-ChAT-VIP-immunoreactive ganglionic
cells have been detected in the sphenopalatine ganglia [64, 65].

All three substances as well as ACh are well-known vasodilators. Therefore, their co-localiza-
tion with ACh is connected in the first place with blood flow regulation. The vasodilator action
of ACh on the vessels of the vegetative organs was one of its first described effects [66]. With
respect to cerebral vessels, it was detected in (1) direct contacts with small cortical vessels with
vasodilator effects of the cholinergic projective neurons and interneurons, including ACh-VIP-
containing interneurons [61, 67-69]; (2) ACh-, NO-ACh- and rarely ACh-VIP- containing fibers
innervate the middle cerebral arteries composed of perivascular nerves of the sphenopalatine
ganglia [64]; (3) ACh induces both direct vasodilation and atypical constriction in the internal
cerebral arteries [64, 70, 71]; (4) brainstem ACh indirectly induces, via the stimulation of the
dorsal facial area neurons of the medulla, a vasodilator effect in the common carotid and the
internal cerebral arteries [72, 73].

The third vesicular glutamate transporter (VGLUT3) is present in a subset of cholinergic
projective neurons in the basal forebrain and in cholinergic interneurons in the striatum [74].
It should be noted that both these cholinergic populations have similar large neurons. VGLUT3
is one of three transporter isoforms that fills synaptic vesicles with glutamate; however,
VGLUTS3 is also expressed in neurons and brain regions that were not previously thought to
use glutamate as a neurotransmitter. It is possible that VGLUT3, because of its ionic balance,
helps to load synaptic vesicles with ACh. In addition, the cholinergic projective neurons of the
basal forebrain express the nerve growth factor (NGF) receptor [75, 76]. Basal forebrain neurons
are trophically responsive to NGF. Neurotrophin is important for the development and
maintenance of the basal forebrain cholinergic phenotype. In these neurons, NGF markedly
increases ACh synthesis, content and release [77, 78].

4.4. Cholinergic functions and brain diseases

The brain cholinergic system is of permanent interest for neuroscientists because of its
important role in cognitive, attention and motor functions. Dysfunction of cholinergic
neurotransmission in the central nervous system is revealed in a number of neurological
disorders. Dysfunction and degeneration of the cortical and hippocampal cholinergic projec-
tions from the basal forebrain nuclei is the basis of the pathogenesis of diseases such as
Alzheimer's disease and Lewy body dementia, as well as diseases with other etiologies such
as schizophrenia, Parkinson's disease and cerebral ischemia, in some cases aggravated by
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cognitive impairment [79-88]. The leading role of cholinergic afferent dysfunction in the
development of ischemic pathology was suggested by data on the sensitivity of cortical and
hippocampal cholinergic projections to ischemic exposure and a correlation between the
development of cholinergic dysfunction, the delayed death of pyramidal neurons and
cognitive impairments in rodents [89-91]. Dysfunction of cholinergic interneurons of the
striatum is partly responsible for involuntary movements in Harrington's disease [80, 92]. Low
expression of ChAT in the cholinergic neurons of the motor nuclei of the spinal cord is a specific
early sign of amyotrophic lateral sclerosis [80, 92]. Multiple abnormalities in cholinergic
function in the motor nuclei of the spinal cord a responsible for congenital myasthenic
syndrome [93].

4.4.1. Synaptic soluble and membrane-bound choline acetyltransferase and their participation in
cholinergic function in vitro and in vivo

Choline acetyltransferase (ChAT, E.C. 2.3.1.6) is a key enzyme in ACh synthesis and a marker
of cholinergic neurons. It catalyzes the transfer of an acetyl group from acetyl-CoA to choline
to form ACh. Studies in recent decades have revealed (1) the significant role of ChAT in the
regulation of ACh synthesis and secretion and (2) that disturbances in the catalytic properties
of ChAT may be the origin of some neuropathologies.

5. Forms of ChAT

It has been shown that ChAT has both a hydrophilic (cChAT) and hydrophobic state (station-
ary mChAT) in nerve endings. It has also been shown that ChAT is able to translocate from
the cytosol to the synaptic membrane and to turn reversibly into the hydrophobic state
associated with the synaptic membrane by ionic links (ionic-bound mChAT) [92, 94-96]. All
this presupposes the existence of multiple forms or isoforms of the enzyme. Also, differences
in the optimum pH, substrate specificity, sensitivity to the selective inhibitor 4-(1-naphthyl)
pyridine (NVP) and some other molecular characteristics of the synaptoplasm and synaptic
membrane fractions indicated this [97-99].

Research has revealed only one ChAT gene that encodes the multiple forms and isoforms of
the enzyme [80, 83]. High homology has been detected between ChAT gene nucleotide
sequences in the mouse, rat, pig and human brains with differences in the 5'-noncoding region.
Polymorphisms of ChAT mRNAs are due to alternate splicing and various use of at least of
five non-coding exons in the promoter region of the gene [100].

Five types of mRNA have been isolated from the rat brain ChAT (R1/2-, N1/2- transcripts and
M-) [101] and six types from the human brain (R1/2-, N1/2-, S- and M-transcripts) [83]. All five
ChAT transcripts generate ChAT with a molecular weight of 69 kDa (ChAT-69). This is the
major form of ChAT in the CNS. In addition, the human M and S transcripts generate minor
forms of ChAT with a molecular weight of 82-83 kDa (ChAT-82) and 74 kDa (ChAT-74) [80,
83, 93, 100, 102, 103]. Also, ChAT-69 and ChAT-82 are subdivided into a number of isoforms
with differences in the isoelectric point [104].
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The cytoplasm and plasma membranes of cholinergic neurons express only ChAT-69 [80, 83,
100]. In the human brain, ChAT is also found in the cell nucleus. Initially, ChAT-82 was
selectively found in the nucleus in some brain structures [82, 95, 104, 105] and, later, ChAT-69
was also found [83]. In rat ganglia in the central nervous system at the level of the medulla
oblongata, ChAT is expressed with a molecular mass of about 50 kDa and is called peripheral
ChAT (pChAT). pChAT also exhibits alternative splicing of the mRNA [106].

The physiological significance of such a large number of isoforms of ChAT is not clear at
present. Also, the relationship between of ChAT-69 isoforms in subsynaptic compart-
ments is not known. Polymorphisms in ChAT transcripts suggest that ChAT isoforms or
transcripts may vary in stability or translation efficiency or may be differentially ex-
pressed in response to trophic or pathological factors. Thus pChAT is not expressed in
cholinergic neurons of the parasympathetic dorsal motor nucleus of the vagus nerve and
nucleus ambiguus in the medulla of intact rats but pChAT- positive neurons were detected
in these nuclei after axotomy against the background of almost disappearance of ChAT-69-
positive neurons [107]. Furthermore, targeting of the enzyme to the cell nucleus suggests
that ChAT may be able to perform other functions in addition to its essential role of
synthesizing ACh in nerve terminals [102].

6. Features of ChAT phosphorylation

It is known that the genome does not provide the variety in the protein forms presented in a
cell. In this regard, the post-genomic protein modifications are of special significance. Phos-
phorylation is one of the most studied pathways of the post-translational influence on the
molecular properties of enzymes. Covalent modifications to serine, threonine and tyrosine
residues in protein molecules can dynamically change their physicochemical nature, as well
as regulate protein function and interactions with cellular components. This has been shown
for the key enzyme in the synthesis of dopamine (tyrosine hydroxylase) and serotonin
(tryptophan hydroxylase) and for glutamate decarboxylases GAD65 and GAD67, two
synthetic enzymes of gamma-aminobutyric acid (GABA) [108].

For a long time, ChAT was not related to rate-limiting enzymes on the basis of kinetic
calculations. It was believed that the ChAT synthesis rate dependents only on fluctuations in
the levels of the substrate and the product of the synthesis, although ChAT is not saturated by
choline and acetyl-CoA in their physiological concentrations [35]. However, in recent decades,
other intracellular factors have been revealed to regulate the activity of the enzyme. These data
suggest an important regulatory role of ChAT in the synthesis and secretion of ACh [36, 82,
103, 108, 109]. It is assumed that the cause of several diseases is spontaneous point mutations
in the molecule of ChAT or of its regulatory proteins which lead to dysregulation of the enzyme
or to changes in its ability to communicate with regulatory factors [93, 108].

As a rule, the different effects of phosphorylation on synaptic soluble (hydrophilic) cChAT
and membrane-bound (hydrophobic) mChAT occur even with non-specific stimulation by the
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substrates ATP or phosphorus (Pi). Increased ATP markedly affects the specific activity of
mChAT compared with cChAT [37]. At rest, cCChAT but not mChAT is phosphorylated in
incubation medium enriched with Pi. Under these incubation conditions, veratridine depola-
rization selectively activated and dephosphorylated mChAT but had no influence on either
the degree of phosphorylation nor the activity of cChAT. Removal of Ca*" from the incubation
medium significantly inhibited the phosphorylation of cChAT and the specific activity of
mChAT [110].

Ithas been shown that, in vivo, ChAT exists as a phosphoprotein [36, 111]. In vitro, phosphatase
inhibitors activate cChAT and mChAT a little, even under non-phosphorylation conditions
(ATP absent in the incubation medium) [37]. ChAT is a substrate for certain protein kinases.
The amino acid sequence of the enzyme suggests the existence of multiple sites for phosphor-
ylation by protein kinases such as protein kinase C (PKC), a-Ca*/calmodulin-dependent
protein kinase II (CaM2), casein kinase II (CK2) and some others [108]. ChAT-69 is phosphory-
lated by the serine/threonine kinases CK2, PKC and CaM2 [92, 95, 105, 112].

It should be noted that PKC and CaM2 are the well-known and important regulators of
neuronal functions. CaM2 is an obligatory component of the cholinergic vesicular mechanism
[37], and PKC plays an important role in the regulation of ChAT molecular properties [36].
The authors also make the conjecture that oxidative stress can alter the phosphorylation-
dependent regulation of ChAT expression and ACh synthesis in the aging brain and in the
early stages of vascular and Alzheimer’s disease and related disorders. Both of these protein
kinases interact with serine/threonine residues which the protein kinases use for ChAT
phosphorylation [92, 95, 108, 112]. In different studies, PKC activated cChAT and mChAT with
variable efficacy [37, 95, 104]. It has been shown that different protein kinase isoforms have
distinct patterns and ChAT phosphorylation by PKC isoforms has a hierarchical construct [92,
95, 108, 112]. Thus, phosphorylation of Ser-476 had no effect on the molecular properties of
ChAT but allows the possibility of phosphorylating other serine residues, such as Ser-440 and/
or Ser-346/347 which are necessary to maintain the catalytic activity of ChAT under basal and
stimulated conditions. Also, Ser-346/347 modulates ChAT phosphorylation at other amino
acid residues, and Ser-440 initiates the translocation of soluble ChAT to the cellular membrane
and the formation of ionic-bound ChAT.

CaM2 and its inhibitors selectively regulate mChAT activity without affecting the activity of
cChAT [37]. These data were also confirmed indirectly by experiments with total ChAT
(actually ¢cChAT), in which CaM2 phosphorylated but did not activate the enzyme [104].
Further investigations showed that CaM2 activated total ChAT in terms of the combined
phosphorylation of Thr-456 by CaM2 and of Ser-440 by PKC [112]. It is assumed that this PKC
feature of the potentiation of CaM2 action in cholinergic projection neurons of the hippocam-
pus and the cortex is dramatically implicated in the pathogenesis of Alzheimer's disease [112].
Likewise, PKC inactivation of Ser-440 phosphorylation is implicated in the pathogenesis of
myasthenic syndrome in the motor nuclei of the spinal cord [94, 113].
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7.Role of cCChAT and mChAT in regulation of acetylcholine synthesis and
secretion — In vitro studies

In neurons, the principal place of synthesis of ACh is in the nerve endings. ChAT has long
been recognized as a cytoplasmic enzyme, even after its detection on synaptic membranes in
the 1960s [1, 114]. Later, it was shown that ChAT exists as a structural membrane protein [95,
115-117]. The long-term study of the properties of synaptic soluble (c) and membrane-bound
(m) ChAT in vitro has shown that the relationship between ChAT activity and the secretion
of ACh depends on the compartmentalization of the enzyme.

7.1. Functional properties of synaptic cChAT

Soluble cChAT activity is the prevalent activity of synaptic ChAT. cChAT regulates the
dynamic equilibrium between the synthesis and degradation of ACh in the resting state [35,
99, 118, 119]. Under physiological conditions, cChAT is activated during stimulation by
depolarizing agents such as K* and/or veratridine [37, 120, 121]. Another regulator of the level
of free cytosolic ACh is AChE, the enzyme that mediates ACh splitting. A close interaction
takes place between cChAT and soluble cAChE [120]. Thus, in calcium-free medium condi-
tions, the quantum release of ACh is blocked, the activity of cChAT is not changed and cAChE
is activated and cleaves an abundance of ACh [120, 122].

From these experiments, it follows that non-quantum, Ca*-independent "leak" of acetylcholine
and its decay products, choline and acetate, is in direct dependence on the ratio of the activity
of these two cytosolic enzymes [120, 122, 123]. In these studies, (1) K* stimulation in calcium-
free medium causes the release of cytosolic choline due to disruption of cytosolic ACh by
cAChE and (2) veratridine stimulation can cause the release of both choline and cytosolic ACh.
(3) InmAChE and cAChE inhibition conditions by a tertiary inhibitor such as paraoxon coming
through the plasma membrane, the release of choline is blocked under veratridine stimulation
in calcium-free medium and its extracellular level is decreased. Instead of choline, the release
of cytosolic ACh is observed. (4) Under cChAT and mChAT inhibition conditions by the
selective inhibitor NVP, cChAT is selectively activated and the release of newly synthesized
ACh is increased directly from the cytosol under veratridine stimulation in physiological
medium (in the presence of Ca*). (5) A similar output of ACh is observed under the same
conditions in calcium-free medium.

The choline and ACh concentrations could increase by 40-60% in the extracellular medium in
such a non-quantum manner. Choline is a selective agonist of a-7 subtype of ACh nicotinic
receptors [65, 124]. Thus, the "leak” of cytosolic choline and/or ACh, as well as changes in their
relationship in the extracellular environment may have independent signaling effects in
intercellular interactions.

7.2. Functional properties of synaptic mChAT

The functional purpose of mChAT has long been unclear [80, 125]. Investigation of this
problem was difficult in the absence of selective inhibitors of cChAT and mChAT. Their
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separation is possible only by subsynaptic fractionation in combination with methods that
destroy the synaptosome. The contribution of mChAT to general ChAT activity is low, i.e.
4-15% [1, 94, 95, 97, 119]. Therefore, for a long time, it was assumed that the association of
ChAT with neuronal membranes was an artifact as the result of synaptoplasm contamination
[1, 35, 114].It has now been shown that mChAT exists (1) as stationary membrane protein [99,
115, 117] and (2) as ionic-bound mChAT, a reversible form of cytosolic ChAT [95, 126].

In vitro, mChAT like cChAT are activated in response to K* or veratridine stimulation in
physiological medium [37, 110, 120, 121]. Compelling data have accumulated regarding the
direct involvement of mChAT in the mechanisms of quantum secretion of acetylcholine. This
is indicated by a number of ultrastructural and functional characteristics of the enzyme.

mChAT is localized to synaptic vesicles [127]. Its activity, unlike cChAT, depends on the
specific factors of ACh transfer into the vesicles, VAChT and the proton gradient, and on CaM2
activity, which is the main kinase associated with synaptic vesicles [37]. Activation and
inhibition of mChAT are fully coupled with the activation or, respectively, blockade of ACh
quantum release [120].

The non-vesicular Ca**-dependent pathway of the quantum secretion of AChhasbeen revealed
[128-131]. It was shown that this pathway provides fast secretion of ACh by a synaptic
membrane structural protein [132] called mediatophore [128]. It was found that mediatophore
is functional linked to ChAT [133]. This suggests that mChAT located on the synaptic mem-
brane participates in the regulation of the quantum secretion of ACh, similar to vesicular
mChAT. This agrees with the preferential sensitivity of mChAT to the functional state of CHT
that is selectively localized to the neuronal membrane of cholinergic neurons [94, 134].

mChAT is selectively sensitive to the balance of ions. It is known that ions are important
regulators of quantum neurotransmitter release and other transmembrane functions. Control
of quantum ACh release is carried out by the interaction of the Ca** and H* balance (vesicular
Ca?/H* antiporter), Zn** and K* (K* channels) [131, 135-138]. mChAT activity is selectively or
preferably (1) inhibited in calcium-free medium [118, 120, 121], (2) is increased at a high
concentration of Ca* and/or K* [37, 110, 121, 123, 139], (3) is dose-dependently inhibited by the
intracellular concentration of Cl-[118, 125] and increases in conditions of a high Cl- concen-
tration and chloride conductivity stimulation [125]. (5) Zn* regulates both pathways of the
quantum secretion of ACh. High concentrations of Zn* block ACh release from vesicles and
through mediatophore [135, 140]. Similarly, the direction of ChAT translocation depends on
Zn* ions. Zn* blocks the "anchoring" of ChAT on the membrane [126]. The last argument
indicates the involvement of ionic-bound mChAT in the quantum release of ACh.

So, the catalytic properties of cChAT and mChAT depend on phosphorylation and possibly
on the type of splicing. Moreover, the specific activity of mChAT, unlike cChAT, also depends
on the ionic environment and on other factors affecting the quantum secretion of ACh. The
functional significance of mChAT is not nearly as clear as cCChAT. The relationship between
cChAT and mChAT and their dependence on external influences are poorly understood [138].
Nevertheless, it seems that the compartmentalization of the enzyme ensures the involvement

155



156  Neurochemistry

of cChAT and mChAT in different functional-metabolic cycles, which may contribute to the
fine regulation of the mediator actions of ACh.

8. cChAT and mChAT as markers of functional and structural
reorganization in cholinergic nerve endings following external exposure
— In vivo studies

The synaptosomal subfractions of the synaptic membranes and synaptoplasm of the cortex,
hippocampus and some other rat brain structures are used for research in vivo cholinergic
mechanisms of brain functions by biochemical methods (radiometric and spectrophotometric).
Subsynaptic fractions gave according to the scheme shown in Figure 1. Respectively, mChAT
and cChAT activity and the m-protein and c-protein content have been measured to estimate
cholinergic function. In addition, in some experiments, mAChE and cAChE and Na*/K*-
ATPase activity was measured. The Na/K*-ATPase activity and content of synaptic proteins,
as universal synaptic parameters, as well AChE activity were correlated with ChAT activity
in those cases when the cholinergic reaction following exposure was dominant in the synap-
tosomal fraction. Generally, models of acute (3 hours) and chronic (11-14 days) brain ischemia
(bilateral occlusion of the carotid arteries, the 2VO model) or acute hypobaric hypoxia with
variable intensity (10% O,, 60 min; 6.5% O,, 15 min; 4.5% O,, 1-3 minutes or 10-20 minutes)
were used as the exposure methods.

8.1. Biochemical equivalents of activation and inhibition of cholinergic mediator function

In in vivo investigations, ChAT activity was found to be the most mobile parameter. So, ChAT
has become the main landmark for analysis of the cholinergic reaction to exposure.

cChAT activation was observed under acute ischemia or hypoxia at all intensities [27, 29,
141]. mChAT or both mChAT and cChAT activation was revealed under acute and chronic
ischemia and only in severe hypoxia (4.5% O,) [27-29, 141]. When the activation of ChAT was
observed (165-170%), extracellular mAChE (the predominant isoform of mAChE) was
simultaneously activated [141]. cChAT activation positively correlated with the activation of
Na'/K*-ATPase and negatively correlated with the decrease in the c-protein content [27]. All
these reactions of the synaptic biochemical parameters and their combinations are regarded
as the activation of cholinergic synaptic function, because they conform to the characteristics
of synaptic activation.

Compared to cChAT, the selective activation of mChAT has been revealed (1) under equal
experimental conditions (3 hours of ischemia) in rats less resistant to hypoxia [141], and (2)
under hypoxic conditions with variable intensity only in severe hypoxia [27] and was not
observed in the subcritical and moderate hypoxia (6.5% or 10% O,) [27, 29]. A parallel study
of the ultrastructure of the synapses in the cortex revealed the dependence of swelling synapses
and synaptic mitochondria on the duration of severe hypoxia [27]. Taken together, these data
suggest that the activation of mChAT in vivo occurs due to an imbalance of synaptic Ca2,
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while cChAT activation is apparently initiated in the natural physiological way, under
neuronal influences [27].

The inhibitory reactions of ChAT under ischemic/hypoxic conditions were revealed as well. It
was found that these conditions decrease cChAT or mChAT or both cChAT and mChAT
activity [27-29, 141]. Also, a negative correlation has been found between cChAT activity and
the c-protein content and a positive correlation has been found between mChAT activity and
the m-protein content [27, 29, 141].

A parallel study of the ultrastructure of the synapses in the cortex revealed a significant
decrease in the number of vesicles docked to the presynaptic active zone in the rat with a
profound decrease in both cChAT and mChAT activity in acute hypoxia [27, 142].Taken
together, these data suggest that such a decrease in ChAT activity in vivo may reflect the deep
inhibition of cholinergic synaptic function as result of the superexcitation, the equivalent of
the well-known "depression of neurons" in electrophysiology, i.e. reduced neuronal excitabil-
ity due to the depletion of mediator substrates.

Selective inhibition of mChAT, as well as its activation, is likely a consequence of a disturbance
in the ion balance. Based on the dominance of the hypoxic factors in these experiments, it is
supposed that the decrease in mChAT activity is due to the accumulation of H* ions in the
presynapses [27, 29]. It can be induced (1) by acidosis in the case of severe hypoxia and (2) by
the weak increase in H* ion concentrations as the primary response to hypoxia in the case of
moderate hypoxia (10% O,). It has been shown that such primary H* ion accumulation is
subthreshold for the initiation of cellular acidosis and can disrupt the function of the Ca*/H*
antiporter [143].

Finally, cAChE activation has been detected under acute ischemia [141]. This is probably
another means of regulating the abundance of free cytosolic ACh during the inhibition of ACh
quantum transmission. The simultaneous increase in the c-protein content in the same
synaptosomal fraction corroborates this supposition. It is well-known that numerous fibrillar
synaptic proteins are soluble at rest and quickly form a structure under stimulation conditions.

So, the high reactivity as cChAT and mChAT and the peculiarities in the manifestation of ChAT
(and AChE) activity according to the compartmentalization of the enzyme and to the experi-
mental situation in vivo testify to the naturalness of functional properties cCChAT and mChAT
(and also c- and mAChE) revealed in vitro.

8.2. Biochemical equivalents of the quantitative changes in the cholinergic synaptic pool

The correlations in the activation or inhibition of cChAT and mChAT may reflect changes in
a number of cholinergic synapses, namely synaptogenesis (the growth of new synapses) or
their elimination, retraction or another means of reduction in the quantity of nerve endings.
As was described above, the correlation between the biochemical synaptic membrane and
cytosolic parameters may reflect the reaction of the presynapse as a structural unit. The most
reliable criterion of the quantitative reorganization of cholinergic synapses is the positive
correlation between ChAT activity and the c-protein content, since their functional changes
have contrasting directionality.
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A reduction in the number of presynapses was provoked by acute hypoxia of variable severity
[27, 29]. It was shown by various methods, including non-invasive video technology, that a
reduction in the number of synapses can occur within minutes or tens of minutes [144-148].

Sprouting as well as destruction with the swelling of neurons and their terminals, including
cholinergic neurons, predominates in late brain ischemia or postischemic reoxygenation (over
days and months) [149-152]. In biochemical studies, the activation of ChAT was observed in
the majority of the synaptic subfractions of the cortex and hippocampus following chronic
brain ischemia [28]. The correlated increase between mChAT activity and m-protein content
could indicate synaptogenesis and hyperfunction of the cholinergic synapses, whereas the
correlated increase between cChAT/mChAT activity and the c-protein content indicates
synaptogenesis only.

8.3. Biochemical equivalents of the morpho- structural reorganization in the cholinergic
synaptic pool

Under the influence of moderate hypoxia (10% of O,, 60 min), an increase in the activity of
cChAT and the c-protein content was observed in the “light” synaptosomes from the caudal
structures of the brainstem [29]. This indicated an increase in quantity of the corresponding
synapses; however, synaptogenesis was impossible in such a brief period. Additional analysis
revealed a decrease in the activity of mChAT and the m-protein content in the "heavy"
synaptosomal fraction of the same brain structures. This decrease in the “m” biochemical
parameters in the "heavy" fraction negatively correlated with the increase in the corresponding
“c” biochemical parameters in the "light" fraction.These data indicate the transformation of
presynapses from one morphological type to another.

This phenomenon of the transformation of synapses was found in electron microscopic
experiments during 90 minutes of severe hypoxia [144, 145]. It was shown that the change of
a morphological type occurs due to the changes in the area, density and configuration of the
network elements of the presynapses and in their configuration [153]. Almost all of these
parameters can affect the density of the presynapses. Therefore, it is possible that some
population of the cholinergic presynapses from the "heavy" synaptosomal fraction trans-
formed into presynapses with the less density and was located in the “light" fraction of the
sucrose density gradient. Apparently, this transformation resulted in a morphological type
more resistant to hypoxia.

In such studies on synaptic subfractions in vivo, various cholinergic synaptic reactions have
been revealed in response to hypoxic/ischemic exposures. The responsiveness of synaptic
cChAT and mChAT allows the study of synaptic reactions depending on the exposure
conditions, the functional specificity of different brain structures and neuronal populations. It
was noticed that a reaction to the hypoxia had phase type of change in the course of intensi-
fication of hypoxic exposure [27]. As well a diversity of the plastic possibilities of the brain is
detected. For example, under the same moderate hypobaric hypoxic conditions (10% O,, 60
min) which initiated an increase in resistance to hypoxia, three alternative cholinergic adaptive
pathways were obtained in the same brain structure (the caudal brainstem) in three different
groups of rats. Transformation and activation of the presynapses was seen in one of the rat
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groups and the inhibition of cholinergic activity in different populations of presynapses (in
the light or heavy synaptosomes) was seen in the other two groups [29]. The mechanisms
behind this plastic diversity are unknown, although it is clear that it is associated with
individual neuronal organization of brain functions.

8.4. Cholinergic organization of brain functions under normal conditions and patterns of
adaptive reorganization under the influence of stress stimuli or pathological conditions

Synaptic ChAT activity can be used as an instrument to study the cholinergic mechanisms of
brain functions in vivo. Biochemical (radiometric) methods to estimate synaptic ChAT activity
are very sensitive and allow for assessing fine individual differences between experimental
animals. In turn, this method allows for successful correlation analysis between ChAT activity
and indicators of brain function and performance. Moreover, it is possible to study certain
populations of cholinergic neurons using, for example, the synaptic fractions of the cortex and
hippocampus.

As mentioned above, according to immunohistochemical data, both the cortex and the
hippocampus have two basic sources of cholinergic innervation. The first major source is
neuronal projections from the forebrain nuclei. The second minor source is interneurons
(intrinsic neurons). The third source to the frontal and visual cortical areas from the meso-
pontine region is weak and biochemical methods can detect it only when the frontal or visual
area is assessed separately. In these brain structures, ChAT activity was estimated in the
fractions of the light and heavy synaptosomes (isolated as in [4]), and it appeared that these
fractions both in the cortex and in the hippocampus differ in terms of functional activity. From
this, it follows that in both brain structures, the cholinergic presynapses from different sources
are isolated in different synaptosomal fractions during preparation in the sucrose density
gradient.

Next, it was revealed that the ratio of ChAT activity in the light and heavy synaptosomal
fractions corresponded to the ratio of the immunoreactivity of the enzyme in the projections
and interneurons [46, 48, 52, 53, 154].This and some other data promoted the conclusion that,
in the cortex and hippocampus, the presynapses of cholinergic projections from the forebrain
nuclei accumulate mainly in the light synaptosomal fractions, whereas the presynapses of
cholinergic interneurons accumulate mainly in the heavy synaptosomal fractions [27, 27, 155].

This differential approach was used to study rat and cat brain cholinergic synaptic organiza-
tion of cognitive functions such as learning, different forms of memory and inherited abilities
in some experimental situations. mChAT and cChAT activities of the light and heavy synap-
tosomes of the hippocampus and/or cortex were used as markers of forebrain projections and
interneurons, respectively. These studies revealed some patterns in the relationship between
cognitive functional mechanisms that have not been sufficiently analyzed or defined by any
other methods.

Thus, under normal brain conditions, it was shown that (Figure 3, a):

1. Both the cholinergic projective systems and interneurons of the rat cortex and hippocam-
pus are actively involved in learning and memory processes in the Morris water maze
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model [28]. The presynapses of cholinergic interneurons in the cat temporal associative
cortical area do not participate in inherited abilities for the analysis of images [25] but all
of other associative cortical areas (frontal and parietal) active participated in cognitive
processes [153].

The cholinergic system participates not only in the mechanisms of learning and working
memory, which has been repeatedly observed [151, 157-160], but also in the mechanisms
of long-term memory [28]. The involvement of cholinergic projective systems in the
mechanisms of long-term memory is usually denied [161-164] or has been discussed in
only a few studies [165-167].

Each form of memory has an individual cholinergic synaptic composition [28]. This
conclusion agrees with the results of investigations into cholinergic and monoaminergic
systems obtained in the Morris water maze and some other behavioral models [165,
168-170].

Cholinergic projective neurons and interneurons of the rat cortex and hippocampus can
have both positive and negative connections with cognitive functions [28]. Identical
results were obtained in all cat cortical areas except the temporal zone. Cholinergic
projections in the temporal area had only negative connections with inherited cognitive
functions. The number of cholinergic presynapses may be more than doubled in this brain
area of cats with weak cognitive abilities as compared with cats with strong abilities [25].
Negative connections with cognitive functions are not specific for only the cholinergic
system. In morphological research on hippocampal mossy fibers (glutamatergic) in the
rat and mouse brain, feedback was also found between the quantity of synapses which
mossy fibers create and learning [171].

Taken together, these data demonstrate that the cholinergic mechanisms of learning and
memory are more complex than is currently perceived.

Stress and pathological stimuli initiate a considerable reorganization of the normal cholinergic
synaptic connections in cognitive functions. As an illustration, it was revealed during chronic
2VO conditions in the Morris water maze models that [28] (Figure 3, b):

1.
2.

The majority of normal cholinergic connections are lost and new connections arise.

Cholinergic link was considerably reduced in mechanisms of cognitive functions and
proportion of negative connections increased.

In addition to reduction, the structural isolation of cholinergic links in cognitive functions
and performance takes place; cortical cholinergic influences are completely removed from
spatial contextual functions as are hippocampal influences from spatially cued functions.

In general, cholinergic synaptic influences disappear in some forms of cognition. It is clear that
the consequences of different exposures on the cholinergic composition of cognitive functions
are individual; however, the itemized consequences of 2VO are general for other stress stimuli
such as acute severe hypoxia (4.5% O,, Figure 3, c) [141, 156] and changes in season from warm
to cold [25] (Figure 4).
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Figure 3. Values of r-criterion by the Pearson’s test of behavioural performance and ChAT activity in rats in the Morris
water maze in the spatial contextual and the spatial cued behavioural models under control (a, sham operated rats),

ischaemic (b, 2VO operated rats) and one month after a single severe hypobaric hypoxia (c, sham operated rats) condi-
tions.

It is logical to assume that the reduction in cholinergic links in cognitive mechanisms is a

consequence of the degeneration of cholinergic fibers. However, the reverse was actually
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Figure 4. Values of r-criterion by the Pearson's test of behavioural performance and ChAT activity in cats in the inherit-
ed abilities of generalisation, abstracting and gnosis of images tested on the basis of the food reflex (memory) in the
summer (a) and winter (b).

observed. As was noted above, activation of ChAT was detected in the majority of the synaptic
subfractions, and this may reflect cholinergic hyperfunction or synaptogenesis in the 2VO rat
brain [28]. Moreover, ChAT activity showed a five- to ten-fold increase in the winter as
compares with the summer in synaptic subfractions of both projection and interneurons in the
temporal [25] as well in other cat cortical areas [156]. No quantitative distinctions in ChAT
activity were found in the synaptic subfractions of the cortex and the hippocampus of rats in
a month after a single acute hypoxic stress [156].
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The new cholinergic connections with cognitive functions that arise after 2VO are not neces-
sarily the consequence of degeneration or dysfunction in the presynapses of key cholinergic
populations, i.e. these new connections could arise for other, indirect reasons. Therefore, it was
assumed that noticeable weakening of cholinergic synaptic influences on cognitive processes
is a consequence of adaptation. It seems that the cholinergic synaptic components of the highest
brain structures, besides their participation in cognition, are necessary for the functions
connected with survival under stress conditions.

At the same time, some cognitive functions were not affected by cholinergic reduction after
2VO [28]. All the more the inherited cognitive processes are preserved with annual seasonal
cholinergic reorganization [25, 156]. From this, it was concluded that, during stress conditions,
other mediator systems replace the cholinergic system in cognitive processes.

At least four questions follow from these data:

1. Inwhatnervous functions are the cholinergic neuronal populations of the cortex and the
hippocampus involved, both projective and intrinsic, for the maintenance of viability of
an organism? Is it a function of regulation of the regional blood vessels or some other
factor?

2. Why are cholinergic synaptic influences lost from cognitive mechanisms? Is it a negative
dependence between vital and cognitive functions or low resistance of this neuronal
population to stress conditions?

3. Isthestructural isolation of cholinergic links in cognitive functions presumes a functional
disbalance between the cortex and hippocampus? Is it a consequence of loss of cholinergic
modulating influences?

4. What mediator systems mediate the execution of cognitive functions instead of the
cholinergic system?

The answers to these questions are important for the restoration, maintenance and regulation
of cognitive and vital brain functions under stress and pathological conditions.

9. Conclusion

The synapse is a unique and the most dynamic and labile structure specialized in the chemical
transmission of nerve signals, an inherent structure of the neuron only.

Cholinergic system is essential constituent of the mammalian brain. Due to research using the
synaptosomal and other synaptic fractions, knowledge behind the metabolism and secretory
function of ACh and some new notion concerning the cholinergic mechanisms of cognitive
functions under normal conditions and stress stimuli were gained. Today, however, accumu-
lated data does not provide answers to the all questions as many more questions are asked.
We have tried to outline some of the outstanding problems in the course of presenting the
material.
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The experimental cell physiology began to develop after the invention of the microscope by
A. van Leeuwenhoek and his discoveries in the middle of the 17th century. Experimental
synaptology began to develop after the invention of the electron microscope in the 1930s by
M. Knoll and E. Ruska, ie three centuries later! Prior to this, researchers for the longest time,
following two great neurohistologists, S. Ramoén y Cajal and C. Golgi, in general could not
reach a consensus, whether the brain is a cellular structure or syncytium? Only the electron
microscope proved that a synapse exists.

Thus the science of the synapse is very young neuroscience.
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1. Introduction

The brain is equipped with a magnificent diversity of molecules that allow neurons to
communicate with each other. Some of these molecules have been known to function as
neurotransmitters for several decades such as GABA and glutamate while for others their
involvement in brain signaling has been demonstrated more recently. Cannabinoids fall into
the latter group. Even though the effects of cannabinoids as active ingredients in marijuana on
human psyche and behavior have been experienced by humans for centuries or possibly
millennia, their existence and production in the brain was described only some thirty years
ago. Even more recently, their functional role in neural circuits of the brain has been discerned.
This review focuses on these endogenously produced signaling molecules, endogenous
cannabinoids or endocannabinoids (eCBs). Their functional role in the nervous system and
interaction with other neurotransmitter systems will be described. One hallmark feature of
endocannabinoid signaling is their ability to act as retrograde messengers in neural circuits.
Two examples, one from the hippocampus and one from the main olfactory bulb, illustrate in
detail this intercellular communication pathway.

Several features underscore the importance to understand the endocannabinoid system.
Increasing evidence demonstrates the relevance of endocannabinoids in normal behaviors,
including pain reception [1] and feeding [2, 3]. The therapeutic potential of cannabinoids has
received increasing attention over the past few years [4]. endocannabinoids play a role in
neuroprotection against acute excitotoxicity [5] and functional recovery after brain injury [6].
Endocannabinoids regulate human airway function and provide a means to treat respiratory
pathologies [1]. Cannabinoids are in widespread use recreationally as psychoactive drugs and
interact with other drugs of abuse. This fact emphasizes even more the need to understand the
endocannabinoid system and the neurobiological substrate of their mood-altering capacity [7,

I m EC H © 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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8]. Furthermore, the endocannabinoid system is crucially involved in processes of learning
and memory, e.g., in the extinction of aversive memories [9].

2. The endocannabinoid system

Endocannabinoids are small lipids that regulate various aspects of brain function such as
learning and memory including synaptic transmission and different forms of short-and long-
term plasticity [10]. They also influence growth and development such as synapse formation
and neurogenesis. Other biological functions modulated by endocannabinoids include eating
and anxiety. Principally, two endocannabinoids, N-arachidonoylethanol-amide (anandamide,
AEA) and 2-arachidonoylglycerol (2-AG) are the natural agonists/ligands of the most widely
expressed cannabinoid receptor in the brain, CBIR [11] (Figure 1).

2-AG Anandamide

Figure 1. Two endocannabinoids, 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanol-amide (anandamide,
AEA), are the natural agonists/ligands of cannabinoid receptors, CB1Rs, in the brain.

Endocannabinoids, as fatty-acid derived endogenous ligands, together with their G-protein
coupled cannabinoid receptors form the endocannabinoid system. This system also includes
associated biochemical machinery with endocannabinoid precursors, synthetic and degrada-
tive enzymes for these lipidic neurotransmitters, and transporters [12-15]. Two different
cannabinoid receptors have been cloned, CB1 and CB2 receptors. They share 44% amino acid
sequence homology [16, 17]. The expression pattern of the two cannabinoid receptors in
various body parts is distinctly different. In the brain, CBIR is the most abundant G-protein
coupled receptor [18]. CB2R is primarily expressed in immune cells and peripheral tissues [17].
Some level of CB2R expression has also been detected in the brainstem, cortex and cerebellar
neurons and microglia [19, 20].

Cannabinoid receptors are found at high levels in the brain [21, 22], specifically at presynaptic
nerve terminals [23, 24]. They can be activated by cannabis-derived drugs. A9-Tetrahydrocan-
nabinol, THC, is the bioactive ingredient of the drugs marijuana and hashish [25] and can
artificially activate cannabinoid receptors as exogenous cannabinoids. Cannabinoid receptors
exist in all normal brains [18, 21, 22] where they subserve many essential brain functions when
activated by their natural ligands. Cannabinoid receptors in the nervous system are predom-
inantly G;,-protein-coupled type 1 cannabinoid receptors (CB1 receptors, CBIRs). Their
ligands, endocannabinoids are synthesized from membrane lipids [26]. Endocannabinoids can
diffuse through membranes and are thus able to activate receptors in the same manner as
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exogenously applied cannabinoids such as cannabis. Anandamide and 2-AG were discovered
in the early 1990s [27-29, reviewed in 30] while their functional role in neuronal communication
remained obscure for years. Since their discovery, the role of endocannabinoids as retrograde
messengers that suppress both excitatory and inhibitory transmission has been well-estab-
lished. Endocannabinoids mediate retrograde signals in the hippocampus [31-35], cerebellum
[36-38], neocortex [39, 40], amygdala [41, 42], and olfactory bulb [43]. Termination of endo-
cannabinoidsignalling is accomplished by reuptake into both neurons and glia. Subsequently,
anandamide and 2-AG are hydrolyzed intracellularly by fatty acid amide hydrolase (FAAH)
and monoacylglycerol lipase (MAGL), respectively [44].

3. Unusual and novel neurotransmitters

Endocannabinoids are different from conventional neurotransmitters because they are lipids
that are not stored but rather are rapidly synthesized on demand at the site of need from
components of the cell membrane. Upon cellular activation, they are released from places all
over the cell. They are arachidonic acid-containing messengers generated by phospholipase
action [45]. Stimuli that trigger release of endocannabinoids include rise of intracellular
calcium levels inside the neuron or activation of certain G-protein-coupled receptors such as
metabotropic glutamate receptors (mGluR5). Subsequent to their non-synaptic, non-vesicular
release, endocannabinoids bind to cannabinoid receptors on nearby neurons such as presy-
naptic interneurons where they regulate presynaptic neurotransmitter release, e.g., through
closure of specific ion channels.

Endocannabinoids are members of a loose family of unusual and novel neurotransmitters.
Similar to endocannabinoids, other novel neurotransmitters such as nitric oxide (NO), carbon
monoxide (CO), and hydrogen sulfide (H2S) do not adhere to the classic definition of neuro-
transmitters and challenge the notion of what constitutes a neurotransmitter [46, 47]. These
synaptic molecules have changed markedly the definition of a neurotransmitter. They satisfy
key neurotransmitter criteria but differ radically from classical transmitters. For example,
endocannabinoids, nitric oxide and carbon monoxide are neither stored in synaptic vesicles
nor released by exocytosis. Nitric oxide does not act via traditional receptors on postsynaptic
membranes.

Like endocannabinoids, nitric oxide can serve as an intercellular messenger in the brain
[48]. It acts as a retrograde factor at synapses and presynaptically regulates both glutama-
tergic and GABAergic synapses to alter release-probability in synaptic plasticity. Nitric oxide
influences the synaptic machinery involved in transmitter release and, in a coordinated
fashion, also the vesicular recycling mechanisms. Nitric oxide has a role in the coordina-
tion of local pre-and post-synaptic function during plasticity at individual synapses. It is
involved in experience-dependent plasticity in the cerebral cortex. Likewise, cannabinoids
mediate a variety of forms of short-and long-term synaptic plasticity that have been
reviewed in detail elsewhere [49-51].
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4. Depolarization-induced suppression of inhibition

The relevance of the endocannabinoid system for neural signaling and brain function in
general has been explored only recently [13]. Endocannabinoids mediate a new type of
neuronal communication, called DSI, Depolarization-induced Suppression of Inhibition (Fig.
2) (reviewed in [10, 12, 30]. A short rise in intracellular calcium concentration in a principal
neuron, e.g., a pyramidal cell of the hippocampus, results in a transient decline of incoming
inhibitory signals in the form of GABA arriving from other neurons. This observation led to
the hypothesis that during DSI, some unknown messenger must travel from the postsynaptic
cell to the presynaptic GABA-releasing one and somehow turns off neurotransmitter release.
Conventional chemical synaptic signaling between two neurons involves activation of a
presynaptic neuron resulting in transmitter release and subsequent activation of the postsy-
naptic neuron, e.g.,, a GABAergic inhibitory interneuron makes synaptic contacts with a
glutamatergic pyramidal cell in the hippocampus. When the interneuron is activated it releases
the inhibitory neurotransmitter GABA and inhibits the pyramidal cell. In contrast, during DSI,
when a pyramidal cell is activated, e.g., through direct current injection, the inhibitory input
onto that pyramidal cell is reduced. As a major breakthrough in our understanding of
endocannabinoid signaling, endocannabinoids were found to act as retrograde signaling
molecules that mediate communication between postsynaptic pyramidal cells and presynaptic
inhibitory interneurons and evoke the reduction in GABA release. Since endocannabinoids are
lipids, they do not diffuse over great distances in the watery extracellular environment of the
brain. Rather, DSI acts as a short-lived local effect that enables individual neurons to disconnect
briefly from their neighbors and encode information [12].

The announcement of this breakthrough has been given the Latin term ‘Dies mirabilis’
(wonderful day) by Alger [10]. In March of 2001 four independent labs described in three
different journals their studies culminating in the conclusion that endocannabinoids function
mainly as retrograde messengers. Elphick and Egertova [52] analyzed prior pharmacological
and anatomical studies of the actions of cannabinoid receptor agonists and combined this with
their knowledge of the localization of cannabinoid receptors and degradative enzymes for
anandamide, fatty acid amide hydrolase (FAAH) to reason that endocannabinoids act as
retrograde messengers. Pivotal work by Wilson and Nicoll [34] and Ohno-Shosaku et al. [32]
established that DSI was mimicked by activating cannabinoid receptors whereas blockade of
cannabinoid receptors prevented DSI. A corresponding phenomenon, DSE, Depolarization-
induced Supression of Excitation, mediated by retrograde action of endocannabinoids, was
identified by Kreitzer and Regehr [36] at cerebellar excitatory synapses. DSI and DSE are based
on a presynaptic effect as shown by an increase in calcium in the postsynaptic cells and
corresponding changes in paired pulse ratio of neurotransmitter release.

G-protein coupled receptors (GPCRs) are involved in mediating the transduction of extracel-
lular stimuli, such as neurotransmitters, into intracellular signaling cascades. Activation of
specific G-protein coupled receptors triggers the release of endocananbinoids for many
minutes, e.g., dopamine [53], metabotropic glutamate [33, 37, 54] or muscarinic M1/M3
acetylcholine receptors [55, 56]. Even though endocannabinoids are typically released in a
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Figure 2. Depolarization-induced Suppression of Inhibition (DSI) is a model for retrograde signaling in the brain and
allows assaying real time release of endocannabinoids from principal neurons as a brief cessation of GABA ouput. Ac-
tivation of metabotropic glutamate receptors (mGluRs) on principal neurons or depolarization of postsynaptic princi-
pal cells evokes synthesis and release of cannabinoids (CBs). Cannabinoids bind to presynaptic cannabinoid receptors
(CB1R) on GABAergic interneurons and transiently reduce GABA release from synaptic terminals. As a consequence,
GABA, receptor-mediated synaptic currents and GABAergic inhibition are temporarily suppressed in postsynaptic
principal neurons.

calcium-dependent manner [57, 58], in the mGluR-and m AChR-dependent pathways, no clear
rise in intracellular calcium [Ca®]; [37, 55] is necessary. The release of endocananbinoids can
be initiated even in the presence of high intracellular concentrations of calcium chelators,
although endocannabinoids may nevertheless be sensitive to the ambient intracellular calcium
concentration [59]. Studies by the Alger lab and others indicate that G-protein coupled receptor
activation of postsynaptic cells leads to enhancement of DS], e.g., glutamate acting on group
I metabotropic glutamate receptors (mGluRs) directly generates endocannabinoids and
enhances DSI ([37, 33]. It is now established that activation of many G-protein coupled
receptors is linked to the use of endocannabinoids to deliver or fine-tune their messages to
target cells [11].

The discovery of DSI has been a major advance in our understanding of the endocannabinoid
system for brain function [60]. DSl is a type of short-term synaptic plasticity originally observed
in the cerebellum and hippocampus [12, 14]. Endocannabinoids are retrograde signaling
molecules that are released from depolarized principal neurons and travel to presynaptic
inhibitory interneurons to reduce GABA release. DSI is a novel, regulatory process that
manifests itself as a transient suppression of synaptic GABA, responses mediated by retro-
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grade signaling of endocannabinoids from principal neurons (Fig. 3). Through the retrograde
signaling process neurons alter the strength of synapses made onto them and thereby control
their own synaptic excitability in an activity-dependent manner, which is functionally
important in information processing by neuronal networks [14]. In the cerebellum, a retrograde
signaling process that is similar to DSI reduces synaptic excitation by suppressing presynaptic
glutamate release and is called DSE [61], see above.
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Figure 3. Right panel: Hippocampal pyramidal cells show spontaneous inhibitory postsynaptic currents (IPSCs). Left
panel: In response to a 1-s voltage pulse the pyramidal cell reveals DS, a transient reduction in IPSC activity as a result
of endocannabinoids acting on CB1R on presynaptic GABAergic interneurons.

5. Hippocampal depolarization-induced suppression of inhibition

Endocannabinoids are lipids and, unlike classic neurotransmitters, are not stored but rather
rapidly synthesized from components of the cell membrane. They are synthesized in, and
released from, postsynaptic somatodendritic domains that are readily accessible to whole-cell
patch electrodes. The effects of these lipid signals are detected electrophysiologically as CB1R-
dependent alterations in conventional synaptic transmission, which, therefore, provide a
sensitive means of bioassay in gendocannabinoid levels and actions. Endocannabinoid release
can be triggered through Ca*-dependent or relatively Ca*-independent pathways, with
different down-stream effects. As discussed above, endocannabinoids are released non-
synaptically, non-vesicular from places all over cells when levels of calcium rise inside the
neuron or when certain G-protein-coupled receptors are activated. After cellular release,
endocannabinoids travel to cannabinoid receptors on nearby neurons and evoke a reversible,
short-term depression of synaptic transmission, DSL In activated hippocampal pyramidal
cells, DSI leads to a transient reductionof GABA release from presynaptic terminals of
inhibitory interneurons. Direct insights into the actions of endocannabinoids have been based
primarily on pharmacological experiments. The hydrophobicity of endocannabinoids severely
limits their penetration into brain tissue, and endocannabinoids are rapidly degraded by
abundant endogenous lipases. These intrinsic properties of endocannabinoids make it difficult
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to directly study physiological effects of endocannabinoids. The development of a highly
water-soluble caged anandamide that is inert to lipases circumvents these problems [62]. When
perfused into hippocampal slice preparations, the caged anandamide serves as a latent
endocannabinoid pool, and focal photolysis rapidly liberates highly hydrophobic anandamide
in situ to activate CBIR. Photolysis is an alternative experimental approach to chemically
stimulate synapses, cells, or circuits by directly applying neurotransmitter or neuromodula-
tors. Often pharmacological approaches yield little control of the stimulation in terms of
timing, space and specificity. However, photo-uncaging of caged neurotransmitters has made
the pharmacological approach more sophisticated. Photo-uncaging uses localized, patterned
light and yields higher spatial and temporal resolution. One application of photostimulation,
the flash photolysis technique, can be used to determine signaling kinetics of the endocanna-
binoid system [60, 62]. The endocannabinoid system can be used as a tool for bioassaying the
temporal dynamics or kinetics of lipid signaling. Combining whole-cell voltage patch-clamp
recording, intracellular calcium measurements, and photorelease of caged glutamate and a
novel, caged cannabinoid, anandamide (AEA) allows determining endocannabinoid signaling
kinetics. Flash photolysis of caged compounds (photolysis using so-called molecular optical
probes or photoprobes) is an important tool in this endeavor. Caged compounds are inert,
biologically inactive (e.g., a caged cannabinoid or caged glutamate) until a flash of laser light
breaks open the molecular cage, releases the caged molecule and generates a biologically active
effector molecule in situ [63]. Chemically, the caged compound is a modified signal molecule.
The modification of the molecule prevents its bioactivity until light absorption results in a
photochemical change of the signal molecule such that its bioactivity is restored.

The lipid signaling pathway comprises several temporal components that can be determined
to quantify the time that it takes from the DSI-inducing stimulus to the onset of DSI. These
components contribute to the latency to onset of DSI (start of DSI-inducing stimulus to initial
suppression of IPSCs). Among them is the rise of calcium to initiate endocannabinoid synthesis
(t-Ca). The rise in intracellular calcium leads to endocannabinoid synthesis and release,
followed by travel of these molecules to cannabinoid receptors on presynaptic interneurons,
t-EC. The next step is the activation of CB1R and downstream effects, t-CB1R (t-DSI =t-Ca + t-
EC + t-CBIR). Experiments carried out using the above-mentioned technological advances
allowed determining the time for synthesis and release of eCB from the postsynaptic neuron,
which was estimated to be around 150 ms at room temperature, comparable with the timescale
of metabotropic signaling and at least an order of magnitude faster than previously thought.
A major portion of the DSI onset time, t-DSI, reflects activation of presynaptic CB1Rs and
downstream consequences. The data suggest that, far from simply serving long-term neuro-
modulatory functions, endocannabinoid signaling is sufficiently fast to exert moment-to-
moment control of synaptic transmission. The DSI onset latency after a voltage step, t-DSI, is
350 to 400 ms. t-CB1R, the direct activation of CBIR by photoreleasing anandamide which
results in suppression of sIPSCs, takes ~180ms (Fig. 4). A transient rise in intracellular calcium
sufficient to obtain minimal DS, t-Ca, is evoked by a 50-ms voltage step and takes ~60 ms. The
time needed for endocannabinoid synthesis and release to occur, t-EC, is about 150 ms.
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Figure 4. Left panel: Photolysis of caged anandamide yields bioactive anandamide. Right panel: Photorelease of anan-
damide suppresses sIPSCs after a delay of ~180 ms. Modified from [62] with permission of the Society for Neuro-
science.

Voltage-activated DSI works through a rise in intracellular calcium concentration. However,
release of endocannabinoids can be triggered even in the presence of high intracellular
concentrations of calcium chelators, although they may nevertheless be sensitive to ambient
intracellular calcium [59]. To test if these two pathways function on the same time scale, the
dynamic components of the mGluR-induced endocannabionoid response on sIPSC frequency
in pyramidal cells are compared (Fig. 5) [62]. The mean onset latency, duration and magnitude
of the IPSC suppression evoked by uncaged glutamate are similar to that caused by uncaged
AEA (Figs. 4, 5). No reduction in sIPSCs occurred for 221 ms (determined by extrapolation of
the exponential fit to the control sIPSC level). The time-to-onset of IPSC suppression evoked
by the mGluR-induced endocannabinoid process (time to mGluR-dependent suppression of
inhibition, t,czs) is described by: t-mGIuR-SI = 221 ms = t-eCB(mGluR) + t-CB1R, where t-
eCB(mGIuR) is the time for activation of the mGluR-dependent endocannabinoid synthesis
and release, and t-CB1R is ~180 ms (see above). This leaves t-eCB(mGluR) to be < 50 ms, which
is even faster than endocannabinoid synthesis and released evoked by a voltage step.
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Figure 5. Dynamics of mGluR-dependent endocannabinoid suppression of sIPSCs in cultured hippocampal slices. Left
panel: Photorelease of glutamate. Right panel: Recording from a pyramidal cell illustrates the transient reduction in
spontaneous (s) IPSC frequency of CA1 pyramidal cells after flash photorelease of caged glutamate (photolysis in-
duced suppression of inhibition, PSI). Arrow indicates laser flash. From [62] with permission of the Society for Neuro-
science.
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Anandamide can be released from its caged form by a UV-laser flash and rapidly activates
presynaptic CB1Rs to suppress the release of GABA [62]. A specific CB1R antagonist, AM 251,
blocks the suppression of spontaneous IPSCs. This establishes that uncagedanandamide can
be used as a CBIR agonist to study activation of CBIR in the brain. Similarly, uncaged
glutamate acts at mGluRs on hippocampal pyramidal cells to evoke cannabinoid release and
subsequent suppression of presynaptic GABA release [62]. The data provide the first detailed
attempt to determine the minimal time required for activation of an intercellular neuronal lipid
messenger system. This signaling system requires a major portion of DSI onset time, t-DSI, for
activation of presynaptic CBIR and downstream consequences. Endocannabinoids, and by
extension similar lipid messengers, can be mobilized and evoke responses as quickly as
conventional metabotropic, G-protein receptor-coupled neurotransmitters. The speed with
which neuromodulators such as endocannabinoids act places critical constraints on the
physiological roles they can play. Endocannabinoids and other lipids function in brain
signaling not simply in homeostatic processes or slowly-activating forms of regulation, but
rather lipids can affect neuronal excitability in moment-to-moment information processing.

6. Depolarization-induced suppression of inhibition in glomerular circuits
of the olfactory bulb

The olfactory bulb is the first relay station in the CNS for processing of sensory information
that comes from olfactory receptor cells in the nasal epithelium. Cannabinoid receptors are
expressed at high levels in the olfactory bulb, specifically in the input region, the glomerular
layer [21, 64-66]. Neurons in the glomerular layer are immunoreactive for enzymes that
synthesize endocannabinoids [67-69]. Our understanding of the physiological role of endo-
cannabinoids and cannabinoid receptors for neural signaling in the olfactory system is just
emerging. Recent electrophysiological evidence has established that the endocannabinoid
system plays a functional role in regulating neuronal activity and signaling in olfactory bulb
glomeruli [43].

Neurons in the glomerular fall into three subpopulations: periglomerular (PG), external tufted
(eTC), and short-axon (SA) cells. Periglomerular cells are neurochemically and functionally
heterogeneous [70-72]. Periglomerular cells are GABAergic, short-axon cells express both
GABA and dopamine, and external tufted cells are glutamatergic [72, 73]. Periglomerular cells
receive input from the olfactory nerve or dendrodendritic glutamatergic input from external
tufted or mitral cells, e.g., as spontaneous bursts of EPSCs [70, 73-74]. Periglomerular cells
presynaptically inhibit olfactory receptor neurons through GABAergic transmission [76, 77].
External tufted cells receive spontaneous bursts of inhibitory postsynaptic currents (sIPSCs)
from periglomerular cells at inhibitory GABAergic synapses as well as spontaneous glutama-
tergic EPSCs [74; 78]. In the glomerular layer, external tufted cells can be a potential source of
endocannabinoids.

Cannabinoid receptors directly regulate membrane properties of periglomerular cells as
shown by the effects of CB1R antagonist AM251 and agonist WIN in the presence of ionotropic
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glutamate and GABA , receptor blockers (synaptic blockers: CNQX, APV, gabazine) [43]. This
indicates that the actions of cannabinoids on periglomerular cells are mediated through CBIR
expressed by periglomerular cells. AM251 directly activates periglomerular cells and enhances
their GABA release. Periglomerular cells are synaptically connected to external tufted cells.
Therefore, any CB1R-mediated regulation of activity of periglomerular cells could affect GABA
release and synaptic transmission to external tufted cells. CB1R is also expressed in external
tufted cells and may participate in modulating external tufted cell activity.

In external tufted cells, neither AM251 nor WIN influences firing frequency or membrane
potential [43]. However, in the presence of synaptic blockers cannabinoid drugs have a modest
effect on external tufted cells. In this condition, AM251 slightly increases the firing rate of
external tufted cells without membrane depolarization. In synaptic blockers, WIN slightly
decreases firing of external tufted cells without a clear change in membrane potential. The
effects of AM251 and WIN in the presence of synaptic blockers, i.e., during pharmacological
isolation of external tufted cells, indicate that CB1R mediates a direct effect on external tufted
cells. The direct excitatory effect of a CB1R antagonist on external tufted cells is opposed by
increased GABAergic synaptic input from periglomerular cells onto external tufted cells, i.e.,
the enhanced GABA release from periglomerular cells triggered by a CBIR antagonist may
dominate and mask the CBIR antagonist-evoked direct excitation of external tufted cells.

The CBI1R effects on periglomerular and external tufted cell prompt the questions if DSI is
present in the glomerular layer of the olfactory bulb. In external tufted cells, DSI can be induced
with a 5-sec depolarizing voltage step from a holding potential of -60 mV to 0 mV (Fig. 5). In
external tufted cells DSl is visible as a decrease in the amplitude and frequency of sIPSCs. The
response to a single depolarizing step is a suppression of sSIPSC area by ~40 % of control which
then gradually recoveres. External tufted cells exhibit a distinct intrinsic bursting pattern [74].
In order to mimic spontaneous rhythmic bursting of an external tufted cell a train of depola-
rizing steps can be applied to the cell. This experimental paradigm allows determining a
possible functional role of DSI in glomeruli. A train of depolarizing steps results in a transient
60% reduction in sIPSC area (20 steps, 0.75 Hz) (Fig. 4B, F). DSI can be completely eliminated
in the presence of AM251, indicating that DSI is mediated by CB1R (Fig. 5C, F). The bursting
frequency of external tufted cells ranges from 0.5 to 6.5 Hz with a mean frequency of 2.7 bursts/
sec [74]. Depolarizing voltage pulses at 2 Hz (20 steps, pulse duration: 250 ms) evoke DSI as a
reduction of sIPSCs in external tufted cells, similar to the results obtained with voltage steps
at 0.75 Hz to 0 mV. In external tufted cells, single depolarizing voltage steps as well as a train
of voltage steps evoke suppression of inhibition (DSI). This suggests that spontaneous
rhythmic bursting of these cells triggers the release of endocannabinoids which function as
retrograde messengers to reduce GABA release from periglomerular cells which in turn,
regulates the activity of periglomerular cell synaptic targets such as external tufted cells.

Endocannabinoids regulate neuronal activity and signaling in olfactory bulb glomeruli. They
function in the form of DSI through CB1R-mediated retrograde signaling among glomeru-
lar neurons. Endocannabinoids are released from external tufted cells and act as retro-
grade messengers to control the excitability of presynaptic neurons, i.e., periglomerular
cells, and to regulate their transmitter release. Endocannabinoids are synthesized and
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Figure 6. Depolarization-induced Suppression of Inhibition (DSI) in olfactory glomeruli. A A depolarizing voltage step
evoked DSl in a representative external tufted cell. High Cl-based pipette solution was used for recording sIPSCs. De-
polarization was achieved by stepping from-60 mV holding potential to 0 mV for 5 sec. B In the presence of CNQX and
5-AP, a train of 20 voltage steps to 0 mV (0.75 Hz; step duration: 667 ms) transiently reduced sIPSCs in an external
tufted cell. Holding potential was-60 mV. C. In the presence of AM251, no sIPSC suppression was observed. D A train
of 20 voltage steps t0-30 mV (2 Hz; step duration: 250 ms) transiently reduced sIPSCs in an external tufted cell (in
CNQX and 5-AP). E Normalized sIPSCs area illustrating the magnitude and time course of DS elicited by a 5-sec depo-
larizing pulse (n=7). The averaged values between 0 — 5 sec after the end of the voltage step were significantly differ-
ent from the baseline (ANOVA and Bonferroni post-hoc analysis, p< 0.05). F Normalized sIPSC area illustrating the
magnitude and time course of DSI elicited by a train of depolarizations to 0 mV (n=12) in control and in the presence
of AM251 (n=10). In control conditions, the averaged values between zero to 2 5 seconds after the end of the train of
voltage steps were significantly different from the baseline (ANOVA and Bonferroni post-hoc analysis, p< 0.05). From
[43] with permission of the Society for Neuroscience.

released from neuronal cell bodies as a result of cellular excitation [11]. One potential source
of endocannabinoids in the olfactory bulb is neurons that synapse onto presynaptic cells,

i.e., periglomerular cells, and receive feedback synaptic inputs. This profile fits external
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tufted cells and they could be a potential endocannabinoid source in the olfactory bulb
which is supported by the fact that DSI is found in external tufted cells. DSI in external
tufted cells is subject to the level of cellular activation, i.e., voltage step duration and step
number. DSI cannot be evoked with step durations of 1 sec or less while a step duration
closer to 5 seconds evokes transient DSI. A train of depolarizing voltage steps (>3) generates
particularly prominent DSI and strengthens the inhibition of sIPSCs. This suggests that
excitation of external tufted cells in the form of rhythmic bursting triggers the release of
endocannabinoids and regulates glomerular activity. Bursting is intrinsic to external tufted
cells and mediated by several cell intrinsic conductances [79]. Bursting of neurons may
modulate endocannabinoid release not only in the olfactory bulb but also in other brain
systems and constitute a general phenomenon of endocannabinoidsignaling.

Olfactory sensory neurons form direct synaptic contacts with external tufted cells. Sensory or
synaptic input to external tufted cells can trigger the release of endocannabinoids which have
an inhibitory effect on CB1Rs in presynaptic periglomerular cells. Endocannabinoids thus
reduce inhibitory input to external tufted cells and enhance external tufted cell sensitivity to
weak sensory inputs by depolarizing the membrane potential closer to spike threshold. This
CB1R-mediated inhibition of periglomerular cells reduces their GABA release and, in turn,
modifies the firing pattern of external tufted cells and, potentially, also reduces inhibition of
mitral cells and presynaptic olfactory nerve terminals. The functional relevance of this
signaling pathway lies in a potential increase of the overall sensitivity of the glomerulus to
sensory inputs resulting from activation of CB1R on periglomerular cells.

7. Endocannabinoid-evoked physiological responses and crosstalk with
other neurotransmitters

Endocannabinoids can evoke physiological responses that are not mediated by presynaptic
CB1Rs but rather by postsynaptic CB1Rs [14], e.g., via regulation of K* conductances present
on the extrasynaptic dendritic surface of neurons or modulation of postsynaptic NMDA
receptors or even non-CBIR, e.g., [80]. Several conventional CB1R ligands have been reported
to have CB1R unspecific effects or activate non-CB1 receptors [14]. Electrophysiological
evidence suggests that the CBIR agonist WIN55,212-2 produces non-CB1R mediated effects
on the excitability of principal neurons in the basolateral amygdala [81], thus providing
evidence for anon-CB1R site of action of WIN55,212-2 [82, 83]. Cannabinoid drugs can activate
other ‘non-CB’ receptors, such as GPR55, peroxisome proliferator-activated receptors (PPARs),
and vanilloid type TRP channels [84, 85].

The accepted view of endocannabinoid action is based on hippocampal studies demonstrating
that endocannabinoids reduce synaptic inhibition of the principal cell (DSI), see above.
Endocannabinoids were found to possess other properties, namely, to mediate self-modula-
tion of neocortical pyramidal neurons [86] or long-lasting self-inhibition in neocortical GABA-
containing interneurons [87]. This self-inhibition is mediated by autocrine release of
endocannabinoids and does not depend on glutamatergic and/or GABAergic neurotransmis-
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sion but rather on activity-dependent long-lasting hyperpolarization due to the activation of
a K*-conductance. Endocannabinoids released by these interneurons target the same cells and
mediate a lasting hyperpolarization that is blocked by a CB1R antagonist. Self-inhibited cells
can become hyperpolarized below spike threshold and are effectively removed from the neural
circuit in which they reside.

The endocannabinoid system reciprocally modulates other neurotransmitter systems [88].
Examples include interactive cross-talk with the endogenous opioid system [89, 90]. Inciden-
tally, like the endogenous opiate system, the endocannabinoid system was first discovered
because it can be activated by a plant-derived compound —in the case of the endocannabinoids,
this is A9-tetrahydrocannabinol, the bioactive ingredient of the drugs marijuana and hashish
[25]. Other studies detected an interaction of the endocannabinoid system at the molecular and
functional levels with other neurotransmitters such as the dopaminergic and adenosinergic
systems [91-93]. Recent evidence has suggested cross-modulation between the endocannabi-
noid and hypocretinergic system [88]. This idea is based on the overlap observed in the
neuroanatomical distribution of both systems as well as their putative functions. Functionally,
both endocannabinoids and hypocretins can contribute to the regulation of appetite, reward
and analgesia. Furthermore, biochemical and functional studies have demonstrated hetero-
dimers between CB1 cannabinoid receptor and hypocretin receptor-1. Activation of hypocretin
receptor-1 stimulates the synthesis of 2-arachidonoyl glycerol which through retrograde
endocannabinoid signaling results in inhibition of neighboring cells. This interaction would
allow endocannabinoids to contribute to hypocretin effects and provide potential therapeutic
applications to currently existing drugs targeting these systems [88]. However, these two
neuromodulatory systems exert antagonistic effects in the regulation of the sleep/wake cycle
and anxiety-like responses which contributes even more to the excitement of performing
research targeting the endocannabinoid system.
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1. Introduction

Fear conditioning is one of the most widely used paradigms for studying the neurobiology of
emotional learning. In this paradigm, an emotionally neutral stimulus (the conditioned
stimulus or CS) is paired with an aversive unconditioned stimulus (US), generally a mild foot
shock. After a few trials, re-exposure to the CS alone elicits a fear response, proceeding through
the necessary connecting structures, and ending with the autonomic and motoric effector
outputs. This fear response is part of an anticipatory response to danger [1], initiating a range
of defensive reactions that counter threats to survival [2]. The most universal response is a
postural immobility, called freezing [3, 4]. Moreover, the threatening stimulus also triggers the
activation of the hypothalamic subnuclei to induce an increase in blood pressure, ultrasonic
vocalizations emission, or the release of stress hormones.

The vast majority of studies devoted to investigate the neural basis of fear conditioning have
used auditory cues as conditioned stimuli and the neural pathways involved in auditory fear
conditioning have been well characterized [5-8]. The information carried by the auditory CS
can take one of two pathways: either directly from the thalamus to quickly reach the amygdala
or the CS can travel from the auditory thalamus to the auditory cortex before reaching the
amygdala. These thalamic and cortical areas send projections to the lateral nucleus of the
amygdala, which is a site of CS-US convergence. The lateral nucleus, in turn, projects to the
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central amygdala, which controls the expression of fear responses by way of projections to
brainstem areas. The major conclusion of these studies is that the amygdala plays a critical role
inlinking external stimuli to defense responses through synaptic plasticity. However, although
the amygdala seems to be essential to the formation and storage of fear memories, it might not
store all aspects of the aversive event. Indeed, plasticity also occurs in cortical areas during
fear conditioning, which could support declarative memories of the learning episode mainly
through interactions with the medial temporal lobe memory system [9-13]. Thus, the amygdala
may store some aspects of fear memory and facilitate the storage of other, more sensory-
related, aspects of fear memory in cortical areas [14]. Yet few studies have investigated this
question [15].

Intriguingly, whereas olfaction plays a dominant role in rat behavior from birth throughout
adulthood, very few studies have used odor cues as CS in fear conditioning paradigms. Yet,
odors have a rather unique status for eliciting emotional memories.[16]. This particularity
might be linked to the uniqueness of the anatomy of the olfactory system. Indeed, in contrast
to the other sensory pathways, olfactory information has a direct access to the amygdala and
olfactory (piriform) cortex with no obligatory thalamic relay [17-19]. The literature suggests
that, similarly to what is observed in auditory fear conditioning, the amygdala is a key brain
structure involved in the acquisition, consolidation and expression of odor fear conditioning
[20-26]. Recently, some studies also suggest that the posterior piriform cortex (PPC) may play
a critical role in this associative learning [23, 26, 27]. Therefore, the olfactory system constitutes
a particularly relevant model for studying the relative contribution of sensory cortices and
amygdalar nuclei to odor fear learning.

For several years now, the glutamatergic transmission in the amygdala is known to play a
critical role in the acquisition of fear conditioning [28, 29]. Indeed, pharmacological studies
show that NMDA and AMPA subclasses of glutamate receptors are crucial for synaptic
plasticity and long-term potentiation to occur in the amygdala, sustaining the formation of the
CS-US association [25, 30-35]. In addition, the GABAergic transmission seems to be also
involved in the acquisition of fear learning. Intra-amygdala infusion of the GABA, receptor
agonist muscimol before training impairs learning [36, 37]. Therefore, glutamate and GABA
neurotransmission are thought to play a critical role in the acquisition and expression of fear
memories (for review, see [38]).

Beside these neuropharmacological studies, a few neurochemical studies have directly
measured glutamate or GABA levels in the amygdala during auditory fear conditioning, using
a 10-min sampling rate [39, 40]. However, this sampling rate is too long as compared to the
rapid neurobiological events underlying fear conditioning. An approach allowing rapid, sub-
minute sampling is required to better characterize the dynamics of neurotransmitter changes
evoked by the stimuli involved in fear conditioning experiments [41]. Until now, the precise
time course of the differential involvement of the amygdala and sensory cortices in fear
conditioning has received little investigation. The aim of this chapter is to show that intra-
cerebral in vivo microdialysis with high temporal resolution is an interesting tool to investigate
the time course of activation of amygdala and sensory cortices in this learning.
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2. Monitoring neurotransmitters using microdialysis

2.1. Principle of the technique and analytical considerations

Microdialysis has become a conventional technique for sampling low molecular weight
molecules present in the extracellular medium of many organs from animals or humans [42].
In the brain, it has been used in vivo or ex vivo to monitor amino acids neurotransmitters as
excitatory or inhibitory amino acids as glutamate and GABA, monoamines as dopamine,
noradrenaline, serotonin and/or neuropeptides for instance. The microdialysis relies on a semi-
permeable membrane that allows free diffusion of solutes between the extracellular space and
an artificial fluid. A microdialysis probe consists of two concentric tubes with the distal part
(1-5 mm) covered by a dialysis hollow fibre whose cut-off ranges between 6,000 and 100,000
Da. Such a probe is inserted into a living brain tissue and is perfused by an isotonic physio-
logical fluid. Molecules diffuse down their concentration gradient across the dialysis mem-
brane in a bidirectional way (“dialysis” for collecting endogenous molecules or “reverse
dialysis” for applying exogenous compounds) (Figure 1). In the case of collection, the relative
recovery across the probe membrane, defined as the ratio between the extracellular concen-
tration and the concentration of a compound in the dialysate collected at the outlet of the probe,
depends on several factors: it increases with the surface of the membrane, it decreases with
higher flow rate of the perfusion fluid, and it varies with the chemical and physical charac-
teristics of the membrane [43]. The choice of the dialysis membrane can be crucial for com-
pounds present at trace concentration or when the limit of detection of the analytical method
is relatively moderate. For instance, a short length (i.e. 1-2 mm) of the membrane chosen to
sample a very small brain area in rats, such as the periaqueductal grey matter, the locus
coeruleus, the amygdala and hypothalamic nuclei leads to a low recovery of sampling, making
difficult the monitoring of low concentrated compounds as monoamines or neuropeptides.
Depending on the methodological parameters, recovery values usually reported in literature
are between 5 and 25 % for amino acids or monoamines and can reach <1 % for neuropeptides.
Another point to take into account is the choice of the geometry of the probe tubings when
considering the sampling rate, especially when designing in vivo microdialysis on awake
animals. These latter peculiar points will be explained and detailed in the next section part of
the manuscript.

As the microdialysis probe is continuously perfused at a constant flow rate, continuous
sampling of neurotransmitters is possible with no loss. Indeed, neurotransmitters present in
the microdialysate can be directly analyzed without clean-up procedures as high molecular
weight proteins cannot cross the dialysis membrane thanks to the cut-off of the membrane
used. However, manipulation of microdialysis samples requires precaution in case of amino
acids: use of sterile tubes, filtered aCSF and wear of gloves avoiding contamination due to the
ubiquitous presence of free amino acids on labware and skin. Eventually, samples may be
usually analyzed by a separative method like high performance liquid chromatography
(HPLC) or capillary electrophoresis (CE) [44, 45]. Microdialysates can be analyzed on-line, i.e.,
at the outlet of the probe, through an analytical interface, or off-line i.e., after sample collection
in micro-tubes, in combination with a separative method [44, 46, 47]. Thus, the determination
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Figure 1. Schematic representation of a microdialysis probe. The probe is continuously perfused by an isotonic physio-
logical fluid. Endogenous compounds (filled circles) diffuse through the dialysis membrane (filled arrow) and are sam-
pled in the microdialysate collected at the outlet of the probe. Drugs (open circles) can be added to the perfusion
medium and can diffuse out of the probe into the extracellular medium (open arrow) providing a means of local ad-
ministration. From [109], with permission from John Wiley and Sons.

of concentrations in each sample reflects the average concentration over the defined sampling
duration. Data are classically expressed as % of the average of the first samples collected,
corresponding to baseline. As a consequence, microdialysis (except in very peculiar methodo-
logical contexts not explained in this chapter) is considered as a semi-quantitative method as
it permits to monitor precisely relative variations of neurotransmitters.

Analysis of microdialysates has commonly used HPLC with electrochemical [48, 49] or
fluorometric detection [50, 51], and also enzymatic methods [52]. However, these analytical
techniques exhibit poor mass sensitivity and require large volume samples to determine
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neurotransmitter contents. As a consequence, despite constant improvements in HPLC [50, 51,
53], the required sample volume may still be too large, leading to lengthy dialysis sampling
times and poor temporal resolution. Consequently, most microdialysis experiments were
severely limited by the temporal resolution of microdialysis (5-30 min) compared to rapid
changes occurring in the extracellular concentrations of neurotransmitters. In contrast,
microdialysis coupled to CE, a more recent technique, allows the monitoring of rapid changes
in the extracellular concentration of neurotransmitters by analysing nanovolume dialysates
with low limits of detection. At present, it appears to be suitable for microdialysis with high
sampling rate. Often coupled to laser-induced fluorescence (LIF) detection or mass spectrom-
etry (MS), capillary electrophoresis has become one of the most powerful analytical tools for
the routine determination of neurotransmitters because it offers the advantage of rapidity, high
resolution and sensitivity, while requiring very small sample sizes [44, 54, 55]. In brain
microdialysates, glutamate and GABA [56-64] were often analysed using CE with LIF detec-
tion. However, as amino acid neurotransmitters are not fluorescent at wavelengths of most
commercially available lasers, derivatization prior to the separation is needed. Fluorescent
reagents, as naphthalene-2,3-dicarboxaldehyde (NDA), orthophtaldehyde (OPA) or fluores-
cein isothiocyanate, reacting with the primary amine function of neurotransmitters, allow their
detection following laser excitation at 442, 325, or 488 nm, respectively [63-65]. Several groups,
including our own, have developed methodologies for the CE-LIF analysis of brain micro-
dialysates after a derivatization of samples with fluorogenic agents, even on sub-microliter
dialysates obtained with high temporal resolution microdialysis (5s — 1 min, [44] for mini-
review).

2.2. Set-up for high temporal microdialysis on behaving animal

According to the neurophysiological question asked, the experimental set-up for microdialy-
sis experiments has to be carefully designed: the choice of microdialysis probe according to the
targeted brain area, the choice of the analytical method to quantify dialysate neurotransmit-
ters and the coupling of the experimental set-ups or approaches are all crucial to succeed in
neurochemical studies. The aim of the study described here [66] was to monitor amino acid
neurotransmitters as glutamate and GABA in brain areas involved in emotional learning and
memory using odor fear conditioning. Indeed, while a few studies have investigated the time
course of events separately in the auditory cortex and the amygdala during auditory fear
conditioning [11, 12], no study up to date has been conducted to investigate simultaneously the
changes in amygdala and sensory cortical areas in the same animal during fear conditioning.

Our group previously reported lasting changes in electrophysiological field potential signals
in both posterior piriform cortex (PPC) and amygdala (basolateral nucleus, BLA) after a session
of odor fear conditioning [23]. As a consequence, we conducted an experiment using a dual-
microdialysis probe implantation, in order to compare the time courses of changes in GABA
and glutamate concentrations, monitored simultaneously in BLA and PPC during odor fear
conditioning. Very few groups have developed dual (or triple) implantation of microdialysis
probes on the same animal [67, 68]. Indeed in most studies using brain microdialysis, dialysates
collection is usually performed in one brain structure at a time, sometimes on different days.
Literature on microdialysis experiments in BLA is rather abundant, mainly for monoamines.
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There are only a few papers in the literature reporting microdialysis studies in the piriform
cortex in an epileptic model [69] or during a feeding/diet procedure [70]. Two other studies
were devoted to glutamate monitoring at 20 or 30-min sampling rate in anesthetized [71] or
awake rats [72]. In order to target the centre of each brain structure and avoid excluding rats
with inaccurate implantation on one hand, and in order to optimize the amount of collected
glutamate and GABA in the microdialysates for analytical quantification on the other hand,
1.5-mm microdialysis probes were used for both BLA and PPC. However, due to the size of
the probes and the vicinity of amygdala and olfactory cortex, we implanted one probe per
hemisphere, BLA probe on one side, PPC probe contralaterally (Figure 2). As the acquisition
session of odor fear conditioning was short-lasting (30 min), we monitored glutamate and
GABA at high sampling rate using CE-LIFD as analytical technique. When performing high
sampling rate, it is crucial to optimize the geometry of the probe tubings.

‘ ‘ | «——Stainless tube

4— Dialysis membrane

i i— NI— urotransmitters

'l\._

X AP 27 ! «1.80 mm Piriform Cortex
= . -2.80 mm Amygdala

Figure 2. Brain sections from Paxinos & Watson's atlas with a schematic probe implanted in the left basolateral amyg-
dala and the other implanted in the right posterior piriform cortex of the same freely-moving rat for simultaneous
glutamate and GABA monitoring.

Indeed, a high sampling rate requires appropriate probe tubings since solutes could undergo
more longitudinal diffusion in the outlet probe tubing if the interval of time between dialysis
and collection, also called ‘dead time, is superior to the sampling time [56]. As a consequence,
to avoid mixing of analytes between successive samples, the dead volume of these tubings has
to be minimized. This is particularly relevant when microdialysis experiments are carried out
on awake animals because the setting requires long inlet and outlet probe tubings in order to
let the animals move freely. In our odor fear conditioning, the set-up includes specific
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characteristics: an experimental chamber with a grid for electrical stimulation which is a mild
footshock (Unconditioned Stimulus, US) and with an ventilation system bringing and
removing the odor (Conditioned Stimulus, CS); besides, this experimental chamber has to be
placed in a soundproof box in which we can position cameras to record the behavior of the
animal. Material for microdialysis (perfusion pump) and collection have to be placed outside
the box for not disturbing the animal in learning. In our set-up, the height of the box reaches
almost one meter (Figure 3). The dead volume can be greatly minimized by using capillary
tubings with sub-50 um inner diameters, as previously demonstrated by our group [56]. By
using a 40-um inner diameter, we have optimized the microdialysis set-up for odor condi-
tioning by adapting methods that our group previously used for an accurate monitoring of 30-
s pharmacologically-induced increases [73] or 20-s behaviourally-induced variations [56] in
extracellular levels of amino acids neurotransmitters. We showed that the experimental
determination of the dead time is necessary in order to adapt each set-up to the sampling rate
required (Figure 4). The final length of the outlet tubing is 120 cm with a dead time of 1 min
30 at 2uL/min as sampling rate and the final sampling resolution is 1 min. The time scale in
the figures corresponds to the real time of collection of the fractions. Administration of odor
was timed to take into account the outlet dead time of the dialysate system.
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Figure 3. Experimental set-up for both microdialysis sampling and dialysates derivatization during the acquisition of
odor fear conditioning. The dual probe-implanted animal is placed in an experimental chamber for odor (conditional
stimulus) and shock (unconditional stimulus) deliveries, required in the learning procedure. This chamber is sound-
proof in order to prevent external noise to interfere with the animal’s behaviour. Microdialysis and derivatization are
performed simultaneously using one pump per brain area and four syringes delivering artificial cerebrospinal fluid
(aCSF) in the inlet of the probe or reagents (NDA as derivatization agent in presence of cyanide ions at pH 8.7 and
internal standard for better quantification by capillary electrophoresis with laser-induced fluorescence detection) to
tag the neurotransmitters at the outlet of the probe.
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Another analytical constraint is to tag the sample in order to detect the amino acids collected
during the dialysis experiment. As glutamate and GABA are not fluorescent, we employed a
validated home-made on-line system able to deliver the derivatization reagents directly in the
collection tube [56], allowing to derivatize the dialysate while dialyzing, without sample loss,
noticeable dilution or contamination and without increasing the dead volume of the probe.
Thus, the collection tube is not only the micro-reactor of derivatization, but also the injection
tube for capillary electrophoresis analysis (Figure 3).
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Figure 4. Example of determination of the dead time of an 85-cm outlet home-made probe perfused at 2uL/min by
plunging the probe into a known concentration of glutamate at t=0s. The dead time is determined as the time when
50% of the maximal response is reached using a sigmoid curve fitting the 30-s glutamate monitoring (up). By varying
the length of the outlet tubing of customized probes (n=3), the dead time of probes can be interpolated and the final
length of outlet tubing (here, 120 cm for a dead time of 1 min 30 s) can be chosen according to the height of our
experimental set-up and the 1-min sampling rate (bottom). As a consequence, administration of odor was timed to
take into account the outlet dead volume of the dialysate system.
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Figure 5 presents an example of typical electropherogramm obtained from 1 minute sampling
rate of brain microdialysate in freely-moving rat during the acquisition of fear conditioning.

Note that the concentrations for GABA and glutamate are similar in PPC or in BLA.

Posterior Basolateral
Piriform Amvadala
Cortex v
Glu
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Figure 5. Typical electropherograms from microdialysates obtained in posterior piriform cortex and basolateral amyg-
dala on the same freely-moving Long-Evans rat. Samples were collected every minute at 2uL/min and derivatized on-
line as described in Figure 3 of this chapter. Adapted from [110].
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3. Neurochemistry of odor fear conditioning

3.1. Interactions between amygdala and piriform cortex in odor fear conditioning

The odor fear conditioning paradigm consisted of six 20-s odor/ 2-s shock associations
presented with an interval of 4 minutes between each pairing. In the amygdala, the first odor-
shock association is accompanied by a significant but transient +40%-increase of glutamate
release. During the next trials, the concentrations returned to the baseline levels or slightly
below. In contrast, in piriform cortex, each odor-shock association is followed by a transient
+25%-increase in glutamate release. The comparison of the pattern of release observed in the
two structures has also shown that the increase in the amygdala during the first association
occurred 1-2 min before the first response in the piriform cortex (Figure 6).
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Figure 6. Comparison of glutamate concentration fluctuations in the amygdala and the piriform cortex during odor
fear acquisition session. Glutamate concentrations were measured throughout the session and expressed as a per-
centage of baseline calculated as the mean of concentration for the four points preceding the first pairing. Black ar-
rowheads above the x-axis symbolize trial occurrence. Light gray vertical bars indicate the timing of the 4-min intertrial
intervals. (*) Significant difference between the two structures (p < 0.05); (#) tendency toward significant difference (p
<0.09). Adapted from [66].

The profile of GABA variations during odor fear conditioning was similar in duration and
amplitude to that obtained for glutamate presented in Figure 6, i.e. with an enhancement of
GABA levels in the amygdala during the first pairing and increases of GABA concentrations
in piriform cortex 1-2 min after each pairing. As glutamate and GABA fluctuations were not
overall significantly different throughout the experiment, it can be suggested that GABA
increases could be induced by glutamate increases, as shown by [74, 75] in the prefrontal cortex.

The high temporal resolution microdialysis allowed us to highlight a differential dynamics of
neurotransmitters release in the piriform cortex and amygdala during odor fear acquisition.
Taken together, these results suggest that there is a temporal sequence of neurochemical events
in the amygdala and piriform cortex, a very precise dynamics of neurotransmitters during the
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early stages of the acquisition session, which could be involved in the initiation of plastic
changes supporting the formation of the memory.

3.2. Functional significance of neurochemical data

Glutamate collected from the BLA and PPC may have originated from both extrinsic and
intrinsic sources. Indeed, the BLA receives afferences from primary olfactory cortex [76-78]
and from other associative areas [19, 79], providing an extrinsic source of glutamate. Similarly,
PPC receives a strong glutamatergic input from the olfactory bulb as well as inputs from the
BLA, prefrontal cortex, and hippocampus [80-82]. In addition, both the BLA and PPC contain
glutamatergic pyramidal cells that send axon collaterals to neighboring cells, thus providing
an intrinsic source of glutamate [79, 83, 84]. Concerning GABA origin, in both BLA and PPC,
GABA is released by local inhibitory interneurons [79, 85].

While in vivo microdialysis is a useful method for monitoring the neurotransmitters present
in the brain extracellular fluid [86], many studies have questioned to what extent dialysate
glutamate concentration reflects the amount of glutamate released by the presynaptic neuron.
Indeed, due to the ubiquitous localization of its metabolism enzymes and transporters in all
brain cells and its paramount role in protein synthesis and general metabolism, numerous
works attempted to determine the origin of extracellular glutamate. If the proportion of
extracellular glutamate taken up by astrocytes is about 80-90% of the whole glutamate pool
[87], the part of the neuronal glutamate, i.e. released for the only neurotransmission purpose,
is still matter of debate, because glutamate may come from many sources of effluxes as
neuronal “classical” release [88], exchange via cysteine/glutamate transporters [89-92],
inversion of transporters [93] and glial release via exocytosis or non-exocytosis [94-96]. Former
methodological strategies used for monoamine neurotransmitters to impair the vesicular
neuronal release by lowering or removing calcium in aCSF or by blocking nerve impulse Na
*-dependent channels with tetrodotoxine (TTX) gave contradictory answers: some studies
reported decreases in basal level of glutamate in dialysate, which is in favour of the neuronal
origin of basal extracellular glutamate. In contrast, other studies described no change or even
increases under such experimental conditions [97]. Consequently, it was suggested that most
part of neurotransmitter glutamate released into synaptic cleft in basal conditions may be taken
up into surrounding glia and diffuses poorly to the dialysis probe. The same question can be
asked for extracellular GABA because its metabolism is tightly linked to glutamate. As for
glutamate, unsuccessful conclusions were also reported regarding the origin of dialysate
GABA in basal conditions [97]. However, increasing the microdialysis sampling rate had been
proposed in order to observe the rapid variations in glutamate extracellular level which are
expected to occur in neurophysiological events [73, 98]. Recent studies using high sampling
rate microdialysis showed that NMDA application [99] or electrical stimulation of the pre-
frontal cortex [100] increases dialysate glutamate concentrations in brain regions receiving
projections from this area and that the increase is suppressed or partly altered by TTX [99,
100]. These studies strongly suggest that the transient increase in dialysate glutamate detected
under these conditions really represents evoked neurotransmitter glutamate release [101].
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Extracellular (or dialysate) concentrations of glutamate and GABA may not always provide a
reliable index of their synaptic exocytotic release. Indeed, a strict compartment between intra-
synaptic and extra-synaptic was evidenced with poor spill-over from synaptic compartment
to extra-synaptic part [102, 103], mainly due to a strong glial uptake. So that, the changes in
extracellular concentrations of glutamate and GABA under specific pharmacological and
behavioural stimuli should not be only interpreted as a consequence of the activation of specific
neurochemical circuits, but as an expression of the activity of the neuron-astrocyte unit in
specific circuits of the brain. Several authors proposed that dialysate changes in glutamate and
GABA could be used as an index of volume transmission mediated actions of these two
neurotransmitters. This hypothesis is based firstly on the assumption that the activity of
neurons is functionally linked to the activity of astrocytes, which can release glutamate and
GABA to the extracellular space [94, 104]; secondly, on the existence of extrasynaptic glutamate
and GABA receptors with functional properties different from those of receptors located in
the synapse [105, 106]; and thirdly, on the experimental evidence reporting specific electro-
physiological and neurochemical effects of glutamate and GABA when their levels are
increased in the extracellular space [107]. Thus, glutamate and GABA, once released into the
extracellular compartment, can diffuse and have long-lasting effects modulating glutamatergic
and/or GABAergic neuron-astrocytic networks and interact with neurons containing other
neurotransmitters and located in the same areas of the brain. In conclusion, monitoring of
glutamate and GABA concentrations in the extracellular space using microdialysis may
provide an indirect index of amino acids synaptic neurotransmission while giving direct
indications of amino acids volume neurotransmission [101].

A few studies have specifically measured extracellular glutamate or GABA in brain structures
involved in fear conditioning, investigating the neurotransmitters changes in amygdala during
auditory fear learning. More precisely, these microdialysis studies have described a long-
lasting decrease in GABA during expression of conditioned fear [39] and a small increase in
glutamate during auditory fear conditioning [40]. However, these studies suffer from poor
(10-20 min) temporal resolution associated with traditional microdialysis. Only one study has
used high temporal resolution microdialysis to measured glutamate and GABA into the
amygdala during the acquisition of auditory fear conditioning [108] and suggests that the co-
variations of glutamate and GABA may be explained as a glutamate-induced increase in
GABA. This study also showed an increase in neurotransmitters levels in the amygdala only
for the first association after which the concentration returned to baseline levels. This last result
is in agreement with our microdialysis data for the amygdala in odor fear conditioning.
Unfortunately, microdialysis was not performed in the auditory cortex, thus precluding any
comparison with our own data on the piriform cortex. Nevertheless, there are some electro-
physiological data which show that the amygdala is activated before the auditory cortex in
auditory fear learning [9, 11]. These data are in accordance with our findings and confirm the
differential activation of the amygdala and sensory cortices within the acquisition session of
fear conditioning.
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Figure 7. Functional hypotheses on the interactions between the amygdala and the piriform cortex during the acquis-
ition of odor fear learning. An early transient response in the amygdala may allow fast signaling following the first CS-
US pairing. Projections from the amygdala to the piriform cortex may provide a pathway through which the amygdala
can modulate cortical processing of olfactory information and initiate the storage of the various attributes of the
learned odor. The piriform cortex might store certain aspects of the conditioning experience, including the learned
hedonic value of the CS odor.

Our microdialysis data led us to formulate the following working hypothesis (Figure 7).
During the first pairing, the amygdala glutamatergic transmission would allow the formation
of the memory of the CS-US association as it is the case for auditory fear conditioning. The
new idea brought by our data is that this could be initiated by a single trial, since no further
increase in glutamate was detected in the amygdala for the next pairings. In parallel, the
amygdala would trigger the first glutamate increase detected in the olfactory cortex. This
would be achieved through the involvement of a direct projection pathway between the
amygdala and the piriform cortex [82]. After that, the piriform cortex would progressively
build the memory of the different attributes of the learned odor across the next trials.

What are the strengths of our data? This work was aimed at studying the neurochemical inter-
action between the amygdala and the piriform cortex in odor fear conditioning. We described
a differential activation dynamics between the amygdala and the olfactory cortex within the
acquisition session. This dynamic reveals an early and transient involvement of the amygdala,
restricted to the first odor-shock association followed by the activation of the olfactory cortex
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during the next associations, which persists until the end of the acquisition session. Until now,
most studies questioning the role of the amygdala and sensory areas in fear conditioning have
used local lesions or inactivation before or after the acquisition session. Our technical approach
is one of the very few allowing online monitoring of neurochemical events occurring in parallel
in the amygdala and olfactory cortex, using a temporal resolution compatible with the
observation of very transient changes.

4. Conclusion and perspectives

The recent development of high sampling rate microdialysis coupled with high-performance
separative microtechniques able to handle sub-microliter sample allows monitoring rapid
changes in extracellular levels of amino acid neurotransmitters. Such a platform allows in vivo
investigating neurotransmission in freely-moving animals learning fear as in odor fear
conditioning. Using two microdialysis probes, we were able to study the neurochemical
interactions between two major brain areas involved in the acquisition and consolidation of
odor fear conditioning: the amygdala which role is crucial for the formation of fear memory
and the piriform cortex which could encode other aspects of the aversive event. Our data
suggest that projections from the amygdala to the piriform cortex might provide a pathway
via which the amygdala could modulate the cortical processing of olfactory information and
initiate the progressive storage of the different attributes of the learned odor in long-term
memory.
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