
Neurochemistry
Edited by Thomas Heinbockel

Edited by Thomas Heinbockel

Neurochemistry is a flourishing academic field that contributes to our understanding 
of molecular, cellular and medical neurobiology.  As a scientific discipline, 

neurochemistry studies the role of chemicals that build the nervous system, it explores 
the function of neurons and glial cells in health and disease, it discovers aspects of 
cell metabolism and neurotransmission, and it reveals how degenerative processes 
are at work in the nervous system.  Accordingly, this book contains chapters from a 

variety of topics that fall into the following broad sections: I. Neural Membranes and 
Intracellular Signaling, II. Neural Processing and Intercellular Signaling, III. Growth, 

Development and Differentiation, and IV. Neurodegenerative Diseases.  The book 
presents comprehensive reviews in these different areas written by experts in their 

respective fields.  Neurodegeneration and neuronal diseases are featured prominently 
and are a recurring theme throughout most chapters.  This book will be a most 

valuable resource for neurochemists and other scientists alike.  In addition, it will 
contribute to the training of current and future neurochemists and, hopefully, will 

lead us on the path to curing some of the biggest challenges in human health.

Photo by Svisio / iStock

ISBN 978-953-51-1237-2

N
eurochem

istry



NEUROCHEMISTRY

Edited by Thomas Heinbockel



NEUROCHEMISTRY

Edited by Thomas Heinbockel



Neurochemistry
http://dx.doi.org/10.5772/57074
Edited by Thomas Heinbockel

Contributors

Grant Hatch, Donald Miller, Michael Pogorzelec, Hieu Nguyen, Ngoc On, Siddhartha Dalvi, Victoria Campos-Peña, 
Marco Meraz-Ríos, Rocío Gómez, Victor Tsetlin, Igor Kasheverov, Carlos Gutierrez-Merino, Christian Harteneck, 
Kristina Leuner, Evgeniya Pushchina, Anatoly Varaksin, Dmitry Obukhov, Chloé Hegoburu, Luc Denoroy, Anne-Marie 
Mouly, Sandrine Parrot, Jose Luna-Muñoz, Alejandra Martinez-Maldonado, Miguel Angel Ontiveros-Torres, Isidre 
Ferrer, Benjamín Florán-Garduño, Maria del Carmen Cardenas-Aguayo, Raul Mena-López, Maria del Carmen Silva-
Lucero, Maribel Cortes-Ortiz, Berenice Jimenez-Ramos, Laura Gomez-Virgilio, Gerardo Ramirez-Rodriguez, Eduardo 
Vera-Arroyo, Rosana Sofia Fiorentino-Perez, Ubaldo Garcia, Agnieszka Jankowska-Kulawy, Anna Ronowska, Andrzej 
Szutowicz, Elena Zakharova, Alexander Dudchenko, Thomas Heinbockel

© The Editor(s) and the Author(s) 2014
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced, 
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.  
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department 
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0 
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided 
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not 
be included under the Creative Commons license. In such cases users will need to obtain permission from the license 
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be 
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those 
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published 
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the 
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2014 by INTECH d.o.o.
eBook (PDF) Published by  IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Neurochemistry
Edited by Thomas Heinbockel

p. cm.

ISBN 978-953-51-1237-2

eBook (PDF) ISBN 978-953-51-5390-0



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

4,200+ 
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International  authors and editors

125M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

 





Meet the editor

Thomas Heinbockel, Ph.D., is currently Associate Profes-
sor and Director of Graduate Studies in the Department 
of Anatomy, Howard University College of Medicine, 
Washington, DC, USA.  His laboratory engages in 
multidisciplinary research to elucidate organizational 
principles of neural systems in the brain, specifically 
the limbic and olfactory system.  His research has been 

directed at understanding brain mechanisms of information processing 
and their relation to neurological and neuropsychiatric disorders.  Dr. 
Heinbockel studied biology at the Philipps-University, Marburg, Ger-
many.  His studies of the brain started during his M.S. thesis work at the 
Max-Planck-Institute for Behavioral Physiology, Starnberg/Seewiesen, 
Germany.  Subsequently, he completed a Ph.D. in Neuroscience at the 
University of Arizona, Tucson, Arizona, USA.  After graduating, he held a 
Research Associate position at the Institute of Physiology, Otto-von-Guer-
icke-University School of Medicine, Magdeburg, Germany.  Prior to his 
arrival at Howard University, Dr. Heinbockel held joint research faculty 
appointments in the Department of Anatomy and Neurobiology, and the 
Department of Physiology at the University of Maryland School of Medi-
cine, Baltimore, Maryland, USA.



Contents

Preface VII

Section 1 Neural Membranes and Intracellular Signaling    1

Chapter 1 The Blood Brain Barrier — Regulation of Fatty Acid and Drug
Transport   3
Siddhartha Dalvi, Ngoc On, Hieu Nguyen, Michael Pogorzelec,
Donald W. Miller and Grant M. Hatch

Chapter 2 TRP Channels in Neuronal and Glial Signal Transduction   37
Christian Harteneck and Kristina Leuner

Chapter 3 Cytosolic Calcium Homeostasis in Neurons — Control Systems,
Modulation by Reactive Oxygen and Nitrogen Species, and
Space and Time Fluctuations   59
Carlos Gutierrez-Merino, Dorinda Marques-da-Silva, Sofia
Fortalezas and Alejandro K. Samhan-Arias

Section 2 Neural Processing and Intercellular Signaling    111

Chapter 4 Peptide and Protein Neurotoxin Toolbox in Research on
Nicotinic Acetylcholine Receptors   113
Victor Tsetlin and Igor Kasheverov

Chapter 5 Synaptic Soluble and Membrane-Bound Choline
Acetyltransferase as a Marker of Cholinergic Function In Vitro
and In Vivo   143
E.I. Zakharova and A.M. Dudchenko

Chapter 6 Neurochemical Communication: The Case of
Endocannabinoids   179
Thomas Heinbockel



Contents

Preface XI

Section 1 Neural Membranes and Intracellular Signaling    1

Chapter 1 The Blood Brain Barrier — Regulation of Fatty Acid and Drug
Transport   3
Siddhartha Dalvi, Ngoc On, Hieu Nguyen, Michael Pogorzelec,
Donald W. Miller and Grant M. Hatch

Chapter 2 TRP Channels in Neuronal and Glial Signal Transduction   37
Christian Harteneck and Kristina Leuner

Chapter 3 Cytosolic Calcium Homeostasis in Neurons — Control Systems,
Modulation by Reactive Oxygen and Nitrogen Species, and
Space and Time Fluctuations   59
Carlos Gutierrez-Merino, Dorinda Marques-da-Silva, Sofia
Fortalezas and Alejandro K. Samhan-Arias

Section 2 Neural Processing and Intercellular Signaling    111

Chapter 4 Peptide and Protein Neurotoxin Toolbox in Research on
Nicotinic Acetylcholine Receptors   113
Victor Tsetlin and Igor Kasheverov

Chapter 5 Synaptic Soluble and Membrane-Bound Choline
Acetyltransferase as a Marker of Cholinergic Function In Vitro
and In Vivo   143
E.I. Zakharova and A.M. Dudchenko

Chapter 6 Neurochemical Communication: The Case of
Endocannabinoids   179
Thomas Heinbockel



Chapter 7 High Temporal Resolution Brain  Microdialysis as a Tool to
Investigate  the Dynamics of Interactions Between  Olfactory
Cortex and Amygdala in  Odor Fear Conditioning   199
Chloé Hegoburu, Luc Denoroy, Anne-Marie Mouly and Sandrine
Parrot

Section 3 Growth, Development and Differentiation    223

Chapter 8 Participation of Neurochemical Signaling in Adult
Neurogenesis and Differentiation   225
E.V. Pushchina, A.A. Varaksin and D.K. Obukhov

Chapter 9 Physiological Role of Amyloid Beta in Neural Cells: The Cellular
Trophic Activity   257
M. del C. Cárdenas-Aguayo, M. del C. Silva-Lucero, M. Cortes-Ortiz,
B. Jiménez-Ramos, L. Gómez-Virgilio, G. Ramírez-Rodríguez, E. Vera-
Arroyo, R. Fiorentino-Pérez, U. García, J. Luna-Muñoz and M.A.
Meraz-Ríos

Section 4 Neurodegenerative Diseases    283

Chapter 10 Alzheimer Disease: The Role of Aβ in the
Glutamatergic System   285
Victoria Campos-Peña and Marco Antonio Meraz-Ríos

Chapter 11 Genetics of Alzheimer´S Disease   317
Victoria Campos-Peña, Rocío Gómez and Marco Antonio Meraz
Ríos

Chapter 12 Accumulation of Abnormally Processed Tau Protein in
Neuronal Cells as a Biomarker for Dementia   355
J. Luna-Muñoz, A. Martínez-Maldonado, V. Ibarra-Bracamontes, M.
A. Ontiveros-Torres, I. Ferrer, B. Floran-Garduño, M. del C. Cárdenas-
Aguayo, R. Mena and M.A. Meraz Ríos

Chapter 13 Energy-Dependent Mechanisms of Cholinergic
Neurodegeneration   375
Agnieszka Jankowska-Kulawy, Anna Ronowska and Andrzej
Szutowicz

X Contents

Preface

Neurochemistry is a flourishing academic field that contributes to our understanding of mo‐
lecular, cellular and medical neurobiology. As a scientific discipline, neurochemistry studies
the role of chemicals that build the nervous system, explores the function of neurons and
glial cells in health and disease, discovers aspects of cell metabolism and neurotransmission,
and reveals how degenerative processes are at work in the nervous system. Accordingly,
this book contains chapters from a variety of topics that fall into the following broad sec‐
tions: I. Neural Membranes and Intracellular Signaling, II. Neural Processing and Intercellu‐
lar Signaling, III. Growth, Development and Differentiation, and IV. Neurodegenerative
Diseases. The book presents comprehensive reviews in these different areas written by ex‐
perts in their respective fields. Neurodegeneration and neuronal diseases are featured prom‐
inently and are a recurring theme throughout most chapters. This book will be a most
valuable resource for neurochemists and other scientists alike. In addition, it will contribute
to the training of current and future neurochemists and, hopefully, will lead us on the path
to curing some of the biggest challenges in human health.

Section One of the book, I. Neural Membranes and Intracellular Signaling, starts with a dis‐
cussion of the blood brain barrier by Dalvi et al. (chapter 1: ‘The Blood Brain Barrier: Regula‐
tion of Fatty acid and Drug Transport’) to introduce the reader to chemicals that enter the
brain. The chapter has a strong focus on tight junctions. Dalvi et al. describe the various
tight junction proteins and transport systems and provide a solid account of the role of fatty
acids in blood brain barrier permeability.

In chapter 2 (‘TRP Channels in Neuronal and Glial Signal Transduction’), Harteneck and
Leuner provide a comprehensive review of transient receptor potential (TRP) channels and
their relation to various neurological and psychiatric diseases. Many TRP channels are ex‐
pressed in the brain and contribute to neuronal and glial functions. The authors offer de‐
tailed accounts of the many channel variants and their functional roles in CNS physiology.

In chapter 3 (‘Cytosolic Calcium Homeostasis in Neurons: Control Systems, Modulation by
Reactive Oxygen and Nitrogen Species, and Space and Time Fluctuations’), Gutierrez-Meri‐
no et al. review the critical role of calcium in neuronal activity and function of the nervous
systems. The authors discuss cellular oxidative stress and metabolic deregulations in the
process of neuronal death. Calcium transport systems control cytosolic calcium homeostasis
within nanodomains of the neuronal plasma membrane associated with lipid rafts. The co-
localization of ROS/RNS enzyme sources within nanodomains is of particular relevance for
neurodegenerative insults and diseases.

In chapter 4, Section Two, II. Neural Processing and Intercellular Signaling, Tsetlin and Ka‐
sheverov (‘Peptide and Protein Neurotoxin Toolbox in Research on Nicotinic Acetylcholine
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Preface

Neurochemistry is a flourishing academic field that contributes to our understanding of mo‐
lecular, cellular and medical neurobiology. As a scientific discipline, neurochemistry studies
the role of chemicals that build the nervous system, explores the function of neurons and
glial cells in health and disease, discovers aspects of cell metabolism and neurotransmission,
and reveals how degenerative processes are at work in the nervous system. Accordingly,
this book contains chapters from a variety of topics that fall into the following broad sec‐
tions: I. Neural Membranes and Intracellular Signaling, II. Neural Processing and Intercellu‐
lar Signaling, III. Growth, Development and Differentiation, and IV. Neurodegenerative
Diseases. The book presents comprehensive reviews in these different areas written by ex‐
perts in their respective fields. Neurodegeneration and neuronal diseases are featured prom‐
inently and are a recurring theme throughout most chapters. This book will be a most
valuable resource for neurochemists and other scientists alike. In addition, it will contribute
to the training of current and future neurochemists and, hopefully, will lead us on the path
to curing some of the biggest challenges in human health.

Section One of the book, I. Neural Membranes and Intracellular Signaling, starts with a dis‐
cussion of the blood brain barrier by Dalvi et al. (chapter 1: ‘The Blood Brain Barrier: Regula‐
tion of Fatty acid and Drug Transport’) to introduce the reader to chemicals that enter the
brain. The chapter has a strong focus on tight junctions. Dalvi et al. describe the various
tight junction proteins and transport systems and provide a solid account of the role of fatty
acids in blood brain barrier permeability.

In chapter 2 (‘TRP Channels in Neuronal and Glial Signal Transduction’), Harteneck and
Leuner provide a comprehensive review of transient receptor potential (TRP) channels and
their relation to various neurological and psychiatric diseases. Many TRP channels are ex‐
pressed in the brain and contribute to neuronal and glial functions. The authors offer de‐
tailed accounts of the many channel variants and their functional roles in CNS physiology.

In chapter 3 (‘Cytosolic Calcium Homeostasis in Neurons: Control Systems, Modulation by
Reactive Oxygen and Nitrogen Species, and Space and Time Fluctuations’), Gutierrez-Meri‐
no et al. review the critical role of calcium in neuronal activity and function of the nervous
systems. The authors discuss cellular oxidative stress and metabolic deregulations in the
process of neuronal death. Calcium transport systems control cytosolic calcium homeostasis
within nanodomains of the neuronal plasma membrane associated with lipid rafts. The co-
localization of ROS/RNS enzyme sources within nanodomains is of particular relevance for
neurodegenerative insults and diseases.

In chapter 4, Section Two, II. Neural Processing and Intercellular Signaling, Tsetlin and Ka‐
sheverov (‘Peptide and Protein Neurotoxin Toolbox in Research on Nicotinic Acetylcholine



Receptors’) examine nicotinic acetylcholine receptors and the neurotoxins that helped re‐
searchers to identify their structure and function. The chapter takes the reader on a historical
journey of the discovery of the receptor and its various peptide and protein neurotoxins.

In chapter 5 (‘Synaptic Soluble and Membrane-Bound Choline Acetyltransferase as a Marker
of Cholinergic Function in Vitro and in Vivo‘), Zakharova and Dudchenko address the syn‐
apse as a unique, most dynamic and labile structure and discuss the use of synaptosomes to
study neural transmission, specifically at cholinergic synapses. The authors explore the
brain cholinergic system because of its role in cognitive, attention and motor functions as
well as dysfunctions related to several neurological disorders.

Chapter 6 by Heinbockel (‘Neurochemical Communication: The Case of Endocannabinoids’)
reviews the progress made in our understanding of a relatively novel neuronal signaling
system, the endocannabinoid system which comprises endogenously produced cannabi‐
noids and their specific receptors, cannabinoid receptors. This signaling system plays a criti‐
cal role in neuronal communication in many brain areas and has been shown to crosstalk
with other neurotransmitter system.

In chapter 7 (‘High Temporal Resolution Brain Microdialysis as a Tool to Investigate the Dy‐
namics of Interactions Between Olfactory Cortex and Amygdala in Odor Fear Condition‐
ing’), Hegoboru et al. report how a specific experimental tool, in vivo microdialysis of major
amino acid neurotransmitters, allows studying the interaction of two brain areas in a behav‐
ioral context.

Section Three, III. Growth, Development and Differentiation, houses two chapters. Chapter
8 by Pushchina et al. (‘Participation of Neurochemical Signaling in Adult Neurogenesis and
Differentiation’) explores the organization and relationships of signal transduction systems
that produce classic neurotransmitters or gaseous transmitters in the brain of fish and evalu‐
ates their participation in the processes of the postembryonic morphogenesis the CNS.

For quite some time, amyloid plaques in the body have been accepted as a cause of the neu‐
rodegeneration observed in Alzheimer’s disease based on the hypothesis that the amyloid
beta peptide is a toxic factor that impairs neuronal function and leads to cell death, see Sec‐
tion IV. In chapter 9 (‘Physiological Role of Amyloid Beta in Neural Cells: The Cellular Tro‐
phic Activity’), Cárdenas-Aguayo et al. challenge this hypothesis by reviewing the
physiological roles of amyloid beta and suggest that amyloid beta might even help to en‐
hance synaptic plasticity and memory at appropriate concentration levels.

The last section, Section IV, is dedicated to Neurodegenerative Diseases. In chapter 10 (‘Alz‐
heimer Disease: the Role of Aβ in the Glutamatergic System‘), Campos-Peña and Meraz-
Ríos review the neurodegenerative process that occurs in Alzheimer’s disease. The authors
discuss the role of the glutamatergic system and the use of safe disease-modifying drugs in
the treatment of Alzheimer’s disease.

In chapter 11, the authors (Campos-Peña, Gómez, Meraz-Ríos) continue with a discussion of
the ‘Genetics of Alzheimer’s Disease’. They review the evidence for a genetic basis of fami‐
lial Alzheimer’s disease, also known as early onset Alzheimer’s disease which is associated
with mutations in different genes. In contrast, sporadic Alzheimer’s disease or late onset
Alzheimer’s disease is much more common and the cause for it might be a combination of
lifestyle, environmental and some genetic factors which could favor the development of the
disease.

XII Preface

In chapter 12 (‘Accumulation of Abnormally Processed Tau Protein in Neuronal Cells as a
Biomarker for Dementia’), Luna-Muñoz et al. inform the reader about the problem of early
detection and better treatment of neurodegenerative disorders such as Alzheimer’s and Par‐
kinson’s disease. They discuss the development of better therapeutic tools that are able to
modify the disease progression based on reliable biomarkers to detect the disease at early
stages to prevent the irreversible neuronal degeneration.

In the final chapter of the book (ch. 13, ‘Energy–Dependent Mechanisms of Cholinergic Neu‐
rodegeneration‘), Jankowska-Kulawy et al. point out that a characteristic feature of some
neurodegenerative diseases is the preferential loss of cholinergic neurons which correlate
with the degree of energy metabolism inhibition. Even though neurons constitute only 10%
of all brain cells, they produce and consume about 80% of its energy. The authors raise the
critical issue that effective functioning of neurons is dependent on the continuous supply of
glucose and oxygen. The authors discuss energy homeostasis of the brain as a complex proc‐
ess because of the high sensitivity of neurons to metabolic stress, the isolation of the brain
due to the existence of the blood brain barrier, the high energy requirements of the brain,
and the existence of limited glycogen stores as a dynamic source of energy. Despite these
constraints, dysfunction of mitochondria, the cellular source of energy, is the first step in
neurodegeneration.

I am grateful to InTech – Open Access Publisher for initiating this book project and for ask‐
ing me to serve as its editor. Many thanks go to Iva Lipović at InTech for guiding me
through the publication process and for moving the book ahead in a timely fashion. Thanks
are due to all contributors of this book for taking the time to first write a chapter proposal,
compose their chapter and, lastly, make my requested revisions to it. Hopefully, all contrib‐
utors will continue their neurochemistry research with many intellectual challenges and ex‐
citing new directions. I would like to thank my wife Dr. Vonnie D.C. Shields, Professor,
Towson University, Towson, MD and our son Torben Heinbockel for allowing me to spend
time on this book project during the past year. Finally, I am grateful to my parents Erich and
Renate Heinbockel for their support over many years.

Thomas Heinbockel, Ph.D.
Associate Professor and Director of Graduate Studies

Department of Anatomy
Howard University College of Medicine

Washington, DC, USA
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Chapter 1

The Blood Brain Barrier — Regulation of Fatty Acid and
Drug Transport

Siddhartha Dalvi, Ngoc On, Hieu Nguyen,
Michael Pogorzelec, Donald W. Miller and
Grant M. Hatch

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/57604

1. Introduction

1.1. The blood brain barrier

The blood brain barrier (BBB) is a selectively permeable cellular boundary between the brain
and the peripheral circulation. The principal component of the BBB is the capillary or micro‐
vessel endothelial cell (Figure 1). The endothelial cells in the brain capillaries differ from those
in the peripheral vasculature in several key features:

1. Presence of tight junctions (TJ) that limit the paracellular passage of macromolecules.

2. Restricted rate of fluid-phase endocytosis that limits the transcellular passage of macro‐
molecules [1]

3. Presence of specific transporter and carrier molecules [2]

4. Lack of fenestrations [3]

5. Increased mitochondrial content [3]

Thus, the endothelial cells of the BBB are less “leaky” than those of the peripheral vessels.
However, it has been shown that if the endothelial cells of the brain capillaries are removed
from their natural environment and allowed to vascularize the peripheral tissue, they become
more leaky [1]. In contrast, the endothelial cells from the periphery form tight junctions when
allowed to vascularize the brain parenchyma. Morphologically, the tight junctions of the BBB

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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However, it has been shown that if the endothelial cells of the brain capillaries are removed
from their natural environment and allowed to vascularize the peripheral tissue, they become
more leaky [1]. In contrast, the endothelial cells from the periphery form tight junctions when
allowed to vascularize the brain parenchyma. Morphologically, the tight junctions of the BBB
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resemble the tight junctions between epithelial cells rather than those between peripheral
vascular endothelial cells [4].

The unique tight junctions of the BBB are responsible for producing very high transendothelial
electrical resistance (TEER) of 1500 – 2000 Ωcm2 [2,5,6]. Though the microvessel endothelial
cells play a primary role in the formation of the BBB, several other cells are equally important
in maintaining the integrity of the BBB. These cells, namely, the astrocytes, pericytes, neurons
and other glial cells are said to form a “neurovascular unit” [7]. Integrity of the BBB is of utmost
importance in maintaining the homeostasis of the brain microenvironment. Disruption of the
BBB is seen in various states of inflammation (multiple sclerosis), neoplasia, infections
(meningitis, encephalitis), trauma and Alzheimer disease [8,9]. It would be highly desirable to
develop therapeutic strategies to reverse this disruption and tighten the BBB. At the same time,
a transient opening of the BBB would be advantageous for delivery of drugs into the brain in
conditions like epilepsy or Parkinson disease [2].

Figure 1. Neurovascular Unit of the blood brain barrier consists of the endothelial cells (pink) surrounded by base‐
ment membrane (gray), pericytes (yellow) and astrocyte foot processes. The tight junctions (black lines) formed be‐
tween two endothelial cells restrict the paracellular diffusion of compounds.

Neurochemistry4

1.2. Functions of the BBB

The BBB is responsible for maintaining the appropriate ionic composition of the interstitial
fluid of the brain that is required for optimum functioning of the neurons. To achieve this, the
BBB functions as a transport barrier by facilitating the uptake of the required nutrients, while
preventing the uptake of, or actively effluxing certain other molecules or toxic by-products of
metabolism [10] The BBB also functions as a metabolic barrier by virtue of possessing intracel‐
lular and extracellular enzymes. For example, extracellular enzymes such as peptidases and
nucleotidases break down peptides and ATP, respectively. Intracellular enzymes like cyto‐
chrome P450 (CYP450), primarily CYP1A and CYP2B degrade noxious substances and prevent
their entry into the brain parenchyma [10].

1.3. Role of astrocytes in the BBB

It is now known that the astrocytes play a key role in the conditioning and development of the
brain microvessel endothelial cells (BMEC). Astrocytes are one of the glial cells of the central
nervous system (CNS) that play several important roles in the structure and function of the
CNS. They are intimately associated with the BMEC such that their foot processes ensheath
99% of the external surface of the BMEC [11]. Astrocytes have been shown to alter the
properties of cocultured brain endothelial cells in the following ways [11,12].

1. Increase in barrier-related marker enzyme activities, such as that of γ-glutamyl transpep‐
tidase (GGT) and alkaline phosphatase.

2. Enhanced expression of a glucose transporter.

3. Elevation of trans-endothelial electrical resistance (TEER).

4. Tightening of the BBB as seen by decreased paracellular permeability of sucrose.

5. Increase in tight junction number, length and complexity.

It has also been shown that BMEC monolayers are less leaky if grown in the presence of
astrocyte-conditioned medium (ACM) [1,11]. The precise molecular nature of the astrocyte-
derived factors that is responsible for the tightness of the BBB have yet to be unequivocally
elucidated. However, several factors have been postulated to play a role including glial cell-
derived neurotrophic factor (GDNF), transforming growth factor-beta (TGF-β), and src-
suppressed C-kinase substrate (SSeCKS) that leads to increased angiopoietin-1 secretion. The
BMEC themselves are known to secrete factors that help in the maintenance of astrocyte health.
One such putative factor is the leukemia-inhibitory factor (LIF), a cytokine known to be
involved in astrocyte differentiation [11].

1.4. Role of pericytes in the BBB

The pericytes are specialized cells of mesenchymal lineage that have multiple organ-specific
roles. For example, they are present in the kidney as mesangial cells, in the liver as perisinu‐
soidal stellate cells and in the bone as osteoblasts [13,14]. The pericytes in the central nervous
system are closely associated with the BMEC and play an important role in the maintenance
of the BBB. Their functions include [14].
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1. Cerebrovascular autoregulation and blood flow distribution

2. Differentiation of the BBB

3. Formation and maintenance of the tight junctions of the BBB.

4. Initiation of the extrinsic (tissue factor) pathway of blood coagulation following cerebro‐
vascular injury

5. Brain angiogenesis via secretion of angiopoietin-1

6. Phagocytic and scavenging (macrophage-like) functions

7. Production of immunoregulatory cytokines like IL-1β, IL-6 and GM-CSF

8. Regulation of leukocyte transmigration, antigen presentation and T-cell activation.

2. Molecular components of the tight junctions

The tight junctions consist of both membrane proteins as well as cytoplasmic proteins [15]
(Figure 2). The integral membrane proteins are Claudins, Occludin and Junctional adhesion
molecules (JAM). There are also several cytoplasmic accessory proteins that form a plaque and
function as adapter proteins to link the membrane proteins to the actin cytoskeleton of the cell
[16,17]. These include Zonula occludens proteins (ZO-1, ZO-2, ZO-3), Cingulin, AF-6, 7H6
antigen and Symplekin. These tight junctional complexes are not static structures but rather
very dynamic entities that can “bend without breaking”, thereby maintaining structural
integrity [8].

2.1. Claudins

The  claudins  are  a  large  family  of  transmembrane  phosphoproteins  [15].  Twenty-four
members have been characterized so far,  claudins 1-24 [18,19].  Of these,  claudins 1,  3,  5
and 12  have  been  shown to  form the  tight  junctions  of  the  BBB [9,17,20,21].  Claudin-5
appears  to  be  specific  to  the  tight  junctions  of  the  endothelial  cells  and  is  called  the
“endothelial  claudin” [17].  Each claudin molecule has 4 transmembrane domains.  The
claudin on one cell binds homotypically to the claudin on the adjacent cell to form the seal
of  the  tight  junction.  The  claudins,  along  with  occludin  and  the  JAMs,  form  the  tight
Junctional strands that keep the cells together and prevent paracellular flux of macromole‐
cules from the apical to the basolateral side of polarized cells like BMEC [18]. The cytoplas‐
mic carboxy terminal of the claudins binds to the cytoplasmic ZO proteins [20]. Claudin-1
is  an  integral  component  of  the  tight  junctions  and  its  loss  is  associated  with  certain
pathologic conditions like tumours, strokes and inflammatory diseases [21].

2.2. Occludin

Occludin is  a  65-kDa transmembrane phosphoprotein  and is  distinct  from the  claudins.
However, its subcellular localization parallels that of claudins and, like the claudins, it has
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four  transmembrane  domains.  The  expression  of  occludin  is  higher  in  the  adult  BMEC
compared to the peripheral endothelial cells. However, it is not expressed in the fetal or
newborn human brain. Occludin plays an important structural, as well as a functional, role
in  the  regulation  of  BBB permeability.  As  is  the  case  with  several  other  tight  junction-
associated  proteins,  phosphorylation  or  dephosphorylation  of  serine,  threonine  or  tyro‐
sine residues on the occludin molecule is crucial for its proper functioning [17,18,22,23]. For
example, phosphorylation of occludin at serine and tyrosine residues correlates with tight
junction assembly or tightening [8].

Occludin and the claudins interact intricately on the BMEC membrane. Together, they form
channels that tightly regulate the paracellular flow of ions and other hydrophilic molecules.
Thus, they are both essential in the formation, maintenance and regulation of the BBB [16,18].

2.3. Junctional Adhesion Molecules (JAM)

These molecules play an important role in the regulation of tight junction permeability in
endothelial and epithelial cells [24]. These glycoproteins are members of the immunoglobulin
superfamily of proteins. Three different JAMs have been characterized in humans, JAM-1,

Figure 2. Schematic representation of proteins that are involved in the formation of the tight junction and adherens
junctions in brain microvessel endothelial cells.
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JAM-2 and JAM-3, also referred to as JAM-A, JAM-B and JAM-C, respectively. Besides
endothelial and epithelial cells, these molecules are also found on the surface of erythrocytes,
leukocytes and platelets and are thought to contribute to various processes like leukocyte
migration, platelet activation, angiogenesis and binding of reovirus [25]. The JAMs have short
cytoplasmic tails that interact with cytoplasmic accessory proteins like ZO-1 and may require
activation by phosphorylation, mediated by certain atypical protein kinases.

2.4. Cytoplasmic accessory proteins

Several cytoplasmic proteins appear to be essential components of the tight junctions. Among
them, the zonula occludens proteins (ZO-1, ZO-2, ZO-3) play an important role. These 3
proteins have a molecular mass of 220, 160 and 130 kDa, respectively. They belong to a family
of proteins called MAGUK (membrane-associated guanylate kinase-like protein) and form the
submembranous plaque of the tight junction [2,15]. They are structurally complex proteins
with several domains that make direct contact with claudins, occludin and JAM on one side
and the actin cytoskeleton on the other [15]. Cingulin is a double-stranded myosin-like protein
that serves as scaffolding and links the TJ accessory proteins with the cytoskeleton [8]. Actin,
the cytoskeletal protein, plays a central role in the maintenance of the TJ. Actin-degrading
macromolecules, such as cytochalasin-D, phalloidin and certain cytokines lead to disruption
of the actin cytoskeleton and hence, of the tight junctions [8].

The tight junctional proteins can be modulated by several intracellular processes that involve
calcium-signaling, phosphorylation, G-proteins, proteases and by TNF-α [4,8]. The tight
junctional complexes also help localize the proteins and lipids of the apical and basolateral cell
membranes in their respective compartments and prevent free mixing of these cell membrane
macromolecules between the two domains. Thus, the BMEC owe much of their polarity to the
TJ complexes [2,26].

3. Regulation of BBB permeability

Various factors play a role in regulating the permeability of the BBB as follows [2]:

1. Post-translational modifications of the TJ proteins. For example, phosphorylation and
dephosphorylation mediated by protein kinases and phosphatases, respectively.

2. Alteration of the actin cytoskeleton.

3. Proteolytic degradation of certain TJ components like occludin, mediated by metallopro‐
teinases.

4. In vitro models to study the BBB

In vitro models of the BBB have proven very effective to study the transport of endogenous
macromolecules like fatty acids across the BMEC. They have also been used extensively in

Neurochemistry8

pharmaceutical research to study the passage of therapeutic molecules across the BMEC [5-7].
Several studies have shown that the BMEC lose many of their special properties when removed
from their natural environment and show “dedifferentiation” behaviour. Thus, one potential
limitation of in vitro BBB models is that the BMEC may not behave as site-specific specialized
endothelial cells in vitro, but rather as common peripheral endothelial cells [7]. In spite of this
shortcoming, several successful in vitro models of the BBB have been described [27]. Many of
these have used human, bovine, and porcine or rat endothelial cells:

1. Alone [5,6,28-30], or

2. in combination with astrocyte conditioned medium supplemented with agents that
elevate intracellular cAMP [1], or

3. Co-culture of endothelial cells on one side of a filter, with astrocytes on the other [31].

5. FA transport across the BBB and effects of FA on BBB permeability

Fatty acids (FA) are key components of membranes and exhibit many biological functions in
a variety of tissues, including the key energy source for mitochondrial β-oxidation [32,33].
Cells acquire fatty acids through de novo synthesis, hydrolysis of triglycerides (TG) or uptake
from exogenous sources [33]. Minimal amount of FA are derived from TG hydrolysis and most
cells are dependent upon fatty acid uptake from the peripheral blood [32,34]. FA from the diet
are absorbed by enterocytes in the small intestine and packaged into chylomicrons as TG. The
liver also produces very low density lipoprotein (VLDL), a rich source of endogenously
generated TG. Circulating chylomicrons and VLDL particles are hydrolyzed by lipoprotein
lipase in the capillary lumen of tissues and the released FA from these lipoproteins may be
taken up by tissues in the body [35]. FA that enter into cells are then esterified and stored as
TG or transported to the mitochondria for β-oxidation. The importance of FA for the devel‐
oping and adult brain has been recently reviewed [6]. FA transport from blood into paren‐
chymal neurons is much more difficult than other cells since the tight junctions of the BBB
severely restrict passage into the brain. FA must first move via transcellular transport across
both the luminal (apical) and abluminal (basolateral) membranes of the endothelial cells and
then across the plasma membrane of the neural cells [36-38].

The mechanism of FA transport into the brain remains controversial. Several studies support
the notion that FA can move across membranes by diffusion [39,40]. Alternatively, others
studies indicate that FA may enter into cells via specific protein-mediated transport [32,41,42].
In the diffusion model, once bound to the outer membrane leaflet, they quickly reach ionization
equilibrium and the non-ionized form of fatty acids move across the membrane more rapidly
than the ionized form [43]. The main problem with the FA diffusion model has always been
whether diffusion is rapid enough to supply cells, which have a high long-chain FA metabolic
requirement with sufficient amount of FA for β-oxidation [44]. In the protein-mediated
transport model selective transport of FA occurs via specific protein transporters found on the
cell membrane [33,41,45-47]. The mechanism of FA transport into the brain and the involve‐
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ment of FA protein transporters has been reviewed [6]. We recently showed that the transport
of various FA across confluent layers of HBMEC was, in part, mediated by fatty acid transport
proteins (FATPs) [5,6]. Knock down of FATP-1 and CD36 resulted in reduced FA transport. In
addition, transport appeared to be dependent upon fatty acyl chain length and degree of
unsaturation.

The role of FA, such as arachidonic acid (AA), on BBB permeability is well documented and
controversial. Studies have indicated that a rapid influx of AA into the brain occurs upon
plasma infusion with AA [48,49]. In addition, a permeability-enhancing and neurotoxic effect
of AA has been observed [50-52]. AA is a precursor for the formation of various bioactive
molecules including prostaglandins, such as PGE2, and leukotrienes. Several studies have
indicated that the increase in BBB permeability is correlated with the formation of PGE2 [29,30,
53-56]. The prostaglandin EP2 receptor was shown to be responsible for mediating the
neuroinflammatory and neurodegenerative effects of PGE2 in a mouse model of status
epilepticus [57]. The permeability increase caused by AA in pial microvessels of rats was
effectively blocked by a combination of indomethacin (COX inhibitor) and nordihyroguaria‐
retic acid (LOX inhibitor) but not singly by either agent [58]. In that same study, AA-mediated
permeability increase was blocked by superoxide dismutase and catalase. These authors
concluded that free radicals generated by either COX or LOX pathways were responsible for
the permeability response to AA. In a mouse model of diabetic retinopathy 12-HETE and 15-
HETE, products of the lipoxygenase pathway, were shown to be responsible for increasing the
permeability of retinal endothelial cell barrier via an NADPH oxidase-dependent mechanism
[59]. Interestingly, AA inhibited the cytokine-induced up-regulation of several genes involved
in endothelial cell inflammation [60].

However, other studies have suggested that AA metabolites, such as PGE2, have a protective
role in the microvessels of the CNS and that PGE2 prevents permeability increases. For
example, the permeability increase caused by bradykinin was prevented or attenuated by
exogenously added PGE2 and iloprost, a prostacyclin analog [61]. In that study, COX-inhibitor
drugs potentiated the permeability increases caused by bradykinin, thus suggesting an
inhibitory role of PGE2 in increasing endothelial cell permeability. In addition, PGE2, acting
via EP4 receptors, inhibited the increase in BBB permeability in a mouse model of experimental
autoimmune encephalomyelitis [62]. Moreover, PGE2, acting via EP2 receptors, has neuropro‐
tective properties and limits ischemic damage in mice stroke models [63]. It has been postulated
in these studies [61,62] that engagement of EP2 and EP4 receptors by PGE2 leads to an increase
in cAMP levels. This cAMP accumulation has been shown to potentiate cadherin-mediated
cell-cell contact and enhance endothelial barrier function. Thus, PGE2 may promote BBB
integrity via direct action on endothelial cells [62].

Several studies have demonstrated that microvessel endothelial cells from various organs have
the capacity to produce a range of eicosanoids, notably, PGE2, PGI2 and PGF2α. In most of these
studies the endothelial cells were stimulated with the calcium ionophore A23187 in addition
to exogenously added AA [64-66]. However, in one study endothelial cells exposed to plasma
from preeclamptic women showed increased production of prostaglandins [67]. In addition,
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bovine brain microvessel endothelial cells (BBMEC) exposed to TNF-αreleased large amounts
of PGE2 over a 12-hour period [29].

Previous work has shown that docosahexanoic acid (DHA) is converted to its vasodilator
metabolite, 17S-HDoHE in endothelial cells [68]. DHA is a precursor in the formation of several
bioactive molecules in human blood cells and in glial cells [69]. However, in those experiments,
the cells were exposed to stimulants like zymosan A or the calcium ionophore, A23187 to
facilitate the release of DHA metabolites. These metabolites have been shown to have several
biological effects like inhibition of inflammation and platelet aggregation, mediation of
vasodilation, anti-arrhythmic effects and lowering of triglyceride levels [70].

6. Drug transport across the BBB

The tight junction complex that connects brain microvascular endothelial cells in the BBB as
well as the epithelial cells of the choroid plexus that form the blood-cerebral spinal fluid barrier
(BCSFB) serve as a physical barrier preventing the paracellular diffusion of endogenous and
exogenous compounds. The presence of these tight junctions is essential for maintaining the
proper environment required for neuronal transmission. However, paracellular diffusion of
nutrients and metabolites between the blood and the extracellular compartment of the brain
is also highly restricted. Consequently, the uptake of essential molecules, such as glucose and
amino acids, to meet the metabolic requirements of the brain occurs through specific trans‐
porter proteins located on the plasma membrane of the endothelial cells. In addition to
transporters that facilitate the entry of various solutes into the brain, the brain endothelial cells
also express numerous efflux transporters [71]. These transporters are members of the ATP-
binding cassette (ABC) protein family and utilize energy from adenosine triphosphate (ATP)
hydrolysis to actively remove compounds from the cells against a concentration gradient.

From a drug transport perspective, there are several transporters that are critically involved
in the movements of drugs across the BBB. These include organic anion-transporting poly‐
peptide 1A2 (OATP1A2/SLO1A2), organic anion transporter 3 (OAT3/SLC22A8), monocar‐
boxylate transporter 1 (MCT1/SLC16A1), from the solute transporter family, and P-
glycoprotein (P-gp; MDR1/ABCB1), breast-cancer-resistance protein (BCRP/ABCG2) and
multidrug-resistance-associated proteins 1-9(MRP1-9/ABCC1-9) from the ABC transporter
family [72]. The localization of these transporters in both the BBB and BCSF barrier are shown
in Figure 3 with each individual transporter is being discussed in greater detail below.

6.1. Organic Anion Transporting Polypeptide (OATP)

Organic anion transporting polypeptides (OATPs) are members of the solute carrier organic
anion transporter family (SLCO) [73]. The OATPs accommodate the transport of a wide variety
of amphipathic solutes, including bile salts, anionic peptides, steroid conjugates, thyroid
hormones and an increasing number of pharmaceutical drugs and xenobiotics [74]. Members
of the OATP family, of which there are currently 11 known to be expressed in humans
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(OATP1A2, 1B1, 1B3, 1C1, 2A1, 2B1, 3A1, 4A1, 4C1, 5A1, and 6A1), share a great deal of amino
acid sequence identity and transport solutes in a sodium independent manner [75].

Of the various OATPs, both OATP1A2 and OATP1A4 are expressed in the BBB. Organic anion
transport protein 1A2 was the first member of the OATP family to be reported in humans,
while OATP1A4 is a more recently discovered homolog of hepatic [76]. At the protein level,
OATP1A2 (previously designated OATP-A) is expressed in many organs including the liver,
intestine, kidney, lung, testes, and the brain. Within the brain, this transporter is localized in
the frontal cortex and specifically confined to the endothelial cells of the BBB [74]. Its locali‐
zation on the luminal side of brain microvessel endothelial cells suggests that OATP1A2 aids
in the entry of various solutes and therapeutic agents into the brain [74]. While OATP1A4 is
mainly concentrated in the liver, the transporter has also been detected within the brain
microvessel endothelial cells [74]. In contrast to OATP1A2, immunohistochemical localization
studies indicate that OATP1A4 is expressed on both the apical and basolateral side of the
endothelial cells of the BBB and thus, mediates the uptake of compounds from both the brain
and the blood compartments [77].

6.2. Organic Anion Transporter (OAT)

Organic anion transporters (OATs) belong to the SLC22A gene family. Similarly to OATPs,
the OATs transport a broad range of chemically unrelated endogenous and exogenous
compounds. There are at least 10 families of OATs designated by Arabic numbers (eg. OAT1).

Figure 3. The localization of transporters in the blood brain barrier (BBB) and blood cerebral spinal fluid barrier
(BCSFB) of CNS.
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OAT1 is predominantly expressed in the kidney although a very small amount is also found
in the brain particularly concentrated in regions such as cortex, hypothalamus, hippocampus
and cerebellum [78]. This transporter is known to interact with a broad range of drugs
including antibiotics (penicillins, benzylpenicillin and carbenicillin), antineoplastics (metho‐
trexate) and even cholesterol lowering drugs including the statins and fibrates such as
fluvastatin, pravastatin, and bezafibrate, respectively [78]. OAT2, on the other hand, is
predominantly expressed in the liver and very little is found in the kidney and brain. The
expression level of this transporter in a particular tissue can be influenced by a variety of
factors; including gender and species differences [79]. For example, in the adult male rat, the
mRNA for OAT2 expression is greater in the liver than the kidney, and the opposite is true for
the adult female rat where the mRNA level in the kidney is greater than in the liver [79].
However, this phenomenon has not been observed in humans. Furthermore, the expression
level of OAT2 is also influenced by hepatocyte nuclear factors and endogenous gas molecules
including nitric oxide [80,81]. Given the similar molecular structure to OAT1, OAT2 also
mediates the transport of a broad range of solutes including cholesterol lowering drugs (i.e.
statins), antibiotics such as cephalosporins, and antineoplastic drugs like 5-fluorouracil [78].

From a CNS perspective, OAT3 appears to have the greatest expression levels in the brain [78].
Within the CNS, OAT3 is primarily localized in the brain capillaries and in epithelial cells of
the choroid plexus, specifically on the basolateral side of the plasma membrane of the cells [82].
The predominantly basolateral localization of OAT3 in the BBB and BCSFB implies that the
primary function of OAT3 is to aid in the removal of compounds from the brain. Endogenous
products of neurotransmitter and hormone metabolism are potential candidates for OAT3-
mediated removal. Potential therapeutic agents that may be transported out of the brain
through OAT3-dependent processes at the BBB and BCSFB include the various statins,
diuretics, antibiotics and antivirals [78]. As OAT3 interacts with a large number of therapeutic
agents, drug-drug interactions may be of potential concern in the BBB, although specific
examples are at present not known.

6.3. Glucose Transporters (GLUT)

Glucose is the major source of energy for most mammalian cells, particularly in the brain.
Despite the high dependence of the brain on glycolysis, the source of glucose comes entirely
from the blood and is dependent on passage through the BBB. The entry of glucose into the
brain is mediated by facilitative glucose transporter proteins. There are currently seven known
isoforms, with the designation of GLUT1-7 [83]. The main isoforms found within the CNS are
GLUT1 and GLUT3 that bring glucose into the cell through sodium independent transport
mechanisms. A summary of the various GLUTs and their distribution within the CNS is shown
in Figure 4. GLUT1 within the CNS exists as two distinct forms, which differ only by the extent
of glycosylation [84]. A glycosylated, 55 KDa GLUT1 is found primarily in the endothelial cells
of the BBB while the non-vascular, non-glycosylated 45 KDa form is mainly found in neural
cells as well as the basolateral plasma of epithelial cells isolated from the choroid plexus [83].
Aside from the prominent expression found in the microvessels and choroid plexus, GLUT1
has also been detected in small cells with dark stained nuclei characteristic of glia cells [85].
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Immunohistochemistry staining also showed a positive detection of GLUT1 in astrocytes that
are in direct contact with the cerebral microvessels of rat brain slices. Electron microscopy also
revealed dense distribution of GLUT1 within the astrocyte foot processes surrounding the
microvessels of the gray matter and synaptic contacts [86].

Figure 4. Cellular localization of different isoforms of glucose transporter in the CNS.

The main glucose transporter in the BBB is GLUT1. This same transporter is also highly
expressed in the blood-retinal barrier, the placental barrier, and blood-CSF barrier (BCSFB)
[87-89] highlighting its importance in regulation of glucose levels in these tissues. The transport
of glucose through GLUT1 in the BBB is the rate-limiting step for glucose utilization in the
brain and is highly responsive to metabolic changes within the brain. For example, GLUT1
expression in the BBB at both the mRNA and protein level can increase or decrease depending
on the ambient concentration of hexose. High concentration of hexose decreases the expression
of GLUT1 while low hexose concentration causes an up-regulation of both GLUT1 mRNA and
protein levels [90]. Following brain injury such as a stroke and brain tumors, both mRNA and
protein levels of GLUT1 are significantly increased [83,85,91].

The endothelial cells forming the BBB also express sodium glucose cotransporter (SGLT) [92].
Unlike GLUT1, glucose transport through SGLT is sodium-dependent. A functional role for
SGLT in glucose homeostasis in the brain has not been established; however, it has been
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speculated that SGLT may help maintain intracellular glucose levels in the brain under
stressful conditions such as hypoglycemia [92].

6.4. Monocarboxylate Transporter (MCT)

Monocarboxylic acids, including lactate, pyruvate, and ketones play an important role in
energy metabolism within the body. Monocarboxylates such as pyruvate, lactate, and ketone
bodies (i.e acetoacetate and β-hydroxybutyarate) can be utilized by neurons, in the absence of
glucose, to generate a substantial amount of energy for the brain [93]. Under pathological and
physiological conditions including diabetes, prolonged starvation, hypoglycemia, or even
intense exercise, the build-up of lactate provides an energy source, which can be utilized by
the brain [3,94,95]. In addition, monocarboxylates including lactic acid are a metabolic by-
product produced and released within the CNS by neurons [96,97], astrocytes [96] and
oligodendrocytes [98]. As monocarboxylates are hydrophilic compounds that cannot readily
diffuse cross the BBB, specific transporter systems are required to maintain proper levels of
these endogenous metabolic products in the brain [93].

Sequence homology indicates that the monocarboxylate transporter family (previous known
as SLC16 gene family) consists of 14 members identified as MCT1-9, MCT11-14 and T-type
amino acid transporter 1 (TAT1) [99]. MCT1-4 is a symporter mediating the co-transport of
monocarboxylate and proton in a one to one stoichiometry ratio. MCT1-4 is present in almost
all tissues including the muscles, liver, kidney, heart, testes, and brain [93,99]. While MCT1
and MCT2 are found in the muscles, liver, kidney, heart and CNS, [93], MCT3 is exclusively
expressed on the basolateral side of the retinal pigment epithelium and MCT4 is highly
expressed in the skeletal muscles and also in the brain. Within the BBB, MCT1 was the first
monocarboxylic acid transporter identified in the brain microvessel endothelial cells and in
the ependycytes lining the ventricles [100]. Both electron microscopy and immunohistochem‐
istry revealed a small amount of MCT1 in astrocytic end-feet surrounding the capillaries
[100,101]. The presence of MCT1 was found in the cytoplasm of astrocyte and also associated
with the plasma membrane [93]. In contrast, MCT2 is found in endothelial cells forming the
BBB, but absent in astrocytes [93,100]. MCT4, on the other hand, was exclusively expressed in
the astrocytes and glial cells of rodent brain. Furthermore, when the hippocampus and the
corpus callosum were labeled, the expression of MCT4 was restricted to astrocytes [93]. MCT8
was recently recognized as thyroid hormone transporter as opposed to monocarboxylate [102].

6.5. ATP-Binding Cassette Transporters (ABC)

The ATP-binding cassette (ABC) superfamily of transporter proteins are responsible for the
active transport of a wide variety of compounds including phospholipids, ions, peptides,
steroids, polysaccharides, amino acids, organic anions, bile acids, drugs and other xenobiotic
compounds across cellular membranes. There are roughly 48 genes encoding the various
human ABC transporters, each is organized into seven subfamilies designated ABCA to ABCG
[103]. Over-expression of ABC transporters are major contributors to the development of
multidrug resistance (MDR) in cancer cells. For instance, when the MDR gene that codes for
an efflux transporter is being transfected into drug sensitive cells, the transfectant cells become
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resistant to the drugs that are substrates for the transporters resulting in a decrease in the
intracellular concentration of the drugs, thereby conferring multidrug resistance [104]. MDR
in tumor cell lines is often linked to an ATP-dependent decrease in cellular accumulation of
drugs namely through p-glycoprotein (p-gp encoded by ABCB1), multidrug resistance
proteins (MRP encoded by ABCC), and breast cancer resistance protein (BCRP encoded by
ABCG2) drug efflux transporters [105]. In addition to their function as multidrug resistance
proteins, these transporters are also expressed in normal tissue such as intestines, liver, kidney
and the BBB and BCSFB, suggesting that they also have a protective function in limiting
accumulation and distribution and speeding the elimination of xenobiotic compounds which
could result in tissue toxicity [106].

6.6. Multidrug Resistance Protein (MRP)

The multidrug resistance-associated proteins (MRPs) are a subfamily of ABC transporters.
There are currently 12 members of this subfamily designated as ABCC1-12. Of the 12, 9 have
demonstrated drug efflux transporter function and play an important role in absorption,
distribution and elimination of various drugs and metabolites. While all MRPs have the
capability to transport amphiphatic organic anions, transport substrates are not limited to
anionic species. Examples of this include the transport of nucleotide based analogs by MRP4
and MRP5, efflux of prostaglandins by MRP1, co-transport of neutral or cationic solutes as
well as glucoronide drug conjugates by MRP1 and MRP2 [107]. Within the MRPs and other
ABC transport proteins there tends to be substantial substrate affinity overlap. This is a
fascinating feature considering most members are structurally and functionally distinct from
other ABC binding cassette transporters. For example, there is only approximately 15% amino
acid sequence homology between MRPs and P-gp [108]. In addition, when comparing amino
acid sequence between different members within the MRP subfamily to MRP1, amino acid
sequence homology ranges between 33% for MRP8 and 58% for MRP3 [109].

The brain endothelial cells that form the BBB express several different MRP. Collectively the
MRP efflux transporters function to restrict the uptake and aid in the elimination of drugs,
xenobiotics and endogenous compounds from the brain. Currently, members of the MRP
family that have been reported in the BBB include MRP1, 2,4-9. The evidence for the localiza‐
tion and function of each of the MRPs within the BBB are discussed below.

6.6.1. MRP1

MRP1 is expressed in primary cultured bovine, murine [110], rat [111] and porcine [112] brain
microvessel endothelial cells. While studies by Seetharaman and coworkers [113] suggested
up-regulation of MRP1 expression in human culture brain microvessel endothelial cells
compared to freshly isolated human brain capillaries, more recent studies support robust
expression of MRP1 within the brain capillaries isolated from human brain tissue [114]. Two
independent studies reported that MRP1 is localized primarily to the apical (luminal) plasma
membrane in brain microvessel endothelial cells [114,115]. This is in contrast to studies by
Roberts et al. [116] suggesting MRP1 has a basolateral (abluminal) plasma membrane locali‐
zation in rat brain microvessels. As MRP1 shows high transporter activity for conjugated
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compounds such as estradiol 17β glucuronides [117], it is interesting to note that Sugiyama
and colleagues [118] demonstrated a reduction in elimination of estradiol 17β glucuronide
from the brain of Mrp1 knockout mice compared to that observed in the wild-type controls
with functional MRP1. These functional studies support the luminal expression of MRP1 and
suggest a role in limiting brain exposure to drugs and endogenous solutes.

6.6.2. MRP2

The expression and localization of MRP2 within the BBB is the subject of much debate. Studies
by Miller et al. [119] indicated MRP2 was expressed in the luminal plasma membrane of
isolated rat brain capillaries. These initial findings were supported by reports of MRP2
expression in both human brain capillaries as well as zebrafish [120,121]. In contrast, no
detectable expression of MRP2 was found, at either the mRNA or protein level, in bovine brain
microvessel endothelial cells [122,123] or mouse brain microvessel endothelial cells [110,118].
Furthermore, studies examining MRP2 protein expression in isolated human brain capillaries
were below detection limits [114,124]. Interestingly, expression of MRP2 in rat brain endothe‐
lial cells was inducible by activation of either pregnane X receptor (PXR) or constitutive
androstane receptor (CAR) pathways [125,126].

Functionally, MRP2 mediates the transport of glucuronide and GSH conjugates to a lesser
extent than MRP1 [127]. It also actively transports chemotherapeutics such as methotrexate,
vinca alkaloids, anthracyclins, antiepileptics such as phenytoin and endogenous agents like
leukotriene C4 [107,109,128,129]. Thus if MRP2 is expressed in the BBB, it could have a
profound effect on the brain distribution of many therapeutic agents. However, there are few
studies showing a significant impact of MRP2 on the BBB permeability. One such study
demonstrated an increased accumulation of phenytoin in the brain of Mrp2 deficient rats
compared to controls [129]. There is also evidence for MRP2-mediated changes in brain
penetration of drugs in epileptic animals. Based on available information, most evidence
indicates that MRP2 expression in the BBB is low or below detectable limits and as such has
negligible effects on solute and macromolecule distribution into the brain. However, as MRP2
expression appears highly inducible, there is a possibility that MRP2 activity in the BBB could
be of importance during pathological events within the CNS.

6.6.3. MRP3

Studies by Zhang et al. [122] identified low and variable expression of MRP3 in bovine brain
microvessel endothelial cells. Subsequent proteomics based studies of both mouse [130] and
human [131] BBB indicated that MRP3 expression was below detection limits.

6.6.4. MRP4

Evidence  supporting  a  significant  functional  role  for  MRP4  in  the  BBB  is  perhaps  the
strongest of all the MRPs. The first evidence of MRP4 expression in the BBB was the studies
by  Zhang  et  al.  [122]  in  bovine  brain  microvessel  endothelial  cells.  Follow-up  studies
examining the localization of MRP4 suggested both luminal and abluminal presence of the
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There are currently 12 members of this subfamily designated as ABCC1-12. Of the 12, 9 have
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distribution and elimination of various drugs and metabolites. While all MRPs have the
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anionic species. Examples of this include the transport of nucleotide based analogs by MRP4
and MRP5, efflux of prostaglandins by MRP1, co-transport of neutral or cationic solutes as
well as glucoronide drug conjugates by MRP1 and MRP2 [107]. Within the MRPs and other
ABC transport proteins there tends to be substantial substrate affinity overlap. This is a
fascinating feature considering most members are structurally and functionally distinct from
other ABC binding cassette transporters. For example, there is only approximately 15% amino
acid sequence homology between MRPs and P-gp [108]. In addition, when comparing amino
acid sequence between different members within the MRP subfamily to MRP1, amino acid
sequence homology ranges between 33% for MRP8 and 58% for MRP3 [109].

The brain endothelial cells that form the BBB express several different MRP. Collectively the
MRP efflux transporters function to restrict the uptake and aid in the elimination of drugs,
xenobiotics and endogenous compounds from the brain. Currently, members of the MRP
family that have been reported in the BBB include MRP1, 2,4-9. The evidence for the localiza‐
tion and function of each of the MRPs within the BBB are discussed below.

6.6.1. MRP1

MRP1 is expressed in primary cultured bovine, murine [110], rat [111] and porcine [112] brain
microvessel endothelial cells. While studies by Seetharaman and coworkers [113] suggested
up-regulation of MRP1 expression in human culture brain microvessel endothelial cells
compared to freshly isolated human brain capillaries, more recent studies support robust
expression of MRP1 within the brain capillaries isolated from human brain tissue [114]. Two
independent studies reported that MRP1 is localized primarily to the apical (luminal) plasma
membrane in brain microvessel endothelial cells [114,115]. This is in contrast to studies by
Roberts et al. [116] suggesting MRP1 has a basolateral (abluminal) plasma membrane locali‐
zation in rat brain microvessels. As MRP1 shows high transporter activity for conjugated
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compounds such as estradiol 17β glucuronides [117], it is interesting to note that Sugiyama
and colleagues [118] demonstrated a reduction in elimination of estradiol 17β glucuronide
from the brain of Mrp1 knockout mice compared to that observed in the wild-type controls
with functional MRP1. These functional studies support the luminal expression of MRP1 and
suggest a role in limiting brain exposure to drugs and endogenous solutes.

6.6.2. MRP2

The expression and localization of MRP2 within the BBB is the subject of much debate. Studies
by Miller et al. [119] indicated MRP2 was expressed in the luminal plasma membrane of
isolated rat brain capillaries. These initial findings were supported by reports of MRP2
expression in both human brain capillaries as well as zebrafish [120,121]. In contrast, no
detectable expression of MRP2 was found, at either the mRNA or protein level, in bovine brain
microvessel endothelial cells [122,123] or mouse brain microvessel endothelial cells [110,118].
Furthermore, studies examining MRP2 protein expression in isolated human brain capillaries
were below detection limits [114,124]. Interestingly, expression of MRP2 in rat brain endothe‐
lial cells was inducible by activation of either pregnane X receptor (PXR) or constitutive
androstane receptor (CAR) pathways [125,126].

Functionally, MRP2 mediates the transport of glucuronide and GSH conjugates to a lesser
extent than MRP1 [127]. It also actively transports chemotherapeutics such as methotrexate,
vinca alkaloids, anthracyclins, antiepileptics such as phenytoin and endogenous agents like
leukotriene C4 [107,109,128,129]. Thus if MRP2 is expressed in the BBB, it could have a
profound effect on the brain distribution of many therapeutic agents. However, there are few
studies showing a significant impact of MRP2 on the BBB permeability. One such study
demonstrated an increased accumulation of phenytoin in the brain of Mrp2 deficient rats
compared to controls [129]. There is also evidence for MRP2-mediated changes in brain
penetration of drugs in epileptic animals. Based on available information, most evidence
indicates that MRP2 expression in the BBB is low or below detectable limits and as such has
negligible effects on solute and macromolecule distribution into the brain. However, as MRP2
expression appears highly inducible, there is a possibility that MRP2 activity in the BBB could
be of importance during pathological events within the CNS.

6.6.3. MRP3

Studies by Zhang et al. [122] identified low and variable expression of MRP3 in bovine brain
microvessel endothelial cells. Subsequent proteomics based studies of both mouse [130] and
human [131] BBB indicated that MRP3 expression was below detection limits.

6.6.4. MRP4

Evidence  supporting  a  significant  functional  role  for  MRP4  in  the  BBB  is  perhaps  the
strongest of all the MRPs. The first evidence of MRP4 expression in the BBB was the studies
by  Zhang  et  al.  [122]  in  bovine  brain  microvessel  endothelial  cells.  Follow-up  studies
examining the localization of MRP4 suggested both luminal and abluminal presence of the
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transporter [115]. The expression of MRP4 has since been reported in human, mouse and
rat BBB [114,116,132]. Comparison of MRP4 expression in the brains of wild-type and Mrp4
knockout  mice  confirmed  BBB  localization  as  well  as  expression  in  the  choroid  plexus
epithelial cells forming the BCSFB [132].

Functionally, MRP4 can transport a wide variety of substrates and is important in the efflux
of many nucleotide analog based chemotherapeutics. As with MRP1 and MRP2, MRP4
transports the endogenous substrate leukotriene C4 [133,134]. However, in addition, MRP4
can also transport endogenous nucleotides such as cAMP and cGMP [135]. Common chemo‐
therapeutic purine nucleotide anion analogs that are effluxed by this transporter include
bis(pivaloyloxymethyl)-9-[2-(phosphonomethoxy)ethyl]-adenine (PMEA), and active metab‐
olites of 6-mercaptopurine and 6-thioguanine [72,107,136]. Using Mrp4 -/- knockout mice
significant increases in topotecan [132] and PMEA [137] accumulation in the brain was
observed.

6.6.5. MRP5 and MRP6

Within the BBB, MRP5 is highly expressed, whereas MRP6 is expressed to a lesser extent [122].
Presently their locations within the BBB remain unclear. Previous studies by Zhang et al. [115]
found MRP5 protein expression to be primarily in the apical membrane fraction of brain
microvessel endothelial cells. These findings were supported by Nies et al. [114]. In contrast,
Roberts et al. [116] found low levels of abluminal MRP5 expression when staining in rat brain
microvessel endothelial cells. Currently, the location of MRP6 remains to be seen because no
specific MRP6 antibody is available at this time [115].

MRP5 can transport purine nucleotide analogs [127] and is the primary active transporter of
cGMP and cAMP [138]. Therefore MRP5 and -4 may work in concert to regulate cGMP and
cAMP levels [127] in the brain. MRP6 can transport anionic organic ions but cannot transport
glucuronide or GSH [127] and has been shown to transport leukotrinene C4 [139].

6.6.6. MRP7, -8 and -9

Currently, little is known about these transporters with regards to the BBB. MRP7, -8 and -9
have been found to be expressed in brain [140]. MRP7 can transport glucuronide E2 17betaG
and exhibits high levels of resistance to taxane docetaxel, approximately 9 to 13 fold [140].
MRP8 is able to transport nucleotide analogues such as PMEA, glutathione conjugates and
methotrexate [140]. No substrates for MRP9 have been identified at this time [109].

When looking at drug resistant efflux transport in the literature, major focus has been put on
P-gp and BCRP and limited research has been focused on members within the MRP subfamily
as it relates to the BBB. As has been demonstrated here, many of these MRP transporters can
transport substrates that are important both physiologically and in the clinic. Particularly
within the CNS, it is important to decipher any discrepancies in location and expression of
MRP members within the BBB because they can have relevant impact on CNS drug concen‐
trations reaching therapeutic levels within the brain and thus can affect our ability to treat
important brain pathologies.
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6.7. Breast Cancer Resistance Protein (BCRP)

BCRP was originally discovered in the MCF-7 AdrVp breast cancer cell line after observing
that the cells are resistant to chemotherapeutic drugs including mitoxantrone, doxorubicin,
and daunorubicin [141]. The gene sequence of the protein was isolated shortly after and was
classified as the group G subfamily of ABC transporters. There are at least 5 members of ABCG
subfamily identified in humans (ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8). However,
the primary form that plays a crucial role in the transport of substances between the blood and
the CNS is ABCG2 [141]. At the protein level, ABCG2 is approximately 72-kDa with 665 amino
acids and is considered as a half-transporter as shown in Figure 5. Other ABC transporters
have two sets of membrane spanning regions (6 transmembrane α-helices) and two nucleotide
binding domains (NBD); the G subfamily of protein consists of only one set of membrane
spanning domain 6 transmembrane α-helices and only one NBD [141]. In order to function, it
is believed that these half-transporters form homodimers [142].

The specific localization of ABCG2 within the CNS is primarily confined to the luminal plasma
membrane of the brain microvessel endothelial cells. Given the localization within the BBB
and the compounds that are transported by ABCG2, it has been suggested that ABCG2 most
likely protects the brain from xenobiotics and toxins similar to other ABC transporters [141].
Furthermore, ABCG2 also plays a role in the accumulation and disposition of various endog‐
enous substrates including sulfate and glucuronide conjugates of estrone and dehydroepian‐
drosterone [143,144]. In addition to endogenous substrates, ABCG2 also binds and recognizes
a broad range of structurally-unrelated drugs and xenobiotics [141]. Many of these transport
substrates also interact with other ABC transporters including ABCB1 and the ABCC subfam‐
ily; thus, the accumulation and distribution of drugs can be significantly altered.

6.8. P-glycoprotein (P-gp)

P-glycoprotein (P-gp) was the first ABC transporter to be characterized. First identified by
Juliano and Ling [145] in 1976 using Chinese hamster ovary cells with selected resistance to
colchicine, they discovered that the drug resistance properties of the mutated cells were
consistently correlated with a high molecular weight component found in the plasma mem‐
brane with an approximate weight of 170,000 Da [145]. They also observed that the component
was likely a glycoprotein associated with the plasma membrane of the mutated cells and was
consistently absent or expressed at a lower level in the wild-type cells. Furthermore, they also
noticed that the mutant cells with high levels of glycoprotein displayed an alter drug perme‐
ability; thus, they designated it as “P-glycoprotein” [145]. P-gp is also expressed in numerous
tissues, including adrenal glands, kidneys, liver, colon, small intestine, heart, testes, peripheral
nerves, and the brain. At the BBB, it is the most extensively studied ABC transporter being
expressed in the luminal plasma membrane of brain endothelial cells [104]. Under normal
conditions, the presence of P-gp in the BBB limits a broad range of substances from penetrating
the brain tissue. Some notable drug classes with reduced brain penetration due to P-gp efflux
at the BBB include anti-epileptics, anti-cancer drugs, anti-histamines and HIV protease
inhibitors [103]. Numerous studies using drugs such as cyclosporine, digoxin, domperidone,
etoposide, loperamide, ondansetron, taxol and vinblastine have shown the important role of
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P-gp in the pharmacokinetics of P-gp substrates in multiple parts of the body. Table 1 shows
some of the drugs that are known substrates for P-gp.

Similar to other ABC transporters, P-gp is a transmembrane protein with a molecular weight
of 170 KDa formed by two homologous subunits that function as an efflux pump in an ATP-
dependent manner (shown in Figure 5). The protein is assembled in two halves connected by

Figure 5. Structures of (A) MRP transporter, (B) BCRP transporter, and (C) P-glycoprotein transporter.
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a 75 amino acid linker region. Each half contains 6 transmembrane segments, an intracellular
nucleotide binding domain, and both intracellular N and C terminal regions. The exact
localization of P-gp had been a subject of some debate with evidence supporting both luminal
and abluminal expression of the protein. Luminal P-gp expression had been observed in rat
and mouse brain capillaries [115,146,147]. Furthermore, the luminal expression of P-gp has
also been isolated in human brain microvessels [113,148]. In contrast, electron microscope
techniques have shown an enhanced expression of P-gp on the abluminal side of the rat brain
endothelial cells [149]. Nevertheless, recent studies using immunoreactivity support the
localization of P-gp on the luminal side of the endothelial cells [116].

Table 1 Representative compounds that are known to be P-glycoprotein substrates. (Adapted from [156] )

Numerous studies have attempted to identify and characterize P-gp substrates. Unlike
conventional transporters, which recognize specific substrates, P-gp recognizes a broad range
of compounds and has the capacity to extract its substrates directly from the plasma membrane
[150]. Some of the most common features of P-gp substrates include their lipophilic nature that
enables them to cross the lipid bilayer of the cell membrane. Furthermore, many P-gp sub‐
strates commonly consist of two aromatic rings and a basic nitrogen atom. These molecules
can be uncharged or basic in nature, although some acidic compounds including methotrexate
and phenytoin can also bind to P-gp but at a lower rate. Molecules with molecular weight
ranges from 300 to 2000 Da are capable of binding to the protein and being transported [151].
Peptide substrates consisting of 3 to 15 amino acids with molecular weight ranges from 380 to
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techniques have shown an enhanced expression of P-gp on the abluminal side of the rat brain
endothelial cells [149]. Nevertheless, recent studies using immunoreactivity support the
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Table 1 Representative compounds that are known to be P-glycoprotein substrates. (Adapted from [156] )

Numerous studies have attempted to identify and characterize P-gp substrates. Unlike
conventional transporters, which recognize specific substrates, P-gp recognizes a broad range
of compounds and has the capacity to extract its substrates directly from the plasma membrane
[150]. Some of the most common features of P-gp substrates include their lipophilic nature that
enables them to cross the lipid bilayer of the cell membrane. Furthermore, many P-gp sub‐
strates commonly consist of two aromatic rings and a basic nitrogen atom. These molecules
can be uncharged or basic in nature, although some acidic compounds including methotrexate
and phenytoin can also bind to P-gp but at a lower rate. Molecules with molecular weight
ranges from 300 to 2000 Da are capable of binding to the protein and being transported [151].
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1880 Da can also interact with P-gp [151]. Most recently, beta amyloid protein, the component
found in amyloid plaques in Alzheimer’s disease was reported to be a transport substrate of
both P-gp but not BCRP [152,153].

One method for overcoming the limited permeability of P-gp transport substrates is to
pharmacologically inhibit Pgp. P-glycoprotein inhibitors are themselves non-cytotoxic agents
that can be used in combination with P-gp substrates to maintain the intracellular drug
concentration. An inhibitor binds to P-gp and prevents the transport of P-gp substrates. There
are at least three generations of P-gp inhibitors. The first generation compounds are less potent
and non-selective with undesirable side effects at inhibitory concentrations. Examples of first
generation inhibitors include the calcium channel blocker, verapamil, and the immunosup‐
pressive agent cyclosporin A. First generation P-gp inhibitors act as competitive inhibitors of
P-gp transport [154].

The second-generation compounds including dexverapamil or dexniguldipine were devel‐
oped to reduce the toxicity associated with P-gp inhibition. They eliminate the undesirable
side effects while retaining the ability to inhibit P-gp. The third generation inhibitors including
tariquidar and elacridar are much more specific and more potent than earlier compounds.
Unlike the first and second generation of P-gp inhibitors, the third generation of drugs acts as
non-competitive inhibitors of P-gp, and the compounds themselves are not transported by P-
gp [155]. Table 2 summarizes representative P-gp inhibitors [104].

Table 2 Representative compounds that are known to be P-glycoprotein inhibitors. (Adapted from [156] )

The ability of P-gp to extrude xenobiotics provides protection and detoxification of cells under
normal conditions. For example, knockout mice (MDR1a-/-) have been shown to be more
sensitive to ivermectin and are susceptible to serious neurotoxicity compared to wild type
control mice [156]. Considering the broad range of P-gp substrates and the expression of P-gp
in tissues responsible for absorption, distribution and elimination of drugs, it is no surprise
that this particular drug efflux transporter can significantly affect the absorption and distri‐
bution of drugs. This is especially true for cancer therapies used in the treatment of brain
tumors. The tight junctions of the BBB restrict paracellular diffusion of chemotherapeutic
agents into the CNS, while the presence of the various drug efflux transporters, such as P-gp,
within the endothelial cells of the BBB reduces transcellular passage of chemotherapeutic
agents into the brain and tumor sites.
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7. Conclusion

The brain capillaries are structurally and functionally different from capillaries formed in the
other organs. The selectiveness and permissiveness of the endothelial cell monolayer within
the CNS is dependent on the tight junctions as wells as the numerous transporter systems
located on the luminal and the abluminal surface of the endothelial cells forming the BBB. The
restrictive nature of the tight junctions along with transporter systems expressed in the BBB
can significantly altered the accumulation and distribution of fatty acids and drugs in the CNS
under pathological conditions. Improved delivery to the brain can be achieved by reversibly
disrupting the physical tight junctions and/or inhibiting the activity of efflux transporter
systems.
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1. Introduction

Many physiological processes like muscle contraction, hormone secretion and intracellular
signalling processes are triggered by calcium as intracellular signalling molecule. The signal
transduction capacity of calcium depends on the 10,000-fold gradient across the plasma
membrane with 2.5 mM extracellular and resting intracellular calcium ion concentration of
approximately 100 nM. Low intracellular calcium concentrations are managed by the extrusion
of calcium by ATPases and transporters [1, 2], whereas rapid and distinct increases in intra‐
cellular calcium up to micromolar concentrations are mediated by calcium-permeable ion
channels of the plasma membrane as well intracellular calcium storage compartments.
Calcium mediates its biological functions by protein structures capable to bind calcium. These
calcium-binding domains are building blocks of the proteins modulated by calcium directly
or part of calcium sensor proteins (calmodulin, calcium binding protein, calcineurin, S100, NCS
etc) mediating calcium-dependent modulation by protein-protein interaction [3].

In excitable cells like neurons, heart or skeletal or smooth muscle cells, calcium currents first
identified are mediated by voltage-gated calcium channels [4-6]. Later, additional calcium-
permeable ion channels have been identified mediating hormone-induced calcium entry also
in non-excitable cells like endothelial, epithelial, immune cells. The identity of these channels
has been unravelled via analysis of phototransduction in flies [7]. Montell and Rubin cloned
Transient Receptor Potential (TRP) from Drosophila melanogaster and described TRP as a
phospholipase C-modulated, calcium-permeable ion channel [8]. Mammalian TRP-homolo‐
gous channels have been identified by comparing the Drosophila TRP sequences with sequences
resulting from the upcoming genome and expression profiling projects at that time. The first
channel protein showing the highest degree of sequence similarities with Drosophila TRP were
named classic TRP family (TRPC1) [9-11]. Additional TRP-homologous proteins establishing
the melastatin-like and vanilloid-like TRP subfamilies, TRPM and TRPV, respectively, were
identified by other approaches [12-14]. An additional fascinating feature of TRP channels
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distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 2

TRP Channels in Neuronal and Glial Signal Transduction

Christian Harteneck and Kristina Leuner

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/58232

1. Introduction

Many physiological processes like muscle contraction, hormone secretion and intracellular
signalling processes are triggered by calcium as intracellular signalling molecule. The signal
transduction capacity of calcium depends on the 10,000-fold gradient across the plasma
membrane with 2.5 mM extracellular and resting intracellular calcium ion concentration of
approximately 100 nM. Low intracellular calcium concentrations are managed by the extrusion
of calcium by ATPases and transporters [1, 2], whereas rapid and distinct increases in intra‐
cellular calcium up to micromolar concentrations are mediated by calcium-permeable ion
channels of the plasma membrane as well intracellular calcium storage compartments.
Calcium mediates its biological functions by protein structures capable to bind calcium. These
calcium-binding domains are building blocks of the proteins modulated by calcium directly
or part of calcium sensor proteins (calmodulin, calcium binding protein, calcineurin, S100, NCS
etc) mediating calcium-dependent modulation by protein-protein interaction [3].

In excitable cells like neurons, heart or skeletal or smooth muscle cells, calcium currents first
identified are mediated by voltage-gated calcium channels [4-6]. Later, additional calcium-
permeable ion channels have been identified mediating hormone-induced calcium entry also
in non-excitable cells like endothelial, epithelial, immune cells. The identity of these channels
has been unravelled via analysis of phototransduction in flies [7]. Montell and Rubin cloned
Transient Receptor Potential (TRP) from Drosophila melanogaster and described TRP as a
phospholipase C-modulated, calcium-permeable ion channel [8]. Mammalian TRP-homolo‐
gous channels have been identified by comparing the Drosophila TRP sequences with sequences
resulting from the upcoming genome and expression profiling projects at that time. The first
channel protein showing the highest degree of sequence similarities with Drosophila TRP were
named classic TRP family (TRPC1) [9-11]. Additional TRP-homologous proteins establishing
the melastatin-like and vanilloid-like TRP subfamilies, TRPM and TRPV, respectively, were
identified by other approaches [12-14]. An additional fascinating feature of TRP channels

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



became obvious with the identification of TRPV1 (vanilloid receptor 1, VR1) as molecular
target of capsaicin [15]. Capsaicin is the active molecule of chilli peppers and an irritant that
is responsible for providing a sensation of burning, e.g., on the tongue. TRPV1 characterization
revealed that TRP channels are targets of many secondary plant compounds and are involved
in sensory functions [16]. Last but not least, the TRP superfamily comprises the mucolipin
[TRPML [17]] and the polycystin [TRPP [18]] calcium-permeable channel proteins sharing a
comparable transmembrane topology and features like ion permeability [13, 14, 19]. TRP
channels are integrated in many cellular signal transduction pathways and a variety of
physiological processes as discussed below.

TRP channels have been identified and characterized by common biochemical, immunochem‐
ical and physiological methods. The function of TRP channels can be directly studied by patch
clamp electrophysiology as well as imaging techniques. Patch clamp techniques enable to
monitor currents across the plasma membrane mediated by TRP channels using small
electrodes in small pipettes together with the ground electrode in the bath solution [20]. In this
configuration, the electrical activity of ion channels in the plasma membrane can be monitored.
Depending on configuration and access of the electrode within the patch pipette, different
configurations can be discriminated (cell-attached, whole cell, inside-out or outside-out). On
the other hand, a growing number of methods has been developed to monitor changes in ion
concentrations in intact cells using small chemical compounds or artificial proteins constructs
[21]. Fura-2 is one of the best known calcium dyes, a small chemical compound changing its
fluorescence features depending on calcium concentration [22]. In the meantime a variety of
new compounds have been developed characterized by changed ion selectivity, changes in
Kd values or fluorescence intensities. The intracellular concentration of the indicator dyes
depend on the activity and capability of organic solute carrier to export the dyes and thereby
lowering intracellular dye concentrations. This disadvantage can be overcome by the use of
the new protein-based probes. These artificial proteins are constructs of ion binding domains
conjugated with fluorescence protein domains transcribed transiently from transfected
plasmids or permanently from genomic localized expression cassettes [23, 24].

The following review will give an introduction in the broad field of TRP channel research
related to their expression in the central nervous system (CNS), their physiological function
in neurons as well as in glia cells, and their role in neurological and psychiatric CNS disorders.
The involvement of TRP channels in the pathophysiology of glioma and the sensing of pain is
not discussed here [for comprehensive reviews please refer to [25, 26]].

2. TRP channels in the brain

2.1. TRPC channels

The classic TRP channel family comprises seven different genes with proteins showing the
highest sequence similarity to the prototypic Drosophila TRP [8, 12, 19]. The mammalian
channel proteins are involved in receptor-regulated calcium entry [27]. Receptor activation by
hormones, neurotransmitter and in Drosophila light results in the phospholipase C-mediated
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breakdown of phosphatidylinositides leading to the formation of inositol 1,4,5-trisphosphate
and diacylglycerol (Figure 1). Inositol 1,4,5-trisphosphate induces calcium release from
intracellular stores via the activation of inositol 1,4,5-trisphosphate receptors (IP3 receptor),
whereas diacylglycerol directly activates mammalian classic transient receptor potential
(TRPC) channels (TRPC2, TRPC3, TRPC6 and TRPC7) in a protein kinase C-independent
manner [27, 28]. The prerequisite of phospholipase C stimulation has been shown for TRPC1,
TRPC4 and TRPC5 currents, however the molecular mechanism is still unclear [27].

Figure 1. Receptor-induced activation mechanisms of TRP channels in mammals. RTK: receptor tyrosine kinase;
GPCR: G protein-coupled receptor; PLC: phospholipase C; PIP2: phosphatidylinositol-4,5-bisphosphate; IP3: inosi‐
tol-1,4,5-trisphosphate; DAG: diacylglycerol.

In the brain, TRPC1 expression was confirmed using a set of techniques ranging from RT-PCR,
western blotting to confocal and electron microscopy. TRPC1 was detected in different brain
regions of adult mice including the cerebellum, the hippocampus, the basal ganglia, the
amygdala and the forebrain [29-31]. Strübing et al. showed that TRPC1 and TRPC5 channels
are expressed in similar brain areas suggesting that they might form heteromers for example
in the hippocampus [31]. However, empirical evidence for the existence of these heteromers
is still lacking [32]. Only little is known about the distribution of TRPC channels in neurons.
TRPC5 channels were suggested to be expressed mainly in distal dendrites and dendritic
spines in lateral septal neurons. However, the expression pattern might differ in different brain
areas and neurons [33]. Interestingly, TRPC1 protein was not only detected in neurons such
as in the hippocampal CA1 or CA3 pyramidal cells [31], but also in astrocytes and oligoden‐
drocyte progenitor cells [34-36]. Furthermore, mRNA for all TRPC channels including TRPC1
was found in the cortex of the mouse developing brain [37]. TRPC1, together with TRPC3 and
TRPC5 were the main isoforms detected in this study. This expression pattern might be time
dependent and species specific because TRPC4 and TRPC5 were the most prominent isoforms
in the adult rat prefrontal cortex [38], whereas TRPC3 and TRPC6 channels are major TRPC
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became obvious with the identification of TRPV1 (vanilloid receptor 1, VR1) as molecular
target of capsaicin [15]. Capsaicin is the active molecule of chilli peppers and an irritant that
is responsible for providing a sensation of burning, e.g., on the tongue. TRPV1 characterization
revealed that TRP channels are targets of many secondary plant compounds and are involved
in sensory functions [16]. Last but not least, the TRP superfamily comprises the mucolipin
[TRPML [17]] and the polycystin [TRPP [18]] calcium-permeable channel proteins sharing a
comparable transmembrane topology and features like ion permeability [13, 14, 19]. TRP
channels are integrated in many cellular signal transduction pathways and a variety of
physiological processes as discussed below.

TRP channels have been identified and characterized by common biochemical, immunochem‐
ical and physiological methods. The function of TRP channels can be directly studied by patch
clamp electrophysiology as well as imaging techniques. Patch clamp techniques enable to
monitor currents across the plasma membrane mediated by TRP channels using small
electrodes in small pipettes together with the ground electrode in the bath solution [20]. In this
configuration, the electrical activity of ion channels in the plasma membrane can be monitored.
Depending on configuration and access of the electrode within the patch pipette, different
configurations can be discriminated (cell-attached, whole cell, inside-out or outside-out). On
the other hand, a growing number of methods has been developed to monitor changes in ion
concentrations in intact cells using small chemical compounds or artificial proteins constructs
[21]. Fura-2 is one of the best known calcium dyes, a small chemical compound changing its
fluorescence features depending on calcium concentration [22]. In the meantime a variety of
new compounds have been developed characterized by changed ion selectivity, changes in
Kd values or fluorescence intensities. The intracellular concentration of the indicator dyes
depend on the activity and capability of organic solute carrier to export the dyes and thereby
lowering intracellular dye concentrations. This disadvantage can be overcome by the use of
the new protein-based probes. These artificial proteins are constructs of ion binding domains
conjugated with fluorescence protein domains transcribed transiently from transfected
plasmids or permanently from genomic localized expression cassettes [23, 24].

The following review will give an introduction in the broad field of TRP channel research
related to their expression in the central nervous system (CNS), their physiological function
in neurons as well as in glia cells, and their role in neurological and psychiatric CNS disorders.
The involvement of TRP channels in the pathophysiology of glioma and the sensing of pain is
not discussed here [for comprehensive reviews please refer to [25, 26]].

2. TRP channels in the brain

2.1. TRPC channels

The classic TRP channel family comprises seven different genes with proteins showing the
highest sequence similarity to the prototypic Drosophila TRP [8, 12, 19]. The mammalian
channel proteins are involved in receptor-regulated calcium entry [27]. Receptor activation by
hormones, neurotransmitter and in Drosophila light results in the phospholipase C-mediated
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breakdown of phosphatidylinositides leading to the formation of inositol 1,4,5-trisphosphate
and diacylglycerol (Figure 1). Inositol 1,4,5-trisphosphate induces calcium release from
intracellular stores via the activation of inositol 1,4,5-trisphosphate receptors (IP3 receptor),
whereas diacylglycerol directly activates mammalian classic transient receptor potential
(TRPC) channels (TRPC2, TRPC3, TRPC6 and TRPC7) in a protein kinase C-independent
manner [27, 28]. The prerequisite of phospholipase C stimulation has been shown for TRPC1,
TRPC4 and TRPC5 currents, however the molecular mechanism is still unclear [27].

Figure 1. Receptor-induced activation mechanisms of TRP channels in mammals. RTK: receptor tyrosine kinase;
GPCR: G protein-coupled receptor; PLC: phospholipase C; PIP2: phosphatidylinositol-4,5-bisphosphate; IP3: inosi‐
tol-1,4,5-trisphosphate; DAG: diacylglycerol.

In the brain, TRPC1 expression was confirmed using a set of techniques ranging from RT-PCR,
western blotting to confocal and electron microscopy. TRPC1 was detected in different brain
regions of adult mice including the cerebellum, the hippocampus, the basal ganglia, the
amygdala and the forebrain [29-31]. Strübing et al. showed that TRPC1 and TRPC5 channels
are expressed in similar brain areas suggesting that they might form heteromers for example
in the hippocampus [31]. However, empirical evidence for the existence of these heteromers
is still lacking [32]. Only little is known about the distribution of TRPC channels in neurons.
TRPC5 channels were suggested to be expressed mainly in distal dendrites and dendritic
spines in lateral septal neurons. However, the expression pattern might differ in different brain
areas and neurons [33]. Interestingly, TRPC1 protein was not only detected in neurons such
as in the hippocampal CA1 or CA3 pyramidal cells [31], but also in astrocytes and oligoden‐
drocyte progenitor cells [34-36]. Furthermore, mRNA for all TRPC channels including TRPC1
was found in the cortex of the mouse developing brain [37]. TRPC1, together with TRPC3 and
TRPC5 were the main isoforms detected in this study. This expression pattern might be time
dependent and species specific because TRPC4 and TRPC5 were the most prominent isoforms
in the adult rat prefrontal cortex [38], whereas TRPC3 and TRPC6 channels are major TRPC
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mRNAs detected in adult mice [29]. TRPC2 being expressed in the rodent vomeronasal organ
is clearly an exception [39]. In humans, TRPC2 is a pseudogene; the transcribed mRNA is
functionless due to various stop codons [40]. In rodents, the transcription of the TRPC2 gene
results in a functionally active protein involved in sensory responses to pheromones [39].
Genetic inactivation of TRPC2 in mice leads to loss of sex discrimination of male mice [41-43].
TRPC4 mRNA expression was observed in the adult mouse brain in the cortex, the hippo‐
campus, the thalamus, the amygdala, the basal ganglia as well as the prefrontal cortex [29, 30,
38, 44]. TRPC4 protein expression was shown in the hippocampus, the cortex as well as the
cerebellum [38, 44]. Using in situ hybridisation or immunocytochemistry, the expression of
TRPC4 channels in different brain areas was specified. For example, TRPC4 was detected in
cell layers of the prefrontal cortex [38] or in pyramidal CA1 and CA3 neurons of the hippo‐
campus. In lateral septal neurons, TRPC4 channels were found on the cell surface of the soma
and primary dendrites [33].

TRPC3 and TRPC6 mRNAs were demonstrated in the basal ganglia, the cerebellum, hippo‐
campus as well as the forebrain [29]. TRPC3 protein expression in the brain especially in the
prefrontal cortex and cerebellum was not only shown in rat and mouse tissues but also in
human tissue obtained from subjects of different age groups [45]. TRPC3 channel expression
was higher in the developing cortex compared to the adult cortex, whereas TRPC3 cerebral
expression was not age-dependent. The protein expression of TRPC6 channels in the hippo‐
campus is controversial. While several groups using pharmacological approaches or RT-PCR
or western blot analyses describe TRPC6 channels being expressed in all hippocampal regions
[46-51], Nagy and co-workers as well as Chung and colleagues show expression of TRPC6
channels selectively in the dentate gyrus and interneurons [52, 53]. Interestingly, in contrast
to Tai et al. 2008, who described TRPC6 expression in hippocampal CA1 soma as well as in
dendrites, Nagy’s data suggest that TRPC6 channels are mainly expressed in dendrites of
interneurons and neurons from the dentate gyrus [49, 53]. In the developing brain TRPC6
channels protein expression peaked between postnatal day 7 and 14, a period known to be
important for maximal dendritic growth [49]. For TRPC7, only low mRNA expression levels
were published [29, 30]. TRPC3 channels are also expressed in astrocytes [54].

2.2. TRPM channels

Melastatin, the founding member of the melastatin-like TRP family, was identified within a
screen for proteins differentially regulated in melanocytes and melanoma cells [55]. Analysis
of clinical data showed that the presence of melastatin expression in melanoma patients
inversely correlates with the severity and survival [56-58]. Although melastatin is the first
member of the TRPM family its activation mechanism and physiological role is still unclear.
In line with the first description as protein involved in melanocyte physiology several reports
confirmed this view. A completely unexpected function, the integration in retinal signal
processing, has recently been discovered by the identification of TRPM1 expression in retinal
ON bipolar cells [59]. The critical role of TRPM1 in mammalian phototransduction is also
highlighted by several reports describing TRPM1 mutations in patients suffering from
congenital stationary night blindness [60-63]. Only very little is known about TRPM1 function
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and expression in the CNS. Rather low mRNA TRPM1 expression was found in three studies
in the brain [29, 64, 65].

From sequence similarity, TRPM3 is phylogenetically the closest neighbour to melastatin.
TRPM3 is a polymodal ion channel activated by a variety of different stimuli like hypotonicity
[66], sphingolipids [67], steroids [68, 69], nifedipine [69], and heat [70]. TRPM3 is activated by
hypotonic extracellular solution and represents together with TRPV4, the volume-regulated
TRP channels in the kidney [71, 72]. With the help of pharmacological tools, calcium entry
induced by the application of hypotonic extracellular solutions can be assigned to TRPV4 and
TRPM3 [71, 73-75]. While TRPV4 is activated by 4α-Isomers of phorbolesters and is blocked
by ruthenium red, TRPM3 is activated by sphingosine and by pregnenolone-sulphate and
blocked by gadolinium ions. TRPM3 is expressed in different areas of the CNS such as the
hippocampus, the corpus callosum, the cortex or the hippocampus. These findings were
reproduced in different studies using RT-PCR [29], northern blot [66, 76], as well as immuno‐
histochemistry [77, 78]. TRPM3 channels are found in neurons (cerebral Purkinje neurons) as
well as in oligodendrocytes [76-78]. Interestingly, neuronal expression of TRPM3 is present
throughout development. However, it is almost lost in the adult brain [77]. In contrast, TRPM3
is highly expressed in oligodendrocytes in the adult brain.

The phylogenetically next neighbours to TRPM1 and TRPM3 are TRPM6 and TRPM7 [79]. The
latter ones are involved in the body magnesium homeostasis [80]. While TRPM7 is ubiqui‐
tously expressed, TRPM6 is expressed in epithelial cells of the gut and the kidney and
responsible for magnesium absorption and reabsorption. Loss-of-function mutations in
TRPM6 are linked to autosomal-recessive hypomagnesemia with secondary hypocalcemia [81,
82]. TRPM6, TRPM7 and TRPM2 share a common structural feature. All three genes code for
chimeric proteins combining a hexahelical transmembrane channel forming domain with a C-
terminal enzymatic active domain [83]. In the case of TRPM6 and TRPM7, the pore-forming
domains are fused to atypical alpha kinase-like structures. The functional role for the enzy‐
matic domain is still under dispute. TRPM6 and TRPM7 are permeable for magnesium and
for other essential divalent cations like Ca2+, Zn2+, Mn2+, Co2+ as well as toxic cations like Ba2+,
Sr2+, Ni2+, Cd2+ [84, 85]. While TRPM6 mRNA was detected at low level in different brain areas
[29], nothing is known about its role in the CNS. In contrast to TRPM6 channels, TRPM7 mRNA
is highly expressed in the brain [29, 86]. In primary hippocampal neurons as well as in
pyramidal hippocampal CA1 neurons in rat brain slices, TRPM7 was detected by different
groups using immunocyto- and immunohistochemistry [87-89].

While divalent ions are the preferentially carried ion of TRPM6- and TRPM7-mediated
currents, TRPM4 and TRPM5 form ion pores impermeable for divalent ions and allow
selectively sodium to pass [90]. As sodium channels, TRPM4 and TRPM5 are paradoxically
activated by increased intracellular calcium concentrations and represent calcium-activated
sodium channels. TRPM4 is expressed in different brain regions including the thalamus, the
hypothalamus, the medulla oblongata, the hippocampus and the spinal cord in mouse, rat as
well as human brain (Lein et al., 2007; [29, 91]. In contrast to TRPM4, the expression of TRPM5
is restricted to a few cell types. TRPM5 is expressed in taste buds of the tongue and involved
in the sensation of bitter and sweet taste [92, 93].
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mRNAs detected in adult mice [29]. TRPC2 being expressed in the rodent vomeronasal organ
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functionless due to various stop codons [40]. In rodents, the transcription of the TRPC2 gene
results in a functionally active protein involved in sensory responses to pheromones [39].
Genetic inactivation of TRPC2 in mice leads to loss of sex discrimination of male mice [41-43].
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campus, the thalamus, the amygdala, the basal ganglia as well as the prefrontal cortex [29, 30,
38, 44]. TRPC4 protein expression was shown in the hippocampus, the cortex as well as the
cerebellum [38, 44]. Using in situ hybridisation or immunocytochemistry, the expression of
TRPC4 channels in different brain areas was specified. For example, TRPC4 was detected in
cell layers of the prefrontal cortex [38] or in pyramidal CA1 and CA3 neurons of the hippo‐
campus. In lateral septal neurons, TRPC4 channels were found on the cell surface of the soma
and primary dendrites [33].

TRPC3 and TRPC6 mRNAs were demonstrated in the basal ganglia, the cerebellum, hippo‐
campus as well as the forebrain [29]. TRPC3 protein expression in the brain especially in the
prefrontal cortex and cerebellum was not only shown in rat and mouse tissues but also in
human tissue obtained from subjects of different age groups [45]. TRPC3 channel expression
was higher in the developing cortex compared to the adult cortex, whereas TRPC3 cerebral
expression was not age-dependent. The protein expression of TRPC6 channels in the hippo‐
campus is controversial. While several groups using pharmacological approaches or RT-PCR
or western blot analyses describe TRPC6 channels being expressed in all hippocampal regions
[46-51], Nagy and co-workers as well as Chung and colleagues show expression of TRPC6
channels selectively in the dentate gyrus and interneurons [52, 53]. Interestingly, in contrast
to Tai et al. 2008, who described TRPC6 expression in hippocampal CA1 soma as well as in
dendrites, Nagy’s data suggest that TRPC6 channels are mainly expressed in dendrites of
interneurons and neurons from the dentate gyrus [49, 53]. In the developing brain TRPC6
channels protein expression peaked between postnatal day 7 and 14, a period known to be
important for maximal dendritic growth [49]. For TRPC7, only low mRNA expression levels
were published [29, 30]. TRPC3 channels are also expressed in astrocytes [54].

2.2. TRPM channels

Melastatin, the founding member of the melastatin-like TRP family, was identified within a
screen for proteins differentially regulated in melanocytes and melanoma cells [55]. Analysis
of clinical data showed that the presence of melastatin expression in melanoma patients
inversely correlates with the severity and survival [56-58]. Although melastatin is the first
member of the TRPM family its activation mechanism and physiological role is still unclear.
In line with the first description as protein involved in melanocyte physiology several reports
confirmed this view. A completely unexpected function, the integration in retinal signal
processing, has recently been discovered by the identification of TRPM1 expression in retinal
ON bipolar cells [59]. The critical role of TRPM1 in mammalian phototransduction is also
highlighted by several reports describing TRPM1 mutations in patients suffering from
congenital stationary night blindness [60-63]. Only very little is known about TRPM1 function
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and expression in the CNS. Rather low mRNA TRPM1 expression was found in three studies
in the brain [29, 64, 65].

From sequence similarity, TRPM3 is phylogenetically the closest neighbour to melastatin.
TRPM3 is a polymodal ion channel activated by a variety of different stimuli like hypotonicity
[66], sphingolipids [67], steroids [68, 69], nifedipine [69], and heat [70]. TRPM3 is activated by
hypotonic extracellular solution and represents together with TRPV4, the volume-regulated
TRP channels in the kidney [71, 72]. With the help of pharmacological tools, calcium entry
induced by the application of hypotonic extracellular solutions can be assigned to TRPV4 and
TRPM3 [71, 73-75]. While TRPV4 is activated by 4α-Isomers of phorbolesters and is blocked
by ruthenium red, TRPM3 is activated by sphingosine and by pregnenolone-sulphate and
blocked by gadolinium ions. TRPM3 is expressed in different areas of the CNS such as the
hippocampus, the corpus callosum, the cortex or the hippocampus. These findings were
reproduced in different studies using RT-PCR [29], northern blot [66, 76], as well as immuno‐
histochemistry [77, 78]. TRPM3 channels are found in neurons (cerebral Purkinje neurons) as
well as in oligodendrocytes [76-78]. Interestingly, neuronal expression of TRPM3 is present
throughout development. However, it is almost lost in the adult brain [77]. In contrast, TRPM3
is highly expressed in oligodendrocytes in the adult brain.

The phylogenetically next neighbours to TRPM1 and TRPM3 are TRPM6 and TRPM7 [79]. The
latter ones are involved in the body magnesium homeostasis [80]. While TRPM7 is ubiqui‐
tously expressed, TRPM6 is expressed in epithelial cells of the gut and the kidney and
responsible for magnesium absorption and reabsorption. Loss-of-function mutations in
TRPM6 are linked to autosomal-recessive hypomagnesemia with secondary hypocalcemia [81,
82]. TRPM6, TRPM7 and TRPM2 share a common structural feature. All three genes code for
chimeric proteins combining a hexahelical transmembrane channel forming domain with a C-
terminal enzymatic active domain [83]. In the case of TRPM6 and TRPM7, the pore-forming
domains are fused to atypical alpha kinase-like structures. The functional role for the enzy‐
matic domain is still under dispute. TRPM6 and TRPM7 are permeable for magnesium and
for other essential divalent cations like Ca2+, Zn2+, Mn2+, Co2+ as well as toxic cations like Ba2+,
Sr2+, Ni2+, Cd2+ [84, 85]. While TRPM6 mRNA was detected at low level in different brain areas
[29], nothing is known about its role in the CNS. In contrast to TRPM6 channels, TRPM7 mRNA
is highly expressed in the brain [29, 86]. In primary hippocampal neurons as well as in
pyramidal hippocampal CA1 neurons in rat brain slices, TRPM7 was detected by different
groups using immunocyto- and immunohistochemistry [87-89].

While divalent ions are the preferentially carried ion of TRPM6- and TRPM7-mediated
currents, TRPM4 and TRPM5 form ion pores impermeable for divalent ions and allow
selectively sodium to pass [90]. As sodium channels, TRPM4 and TRPM5 are paradoxically
activated by increased intracellular calcium concentrations and represent calcium-activated
sodium channels. TRPM4 is expressed in different brain regions including the thalamus, the
hypothalamus, the medulla oblongata, the hippocampus and the spinal cord in mouse, rat as
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The remaining two TRPM channels proteins, TRPM2 and TRPM8, can also be discussed in the
light of sensory functions. As already mentioned, TRPM2 represents a chimeric protein
integrating an ADP-ribose hydrolase domain C-terminal to the pore-forming transmembrane
domains [83]. Simultaneously to the ADP-ribose hydrolysing activity of the C-terminal
enzymatic domain, TRPM2 is activated by ADP-ribose and it has been shown that the C-
terminal part is essential for the function of the pore forming channel protein [94, 95]. Increased
intracellular ADP-ribose concentrations are linked to genotoxic and/or oxidative stress of cells
leading to the activation of the poly(ADP-ribose) polymerase (PARP) modulating protein
stability by the mono and poly ADP-ribosylation of proteins [96]. This process of protein
stability regulation is additionally controlled by an enzyme called poly(ADP-ribose) gluco‐
hydrolase (PARG). PARG reduces the post-translational poly ADP-ribose modifications to
mono ADP-ribosylation, thereby increasing the intracellular ADP-ribose concentration
leading to the activation of TRPM2. In whole cell calcium imaging experiments, the extracel‐
lular application of hydrogen peroxide results in the activation of TRPM2 validating its
function as redox sensor. TRPM2 channels are preferentially expressed in microglia cells, the
host macrophages of the CNS [97, 98]. In addition, in several brain regions such as the
hippocampus, the cortex and the substantia nigra TRPM2 channels were also detected in
neurons using RT-PCR, western blotting as well as immunohistochemistry [99, 100]. It was
suggested that TRPM2 and TRPM7 channels form heteromers because knock-down of TRPM7
with siRNA is accompanied by down-regulation of TRPM2 channels [101]. TRPM8, the cold
sensor, is mainly expressed in sensory neurons. TRPM8 is activated at temperatures between
8 °C to 28 °C as well as the secondary plant compound menthol and synthetic cooling com‐
pounds. Together with TRPA1, TRPM8 represent the cold sensors in human. Noxious cold is
mediated by TRPA1 [26, 102].

2.3. TRP channels in the brain - TRPV channels

Vanilloid structures, derivates of vanillin comprising eugenol, zingerone and capsaicin, are
found in many spice plants and known for their individual characteristic flavour. Beside the
use as spice, vanilloid containing plant extracts are used as remedy in the various traditions
of folk medicines. Therapeutic and experimental use of capsaicin in pain treatment inspired
research resulting in the unravelling of the molecular target of capsaicin. The molecular target,
an ion channel related to Drosophila TRP, was named capsaicin or vanilloid receptor and
became eponym of the subgroup or structurally related ion channels of the TRP channel
superfamily [15]. The vanilloid-like TRP channels comprise six members, four proteins (TRPV1
to TRPV4) like TRPV1 are non selective ion channels involved in thermosensation [14, 73, 74,
102, 103], while two ion channels (TRPV5 and TRPV6) represent highly calcium-selective ion
channels [75, 104].

The warm and heat sensors (TRPV1 to TRPV4) and the cold sensors (TRPM8 and TRPA1)
represent the thermosensors of the human body and cover the complete temperature range
necessary for human life. As warning sensors expressed in dorsal root ganglia, the thermo
TRPs are also involved in sensation and modulation of pain and therefore interesting as
molecular targets for new pain-treating drugs. Most studies dealing with the structural and
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functional properties of the TRPV channel family in the CNS are focused on TRPV1. However,
TRPV2, TRPV3 and TRPV4 are also detected in the CNS. In contrast for TRPV5 and TRPV6,
there is no evidence for their expression in the CNS.

Localization Function References

Hippocampus (interneurons, dentate

gyrus)

involved in anxiety and fear [132, 151]

involved in LTD [152, 153]

involved in LTP [152]

involved in pathogenesis of epilepsy [126, 127]

hypothalamus central osmoregulation [154, 155]

central regulation of temperature [108]

Locus coeruleus potentiation of glutamate,

adrenaline or norepinephrine release [151]

Cortex involved in cortical excitability [156]

involved in pathogenesis of epilepsy [126]

Striatum facilitation of glutamatergic [157]

postsynaptic neurotransmission [158]

glutamate release [159]

Table 1 Localization and putative function of TRPV1 channels

TRPV1 expression in the CNS was investigated using a variety of methods ranging from
pharmacological characterization and immunohistochemistry [105] to RT-PCR [106], western
blotting to radio ligand binding [107]. Beside the great variety of methods and studies the
expression of TRPV1 in the brain remains controversial. Several studies showed a wide spread
TRPV1 expression in the CNS suggesting an expression of TRPV1 in pyramidal neurons of the
CA1, CA3 area of the hippocampus, the dentate gyrus, the locus coeruleus, the hypothalamus,
the substantia nigra, the cerebellum, the cortex and other limbic structures [108]. Other studies
reported TRPV1 expression which was highly restricted to primary sensory ganglia with
minimal expression in few brain regions which are adjacent to the caudal hypothalamus [107]
(expression profiles and methods are summarized in Table 1). However several groups used
TRPV1 agonists or antagonists as well as TRPV1 knock-out mice to define the role of TRPV1
channels in the CNS and reported versatile functions in different brain regions such as the
hippocampus, the substantia nigra, the cortex or the hypothalamus. TRPV1 channels are not
only activated by capsaicin but also by the CB1 agonist anandamide [109], other endovanilloids
such as N-acyldopamines or the endogenous lipoxygenase derivates HPETE which are
released for example in the hippocampus after mGluR1 activation [108]. Importantly, coloc‐
alization of TRPV1 and CB1 receptors was found in different mouse brain regions including
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The remaining two TRPM channels proteins, TRPM2 and TRPM8, can also be discussed in the
light of sensory functions. As already mentioned, TRPM2 represents a chimeric protein
integrating an ADP-ribose hydrolase domain C-terminal to the pore-forming transmembrane
domains [83]. Simultaneously to the ADP-ribose hydrolysing activity of the C-terminal
enzymatic domain, TRPM2 is activated by ADP-ribose and it has been shown that the C-
terminal part is essential for the function of the pore forming channel protein [94, 95]. Increased
intracellular ADP-ribose concentrations are linked to genotoxic and/or oxidative stress of cells
leading to the activation of the poly(ADP-ribose) polymerase (PARP) modulating protein
stability by the mono and poly ADP-ribosylation of proteins [96]. This process of protein
stability regulation is additionally controlled by an enzyme called poly(ADP-ribose) gluco‐
hydrolase (PARG). PARG reduces the post-translational poly ADP-ribose modifications to
mono ADP-ribosylation, thereby increasing the intracellular ADP-ribose concentration
leading to the activation of TRPM2. In whole cell calcium imaging experiments, the extracel‐
lular application of hydrogen peroxide results in the activation of TRPM2 validating its
function as redox sensor. TRPM2 channels are preferentially expressed in microglia cells, the
host macrophages of the CNS [97, 98]. In addition, in several brain regions such as the
hippocampus, the cortex and the substantia nigra TRPM2 channels were also detected in
neurons using RT-PCR, western blotting as well as immunohistochemistry [99, 100]. It was
suggested that TRPM2 and TRPM7 channels form heteromers because knock-down of TRPM7
with siRNA is accompanied by down-regulation of TRPM2 channels [101]. TRPM8, the cold
sensor, is mainly expressed in sensory neurons. TRPM8 is activated at temperatures between
8 °C to 28 °C as well as the secondary plant compound menthol and synthetic cooling com‐
pounds. Together with TRPA1, TRPM8 represent the cold sensors in human. Noxious cold is
mediated by TRPA1 [26, 102].

2.3. TRP channels in the brain - TRPV channels

Vanilloid structures, derivates of vanillin comprising eugenol, zingerone and capsaicin, are
found in many spice plants and known for their individual characteristic flavour. Beside the
use as spice, vanilloid containing plant extracts are used as remedy in the various traditions
of folk medicines. Therapeutic and experimental use of capsaicin in pain treatment inspired
research resulting in the unravelling of the molecular target of capsaicin. The molecular target,
an ion channel related to Drosophila TRP, was named capsaicin or vanilloid receptor and
became eponym of the subgroup or structurally related ion channels of the TRP channel
superfamily [15]. The vanilloid-like TRP channels comprise six members, four proteins (TRPV1
to TRPV4) like TRPV1 are non selective ion channels involved in thermosensation [14, 73, 74,
102, 103], while two ion channels (TRPV5 and TRPV6) represent highly calcium-selective ion
channels [75, 104].

The warm and heat sensors (TRPV1 to TRPV4) and the cold sensors (TRPM8 and TRPA1)
represent the thermosensors of the human body and cover the complete temperature range
necessary for human life. As warning sensors expressed in dorsal root ganglia, the thermo
TRPs are also involved in sensation and modulation of pain and therefore interesting as
molecular targets for new pain-treating drugs. Most studies dealing with the structural and
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functional properties of the TRPV channel family in the CNS are focused on TRPV1. However,
TRPV2, TRPV3 and TRPV4 are also detected in the CNS. In contrast for TRPV5 and TRPV6,
there is no evidence for their expression in the CNS.
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Hippocampus (interneurons, dentate
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involved in anxiety and fear [132, 151]
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TRPV1 expression in the CNS was investigated using a variety of methods ranging from
pharmacological characterization and immunohistochemistry [105] to RT-PCR [106], western
blotting to radio ligand binding [107]. Beside the great variety of methods and studies the
expression of TRPV1 in the brain remains controversial. Several studies showed a wide spread
TRPV1 expression in the CNS suggesting an expression of TRPV1 in pyramidal neurons of the
CA1, CA3 area of the hippocampus, the dentate gyrus, the locus coeruleus, the hypothalamus,
the substantia nigra, the cerebellum, the cortex and other limbic structures [108]. Other studies
reported TRPV1 expression which was highly restricted to primary sensory ganglia with
minimal expression in few brain regions which are adjacent to the caudal hypothalamus [107]
(expression profiles and methods are summarized in Table 1). However several groups used
TRPV1 agonists or antagonists as well as TRPV1 knock-out mice to define the role of TRPV1
channels in the CNS and reported versatile functions in different brain regions such as the
hippocampus, the substantia nigra, the cortex or the hypothalamus. TRPV1 channels are not
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the pyramidal cells of the hippocampus and basal glia [110, 111]. Regarding its cellular
localisation, TRPV1 channels were detected in neuronal cell bodies, presynaptic terminals as
well as in dendrites on postsynaptic spines [105, 106, 112, 113]. Furthermore, these channels
are also present in pericytes and at the feet of astrocytes surrounding small vessels [105, 114].

TRPV2 channels are widely distributed in the brain compromising the colocalisation with
TRPV1 in the cortex [19, 112, 115, 116]. TRPV3 mRNA was detected throughout the cortex,
hippocampus, thalamus, striatum and cerebellum [117, 118]. TRPV4 mRNA is present in the
hypothalamus, the cerebellum, basal ganglia, as well as in pyramidal neurons of the hippo‐
campus [29, 119, 120]. Importantly, TRPV1-4 were also found in astrocytes [121, 122].

3. TRP channels in CNS diseases

3.1. Developmental disorders — Rett syndrome

Rett syndrome (RTT) is severe X-linked neurodevelopmental disorder which is unique among
genetic, chromosomal and other developmental disorders because of its extreme female
gender bias, early normal development, and subsequent developmental regression with loss
of motor and language skills. RTT is caused by heterozygosity for mutations in the X-linked
gene MECP2, which encodes methyl-CpG binding protein 2. Rett syndrome patients suffer
from stereotypic wringing hand movements, social withdrawal, communication dysfunction,
cognitive impairment, respiratory dysfunction as well as failing locomotion [123]. MeCP2
regulates expression of multiple genes, including BDNF. BDNF signaling was strongly altered
in Mecp2 mutant mice [48].

Importantly, TRPC3 and TRPC6 channel expression and function was significantly lower in
the hippocampus and several other brain regions of Mecp2 mutant mice revealing a cellular
phenotype certainly contributing to hippocampal dysfunction in Mecp2 mutant mice as well
as Rett syndrome etiology. These results suggest that compounds which enhance BDNF release
or boost TRPC3/TRPC6 channel function might be an interesting new preclinical concept
which needs to be evaluated in Rett mouse models [124, 125].

3.2. Epilepsy

Recent data suggests that TRPV1 channels might contribute to the pathophysiology of
epilepsy. In the cortex and hippocampus from patients suffering from mesial temporal lobe
epilepsy, the most common form of chronic and intractable epilepsy, TRPV1 mRNA and
protein expression was significantly increased compared to healthy controls [126]. In a mouse
model of temperal lobe epilepsy, these findings were supported [127]. The expression of
TRPV1 in the dentate gyrus was significantly enhanced. Furthermore, capsaicin and ananda‐
mide significantly enhanced glutamate release in a TRPV1-dependent manner in mice with
temperal lobe epilepsy [128, 129]. In contrast, the TRPV1 antagonist capsazepine reduced 4-
aminopyridine-induced seizure-like activity in mice [128].
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Beside TRPV1 channels, data from knockout mice point to a role of TRPC1/4/5 as well as for
TRPC3/6 channels in the pathophysiology of epilepsy. Phelan et al. described a major role of
TRPC1 and TRPC4 channels in the plateau potential of lateral septal neurons which show a
high vulnerability to seizure-induced neuronal death as well as direct excitotoxicity by the
application of group I mGluR receptor agonists [33]. In vivo results using the pilocarpine-
induced status epileptics in TRPC1/TRPC4 double knockout animals showed surprising
results. Cell death was significantly reduced in the lateral septum but also in the CA1 region
of the hippocampus after severe seizures. However, the severity of the seizures per se was not
altered. The authors concluded that this conundrum might be explained by the hypothesis that
TRPC5 channels might be important for epileptiform burst in other limbic brain areas. This
hypothesis was recently supported using TRPC5 knockout mice [32]. They exhibit significantly
reduced seizures and minimal seizure-induced cell death in the CA1 region of the hippocam‐
pus. Importantly, spatial learning was not affected making TRPC5 channels an attractive novel
target for the treatment of epilepsy.

TRPC3 channels are also discussed to play a “toxic” role in status epilepticus [46, 130]. After
pilocarpine-induced status epilepticus in rats, TRPC3 expression was significantly enhanced
in CA1, CA3 pyramidal neurons as well as dentate granule cells, whereas TRPC6 channel
expression was reduced in these areas. Using two pharmacological approaches, first the
inhibition of TRPC3 with the selective antagonist Pyr3 and second activation of TRPC6
channels with the TRPC6 activator hyperforin protected against neuronal damages following
the status epilepticus [46].

3.3. Migraine

TRP channels might be involved in several processes relevant for the pathophysiology of
migraine such as altered central calcium homeostasis, multimodal sensory and pain percep‐
tion, or central or peripheral sensitization. Therefore, a recent study investigated single
nucleotide polymorphisms (SNPs) in TRP genes in 1040 patients and 1037 healthy controls in
Spain. For TRPV1, a nominal association was found for TRPV1 rs 222741 in the overall migraine
group, for TRPV3 a correlation with TRPV3 rs7217270 was detected in the migraine group with
aura [131].

3.4. Mood disorders – anxiety, unipolar and bipolar depression

TRPV1 and TRPV3 channels might be involved in fear and anxiety [107, 132]. TRPV1 knockout
mice showed decreased anxiety-related behavior in several behavior paradigms such as the
elevated plus maze test or the light dark test [107, 132]. Furthermore, fear and stress reaction
were also reduced in TRPV1 knockout mice [107]. Therefore, TRPV1 antagonists such as
capsazepine were investigated when they were applied directly into the ventral hippocampus
or the periaqueductal grey. In both studies capsazepine showed anxiolytic effects. Recent
studies investigated if compounds which act on both TRPV1 as well as CB1 receptors might
be more effective than selective TRPV1 blocker [133]. N-arachidonoyl-serotonin which blocks
TRPV1 channels and indirectly activates CB1 receptors and Arachidonyl-2-chloroethylamide
(ACEA) which activates both TRPV1 as well as CB1 receptors were investigated. N-arachi‐
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from stereotypic wringing hand movements, social withdrawal, communication dysfunction,
cognitive impairment, respiratory dysfunction as well as failing locomotion [123]. MeCP2
regulates expression of multiple genes, including BDNF. BDNF signaling was strongly altered
in Mecp2 mutant mice [48].

Importantly, TRPC3 and TRPC6 channel expression and function was significantly lower in
the hippocampus and several other brain regions of Mecp2 mutant mice revealing a cellular
phenotype certainly contributing to hippocampal dysfunction in Mecp2 mutant mice as well
as Rett syndrome etiology. These results suggest that compounds which enhance BDNF release
or boost TRPC3/TRPC6 channel function might be an interesting new preclinical concept
which needs to be evaluated in Rett mouse models [124, 125].

3.2. Epilepsy

Recent data suggests that TRPV1 channels might contribute to the pathophysiology of
epilepsy. In the cortex and hippocampus from patients suffering from mesial temporal lobe
epilepsy, the most common form of chronic and intractable epilepsy, TRPV1 mRNA and
protein expression was significantly increased compared to healthy controls [126]. In a mouse
model of temperal lobe epilepsy, these findings were supported [127]. The expression of
TRPV1 in the dentate gyrus was significantly enhanced. Furthermore, capsaicin and ananda‐
mide significantly enhanced glutamate release in a TRPV1-dependent manner in mice with
temperal lobe epilepsy [128, 129]. In contrast, the TRPV1 antagonist capsazepine reduced 4-
aminopyridine-induced seizure-like activity in mice [128].
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altered. The authors concluded that this conundrum might be explained by the hypothesis that
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nucleotide polymorphisms (SNPs) in TRP genes in 1040 patients and 1037 healthy controls in
Spain. For TRPV1, a nominal association was found for TRPV1 rs 222741 in the overall migraine
group, for TRPV3 a correlation with TRPV3 rs7217270 was detected in the migraine group with
aura [131].

3.4. Mood disorders – anxiety, unipolar and bipolar depression

TRPV1 and TRPV3 channels might be involved in fear and anxiety [107, 132]. TRPV1 knockout
mice showed decreased anxiety-related behavior in several behavior paradigms such as the
elevated plus maze test or the light dark test [107, 132]. Furthermore, fear and stress reaction
were also reduced in TRPV1 knockout mice [107]. Therefore, TRPV1 antagonists such as
capsazepine were investigated when they were applied directly into the ventral hippocampus
or the periaqueductal grey. In both studies capsazepine showed anxiolytic effects. Recent
studies investigated if compounds which act on both TRPV1 as well as CB1 receptors might
be more effective than selective TRPV1 blocker [133]. N-arachidonoyl-serotonin which blocks
TRPV1 channels and indirectly activates CB1 receptors and Arachidonyl-2-chloroethylamide
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TRP Channels in Neuronal and Glial Signal Transduction
http://dx.doi.org/10.5772/58232

45



donyl-serotonin was more effective than arachidonyl-2-chloroethylamide in behavioral
paradigms for anxiety [134, 135]. The TRPV1/CB1 agonist ACEA showed anxiolytic effects in
a bell shaped dose dependency in a mouse model using electrical stimulation of a brain area,
the medial dorsal periaqueductal gray, which has an important role in orchestrating anxiety-
and panic-related responses [133, 136]. The panicolytic effects are dependent on CB1 receptors.
Importantly, in higher concentrations ACEA loses its anxiolytic effect probably via TRPC1
activation. This assumption is supported by the finding that ACEA effects in higher concen‐
trations can be unmasked by the addition of the TRPV1 antagonist capsazepine. TRPV1
blockade per se also showed panicolytic effects suggesting opposite functions for TRPV1 and
CB1 receptors in the modulation of panic-like responses [136].

The evidence for the role of TRPC6 channels in depression comes from the active antidepres‐
sant constituent of St. Johns wort, hyperforin. Hyperforin resembles in its effects several
classical antidepressants and neurotrophic factors such brain derived neurotrophic factor
(BDNF) or nerve growth factor (NGF) [137-140]. Hyperforin inhibits neurotransmitter
reuptake and improves synaptic plasticity ranging from increased neuritic outgrowth in PC12
cells to altered spine morphology in CA1 and CA3 neurons of the hippocampus via the
activation of TRPC6 channels [137-139]. Recently, we showed that several signal cascades are
involved in the alteration of synaptic plasticity such as Ras/MEK/ERK, PI3K/Akt as well as
CAMKIV which finally result in CREB phorsphorylation [137]. In addition, enhanced CREB
phosphorylation and TRPC6 channel expression was detected in the cortex but not the
hippocampus after chronic hyperforin treatment for 4 weeks in adult mice [141]. However,
hippocampal neurogenesis remained unchanged. Bouron et al. suggests that not only the
hyperforin-mediated calcium influx but also its effects on intracellular zinc might be important
for its antidepressant activity [142, 143]

Oxidative stress, mitochondrial dysfunction, and disrupted intracellular Ca2+ homeostasis are
discussed to play a role in bipolar disorder (BD). TRPM2 channels, as a regulator and connector
between reactive oxygen species (ROS) and intracellular Ca2+, seem to be implicated in bipolar
disorder. In B-lymphocytes from patients, TRPM2 channel expression is elevated associated
with enhanced intracellular Ca2+ levels [144]. In addition, several groups reported genetic
association between several intronic and extronic single nucleotide polymorphisms in TRPM2
and BD [145-149]. In a recent study using B-lymphocytes from small group of patients (n = 6)
suffering from bipolar disorder, no change in TRPM2 expression could be detected. However,
they were more susceptible to oxidative stress when stimulated with H2O2 [150].

3.5. Multiple sclerosis

Multiple sclerosis is a neurodegenerative disease caused by chronic inflammation of the CNS.
Schattling et al. recently demonstrated that TRPM4 channels are involved in the pathogenesis
of multiple sclerosis by using TRPM4 knockout mice and inducing an experimental autoim‐
mune encephalomyelitis (EAE) in these animals [91]. TRPM4 channels are located in hippo‐
campal neurons from mice and humans as well as in the spinal cord and cortex. TRPM4
deficiency reduced overall disease severity. Importantly, deficiency or pharmacological
inhibition of TRPM4 resulted in reduced axonal and neuronal degeneration without altering
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EAE relevant immune function. In addition, axonal TRPM4 expression in axons was signifi‐
cantly elevated in demyelinating white matter brain lesions of patients with multiple sclerosis
in comparison to healthy controls. The authors further demonstrate that TRPV4 channels are
involved in toxic effects of high glutamate levels which are a major contributor to neurode‐
generation in multiple sclerosis.

4. Conclusion

Transient receptor potential (TRP) channels comprise a large family of non selective, calcium-
permeable channel proteins which are activated and regulated by different mechanisms. TRP
channels respond to secondary plant compounds as well as intracellular stimuli such as
calcium, metabolites of the arachidonic acid or phosphatidylinositol signal transduction
pathways. TRP channels sense environmental stimuli such as changes in temperature,
osmolarity and pH and represent the molecular target of pheromones, taste and secondary
plant compounds. The broad function of TRP channels in CNS physiology becomes apparent
through their involvement in several psychiatric and neurological CNS disorders. This makes
them an interesting topic for further research and drug development. The diversity of the
chemical structures and the selectivity of the naturally occurring compounds modulating TRP
channels show the possibility for pharmacological modulation of TRP channels and inspire
the development of new synthetic structures for TRP channel interference at bench and
bedside.
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1. Introduction

Cytosolic calcium plays a major and central role in neuronal activity and functions both in
brain and in peripheral nervous systems, and its sustained alteration is a critical event that
leads to neuronal death. On these grounds, it is not surprising that a sustained alteration of
intracellular calcium homeostasis in neurons is a point of convergence of the cellular mecha‐
nisms underlying many neurodegenerative processes in the brain. Indeed, this has been shown
to be the case for the brain’s neurodegenerative diseases of higher incidence to humans, like
Alzheimer’s and Parkinson’s, or in the acute neurodegeneration observed in amyotrophic
lateral sclerosis, and also for major brain insults, such as excitotoxicity in trauma and ischemia-
reperfusion, inflammation and neurotoxicity by drugs and environmental chemicals.

Sustained deregulation of cytosolic calcium concentration have been reported in neuronal
apoptosis and necrosis, the two major cellular death pathways involved in brain neurodegen‐
eration. It has been experimentally demonstrated and confirmed by many investigations using
cell cultures that a sustained rise of cytosolic calcium concentration in the neuronal soma
within the range 0.5-1 μM elicits a rapid necrotic neuronal death, mediated by calcium-
dependent proteases activation, like calpains. On the other hand, long-term sustained cytosolic
calcium concentrations below 60-70 nM in the neuronal soma promote the slow development
of apoptotic neuronal death of neurons in culture [1,2]. Since the central role of calcium in
neurotransmitter secretion and neuronal plasticity is also well known, the basal steady state
cytosolic calcium concentration in the neuronal soma can be considered as a bioenergetics
marker of neuronal activity and survival. We shall then present the major calcium transport

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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1. Introduction

Cytosolic calcium plays a major and central role in neuronal activity and functions both in
brain and in peripheral nervous systems, and its sustained alteration is a critical event that
leads to neuronal death. On these grounds, it is not surprising that a sustained alteration of
intracellular calcium homeostasis in neurons is a point of convergence of the cellular mecha‐
nisms underlying many neurodegenerative processes in the brain. Indeed, this has been shown
to be the case for the brain’s neurodegenerative diseases of higher incidence to humans, like
Alzheimer’s and Parkinson’s, or in the acute neurodegeneration observed in amyotrophic
lateral sclerosis, and also for major brain insults, such as excitotoxicity in trauma and ischemia-
reperfusion, inflammation and neurotoxicity by drugs and environmental chemicals.

Sustained deregulation of cytosolic calcium concentration have been reported in neuronal
apoptosis and necrosis, the two major cellular death pathways involved in brain neurodegen‐
eration. It has been experimentally demonstrated and confirmed by many investigations using
cell cultures that a sustained rise of cytosolic calcium concentration in the neuronal soma
within the range 0.5-1 μM elicits a rapid necrotic neuronal death, mediated by calcium-
dependent proteases activation, like calpains. On the other hand, long-term sustained cytosolic
calcium concentrations below 60-70 nM in the neuronal soma promote the slow development
of apoptotic neuronal death of neurons in culture [1,2]. Since the central role of calcium in
neurotransmitter secretion and neuronal plasticity is also well known, the basal steady state
cytosolic calcium concentration in the neuronal soma can be considered as a bioenergetics
marker of neuronal activity and survival. We shall then present the major calcium transport
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systems that control the cytosolic calcium homeostasis in the wider space within neurons, i.e.
in the neuronal soma. Owing to the large subcellular regionalization of neuronal processes
essential for the normal activity of neurons and especially in neuronal signal transduction
pathways, we shall also place a particular emphasis in the subcellular compartmentation of
these calcium transport systems.

Noteworthy, neurodegenerative processes in the brain also share another common metabolic
deviation,  namely,  that neurons are also exposed to an enhanced oxidative stress in the
brain. Using different types of neuronal cultures, many investigators have shown during
the last 15 years that the cellular oxidative stress produced by reactive oxygen species (ROS)
and reactive nitrogen species (RNS) and a sustained alteration of the intracellular calcium
homeostasis are metabolic deregulations usually observed during the early stages of the
development of  the process of  neuronal  death and before the cell  viability loss induced
entry in the irreversible steps characterized by the activation of proteases. In addition, it
has been proposed that alterations of the intracellular calcium homeostasis of glial cells can
also contribute to inflammation and damage in the brain in neurodegenerative processes
[3]. Therefore, a better knowledge of the major molecular pathways contributing to induce
the oxidative stress in the brain and the deregulation of intracellular calcium homeostasis
in  neurons  should be  expected to  lead to  the  development  of  novel  and more  efficient
therapies against brain neurodegeneration.

The fact that the most relevant calcium transport systems for the fine tuning of cytosolic
calcium homeostasis in neurons have been shown to be molecular targets for ROS/RNS
generated in neurodegenerative insults and diseases will be analyzed next in this context. As
most of neurotoxic ROS/RNS species react with many intracellular molecules and these species
are short-lived within the cells, the extent of chemical modification of each calcium transport
system by ROS/RNS is strongly dependent on its relative proximity to the ROS/RNS source.
In functional terms, it has been shown by many studies that ROS/RNS can elicit estimulation
or inhibition of key proteins of calcium signalling pathways in neurons, and that these effects
are strongly dependent on the specific protein, on the ROS/RNS concentration in the micro‐
environment and on the accummulated dose of ROS/RNS (time of exposure). Therefore,
clustering of these systems within subcellular microdomains plays a major role in cross-
modulation between calcium and ROS/RNS intracellular signalling, and this point will be
specifically addressed thereafter in this chapter.

Furthermore, the accummulated experimental evidences pointing out that there is an intimate
cross-talk between calcium and ROS/RNS intracellular signalling pathways are now ovel‐
whelming, including the modulation of ROS/RNS sources by calcium in neurons and the redox
modulation of calcium transport systems. Both, calcium and ROS/RNS intracellular signalling
show a clear pattern of local and focalized transients of intracellular concentration (peaks).
Therefore, clustering of calcium transport systems responsible of the rise of cytosolic calcium
and ROS/RNS sources within the same subcellular microcompartments will generate over‐
lapping focalized points of high concentration of calcium and ROS/RNS. In addition, this
clustering will produce transient and highly focalized cytosolic calcium concentration peaks
near the calcium entry points and associated calcium concentration waves owing to the rapid
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diffusion coefficient of calcium ions. Thus, we shall discuss the space and time fluctuations of
cytosolic calcium concentrations that are known to be produced by the activity of calcium
transport systems more relevant for the control of cytosolic calcium homeostasis in the
neuronal soma. Finally, the last section of this chapter is focussed in the most relevant calcium
buffering systems expressed in neurons and their modulation by oxidative stress, since calcium
buffering systems of the neuronal cytosol play a major role to attenuate the local gradients of
calcium concentration.

2. Neuronal cytosolic calcium homeostasis is attained by functional
coupling between different types of calcium transport systems

A highly efficient spatial and temporal coupling between the activity of transport systems
producing calcium entry to the cytosol and those extruding calcium out of the cytosol is a basic
bioenergetics need for brain neurons, as they establish many functional synapses and have to
maintain and rapidly restore cytosolic calcium in the neuronal soma within the narrow
concentration window that allows for neuron survival. Extensive experimental studies carried
out during last thirty years have settled the major molecular actors that allow neurons to
achieve this goal, see for example the reviews [4-7], and these are schematically presented in
the diagram of the Figure 1. Thus, the control of cytosolic calcium homeostasis in neurons is
primarily the result of the activity of transport systems at the plasma membrane acting in
concert, with the help of calcium transport systems located in intracellular stores, mainly in
the endoplasmic reticulum and mitochondria. The concentration gradient of calcium ions
across the neuronal plasma membrane in the brain is by far larger than the concentration
gradients of other ions involved in the control of neuronal excitability, like potassium, sodium
and chloride. In addition, cytosolic calcium binding proteins provide the neurons with
buffering capacity to attenuate the peak height of free cytosolic calcium concentration spikes
after focal neuronal stimulation by some neurotransmitters or after high frequency repetitive
neuronal stimulation [8].

In primary cultures of cerebellar granule neurons, calcium entry through L-type voltage-
operated calcium channel (L-VOCC) accounts for more than 75% of the increase of the steady-
state cytosolic calcium in the neuronal soma after partial depolarization of the plasma
membrane upon raising the extracellular potassium concentration from 5 to 25 mM [9]. The
particular relevance of this observation for neuronal survival is highlighted by the fact that the
apoptosis of these neurons induced by low potassium (5 mM) in the extracellular medium can
be blocked simply by raising the extracellular potassium concentration up to 25 mM [1,10].

Many other experimental data accumulated along the last two decades point out that the
transport systems more potent to elicit a fast and sustained increase of cytosolic calcium in
neurons are located at the plasma membrane, i.e. ionotropic receptors and VOCC. These
calcium transport systems are activated by extracellular stimuli, neurotransmitters or neuro‐
modulators, either directly or indirectly through plasma membrane depolarization. Let us
recall here, for example, that high frequency stimulation of neurons by application of electrical
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are short-lived within the cells, the extent of chemical modification of each calcium transport
system by ROS/RNS is strongly dependent on its relative proximity to the ROS/RNS source.
In functional terms, it has been shown by many studies that ROS/RNS can elicit estimulation
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are strongly dependent on the specific protein, on the ROS/RNS concentration in the micro‐
environment and on the accummulated dose of ROS/RNS (time of exposure). Therefore,
clustering of these systems within subcellular microdomains plays a major role in cross-
modulation between calcium and ROS/RNS intracellular signalling, and this point will be
specifically addressed thereafter in this chapter.

Furthermore, the accummulated experimental evidences pointing out that there is an intimate
cross-talk between calcium and ROS/RNS intracellular signalling pathways are now ovel‐
whelming, including the modulation of ROS/RNS sources by calcium in neurons and the redox
modulation of calcium transport systems. Both, calcium and ROS/RNS intracellular signalling
show a clear pattern of local and focalized transients of intracellular concentration (peaks).
Therefore, clustering of calcium transport systems responsible of the rise of cytosolic calcium
and ROS/RNS sources within the same subcellular microcompartments will generate over‐
lapping focalized points of high concentration of calcium and ROS/RNS. In addition, this
clustering will produce transient and highly focalized cytosolic calcium concentration peaks
near the calcium entry points and associated calcium concentration waves owing to the rapid
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neuronal soma. Finally, the last section of this chapter is focussed in the most relevant calcium
buffering systems expressed in neurons and their modulation by oxidative stress, since calcium
buffering systems of the neuronal cytosol play a major role to attenuate the local gradients of
calcium concentration.

2. Neuronal cytosolic calcium homeostasis is attained by functional
coupling between different types of calcium transport systems

A highly efficient spatial and temporal coupling between the activity of transport systems
producing calcium entry to the cytosol and those extruding calcium out of the cytosol is a basic
bioenergetics need for brain neurons, as they establish many functional synapses and have to
maintain and rapidly restore cytosolic calcium in the neuronal soma within the narrow
concentration window that allows for neuron survival. Extensive experimental studies carried
out during last thirty years have settled the major molecular actors that allow neurons to
achieve this goal, see for example the reviews [4-7], and these are schematically presented in
the diagram of the Figure 1. Thus, the control of cytosolic calcium homeostasis in neurons is
primarily the result of the activity of transport systems at the plasma membrane acting in
concert, with the help of calcium transport systems located in intracellular stores, mainly in
the endoplasmic reticulum and mitochondria. The concentration gradient of calcium ions
across the neuronal plasma membrane in the brain is by far larger than the concentration
gradients of other ions involved in the control of neuronal excitability, like potassium, sodium
and chloride. In addition, cytosolic calcium binding proteins provide the neurons with
buffering capacity to attenuate the peak height of free cytosolic calcium concentration spikes
after focal neuronal stimulation by some neurotransmitters or after high frequency repetitive
neuronal stimulation [8].

In primary cultures of cerebellar granule neurons, calcium entry through L-type voltage-
operated calcium channel (L-VOCC) accounts for more than 75% of the increase of the steady-
state cytosolic calcium in the neuronal soma after partial depolarization of the plasma
membrane upon raising the extracellular potassium concentration from 5 to 25 mM [9]. The
particular relevance of this observation for neuronal survival is highlighted by the fact that the
apoptosis of these neurons induced by low potassium (5 mM) in the extracellular medium can
be blocked simply by raising the extracellular potassium concentration up to 25 mM [1,10].

Many other experimental data accumulated along the last two decades point out that the
transport systems more potent to elicit a fast and sustained increase of cytosolic calcium in
neurons are located at the plasma membrane, i.e. ionotropic receptors and VOCC. These
calcium transport systems are activated by extracellular stimuli, neurotransmitters or neuro‐
modulators, either directly or indirectly through plasma membrane depolarization. Let us
recall here, for example, that high frequency stimulation of neurons by application of electrical
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depolarizing pulses or of the appropriate neurotransmitter (chemical stimulation) can lead to
neuronal tetanic activity. Because of their focalized distribution pattern in the neurons and
also because of the large differences in the intensity of calcium currents across activated
ionotropic receptors and VOCC, significant calcium concentration gradients between different
cytosolic regions of the neuron during normal neuronal activity are expected to develop at
least transiently. In contrast, the rise of IP3 following activation of phospholipase C after
stimulation of members of the large family of G-coupled neurotransmitter receptors [5], also
located at the plasma membrane, promoted calcium release from intracellular stores display‐
ing calcium spikes of smaller intensity and a more widespread increase of calcium concentra‐
tion within the cytosol.

Taking into consideration the large number of different chemical molecules that promote
neuronal stimulation within the brain and the high frequency of the stimulation events, it is

Figure 1. Diagrammatic image illustrating the major calcium transport systems controlling the concentration of cyto‐
solic calcium in the neuronal soma. Yellow and white arrows indicate cytosolic calcium entry and extrusion transport
systems, respectively. The thickness of the arrow indicates the relative relevance. Abbreviations: Endopl.Ret., endoplas‐
mic reticulum (green space); NMDAr, NMDA receptor; AMPAr, AMPA receptor; L-VOCC, L-type voltage- operated calci‐
um channel; PMCA, plasma membrane calcium pump; NCX, sodium-calcium exchanger; MR, metabotropic receptor;
RyR, ryanodine receptor; IP3R, IP3 receptor; SERCA, endoplasmic reticulum calcium pump; PTP, mitochondrial permea‐
bility transition pore; CaUP, mitochondrial calcium uniporter.
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wonderful for its simplicity that the concerted action of only a few calcium transport systems
can maintain neurons functional and alive for so many years during human lifetime. Why such
a simple design? As the evolution selects the living structures and organisms that optimize the
use of metabolic energy [11] and the bioenergetics costs for building a complex structural
design is always higher than the costs for building simpler structures, probably the answer is:
to optimize the use of the metabolic energy in neurons. Let us recall here that the large needs
of metabolic energy to continuously restore the electric potential of the plasma membrane of
active brain neurons, which is essential for their proper biological functions, would not allow
them to develop a safe system for the control of cytosolic calcium homeostasis of a high-
bioenergetics cost of maintenance and repair. Noteworthy, maximal energy optimization
within the cells can be attained when the coupling between molecules involved in energy
transduction makes use of the information or entropic energy stored in subcellular structures,
i.e. minimizing stochastic collisional events that dissipate a large amount of energy, and this
seems to be the case. For example, the subcellular distribution of the calcium transport systems
in neurons enables them to use cytosolic calcium for highly polarized, rapid and specific
synaptic responses, and also for more slowly developing adaptative responses, like long term
post-synaptic potentiation or depression [4,5]. Furthermore, the different levels of expression
of ionotropic and metabotropic receptors in distinct types of neurons allows for differential
selectivity and sensitivity in calcium modulation of neuronal threshold excitability, thereby
linking regionalization of neuronal responses within the brain structures with the major
neurotransmitter pathways.

2.1. The calcium entry systems of the neuronal plasma membrane

All neurons express different types of functional VOCC. On the basis of their unitary conduc‐
tance, on their rate of inactivation and their subcellular location the most relevant for neuronal
calcium homeostasis are the L-VOCC. The L-VOCC unitary conductance has been reported to
be in the range of 20-25 pS, while reported unitary conductances for N-, P/Q- and R-type range
between 10 and 20 pS, and L-VOCC inactivation kinetics is slower than that of the other VOCC
types [12-17]. In addition, L-VOCC are polarised in the neuronal soma and at the conical neck
leading to neurite extensions [18], whereas N-, P/Q and R-types of VOCC are largely enriched
in the presynaptic plasma membranes and its activation serves largely to elicit neurotrans‐
mitter release at the synapses [14,19-21]. On these grounds, taking also into consideration the
rate of kinetics inactivation of the P/Q-VOCC, these channels should afford a contribution to
the cytosolic calcium homeostasis of the neuronal soma much lower than that of L-VOCC but
higher than that of N-, R- and T-types of VOCC. Indeed, using specific channels blockers we
have experimentally assessed that the sum of the contributions of non-L-VOCC calcium
channels to the cytosolic calcium homeostasis of the neuronal soma of primary cultures of
cerebellar granule neurons in a standard Locke’s medium with 25 mM K+ is lower than 20%,
while the L-VOCC contribution is 80% or higher (unpublished results).

L-VOCC, which are expressed in all neurons, are by far the most relevant calcium channels
not only for the tuning of steady-state cytosolic calcium homeostasis in neurons (see above),
but also for the overall threshold neuronal excitability, see [22-24]. The L-VOCC family, also
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in the presynaptic plasma membranes and its activation serves largely to elicit neurotrans‐
mitter release at the synapses [14,19-21]. On these grounds, taking also into consideration the
rate of kinetics inactivation of the P/Q-VOCC, these channels should afford a contribution to
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known as CaV1, has four subtypes: CaV1.1, CaV1.2, CaV1.3 and CaV1.4 [25]. CaV1.2 and CaV1.3
are expressed in neurons, cardiac and endocrine cells, while CaV1.1 and CaV1.4 are specific of
skeletal muscle and retina, respectively [26]. In brain, near 80% of L-VOCC belongs to the
CaV1.2 subtype and 10-25% to the subtype CaV1.3 [27]. It has been reported that inactivation
of the gene encoding for CaV1.2 in the hippocampus and neocortex of mouse (CaV1.2HKO)
leads to a selective loss of N-methyl-D-aspartate (NMDA) receptors-independent long-term
potentiation [28]. The activity of these calcium channels is modulated not only by the plasma
membrane potential but it is also dependent upon their phosphorylation by protein kinases.
Meanwhile the activation of different isoforms of protein kinase C (PKC) has been reported to
produce stimulation or inhibition of L-VOCC activity in different cellular types [29], the
activation of protein kinase A (PKA) and of calcium/calmodulin-dependent protein kinase II
(CaMKII) have been shown to increase the activity of L-VOCC. Moreover, both PKA and
CaMKII have been shown to form complexes with L-VOCC subunits. In brain, PKA associates
with L-VOCC subunit α1c [30]. L-VOCC subunits α1c and β2 are phosphorylated by PKA
[31-34], and this produces an increase of L-VOCC activity. It has been demonstrated that this
increase of L-VOCC activity is mediated by phosphorylation of Ser478 and Ser479 of the β-
subunit and also by phosphorylation of Ser1928 of the α1c-subunit, as their mutations led to
complete elimination of the PKA-induced increase of calcium currents catalyzed by L-VOCC
[29,35]. Regarding CaMKII, the amino acids sequence near Thr498 of the L-VOCC subunit β2a
shows a high homology with the self-inhibitory domain of the CaMKII and with the binding
domain of this kinase in the NR2B subunit of NMDA receptors [36]. Indeed, it has been shown
the co-localization within neurons of the L-VOCC (CaV1.2 type) and CaMKII [37] and also of
the L-VOCC subunit β2a with CaMKII, and this has led to the suggestion that the L-VOCC
subunit β2a can act as an associated protein of CaMKII in vivo [36]. Phosphorylation of L-VOCC
by CaMKII takes place not only in Thr498 of the β2a subunit but also in Ser1512 and Ser1570
of the α1 subunit and leads to an increase of the intensity of calcium currents through these
channels [36, 38-40]. It has been proposed that the modulation of L-VOCC by CaMKII can be
relevant to potentiate the raise of cytosolic calcium concentration in response to hormones and
growth factors [41,42]. In contrast, the excessive activation of the L-VOCC (CaV1.3 type) by
CaMKII over-stimulation has been correlated with the loss of dendritic spines in the striatum
observed after dopamine depletion in animal models of parkinsonism [43].

The most potent calcium ionotropic receptors present in the neurons of the mammalian brain
are L-glutamate receptors of the NMDA and α-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid (AMPA) subtypes, except those AMPA receptors formed only with GluR2
subunits [44,45], and P2X-purinergic receptors [46]. NMDA and AMPA receptors are present
in most fast excitatory synapses in the brain, allowing for neuronal responses in the millisec‐
onds time scale range, and P2X-purinergic receptors display also a widespread distribution in
the brain. The more limited distribution in brain of L-glutamate receptors of the kainate
subtype, its low ionic selectivity for calcium and the slight calcium currents generated upon
its activation compared to those observed upon activation of AMPA and NMDA receptors [47],
suggest that they can play at most a secondary role in the tuning of cytosolic calcium homeo‐
stasis of a very limited number of brain neurons.
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The L-glutamate receptors are expressed in the vast majority of glutamatergic neurons, and
they are present in the major structures of mammalian brain (neocortex, striatum, hippocam‐
pus and cerebellum). NMDA, AMPA and kainate receptors are oligomeric integral membrane
proteins, being their calcium channel structure predominantly formed by a combination of
different, though highly homologous, subunits [48]. Among these receptors, NMDA receptors
play an outstanding role in neurosciences, as supported by many experimental evidences in
studies of brain development [49], long term post-synaptic potentiation [4] or brain damage
after ischemia-reperfusion [44,45]. Three major reasons allows to explain the dominant role of
NMDA receptors over AMPA and kainate receptors in the brain: (1) the NMDA single channel
conductance is higher than AMPA single channel conductance, 40-50 pS versus ~20 pS [16,50];
(2) their higher affinity for the endogenous agonist L-glutamate, e.g. the EC50 for L-glutamate
is ~10 μM for NMDA receptors and ~200 μM for AMPA receptors, and (3) the slower desen‐
sitization rate of NMDA receptors, e.g. several hundreds of milliseconds for NMDA receptors
while it is ~10 milliseconds for AMPA receptors [48]. Nevertheless, the maximal activation of
NMDA receptors not only requires the presence of L-glutamate but also co-stimulation by
glycine or D-serine in the brain and relief of Mg2+ inhibition [48,51]. Both, AMPA and P2x

receptors can potentiate NMDA receptor activation in the brain. AMPA receptors co-localiza‐
tion with NMDA receptors allows that plasma membrane depolarization induced by activa‐
tion of AMPA receptors elicits the relief of Mg2+ inhibition of NMDA receptors.
Phosphorylation by PKC and CaMKII promotes synaptic incorporation of AMPA receptors
during long-term post-synaptic potentiation (LTP), and the latter kinase also enhances the
channel conductance of this receptor [52-54]. On the other hand, it has been shown that
facilitation of L-glutamate release by P2x activation can lead to a stronger NMDA receptor
activation. The calcium channel in the NMDA-receptor structure can be formed by different
combinations of subunit 1 (NR1) and one of the isoforms of subunit 2 (NR2A, NR2B, NR2C
and NR2D) [55]. The expression of functional NMDA receptors is a relatively slow process
during the maturation of neurons [56]. Therefore, in molecular terms there are different
isoforms of functional NMDA receptors whose level of expression varies from one type of
neurons to another, and also during neuronal maturation. In addition, NMDA receptors are
found in synaptic and in extra-synaptic locations [56-58]. As activation of extra-synaptic
NMDA receptors can lead to a less focalized increase of cytosolic calcium, the extra-synaptic
NMDA receptors are likely to play a role more relevant than synaptic NMDA receptors in the
control of cytosolic calcium homeostasis in the neuronal soma. Phosphorylation of NMDA
receptors in vitro by PKA and by some PKC isoforms increases their activity [59]. The co-
stimulation of PKA and PKC elicits the phosphorylation of Ser896 and Ser897 leading to
activation of NMDA receptors, while phosphorylation of Ser890 by only PKC leads to a
subcellular re-localization of the NR1 subunit of NMDA receptors, which is reverted upon
dephosphorylation [60].

2.2. Transport systems that release calcium from intracellular stores

The long-term control of neuronal calcium homeostasis also involves several major calcium
transport systems of the subcellular organelles that behave as relevant neuronal intracellular
stores, namely, endoplasmic reticulum and mitochondria.
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known as CaV1, has four subtypes: CaV1.1, CaV1.2, CaV1.3 and CaV1.4 [25]. CaV1.2 and CaV1.3
are expressed in neurons, cardiac and endocrine cells, while CaV1.1 and CaV1.4 are specific of
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(CaMKII) have been shown to increase the activity of L-VOCC. Moreover, both PKA and
CaMKII have been shown to form complexes with L-VOCC subunits. In brain, PKA associates
with L-VOCC subunit α1c [30]. L-VOCC subunits α1c and β2 are phosphorylated by PKA
[31-34], and this produces an increase of L-VOCC activity. It has been demonstrated that this
increase of L-VOCC activity is mediated by phosphorylation of Ser478 and Ser479 of the β-
subunit and also by phosphorylation of Ser1928 of the α1c-subunit, as their mutations led to
complete elimination of the PKA-induced increase of calcium currents catalyzed by L-VOCC
[29,35]. Regarding CaMKII, the amino acids sequence near Thr498 of the L-VOCC subunit β2a
shows a high homology with the self-inhibitory domain of the CaMKII and with the binding
domain of this kinase in the NR2B subunit of NMDA receptors [36]. Indeed, it has been shown
the co-localization within neurons of the L-VOCC (CaV1.2 type) and CaMKII [37] and also of
the L-VOCC subunit β2a with CaMKII, and this has led to the suggestion that the L-VOCC
subunit β2a can act as an associated protein of CaMKII in vivo [36]. Phosphorylation of L-VOCC
by CaMKII takes place not only in Thr498 of the β2a subunit but also in Ser1512 and Ser1570
of the α1 subunit and leads to an increase of the intensity of calcium currents through these
channels [36, 38-40]. It has been proposed that the modulation of L-VOCC by CaMKII can be
relevant to potentiate the raise of cytosolic calcium concentration in response to hormones and
growth factors [41,42]. In contrast, the excessive activation of the L-VOCC (CaV1.3 type) by
CaMKII over-stimulation has been correlated with the loss of dendritic spines in the striatum
observed after dopamine depletion in animal models of parkinsonism [43].

The most potent calcium ionotropic receptors present in the neurons of the mammalian brain
are L-glutamate receptors of the NMDA and α-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid (AMPA) subtypes, except those AMPA receptors formed only with GluR2
subunits [44,45], and P2X-purinergic receptors [46]. NMDA and AMPA receptors are present
in most fast excitatory synapses in the brain, allowing for neuronal responses in the millisec‐
onds time scale range, and P2X-purinergic receptors display also a widespread distribution in
the brain. The more limited distribution in brain of L-glutamate receptors of the kainate
subtype, its low ionic selectivity for calcium and the slight calcium currents generated upon
its activation compared to those observed upon activation of AMPA and NMDA receptors [47],
suggest that they can play at most a secondary role in the tuning of cytosolic calcium homeo‐
stasis of a very limited number of brain neurons.
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The L-glutamate receptors are expressed in the vast majority of glutamatergic neurons, and
they are present in the major structures of mammalian brain (neocortex, striatum, hippocam‐
pus and cerebellum). NMDA, AMPA and kainate receptors are oligomeric integral membrane
proteins, being their calcium channel structure predominantly formed by a combination of
different, though highly homologous, subunits [48]. Among these receptors, NMDA receptors
play an outstanding role in neurosciences, as supported by many experimental evidences in
studies of brain development [49], long term post-synaptic potentiation [4] or brain damage
after ischemia-reperfusion [44,45]. Three major reasons allows to explain the dominant role of
NMDA receptors over AMPA and kainate receptors in the brain: (1) the NMDA single channel
conductance is higher than AMPA single channel conductance, 40-50 pS versus ~20 pS [16,50];
(2) their higher affinity for the endogenous agonist L-glutamate, e.g. the EC50 for L-glutamate
is ~10 μM for NMDA receptors and ~200 μM for AMPA receptors, and (3) the slower desen‐
sitization rate of NMDA receptors, e.g. several hundreds of milliseconds for NMDA receptors
while it is ~10 milliseconds for AMPA receptors [48]. Nevertheless, the maximal activation of
NMDA receptors not only requires the presence of L-glutamate but also co-stimulation by
glycine or D-serine in the brain and relief of Mg2+ inhibition [48,51]. Both, AMPA and P2x

receptors can potentiate NMDA receptor activation in the brain. AMPA receptors co-localiza‐
tion with NMDA receptors allows that plasma membrane depolarization induced by activa‐
tion of AMPA receptors elicits the relief of Mg2+ inhibition of NMDA receptors.
Phosphorylation by PKC and CaMKII promotes synaptic incorporation of AMPA receptors
during long-term post-synaptic potentiation (LTP), and the latter kinase also enhances the
channel conductance of this receptor [52-54]. On the other hand, it has been shown that
facilitation of L-glutamate release by P2x activation can lead to a stronger NMDA receptor
activation. The calcium channel in the NMDA-receptor structure can be formed by different
combinations of subunit 1 (NR1) and one of the isoforms of subunit 2 (NR2A, NR2B, NR2C
and NR2D) [55]. The expression of functional NMDA receptors is a relatively slow process
during the maturation of neurons [56]. Therefore, in molecular terms there are different
isoforms of functional NMDA receptors whose level of expression varies from one type of
neurons to another, and also during neuronal maturation. In addition, NMDA receptors are
found in synaptic and in extra-synaptic locations [56-58]. As activation of extra-synaptic
NMDA receptors can lead to a less focalized increase of cytosolic calcium, the extra-synaptic
NMDA receptors are likely to play a role more relevant than synaptic NMDA receptors in the
control of cytosolic calcium homeostasis in the neuronal soma. Phosphorylation of NMDA
receptors in vitro by PKA and by some PKC isoforms increases their activity [59]. The co-
stimulation of PKA and PKC elicits the phosphorylation of Ser896 and Ser897 leading to
activation of NMDA receptors, while phosphorylation of Ser890 by only PKC leads to a
subcellular re-localization of the NR1 subunit of NMDA receptors, which is reverted upon
dephosphorylation [60].

2.2. Transport systems that release calcium from intracellular stores

The long-term control of neuronal calcium homeostasis also involves several major calcium
transport systems of the subcellular organelles that behave as relevant neuronal intracellular
stores, namely, endoplasmic reticulum and mitochondria.
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The endoplasmic reticulum Ca2+-ATPase (SERCA) helps to pump calcium out from the cytosol
to the endoplasmic reticulum internal space [5], while calcium release from the endoplasmic
reticulum involves the activation of IP3 receptors and/or ryanodine receptors in different
neuronal responses and in synaptic plasticity [5,61-63]. Although the neuronal endoplasmic
reticulum can accumulate much lower amounts of calcium than the sarcoplasmic reticulum of
muscle cells, it is still significant for hippocampal neurons as shown in several studies, see e.g.
[4,64]. In these cases, calcium release from the endoplasmic reticulum can sustain a moderate
increase of cytosolic calcium, which has been shown to play a significant role in the process of
LTP in hippocampal neurons [4,64]. By itself, calcium filling of the endoplasmic reticulum is
relevant for neuronal survival to ensure the correct protein folding of many proteins, partic‐
ularly proteins of the plasma membrane or to be secreted to the extracellular space, as the
activity of several endoplasmic reticulum protein-chaperones is dependent on the calcium
concentration in the internal space of the endoplasmic reticulum [65]. Depletion of calcium in
the endoplasmic reticulum has been shown to elicit the opening of specific calcium channels
of the plasma membrane, the store-operated calcium entry (SOCE) [5,66-67]. The presence of
SOCE in neurons has been documented during last years [4,68], and its opening elicits a
transient increase of cytosolic calcium under neuronal stress conditions to restore the calcium
levels of intracellular stores. The inhibition of SERCA by selective inhibitors, thapsigargin or
cyclopiazonic acid, is needed to induce the large calcium depletion in the endoplasmic
reticulum required for SOCE in experiments with cells in culture. Thus, this process can be
seen as a 'rescue call' at the cellular level and operates under conditions of severe energetic
depletion of the neurons. Indeed, it is to be recalled here that these channels and in particular
the isoforms TRPC-3 and -6 have been also involved in neuronal survival of CGN [69]. More
recently, Selvaraj et al. [70] have demonstrated that in a mouse neurotoxin-based model of
Parkinson’s disease, reduced Ca2+ influx through transient receptor potential C1 (TRPC1)
channels in the plasma membrane of dopaminergic neurons triggers a cell death-inducing
endoplasmic reticulum-stress response. These latter results highlighted for the first time the
relevance of calcium homeostasis in Parkinson’s disease.

In contrast, the large population of neuronal mitochondria can store relatively large amounts
of calcium, high enough to elicit a large increase of cytosolic calcium as shown by several
studies, see e.g. [71,72]. Nevertheless, the rate of calcium fluxes across the mitochondrial
membrane transporters in normal cells is much slower than that measured for the major
endoplasmic reticulum calcium transport systems listed above. However, calcium release from
mitochondria high enough to promote a large and sustained rise of cytosolic calcium in
neurons has been observed only during the development of neuronal cell death, as a conse‐
quence of the steady opening of the high permeability mitochondrial transition pore [73]. On
these grounds, large calcium release from mitochondria has been proposed to be part of the
molecular mechanism that triggers irreversible events in neuronal cell death through calpains
activation. On the other hand, the uptake of calcium by mitochondria takes place through a
calcium uniporter [71,73], with a rate of uptake in the submicromolar calcium range much
lower than the major cytosolic calcium extrusion pathways, namely, PMCA and SERCA in
neurons [4,6].
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2.3. The transport systems involved in calcium extrusion from the cytosol

The major plasma membrane calcium extrusion systems, PMCA and Na+/Ca2+-exchanger
(NCX) are expressed in all neuronal types. PMCA provides the major extrusion pathway
operating in neurons for the maintenance of cytosolic calcium concentrations below the
neurotoxic calcium range, i.e. <0.4 μM cytosolic calcium [6,74,75]. As PMCA is active at
cytosolic calcium concentrations below 0.4 μM [6,74], neurons must spend a significant amount
of metabolic energy (ATP) to maintain cytosolic calcium within the short concentration range
which is required for neuronal survival. Therefore, the cytosolic calcium concentration can be
considered a key bioenergetics marker of neuronal activity and survival. In contrast, NCX is
more potent than the PMCA at cytosolic calcium concentrations ≥0.5 μM [6,76]. On these
grounds, NCX can be seen as a safety system to minimise neuronal damage associated with
cytosolic calcium ≥0.4 μM, as its activation when cytosolic calcium reaches this range allows
neurons to rapidly reset cytosolic calcium to the concentration window that allows neuronal
survival, see above. The expression levels of different neuronal isoforms of PMCA undergo
significant changes during neuronal maturation [77], and a similar observation has been
reported for NCX isoforms [78]. This has been seen as a neuronal adaptative response to the
fine set of free cytosolic calcium concentration and control of cytosolic calcium homeostasis,
since it has been demonstrated that different PMCA isoforms show different affinity for
calcium [79]. On the other hand, although both PMCA and NCX are found in the plasma
membrane of the neuronal soma and neuronal dendrites, recent data cast doubt on the current
assumption that both PMCA and NCX are homogeneously distributed in the plasma mem‐
brane. For example, regulatory effects of actin cytoskeleton have been recently reported on the
NCX activity [80], and actin filaments are components of caveolin-rich structures associated
with 'lipid rafts' [81].

SERCA, which catalyzes the ATP-dependent calcium uptake by this subcellular organelle,
plays only a secondary role as a system for calcium extrusion from the cytosol because in
neurons PMCA is a calcium pump more potent than SERCA [4]. The calcium uptake by
mitochondria is performed mainly via the Ca2+ uniporter driven by the large mitochondrial
inner membrane potential [73], although the contribution of an alternate transport system yet
ill-defined in molecular terms cannot be excluded under conditions of high frequency of
cytosolic calcium peaks [82]. Nevertheless, in neurons the rate of calcium uptake by mito‐
chondria is much slower than the rate of calcium extrusion from the cytosol via the plasma
membrane systems, i.e. the PMCA and NCX, and via the SERCA.

3. Compartmentation of calcium transport systems relevant for the control
of cytosolic calcium homeostasis in nanodomains of the neuronal plasma
membrane and functional implications

Many recent experimental evidences have demonstrated that the calcium transport systems
of the neuronal plasma membrane more relevant for the control of cytosolic calcium homeo‐
stasis are clustered within focalized nanodomains of a diameter size lower or equal to few
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to the endoplasmic reticulum internal space [5], while calcium release from the endoplasmic
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neuronal responses and in synaptic plasticity [5,61-63]. Although the neuronal endoplasmic
reticulum can accumulate much lower amounts of calcium than the sarcoplasmic reticulum of
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increase of cytosolic calcium, which has been shown to play a significant role in the process of
LTP in hippocampal neurons [4,64]. By itself, calcium filling of the endoplasmic reticulum is
relevant for neuronal survival to ensure the correct protein folding of many proteins, partic‐
ularly proteins of the plasma membrane or to be secreted to the extracellular space, as the
activity of several endoplasmic reticulum protein-chaperones is dependent on the calcium
concentration in the internal space of the endoplasmic reticulum [65]. Depletion of calcium in
the endoplasmic reticulum has been shown to elicit the opening of specific calcium channels
of the plasma membrane, the store-operated calcium entry (SOCE) [5,66-67]. The presence of
SOCE in neurons has been documented during last years [4,68], and its opening elicits a
transient increase of cytosolic calcium under neuronal stress conditions to restore the calcium
levels of intracellular stores. The inhibition of SERCA by selective inhibitors, thapsigargin or
cyclopiazonic acid, is needed to induce the large calcium depletion in the endoplasmic
reticulum required for SOCE in experiments with cells in culture. Thus, this process can be
seen as a 'rescue call' at the cellular level and operates under conditions of severe energetic
depletion of the neurons. Indeed, it is to be recalled here that these channels and in particular
the isoforms TRPC-3 and -6 have been also involved in neuronal survival of CGN [69]. More
recently, Selvaraj et al. [70] have demonstrated that in a mouse neurotoxin-based model of
Parkinson’s disease, reduced Ca2+ influx through transient receptor potential C1 (TRPC1)
channels in the plasma membrane of dopaminergic neurons triggers a cell death-inducing
endoplasmic reticulum-stress response. These latter results highlighted for the first time the
relevance of calcium homeostasis in Parkinson’s disease.

In contrast, the large population of neuronal mitochondria can store relatively large amounts
of calcium, high enough to elicit a large increase of cytosolic calcium as shown by several
studies, see e.g. [71,72]. Nevertheless, the rate of calcium fluxes across the mitochondrial
membrane transporters in normal cells is much slower than that measured for the major
endoplasmic reticulum calcium transport systems listed above. However, calcium release from
mitochondria high enough to promote a large and sustained rise of cytosolic calcium in
neurons has been observed only during the development of neuronal cell death, as a conse‐
quence of the steady opening of the high permeability mitochondrial transition pore [73]. On
these grounds, large calcium release from mitochondria has been proposed to be part of the
molecular mechanism that triggers irreversible events in neuronal cell death through calpains
activation. On the other hand, the uptake of calcium by mitochondria takes place through a
calcium uniporter [71,73], with a rate of uptake in the submicromolar calcium range much
lower than the major cytosolic calcium extrusion pathways, namely, PMCA and SERCA in
neurons [4,6].
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considered a key bioenergetics marker of neuronal activity and survival. In contrast, NCX is
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grounds, NCX can be seen as a safety system to minimise neuronal damage associated with
cytosolic calcium ≥0.4 μM, as its activation when cytosolic calcium reaches this range allows
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survival, see above. The expression levels of different neuronal isoforms of PMCA undergo
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since it has been demonstrated that different PMCA isoforms show different affinity for
calcium [79]. On the other hand, although both PMCA and NCX are found in the plasma
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brane. For example, regulatory effects of actin cytoskeleton have been recently reported on the
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SERCA, which catalyzes the ATP-dependent calcium uptake by this subcellular organelle,
plays only a secondary role as a system for calcium extrusion from the cytosol because in
neurons PMCA is a calcium pump more potent than SERCA [4]. The calcium uptake by
mitochondria is performed mainly via the Ca2+ uniporter driven by the large mitochondrial
inner membrane potential [73], although the contribution of an alternate transport system yet
ill-defined in molecular terms cannot be excluded under conditions of high frequency of
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chondria is much slower than the rate of calcium extrusion from the cytosol via the plasma
membrane systems, i.e. the PMCA and NCX, and via the SERCA.

3. Compartmentation of calcium transport systems relevant for the control
of cytosolic calcium homeostasis in nanodomains of the neuronal plasma
membrane and functional implications

Many recent experimental evidences have demonstrated that the calcium transport systems
of the neuronal plasma membrane more relevant for the control of cytosolic calcium homeo‐
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Cytosolic Calcium Homeostasis in Neurons — Control Systems, Modulation by Reactive Oxygen and…
http://dx.doi.org/10.5772/57576

67



hundreds of nanometers. Lipid rafts of the plasma membrane are dynamic nanodomains of a
dimension between 10 and 200 nm [83], which define cellular sub-microdomains of the plasma
membrane anchoring caveolins, see e.g. [81], and it has been suggested that caveolin-rich
nanodomains associated with neuronal plasma membrane lacking the morphological appear‐
ance of “caveola invaginations” can serve to focalize signal transduction in neurons [84].
Indeed, the putative implication of lipid rafts in the regulation of intracellular calcium
homeostasis and calcium signalling pathways was already suggested in the 1970´s [85,86], but
only during the last decade this hypothesis has been experimentally demonstrated, see [87,88].

Lipid rafts are enriched in cholesterol and sphingolipids [83], including a lipid family partic‐
ularly enriched in the plasma membrane of neurons: the gangliosides [89], and define nano‐
domains of the plasma membrane for the anchoring of caveolins, flotillin, actin microfilaments
and also an increasingly higher number of palmitoylated or farnesylated proteins, see [81].
The isoform caveolin-1 binds to cholesterol and sphingolipids [90-92], and also promotes the
transport of cholesterol from the endoplasmic reticulum to the plasma membrane [93]. These
nanodomains are merging as unique platforms for intracellular signalling in neurons, as
pointed out in [84,94,95], and their stability is currently rationalized in terms of specific protein/
protein or protein/lipid interactions. Noteworthy, as caveolins can act as scaffolding proteins
in protein/protein interactions within these nanodomains [96,97], these interactions also bear
functional relevance for the protein partners and, therefore, these nanodomains cannot be
solely seen as structural elements of the plasma membrane. In this regard, it has been reported
that cholesterol depletion with methyl-β-cyclodextrin, a chemical widely used to solubilise
lipid rafts, alters the basal current of L-VOCC in foetal mouse skeletal muscle cells and
cardiomyocytes [98,99]. Also the calcium-dependent exocytosis in synaptosomes is sensible to
the cholesterol content of the plasma membrane [100], and probably one of the best docu‐
mented functions of caveolins is their implication in the maintenance of intracellular choles‐
terol homeostasis [101].

Noteworthy, using hippocampal neurons in culture it has been demonstrated the regulation
of caveolins expression by L-glutamate [102], and an increased level of caveolins expression
has been reported in Alzheimer’s disease which has been correlated with the increased level
of cellular cholesterol observed in these patients [103]. On the other hand, knockout mice in
caveolin-1 have impaired nitric oxide and calcium signalling pathways, displaying severe
vascular and pulmonary anomalies and uncontrolled cellular proliferation [104], and caveolins
mutations has been associated with muscle disorders and cancer [96]. Moreover, lipid rafts
alterations have been reported in a significant number of pathologies [105,106].

The association of the muscle type of L-VOCC with lipid rafts sub-microdomains in cardio‐
myocytes was established nearly 10 years ago [81,107]. Later, we have demonstrated L-VOCC
association with lipid rafts nanodomains in mature primary cultures of cerebellar granule
neurons using FRET microscopy imaging [108]. This association of L-VOCC with lipid rafts
nanodomains has a major functional relevance for the regulation by protein kinases of the
calcium influx through these channels in neurons. First, as noted previously in this chapter
within the brain the α1c subunit of L-VOCC forms a complex with PKA [30] and Razani et al.
[109] have demonstrated the co-localization and direct interaction between the scaffolding
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domain of caveolin-1 and the catalytic subunit of PKA in vivo and in vitro, respectively. Second,
some experimental data have suggested the possibility of direct association of CaMKII with
lipid rafts [110], which is consistent with the reported co-localization of CaV1.2, the predomi‐
nant L-VOCC subtype in the brain, and CaMKII [37]. Functional regulation of L-VOCC by
lipid rafts is also supported by the modulation of the level of phosphorylation of L-VOCC by
cholesterol depletion in cardiomyocytes [99].

Since the two major subtypes of L-VOCC present in the brain, namely CaV1.2 and CaV1.3,
directly interact with many proteins having the PDZ binding domain [111,112], proteins that
also bind to the NMDA receptor [113], the association of these receptors with lipid rafts
nanodomains is not an unexpected finding. The presence of NMDA receptors in isolated lipid
rafts has been shown by different investigators [114-117], and using fluorescence resonance
energy transfer (FRET) microscopy imaging their association with lipid rafts nanodomains in
mature primary cultures of cerebellar granule neurons has been demonstrated in a recent work
of our laboratory [117]. The critical role of proteins with PDZ domains in the association of
NMDA receptors with neuronal lipid rafts has been experimentally demonstrated using
genetically modified mice, as mutations in the NR2A and NR2B subunits which impair their
interaction with PDZ domains led to a reduction of NMDA receptors association with lipid
rafts [118]. It has been suggested that the clustering of NMDA receptors in lipid rafts-associated
sub-microdomains can potentiate the activation of these receptors, thereby serving as a
molecular mechanism for potentiation of the synaptic efficiency in neuronal connections
[116,117]. Because AMPA receptor clustering near NMDA receptors plays a key role for
NMDA receptor activation and LTP induction, it is of special neurophysiological relevance to
note here that the association of AMPA receptors with molecular components of the lipid rafts
of neuronal plasma membranes has also been experimentally demonstrated [114,119,120].

The association with lipid rafts of the major systems of the neuronal plasma membrane for
extrusion of calcium from the cytosol, PMCA and NCX, has also been experimentally assessed,
although to the best of our knowledge only in the case of PMCA this has been reported with
neuronal plasma membranes at the time this chapter was written. PMCA association with lipid
rafts has been shown using preparations of synaptic plasma membranes [121] and also in
primary cultures of rat cortical and hippocampal neurons [122]. Earlier, it was shown that the
C-terminal domain of the PMCA interacts with proteins with PDZ domains [123]. Moreover,
Jiang et al. [122] showed that disruption of lipid rafts domains by chronic depletion of choles‐
terol elicited a marked decrease of PMCA activity, suggesting that PMCA associated with lipid
rafts is more active than PMCA bound to non-raft domains. NCX has been shown to be
associated with lipid rafts in the smooth muscle of coronary arteries [124], it has also been
shown to be present in membrane fractions of vascular endothelial cells enriched in the lipid
rafts markers caveolin-1 and e-NOS [125] and the direct interaction of cardiac NCX with
caveolin-3 has been demonstrated by co-precipitation [126].

On these grounds, lipid rafts nanodomains of the neuronal plasma membrane can be seen as
microchip-like structures for the fine coupling and control of systems playing a major role in
the maintenance of a cytosolic calcium homeostasis within the range that allows for survival
and normal functionality of neurons. Because of the relevance of oxidative stress in neurode‐
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ularly enriched in the plasma membrane of neurons: the gangliosides [89], and define nano‐
domains of the plasma membrane for the anchoring of caveolins, flotillin, actin microfilaments
and also an increasingly higher number of palmitoylated or farnesylated proteins, see [81].
The isoform caveolin-1 binds to cholesterol and sphingolipids [90-92], and also promotes the
transport of cholesterol from the endoplasmic reticulum to the plasma membrane [93]. These
nanodomains are merging as unique platforms for intracellular signalling in neurons, as
pointed out in [84,94,95], and their stability is currently rationalized in terms of specific protein/
protein or protein/lipid interactions. Noteworthy, as caveolins can act as scaffolding proteins
in protein/protein interactions within these nanodomains [96,97], these interactions also bear
functional relevance for the protein partners and, therefore, these nanodomains cannot be
solely seen as structural elements of the plasma membrane. In this regard, it has been reported
that cholesterol depletion with methyl-β-cyclodextrin, a chemical widely used to solubilise
lipid rafts, alters the basal current of L-VOCC in foetal mouse skeletal muscle cells and
cardiomyocytes [98,99]. Also the calcium-dependent exocytosis in synaptosomes is sensible to
the cholesterol content of the plasma membrane [100], and probably one of the best docu‐
mented functions of caveolins is their implication in the maintenance of intracellular choles‐
terol homeostasis [101].

Noteworthy, using hippocampal neurons in culture it has been demonstrated the regulation
of caveolins expression by L-glutamate [102], and an increased level of caveolins expression
has been reported in Alzheimer’s disease which has been correlated with the increased level
of cellular cholesterol observed in these patients [103]. On the other hand, knockout mice in
caveolin-1 have impaired nitric oxide and calcium signalling pathways, displaying severe
vascular and pulmonary anomalies and uncontrolled cellular proliferation [104], and caveolins
mutations has been associated with muscle disorders and cancer [96]. Moreover, lipid rafts
alterations have been reported in a significant number of pathologies [105,106].

The association of the muscle type of L-VOCC with lipid rafts sub-microdomains in cardio‐
myocytes was established nearly 10 years ago [81,107]. Later, we have demonstrated L-VOCC
association with lipid rafts nanodomains in mature primary cultures of cerebellar granule
neurons using FRET microscopy imaging [108]. This association of L-VOCC with lipid rafts
nanodomains has a major functional relevance for the regulation by protein kinases of the
calcium influx through these channels in neurons. First, as noted previously in this chapter
within the brain the α1c subunit of L-VOCC forms a complex with PKA [30] and Razani et al.
[109] have demonstrated the co-localization and direct interaction between the scaffolding
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domain of caveolin-1 and the catalytic subunit of PKA in vivo and in vitro, respectively. Second,
some experimental data have suggested the possibility of direct association of CaMKII with
lipid rafts [110], which is consistent with the reported co-localization of CaV1.2, the predomi‐
nant L-VOCC subtype in the brain, and CaMKII [37]. Functional regulation of L-VOCC by
lipid rafts is also supported by the modulation of the level of phosphorylation of L-VOCC by
cholesterol depletion in cardiomyocytes [99].

Since the two major subtypes of L-VOCC present in the brain, namely CaV1.2 and CaV1.3,
directly interact with many proteins having the PDZ binding domain [111,112], proteins that
also bind to the NMDA receptor [113], the association of these receptors with lipid rafts
nanodomains is not an unexpected finding. The presence of NMDA receptors in isolated lipid
rafts has been shown by different investigators [114-117], and using fluorescence resonance
energy transfer (FRET) microscopy imaging their association with lipid rafts nanodomains in
mature primary cultures of cerebellar granule neurons has been demonstrated in a recent work
of our laboratory [117]. The critical role of proteins with PDZ domains in the association of
NMDA receptors with neuronal lipid rafts has been experimentally demonstrated using
genetically modified mice, as mutations in the NR2A and NR2B subunits which impair their
interaction with PDZ domains led to a reduction of NMDA receptors association with lipid
rafts [118]. It has been suggested that the clustering of NMDA receptors in lipid rafts-associated
sub-microdomains can potentiate the activation of these receptors, thereby serving as a
molecular mechanism for potentiation of the synaptic efficiency in neuronal connections
[116,117]. Because AMPA receptor clustering near NMDA receptors plays a key role for
NMDA receptor activation and LTP induction, it is of special neurophysiological relevance to
note here that the association of AMPA receptors with molecular components of the lipid rafts
of neuronal plasma membranes has also been experimentally demonstrated [114,119,120].

The association with lipid rafts of the major systems of the neuronal plasma membrane for
extrusion of calcium from the cytosol, PMCA and NCX, has also been experimentally assessed,
although to the best of our knowledge only in the case of PMCA this has been reported with
neuronal plasma membranes at the time this chapter was written. PMCA association with lipid
rafts has been shown using preparations of synaptic plasma membranes [121] and also in
primary cultures of rat cortical and hippocampal neurons [122]. Earlier, it was shown that the
C-terminal domain of the PMCA interacts with proteins with PDZ domains [123]. Moreover,
Jiang et al. [122] showed that disruption of lipid rafts domains by chronic depletion of choles‐
terol elicited a marked decrease of PMCA activity, suggesting that PMCA associated with lipid
rafts is more active than PMCA bound to non-raft domains. NCX has been shown to be
associated with lipid rafts in the smooth muscle of coronary arteries [124], it has also been
shown to be present in membrane fractions of vascular endothelial cells enriched in the lipid
rafts markers caveolin-1 and e-NOS [125] and the direct interaction of cardiac NCX with
caveolin-3 has been demonstrated by co-precipitation [126].

On these grounds, lipid rafts nanodomains of the neuronal plasma membrane can be seen as
microchip-like structures for the fine coupling and control of systems playing a major role in
the maintenance of a cytosolic calcium homeostasis within the range that allows for survival
and normal functionality of neurons. Because of the relevance of oxidative stress in neurode‐
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generation it is of utmost importance to note that two enzymatic sources of ROS/RNS have
been shown to be also associated with these lipid rafts nanodomains in the neuronal plasma
membrane, namely, neuronal nitric oxide synthase (nNOS) and cytochrome b5 reductase
(Cb5R). Sato et al. [127] showed that two domains of the nNOS, the oxygenase and the reductase
domains, interact with the scaffolding domain of caveolin-1. More recently, using FRET
microscopy imaging our group has shown that nNOS is associated with lipid rafts nanodo‐
mains enriched in NMDA receptors and L-VOCC in mature cultures of primary cerebellar
granule neurons [117]. Since nitric oxide play a very important role in neuromodulation, this
association bears a special relevance as protein/protein interactions regulate the enzyme
activity of nNOS as well as define anchoring points for the subcellular location of this protein
[127,128]. Indeed, it has been shown that the interaction of nNOS with caveolin-3 in skeletal
muscle modulates the catalytic activity of NOS [128]. In addition, previous works of our
laboratory have shown that the Cb5R, whose deregulation at the onset of neuronal apoptosis
generates a burst of superoxide anion that stimulates the entry in the irreversible phase
characterized by caspases activation [10,129-131], is also associated with lipid rafts nanodo‐
mains enriched in L-VOCC and NMDA receptors in mature cultures of primary cerebellar
granule neurons [108,130,131]. Moreover, the association with these lipid rafts nanodomains
of a source of nitric oxide (nNOS) and of a source of superoxide anion (Cb5R) point out that
these nanodomains may play also a major role in the focalized generation of the harmful
oxidant peroxynitrite in the plasma membrane when the neurons are exposed to sustained
cellular stress conditions. Let us recall here also that some mitochondria, a widely accepted
major ROS-producing subcellular compartment, are also close to the plasma membrane in
many neuronal types, because the cell nucleus occupies a large volume of the neuronal soma.

This protein clustering associated with lipid rafts nanodomains of the neuronal plasma
membrane is summarized in the Table 1, where proteins of the cytoskeleton typically associ‐
ated with lipid rafts are also included. Noteworthy, ROS significantly alter the actin polymer‐
isation/depolymerisation dynamics, reviewed in [132]. Because actin microfilaments are part
of the structural protein network of proteins associated with lipid rafts nanodomains, ROS are
expected to produce a significant distortion of this protein network, like nNOS which has been
shown to associate with the neuronal cytoskeleton in synaptic terminals [133]. Indeed,
regulatory effects of actin cytoskeleton have been reported on NMDA receptors activation
[134], on the distribution of L-type calcium channels in myocytes [135], and on the activity of
NCX [80].

Structural elements Calcium transport systems ROS/RNS sources Regulatory kinases

Cholesterol, Caveolins, L-VOCC, nNOS and Cb5R PKA and CaMKII

Sphingolipids, Flotillin, NMDA and AMPA receptors,

Actin microfilaments, PMCA and NCX

PDZ-binding proteins

Table 1 Molecules associated with lipid rafts in the neuronal plasma membrane of special relevance for cytosolic
calcium homeostasis and ROS/RNS-calcium signalling cross-modulation.
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In spite of the well known relevance of L-glutamate AMPA and NMDA receptors clustering
in LTP, the regulation of incorporation and dissociation of proteins in nanodomains or sub-
microdomains associated with lipid rafts is still poorly understood and, thus, it is a pending
issue. It is to be noted also that knowledge of the time scale range of the clustering dynamics
of proteins within these nanodomains is a basic need to properly understand their formation
and plasticity, and this is particularly relevant to reach firm conclusions regarding their role
as structural or adaptive elements in rapid and slow neuronal responses.

In conclusion, a close spatial location of these calcium transport proteins in the neuronal
plasma membrane can also afford a fast and fine tuning of cytosolic calcium concentrations.
Moreover, as major redox centers producing ROS are also tighly associated with lipid rafts
nanodomains, this compartmentation allows also to rationalize on simple grounds the intimate
cross-talk between ROS and calcium signalling in neurons, as well as between oxidative stress
and sustained cytosolic calcium deregulation, reviewed in [136,137].

4. Sustained alteration of cytosolic calcium homeostasis in neuronal death

Neuronal survival is extremely dependent of the fine tuning of cytosolic calcium homeosta‐
sis, because cytosolic calcium concentration has to be maintained within a relatively narrow
window for neuronal survival [1], for example, between 70 and 200 nM for cerebellar granule
neurons in culture [9,138]. An overwhelming amount of experimental data reported by many
investigators from different countries show that sustained deviations of cytosolic calcium
concentration out of this narrow window lead to neuronal cell death. Besides rapid necrotic
neuronal death induced by sustained cytosolic calcium concentration higher than 0.4 μM for
periods in the minutes time scale range [1,9,44,45,138,139], it has also been shown that apoptot‐
ic neuronal death can be induced when cytosolic calcium concentration remains very low for
longer periods of time, in the hours time scale range [1,2]. As the extracellular free calcium
concentration is approximately 1 mM, this implies that neurons need to sustain a large calcium
gradient across their plasma membranes. Owing to the large number of synaptic connections
established by neurons in the brain, these cells need to spend a large amount of metabolic energy
to maintain their cytosolic calcium homeostasis, because during synaptic activity calcium entry
is  activated through VOCC and some ionotropic  receptors,  mainly NMDA receptors.  In
addition, many neuronal processes are extremely dependent upon cytosolic calcium concentra‐
tion, such as neurotransmitter secretion and synaptic plasticity [140], neurite growth and
sprouting [141] and signalling pathways which mediate the metabolic neuronal responses to a
large number of relevant extracellular stimuli [4,5]. Therefore, the cytosolic calcium concentra‐
tion should be considered a major bioenergetic marker for neuronal activity and survival.

The increase of oxidative stress in brain is a biochemical marker associated with neurodege‐
nerative insults, like ischemia-reperfusion or inflammation, or neurodegenerative diseases of
high prevalence and relevance to humans, for example, Alzheimer’s, Parkinson’s, amyotrophic
lateral sclerosis and Huntington’s diseases. Many studies have shown that cellular oxidative
stress is caused by an imbalance between endogenous antioxidant defences and ROS produc‐
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(Cb5R). Sato et al. [127] showed that two domains of the nNOS, the oxygenase and the reductase
domains, interact with the scaffolding domain of caveolin-1. More recently, using FRET
microscopy imaging our group has shown that nNOS is associated with lipid rafts nanodo‐
mains enriched in NMDA receptors and L-VOCC in mature cultures of primary cerebellar
granule neurons [117]. Since nitric oxide play a very important role in neuromodulation, this
association bears a special relevance as protein/protein interactions regulate the enzyme
activity of nNOS as well as define anchoring points for the subcellular location of this protein
[127,128]. Indeed, it has been shown that the interaction of nNOS with caveolin-3 in skeletal
muscle modulates the catalytic activity of NOS [128]. In addition, previous works of our
laboratory have shown that the Cb5R, whose deregulation at the onset of neuronal apoptosis
generates a burst of superoxide anion that stimulates the entry in the irreversible phase
characterized by caspases activation [10,129-131], is also associated with lipid rafts nanodo‐
mains enriched in L-VOCC and NMDA receptors in mature cultures of primary cerebellar
granule neurons [108,130,131]. Moreover, the association with these lipid rafts nanodomains
of a source of nitric oxide (nNOS) and of a source of superoxide anion (Cb5R) point out that
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oxidant peroxynitrite in the plasma membrane when the neurons are exposed to sustained
cellular stress conditions. Let us recall here also that some mitochondria, a widely accepted
major ROS-producing subcellular compartment, are also close to the plasma membrane in
many neuronal types, because the cell nucleus occupies a large volume of the neuronal soma.

This protein clustering associated with lipid rafts nanodomains of the neuronal plasma
membrane is summarized in the Table 1, where proteins of the cytoskeleton typically associ‐
ated with lipid rafts are also included. Noteworthy, ROS significantly alter the actin polymer‐
isation/depolymerisation dynamics, reviewed in [132]. Because actin microfilaments are part
of the structural protein network of proteins associated with lipid rafts nanodomains, ROS are
expected to produce a significant distortion of this protein network, like nNOS which has been
shown to associate with the neuronal cytoskeleton in synaptic terminals [133]. Indeed,
regulatory effects of actin cytoskeleton have been reported on NMDA receptors activation
[134], on the distribution of L-type calcium channels in myocytes [135], and on the activity of
NCX [80].
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PDZ-binding proteins

Table 1 Molecules associated with lipid rafts in the neuronal plasma membrane of special relevance for cytosolic
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in LTP, the regulation of incorporation and dissociation of proteins in nanodomains or sub-
microdomains associated with lipid rafts is still poorly understood and, thus, it is a pending
issue. It is to be noted also that knowledge of the time scale range of the clustering dynamics
of proteins within these nanodomains is a basic need to properly understand their formation
and plasticity, and this is particularly relevant to reach firm conclusions regarding their role
as structural or adaptive elements in rapid and slow neuronal responses.

In conclusion, a close spatial location of these calcium transport proteins in the neuronal
plasma membrane can also afford a fast and fine tuning of cytosolic calcium concentrations.
Moreover, as major redox centers producing ROS are also tighly associated with lipid rafts
nanodomains, this compartmentation allows also to rationalize on simple grounds the intimate
cross-talk between ROS and calcium signalling in neurons, as well as between oxidative stress
and sustained cytosolic calcium deregulation, reviewed in [136,137].

4. Sustained alteration of cytosolic calcium homeostasis in neuronal death

Neuronal survival is extremely dependent of the fine tuning of cytosolic calcium homeosta‐
sis, because cytosolic calcium concentration has to be maintained within a relatively narrow
window for neuronal survival [1], for example, between 70 and 200 nM for cerebellar granule
neurons in culture [9,138]. An overwhelming amount of experimental data reported by many
investigators from different countries show that sustained deviations of cytosolic calcium
concentration out of this narrow window lead to neuronal cell death. Besides rapid necrotic
neuronal death induced by sustained cytosolic calcium concentration higher than 0.4 μM for
periods in the minutes time scale range [1,9,44,45,138,139], it has also been shown that apoptot‐
ic neuronal death can be induced when cytosolic calcium concentration remains very low for
longer periods of time, in the hours time scale range [1,2]. As the extracellular free calcium
concentration is approximately 1 mM, this implies that neurons need to sustain a large calcium
gradient across their plasma membranes. Owing to the large number of synaptic connections
established by neurons in the brain, these cells need to spend a large amount of metabolic energy
to maintain their cytosolic calcium homeostasis, because during synaptic activity calcium entry
is  activated through VOCC and some ionotropic  receptors,  mainly NMDA receptors.  In
addition, many neuronal processes are extremely dependent upon cytosolic calcium concentra‐
tion, such as neurotransmitter secretion and synaptic plasticity [140], neurite growth and
sprouting [141] and signalling pathways which mediate the metabolic neuronal responses to a
large number of relevant extracellular stimuli [4,5]. Therefore, the cytosolic calcium concentra‐
tion should be considered a major bioenergetic marker for neuronal activity and survival.

The increase of oxidative stress in brain is a biochemical marker associated with neurodege‐
nerative insults, like ischemia-reperfusion or inflammation, or neurodegenerative diseases of
high prevalence and relevance to humans, for example, Alzheimer’s, Parkinson’s, amyotrophic
lateral sclerosis and Huntington’s diseases. Many studies have shown that cellular oxidative
stress is caused by an imbalance between endogenous antioxidant defences and ROS produc‐
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tion in favour of the latter, which results in an excessive exposure of cells to harmful ROS/RNS.
On the other hand, it is well established now that the calcium transport systems most relevant
for the cytosolic calcium homeostasis in neurons are molecular targets for ROS/RNS and that
their chemical modification by these reactive species lead to their functional impairment.
Indeed, oxidative chemical modifications of these calcium transport systems have been
reported to take place in vivo. Moreover, many experimental studies reported during last 10
years led to the conclusion that ROS produce a sustained deregulation of cytosolic calcium
homeostasis in neurons. For example, neuronal death mediated by calpains activation can be
taken as a biological marker of a sustained rise of cytosolic calcium concentration [142-144].
Another examples are provided by the central role of L-VOCC and ROS in the apoptosis
induced by low extracellular potassium concentration [2,9,10,129,131,145], and also by L-
glutamate excitoxicity-induced neuronal death [44,45,146]. Thus, sustained alterations of
neuronal cytosolic calcium are expected to be a convergent cellular mechanism in brain
neurodegeneration. Consistent with this hypothesis, alterations of neuronal calcium homeo‐
stasis and brain oxidative stress have been reported in the case for the brain neurodegenerative
diseases of higher incidence to humans, like Alzheimer’s [147,148] and Parkinson’s [149,150],
or in the acute neurodegeneration observed in amyotrophic lateral sclerosis [146,151], and also
for major brain insults, such as excitotoxicity in trauma and ischemia-reperfusion [44,45],
inflammation [152,153] and neurotoxicity by drugs and environmental chemicals [139,154].

Most ROS/RNS that are produced in cellular oxidative stress in mammalian tissues have been
demonstrated to be strongly neurotoxic to neurons in vitro. This is a relatively large list of ROS/
RNS, and we shall concentrate in this chapter in those most studied as agents in brain neuro‐
degeneration, namely, superoxide anion, H2O2, hydroxyl radicals, lipid hydroperoxides, and
nitric oxide-derived ROS, mainly peroxynitrite and nitrogen dioxide. Because of the calcium
dependence of the activity of nNOS, the main enzymatic system responsible for the production
of nitric oxide in neurons [133], RNS should be expected to play a particularly relevant role as
intracellular biomarkers of the level of coordination or deregulation of calcium and ROS
signalling pathways in neurons. However, it is still a matter of debate whether in vivo all of
these ROS/RNS can reach concentrations high enough to act as causal agents or merely as
agents that potentiate or accelerate the rate of an ongoing neuronal death process in the brain.
Moreover, the analysis and dissection of the chemical reaction pathways of each one of this
ROS/RNS is further complicated by the fact that in vivo they generate radicalic chain chemical
reactions. Therefore, it is critical to identify the major subcellular primary sources of these ROS/
RNS in different neurons and in different degenerative processes in the brain, and this is an
issue yet to be settled in many cases, as during lasts years the experimental evidences have
pointed out that the relative relevance of different ROS/RNS seems to be largely dependent
on the neurodegenerative disease or brain insult.

5. Modulation by ROS/RNS of calcium transport systems relevant for the
control of neuronal cytosolic calcium homeostasis

ROS and RNS producing oxidative stress to neurons can be generated by neuronal and also
by non-neuronal cells, like microglia or endothelial cells of the brain blood vessels. It is to be
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noted that oxidative stress-induced brain degeneration is a relatively slow process, in most
neurodegenerative diseases developing in periods of time of years and in acute brain ischemia-
reperfusion in a time range from minutes to several days, depending upon the intensity of the
oxidative stress insult. Thus, in a brain suffering oxidative stress neurons are exposed for
relatively large time periods to either extracellularly and/or intracellularly generated ROS/
RNS. Because the extracellular liquid bathing the brain and stem neurons is poorer in antiox‐
idants than the blood, due to the low permeability and high selectivity of the blood-brain
barrier, the extracellular antioxidant protection in the brain is notably lower than that of other
organs and tissues in mammals. Under these environmental conditions the plasma membrane
of neurons, where major calcium transport systems controlling the cytosolic calcium homeo‐
stais are located, is particularly sensitive to the oxidative stress generated in the brain by vicinal
neuronal and non-neuronal cells. The major ROS/RNS reported to play a significant role in the
enhanced brain oxidative stress associated with neurodegenerative diseases and insults like
ischemia-reperfusion and inflammation can be split into three major groups: (i) primary
biochemical ROS/RNS, i.e. chemical species directly generated by some enzymes or proteins
during brain activity in normal or pathophysiological conditions, (ii) secondary biochemical
ROS/RNS, chemical species derived by rapid reaction between the primary biochemical ROS/
RNS or by systems involved in their detoxification, and (iii) radicalic chain ROS/RNS, chemical
radicals involved in the initiation of radical reaction chains or that are largely generated within
radical reaction chains.

Superoxide anion is a primary biochemical ROS that plays a key role in the generation of many
of the more harmful ROS and RNS detected in the oxidative stress-induced degeneration of
the brain. Superoxide anion can be produced by neuronal and non-neuronal cells within the
brain. Because of the relatively low permeability to superoxide anion of lipid bilayers [155],
extracellular superoxide anion must be largely generated by redox centres of the plasma
membrane of neuronal and non-neuronal cells. In glial, macrophages and endothelial cells
there are NADPH oxidases of the NOX family, which are under the control of transcriptional
antioxidant-responsive elements (ARE), reviewed in [156]. In contrast, we found that in the
plasma membrane of neurons the NADH-dependent production of superoxide anion associ‐
ated with their NADH oxidase activity was nearly ten-fold higher than their NADPH activity
[157,158]. Indeed, an overshot of superoxide anion production at the plasma membrane is an
early event in the apoptosis of cerebellar granule neurons induced by extracellular K+

deprivation [10,131], an overshot that we have found to be largely catalyzed by deregulation
of cytochrome b5 reductase associated with plasma membrane lipid rafts sub-microdomains
[130,131]. Mitochondria is now widely accepted as the major source of intracellular superoxide
anion in oxidative stress-induced neuronal death in cultures in vitro, particularly by complexes
I and III of the mitochondrial respiratory chain [159]. In addition, non-mitochondrial enzymes
that use oxygen as substrate can also become a source of intracellular superoxide anion in
neurons, such as the conversion of xanthine dehydrogenase into xanthine oxidase either by
direct oxidation and/or by proteolytic activation during oxidative stress-induced neuronal
death [160].
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tion in favour of the latter, which results in an excessive exposure of cells to harmful ROS/RNS.
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induced by low extracellular potassium concentration [2,9,10,129,131,145], and also by L-
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neuronal cytosolic calcium are expected to be a convergent cellular mechanism in brain
neurodegeneration. Consistent with this hypothesis, alterations of neuronal calcium homeo‐
stasis and brain oxidative stress have been reported in the case for the brain neurodegenerative
diseases of higher incidence to humans, like Alzheimer’s [147,148] and Parkinson’s [149,150],
or in the acute neurodegeneration observed in amyotrophic lateral sclerosis [146,151], and also
for major brain insults, such as excitotoxicity in trauma and ischemia-reperfusion [44,45],
inflammation [152,153] and neurotoxicity by drugs and environmental chemicals [139,154].

Most ROS/RNS that are produced in cellular oxidative stress in mammalian tissues have been
demonstrated to be strongly neurotoxic to neurons in vitro. This is a relatively large list of ROS/
RNS, and we shall concentrate in this chapter in those most studied as agents in brain neuro‐
degeneration, namely, superoxide anion, H2O2, hydroxyl radicals, lipid hydroperoxides, and
nitric oxide-derived ROS, mainly peroxynitrite and nitrogen dioxide. Because of the calcium
dependence of the activity of nNOS, the main enzymatic system responsible for the production
of nitric oxide in neurons [133], RNS should be expected to play a particularly relevant role as
intracellular biomarkers of the level of coordination or deregulation of calcium and ROS
signalling pathways in neurons. However, it is still a matter of debate whether in vivo all of
these ROS/RNS can reach concentrations high enough to act as causal agents or merely as
agents that potentiate or accelerate the rate of an ongoing neuronal death process in the brain.
Moreover, the analysis and dissection of the chemical reaction pathways of each one of this
ROS/RNS is further complicated by the fact that in vivo they generate radicalic chain chemical
reactions. Therefore, it is critical to identify the major subcellular primary sources of these ROS/
RNS in different neurons and in different degenerative processes in the brain, and this is an
issue yet to be settled in many cases, as during lasts years the experimental evidences have
pointed out that the relative relevance of different ROS/RNS seems to be largely dependent
on the neurodegenerative disease or brain insult.

5. Modulation by ROS/RNS of calcium transport systems relevant for the
control of neuronal cytosolic calcium homeostasis

ROS and RNS producing oxidative stress to neurons can be generated by neuronal and also
by non-neuronal cells, like microglia or endothelial cells of the brain blood vessels. It is to be
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RNS. Because the extracellular liquid bathing the brain and stem neurons is poorer in antiox‐
idants than the blood, due to the low permeability and high selectivity of the blood-brain
barrier, the extracellular antioxidant protection in the brain is notably lower than that of other
organs and tissues in mammals. Under these environmental conditions the plasma membrane
of neurons, where major calcium transport systems controlling the cytosolic calcium homeo‐
stais are located, is particularly sensitive to the oxidative stress generated in the brain by vicinal
neuronal and non-neuronal cells. The major ROS/RNS reported to play a significant role in the
enhanced brain oxidative stress associated with neurodegenerative diseases and insults like
ischemia-reperfusion and inflammation can be split into three major groups: (i) primary
biochemical ROS/RNS, i.e. chemical species directly generated by some enzymes or proteins
during brain activity in normal or pathophysiological conditions, (ii) secondary biochemical
ROS/RNS, chemical species derived by rapid reaction between the primary biochemical ROS/
RNS or by systems involved in their detoxification, and (iii) radicalic chain ROS/RNS, chemical
radicals involved in the initiation of radical reaction chains or that are largely generated within
radical reaction chains.

Superoxide anion is a primary biochemical ROS that plays a key role in the generation of many
of the more harmful ROS and RNS detected in the oxidative stress-induced degeneration of
the brain. Superoxide anion can be produced by neuronal and non-neuronal cells within the
brain. Because of the relatively low permeability to superoxide anion of lipid bilayers [155],
extracellular superoxide anion must be largely generated by redox centres of the plasma
membrane of neuronal and non-neuronal cells. In glial, macrophages and endothelial cells
there are NADPH oxidases of the NOX family, which are under the control of transcriptional
antioxidant-responsive elements (ARE), reviewed in [156]. In contrast, we found that in the
plasma membrane of neurons the NADH-dependent production of superoxide anion associ‐
ated with their NADH oxidase activity was nearly ten-fold higher than their NADPH activity
[157,158]. Indeed, an overshot of superoxide anion production at the plasma membrane is an
early event in the apoptosis of cerebellar granule neurons induced by extracellular K+

deprivation [10,131], an overshot that we have found to be largely catalyzed by deregulation
of cytochrome b5 reductase associated with plasma membrane lipid rafts sub-microdomains
[130,131]. Mitochondria is now widely accepted as the major source of intracellular superoxide
anion in oxidative stress-induced neuronal death in cultures in vitro, particularly by complexes
I and III of the mitochondrial respiratory chain [159]. In addition, non-mitochondrial enzymes
that use oxygen as substrate can also become a source of intracellular superoxide anion in
neurons, such as the conversion of xanthine dehydrogenase into xanthine oxidase either by
direct oxidation and/or by proteolytic activation during oxidative stress-induced neuronal
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Nitric oxide is the major primary biochemical RNS produced in oxidative stress-induced
brain degeneration, and although not harmful by itself, its reaction with superoxide anion
yields peroxynitrite (a secondary biochemical ROS/RNS), probably the most neurotoxic ROS/
RNS generated during oxidative stress-mediated brain neurodegeneration, see e.g. [161,162].
The reaction between nitric oxide and superoxide anion is very fast, such that it is considered
a diffusion-controlled chemical reaction due to the very high value of the bimolecular rate
constant, (4-7) 109 M-1 s-1 [163]. Peroxynitrite, in spite of its short lifetime within the cells
[162],  has  been  shown  to  be  a  very  harmful  ROS/RNS  involved  in  the  brain  damage
produced by ischemia-reperfusion [161], by inflammation and spinal cord injury [164,165]
and  also  in  neurodegenerative  diseases  and  aging  [166,167].  Peroxynitrite  can  elicit
functional  damage  of  biomolecules  and  subcellular  structures  acting  either  as  a  potent
oxidant (E0' = 1.2-1.4 V) or through the generation of harmful radicals such as hydroxyl and
nitrogen dioxide free radicals, reviewed in [162,168]. Due to this, peroxynitrite can produce
oxidation  of  protein  cysteines  to  disulfide  bonds,  sulfenic  and  sulfinic  acids  eventually
leading to sulfonic acids,  oxidation of protein methionines,  nitration of protein tyrosines
and  lipids,  lipid  peroxidation,  coenzyme  Q  oxidation,  and  DNA  and  RNA  oxidation.
Because the activation of neuronal nitric oxide synthase requires an increase of cytosolic
calcium, peroxynitrite is one of the more harmful ROS/RNS produced in the oxidative stress
accompanied by sustained alterations of the neuronal cytosolic calcium homeostasis. Indeed,
this  has  been  shown  to  be  the  case  for  the  excitotoxic  neuronal  death  elicited  by  L-
glutamate through activation of NMDA receptors [166,169].

ROS/RNS initiating lipid oxidation and peroxidation, i.e. self-accelerating chemical radical
chains, are the other group of ROS/RNS playing a major role in brain damage by oxidative
stress. Among them, H2O2 has required a large attention because is one of the major products
generated under conditions that elicit over-production of superoxide anion, as it is a product
of superoxide dismutase activity. In addition, intracellular traces of metal ions such as Fe3+ or
Cu2+ can catalyse Fenton-like reactions in neurons, generating hydroxyl radical from super‐
oxide and H2O2 [170]. Hydroxyl radical is one of the most potent cytotoxic oxygen radicals,
which can attack a large variety of important biomolecules, from small biomolecules such as
coenzyme Q or α-tocopherol [171] up to large biomolecules like proteins, RNA and DNA
[170,172]. Since hydroxyl radical can be also generated from peroxynitrite decomposition (see
above), it turns out that it is a converging point between the oxidative stress pathways
involving ROS and RNS derived from nitric oxide. The involvement of hydroxyl radical in
oxidative stress-induced neuronal damage has been suggested, for example, in the pathophy‐
siological case of spinal cord trauma [173], amyotrophic lateral sclerosis [174] and Parkinson's
disease [170,175].

Lipid ROS are a family of harmful ROS detected in oxidative stress-mediated brain degener‐
ation that also catalyze chemical radical reaction chains. They can be produced as primary
biochemical ROS by cyclooxygenases (COX) and lipoxygenases in some brain oxidative stress
insults, such as ischemia-reperfusion [176], or Parkinson's disease [177]. Indeed, inhibitors of
the neuronal COX-2 isoform have been reported to attenuate brain damage after ischemia-
reperfusion [176]. Moreover, the oxidation of dopamine by the microglial COX-1 isoform and
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also by COX-2 isoform in the dopaminergic neurons of the substantia nigra has been involved
in the pathogenesis of Parkinson's disease [177]. It is to be noted though that lipid ROS are also
generated during hydroxyl radical- and hydrogen peroxide-induced lipid oxidation and
peroxidation, respectively [170]. In addition, lipid oxidation and peroxidation also release the
aldehydes malondialdehyde and 4-hydroxynonenal, which have been shown to be highly
neurotoxic compounds [178,179]. Because of the self-propagating properties of lipid radical
chains once they are initiated, and also due to the high toxicity for neurons of lipid breakdown
compounds released, the possibility of cell rescue after the threshold antioxidant barrier
against lipid oxidation/peroxidation is surpassed can be considered negligible. The extent of
lipid oxidation marking the 'point of no return' for neurons survival has not been firmly
established yet, but it is likely to be at most only a few per cent of the total lipids [180]. On
these grounds, an enhanced lipid oxidation should be expected to be a late and largely
irreversible step in neuronal death. This view is consistent with the many reports showing that
largely damaged brain areas after an ischemia-reperfusion insult display a marked increase of
lipid peroxidation.

5.1. Modulation by ROS/RNS of the major calcium entry systems of the neuronal plasma
membrane

5.1.1. Voltage-operated calcium channels

As indicated above in the section 2 of this chapter, the L-type are the most relevant VOCC in
the fine tuning of the steady state level of cytosolic calcium concentration in the neuronal soma
and, thus, in the fine tuning of threshold neuronal excitability [22-24]. L-type VOCC as a
primary target for ROS in brain is also supported by the hypoxic up-regulation of these
channels, which is mediated by Alzheimer's amyloid peptides [181]. L-VOCC contain two
vicinal cysteines at positions 271 and 272 which are involved in their interaction with syntaxin
1A, thereby playing a major role in their regional localization in plasma membrane microdo‐
mains [182]. In addition, three cysteines are located in the calcium-pore region (Cys330,
Cys1383 and Cys1396) [183]. Therefore, L-VOCC contains redox centres that have been shown to
react with ROS/RNS in other proteins, for example, in NMDA-receptors (see below).

Studies with neurons in culture have provided ample experimental evidences of direct
modulation of L-VOCC by the major ROS/RNS involved in brain ischemia-reperfusion,
inflammation and/or neurodegeneration. The L-VOCC antagonist nifedipine has been
reported to protect CNS neurons against hydrogen peroxide-induced death, which is mediated
by a sustained increase of cytosolic calcium, pointing out activation of L-type VOCC by H2O2

[184]. H2O2 was shown later to activate recombinant calcium channel α1C subunit stably
expressed in HEK 293 cells [185]. In addition, nitric oxide has been reported to induce activation
of L-VOCC in hippocampal neurons by plasma membrane depolarization [186] or to inhibit
calcium channel gating via activation of cGMP-dependent protein kinases [187]. In contrast,
exposure to peroxynitrite has been reported to produce decrease of calcium influx through L-
VOCC at low submicromolar doses in rat cerebellar granule neurons in culture and increase
of calcium influx through L-VOCC at higher micromolar doses in rat cerebellar granule
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Nitric oxide is the major primary biochemical RNS produced in oxidative stress-induced
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the neuronal COX-2 isoform have been reported to attenuate brain damage after ischemia-
reperfusion [176]. Moreover, the oxidation of dopamine by the microglial COX-1 isoform and
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also by COX-2 isoform in the dopaminergic neurons of the substantia nigra has been involved
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reported to protect CNS neurons against hydrogen peroxide-induced death, which is mediated
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expressed in HEK 293 cells [185]. In addition, nitric oxide has been reported to induce activation
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neurons in culture [9] and in mouse cerebral cortical neurons [188]. Hydroxyl radicals, a radical
produced during the decomposition of peroxynitrite, have been reported to suppress the
calcium influx through L-VOCC in mouse cortical neurons [189]. Consistent with these results,
dihydropyridine L-VOCC blockers afford protection against neuronal death induced by
exposure of neurons in vitro to the peroxynitrite-releasing agent SIN-1 [9,190]. Because of the
short lifetime and high reactivity of these radicals this is likely to be due to direct chemical
modification of L-VOCC, although it is to be noted that this chemical modification is yet
unknown. In addition, it has been reported that eicosanoids and ROS generated during
arachidonic acid oxidative metabolism also activate L-VOCC [191], and that the lipid peroxi‐
dation product 4-hydroxynonenal causes opening of the L-VOCC, resulting in an increase of
cytosolic calcium and neuronal death which is prevented by the L-VOCC blocker nimodipine
[192]. Direct redox modulation of L-VOCC is further supported by its activation by hydrogen
sulphide [138]. Further studies are needed to reach firm conclusions regarding the molecular
mechanisms of modulation of different neuronal L-VOCC subtypes by ROS.

Only very scarce experimental studies have been done on the putative modulation of N-,
P/Q- and R-type VOCC by ROS/RNS, despite the fact that N- and R-type of calcium channels
are blocked by heavy metals such as Pb2+ and Hg2+ that are likely to interact with thiols [193].
CaV2.2 (N-type) channel gating is inhibited by nitric oxide via cGMP-dependent protein kinase,
as it is also the CaV1 (L-type) channel [187]. Also, the lipid peroxidation product 4-hydroxy‐
nonenal increased the calcium influx through L-type and other ill-defined types of VOCC [178].

5.1.2. NMDA and other ionotropic receptors with calcium channel activity

It is well known the relevant role of NMDA-receptor mediated excitotoxic neuronal death in
ischemia-reperfusion brain injury, see [44,45], in multiple chemical sensitivity in brain [194],
in neuronal glutathione depletion [195] and in hydrogen sulfide-induced neuronal death
[138,196]. Therefore, it is not surprising that the redox modulation of the NMDA-receptor is
by far the most studied within the group of ionotropic receptors. The redox modulatory site
of the NMDA-receptor consists of thiols groups that are vicinal in the three-dimensional
structure and may form disulfide bonds under the cellular oxidative stress conditions induced
by ROS [197], and it acts as a gain control for current flux through the NMDA-receptor
[197,198]. Moreover, a significant number of NMDA-receptor cysteines are in the domains of
this receptor facing the extracellular space, including at least one pair of vicinal thiols [199].
Thus, this receptor can also play a major role in the rapid neuronal adaptation to changes of
the redox potential in the extracellular fluids within the brain, and the different types of
NMDA-receptors display a redox response that is dependent on the type of NR2 forming the
channels [55]. The differential redox-sensitivity of NMDA receptors isoforms led to the
discovery of two redox modulatory centres within the NMDA-receptor structure, one formed
by Cys744 and Cys798 on the subunit NR1 and a second one on the subunit NR2A [200,201].
Whereas the redox centre of the subunit NR1 plays a major role in the redox modulation of
NR1/NR2C- and NR1/NR2B-containing receptors, the redox centre of subunit NR2A is
sufficient for the expression of redox sensitivity in NR1/NR2A-containing receptors [201].
Redox active compounds modulate NMDA-receptors such that reduction of NMDA-receptor
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increases NMDA-receptor activity and their oxidation leads to a decrease of NMDA-receptor
activity [202].

Because of the high physiological relevance of nitric oxide and of NMDA receptors in the brain,
the modulation of NMDA receptors by nitric oxide is of particular relevance. Nitric oxide
inhibition of NMDA-receptor response in cortical neurons in culture has been rationalized in
terms of NO-induced disulfide bonds between vicinal thiols of the NMDA-receptor, and was
proposed to afford neuronal protection against L-glutamate excitotoxicity [203]. Indeed, it has
also been reported that thiol-reducing agents such as dithiothreitol increase the open dwell-
time and opening frequency of NR1/NR2A channels [55,201]. Consistent with these findings,
it has been reported that the novel neuromodulator hydrogen sulphide potentiates NMDA-
receptor response in hippocampal neurons [204] and in cerebellar granule neurons [138], and
that over-stimulation of NMDA-receptors by hydrogen sulphide can lead to excitotoxic
neuronal death [138,196]. Glutamate-induced excitotoxic neuronal death has been shown to
mediate brain injury after a transient focal cerebral ischemia episode [44,45]. Inhibitors of the
H2S-producing enzymes cystathionine β-synthase and cystathionine γ-lyase reduced the
infarct volume in a dose-dependent manner, while administration of sodium hydrosulfide
significantly increased the infarct volume after a transient focal cerebral ischemia insult [205].
Exposure of neurons to peroxynitrite also leads to activation of calcium entry through NMDA-
receptors [166,169]. This effect of peroxynitrite has been rationalized in terms of the rise of L-
glutamate concentration within the synaptic cleft, either due to potentiation by nitric oxide
and/or peroxynitrite of L-glutamate secretion in synaptic terminals [194,206] or of inhibition
of L-glutamate transporters catalyzing its re-uptake [207].

Besides the major role of NMDA-receptors on the neuronal damage elicited by ROS and/or
oxidative stress, AMPA receptors have been also involved in the neurotoxicity of ROS. It has
been reported that the increase of cytosolic calcium associated with the influx of Ca2+ through
the ionotropic AMPA-receptors can stimulate nNOS leading to an enhanced production of
nitric oxide within L-glutamatergic neurons [208]. Moreover, antagonists of AMPA/kainate-
receptors have been reported to prevent the loss of cell viability induced by the peroxynitrite-
releasing agent SIN-1 in mixed cortical cell cultures containing both neurons and astrocytes
[209]. AMPA-receptors contain a disulfide bond between cysteines 260 and 315 in the ligand
binding domain of receptor subunit GluRD, which has been proposed to act as a redox centre
implicated in direct redox modulation of these receptors [210]. Nevertheless, the redox
modulation of AMPA-receptors is a topic that will require further studies to develop an
integrative view of its modulation by the different ROS that has been implicated in brain
damage.

Finally, the response of the purinergic ionotropic P2X-receptors has been shown to be altered
by acute hypoxia, an effect that has been proposed to be mediated by ROS because H2O2

attenuated the effect of hypoxia on homomeric P2X2 whole-cell currents, which are reversibly
reduced to 38% of control by H2O2 [211]. Yet, studies regarding the putative modulation of
P2X-receptors by other ROS are a pending issue.
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increases NMDA-receptor activity and their oxidation leads to a decrease of NMDA-receptor
activity [202].
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H2S-producing enzymes cystathionine β-synthase and cystathionine γ-lyase reduced the
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Exposure of neurons to peroxynitrite also leads to activation of calcium entry through NMDA-
receptors [166,169]. This effect of peroxynitrite has been rationalized in terms of the rise of L-
glutamate concentration within the synaptic cleft, either due to potentiation by nitric oxide
and/or peroxynitrite of L-glutamate secretion in synaptic terminals [194,206] or of inhibition
of L-glutamate transporters catalyzing its re-uptake [207].

Besides the major role of NMDA-receptors on the neuronal damage elicited by ROS and/or
oxidative stress, AMPA receptors have been also involved in the neurotoxicity of ROS. It has
been reported that the increase of cytosolic calcium associated with the influx of Ca2+ through
the ionotropic AMPA-receptors can stimulate nNOS leading to an enhanced production of
nitric oxide within L-glutamatergic neurons [208]. Moreover, antagonists of AMPA/kainate-
receptors have been reported to prevent the loss of cell viability induced by the peroxynitrite-
releasing agent SIN-1 in mixed cortical cell cultures containing both neurons and astrocytes
[209]. AMPA-receptors contain a disulfide bond between cysteines 260 and 315 in the ligand
binding domain of receptor subunit GluRD, which has been proposed to act as a redox centre
implicated in direct redox modulation of these receptors [210]. Nevertheless, the redox
modulation of AMPA-receptors is a topic that will require further studies to develop an
integrative view of its modulation by the different ROS that has been implicated in brain
damage.

Finally, the response of the purinergic ionotropic P2X-receptors has been shown to be altered
by acute hypoxia, an effect that has been proposed to be mediated by ROS because H2O2
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5.2. Modulation by ROS/RNS of the transport systems that release calcium from
intracellular stores

5.2.1. Endoplasmic reticulum

ROS/RNS have been shown to elicit a potent stimulation of calcium release from the endo‐
plasmic reticulum, through activation of IP3 and ryanodine receptors.

Superoxide anion and H2O2 have been reported to induce calcium release from the endoplas‐
mic reticulum of neurons through activation of IP3 receptors [212,213]. Oxidized glutathione
and the alkyl mercury compound thimerosal, a thiol specific agent, increase the affinity of
IP3 receptors for IP3, thereby sensitizing this receptor to basal IP3 level in the cell and promoting
calcium release from the endoplasmic reticulum to the cytosol [214,215]. Cysteine clusters
highly reactive against ROS have been recently identified in the IP3 receptors [216]. IP3

receptors are inhibited by interaction with luminal endoplasmic reticulum proteins through
luminal-facing domains of the receptor containing reduced cysteines, and oxidation of these
cysteines weakens these interactions leading to IP3 receptor activation [63,217]. Moreover,
nitric oxide-induced increase of IP3 binding to the IP3 receptor in hypoxic brain has been
proposed to mediate IP3 receptors activation in calcium-dependent neuronal apoptotic death
induced by hypoxia [218].

Although all ryanodine receptor isoforms are expressed in the brain, the isoform 2 is the most
heavily expressed [219, 220]. Many studies have addressed the redox modulation of the
ryanodine receptors in myocytes and in neurons, reviewed in [62,64,221]. Nitric oxide activates
the skeletal and cardiac ryanodine receptors [222,223]. The activation of the ryanodine receptor
by nitric oxide has been shown to be due to the presence of highly reactive cysteines of the
receptor, which are S-nitrosylated upon exposure to nitric oxide [222-224]. The cysteines that
are S-nitrosylated upon in vitro exposure to nitric oxide have been identified [225]. However,
in vivo the extent of S-nitrosylation of ryanodine receptor cysteines is highly modulated by the
physiological oxygen tension, leading to the concept that ryanodine receptors can operate as
a coupled redox sensor for oxygen and nitric oxide [226,227]. In vitro studies have shown that
these cysteines of the ryanodine receptor are highly sensitive to oxidative stress and are likely
to mediate the redox ryanodine receptor response to another ROS, as they are also prone to
reversible S-glutathionylation or oxidation to disulfide bonds [225]. The ryanodine receptors
are also activated by hydroxyl radical, H2O2, the disulfide bond-forming agent diamide and
also by oxidized glutathione [221,224,228]. Overall, oxidizing conditions favor the opening of
the ryanodine receptor calcium channel, and on these grounds it has been proposed that
activation of these calcium channels are also involved in the pathology of brain ischemia-
reperfusion [229] and Alzheimer´s disease [230]. Noteworthy, a moderate and sustained
stimulation of the ryanodine receptors in the hippocampus has been involved in the sustained
increase of cytosolic calcium needed for the induction of the long-term postsynaptic potentia‐
tion associated with memory formation [231,232].

Calcium accumulation within the luminal space of the endoplasmic reticulum is performed
by Ca2+-ATPases (SERCA), whose activity is inhibited by exposure to H2O2, superoxide anion
and peroxynitrite [233-236], the major ROS produced in brain insults such as ischemia-
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reperfusion or inflammation and in neurodegeneration. Despite that the isoforms of SERCA
most sensitive to ROS, i.e. SERCA2 isoforms, are expressed in brain, the relevance of the
impairment of their activity to alterations of neuronal cytosolic calcium homeostasis has yet
to be conclusively demonstrated, probably because in neurons the PMCA is a calcium pump
more potent than SERCA for calcium extrusion from the cytosol.

The  apparently  higher  susceptibility  to  ROS/RNS of  the  calcium release  systems  of  the
endoplasmic  reticulum,  ryanodine and IP3  receptors,  should lead under  oxidative  stress
conditions to at least a partial depletion of the calcium concentration within the luminal
space of this subcellular compartment, see for example [237]. It should be noted, though,
that  in  neurons  the  amount  of  calcium  stored  in  the  endoplasmic  reticulum  is  small
compared with the amount of calcium entering through plasma membrane calcium channels
and ionotropic receptors. However, in most severe cases the depletion of calcium can elicit
the  opening of  plasma membrane SOCE,  see  section 2.2  of  this  chapter.  Thus,  the  rele‐
vance of calcium release from the endoplasmic reticulum or of inhibition of the SERCA to
the observed alterations by ROS/RNS of cytosolic calcium homeostasis will strongly depend
on the differential expression of SOCE isoforms in different type of neurons. On the other
hand, the depletion of calcium of the endoplasmic reticulum may lead to a dysfunctional
endoplasmic  reticulum  by  itself,  because  of  the  relevance  of  the  endoplasmic  calcium
concentration for the correct folding and processing of membrane and secretory proteins
[65, 238]. On these grounds, these authors have proposed that ROS/RNS-induced endoplas‐
mic reticulum dysfunction can be a mechanism underlying slow-developing cell injury in
ischemia-reperfusion,  epileptic  seizures  and  degenerative  diseases  of  the  brain  like
Alzheimer's and Parkinson's diseases. In addition, it has been recently shown that muta‐
tions in presenilin-1 and -2 observed in nearly 40% of familial Alzheimer's disease lead to
calcium  release  from  the  endoplasmic  reticulum  [239].  Moreover,  presenilins  by  them‐
selves can form calcium leak channels in the endoplasmic reticulum whose properties are
altered in mutant presenilins linked to Alzheimer's disease [240].

5.2.2. Mitochondria

A key role has been proposed for mitochondrial dysfunctions in the onset or development of
neuronal death in the brain mediated by the enhanced oxidative stress observed in relevant
neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, amyotrophic
lateral sclerosis and Friedreich's ataxia, and in harmful brain insults like ischemia-reperfusion
and glutamate excitotoxicity, reviewed in [166,241,242]. Mitochondrial calcium overload is
observed in excitotoxic conditions that produce a sustained increase of neuronal cytosolic
calcium or high frequency repetitive cytosolic calcium peaks [73]. ROS/RNS have been shown
to promote opening of the permeability transition pore of mitochondria and this effect of ROS/
RNS is enhanced by mitochondrial calcium overload [71,73,166]. Opening of the permeability
transition pore leads to a significant calcium release from mitochondria which contributes to
foster excitotoxic neuronal death [71, 243], and also is an important factor in necrotic cell death
following ischemia-reperfusion [73] or in neurons exposed to transient hypoglycemia [244].
Consistently, calcium-dependent mitochondrial dysfunction by peroxynitrite has been
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5.2. Modulation by ROS/RNS of the transport systems that release calcium from
intracellular stores

5.2.1. Endoplasmic reticulum

ROS/RNS have been shown to elicit a potent stimulation of calcium release from the endo‐
plasmic reticulum, through activation of IP3 and ryanodine receptors.
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by nitric oxide has been shown to be due to the presence of highly reactive cysteines of the
receptor, which are S-nitrosylated upon exposure to nitric oxide [222-224]. The cysteines that
are S-nitrosylated upon in vitro exposure to nitric oxide have been identified [225]. However,
in vivo the extent of S-nitrosylation of ryanodine receptor cysteines is highly modulated by the
physiological oxygen tension, leading to the concept that ryanodine receptors can operate as
a coupled redox sensor for oxygen and nitric oxide [226,227]. In vitro studies have shown that
these cysteines of the ryanodine receptor are highly sensitive to oxidative stress and are likely
to mediate the redox ryanodine receptor response to another ROS, as they are also prone to
reversible S-glutathionylation or oxidation to disulfide bonds [225]. The ryanodine receptors
are also activated by hydroxyl radical, H2O2, the disulfide bond-forming agent diamide and
also by oxidized glutathione [221,224,228]. Overall, oxidizing conditions favor the opening of
the ryanodine receptor calcium channel, and on these grounds it has been proposed that
activation of these calcium channels are also involved in the pathology of brain ischemia-
reperfusion [229] and Alzheimer´s disease [230]. Noteworthy, a moderate and sustained
stimulation of the ryanodine receptors in the hippocampus has been involved in the sustained
increase of cytosolic calcium needed for the induction of the long-term postsynaptic potentia‐
tion associated with memory formation [231,232].

Calcium accumulation within the luminal space of the endoplasmic reticulum is performed
by Ca2+-ATPases (SERCA), whose activity is inhibited by exposure to H2O2, superoxide anion
and peroxynitrite [233-236], the major ROS produced in brain insults such as ischemia-
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reperfusion or inflammation and in neurodegeneration. Despite that the isoforms of SERCA
most sensitive to ROS, i.e. SERCA2 isoforms, are expressed in brain, the relevance of the
impairment of their activity to alterations of neuronal cytosolic calcium homeostasis has yet
to be conclusively demonstrated, probably because in neurons the PMCA is a calcium pump
more potent than SERCA for calcium extrusion from the cytosol.

The  apparently  higher  susceptibility  to  ROS/RNS of  the  calcium release  systems  of  the
endoplasmic  reticulum,  ryanodine and IP3  receptors,  should lead under  oxidative  stress
conditions to at least a partial depletion of the calcium concentration within the luminal
space of this subcellular compartment, see for example [237]. It should be noted, though,
that  in  neurons  the  amount  of  calcium  stored  in  the  endoplasmic  reticulum  is  small
compared with the amount of calcium entering through plasma membrane calcium channels
and ionotropic receptors. However, in most severe cases the depletion of calcium can elicit
the  opening of  plasma membrane SOCE,  see  section 2.2  of  this  chapter.  Thus,  the  rele‐
vance of calcium release from the endoplasmic reticulum or of inhibition of the SERCA to
the observed alterations by ROS/RNS of cytosolic calcium homeostasis will strongly depend
on the differential expression of SOCE isoforms in different type of neurons. On the other
hand, the depletion of calcium of the endoplasmic reticulum may lead to a dysfunctional
endoplasmic  reticulum  by  itself,  because  of  the  relevance  of  the  endoplasmic  calcium
concentration for the correct folding and processing of membrane and secretory proteins
[65, 238]. On these grounds, these authors have proposed that ROS/RNS-induced endoplas‐
mic reticulum dysfunction can be a mechanism underlying slow-developing cell injury in
ischemia-reperfusion,  epileptic  seizures  and  degenerative  diseases  of  the  brain  like
Alzheimer's and Parkinson's diseases. In addition, it has been recently shown that muta‐
tions in presenilin-1 and -2 observed in nearly 40% of familial Alzheimer's disease lead to
calcium  release  from  the  endoplasmic  reticulum  [239].  Moreover,  presenilins  by  them‐
selves can form calcium leak channels in the endoplasmic reticulum whose properties are
altered in mutant presenilins linked to Alzheimer's disease [240].

5.2.2. Mitochondria

A key role has been proposed for mitochondrial dysfunctions in the onset or development of
neuronal death in the brain mediated by the enhanced oxidative stress observed in relevant
neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, amyotrophic
lateral sclerosis and Friedreich's ataxia, and in harmful brain insults like ischemia-reperfusion
and glutamate excitotoxicity, reviewed in [166,241,242]. Mitochondrial calcium overload is
observed in excitotoxic conditions that produce a sustained increase of neuronal cytosolic
calcium or high frequency repetitive cytosolic calcium peaks [73]. ROS/RNS have been shown
to promote opening of the permeability transition pore of mitochondria and this effect of ROS/
RNS is enhanced by mitochondrial calcium overload [71,73,166]. Opening of the permeability
transition pore leads to a significant calcium release from mitochondria which contributes to
foster excitotoxic neuronal death [71, 243], and also is an important factor in necrotic cell death
following ischemia-reperfusion [73] or in neurons exposed to transient hypoglycemia [244].
Consistently, calcium-dependent mitochondrial dysfunction by peroxynitrite has been

Cytosolic Calcium Homeostasis in Neurons — Control Systems, Modulation by Reactive Oxygen and…
http://dx.doi.org/10.5772/57576

79



demonstrated to elicit necrotic cell death via activation of calpains [245]. In addition, opening
of this pore has also been shown to mediate the neuronal apoptosis elicited by 3-nitropropionic
acid, an agent which has been used to mimic in model rodents the brain neurodegeneration
observed in Huntington's disease [246]. Despite that most of studies concerning ROS-stimu‐
lated release of calcium from mitochondria point out a major role of the permeability transition
pore, it should be recalled that the inner membrane Na+/Ca2+-exchanger, i.e. the other major
mitochondrial calcium release system [71], is also sensitive to oxidative stress. It has been
reported that oxidative stress mediated by H2O2 modulates this exchanger and can lead to
activation of caspase 3-dependent apoptosis due to mitochondrial Na+ overload [247].

The permeability transition pore opening induced by ROS/RNS is mediated by oxidation of
critical thiols of proteins forming the pore, as it can be elicited by a relatively large number of
oxidizing agents such as diamide, dithiopyridine, singlet oxygen, diazoxide, nitric oxide, S-
nitrosothiols and selenium [221]. The adenine nucleotide transporter of the inner mitochon‐
drial membrane and the voltage-dependent anion channel of the outer mitochondrial
membrane have been proposed to be part of the molecular structure of the permeability
transition pore, and both proteins have shown to be modulated by oxidative stress and
exposure of mitochondria to chemically defined ROS, such that oxidation of thiols of the
adenine nucleotide transporter facing to the mitochondrial matrix have been shown to elicit
the opening of the permeability transition pore, reviewed in [73].

5.3. Modulation by ROS/RNS of the transport systems involved in calcium extrusion from
the cytosol

Much of the interest on modulation of PMCA and Na+/Ca2+-exchanger of neurons by ROS is
based on the reported decrease of these activities in synaptic plasma membranes in aging, and
the possibility that this could lead to a sustained increase of the steady state cytosolic calcium
in aged animals with respect to young animals [248,249].

5.3.1. PMCA

It has been shown that incubation of brain synaptic plasma membranes with Fe2+/EDTA,
H2O2, peroxyl radicals generated by azo-initiators and peroxynitrite resulted in a significant
loss of PMCA activity [250-253]. Inhibition of purified PMCA by H2O2 has been proposed to
be due to oxidation of two cysteines of this protein [253]. Also, lipid peroxidation and the lipid
peroxidation product 4-hydroxynonenal have been shown to inhibit the PMCA actvity [254].
In the case of incubation with peroxynitrite, the loss of Ca2+-ATPase activity was paralleled by
decrease of ATP-dependent calcium uptake activity and by a significant increase of tyrosine
nitration of the PMCA [252]. However, it is to be noted that all these studies were carried out
in vitro with purified plasma membranes in an altered environment with respect to the normal
redox cytosolic environment in living neurons, and this has to be taken into account since
endogenous antioxidant levels of reduced glutathione has been shown to largely attenuate the
inhibition of PMCA by peroxynitrite [252]. In addition, the concentrations of H2O2 and
peroxynitrite producing approximately 50% inhibition of the PMCA in these studies, higher
than 100 μM in both cases, were much higher than those reported to be attained in brain after
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transient focal ischemia or inflammation. For the case of neuronal exposure to peroxynitrite
fluxes mimicking those attained in inflammation or ischemia-reperfusion, in a previous work
of our laboratory it was shown that in cerebellar granule neurons in culture the PMCA is
significantly inhibited in less than 2 hours exposure to micromolar concentrations of peroxy‐
nitrite, although it was also noted that the PMCA has nearly ten-fold lower sensitivity to
peroxynitrite than L-VOCC [9].

N a + / Ca 2+ − exchanger  (NCX )

The NCX has been reported to be less sensitive to inhibition by the peroxyl radical azo initiator
2,2'- azobis (2-amidinopropane) dihydrochloride (AAPH) and peroxynitrite than the PMCA
[251], and also to be insensitive to inhibition by up to 700 μM of H2O2 [255]. The Na+/Ca2+-
exchanger activity of synaptic brain plasma membranes and in transfected CHO-K1 cells has
been reported to be inhibited by exposure to AAPH and also to peroxynitrite [255], although
it must be noted that peroxynitrite only afforded a partial inhibition of the exchanger caused
by decrease of its affinity for calcium without a significant change of the Vmax. The inhibition
induced by both oxidants correlated with the formation of higher molecular weight aggregates
of the Na+/Ca2+-exchanger, and in addition AAPH also caused fragmentation of the exchanger
protein.

In contrast, in cardiac muscle myocytes, hypoxia inhibits the Na+/Ca2+-exchanger and ROS are
required for its rapid reactivation upon reoxygenation [256]. This is consistent with the earlier
demonstration in ventricular myocytes of stimulation of the Na+/Ca2+-exchanger by H2O2 and
superoxide anion [257]. Owing to the different pattern of Na+/Ca2+-exchanger isoforms
expression in brain cells and cardiac myocytes, more experimental studies are needed to reach
solid conclusions regarding the effects of oxidative stress on the activity of this exchanger in
different neuronal types and also in the glial cells of the brain.

6. Space and time fluctuations of cytosolic calcium in the neuronal soma

As indicated previously in this chapter, protein compartmentation within microdomains
allows for a more efficient and rapid functional coupling between influx and efflux calcium
transport systems, and this is particularly relevant for neuronal activity, as neurons have to
deliver fast responses to many repetitive and simultaneous extracellular stimuli coming from
different neighbour cells. Studies on calcium signalling in neurons have played a pioneer role
to demonstrate the outstanding role of subcellular compartmentation in the control of neuronal
activity, see for example [5]. As analyzed in more detail in the section 3 of this chapter more
recently reported experimental data point out that the calcium transport systems of the plasma
membrane more relevant for the control of cytosolic calcium homeostasis in neurons are
associated with lipid rafts sub-microdomains or nanodomains. This is an emerging scenario
that opens new perspectives for the rationalization of the modulation of cytosolic calcium
peaks amplitude and also of the rate of attenuation of calcium local gradients in neurons, as
both parameters are strongly dependent on the spatial proximity between systems controlling
calcium entry and extrusion from the cytosol. For example, the rationalization of the transient
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demonstrated to elicit necrotic cell death via activation of calpains [245]. In addition, opening
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acid, an agent which has been used to mimic in model rodents the brain neurodegeneration
observed in Huntington's disease [246]. Despite that most of studies concerning ROS-stimu‐
lated release of calcium from mitochondria point out a major role of the permeability transition
pore, it should be recalled that the inner membrane Na+/Ca2+-exchanger, i.e. the other major
mitochondrial calcium release system [71], is also sensitive to oxidative stress. It has been
reported that oxidative stress mediated by H2O2 modulates this exchanger and can lead to
activation of caspase 3-dependent apoptosis due to mitochondrial Na+ overload [247].

The permeability transition pore opening induced by ROS/RNS is mediated by oxidation of
critical thiols of proteins forming the pore, as it can be elicited by a relatively large number of
oxidizing agents such as diamide, dithiopyridine, singlet oxygen, diazoxide, nitric oxide, S-
nitrosothiols and selenium [221]. The adenine nucleotide transporter of the inner mitochon‐
drial membrane and the voltage-dependent anion channel of the outer mitochondrial
membrane have been proposed to be part of the molecular structure of the permeability
transition pore, and both proteins have shown to be modulated by oxidative stress and
exposure of mitochondria to chemically defined ROS, such that oxidation of thiols of the
adenine nucleotide transporter facing to the mitochondrial matrix have been shown to elicit
the opening of the permeability transition pore, reviewed in [73].

5.3. Modulation by ROS/RNS of the transport systems involved in calcium extrusion from
the cytosol

Much of the interest on modulation of PMCA and Na+/Ca2+-exchanger of neurons by ROS is
based on the reported decrease of these activities in synaptic plasma membranes in aging, and
the possibility that this could lead to a sustained increase of the steady state cytosolic calcium
in aged animals with respect to young animals [248,249].

5.3.1. PMCA

It has been shown that incubation of brain synaptic plasma membranes with Fe2+/EDTA,
H2O2, peroxyl radicals generated by azo-initiators and peroxynitrite resulted in a significant
loss of PMCA activity [250-253]. Inhibition of purified PMCA by H2O2 has been proposed to
be due to oxidation of two cysteines of this protein [253]. Also, lipid peroxidation and the lipid
peroxidation product 4-hydroxynonenal have been shown to inhibit the PMCA actvity [254].
In the case of incubation with peroxynitrite, the loss of Ca2+-ATPase activity was paralleled by
decrease of ATP-dependent calcium uptake activity and by a significant increase of tyrosine
nitration of the PMCA [252]. However, it is to be noted that all these studies were carried out
in vitro with purified plasma membranes in an altered environment with respect to the normal
redox cytosolic environment in living neurons, and this has to be taken into account since
endogenous antioxidant levels of reduced glutathione has been shown to largely attenuate the
inhibition of PMCA by peroxynitrite [252]. In addition, the concentrations of H2O2 and
peroxynitrite producing approximately 50% inhibition of the PMCA in these studies, higher
than 100 μM in both cases, were much higher than those reported to be attained in brain after
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transient focal ischemia or inflammation. For the case of neuronal exposure to peroxynitrite
fluxes mimicking those attained in inflammation or ischemia-reperfusion, in a previous work
of our laboratory it was shown that in cerebellar granule neurons in culture the PMCA is
significantly inhibited in less than 2 hours exposure to micromolar concentrations of peroxy‐
nitrite, although it was also noted that the PMCA has nearly ten-fold lower sensitivity to
peroxynitrite than L-VOCC [9].

N a + / Ca 2+ − exchanger  (NCX )

The NCX has been reported to be less sensitive to inhibition by the peroxyl radical azo initiator
2,2'- azobis (2-amidinopropane) dihydrochloride (AAPH) and peroxynitrite than the PMCA
[251], and also to be insensitive to inhibition by up to 700 μM of H2O2 [255]. The Na+/Ca2+-
exchanger activity of synaptic brain plasma membranes and in transfected CHO-K1 cells has
been reported to be inhibited by exposure to AAPH and also to peroxynitrite [255], although
it must be noted that peroxynitrite only afforded a partial inhibition of the exchanger caused
by decrease of its affinity for calcium without a significant change of the Vmax. The inhibition
induced by both oxidants correlated with the formation of higher molecular weight aggregates
of the Na+/Ca2+-exchanger, and in addition AAPH also caused fragmentation of the exchanger
protein.

In contrast, in cardiac muscle myocytes, hypoxia inhibits the Na+/Ca2+-exchanger and ROS are
required for its rapid reactivation upon reoxygenation [256]. This is consistent with the earlier
demonstration in ventricular myocytes of stimulation of the Na+/Ca2+-exchanger by H2O2 and
superoxide anion [257]. Owing to the different pattern of Na+/Ca2+-exchanger isoforms
expression in brain cells and cardiac myocytes, more experimental studies are needed to reach
solid conclusions regarding the effects of oxidative stress on the activity of this exchanger in
different neuronal types and also in the glial cells of the brain.

6. Space and time fluctuations of cytosolic calcium in the neuronal soma

As indicated previously in this chapter, protein compartmentation within microdomains
allows for a more efficient and rapid functional coupling between influx and efflux calcium
transport systems, and this is particularly relevant for neuronal activity, as neurons have to
deliver fast responses to many repetitive and simultaneous extracellular stimuli coming from
different neighbour cells. Studies on calcium signalling in neurons have played a pioneer role
to demonstrate the outstanding role of subcellular compartmentation in the control of neuronal
activity, see for example [5]. As analyzed in more detail in the section 3 of this chapter more
recently reported experimental data point out that the calcium transport systems of the plasma
membrane more relevant for the control of cytosolic calcium homeostasis in neurons are
associated with lipid rafts sub-microdomains or nanodomains. This is an emerging scenario
that opens new perspectives for the rationalization of the modulation of cytosolic calcium
peaks amplitude and also of the rate of attenuation of calcium local gradients in neurons, as
both parameters are strongly dependent on the spatial proximity between systems controlling
calcium entry and extrusion from the cytosol. For example, the rationalization of the transient
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calcium gradients observed between different regions of the neuronal cytosol can be done on
simple grounds taking into account a polarised or focalized distribution of the major calcium
transport systems of the neuronal plasma membrane. Note that, as indicated before in this
chapter, sustained cytosolic calcium concentrations higher than 0.4 μM are strongly cytotoxic
to neurons, but it is a need for neurons to reach these concentrations in the environment of
cytosolic proteins and enzymes having EC50 values for calcium between 0.4 and 1 μM. Indeed,
some of these proteins play a key role in neuronal plasticity and functional responses critical
for proper brain development and function, like calmodulin, nNOS, GAP-43 and CaMK, to
cite only a few of well-established examples.

The calcium concentration reaches values in the micromolar range upon activation of L-VOCC
and NMDA receptors in small volume elements close to the cytosolic side of their calcium
channel structures [258], see also the Figure 2a. This generates a calcium concentration wave
that diffuses within the cytosolic space, because the protein cytosolic buffering systems are not
fast enough to trap all incoming calcium ions through these calcium channels [259, 260]. Due
to the rapid diffusion of calcium ions in the aqueous space of the cytoplasm, ~300 μm2 s-1, the
calcium entry through the high conductance L-VOCC and NMDA receptors channels will
rapidly raise the calcium concentration to the micromolar range within the associated lipid
rafts nanodomains. As these nanodomains have sizes lower than 200 nm, it can be derived that
in less than 1 microsecond the incoming calcium ions will diffuse within the whole space of
the nanodomain, i.e. in the time scale range characteristic for fast conformational relaxation in
proteins. Thus, this clustering serves to built up a very efficient molecular switch for signal
transduction in calcium signalling pathways within neurons, with a time response as fast as
the rapid conformational relaxations elicited by regulatory direct protein/protein interactions.
However, nanodomains can be seen as multi-port exit molecular devices that can serve to many
uni-port exit molecular devices, through regulatory direct protein/protein interactions.
Therefore, the localized calcium rise within these nanodomains not only serves to guarantee
the maximal possible activation of proteins or enzymes with EC50 values ≥0.4 micromolar, such
as those listed above, but also to elicit rapid integrative cellular responses. We shall next briefly
analyze several integrative responses of relevance for the rapid and fine control of cytosolic
calcium homeostasis in neurons elicited by the localized calcium rise within the nanodomains
associated with lipid rafts.

The association of CaMKII with L-VOCC subunit β2a and with NMDA receptors subunit
NR2B, mentioned in the section 2.1 of this chapter, implies that this protein is present in
neuronal nanodomains associated with lipid rafts. A direct consequence of the steep calcium
concentration gradient generated by calcium entry through L-VOCC and NMDA receptors is
the stronger selective activation of the pool of CaMKII that lies in their vicinity over other
CaMKII pools present in neurons. Thus, this will selectively potentiate phosphorylation of
CaMKII substrates present in lipid rafts associated nanodomains. Regarding the cytosolic
calcium homeostasis in neurons, the more relevant effect is the activation of L-VOCC upon
phosphorylation by CaMKII, as this potentiates the increase of the local gradient of calcium
concentration within these nanodomains, leading to a longer lasting increase of the concen‐
tration of cytosolic calcium with the concomitant increase in neuronal secretory activity and
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excitability (Figure 2b). Indeed, it has been shown that L-VOCC plays a relevant physiological
role in NMDA receptors-independent long-term potentiation [28]. The activation and synaptic
clustering of AMPA receptors upon phosphorylation by CaMKII has been shown to potentiate
NMDA receptors activation in the induction of LTP [53]. Noteworthy, L-VOCC blockers like
nifedipine and nimodipine and AMPA antagonists/inhibitors have been shown to have anti-
epileptic therapeutic effects, pointing out that overstimulation of L-VOCC and/or AMPA
underlies, at least, some types of epileptic seizures.

The high concentration of calcium attained within the nanodomains associated with lipid rafts
allows for a stronger and faster selective stimulation of the pool of nNOS localized therein.
Because of the rapid diffusion coefficient of nitric oxide, these nanodomains can be seen as the
most relevant plasma membrane points for focalized nitric oxide generation in neurons and,
therefore, define the sub-microcompartments of neurons where higher transient concentra‐
tions of nitric oxide are attained upon nNOS stimulation. This fact and the vicinal location of
nNOS and NMDA receptors within these nanodomains, i.e. separated by a distance lower than
40 nm [117], makes of NMDA receptors a major cellular target for the chemical reactivity of
released nitric oxide. As the calcium currents through NMDA receptors are inhibited by
exposure of these receptors to nitric oxide, see the section 5.1 of this chapter, the co-localization
of nNOS and NMDA receptors within these nanodomains serves to potentiate a feedback
retroinhibition mechanism for the attenuation of excessive NMDA receptors activity which
would lead to neuronal excitotoxicity [117], i.e. these nanodomains can be also seen as a
molecular microchip-like structure designed for neuronal protection against the harmful
consequences of overstimulation by L-glutamate (Figure 2c). On these grounds, the reported
stimulation of L-VOCC by nitric oxide, see the section 5.1 of this chapter, can be rationalized
as a molecular compensatory mechanism for the fine tuning of NMDA receptor activity, as it
will lead to an increase of L-glutamate secretion near these nanodomains and this should avoid
excessive depression of NMDA receptor activity in the neuron.

The latter point already highlights a major role of the nanodomains associated with lipid rafts
in the intimate cross-talk between calcium and nitric oxide signalling for the normal physio‐
logical activity of neurons, but also points out that excessive calcium entry through L-VOCC
or NMDA receptors should rapidly lead to unusually large peaks of nitric oxide generation in
these nanodomains. As indicated above in this chapter, it is well established now that the
sustained rise of intracellular calcium and/or nitric oxide can induce neuronal death and are
common features in brain degeneration. Many experimental evidences accumulated up to date
reveal that in some cases the induction of oxidative stress in brain neurodegeneration takes
place before a sustained cytosolic calcium homeostasis deregulation can be observed. For
example, in the case of inflammation of a brain area induced either by a traumatic shock injury
or cerebral stroke the neurons are exposed to a ROS/RNS overshot largely generated by vicinal
glial and vascular endothelial cells. The major sources for the overshot of ROS/RNS observed
in this inflammation episode are the increase of iNOS expression, which produces a nitric oxide
overshot, and activation of plasma membrane NADPH oxidases, which produces a superoxide
anion overshot. Therefore, within the brain area affected by inflammation neurons suffer a
long-lasting exposure to an extracellular microenvironment where the simultaneous presence
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calcium gradients observed between different regions of the neuronal cytosol can be done on
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cytosolic proteins and enzymes having EC50 values for calcium between 0.4 and 1 μM. Indeed,
some of these proteins play a key role in neuronal plasticity and functional responses critical
for proper brain development and function, like calmodulin, nNOS, GAP-43 and CaMK, to
cite only a few of well-established examples.

The calcium concentration reaches values in the micromolar range upon activation of L-VOCC
and NMDA receptors in small volume elements close to the cytosolic side of their calcium
channel structures [258], see also the Figure 2a. This generates a calcium concentration wave
that diffuses within the cytosolic space, because the protein cytosolic buffering systems are not
fast enough to trap all incoming calcium ions through these calcium channels [259, 260]. Due
to the rapid diffusion of calcium ions in the aqueous space of the cytoplasm, ~300 μm2 s-1, the
calcium entry through the high conductance L-VOCC and NMDA receptors channels will
rapidly raise the calcium concentration to the micromolar range within the associated lipid
rafts nanodomains. As these nanodomains have sizes lower than 200 nm, it can be derived that
in less than 1 microsecond the incoming calcium ions will diffuse within the whole space of
the nanodomain, i.e. in the time scale range characteristic for fast conformational relaxation in
proteins. Thus, this clustering serves to built up a very efficient molecular switch for signal
transduction in calcium signalling pathways within neurons, with a time response as fast as
the rapid conformational relaxations elicited by regulatory direct protein/protein interactions.
However, nanodomains can be seen as multi-port exit molecular devices that can serve to many
uni-port exit molecular devices, through regulatory direct protein/protein interactions.
Therefore, the localized calcium rise within these nanodomains not only serves to guarantee
the maximal possible activation of proteins or enzymes with EC50 values ≥0.4 micromolar, such
as those listed above, but also to elicit rapid integrative cellular responses. We shall next briefly
analyze several integrative responses of relevance for the rapid and fine control of cytosolic
calcium homeostasis in neurons elicited by the localized calcium rise within the nanodomains
associated with lipid rafts.

The association of CaMKII with L-VOCC subunit β2a and with NMDA receptors subunit
NR2B, mentioned in the section 2.1 of this chapter, implies that this protein is present in
neuronal nanodomains associated with lipid rafts. A direct consequence of the steep calcium
concentration gradient generated by calcium entry through L-VOCC and NMDA receptors is
the stronger selective activation of the pool of CaMKII that lies in their vicinity over other
CaMKII pools present in neurons. Thus, this will selectively potentiate phosphorylation of
CaMKII substrates present in lipid rafts associated nanodomains. Regarding the cytosolic
calcium homeostasis in neurons, the more relevant effect is the activation of L-VOCC upon
phosphorylation by CaMKII, as this potentiates the increase of the local gradient of calcium
concentration within these nanodomains, leading to a longer lasting increase of the concen‐
tration of cytosolic calcium with the concomitant increase in neuronal secretory activity and
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excitability (Figure 2b). Indeed, it has been shown that L-VOCC plays a relevant physiological
role in NMDA receptors-independent long-term potentiation [28]. The activation and synaptic
clustering of AMPA receptors upon phosphorylation by CaMKII has been shown to potentiate
NMDA receptors activation in the induction of LTP [53]. Noteworthy, L-VOCC blockers like
nifedipine and nimodipine and AMPA antagonists/inhibitors have been shown to have anti-
epileptic therapeutic effects, pointing out that overstimulation of L-VOCC and/or AMPA
underlies, at least, some types of epileptic seizures.

The high concentration of calcium attained within the nanodomains associated with lipid rafts
allows for a stronger and faster selective stimulation of the pool of nNOS localized therein.
Because of the rapid diffusion coefficient of nitric oxide, these nanodomains can be seen as the
most relevant plasma membrane points for focalized nitric oxide generation in neurons and,
therefore, define the sub-microcompartments of neurons where higher transient concentra‐
tions of nitric oxide are attained upon nNOS stimulation. This fact and the vicinal location of
nNOS and NMDA receptors within these nanodomains, i.e. separated by a distance lower than
40 nm [117], makes of NMDA receptors a major cellular target for the chemical reactivity of
released nitric oxide. As the calcium currents through NMDA receptors are inhibited by
exposure of these receptors to nitric oxide, see the section 5.1 of this chapter, the co-localization
of nNOS and NMDA receptors within these nanodomains serves to potentiate a feedback
retroinhibition mechanism for the attenuation of excessive NMDA receptors activity which
would lead to neuronal excitotoxicity [117], i.e. these nanodomains can be also seen as a
molecular microchip-like structure designed for neuronal protection against the harmful
consequences of overstimulation by L-glutamate (Figure 2c). On these grounds, the reported
stimulation of L-VOCC by nitric oxide, see the section 5.1 of this chapter, can be rationalized
as a molecular compensatory mechanism for the fine tuning of NMDA receptor activity, as it
will lead to an increase of L-glutamate secretion near these nanodomains and this should avoid
excessive depression of NMDA receptor activity in the neuron.

The latter point already highlights a major role of the nanodomains associated with lipid rafts
in the intimate cross-talk between calcium and nitric oxide signalling for the normal physio‐
logical activity of neurons, but also points out that excessive calcium entry through L-VOCC
or NMDA receptors should rapidly lead to unusually large peaks of nitric oxide generation in
these nanodomains. As indicated above in this chapter, it is well established now that the
sustained rise of intracellular calcium and/or nitric oxide can induce neuronal death and are
common features in brain degeneration. Many experimental evidences accumulated up to date
reveal that in some cases the induction of oxidative stress in brain neurodegeneration takes
place before a sustained cytosolic calcium homeostasis deregulation can be observed. For
example, in the case of inflammation of a brain area induced either by a traumatic shock injury
or cerebral stroke the neurons are exposed to a ROS/RNS overshot largely generated by vicinal
glial and vascular endothelial cells. The major sources for the overshot of ROS/RNS observed
in this inflammation episode are the increase of iNOS expression, which produces a nitric oxide
overshot, and activation of plasma membrane NADPH oxidases, which produces a superoxide
anion overshot. Therefore, within the brain area affected by inflammation neurons suffer a
long-lasting exposure to an extracellular microenvironment where the simultaneous presence
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of high nitric oxide and superoxide anion concentrations generate significant amounts of
peroxynitrite, see e.g. [162,169]. In this oxidative scenario, the calcium-entry transport systems
more relevant for the control of neuronal cytosolic calcium homeostasis associated with lipid
rafts nanodomains, NMDA and AMPA receptors and L-VOCC, are strongly activated by
peroxynitrite, see the section 5.1 of this chapter. This produces a large peak of calcium
concentration within these nanodomains, large enough to elicit a large increase of cytosolic
calcium and a strong stimulation of nNOS, leading to an intracellular burst of nitric oxide, and
stimulation of the neuronal metabolic activity and associated intracellular superoxide anion

Figure 2. Functional implications of the association of calcium transport systems and ROS/RNS-sources in the neuro‐
nal plasma membrane. (a) Generation of transients of micromolar calcium concentrations within nano- or sub-micro‐
volume elements. The size attained by these volume elements is strongly dependent on the intensity of the total
calcium inward current through the calcium transport systems clusters within lipid rafts-associated nanodomains and
on the cytosolic calcium buffering capacity (see the text). (b) Faster and long-lasting potentiation of NMDA receptors
(NMDAr). Calcium entry through L-VOCC triggers the activation of associated CaMKII, which elicits (i) a feedback acti‐
vation of L-VOCC potentiating calcium entry and (ii) a recruitment of activated AMPA receptors (AMPAr). (c) Potentia‐
tion of NO -mediated protection against L-glutamate excitotoxicity. The co-localization of nNOS allows to reach
higher NO concentrations near NMDA receptors and L-VOCC potentiating its effects on these calcium transport sys‐
tems. (d) Peroxynitrite-induced sustained cytosolic calcium deregulation. A dramatic consequence of an unbalanced
overstimulation of calcium transport systems that raise the cytosolic calcium concentration. Other abbreviations used
in this figure: PM, plasma membrane; Mit, mitochondria; ER, endoplasmic reticulum; ONOO-, peroxynitrite;, protein
phosphorylation; ⊕, stimulation; ⋈ and X, inhibition or blockade.
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generation, oxidative conditions that generate intracellular peroxynitrite. In turn, these
intracellular oxidative conditions produce the release of calcium from endoplasmic reticulum
and mitochondria (see the section 5.2 of this chapter), contributing to a further and more
widespread rise of cytosolic calcium concentration, and partial inactivation of the extrusion
systems of the neuronal plasma membrane, PMCA and NCX (see the section 5.3 of this
chapter). These latter effects lead to impairment of the ability of neurons to restore the low
cytosolic calcium concentration needed for their normal function, and as a result lead to a long-
lasting rise of cytosolic calcium concentration which can eventually reach the level that elicits
a rapid necrotic death. Thus, impairment of the calcium transport systems of nanodomains
associated with lipid rafts results in generation of an intracellular ROS/RNS oxidative stress
that amplifies the oxidative stress suffered by exposure of neurons to a combined ROS/RNS
extracellular oxidative stress (Figure 2d). Indeed, many experimental studies have shown that
pharmacological compounds that inhibit the calcium currents through NMDA and AMPA
receptors and L-VOCC behave as protection agents against neuronal death in inflammatory
brain insults.

Experimental evidences have pointed out that there is a large mesh/network of lipid rafts-
associated nanodomains in the plasma membrane of the soma of primary cultures of cerebellar
granule neurons, where they are particularly enriched in neuron/neuron contact areas [130],
and microscopy images have also shown a distribution map that closely overlap with the
distribution map of flavoproteins bound to the plasma membrane [130,261], consistent with
the association of the flavoproteins nNOS and cytochrome b5 reductase with these nanodo‐
mains. Because of the strong impairment of the activity of calcium transport systems present
in these nanodomains by many ROS/RNS that can be generated in the neuronal cytoplasm
under a variety of cellular stress conditions, it should be expected that even exposure of
neurons to a relatively mild oxidative stress should elicit a partial failure of the control of
calcium homeostasis within these neurons. Owing to the large intracellular space occupied by
nuclei in these neurons, partial failure in the control of cytosolic calcium homeostasis should
elicit significant fluctuations of the cytosolic calcium concentration even in the absence of
neuronal stimulation. The occurrence of basal endogenous oscillations of the cytosolic calcium
concentration have been reported in in vitro cultures of different types of neurons, see for
example [186,262-264]. We have recorded synchronized fluctuations of the cytosolic calcium
concentration in primary cultures of rat cerebellar granule neurons, of an average amplitude
of ±0.15 units of the ratio 340/380 in cells loaded with fura-2, by simply increasing the intensity
of UV-irradiation in the epifluorescence microscope [Marques-da-Silva D and Gutierrez-
Merino C, unpublished results], conditions that promote an increase of H2O2 production by
cellular flavoproteins. The implication of nanodomains associated with lipid rafts in the
generation of these cytosolic calcium fluctuations is unravelled by their attenuation by specific
inhibitors or blockers of the calcium transport systems associated with these nanodomains. In
this particular case the calcium entry through L-VOCC plays a major role in the modulation
of the amplitude of the UV-induced fluctuations of cytosolic calcium concentrations. However,
it is to be noted that other calcium transport systems associated with lipid rafts can also play
a major role under different experimental conditions, as it has been shown that NCX interac‐
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of high nitric oxide and superoxide anion concentrations generate significant amounts of
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peroxynitrite, see the section 5.1 of this chapter. This produces a large peak of calcium
concentration within these nanodomains, large enough to elicit a large increase of cytosolic
calcium and a strong stimulation of nNOS, leading to an intracellular burst of nitric oxide, and
stimulation of the neuronal metabolic activity and associated intracellular superoxide anion
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elicit significant fluctuations of the cytosolic calcium concentration even in the absence of
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cellular flavoproteins. The implication of nanodomains associated with lipid rafts in the
generation of these cytosolic calcium fluctuations is unravelled by their attenuation by specific
inhibitors or blockers of the calcium transport systems associated with these nanodomains. In
this particular case the calcium entry through L-VOCC plays a major role in the modulation
of the amplitude of the UV-induced fluctuations of cytosolic calcium concentrations. However,
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tions with another proteins bound to lipid rafts can elicit cytosolic calcium oscillations in
oocytes [265].

6.1. The role and relevance of cytosolic calcium buffering systems

The activation of a channel with a typical conductance of 2.6 pS, like that of some calcium
channels, can generate a calcium diffusion sub-microcompartment where the calcium con‐
centration is higher than 1 μM, but the effective dimensions of this volume element is largely
dependent upon the calcium buffering capacity of the microenvironment, increasing from only
several nanometers with a millimolar calcium buffering capacity up to 82 nm in presence of a
calcium buffering capacity equal to that afforded by 0.1 mM fura-2 [258]. The higher the
conductance of the calcium channel, the higher the effective dimension of this sub-microcom‐
partment. Using the equations derived in [260], for channels with unitary calcium conductan‐
ces in the range of 20 to 40 pS, i.e. that of L-VOCC and NMDA receptors (section 2.1 of this
chapter), effective dimensions of a sub-microcompartment with calcium concentrations higher
than 1 μM can extend to several hundreds of nanometers taking into account that only
micromolar concentrations of calcium buffering systems are present in the neuronal cytosol
(Figure 2a). Because of the high neurotoxicity of cytosolic calcium concentrations in the
micromolar range, a decrease of the calcium buffering capacity of the cytosol shall increase the
propensity for rapid degeneration of neurons.

On these grounds, it can be easily understood that the role of the cytosolic calcium buffering
in neurons has attracted considerable interest, not only because of the abundance of calcium-
binding proteins in the nervous system but also because of the specificity of their regional
distribution in the brain. It is also relevant herein to note that an altered expression of the major
calcium-binding proteins has been noticed in damaged brain regions of patients suffering from
acute insults, such as stroke or epileptic seizures, and from chronic human neurodegenerative
disorders which develop with an enhanced oxidative stress in the brain, such as Alzheimer's,
Huntington's, Parkinson's and Pick's diseases [266]. Several of the major calcium-buffering
proteins present in the brain have been reported to show altered expression levels in degen‐
erating brain regions, namely, parvalbumin, calbindin-D28K and S100, all of them members
of the EF-hand calcium binding proteins like the calcium-binding protein calmodulin ubiqui‐
tously expressed in all mammalian cells. Furthermore, it has been proposed that the lack of
calcium buffering proteins parvalbumin and calbindin-D28K may be considered one of the
factors that render human motor neurons particularly vulnerable to calcium toxicity following
glutamate receptor activation in amyotrophic lateral sclerosis [267]. Consistently, it has been
reported that parvalbumin overexpression delays disease onset in a transgenic model of
familial amyotrophic lateral sclerosis [268], a devastating and oxidative stress-mediated
neurodegenerative disease of the brain.

Because of the high relevance of calmodulin as a multifunctional modulator of cellular calcium
homeostasis and also of cellular calcium signalling pathways [4-6], this is the calcium binding
protein of the EF-hand family whose functional and structural alterations by ROS have been
more extensively studied [269]. In this regard, calmodulin-dependent proteins particularly
relevant for the control of calcium homeostasis in neurons are the calcium transport systems
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PMCA and IP3-receptors, see above. In addition, calmodulin modulates signalling pathways
controlling neuronal activity and synaptic plasticity like the protein phosphatase calcineurin,
CaMK and IQ motif-containing proteins, such as myosins, Ras exchange proteins and GAP-43
among others [141,270,271]. Noteworthy, the activity of calcineurin has been reported to be
decreased in sporadic and familial amyotrophic lateral sclerosis [272]. Calmodulin has been
shown to become more oxidized in aged animals [269], pointing out that the physiological
oxidative stress developed in the tissues is enough to lead to a sustained chemical modification
of this protein. In vitro calmodulin suffers chemical oxidative modifications upon exposure to
either H2O2 or peroxynitrite, for a review on this topic see [269]. Two vicinal methionine
residues close to the carboxyl-terminus of calmodulin, Met-144 and Met145, are oxidized to
methionine sulfoxide in aged tissues and also by H2O2 and more efficiently by peroxynitrite.
Calmodulin oxidation leads to inhibition of the target proteins by non-productive association
and stabilization of their inactive state. This has been experimentally demonstrated for the
PMCA [273-275]. The oxidation of these methionines is reversible in vivo, as methionine
sulfoxide reductases can efficiently reduce them back to methionine, restoring normal
calmodulin function [269]. The fact that in aged tissues this oxidation is not fully reverted
indicates a functional loss of this recycling process during aging. Thus, oxidation of calmodulin
leads to a transient inactivation of neuronal PMCA. On these grounds, the fact that high levels
of expression of calcium binding proteins are observed in neurons expressing nNOS [276-279]
can be seen as a protective mechanism to attenuate long-lasting calcium transients in these
neurons, which could eventually elicit cell death through calpains activation.

The widespread expression of calmodulin in the brain, its high level of expression in neurons
relative to other cell types and its pleiotropic cellular functions confer a high relevance to the
oxidative modifications of this protein by ROS/RNS. Regarding specifically the calcium
transport systems associated with lipid rafts nanodomains, a loss of functional calmodulin
leads to a marked decrease of the CaMK activity and this, in turn, leads to a decrease of the
activity of the calcium entry systems L-VOCC and AMPA and NMDA receptors. As a result,
the calcium concentration within these sub-microcompartments will be lowered up to levels
closer to those found in the overall cytosol. Although the PMCA will also be inhibited, this
inhibition by itself cannot compensate a large decrease of the inward calcium currents for two
major reasons: (i) in neurons PMCA is also stimulated by phosphatidylserine and in these cells
calmodulin stimulation is weak relative to other cell types [280], and (ii) the higher potency
for transport across the open calcium channels of L-VOCC and NMDA receptors with respect
to that of PMCA. Therefore, these nanodomains can eventually enter in a latent state regarding
calcium and nitric oxide signalling in neurons. A simple and rational hypothesis merges from
this conclusion, namely, that this could be a molecular mechanism underlying the observed
loss of neuronal threshold excitability in aging and brain neurodegeneration. Owing to its
putative relevance for the search of new therapeutic drugs and treatments for slow-developing
neurodegenerative processes, this hypothesis deserve to be experimentally assessed in future
studies.
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7. Concluding remarks

The organization of the major calcium transport systems controlling the cytosolic calcium
homeostasis within nanodomains of the neuronal plasma membrane associated with lipid rafts
is opening new perspectives for regulation and deregulation of calcium signalling in neurons.
In addition to the relevance of this fact for the efficient neuronal function in brain associative
structures, like the concerted activity in neuronal circuits and LTP, the co-localization of ROS/
RNS enzyme sources within these nanodomains is of particular relevance for neurodegener‐
ative insults and diseases. The basic reason for this conclusion is that the calcium transport
systems playing a major role in cytosolic calcium homeostasis and calcium-mediated neuronal
activity are highly sensitive to modulation by ROS/RNS, and that oxidative stress is a common
feature observed during the development of brain damage elicited in the most frequent brain
insults and neurodegenerative diseases of high prevalence in humans. Yet, the actual knowl‐
edge of the molecular structure and plasticity of these nanodomains is still very limited, both
in terms of their molecular composition in different types of neurons and of the factors
controlling its formation and structural organization. Moreover, the molecular mechanisms
leading to deregulation of the ROS/RNS enzyme sources associated with these nanodomains
remain to be established, as well as the structural changes induced in these nanodomains by
exposure to the different ROS/RNS that are generated in neurodegenerative insults and
diseases. Because of the central role of cytosolic calcium in the control of neuronal activity,
plasticity and survival it can be foreseen that these nanodomains will become a relevant
pharmacological target in the search for alternate and novel therapies aiming to prevent or
slowdown neurodegenerative processes in the brain.

Abbreviations used in the text

AAPH, 2,2'- azobis (2-amidinopropane) dihydrochloride; AMPA, α-amino-3-hydroxy-5-
methylisoxazole-4-propionic acid; CaMKII, calcium/calmodulin-dependent protein kinase,
isoform II; Cb5R, cytochrome b5 reductase; cGMP, 3’,5’-cyclic guanosine monophosphate; CNS,
central nervous system; COX, cyclooxygenase; EDTA, ethylenediamine-tetraacetic acid; FRET,
fluorescence resonance energy transfer; LTP, long-term post-synaptic potentiation; NCX,
sodium-calcium exchanger; NMDA, N-methyl-D-aspartate; nNOS, neuronal nitric oxide
synthase; NOX, ROS-generating NADPH oxidases; PKA, protein kinase A; PKC, protein
kinase C; PMCA, plasma membrane calcium pump; ROS, reactive oxygen species; RNS,
reactive nitrogen species; SIN-1, 3-morpholinosydnonimine; SOCE, store-operated calcium
entry; UV, ultraviolet; VOCC, voltage-operated caclium channels (L-VOCC, L-type VOCC; N-
VOCC, N-type VOCC; etc).
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Peptide and Protein Neurotoxin Toolbox in Research on
Nicotinic Acetylcholine Receptors

Victor  Tsetlin and Igor  Kasheverov

Additional information is available at the end of the chapter
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1. Introduction

The chapter briefly covers the history of protein and peptide neurotoxins in research on
nicotinic acetylcholine receptors (nAChR). It all started with a great help of α-bungarotoxin
and other similar α-neurotoxins from snake venoms in isolation from the Torpedo ray electric
organ of the muscle-type nAChR as a first individual membrane receptor. The next contribu‐
tion of α-neurotoxins was the discovery with their aid of the first neuronal nAChR in the brain
now known as homooligomeric α7 nAChR. An overview of various α-neurotoxins (so-called
three-finger toxins) is presented below showing the structural differences between them, as
well as the benefits of their current application for identification and quantification of different
nAChR subtypes at normal state and at various pathologies such as Alzheimer’s and Parkin‐
son’s diseases, psychiatric diseases and nicotine addiction. A special emphasis is placed on the
work at our institute, starting with the first detection of nAChRs as targets for the so-called
weak or “non-conventional” neurotoxins. Recently, in proteomic studies of snake venoms,
novel structural types have been discovered, such as covalently connected dimeric α-cobra‐
toxin or, on the contrary - azemiopsin, the first peptide from venoms which does not contain
disulfide bonds but still blocks selectively the muscle-type nAChR.

A generous source for sophisticated tools in research on nAChRs is combinatorial peptide
libraries from the venoms of Conus marine snails. In particular, they contain α-conotoxins
which not only distinguish muscle nAChRs from neuronal ones, but some of them block
specifically distinct neuronal nAChR subtypes. At present, combinations of snake and snail
toxins are widely used in fundamental research and in pharmacological studies.

The chapter briefly summarizes information on the spatial organization and subunit compo‐
sition of different nAChR subtypes, but considers in more detail important contributions of
peptide and protein neurotoxins into elucidation of the topography of the nAChR binding

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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sites. The information mainly came from the X-ray structures of their complexes with the
acetylcholine-binding protein (AChBP), an excellent structural model of the ligand-binding
domain of nAChRs. These complexes are considered as initial blocks for design of novel drugs.

2. Muscle-type, neuronal and “non-neuronal” nAChRs — Brief overview

Before considering in detail protein and peptide neurotoxins on which the Chapter is mostly
focused, it is reasonable to give very shortly the information about various types of nAChR
which will make easier later discussions of the specificity of one or another toxin to a particular
nAChR subtype.

As mentioned in the Introduction, α-bungarotoxin made possible identification and isolation
in a pure form of the nAChR from the Torpedo ray electric organ. Later it was found that this
receptor is composed of 5 subunits arranged around the central axis along which an ion channel
should be arranged (Figure 1, A). The subunits in the order of their increasing molecular masses
(estimated from the SDS-gel electrophoresis) have been named α, β, γ and δ. The molecular
mass of the receptor complex is around 250 kD and it should contain two α subunits and by
one of the “non- α” subunits. When nucleotide sequences of the Torpedo nAChR subunits and
of those from mammalian muscles were established it became clear that those receptors are
highly homologous. In fact, the mammalian embryonic nAChR has the same subunit stoichi‐
ometry (2α, β, γ and δ), but in the mature form it has an ε subunit instead of γ. Although the
relevant information at present is available in numerous biochemistry books and reviews [1-4],
it should be mentioned here that nAChRs are ligand-gated ion channels: binding of a ligand
(acetylcholine, nicotine or other specific agonists) will result in the channel opening and
passing sodium or calcium ions will activate a variety of signaling cascades. On the other hand,
binding at the same sites of competitive antagonists such as α-bungarotoxin will prevent both
binding of agonists and subsequent channel opening; some so-called non-competitive
antagonists, like phencyclidine, bind directly to the channel moiety but they are not discussed
here.

Earlier it was thought that the ligand-binding sites of nAChRs lie within the α-subunits, hence
there should be two binding sites on the muscle-type nAChRs. To-day we know that, indeed,
the main contributions to binding of agonists or competitive antagonists are donated by the
α-subunits. Moreover, even isolated α-subunit and its fragment in the amino-acid region
170-200 can bind α-bungarotoxin, although with lower affinity than the whole-size receptors
[5,6]. However, now it is well established that the binding sites are situated at the interfaces of
the α-subunits with their neighbors, and it is the variability of functional groups brought to
the binding sites by less conservative “non-alpha” subunits which underlies the differences in
specificity between individual nAChR subtypes [4].

What are the types and subtypes of nicotinic acetylcholine receptors? As mentioned above,
binding of radioactive α-bungarotoxin to brain membranes finally brought to life the nAChR
presently known as homopentameric α7 nAChR that is composed of five identical α7-subunits.
Thus, we have an example of homooligomeric receptor belonging to the family of neuronal
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nAChRs. Neuronal heteromeric nAChRs are composed of two types of subunits: α and β. At
present there are 9 types of neuronal α-subunits (α2-α10) and three types of β subunits (β2-
β4); α and β subunits in the muscle-type receptors presumed to be α1 and β1 ones. The
characteristic feature of α-subunit is a vicinal disulfide between two neighboring Cys residues
in the binding site (Cys192-Cys193 in the amino-acid sequence of the Torpedo α-subunit) which
is not present in β or other “non-α” subunits. In recent years it became clear that diverse
nAChRs are very much widespread and play different functional roles also outside the neuro-
muscular junctions or central nervous system. In fact, neuronal nAChR subunits were found
on the immune system cells, skin, lung tissue and other. The respective receptors got the name
of “non-neuronal” nAChRs thus making a third group of nicotinic acetylcholine receptors (see
reviews [7,8]).

Figure 1. Spatial organization of nAChRs. А – Schematic presentation of Torpedo nAChR, consisting of 5 subunits with
the ion channel along the central axis. Two binding sites of agonists (acetylcholine and others) and competitive antag‐
onist (α-neurotoxins from snakes, α-conotoxins from Conus mollusks and others) are located at the interfaces of the
α1/γ and α1/δ-subunits and marked with asterisks. В – Spatial organization of Torpedo marmorata nAChR derived
from its cryo-electron microscopy structure. Subunits α1, β1, γ and δ are colored in red, green, cyanic and blue, respec‐
tively. Three main domains of the receptor – extracellular (ECD), transmembrane (TMD), consisting of 4 α-helical frag‐
ments (M1-M4), and intracellular (ICD) are shown. C – Schematic presentation of two representatives of neuronal
nAChRs – homooligomeric and heterooligomeric ones. The probable binding sites of agonists and competitive antag‐
onist are marked with black circles.

Structurally, the Torpedo nAChR is a prototype for all members of the nAChR family. First of
all, it is a pentamer (composed of 5 subunits) as follows from the cryo-electron microscopy
structure of the Torpedo marmorata receptor (see Figure 1, B). There are no structural data of
this sort for any other nAChR, but their pentameric composition was presumed from computer

Peptide and Protein Neurotoxin Toolbox in Research on Nicotinic Acetylcholine Receptors
http://dx.doi.org/10.5772/58240

115



sites. The information mainly came from the X-ray structures of their complexes with the
acetylcholine-binding protein (AChBP), an excellent structural model of the ligand-binding
domain of nAChRs. These complexes are considered as initial blocks for design of novel drugs.

2. Muscle-type, neuronal and “non-neuronal” nAChRs — Brief overview

Before considering in detail protein and peptide neurotoxins on which the Chapter is mostly
focused, it is reasonable to give very shortly the information about various types of nAChR
which will make easier later discussions of the specificity of one or another toxin to a particular
nAChR subtype.

As mentioned in the Introduction, α-bungarotoxin made possible identification and isolation
in a pure form of the nAChR from the Torpedo ray electric organ. Later it was found that this
receptor is composed of 5 subunits arranged around the central axis along which an ion channel
should be arranged (Figure 1, A). The subunits in the order of their increasing molecular masses
(estimated from the SDS-gel electrophoresis) have been named α, β, γ and δ. The molecular
mass of the receptor complex is around 250 kD and it should contain two α subunits and by
one of the “non- α” subunits. When nucleotide sequences of the Torpedo nAChR subunits and
of those from mammalian muscles were established it became clear that those receptors are
highly homologous. In fact, the mammalian embryonic nAChR has the same subunit stoichi‐
ometry (2α, β, γ and δ), but in the mature form it has an ε subunit instead of γ. Although the
relevant information at present is available in numerous biochemistry books and reviews [1-4],
it should be mentioned here that nAChRs are ligand-gated ion channels: binding of a ligand
(acetylcholine, nicotine or other specific agonists) will result in the channel opening and
passing sodium or calcium ions will activate a variety of signaling cascades. On the other hand,
binding at the same sites of competitive antagonists such as α-bungarotoxin will prevent both
binding of agonists and subsequent channel opening; some so-called non-competitive
antagonists, like phencyclidine, bind directly to the channel moiety but they are not discussed
here.

Earlier it was thought that the ligand-binding sites of nAChRs lie within the α-subunits, hence
there should be two binding sites on the muscle-type nAChRs. To-day we know that, indeed,
the main contributions to binding of agonists or competitive antagonists are donated by the
α-subunits. Moreover, even isolated α-subunit and its fragment in the amino-acid region
170-200 can bind α-bungarotoxin, although with lower affinity than the whole-size receptors
[5,6]. However, now it is well established that the binding sites are situated at the interfaces of
the α-subunits with their neighbors, and it is the variability of functional groups brought to
the binding sites by less conservative “non-alpha” subunits which underlies the differences in
specificity between individual nAChR subtypes [4].

What are the types and subtypes of nicotinic acetylcholine receptors? As mentioned above,
binding of radioactive α-bungarotoxin to brain membranes finally brought to life the nAChR
presently known as homopentameric α7 nAChR that is composed of five identical α7-subunits.
Thus, we have an example of homooligomeric receptor belonging to the family of neuronal

Neurochemistry114

nAChRs. Neuronal heteromeric nAChRs are composed of two types of subunits: α and β. At
present there are 9 types of neuronal α-subunits (α2-α10) and three types of β subunits (β2-
β4); α and β subunits in the muscle-type receptors presumed to be α1 and β1 ones. The
characteristic feature of α-subunit is a vicinal disulfide between two neighboring Cys residues
in the binding site (Cys192-Cys193 in the amino-acid sequence of the Torpedo α-subunit) which
is not present in β or other “non-α” subunits. In recent years it became clear that diverse
nAChRs are very much widespread and play different functional roles also outside the neuro-
muscular junctions or central nervous system. In fact, neuronal nAChR subunits were found
on the immune system cells, skin, lung tissue and other. The respective receptors got the name
of “non-neuronal” nAChRs thus making a third group of nicotinic acetylcholine receptors (see
reviews [7,8]).

Figure 1. Spatial organization of nAChRs. А – Schematic presentation of Torpedo nAChR, consisting of 5 subunits with
the ion channel along the central axis. Two binding sites of agonists (acetylcholine and others) and competitive antag‐
onist (α-neurotoxins from snakes, α-conotoxins from Conus mollusks and others) are located at the interfaces of the
α1/γ and α1/δ-subunits and marked with asterisks. В – Spatial organization of Torpedo marmorata nAChR derived
from its cryo-electron microscopy structure. Subunits α1, β1, γ and δ are colored in red, green, cyanic and blue, respec‐
tively. Three main domains of the receptor – extracellular (ECD), transmembrane (TMD), consisting of 4 α-helical frag‐
ments (M1-M4), and intracellular (ICD) are shown. C – Schematic presentation of two representatives of neuronal
nAChRs – homooligomeric and heterooligomeric ones. The probable binding sites of agonists and competitive antag‐
onist are marked with black circles.

Structurally, the Torpedo nAChR is a prototype for all members of the nAChR family. First of
all, it is a pentamer (composed of 5 subunits) as follows from the cryo-electron microscopy
structure of the Torpedo marmorata receptor (see Figure 1, B). There are no structural data of
this sort for any other nAChR, but their pentameric composition was presumed from computer

Peptide and Protein Neurotoxin Toolbox in Research on Nicotinic Acetylcholine Receptors
http://dx.doi.org/10.5772/58240

115



modeling and from some indirect data like electrophysiology analysis. At present there are no
doubts that all nAChRs are indeed either pentameric homooligomers (made exclusively of 5
α-type subunits, like α7 nAChR, α9 nAChR or α9/α10 nAChR) or pentameric heterooligomers
(composed of α and other subunits) (Figure 1, C) – for example, one of the best presented in
the brain is α4β2 nAChR [9]. As already mentioned, all nAChRs should be built similarly to
Torpedo nAChR: namely, four transmembrane fragments M1-M4 in each subunit, the most
inner ones M2 fragments lining the channel, the N-terminal extracellular fragments of each
subunit together forming the ligand-binding domain excellently imitated by the X-ray
structure of the acetylcholine-binding protein (AChBP) (see below). The long intracellular
loops between transmembrane fragments M3 and M4 of each subunit together form the
cytoplasmic (intracellular) domain.

The first and the most direct structural evidence for a common three-dimensional organization
of all nAChRs came from the crystal structure of AChBP [10]. Today even more convincing
are the recently solved high-resolution X-ray structures of the whole-size prokaryotic mem‐
brane proteins belonging to the same superfamily of Cys-loop ligand-gated ion channels as
nAChRs [11-13]. These proteins, each composed of 5 identical subunits, do not have large
cytoplasmic domains (which apparently made their crystallization much more simple than of
nAChRs or other mammalian Cys-loop receptors), but in the transmembrane and ligand-
binding domains they are surprisingly similar to Torpedo nAChR. Moreover, the same type of
structure was found for a Cys-loop receptor from Caenorhabditis elegans [14]. Now, after having
these major facts about nicotinic acetylcholine receptors, we can open our toolbox and have a
closer look on protein and peptide neurotoxins.

3. Snake venom neurotoxins utilized in research on nAChRs — Primary
and three-dimensional structure

The word “toolbox“ in the chapter title in the first place is related to the snake venom proteins,
at least historically. It was the component of Bungarus multicinctus venom which was found to
block very efficiently the muscle-type nAChRs and could be considered as a good marker of
those receptors. The history of the discovery of such a tool, namely protein neurotoxin α-
bungarotoxin, is presented in a recent review [15]. There Prof. Chang shares his memories
about this discovery (exactly 50 years ago!) which played such a crucial role in understanding
the structure and function of both snake neurotoxins and of one of their targets, namely
nAChRs. Soon after the discovery of α-bungarotoxin, similar proteins were found in other
snakes, in particular in cobra venoms and the whole family got the name of α-neurotoxins (see
reviews [15-17]).

3.1. α-Neurotoxins

There are two structural types of α-neurotoxins: short-chain α-neurotoxins (60-62 amino acid
residues, 4 disulfide bridges) and long-chain ones (66-75 amino acid residues, 5 disulfide
bonds). The first X-ray structures have been determined for the short-chain α-neurotoxins,
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namely for erabutoxins a and b [18,19] (see Figure 2, A). The molecule has three loops, with a
predominant β-structure, fixed in the space by 4 disulfide bridges forming a sort of a knot.
This folding gave the name of “three-finger proteins” to α-neurotoxins. Later spatial structures
have been determined both by NMR and X-ray crystallography for different short- and long-
chain α-neurotoxins, including α-bungarotoxin [20,21]. Long-chain α-neurotoxins have the
same three -finger folding as the short ones, but contain a longer C-terminal tail and an
additional 5th disulfide in the central loop II (Figure 2, B). In the structures of some long-chain
α-neurotoxins (α-bungarotoxin, α-cobratoxin [22] or neurotoxin I from Naja oxiana [23]) a short
α-helical fragment was found at the tip of the loop II (see Figure 2, B).

Figure 2. Spatial structures of snake ‘three-finger’ toxins interacting with nAChRs. The ‘fingers’ are marked with Ro‐
man numbers; N-termini are labeled as well. A - erabutoxin a (PDB ID: 5EBX). B – α-bungarotoxin (1KFH); the 5th disul‐
fide bridge in loop II is colored in magenta (contrary to all other disulfides in orange) and α-helix at tip of this loop is
colored intentionally in contrast green. C – κ-bungarotoxin (1KBA); 5th disulfide bridges in loops II are colored in red. D
– haditoxin (3HH7). E – dimeric α-cobratoxin (4AEA), where disulfide bridges between Cys3 from one monomer and
Cys20 from the second monomer stabilize the dimeric molecule; two monomers are shown in blue and magenta, re‐
spectively. F - irditoxin (2H7Z); ‘non-conventional’ disulfides in loops I are colored in red and disulfide bond between
the monomers is shown in blue. G - candoxin (1JGK); disulfide in loop I is shown in red.

One of the characteristic features of α-neurotoxins is the stability of their three-dimensional
structure fixed by 4 or 5 disulfide bridges. This conclusion is supported by high similarity of
spatial structures determined by NMR at different conditions (varying pH and temperatures)
and by X-ray crystallography. This may be one of the crucial factors explaining high efficiency
of α-neurotoxin interactions with their targets, nicotinic acetylcholine receptors. As will be
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modeling and from some indirect data like electrophysiology analysis. At present there are no
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nAChRs. Soon after the discovery of α-bungarotoxin, similar proteins were found in other
snakes, in particular in cobra venoms and the whole family got the name of α-neurotoxins (see
reviews [15-17]).
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shown later, α-neurotoxins essentially preserve their conformation in complexes with the
AChBP [24], with the ligand-binding domain of individual α1 subunit of nAChR [25] and with
the chimera of AChBP and α7 nAChR extracellular domain [26].

3.2. Dimeric three-finger neurotoxins

First of all, we should mention here κ-bungarotoxins and several homologous neurotoxins
which are dimers, but do not have covalent intermolecular bonds between monomers [27].
Each monomer is very similar to a typical long-chain α-neurotoxin: the same additional 5th

disulfide at the tip of the central loop II, but a slightly shorter C-terminal tail (total number of
amino acid residues 66 but not 75 as in α-bungarotoxin) (see Figure 2, C). The molecular targets
of κ-bungarotoxins are neuronal nAChRs, but contrary to α-neurotoxins they have high
affinity to neuronal α3β2 nAChR [28]. Interestingly, it was established about 20 years ago that
there is one common property of α-neurotoxins and κ-neurotoxins, namely the additional
disulfide in the loop II is essential for recognition of neuronal nAChRs. It was found that
selective reduction of that disulfide and subsequent alkylation or removal of the respective
cysteines in both types of toxins abolished their high affinity binding to α7 and α3β2 nAChRs,
respectively (without decreasing the affinity of long-chain α-neurotoxins to muscle-type
nAChRs [29,30]). On the other hand, introduction of additional disulfide into the central loop
of short-chain α-neurotoxins considerably increased their affinity for α7 nAChR [31,32].

It is not yet absolutely clear why κ-bungarotoxins have preference for heteromeric nAChRs.
There was a hypothesis that an important role in selectivity of κ-bungarotoxins towards α3β2
nAChRs belongs to the residue Lys26 [24]. However, its introduction to α-neurotoxin having
a high affinity for α7 nAChRs only decreased considerably binding to this receptor but did not
bring any affinity for α3β2 nAChRs [32]. Apparently, dimerization as such is important to force
a protein, composed of two classical α-neurotoxins, to recognize a heteromeric neuronal
nAChRs as can be seen on the example of other recently discovered dimeric neurotoxins.

One toxin, haditoxin from the King cobra venom [33] looks very similar to κ-bungarotoxin.
Haditoxin is a non-covalent dimer composed of two short-chain α-neurotoxins, rather than of
long-chain ones, and the monomers adopt a topological arrangement (Figure 2, D) reminiscent
of that observed earlier for monomers in κ-bungarotoxin. Haditoxin can block not only muscle-
type nAChRs, as typically observed for short-chain α-neurotoxins, but surprisingly it also
blocks homooligomeric α7 and heterooligomeric α3β2 nAChRs. This finding appears to be in
contradiction with the earlier found necessity of the additional disulfide in the central loop for
recognition of neuronal nAChRs. However, it should be kept in mind that blocking of neuronal
nAChRs by haditoxin was observed only at very high toxin concentrations [33]. It should be
also mentioned that, strictly speaking, haditoxin cannot be assigned to classical short-chain
α-neurotoxins because its homology to erabutoxin is only 50%, whereas it is 75-80% with the
muscarinic toxin-like proteins (MTLP) having different targets [34].

Novel types of dimeric α-neurotoxins were recently discovered: contrary to κ-bungarotoxin
or haditoxin, these are covalently bound where two molecules of α-cobratoxin are connected
by two intermolecular disulfide bonds [35]. Before describing a biological activity of this new
tool, it should be mentioned that such intermolecular disulfide is the first case of this post-

Neurochemistry118

translational modification found for the whole huge family of three-finger toxins. Dimeric α-
cobratoxin retained, although at a lower level, the capacity to block α7 and muscle-type
nAChRs and in addition acquired the ability to block α3β2 nAChR - again, with lower potency
than did κ-bungarotoxin [35]. Interestingly, selective reduction of the disulfides in the loop II
of dimeric α-cobratoxin abolished its activity against α7 nAChR. It could be expected in view
of earlier described similar modification of α-cobratoxin itself, but this chemical modification
even increased the affinity for α3β2 nAChR [36]. Since dimeric α-cobratoxin is present in the
Naja kaouthia cobra venom only in minute amounts (0.01% in crude venom, as compared to
10% for α-cobratoxin itself or to 0.1% for κ-bungarotoxin), unequivocal localization of inter‐
molecular disulfides by chemical means could not be done. Fortunately, dimeric α-cobratoxin
has been recently crystallized (Figure 2, E) and the high-resolution X-ray structure revealed
the disposition of the intermolecular disulfide bridges: the disulfide Cys3-Cys20 or Cys3’-
Cys20’ in each monomer is not formed, but Cys3 of one monomer finds Cys20’ of another
monomer, while Cys3’ of the latter makes a disulfide with Cys20 of the former [36].

As will be shown later, the main contribution to binding of α-neurotoxins both to nAChRs and
to their models comes from the tip of the central loop II of α-neurotoxins. In dimeric α-
cobratoxin the two tips are in close proximity and computer modeling showed impossibility
of docking such a structure to AChBP, suggesting that some conformational changes should
occur in the dimeric α-cobratoxin to ensure its binding observed in radioligand and electro‐
physiology experiments [36].

The discovery of dimeric α-cobratoxin was followed by finding another three-fingered toxin
where monomers are connected by a disulfide bridge [37]. It was irditoxin isolated from
Colubrid snake Boiga irregularis. In contrast to dimeric α-cobratoxin present in venom in minor
amounts, irditoxin is a main component of boiga venom. Again, strictly speaking, irditoxin is
neither a short- nor a long-chain α-neurotoxin: the monomers forming this toxin belong to non-
conventional toxin type (see below) and each monomer contains an extra cysteine residue
forming one disulfide bridge between two monomers (or protomers). None of these cysteines
is present in classical α-neurotoxins. In the first protomer, the additional cysteine is located in
loop I whereas in the second protomer it is in loop II. The three-dimensional structure of
irditoxin [37] (see Figure 2, F) shows that the central loops II of the two protomers are oriented
in a similar way as the central loops of dimeric α-cobratoxin (Figure 2, E).

3.3. Weak (non-conventional) three-fingered neurotoxins

A characteristic feature of this group of three-fingered toxins is the presence of additional
disulfide bridge not in the central loop II, as in long-chain α-neurotoxins or in κ-bungarotoxins,
but in the N- terminal loop I. Some representatives of this group were known long ago, but
many of them did not have a strong toxicity (that is why their name was “weak toxins”) and
their targets were unknown. At present this group of toxins, consisting of 62-68 amino acid
residues, is quite well investigated and has a more general name “non-conventional neuro‐
toxins” [38]. The toxicities for the most of group members are very low (5-80 mg/kg) in contrast
to classical α-neurotoxin with toxicities in the range from 0.04 to 0.3 mg/kg. However, some
very potent toxins (like γ-bungarotoxin with LD50 of 0.15 mg/kg) are also included in the
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nAChRs belongs to the residue Lys26 [24]. However, its introduction to α-neurotoxin having
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a protein, composed of two classical α-neurotoxins, to recognize a heteromeric neuronal
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also mentioned that, strictly speaking, haditoxin cannot be assigned to classical short-chain
α-neurotoxins because its homology to erabutoxin is only 50%, whereas it is 75-80% with the
muscarinic toxin-like proteins (MTLP) having different targets [34].

Novel types of dimeric α-neurotoxins were recently discovered: contrary to κ-bungarotoxin
or haditoxin, these are covalently bound where two molecules of α-cobratoxin are connected
by two intermolecular disulfide bonds [35]. Before describing a biological activity of this new
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Neurochemistry118

translational modification found for the whole huge family of three-finger toxins. Dimeric α-
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has been recently crystallized (Figure 2, E) and the high-resolution X-ray structure revealed
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cobratoxin the two tips are in close proximity and computer modeling showed impossibility
of docking such a structure to AChBP, suggesting that some conformational changes should
occur in the dimeric α-cobratoxin to ensure its binding observed in radioligand and electro‐
physiology experiments [36].

The discovery of dimeric α-cobratoxin was followed by finding another three-fingered toxin
where monomers are connected by a disulfide bridge [37]. It was irditoxin isolated from
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but in the N- terminal loop I. Some representatives of this group were known long ago, but
many of them did not have a strong toxicity (that is why their name was “weak toxins”) and
their targets were unknown. At present this group of toxins, consisting of 62-68 amino acid
residues, is quite well investigated and has a more general name “non-conventional neuro‐
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group of non-conventional toxins. Since, as mentioned above, molecular targets of weak (non-
conventional) toxins for a long time were unknown, an important step in this field was the
work [39] where was discovered that weak toxin (WTX) from Naja kaouthia cobra venom
interacted with micromolar affinity with the α7 and muscle-type nAChRs, the binding being
practically irreversible. Later it was found [40] that candoxin (Figure 2, G), another non-
conventional toxin, interacted both with α7 and muscle-type nAChR with high affinity. An
interesting feature of candoxin is that its attachment to the muscle-type receptor was easily
reversible. Even more impressing species specificity was reported for denmotoxin, a non-
conventional toxin isolated from Colubrid snake Boiga dendrophila: it was able to interact
irreversibly and with high affinity with chick muscle nAChR, but only with low affinity with
mouse receptors [41].

3.4. Three-finger snake neurotoxins having other targets than nicotinic acetylcholine
receptors

Before considering in detail the mechanisms of interactions between α-neurotoxins and
nAChRs and describing their earlier and current roles of tools, it is appropriate to say a few
words about the whole family of three-finger proteins from snake venoms (see reviews [16,17]).
They all have the same “three-finger” fold but are decorated with quite different functionally
active amino-acid residue and, as a result, attack distinct targets. For example, in the preceding
paragraph we considered WTX from Naja kaouthia venom which blocked nicotinic acetylcho‐
line receptors. Its very low toxicity allowed testing of its behavioural activity on rats which
suggested action on muscarinic acetylcholine receptors [42]. Indeed, subsequent radioligand
analyses revealed the WTX interaction with the different subtypes of muscarinic acetylcholine
receptors [43]. It should be noted here that we have a dualism of action for this group of the
three-finger proteins from snake venom: namely, blocking of one acetylcholine receptor (the
nicotinic one) belonging to the family of ligand-gated ion channels and another acetylcholine
receptor, the muscarinic one which is a member of the superfamily of G-protein-coupled
receptors (GPCR).

Much more strong effects on muscarinic acetylcholine receptors exert so-called muscarinic
neurotoxins isolated from the green mamba Dendroaspis angusticeps [44-46]. Structurally these
proteins are of the same type as short-chain α-neurotoxins. Interestingly, they can distinguish
different subtypes (M1-M7) of muscarinic acetylcholine receptors and on some of them exert
not the inhibitory, but the potentiating effects. There is not yet much information about how
muscarinic toxins recognize their targets. A large series of mutations was performed both on
the muscarinic toxin MT7 and on the M1 muscarinic receptor and the results of this pair-wise
mutagenesis, analyzed by computer modelling, indicated that all three loops I-III should be
involved in the interaction and the main binding site for this allosteric modulator is located in
the extracellular loops of the receptor [46].

There are also several three-finger proteins from snake venoms (calciceptin, FS2) blocking
Ca2+ channels [47,48]. We should also mention here fasciculin, a three-finger protein with 4
disulfides, targeting the acetylcholinesterase. Interestingly, the X-ray structures of fasciculin

Neurochemistry120

in complex with acetylcholinesterases were the first examples presenting a three-finger toxin
bound to its biological target [49,50].

One of the most well-represented groups in the snake venoms are so-called cytotoxins (some
of them were earlier called cardiotoxins) which apparently do not have a single well-defined
target but disrupt the cell membranes thus inducing a multitude of effects (see reviews [51,52]).
As a result of proteomic studies new three-finger proteins are being found in the snake venoms,
and one of the minor components in the Naja kaouthia cobra venom was identified as a
glycosylated cytotoxin I [53]. This post-translational modification, for the first time discovered
for the family of three-finger toxins, considerably decreased the cytotoxicity of this protein,
whereas enzymatic deglycosylation restored it to the level of cytotoxin I activity [53]. Another
really a minor component of that venom (less than 0.01% in the crude venom) was a dimer of
cytotoxin and α-cobratoxin connected by two intermolecular disulfide bridges which revealed
a weak activity against neuronal nicotinic acetylcholine receptors [35].

We also would like to mention here the recent discovery of three-finger neurotoxins which
interact with another group of GPCR, namely with the adrenoreceptors [54,55]. These toxins
are most similar to muscarinic toxins and were also isolated from the eastern green mamba
Dendroaspis angusticeps. One such toxin (ρ-Da1a) has a very high affinity (0.35 nM) for the α1
adrenoreceptor, while another one (ρ-Da1b) has a lower affinity but is more selective towards
α2 types [55]. Interestingly, these toxins are considered as possible drugs against prostate
hypertrophy.

Although it is not the topic of the present review, it is appropriate to mention here that there
are three-finger proteins in nervous and immune system of mammals and insects belonging
to the Ly6 family and some of them bind to nicotinic acetylcholine receptors and regulate their
functioning in vivo (see [56-59] and recent publications from our institute [60-63]).

3.5. Peptides from snake venoms acting on nicotinic acetylcholine receptors

Such peptides are not as numerous as α-neurotoxins or non-conventional toxins targeting
different subtypes of nAChR. Until recently the only group was that of waglerins isolated from
the venom of South Asian snake Tropidolaemus wagleri which consist of 22-24 amino acids and
contain one disulfide bridge [64,65]. These toxins bind with high affinity to muscle-type
nAChR [66]. Interestingly, waglerins can distinguish embryonic (α12β1 γδ) and “mature”
(α12β1εδ) muscle-type nAChR: waglerin-1 efficiently blocks the ε-containing form, but not the
γ-form of this receptor [67]. While snake venom α-neurotoxins bind with practically equal
efficiency to the two binding sites (formed by two α-subunits with their non-α neighbors) in
the muscle-type nAChRs, waglerin-1 binds 2100-fold more tightly to the α-ε than to the α-δ
binding site of the mouse nAChR [68]. Several amino acid residues in the nAChR subunits
participating in waglerin binding were identified by site directed mutagenesis [69], namely
Asp59 and Asp173 were shown to be important for waglerin binding at both sites. On the other
hand, the disulfide in waglerin was found to be essential for its activity, as well as several
residues in its N-terminal part of the amino acid sequence [70].
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group of non-conventional toxins. Since, as mentioned above, molecular targets of weak (non-
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interacted with micromolar affinity with the α7 and muscle-type nAChRs, the binding being
practically irreversible. Later it was found [40] that candoxin (Figure 2, G), another non-
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irreversibly and with high affinity with chick muscle nAChR, but only with low affinity with
mouse receptors [41].

3.4. Three-finger snake neurotoxins having other targets than nicotinic acetylcholine
receptors

Before considering in detail the mechanisms of interactions between α-neurotoxins and
nAChRs and describing their earlier and current roles of tools, it is appropriate to say a few
words about the whole family of three-finger proteins from snake venoms (see reviews [16,17]).
They all have the same “three-finger” fold but are decorated with quite different functionally
active amino-acid residue and, as a result, attack distinct targets. For example, in the preceding
paragraph we considered WTX from Naja kaouthia venom which blocked nicotinic acetylcho‐
line receptors. Its very low toxicity allowed testing of its behavioural activity on rats which
suggested action on muscarinic acetylcholine receptors [42]. Indeed, subsequent radioligand
analyses revealed the WTX interaction with the different subtypes of muscarinic acetylcholine
receptors [43]. It should be noted here that we have a dualism of action for this group of the
three-finger proteins from snake venom: namely, blocking of one acetylcholine receptor (the
nicotinic one) belonging to the family of ligand-gated ion channels and another acetylcholine
receptor, the muscarinic one which is a member of the superfamily of G-protein-coupled
receptors (GPCR).

Much more strong effects on muscarinic acetylcholine receptors exert so-called muscarinic
neurotoxins isolated from the green mamba Dendroaspis angusticeps [44-46]. Structurally these
proteins are of the same type as short-chain α-neurotoxins. Interestingly, they can distinguish
different subtypes (M1-M7) of muscarinic acetylcholine receptors and on some of them exert
not the inhibitory, but the potentiating effects. There is not yet much information about how
muscarinic toxins recognize their targets. A large series of mutations was performed both on
the muscarinic toxin MT7 and on the M1 muscarinic receptor and the results of this pair-wise
mutagenesis, analyzed by computer modelling, indicated that all three loops I-III should be
involved in the interaction and the main binding site for this allosteric modulator is located in
the extracellular loops of the receptor [46].

There are also several three-finger proteins from snake venoms (calciceptin, FS2) blocking
Ca2+ channels [47,48]. We should also mention here fasciculin, a three-finger protein with 4
disulfides, targeting the acetylcholinesterase. Interestingly, the X-ray structures of fasciculin
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in complex with acetylcholinesterases were the first examples presenting a three-finger toxin
bound to its biological target [49,50].

One of the most well-represented groups in the snake venoms are so-called cytotoxins (some
of them were earlier called cardiotoxins) which apparently do not have a single well-defined
target but disrupt the cell membranes thus inducing a multitude of effects (see reviews [51,52]).
As a result of proteomic studies new three-finger proteins are being found in the snake venoms,
and one of the minor components in the Naja kaouthia cobra venom was identified as a
glycosylated cytotoxin I [53]. This post-translational modification, for the first time discovered
for the family of three-finger toxins, considerably decreased the cytotoxicity of this protein,
whereas enzymatic deglycosylation restored it to the level of cytotoxin I activity [53]. Another
really a minor component of that venom (less than 0.01% in the crude venom) was a dimer of
cytotoxin and α-cobratoxin connected by two intermolecular disulfide bridges which revealed
a weak activity against neuronal nicotinic acetylcholine receptors [35].

We also would like to mention here the recent discovery of three-finger neurotoxins which
interact with another group of GPCR, namely with the adrenoreceptors [54,55]. These toxins
are most similar to muscarinic toxins and were also isolated from the eastern green mamba
Dendroaspis angusticeps. One such toxin (ρ-Da1a) has a very high affinity (0.35 nM) for the α1
adrenoreceptor, while another one (ρ-Da1b) has a lower affinity but is more selective towards
α2 types [55]. Interestingly, these toxins are considered as possible drugs against prostate
hypertrophy.

Although it is not the topic of the present review, it is appropriate to mention here that there
are three-finger proteins in nervous and immune system of mammals and insects belonging
to the Ly6 family and some of them bind to nicotinic acetylcholine receptors and regulate their
functioning in vivo (see [56-59] and recent publications from our institute [60-63]).

3.5. Peptides from snake venoms acting on nicotinic acetylcholine receptors

Such peptides are not as numerous as α-neurotoxins or non-conventional toxins targeting
different subtypes of nAChR. Until recently the only group was that of waglerins isolated from
the venom of South Asian snake Tropidolaemus wagleri which consist of 22-24 amino acids and
contain one disulfide bridge [64,65]. These toxins bind with high affinity to muscle-type
nAChR [66]. Interestingly, waglerins can distinguish embryonic (α12β1 γδ) and “mature”
(α12β1εδ) muscle-type nAChR: waglerin-1 efficiently blocks the ε-containing form, but not the
γ-form of this receptor [67]. While snake venom α-neurotoxins bind with practically equal
efficiency to the two binding sites (formed by two α-subunits with their non-α neighbors) in
the muscle-type nAChRs, waglerin-1 binds 2100-fold more tightly to the α-ε than to the α-δ
binding site of the mouse nAChR [68]. Several amino acid residues in the nAChR subunits
participating in waglerin binding were identified by site directed mutagenesis [69], namely
Asp59 and Asp173 were shown to be important for waglerin binding at both sites. On the other
hand, the disulfide in waglerin was found to be essential for its activity, as well as several
residues in its N-terminal part of the amino acid sequence [70].
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A new peptide was recently found in the snake venom possessing a capacity to block muscle-
type nAChR [71]. It is azemiopsin, isolated from the Azemiops feae viper venom, which consists
of 21 amino acid residues. By the chain length azemiopsin is similar to waglerins and,
moreover, shares with them a homologous C-terminal fragment. However, it possesses a
unique structural feature: contrary to all earlier known proteins and peptides from the venoms
of snakes or poisonous Conus mollusks (see below), whose structure is fixed by one or several
S–S-bonds, azemiopsin contains no disulfides. It dose-dependently blocked acetylcholine-
induced currents in Xenopus oocytes heterologously expressing human muscle nAChR, and
was more potent against the adult (α12β1εδ) than the fetal (α12β1γδ) form. Ala-scanning and
analysis of competition with α-bungarotoxin for binding to Torpedo nAChR resulted in
identification of the azemiopsin residues essential for its activity which in general were found
to be different from those responsible for the waglerin activity [71].

4. α-Conotoxins, peptides from poisonous marine snails Conus, acting on
nicotinic acetylcholine receptors

Historically, snake venom α-neurotoxins were the first extremely important tools which made
possible “digging out” in a purified form the first representative of the nAChR family, namely
the muscle-type receptor from the Torpedo ray electric organ. Then, in the early 80s, the peptide
toxins were discovered in the marine mollusk Conus geographus venom which caused postsy‐
naptic inhibition at the neuromuscular junction in frog and got the name of conotoxins [72].
The following studies brought to life a tremendous number of so-called conotoxins or cono‐
peptides from different species of Conus snails. The number of Conus species living in different
seas and oceans is about 1000 and the available data show that the venom of each species
should contain in excess of 1000 conopeptides. Thus, Conus mollusks provide researchers with
huge combinatorial libraries of peptides. The main task of slowly moving Conus mollusks is
to immobilize their preys (small fishes, worms etc.), that is why their venoms contain a variety
of peptides paralyzing the nervous systems of their targets. Evolutionary each Conus species
is adjusted to a particular area and a distinct food source, hence the individuality of each
venom. There are several types of conotoxins differing in their targets: α-conotoxins block
nAChRs, μ-conotoxins are acting on Na+-channels, κ-conotoxins interact with K+-channels, ω-
conotoxins block specifically certain Ca2+-channels and one of such ω-conotoxins became a
very potent analgesic (trade name Ziconotide or Prialt; see more about these and many other
conotoxins and conopeptides in recent reviews [73-75]). The number of discovered conotoxins
is rapidly increasing because nowadays they appear not so much due to isolation from Conus
venoms (usually available only in minute amounts) but due to deciphering mRNAs obtained
from the venom glands.

Since this chapter is devoted to neurotoxic proteins and peptides interacting with nicotinic
acetylcholine receptors, below we will consider only those conotoxins which target these
receptors. The major group is α-conotoxins, competitive antagonists of nAChRs. They have
12-19 amino-acid residues, as a rule amidated C-terminus and two disulfide bonds between
Cys residues C1–C3 and C2–C4 (see Table). There are also several other groups of conotoxins

Neurochemistry122

acting on nAChRs (ψ-, αA-, αAS-, αC-, αS- and αD), but they are not numerous, are not as
widely used as α-conotoxins and will not be considered here.

Toxin Conus species Amino acid sequence 1 Selectivity

3/5 α-conotoxins

GI C. geographus ECCNPACGRHYSC* α1β1γ/εδ

MI C. magus GRCCHPACGKNYSC* α1β1γ/εδ

SIA C. striatus YCCHPACGKNFDC* α1β1γ/εδ

4/3 α- conotoxins

ImI C. imperialis GCCSDPRCAWRC* α7, α9α10; α3β2; α3β4

RgIA C. regius GCCSDPRCRYRCR α9α10

4/4 α- conotoxins

BuIA C. bullatus GCCSTPPCAVLYC* α3(α6)β2, α3(α6)β4

4/6 α- conotoxins

AuIB C. aulicus GCCSYPPCFATNPDC* α3β4

4/7 α- conotoxins

PnIA C. pennaceus GCCSLPPCAANNPDYC* α3β2

PnIВ C. pennaceus GCCSLPPCALSNPDYC* α7; α3β4

MII C. magus GCCSNPVCHLEHSNLC* α3β2(β3); α6-containing

Vc1.1 C. victoriae GCCSDPRCNYDHPEIC* α9α10; α3β4, α3(α5)β2

TxIA C. textile GCCSRPPCIANNPDLC* α3β2

ArIB C. arenatus DECCSNPACRVNNPHVCRRR α7, α6α3β2β3, α3β2

1 Scheme of disulfide closing for naturally-occurring α-conotoxins –

* indicates an amidated C-terminus; the names of α-conotoxins typed in italics mean that their structures were

identified in cDNA libraries.

Table 1. Most studied members of naturally-occurring α-conotoxins.

α-Conotoxins are structurally subdivided into subgroups depending on the number of amino
acid residues between the C2–C3 and C3–C4 cysteines (see Table) forming the first and second
loops, respectively. This structural feature affects the α-conotoxin specificity to particular
nAChR subtypes. All at present known 3/5 α-conotoxins are potent blockers of muscle type
nAChRs (and conventionally can be called ‘muscle’ α-conotoxins). The members of other
subgroups (4/3, 4/4, 4/6, 4/7) act on various neuronal nAChR subtypes (and can be called
‘neuronal’ α-conotoxins). It is very rare when naturally occurring neuronal α-conotoxin blocks
specifically only one neuronal nAChR subtype, usually neuronal α-conotoxins interact with
two or more nAChR subtypes (see Table).
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A new peptide was recently found in the snake venom possessing a capacity to block muscle-
type nAChR [71]. It is azemiopsin, isolated from the Azemiops feae viper venom, which consists
of 21 amino acid residues. By the chain length azemiopsin is similar to waglerins and,
moreover, shares with them a homologous C-terminal fragment. However, it possesses a
unique structural feature: contrary to all earlier known proteins and peptides from the venoms
of snakes or poisonous Conus mollusks (see below), whose structure is fixed by one or several
S–S-bonds, azemiopsin contains no disulfides. It dose-dependently blocked acetylcholine-
induced currents in Xenopus oocytes heterologously expressing human muscle nAChR, and
was more potent against the adult (α12β1εδ) than the fetal (α12β1γδ) form. Ala-scanning and
analysis of competition with α-bungarotoxin for binding to Torpedo nAChR resulted in
identification of the azemiopsin residues essential for its activity which in general were found
to be different from those responsible for the waglerin activity [71].

4. α-Conotoxins, peptides from poisonous marine snails Conus, acting on
nicotinic acetylcholine receptors

Historically, snake venom α-neurotoxins were the first extremely important tools which made
possible “digging out” in a purified form the first representative of the nAChR family, namely
the muscle-type receptor from the Torpedo ray electric organ. Then, in the early 80s, the peptide
toxins were discovered in the marine mollusk Conus geographus venom which caused postsy‐
naptic inhibition at the neuromuscular junction in frog and got the name of conotoxins [72].
The following studies brought to life a tremendous number of so-called conotoxins or cono‐
peptides from different species of Conus snails. The number of Conus species living in different
seas and oceans is about 1000 and the available data show that the venom of each species
should contain in excess of 1000 conopeptides. Thus, Conus mollusks provide researchers with
huge combinatorial libraries of peptides. The main task of slowly moving Conus mollusks is
to immobilize their preys (small fishes, worms etc.), that is why their venoms contain a variety
of peptides paralyzing the nervous systems of their targets. Evolutionary each Conus species
is adjusted to a particular area and a distinct food source, hence the individuality of each
venom. There are several types of conotoxins differing in their targets: α-conotoxins block
nAChRs, μ-conotoxins are acting on Na+-channels, κ-conotoxins interact with K+-channels, ω-
conotoxins block specifically certain Ca2+-channels and one of such ω-conotoxins became a
very potent analgesic (trade name Ziconotide or Prialt; see more about these and many other
conotoxins and conopeptides in recent reviews [73-75]). The number of discovered conotoxins
is rapidly increasing because nowadays they appear not so much due to isolation from Conus
venoms (usually available only in minute amounts) but due to deciphering mRNAs obtained
from the venom glands.

Since this chapter is devoted to neurotoxic proteins and peptides interacting with nicotinic
acetylcholine receptors, below we will consider only those conotoxins which target these
receptors. The major group is α-conotoxins, competitive antagonists of nAChRs. They have
12-19 amino-acid residues, as a rule amidated C-terminus and two disulfide bonds between
Cys residues C1–C3 and C2–C4 (see Table). There are also several other groups of conotoxins
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acting on nAChRs (ψ-, αA-, αAS-, αC-, αS- and αD), but they are not numerous, are not as
widely used as α-conotoxins and will not be considered here.

Toxin Conus species Amino acid sequence 1 Selectivity

3/5 α-conotoxins

GI C. geographus ECCNPACGRHYSC* α1β1γ/εδ

MI C. magus GRCCHPACGKNYSC* α1β1γ/εδ

SIA C. striatus YCCHPACGKNFDC* α1β1γ/εδ

4/3 α- conotoxins

ImI C. imperialis GCCSDPRCAWRC* α7, α9α10; α3β2; α3β4

RgIA C. regius GCCSDPRCRYRCR α9α10

4/4 α- conotoxins

BuIA C. bullatus GCCSTPPCAVLYC* α3(α6)β2, α3(α6)β4

4/6 α- conotoxins

AuIB C. aulicus GCCSYPPCFATNPDC* α3β4

4/7 α- conotoxins

PnIA C. pennaceus GCCSLPPCAANNPDYC* α3β2

PnIВ C. pennaceus GCCSLPPCALSNPDYC* α7; α3β4

MII C. magus GCCSNPVCHLEHSNLC* α3β2(β3); α6-containing

Vc1.1 C. victoriae GCCSDPRCNYDHPEIC* α9α10; α3β4, α3(α5)β2

TxIA C. textile GCCSRPPCIANNPDLC* α3β2

ArIB C. arenatus DECCSNPACRVNNPHVCRRR α7, α6α3β2β3, α3β2

1 Scheme of disulfide closing for naturally-occurring α-conotoxins –

* indicates an amidated C-terminus; the names of α-conotoxins typed in italics mean that their structures were

identified in cDNA libraries.

Table 1. Most studied members of naturally-occurring α-conotoxins.

α-Conotoxins are structurally subdivided into subgroups depending on the number of amino
acid residues between the C2–C3 and C3–C4 cysteines (see Table) forming the first and second
loops, respectively. This structural feature affects the α-conotoxin specificity to particular
nAChR subtypes. All at present known 3/5 α-conotoxins are potent blockers of muscle type
nAChRs (and conventionally can be called ‘muscle’ α-conotoxins). The members of other
subgroups (4/3, 4/4, 4/6, 4/7) act on various neuronal nAChR subtypes (and can be called
‘neuronal’ α-conotoxins). It is very rare when naturally occurring neuronal α-conotoxin blocks
specifically only one neuronal nAChR subtype, usually neuronal α-conotoxins interact with
two or more nAChR subtypes (see Table).
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Most of muscle 3/5 α-conotoxins can discriminate species-specifically two binding sites on
muscle or Torpedo nAChRs. For example, α-conotoxins MI, GI or SIA have up to10000 times
higher affinity for α1/δ- over α1/γ site in muscle nAChR [76,77]; in contrast to more effective
binding of these peptides, although not with such a great difference, to α1/γ site in Torpedo
receptor [78,79].

“Mutagenesis” studies of α-conotoxins (in fact not the mutagenesis as such, but substitutions
of amino acid residues by solid-phase peptide synthesis) gave information about those
residues which are the basis of the high affinity and selectivity to a particular receptor or
receptor subgroup. For example, the crucial role of Arg9 in α-conotoxin GI, as well as of Pro6
and Tyr12 in α-conotoxin MI for discriminating the α1/γ- and α1/δ-sites was revealed [80-82].
Interestingly, Arg9 proved important for a neuronal 4/3 α-conotoxin RgIA for its α9α10 nAChR
specificity [83]. Similar “mutagenesis” studies resulting in revelation of residues crucial for
activity were done also for many other α-conotoxins (ImI, PnIA, MII, GID, Vc1.1, AuIB) [84-89].

Like in the analysis of interactions between different nAChR types and snake venom neuro‐
toxins, when much efforts has been spent by many laboratories to establish the topography of
their binding, similar studies have been undertaken to elucidate the mechanism of nAChR
recognition by α-conotoxins. Among them were above-mentioned multiple substitutions in
the amino acid sequences of naturally occurring α-conotoxins, making their structures more
rigid, syntheses of radioactive, fluorescent and photoactivatable derivatives. Combination
with mutagenesis of the receptor subunits (pair-wise mutagenesis) gave information about
possible contact points between α-neurotoxins and nAChRs, as well as between α-conotoxins
and nAChRs. The relevant information can be found in numerous reviews (see, for example,
[90-92]), but will not be considered in detail here, because this chapter contains a special section
where crystal structures of α-neurotoxins and α-conotoxins in complexes with the relevant
biological targets will be discussed.

5. Three-dimensional structures of peptide and protein neurotoxins in
complexes with the nicotinic receptor models and fragments

It was already mentioned that the crystal structure of the acetylcholine-binding protein
(AChBP) provided an impressing jump in the structural analysis of not only nicotinic acetyl‐
choline receptors but of all other members of the Cys-loop receptor family. This water-soluble
protein was found to modulated synaptic transmission in glia of Lymnaea stagnalis fresh-water
mollusk and was purified using affinity chromatography on a column with the attached α-
bungarotoxin [93]. Sufficient amounts of AChBP were obtained by heterologous expression
and the crystal structure was determined at 2.7 Å resolution [10]. This structure clearly showed
that AChBP is an excellent structural model of N-terminal ligand-binding domains of all
nAChRs: crystal AChBP was in a pentameric state, similarly to the whole-size nAChRs. In spite
of low homology with the amino-acid sequences of extracellular domains of nAChR subunits
(not more than 25%), AChBP contains all those amino acid residues which earlier in receptor
studies were found essential for interacting with the cholinergic agonists and antagonist. The
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AChBP crystal structure revealed that such residues are all clustered in the middle of AChBP,
at the interfaces between its subunits (or protomers). At present, the X-ray structures of several
molluscan AChBPs are known (from Lymnaea stagnalis, Aplysia californica, Bulinus truncatus),
as well of their complexes with a wide variety of agonists and antagonists which gave quite a
detailed picture of the respective binding sites in these AChBPs and of their contacts with
ligands. Biochemical data and computer modeling show convincingly that these structures
shed light on the receptor binding sites per se and on the ligand disposition in the binding sites
of muscle and neuronal nAChRs. The relevant information can be found in recent original
papers [94-97] and reviews [98,99], and below we will consider in detail only the crystal
structures of complexes with protein and peptide neurotoxins.

Interestingly, the first AChBP crystal structure in complex with a competitive antagonist was
that of Lymanaea stagnalis AChBP with bound α-cobratoxin [24]. (In parentheses it may be
mentioned that later more structures were solved for the Aplysia californica AChBP complexes,
but L. stagnalis AChBP has a much higher affinity for α-neurotoxins than AChBPs from other
species). First of all, X-ray analysis revealed 5 α-cobratoxin molecules attached at the interfaces
between 5 identical subunits (or protomers) of AChBP (Figure 3, A). The major role in the
organization of the binding site is played by aromatic residues (so-called “aromatic box”) of
AChBP. Long before crystallographic studies, protein chemistry and mutagenesis revealed
that these aromatic residues were important for binding different agonists and antagonists to
diverse muscle-type and neuronal nAChRs. It was proposed that the binding sites are formed
by three fragments (A, B, C) of polypeptide chain of one subunit and by three fragments (D,
E, F) of the polypeptide chain of the other one on which these aromatic residues are located
(see review [100]). The first three fragments in real receptors are on the α-subunits and form
the main (principal) binding surface, while the last three are on non-α-subunits and compose
the complementary binding surface. In the case of homopentameric receptors like α7 ones, the
A-C loops are on the “front surface” of one α7-subunit and D-F on the “back surface“ of the
neighboring identical subunit. In general, the X-ray structure of the AChBP complex with α-
cobratoxin is in accord with the earlier ideas on the α-neurotoxin binding to nAChRs formu‐
lated on the basis of chemical modification of α-neurotoxins, their mutagenesis, photoaffinity
labeling and mutagenesis of receptors (see reviews [101,102]). Indeed, there is a multipoint
binding of α-cobratoxin and the major role, as earlier shown by “wet biochemistry” methods,
is played by the toxin central loop II.

The comparison with the NMR and X-ray structures for α-neurotoxins revealed that α-
cobratoxin did not need to change its conformation dramatically to be accommodated in the
binding region of AChBP. On the contrary, the AChBP loop C containing the disulfide between
the neighboring cysteines (which is also a characteristic feature of all nAChR α-subunits) had
to move to periphery up to 10 Å from the position which it occupied in the AChBP containing
no bound ligand. (This movement should be supplemented with essential changes in confor‐
mation of loop F from complementary AChBP protomer.) Moreover, the earlier solved
structure of AChBP with such agonist as nicotine revealed that, when agonist comes to the
binding site, loop C embraces it and moves closer to the central axis of the molecule [94]. At
present there are many crystal structures of various AChBPs in complexes with versatile
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Most of muscle 3/5 α-conotoxins can discriminate species-specifically two binding sites on
muscle or Torpedo nAChRs. For example, α-conotoxins MI, GI or SIA have up to10000 times
higher affinity for α1/δ- over α1/γ site in muscle nAChR [76,77]; in contrast to more effective
binding of these peptides, although not with such a great difference, to α1/γ site in Torpedo
receptor [78,79].

“Mutagenesis” studies of α-conotoxins (in fact not the mutagenesis as such, but substitutions
of amino acid residues by solid-phase peptide synthesis) gave information about those
residues which are the basis of the high affinity and selectivity to a particular receptor or
receptor subgroup. For example, the crucial role of Arg9 in α-conotoxin GI, as well as of Pro6
and Tyr12 in α-conotoxin MI for discriminating the α1/γ- and α1/δ-sites was revealed [80-82].
Interestingly, Arg9 proved important for a neuronal 4/3 α-conotoxin RgIA for its α9α10 nAChR
specificity [83]. Similar “mutagenesis” studies resulting in revelation of residues crucial for
activity were done also for many other α-conotoxins (ImI, PnIA, MII, GID, Vc1.1, AuIB) [84-89].

Like in the analysis of interactions between different nAChR types and snake venom neuro‐
toxins, when much efforts has been spent by many laboratories to establish the topography of
their binding, similar studies have been undertaken to elucidate the mechanism of nAChR
recognition by α-conotoxins. Among them were above-mentioned multiple substitutions in
the amino acid sequences of naturally occurring α-conotoxins, making their structures more
rigid, syntheses of radioactive, fluorescent and photoactivatable derivatives. Combination
with mutagenesis of the receptor subunits (pair-wise mutagenesis) gave information about
possible contact points between α-neurotoxins and nAChRs, as well as between α-conotoxins
and nAChRs. The relevant information can be found in numerous reviews (see, for example,
[90-92]), but will not be considered in detail here, because this chapter contains a special section
where crystal structures of α-neurotoxins and α-conotoxins in complexes with the relevant
biological targets will be discussed.

5. Three-dimensional structures of peptide and protein neurotoxins in
complexes with the nicotinic receptor models and fragments

It was already mentioned that the crystal structure of the acetylcholine-binding protein
(AChBP) provided an impressing jump in the structural analysis of not only nicotinic acetyl‐
choline receptors but of all other members of the Cys-loop receptor family. This water-soluble
protein was found to modulated synaptic transmission in glia of Lymnaea stagnalis fresh-water
mollusk and was purified using affinity chromatography on a column with the attached α-
bungarotoxin [93]. Sufficient amounts of AChBP were obtained by heterologous expression
and the crystal structure was determined at 2.7 Å resolution [10]. This structure clearly showed
that AChBP is an excellent structural model of N-terminal ligand-binding domains of all
nAChRs: crystal AChBP was in a pentameric state, similarly to the whole-size nAChRs. In spite
of low homology with the amino-acid sequences of extracellular domains of nAChR subunits
(not more than 25%), AChBP contains all those amino acid residues which earlier in receptor
studies were found essential for interacting with the cholinergic agonists and antagonist. The
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AChBP crystal structure revealed that such residues are all clustered in the middle of AChBP,
at the interfaces between its subunits (or protomers). At present, the X-ray structures of several
molluscan AChBPs are known (from Lymnaea stagnalis, Aplysia californica, Bulinus truncatus),
as well of their complexes with a wide variety of agonists and antagonists which gave quite a
detailed picture of the respective binding sites in these AChBPs and of their contacts with
ligands. Biochemical data and computer modeling show convincingly that these structures
shed light on the receptor binding sites per se and on the ligand disposition in the binding sites
of muscle and neuronal nAChRs. The relevant information can be found in recent original
papers [94-97] and reviews [98,99], and below we will consider in detail only the crystal
structures of complexes with protein and peptide neurotoxins.

Interestingly, the first AChBP crystal structure in complex with a competitive antagonist was
that of Lymanaea stagnalis AChBP with bound α-cobratoxin [24]. (In parentheses it may be
mentioned that later more structures were solved for the Aplysia californica AChBP complexes,
but L. stagnalis AChBP has a much higher affinity for α-neurotoxins than AChBPs from other
species). First of all, X-ray analysis revealed 5 α-cobratoxin molecules attached at the interfaces
between 5 identical subunits (or protomers) of AChBP (Figure 3, A). The major role in the
organization of the binding site is played by aromatic residues (so-called “aromatic box”) of
AChBP. Long before crystallographic studies, protein chemistry and mutagenesis revealed
that these aromatic residues were important for binding different agonists and antagonists to
diverse muscle-type and neuronal nAChRs. It was proposed that the binding sites are formed
by three fragments (A, B, C) of polypeptide chain of one subunit and by three fragments (D,
E, F) of the polypeptide chain of the other one on which these aromatic residues are located
(see review [100]). The first three fragments in real receptors are on the α-subunits and form
the main (principal) binding surface, while the last three are on non-α-subunits and compose
the complementary binding surface. In the case of homopentameric receptors like α7 ones, the
A-C loops are on the “front surface” of one α7-subunit and D-F on the “back surface“ of the
neighboring identical subunit. In general, the X-ray structure of the AChBP complex with α-
cobratoxin is in accord with the earlier ideas on the α-neurotoxin binding to nAChRs formu‐
lated on the basis of chemical modification of α-neurotoxins, their mutagenesis, photoaffinity
labeling and mutagenesis of receptors (see reviews [101,102]). Indeed, there is a multipoint
binding of α-cobratoxin and the major role, as earlier shown by “wet biochemistry” methods,
is played by the toxin central loop II.
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specific or nonselective agonists and antagonists of the muscle-type and neuronal nAChRs
and it appears to be a general rule: antagonists versus agonists induce movements of the loop
C in the opposite directions.

5.1. X-ray structure of the extracellular domain of muscle nAChR α1 subunit in complex
with α-bungarotoxin

Until now we were considering the X-ray and Electron microscopy structures of closely related
but independent objects of studies: acetylcholine binding proteins and Torpedo nAChR. It
should be emphasized that the structures of bound cholinergic agonists and antagonists until
recently were available only for their complexes with AChBPs. That is why when researchers
wished to analyze in three-dimensions the interactions of agonists or antagonists with the
muscle-type or neuronal nAChRs, they had to rely on computer modeling. Fortunately, one
of the bridges between the AChBPs and nAChRs spatial structures has been recently open: the
X-ray structure has been determined for the α-bungarotoxin complex with heterologously
expressed ligand-binding domain of mouse muscle nAChR α1 subunit [25]. Many laboratories
have earlier tried, with the aid of heterologous expression, to obtain ligand-binding domains
of α1 or α7 subunits as individual proteins and to determine their three-dimensional structure.
Although in certain cases those proteins could bind α-bungarotoxin with relatively high
affinity (but not with the nanomolar constants as intact receptors) [103-106], in no case the
proteins could be crystallized. In view of the above-said, the work [25] is clearly a break‐
through. Using random mutagenesis, the authors have chosen a protein with a low tendency
to aggregation. In spite of its having the mutation of Trp149 (localized in loop B and known
to be important for binding agonists and antagonists), the protein could bind α-bungarotoxin.
It was namely the complex of α-bungarotoxin rather than the free domain which was success‐
fully crystallized. (Thus, in addition to helping isolate the Torpedo nAChR and L.stagnalis
AChBP, α-neurotoxins played again an important role, this time in crystallization of the
nAChR subunit ligand-binding domain.) The structure of the complex has been solved at a
very high resolution (1.94 Å) (see Figure 3, B).

Although this domain is a monomer, its spatial structure is very similar to an AChBP protomer
in a pentameric complex. A molecule of bound α-bungarotoxin occupies the position similar
to that of α-cobratoxin in complex with L. stagnalis AChBP (compare Figure 3, A and B). It
should be emphasized that in the complex with α1 domain, α-bungarotoxin utilized for
interaction only the principal side, while α-cobratoxin in complex with pentameric AChBP has
contacts with both principal and complementary sides at the subunit interface. However,
instead of this, α-bungarotoxin forms contacts with the sugar moiety present in the nAChR
domain but absent in AChBPs.

5.2. X-ray structure of α-bungarotoxin with a chimera of L. stagnalis AChBP/ligand-binding
domain of the human α7 subunit

This work can be considered as a further development of the recent breakthrough in the
analysis  of  ligand  binding  domains  of  nAChRs  when  an  important  step  was  done  in
ascending from models to true receptors. The authors of [107] managed to substitute about
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70% of the amino-acid residues in L. stagnalisAChBP (not touching the less hydrophobic
Cys-loop) for residues of the α7 subunit and crystallized this protein in free form and in
complex with epibatidine, an potent but nonselective nAChR agonist[108].  The observed
pentaoligomeric  structure  can be considered as  the closest  proximation to  the 3D struc‐
ture of the ligand-binding domain of the true α7 nAChR. Practically the same α7/AChBP
chimera has been used to crystallize a complex with α-bungarotoxin [26]. Again, it was a
pentaoligomer  with  5  attached  α-bungarotoxin  molecules  (see  Figure  3,  C).  In  general,
disposition of α-bungarotoxin is very close to what was observed for α-bungarotoxin in
complex  with  the  α1  domain  or  for  α-cobratoxin  complex  with  the  L.  stagnalis  AChBP
(compare with Figure 3, B and A). Basing on the high-resolution structure of the α7/AChBP-
α-bungarotoxin chimera, the authors designed a series of α7 nAChR mutants and from the
analysis of their activities and efficiency of α-bungarotoxin binding collected a very detailed
information  about  the  intermolecular  interactions  which  ensure  the  high  affinity  for  α-
bungarotoxin binding [26]. In particular, they not only confirmed the role of the “aromat‐
ic box”, but also revealed the importance of amino-acid residues which in the amino acid
sequence are direct neighbors of those aromatic residues.

5.3. X-ray structure structures of AChBP complexes with α-conotoxins

The first X-ray structure of the AChBP complex with α-conotoxin [109] has been solved soon
after elucidation of the X-ray structure of the L. stagnalis AChBP complex with α-cobratoxin.

Figure 3. Crystal structures of the AChBP/nAChR domain-toxin complexes. Top and side views are in upper and lower
lines, respectively. A - α-Cobratoxin bound to L. stagnalis AChBP (PDB ID: 1YI5); toxins and proteins are shown in blue
and green. B – α-Bungarotoxin bound to the N-terminal domain of nAChR α1 subunit (2QC1); toxin and subunit are
shown in blue and red; the sugar moiety presented in this complex were excluded for clarity. C - α-Bungarotoxin
bound to the chimeric protein composed of N-terminal domain of nAChR α7 subunit and L. stagnalis AChBP (4HQP);
toxins and chimeras are shown in blue and magenta.
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domain but absent in AChBPs.
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complex with epibatidine, an potent but nonselective nAChR agonist[108].  The observed
pentaoligomeric  structure  can be considered as  the closest  proximation to  the 3D struc‐
ture of the ligand-binding domain of the true α7 nAChR. Practically the same α7/AChBP
chimera has been used to crystallize a complex with α-bungarotoxin [26]. Again, it was a
pentaoligomer  with  5  attached  α-bungarotoxin  molecules  (see  Figure  3,  C).  In  general,
disposition of α-bungarotoxin is very close to what was observed for α-bungarotoxin in
complex  with  the  α1  domain  or  for  α-cobratoxin  complex  with  the  L.  stagnalis  AChBP
(compare with Figure 3, B and A). Basing on the high-resolution structure of the α7/AChBP-
α-bungarotoxin chimera, the authors designed a series of α7 nAChR mutants and from the
analysis of their activities and efficiency of α-bungarotoxin binding collected a very detailed
information  about  the  intermolecular  interactions  which  ensure  the  high  affinity  for  α-
bungarotoxin binding [26]. In particular, they not only confirmed the role of the “aromat‐
ic box”, but also revealed the importance of amino-acid residues which in the amino acid
sequence are direct neighbors of those aromatic residues.

5.3. X-ray structure structures of AChBP complexes with α-conotoxins

The first X-ray structure of the AChBP complex with α-conotoxin [109] has been solved soon
after elucidation of the X-ray structure of the L. stagnalis AChBP complex with α-cobratoxin.

Figure 3. Crystal structures of the AChBP/nAChR domain-toxin complexes. Top and side views are in upper and lower
lines, respectively. A - α-Cobratoxin bound to L. stagnalis AChBP (PDB ID: 1YI5); toxins and proteins are shown in blue
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bound to the chimeric protein composed of N-terminal domain of nAChR α7 subunit and L. stagnalis AChBP (4HQP);
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In this case it was another AChBP, namely the protein from the marine mollusk Aplysia
californica [110]. First of all, contrary to the α-cobratoxin complex, it was a high-resolution (2.4
Å) structure and, secondly, it was the first X-ray structure for a representative of the huge
conotoxin library in complex with a biological target. The crystals were raised for the complex
of α-conotoxin PnIA analog having two substitutions ([A10L] and [D14K]) which had high
affinity both for L. stagnalis and A. californica AChBPs and potently inhibited acetylcholine-
induced currents in α7 nAChRs expressed in oocytes [109].

Hydrophobic contacts were found to play the major role in the interaction of α-conotoxin
PnIA[A10L, D14K] with A. californica AChBP (Figure 4, A). As in other AChBP complexes
with agonists or antagonists, at the principal side the contacts are formed mainly by highly
conserved aromatic amino acid residues - Trp145, Tyr186, Tyr193. At the complementary
side  the  contributions  are  from aliphatic  residues  (Val106,  Met114,  Ile116).  It  should be
stressed again that loop C in the complex with α-conotoxin moves to the periphery of the
AChBP molecule by more than 10 Å, as compared with its disposition in the “apo” form
of A. californica AChBP. A similar shift was also observed, as mentioned above, for the α-
cobratoxin  complex  [24],  as  well  as  for  the  majority  of  AChBP  complexes  with  other
antagonists (see reviews [98,111,112]). Thus, the conclusion that the most obvious distinc‐
tion  between the  first  steps  in  the  binding  modes  of  agonists  versus  antagonists  is  the
induced movement of the loop C (to the central axis for the former and outwards for the
latter)  appears  to  be  correct.  However,  there  are  some  deviations  from  this  trend:  for
example, strychnine is an antagonist both of the nAChRs and glycine receptors, but in the
case of its complex with the A. californica  AChBP, the loop C shift  to the periphery was
only very slight [113]. The changes in the disposition of the loop C were not pronounced
also for AChBP complexes with partial agonists [96].

Another interesting feature of AChBP complexes was for the first time observed with partial
agonists: in distinct binding sites within a pentameric AChBP molecule these compounds

Figure 4. Spatial organization of complexes of α-conotoxins from different groups and A. californica AChBP derived
from their crystal structures. Only two adjacent monomers of AChBP colored in cyan and yellow for clarity in side views
are presented. All α-conotoxins are shown in magenta. A – complex with α-conotoxin PnIA[A10L, D14K] variant from
4/7 α-conotoxin group (PDB ID: 2BR8). B – complex with α-conotoxin ImI from 4/3 α-conotoxin group (2C9T). C - com‐
plex with α-conotoxin BuIA from 4/4 α-conotoxin group (4EZ1).
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had different orientations [96]. Such multiplicity was first thought to be inherent only in
partial  agonists,  but  later  altering  dispositions  in  the  5  AChBP  binding  sites  were  ob‐
served for  the  complexes  of  such alkaloid antagonists  as  strychnine and d-tubocurarine
[113]. Moreover, in several binding sites two alkaloid molecules managed to be accommo‐
dated simultaneously [113].

Variations of the ligand orientation in the binding sites of AChBPs and nAChRs are of
undoubted interest. In the A. californica AChBP complex, all 5 bound α-conotoxin PnIA[A10L,
D14K] molecules had the same conformation and orientation. This was also true for the later
solved structures of α-conotoxin ImI complexes [114,115] (see Figure 4, B). These structures
(very similar to those of α-conotoxin PnIA[A10L, D14K]) confirmed that, although bound α-
conotoxin PnIA analog had two substitutions and was in this respect “unnatural α-conotoxin”,
the X-ray structure of its complex correctly revealed the structural principles of the α-cono‐
toxin-AChBP recognition. Fine adjustments of such a recognition were brought to light by the
structure of A. californica AChBP complex with the α-conotoxin TxIA[A10L] [116]. In general,
the structure of this complex was very similar to those of α-conotoxin PnIA[A10L, D14K] or
α-conotoxin ImI, but with a noticeable difference: this α-conotoxin derivative occupied exactly
the same region as the two above-mentioned α-conotoxins, but it was turned around the central
axis by about 20 degrees. The authors proposed that such rotation reflects certain differences
in the selectivity of this particular α-conotoxin [116]. The latest published structure of the
AChBP complex with α-conotoxin (November 2013) is announced by the Protein Data Bank
(PDB) the structure with ID - 4EZ1. This is a complex of A. californica AChBP with α-conotoxin
BuIA [117]. Despite the fact that α-conotoxin BuIA is a member of other subgroup of α-
conotoxins (4/4) its position and orientation in the complex with AChBP (Figure 4, C) very
close to that of both α-conotoxin PnIA analog (4/7 subgroup) and α-conotoxin ImI (4/3
subgroup) (compare Figure 4, A, B and C). In any case, from the four solved X-ray structures
for AChBP complexes with α-conotoxins it followed that some variations in their attachment
are possible. It might be expected that variations may be even more pronounced when α-
conotoxins interact with true nAChRs, especially with heteroligomeric ones having different
subunit interfaces.

Indeed, interpretation of the cross-linking of photoactivatable derivative of α-conotoxin GI to
Torpedo californica nAChR in terms of the model built on the basis of the X-ray structure of the
AChBP complex with α-conotoxin PnIA[A10L, D14K], suggested that for bound α-conotoxin
two orientations are possible where the disposition of photoactivatable group differs by about
90 degrees [118]. Later a similar situation was demonstrated for an agonist, namely for the
photoactivatable derivative of epibatidine [119]. This compound was shown to bind to only
one site in the T. californica nAChR, but to 2 sites in the neuronal α4β2 nAChR which presumes
two different dispositions of the bound ligand [119]. Naturally, cross-linking is not such a direct
evidence as the X-ray structure, but the latter are available only for the AChBP complexes and
the multiplicity of alkaloid antagonist orientations in the frames of one AChBP molecule [113]
has been already mentioned.
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toxin-AChBP recognition. Fine adjustments of such a recognition were brought to light by the
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axis by about 20 degrees. The authors proposed that such rotation reflects certain differences
in the selectivity of this particular α-conotoxin [116]. The latest published structure of the
AChBP complex with α-conotoxin (November 2013) is announced by the Protein Data Bank
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BuIA [117]. Despite the fact that α-conotoxin BuIA is a member of other subgroup of α-
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close to that of both α-conotoxin PnIA analog (4/7 subgroup) and α-conotoxin ImI (4/3
subgroup) (compare Figure 4, A, B and C). In any case, from the four solved X-ray structures
for AChBP complexes with α-conotoxins it followed that some variations in their attachment
are possible. It might be expected that variations may be even more pronounced when α-
conotoxins interact with true nAChRs, especially with heteroligomeric ones having different
subunit interfaces.

Indeed, interpretation of the cross-linking of photoactivatable derivative of α-conotoxin GI to
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6. Summary

In this chapter we tried to briefly present almost a 50-year history of using protein and peptide
neurotoxins in fundamental and practical studies of nicotinic acetylcholine receptors
(nAChRs). It was shown that the discovery of α-neurotoxins in the snake venoms was an
extremely important step which made possible identification and isolation in individual form
of the first nAChR from the Torpedo ray electric organ. Many laboratories comprehensively
analyzed this receptor and it soon became clear that it is an appropriate model for nAChRs of
all classes, namely muscle, neuronal and the so-called “non-neuronal” ones. Later, in addition
to the three-finger α-neurotoxins, new shorter and smaller but not less efficient tools were
found: namely, among a huge family of various peptides in the venoms of marine Conus
mollusks, one particular group happened to be invaluable for research on nAChRs. Here we
speak about α-conotoxins which not only discriminate the muscle-type from neuronal
nAChRs, but some of them even are selective towards a particular neuronal nAChR subtype.
One should not think that the discovery of α-conotoxins put the α-neurotoxins into archives.
First of all, even to-day α-bungarotoxin and its radioactive and fluorescent derivatives are the
most reliable tools for identification and measuring the levels of the functional α7 nAChRs.
Secondly, α-neurotoxins played another leading role a decade ago helping to purify the
acetylcholine-binding protein (AChBP). The discovery and the X-ray structure of this protein,
an ideal model for the ligand-binding domains of all nAChRs, was the major breakthrough in
elucidating the three-dimensional structure of nAChRs and especially of their ligand-binding
site topography. Our chapter also presented the data on the crystal structures of AChBP
complexes both with α-neurotoxins and α-conotoxins that gave information about the
topography of their interactions with the key residues in the binding site, thus providing a
basis for new drug design. The next step was the establishment of the crystal structures of α-
neurotoxins with chimera of AChBP and α7 nAChR ligand-binding domain, which can be
considered as a good mimic of the true α7 receptor, as well as the X-ray structure of the α-
bungarotoxin complex with a mutated nAChR α1 subunit extracellular domain. In this chapter
we were not discussing the bacterial pentameric ligand-gated ion channels (belonging to the
same family as nAChRs), but at present not only high-resolution X-ray structures are available
for them, but also for their complexes with different ligands. In particular, one of such receptors
(ELIC) happened to be a close analog of the mammalian GABA-A receptors. We might hope
that one day high resolution structures become available for nAChRs or their homologs in
complexes with α-neurotoxins and/or α-conotoxins, to which the chapter is devoted. It will
give new life to these still invaluable tools in fundamental research on nAChRs and in
numerous practical applications.
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6. Summary

In this chapter we tried to briefly present almost a 50-year history of using protein and peptide
neurotoxins in fundamental and practical studies of nicotinic acetylcholine receptors
(nAChRs). It was shown that the discovery of α-neurotoxins in the snake venoms was an
extremely important step which made possible identification and isolation in individual form
of the first nAChR from the Torpedo ray electric organ. Many laboratories comprehensively
analyzed this receptor and it soon became clear that it is an appropriate model for nAChRs of
all classes, namely muscle, neuronal and the so-called “non-neuronal” ones. Later, in addition
to the three-finger α-neurotoxins, new shorter and smaller but not less efficient tools were
found: namely, among a huge family of various peptides in the venoms of marine Conus
mollusks, one particular group happened to be invaluable for research on nAChRs. Here we
speak about α-conotoxins which not only discriminate the muscle-type from neuronal
nAChRs, but some of them even are selective towards a particular neuronal nAChR subtype.
One should not think that the discovery of α-conotoxins put the α-neurotoxins into archives.
First of all, even to-day α-bungarotoxin and its radioactive and fluorescent derivatives are the
most reliable tools for identification and measuring the levels of the functional α7 nAChRs.
Secondly, α-neurotoxins played another leading role a decade ago helping to purify the
acetylcholine-binding protein (AChBP). The discovery and the X-ray structure of this protein,
an ideal model for the ligand-binding domains of all nAChRs, was the major breakthrough in
elucidating the three-dimensional structure of nAChRs and especially of their ligand-binding
site topography. Our chapter also presented the data on the crystal structures of AChBP
complexes both with α-neurotoxins and α-conotoxins that gave information about the
topography of their interactions with the key residues in the binding site, thus providing a
basis for new drug design. The next step was the establishment of the crystal structures of α-
neurotoxins with chimera of AChBP and α7 nAChR ligand-binding domain, which can be
considered as a good mimic of the true α7 receptor, as well as the X-ray structure of the α-
bungarotoxin complex with a mutated nAChR α1 subunit extracellular domain. In this chapter
we were not discussing the bacterial pentameric ligand-gated ion channels (belonging to the
same family as nAChRs), but at present not only high-resolution X-ray structures are available
for them, but also for their complexes with different ligands. In particular, one of such receptors
(ELIC) happened to be a close analog of the mammalian GABA-A receptors. We might hope
that one day high resolution structures become available for nAChRs or their homologs in
complexes with α-neurotoxins and/or α-conotoxins, to which the chapter is devoted. It will
give new life to these still invaluable tools in fundamental research on nAChRs and in
numerous practical applications.
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Chapter 5

Synaptic Soluble and Membrane-Bound Choline
Acetyltransferase as a Marker of Cholinergic Function In
Vitro and In Vivo

E.I. Zakharova and A.M. Dudchenko

Additional information is available at the end of the chapter
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1. Introduction

1.1. Synaptosomes — Definition, a bit of history

The synaptosome is the presynaptic part of the nerve ending with, as a rulе, a postsynaptic
membrane in the region of the junction of the pre- and postsynaptic membranes that remains
with the presynapse during homogenization and centrifugation. The presynaptic part of the
synaptosome is a membrane-bound structure with a preserved cytoplasm (synaptoplasm),
synaptic vesicles, mitochondria and some other cellular components. The term synaptosome
was adopted by V.P. Whittaker and coworkers [1]. Together, V.P. Whittaker and C.O. Hebb
first isolated and identified nerve endings in nervous tissue [2].

Subcellular fractionation emerged in the 1930s and 1940s and has since established itself as a
major technique in experimental biology. The first attempts at the fractionation of nervous
tissue were made in the early 1950s. A few years later, the fraction of synaptosomes was
successful, using discontinuous sucrose-density gradient centrifugation [2-4]. After this,
researchers achieved the preparation of the synaptic components, including the synaptic
membranes, synaptoplasm, synaptic vesicles [1, 5, 6] (Figure 1) and membrane junction
complex [7, 8]. These studies were a powerful impetus for investigations into the biochemistry
of synapses and in the development of new methods of synaptic fractionation. Synaptosomes,
as nerve endings, are heterogeneous in density, size and mediator specificity. Therefore, a
number of the methods were developed for separating the synaptosomal fraction into two
fractions [4], as well as into many fractions using a continuous sucrose-density linear gradient
[9-11]. Among the many publications at this time, two books stand out. In the first one, D.J.
Jones recounts the story of subcellular fractionation techniques, and presents the entire set of
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distribution, and reproduction in any medium, provided the original work is properly cited.
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modern synaptic and subsynaptic fractionation techniques and data about the ultrastructure
of synaptosomes and synaptic components, their sedimentary characteristics and biomarkers
[12]. In the second one, R.N. Glebov is focused on the achievements of that time in the field of
the functional neurochemistry of synapses, their molecular structure as well as on the metab‐
olism and biochemistry of "classic" neurotransmitters and on the concepts of mediator
secretion [13].

To the left of the tubes are marked the density of sucrose layers (in moles). Fractions obtained from crude mitochond‐
rion fraction (by the method of De Robertis et al., 1962): myelin (A), neuronal and glial membrane and possibly small
synaptosomes (B), light (C) and heavy (D) synaptosomes, cell mitochondria (E). Subsynaptic fractions obtained from
light and heavy synaptosomes fractions (by the method of Whittaker et al., 1964): synaptoplasm (Sp), synaptic vesicles
(1), synaptic membranes (2, 3, 4), non-disrupted synaptosomes (5), synaptic mitochondria (6).

Figure 1. Scheme of distribution of the fractions and subfractions of synaptosomes in discontinuous sucrose-density
gradients.
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2. Synaptosomes as an object of study in vitro and in vivo

Since these techniques were developed, new technologies in brain research have emerged.
However, synaptosomes and their components remain a unique object of study. The reasons
for this are as follows:

• the synapse is a unique structure specialized in the chemical transmission of nerve signals
(chemical synapses are mainly in the mammalian brain).

• the synapse is always at the center of concepts about the adaptive properties of nervous
tissue, such as learning and memory.

• the synapse is the most dynamic and labile structure of the nerve cell, and is an indicator of
the reaction of the neuron to external stimuli.

• the synapse is an inherent structure of the neuron only.

It is now known that neurotransmitters and their key metabolic enzymes exist in some non-
neuronal mammalian and human cells, including some cells of the neuroglia and vascular
endothelium, epithelium and blood. In these cells, neurotransmitters perform specialized
functions such as proliferation, differentiation, migration, organization of the cytoskeleton,
cell-cell contact, secretion and transport of ions and water, blood-brain barrier maintenance
and anti-inflammatory functions [14-17]. So, synaptomoses are the only object of molecular
and biochemical studies that guarantees the investigation of neuronal function. Therefore, new
technologies for the isolation of synaptosomes and their components continue to be developed,
consistent with the purpose of science [18-20].

Using synaptosomes, one may study in vitro the molecular mechanisms of neurotransmitter
secretion and the metabolism of neurotransmitter systems using the entire complexity of the
molecular processes or using models of functional or pathological conditions in vitro and ex
vivo.

Studies on synaptosomes in vivo are rarer but they are not less important. The brain is a very
complicated organ in which a neuron exists in a permanent relationship with many other
neurons. These interactions occur mainly through synapses. It is important not to forget about
the signaling molecules that come into the brain through the blood, cerebrospinal fluid and
intracellular matrix. The functional response of presynapses reflects the integrated response
of the neuron to a stimulus. Therefore, it is important to know whether the patterns of synaptic
functions are identical in vitro and in vivo.

In vivo models are used to investigate effects on the entire organism such as learning models
and models of adapting and neuropathology. Then, the synaptosomes or subsynaptic com‐
ponents from the brain structures can be isolated. It is usually impossible to analyze the totality
of the synaptic molecular and metabolic processes in these studies. The synaptic reaction is
measured by the synaptic key indicators identified in studies in vitro. It is important that the
biochemical methods allow the estimation of very fine metabolic and functional changes in
synapses. The connection between nervous system function and synaptic processes has been
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investigated this way. It is possible to research the reaction of certain brain structures and even
certain neuronal populations to external influences. Using neuromediators as markers, one
can identify the participation of neuromediator systems in the mechanisms of various brain
functions.

Furthermore, the in vivo study of synaptosomes has additional scope. Using biochemical
parameters, not only metabolic changes can be evaluated, but also quantitative (synaptogen‐
esis, reduction, degeneration) and morpho-structural (transformation) reorganizations in the
synaptic pool. This is possible in comparative studies on the synaptic membrane and synap‐
toplasm subfractions. Subfractions of synaptic membranes and the synaptoplasm are the
largest integral parts of the presynapse. Therefore, a correlation between the biochemical
membrane (m) and cytosolic (c) biochemical parameters may reflect the reaction of the
presynapse as a structural unit.

3. Natural markers of the neuronal systems

Neurotransmitters and some molecules of neurotransmitter metabolism are used as neuronal
markers. These are natural indicators of functionally specialized brain systems, given to us by
nature. Therefore, neuronal markers are widely used in biochemical studies, both in vitro and
in vivo.

Neurotransmitter systems are named based on the main transmitter (glutamatergic, GABAer‐
gic, dopaminergic, etc.). Each mediator system consists of several neuronal populations. The
neuronal populations in the brain are distributed topographically. Depending on the locus in
the brain, neurons form specific neuronal connections using a specific combination of recep‐
tors. Moreover, these neurons can have specific metabolism dependent on their functional
destination. Therefore, topography determines their metabolic and functional effects. Addi‐
tionally, different neuronal populations often express comediators. These comediators
influence the effects of mediators and metabolic pathways of the neuron in certain ways. It
seems that future prospects in the study of brain function will be the investigation of the
functional, metabolic and molecular features of distinct neuronal populations. It is necessary
to understand the true mechanisms of the regulation, maintenance and recovery of brain
functions. It should be noted that studies on synaptic fraction levels were carried out along
these lines from the beginning [4, 18, 21-31].

In particular, regarding the cholinergic brain system, studies on this neurotransmitter system
have been performed on synaptic fractions in vitro and in vivo. This review will present data
from investigations into the molecular properties and metabolic and functional characteristics
of cytosolic (c) and membrane-bound (m) choline acetyltransferase (ChAT) and of the use of
cChAT and mChAT as cholinergic markers to establish brain function mechanisms. For the
sake of completeness regarding modern notion, the characteristics of the molecular forms of
ChAT will be presented using data from tissue cultures as well.

But first, a brief description of the cholinergic brain system.
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4. Cholinergic brain system, cholinergic neuronal populations and their
importance in health and disease

Cholinergic neurons use the classical neurotransmitter acetylcholine (ACh). ACh is a famous
mediator. It was the first neurotransmitter discovered, by Otto Loewy in 1921-1926, and it
proved the validity of the chemical nature of nervous communication [32]. ACh was quantified
in P. Fatt’s and B. Katz’s experiments when the quantum nature of chemical neurotransmission
was discovered [33]. S.O. Hebb and V.P. Whittaker used ACh and ChAT as indicators when
they searched for and found subneuronal structures (synaptosomes) which accumulate
mediators [2]. ACh was the first among the neuromediators found in the non-neuronal cells
of mammals [34]. It would perhaps be helpful to add that ACh is also called "gentleman number
one", for its non-neuronal function as well. It is clear that ACh is the most thoroughly examined
neurotransmitter.

4.1. Metabolism of acetylcholine

ACh is an ester of acetic acid and choline with the chemical formula CH3COO(CH2)2N+
(CH3)3 and systematic name 2-acetoxy-N,N,N-trimethylethanaminium.The cycle of ACh
synthesis, storage, release and degradation has been well-characterized at the cellular and
molecular levels [26, 35, 36]. Briefly (Figure 2), ACh is synthesized in the cytoplasm of
cholinergic neurons from the precursors choline and acetyl-coenzyme A by the enzyme choline
acetyltransferase (ChAT), and is then taken up into synaptic vesicles for storage by the
vesicular acetylcholine transporter (VAChT). Depolarization of the nerve terminal causes the
fusion of synaptic vesicles with the presynaptic membrane at specialized release sites called
active zones (named the junction complex in the subsynaptic fraction). Depositing and
releasing ACh is a calcium-dependent process that involves the coordinated actions of many
presynaptic proteins [26, 37]. When vesicles are linked up with the presynaptic membrane,
ACh diffuses into the synaptic cleft where it can bind to subtypes of nicotinic and muscarinic
receptors located on both post- and presynaptic membranes. ACh signaling is terminated by
its diffusion away from the synaptic cleft and by its rapid hydrolysis into choline and acetate
by acetylcholinesterase (AChE). The choline derived from ACh hydrolysis is recycled into the
presynaptic terminal by the sodium-dependent high-affinity choline transporter (CHT) for
resynthesis of ACh. After secretion of ACh, synaptic vesicles are recycled and are refilled with
the neurotransmitter for another round of the depolarization-induced release. It should be
noted that the details of the molecular mechanism of the regulation of these processes in both
health and disease are lacking.

4.2. Topography and functions of cholinergic neuronal populations

Knowledge of the topography of mediator systems is basic for neurobiologists. The topogra‐
phy of the populations of cholinergic neurons and their projections has been studied in detail.
ChAT has long been used as a marker of cholinergic structures in immunohistochemical
studies. Initially, AChE was used as the cholinergic marker, but it was found that AChE
coincides with ChAT only partially [38]. Later, colocalization of AChE was revealed in non-
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investigated this way. It is possible to research the reaction of certain brain structures and even
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functions.
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cholinergic neurons. For example, 36% of AChE-positive cells are GABA-immunoreactive [39].
VAChT, discovered after ChAT, is also used as a marker [40]. However, some discrepancies
between VAChT and ChAT have been found [41].

Cholinergic neurons innervate almost all areas of the nervous system, both the central and
peripheral systems. These areas can be innervated by either extrinsic projective neurons or by
intrinsic interneurons. A very famous and major group of cholinergic projective neurons is
found in the basal forebrain, which is comprised the nucleus basalis magnocellularis, also
called the Meynert nucleus in primates and humans (a large bundle of cholinergic neurons
encompassing the magnocellular preoptic nucleus, substantia innominata and globus pal‐
lidus), the medial septal nucleus and the vertical limb nucleus of the diagonal band of Broca.

The idea of the scheme is taken from Black and Rylett [Black & Rylett, 2011]. Abbreviations: Presynapse, presynaptic
part of nerve ending; SV, synaptic vesicle; ACh, acetylcholine; AcetylCo-A, acetylCoenzyme-A; cChAT and mChAT, cyto‐
plasmic and membrane-bound choline acetyltransferase correspondingly; mAChE and cAChE, membrane-bound (ex‐
tracellular isoform) and cytoplasmic acetylcholinesterase correspondingly; CHT, sodium-dependent, high-affinity
choline transporter; M, muscarinic receptor; N, nicotinic receptor; VAChT, vesicular ACh transporter.
Some details of molecular mechanisms of the regulation of these processes are set out in sub-chapter 4.1.

Figure 2. Mechanisms involved in the synthesis, storage, release and degradation of ACh at the cholinergic synapse.
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The cortex, amygdaloid complex, hippocampus and olfactory bulb receive their cholinergic
innervation principally from cholinergic projection neurons of the basal forebrain [40-49]. It is
known that basal forebrain cholinergic projective neurons play a role in attention, learning,
memory and consciousness. Another group of cholinergic projective neurons is found in the
upper brainstem, which is comprised the pedunculopontine nucleus of the pontomesence‐
phalic reticular formation and within the laterodorsal tegmental gray of the periventricular
area. The thalamus and medulla receive their cholinergic innervation principally from
cholinergic projection neurons of these brainstem nuclei. These neurons also present a minor
component of the corticopetal cholinergic innervation of the frontal and visual cortical areas
[43, 49-51]. The cholinergic projective neurons of the mesopontine region play a role in the
primary treatment of some sensory information and memory (in the thalamus) and, hypo‐
thetically, in the central mechanisms regulating respiration and blood circulation (in the
medulla). All immunohistochemical studies indicate the topographical arrangement of
cholinergic projections. On the basis of connectivity patterns, M.M. Mesulam and coworkers
proposed that the central cholinergic projective neurons to subdivide into six major sectors
designated Ch1-Ch6 [43]. Moreover, the rostrocaudal and layerwise topographical arrange‐
ment of the cholinergic projections is indicated in the cerebral cortex [44-46, 48].

The most famous cholinergic interneurons are localized in the striatum, and they are involved
in motor function and cognition [49]. As well, cholinergic interneurons have been detected in
the cerebral cortex [46, 48, 52] and in the hippocampus [53-55]. Cortical and hippocampal
interneurons perform associative functions and are presumably involved in learning and
memory. Numerous electrophysiological studies have indicated this, but regarding choliner‐
gic cortical and hippocampal neurons, such data are absent. In the human cerebral cortex,
ChAT-immunoreactivity was found in some of the giant Betz and Meynert's pyramidal
neurons [56].Cortical pyramidal neurons carry out motor functions. The medullar reticular
formation has ChAT-positive neurons and their participation in the respiratory center is
assumed [50].

Finally, ACh as a neurotransmitter is widely presented in the peripheral nerve system [40, 49,
57]. Acetylcholine is one of many neurotransmitters in the autonomic nervous system and is
the only neurotransmitter used in the motor division of the somatic nervous system. The
parasympathetic motoneurons of as the cranial nuclei of the caudal brainstem and postgan‐
glionic neurons and preganglionic sympathetic motoneurons of the spinal cord nuclei are
ChAT- and VAChT-positive. Their efferents innervate all vegetative organs and glands,
parasympathetic directly and sympathetic indirectly. ChAT- and VAChT-immunoreactivity
has also been detected in the cell bodies of the spinal nerve motor neurons as well as in their
axons and the endplates of the skeletal muscles.

It was found recently that the vagus (parasympathetic) nerve, involved in the control of heart
rate, bronchomotor tone, hormone secretion and gastrointestinal motility, is also an immuno‐
modulator. Its stimulation attenuates the production of proinflammatory cytokines and
inhibits the inflammatory process via the α7 nicotinic acetylcholine receptor [58, 59]. It is
possible that these studies are beginning to describe a new function of the cholinergic nerve
system.
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4.3. Comediators and other neuroactive components in some cholinergic neuronal
populations

The functional effects of ACh are unique to each cholinergic population due to its targets and
chemical composition. As a whole, ACh functions more often as a modulator in the central
nervous system and as a mediator in the peripheral nervous system. Some populations of
cholinergic neurons co-express vasoactive intestinal peptide (VIP) or/and nitric oxide (NO) or
substance P. VIP has been found in cholinergic interneurons of the cortex [48, 60, 61] and in
the parasympathetic efferents to the airways [62, 63]. Substance P is present in the majority of
projections to the medial frontal cortex from ChAT-positive neurons in the midbrain [48].
ChAT-VIP-, NO synthase-ChAT- and NO synthase-ChAT-VIP-immunoreactive ganglionic
cells have been detected in the sphenopalatine ganglia [64, 65].

All three substances as well as ACh are well-known vasodilators. Therefore, their co-localiza‐
tion with ACh is connected in the first place with blood flow regulation. The vasodilator action
of ACh on the vessels of the vegetative organs was one of its first described effects [66]. With
respect to cerebral vessels, it was detected in (1) direct contacts with small cortical vessels with
vasodilator effects of the cholinergic projective neurons and interneurons, including ACh-VIP-
containing interneurons [61, 67-69]; (2) ACh-, NO-ACh- and rarely ACh-VIP- containing fibers
innervate the middle cerebral arteries composed of perivascular nerves of the sphenopalatine
ganglia [64]; (3) ACh induces both direct vasodilation and atypical constriction in the internal
cerebral arteries [64, 70, 71]; (4) brainstem ACh indirectly induces, via the stimulation of the
dorsal facial area neurons of the medulla, a vasodilator effect in the common carotid and the
internal cerebral arteries [72, 73].

The third vesicular glutamate transporter (VGLUT3) is present in a subset of cholinergic
projective neurons in the basal forebrain and in cholinergic interneurons in the striatum [74].
It should be noted that both these cholinergic populations have similar large neurons. VGLUT3
is one of three transporter isoforms that fills synaptic vesicles with glutamate; however,
VGLUT3 is also expressed in neurons and brain regions that were not previously thought to
use glutamate as a neurotransmitter. It is possible that VGLUT3, because of its ionic balance,
helps to load synaptic vesicles with ACh. In addition, the cholinergic projective neurons of the
basal forebrain express the nerve growth factor (NGF) receptor [75, 76]. Basal forebrain neurons
are trophically responsive to NGF. Neurotrophin is important for the development and
maintenance of the basal forebrain cholinergic phenotype. In these neurons, NGF markedly
increases ACh synthesis, content and release [77, 78].

4.4. Cholinergic functions and brain diseases

The brain cholinergic system is of permanent interest for neuroscientists because of its
important role in cognitive, attention and motor functions. Dysfunction of cholinergic
neurotransmission in the central nervous system is revealed in a number of neurological
disorders. Dysfunction and degeneration of the cortical and hippocampal cholinergic projec‐
tions from the basal forebrain nuclei is the basis of the pathogenesis of diseases such as
Alzheimer's disease and Lewy body dementia, as well as diseases with other etiologies such
as schizophrenia, Parkinson's disease and cerebral ischemia, in some cases aggravated by
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cognitive impairment [79-88]. The leading role of cholinergic afferent dysfunction in the
development of ischemic pathology was suggested by data on the sensitivity of cortical and
hippocampal cholinergic projections to ischemic exposure and a correlation between the
development of cholinergic dysfunction, the delayed death of pyramidal neurons and
cognitive impairments in rodents [89-91]. Dysfunction of cholinergic interneurons of the
striatum is partly responsible for involuntary movements in Harrington's disease [80, 92]. Low
expression of ChAT in the cholinergic neurons of the motor nuclei of the spinal cord is a specific
early sign of amyotrophic lateral sclerosis [80, 92]. Multiple abnormalities in cholinergic
function in the motor nuclei of the spinal cord a responsible for congenital myasthenic
syndrome [93].

4.4.1. Synaptic soluble and membrane-bound choline acetyltransferase and their participation in
cholinergic function in vitro and in vivo

Choline acetyltransferase (ChAT, E.C. 2.3.1.6) is a key enzyme in ACh synthesis and a marker
of cholinergic neurons. It catalyzes the transfer of an acetyl group from acetyl-CoA to choline
to form ACh. Studies in recent decades have revealed (1) the significant role of ChAT in the
regulation of ACh synthesis and secretion and (2) that disturbances in the catalytic properties
of ChAT may be the origin of some neuropathologies.

5. Forms of ChAT

It has been shown that ChAT has both a hydrophilic (cChAT) and hydrophobic state (station‐
ary mChAT) in nerve endings. It has also been shown that ChAT is able to translocate from
the cytosol to the synaptic membrane and to turn reversibly into the hydrophobic state
associated with the synaptic membrane by ionic links (ionic-bound mChAT) [92, 94-96]. All
this presupposes the existence of multiple forms or isoforms of the enzyme. Also, differences
in the optimum pH, substrate specificity, sensitivity to the selective inhibitor 4-(1-naphthyl)
pyridine (NVP) and some other molecular characteristics of the synaptoplasm and synaptic
membrane fractions indicated this [97-99].

Research has revealed only one ChAT gene that encodes the multiple forms and isoforms of
the enzyme [80, 83]. High homology has been detected between ChAT gene nucleotide
sequences in the mouse, rat, pig and human brains with differences in the 5'-noncoding region.
Polymorphisms of ChAT mRNAs are due to alternate splicing and various use of at least of
five non-coding exons in the promoter region of the gene [100].

Five types of mRNA have been isolated from the rat brain ChAT (R1/2-, N1/2- transcripts and
M-) [101] and six types from the human brain (R1/2-, N1/2-, S- and M-transcripts) [83]. All five
ChAT transcripts generate ChAT with a molecular weight of 69 kDa (ChAT-69). This is the
major form of ChAT in the CNS. In addition, the human M and S transcripts generate minor
forms of ChAT with a molecular weight of 82-83 kDa (ChAT-82) and 74 kDa (ChAT-74) [80,
83, 93, 100, 102, 103]. Also, ChAT-69 and ChAT-82 are subdivided into a number of isoforms
with differences in the isoelectric point [104].
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The cytoplasm and plasma membranes of cholinergic neurons express only ChAT-69 [80, 83,
100]. In the human brain, ChAT is also found in the cell nucleus. Initially, ChAT-82 was
selectively found in the nucleus in some brain structures [82, 95, 104, 105] and, later, ChAT-69
was also found [83]. In rat ganglia in the central nervous system at the level of the medulla
oblongata, ChAT is expressed with a molecular mass of about 50 kDa and is called peripheral
ChAT (pChAT). pChAT also exhibits alternative splicing of the mRNA [106].

The physiological significance of such a large number of isoforms of ChAT is not clear at
present.  Also,  the  relationship  between  of  ChAT-69  isoforms  in  subsynaptic  compart‐
ments is not known. Polymorphisms in ChAT transcripts suggest that ChAT isoforms or
transcripts  may  vary  in  stability  or  translation  efficiency  or  may  be  differentially  ex‐
pressed in  response to  trophic  or  pathological  factors.  Thus pChAT is  not  expressed in
cholinergic neurons of the parasympathetic dorsal motor nucleus of the vagus nerve and
nucleus ambiguus in the medulla of intact rats but pChAT- positive neurons were detected
in these nuclei after axotomy against the background of almost disappearance of ChAT-69-
positive neurons [107]. Furthermore, targeting of the enzyme to the cell nucleus suggests
that  ChAT  may  be  able  to  perform  other  functions  in  addition  to  its  essential  role  of
synthesizing ACh in nerve terminals [102].

6. Features of ChAT phosphorylation

It is known that the genome does not provide the variety in the protein forms presented in a
cell. In this regard, the post-genomic protein modifications are of special significance. Phos‐
phorylation is one of the most studied pathways of the post-translational influence on the
molecular properties of enzymes. Covalent modifications to serine, threonine and tyrosine
residues in protein molecules can dynamically change their physicochemical nature, as well
as regulate protein function and interactions with cellular components. This has been shown
for the key enzyme in the synthesis of dopamine (tyrosine hydroxylase) and serotonin
(tryptophan hydroxylase) and for glutamate decarboxylases GAD65 and GAD67, two
synthetic enzymes of gamma-aminobutyric acid (GABA) [108].

For a long time, ChAT was not related to rate-limiting enzymes on the basis of kinetic
calculations. It was believed that the ChAT synthesis rate dependents only on fluctuations in
the levels of the substrate and the product of the synthesis, although ChAT is not saturated by
choline and acetyl-CoA in their physiological concentrations [35]. However, in recent decades,
other intracellular factors have been revealed to regulate the activity of the enzyme. These data
suggest an important regulatory role of ChAT in the synthesis and secretion of ACh [36, 82,
103, 108, 109]. It is assumed that the cause of several diseases is spontaneous point mutations
in the molecule of ChAT or of its regulatory proteins which lead to dysregulation of the enzyme
or to changes in its ability to communicate with regulatory factors [93, 108].

As a rule, the different effects of phosphorylation on synaptic soluble (hydrophilic) cChAT
and membrane-bound (hydrophobic) mChAT occur even with non-specific stimulation by the
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substrates ATP or phosphorus (Pi). Increased ATP markedly affects the specific activity of
mChAT compared with cChAT [37]. At rest, cChAT but not mChAT is phosphorylated in
incubation medium enriched with Pi. Under these incubation conditions, veratridine depola‐
rization selectively activated and dephosphorylated mChAT but had no influence on either
the degree of phosphorylation nor the activity of cChAT. Removal of Ca2+ from the incubation
medium significantly inhibited the phosphorylation of cChAT and the specific activity of
mChAT [110].

It has been shown that, in vivo, ChAT exists as a phosphoprotein [36, 111]. In vitro, phosphatase
inhibitors activate cChAT and mChAT a little, even under non-phosphorylation conditions
(ATP absent in the incubation medium) [37]. ChAT is a substrate for certain protein kinases.
The amino acid sequence of the enzyme suggests the existence of multiple sites for phosphor‐
ylation by protein kinases such as protein kinase C (PKC), α-Ca2+/calmodulin-dependent
protein kinase II (CaM2), casein kinase II (CK2) and some others [108]. ChAT-69 is phosphory‐
lated by the serine/threonine kinases CK2, PKC and CaM2 [92, 95, 105, 112].

It should be noted that PKC and CaM2 are the well-known and important regulators of
neuronal functions. CaM2 is an obligatory component of the cholinergic vesicular mechanism
[37], and PKC plays an important role in the regulation of ChAT molecular properties [36].
The authors also make the conjecture that oxidative stress can alter the phosphorylation-
dependent regulation of ChAT expression and ACh synthesis in the aging brain and in the
early stages of vascular and Alzheimer’s disease and related disorders. Both of these protein
kinases interact with serine/threonine residues which the protein kinases use for ChAT
phosphorylation [92, 95, 108, 112]. In different studies, PKC activated cChAT and mChAT with
variable efficacy [37, 95, 104]. It has been shown that different protein kinase isoforms have
distinct patterns and ChAT phosphorylation by PKC isoforms has a hierarchical construct [92,
95, 108, 112]. Thus, phosphorylation of Ser-476 had no effect on the molecular properties of
ChAT but allows the possibility of phosphorylating other serine residues, such as Ser-440 and/
or Ser-346/347 which are necessary to maintain the catalytic activity of ChAT under basal and
stimulated conditions. Also, Ser-346/347 modulates ChAT phosphorylation at other amino
acid residues, and Ser-440 initiates the translocation of soluble ChAT to the cellular membrane
and the formation of ionic-bound ChAT.

CaM2 and its inhibitors selectively regulate mChAT activity without affecting the activity of
cChAT [37]. These data were also confirmed indirectly by experiments with total ChAT
(actually cChAT), in which CaM2 phosphorylated but did not activate the enzyme [104].
Further investigations showed that CaM2 activated total ChAT in terms of the combined
phosphorylation of Thr-456 by CaM2 and of Ser-440 by PKC [112]. It is assumed that this PKC
feature of the potentiation of CaM2 action in cholinergic projection neurons of the hippocam‐
pus and the cortex is dramatically implicated in the pathogenesis of Alzheimer's disease [112].
Likewise, PKC inactivation of Ser-440 phosphorylation is implicated in the pathogenesis of
myasthenic syndrome in the motor nuclei of the spinal cord [94, 113].
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7. Role of cChAT and mChAT in regulation of acetylcholine synthesis and
secretion – In vitro studies

In neurons, the principal place of synthesis of ACh is in the nerve endings. ChAT has long
been recognized as a cytoplasmic enzyme, even after its detection on synaptic membranes in
the 1960s [1, 114]. Later, it was shown that ChAT exists as a structural membrane protein [95,
115-117]. The long-term study of the properties of synaptic soluble (c) and membrane-bound
(m) ChAT in vitro has shown that the relationship between ChAT activity and the secretion
of ACh depends on the compartmentalization of the enzyme.

7.1. Functional properties of synaptic cChAT

Soluble cChAT activity is the prevalent activity of synaptic ChAT. cChAT regulates the
dynamic equilibrium between the synthesis and degradation of ACh in the resting state [35,
99, 118, 119]. Under physiological conditions, cChAT is activated during stimulation by
depolarizing agents such as K+ and/or veratridine [37, 120, 121]. Another regulator of the level
of free cytosolic ACh is AChE, the enzyme that mediates ACh splitting. A close interaction
takes place between cChAT and soluble cAChE [120]. Thus, in calcium-free medium condi‐
tions, the quantum release of ACh is blocked, the activity of cChAT is not changed and cAChE
is activated and cleaves an abundance of ACh [120, 122].

From these experiments, it follows that non-quantum, Ca2+-independent "leak" of acetylcholine
and its decay products, choline and acetate, is in direct dependence on the ratio of the activity
of these two cytosolic enzymes [120, 122, 123]. In these studies, (1) K+ stimulation in calcium-
free medium causes the release of cytosolic choline due to disruption of cytosolic ACh by
cAChE and (2) veratridine stimulation can cause the release of both choline and cytosolic ACh.
(3) In mAChE and cAChE inhibition conditions by a tertiary inhibitor such as paraoxon coming
through the plasma membrane, the release of choline is blocked under veratridine stimulation
in calcium-free medium and its extracellular level is decreased. Instead of choline, the release
of cytosolic ACh is observed. (4) Under cChAT and mChAT inhibition conditions by the
selective inhibitor NVP, cChAT is selectively activated and the release of newly synthesized
ACh is increased directly from the cytosol under veratridine stimulation in physiological
medium (in the presence of Ca2+). (5) A similar output of ACh is observed under the same
conditions in calcium-free medium.

The choline and ACh concentrations could increase by 40-60% in the extracellular medium in
such a non-quantum manner. Choline is a selective agonist of α-7 subtype of ACh nicotinic
receptors [65, 124]. Thus, the "leak" of cytosolic choline and/or ACh, as well as changes in their
relationship in the extracellular environment may have independent signaling effects in
intercellular interactions.

7.2. Functional properties of synaptic mChAT

The functional purpose of mChAT has long been unclear [80, 125]. Investigation of this
problem was difficult in the absence of selective inhibitors of cChAT and mChAT. Their
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separation is possible only by subsynaptic fractionation in combination with methods that
destroy the synaptosome. The contribution of mChAT to general ChAT activity is low, i.e.
4-15% [1, 94, 95, 97, 119]. Therefore, for a long time, it was assumed that the association of
ChAT with neuronal membranes was an artifact as the result of synaptoplasm contamination
[1, 35, 114].It has now been shown that mChAT exists (1) as stationary membrane protein [99,
115, 117] and (2) as ionic-bound mChAT, a reversible form of cytosolic ChAT [95, 126].

In vitro, mChAT like cChAT are activated in response to K+ or veratridine stimulation in
physiological medium [37, 110, 120, 121]. Compelling data have accumulated regarding the
direct involvement of mChAT in the mechanisms of quantum secretion of acetylcholine. This
is indicated by a number of ultrastructural and functional characteristics of the enzyme.

mChAT is localized to synaptic vesicles [127]. Its activity, unlike cChAT, depends on the
specific factors of ACh transfer into the vesicles, VAChT and the proton gradient, and on CaM2
activity, which is the main kinase associated with synaptic vesicles [37]. Activation and
inhibition of mChAT are fully coupled with the activation or, respectively, blockade of ACh
quantum release [120].

The non-vesicular Ca2+-dependent pathway of the quantum secretion of ACh has been revealed
[128-131]. It was shown that this pathway provides fast secretion of ACh by a synaptic
membrane structural protein [132] called mediatophore [128]. It was found that mediatophore
is functional linked to ChAT [133]. This suggests that mChAT located on the synaptic mem‐
brane participates in the regulation of the quantum secretion of ACh, similar to vesicular
mChAT. This agrees with the preferential sensitivity of mChAT to the functional state of CHT
that is selectively localized to the neuronal membrane of cholinergic neurons [94, 134].

mChAT is selectively sensitive to the balance of ions. It is known that ions are important
regulators of quantum neurotransmitter release and other transmembrane functions. Control
of quantum ACh release is carried out by the interaction of the Ca2+ and H+ balance (vesicular
Ca2+/H+ antiporter), Zn2+ and K+ (K+ channels) [131, 135-138]. mChAT activity is selectively or
preferably (1) inhibited in calcium-free medium [118, 120, 121], (2) is increased at a high
concentration of Ca2+ and/or K+ [37, 110, 121, 123, 139], (3) is dose-dependently inhibited by the
intracellular concentration of Cl - [118, 125] and increases in conditions of a high Cl - concen‐
tration and chloride conductivity stimulation [125]. (5) Zn2+ regulates both pathways of the
quantum secretion of ACh. High concentrations of Zn2+ block ACh release from vesicles and
through mediatophore [135, 140]. Similarly, the direction of ChAT translocation depends on
Zn2+ ions. Zn2+ blocks the "anchoring" of ChAT on the membrane [126]. The last argument
indicates the involvement of ionic-bound mChAT in the quantum release of ACh.

So, the catalytic properties of cChAT and mChAT depend on phosphorylation and possibly
on the type of splicing. Moreover, the specific activity of mChAT, unlike cChAT, also depends
on the ionic environment and on other factors affecting the quantum secretion of ACh. The
functional significance of mChAT is not nearly as clear as cChAT. The relationship between
cChAT and mChAT and their dependence on external influences are poorly understood [138].
Nevertheless, it seems that the compartmentalization of the enzyme ensures the involvement
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of cChAT and mChAT in different functional-metabolic cycles, which may contribute to the
fine regulation of the mediator actions of ACh.

8. cChAT and mChAT as markers of functional and structural
reorganization in cholinergic nerve endings following external exposure
— In vivo studies

The synaptosomal subfractions of the synaptic membranes and synaptoplasm of the cortex,
hippocampus and some other rat brain structures are used for research in vivo cholinergic
mechanisms of brain functions by biochemical methods (radiometric and spectrophotometric).
Subsynaptic fractions gave according to the scheme shown in Figure 1. Respectively, mChAT
and cChAT activity and the m-protein and c-protein content have been measured to estimate
cholinergic function. In addition, in some experiments, mAChE and cAChE and Na+/K+-
ATPase activity was measured. The Na+/K+-ATPase activity and content of synaptic proteins,
as universal synaptic parameters, as well AChE activity were correlated with ChAT activity
in those cases when the cholinergic reaction following exposure was dominant in the synap‐
tosomal fraction. Generally, models of acute (3 hours) and chronic (11-14 days) brain ischemia
(bilateral occlusion of the carotid arteries, the 2VO model) or acute hypobaric hypoxia with
variable intensity (10% O2, 60 min; 6.5% O2, 15 min; 4.5% O2, 1-3 minutes or 10-20 minutes)
were used as the exposure methods.

8.1. Biochemical equivalents of activation and inhibition of cholinergic mediator function

In in vivo investigations, ChAT activity was found to be the most mobile parameter. So, ChAT
has become the main landmark for analysis of the cholinergic reaction to exposure.

cChAT activation was observed under acute ischemia or hypoxia at all intensities [27, 29,
141]. mChAT or both mChAT and cChAT activation was revealed under acute and chronic
ischemia and only in severe hypoxia (4.5% O2) [27-29, 141]. When the activation of ChAT was
observed (165-170%), extracellular mAChE (the predominant isoform of mAChE) was
simultaneously activated [141]. cChAT activation positively correlated with the activation of
Na+/K+-ATPase and negatively correlated with the decrease in the c-protein content [27]. All
these reactions of the synaptic biochemical parameters and their combinations are regarded
as the activation of cholinergic synaptic function, because they conform to the characteristics
of synaptic activation.

Compared to cChAT, the selective activation of mChAT has been revealed (1) under equal
experimental conditions (3 hours of ischemia) in rats less resistant to hypoxia [141], and (2)
under hypoxic conditions with variable intensity only in severe hypoxia [27] and was not
observed in the subcritical and moderate hypoxia (6.5% or 10% O2) [27, 29]. A parallel study
of the ultrastructure of the synapses in the cortex revealed the dependence of swelling synapses
and synaptic mitochondria on the duration of severe hypoxia [27]. Taken together, these data
suggest that the activation of mChAT in vivo occurs due to an imbalance of synaptic Ca2+,
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while cChAT activation is apparently initiated in the natural physiological way, under
neuronal influences [27].

The inhibitory reactions of ChAT under ischemic/hypoxic conditions were revealed as well. It
was found that these conditions decrease cChAT or mChAT or both cChAT and mChAT
activity [27-29, 141]. Also, a negative correlation has been found between cChAT activity and
the c-protein content and a positive correlation has been found between mChAT activity and
the m-protein content [27, 29, 141].

A parallel study of the ultrastructure of the synapses in the cortex revealed a significant
decrease in the number of vesicles docked to the presynaptic active zone in the rat with a
profound decrease in both cChAT and mChAT activity in acute hypoxia [27, 142].Taken
together, these data suggest that such a decrease in ChAT activity in vivo may reflect the deep
inhibition of cholinergic synaptic function as result of the superexcitation, the equivalent of
the well-known "depression of neurons" in electrophysiology, i.e. reduced neuronal excitabil‐
ity due to the depletion of mediator substrates.

Selective inhibition of mChAT, as well as its activation, is likely a consequence of a disturbance
in the ion balance. Based on the dominance of the hypoxic factors in these experiments, it is
supposed that the decrease in mChAT activity is due to the accumulation of H+ ions in the
presynapses [27, 29]. It can be induced (1) by acidosis in the case of severe hypoxia and (2) by
the weak increase in H+ ion concentrations as the primary response to hypoxia in the case of
moderate hypoxia (10% O2). It has been shown that such primary H+ ion accumulation is
subthreshold for the initiation of cellular acidosis and can disrupt the function of the Ca2+/H+

antiporter [143].

Finally, cAChE activation has been detected under acute ischemia [141]. This is probably
another means of regulating the abundance of free cytosolic ACh during the inhibition of ACh
quantum transmission. The simultaneous increase in the c-protein content in the same
synaptosomal fraction corroborates this supposition. It is well-known that numerous fibrillar
synaptic proteins are soluble at rest and quickly form a structure under stimulation conditions.

So, the high reactivity as cChAT and mChAT and the peculiarities in the manifestation of ChAT
(and AChE) activity according to the compartmentalization of the enzyme and to the experi‐
mental situation in vivo testify to the naturalness of functional properties cChAT and mChAT
(and also c- and mAChE) revealed in vitro.

8.2. Biochemical equivalents of the quantitative changes in the cholinergic synaptic pool

The correlations in the activation or inhibition of cChAT and mChAT may reflect changes in
a number of cholinergic synapses, namely synaptogenesis (the growth of new synapses) or
their elimination, retraction or another means of reduction in the quantity of nerve endings.
As was described above, the correlation between the biochemical synaptic membrane and
cytosolic parameters may reflect the reaction of the presynapse as a structural unit. The most
reliable criterion of the quantitative reorganization of cholinergic synapses is the positive
correlation between ChAT activity and the c-protein content, since their functional changes
have contrasting directionality.
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In in vivo investigations, ChAT activity was found to be the most mobile parameter. So, ChAT
has become the main landmark for analysis of the cholinergic reaction to exposure.

cChAT activation was observed under acute ischemia or hypoxia at all intensities [27, 29,
141]. mChAT or both mChAT and cChAT activation was revealed under acute and chronic
ischemia and only in severe hypoxia (4.5% O2) [27-29, 141]. When the activation of ChAT was
observed (165-170%), extracellular mAChE (the predominant isoform of mAChE) was
simultaneously activated [141]. cChAT activation positively correlated with the activation of
Na+/K+-ATPase and negatively correlated with the decrease in the c-protein content [27]. All
these reactions of the synaptic biochemical parameters and their combinations are regarded
as the activation of cholinergic synaptic function, because they conform to the characteristics
of synaptic activation.

Compared to cChAT, the selective activation of mChAT has been revealed (1) under equal
experimental conditions (3 hours of ischemia) in rats less resistant to hypoxia [141], and (2)
under hypoxic conditions with variable intensity only in severe hypoxia [27] and was not
observed in the subcritical and moderate hypoxia (6.5% or 10% O2) [27, 29]. A parallel study
of the ultrastructure of the synapses in the cortex revealed the dependence of swelling synapses
and synaptic mitochondria on the duration of severe hypoxia [27]. Taken together, these data
suggest that the activation of mChAT in vivo occurs due to an imbalance of synaptic Ca2+,
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while cChAT activation is apparently initiated in the natural physiological way, under
neuronal influences [27].

The inhibitory reactions of ChAT under ischemic/hypoxic conditions were revealed as well. It
was found that these conditions decrease cChAT or mChAT or both cChAT and mChAT
activity [27-29, 141]. Also, a negative correlation has been found between cChAT activity and
the c-protein content and a positive correlation has been found between mChAT activity and
the m-protein content [27, 29, 141].

A parallel study of the ultrastructure of the synapses in the cortex revealed a significant
decrease in the number of vesicles docked to the presynaptic active zone in the rat with a
profound decrease in both cChAT and mChAT activity in acute hypoxia [27, 142].Taken
together, these data suggest that such a decrease in ChAT activity in vivo may reflect the deep
inhibition of cholinergic synaptic function as result of the superexcitation, the equivalent of
the well-known "depression of neurons" in electrophysiology, i.e. reduced neuronal excitabil‐
ity due to the depletion of mediator substrates.

Selective inhibition of mChAT, as well as its activation, is likely a consequence of a disturbance
in the ion balance. Based on the dominance of the hypoxic factors in these experiments, it is
supposed that the decrease in mChAT activity is due to the accumulation of H+ ions in the
presynapses [27, 29]. It can be induced (1) by acidosis in the case of severe hypoxia and (2) by
the weak increase in H+ ion concentrations as the primary response to hypoxia in the case of
moderate hypoxia (10% O2). It has been shown that such primary H+ ion accumulation is
subthreshold for the initiation of cellular acidosis and can disrupt the function of the Ca2+/H+

antiporter [143].

Finally, cAChE activation has been detected under acute ischemia [141]. This is probably
another means of regulating the abundance of free cytosolic ACh during the inhibition of ACh
quantum transmission. The simultaneous increase in the c-protein content in the same
synaptosomal fraction corroborates this supposition. It is well-known that numerous fibrillar
synaptic proteins are soluble at rest and quickly form a structure under stimulation conditions.

So, the high reactivity as cChAT and mChAT and the peculiarities in the manifestation of ChAT
(and AChE) activity according to the compartmentalization of the enzyme and to the experi‐
mental situation in vivo testify to the naturalness of functional properties cChAT and mChAT
(and also c- and mAChE) revealed in vitro.

8.2. Biochemical equivalents of the quantitative changes in the cholinergic synaptic pool

The correlations in the activation or inhibition of cChAT and mChAT may reflect changes in
a number of cholinergic synapses, namely synaptogenesis (the growth of new synapses) or
their elimination, retraction or another means of reduction in the quantity of nerve endings.
As was described above, the correlation between the biochemical synaptic membrane and
cytosolic parameters may reflect the reaction of the presynapse as a structural unit. The most
reliable criterion of the quantitative reorganization of cholinergic synapses is the positive
correlation between ChAT activity and the c-protein content, since their functional changes
have contrasting directionality.
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A reduction in the number of presynapses was provoked by acute hypoxia of variable severity
[27, 29]. It was shown by various methods, including non-invasive video technology, that a
reduction in the number of synapses can occur within minutes or tens of minutes [144-148].

Sprouting as well as destruction with the swelling of neurons and their terminals, including
cholinergic neurons, predominates in late brain ischemia or postischemic reoxygenation (over
days and months) [149-152]. In biochemical studies, the activation of ChAT was observed in
the majority of the synaptic subfractions of the cortex and hippocampus following chronic
brain ischemia [28]. The correlated increase between mChAT activity and m-protein content
could indicate synaptogenesis and hyperfunction of the cholinergic synapses, whereas the
correlated increase between cChAT/mChAT activity and the c-protein content indicates
synaptogenesis only.

8.3. Biochemical equivalents of the morpho- structural reorganization in the cholinergic
synaptic pool

Under the influence of moderate hypoxia (10% of O2, 60 min), an increase in the activity of
cChAT and the c-protein content was observed in the “light” synaptosomes from the caudal
structures of the brainstem [29]. This indicated an increase in quantity of the corresponding
synapses; however, synaptogenesis was impossible in such a brief period. Additional analysis
revealed a decrease in the activity of mChAT and the m-protein content in the "heavy"
synaptosomal fraction of the same brain structures. This decrease in the “m” biochemical
parameters in the "heavy" fraction negatively correlated with the increase in the corresponding
“c” biochemical parameters in the "light" fraction.These data indicate the transformation of
presynapses from one morphological type to another.

This phenomenon of the transformation of synapses was found in electron microscopic
experiments during 90 minutes of severe hypoxia [144, 145]. It was shown that the change of
a morphological type occurs due to the changes in the area, density and configuration of the
network elements of the presynapses and in their configuration [153]. Almost all of these
parameters can affect the density of the presynapses. Therefore, it is possible that some
population of the cholinergic presynapses from the "heavy" synaptosomal fraction trans‐
formed into presynapses with the less density and was located in the “light" fraction of the
sucrose density gradient. Apparently, this transformation resulted in a morphological type
more resistant to hypoxia.

In such studies on synaptic subfractions in vivo, various cholinergic synaptic reactions have
been revealed in response to hypoxic/ischemic exposures. The responsiveness of synaptic
cChAT and mChAT allows the study of synaptic reactions depending on the exposure
conditions, the functional specificity of different brain structures and neuronal populations. It
was noticed that a reaction to the hypoxia had phase type of change in the course of intensi‐
fication of hypoxic exposure [27]. As well a diversity of the plastic possibilities of the brain is
detected. For example, under the same moderate hypobaric hypoxic conditions (10% O2, 60
min) which initiated an increase in resistance to hypoxia, three alternative cholinergic adaptive
pathways were obtained in the same brain structure (the caudal brainstem) in three different
groups of rats. Transformation and activation of the presynapses was seen in one of the rat
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groups and the inhibition of cholinergic activity in different populations of presynapses (in
the light or heavy synaptosomes) was seen in the other two groups [29]. The mechanisms
behind this plastic diversity are unknown, although it is clear that it is associated with
individual neuronal organization of brain functions.

8.4. Cholinergic organization of brain functions under normal conditions and patterns of
adaptive reorganization under the influence of stress stimuli or pathological conditions

Synaptic ChAT activity can be used as an instrument to study the cholinergic mechanisms of
brain functions in vivo. Biochemical (radiometric) methods to estimate synaptic ChAT activity
are very sensitive and allow for assessing fine individual differences between experimental
animals. In turn, this method allows for successful correlation analysis between ChAT activity
and indicators of brain function and performance. Moreover, it is possible to study certain
populations of cholinergic neurons using, for example, the synaptic fractions of the cortex and
hippocampus.

As mentioned above, according to immunohistochemical data, both the cortex and the
hippocampus have two basic sources of cholinergic innervation. The first major source is
neuronal projections from the forebrain nuclei. The second minor source is interneurons
(intrinsic neurons). The third source to the frontal and visual cortical areas from the meso‐
pontine region is weak and biochemical methods can detect it only when the frontal or visual
area is assessed separately. In these brain structures, ChAT activity was estimated in the
fractions of the light and heavy synaptosomes (isolated as in [4]), and it appeared that these
fractions both in the cortex and in the hippocampus differ in terms of functional activity. From
this, it follows that in both brain structures, the cholinergic presynapses from different sources
are isolated in different synaptosomal fractions during preparation in the sucrose density
gradient.

Next, it was revealed that the ratio of ChAT activity in the light and heavy synaptosomal
fractions corresponded to the ratio of the immunoreactivity of the enzyme in the projections
and interneurons [46, 48, 52, 53, 154].This and some other data promoted the conclusion that,
in the cortex and hippocampus, the presynapses of cholinergic projections from the forebrain
nuclei accumulate mainly in the light synaptosomal fractions, whereas the presynapses of
cholinergic interneurons accumulate mainly in the heavy synaptosomal fractions [27, 27, 155].

This differential approach was used to study rat and cat brain cholinergic synaptic organiza‐
tion of cognitive functions such as learning, different forms of memory and inherited abilities
in some experimental situations. mChAT and cChAT activities of the light and heavy synap‐
tosomes of the hippocampus and/or cortex were used as markers of forebrain projections and
interneurons, respectively. These studies revealed some patterns in the relationship between
cognitive functional mechanisms that have not been sufficiently analyzed or defined by any
other methods.

Thus, under normal brain conditions, it was shown that (Figure 3, a):

1. Both the cholinergic projective systems and interneurons of the rat cortex and hippocam‐
pus are actively involved in learning and memory processes in the Morris water maze
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correlated increase between cChAT/mChAT activity and the c-protein content indicates
synaptogenesis only.
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Under the influence of moderate hypoxia (10% of O2, 60 min), an increase in the activity of
cChAT and the c-protein content was observed in the “light” synaptosomes from the caudal
structures of the brainstem [29]. This indicated an increase in quantity of the corresponding
synapses; however, synaptogenesis was impossible in such a brief period. Additional analysis
revealed a decrease in the activity of mChAT and the m-protein content in the "heavy"
synaptosomal fraction of the same brain structures. This decrease in the “m” biochemical
parameters in the "heavy" fraction negatively correlated with the increase in the corresponding
“c” biochemical parameters in the "light" fraction.These data indicate the transformation of
presynapses from one morphological type to another.

This phenomenon of the transformation of synapses was found in electron microscopic
experiments during 90 minutes of severe hypoxia [144, 145]. It was shown that the change of
a morphological type occurs due to the changes in the area, density and configuration of the
network elements of the presynapses and in their configuration [153]. Almost all of these
parameters can affect the density of the presynapses. Therefore, it is possible that some
population of the cholinergic presynapses from the "heavy" synaptosomal fraction trans‐
formed into presynapses with the less density and was located in the “light" fraction of the
sucrose density gradient. Apparently, this transformation resulted in a morphological type
more resistant to hypoxia.

In such studies on synaptic subfractions in vivo, various cholinergic synaptic reactions have
been revealed in response to hypoxic/ischemic exposures. The responsiveness of synaptic
cChAT and mChAT allows the study of synaptic reactions depending on the exposure
conditions, the functional specificity of different brain structures and neuronal populations. It
was noticed that a reaction to the hypoxia had phase type of change in the course of intensi‐
fication of hypoxic exposure [27]. As well a diversity of the plastic possibilities of the brain is
detected. For example, under the same moderate hypobaric hypoxic conditions (10% O2, 60
min) which initiated an increase in resistance to hypoxia, three alternative cholinergic adaptive
pathways were obtained in the same brain structure (the caudal brainstem) in three different
groups of rats. Transformation and activation of the presynapses was seen in one of the rat
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groups and the inhibition of cholinergic activity in different populations of presynapses (in
the light or heavy synaptosomes) was seen in the other two groups [29]. The mechanisms
behind this plastic diversity are unknown, although it is clear that it is associated with
individual neuronal organization of brain functions.

8.4. Cholinergic organization of brain functions under normal conditions and patterns of
adaptive reorganization under the influence of stress stimuli or pathological conditions

Synaptic ChAT activity can be used as an instrument to study the cholinergic mechanisms of
brain functions in vivo. Biochemical (radiometric) methods to estimate synaptic ChAT activity
are very sensitive and allow for assessing fine individual differences between experimental
animals. In turn, this method allows for successful correlation analysis between ChAT activity
and indicators of brain function and performance. Moreover, it is possible to study certain
populations of cholinergic neurons using, for example, the synaptic fractions of the cortex and
hippocampus.

As mentioned above, according to immunohistochemical data, both the cortex and the
hippocampus have two basic sources of cholinergic innervation. The first major source is
neuronal projections from the forebrain nuclei. The second minor source is interneurons
(intrinsic neurons). The third source to the frontal and visual cortical areas from the meso‐
pontine region is weak and biochemical methods can detect it only when the frontal or visual
area is assessed separately. In these brain structures, ChAT activity was estimated in the
fractions of the light and heavy synaptosomes (isolated as in [4]), and it appeared that these
fractions both in the cortex and in the hippocampus differ in terms of functional activity. From
this, it follows that in both brain structures, the cholinergic presynapses from different sources
are isolated in different synaptosomal fractions during preparation in the sucrose density
gradient.

Next, it was revealed that the ratio of ChAT activity in the light and heavy synaptosomal
fractions corresponded to the ratio of the immunoreactivity of the enzyme in the projections
and interneurons [46, 48, 52, 53, 154].This and some other data promoted the conclusion that,
in the cortex and hippocampus, the presynapses of cholinergic projections from the forebrain
nuclei accumulate mainly in the light synaptosomal fractions, whereas the presynapses of
cholinergic interneurons accumulate mainly in the heavy synaptosomal fractions [27, 27, 155].

This differential approach was used to study rat and cat brain cholinergic synaptic organiza‐
tion of cognitive functions such as learning, different forms of memory and inherited abilities
in some experimental situations. mChAT and cChAT activities of the light and heavy synap‐
tosomes of the hippocampus and/or cortex were used as markers of forebrain projections and
interneurons, respectively. These studies revealed some patterns in the relationship between
cognitive functional mechanisms that have not been sufficiently analyzed or defined by any
other methods.

Thus, under normal brain conditions, it was shown that (Figure 3, a):

1. Both the cholinergic projective systems and interneurons of the rat cortex and hippocam‐
pus are actively involved in learning and memory processes in the Morris water maze
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model [28]. The presynapses of cholinergic interneurons in the cat temporal associative
cortical area do not participate in inherited abilities for the analysis of images [25] but all
of other associative cortical areas (frontal and parietal) active participated in cognitive
processes [153].

2. The cholinergic system participates not only in the mechanisms of learning and working
memory, which has been repeatedly observed [151, 157-160], but also in the mechanisms
of long-term memory [28]. The involvement of cholinergic projective systems in the
mechanisms of long-term memory is usually denied [161-164] or has been discussed in
only a few studies [165-167].

3. Each form of memory has an individual cholinergic synaptic composition [28]. This
conclusion agrees with the results of investigations into cholinergic and monoaminergic
systems obtained in the Morris water maze and some other behavioral models [165,
168-170].

4. Cholinergic projective neurons and interneurons of the rat cortex and hippocampus can
have both positive and negative connections with cognitive functions [28]. Identical
results were obtained in all cat cortical areas except the temporal zone. Cholinergic
projections in the temporal area had only negative connections with inherited cognitive
functions. The number of cholinergic presynapses may be more than doubled in this brain
area of cats with weak cognitive abilities as compared with cats with strong abilities [25].
Negative connections with cognitive functions are not specific for only the cholinergic
system. In morphological research on hippocampal mossy fibers (glutamatergic) in the
rat and mouse brain, feedback was also found between the quantity of synapses which
mossy fibers create and learning [171].

Taken together, these data demonstrate that the cholinergic mechanisms of learning and
memory are more complex than is currently perceived.

Stress and pathological stimuli initiate a considerable reorganization of the normal cholinergic
synaptic connections in cognitive functions. As an illustration, it was revealed during chronic
2VO conditions in the Morris water maze models that [28] (Figure 3, b):

1. The majority of normal cholinergic connections are lost and new connections arise.

2. Cholinergic link was considerably reduced in mechanisms of cognitive functions and
proportion of negative connections increased.

3. In addition to reduction, the structural isolation of cholinergic links in cognitive functions
and performance takes place; cortical cholinergic influences are completely removed from
spatial contextual functions as are hippocampal influences from spatially cued functions.

In general, cholinergic synaptic influences disappear in some forms of cognition. It is clear that
the consequences of different exposures on the cholinergic composition of cognitive functions
are individual; however, the itemized consequences of 2VO are general for other stress stimuli
such as acute severe hypoxia (4.5% O2, Figure 3, c) [141, 156] and changes in season from warm
to cold [25] (Figure 4).
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It is logical to assume that the reduction in cholinergic links in cognitive mechanisms is a
consequence of the degeneration of cholinergic fibers. However, the reverse was actually

Abbreviations: 1s2(Contextual)/1s1 (Cued), the inherited abilities, the first non-casual attempt of making decision in
the task (respectively, the second/ the first trial in the first session, “s “ inclued in the abbreviations of the forms of
cognition); 1s3-4 (Contextual)/1s2-4 (Cued), the working memory (averaged from the following trials in the first ses‐
sion); 2s2-4 and 3s2-4, the learning (average of trials in the second and the third sessions respectively); 2s1 and 3s1,
the long-term memory (the first trials on the next days after the first and the second sessions of training respectively).
SM and Sp, subfractions of the synaptic membranes and the synaptoplasm, respectively, of the cortical light (CL) and
heavy synaptosomes (CH) and hippocampal light (HL) and heavy synaptosomes (HH).
Pyramids towards up indicate a positive correlation between behavioural performance and ChAT activity; inverted
pyramidы indicate a negative correlation between behavioural performance and ChAT activity. In the rat groups
n=4-7. Correlations between behavioural performance and ChAT activity are represented with only valid values and
with the Bonferroni correction (p<0.02-0.001).

Figure 3. Values of r-criterion by the Pearson’s test of behavioural performance and ChAT activity in rats in the Morris
water maze in the spatial contextual and the spatial cued behavioural models under control (a, sham operated rats),
ischaemic (b, 2VO operated rats) and one month after a single severe hypobaric hypoxia (c, sham operated rats) condi‐
tions.
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model [28]. The presynapses of cholinergic interneurons in the cat temporal associative
cortical area do not participate in inherited abilities for the analysis of images [25] but all
of other associative cortical areas (frontal and parietal) active participated in cognitive
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2. The cholinergic system participates not only in the mechanisms of learning and working
memory, which has been repeatedly observed [151, 157-160], but also in the mechanisms
of long-term memory [28]. The involvement of cholinergic projective systems in the
mechanisms of long-term memory is usually denied [161-164] or has been discussed in
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conclusion agrees with the results of investigations into cholinergic and monoaminergic
systems obtained in the Morris water maze and some other behavioral models [165,
168-170].

4. Cholinergic projective neurons and interneurons of the rat cortex and hippocampus can
have both positive and negative connections with cognitive functions [28]. Identical
results were obtained in all cat cortical areas except the temporal zone. Cholinergic
projections in the temporal area had only negative connections with inherited cognitive
functions. The number of cholinergic presynapses may be more than doubled in this brain
area of cats with weak cognitive abilities as compared with cats with strong abilities [25].
Negative connections with cognitive functions are not specific for only the cholinergic
system. In morphological research on hippocampal mossy fibers (glutamatergic) in the
rat and mouse brain, feedback was also found between the quantity of synapses which
mossy fibers create and learning [171].

Taken together, these data demonstrate that the cholinergic mechanisms of learning and
memory are more complex than is currently perceived.

Stress and pathological stimuli initiate a considerable reorganization of the normal cholinergic
synaptic connections in cognitive functions. As an illustration, it was revealed during chronic
2VO conditions in the Morris water maze models that [28] (Figure 3, b):

1. The majority of normal cholinergic connections are lost and new connections arise.

2. Cholinergic link was considerably reduced in mechanisms of cognitive functions and
proportion of negative connections increased.

3. In addition to reduction, the structural isolation of cholinergic links in cognitive functions
and performance takes place; cortical cholinergic influences are completely removed from
spatial contextual functions as are hippocampal influences from spatially cued functions.

In general, cholinergic synaptic influences disappear in some forms of cognition. It is clear that
the consequences of different exposures on the cholinergic composition of cognitive functions
are individual; however, the itemized consequences of 2VO are general for other stress stimuli
such as acute severe hypoxia (4.5% O2, Figure 3, c) [141, 156] and changes in season from warm
to cold [25] (Figure 4).
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observed. As was noted above, activation of ChAT was detected in the majority of the synaptic
subfractions, and this may reflect cholinergic hyperfunction or synaptogenesis in the 2VO rat
brain [28]. Moreover, ChAT activity showed a five- to ten-fold increase in the winter as
compares with the summer in synaptic subfractions of both projection and interneurons in the
temporal [25] as well in other cat cortical areas [156]. No quantitative distinctions in ChAT
activity were found in the synaptic subfractions of the cortex and the hippocampus of rats in
a month after a single acute hypoxic stress [156].

Abbreviations: SM, Sp, CL, CH, the same abbreviations of the subfractions as on Figure 3.
As on Figure 3, the pyramids towards up indicate a positive correlation between behavioural performance and ChAT
activity; inverted pyramids indicate a negative correlation between behavioural performance and ChAT activity. In the
cat groups n=6-8. Correlations behavioural performance and ChAT activity are represented with only valid values and
with the Bonferroni correction (p<0.02-0.001).

Figure 4. Values of r-criterion by the Pearson's test of behavioural performance and ChAT activity in cats in the inherit‐
ed abilities of generalisation, abstracting and gnosis of images tested on the basis of the food reflex (memory) in the
summer (a) and winter (b).
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The new cholinergic connections with cognitive functions that arise after 2VO are not neces‐
sarily the consequence of degeneration or dysfunction in the presynapses of key cholinergic
populations, i.e. these new connections could arise for other, indirect reasons. Therefore, it was
assumed that noticeable weakening of cholinergic synaptic influences on cognitive processes
is a consequence of adaptation. It seems that the cholinergic synaptic components of the highest
brain structures, besides their participation in cognition, are necessary for the functions
connected with survival under stress conditions.

At the same time, some cognitive functions were not affected by cholinergic reduction after
2VO [28]. All the more the inherited cognitive processes are preserved with annual seasonal
cholinergic reorganization [25, 156]. From this, it was concluded that, during stress conditions,
other mediator systems replace the cholinergic system in cognitive processes.

At least four questions follow from these data:

1. In what nervous functions are the cholinergic neuronal populations of the cortex and the
hippocampus involved, both projective and intrinsic, for the maintenance of viability of
an organism? Is it a function of regulation of the regional blood vessels or some other
factor?

2. Why are cholinergic synaptic influences lost from cognitive mechanisms? Is it a negative
dependence between vital and cognitive functions or low resistance of this neuronal
population to stress conditions?

3. Is the structural isolation of cholinergic links in cognitive functions presumes a functional
disbalance between the cortex and hippocampus? Is it a consequence of loss of cholinergic
modulating influences?

4. What mediator systems mediate the execution of cognitive functions instead of the
cholinergic system?

The answers to these questions are important for the restoration, maintenance and regulation
of cognitive and vital brain functions under stress and pathological conditions.

9. Conclusion

The synapse is a unique and the most dynamic and labile structure specialized in the chemical
transmission of nerve signals, an inherent structure of the neuron only.

Cholinergic system is essential constituent of the mammalian brain. Due to research using the
synaptosomal and other synaptic fractions, knowledge behind the metabolism and secretory
function of ACh and some new notion concerning the cholinergic mechanisms of cognitive
functions under normal conditions and stress stimuli were gained. Today, however, accumu‐
lated data does not provide answers to the all questions as many more questions are asked.
We have tried to outline some of the outstanding problems in the course of presenting the
material.
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transmission of nerve signals, an inherent structure of the neuron only.

Cholinergic system is essential constituent of the mammalian brain. Due to research using the
synaptosomal and other synaptic fractions, knowledge behind the metabolism and secretory
function of ACh and some new notion concerning the cholinergic mechanisms of cognitive
functions under normal conditions and stress stimuli were gained. Today, however, accumu‐
lated data does not provide answers to the all questions as many more questions are asked.
We have tried to outline some of the outstanding problems in the course of presenting the
material.
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The experimental cell physiology began to develop after the invention of the microscope by
A. van Leeuwenhoek and his discoveries in the middle of the 17th century. Experimental
synaptology began to develop after the invention of the electron microscope in the 1930s by
M. Knoll and E. Ruska, ie three centuries later! Prior to this, researchers for the longest time,
following two great neurohistologists, S. Ramón y Cajal and C. Golgi, in general could not
reach a consensus, whether the brain is a cellular structure or syncytium? Only the electron
microscope proved that a synapse exists.

Thus the science of the synapse is very young neuroscience.
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1. Introduction

The brain is equipped with a magnificent diversity of molecules that allow neurons to
communicate with each other. Some of these molecules have been known to function as
neurotransmitters for several decades such as GABA and glutamate while for others their
involvement in brain signaling has been demonstrated more recently. Cannabinoids fall into
the latter group. Even though the effects of cannabinoids as active ingredients in marijuana on
human psyche and behavior have been experienced by humans for centuries or possibly
millennia, their existence and production in the brain was described only some thirty years
ago. Even more recently, their functional role in neural circuits of the brain has been discerned.
This review focuses on these endogenously produced signaling molecules, endogenous
cannabinoids or endocannabinoids (eCBs). Their functional role in the nervous system and
interaction with other neurotransmitter systems will be described. One hallmark feature of
endocannabinoid signaling is their ability to act as retrograde messengers in neural circuits.
Two examples, one from the hippocampus and one from the main olfactory bulb, illustrate in
detail this intercellular communication pathway.

Several features underscore the importance to understand the endocannabinoid system.
Increasing evidence demonstrates the relevance of endocannabinoids in normal behaviors,
including pain reception [1] and feeding [2, 3]. The therapeutic potential of cannabinoids has
received increasing attention over the past few years [4]. endocannabinoids play a role in
neuroprotection against acute excitotoxicity [5] and functional recovery after brain injury [6].
Endocannabinoids regulate human airway function and provide a means to treat respiratory
pathologies [1]. Cannabinoids are in widespread use recreationally as psychoactive drugs and
interact with other drugs of abuse. This fact emphasizes even more the need to understand the
endocannabinoid system and the neurobiological substrate of their mood-altering capacity [7,
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8]. Furthermore, the endocannabinoid system is crucially involved in processes of learning
and memory, e.g., in the extinction of aversive memories [9].

2. The endocannabinoid system

Endocannabinoids are small lipids that regulate various aspects of brain function such as
learning and memory including synaptic transmission and different forms of short-and long-
term plasticity [10]. They also influence growth and development such as synapse formation
and neurogenesis. Other biological functions modulated by endocannabinoids include eating
and anxiety. Principally, two endocannabinoids, N-arachidonoylethanol-amide (anandamide,
AEA) and 2-arachidonoylglycerol (2-AG) are the natural agonists/ligands of the most widely
expressed cannabinoid receptor in the brain, CB1R [11] (Figure 1).
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Figure 1. Two endocannabinoids, 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanol-amide (anandamide,
AEA), are the natural agonists/ligands of cannabinoid receptors, CB1Rs, in the brain.

Endocannabinoids, as fatty-acid derived endogenous ligands, together with their G-protein
coupled cannabinoid receptors form the endocannabinoid system. This system also includes
associated biochemical machinery with endocannabinoid precursors, synthetic and degrada‐
tive enzymes for these lipidic neurotransmitters, and transporters [12-15]. Two different
cannabinoid receptors have been cloned, CB1 and CB2 receptors. They share 44% amino acid
sequence homology [16, 17]. The expression pattern of the two cannabinoid receptors in
various body parts is distinctly different. In the brain, CB1R is the most abundant G-protein
coupled receptor [18]. CB2R is primarily expressed in immune cells and peripheral tissues [17].
Some level of CB2R expression has also been detected in the brainstem, cortex and cerebellar
neurons and microglia [19, 20].

Cannabinoid receptors are found at high levels in the brain [21, 22], specifically at presynaptic
nerve terminals [23, 24]. They can be activated by cannabis-derived drugs. Δ9-Tetrahydrocan‐
nabinol, THC, is the bioactive ingredient of the drugs marijuana and hashish [25] and can
artificially activate cannabinoid receptors as exogenous cannabinoids. Cannabinoid receptors
exist in all normal brains [18, 21, 22] where they subserve many essential brain functions when
activated by their natural ligands. Cannabinoid receptors in the nervous system are predom‐
inantly Gi/o-protein-coupled type 1 cannabinoid receptors (CB1 receptors, CB1Rs). Their
ligands, endocannabinoids are synthesized from membrane lipids [26]. Endocannabinoids can
diffuse through membranes and are thus able to activate receptors in the same manner as

Neurochemistry180

exogenously applied cannabinoids such as cannabis. Anandamide and 2-AG were discovered
in the early 1990s [27-29, reviewed in 30] while their functional role in neuronal communication
remained obscure for years. Since their discovery, the role of endocannabinoids as retrograde
messengers that suppress both excitatory and inhibitory transmission has been well-estab‐
lished. Endocannabinoids mediate retrograde signals in the hippocampus [31-35], cerebellum
[36-38], neocortex [39, 40], amygdala [41, 42], and olfactory bulb [43]. Termination of endo‐
cannabinoidsignalling is accomplished by reuptake into both neurons and glia. Subsequently,
anandamide and 2-AG are hydrolyzed intracellularly by fatty acid amide hydrolase (FAAH)
and monoacylglycerol lipase (MAGL), respectively [44].

3. Unusual and novel neurotransmitters

Endocannabinoids are different from conventional neurotransmitters because they are lipids
that are not stored but rather are rapidly synthesized on demand at the site of need from
components of the cell membrane. Upon cellular activation, they are released from places all
over the cell. They are arachidonic acid-containing messengers generated by phospholipase
action [45]. Stimuli that trigger release of endocannabinoids include rise of intracellular
calcium levels inside the neuron or activation of certain G-protein-coupled receptors such as
metabotropic glutamate receptors (mGluR5). Subsequent to their non-synaptic, non-vesicular
release, endocannabinoids bind to cannabinoid receptors on nearby neurons such as presy‐
naptic interneurons where they regulate presynaptic neurotransmitter release, e.g., through
closure of specific ion channels.

Endocannabinoids are members of a loose family of unusual and novel neurotransmitters.
Similar to endocannabinoids, other novel neurotransmitters such as nitric oxide (NO), carbon
monoxide (CO), and hydrogen sulfide (H2S) do not adhere to the classic definition of neuro‐
transmitters and challenge the notion of what constitutes a neurotransmitter [46, 47]. These
synaptic molecules have changed markedly the definition of a neurotransmitter. They satisfy
key neurotransmitter criteria but differ radically from classical transmitters. For example,
endocannabinoids, nitric oxide and carbon monoxide are neither stored in synaptic vesicles
nor released by exocytosis. Nitric oxide does not act via traditional receptors on postsynaptic
membranes.

Like endocannabinoids,  nitric  oxide can serve as an intercellular messenger in the brain
[48]. It acts as a retrograde factor at synapses and presynaptically regulates both glutama‐
tergic and GABAergic synapses to alter release-probability in synaptic plasticity. Nitric oxide
influences  the  synaptic  machinery involved in  transmitter  release  and,  in  a  coordinated
fashion, also the vesicular recycling mechanisms. Nitric oxide has a role in the coordina‐
tion of local pre-and post-synaptic function during plasticity at individual synapses. It is
involved in experience-dependent plasticity in the cerebral cortex. Likewise, cannabinoids
mediate  a  variety  of  forms  of  short-and  long-term  synaptic  plasticity  that  have  been
reviewed in detail elsewhere [49-51].
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4. Depolarization-induced suppression of inhibition

The relevance of the endocannabinoid system for neural signaling and brain function in
general has been explored only recently [13]. Endocannabinoids mediate a new type of
neuronal communication, called DSI, Depolarization-induced Suppression of Inhibition (Fig.
2) (reviewed in [10, 12, 30]. A short rise in intracellular calcium concentration in a principal
neuron, e.g., a pyramidal cell of the hippocampus, results in a transient decline of incoming
inhibitory signals in the form of GABA arriving from other neurons. This observation led to
the hypothesis that during DSI, some unknown messenger must travel from the postsynaptic
cell to the presynaptic GABA-releasing one and somehow turns off neurotransmitter release.
Conventional chemical synaptic signaling between two neurons involves activation of a
presynaptic neuron resulting in transmitter release and subsequent activation of the postsy‐
naptic neuron, e.g., a GABAergic inhibitory interneuron makes synaptic contacts with a
glutamatergic pyramidal cell in the hippocampus. When the interneuron is activated it releases
the inhibitory neurotransmitter GABA and inhibits the pyramidal cell. In contrast, during DSI,
when a pyramidal cell is activated, e.g., through direct current injection, the inhibitory input
onto that pyramidal cell is reduced. As a major breakthrough in our understanding of
endocannabinoid signaling, endocannabinoids were found to act as retrograde signaling
molecules that mediate communication between postsynaptic pyramidal cells and presynaptic
inhibitory interneurons and evoke the reduction in GABA release. Since endocannabinoids are
lipids, they do not diffuse over great distances in the watery extracellular environment of the
brain. Rather, DSI acts as a short-lived local effect that enables individual neurons to disconnect
briefly from their neighbors and encode information [12].

The announcement of this breakthrough has been given the Latin term ‘Dies mirabilis’
(wonderful day) by Alger [10]. In March of 2001 four independent labs described in three
different journals their studies culminating in the conclusion that endocannabinoids function
mainly as retrograde messengers. Elphick and Egertova [52] analyzed prior pharmacological
and anatomical studies of the actions of cannabinoid receptor agonists and combined this with
their knowledge of the localization of cannabinoid receptors and degradative enzymes for
anandamide, fatty acid amide hydrolase (FAAH) to reason that endocannabinoids act as
retrograde messengers. Pivotal work by Wilson and Nicoll [34] and Ohno-Shosaku et al. [32]
established that DSI was mimicked by activating cannabinoid receptors whereas blockade of
cannabinoid receptors prevented DSI. A corresponding phenomenon, DSE, Depolarization-
induced Supression of Excitation, mediated by retrograde action of endocannabinoids, was
identified by Kreitzer and Regehr [36] at cerebellar excitatory synapses. DSI and DSE are based
on a presynaptic effect as shown by an increase in calcium in the postsynaptic cells and
corresponding changes in paired pulse ratio of neurotransmitter release.

G-protein coupled receptors (GPCRs) are involved in mediating the transduction of extracel‐
lular stimuli, such as neurotransmitters, into intracellular signaling cascades. Activation of
specific G-protein coupled receptors triggers the release of endocananbinoids for many
minutes, e.g., dopamine [53], metabotropic glutamate [33, 37, 54] or muscarinic M1/M3
acetylcholine receptors [55, 56]. Even though endocannabinoids are typically released in a
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calcium-dependent manner [57, 58], in the mGluR-and mAChR-dependent pathways, no clear
rise in intracellular calcium [Ca2+]i [37, 55] is necessary. The release of endocananbinoids can
be initiated even in the presence of high intracellular concentrations of calcium chelators,
although endocannabinoids may nevertheless be sensitive to the ambient intracellular calcium
concentration [59]. Studies by the Alger lab and others indicate that G-protein coupled receptor
activation of postsynaptic cells leads to enhancement of DSI, e.g., glutamate acting on group
I metabotropic glutamate receptors (mGluRs) directly generates endocannabinoids and
enhances DSI ([37, 33]. It is now established that activation of many G-protein coupled
receptors is linked to the use of endocannabinoids to deliver or fine-tune their messages to
target cells [11].

The discovery of DSI has been a major advance in our understanding of the endocannabinoid
system for brain function [60]. DSI is a type of short-term synaptic plasticity originally observed
in the cerebellum and hippocampus [12, 14]. Endocannabinoids are retrograde signaling
molecules that are released from depolarized principal neurons and travel to presynaptic
inhibitory interneurons to reduce GABA release. DSI is a novel, regulatory process that
manifests itself as a transient suppression of synaptic GABAA responses mediated by retro‐
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Figure 2. Depolarization-induced Suppression of Inhibition (DSI) is a model for retrograde signaling in the brain and
allows assaying real time release of endocannabinoids from principal neurons as a brief cessation of GABA ouput. Ac‐
tivation of metabotropic glutamate receptors (mGluRs) on principal neurons or depolarization of postsynaptic princi‐
pal cells evokes synthesis and release of cannabinoids (CBs). Cannabinoids bind to presynaptic cannabinoid receptors
(CB1R) on GABAergic interneurons and transiently reduce GABA release from synaptic terminals. As a consequence,
GABAA receptor-mediated synaptic currents and GABAergic inhibition are temporarily suppressed in postsynaptic
principal neurons.
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grade signaling of endocannabinoids from principal neurons (Fig. 3). Through the retrograde
signaling process neurons alter the strength of synapses made onto them and thereby control
their own synaptic excitability in an activity-dependent manner, which is functionally
important in information processing by neuronal networks [14]. In the cerebellum, a retrograde
signaling process that is similar to DSI reduces synaptic excitation by suppressing presynaptic
glutamate release and is called DSE [61], see above.

Figure 3. Right panel: Hippocampal pyramidal cells show spontaneous inhibitory postsynaptic currents (IPSCs). Left
panel: In response to a 1-s voltage pulse the pyramidal cell reveals DSI, a transient reduction in IPSC activity as a result
of endocannabinoids acting on CB1R on presynaptic GABAergic interneurons.

5. Hippocampal depolarization-induced suppression of inhibition

Endocannabinoids are lipids and, unlike classic neurotransmitters, are not stored but rather
rapidly synthesized from components of the cell membrane. They are synthesized in, and
released from, postsynaptic somatodendritic domains that are readily accessible to whole-cell
patch electrodes. The effects of these lipid signals are detected electrophysiologically as CB1R-
dependent alterations in conventional synaptic transmission, which, therefore, provide a
sensitive means of bioassay in gendocannabinoid levels and actions. Endocannabinoid release
can be triggered through Ca2+-dependent or relatively Ca2+-independent pathways, with
different down-stream effects. As discussed above, endocannabinoids are released non-
synaptically, non-vesicular from places all over cells when levels of calcium rise inside the
neuron or when certain G-protein-coupled receptors are activated. After cellular release,
endocannabinoids travel to cannabinoid receptors on nearby neurons and evoke a reversible,
short-term depression of synaptic transmission, DSI. In activated hippocampal pyramidal
cells, DSI leads to a transient reductionof GABA release from presynaptic terminals of
inhibitory interneurons. Direct insights into the actions of endocannabinoids have been based
primarily on pharmacological experiments. The hydrophobicity of endocannabinoids severely
limits their penetration into brain tissue, and endocannabinoids are rapidly degraded by
abundant endogenous lipases. These intrinsic properties of endocannabinoids make it difficult
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to directly study physiological effects of endocannabinoids. The development of a highly
water-soluble caged anandamide that is inert to lipases circumvents these problems [62]. When
perfused into hippocampal slice preparations, the caged anandamide serves as a latent
endocannabinoid pool, and focal photolysis rapidly liberates highly hydrophobic anandamide
in situ to activate CB1R. Photolysis is an alternative experimental approach to chemically
stimulate synapses, cells, or circuits by directly applying neurotransmitter or neuromodula‐
tors. Often pharmacological approaches yield little control of the stimulation in terms of
timing, space and specificity. However, photo-uncaging of caged neurotransmitters has made
the pharmacological approach more sophisticated. Photo-uncaging uses localized, patterned
light and yields higher spatial and temporal resolution. One application of photostimulation,
the flash photolysis technique, can be used to determine signaling kinetics of the endocanna‐
binoid system [60, 62]. The endocannabinoid system can be used as a tool for bioassaying the
temporal dynamics or kinetics of lipid signaling. Combining whole-cell voltage patch-clamp
recording, intracellular calcium measurements, and photorelease of caged glutamate and a
novel, caged cannabinoid, anandamide (AEA) allows determining endocannabinoid signaling
kinetics. Flash photolysis of caged compounds (photolysis using so-called molecular optical
probes or photoprobes) is an important tool in this endeavor. Caged compounds are inert,
biologically inactive (e.g., a caged cannabinoid or caged glutamate) until a flash of laser light
breaks open the molecular cage, releases the caged molecule and generates a biologically active
effector molecule in situ [63]. Chemically, the caged compound is a modified signal molecule.
The modification of the molecule prevents its bioactivity until light absorption results in a
photochemical change of the signal molecule such that its bioactivity is restored.

The lipid signaling pathway comprises several temporal components that can be determined
to quantify the time that it takes from the DSI-inducing stimulus to the onset of DSI. These
components contribute to the latency to onset of DSI (start of DSI-inducing stimulus to initial
suppression of IPSCs). Among them is the rise of calcium to initiate endocannabinoid synthesis
(t-Ca). The rise in intracellular calcium leads to endocannabinoid synthesis and release,
followed by travel of these molecules to cannabinoid receptors on presynaptic interneurons,
t-EC. The next step is the activation of CB1R and downstream effects, t-CB1R (t-DSI = t-Ca + t-
EC + t-CB1R). Experiments carried out using the above-mentioned technological advances
allowed determining the time for synthesis and release of eCB from the postsynaptic neuron,
which was estimated to be around 150 ms at room temperature, comparable with the timescale
of metabotropic signaling and at least an order of magnitude faster than previously thought.
A major portion of the DSI onset time, t-DSI, reflects activation of presynaptic CB1Rs and
downstream consequences. The data suggest that, far from simply serving long-term neuro‐
modulatory functions, endocannabinoid signaling is sufficiently fast to exert moment-to-
moment control of synaptic transmission. The DSI onset latency after a voltage step, t-DSI, is
350 to 400 ms. t-CB1R, the direct activation of CB1R by photoreleasing anandamide which
results in suppression of sIPSCs, takes ~180ms (Fig. 4). A transient rise in intracellular calcium
sufficient to obtain minimal DSI, t-Ca, is evoked by a 50-ms voltage step and takes ~60 ms. The
time needed for endocannabinoid synthesis and release to occur, t-EC, is about 150 ms.
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of endocannabinoids acting on CB1R on presynaptic GABAergic interneurons.
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cells, DSI leads to a transient reductionof GABA release from presynaptic terminals of
inhibitory interneurons. Direct insights into the actions of endocannabinoids have been based
primarily on pharmacological experiments. The hydrophobicity of endocannabinoids severely
limits their penetration into brain tissue, and endocannabinoids are rapidly degraded by
abundant endogenous lipases. These intrinsic properties of endocannabinoids make it difficult
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Figure 4. Left panel: Photolysis of caged anandamide yields bioactive anandamide. Right panel: Photorelease of anan‐
damide suppresses sIPSCs after a delay of ~180 ms. Modified from [62] with permission of the Society for Neuro‐
science.

Voltage-activated DSI works through a rise in intracellular calcium concentration. However,
release of endocannabinoids can be triggered even in the presence of high intracellular
concentrations of calcium chelators, although they may nevertheless be sensitive to ambient
intracellular calcium [59]. To test if these two pathways function on the same time scale, the
dynamic components of the mGluR-induced endocannabionoid response on sIPSC frequency
in pyramidal cells are compared (Fig. 5) [62]. The mean onset latency, duration and magnitude
of the IPSC suppression evoked by uncaged glutamate are similar to that caused by uncaged
AEA (Figs. 4, 5). No reduction in sIPSCs occurred for 221 ms (determined by extrapolation of
the exponential fit to the control sIPSC level). The time-to-onset of IPSC suppression evoked
by the mGluR-induced endocannabinoid process (time to mGluR-dependent suppression of
inhibition, tmGluRSI) is described by: t-mGluR-SI = 221 ms = t-eCB(mGluR) + t-CB1R, where t-
eCB(mGluR) is the time for activation of the mGluR-dependent endocannabinoid synthesis
and release, and t-CB1R is ~180 ms (see above). This leaves t-eCB(mGluR) to be < 50 ms, which
is even faster than endocannabinoid synthesis and released evoked by a voltage step.

Figure 5. Dynamics of mGluR-dependent endocannabinoid suppression of sIPSCs in cultured hippocampal slices. Left
panel: Photorelease of glutamate. Right panel: Recording from a pyramidal cell illustrates the transient reduction in
spontaneous (s) IPSC frequency of CA1 pyramidal cells after flash photorelease of caged glutamate (photolysis in‐
duced suppression of inhibition, PSI). Arrow indicates laser flash. From [62] with permission of the Society for Neuro‐
science.

Neurochemistry186

Anandamide can be released from its caged form by a UV-laser flash and rapidly activates
presynaptic CB1Rs to suppress the release of GABA [62]. A specific CB1R antagonist, AM 251,
blocks the suppression of spontaneous IPSCs. This establishes that uncagedanandamide can
be used as a CB1R agonist to study activation of CB1R in the brain. Similarly, uncaged
glutamate acts at mGluRs on hippocampal pyramidal cells to evoke cannabinoid release and
subsequent suppression of presynaptic GABA release [62]. The data provide the first detailed
attempt to determine the minimal time required for activation of an intercellular neuronal lipid
messenger system. This signaling system requires a major portion of DSI onset time, t-DSI, for
activation of presynaptic CB1R and downstream consequences. Endocannabinoids, and by
extension similar lipid messengers, can be mobilized and evoke responses as quickly as
conventional metabotropic, G-protein receptor-coupled neurotransmitters. The speed with
which neuromodulators such as endocannabinoids act places critical constraints on the
physiological roles they can play. Endocannabinoids and other lipids function in brain
signaling not simply in homeostatic processes or slowly-activating forms of regulation, but
rather lipids can affect neuronal excitability in moment-to-moment information processing.

6. Depolarization-induced suppression of inhibition in glomerular circuits
of the olfactory bulb

The olfactory bulb is the first relay station in the CNS for processing of sensory information
that comes from olfactory receptor cells in the nasal epithelium. Cannabinoid receptors are
expressed at high levels in the olfactory bulb, specifically in the input region, the glomerular
layer [21, 64-66]. Neurons in the glomerular layer are immunoreactive for enzymes that
synthesize endocannabinoids [67-69]. Our understanding of the physiological role of endo‐
cannabinoids and cannabinoid receptors for neural signaling in the olfactory system is just
emerging. Recent electrophysiological evidence has established that the endocannabinoid
system plays a functional role in regulating neuronal activity and signaling in olfactory bulb
glomeruli [43].

Neurons in the glomerular fall into three subpopulations: periglomerular (PG), external tufted
(eTC), and short-axon (SA) cells. Periglomerular cells are neurochemically and functionally
heterogeneous [70-72]. Periglomerular cells are GABAergic, short-axon cells express both
GABA and dopamine, and external tufted cells are glutamatergic [72, 73]. Periglomerular cells
receive input from the olfactory nerve or dendrodendritic glutamatergic input from external
tufted or mitral cells, e.g., as spontaneous bursts of EPSCs [70, 73-74]. Periglomerular cells
presynaptically inhibit olfactory receptor neurons through GABAergic transmission [76, 77].
External tufted cells receive spontaneous bursts of inhibitory postsynaptic currents (sIPSCs)
from periglomerular cells at inhibitory GABAergic synapses as well as spontaneous glutama‐
tergic EPSCs [74; 78]. In the glomerular layer, external tufted cells can be a potential source of
endocannabinoids.

Cannabinoid receptors directly regulate membrane properties of periglomerular cells as
shown by the effects of CB1R antagonist AM251 and agonist WIN in the presence of ionotropic
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subsequent suppression of presynaptic GABA release [62]. The data provide the first detailed
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messenger system. This signaling system requires a major portion of DSI onset time, t-DSI, for
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signaling not simply in homeostatic processes or slowly-activating forms of regulation, but
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expressed at high levels in the olfactory bulb, specifically in the input region, the glomerular
layer [21, 64-66]. Neurons in the glomerular layer are immunoreactive for enzymes that
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cannabinoids and cannabinoid receptors for neural signaling in the olfactory system is just
emerging. Recent electrophysiological evidence has established that the endocannabinoid
system plays a functional role in regulating neuronal activity and signaling in olfactory bulb
glomeruli [43].
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glutamate and GABAA receptor blockers (synaptic blockers: CNQX, APV, gabazine) [43]. This
indicates that the actions of cannabinoids on periglomerular cells are mediated through CB1R
expressed by periglomerular cells. AM251 directly activates periglomerular cells and enhances
their GABA release. Periglomerular cells are synaptically connected to external tufted cells.
Therefore, any CB1R-mediated regulation of activity of periglomerular cells could affect GABA
release and synaptic transmission to external tufted cells. CB1R is also expressed in external
tufted cells and may participate in modulating external tufted cell activity.

In external tufted cells, neither AM251 nor WIN influences firing frequency or membrane
potential [43]. However, in the presence of synaptic blockers cannabinoid drugs have a modest
effect on external tufted cells. In this condition, AM251 slightly increases the firing rate of
external tufted cells without membrane depolarization. In synaptic blockers, WIN slightly
decreases firing of external tufted cells without a clear change in membrane potential. The
effects of AM251 and WIN in the presence of synaptic blockers, i.e., during pharmacological
isolation of external tufted cells, indicate that CB1R mediates a direct effect on external tufted
cells. The direct excitatory effect of a CB1R antagonist on external tufted cells is opposed by
increased GABAergic synaptic input from periglomerular cells onto external tufted cells, i.e.,
the enhanced GABA release from periglomerular cells triggered by a CB1R antagonist may
dominate and mask the CB1R antagonist-evoked direct excitation of external tufted cells.

The CB1R effects on periglomerular and external tufted cell prompt the questions if DSI is
present in the glomerular layer of the olfactory bulb. In external tufted cells, DSI can be induced
with a 5-sec depolarizing voltage step from a holding potential of -60 mV to 0 mV (Fig. 5). In
external tufted cells DSI is visible as a decrease in the amplitude and frequency of sIPSCs. The
response to a single depolarizing step is a suppression of sIPSC area by ~40 % of control which
then gradually recoveres. External tufted cells exhibit a distinct intrinsic bursting pattern [74].
In order to mimic spontaneous rhythmic bursting of an external tufted cell a train of depola‐
rizing steps can be applied to the cell. This experimental paradigm allows determining a
possible functional role of DSI in glomeruli. A train of depolarizing steps results in a transient
60% reduction in sIPSC area (20 steps, 0.75 Hz) (Fig. 4B, F). DSI can be completely eliminated
in the presence of AM251, indicating that DSI is mediated by CB1R (Fig. 5C, F). The bursting
frequency of external tufted cells ranges from 0.5 to 6.5 Hz with a mean frequency of 2.7 bursts/
sec [74]. Depolarizing voltage pulses at 2 Hz (20 steps, pulse duration: 250 ms) evoke DSI as a
reduction of sIPSCs in external tufted cells, similar to the results obtained with voltage steps
at 0.75 Hz to 0 mV. In external tufted cells, single depolarizing voltage steps as well as a train
of voltage steps evoke suppression of inhibition (DSI). This suggests that spontaneous
rhythmic bursting of these cells triggers the release of endocannabinoids which function as
retrograde messengers to reduce GABA release from periglomerular cells which in turn,
regulates the activity of periglomerular cell synaptic targets such as external tufted cells.

Endocannabinoids regulate neuronal activity and signaling in olfactory bulb glomeruli. They
function in the form of DSI through CB1R-mediated retrograde signaling among glomeru‐
lar  neurons.  Endocannabinoids  are  released  from external  tufted  cells  and  act  as  retro‐
grade  messengers  to  control  the  excitability  of  presynaptic  neurons,  i.e.,  periglomerular
cells,  and  to  regulate  their  transmitter  release.  Endocannabinoids  are  synthesized  and
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released from neuronal cell bodies as a result of cellular excitation [11]. One potential source

of endocannabinoids in the olfactory bulb is neurons that synapse onto presynaptic cells,

i.e.,  periglomerular  cells,  and receive  feedback synaptic  inputs.  This  profile  fits  external

Figure 6. Depolarization-induced Suppression of Inhibition (DSI) in olfactory glomeruli. A A depolarizing voltage step
evoked DSI in a representative external tufted cell. High Cl--based pipette solution was used for recording sIPSCs. De‐
polarization was achieved by stepping from-60 mV holding potential to 0 mV for 5 sec. B In the presence of CNQX and
5-AP, a train of 20 voltage steps to 0 mV (0.75 Hz; step duration: 667 ms) transiently reduced sIPSCs in an external
tufted cell. Holding potential was-60 mV. C. In the presence of AM251, no sIPSC suppression was observed. D A train
of 20 voltage steps to-30 mV (2 Hz; step duration: 250 ms) transiently reduced sIPSCs in an external tufted cell (in
CNQX and 5-AP). E Normalized sIPSCs area illustrating the magnitude and time course of DSI elicited by a 5-sec depo‐
larizing pulse (n=7). The averaged values between 0 – 5 sec after the end of the voltage step were significantly differ‐
ent from the baseline (ANOVA and Bonferroni post-hoc analysis, p< 0.05). F Normalized sIPSC area illustrating the
magnitude and time course of DSI elicited by a train of depolarizations to 0 mV (n=12) in control and in the presence
of AM251 (n=10). In control conditions, the averaged values between zero to 2 5 seconds after the end of the train of
voltage steps were significantly different from the baseline (ANOVA and Bonferroni post-hoc analysis, p< 0.05). From
[43] with permission of the Society for Neuroscience.
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retrograde messengers to reduce GABA release from periglomerular cells which in turn,
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tufted cells  and they could be a  potential  endocannabinoid source in the olfactory bulb
which is supported by the fact that DSI is found in external tufted cells. DSI in external
tufted cells is subject to the level of cellular activation, i.e., voltage step duration and step
number. DSI cannot be evoked with step durations of 1 sec or less while a step duration
closer to 5 seconds evokes transient DSI. A train of depolarizing voltage steps (>3) generates
particularly  prominent  DSI  and strengthens  the  inhibition  of  sIPSCs.  This  suggests  that
excitation of external tufted cells in the form of rhythmic bursting triggers the release of
endocannabinoids and regulates glomerular activity. Bursting is intrinsic to external tufted
cells  and mediated by several  cell  intrinsic  conductances  [79].  Bursting of  neurons may
modulate endocannabinoid release not only in the olfactory bulb but also in other brain
systems and constitute a general phenomenon of endocannabinoidsignaling.

Olfactory sensory neurons form direct synaptic contacts with external tufted cells. Sensory or
synaptic input to external tufted cells can trigger the release of endocannabinoids which have
an inhibitory effect on CB1Rs in presynaptic periglomerular cells. Endocannabinoids thus
reduce inhibitory input to external tufted cells and enhance external tufted cell sensitivity to
weak sensory inputs by depolarizing the membrane potential closer to spike threshold. This
CB1R-mediated inhibition of periglomerular cells reduces their GABA release and, in turn,
modifies the firing pattern of external tufted cells and, potentially, also reduces inhibition of
mitral cells and presynaptic olfactory nerve terminals. The functional relevance of this
signaling pathway lies in a potential increase of the overall sensitivity of the glomerulus to
sensory inputs resulting from activation of CB1R on periglomerular cells.

7. Endocannabinoid-evoked physiological responses and crosstalk with
other neurotransmitters

Endocannabinoids can evoke physiological responses that are not mediated by presynaptic
CB1Rs but rather by postsynaptic CB1Rs [14], e.g., via regulation of K+ conductances present
on the extrasynaptic dendritic surface of neurons or modulation of postsynaptic NMDA
receptors or even non-CB1R, e.g., [80]. Several conventional CB1R ligands have been reported
to have CB1R unspecific effects or activate non-CB1 receptors [14]. Electrophysiological
evidence suggests that the CB1R agonist WIN55,212-2 produces non-CB1R mediated effects
on the excitability of principal neurons in the basolateral amygdala [81], thus providing
evidence for a non-CB1R site of action of WIN55,212-2 [82, 83]. Cannabinoid drugs can activate
other ‘non-CB’ receptors, such as GPR55, peroxisome proliferator-activated receptors (PPARs),
and vanilloid type TRP channels [84, 85].

The accepted view of endocannabinoid action is based on hippocampal studies demonstrating
that endocannabinoids reduce synaptic inhibition of the principal cell (DSI), see above.
Endocannabinoids were found to possess other properties, namely, to mediate self-modula‐
tion of neocortical pyramidal neurons [86] or long-lasting self-inhibition in neocortical GABA-
containing interneurons [87]. This self-inhibition is mediated by autocrine release of
endocannabinoids and does not depend on glutamatergic and/or GABAergic neurotransmis‐
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sion but rather on activity-dependent long-lasting hyperpolarization due to the activation of
a K+-conductance. Endocannabinoids released by these interneurons target the same cells and
mediate a lasting hyperpolarization that is blocked by a CB1R antagonist. Self-inhibited cells
can become hyperpolarized below spike threshold and are effectively removed from the neural
circuit in which they reside.

The endocannabinoid system reciprocally modulates other neurotransmitter systems [88].
Examples include interactive cross-talk with the endogenous opioid system [89, 90]. Inciden‐
tally, like the endogenous opiate system, the endocannabinoid system was first discovered
because it can be activated by a plant-derived compound – in the case of the endocannabinoids,
this is Δ9-tetrahydrocannabinol, the bioactive ingredient of the drugs marijuana and hashish
[25]. Other studies detected an interaction of the endocannabinoid system at the molecular and
functional levels with other neurotransmitters such as the dopaminergic and adenosinergic
systems [91-93]. Recent evidence has suggested cross-modulation between the endocannabi‐
noid and hypocretinergic system [88]. This idea is based on the overlap observed in the
neuroanatomical distribution of both systems as well as their putative functions. Functionally,
both endocannabinoids and hypocretins can contribute to the regulation of appetite, reward
and analgesia. Furthermore, biochemical and functional studies have demonstrated hetero‐
dimers between CB1 cannabinoid receptor and hypocretin receptor-1. Activation of hypocretin
receptor-1 stimulates the synthesis of 2-arachidonoyl glycerol which through retrograde
endocannabinoid signaling results in inhibition of neighboring cells. This interaction would
allow endocannabinoids to contribute to hypocretin effects and provide potential therapeutic
applications to currently existing drugs targeting these systems [88]. However, these two
neuromodulatory systems exert antagonistic effects in the regulation of the sleep/wake cycle
and anxiety-like responses which contributes even more to the excitement of performing
research targeting the endocannabinoid system.
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1. Introduction

Fear conditioning is one of the most widely used paradigms for studying the neurobiology of
emotional learning. In this paradigm, an emotionally neutral stimulus (the conditioned
stimulus or CS) is paired with an aversive unconditioned stimulus (US), generally a mild foot
shock. After a few trials, re-exposure to the CS alone elicits a fear response, proceeding through
the necessary connecting structures, and ending with the autonomic and motoric effector
outputs. This fear response is part of an anticipatory response to danger [1], initiating a range
of defensive reactions that counter threats to survival [2]. The most universal response is a
postural immobility, called freezing [3, 4]. Moreover, the threatening stimulus also triggers the
activation of the hypothalamic subnuclei to induce an increase in blood pressure, ultrasonic
vocalizations emission, or the release of stress hormones.

The vast majority of studies devoted to investigate the neural basis of fear conditioning have
used auditory cues as conditioned stimuli and the neural pathways involved in auditory fear
conditioning have been well characterized [5-8]. The information carried by the auditory CS
can take one of two pathways: either directly from the thalamus to quickly reach the amygdala
or the CS can travel from the auditory thalamus to the auditory cortex before reaching the
amygdala. These thalamic and cortical areas send projections to the lateral nucleus of the
amygdala, which is a site of CS-US convergence. The lateral nucleus, in turn, projects to the
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central amygdala, which controls the expression of fear responses by way of projections to
brainstem areas. The major conclusion of these studies is that the amygdala plays a critical role
in linking external stimuli to defense responses through synaptic plasticity. However, although
the amygdala seems to be essential to the formation and storage of fear memories, it might not
store all aspects of the aversive event. Indeed, plasticity also occurs in cortical areas during
fear conditioning, which could support declarative memories of the learning episode mainly
through interactions with the medial temporal lobe memory system [9-13]. Thus, the amygdala
may store some aspects of fear memory and facilitate the storage of other, more sensory-
related, aspects of fear memory in cortical areas [14]. Yet few studies have investigated this
question [15].

Intriguingly, whereas olfaction plays a dominant role in rat behavior from birth throughout
adulthood, very few studies have used odor cues as CS in fear conditioning paradigms. Yet,
odors have a rather unique status for eliciting emotional memories.[16]. This particularity
might be linked to the uniqueness of the anatomy of the olfactory system. Indeed, in contrast
to the other sensory pathways, olfactory information has a direct access to the amygdala and
olfactory (piriform) cortex with no obligatory thalamic relay [17-19]. The literature suggests
that, similarly to what is observed in auditory fear conditioning, the amygdala is a key brain
structure involved in the acquisition, consolidation and expression of odor fear conditioning
[20-26]. Recently, some studies also suggest that the posterior piriform cortex (PPC) may play
a critical role in this associative learning [23, 26, 27]. Therefore, the olfactory system constitutes
a particularly relevant model for studying the relative contribution of sensory cortices and
amygdalar nuclei to odor fear learning.

For several years now, the glutamatergic transmission in the amygdala is known to play a
critical role in the acquisition of fear conditioning [28, 29]. Indeed, pharmacological studies
show that NMDA and AMPA subclasses of glutamate receptors are crucial for synaptic
plasticity and long-term potentiation to occur in the amygdala, sustaining the formation of the
CS-US association [25, 30-35]. In addition, the GABAergic transmission seems to be also
involved in the acquisition of fear learning. Intra-amygdala infusion of the GABAA receptor
agonist muscimol before training impairs learning [36, 37]. Therefore, glutamate and GABA
neurotransmission are thought to play a critical role in the acquisition and expression of fear
memories (for review, see [38]).

Beside these neuropharmacological studies, a few neurochemical studies have directly
measured glutamate or GABA levels in the amygdala during auditory fear conditioning, using
a 10-min sampling rate [39, 40]. However, this sampling rate is too long as compared to the
rapid neurobiological events underlying fear conditioning. An approach allowing rapid, sub-
minute sampling is required to better characterize the dynamics of neurotransmitter changes
evoked by the stimuli involved in fear conditioning experiments [41]. Until now, the precise
time course of the differential involvement of the amygdala and sensory cortices in fear
conditioning has received little investigation. The aim of this chapter is to show that intra‐
cerebral in vivo microdialysis with high temporal resolution is an interesting tool to investigate
the time course of activation of amygdala and sensory cortices in this learning.
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2. Monitoring neurotransmitters using microdialysis

2.1. Principle of the technique and analytical considerations

Microdialysis has become a conventional technique for sampling low molecular weight
molecules present in the extracellular medium of many organs from animals or humans [42].
In the brain, it has been used in vivo or ex vivo to monitor amino acids neurotransmitters as
excitatory or inhibitory amino acids as glutamate and GABA, monoamines as dopamine,
noradrenaline, serotonin and/or neuropeptides for instance. The microdialysis relies on a semi-
permeable membrane that allows free diffusion of solutes between the extracellular space and
an artificial fluid. A microdialysis probe consists of two concentric tubes with the distal part
(1–5 mm) covered by a dialysis hollow fibre whose cut-off ranges between 6,000 and 100,000
Da. Such a probe is inserted into a living brain tissue and is perfused by an isotonic physio‐
logical fluid. Molecules diffuse down their concentration gradient across the dialysis mem‐
brane in a bidirectional way (“dialysis” for collecting endogenous molecules or “reverse
dialysis” for applying exogenous compounds) (Figure 1). In the case of collection, the relative
recovery across the probe membrane, defined as the ratio between the extracellular concen‐
tration and the concentration of a compound in the dialysate collected at the outlet of the probe,
depends on several factors: it increases with the surface of the membrane, it decreases with
higher flow rate of the perfusion fluid, and it varies with the chemical and physical charac‐
teristics of the membrane [43]. The choice of the dialysis membrane can be crucial for com‐
pounds present at trace concentration or when the limit of detection of the analytical method
is relatively moderate. For instance, a short length (i.e. 1-2 mm) of the membrane chosen to
sample a very small brain area in rats, such as the periaqueductal grey matter, the locus
coeruleus, the amygdala and hypothalamic nuclei leads to a low recovery of sampling, making
difficult the monitoring of low concentrated compounds as monoamines or neuropeptides.
Depending on the methodological parameters, recovery values usually reported in literature
are between 5 and 25 % for amino acids or monoamines and can reach < 1 % for neuropeptides.
Another point to take into account is the choice of the geometry of the probe tubings when
considering the sampling rate, especially when designing in vivo microdialysis on awake
animals. These latter peculiar points will be explained and detailed in the next section part of
the manuscript.

As the microdialysis probe is continuously perfused at a constant flow rate, continuous
sampling of neurotransmitters is possible with no loss. Indeed, neurotransmitters present in
the microdialysate can be directly analyzed without clean-up procedures as high molecular
weight proteins cannot cross the dialysis membrane thanks to the cut-off of the membrane
used. However, manipulation of microdialysis samples requires precaution in case of amino
acids: use of sterile tubes, filtered aCSF and wear of gloves avoiding contamination due to the
ubiquitous presence of free amino acids on labware and skin. Eventually, samples may be
usually analyzed by a separative method like high performance liquid chromatography
(HPLC) or capillary electrophoresis (CE) [44, 45]. Microdialysates can be analyzed on-line, i.e.,
at the outlet of the probe, through an analytical interface, or off-line i.e., after sample collection
in micro-tubes, in combination with a separative method [44, 46, 47]. Thus, the determination
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of concentrations in each sample reflects the average concentration over the defined sampling
duration. Data are classically expressed as % of the average of the first samples collected,
corresponding to baseline. As a consequence, microdialysis (except in very peculiar methodo‐
logical contexts not explained in this chapter) is considered as a semi-quantitative method as
it permits to monitor precisely relative variations of neurotransmitters.

Analysis of microdialysates has commonly used HPLC with electrochemical [48, 49] or
fluorometric detection [50, 51], and also enzymatic methods [52]. However, these analytical
techniques exhibit poor mass sensitivity and require large volume samples to determine

Figure 1. Schematic representation of a microdialysis probe. The probe is continuously perfused by an isotonic physio‐
logical fluid. Endogenous compounds (filled circles) diffuse through the dialysis membrane (filled arrow) and are sam‐
pled in the microdialysate collected at the outlet of the probe. Drugs (open circles) can be added to the perfusion
medium and can diffuse out of the probe into the extracellular medium (open arrow) providing a means of local ad‐
ministration. From [109], with permission from John Wiley and Sons.
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neurotransmitter contents. As a consequence, despite constant improvements in HPLC [50, 51,
53], the required sample volume may still be too large, leading to lengthy dialysis sampling
times and poor temporal resolution. Consequently, most microdialysis experiments were
severely limited by the temporal resolution of microdialysis (5–30 min) compared to rapid
changes occurring in the extracellular concentrations of neurotransmitters. In contrast,
microdialysis coupled to CE, a more recent technique, allows the monitoring of rapid changes
in the extracellular concentration of neurotransmitters by analysing nanovolume dialysates
with low limits of detection. At present, it appears to be suitable for microdialysis with high
sampling rate. Often coupled to laser-induced fluorescence (LIF) detection or mass spectrom‐
etry (MS), capillary electrophoresis has become one of the most powerful analytical tools for
the routine determination of neurotransmitters because it offers the advantage of rapidity, high
resolution and sensitivity, while requiring very small sample sizes [44, 54, 55]. In brain
microdialysates, glutamate and GABA [56-64] were often analysed using CE with LIF detec‐
tion. However, as amino acid neurotransmitters are not fluorescent at wavelengths of most
commercially available lasers, derivatization prior to the separation is needed. Fluorescent
reagents, as naphthalene-2,3-dicarboxaldehyde (NDA), orthophtaldehyde (OPA) or fluores‐
cein isothiocyanate, reacting with the primary amine function of neurotransmitters, allow their
detection following laser excitation at 442, 325, or 488 nm, respectively [63-65]. Several groups,
including our own, have developed methodologies for the CE–LIF analysis of brain micro‐
dialysates after a derivatization of samples with fluorogenic agents, even on sub-microliter
dialysates obtained with high temporal resolution microdialysis (5s – 1 min, [44] for mini-
review).

2.2. Set-up for high temporal microdialysis on behaving animal

According to the neurophysiological question asked, the experimental set-up for microdialy‐
sis experiments has to be carefully designed: the choice of microdialysis probe according to the
targeted brain area, the choice of the analytical method to quantify dialysate neurotransmit‐
ters and the coupling of the experimental set-ups or approaches are all crucial to succeed in
neurochemical studies. The aim of the study described here [66] was to monitor amino acid
neurotransmitters as glutamate and GABA in brain areas involved in emotional learning and
memory using odor fear conditioning. Indeed, while a few studies have investigated the time
course of events separately in the auditory cortex and the amygdala during auditory fear
conditioning [11, 12], no study up to date has been conducted to investigate simultaneously the
changes in amygdala and sensory cortical areas in the same animal during fear conditioning.

Our group previously reported lasting changes in electrophysiological field potential signals
in both posterior piriform cortex (PPC) and amygdala (basolateral nucleus, BLA) after a session
of odor fear conditioning [23]. As a consequence, we conducted an experiment using a dual-
microdialysis probe implantation, in order to compare the time courses of changes in GABA
and glutamate concentrations, monitored simultaneously in BLA and PPC during odor fear
conditioning. Very few groups have developed dual (or triple) implantation of microdialysis
probes on the same animal [67, 68]. Indeed in most studies using brain microdialysis, dialysates
collection is usually performed in one brain structure at a time, sometimes on different days.
Literature on microdialysis experiments in BLA is rather abundant, mainly for monoamines.
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changes occurring in the extracellular concentrations of neurotransmitters. In contrast,
microdialysis coupled to CE, a more recent technique, allows the monitoring of rapid changes
in the extracellular concentration of neurotransmitters by analysing nanovolume dialysates
with low limits of detection. At present, it appears to be suitable for microdialysis with high
sampling rate. Often coupled to laser-induced fluorescence (LIF) detection or mass spectrom‐
etry (MS), capillary electrophoresis has become one of the most powerful analytical tools for
the routine determination of neurotransmitters because it offers the advantage of rapidity, high
resolution and sensitivity, while requiring very small sample sizes [44, 54, 55]. In brain
microdialysates, glutamate and GABA [56-64] were often analysed using CE with LIF detec‐
tion. However, as amino acid neurotransmitters are not fluorescent at wavelengths of most
commercially available lasers, derivatization prior to the separation is needed. Fluorescent
reagents, as naphthalene-2,3-dicarboxaldehyde (NDA), orthophtaldehyde (OPA) or fluores‐
cein isothiocyanate, reacting with the primary amine function of neurotransmitters, allow their
detection following laser excitation at 442, 325, or 488 nm, respectively [63-65]. Several groups,
including our own, have developed methodologies for the CE–LIF analysis of brain micro‐
dialysates after a derivatization of samples with fluorogenic agents, even on sub-microliter
dialysates obtained with high temporal resolution microdialysis (5s – 1 min, [44] for mini-
review).

2.2. Set-up for high temporal microdialysis on behaving animal

According to the neurophysiological question asked, the experimental set-up for microdialy‐
sis experiments has to be carefully designed: the choice of microdialysis probe according to the
targeted brain area, the choice of the analytical method to quantify dialysate neurotransmit‐
ters and the coupling of the experimental set-ups or approaches are all crucial to succeed in
neurochemical studies. The aim of the study described here [66] was to monitor amino acid
neurotransmitters as glutamate and GABA in brain areas involved in emotional learning and
memory using odor fear conditioning. Indeed, while a few studies have investigated the time
course of events separately in the auditory cortex and the amygdala during auditory fear
conditioning [11, 12], no study up to date has been conducted to investigate simultaneously the
changes in amygdala and sensory cortical areas in the same animal during fear conditioning.

Our group previously reported lasting changes in electrophysiological field potential signals
in both posterior piriform cortex (PPC) and amygdala (basolateral nucleus, BLA) after a session
of odor fear conditioning [23]. As a consequence, we conducted an experiment using a dual-
microdialysis probe implantation, in order to compare the time courses of changes in GABA
and glutamate concentrations, monitored simultaneously in BLA and PPC during odor fear
conditioning. Very few groups have developed dual (or triple) implantation of microdialysis
probes on the same animal [67, 68]. Indeed in most studies using brain microdialysis, dialysates
collection is usually performed in one brain structure at a time, sometimes on different days.
Literature on microdialysis experiments in BLA is rather abundant, mainly for monoamines.
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There are only a few papers in the literature reporting microdialysis studies in the piriform
cortex in an epileptic model [69] or during a feeding/diet procedure [70]. Two other studies
were devoted to glutamate monitoring at 20 or 30-min sampling rate in anesthetized [71] or
awake rats [72]. In order to target the centre of each brain structure and avoid excluding rats
with inaccurate implantation on one hand, and in order to optimize the amount of collected
glutamate and GABA in the microdialysates for analytical quantification on the other hand,
1.5-mm microdialysis probes were used for both BLA and PPC. However, due to the size of
the probes and the vicinity of amygdala and olfactory cortex, we implanted one probe per
hemisphere, BLA probe on one side, PPC probe contralaterally (Figure 2). As the acquisition
session of odor fear conditioning was short-lasting (30 min), we monitored glutamate and
GABA at high sampling rate using CE-LIFD as analytical technique. When performing high
sampling rate, it is crucial to optimize the geometry of the probe tubings.

Figure 2. Brain sections from Paxinos & Watson’s atlas with a schematic probe implanted in the left basolateral amyg‐
dala and the other implanted in the right posterior piriform cortex of the same freely-moving rat for simultaneous
glutamate and GABA monitoring.

Indeed, a high sampling rate requires appropriate probe tubings since solutes could undergo
more longitudinal diffusion in the outlet probe tubing if the interval of time between dialysis
and collection, also called ‘dead time, is superior to the sampling time [56]. As a consequence,
to avoid mixing of analytes between successive samples, the dead volume of these tubings has
to be minimized. This is particularly relevant when microdialysis experiments are carried out
on awake animals because the setting requires long inlet and outlet probe tubings in order to
let the animals move freely. In our odor fear conditioning, the set-up includes specific
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characteristics: an experimental chamber with a grid for electrical stimulation which is a mild
footshock (Unconditioned Stimulus, US) and with an ventilation system bringing and
removing the odor (Conditioned Stimulus, CS); besides, this experimental chamber has to be
placed in a soundproof box in which we can position cameras to record the behavior of the
animal. Material for microdialysis (perfusion pump) and collection have to be placed outside
the box for not disturbing the animal in learning. In our set-up, the height of the box reaches
almost one meter (Figure 3). The dead volume can be greatly minimized by using capillary
tubings with sub-50 μm inner diameters, as previously demonstrated by our group [56]. By
using a 40-μm inner diameter, we have optimized the microdialysis set-up for odor condi‐
tioning by adapting methods that our group previously used for an accurate monitoring of 30-
s pharmacologically-induced increases [73] or 20-s behaviourally-induced variations [56] in
extracellular levels of amino acids neurotransmitters. We showed that the experimental
determination of the dead time is necessary in order to adapt each set-up to the sampling rate
required (Figure 4). The final length of the outlet tubing is 120 cm with a dead time of 1 min
30 at 2μL/min as sampling rate and the final sampling resolution is 1 min. The time scale in
the figures corresponds to the real time of collection of the fractions. Administration of odor
was timed to take into account the outlet dead time of the dialysate system.

Figure 3. Experimental set-up for both microdialysis sampling and dialysates derivatization during the acquisition of
odor fear conditioning. The dual probe-implanted animal is placed in an experimental chamber for odor (conditional
stimulus) and shock (unconditional stimulus) deliveries, required in the learning procedure. This chamber is sound-
proof in order to prevent external noise to interfere with the animal’s behaviour. Microdialysis and derivatization are
performed simultaneously using one pump per brain area and four syringes delivering artificial cerebrospinal fluid
(aCSF) in the inlet of the probe or reagents (NDA as derivatization agent in presence of cyanide ions at pH 8.7 and
internal standard for better quantification by capillary electrophoresis with laser-induced fluorescence detection) to
tag the neurotransmitters at the outlet of the probe.
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Another analytical constraint is to tag the sample in order to detect the amino acids collected
during the dialysis experiment. As glutamate and GABA are not fluorescent, we employed a
validated home-made on-line system able to deliver the derivatization reagents directly in the
collection tube [56], allowing to derivatize the dialysate while dialyzing, without sample loss,
noticeable dilution or contamination and without increasing the dead volume of the probe.
Thus, the collection tube is not only the micro-reactor of derivatization, but also the injection
tube for capillary electrophoresis analysis (Figure 3).

Figure 4. Example of determination of the dead time of an 85-cm outlet home-made probe perfused at 2µL/min by
plunging the probe into a known concentration of glutamate at t=0s. The dead time is determined as the time when
50% of the maximal response is reached using a sigmoid curve fitting the 30-s glutamate monitoring (up). By varying
the length of the outlet tubing of customized probes (n=3), the dead time of probes can be interpolated and the final
length of outlet tubing (here, 120 cm for a dead time of 1 min 30 s) can be chosen according to the height of our
experimental set-up and the 1-min sampling rate (bottom). As a consequence, administration of odor was timed to
take into account the outlet dead volume of the dialysate system.
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Figure 5 presents an example of typical electropherogramm obtained from 1 minute sampling

rate of brain microdialysate in freely-moving rat during the acquisition of fear conditioning.

Note that the concentrations for GABA and glutamate are similar in PPC or in BLA.

Figure 5. Typical electropherograms from microdialysates obtained in posterior piriform cortex and basolateral amyg‐
dala on the same freely-moving Long-Evans rat. Samples were collected every minute at 2µL/min and derivatized on-
line as described in Figure 3 of this chapter. Adapted from [110].
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3. Neurochemistry of odor fear conditioning

3.1. Interactions between amygdala and piriform cortex in odor fear conditioning

The odor fear conditioning paradigm consisted of six 20-s odor/ 2-s shock associations
presented with an interval of 4 minutes between each pairing. In the amygdala, the first odor-
shock association is accompanied by a significant but transient +40%-increase of glutamate
release. During the next trials, the concentrations returned to the baseline levels or slightly
below. In contrast, in piriform cortex, each odor-shock association is followed by a transient
+25%-increase in glutamate release. The comparison of the pattern of release observed in the
two structures has also shown that the increase in the amygdala during the first association
occurred 1-2 min before the first response in the piriform cortex (Figure 6).

Figure 6. Comparison of glutamate concentration fluctuations in the amygdala and the piriform cortex during odor
fear acquisition session. Glutamate concentrations were measured throughout the session and expressed as a per‐
centage of baseline calculated as the mean of concentration for the four points preceding the first pairing. Black ar‐
rowheads above the x-axis symbolize trial occurrence. Light gray vertical bars indicate the timing of the 4-min intertrial
intervals. (*) Significant difference between the two structures (p < 0.05); (#) tendency toward significant difference (p
< 0.09). Adapted from [66].

The profile of GABA variations during odor fear conditioning was similar in duration and
amplitude to that obtained for glutamate presented in Figure 6, i.e. with an enhancement of
GABA levels in the amygdala during the first pairing and increases of GABA concentrations
in piriform cortex 1-2 min after each pairing. As glutamate and GABA fluctuations were not
overall significantly different throughout the experiment, it can be suggested that GABA
increases could be induced by glutamate increases, as shown by [74, 75] in the prefrontal cortex.

The high temporal resolution microdialysis allowed us to highlight a differential dynamics of
neurotransmitters release in the piriform cortex and amygdala during odor fear acquisition.
Taken together, these results suggest that there is a temporal sequence of neurochemical events
in the amygdala and piriform cortex, a very precise dynamics of neurotransmitters during the
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early stages of the acquisition session, which could be involved in the initiation of plastic
changes supporting the formation of the memory.

3.2. Functional significance of neurochemical data

Glutamate collected from the BLA and PPC may have originated from both extrinsic and
intrinsic sources. Indeed, the BLA receives afferences from primary olfactory cortex [76-78]
and from other associative areas [19, 79], providing an extrinsic source of glutamate. Similarly,
PPC receives a strong glutamatergic input from the olfactory bulb as well as inputs from the
BLA, prefrontal cortex, and hippocampus [80-82]. In addition, both the BLA and PPC contain
glutamatergic pyramidal cells that send axon collaterals to neighboring cells, thus providing
an intrinsic source of glutamate [79, 83, 84]. Concerning GABA origin, in both BLA and PPC,
GABA is released by local inhibitory interneurons [79, 85].

While in vivo microdialysis is a useful method for monitoring the neurotransmitters present
in the brain extracellular fluid [86], many studies have questioned to what extent dialysate
glutamate concentration reflects the amount of glutamate released by the presynaptic neuron.
Indeed, due to the ubiquitous localization of its metabolism enzymes and transporters in all
brain cells and its paramount role in protein synthesis and general metabolism, numerous
works attempted to determine the origin of extracellular glutamate. If the proportion of
extracellular glutamate taken up by astrocytes is about 80–90% of the whole glutamate pool
[87], the part of the neuronal glutamate, i.e. released for the only neurotransmission purpose,
is still matter of debate, because glutamate may come from many sources of effluxes as
neuronal “classical” release [88], exchange via cysteine/glutamate transporters [89-92],
inversion of transporters [93] and glial release via exocytosis or non-exocytosis [94-96]. Former
methodological strategies used for monoamine neurotransmitters to impair the vesicular
neuronal release by lowering or removing calcium in aCSF or by blocking nerve impulse Na
+-dependent channels with tetrodotoxine (TTX) gave contradictory answers: some studies
reported decreases in basal level of glutamate in dialysate, which is in favour of the neuronal
origin of basal extracellular glutamate. In contrast, other studies described no change or even
increases under such experimental conditions [97]. Consequently, it was suggested that most
part of neurotransmitter glutamate released into synaptic cleft in basal conditions may be taken
up into surrounding glia and diffuses poorly to the dialysis probe. The same question can be
asked for extracellular GABA because its metabolism is tightly linked to glutamate. As for
glutamate, unsuccessful conclusions were also reported regarding the origin of dialysate
GABA in basal conditions [97]. However, increasing the microdialysis sampling rate had been
proposed in order to observe the rapid variations in glutamate extracellular level which are
expected to occur in neurophysiological events [73, 98]. Recent studies using high sampling
rate microdialysis showed that NMDA application [99] or electrical stimulation of the pre‐
frontal cortex [100] increases dialysate glutamate concentrations in brain regions receiving
projections from this area and that the increase is suppressed or partly altered by TTX [99,
100]. These studies strongly suggest that the transient increase in dialysate glutamate detected
under these conditions really represents evoked neurotransmitter glutamate release [101].

High Temporal Resolution Brain Microdialysis as a Tool to Investigate the Dynamics of Interactions Between…
http://dx.doi.org/10.5772/57490

209



3. Neurochemistry of odor fear conditioning

3.1. Interactions between amygdala and piriform cortex in odor fear conditioning

The odor fear conditioning paradigm consisted of six 20-s odor/ 2-s shock associations
presented with an interval of 4 minutes between each pairing. In the amygdala, the first odor-
shock association is accompanied by a significant but transient +40%-increase of glutamate
release. During the next trials, the concentrations returned to the baseline levels or slightly
below. In contrast, in piriform cortex, each odor-shock association is followed by a transient
+25%-increase in glutamate release. The comparison of the pattern of release observed in the
two structures has also shown that the increase in the amygdala during the first association
occurred 1-2 min before the first response in the piriform cortex (Figure 6).

Figure 6. Comparison of glutamate concentration fluctuations in the amygdala and the piriform cortex during odor
fear acquisition session. Glutamate concentrations were measured throughout the session and expressed as a per‐
centage of baseline calculated as the mean of concentration for the four points preceding the first pairing. Black ar‐
rowheads above the x-axis symbolize trial occurrence. Light gray vertical bars indicate the timing of the 4-min intertrial
intervals. (*) Significant difference between the two structures (p < 0.05); (#) tendency toward significant difference (p
< 0.09). Adapted from [66].

The profile of GABA variations during odor fear conditioning was similar in duration and
amplitude to that obtained for glutamate presented in Figure 6, i.e. with an enhancement of
GABA levels in the amygdala during the first pairing and increases of GABA concentrations
in piriform cortex 1-2 min after each pairing. As glutamate and GABA fluctuations were not
overall significantly different throughout the experiment, it can be suggested that GABA
increases could be induced by glutamate increases, as shown by [74, 75] in the prefrontal cortex.

The high temporal resolution microdialysis allowed us to highlight a differential dynamics of
neurotransmitters release in the piriform cortex and amygdala during odor fear acquisition.
Taken together, these results suggest that there is a temporal sequence of neurochemical events
in the amygdala and piriform cortex, a very precise dynamics of neurotransmitters during the
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early stages of the acquisition session, which could be involved in the initiation of plastic
changes supporting the formation of the memory.

3.2. Functional significance of neurochemical data

Glutamate collected from the BLA and PPC may have originated from both extrinsic and
intrinsic sources. Indeed, the BLA receives afferences from primary olfactory cortex [76-78]
and from other associative areas [19, 79], providing an extrinsic source of glutamate. Similarly,
PPC receives a strong glutamatergic input from the olfactory bulb as well as inputs from the
BLA, prefrontal cortex, and hippocampus [80-82]. In addition, both the BLA and PPC contain
glutamatergic pyramidal cells that send axon collaterals to neighboring cells, thus providing
an intrinsic source of glutamate [79, 83, 84]. Concerning GABA origin, in both BLA and PPC,
GABA is released by local inhibitory interneurons [79, 85].

While in vivo microdialysis is a useful method for monitoring the neurotransmitters present
in the brain extracellular fluid [86], many studies have questioned to what extent dialysate
glutamate concentration reflects the amount of glutamate released by the presynaptic neuron.
Indeed, due to the ubiquitous localization of its metabolism enzymes and transporters in all
brain cells and its paramount role in protein synthesis and general metabolism, numerous
works attempted to determine the origin of extracellular glutamate. If the proportion of
extracellular glutamate taken up by astrocytes is about 80–90% of the whole glutamate pool
[87], the part of the neuronal glutamate, i.e. released for the only neurotransmission purpose,
is still matter of debate, because glutamate may come from many sources of effluxes as
neuronal “classical” release [88], exchange via cysteine/glutamate transporters [89-92],
inversion of transporters [93] and glial release via exocytosis or non-exocytosis [94-96]. Former
methodological strategies used for monoamine neurotransmitters to impair the vesicular
neuronal release by lowering or removing calcium in aCSF or by blocking nerve impulse Na
+-dependent channels with tetrodotoxine (TTX) gave contradictory answers: some studies
reported decreases in basal level of glutamate in dialysate, which is in favour of the neuronal
origin of basal extracellular glutamate. In contrast, other studies described no change or even
increases under such experimental conditions [97]. Consequently, it was suggested that most
part of neurotransmitter glutamate released into synaptic cleft in basal conditions may be taken
up into surrounding glia and diffuses poorly to the dialysis probe. The same question can be
asked for extracellular GABA because its metabolism is tightly linked to glutamate. As for
glutamate, unsuccessful conclusions were also reported regarding the origin of dialysate
GABA in basal conditions [97]. However, increasing the microdialysis sampling rate had been
proposed in order to observe the rapid variations in glutamate extracellular level which are
expected to occur in neurophysiological events [73, 98]. Recent studies using high sampling
rate microdialysis showed that NMDA application [99] or electrical stimulation of the pre‐
frontal cortex [100] increases dialysate glutamate concentrations in brain regions receiving
projections from this area and that the increase is suppressed or partly altered by TTX [99,
100]. These studies strongly suggest that the transient increase in dialysate glutamate detected
under these conditions really represents evoked neurotransmitter glutamate release [101].
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Extracellular (or dialysate) concentrations of glutamate and GABA may not always provide a
reliable index of their synaptic exocytotic release. Indeed, a strict compartment between intra-
synaptic and extra-synaptic was evidenced with poor spill-over from synaptic compartment
to extra-synaptic part [102, 103], mainly due to a strong glial uptake. So that, the changes in
extracellular concentrations of glutamate and GABA under specific pharmacological and
behavioural stimuli should not be only interpreted as a consequence of the activation of specific
neurochemical circuits, but as an expression of the activity of the neuron-astrocyte unit in
specific circuits of the brain. Several authors proposed that dialysate changes in glutamate and
GABA could be used as an index of volume transmission mediated actions of these two
neurotransmitters. This hypothesis is based firstly on the assumption that the activity of
neurons is functionally linked to the activity of astrocytes, which can release glutamate and
GABA to the extracellular space [94, 104]; secondly, on the existence of extrasynaptic glutamate
and GABA receptors with functional properties different from those of receptors located in
the synapse [105, 106]; and thirdly, on the experimental evidence reporting specific electro‐
physiological and neurochemical effects of glutamate and GABA when their levels are
increased in the extracellular space [107]. Thus, glutamate and GABA, once released into the
extracellular compartment, can diffuse and have long-lasting effects modulating glutamatergic
and/or GABAergic neuron-astrocytic networks and interact with neurons containing other
neurotransmitters and located in the same areas of the brain. In conclusion, monitoring of
glutamate and GABA concentrations in the extracellular space using microdialysis may
provide an indirect index of amino acids synaptic neurotransmission while giving direct
indications of amino acids volume neurotransmission [101].

A few studies have specifically measured extracellular glutamate or GABA in brain structures
involved in fear conditioning, investigating the neurotransmitters changes in amygdala during
auditory fear learning. More precisely, these microdialysis studies have described a long-
lasting decrease in GABA during expression of conditioned fear [39] and a small increase in
glutamate during auditory fear conditioning [40]. However, these studies suffer from poor
(10–20 min) temporal resolution associated with traditional microdialysis. Only one study has
used high temporal resolution microdialysis to measured glutamate and GABA into the
amygdala during the acquisition of auditory fear conditioning [108] and suggests that the co-
variations of glutamate and GABA may be explained as a glutamate-induced increase in
GABA. This study also showed an increase in neurotransmitters levels in the amygdala only
for the first association after which the concentration returned to baseline levels. This last result
is in agreement with our microdialysis data for the amygdala in odor fear conditioning.
Unfortunately, microdialysis was not performed in the auditory cortex, thus precluding any
comparison with our own data on the piriform cortex. Nevertheless, there are some electro‐
physiological data which show that the amygdala is activated before the auditory cortex in
auditory fear learning [9, 11]. These data are in accordance with our findings and confirm the
differential activation of the amygdala and sensory cortices within the acquisition session of
fear conditioning.
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Figure 7. Functional hypotheses on the interactions between the amygdala and the piriform cortex during the acquis‐
ition of odor fear learning. An early transient response in the amygdala may allow fast signaling following the first CS-
US pairing. Projections from the amygdala to the piriform cortex may provide a pathway through which the amygdala
can modulate cortical processing of olfactory information and initiate the storage of the various attributes of the
learned odor. The piriform cortex might store certain aspects of the conditioning experience, including the learned
hedonic value of the CS odor.

Our microdialysis data led us to formulate the following working hypothesis (Figure 7).
During the first pairing, the amygdala glutamatergic transmission would allow the formation
of the memory of the CS-US association as it is the case for auditory fear conditioning. The
new idea brought by our data is that this could be initiated by a single trial, since no further
increase in glutamate was detected in the amygdala for the next pairings. In parallel, the
amygdala would trigger the first glutamate increase detected in the olfactory cortex. This
would be achieved through the involvement of a direct projection pathway between the
amygdala and the piriform cortex [82]. After that, the piriform cortex would progressively
build the memory of the different attributes of the learned odor across the next trials.

What are the strengths of our data? This work was aimed at studying the neurochemical inter‐
action between the amygdala and the piriform cortex in odor fear conditioning. We described
a differential activation dynamics between the amygdala and the olfactory cortex within the
acquisition session. This dynamic reveals an early and transient involvement of the amygdala,
restricted to the first odor-shock association followed by the activation of the olfactory cortex
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US pairing. Projections from the amygdala to the piriform cortex may provide a pathway through which the amygdala
can modulate cortical processing of olfactory information and initiate the storage of the various attributes of the
learned odor. The piriform cortex might store certain aspects of the conditioning experience, including the learned
hedonic value of the CS odor.

Our microdialysis data led us to formulate the following working hypothesis (Figure 7).
During the first pairing, the amygdala glutamatergic transmission would allow the formation
of the memory of the CS-US association as it is the case for auditory fear conditioning. The
new idea brought by our data is that this could be initiated by a single trial, since no further
increase in glutamate was detected in the amygdala for the next pairings. In parallel, the
amygdala would trigger the first glutamate increase detected in the olfactory cortex. This
would be achieved through the involvement of a direct projection pathway between the
amygdala and the piriform cortex [82]. After that, the piriform cortex would progressively
build the memory of the different attributes of the learned odor across the next trials.

What are the strengths of our data? This work was aimed at studying the neurochemical inter‐
action between the amygdala and the piriform cortex in odor fear conditioning. We described
a differential activation dynamics between the amygdala and the olfactory cortex within the
acquisition session. This dynamic reveals an early and transient involvement of the amygdala,
restricted to the first odor-shock association followed by the activation of the olfactory cortex
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during the next associations, which persists until the end of the acquisition session. Until now,
most studies questioning the role of the amygdala and sensory areas in fear conditioning have
used local lesions or inactivation before or after the acquisition session. Our technical approach
is one of the very few allowing online monitoring of neurochemical events occurring in parallel
in the amygdala and olfactory cortex, using a temporal resolution compatible with the
observation of very transient changes.

4. Conclusion and perspectives

The recent development of high sampling rate microdialysis coupled with high-performance
separative microtechniques able to handle sub-microliter sample allows monitoring rapid
changes in extracellular levels of amino acid neurotransmitters. Such a platform allows in vivo
investigating neurotransmission in freely-moving animals learning fear as in odor fear
conditioning. Using two microdialysis probes, we were able to study the neurochemical
interactions between two major brain areas involved in the acquisition and consolidation of
odor fear conditioning: the amygdala which role is crucial for the formation of fear memory
and the piriform cortex which could encode other aspects of the aversive event. Our data
suggest that projections from the amygdala to the piriform cortex might provide a pathway
via which the amygdala could modulate the cortical processing of olfactory information and
initiate the progressive storage of the different attributes of the learned odor in long-term
memory.
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1. Introduction

The revealed peculiarities of structural and neurochemical organization and description of
basic histogenetic processes (proliferation, migration and neuronal cell differentiation) during
the brain forming in fish, which have signs of fetal organization, widen the existing knowledge
about histogenesis of these structures in postembryonic development. It seems conceivable,
that during postembryonic development in teleost fishes some neurotransmitters and gaseous
mediators (NO and H2S) act as factors, which initiate and regulate the cellular and the tissues
processes of genetic program during the brain development. We suppose the presence of
epigenetic control of adult neurogenesis in salmon brain via highly coordinated nonsynaptic
cell–cell signaling. This communication engages the neurotransmitters GABA and dopamine
whose extracellular concentrations depend on neuroblasts number and high affinity uptake
systems in neural stem cells. Neuroblasts release GABA providing a negative feedback control
of stem cell proliferation and instructing them on the size of the neuroblast pool. We suggest
that in salmon brain exist strong control mechanisms of neuroblast production. The data
provided by our study add to our general understanding, that peculiarities of distribution of
classical neuromediators (GABA, catecholamines) and gasotransmitters (NO and H2S) are
directly connected with ability of the fishes brain to grow during the animal entire life. We
suggest, that some classical neuromediators (GABA, catecholamines) and gasotransmitters
(NO and H2S) not only regulate functional activity of neurons and modulate synaptic trans‐
mission in mature neural networks, but also are regarded as inductors of the fishes brain
development (morphogenetic factors) in postembryonic ontogenesis. We propose that
dopamine and GABA act as homeostatic signals to regulate neuroblast production. This
confirmation is proved by finding of the phenotypically immature elements, expressing the
above mentioned molecules in proliferating brain areas, in the three-year-old salmon brain,

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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and of elements, which owe morphology of radial glia. The presence of enzymes, synthesizing
gasotransmitters in the brain areas, which are expressing proliferative cell nuclear antigen
PCNA, have proved their participation in regulation of postembryonic neurogenesis.

In the fishes, which preserve fetal state during long time (salmon and carp), such markers as
NO and H2S in periventricular proliferative areas may present in different ratios. This is
consistent with the hypothesis that in functionally similar complexes in animals the different
signal transduction systems may be involved. In contrast to widespread neurogenetic model
Danio rerio, the development of the salmon and sturgeon nervous system occurs during long
time. As it follows from our data, the development of different CNS structures in the Onco‐
rhynchus masou brain is characterized by evident heterochrony, so the cells of caudal brain
regions gain features of phenotypical specialization earlier than in the forebrain structures. We
suggest that the brain of these animals during a long time preserves the signs of fetal organi‐
zation and low differentiated cells presence confirms this hypothesis.

Last years, certain attention of neuroscientists of different profile was turned to participation
in the work of the brain «gaseous intermediaries»: nitric oxide (NO) and hydrogen sulphide
(H2S). Their presence is found in the brains of representatives of different groups of vertebrates:
from the Agnatha to human. The few data points to a high degree of variability in the distri‐
bution of NO-ergic neurons in the fish brain [1-3], and information about the involvement of
nitric oxide and hydrogen sulphide in the functional activity of nervous system of fish is
unordered and contradictory. This draws attention to the fact that the relative number of NO-
synthesizing neurons and glial cells in the sensory, motor and integrative centers of the brain
fish significantly exceeds that of terrestrial vertebrates, in particular, mammals [1, 4, 5]. This
implies a wide and varied participation of NO in the metabolism of neurons and glial cells in
the central nervous system of fish compared with mammals. However, information about the
relationship of the NO-producing neurons of the brain of fish with the systems of classical
neurotransmitters such as acetylcholine, catecholamines and GABA, are practically absent.
Virtually nothing is known about the distribution of H2S-producing systems in the CNS of
bony fishes. These investigations are of particular importance in connection with the emerging
data on morphogenetic the role of classical and gas intermediary in the formation of the central
nervous system of vertebrates [6].

The brain of fish has a unique vertebrates feature - it grows with the organism during all life.
In connection with this fish is a model object for the study of embryonic and postembryonic
development of the CNS, to influence these processes of various factors. It is shown that in the
brain of adult vertebrate a system of cambial elements remains, the activity of which allows
to replenish the population of neurons and glial cells in the course of a long period after birth
[7]. Currently the mechanisms of pre-and postnatal morphogenesis of the brain in the fish,
which for a long time secures the larval state, virtually have not been studied [8-10].

Especially it concerns the role of the so-called «radial glial cells» in the processes of morpho‐
genesis of the brain, the availability and distribution of proliferative areas in the brain of adult
fish. The results of the research on Danio rerio showed that the newly formed cells moving from
periventricular areas deep inside the brain, where they differentiate into neurons [11]. It was
found that the centers of proliferation are localized along the rostro-caudal axis of the brain [7].
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The interest to the study of these processes in fish is caused by the fact that the «radial glia»
may be connected with the processes of migration and differentiation of neurons and glial cells
in the prenatal period, large quantities present in the brain of a fish and in the adult state (unlike
other vertebrates). However, in spite of the available literature information, participation of
the radial glia (RG) is in the process of neurogenesis adult animals and little studied. One of
the reasons for the lack of such information is a small number of examined in the terms of
species and groups of fish, the absence of reliable markers of the RG in lower vertebrates.

Sturgeon and salmon fish, which have become the main objects of our research, represent the
most ancient group of vertebrates, which are the most primitive branches ray-finned fish
[12-13]. The information about the development of the brain sturgeon and salmon, the relations
of embryonic and a definitive parts in the structure of the pre-and postnatal neurogenesis,
organization and formation of the neuromediating and modulating brain systems in the
literature are extremely limited. This concerns especially the sturgeon fishes, the evolution of
which was carried on the pedomorphosis way, which is characterized by the slowing of organs
or of their systems and the preservation of the adult embryonic status of relevant features.

The purpose of this chapter is to explore the organization, projection features and relationships
of signal-transduction systems, producing a classic neurotransmitters (catecholamines,
acetylcholine, gamma-aminobutyric acid-GABA) and gazotransmitters (nitric oxide and
hydrogen sulphide), in the brain of fish and evaluate their participation in the processes of the
post-embryonic morphogenesis the CNS.

2. Methods

Molecular-biological approaches associated with identifying of histochemical and immuno‐
histochemical activity of mediators or enzymes of their synthesis were used for characteristics
of neurotransmitter systems structures of the brain and spinal cord fish. Specific antibodies
are also used by us in identifying of proliferative cell nuclear antigen (PCNA), transcription
factor Pax6 and calcium binding protein parvalbumin. To investigate the relationship of brain
applied marking nerve fibers using carbocyanin dye DiI. To track ascending mediatorically
specific projections of catecholaminergic cells was used the immunofluorescence method of
marking tyrosine hydroxylase in combination with the marking of the DiI.The histochemical
reaction on NADPH-diaphorase (NADPH-d, NF 1.6.99.1). Experimental procedures were
conducted in accordance with European Community guidelines on animal care and experi‐
mentation. The animals were deeply anesthetized with 0.03% tricain methanesulfonate
(MS-222, Sandoz) and perfused transcardially with 50 ml of 0,63% saline followed by 200 ml
of a fixative containing 4% paraformaldehyde in 0.1 M phosphate buffer (PB), pH 7.4. The
brains were then removed from the skull, postfixed in the same fixative for 5 hours, washed
in PB at 4°C overnight and then placed in a 30% sucrose solution for cryoprotection.

Fifty-micron-thick transverse sections were cut on a cryostat and collected in cold PB and, after
several washes in PB, processed for NADPH-diaphorase histochemistry. Free-floating sections
were incubated in a medium made up of 1mM β-NADPH, 0.8 mM nitro blue tetrazolium, and
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Especially it concerns the role of the so-called «radial glial cells» in the processes of morpho‐
genesis of the brain, the availability and distribution of proliferative areas in the brain of adult
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The interest to the study of these processes in fish is caused by the fact that the «radial glia»
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organization and formation of the neuromediating and modulating brain systems in the
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which was carried on the pedomorphosis way, which is characterized by the slowing of organs
or of their systems and the preservation of the adult embryonic status of relevant features.
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of signal-transduction systems, producing a classic neurotransmitters (catecholamines,
acetylcholine, gamma-aminobutyric acid-GABA) and gazotransmitters (nitric oxide and
hydrogen sulphide), in the brain of fish and evaluate their participation in the processes of the
post-embryonic morphogenesis the CNS.

2. Methods

Molecular-biological approaches associated with identifying of histochemical and immuno‐
histochemical activity of mediators or enzymes of their synthesis were used for characteristics
of neurotransmitter systems structures of the brain and spinal cord fish. Specific antibodies
are also used by us in identifying of proliferative cell nuclear antigen (PCNA), transcription
factor Pax6 and calcium binding protein parvalbumin. To investigate the relationship of brain
applied marking nerve fibers using carbocyanin dye DiI. To track ascending mediatorically
specific projections of catecholaminergic cells was used the immunofluorescence method of
marking tyrosine hydroxylase in combination with the marking of the DiI.The histochemical
reaction on NADPH-diaphorase (NADPH-d, NF 1.6.99.1). Experimental procedures were
conducted in accordance with European Community guidelines on animal care and experi‐
mentation. The animals were deeply anesthetized with 0.03% tricain methanesulfonate
(MS-222, Sandoz) and perfused transcardially with 50 ml of 0,63% saline followed by 200 ml
of a fixative containing 4% paraformaldehyde in 0.1 M phosphate buffer (PB), pH 7.4. The
brains were then removed from the skull, postfixed in the same fixative for 5 hours, washed
in PB at 4°C overnight and then placed in a 30% sucrose solution for cryoprotection.

Fifty-micron-thick transverse sections were cut on a cryostat and collected in cold PB and, after
several washes in PB, processed for NADPH-diaphorase histochemistry. Free-floating sections
were incubated in a medium made up of 1mM β-NADPH, 0.8 mM nitro blue tetrazolium, and
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0.06% Triton X-100 in 0.1 M phosphate buffer (pH 7.6), at 37˚C for 2 hours [14]. All chemicals
were purchased from Sigma. After incubation, the sections were rinsed in PB, mounted on
gelatin-coated glass slides, and air-dried overnight. The following day they were dehydrated
cleared in xylene, and coverslipped with Entellan (Merck, Darmstadt, Germany).

In order to determine the specificity of the histochemical reaction, the following controls were
carried out: incubation without the substrate β-NADPH, and incubation without the chrom‐
ogen nitro blue tetrazolium in order to rule out possible nonspecific formation of reaction
product. In all cases, no residual reaction was observed.

For histochemical staining of cholinergic neurons in the brain of fish we used marking of
choline acetyltransferase (ChAT; NF 2.3.1.6.). Method was performed on fishes whose brains
were fixed at 4°С for 2 h in 1% solution of paraformaldehyde based on cacodylate buffer (0.1
M) with sucrose (0.32 М; рН 5.0). The material was washed out in cacodylate buffer (рН 5.2)
with sucrose for 18 h with sevenfold change of this solution. Frontal and sagittal 50-μm-thick
slices were prepared with a freezing microtome. To exclude nonspecific transferase activity,
20 mM diisopropyl fluorophosphate (DFP), 10 % sucrose, and 25 mM cacodylate buffer were
added to the incubation medium (рН 6.0) cooled to 4°С ; this medium was placed on an ice
bath (0-4°С) for 1 h. After preincubation, the slices were placed in the incubation medium
(рН 6.0) with the following final concentrations (mM): cacodylate buffer, 25; DFP, 1.0; choline
chloride, 4.0; lead nitrate, 1.0; acetyl-CoA, 0.3, and 5% sucrose. The sliced were thermostated
at 37°С for 2 h, washed out in distilled water, and treated in 5% solution of ammonium sulfide.
Then, the slices were post-fixed for 5 min in 5% solution of formaldehyde based on cacodylate
buffer (0.1 М; рН 5.2) with sucrose (0.32 М), dehydrated, and embedded in balsam. To estimate
the specificity of reactions to ChAT, we carried out a few control experiments. In the first
control series, we excluded DFP from the incubation medium. In the second control series,
cetyl-CoA or choline chloride were absent in the incubation medium. In the third control series,
we added chloracetylcholine-perchlorate (10 mM) to the DFP-containing pre-incubation
medium; the incubation period was increased to 1.5-2 h. In all control experiments, a positive
reaction was absent.

Immunohistochemical methods. Fishes were kept in aquaria with aerated seawater at
15-17°С. Before experiments, fishes were anesthetized in the cuvette with 0.1% solution of
tricaine methanesulfonate (MS-222; Sigma, USA) in seawater for 10-15 min. The brains of fishes
were fixed for 2 h at 4°С in 4% solution of paraformaldehyde dissolved in phosphate buffer
(0.1 M, рН 7.2). For morphological analysis, the obtained material was embedded in paraffin
according to a standard technique and stained by Nissl. In the course of immunohistochemical
studies, we identified the elements containing GABA, tyrosine hydroxylase (TH), parvalbumin
(PA), neuronal nitric oxide synthase (nNOS), proliferative cells nuclear antigen (PCNA),
transcription factor Pax6 and cystathionine β-synthase (CBS). For this purpose, we used
indirect avidin-biotin-peroxidase (ABC technique) or streptavidin-biotin staining. The
material was washed out for 24 h in 30% sucrose solution. Transverse 50-μm-thick slices of the
fish brain were prepared using a freezing microtome. Free-floating slices were incubated at
4°С for 48 h in the presence of monoclonal mouse antibodies against GABA (ICN Biomedicals,
USA; dilution 1:4000) and tyrosine hydroxylase, TH (Vector Laboratories, USA; dilution
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1:5000), PCNA (Dako, Denmark; 1:4000), monoclonal antibodies against human transcription
factor Pax6 (Chemicon, USA; 1:3000), monoclonal antibodies frog against PA (ICN, Biomedi‐
cals, USA; 1:4000), rabbit polyclonal antibodies against nNOS (ICN, Biomedicals, USA; 1:5000),
monoclonal antibodies mouse against CBS (Abcam ab54883, England 1:5000). Then, the slices
were incubated with secondary biotin-conjugated horse antibodies against mouse immuno‐
globulins (Vector Laboratories, USA) for 2 h at room temperature and washed out three times
in 0.1 М phosphate buffer. To reveal localization of NO-ergic neurons and fibers, we used a
technique of indirect streptavidinbiotin immunohistochemical labeling of NOS. The slices
were incubated with primary polyclonal rabbit antibodies against nNOS (IСN Biomedicals,
USA; dilution 1:5000) at 4°С for 24 h. After three washings out in phosphate buffer, the slices
were incubated with secondary biotin-conjugated goat antibodies against rabbit immunoglo‐
bulins (Biomedicals, Germany) at room temperature for 2 h. The material was washed out
three times in phosphate buffer. Then, the slices were incubated in the presence of the
streptavidin-peroxidase complex (Biomedicals, Germany) at room temperature for 2 h and
again washed out three times in phosphate buffer. Immunohistochemical reactions were
visualized using a standard avidinbiotin system (ABC; Vectastain Elite АВС Kit; Vector
Laboratories, USA). To identify the reaction products, the slices were incubated in a substrate
for detection of peroxidase (VIP Substrate Kit; Vector Laboratories, USA); the process of
staining was controlled under a microscope. Then, the slices were washed out in three changes
of phosphate buffer, mounted on slides, dehydrated using a standard technique, and embed‐
ded in balsam. To estimate the specificity of the immunohistochemical reaction, we used a
technique of negative control. The masu brain slices were incubated in a medium containing
1% nonimmune horse serum (instead of primary antibodies) for 48 h, and then all procedures
were performed as was described above. In all control experiments, the immunopositivity in
the studied cells was absent.

To study projections of the preglomerular complex and glomerular nucleus, we used the
carbocyanine dye 1,1΄-dioctadecyl-3,3,3΄,3΄-tetramethylindocarbocyanine perchlorate, DiI
(Aldrich, Sigma, USA). The brains of fishes were fixed for 24 h in 4% solution of paraformal‐
dehyde; then, crystals of the above dye were introduced in the region of the anterior and medial
preglomerular and mammillary bodies. The obtained preparations were incubated in 4%
solution of paraformaldehyde with the addition of 0.01% ethylenediamine tetraacetic acid
(EDTA) at room temperature. Frontal, sagittal, and horizontal slices (50 μm thick) were
prepared using a vibratome (VIBRATOME 3000; Sectioning system, Germany) and embedded
in glycerine. To visualize the marker, we used an optical system, AXIOPLAN-2, Imaging
(Gerinang, Germany). Preparations with DiI-marked structures were photographed using a
optical system AXIOPLAN-2, Imaging (Gerinang).

Immunofluorescent labeling of tyrosine hydroxylase (TH) combined with retrograde labeling
of neurons with the carbocyanine stain DiI was used to study the brains of Amur bitterlings
Rhodeus sericeus. Specimens were fixed in 4% paraformaldehyde for one day, after which
crystals of stain were placed in the ventral part of the telencephalon. Specimens were incubated
in 4% paraformaldehyde supplemented with 0.01% ethylenediaminetetraacetate (EDTA) at
room temperature for one day. Frontal, sagittal, and horizontal vibratome sections of thickness
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USA; dilution 1:4000) and tyrosine hydroxylase, TH (Vector Laboratories, USA; dilution

Neurochemistry228

1:5000), PCNA (Dako, Denmark; 1:4000), monoclonal antibodies against human transcription
factor Pax6 (Chemicon, USA; 1:3000), monoclonal antibodies frog against PA (ICN, Biomedi‐
cals, USA; 1:4000), rabbit polyclonal antibodies against nNOS (ICN, Biomedicals, USA; 1:5000),
monoclonal antibodies mouse against CBS (Abcam ab54883, England 1:5000). Then, the slices
were incubated with secondary biotin-conjugated horse antibodies against mouse immuno‐
globulins (Vector Laboratories, USA) for 2 h at room temperature and washed out three times
in 0.1 М phosphate buffer. To reveal localization of NO-ergic neurons and fibers, we used a
technique of indirect streptavidinbiotin immunohistochemical labeling of NOS. The slices
were incubated with primary polyclonal rabbit antibodies against nNOS (IСN Biomedicals,
USA; dilution 1:5000) at 4°С for 24 h. After three washings out in phosphate buffer, the slices
were incubated with secondary biotin-conjugated goat antibodies against rabbit immunoglo‐
bulins (Biomedicals, Germany) at room temperature for 2 h. The material was washed out
three times in phosphate buffer. Then, the slices were incubated in the presence of the
streptavidin-peroxidase complex (Biomedicals, Germany) at room temperature for 2 h and
again washed out three times in phosphate buffer. Immunohistochemical reactions were
visualized using a standard avidinbiotin system (ABC; Vectastain Elite АВС Kit; Vector
Laboratories, USA). To identify the reaction products, the slices were incubated in a substrate
for detection of peroxidase (VIP Substrate Kit; Vector Laboratories, USA); the process of
staining was controlled under a microscope. Then, the slices were washed out in three changes
of phosphate buffer, mounted on slides, dehydrated using a standard technique, and embed‐
ded in balsam. To estimate the specificity of the immunohistochemical reaction, we used a
technique of negative control. The masu brain slices were incubated in a medium containing
1% nonimmune horse serum (instead of primary antibodies) for 48 h, and then all procedures
were performed as was described above. In all control experiments, the immunopositivity in
the studied cells was absent.

To study projections of the preglomerular complex and glomerular nucleus, we used the
carbocyanine dye 1,1΄-dioctadecyl-3,3,3΄,3΄-tetramethylindocarbocyanine perchlorate, DiI
(Aldrich, Sigma, USA). The brains of fishes were fixed for 24 h in 4% solution of paraformal‐
dehyde; then, crystals of the above dye were introduced in the region of the anterior and medial
preglomerular and mammillary bodies. The obtained preparations were incubated in 4%
solution of paraformaldehyde with the addition of 0.01% ethylenediamine tetraacetic acid
(EDTA) at room temperature. Frontal, sagittal, and horizontal slices (50 μm thick) were
prepared using a vibratome (VIBRATOME 3000; Sectioning system, Germany) and embedded
in glycerine. To visualize the marker, we used an optical system, AXIOPLAN-2, Imaging
(Gerinang, Germany). Preparations with DiI-marked structures were photographed using a
optical system AXIOPLAN-2, Imaging (Gerinang).

Immunofluorescent labeling of tyrosine hydroxylase (TH) combined with retrograde labeling
of neurons with the carbocyanine stain DiI was used to study the brains of Amur bitterlings
Rhodeus sericeus. Specimens were fixed in 4% paraformaldehyde for one day, after which
crystals of stain were placed in the ventral part of the telencephalon. Specimens were incubated
in 4% paraformaldehyde supplemented with 0.01% ethylenediaminetetraacetate (EDTA) at
room temperature for one day. Frontal, sagittal, and horizontal vibratome sections of thickness

Participation of Neurochemical Signaling in Adult Neurogenesis and Differentiation
http://dx.doi.org/10.5772/58306

229



50 μm were cut and incubated with primary mouse monoclonal antibodies against TH (Vector
Laboratories, Burlingame, USA) diluted 1:1000 at 4°C for two days. Sections were then
incubated with secondary fluorescent antibodies conjugated with Alexa 546 (Invitrogen
Molecular Probes, USA) diluted 1:300 overnight. TH localization was studied using a Leica
DM 4500 fluorescent microscope (Germany). Labeled TH and the carbocyanine label were
visualized using a Leica TSC SPE confocal laser system (Germany).

Immunoperoxidase labeling of fragmented DNA chains, (TUNEL-labeling). To reveal
apoptotic cells, we used a technique for immunoperoxidase labeling of fragmented DNA
chains. After 2-h-long fixation in 4% solution of paraformaldehyde based on 0.1 M phosphate
buffer (рН 7.2), dissected parts of the brain were washed out for 24 h in 0.1. M phosphate
buffer. Then, these samples were put in 30% solution of sucrose based on phosphate buffer
(0.1 М) for cryoprotection and kept in this solution up to full immersion. Frontal and horizontal
slices (20 μm thick) were prepared using a freezing microtome. To identify TUNEL-positive
structures, we used a immuno-peroxidase identification system, ApopTag Peroxidase In Situ
Apoptosis Detection Kit (Chemicon International Inc., USA). For blocking endogenous
peroxidase, the slices were incubated in 1% solution of hydrogen peroxide for 3 min and then
washed out two times for 5 min in phosphate buffer. The slices were covered with a smoothing
buffer (75 μl) and kept for 10 sec at room temperature. Then, the slices were slightly dried,
subjected to the action of TdT enzyme (55 μl/5 cm2), incubated in a humid chamber for 1 h at
37°С, and immersed in a stop buffer for 10 min. The slices were washed out in phosphate buffer
at room temperature (three times for 1 min with changing of the solution), again dried, covered
with antidioxygenin conjugate (65 μl/5 cm2), and incubated in a humid chamber for 30 min.
To detect the reaction products, cerebral slices were incubated in the substrate for identification
of peroxidase (VIP Substrate Kit; Vector Labs, USA) with control of the development of color
under a microscope, washed out in three changes of phosphate buffer, and mounted on glass
slides. The cell nuclei were subjected to final staining with methyl green according to the
technique of Brasher [15]. The preparations obtained were dewatered using a conventional
technique and embedded in balsam. Morphometric processing was performed using an
inverted-stage microscope, Axiovert 200M, equipped with a module, ApoTome, and digital
cameras, Axio Cam MRM and Axio Cam HRC (Carl Zeiss, Germany).

The measurements were performed at ×400 magnification in five randomly chosen fields of
vision for each studied region. The proliferation index (PI) and apoptosis index (AI) were
calculated per 1 mm2 of the section using the following formulas:

PI = (n of the PCNA-positive nuclei × 100%) ÷ total n of the nuclei and

AI = (n of TUNEL-positive fragments × 100%) ÷ total n of nuclei

Parametric comparison (Student’s t-test) was used for estimation of the intergroup differences.
The data obtained were processed using Statistica and Excel software. Numerical data are
presented below as Means ± s.e.m.
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3. Participation of classic neurotransmitters in the postembryonic
neurogenesis in the fish brain

Studies suggest that in the salmon′s brain at different stages of postembryonic development
two forms of intercellular communications exist. The first form occurs in the early stages of
postembryonic development and represents cells cooperation, carried out paracrinic in the
period when cells have not developed processes and synaptic structure yet. However, such
little differentiated cells are already able to express the specific synthetic machinery for some
neurotransmitters and their synthesizing enzymes, gaseous intermediates, transcription
factors and other substances (Fig. 1A-D). We suppose that most of the synthesized signals in
this period are involved in the regulation of neuronal targets, differentiation and expression
of their specific phenotype, acting as a morphogenetic factors. This is consistent with the
Ugryumov concept [6] regarding the development of the mammalian brain in the embryonic
period of ontogenesis. Already in the early stages of post embryonic morphogenesis of masou
salmon, simultaneously two systems of neurochemical signaling exist, the dopaminergic and
GABA-ergic systems, providing paracrinic and perhaps autocrinic influence on target cells
until the formation of synaptic contacts and the beginning of neurotransmission with specific
interneuronal connections. Study on the eal Anguilla anguialla showed that the maximum
concentration of dopamine D1 receptors is found in periventricular zones [16] which represent
a matrix areas of the brain, where neurogenesis continues throughout the life of the animal.
Consequently, the cells located in proliferating areas are targeted for the regulatory impact of
dopamine. These cells are localized on the territory of the largest vascular plexus (forebrain
and caudal medullar), and synthesize in these regions some substances, like a dopamine and
GABA, which then may be excreted in the portal system blood flow and further into the general
circulation system, providing regulatory endocrine effects on the peripheral organs [17]. Thus,
there is considerable justification to suggest that in the hypophysotrophic areas of the dience‐
phalon and medulla oblongata of the brain of juvenile salmons O. masou, dopamine and GABA
in undifferentiated cells of periventricular and subventricular areas are inducers of develop‐
ment (morphogenetic factors).

Along with the specified form of intercellular signaling in salmon brain, in ontogenesis there
is the development of specific system of forebrain activation and development of the system
of remote intercellular signaling. The source of these directed connections are the nuclei of
preglomerular complex [18]. Development of projective systems of salmon take place simul‐
taneously with the formation of the structure of preglomerular complex [19]. In the brain of
non mammalian vertebrates the volume of sensory projection zones increases during all their
life and is provided due to the proliferation of neural stem cells located in the areas of special
neurogenetic niches [10]. It is connected with the necessity of adaptation of the CNS of such
animals to increase the size of the body and increased inflow of primary sensory information.
We believe that a dopamine, GABA-and NO-ergic systems in the brain of salmon participate
in regulation of some basis histogenetic processes, such as a cell migration and differentiation
of neuro- and gliospecific lines, because the nuclei of preglomerular complexes contain
morphologically and neurochemically heterogeneous cell populations (table. 1) represented
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of neuro- and gliospecific lines, because the nuclei of preglomerular complexes contain
morphologically and neurochemically heterogeneous cell populations (table. 1) represented
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by the different stages of ontogenesis of major cell types. Cells formed in the proliferative
(PCNA-containing) diencephalic areas migrate to the region of preglomerular complex, where
their subsequent differentiation and growth take place. These processes are regulated by
dopamine and GABA, that indicates the presence of D1 and D2 dopamine receptors [16, 20]
and GABAB benzodiazepine receptors [21] in these nucleus of fish. A critical step prevalence
of paracrinic relations in the salmons brain can be considered the period before the formation
of the blood brain barrier (BBB), which in salmon brain is formed during the first year of life
(according to [22]). In the next period of ontogenesis, the formation of the specific connections
and the development of cellular processes of neurons and synaptogenesis take place. Today
much data exist about the participation of radial glia in the processes of postembryonal
neurogenesis by asymmetric mitoses in which one daughter cell remains in the periventricular

Figure 1. A - immunolocalisation of tyrosine hydroxilase (TH) in parvocellular preoptic nucleus (Pop), B - proliferative
nuclear antigen (PCNA) in dorsal thalamus (DTh), C - neuronal nitric oxide synthase (NOS) in pretectal (Ptn), dorsal
(DTN), ventro-medial (VMTN) thalamic nuclei, D - transcriptional factor Pax6 in periventricular diencephalon of 6-
month-old Oncorhynchus masou. Immunonegative border of dorsal neuromers on A, delineated by a triangle, the
cluster of immunopositive cells on D, delineated by rectangle. Inf – infundibulum, FR – fasciculus retroflexus, Pt – pre‐
tectum. Scale: А, C – 100 μm, B, D – 50 μm.
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area and has a rounded shape, while the other has a long process, which may later be elimi‐
nated through somal translocation [23]. It was shown that during embryogenesis of human,
the predecessors of dopaminergic neurons in the basal part of the midbrain have the mor‐
phology of radial glia [24]. Immunolabeling of radial glia cells in salmon′s brain in different
ages (Fig. 2 (A-D), as well as evidence that the TH-and GABA-ip cells were located on the
territory of PCNA-ip proliferative zones and together with PCNA marked the neuromeric
structure of diencephalon and medullar part of the brain, certainly shows that dopamine and
GABA-ergic signaling participates in the processes of postembryonic neurogenesis of the
salmon′s brain, as inductors of development. Our data are consistent with the labeling of some
rhombomeres in the brain in an embryo of sharks Scyliorhinus canicula [25].

Nuclei

Neuronal nitric

oxide synthase

(nNOS)

Choline

acetyltransferase

(ChAT)

GABA

Tyrosine

hydroxylase

(ТН)

Parvalbumine

(PA)

Size of

cells

(μm)

Total

number

(%)

Size of

cells

(μm)

Total

number

(%)

Size of

cells

(μm)

Total

number

(%)

Size of

cells

(μm)

Total

number

(%)

Size of

cells

(μm)

Total

number

(%)

Glomerular

8-7 II

10-8 II

12-10 III

30±4

20-12 I

18-12 I

14-6 IV

18±2

9-6 II

7-7 II

12-6 IV

14-7 IV

50±6

9-7 II

10-6 II

15-6 III

17-8 IV

12±2

6-6 II

11-7 II

12-9 III

13-6 IV

48±4

Anterior

Preglomer.

10-8 I

12-7 III

14-8 III

15-6 IV

24±3
12-9 III

13-8 III
9±1

20-13 I

12-12 III
47±5

8-6 II

10-7 II

12-9 III

14-6 III

12-6 IV

14±2

10-8 II

11-7 II

13-10 III

45±5

Medial

Preglomer.

10-8 II

12-9 III

13-8 III

21±3

12-9 III

13-10 III

14-11 III

12±1

8-7 II

10-7 II

12-9 III

32±4

9-9 II

10-7 II

12-9 III

14-7 IV

8±1

9-7 II

10-8 II

13-10 III

30±3

Footnotes. Roman numerals (in brackets) indicate the cell type. Mean values of the large and small diameters of neurons
(М ± m, μm) are separated by slashes.

Table 1. Morphometric characteristics and relative numbers of neurons belonging to different neurochemical types in
the nuclei of the Preglomerular complex and also in the Glomerular nucleus of the Oncorhynchus masou brain.

Differentiation of cells in various parts of the salmon′s brain presents a heterochronical process.
In caudal part of brain some reticulospinal cells, cells of nucleus raphi, nuclei of V, VII, IX and
X pairs of cranial nerves, much earlier acquire the features of phenotypic specialization than
in the structures of forebrain. Measurements of fractal dimension and some morphometric
parameters (total length of branches, number of terminal branches, number of branching

Participation of Neurochemical Signaling in Adult Neurogenesis and Differentiation
http://dx.doi.org/10.5772/58306

233



by the different stages of ontogenesis of major cell types. Cells formed in the proliferative
(PCNA-containing) diencephalic areas migrate to the region of preglomerular complex, where
their subsequent differentiation and growth take place. These processes are regulated by
dopamine and GABA, that indicates the presence of D1 and D2 dopamine receptors [16, 20]
and GABAB benzodiazepine receptors [21] in these nucleus of fish. A critical step prevalence
of paracrinic relations in the salmons brain can be considered the period before the formation
of the blood brain barrier (BBB), which in salmon brain is formed during the first year of life
(according to [22]). In the next period of ontogenesis, the formation of the specific connections
and the development of cellular processes of neurons and synaptogenesis take place. Today
much data exist about the participation of radial glia in the processes of postembryonal
neurogenesis by asymmetric mitoses in which one daughter cell remains in the periventricular

Figure 1. A - immunolocalisation of tyrosine hydroxilase (TH) in parvocellular preoptic nucleus (Pop), B - proliferative
nuclear antigen (PCNA) in dorsal thalamus (DTh), C - neuronal nitric oxide synthase (NOS) in pretectal (Ptn), dorsal
(DTN), ventro-medial (VMTN) thalamic nuclei, D - transcriptional factor Pax6 in periventricular diencephalon of 6-
month-old Oncorhynchus masou. Immunonegative border of dorsal neuromers on A, delineated by a triangle, the
cluster of immunopositive cells on D, delineated by rectangle. Inf – infundibulum, FR – fasciculus retroflexus, Pt – pre‐
tectum. Scale: А, C – 100 μm, B, D – 50 μm.

Neurochemistry232

area and has a rounded shape, while the other has a long process, which may later be elimi‐
nated through somal translocation [23]. It was shown that during embryogenesis of human,
the predecessors of dopaminergic neurons in the basal part of the midbrain have the mor‐
phology of radial glia [24]. Immunolabeling of radial glia cells in salmon′s brain in different
ages (Fig. 2 (A-D), as well as evidence that the TH-and GABA-ip cells were located on the
territory of PCNA-ip proliferative zones and together with PCNA marked the neuromeric
structure of diencephalon and medullar part of the brain, certainly shows that dopamine and
GABA-ergic signaling participates in the processes of postembryonic neurogenesis of the
salmon′s brain, as inductors of development. Our data are consistent with the labeling of some
rhombomeres in the brain in an embryo of sharks Scyliorhinus canicula [25].
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In caudal part of brain some reticulospinal cells, cells of nucleus raphi, nuclei of V, VII, IX and
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in the structures of forebrain. Measurements of fractal dimension and some morphometric
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points, and cell area) were used for the quantification of morphological patterns of two spinal
neuron groups in young Oncorhynchus masou at two ontogenetic stages [26]. During the 1st
and 2nd years of life, the neurons of brainstem and spinal cord have enough developed
dendrites and axons, which, however, have growth cones, indicating the continued postem‐
bryonic period of growth and development of these structures and their further differentiation.
During the second year of life, the values of morphometric parameters and fractal dimension
of neurons increased in both groups. Basic morphometric values correlated with fractal
dimensions and conformed to morphological changes in the dendritic tree of the investigated
neurons in ontogenesis. During the third year of life, in the nuclei of the brain and spinal cord
large-differentiated cells expressing TH, GABA and parvalbumine in the motoneurons of
ventral spinal column, nuclei of craniocerebral nerves, reticulospinal cells and some dience‐
phalic nuclei were revealed [27].

Figure 2. Immunohistochemistry of tyrosine hydroxylase in a spinal cord (A) and tectum (B) of a one-year old O. ma‐
sou, in the periventricular diencephalic (C, D) and the medullar (D) departments of a 3-year-old fish. The arrows show
the radial fiber; and: rectangle delineated areas of radial fibers, forming the «end feet»; D: on the border between
dorsal neuromeres the immunolabeling of TH is absent; E: rectangle delineated by interfascicular area containing the
radial fiber. Scale: A, B, D-50 µm; D-100 μm.

Along with systems synthesis of classical neurotransmitters, immunolocalisation of transcrip‐
tion factor Pax6 was investigated, the marking of which adequately reflects neuromeric

Neurochemistry234

structure of the salmon′s brain in different ages (Fig 3 A, B). The early juveniles (3 and 6 months
old) are the Pax6-ip cells do not have any processes and formed a small clusters corresponding
to forebrain prosomeres (P1-P3), and in the medulla, such accumulations marked the rostral
(R1-R2) rhombomeres (Fig. 3B). On the boundary of neuromeres labeling of PCNA and Pax6
were absent (Fig.3 A, D). In three-year old salmons the marking Pax6 was found in the cells
and radial fibers, located in the periventricular and subventricular areas of diencephalon that
corresponds to the data of labeling of Pax6 radial glia in the areas of postnatal neurogenesis
of mammals [10]. On borders of the forebrain neuromeres the immunolabeling Pax6 in 3-years
old individuals was absent. Expression of Pax6 was also found in glomerular nucleus and
nuclei preglomerular complex that suggests about morphogenetic processes on the territory
of the largest sensory center during postembryonal period. Immunolocalisation of Pax6 in
specific cell clusters of glomerular nucleus, appropriated to some neuroanatomical zones, in
which the differentiation of neurons, conducting various types of sensory signalization was
revealed (Fig 3C. D). Studies suggest that factor Pax6 participates in the regionalization of the
structure of the brain in postembryonal period, and its expression in different ages of salmon
brain shows that the processes of neurodetermination and migration of cells, formed in
proliferative areas of the brain in these age periods are regulated by means of this transcrip‐
tional factor. In the literature there are discrepancies regarding the organization and topogra‐
phy of dopamine, GABA-and NO-ergic complexes in the brain of different teleost fishes.
Significant differences in the organization of the mediator systems in different fish species
become more explainable, given the above mentioned scheme. We believe that neurotrans‐
mitter systems in the brain fish should be considered not only from the standard point of view
of their definitive neuroanatomical structure, but must also take into account data on hetero‐
geneous molecular phenotype of dopaminergic, GABA and, apparently, NO-ergic systems.
Thus, for the establishment of homology, along with the systematic position, it is advisable to
take into account the age, stage of development, physiological status and sex of the animal. In
adult masou salmon and chum salmon the cells of Dc area of the telencephalon reach a high
level of specialization and corresponding to the Ramon-Molener classification can be attrib‐
uted to allodendric type.

Such cells have been found only in the most mature individuals (of 4-5 years old) going to
spawn. One of the forms of specialization of these cells is that they have a network of basal
spiny dendrites. This corresponds to the estimated specialization of such cells as associative
spiny interneurons participated in communications with other parts of the dorsal area in
telencephalon. Widespread TH and GABA in the telencephalon of adult chum salmon
indicates that species to this period of development, along with paracrinic (volume) neuro‐
transmission, there is a distant form of neurotransmission, which is becoming the predominant
further ontogenetic development and ageing of the animal. We suggest that the acquisition of
spiny apparatus by the neurons in the dorsal (Vd) and internal (Vi) areas ventral zone can be
considered as one of the stages of ontogenetic development of neurons in the brain, indicating
the age-related changes in the organization of the salmon′s dopaminergic system. Formation
of the system of neurochemical communication in the CNS of masou salmon in postembryonal
period consists of two main stages. At the first stage the undifferentiated cells are located in
matrix areas of the brain and expressed of specific syntheses (catecholamenes, GABA, NO,
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some transcription factors). These substances are acting in paracrinic interaction and involved
in regulating basis histogenetic processes: cell proliferation, cell migration, differentiation of
target cells and expression of a specific phenotype. Under the influence of these factors on the
second step is the formation of specific relations, development of processes of neurons and
sinaptogenesis.

As a model to test an alternative hypothesis, we studied the CNS of amur bitterling Rhodeus
sericeus (Cyprinidae), coming to sexual maturity in the first year of life. The literature of the
late twentieth century actively discussed some issues relating to the organization and topog‐
raphy catecholaminergic system of vertebrate’s brain detectable by methods formaldehyde-
induced fluorescence (FIF) and IHC labeling of tyrosine hydroxylase. In this period, a
hypothesis was formulated about the existence of dopamine deposited system in the brain of
fish [28]. Data about neuromeric organization and molecular markers that define dopaminer‐

Figure 3. Expression of transcription factor Pax6 in the brain of 3-month-old salmon O. masou (A and B) and 3-year-
old trout (C and D) (immunoperoxidase staining, light microscopy). Accumulations of immunopositive cells in the dien‐
cephalon (A) and medulla (B). Part of the brain (in rectangles) labels its neuromeric structure, the sites without
immunolabeling constitute the borders of forebrain P2 and P3 prosomers (black edges of arrows), arrows with a cut
show accumulations of migrating cells. Radial glia in the optical tectum (C) and around dorsal neuromer (P2) in the
diencephalon (D). Scale: A-100 μm, B-200 μm, C and D – 50 μm.
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gic phenotype of neurons in Danio rerio, had recently published [29]. In the bitterling brain 3
main types of cells were verified. The first type consists of small round cells in the periven‐
tricular nucleus of the diencephalon and second one are formed by large pear-shaped or
fusiform cells [30]. The cerebrospinalliquor-contacting cells (CSL) are the most common third
type of catecholaminergic cells. According to the Meek classification [28], large cells and CSL-
contacting cells at Amur bitterling can be attributed to the elements of dopamine deposited
system. In the hypothalamus of bitterling were discovered a few CSL-contacting cells with a
low level of activity TH, but cells were marked by gliocsalic acid. Some fish have similar
features morphology of CSL-contacting cells (in particular, the presence of apical dendrite,
turned into the lumen of the cerebral ventricle), and these cells are a FIF-positive, but do not
contain enzymes synthesis of catecholamines (TH-negative). It was the reason for the assump‐
tion that such cells are not synthesizes catecholamines by themselves, but receives CE from
external sources, in particular, liquor or from large dopaminergic neurons [31]. Data labeling
catecholaminergic systems on other groups of vertebrates show that dopamine and norepi‐
nephrine dissolved in the cerebrospinal fluid are of greater importance for non mammalian
vertebrates; but in mammals, the CSL-contacting cells at all have not been identified [32]. These
confirm the observations obtained by us on the masou salmon.

Lack of Cyprinidae fish glomerular nucleus largely hinders establishing of homology between
ascending sensory projections in the telencephalon with those of other fishes [33]. To identify
sources of CA-ergic innervation of the ventral part of the telencephalon of bitterling investi‐
gated the projection of this area of the brain. Tracing part of dopaminergic fibers in the ventral
telencephalon bitterling showed that along with intratelencephalic cell groups exists the
extratelencephalic sources of innervation of the dorsal and ventral nuclei [30]. Sources of
dopaminergic projections in the ventral part of the telencephalon are two populations of cells
in posterior tuberculum of bitterling, namely large cells and small rounded cells. Such cells
are projected on the dorsal and ventral areas of ventral telencephalic part respectively and are
considered by us as the morpho-functional equivalents of meso-striatal and meso-limbic
systems of mammals. Identification dopaminergic fibers in the dorsal region of telencephalon
of D. rerio [31] suggests that teleostea have also equivalents of meso-pallial system.

The peculiarities of localization of medullary neurons, morphology of the dendrites, and
trajectories of the axon projections in the medulla of the Amur bitterling allow us to differen‐
tiate three groups of ТН-positive neurons, namely interfascicular cells, units related to the
lobus vagus, and cells localized within the area postrema (Fig. 4 A-D). The 3-year-old masou
salmon in all the above mentioned areas of the brain stem were also identified large TH-ip
cells with clear features of phenotypic differentiation. However, along with differentiated
ТН-positive elements of masou salmon we revealed previously not described alternative TH-
positive elements, namely small undifferentiated cells, located on the territory of proliferative
periventricular and subventricular zones [27]; numerous radial fibers, having different
localizations in medullar part of CNS (Fig. 2E). We believe that the presence of such elements
with clear features of fetal organization, as well as radial fibers in the brain 3-year-old masou
salmon connected with the processes of postembryonic (adult) morphogenesis of the brain.
The differentiated TH-ip neurons in salmon brain are functionally active to this period of
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main types of cells were verified. The first type consists of small round cells in the periven‐
tricular nucleus of the diencephalon and second one are formed by large pear-shaped or
fusiform cells [30]. The cerebrospinalliquor-contacting cells (CSL) are the most common third
type of catecholaminergic cells. According to the Meek classification [28], large cells and CSL-
contacting cells at Amur bitterling can be attributed to the elements of dopamine deposited
system. In the hypothalamus of bitterling were discovered a few CSL-contacting cells with a
low level of activity TH, but cells were marked by gliocsalic acid. Some fish have similar
features morphology of CSL-contacting cells (in particular, the presence of apical dendrite,
turned into the lumen of the cerebral ventricle), and these cells are a FIF-positive, but do not
contain enzymes synthesis of catecholamines (TH-negative). It was the reason for the assump‐
tion that such cells are not synthesizes catecholamines by themselves, but receives CE from
external sources, in particular, liquor or from large dopaminergic neurons [31]. Data labeling
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nephrine dissolved in the cerebrospinal fluid are of greater importance for non mammalian
vertebrates; but in mammals, the CSL-contacting cells at all have not been identified [32]. These
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trajectories of the axon projections in the medulla of the Amur bitterling allow us to differen‐
tiate three groups of ТН-positive neurons, namely interfascicular cells, units related to the
lobus vagus, and cells localized within the area postrema (Fig. 4 A-D). The 3-year-old masou
salmon in all the above mentioned areas of the brain stem were also identified large TH-ip
cells with clear features of phenotypic differentiation. However, along with differentiated
ТН-positive elements of masou salmon we revealed previously not described alternative TH-
positive elements, namely small undifferentiated cells, located on the territory of proliferative
periventricular and subventricular zones [27]; numerous radial fibers, having different
localizations in medullar part of CNS (Fig. 2E). We believe that the presence of such elements
with clear features of fetal organization, as well as radial fibers in the brain 3-year-old masou
salmon connected with the processes of postembryonic (adult) morphogenesis of the brain.
The differentiated TH-ip neurons in salmon brain are functionally active to this period of
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ontogenesis elements of CA-ergic system. Study of the CA-ergic system in the medullary part
of bitterling found pronounced features of specialization associated with the organization of
medullary CA-ergic complexes. Analysis of these characteristics showed that of bitterling CA-
ergic cells in neuronal networks of the medulla can fulfill the functions of local interneurons,
projection long axon neurons, neurosecretory units, or sensory units. The morphology of
interfascicular ТН-positive cells in the Amur bitterling brain allows one to regard their
functional specialization as local interneurons, since they form intensely branched dendritic
networks (Fig. 4A, B). All three groups of medullary TH-ip neurons of bitterling project their
terminals to the longitudinal catecholaminergic tract. Therefore, it is appropriate to hypothe‐
size that all these cells are relatively long-axon neurons projecting to the rostral part of reticular
formation, isthmus, and secondary gustatory nucleus which are relay centres, between the
primary sensory nuclei of medulla oblongata and sensory centers of the ventral thalamus. The
ТН-positive cells of the vagus region and area postrema (supposedly dopaminergic) have access
to the fourth ventricle; likely, these neurons are chemosensory units responsible for the
relations between the cerebrospinal fluid and neuronal medullary systems (Fig. 4С, D). On the

Figure 4. Tyrosine hydroxylase in the neurons of the medulla oblongata Amur bitterling Rhodeus sericeus. A and B-
neurons of interfascicular group, C, D-neurons of area postrema. Scale: A-C-100 μm; D-50 μm.
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other hand, these two neuronal groups in the Amur bitterling differ from others in an extremely
high level of TH activity; it cannot be ruled out that they can serve as a source of dopamine
coming to the cerebrospinal fluid. The morphology of these neurons allows one to hypothesize
that each of the three groups of medullary CA-ergic neurons in the Amur bitterling is involved
in realization of at least two functions of the above-listed ones, while the cells associated with
the lobus vagus can combine all three functions. In the masou salmon brain phenotypically
mature types of TH-ip cells localized in similar areas of the medulla oblongata, can have a
similar functional specialization (Fig. 2E). However, part of the identified by us TH-ip elements
is located in the proliferative (PCNA-marked) areas of medulla oblongata [27] at the earlier
stages of ontogenesis mark neuromeric structure of medulla oblongata. At later stages
localization TH found in the fibres of radial glia in interfascicular region, on the territory of
fossa romboidea, as well as in populations of small cells in periventricular and subventricular
areas (Fig. 2E).

In the Amur bitterling the density of the distribution of such phenotypically not mature cell
forms in the periventricular area of the brain is significantly lower than the masou salmon. We
believe that the features allocation in medullar part of masou salmon and Amur bitterling
confirm the assumption about the participation of dopamine as a morphogenic factor regu‐
lating brain development of fish in postembryonal period.

4. Participation gaseous intermediators in the modulation of classical
neurotransmitters in fishes brain

Study of the modulating influence gaseous intermediators to the classical system of neuro‐
transmitters in the brain of fish previously had not been carried out. In our studies showed
that the total nitroxidergic products in the nuclei of the brain stem in different fish species
significantly exceeded the measure set for other groups of vertebrates and, particularly
mammals. So, it is normal for different fish species NO-producing neurons were verified
somato- and viscerosensor and visceromotor nuclei of medulla oblongata (V, VII, IX, X nuclei
of craniocerebral nerves, Fig. 5), efferent octavo-lateral neurons, the nuclei of the isthmus,
secondary gustatory nuclei, the nuclei of oculomotor complex (III, IV and VI nuclei of cranial
nerves). Most of these nuclei in fish brain are cholinergic centers of brain stem involved in the
innervation of brachiomotor muscles and some sensory inputs from the somatosensory,
gustatory extra- and intraoral system, mechanosensory, octavolateral receptors. In fish due to
low level of cephalization brain the most of the sensory inputs from the somatosensory
(nucleus V), octavolateral, gustatory extraoral (nucleus VII), intraoral (nucleus IX) are con‐
centrated on the territory of medullary part; therefore this sector is perceived by a large volume
of incoming sensory information (see the diagram on Fig. 5). Despite significant interspecific
morpho-adaptative differences, in Perciformes and Cyprinoid fish were identified similarities
in the organization of medullar and spinal NO-producing centres. Participating NO in
modulation of sensor systems in forebrain of mammals it was proved today [34]. We assume
that in the medulla fish NO performs modulation of primary sensory centers, located in the
nuclei of craniocerebral nerves. In the masou salmon brain all of the above mentioned nuclei,

Participation of Neurochemical Signaling in Adult Neurogenesis and Differentiation
http://dx.doi.org/10.5772/58306

239



ontogenesis elements of CA-ergic system. Study of the CA-ergic system in the medullary part
of bitterling found pronounced features of specialization associated with the organization of
medullary CA-ergic complexes. Analysis of these characteristics showed that of bitterling CA-
ergic cells in neuronal networks of the medulla can fulfill the functions of local interneurons,
projection long axon neurons, neurosecretory units, or sensory units. The morphology of
interfascicular ТН-positive cells in the Amur bitterling brain allows one to regard their
functional specialization as local interneurons, since they form intensely branched dendritic
networks (Fig. 4A, B). All three groups of medullary TH-ip neurons of bitterling project their
terminals to the longitudinal catecholaminergic tract. Therefore, it is appropriate to hypothe‐
size that all these cells are relatively long-axon neurons projecting to the rostral part of reticular
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other hand, these two neuronal groups in the Amur bitterling differ from others in an extremely
high level of TH activity; it cannot be ruled out that they can serve as a source of dopamine
coming to the cerebrospinal fluid. The morphology of these neurons allows one to hypothesize
that each of the three groups of medullary CA-ergic neurons in the Amur bitterling is involved
in realization of at least two functions of the above-listed ones, while the cells associated with
the lobus vagus can combine all three functions. In the masou salmon brain phenotypically
mature types of TH-ip cells localized in similar areas of the medulla oblongata, can have a
similar functional specialization (Fig. 2E). However, part of the identified by us TH-ip elements
is located in the proliferative (PCNA-marked) areas of medulla oblongata [27] at the earlier
stages of ontogenesis mark neuromeric structure of medulla oblongata. At later stages
localization TH found in the fibres of radial glia in interfascicular region, on the territory of
fossa romboidea, as well as in populations of small cells in periventricular and subventricular
areas (Fig. 2E).

In the Amur bitterling the density of the distribution of such phenotypically not mature cell
forms in the periventricular area of the brain is significantly lower than the masou salmon. We
believe that the features allocation in medullar part of masou salmon and Amur bitterling
confirm the assumption about the participation of dopamine as a morphogenic factor regu‐
lating brain development of fish in postembryonal period.

4. Participation gaseous intermediators in the modulation of classical
neurotransmitters in fishes brain

Study of the modulating influence gaseous intermediators to the classical system of neuro‐
transmitters in the brain of fish previously had not been carried out. In our studies showed
that the total nitroxidergic products in the nuclei of the brain stem in different fish species
significantly exceeded the measure set for other groups of vertebrates and, particularly
mammals. So, it is normal for different fish species NO-producing neurons were verified
somato- and viscerosensor and visceromotor nuclei of medulla oblongata (V, VII, IX, X nuclei
of craniocerebral nerves, Fig. 5), efferent octavo-lateral neurons, the nuclei of the isthmus,
secondary gustatory nuclei, the nuclei of oculomotor complex (III, IV and VI nuclei of cranial
nerves). Most of these nuclei in fish brain are cholinergic centers of brain stem involved in the
innervation of brachiomotor muscles and some sensory inputs from the somatosensory,
gustatory extra- and intraoral system, mechanosensory, octavolateral receptors. In fish due to
low level of cephalization brain the most of the sensory inputs from the somatosensory
(nucleus V), octavolateral, gustatory extraoral (nucleus VII), intraoral (nucleus IX) are con‐
centrated on the territory of medullary part; therefore this sector is perceived by a large volume
of incoming sensory information (see the diagram on Fig. 5). Despite significant interspecific
morpho-adaptative differences, in Perciformes and Cyprinoid fish were identified similarities
in the organization of medullar and spinal NO-producing centres. Participating NO in
modulation of sensor systems in forebrain of mammals it was proved today [34]. We assume
that in the medulla fish NO performs modulation of primary sensory centers, located in the
nuclei of craniocerebral nerves. In the masou salmon brain all of the above mentioned nuclei,
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located in the stem and isthmus region are cholinergic and express nNOS (see the diagram on
Fig. 5). Primary sensory nuclei (V, VII, VIII, IX and X), and secondary relay nuclei (secondary
gustatory nucleus, the nucleus of the isthmus) in tha masou salmon brain, processing hetero‐
modal sensory the information in the nuclei of preglomerular complex modulated by NO (Fig.
5). We assume that in the masou salmon brain NO is modulator of sensory and motor
cholinergic centers.

Figure 5. Schematic diagram of sensory signals ascending from the nuclei V, VII, IX, X and octavo-lateral nerves of me‐
dulla oblongata to the telencephalon. In the left part are demonstrated the efferent ascending and descending pro‐
jection, anterior, medial preglomerular nuclei and mammilar body O. masou labeling by the DiI [19]. NO-ergic nuclei
of brainstem are shown by black, cholinergic-red circles. The other explanation see text.

The most important sensory center, conducting nociceptive information in fish’s brain is a
nucleus raphi. We found that in different species of teleost fish the most of the neurons of the
nucleus raphi superior and nucleus raphi inferior are expressed NADPH-d. This confirms the
data installed on mammalian and human brain, that NO is a mediator of nociception [35]. The
presence of nNOS-producing neurons and high level of activity NADPH-d in the nuclei of
raphi, dorsal spinal cord fibers and sensory part of the nucleus of trigeminal nerve indicates
participation of nitric oxide in the modulation signals of nociceptive and somatosensor centers
of the medulla oblongata in fishes brain. Study of the localization of nNOS in some periven‐
tricular hypophysotropic nuclei in diencephalon of adult specimens of Amur bitterling
showed that TH-ip and NO-producing system in periventricular and subventricular nuclei in
general have similar localization and area of colocalisation these transmitters is periventricular
nucleus of posterior tuberculum, where nNOS and TH were localized in small cells, forming
ascending projections on the ventral telencephalon. In these cells NO can modulate synaptic
plasticity of dopaminergic neurons and regulate the excretion of dopamine.

Study of physiological activity of hydrogen sulfide in the nervous system of mammals began
recently [36], and identifying its role in the central nervous system of fish previously had not
been carried out. The results of researches conducted on fish suggest that hydrogen sulfide
acts as an intermediary, regulating a number of enzymatic reactions cells. Distribution of the
enzyme synthesis of H2S in the CNS of fish is expressed species-specific features, perhaps
reflecting their adaptation character and functional status of the animal. Cystathionine β-
synthase in the brain of masu salmon Oncorhynchus masou and carp Cyprinus carpio was found
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in neurons of the ventral spinal column and medulla oblongata, fibers and cells of the cere‐
bellum, optic tectum, and telencephalon. In all brain areas, the intensity of CBS labeling in
neurons varied between moderate and high. We found interspecies differences in the immu‐
nolocalizatoin and optical density of CBS in different brain structures of masu salmon and
carp. In carp, the medulla oblongata and spinal cord contained intensely marked vessels that
were absent in masu salmon. In the brain of carp, H2S presumably functions as a predominant

Figure 6. Densitometric analysis of the CBS activity in different brain areas of masu salmon Oncorhynchus masou and
carp Cyprinus carpio. Abscissa axis, brain areas; Ordinate axis, optical density (OD). Data are shown as M ± m. (a) CBS
activity in neurons of dorsal telencephalon; (b) CBS activity in neurons of ventral telencephalon; (c) CBS activity in the
optic tectum; (d) CBS activity in the cerebellum; (e) CBS activity in the spinal cord and medulla oblongata. Designa‐
tions: Vv, Vd, Vl, ventral, dorsal, and lateral cell nuclei of the ventral telencephalon; Dd, Dc, Dl, dorsal, central, and lat‐
eral cell nuclei of dorsal telencephalon. blue columns-masu salmon; pink columns-carp.
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located in the stem and isthmus region are cholinergic and express nNOS (see the diagram on
Fig. 5). Primary sensory nuclei (V, VII, VIII, IX and X), and secondary relay nuclei (secondary
gustatory nucleus, the nucleus of the isthmus) in tha masou salmon brain, processing hetero‐
modal sensory the information in the nuclei of preglomerular complex modulated by NO (Fig.
5). We assume that in the masou salmon brain NO is modulator of sensory and motor
cholinergic centers.

Figure 5. Schematic diagram of sensory signals ascending from the nuclei V, VII, IX, X and octavo-lateral nerves of me‐
dulla oblongata to the telencephalon. In the left part are demonstrated the efferent ascending and descending pro‐
jection, anterior, medial preglomerular nuclei and mammilar body O. masou labeling by the DiI [19]. NO-ergic nuclei
of brainstem are shown by black, cholinergic-red circles. The other explanation see text.

The most important sensory center, conducting nociceptive information in fish’s brain is a
nucleus raphi. We found that in different species of teleost fish the most of the neurons of the
nucleus raphi superior and nucleus raphi inferior are expressed NADPH-d. This confirms the
data installed on mammalian and human brain, that NO is a mediator of nociception [35]. The
presence of nNOS-producing neurons and high level of activity NADPH-d in the nuclei of
raphi, dorsal spinal cord fibers and sensory part of the nucleus of trigeminal nerve indicates
participation of nitric oxide in the modulation signals of nociceptive and somatosensor centers
of the medulla oblongata in fishes brain. Study of the localization of nNOS in some periven‐
tricular hypophysotropic nuclei in diencephalon of adult specimens of Amur bitterling
showed that TH-ip and NO-producing system in periventricular and subventricular nuclei in
general have similar localization and area of colocalisation these transmitters is periventricular
nucleus of posterior tuberculum, where nNOS and TH were localized in small cells, forming
ascending projections on the ventral telencephalon. In these cells NO can modulate synaptic
plasticity of dopaminergic neurons and regulate the excretion of dopamine.

Study of physiological activity of hydrogen sulfide in the nervous system of mammals began
recently [36], and identifying its role in the central nervous system of fish previously had not
been carried out. The results of researches conducted on fish suggest that hydrogen sulfide
acts as an intermediary, regulating a number of enzymatic reactions cells. Distribution of the
enzyme synthesis of H2S in the CNS of fish is expressed species-specific features, perhaps
reflecting their adaptation character and functional status of the animal. Cystathionine β-
synthase in the brain of masu salmon Oncorhynchus masou and carp Cyprinus carpio was found
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in neurons of the ventral spinal column and medulla oblongata, fibers and cells of the cere‐
bellum, optic tectum, and telencephalon. In all brain areas, the intensity of CBS labeling in
neurons varied between moderate and high. We found interspecies differences in the immu‐
nolocalizatoin and optical density of CBS in different brain structures of masu salmon and
carp. In carp, the medulla oblongata and spinal cord contained intensely marked vessels that
were absent in masu salmon. In the brain of carp, H2S presumably functions as a predominant

Figure 6. Densitometric analysis of the CBS activity in different brain areas of masu salmon Oncorhynchus masou and
carp Cyprinus carpio. Abscissa axis, brain areas; Ordinate axis, optical density (OD). Data are shown as M ± m. (a) CBS
activity in neurons of dorsal telencephalon; (b) CBS activity in neurons of ventral telencephalon; (c) CBS activity in the
optic tectum; (d) CBS activity in the cerebellum; (e) CBS activity in the spinal cord and medulla oblongata. Designa‐
tions: Vv, Vd, Vl, ventral, dorsal, and lateral cell nuclei of the ventral telencephalon; Dd, Dc, Dl, dorsal, central, and lat‐
eral cell nuclei of dorsal telencephalon. blue columns-masu salmon; pink columns-carp.
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vasoregulator. H2S-producing systems in the brain of bony fishes have specific characteristics
of organization and strong species-related differences that correlate with the specificities of
neuromediators, for example, NO-producing, systems.

Comparative studies of localization CBS and densitometric data in various structures of the
masu salmon and carp showed interspecific differences, having obviously adaptive value (Fig.
10). In different areas of the masu salmon brain revealed varicose or smooth microcytosculp‐
ture of afferents and their endings, which may indicate to synaptic or paracrinic (volume)
methods of H2S release in different areas of the fishes brain.Currently shows the involvement
of GABA in the regulation of the endocrine activity of hormones preoptico-pituitary complex
at the early juveniles Salmo trutta fario [37]. On larval and early juvenile of this salmon species
showed the participation of GABA-ergic innervation in the regulation of synthesis of peptide
hormones of the pituitary, namely metencephalin and galanin [37]. In our research on different
age groups of masu salmon, it was found that GABA-ip neurons are present in various parts
of the brain: in the medulla oblongata, periventricular nuclei of diencephalon, mesencephalic
tegmentum, the brain stem, the cerebellum and spinal cord (Fig. 11). In addition to the neural
localization of GABA, it was identified small undifferentiated cells and radial fibers, localized
in areas where the proliferative activity of cells persists in adults animals (Fig. 11A, D). These
zones have been identified in the diencephalon on the territory of preoptical area, posterior
tuberal, thalamic and hypothalamic areas; in the region of the central gray matter of mesen‐
cephalic tegmentum; in the interfascicular area of brain stem and in the periventricular zones
in nuclei IX-X pairs of cranial nerves and the spinal cord. Patterns of distribution GABA-ergic
elements in the masu salmon brain is similar with the distribution of TH-ip structures. This
similarity manifests itself in the presence of both phenotypically mature cell forms and
undifferentiated elements with periventricular and subventricular localization and marking
of neuromeric structure of the brain. This immunomorphology of GABA-ergic structures,
discovered in the different age groups of masu salmon, may indicate that, like dopamine,
GABA should be also considered as morphogenetic factor affecting of postembryonic brain
development.GABA-ergic neurotransmission characterized by a high variability of synaptic
responses. In mammals, hydrogen sulfide regulates the condition of GABA-receptor of
different subtypes, localized pre-and postsinapticaly [38]. In adult masu salmon in different
areas of the brain and spinal cord, containing large projection cells, namely the dorsal teg‐
mental nuclei, medial reticular formation, reticulospinal cells, neurons in the ventral spinal
column were installed joint localization of GABA, PA and CBS (Fig. 7). These large-cells
structures in the fish brain participate in the organization of fast motor responses [39]. In
medullary regions of the medial RF and VSC of the masu salmon, the level of colocalization
of CBS, GABA, and PA is rather high. It is believed that the presence of PA promotes the
formation of buffer calcium systems that provide generation of repeated action potentials in
neurons with high-frequency discharges (Fig. 7). The high level of colocalization of PA,
cytochrome oxidase, and 2-deoxyglucose also indicates that the PA content is typical of
neuronal systems characterized by a high level of oxidative metabolism [40]. It was demon‐
strated that the concentration of intracellular calcium in neurons and glial cells upon the action
of H2S reversibly increases (due to the release of calcium from intracellular stores and its entry
into the cell through the plasma membrane) [41, 42]. Such adenylate cyclase-dependent
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mechanisms of activation can also be realized in the magnocellular CBS-and PA-ip populations
of myelencephalic cells of the masu salmon brain identified in our experiments. As was found,
inhibition of H2S synthesis results in a significant decrease in the level of intracellular calcium.
This confirms the conclusion on the appreciable effect of H2S-dependent pathways on the time
characteristics of processes related to calcium homeostasis in the neurons [41].

Figure 7. Schematic diagrams of distribution of cystathionine-β-synthase (CBS)-, GABA-, and parvalbumin (PA)-immu‐
nopositive loci in frontal CNS slices of the masu salmon, Oncorhynchus masou (A-M). Zones of immunopositivity with
respect to CBS, GABA, and PA are indicated by blue circles, red diamonds, and black asterisks, respectively. AC) Ansular
commissure, AP) area postrema, Vv, Vd, Vl, and Vs) ventral, dorsal, lateral, and supracommissure zones of the ventral
region, respectively, SGT) secondary gustatory tract, VMTN) ventromedial thalamic nucleus, VSC) ventral spinal col‐
umn, Ha) habenula, GE) granular eminence, Gl) granular layer, Dd, Dl, Dm, and Dc) dorsal, lateral, medial, and central
zones of the dorsal region, respectively, DLNT) dorsolateral nucleus of the tegmentum, DTN) dorsal thalamic nucleus,
PVe) posterior ventricle, PC) posterior commissure, PTN) posterior tuberal nucleus, rV) root of the trigeminal (V cranial)
nerve, MPoN) magnocellular preoptic nucleus; LH) lateral hypothalamus, LVe) lateral ventricle, LOT) lateral optic tract,
CC) corpus cerebelli, MeRF) mesencephalic reticular formation, CeV) cerebellar valve, CeCh) cerebellar chiasm, PPoN)
parvicellular preoptic nucleus, MLF) medial longitudinal fascicle, MRF) medial reticular formation, CeMl) cerebellar mo‐
lecular layer, DTT) descending tract of the trigeminal nerve, OLen) octavolateral efferent neurons, MRB) Meynert’s ret‐
roflex bundle, OT) optic tectum, OCh) optic chiasm, ON) olivary nucleus, SlT) semilunar torus, PVO) paraventricular
organ, PGN) preglomerular nucleus, AC) anterior commissure, LT) longitudinal torus, ATN), anterior thalamic nucleus,
ATbN) anterior tuberal nucleus, PN) pretectal nucleus, RF) reticular formation, ST) solitary tract, CHtN) central hypo‐
thalamic nuclei, CC) central canal, CGl) central gray layer, NIII) oculomotor nucleus, NIV) nucleus of the trochlear nerve,
NIX-X), nuclei of the glossopharyngeal and vagus nerves, respectively, NV) nucleus of the trigeminal nerve, NVII) nu‐
cleus of the facial nerve, IIIn) oculomotor nerve, IV) fourth ventricle, and VIIn) facial nerve.
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vasoregulator. H2S-producing systems in the brain of bony fishes have specific characteristics
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similarity manifests itself in the presence of both phenotypically mature cell forms and
undifferentiated elements with periventricular and subventricular localization and marking
of neuromeric structure of the brain. This immunomorphology of GABA-ergic structures,
discovered in the different age groups of masu salmon, may indicate that, like dopamine,
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development.GABA-ergic neurotransmission characterized by a high variability of synaptic
responses. In mammals, hydrogen sulfide regulates the condition of GABA-receptor of
different subtypes, localized pre-and postsinapticaly [38]. In adult masu salmon in different
areas of the brain and spinal cord, containing large projection cells, namely the dorsal teg‐
mental nuclei, medial reticular formation, reticulospinal cells, neurons in the ventral spinal
column were installed joint localization of GABA, PA and CBS (Fig. 7). These large-cells
structures in the fish brain participate in the organization of fast motor responses [39]. In
medullary regions of the medial RF and VSC of the masu salmon, the level of colocalization
of CBS, GABA, and PA is rather high. It is believed that the presence of PA promotes the
formation of buffer calcium systems that provide generation of repeated action potentials in
neurons with high-frequency discharges (Fig. 7). The high level of colocalization of PA,
cytochrome oxidase, and 2-deoxyglucose also indicates that the PA content is typical of
neuronal systems characterized by a high level of oxidative metabolism [40]. It was demon‐
strated that the concentration of intracellular calcium in neurons and glial cells upon the action
of H2S reversibly increases (due to the release of calcium from intracellular stores and its entry
into the cell through the plasma membrane) [41, 42]. Such adenylate cyclase-dependent
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mechanisms of activation can also be realized in the magnocellular CBS-and PA-ip populations
of myelencephalic cells of the masu salmon brain identified in our experiments. As was found,
inhibition of H2S synthesis results in a significant decrease in the level of intracellular calcium.
This confirms the conclusion on the appreciable effect of H2S-dependent pathways on the time
characteristics of processes related to calcium homeostasis in the neurons [41].

Figure 7. Schematic diagrams of distribution of cystathionine-β-synthase (CBS)-, GABA-, and parvalbumin (PA)-immu‐
nopositive loci in frontal CNS slices of the masu salmon, Oncorhynchus masou (A-M). Zones of immunopositivity with
respect to CBS, GABA, and PA are indicated by blue circles, red diamonds, and black asterisks, respectively. AC) Ansular
commissure, AP) area postrema, Vv, Vd, Vl, and Vs) ventral, dorsal, lateral, and supracommissure zones of the ventral
region, respectively, SGT) secondary gustatory tract, VMTN) ventromedial thalamic nucleus, VSC) ventral spinal col‐
umn, Ha) habenula, GE) granular eminence, Gl) granular layer, Dd, Dl, Dm, and Dc) dorsal, lateral, medial, and central
zones of the dorsal region, respectively, DLNT) dorsolateral nucleus of the tegmentum, DTN) dorsal thalamic nucleus,
PVe) posterior ventricle, PC) posterior commissure, PTN) posterior tuberal nucleus, rV) root of the trigeminal (V cranial)
nerve, MPoN) magnocellular preoptic nucleus; LH) lateral hypothalamus, LVe) lateral ventricle, LOT) lateral optic tract,
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parvicellular preoptic nucleus, MLF) medial longitudinal fascicle, MRF) medial reticular formation, CeMl) cerebellar mo‐
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ATbN) anterior tuberal nucleus, PN) pretectal nucleus, RF) reticular formation, ST) solitary tract, CHtN) central hypo‐
thalamic nuclei, CC) central canal, CGl) central gray layer, NIII) oculomotor nucleus, NIV) nucleus of the trochlear nerve,
NIX-X), nuclei of the glossopharyngeal and vagus nerves, respectively, NV) nucleus of the trigeminal nerve, NVII) nu‐
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Significant heterogeneity of CBS-ip, GABA-ip,and PA-containing subpopulations of neurons
in all regions of the masu brain is indicative of the fact that such units belong to different
neurochemical and electrophysiological systems. The density of CBS-, PA-, and GABA-ip cells
in the masu salmon is maximum and constant in the magnocellular caudal cerebral regions,
namely in the regions of localization of the reticulo-spinal neurons, “high-frequency” Mauth‐
ner cells, and ventral spinal cord (VSC) neurons. Cells of these types in fishes are involved in
the organization and control of rapid motor reactions [43]. Н2S-dependent regulation of
calcium release with participation of PA can influence the parameters of impulse activity due
to shortening of the refractory period in the corresponding neurons after generation of action
potentials and, therefore, can provide the animal with certain behavioral evolutionary
preference. Thus, in the population of large inhibitory neurons containing enhanced concen‐
tration of intracellular Ca2+, the excretion of GABA in our opinion can be arranged with the
help of hydrogen sulphide.

Study of the relationship between NO and H2S-producing systems in the masu salmon brain
revealed that they were separate, non-overlapping system of intra-and intercellular signaling.
The study of the distribution of NADPH-d positive, nNOS-and CBS-ip elements in different
areas of the masu salmon brain, and some features immunolabeling of cells and fibers indicate
that NO and H2S-producing systems are independent neural complexes that perform special‐
ized functions in the work of local neural networks.

In the dorsal region of the telencephalon in masu salmon NO is predominant gasotransmitter,
the effects of which release by paracrinical way. In the ventral region of the telencephalon
prevails system of hydrogen sulfide synthesis. In the ventral region of the telencephalon high
activity CBS was revealed. Perhaps this system has synaptic localization, significant morpho‐
logical heterogeneity of cells in the dorsal nucleus (Vd) and varicose cytosculpture of the
afferents. Apparently, in the telencephalon of masu salmon way to release the gasotransmitters
affect the nature of their neuromodulatory effects.

In the periventricular area of diencephalon and optic tectum masu salmon were populated by
both CBS and nNOS and NADPH-d-producing cells. The presence of NO and H2S-producing
elements in these areas indicates possible participation of hydrogen sulfide and nitric oxide in
morphogenesis these compartments of a brain. In masu salmon brain has been identified CBS-
ip fibers of varicose type that penetrate the layer of Purkinje cells. The presence of such fibers
and CBS-ip endings in interganglionic plexus of corpus cerebelli, possibly reflecting the
sinaptical method of release of H2S in this area of the masu salmon brain. The presence of NO-
ergic cells and fibers was shown in the cerebellum on different species of fish by histochemical
marking of NADPH-d [4, 44, 45]. Detection of nNOS in eurydendroid cells of masu salmon
cerebellum confirms received our earlier data on histological labelling of NADPH-d in the
neurons of this type of fish [46]. According to Ikenaga with co-authors [47], most of the
eurydendroid cells in fish are aspartat-ergic and receive GABA-ergic impulses from the
Purkinje cells. According to our data, the population of eurydendroid cells of masu salmon in
cerebellum contains GABA-ergic and PA-ergic cells. Identified in the of masu salmon cere‐
bellum thin nNOS-ip fibers, in our opinion, are the axons of eurydendroid neurons. Thus, nitric
oxide, and being located in the projection eurydendroid cells, can acts as a modulator of
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aspartat-ergic signals in structure of efferent fibres to various parts of the masu salmon brain.
Localization of nNOS, NADPH-d and CBS in interfascicular cells of masu salmon, by the
classification [48], identified for the first time. We believe that interfascicular CBS-and nNOS-
ip neurons of masu salmon are separate subpopulations of cells of the reticular formation,
which modulating GABA-and cholinergic system in the medulla oblongata, respectively.

Figure 8. A – clusters of NADPH-d-producing cells (delineated by rectangles) in periventricular area of medulla oblon‐
gata of Oncorhynchus masou; on B in a large magnification. C - cystathionine β-synthase (CBS) producing cells (red
arrows) in periventricular area of Cyprinus carpio brain, on D in a large magnification. LX – lobus of vagal nerve, IV –
forth ventricle, MLF – medial longitudinal fascicle. Scale: А, C – 200 μm, B, D – 50 μm.

Secondary gustatory nucleus is seen as a visceral integrative centre in medulla oblongata in
fishes brain [46]. In Carp in this nucleus was found the CBS immunolocalization, and in the
masu salmon the secondary gustatory nucleus is CBS-immunonegative, but contains NADPH-
d and nNOS. We believe that with the participation of H2S and NO-producing systems in the
brain fish is carried out sensory modulation functions related to the evaluation of food in space
and coordination of mechanosensor, visual and gustatory features. In Carp brain the main
neurotransmitter of the gustatory system is hydrogen sulfide, and in the masu salmon brain
is nitric oxide, which confirms the assumption about the use of fish of various signal trans‐
ductor systems to transfer the neurochemical information in functionally similar complexes.
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d and nNOS. We believe that with the participation of H2S and NO-producing systems in the
brain fish is carried out sensory modulation functions related to the evaluation of food in space
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We have revealed the existence of NO and H2S-producing neurons in brainstem and isthmus
regions of masu salmon brain. nNOS-ip and NADPH-d positive neurons were discovered in
the composition of somato- and viscerosensoric (V, VII, IX-X) and visceromotoric (III, IV and
VI) of craniocerebral nerves, octavo-lateral efferent complex, medial reticular formation. CBS
in the medulla of masu salmon was detected in neurons of the nucleus X nerve, reticulospinal
cells and ventro-lateral reticular formation. Distribution of NO and H2S-producing neurons in
the nuclei of medulla oblongata of masu salmon indicates that NO is the predominant
neuromodulator of somato-and viscerosensoric and visceromotoric systems of medulla
oblongata, and H2S probably modulates viscerosensoric systems associated with the nucleus
X nerve, and descending motor systems. NO and H2S-producing systems in the fishes brain:
1) are independent neural complexes which are carrying out specialized functions in the work
of local neural networks; 2) represent separate, non-overlapping systems of intra-and inter‐
cellular signaling, modulating the activity of choline-, GABA-and catecholaminergic systems,
respectively; 3) regulate the processes of adult neurogenesis in the matrix areas of the brain.

5. Gaseous mediators as a regulators of adult neurogenesis

Unlike mammals, the fish brain has a high neuronal plasticity and can produce new cells
throughout life [49]. The results of our investigations indicate the existence of nNOS and
NADPH-d in neurons and glial cells in the masu salmon brain. It is shown that NO plays the
role of signaling agent, regulating the processes directed growth of axons and dendrites and
migration of differentiating neurons [50]. It is established that in the subventricular zone of
mammalian forebrain is surrounded by NO-producing neurons [51, 52]. Cells expressing
nNOS were identified among progenitor cells of dentate girus in the hippocampus of Guinea
pig [53]. These areas of the brain are considered zones adult neurogenesis in which the
proliferation of the cells is maintained throughout the life of animals and human. The results
of our investigation (Fig. 8A, B) suggest that in the periventricular area of the medulla
oblongata in masu salmon containing PCNA-ip proliferating cells in different age periods, NO
can act as a regulator of adult neurogenesis, which confirms the data obtained on mammals.

In the periventricular area of the medulla oblongata, ventral and lateral areas of the cerebellum
of carp are considered matrix areas of the brain of this species [54], identified highly CBS-
immunogenic cells, without any processes (Fig. 8C, D). The sizes of cells, their location in the
brain and correlations with H2S-producing neurons indicate the presence of H2S-producing of
glia in the matrix zone of carp brain. In similar areas of the masu salmon brain such cells were
not found. As currently participation of gaseous mediators in the regulation of post-embryonal
neurogenesis of mammals was shown [55], we believe that in carp brain H2S can act as such
an agent, as the presence of CBS in proliferative areas of brain we consider as one of the proofs
of this. One of the mechanisms regulating the in fish producing the large number of cells,
educated including postembryonal period is apoptosis [7]. Study of a 60-day old sturgeon fry
showed the presence of intensively proliferating zones containing PCNA-ip cells in forebrain.
The active proliferation of cells in this period of the sturgeon′s development is complemented
by the formation of secondary neurogenetic zones.
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The 3-year olds sturgeons’ zone proliferation and apoptosis in various parts of the intact CNS
saved (Fig. 9A, B). The highest proliferative activity was detected in periventricular zone of
medulla oblongata, that allows considering this area as a major area of adult neurogenesis (Fig.
14A, 15B). In the medial reticular formation, dorsal nuclei of the thalamus, the inner fibrous
layer of tectum opticum and lateral hypothalamus were discovered maximum number of
apoptotic elements. This circumstance allows us to suppose that these regions in the sturgeon
brain correspond with the areas of postmitotic neuroblasts localization. In the sensory centers
(tectum opticum and nuclei V, VII and X nerves were revealed variable ratio processes of
proliferation and apoptosis (Fig. 10A), which indicates different rates of growth and differen‐
tiation of visual and chemosensory centers of the sturgeon brain. In contrast to mammals in
which central divisions of sensory systems are completely formed and correspond strictly to
the number of sensory receptors at the moment of birth and/or immediately after this event,
sensory projections in the fish brain continue their growth and development during the entire
life. Such a peculiarity of the fishes is related to the fact that the CNS organization must adapt
to a significant permanent increase in the size of the body and, correspondingly, to a rise in
the volume of incoming sensory information. Our studies of projections of the somato- and
viscerosensory nuclei of the myelencephalon and tectum opticum of the sturgeon confirmed
in general the hypothesis that adult neurogenesis and apoptosis exert significant effects on the

Figure 9. Proliferative activity (A and B) and apoptosis (C and D) in the brain of a three-year sturgeon A. schrenckii.
PСNA-ip cells are shown triangular arrow, TUNEL labeled elements – are shown black arrows. Scale: A, B-100 μm; C-50
μm; D-200 μm.
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We have revealed the existence of NO and H2S-producing neurons in brainstem and isthmus
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of our investigation (Fig. 8A, B) suggest that in the periventricular area of the medulla
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can act as a regulator of adult neurogenesis, which confirms the data obtained on mammals.
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of carp are considered matrix areas of the brain of this species [54], identified highly CBS-
immunogenic cells, without any processes (Fig. 8C, D). The sizes of cells, their location in the
brain and correlations with H2S-producing neurons indicate the presence of H2S-producing of
glia in the matrix zone of carp brain. In similar areas of the masu salmon brain such cells were
not found. As currently participation of gaseous mediators in the regulation of post-embryonal
neurogenesis of mammals was shown [55], we believe that in carp brain H2S can act as such
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The active proliferation of cells in this period of the sturgeon′s development is complemented
by the formation of secondary neurogenetic zones.
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peculiarities of postnatal development of the sensory systems. Our findings agree with the
published data on intensification of differential growth in primary sensory regions in the lobe
of the nucl. vagus of the carp, as well as in the Danio retina and tectum, compared with other
cerebral regions [56].

Up to now, it remains unknown whether all types of neurons develop and are integrated into
the corresponding networks of the growing brain of fishes. It seems probable that some initial
level of organization of neuronal networks in fishes is already preformed at the moment of
their hatching, and only some types of neurons continue their formation and integration into
existing networks during the later period of life. It is believed that the weak ability for
substitution or development of new neurons in the mammalian brain is related to the limited
ability of such cells in animals of this class to be integrated into mature neuronal networks [58].
It is hypothesized that neurons formed de novo in adult animals are distinguished by a higher

Figure 10. Intensity of the processes of proliferation and apoptosis in different parts of the myelencephalon of the
Amur sturgeon Acipenser schrenckii. Data are shown as M ± m. A) In the nuclei of trigeminal and facial nerves (NV and
NVII, respectively) and perinuclear zones adjacent to these nuclei (PNZ V and PNZ VII, respectively). B) In the lobe of
the vagus nerve. PVZ, SVZ, and DZ-periventricular, subventricular, and deep zones, respectively. Ordinate axis-prolifer‐
ation index, PI (blue columns) and apoptosis index, AI (pink columns), %.
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plasticity compared with that of preexisting cells [59, 60]. This viewpoint agrees well with our
findings on the sturgeon and allows us to suppose that postembryonic (adult) neurogenesis
correlates with coordinated growth of the sensory systems and sensory structures of the brain.
Therefore, this phenomenon can open possibilities for the processing of new ontogenetic
experience. Incorporation of new cells into the neuronal networks existing earlier in the
sensory regions is directly related, first of all, to an increase in the size of the brain in the course
of growth of the fish. However, it should be taken into account that fishes, immediately after
hatching, possess relatively well preformed sensory and motor systems making possible rather
rapid training for complex behavioral habits, e.g., active catching of food and avoidance of
predators. This indicates that some parts of the CNS of fishes, which are responsible for
information processing and realization of functional needs of the organism necessary within
a certain life period, begin to function before hatching. The later postembryonic growth can
be considered a process of delayed development related to the maintenance of the functions
necessary in future, e.g., for the formation of zoosocial communication or sexual behavior.
Therefore, our conclusion that some parts of the sturgeon brain remain, in fact, in the neotenic
state over a rather long postembryonic period seems to be quite logical. This hypothesis
explains the high indices of proliferative activity in some brain regions in cartilaginous ganoid
fishes.

The particular relevance of the results obtained acquire the communications regulatory
functions of nitric oxide and hydrogen sulfide, regarded as regulators of adult neurogenesis
in the fish brain. We have highlighted nNOS-ip fiber varicose type in subventricular area of
the spinal cord, as well as the presence of PCNA-and nNOS-ip cells in the composition of the
periventricular area of diencephalon and medulla oblongata in sturgeon and salmon indicates
the presence of NO-producing elements in zones containing proliferating cells. On the other
hand, detection of NO-ergic activity in TUNEL positive areas of the brain sturgeon indicates
the involvement of nitric oxide in the regulation of apoptosis. Thus, it is possible that in the
brain sturgeon NO is as proapoptogenic and regulatory proliferation factor exercising to
maintain a balance between the two processes. Cytotoxic and neuroprotective effects NO can
be viewed as interrelated elements of a single action: if the excess output of NO potentiates
the mechanisms of apoptosis in the zones of localization of postmitotic neuroblasts, the factors
reducing NO production can be considered as compensatory. In the basis of post embryonic
morphogenesis of sturgeon′s A. schrenckii brain, and particular, development of sensor
systems are founded on certain ratio of the processes of proliferation and apoptosis, having
NO-dependent mechanism of regulation.

6. Conclusion

Thus, we believe that the peculiarities of the distribution of the investigated systems synthesis
of classic neurotransmitters (GABA, catecholamines), as well as gaseous mediators (NO and
H2S) is directly linked to the ability of the brain fish grow throughout life. We interpret the
obtained results in this context. This led us to the conclusion that some of the classic neuro‐
transmitters (dopamine, GABA), as well as gaseous intermediaries (NO and H2S) are not only
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be considered a process of delayed development related to the maintenance of the functions
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the spinal cord, as well as the presence of PCNA-and nNOS-ip cells in the composition of the
periventricular area of diencephalon and medulla oblongata in sturgeon and salmon indicates
the presence of NO-producing elements in zones containing proliferating cells. On the other
hand, detection of NO-ergic activity in TUNEL positive areas of the brain sturgeon indicates
the involvement of nitric oxide in the regulation of apoptosis. Thus, it is possible that in the
brain sturgeon NO is as proapoptogenic and regulatory proliferation factor exercising to
maintain a balance between the two processes. Cytotoxic and neuroprotective effects NO can
be viewed as interrelated elements of a single action: if the excess output of NO potentiates
the mechanisms of apoptosis in the zones of localization of postmitotic neuroblasts, the factors
reducing NO production can be considered as compensatory. In the basis of post embryonic
morphogenesis of sturgeon′s A. schrenckii brain, and particular, development of sensor
systems are founded on certain ratio of the processes of proliferation and apoptosis, having
NO-dependent mechanism of regulation.

6. Conclusion

Thus, we believe that the peculiarities of the distribution of the investigated systems synthesis
of classic neurotransmitters (GABA, catecholamines), as well as gaseous mediators (NO and
H2S) is directly linked to the ability of the brain fish grow throughout life. We interpret the
obtained results in this context. This led us to the conclusion that some of the classic neuro‐
transmitters (dopamine, GABA), as well as gaseous intermediaries (NO and H2S) are not only
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regulators of the functional activity of neurons and modulators of synaptic transmission in
mature neural networks, but also are considered as inductors of development (morphogenetic
factors) in the brain during postembryonic fish ontogenesis. Proof of this is a detection of the
phenotypic immature elements in the masou salmon brain adult age, expressing the above
mentioned molecules in proliferative areas of the brain, as well as elements that have the
morphology of the radial glia. Presence of markers of gaseous intermediaries in the areas of
expressing proliferative nuclear antigen (PCNA), proves the involvement of gaseous inter‐
mediaries in the regulation of post-embryonal neurogenesis. The fish with the prolonged cycle
of development (salmon, and carp) such markers (NO and H2S) in periventricular proliferative
areas of the brain may differ, which is consistent with the notion that in functionally similar
complexes in animals can be used different signal transduction systems. Development of the
nervous system salmon and sturgeon, in contrast to the widespread neurogenetic model D.
rerio occurs over a long period of time. According to our data, the different structures of the
CNS of masou salmon characterized by severe heterochrony, i.e. the cells of caudal parts of
the brain in much earlier than neurons of forebrain departments, acquire the features of
phenotypic specialization. We are convinced that the brains of these animals for a long time
keeps features of fetal organization, and the presence of first and second years of life low
differentiated phenotypically immature cell forms, confirms this hypothesis. The data
presented in this study open a new trend in investigation of cellular mechanisms of shaping
in structural organization in the postembryonic fishes brain and in examination of morpho-
functional manifestations concerning histogenetic processes in different periods of postem‐
brionic ontogenesis. The new priority data received are connected with development of
nervous tissue in the pacific salmon brain and with dynamic of the brain shaping and distri‐
bution of classical neurotransmitters and gaseous mediators in a context of incessant postem‐
bryonic neurogenesis.
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1. Introduction

Amyloid is a term for the build-up of protein deposits or plaques in the body. Thus amyloid
are extracellular insoluble fibrous protein aggregates. One characteristic is that these fibrils
acquire β-sheet structure. Therefore the structure of the proteins that form deposits is altered
and often exhibits inappropriate folding. The misfolded proteins, interact with each other and
with other proteins, forming aggregates and the accumulation of these amyloid fibrils in
particular organs is call amyloidosis, which is characteristic of several pathologies, including
neurodegenerative diseases, such as Alzheimer’s Disease (AD), transmissible spongiform
encephalopathies, type II diabetes, familial amyloidoses and other variants of systemic
amyloidoses [1].

2. APP processing

There are two pathways (Figure 1) for processing amyloid precursor protein (APP): An
amyloidogenic pathway and a non-amyloidogenic, constitutive secretory pathway. Different
APP fragments are generated after secretase cleavage.

In the non-amyloidogenic pathway, part of the extracellular domain of APP is cleaved by the
α-secretases, that belong to the disintegrin and metalloproteinase (ADAM, including ADAM9,
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ADM10 and ADAM17, also known as TACE), releasing a soluble extracellular fragment know
as sAPP-α, that has neurotrophic and neuroprotective functions [2, 3]. Then γ-secretase [4, 5]
that is present at the plasma membrane, can generate an intracellular APP fragment that is
known as APP intracellular C-terminal domain (AICD) [6]. In the amyloidogenic pathway,
APP is cleaved by β-secretase (BACE1) [7, 8] at its extracellular domain, giving rise to two
fragments; sAPP-β (N-terminal fragment) and CT99 or CT89. Then CT99 could be cleaved by
the γ-secretase complex (including Nicastrin, Anterior Pharynx defective 1, Presenilin
enhancer 2, Presenilin 1 and or Presenilin 2) within the plasma membrane. These two cleavages
(β-secretase and γ-secretase cleavages) generate Amyloid beta (Aβ) and more AICD fragment.
The length of the AICD fragment could vary due to heterogeneous γ-secretase cleavage, and
subsequent ε-secretase and ζ-secretase activity. AICD has physiological and pathological
actions, particularly in signaling from the membrane to the nucleus through epigenetic
modulation of gene expression [9]. Moreover inside the cell, AICD fragment can undergo more
processing by caspases giving rise to a fragment called CT31, which is a potent inducer of
apoptosis [10].
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Figure 1. APP processing.
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3. Amyloid Beta

Amyloid Beta (Aβ) is a peptide generated by the amyloidogenic pathway of APP processing
[11]. As we mentioned before, initially APP, a transmembrane protein, is cleaved by α- or β-
secretases (Figure 1), generating large, soluble, secreted fragments (sAPPα and sAPPβ) and
membrane associated carboxy-terminal fragments (CTFs). Aβ peptides could vary in size, from
38 to 43 aminoacids, being the predominant isoforms the Aβ 1-40, 90%, and the more fibrilo‐
genic Aβ 1-42, 10% and they are generated after β-secretase (also known as BACE1, β-site APP
cleaving enzyme) cleavage, followed by γ-secretase cleavage [12]. Aβ peptide has the ability
of auto-aggregate, so it could exist as monomers, dimers or oligomers; which in turn can
generate fibrils, that have β-sheet structure, and could deposit to form extracellular plaques
(neuritic plaques) [13].

As we mentioned above, the amyloidosis is a condition in which normally soluble proteins
become insoluble and are deposited in the extracellular space of various tissues. The extrac‐
ellular deposits of Aβ are characteristic of several neurological conditions including: Alzheim‐
er’s Disease [14], Down’s syndrome [15], brain traumatic injuries [16], and ageing [17].
Particularly Aβ is the predominant protein in the plaques, which are one of the principal
histological hallmarks of Alzheimer’s disease brains. Alzheimer’s disease is the most common
cause of dementia among older people, and is characterized by a progressive cognitive decline
and loss of memory and the inability to perform common tasks.

4. Physiologycal role of Aβ

Although Aβ peptides are produced at high amounts in pathological conditions, they are also
present in low levels in normal brains, particularly during synaptic activity. For many years
it has not been clear the role of APP and Aβ in non-pathological conditions, and it was thought
that Aβ was an incidental product of the catabolism of APP without a physiological role (Figure
2). APP is an integral membrane protein with high affinity to copper, ubiquitously expressed
and it has been reported that APP is involved in neurodevelopment and is required for
neuronal growth [18]. APP also participates in synaptogenesis [19] and cell adhesion. More‐
over, anti-APP antibodies block memory formation [20].

At high concentrations (nanomolar to micromolar) Aβ causes neurotoxicity and cell death [21].
However, it has been proposed that low concentrations (picomolar) of Aβ could act as trophic
signal [22] and as modulator of synaptic activity, with implications in memory and learning.
In addition, picomolar levels of Aβ had been determined in interstitial fluid of normal brain
by microdialysis [23]. According to Cirrito and colleagues, the Aβ peptide levels in the brain
are dynamically and directly influenced by synaptic activity. Furthermore, low amounts of
Aβ, could work as antioxidants, due to its ability to capture redox metals, such as Cu, Fe and
Zn, and thus, preventing their participation in redox cycling with other ligands [24]; hence
Aβ has the ability to function as a chelator and antioxidant molecule.
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Aβ has been extensively studied due to its association with neuritic plaques in AD brains [25].
However, in non-pathological conditions the existence of Aβ has also been reported. Consid‐
ering it, many attempts have been addressed to find the physiological function of Aβ in the
brain, particularly its role in synaptic plasticity and neuronal survival. The physiological levels
of Aβ are essential for synaptic plasticity in normal individuals [26]. Taking into account the
positive- or negative- effects of Aβ, it is proposed that the peptide exhibits dual effects:
neurotrophic or neurotoxic. These effects may be attributed to different aspects such as its
relative concentration, the cellular environment and is also related to the age of the individuals.
The low physiological concentrations of Aβ could play a key role for regulating synaptic
plasticity and improve cognitive functions, whereas the accumulation of high concentrations
of Aβ, coupled with the effects of age, causes dysregulation and loss of synaptic function, as
shown in the AD [27].

The functional properties of the Aβ have not been completely elucidated; however numerous
studies have suggested that the peptide possesses neurotrophic properties [22, 28]. Recently
it was suggested that soluble Aβ plays important roles in the facilitation of neuronal growth,
cellular survival, in the modulation of synaptic function and defense against oxidative stress.
Also, the physiological concentrations of Aβ favor the learning and memory processes [29]. In
addition, it has been suggested that monomers of Aβ40, which is the most abundant species
found in the brain, could function as antioxidant natural molecule by preventing the neuronal
death caused by metal-induced oxidative damage.

Figure 2. Balance between physiological and pathological effects of Aβ. Like a seesaw in a park, the levels of Aβ
change due to environmental factors or genetic background. In normal healthy conditions, Aβ is at lower concentra‐
tion (pM), and exerts its physiological functions, but in disease conditions the levels of Aβ are elevated (nM to μM) and
it switches it functions to pathological effects.
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Also, it is known that low picomolar concentrations of a preparation containing both mono‐
mers and oligomers of Aβ42 cause a marked increase of hippocampal long-term potentiation
(LTP), whereas high nanomolar concentrations lead to the well-established reduction of
potentiation. The picomolar levels of Aβ42 also produce a pronounced enhancement of both
reference and contextual fear memory.

Thus, these findings here described strongly support a duality for Aβ effects in which low
concentrations play a novel positive role on neurotransmission and memory, whereas high
concentrations produce the well-known detrimental effect culminating in dementia [30].

5. APP and Aβ as modulators of synaptic activity

APP levels increase during synaptogenesis suggesting its role in neuronal communication [9].
There are evidences that suggest that APP interacts with the calcium sensor of synaptic vesicles
possibly regulating synaptic vesicle exocytosis, and calcium homeostasis [31, 32]. The role of
APP in learning and memory has been evidenced by studies showing that regulation of its
levels of expression can modulate synaptic spine density, an effect that is mediated by its
soluble α-cleaved fragment sAPPα [33, 34]. APP is also essential for the synapses and required
for spatial learning and long-term potentiation (LTP, which correlate with memory formation)
[35]. Moreover, APP participates in axonal outgrowth and restoration of neuronal functions
[36, 37].

Although it is thought that Aβ impairs synaptic plasticity, it mostly depends on its concen‐
tration. High levels of Aβ have been found to markedly reduce long-term potentiation (LTP)
[38], as we mentioned before, this is the type of synaptic plasticity that correlates with learning
and memory, therefore, causing memory loss [25, 39, 40]. However, Aβ peptides are not only
present in elevated amounts; they are also present in low levels throughout life, suggesting a
possible physiological role of Aβ in normal healthy individuals [41, 42]. Recently it has been
suggested that Aβ levels are likely to be regulated by synaptic activity in an endocytosis
dependent manner depressing synaptic function [43, 44]. The group of Ottavio Arancio
demonstrated first that low picomolar amounts of exogenous applied Aβ42 enhance synaptic
plasticity and memory [30], and second, that endogenously produced Aβ is critical for normal
synaptic plasticity and memory [41]. For these latest experiments, this group used wild type
mice, in which endogenous Aβ function was blocked by utilization of rodent-specific mono‐
clonal antibody (JRF/rAb2) and by blocking the production of Aβ with the use of siRNA against
APP. They concluded that endogenous Aβ is required for synaptic plasticity and memory, and
that this effect is mediated via α7-nAChRs [41].

Cirrito and colleagues found that synaptic activity rapidly and dynamically regulates ISF
(Interstitial fluid) Aβ levels in vitro in an acute brain slice model. Accordingly, the relationship
between synaptic activity and extracellular Aβ levels appears to be related to synaptic vesicle
release: Thus extracellular Aβ levels are increased when synaptic vesicles undergo exocytosis,
even in the absence of neuronal activity. This data suggest that the rapid effects of synaptic
activity on Aβ are mediated at the presynaptic side of the synaptic cleft [44].
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6. Antioxidant role of Aβ

Aβ belongs to a group of proteins (metalloproteins) that capture redox metal ions (even under
mildly acidotic conditions), thus preventing them from participating in redox cycling with
other ligands [45, 46]. It has the ability to bind Cu, Fe and Zn [47].

Although the product of Aβ’s oxidant activity is the hydrogen peroxide (H2O2), that is likely
to mediate toxicity as the levels of oxidant rise with the increased accumulation of Aβ in the
AD brain, the excessive removal of Aβ is not beneficial, since the absence of Aβ may prevent
adequate chelation of metal ions and appropriate removal of O2

- leading to an enhanced rather
than a reduced neuronal oxidative stress, and this has to be taken in account when designing
therapeutic strategies that use drugs that lower Aβ levels. Oxidative stress promotes Aβ
generation, and in these conditions, the formation of amyloid plaques could be a compensatory
response to remove reactive oxygen species [24].

One of the pathological early events that occur in the brains of AD affected individuals is the
oxidative damage [48]. And also both Amyloid deposits (Plaques) and neurofribillar tangles
accumulate oxidative modifications over time.

Aβ has two major sites that are important for its redox activity. The first site involves the
binding of redox active Cu or Fe to human AB40 and AB42 via histidine residues that directly
produce H2O2 by a mechanism that involves the reduction of these metal ions [49-51]. The
second site is a Methionine at position 35 in the lipophilic C-terminal region [49]. The interac‐
tion of metal ions by Aβ is crucial for the redox activity and neurotoxicity of the peptide.

Several studies had evidenced the antioxidant properties of Aβ. Kontush and colleagues [52],
showed Aβ prevents lipoprotein oxidation in CSF and Zou and colleagues [53], showed that
monomeric Aβ40 inhibits the reduction of Fe(III) induced by vitamin C and the generation of
O2

-. Moreover, the increased production of Aβ in mutant PS1 fibroblasts is accompanied by a
decrease in the production of ROS (reactive oxygen species), particularly .OH formation [54].
Furthermore, the increased production of Aβ induced by the over-expression of wild type PS1
in brains of transgenic mice resulted in increased brain resistance to metal-induced oxidation
[55]. Conversely, primary hippocampal neurons from PS1M146V mutant knock-in mice,
exhibit increased superoxide production when treated with Aβ [56]. In addition to its cellular
protective role, physiological concentrations of Aβ40 and Aβ42 have been shown to protect
lipoproteins from oxidation in cerebrospinal fluid and plasma [52]. Taken together the results
discussed in this section, we can conclude that Aβ can function as an antioxidant in normal
neurons and many other cells, such as astrocytes, neuroblastoma cells, hepatoma cells,
fibroblasts and platelets [24]. Besides, its intracellular functions, Aβ could have a metal ion
binding/antioxidant role extracellularly in diffuse amyloid deposits, CSF and plasma. In this
context, the release of Aβ in response to injury or disease appears to be purposive, by providing
neuroprotection against oxidative stress, after which Aβ is cleared. If the clearance is insuffi‐
cient (e.g. decreased neprolysin, insulin degrading enzyme or the presence of Apo e4 allele)
to compensate the excessive production of Aβ, the progressive accumulation of Aβ:Cu in
response to oxidative stress or in response to mutations of APP/PS1 that induce amyloido‐
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genesis, may lead to the generation of H2O2 that exceeds the capacity of the antioxidant defense
systems, further exacerbating amyloid deposition and ROS production. Thus the Aβ may not
be directly toxic but the indirect generation of H2O2 [50] could be responsible for the oxidative
damage and the neuronal dysfunction [24].

7. Aβ and neurogenesis

Current experiments in our laboratory have suggested that low concentrations of Aβ oligomers
showed neurogenic effects on adult hippocampal neural stem/precursor cells (NSPCs).
Currently, we are evaluating the effects of these peptides on the neuronal development in
vitro and in vivo to better understand its role for the generation of new neurons under phys‐
iological conditions, based on previous work that points the trophic effect of Aβ peptides on
NSPCs [57].

NSPCs are undifferentiated cells that originated from the neuroepithelium and are able to
generate all cell types of the CNS (Central Nervous System): neurons and glial (hippocampus)
in which neurogenesis occur during the adulthood [58]. NSPCs are of particular therapeutic
interest, due to its pluripotentiality and plasticity. The idea of using NSPCs in cell therapy
opens the possibility to replace damaged neuronal cells during neurodegeneration. Alterna‐
tively, the resident NSPCs in the brain could be activated and induce to differentiate through
the use of growth factors, which are key regulators of the survival, proliferation and differen‐
tiation of these pluripotent cells. Trophic factors promote neuronal survival mainly through
the PI3K/Akt proteins. The phospho-Akt phosphorylates and inhibits glycogen synthase
kinase 3β (GSK-3β), which is one of the kinases that phosphorylates tau protein. There is
evidence that suggests that this PI3K/Akt/GSK-3β signaling pathway is directly impacted by
Aβ and it is altered in AD [59]. Trophic factors such as Neurotrophins (for example NGF,
BDNF), IGF-1, GDNF, and hormones (insulin), are critical for neuronal survival and plasticity.
Accumulations of Aβ can alter growth factor signaling and induce changes in trophic factors
and its receptor (TrkA, TrkB, p75NTR, IGF-1R, Insulin receptor) expression and distribution
which are characteristic of neurodegeneration [60].

a. Neurogenesis in the adult brain

Neurogenesis is a process that maintains dynamic proliferation, migration and maturation of
new neurons in the adult brain and contrary to what was thought about the static nature of
the brain, it has been demonstrated that the encephalon is able to generate new neurons that
can be integrated into existing neural circuits. This process is finely modulated and responds
to intrinsic and extrinsic factors [61-66] (Figure 3).

The formation of new neurons occurs constitutively in two well-characterized brain regions:
the subventricular zone-olfactory bulb system (SVZ/OB) and the dentate gyrus (DG) of the
hippocampus [65, 67-70]. However, reactive neurogenesis has also been reported in other brain
regions after damage caused by harmful agents.
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6. Antioxidant role of Aβ
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exhibit increased superoxide production when treated with Aβ [56]. In addition to its cellular
protective role, physiological concentrations of Aβ40 and Aβ42 have been shown to protect
lipoproteins from oxidation in cerebrospinal fluid and plasma [52]. Taken together the results
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response to oxidative stress or in response to mutations of APP/PS1 that induce amyloido‐
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Interestingly, constitutive adult neurogenic brain areas contain resident neural stem/progen‐
itor cells (NSPCs), which have great potential for self-renewal and show multipotency [68,
71]. In the SVZ/OB system the resident stem cells located at the SVZ divide to form neuroblasts,
a cellular population that migrates through the rostral migratory path to reach the OB, a place
in which the immature cells become fully mature neurons [68]. A similar process occurs in the
SGZ of the dentate gyrus in the hippocampus, a place in which the neural stem cells divide to
form neuroblasts which will migrate a short distance into the granule cell layer to finally
differentiate into hippocampal granular cells [63, 71] (Figure 3).

The fact that the stem cells of the SVZ and DG exist, makes possible their isolation to perform
studies in a well-controlled cellular platform, thus many possibilities have opened to address
relevant questions about the possible mechanism by which Aβ acts in a positive- or negative-
manner on the neurogenic process.

b. Physiological role of Aβ in neurogenesis

Recent studies have shown that Aβ may be vital for neuronal development, plasticity, and
survival due to its integral membrane interactions. Also, neuronal viability appears to be

Figure 3. Role of amyloid-β in adult neurogenesis. a) Schematic cartoon indicating the different forms of Aβ (mon‐
omer, soluble dimmers and trimers, oligomers and fibrils). b) Representative picture of coronal section showing the
hippocampus and stained for doublecortin (blue), a key marker for adult hippocampal neurogenesis. Doublecortin-
cells line the subgranular zone (SGZ) and immature neurons migrate to the granular cell layer (GCL) to project den‐
drites to the molecular layer (ML). The picture also shows the hilus. Scale bar = 60 μm. c) Representative picture of
proliferative adult hippocampal neural stem cells. Proliferative cells are identified by the BrdU-incorporation (green).
The nuclei were stained with Dapi (blue). Scale bar = 50 μm.
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dependent on the Aβ, a peptide that possess neurogenic properties [22]. Thus, several studies
have addressed the effects of Aβ on the different events of the neurogenic process using NSPCs
[57, 72, 73].

Despite the controversy about the effects of the Aβ, it is known that Aβ42 increased the
differentiation of embryonic NSPCs, an effect that was not the result of changes at the level of
cell proliferation. Interestingly, this effect was only seen with soluble oligomeric forms of the
Aβ42 peptide but not with the monomeric form of Aβ42 or with Aβ40 or Aβ25-35 [57]. In a similar
way, but in developing neurons, Aβ induced survival and protected mature neurons against
excitotoxic cell death [74]. The Aβ peptide exerts a neurotrophic role when low concentrations
of the peptide are added to undifferentiated hippocampal neurons [75]. In addition, the Aβ40

and Aβ42 isoforms stimulate proliferation of primary neural progenitor cells isolated from rat
E18 cerebral cortices [73]. Concomitant to the increase in cell proliferation, Aβ40 induces the
neuronal differentiation, whereas Aβ drives glial differentiation of neural progenitor cells into
neurons [73].

In adult NSPCs derived from the SVZ, Chaejeong and collaborators [72], conducted a study
with Aβ42 peptide. In this study the three aggregated forms: monomeric, oligomeric and
fibrillar, were used to evaluate their effects on the cellular proliferation and differentiation.
According to the degree of aggregation or concentration of the peptides, it was found that
micromolar concentrations (1 μmol/L) of the oligomeric form of Aβ42 remarkably increase adult
SVZ NSPCs. The peptide also enhances neuronal differentiation and the ability of these cells
to migrate. In a similar way, recently it was reported that Aβ increases NSPCs activity in senes
cence- accelerated SAMP8 mice. In the same report, but using in vitro cultures of SVZ-NSPCs,
it was confirmed that Aβ promotes cell proliferation partially through a cell autonomous
mechanism, in which soluble Aβ42 exerts autocrine and paracrine effects on NSPCs.

Furthermore, the mechanisms that explain the beneficial effects of Aβ42 have been elucidated
and involved the participation of key proteins for the PI3K-Akt pathway [76]. Also, Aβ42 acts
through the p75 neurotrophin receptor to stimulate neurogenesis in the SVZ in adult mice [77].
However, it remains to be determined whether the p75 receptor is involved in neurotrophic
or in the neuroprotective effects of Aβ42. Oligomeric forms of Aβ also increase neuronal
differentiation of NSPCs, acting through tyrosin kinases and MEK, but not through PI3K [57].
Although, some mechanisms have been explored, the way by which Aβ peptide targets a signal
to neurogenesis remains an open question.

In addition, the physiological significance of the early increase in cell proliferation caused by
Aβ is still a matter of investigation in hippocampal NSPCs models because it has been proposed
that this effect causes the cessation of the new neuron formation [78]. However, it is important
to consider that during aging there are also changes in the brain- and systemic- milieu, thus
the decrease in the levels of neurotrophins and growth factors may also impact the neurogenic
process as was previously reported [79]. Interestingly, studies performed in animal models of
AD have shown that the exposure to an environmental enrichment paradigm that is capable
to increase the levels of neurotrophins and growth factors, promotes the decrease in the levels
of Aβ peptides and favors the neurogenic process in the hippocampus [80]. Altogether, these
evidences suggest that physiological concentrations of Aβ may be relevant for promoting or
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dependent on the Aβ, a peptide that possess neurogenic properties [22]. Thus, several studies
have addressed the effects of Aβ on the different events of the neurogenic process using NSPCs
[57, 72, 73].

Despite the controversy about the effects of the Aβ, it is known that Aβ42 increased the
differentiation of embryonic NSPCs, an effect that was not the result of changes at the level of
cell proliferation. Interestingly, this effect was only seen with soluble oligomeric forms of the
Aβ42 peptide but not with the monomeric form of Aβ42 or with Aβ40 or Aβ25-35 [57]. In a similar
way, but in developing neurons, Aβ induced survival and protected mature neurons against
excitotoxic cell death [74]. The Aβ peptide exerts a neurotrophic role when low concentrations
of the peptide are added to undifferentiated hippocampal neurons [75]. In addition, the Aβ40

and Aβ42 isoforms stimulate proliferation of primary neural progenitor cells isolated from rat
E18 cerebral cortices [73]. Concomitant to the increase in cell proliferation, Aβ40 induces the
neuronal differentiation, whereas Aβ drives glial differentiation of neural progenitor cells into
neurons [73].

In adult NSPCs derived from the SVZ, Chaejeong and collaborators [72], conducted a study
with Aβ42 peptide. In this study the three aggregated forms: monomeric, oligomeric and
fibrillar, were used to evaluate their effects on the cellular proliferation and differentiation.
According to the degree of aggregation or concentration of the peptides, it was found that
micromolar concentrations (1 μmol/L) of the oligomeric form of Aβ42 remarkably increase adult
SVZ NSPCs. The peptide also enhances neuronal differentiation and the ability of these cells
to migrate. In a similar way, recently it was reported that Aβ increases NSPCs activity in senes
cence- accelerated SAMP8 mice. In the same report, but using in vitro cultures of SVZ-NSPCs,
it was confirmed that Aβ promotes cell proliferation partially through a cell autonomous
mechanism, in which soluble Aβ42 exerts autocrine and paracrine effects on NSPCs.

Furthermore, the mechanisms that explain the beneficial effects of Aβ42 have been elucidated
and involved the participation of key proteins for the PI3K-Akt pathway [76]. Also, Aβ42 acts
through the p75 neurotrophin receptor to stimulate neurogenesis in the SVZ in adult mice [77].
However, it remains to be determined whether the p75 receptor is involved in neurotrophic
or in the neuroprotective effects of Aβ42. Oligomeric forms of Aβ also increase neuronal
differentiation of NSPCs, acting through tyrosin kinases and MEK, but not through PI3K [57].
Although, some mechanisms have been explored, the way by which Aβ peptide targets a signal
to neurogenesis remains an open question.

In addition, the physiological significance of the early increase in cell proliferation caused by
Aβ is still a matter of investigation in hippocampal NSPCs models because it has been proposed
that this effect causes the cessation of the new neuron formation [78]. However, it is important
to consider that during aging there are also changes in the brain- and systemic- milieu, thus
the decrease in the levels of neurotrophins and growth factors may also impact the neurogenic
process as was previously reported [79]. Interestingly, studies performed in animal models of
AD have shown that the exposure to an environmental enrichment paradigm that is capable
to increase the levels of neurotrophins and growth factors, promotes the decrease in the levels
of Aβ peptides and favors the neurogenic process in the hippocampus [80]. Altogether, these
evidences suggest that physiological concentrations of Aβ may be relevant for promoting or
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maybe to maintain adult neurogenesis. However, the direct impact of Aβ in the adult hippo‐
campus and in hippocampal NSPCs needs to be investigated to get a full picture of Aβ roles
in and during neuronal development (Figure 3).

8. Role of Aβ in maintaining the structural integrity of the blood brain
barrier (BBB)

Interestingly, another Aβ trophic effect is due to its sealant properties that according to Atwood
and colleagues, allows it to maintain the structural integrity of the blood brain barrier (BBB),
and parenchymal structures during physiological and stress conditions [81]. In search for a
therapeutic approach, the removal of Aβ (by vaccination) has been proposed, but accumulated
evidence shows that low levels of Aβ had a role in maintaining the cellular homeostasis, thus
complete removal of Aβ would have negative side effects. For example, Aβ could act as a
sealant to maintain the integrity of the BBB, so its removal could cause leakage of serum
components into the brain, resulting in an immune or autoimmune response characterized by
inflammation and as a consequence it could cause also mini-strokes. In fact some clinical trials
of Aβ immunization had to be halted, due to the development of encephalitis and meningitis
in some patients under investigation [82].

9. Effects of high cholesterol diet on APP processing

Cholesterol is the main sterol in animal tissues, and has very important functions, as being a
major component of eukaryotic membranes, and function as a biosynthetic precursor of
important bioactive molecules such as steroid hormones and bile acids [83]. And also it has
been shown that cholesterol can directly modulate the processing of APP [84, 85]. The main
sources of cholesterol are the dietary intake and endogenous hepatic biosynthesis. Cholesterol
levels and the cellular distribution of cholesterol have a major influence on amyloidogenesis
[86]. The amyloidogenic processing of APP occurs in the lipid rafts (small membrane-adjacent
heterogeneous domains, enriched in steroids and sphingolipids, with a role in multiple cellular
processes). The β- and γ- secretases that (as mentioned before, Figure 1) participate in the
amyloidogenic pathway, are located at the surface of these cholesterol-enriched regions.
Accordingly, it has been reported that, increased cholesterol levels enhance β and γ- secretase
activity therefore, promoting APP metabolism by the amyloidogenic pathway. Conversely a
decrease in intracellular cholesterol, leads to structural rupture of the lipid rafts, favoring α-
secretase non-amyloidogenic APP cleavage, leading to a significant decrease in Aβ levels [83].

Cholesterol also plays an important role in atheroesclerosis as a major component of atheroma
plaques. Hypercholesterolemia is associated with the formation of atheroma plaques that
progressively could cause ischemic brain damage. Brain ischemia induce an increase in APP
expression, and damages the BBB [83], and as a result the clearance of cerebral Aβ is affected
(Figure 4).
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Figure 4. Clearance of Aβ peptides.A) Aβ produced by APP processing in neurons and astrocytes in the central nerv‐
ous system (CNS), can be cleared by microglia phagocytosis, and further degraded by the enzymatic action of the insu‐
lin degrading enzyme (IDE) or by nephrilysin (NEP). Moreover, Aβ could be also removed by efflux through the low
density lipoprotein receptor (LRP) at the blood brain barrier (BBB). B) Aβ peptides in the peripheral circulation could
be generated at amyloidogenic organs, mainly the small intestine and the liver. In these cases, the clearing mecha‐
nisms, could involve the soluble forms of sLRP1 and the receptor of the advanced glycation end products (sRAGE). The
full length form of this receptor (RAGE), is located at the BBB, and allows the influx of Aβ to the cerebral parenchyma.

The deregulation of cholesterol homeostasis and metabolism, is frequently observed in AD
patients [87]. Thus it is important to consider the inappropriate diet (e.g. a diet rich in choles‐
terol) as a risk factor.

A set of experiments of our laboratory are focused on the evaluation of the effect of a high
cholesterol diet on APP processing and generation of Aβ, based on the fact that statins (that
lower cholesterol), diminish the risk of AD [83, 88]. Moreover, several reports support the
possibility of a link between abnormal cholesterol metabolism and AD [86, 89-92]. According
to Thirumangalakudi and colleagues, there are three principal evidences between cholesterol
levels and Alzheimer disease: First, most of the genes associated with AD (that have poly‐
morphism associated with the neurodegeneration), participate in the metabolism of choles‐
terol, such as ApoE, cyp46 and ABCA1. The second evidence comes from the clinical studies,
which had shown that patients with high cholesterol, are more susceptible to AD [86, 93], and
the third evidence comes from animal models transgenic and non-transgenic (rabbits, mice
and rats), in which a high cholesterol diet have shown an enhance in brain Aβ [94-96].
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Taken together, all the evidences mentioned above, it is necessary to evaluate the relationship
between a high cholesterol diet and the levels of systemic and brain Aβ. We are focusing our
study in the principal amyloidogenic organs (like the intestine, the liver and the brain) in rats
that undertake a cholesterol enriched diet for different time periods, and evaluating if the
mechanisms of clearance of Aβ are compromised and the possibility that systemic Aβ could
affect or induce brain Aβ deposits possible through alterations in the permeability of the BBB.
If this study shows a correlation between high cholesterol diet and elevated Aβ levels in the
brain it will be tempting to speculate clinical implications directed to propose a balance diet
with low cholesterol as a preventive approach for AD, as well as the use of drugs that lower
cholesterol levels concomitant with the possibility of lowering Aβ levels, preferentially at early
stages of the disease.

10. Aβ42 oligomers modulate intracellular Ca2+ transients evoked by
cholinergic receptors

Finally our lab is also interested in the study of the effects of Aβ oligomers on cholinergic
receptors: nicotinic and muscarinic; and the role of these oligomeric forms of Aβ in intracellular
calcium homeostasis. It is well known that oligomers can bind extracellular receptors [97] and
indirectly activate signaling pathways. Some of these pathways could be linked to the release
of intracellular calcium and the induction of cell death in cases in which the oligomeric peptide
is at high concentration [98]. We are focussed on studying the consequences of Aβ interaction
with the cholinergic receptors, on the levels of intracellular calcium and its impact in cell
viability and synaptic transmission, based on previous reports of the role of Aβ in potentiating
nicotinic receptor function and promoting oxidative stress and cellular toxicity [99].

Cholinergic pathways serve important functions in learning and memory processes. Nicotinic
and muscarinic receptors are widely expressed in the brain and implicated in the pathophysi‐
ology of AD, that is the most common form of dementia, characterized by loss of neurons and
synapses in the cerebral cortex and subcortical regions. The correlation of clinical dementia
ratings with the reductions in a number of cortical cholinergic markers such as choline
acetyltransferase, muscarinic and nicotinic acetylcholine receptor binding as well as levels of
acetylcholine, suggested an association of cholinergic hypofunction with cognitive deficit,
which led to the formulation of the cholinergic hypothesis of memory dysfunction in senes‐
cence and in AD [100]. As we mentioned before, Aβ is the major protein component of neuritic
plaques found in AD. Evidence suggests that the physical aggregation state of Aβ directly
influences neurotoxicity and specific cellular biochemical events. In addition, it has been
shown that Aβ oligimers are able to modulate the release of several neurotransmitters
(dopamine, γ-aminobutyric acid, aspartate, glutamate) elicited by the stimulation of choliner‐
gic muscarinic and nicotinic receptor (mAChR, nAChR) in different brain areas. Recently it
was shown the activation of both α7 and α4β2 (nAChRs) as well as by the activation of mAChR
modulate the Glycine release from hippocampal synaptosomes [101].
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Sustained disruptions in Ca2+ signaling have significant implications for the health and
functionality of neurons and form the basis of the Ca2+ hypothesis of AD [102]. Under resting
conditions, cytosolic Ca2+ is maintained at low nanomolar concentrations by an array of
pumps, buffers, and transport mechanisms. Ca2+ entry into the cytosol is rigorously regulated
and originates from one of two major sources: the extracellular fluid via entry across the plasma
membrane (through receptor-, voltage-, and store-operated channels and Ca2+ exchangers)
and intracellular stores such as the endoplasmic reticulum (ER) and mitochondria [103, 104].
Interactions between Aβ and intracellular Ca2+ are particularly relevant to AD pathogenesis,
as Ca2+ perturbations are a causal factor in excitotoxicity, synaptic degeneration, and cell
death, whereas reduced Ca2+ release is neuroprotective [105].

In our laboratory we investigate the effects of Aβ42 oligomers on the transient rises in [Ca2+]i
evoked by cholinergic receptors in the human neuroblastoma cell line SH-SY5Y. Our results
indicate that mAChR type M3 increased 56% the transient rise in [Ca2+]i evoked by carbachol
in the presence of Aβ42 oligomers, whereas the nicotine response only increased in 21%.

The experimental procedures for these set of experiments were as follows:

Briefly, preparation of oligomers was performed as reported previously by Demuro and
colleagues [98]

To be able to observe the Aβ oligomers, we used atomic force microscopy. Concentrated
oligomers of Aβ42 (1 μl ~ 250 ng) were added to 9 μl double-distilled water and placed on a
freshly cleaved cover slip and air-dried taken for observation by atomic force microscopy. The
samples were imaged in AC-mode using a JSPM-5200 instrument (JEOL scanning probe
microscope) equipped with NSC15 n-type silicon probe Al coated (μMasch), in the tapping
mode. The probe has nominal spring constant of 20 to 80 N/m and driving frequencies of 265
to 410 kHz. To determine oligomer sizes we used the WinSPM system computer program
provided by the manufacturer (JEOL) and Gwyddion free software for 3D analysis.

Cell culture and immunocytochemistry assays were carried out as reported before [106]. The
cell line used for these experiments was the human neuroblastoma SH-SY5Y. These cells were
immunostained with anti-mAChR M1 or anti-mAChR M3 (Santa Cruz Biotechnology Inc.).

For the recording experiments, the cells were seeded on recording chambers pre-coated with
Poly-L-Lys. [Ca2+]i determinations in single SH-SY5Y cells were performed as reported before
[107] using the Ca2+ indicator Fura-2AM (Molecular Probes). Aβ1-42 oligomers were applied
by pipetting a fixed aliquot (50 μl) of a diluted stock solution into the recording chamber (200
μl volume). Acetylcholine, nicotine and carbachol were freshly prepared in saline solution at
the indicated final concentrations. All the experiments were done at room temperature.

In the following section, we will describe our results of the experiments in which we evaluate
the effects of Aβ42 oligomers on the modulation of intracellular Ca2+ transients evoked by
cholinergic receptors.

Atomic force microscopy (AFM) is used to investigate the three-dimensional structure of
aggregated Aβ and characterize aggregate/fibril size, structure, and distribution. Figure 5
shows the 3D analysis of Aβ42 oligomers morphology using AFM. The packing densities
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modulate the Glycine release from hippocampal synaptosomes [101].
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correspond to the differential thickness of globular aggregates along a zeta axis (fiber height
above the x-y imaging surface).

Figure 5. Aβ42 oligomers morphology, tapping mode AFM image that shows the characteristic globular texture
(scan area 540 x 540 nm).

The human neuroblastoma SH-SY5Y cells express muscarinic cholinergic receptors (mAChRs)
of predominantly the M3 subtype, which are robustly coupled to phosphoinositide (PPI)
hydrolysis and Ca2+ homeostasis [108]. Figure 6 shows immunoreactivity for M3 and M1
receptors in SH-SY5Y cells in culture. In addition, SH-SY5Y cells express two types of nicotinic
cholinergic receptors (nAChRs), ganglionic AChRs, which are normally postsynaptic and are
composed of α3, α5, β2, and β4 subunits, and neuronal αBgt-binding AChRs, which are
probably normally extrasynaptic composed of α7 subunits [109].

[Ca2+]i determinations in single SH-SY5Y cells:

The application of a short pulse of ACh (100 μM) to SH-SY5Y cells produced a rise in [Ca2+]i
that peaked in approximately 1 s and declined toward basal levels of [Ca2+]i at the end of ACh
pulse (Figure 7). When a second pulse of ACh was applied 120 s after the first pulse, the [Ca2+]i
response was lightly reduced, but it was after 3 min period in resting conditions when the
response recovered the whole amplitude (signaled with the arrow). Repetitive applications
with 1 min interval produce progressive desensitization in the ACh response.
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Figure 7. Transient rises in [Ca2+]i evoked by repetitive ACh pulses in SH-SY5Y cells. ACh pulses were applied
during the continuous perfusion of normal saline solution (see text).

The rate of rise of the [Ca2+]i should reflect the number of activated nicotine and muscarinic
receptors, however, in the most of the explored cells, the application of nicotine pulses (100
μM) was unable to produce any elevation of the [Ca2+]i, whereas in some cells the nicotinic

Figure 6. Confocal micoscopic localization of M3 (green staining, left panel) and M1 (green staining, right panel) im‐
munoreactivity in SH-SY5Y neuroblastoma cells. M3 reactivity is enriched appearing finely granular and punctuate.
Nuclear DNA was counterstained with Hoechst 33342 (blue staining) and the red signal corresponds to Actin inmu‐
noreactvity. Scale bar 20 µm.
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response was approximately 20 times smaller than those evoked by carbachol (100 μM)
suggesting that the cholinergic response is mediates mainly by muscarinic receptors (Figure 8).

Figure 8. Transient rises in [Ca2+]i evoked by carbachol and nicotine pulses in the same SH-SY5Y cell. As in pre‐
vious figure agonist pulses were applied during the continuous perfusion of normal saline solution (see text).

The incubation of SH-SY5Y cells with Aβ42 oligomers (2.5 μg/ml) during 10 min increased 56%
the transient rise in [Ca2+]i evoked by carbachol (see Figure 9), whereas the nicotine response
only increased in 21%.

Taken together our results, we conclude that Aβ42 oligomers are capable of inducing an increase
in intracellular calcium levels in a dose dependent way, concomitant with an increase in
intracellular Ca2+ transients evoked by cholinergic receptors. Thus the cholinergic response is
potentiated by Aβ42 oligomers. Based on previous reports (see below), our findings suggest
that the increase in the transient rises of the [Ca2+]i after the incubation with the Aβ42 oligomers
evoked by carbachol, could be generated by a sustained increase of the IP3 levels, that induces
a more efficient activation of IP3 receptors from the internal stores. Since ACh binding to
mAChRs initiates the heterotrimeric G protein cycle, with the exchange of GTP for GDP on
α-subunits and the subsequent dissociation of βγ subunits, the activated, GTP-bound form of
the α-subunit stimulates (or inhibits) its effector, then undergoes inactivation by intrinsic
GTPase activity, which converts GTP to GDP by hydrolytic cleavage of the γ phosphate bond.
Cholinergic agonist stimulation of M1, M3, and M5 receptors activates G proteins of the
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pertussis toxin-insensitive Gq/11 family. Gq/11 subunits stimulate phospholipase C, which
catalyzes the hydrolysis of phosphatidylinositol-4,5-bisphosphate, resulting in the liberation
of diacylgylcerol and inositol triphosphate (IP3). Diacylgylcerol activates protein kinase C
(PKC), and IP3 induces the release of Ca2+ from endoplasmic reticulum [110]. Hence Aβ42

induce a marked increase in the activation PKC and Ca2+/clamodulin-dependent kinase II
(CaMKII) in cortical neurons, and the activation of mAChRs (M1 type) significantly inhibited
the Aβ activation of PKC and CaMKII [111].

11. Conclusion

For years the Amyloid hypothesis was widely accepted as a cause of the neurodegeneration
observed in AD. This hypothesis considers Aβ as a toxic factor that impairs neuronal function
and leads to cell death. But recently our understanding of the physiological roles of Aβ is
challenging this hypothesis.

The physiological roles of Aβ need to be taken in account in the development of therapies that
intend to reduce its levels for diseases like Alzheimer’s. Since excessively depleting Aβ could
have negative effects, limiting its trophic functions could contribute, rather than delay the
process of neurodegeneration. Furthermore, understanding the physiological functions of

Figure 9. Aβ42 oligomers potentiate the transient rises in [Ca2+]i evoked by carbachol in SH-SY5Y cell.
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APP and Aβ could help to elucidate its role during health vs disease. As we mentioned here,
Aβ itself, might help to enhance synaptic plasticity and memory at appropriate concentration
levels (Figure 2).
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1. Introduction

The beta amyloid hypothesis is the most accepted theory explaining the pathophysiology of
Alzheimer's disease (AD). In general terms, it is known that AD is characterized by a chronic
and progressive neurodegenerative process involving the intracellular and extracellular
accumulation of fibrillary proteins. The presence of these aggregates leads to synaptic and
neuronal loss observed in Alzheimer’s patients. Although the precise etiology of AD is
unknown, the main risk factor is advanced age. It is also known that a small proportion of AD
patients have an autosomal dominant inheritance pattern in three genes – amyloid precursor
protein (AβPP), presenilin 1 (PS1) and presenilin 2 (PS2) [1-6]. The presence of specific
mutations in these genes leads to the premature development of the disease, known as Early
Onset Alzheimer’s Disease (EOAD) or Familial Alzheimer’s Disease (FAD). The most common
mutations are located in the presenilin genes [1, 7-9], mainly in PS1. Currently more than 185
mutations in PS1 have been reported, with only 13 mutations in PS2. While these mutations
are located along the length of the protein sequence, the majority is found in the transmem‐
brane area, and affects protein function. To date, approximately 36 different missense muta‐
tions in the APP gene have been identified in 85 families and are located near sites that are
recognized by alpha, beta and gamma secretases, thus affecting protein processing and
increasing the production of amyloid peptides [10]. The presence of these mutations is a causal
factor in the development of AD, and, although they are all related to the disruption of the
normal functioning of proteins and an increased formation of beta amyloid, together they are
present in less than 10% of all Alzheimer's cases, suggesting that there are many other non-
genetic factors involved in the development of the pathology. The remaining 90% of AD cases
are known as Sporadic Alzheimer’s Disease or Late Onset Alzheimer’s disease (LOAD). These
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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patients also exhibit genetic risk factors, such as the presence of allele 4 of the Apolipoprotein
E (Apoε4), where individuals with one copy of ε4 allele are three times more at risk of
developing the disease, while those with two copies (ε4/ε4) are 10–15 times more likely to
develop AD [11-14]. While other non-genetic factors are head trauma, hypertension, athero‐
sclerosis, metabolic disorders such as hypercholesterolemia, obesity and diabetes [15-17], the
main risk factor is age. It has been reported that the incidence of the disease increases by 5%
in people over 65 and 20% in those over 80. Other factors have also been associated with the
development of the disease, such as female gender, smoking, educational level, and a low level
of physical and mental activity during the early stages of life.

The pathological markers for AD are the presence of neurofibrillary tangles (NFT) and neuritic
plaques (NP). NFT are intracellular and insoluble fibril deposits of paired helical filaments
(PHF). As these filaments occupy the cytoplasm of the neuron, the nucleus is displaced and
the dendrites disappear, in the absence of which, the filaments takes on the pyramidal shape
of the soma and then go on to destroy the neuron itself. Each filament is formed from the
association of 6-7 Tau protein fragments, and each fragment consists of 93-95 amino acid
residues and has a molecular weight of 12.5Kd [18-21]. In normal conditions, Tau stabilizes
microtubules in the cytoskeleton of neurons through a cell process that involves the phos‐
phorylation and dephosphorylation of the protein. In pathological conditions, Tau is abnor‐
mally hyperphosphorylated and loses its ability to bind to microtubules, generating insoluble
aggregates within the neuron, altering the axonal transport and eventually leading to neuronal
death. Generally NFT formation begins in the allocortex of the medial temporal lobe (entorhi‐
nal cortex and hippocampus) and spreads to the associative isocortex. In this way, the amount
and distribution of NFTs correlate with the severity and duration of dementia.

NPs are extracellular deposits of 10-100μm formed by an insoluble fibrillary core surrounded
by activated microglia, reactive astrocytes and dystrophic neurites [22]. Unlike NFTs, amyloid
plaques accumulate mainly in the isocortex. The main component in the NP is the amyloid-
beta peptide (Aβ); a fragment of 39-42 amino acids with a molecular weight of 4KD [23-24],
which arises as a result of the normal secretion derived from amyloid-β precursor protein
(AβPP) [25]. Aβ formation occurs as a result of the proteolytic processing of AβPP by the
sequential action of β- and γ-secretase. Three AβPP isoforms consisting of 695, 770 and 751
amino acids (APP695, APP751 and APP770) are mainly expressed in the Central Nervous
System (CNS). The shortest of these isoforms, APP695, is mostly expressed in neurons, whereas
isoforms APP770 and APP751 are expressed in glial cells.

It has been proposed that the progressive accumulation of NP and NFT in the brains of AD
patients are responsible for the neurodegeneration observed in the hippocampal, cortical and
subcortical neurons. This neurodegenerative damage involves the loss of neuropil networks,
selective neuron death, decreased synaptic density and alterations in neurotransmitters and
the homeostasis of calcium. An important feature of the NFTs is that the density of such lesions
directly correlates with the degree of dementia observed in AD patients [26]. Conversely, it is
observed that the number of NP present in a particular region does not correlate with neuronal
death, synaptic loss or with cognitive impairment [27-29]. However, the presence of Aβ
oligomer deposits has a very important role in synaptic loss [30-32] determining the severity
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of cognitive impairment. Also has been observed to inhibit the normal critical neuron func‐
tions, such as long-term potentiation (LTP)[30]. The amyloid βpeptide, also increases Tau
phosphorylation [33-35], oxidative stress and altered homeostasis of Ca2+ [36-37] and excito‐
toxicity [38]. It has been documented that these oligomeric forms of Aβ interact with receptors
from the glutamatergic system such as the NMDA-receptors, which are responsible for
maintaining glutamate homeostasis [39-40].

1.1. β—Amyloid

Aβ comes from the normal proteolytic processing of AβPP, a type 1 transmembrane glyco‐
protein [25] whose gene is located on chromosome 21 [41-42]. AβPP processing and the
"efficiency" of Aβ formation could be affected by the subcellular localization of the protein.
AβPP is synthesized in the endoplasmic reticulum (ER) and transported through the constit‐
utive secretory pathway, and only a small fraction of this protein (10%) goes to the plasma
membrane. All AβPP isoforms undergo posttranslational modifications involving N and O-
glycosylation, phosphorylation and sulfation. Aβpeptide formation is carried out by the action
of β- and γ-secretase, in which the peptides formed vary from 39 to 43 amino-acid residues
(Aβ39, 40, 42, 43). Although Aβ40 is the most abundant, Aβ42 is the most hydrophobic and is
found in a greater proportion of the NPs observed in AD patients [43]. These peptides are
continuously released into the extracellular space at possibly low concentrations, and, in
soluble form, could carry out normal physiological functions in the cell including those related
to plasticity and memory processes [44].

According to the amyloid hypothesis, the Aβ accumulation in the patient’s brain is the key
event that leads to the development of the disease, while other pathological findings (NFT
formation and neuronal death) are secondary events occurring after the amyloid aggregation.
Most of the studies reported in the literature have focused on the toxicity and neuronal death
induced by the presence of amyloid aggregates. However, in recent years a great importance
has been attached to the role of these peptides as responsible in the etiology of synaptic
dysfunction[40]. In this sense, it has been widely documented that the presence of soluble
oligomeric forms of Aβ responsible for synaptic damage and neurodegeneration [29, 45-46].
The results reported in the literature indicate that Aβoligomers ranging in size from 2 to 12
subunits may be responsible for the synaptic damage and memory loss observed in patients
with Alzheimer's disease [47]. These oligomeric forms may be produced through several
routes, either in the extracellular space or inside of the cell organelles such as the endoplasmic
reticulum and mitochondria, which complicates the analysis and understanding of the
pathophysiology [48-50]. Several types of soluble Aβ oligomers have been described in the
brains of AD patients and in transgenic mouse models of AD, however it has been reported
that the putative dodecamer Aβ*56 correlated with markers of neuronal dysfunction or injury
in cognitively normal subjects [51]. In addition, the role of Aβ oligomers (in the absence of
amyloid fibers) in neurodegenerative processes was demonstrated in a transgenic model
expressing mutant hAPPE693Δ. This mouse has the ability to form high levels of Aβ oligomers
without fibrillization, indicating that the intracellular deposits of Aβ oligomers from 8 months
of age onwards correlate with the alterations in synaptic plasticity and memory impairment
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observed in the mouse model. Other results observed were abnormal Tau phosphorylation,
present at 8 months, microglial activation at 12 months, astrocytes activation at 18 months and
neuronal loss at 24 months. The results suggest that the presence of oligomeric forms of β—
amyloid are able to induce many of the changes observed in the brains of patients with AD,
even in the absence of NP [52].

1.2. Extracellular Aβ

The extracellular deposits of amyloid are a specific marker for AD and are involved in synaptic
dysfunction and neurotoxicity; however, the complete signaling mechanism involved remains
unclear. Importantly, the amyloid oligomers interact with a variety of receptors on the surface,
activating or inhibiting several neuronal signaling pathways and possibly contributing to
neuronal death [35]. Furthermore, it is also known that the damage caused by amyloid is
mainly determined by the level of peptide aggregation. In this way, several studies reported
in the literature suggest that extracellular Aβ oligomers could be formed by several biocom‐
ponents, such as proteins and ganglioside. For example, the distribution of ganglioside GM1
has the ability to affect the spatial arrangement of the oligosaccharide chains in a molecule. In
2007 Yamamoto et al. showed that GM1 provides a microenvironment that favors the formation
of amyloid oligomers [53]. These oligomers are spherical structures with a 10-20nm diameter
and 200-300kDa that form complexes with the GM1, similar to those identified in the tissue of
AD patients. Previous studies have shown that, initially, the peptides adopt a random
structure, which then changes when interacting with GM1, and enables the transition from
α-helix to β-pleated sheets [54]. Similarly, nonfibrillar Aβ can be produced in presence of αB-
crystalline and ApoJ [55-56]. These oligomeric forms interact with the nerve growth factor
receptor (NGF), triggering a toxic mechanism that causes cell death. Moreover, the oligomeric
forms bind to Frizzled (Fz) receptors, inhibiting the Wnt signaling pathway, and affecting cell
proliferation and neuronal differentiation during development of the brain. Furthermore, the
inhibition of Wnt signaling by Aβ oligomers causes Tau phosphorylation and the formation
of neuro fibrillary tangles, which suggests a Wnt/β-catenin toxicity pathway [35, 57].

On the other hand, it has also been observed that Aβ oligomers are able to destabilize the
plasma membrane, forming pores which alter the normal flow of ions and permitting the entry
of extracellular Ca2+ and leading to neuronal death [58-60]. Another mechanism of neuronal
receptor-mediated damage is the binding of Aβ oligomers to N-methyl-D-aspartate (NMDA)
type glutamate receptor (NMDAR), which generates altered calcium homeostasis, increased
oxidative stress and loss of synapses [61-63].

1.3. Intracellular Aβ

The presence of intracellular Aβ deposits was first observed by Iqbal et al in 1989 [64]. They
identified the presence of intraneuronal Aβ, by using an antibody against residues 17–24 of
Aβ peptide in tissue from AD patients. Importantly, they also observed the presence of these
immuno-positive deposits in neurons that preferentially contained NFT [64]. The discovery of
the coexistence of amyloid and NFT in the same neuron allowed the development of several
lines of research that attempt to show how a protein can induce or accelerate the neurodege‐
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nerative process [65]. In 1993, Wertkin and et. al. demonstrated that most significantly, the
NT2N neurons constitutively generated intracellular Aβ peptide and released it into the
culture medium, which demonstrated the intracellular production of Aβ peptide [66]. The
presence of mutations in AβPP (AβPPswe), as well as by the duplication of the AβPP gene on
chromosome 21 (which has been observed in patients with Down syndrome [67-68]) could be
favorable to the accumulation of intracellular amyloid. Although there is evidence to support
the assertion that amyloid accumulation precedes the formation of extracellular Aβ deposits
and the microtubule-related pathology, the link between Aβ and Tau remains unclear [67-69].
It has also been demonstrated that the pathological accumulation of Aβ and hyperphosphor‐
ylation of Tau within synaptic terminals [70] is associated with early changes in MAP2 in
neurites and synapses [71]. Finally, the position of soluble oligomers in cellular processes could
help to explain their role in the synaptic dysfunction observed in patients with AD [72]. Several
reports in the literature have indicated that amyloid can be formed intracellularly [73-75].
Aside from the plasma membrane, it is known that AβPP as well as β- and γ-secretase activity
are located in the trans-Golgi network, the endoplasmic reticulum, and the endosomal,
lysosomal and mitochondrial membranes. Aβ is generated mostly in the sub-cellular region
and then secreted through exocytosis. It has been proposed that production of Aβ42 occurs in
the endoplasmic reticulum, while the Aβ40 is formed in the trans-Golgi network. It has also
been observed that non-neuronal cells produce both Aβ isoforms on the cell surface [73].

Secreted amyloid forms extracellular deposits and may also be able to enter the cell through
transporters and membrane receptors such as the acetylcholine receptor, the low-density
lipoprotein receptor (LPR), the N-methyl-D–aspartate receptor (NMDAR), and the scavenger
receptor for advanced glycation end products (RAGE) [57, 69]. The interaction between
amyloid and these receptors can trigger neurotoxicity and neuronal dysfunction.

1.4. Aβ Toxicity

The neuronal toxicity mediated by Aβ has been documented in vitro and in vivo. In vitro studies
have demonstrated that the direct administration of Aβ to cell cultures has a neurotoxic effect
because it increases oxidative stress levels and apoptosis [76-78]. The accumulation of amyloid
also leads to proteasomal dysfunction and the consequent accumulation of damaged, mis‐
sfolded, and aggregated proteins, including Aβ and Tau [79-81]. The reactive oxygen species
(ROS) affect membrane proteins, mitochondrial DNA, lipids, and cytoplasmic proteins, and
also contribute to the vascular damage observed in AD patients [57, 61, 82-85]. Oxidative stress
has been observed in the early stages of AD and has been directly associated with Aβ accu‐
mulation. Moreover, Aβ1-42, enhanced glutamate toxicity in human cerebral cortical cell
cultures and was associated with changes in intracellular Ca2+ levels [86].

Importantly, the alterations in these patients were observed in specific brain areas such as the
hippocampus, the entorhinal cortex, the amygdala, the neocortex and some sub-cortical areas,
such as the cholinergic neurons in the basal forebrain, the serotonergic neurons of the dorsal
raphe nucleus and the noradrenergic neurons of the locus coeruleus. The glutamatergic
neurons located in the hippocampus and in the frontal, temporal and parietal cortex are
severely affected. As we know, the hippocampus and cortex regions are important for the
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observed in the mouse model. Other results observed were abnormal Tau phosphorylation,
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sfolded, and aggregated proteins, including Aβ and Tau [79-81]. The reactive oxygen species
(ROS) affect membrane proteins, mitochondrial DNA, lipids, and cytoplasmic proteins, and
also contribute to the vascular damage observed in AD patients [57, 61, 82-85]. Oxidative stress
has been observed in the early stages of AD and has been directly associated with Aβ accu‐
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cultures and was associated with changes in intracellular Ca2+ levels [86].
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establishment of memory and learning, and so, therefore, the specific loss of glutamatergic
neurons could play an important role in the progression of the pathology. Since the 1980's, it
has been proposed that Alzheimer's disease may be caused by the over-activity of glutama‐
tergic neurons causing excitotoxic damage in cortical afferent neurons [87-88]. Several studies
have shown that Aβ accumulates in certain synapses in micro molar concentrations of Aβ, and
has the ability to bind to NMDA receptors, thus inducing the internalization and deregulation
of the NMDA signaling pathway [63, 89-91].

2. Glutamatergic system

2.1. Glutamate

Glutamate is a nonessential amino acid that does not cross the blood-brain barrier (BBB), and
is produced primarily by neurons and glial cells from local precursors derived from glucose
and α-ketoglutarate. Glutamate participates in balance with GABA to modulate the activity
of GABAergic and glutamatergic neurons [92]. The majority of excitatory neurons in the CNS
are glutamatergic; moreover, it is estimated that over half of nerve-endings release glutamate.
Presynaptic depolarization promotes vesicles to release their contents of glutamate into the
synapses through exocytosis, where upon the released glutamate binds to post-synaptic
ionotropic receptors, stimulating an influx of cations which depolarizes the post-synaptic cell
[93]. To prevent over-stimulation, glutamate is removed by astrocytes and converted to L-
glutamine through the action of glutamine synthetase, which is released to the extracellular
fluid taken up by neurons. Glutamine, normally found in the extracellular space, is, unlike
glutamate, a non-toxic molecule and lacks the ability to activate glutamate receptors. The
glutamine transferred back to the neuron is recycled by phosphate-activated glutaminase and,
once again, forms L-glutamate, which is taken by vesicular transporters into synaptic vesicles
to be available for use in the excitatory neurotransmission [93-96]. This trafficking of glutamate
and glutamine between astrocytes and neurons is the primary route by which glutamate may
be recycled (glutamine–glutamate cycle). The removal of this neurotransmitter from the
synaptic cleft is carried out through high-affinity transporters. These transport proteins are
the only existing mechanism for extracellular glutamate removal, and are of vital importance
in maintaining low and non-toxic concentrations of this neurotransmitter [94]. Both neurons
and glial cells express glutamate transporters. Glutamate taken up by cells may be used for
metabolic purposes (protein synthesis, energy metabolism, ammonia fixation) or be reused as
a neurotransmitter [94]. It is important to clarify that glutamate is not necessarily derived from
glutamine nor it is necessarily converted to glutamine by astrocytes, nor does glutamine
necessarily acts as a precursor to glutamate. While the mechanisms involved and the resulting
metabolites are more complex, they are not mentioned in this chapter.

Glutamate is the major excitatory neurotransmitter in the CNS (approximately 8–10 mM/kg),
and is found in more than 80% of all neurons [92, 97-99]. It is involved in most normal brain
function, especially in the cortical and hippocampal regions, which deal with cognition,
memory and learning [100] among other functions. Glutamate also plays a major role in the
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development of the central nervous system, as well as synapse induction and elimination, cell
migration, differentiation and death [101-102]. Most of the glutamate in the brain is located
intracellularly inside nerve terminals and only a tiny fraction of this glutamate is normally
present outside or between the cells [103-105]. The extracellular elevation of glutamate causes
alterations in the glutamate-mediated neurotransmission, activating receptors and inducing
the depolarization of neurons which in turn triggers a sequence of intracellular events that
conclude in Ca2+ and Na2+ influx. This leads to the exocytosis of glutamate and ultimately cell
death, which correlates with the loss of memory function and learning ability in AD patients
[106-107]. Recently it has been shown that there is a close correlation between reduced
glutamatergic presynaptic button density and cognitive deficits. A study of brain tissue from
subjects with no cognitive impairment, mild cognitive impairment, or mild/severe-stage
Alzheimer’s disease; demonstrated that glutamatergic synaptic remodeling, presents a
pattern- dependent pathology, according to disease progression by comparing the mini mental
status examination scores of healthy individuals to those of individuals with mild or severe
Alzheimer’s disease [99, 108] (figure 1).

Glutamate excitotoxicity has also been implicated in other neurodegenerative diseases such
as Huntington’s disease, epilepsy, ischemia, and trauma [109-111]. In this sense, it is crucial to
maintain adequate extracellular levels of glutamate, as it is continuously released from the
cells and must therefore be continually removed from the extracellular fluid [93-94, 105]. It has
been documented that glutamatergic neurotransmission in neocortical regions and the
hippocampus is severely disrupted in Alzheimer’s disease. So far, it is unknown whether
molecular abnormalities observed in patients are a cause or a consequence of other changes
that allow the development of neurodegeneration. Another proposed hypothesis is that
alterations in the expression of neurotransmitter transporters could contribute to neurotrans‐
mission imbalances in the AD brain [112].

2.2. Glutamate transporters

Under normal conditions, the low concentration of glutamate into the extracellular space is
regulated by specific transporters, localized in both nerve endings and surrounding glial cells.
This transport system prevents cell damage generated by excessive activation of glutamate
receptors [105, 112-113]. There are two glutamate transport systems: the Vesicular GluTs
(VGLUT) and the Excitatory Amino Acid Transporters (EAAT) located in the plasma mem‐
brane. The VGLUTs are crucial for the storage of glutamate in synaptic vesicles. When a neuron
is depolarized, glutamate is released into the synaptic cleft where it binds glutamate receptors
to pre and post-synaptic neurons. There are three isoforms; VGLUT1, VGLUT2, VGLUT3. The
transport of glutamate into secretory vesicles is highly dependent on Cl- [114]. This anion
stimulates glutamate transport, but is inhibitory at higher concentrations. This process is
driven by an electrochemical gradient of H+ established by V-ATPase, which, together with
the VGLUT activity, affect vesicular glutamate content and subsequently the glutamatergic
signaling [115].

Studies have also identified five different ‘high-affinity’ glutamate excitatory amino acid
(EAATs) transporters (EAAT1, EAAT2, EAAT3, EAAT4 and EAAT5). Residing on postsy‐
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synapses through exocytosis, where upon the released glutamate binds to post-synaptic
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[93]. To prevent over-stimulation, glutamate is removed by astrocytes and converted to L-
glutamine through the action of glutamine synthetase, which is released to the extracellular
fluid taken up by neurons. Glutamine, normally found in the extracellular space, is, unlike
glutamate, a non-toxic molecule and lacks the ability to activate glutamate receptors. The
glutamine transferred back to the neuron is recycled by phosphate-activated glutaminase and,
once again, forms L-glutamate, which is taken by vesicular transporters into synaptic vesicles
to be available for use in the excitatory neurotransmission [93-96]. This trafficking of glutamate
and glutamine between astrocytes and neurons is the primary route by which glutamate may
be recycled (glutamine–glutamate cycle). The removal of this neurotransmitter from the
synaptic cleft is carried out through high-affinity transporters. These transport proteins are
the only existing mechanism for extracellular glutamate removal, and are of vital importance
in maintaining low and non-toxic concentrations of this neurotransmitter [94]. Both neurons
and glial cells express glutamate transporters. Glutamate taken up by cells may be used for
metabolic purposes (protein synthesis, energy metabolism, ammonia fixation) or be reused as
a neurotransmitter [94]. It is important to clarify that glutamate is not necessarily derived from
glutamine nor it is necessarily converted to glutamine by astrocytes, nor does glutamine
necessarily acts as a precursor to glutamate. While the mechanisms involved and the resulting
metabolites are more complex, they are not mentioned in this chapter.

Glutamate is the major excitatory neurotransmitter in the CNS (approximately 8–10 mM/kg),
and is found in more than 80% of all neurons [92, 97-99]. It is involved in most normal brain
function, especially in the cortical and hippocampal regions, which deal with cognition,
memory and learning [100] among other functions. Glutamate also plays a major role in the
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development of the central nervous system, as well as synapse induction and elimination, cell
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intracellularly inside nerve terminals and only a tiny fraction of this glutamate is normally
present outside or between the cells [103-105]. The extracellular elevation of glutamate causes
alterations in the glutamate-mediated neurotransmission, activating receptors and inducing
the depolarization of neurons which in turn triggers a sequence of intracellular events that
conclude in Ca2+ and Na2+ influx. This leads to the exocytosis of glutamate and ultimately cell
death, which correlates with the loss of memory function and learning ability in AD patients
[106-107]. Recently it has been shown that there is a close correlation between reduced
glutamatergic presynaptic button density and cognitive deficits. A study of brain tissue from
subjects with no cognitive impairment, mild cognitive impairment, or mild/severe-stage
Alzheimer’s disease; demonstrated that glutamatergic synaptic remodeling, presents a
pattern- dependent pathology, according to disease progression by comparing the mini mental
status examination scores of healthy individuals to those of individuals with mild or severe
Alzheimer’s disease [99, 108] (figure 1).

Glutamate excitotoxicity has also been implicated in other neurodegenerative diseases such
as Huntington’s disease, epilepsy, ischemia, and trauma [109-111]. In this sense, it is crucial to
maintain adequate extracellular levels of glutamate, as it is continuously released from the
cells and must therefore be continually removed from the extracellular fluid [93-94, 105]. It has
been documented that glutamatergic neurotransmission in neocortical regions and the
hippocampus is severely disrupted in Alzheimer’s disease. So far, it is unknown whether
molecular abnormalities observed in patients are a cause or a consequence of other changes
that allow the development of neurodegeneration. Another proposed hypothesis is that
alterations in the expression of neurotransmitter transporters could contribute to neurotrans‐
mission imbalances in the AD brain [112].

2.2. Glutamate transporters

Under normal conditions, the low concentration of glutamate into the extracellular space is
regulated by specific transporters, localized in both nerve endings and surrounding glial cells.
This transport system prevents cell damage generated by excessive activation of glutamate
receptors [105, 112-113]. There are two glutamate transport systems: the Vesicular GluTs
(VGLUT) and the Excitatory Amino Acid Transporters (EAAT) located in the plasma mem‐
brane. The VGLUTs are crucial for the storage of glutamate in synaptic vesicles. When a neuron
is depolarized, glutamate is released into the synaptic cleft where it binds glutamate receptors
to pre and post-synaptic neurons. There are three isoforms; VGLUT1, VGLUT2, VGLUT3. The
transport of glutamate into secretory vesicles is highly dependent on Cl- [114]. This anion
stimulates glutamate transport, but is inhibitory at higher concentrations. This process is
driven by an electrochemical gradient of H+ established by V-ATPase, which, together with
the VGLUT activity, affect vesicular glutamate content and subsequently the glutamatergic
signaling [115].

Studies have also identified five different ‘high-affinity’ glutamate excitatory amino acid
(EAATs) transporters (EAAT1, EAAT2, EAAT3, EAAT4 and EAAT5). Residing on postsy‐
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naptic GABAergic neurons, EAATs transport glutamate and serve as a precursor for the
synthesis of GABA. These two transporter families differ in many of their functional properties,
including substrate specificity and ion requirements [113]. EAATs-mediated glutamate
transport is Na+ dependent, where, for each transport cycle, one glutamate molecule is
transported together with two or three Na+ ions and one H+ in exchange for one K+ ion. These
transporters also interact with other proteins at the plasma membrane and are regulated by
protein kinases, growth factors and second messengers [116-117]. Alterations in this regulatory

Figure 1. Glutamatergic Transmission in Normal Brain. Glutamate released from presynaptic terminals acts through
the activation of glutamate receptors located at the postsynaptic terminal. The interaction between glutamate and
NMDA receptor favors the activation of several metabolic pathways such as CaMK, ERK, and CREB, which are responsi‐
ble for anabolic activation with subsequent activation of long-term potentiation (LTP) mechanisms. Glutamate excess
is transported via the EAAT into astrocytes, where is transformed to glutamine by the glutamine synthase. Subse‐
quently, glutamine it is converted into glutamate by glutaminase and packaged into vesicles through specific trans‐
porters (VGlut). VGlut (vesicular glutamate transporter); EAAT (excitatory amino acid transporter); NMDANR2A (N-
methyl-D-aspartate NR2A subunit); NMDANR2B (N-methyl- D-aspartate NR2B subunit); ERK (extracellular signal-
related kinase); CaMKII (calcium calmodulin-dependent kinase II); pCREB (phosphorylated cyclic AMP response
element binding protein); GSK3b (glycogen synthase kinase 3b); p38-MAPK (p38 mitogen-activated protein kinase).
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system as well as genetic mutation in the transporters and enzymes involved in the glutamate
metabolism can lead to excitotoxic damage due to an excessive release of glutamate, which in
turn can lead to neuronal death.

2.3. Glutamate receptors

Glutamate-mediated neurotransmission occurs through specific receptors. There are 2 families
of glutamate receptors located on the plasma membrane of the neurons: ionotropic (iGluR)
glutamate receptors, which act as ion channels, and metabotropic (mGluR) glutamate receptors
which are linked to the intracellular second messenger systems [92, 99, 118-119].

The iGluR family is divided into three kinds of receptors, depending on their permeabili‐
ty to different cations. NMDA receptors (NR1, NR2A–D and NR3A–B) are predominantly
Ca2+  ion  permeable,  whereas  α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic  acid
(AMPA;  GluR1–4)  and  Kainate  (KA;  GluR5–7,  KA1–2)  receptors  are  predominantly
permeable to Na+ and K+ ions [99, 120]. Each of these receptors is composed of four subunits,
and variations in the expression of each subunit  have different types of response in the
receptor  function  [92,  119].  AMPA  receptors  have  a  lower  affinity  for  Glutamate  than
NMDA receptors, and are responsible for an initial excitatory potential when Glutamate is
present in the synapse [92].  Kainate receptors play a role in synaptic neurotransmission,
but the exact nature of this role is unclear [119].

NMDA and AMPA receptors are present in most of the synapses in mammalian brains
(approximately 70%). This type of receptor is preferentially localized in the cerebral cortex,
hippocampus, amygdala, striatum, and septum. The specific location of these receptors is of
great importance, since glutamatergic signaling has a very important role in both the plasticity
and excitotoxicity processes, and, therefore, changes in their function lead to the development
of neurodegenerative processes.

The NMDA receptor is the most important and studied ionotropic receptor to date, and
participates in several functions such as synaptogenesis, synaptic plasticity, learning and
memory, as well as in the pathogenesis of several central nervous system disorders [121-123].
Calcium influx through the NMDA receptor is capable of modulating physiological and
pathological conditions in the neuron. The increase in intracellular Ca2+ concentration triggers
a cascade of events that dramatically modifies synaptic efficacy and neuronal morphology.
Functional NMDA receptors are heterotetrameric complexes composed of different subunits
(GluN1, GluN2A-D, GluN3A-B). Typically, each NMDAR comprises two obligatory GluN1
subunits and two GluN2 subunits, which can a form a dimer themselves, or alternatively one
GluN2 can combine with one GluN3 subunit to do the same [121, 123-124]. GluN1 occurs as
eight distinct isoforms encoded by a single gene [125]. The functional significance of the
differential expression of GluN1 isoforms is not clear. GluN2 and GluN3 also exist in several
alternatively spliced forms, although the functional differences between them are complex.
There are four genes encoding GluN2 subunits and each has a unique spatiotemporal profile.
In addition, GluN2A and GluN2B are expressed primarily in the cortex and hippocampus and
differ in their kinetic properties, developmental expression pattern, subcellular localization
and trafficking regulation. GluN3 subunits also display differential expression patterns, with
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system as well as genetic mutation in the transporters and enzymes involved in the glutamate
metabolism can lead to excitotoxic damage due to an excessive release of glutamate, which in
turn can lead to neuronal death.

2.3. Glutamate receptors

Glutamate-mediated neurotransmission occurs through specific receptors. There are 2 families
of glutamate receptors located on the plasma membrane of the neurons: ionotropic (iGluR)
glutamate receptors, which act as ion channels, and metabotropic (mGluR) glutamate receptors
which are linked to the intracellular second messenger systems [92, 99, 118-119].

The iGluR family is divided into three kinds of receptors, depending on their permeabili‐
ty to different cations. NMDA receptors (NR1, NR2A–D and NR3A–B) are predominantly
Ca2+  ion  permeable,  whereas  α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic  acid
(AMPA;  GluR1–4)  and  Kainate  (KA;  GluR5–7,  KA1–2)  receptors  are  predominantly
permeable to Na+ and K+ ions [99, 120]. Each of these receptors is composed of four subunits,
and variations in the expression of each subunit  have different types of response in the
receptor  function  [92,  119].  AMPA  receptors  have  a  lower  affinity  for  Glutamate  than
NMDA receptors, and are responsible for an initial excitatory potential when Glutamate is
present in the synapse [92].  Kainate receptors play a role in synaptic neurotransmission,
but the exact nature of this role is unclear [119].

NMDA and AMPA receptors are present in most of the synapses in mammalian brains
(approximately 70%). This type of receptor is preferentially localized in the cerebral cortex,
hippocampus, amygdala, striatum, and septum. The specific location of these receptors is of
great importance, since glutamatergic signaling has a very important role in both the plasticity
and excitotoxicity processes, and, therefore, changes in their function lead to the development
of neurodegenerative processes.

The NMDA receptor is the most important and studied ionotropic receptor to date, and
participates in several functions such as synaptogenesis, synaptic plasticity, learning and
memory, as well as in the pathogenesis of several central nervous system disorders [121-123].
Calcium influx through the NMDA receptor is capable of modulating physiological and
pathological conditions in the neuron. The increase in intracellular Ca2+ concentration triggers
a cascade of events that dramatically modifies synaptic efficacy and neuronal morphology.
Functional NMDA receptors are heterotetrameric complexes composed of different subunits
(GluN1, GluN2A-D, GluN3A-B). Typically, each NMDAR comprises two obligatory GluN1
subunits and two GluN2 subunits, which can a form a dimer themselves, or alternatively one
GluN2 can combine with one GluN3 subunit to do the same [121, 123-124]. GluN1 occurs as
eight distinct isoforms encoded by a single gene [125]. The functional significance of the
differential expression of GluN1 isoforms is not clear. GluN2 and GluN3 also exist in several
alternatively spliced forms, although the functional differences between them are complex.
There are four genes encoding GluN2 subunits and each has a unique spatiotemporal profile.
In addition, GluN2A and GluN2B are expressed primarily in the cortex and hippocampus and
differ in their kinetic properties, developmental expression pattern, subcellular localization
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GluN3A peaking in early postnatal life and GluN3B increasing throughout development [123].
Finally, although receptor subunits have structural similarities, the composition of the
different receptor subtypes confer distinct functional and biophysical properties that are
reflected in the ion permeability, protein interactions and membrane localization (synaptic or
extrasynaptic). They may also have different roles in modulating synaptic plasticity and
development of pathologies [122-123]. In fact, the expression of individual subunits is highly
dependent on brain area and developmental stage, thus, alterations in the expression of each
subunit can lead to a pathological condition which may be reflected in the development of
neurodegenerative diseases.

2.4. Glutamate/NMDAR: Role in learning and memory

In the CNS, it is known that the hippocampus is closely related to learning and memory, and
has a very high density of glutamate receptors, particularly the NMDA-type, which are
significantly involved in this type of neuronal plasticity. Glutamate is essential for the
establishment of new neural networks, forming memory and learning through a process
known as long-term potentiation (LTP) or long-term depression (LTD) of synaptic strength,
which occurs upon activation of NMDA receptors.

NMDA receptors are characterized by their high Ca2+ ions’ permeability, their voltage
dependent blockade by Mg2+ ions, and their slower gating kinetics. At rest, the NMDA
receptor is blocked by Mg2+, while prolonged activation by the presence of glutamate allows
the release of the Mg2+, opening the NMDA receptor and allowing the Ca2+ ions to freely enter
into postsynaptic neuron. Calcium entering through the NMDA receptors activates CaMKII,
PKA, PKC and mitogen-activated protein kinase (MAPK), and protein phosphatases. Acti‐
vated CaMKII phosphorylates the AMPA-type glutamate receptor 1 (GluR1) subunit, which,
in turn, promotes synaptic incorporation of GluR1-containing AMPARs, thereby increasing
AMPAR number and channel conductance [107, 121, 126]. The fundamental role of the NMDA-
receptor system in the establishment of learning and memory has been demonstrated in
various animal models [127-131]. However, pharmacological studies and the manipulation of
experimental models have shown that, although this system is important in memory induction,
it does not participate in the maintenance of memory [132-135] (figure 1).

These features make NMDA receptors quite suitable for mediating plastic changes in the brain,
such as learning. However, they may also contribute to the excitotoxicity processes produced
by a massive influx of Ca2+. Under these conditions, the continuous presence of glutamate
induces constant activation of the NMDA receptor, and the ensuing massive influx of Ca2+ may
trigger a cascade of events leading to neuronal injury and death[136]. Chronic depolarization
of the membrane on vulnerable neurons, as observed in AD patients, is accompanied by other
disorders such as neuronal oxidative stress, mitochondrial damage, and inflammation, and
the presence of amyloid beta and possibly hyperphosphorylated-tau, which may eventually
increase the sensitivity of the glutamatergic system and result in neuronal dysfunction and
cell death [97, 106-107].

Neurochemistry294

2.5. Neurotoxicity of Aβ: Synaptic dysfunction in AD

Aside from the above toxic effects, it is known that amyloid has the ability to inhibit normal
function of the glutamatergic system. It can also interact with glutamine synthetase (GS) to
induce the inactivation of the enzyme [137], chronically depolarize neurons through its action
on the metabotropic glutamate receptor 1 [138], and partially relieve the voltage-dependent
Mg2+ block of NMDA receptors, which allows the continuous entry of calcium into neurons
by altering the homeostasis and thus causing cell death. This also causes that neurons to
express NMDA receptors selectively and become vulnerable to glutamatergic stimulation. In
AD patients, it has been observed that glutamatergic transmission is severely affected by
neurons in the cortex and hippocampus (Figure 2).

Figure 2. Glutamatergic transmission in Alzheimer’s disease. Aβ oligomers enhance the pre-synaptic release of gluta‐
mate together with the simultaneous blockade of glutamate uptake by astrocytes through glutamate transporters
(EAAT), due to this, glutamate concentration in synaptic cleft increases. In addition, Aβ form complexes with alpha7-
nicotinic receptors, increasing levels of glutamate release. Activation of NMDA receptors increases the influx of calci‐
um and activates signaling pathways responsible for neuronal shrinkage and synaptic loss (p38-MbAPK, GSK-3b, JNK),
leading to Tau phosphorylation and neuronal death. Finally, there is an inhibition of the survival pathways (CAMK II,
ERK, pCREB).
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Neurochemical analysis performed on tissue from patients with AD revealed deficits in
numerous neurotransmitters. Early symptoms appear to correlate with dysfunction of
cholinergic and glutamatergic synapses. Furthermore, morphometric studies of temporal and
frontal cortical biopsies from AD have revealed that there is a 25-30% decrease in the density
of synapses. In the same way, it has been observed that the degree of cognitive impairment
observed correlates with changes in the protein synaptophysin in the hippocampus. In fact, it
has also been shown that the presence of soluble amyloid correlates with cognitive deficits and
synapse loss [139-140].

In 2005, Kokubo et al investigated the ultrastructural localization of soluble Aβ oligomers in
human brain tissue. They used post-embedding immunoelectron microscopy (IEM) [72] and
an antibody that specifically recognizes soluble oligomers [141]. The results showed that
approximately 80% of oligomers are found in active cellular processes. In addition, oligomers
were found in both the presynaptic active zone and in postsynaptic densities, and their
presence may be related to synaptic dysfunction [72]. This might suggest that the Aβ oligomers
are released from the presynaptic site into extracellular space or are synaptically transported
from neuron to neuron. These results agree with the hypothesis that the oligomerization of
Aβ begins intracellularly [50]. The amyloid that is released from presynaptic terminals and not
degraded efficiently accumulates in extracellular deposits and could serve as a seed to induce
further accumulation of Aβ aggregates that culminates in the formation of neuritic plaques
[142-143]. Neprilysin is an enzyme which is located in the presynaptic sites and participates
in the Aβ clearance. In AD, Neprilysin is decreased and may contribute to AD pathogenesis
increasing the amyloid levels in the presynaptic sites [144-145]. This was demonstrated in a
transgenic mouse model that expressed low levels of APP and had one or both NEP genes
silenced. The analysis of the brains and plasma in young and old mice showed elevated levels
of human Aβ1-40 and Aβ1-42, an increase in Aβ dimer concentration, and a markedly
increased hippocampal amyloid plaque burden, and led to development of severe amyloid
angiopathy, supporting the hypothesis that primary defects in Aβ clearance can cause or
contribute to AD pathogenesis [146].

In 2012, Koffie et al analyzed more than 50,000 synapses in 11 AD brains and 5 control subjects,
and found that the synapse loss directly correlated with the presence of oligomeric amyloid.
This was confirmed by the use of specific antibodies, such as NAB61, which recognizes
oligomeric Aβ, and the R1282 antibody which recognizes all conformations of amyloid and
the 82E1 antibody [147]. Extensive neuronal loss is another important feature in the Alzheim‐
er's pathology and, is observed as being restricted to the cell bodies and dendrites of gluta‐
matergic neurons located in layers III and IV of the neocortex and the glutamatergically
innervated cortical and hippocampal neurons [38, 148].

The mechanism by which Aβ oligomers induce synaptic dysfunction remains unknown;
however, it has been proposed that this alteration in synaptic transmission may be performed
through non-excitotoxic glutamatergic mechanisms [149]. In this way, the accumulation of
Aβ oligomers in synaptic components, especially in the axon terminal, results in synaptic and
cognitive dysfunction seen in AD [72].
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2.6. Animal models in AD and synaptic dysfunction

Several studies have shown that amyloid oligomers – both synthetic [150] and those isolated
from the brains of patients [63] – have the ability to induce synaptic alterations in neuronal
cultures and organotypic hippocampal slice cultures. The transgenic mice models that express
different APP mutated forms show extensive neuritic dystrophy and loss of synapses,
important features that suggest a neurodegenerative process. In this way, it has been suggested
that Aβ oligomers could modulate both pre and post-synaptic structures and functions in a
dose and assembly-dependent manner [151-152]. The results indicate that protofibrils and
oligomeric forms of Aβ most likely generate neuronal death through a nucleation-dependent
process rather than acting as direct neurotoxic ligands [153]. In 2008, Shankar and colleagues
showed that the presence of Aβ oligomers in slice cultures blocked the LTP, while NP-derived
aggregates had no effect unless they were treated with formic acid. The oligomers potently
inhibited long-term potentiation (LTP), enhanced long-term depression (LTD), and reduced
dendritic spine density in a normal rodent hippocampus [154].

Animal models overexpressing hAβPP protein also show a decrease in synaptophysin-positive
presynaptic terminals, approximately 30% less than that observed in non-transgenic mice. Is
important to note that these decreases in presynaptic terminals are dependent on soluble
amyloid levels rather than on plaques per se [63, 152, 154-156], which would also explain the
cognitive deficits observed. In a triple transgenic mice model which presented PS1(M146V),
APP(Swe), and tau(P301L) transgenes (3xTg-AD), it was possible to show that the intraneuro‐
nal amyloid deposition correlates with the cognitive deficits observed in these mice. At six
months, the 3xTg-AD mice showed a profound LTP deficit and intraneuronal Aβ accumulation
occurring within pyramidal neurons. This cognitive deficit occurs before the accumulation of
extracellular amyloid aggregates, suggesting that cognitive impairment occurs before the
formation of neuritic plaques [157-160]. The synaptic dysfunction, including LTP deficits and
cognitive alteration manifests in an age-related manner [157].

Moreover, it has also been observed that Aβ oligomers bind to high-affinity cell-surface
receptors (cellular prion protein or PrP(C) and block hippocampal long-term potentiation and
dendritic spine retraction from pyramidal cells at nanomolar concentrations of oligomers.
Anti-PrP antibodies prevent the Aβ-oligomer from binding to PrPC and rescue synaptic
plasticity in hippocampal slices from oligomeric Aβ [161]. Other studies also have shown that
Aβ/PrPC interaction leads to activation of Fyn kinase. PrPC /Fyn signaling yields phosphor‐
ylation of the NR2B subunit of NMDA receptors, which is coupled with an initial increase and
then a loss of surface NMDA-receptors. Thus, Aβ generates changes in GluR function and
dendritic spine anatomy. Additionally, Fyn activation might suggest correlation with Tau
pathology and the epileptiform phenotype observed in some patients with AD [162]. In this
sense, it has been reported that oligomers of Aβ lead the activation of AMPK. The increased
intracellular Ca2+ induced by membrane depolarization or NMDA receptor activation triggers
AMP-activated kinase (AMPK) activation in a CAMKK2-dependent manner. CAMKK2 or
AMPK overactivation is sufficient to induce dendritic spine loss [163]. The roles of AMPK in
the pathogenesis of AD include β-amyloid protein (Aβ) generation and tau phosphorylation
[164]. AMPK phosphorylates Tau in S262, while expression of Tau S262A inhibits the synap‐
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totoxic effects of Aβ42 oligomers, which suggests that the CAMKK2-AMPK-Tau pathway
could be a critical mediator of the synaptotoxic effects of Aβ42 oligomers [163]

Dendritic spines are certainly the sites with more excitatory synapses, and their loss correlates
with the cognitive impairment observed in Alzheimer’s patients [165]. A large body of
evidence suggests that amyloid oligomers may cause loss of dendritic spines [47, 166-172]. The
exposure of cultured pyramidal neurons to Aβ oligomers showed decreased synaptic activity
and a decrease in the density of dendritic spines [154]. Multiphoton imaging of GFP-labeled
neurons in living Tg2576 APP mice showed disrupted neurite trajectories and reductions in
dendritic spine density compared with age-matched control mice. Spine loss is most pro‐
nounced near plaques, indicating focal toxicity and also that the decrease in the density of
dendritic spines may contribute to the altered neuronal function observed in these mice [166].
It has also been found that Aβ trimmers fully inhibit LTP, whereas dimers and tetramers have
an intermediate potency and support the hypothesis that diffusible oligomers of Aβ initiate a
synaptic dysfunction that may be an early event in AD [173]. It is known that the presence of
oligomers of Aβ induces the loss of synapses, although little is known whether synapse loss
precedes or follows plaque formation. In 2012, Bittner et al conducted an in vivo study using
two-photon microscopy through a cranial window in double transgenic APPPS mice. Using
this technique, they observed the manner in which the amyloid is deposited to form neuritic
plaques and determined the loss of dendritic spines in the vicinity of these deposits. They
found that the rate of dendritic spine loss in proximity to plaques is the same in both young
and older animals. The plaque size only increases in young animals, while spine loss persists
even many months after the initial appearance of the plaque. Finally, they found that spine
loss occurs, with a significant time delay, after the birth of new plaques, and persists in the
vicinity of amyloid plaques over many months [168].

A key aspect that determines the functionality of dendritic spines is their morphology. It is
known that Calcineurin (CaN) activation is critically involved in regulating both the mor‐
phology of the spines in response to oligomeric Aβ, and the synaptic plasticity in normal
memory. When adding oligomers derived from Tg2576 murine transgenic neurons or human
AD brains to wild-type murine primary cortical neurons, CaN activation in spines was
observed and led to rapid but reversible morphological changes in spines and postsynaptic
proteins, suggesting that Calcineurin might have an important role in regulating the synaptic
alterations associated with Alzheimer's disease [174]. Finally, it has been shown that APP has
an important role in regulating synaptic and structure function. Analysis of dendritic spines
in the primary cultures of hippocampal neurons and the CA1 neurons of hippocampi of APP
−/− mice showed a significant decrease in spine density (35%), compared to control cultures.
This spine loss was partially restored with sAPPα-conditioned medium. These abnormalities
in neuronal morphology were also accompanied by a reduction in long-term potentiation.
These results suggest that sAPPα is necessary for the maintenance of dendritic integrity in the
hippocampus [172].

The changes in dendritic spines observed in various diseases impact heavily on synapse function
and circuit-level connectivity in the form of altered connectivity or changes in connection
strength [175]. Changes in the number and morphology of the spines can start a cascade of
symptoms and effects that lead to the pathological changes observed in Alzheimer’s disease.
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2.7. Aβ and synaptic plasticity

Although for many years the theory has been maintained that beta amyloid deposits are the
main factor in AD pathology, recent years have seen an increase in the evidence pointing to
the fact that its accumulation in certain brain regions may participate importantly in memory
and cognition [176]. This dual concept of amyloid, where, at low doses it can positively
stimulate the normal physiological processes of the cells, and at high doses it can cause toxic
effects has also been observed in a very large number of molecules. This idea has been strongly
supported by the observation that APP knock-out mice show long-term potentiation (LTP)
and memory impairment [44, 177]. Glutamate, the main excitatory neurotransmitter is
undoubtedly another example, as it is known that at low doses, it has the ability to stimulate
synaptic plasticity and memory [178], while at high doses it is toxic and favors the development
of several neurodegenerative diseases.

We have already mentioned that the amyloid is generated the proteolytic processing of APP
through the action of β-and γ-secretases. In recent years, it has been reported that these enzymes
are involved in memory and synaptic plasticity. In 2004, Saura and colleagues developed
conditional double knockout mice lacking the expression of both presenilins in the postnatal
forebrain. The results showed impairments in hippocampal memory and synaptic plasticity.
These alterations are associated with decreases in NMDA receptor-mediated responses and the
synaptic levels of NMDA receptors and αCaMKII.  Also, a decrease was observed in the
expression of CBP and CREB/CBP target genes, such as c-fos and BDNF, while, increased levels
of the Cdk5 activator p25 and hyperphosphorylated Tau were also observed. Finally, these mice
develop a process of neurodegeneration, which increases with age. These results indicate that
the inhibition of presenilin could accelerate memory loss and neurodegeneration [179]. Other
trials have suggested that synaptic plasticity and memory depend on BACE1-mediated APP
processing, which may facilitate memory and synaptic plasticity [180]. In the same way, BACE1
null mice exhibit alterations in hippocampal synaptic plasticity as well as in their perform‐
ance in tests of cognition and emotion [181]. Recently it has been suggested that concentra‐
tions of picomolar amyloid are capable of inducing synaptic plasticity and memory in the
hippocampus, and that the exposure of amyloid to Aß did not affect the NMDA receptor. The
action mechanism of picomolar Aβ42 on synaptic plasticity and memory involves α7-nicotin‐
ic acetylcholine receptors [44], suggesting that Aβ42 may be an important modulator of synaptic
plasticity and memory in the normal brain. Furthermore it has been observed that many of the
effects on amyloid NMDA receptors can be blocked by antagonists of this receptor.

3. Glutamatergic system-targeted treatment in Alzheimer’s disease: Focus
on memantine

Aβ peptide is able to interact with a whole variety of proteins [97], and this interaction may
cause dysfunction of the protein to which Aβ is binding. One group of proteins with which
Aβ is able to interact is the glutamatergic NMDA receptors. Texidó et al. [182] showed that the
Aβ peptide directly binds and activates NMDA receptors expressed in Xenopus laevis oocytes,
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thereby causing an increase in cytosolic calcium concentration. These results are coincident
with previous results by McDermott et al. [183], who reported increased calcium intracellular
concentration in spinal cord mouse neuron cultures, after adding NMDA. Cytosolic calcium
overload causes mitochondrial dysfunction and leads to an increase in ROS production, which
in turn generates oxidative stress and leads to cell death [184]. For these reasons, the idea was
born that NMDAR antagonists could be a promising therapeutic target in AD treatment.

Among all the known NMDAR antagonists, the most widely studied and used in the treatment
of AD is the molecule known as memantine. Memantine (1-amine-3, 5, dimethyladamantane)
was first synthesized in 1963 [185]. The drug is a derivative of amantadine, an antiviral used
in influenza treatment. Like amantadine, memantine has a three ring structure, with an amine
group and two methyl groups [186]. Memantine NMDAR antagonist properties remained
unknown until Kornhuber et al. [187] reported that memantine had the same properties and
same binding site of the well known NMDAR antagonist MK-801. Chen and Lipton [186]
observed that memantine affinity towards NMDA receptors was sensitive to NMDA concen‐
tration, leading to the conclusion that memantine NMDA receptor antagonism is uncompeti‐
tive. It is this uncompetitivity and the fact that his binding is voltage-dependent which makes
memantine an effective and safe therapeutic agent. For memantine to be able to exhibit its
inhibitory activity, the receptor channel must be in an open state. Memantine blocks NMDAR
activity by entering and binding to the cation pore, thus preventing cation flux and inhibiting
functional NMDAR activity. Memantine binding to the receptor is voltage-dependant, in such
a way that it leaves the channel pore in depolarization conditions, i.e. during excitatory post-
synaptic potential, this way allowing synaptic activity to be maintained [188].

Memantine disease-modifying efficacy and safety has been proven in many studies. Most
assays using a variety of AD animal models have lead to promising results. Minkeviciene et
al. [189] showed that a 4 week oral treatment with memantine (via drinking water) improved
the performance in the Morris water maze of mice carrying both a human APP transgene with
the Swedish mutation and a human PS1 transgene with the A246E mutation, when compared
with placebo-treated mice. In fact, this study showed that memantine-treated transgenic mice
performed well in the water maze as well as WT mice, thus revealing a complete rescue of
cognitive function due to memantine. Surprisingly, a later study [190] using this same mouse
model did not find an effect of memantine treatment on performance in the Morris water maze,
but memantine-treated mice performed better in a left-right discrimination task when
compared with placebo-treated mice. Another study [191], which used heterozygous APP23
mice (mice carrying one copy of a human APP transgene with the Swedish mutation), reported
an increase in spatial accuracy of memantine-treated mice in the Morris water maze, as
measured by the time mice spent in the target quadrant of the maze. However, in this study,
memantine failed to decrease escape latency (time that takes to mice to reach the target
platform of the maze). Martínez-Coria et al. [192], using 3x-TgAD mice (mice that express
simultaneously a human APP transgene carrying the Swedish mutation, a PS1 gene carrying
the M146V mutation and a human tau transgene carrying a P301L mutation), showed that
treatment with memantine caused a significant improvement in mice performance in the
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Morris water maze, in an object recognition task and in a passive avoidance task, showing that
memantine has an effect on different types of memory.

In contrast, few studies have failed in obtaining a significant cognitive function improvement
after memantine treatment. Dong et al. [193], using Tg2576 mice (which also express the
Swedish mutation), did not find any treatment effect in a conditioned fear experiment after six
months of daily memantine administration. Interestingly, histological analysis revealed that
the memantine-treated group exhibited less Aβ plaque deposition, less axonal degeneration
and increased synaptic density, when compared with the placebo-treated group.

Because memantine appeared to be effective and safe in animal model assays, clinical trials
soon began to be developed. In general, results from these trials showed a modest effect
increasing the preservation of cognitive function. Rive et al. [194] classified a group of 252 AD
patients in “autonomous” or “dependant” according to their punctuation by the ADCS-ADL
(Alzheimer’s Disease Cooperative Study-Activities of Daily Living) scale and found that, after
a 28-week treatment with memantine or placebo, memantine-treated patients had 3 times more
probability of remaining autonomous than placebo-treated patients. Peskind et al. [195]
measured the outcomes of 403 AD patients for the ADAS-cog (Alzheimer’s Disease Assess‐
ment Scale-cognitive subscale), the CIBIC-Plus (Clinician’s Interview-Based Impression of
Change-Plus caregiver input) scale and the NPI (Neuro-Psychiatric Inventory) scale. Meas‐
urements were taken at the beginning of the study and after 24 weeks of memantine or placebo
treatment. Results showed that memantine-treated patients exhibited better performance in
all of these scales, when compared to placebo treated patients. Another study [196] showed
that after 24 weeks of treatment with memantine or placebo, memantine-treated AD patients
exhibited significantly slower cognitive decline compared with those treated with placebo, as
measured by the SIB (Severe Impairment Battery). Memantine also showed to be moderately
effective in the improvement of semantic memory. The study by Ferris et al. [197] found a
significant amelioration of language impairment (assessed by the language subscale of the SIB)
in AD patients after 28 weeks of memantine treatment. Another study [18] followed 295 AD
patients receiving memantine or placebo during 52 weeks. Their results show that memantine-
treated patients scored 1.2 points higher in the MMSE (Mini-Mental State Examination) than
placebo treated patients.

4. Conclusion

All the aforementioned results point out that memantine is a safe disease-modifying drug to
use in AD treatment, and its effectiveness has turned out to be slight, but significant, and
comparable to that of other AD treatment drugs, such as cholinesterase inhibitors. Clinical
trials in order to assess the effectiveness of combined treatment of memantine with other drugs
are currently being implemented.

Finally, studies reported in the literature suggest that Aβ, the glutamatergic system, and in
particular NMDA receptors have a major role in the processes of learning and memory.
Synaptic plasticity can be regulated positively or negatively, depending on the levels and
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degrees of amyloid oligomerization. The negative effect of these oligomeric forms may be
reversed by the presence of NMDA receptor antagonists. In this regard, it has been reported
that the noncompetitive antagonist memantine is able to block the "pathological" receptor
activation exerted by these oligomers. In this view, an early pharmacological treatment with
memantine, or even a memantine associated treatment combined with AChE inhibitors, might
represent a very good option for the treatment of patients with AD.
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1. Introduction

Alzheimer's disease, which was first described in 1907 by Alois Alzheimer, is a progressive
neurodegenerative disorder characterized by memory loss and other cognitive functions, and
is the most common cause of dementia in old age. Histopathologically, AD is defined by the
presence of two specific features: neuritic plaques (NP), containing beta amyloid (Aβ) deposits
and neurofibrillary tangles (NTF), containing hyperphosphorylated tau protein [1-3] (Figure
1). The pathological changes observed in the brains of AD patients are not distributed
uniformly over the cerebral cortex. Instead, these changes are located in specific cortical areas,
indicating a relationship between disease progression and the connectivity of affected areas
[2, 4-5]. These changes follow a pattern that correspond to the information transmission routes
between cortical and subcortical areas of the brain, suggesting a direct correlation between
anatomical damage and the clinical phases of the disease.

There are two subtypes of AD: 1) familial Alzheimer´s disease which is associated with
mutations in three different genes and 2) sporadic Alzheimer´s disease, which is much more
common and the causes for it, are not yet completely understood. In recent decades, numerous
genome-wide association studies (GWAS) have been performed in an attempt to identify new
risk loci related with the development of sporadic cases. In this regard, genetic association
studies of cases and controls, have proven the existence of polymorphic variants in genes which
could be interpreted as genetic susceptibility factors contributing to the development of LOAD.
However, these results are not replicated in all populations, suggesting the importance of
geographical and environmental factors in the phenotypic expression of the disease. For this
purpose and in order to validate the data obtained, it is necessary to take in account con‐
founding factors as genetic admixture in population-based genetic association studies. This
review, describe the genetics of Alzheimer´s disease and some of the most relevant GWAS
conducted to date.

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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2. Diagnosis

There are currently several clinical tools for the diagnosis of AD, including the minimum
mental state examination (MMSE) [6] and the Diagnostic and Statistical Manual of Mental
Disorders (Fourth Edition [DSM-IV]). In general terms, these tools consist of a semi-structured
interview with an appropriate reporter and the patient with damage being described as loss
of two or more of the following cognitive areas: memory, orientation, calculation and language.
Other aspects are similarly evaluated, such as problem solving, social relationships, work,
hobbies and personal care. Another commonly used criterion for diagnosis is that of the
National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer´s
Disease and Related Disorders Association (NINCDSADRDA). Under this criterion, the state
of dementia is clinically determined based on the loss of two cognitive areas and the absence
of other systemic disorders, accompanied by a progressive loss of memory. These criteria are
sufficient to determine probable Alzheimer´s disease. However, diagnosis of AD requires
exclusion of other neurodegenerative diseases, such as frontotemporal dementia, Parkinson's
disease and Lewy Body disease. Discrimination between AD and other types of dementia are
usually achieved based on clinical history and through neurological examinations that require
imaging studies. Nevertheless, definitive diagnosis of AD requires postmortem confirmation
by histopathological examination to demonstrate the presence of NP and NFT (Figure 1).

Figure 1. Pathological changes observed in AD patients brains. (A) Cross-section on the left represents a normal
brain and the one on the right represents a brain with Alzheimer's disease. The picture shows the generalized brain
atrophy in AD, characterized by widening in sulcus, ventricles dilatation and extensive cell loss. (B) Silver stain showing
the presence of neurofibrillary tangles (NFT) the Tau protein aggregates are indicated by white arrows. We observe
the formation of these deposits at different stages of neurodegeneration. (C) Double staining showing a neuritic pla‐
que (NP), amyloid deposits are seen in red and marked with an asterisk; neurofibrillary aggregates surrounding the
amyloid are marked with the arrow.
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2. Neuritic plaques and the β-amyloid precursor protein

Neuritic plaques are extracellular deposits of 10-100 μm in diameter, contain an insoluble core
consisting of a peptide known as amyloid-β (Aβ), surrounded by microglia, reactive astrocytes
and dystrophic neurites [7]. Aβ is a peptide of 39-42 amino acids [8-9] that originates as a
normal secretory product derived from amyloid-β precursor protein (AβPP) [10]. AβPP is an
integral membrane protein that is widely expressed in epithelial cells of various organs, such
as the thyroid gland, skin and the central nervous system. AβPP is a type I integral membrane
glycoprotein that resembles a signal-transduction receptor [10]. This protein is conformed by
a large extracellular domain, a hydrophobic transmembrane domain and a short cytoplasmic
carboxyl terminus (Figure 2). The gene is located on chromosome 21q21 and consists of 18
exons. Alternative splicing generates several isoforms with lengths varying between 365 and
770 amino acid residues. In the central nervous system, four isoforms are expressed: APP695,
APP714, APP751 and APP770. Amyloid-β is present only in APP695, APP751 and APP770
(Figure 3A, 3B). The APP695 isoform is mainly expressed in neuronal cells [11], while the
APP751 and APP770 isoforms are expressed in glial cells [12-13]. To date, the primary function
of the protein has not been defined yet, but it has been proposed that it could participate as a
growth factor in cultured fibroblasts [14] and play role in cell adhesion [15], intraneuronal
calcium regulation [16], neural plasticity [17] and act as a regulator of synapse formation [18].
AβPP, is posttranslationally modified by N-and O-glycosylation, phosphorylation and
tyrosine sulphation and undergoes two types of proteolytic processing [19] through three

Figure 2. Schematic representation of AβPP. AβPP is a member of a family of conserved type I membrane proteins,
consists of a large extracellular domain, a hydrophobic transmembrane domain, and a short cytoplasmic carboxyl ter‐
minus. Amyloid sequence contains 40-and 43-amino acid residues that extend from the ectodomain into the trans‐
membrane domain of the protein. The Aβ sequence lies partially outside the cell membrane (amino acids 1–17 of Aβ)
and the some identified mutations in the protein are indicated in bold.
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enzyme activities α-secretase, β-secretase which cleave AβPP within the luminal domain, and
a third activity, termed γ-secretase which cleaves APP within the transmembrane domain. All
three AβPP secretases are transmembrane proteases.

Figure 3. Human APP gene structure. (A) The APP gene consist of 18 exons, is located on chromosome 21
(21q21.2-3). The region encoding the amyloid sequence comprises part of exons 16 and 17 (yellow box). (B) APP is
alternatively spliced into several products, named according to their length in amino acids (ie, APP695, APP714,
APP751, APP770, and APP563) that are expressed differentially by tissue type. The major APP derivatives in the CNS
are APP695, APP751 and APP770. Some isoforms contain a 57 amino acid KPI domain and a 19 aminoacid MRC OX-2
antigen in the extracellular sequences (pink box).

It is believed that the principal proteolytic cleavage of AβPP is non-amyloidogenic pathway,
which is performed by the action of a protease known as alpha-secretase. This protease cleaves,
at residues 612-613 corresponding to the middle portion Aβ (Lys16 and Leu17 in Aβ peptide),
thereby preventing amyloid formation [20-21]. α-secretase (ADAM10) generates two products:
a soluble fragment (sAPPα) that is released into the extracellular space and a carboxyl terminal
membrane-anchored product, called C83. Finally, the C83 fragment is cut by γ-secretase
generating a 6 KDa fragment, called AICD (APP intracellular domain-) and a ~3kDa peptide
(p3) that is released into the extracellular space (Figure 4A).

Neurochemistry320

The first step of amyloidogenic processing is carried out by the action of β-secretase, (BACE1),
which generates the formation of two products: 1) a soluble product (sAβPP) that is released
into the extracellular space and 2) a carboxyl terminal membrane-anchored called C99. In the
same way C99 is cut by the γ-secretase, generating the AICD fragment into the cytoplasm and
the neurotoxic fragment amyloid beta (Aß) (Figure 4B) [22].

Although AβPP metabolism and amyloid peptide accumulation represent central events in
the pathogenesis of AD, in animal models, it has not been possible to demonstrate that their
occurrence per se is capable of generating the complete pathology of the disease.

Figure 4. AβPP Processing. The AβPP is an integral membrane protein, is sequentially processed by the three proteas‐
es α-, β-, and γ-secretase. (A) The non amyloidogenic pathway involves the α-secretase, which made the cut at the
middle portion of the fragment corresponding to the amyloid sequence; preventing the amyloid peptides generation.
(B) The amyloidogenic pathway involves β-secretase, leading to the formation of C-terminal fragments (CTFs) that are
subsequently cleaved by the “γ-secretase-complex” which is responsible for the formation of Aβ (40 or 42 amino acids
in length) and the AβPP intracellular domain peptide (AICD) of 58 or 56 amino acids.
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3. Neurofibrillary tangles and tau

Neurofibrillary tangles are simpler and yet more enigmatic than neuritic plaques. Unlike NP,
the density of NFT in the brains of AD patients is closely related to the severity of dementia
[23-24]. In particular, neurofibrillary degeneration is a prerequisite for the clinical expression
of AD pathology, i.e., dementia, whereas amyloid accumulation in the absence of neurofibrillary
tangles does not produce the AD pathology. The structural units of NFT are paired helical
filaments (FHA), which are formed by the association of five to six6 fragments of the micro‐
tubule binding protein Tau. The gene that encodes this protein is located on chromosome 17
and comprises 16 exons of which-1 and 14 exons, can be transcribed but not translated [25-27].
Alternative RNAm splicing of exons 2, 3 and 10, of the MAPT gene generates the formation of
six isoforms which are expressed in adult brain [28]. Each isoform differs from each other by
the presence or absence of a 29-aminoacid or 58-aminoacid inserts in the amino-terminal half
and by the inclusion or not in the carboxy-terminal half of the protein of a 31-aminoacid repeat
encoded by exon 10 of MAPT [25, 29-30]. When exon 10 is excluded, the result is a protein with
three repeats of the microtubule-binding domain (3RMBD). When exon 10 is included, a fourth
microtubule binding domain is added to generate four-repeat tau (4RMBD) [28, 31-32] (Figure
5). Under normal conditions, Tau is a highly soluble protein, since it contains no apparent
secondary structure [33-34]. However, in pathological conditions, Tau tends to self-assemble
into the insoluble filament structures [32]. To date have been identified and MAPT gene
mutations, however, none of these mutations have been associated with the development of
AD. This type of mutations in the Tau gene cause frontotemporal dementia with Parkinsonism
linked to chromosome 17 (FTDP-17) [35-39]

4. Genetics of AD

Conventionally, AD is divided into two forms depending on the age of onset: early onset
Alzheimer´s disease (EOAD) and late onset Alzheimer´s disease (LOAD). EOAD or familial
cases, which account for only 5-10% of all cases, exhibit an autosomal dominant mode of
inheritance, high penetrance of clinical symptoms and onset before 55 years of age. LOAD or
sporadic cases account for 90-95% of all AD cases, usually present a later onset age (≥ 65 years)
and apparently do not show familial aggregation associated with the development of the
disease. Twin studies provide insight into the relative contributions of genetic and environ‐
mental influences for Alzheimer´s disease and other types of dementia [40-42]. It has long been
argued that a twin study design is advantageous for identifying risk and protective factors
because this type of study has suggested the existence of a genetic component associated with
the development of LOAD cases [43]. The results of these studies have shown that the pairwise
concordance rate for Alzheimer´s disease is 78% (7/9) among monozygotic and 39% (9/23)
among dizygotic twin pairs [40]. In 2006, Gatz adjusted their findings for age and also included
like-and unlike-sex pairs, and the results showed that the age–adjusted heritability for AD was
estimated to be 58-79%, and there were no significant differences between men and women
regarding prevalence or heritability after controlling for age [41]. Nevertheless, it was observed
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that among patients who develop LOAD, approximately 40-65% present an indirect genetic
agent in the form of the 4 allele of apolipoprotein E (ApoE/4) [44-47]. However, the effect of
APOEe4 as a genetic risk factor is not sufficient or necessary for developing the disease [48-49].

Figure 5. Human Tau-protein. (A) Schematic representation human tau gene (MAPT). The human gene comprises 16
exons of which exons-1 and 14, can be transcribed but not translated. In central nervous system are expressed 6 iso‐
forms, which are obtained by alternative splicing of exons 2, 3 and 10; the exons 1, 4, 5, 7, 9, 11, 12 and 13 are ex‐
pressed in all isoforms. In boxes, are indicated the mutations found in the gene which have been associated with
FTDP-17. (B) Representation of the 6 Tau isoforms. The different isoforms differ from each other by the presence of
one or two inserts located in the region N (yellow and orange boxes) and the presence of 3 or 4 repeated domains,
located in C-terminus of the molecule (blue box) and termed microtubule binding domain (MTBD). The expression of
the different isoforms is regulated during development; in fetal stages are expressed only isoforms containing 3 re‐
peated whereas adult stages, all isoforms are expressed.
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3. Neurofibrillary tangles and tau
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5. Early onset alzheimer´s disease

While the vast majority of cases of AD occur late in life and are sporadic, approximately 5–
10% of cases exhibit an early onset. EOAD or Familial Alzheimer´s disease is associated with
mutations in proteins such as presenilin 1 and 2 (PS1 and PS2) and amyloid precursor protein
(APP) [50-58]. Currently, more than 200 distinct disease-causing mutations have been identi‐
fied across these genes, which exhibit an autosomal dominant transmission pattern.

5.1. APP mutations

To date, approximately 36 different missense mutations in the APP gene have been identified
among 85 families (Table 1). AβPP mutations account for 0.1% of AD patients, all missense
mutations influence APP processing since they are positioned in or near the Aβ coding exons
16-17, in the transmembranal domain, where the sites recognized by the α, β and γ-secretases
are found (Figure 2). This alters the APPβ processing and causes the accumulation of Aβ42
fragments [54-55]. The major mutations in APPβ include the Swedish double mutation
(APPSW: APPK670N, APPM671L) [59] and the London mutation (V717I) [55]. The Swedish
mutation is located just outside the N-terminus of the Aβ domain of APP, favors β-secretase
cleavage and it is associated with increased levels and deposition of Aβ1-42 in the brains of
AD patients [60-61]. London mutation is located in exon 17 and leads to a valine to isoleucine
change at amino acid 717 (V717I) [55], corresponding to the transmembrane domain near the
γ-secretase cleavage site. Other mutations in APP linked to EOAD include the Dutch (E693Q)
[62], Indiana (V717F) [58], Florida (I716V) [63], Iowa (D694N) [64] and Arctic (E693G) [65]
mutations. Besides the mutations identified in the APP gene is known that duplication of APP
regions containing several genes [66-68] or APP [69] were clinically linked to EOAD.

The transgenic animal models developed to date that overexpress these mutations have the
potential to develop extracellular deposits of amyloid beta and exhibit different types of
neurological abnormalities [55, 70-73]. For example, transgenic mouse line APP/V717I displays
deficits in the maintenance of long-term potentiation, premature death and cognitive impair‐
ment, which is directly correlated with amyloid plaque formation [74]. Another transgenic
mouse line used to investigate the pathology of AD is Tg2576, which carries the Swedish
mutation. These mice exhibit memory loss starting at 6 months of age, which coincides with
the appearance of detergent-insoluble amyloid aggregates [73]. Overexpression of mutated
AβPP in cell cultures induces DNA synthesis and apoptosis [75], suggesting that APPβ could
induce the apoptotic events observed in Alzheimer´s disease patients via activation of specific
pathways of neuronal signaling.

5.2. Presenilin mutation

Presenilin represent the catalytic component of the gamma-secretase complex, which also
includes nicastrin, anterior pharynx-defective 1 (Aph-1) and presenilin enhancer 2 (Pen-2) [76].
Presenilins are expressed in several tissues and in the brain, where are mainly expressed in
neurons [52]. Presenilins localize into the endoplasmic reticulum (ER), Golgi apparatus,
endosomes, lysosomes, phagosome plasma membranes and mitochondria [77-79]. During
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assembly and maturation of the complex, presenilin undergoes endoproteolitic processes
generating stable N-and C-terminal fragments (NTF and CTF, respectively). Both fragments
(NTF and CTF) contribute with one of the two catalytic aspartates that are, the active site which
is responsible for the intramembranal proteolysis of AβPP and some other proteins as well [60,
80-85]. Both presenilins (PS1 and PS2) possess these conserved aspartate residues required for
γ-secretase activity [85]. In addition, presenilins directly or indirectly regulate the trafficking
and metabolism of select membrane proteins in neurons [86], as well as having a role in

Mutation Phenotype Age of

Onset

References

E665D AD, but may not be pathogenic 86? Peacock, et al., 1994

KM670/671NL

(Swedish)

AD 52 (44-59) Mullan, et al. 1992

H677R AD 55 (55-56) Janssen, et al. 2003

D678N (Tottori) FAD 60 Wakutani, et al. 2004

E693Δ AD Tomiyama et al., 2008

D694N (Iowa) AD or Cerebral Hemorrhage 69 Grabowski, et al. 2001

A713T AD, but may not be pathogenic 59 Carter, et al., 1992

T714A (Iranian) AD 52 (40-60) Pasaler, et al., 2002

T714I (Austrian) Affects γ-secretase cleavage directly,

11X increase in Aβ(42)/Aβ(40) ratio in

vitro.

Kumar-Singh, et al.

V715A (German) AD 47 De Jonghe, et al., 2001; Cruts, et al.,

2003

V715M (French) AD 52 (40-60) Ancolio, et al., 1999

I716T AD 55 Terrini, et al., 2002

I716V (Florida) AD 55 Eckman, et al., 1997

V717F (Indiana) AD 47 (42-52) Murrell, et al. 1991

V717G AD 55 (45-62) Chartier-Harlin, et al. 1991

V717I (London) AD 55 (50-60) Goate, et al. 1991

T719P AD 46 Ghidoni et al., 2009

L723P (Australian) AD 56 (45-60) Kwok JB, 2000

Table 1. Amyloid Precursor Protein Mutations
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synaptic function [87-88], learning and memory [89], neuronal survival in the adult brain,
regulation of calcium homeostasis [90-91] and presynaptic neurotransmitter release [92].

PS1 is an integral membrane protein with eight transmembranal domains and a hydrophilic
domain between the 6 and 7 domains. The PSEN1 gene is located on chromosome 14q24.2,
comprises 12 exons and generates a protein with a length of 467 amino acids. To date, more
than 180 mutations in PSEN1 have been described in 405 families (http://
www.molgen.ua.ac.be/ADmutations), all of which are related to the appearance of the disease
at younger ages (Figure 6A) [93-94]. The PSEN2 gene is located on chromosome 1q42.13 and
comprises 12 exons, of which only 10 are translated to generate a protein with a length of 448
amino acid residues. This protein exhibits 9 transmembrane domains and displays tissue-
specific alternative splicing [95]. Only 13 mutations in PS2 have been described among 22
families (Figure 6B). (http://www.molgen.ua.ac.be/ADmutations)

Figure 6. Schematic representation of Presenilis. (A) Presenilins are membrane proteins that form the catalytic core
of the γ-secretase complex. The PSEN1 gene is located on chromosome 14q24.2 and comprises 12 exons. PS1 is an
integral membrane protein with eight transmembrane domains and a hydrophilic domain between domains 6 and 7.
Two aspartate residues in transmembrane domains (TMs) 6 and 7 constituting the catalytic site. To date, more than
185 mutations in PSEN1 have been described in 405 families all of which are related to the appearance of the disease
at younger ages. Although mutations are found throughout the protein, most are located in the transmembrane re‐
gion. (B) The PSEN2 gene is located on chromosome 1q42.13 and comprises 12 exons, of which only 10 are translated
to generate a protein with a length of 448 amino acid residues. This protein exhibits 9 transmembrane domains and
displays tissue-specific alternative splicing, major mutations found in the protein are identified.

Most familial cases of Alzheimer´s disease are associated with mutations in presenilins [50, 53,
96], the majority of PSEN mutations are single-nucleotide substitutions, but small deletions
and insertions have been described as well. It has been suggested that these mutations induce
overproduction of β-amyloid, apparently by increasing γ-secretase activity [51, 53, 97-102].
Although transgenic mice expressing presenilin mutations do not develop the formation of
neuritic plaques, these animals showed changes similar to those observed in AD patients, such
as neuronal damage, synaptic loss and vascular disease. The most severe mutation in PSEN1
is a donor-acceptor splice mutation that causes a two-aminoacid substitution and an in-frame
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deletion of exon 9. However, the biochemical consequences of these mutations for γ-secretase
assembly seem to be limited [103-104]. PS1 also appears to modulate GSK3β activity and the
release of kinesin-I from membrane-bound organelles at sites of vesicle delivery and mem‐
brane insertion. These findings suggest that mutations in PS1 may compromise neuronal
function, affecting GSK-3 activity and kinesin-I-based motility and, thus, leading to neurode‐
generation [105]. Although PS2 shows close homology to PS1, PS2 is less efficient with respect
to amyloid peptide production [106]. In vitro expression of PSEN2 V393M cDNA did not result
in a detectable increase in the secreted Aβ42/40 peptide ratio. However, patients heterozygous
for this missense mutation are characterized by profound language impairment [107].
Although mutations are found throughout the protein, most are located in the transmembrane
region.

6. Late onset alzheimer´s disease

6.1. Apoe risk gene

Allele 4 of apolipoprotein E (ApoE4) has been reported to represent the main identified risk
factor for sporadic AD [44, 49, 108]. This gene has been associated with EOAD and LOAD in
multiple ethnic groups, and carriers of APOE4 exhibit an earlier age of onset for AD [44,
109-110]. The frequency of the APOE4 allele varies among ethnic groups and it has been shown
that ApoE4 is determinant for AD risk in white’s individuals; however, in Hispanic and African
populations, there is no correlation between the presence of the pathology and this allele. These
results suggest that other genes or risk factors may contribute to the increased risk of AD in
African and Hispanics [111-114].

The ApoE4 gene is located at chromosome 19q13.2 [115] and consists of 4 exons encoding a
protein of 299 amino acid residues with a molecular weight of 34 kDa. APOE is a glycoprotein
exhibiting variable levels of posttranslational sialylation due to O-linked glycosylation at
threonine 194 [116]. The gene contains several single-nucleotide polymorphisms (SNPs) [117]
leading to changes in the amino acid sequence of the protein, resulting in the production of
three isoforms: ApoE2, ApoE3 and ApoE4, which are associated with different alleles (ε2, ε3,
ε4). The three isoforms differ only by one or two amino acids, with the changes occurring at
amino acid residues 112 and 158: ApoE2 (cys112, cys158), ApoE3 (cys112, arg158) and ApoE4
(arg112, arg158) [118-120]. The allelic distribution varies among ethnic groups, although it has
generally been observed that allele 3 is the most frequent (77%), followed by allele 4 (15%),
while allele 2 is less frequently observed (8%).

ApoE is a plasma protein that plays an important role in lipid metabolism and cholesterol
transport in various tissues [108, 121-122]. The amino acid changes observed in the different
isoforms of ApoE alter the 3-dimensional structure of the protein, affecting its lipid-binding
properties, indicating that each isoform is metabolically different and varies in its affinity to
bind to lipoprotein particles [123-124]. Apolipoproteins are synthesized primarily in the liver
but can be processed and secreted in the brain by astrocytes and microglia. They are involved
in neuronal regeneration [125], an increase in the synthesis of these proteins has been observed
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in the central and peripheral nervous system during neuronal damage. The distinct human
ApoE isoforms differ significantly in their long-term effects on neuronal integrity as well as in
their ability to protect against exocitotoxicity [126-128]. When ApoE isoforms are expressed in
brain cells of ApoE-knockout (APOE-/-) mice, it can be observed that ApoE3 has a protective
effect against age-related Aβ toxicity and neurodegeneration [129-130]. These differences in
the neuroprotective capacities of apoE3 and apoE4 could contribute to the increased suscept‐
ibility of human ApoE4 carriers to AD [131]. Cholesterol homeostasis in hippocampal neurons
is affected by the presence of apoE4, while the presence of ApoE2 and ApoE3 is not associated
with any alterations in homeostasis [132]. Other roles of APOE isoforms include proliferation,
synaptogenesis, myelination and amyloid elimination and tau phosphorylation.

6.2. Apoe and amyloid

Overexpression of a mutated form of human APP has shown that the levels of amyloid and
ApoE increase in the brain with age, which is associated with decreasing Aβ levels in plasma
[133]. It is possible that ApoE increases Aβ sequestration, deregulating the clearance of amyloid
and leading to cognitive impairment in transgenic mice expressing a mutant form of human
APP [134-135]. Recent studies have shown that apolipoprotein E (ApoE) receptor 2 and other
members of the low-density lipoprotein receptor family (LRP, LRP1B, SorLA/LR11) interact
with AβPP and regulates its endocytic trafficking [136-137]. Stable expression of human APP
in B103 rat neuroblastoma cells (B103-APP); demonstrated that the isoform-specific effects of
ApoE on Aβ production result from an alteration of AβPP recycling due to more pronounced
stimulation of AβPP recycling by apoE4 than ApoE3 [138]. However, other authors have noted
that there is no clear evidence upon which to base conclusions regarding the isoform-specific
effects on AβPP processing [127, 139].

Although clearance of Aβ by ApoE has not been extensively studied, ApoE may modulate the
removal of Aβ from the brain (Figure 7). Nevertheless, it has been suggested that clearance of
Aβ is regulated by low-density lipoprotein receptor related protein-1 (LRP) and the receptor
for advanced glycation end products (RAGE); this function is compromised in AD, which may
contribute to elevation of the levels of amyloid in the brain [135, 140-141].

6.3. Apoe and tau

Neither the mechanisms by which the tau and ApoE4 proteins confer pathogenicity nor the
nature of the interaction between these proteins has yet been established. Some authors have
suggested that there is a relationship between the dosage of the ApoE4 allele and the density
of NTFs [142-143]. It is known that ApoE3 has the ability to form a stable complex with Tau
protein, and this association is believed to decrease Tau phosphorylation, preventing abnormal
phosphorylation of Tau protein and their aggregation into paired helical filaments (PHF) [144].
When tau is phosphorylated, it loses its ability to interact with ApoE3. In contrast, ApoE4 does
not interact with Tau.

It has recently been shown that the expression of a carboxy-terminal truncated fragment of the
ApoE4 protein (Δ272-299 carboxyl terminal) is sufficient to elicit AD-like neurodegeneration
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and behavioral deficits in vivo [145]. Transgenic mice expressing apoE4Δ272–299 displayed
AD-like neurodegenerative alterations in the cortex and hippocampus, including abnormally
phosphorylated tau (p-tau) and Gallyas silver-positive neurons that contained cytosolic
straight filaments with diameters of 15–20 nm, resembling pre-neurofibrillary tangles [145].
Similarly, overexpression of human ApoE4 in neurons results in hyperphosphorylation of the
tau protein, which increases with age [146-147].

Finally, although the presence of allele 4 of ApoE is not a deterministic factor for AD, it has
been observed that this allele may favor the development of the disease at younger ages [148].

Figure 7. Interaction of Amyloid and ApoE. The ApoE4 gene is located on chromosome 19q13.2. It has been sug‐
gested that ApoE, could be involved in the Aβ aggregation and clearance. This process can be regulated of ApoE iso‐
form and thereby promote the onset of Aβ aggregation. In this way other pathologic mechanisms could be favored

7. Genome-wide association studies (gwas)

The genetic causes of AD can be highly variable, even for familial forms. While EOAD is
characterized by the presence of mutations with high penetrance in specific genes, the genetics
of sporadic cases (LOAD) are more complex. LOAD susceptibility is determined by an
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in the central and peripheral nervous system during neuronal damage. The distinct human
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6.3. Apoe and tau

Neither the mechanisms by which the tau and ApoE4 proteins confer pathogenicity nor the
nature of the interaction between these proteins has yet been established. Some authors have
suggested that there is a relationship between the dosage of the ApoE4 allele and the density
of NTFs [142-143]. It is known that ApoE3 has the ability to form a stable complex with Tau
protein, and this association is believed to decrease Tau phosphorylation, preventing abnormal
phosphorylation of Tau protein and their aggregation into paired helical filaments (PHF) [144].
When tau is phosphorylated, it loses its ability to interact with ApoE3. In contrast, ApoE4 does
not interact with Tau.

It has recently been shown that the expression of a carboxy-terminal truncated fragment of the
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and behavioral deficits in vivo [145]. Transgenic mice expressing apoE4Δ272–299 displayed
AD-like neurodegenerative alterations in the cortex and hippocampus, including abnormally
phosphorylated tau (p-tau) and Gallyas silver-positive neurons that contained cytosolic
straight filaments with diameters of 15–20 nm, resembling pre-neurofibrillary tangles [145].
Similarly, overexpression of human ApoE4 in neurons results in hyperphosphorylation of the
tau protein, which increases with age [146-147].

Finally, although the presence of allele 4 of ApoE is not a deterministic factor for AD, it has
been observed that this allele may favor the development of the disease at younger ages [148].
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gested that ApoE, could be involved in the Aβ aggregation and clearance. This process can be regulated of ApoE iso‐
form and thereby promote the onset of Aβ aggregation. In this way other pathologic mechanisms could be favored
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uncertain number of genetic risk factors exhibiting low penetrance that are present at a high
frequency. This is particularly important because although patients who develop this subtype
of the disease have been considered to represent sporadic cases, the genetic component of these
cases is a feature that has not been established. A possible explanation for the difficulty
involved in the identification of genetic risk factors is that LOAD is a multifactorial complex
disorder that involves both genetic and environmental components.

In the last thirty years, a considerable number of studies have been developed aimed at
identifying risk factors that confer susceptibility for developing AD. In this regard, genome-
wide association studies (GWAS) represent a powerful approach for identifying putative
candidate genes for common complex diseases, such as LOAD. These studies simultaneously
analyze a large number of genetic markers, typically consisting of single-nucleotide polymor‐
phisms (SNPs). Although they have also involved arrays for assessing copy-number variants
(deletions or multiplications of chromosomal segments), other GWAS arrays only contain
SNPs located in predicted or known coding regions (cSNPs). The Affymetrix GeneChip 500K
platform exhibits 60% coverage of the phase II HapMAp (Affymetrix, Santa Clara, CA, USA),
whereas the Illumina Hap300 platform presents 77% coverage (Illumina, Inc., San Diego, CA,
USA). At least 12 GWAS addressing Alzheimer´s disease have been published to date, which
have identified more than 40 genetic variants that might confer risk for developing this
pathology. However, much remains to be learned regarding the pathology and the genetic risk
factors associated with late onset Alzheimer´s disease. The main studies investigating the
associations between cases and controls with LOAD using such platforms are described below
(Table 2).

Genome-Wide Association Studies (GWAS)

Study Design Type Population # of SNPs

AD Cases Normal Controls

DX

#

Subjects

GWAS

#

Subjects

(follow-

up)

#

Subjects

GWAS

#

Subjects

(follow-

up)

Featured Genes

CAUSASIAN

Abraham,

2008
CC

GWAS

pooled

Overlaps with

Harold, 2009
561494 C 1082 - 1239 1400 APOE, LRAT

Beecham,

2009
CC GWAS USA (CAP) 532000 M 492 238 496 220 APOE, FAM113B

Bertram, 2008 FBAT GWAS USA (NIMH) 484522 M 941 1767 404 838
APOE ATXN1 CD33

GWA 14q31.2

Carrasquillo,

2009
CC GWAS USA (Mayo) 313504 M 844 1547 1255 1209 APOE PCDH11X

Coon, 2007 CC GWAS
USA, Netherlands

(TGEN1)
502627 N 664 - 422 - APOE

Grupe, 2007 CC GWAS USA & UK 17343 M 380 1428 396 1666

ACAN, APOE, BCR,

CTSS, EBF3, FAM63A,

GALP,

GWA_14q32.13,
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Study Design Type Population # of SNPs

AD Cases Normal Controls

DX

#

Subjects

GWAS

#

Subjects

(follow-

up)

#

Subjects

GWAS

#

Subjects

(follow-

up)

Featured Genes

GWA_7p15.2, LMNA,

LOC651924, MY13,

PCK1, PGBD1, TNK1,

TRAK2, UBD

Harold, 2009 CC GWAS
Europe & USA

(GERAD1)
529205 M 3941 2023 7848 2340 APOE, CLU, PICALM

Heinzen, 2009 CC
GWAS

+CNV
USA (CAP, DUKE) n.g. U 331 - 368 -

Hollingworth,

2011
CC GWAS

Europe & USA

(GERAD1+2,

EADI1+2, ADNI,

TGEN1, MAYO2,

CHARGE)

496763 M 6688 13182 13685 26261

ABCA7, BIN1, CD2AP,

CD33, CR1, EPHA1,

MS4A4E, MS4A6A

Hu, 2011 CC GWAS

USA (Pfizer,

ADNI), Canada

(GenADA,

Genizon)

509376 C 1831 751 1764 751 APOE, BIN1

Lambert, 2009 CC GWAS Europe (EADI1) 537029 C 2032 3978 5328 3297 APOE, CLU, CR1

Li, 2008 CC GWAS Canada (GenADA) 469438 C 753 418 736 249

APOE, GOLM1,

GWA_15q21.2,

GWA_9p24.3

Naj, 2011 CC GWAS USA (ADGC)
2,324,889

(imputed)
M 8309 3531 7366 3565

APOE, BIN1, CD2AP,

CD33, CLU, CR1,

EPHA1, MS4A4A,

PICALM

Poduslo, 2009
CC,

FBAT
GWAS USA 489218 C 9 199 10 225 TRCP4AP

Potkin, 2009 CC, QT GWAS USA (ADNI) 516645 C 172 - 209 -

APOE, ARSB, CAND1,

EFNA5, MAG12,

PRUNE2 TOMM40

Reiman, 2007 CC GWAS
USA, Netherlands

(TGEN1)
312316 M 446 415 290 260 GAB2

Seshadri, 2010 CC

GWAS +

meta-

analysis

Europe & USA

(CHARGE, EADI1,

GERAD1)

2,540,000

(imputed)
M 3006 6505 22604 13532

APOE, BIN1, CLU,

EXOC3L2, PICALM

Sherva, 2011 CC GWAS Israel (Wadi Ara)
2,540,000

(imputed)
C 124 - 142 -

AGPAT1, ATPVOA4,

GLOD4, RGS6,

TMEM132C

Wijsman, 2011
CC,

FBAT
GWAS USA (NIA, NCRAD) 565336 M 1848 617 1991 573 APOE, CELF2

Table 2. Genome-Wide Association Studies in Alzheimer’s Disease.
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uncertain number of genetic risk factors exhibiting low penetrance that are present at a high
frequency. This is particularly important because although patients who develop this subtype
of the disease have been considered to represent sporadic cases, the genetic component of these
cases is a feature that has not been established. A possible explanation for the difficulty
involved in the identification of genetic risk factors is that LOAD is a multifactorial complex
disorder that involves both genetic and environmental components.

In the last thirty years, a considerable number of studies have been developed aimed at
identifying risk factors that confer susceptibility for developing AD. In this regard, genome-
wide association studies (GWAS) represent a powerful approach for identifying putative
candidate genes for common complex diseases, such as LOAD. These studies simultaneously
analyze a large number of genetic markers, typically consisting of single-nucleotide polymor‐
phisms (SNPs). Although they have also involved arrays for assessing copy-number variants
(deletions or multiplications of chromosomal segments), other GWAS arrays only contain
SNPs located in predicted or known coding regions (cSNPs). The Affymetrix GeneChip 500K
platform exhibits 60% coverage of the phase II HapMAp (Affymetrix, Santa Clara, CA, USA),
whereas the Illumina Hap300 platform presents 77% coverage (Illumina, Inc., San Diego, CA,
USA). At least 12 GWAS addressing Alzheimer´s disease have been published to date, which
have identified more than 40 genetic variants that might confer risk for developing this
pathology. However, much remains to be learned regarding the pathology and the genetic risk
factors associated with late onset Alzheimer´s disease. The main studies investigating the
associations between cases and controls with LOAD using such platforms are described below
(Table 2).
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7.1. Grupe 2007

The first GWAS addressing Alzheimer´s disease was reported in 2007 by Grupe et al. A total
of 17, 343 SNPs, located in 11 221 unique genes were tested for an association with LOAD in
a case–control discovery sample from the UK (1808 LOAD cases and 2062 controls) [149]. These
researchers reported the identification of several candidate SNPs showing a significant
association with LOAD. Three of these SNPs (rs157581, rs405509 and rs1132899) are located
on chromosome 19, close to the APOE gene, and exhibit genome-wide significance (P val‐
ue=6.94E-81 to 0.0001) and linkage disequilibrium (LD) with the APOE4 and 2/3 variants (0.09
< D0 < 1). Furthermore, sixteen additional SNPs showed evidence of an association with LOAD
[P=0.0010-0.00006; odds ratio (OR)=1.07–1.45].

Of these SNPs, one was a missense mutation (rs3745833) located in the galanin-like peptide
precursor (GALP) gene. The associated SNP encodes a non-synonymous substitution
(Ili72Met) in exon 4. In the Caucasian population, the common minor C-allele increases the
risk for AD in 10% of individuals. The galanin gene has been implicated in neuronal survival,
regeneration and neuroprotection as well as the inhibition of cholinergic neurotransmission
and suppression of long-term potentiation [150-151]. In limbic brain regions of AD patients,
galanin expression is upregulated and could conceivably worsen the symptoms of the disease.
Transgenic mice overexpressing galanin display cognitive and neurochemical deficits similar
to those observed in AD patients [152].

Another important SNP was found to be located in PGBD1 (piggyBack transposable element
derived 1). The associated SNP (rs3800324) encodes a non-synonymous substitution
(Gly244Glu) in exon 5, and the presence of the minor A (Glu) allele significantly increases the
risk of AD by 20%. The function of this protein is not known, but it is specifically expressed in
the brain. Finally, in this study, the authors showed that four additional SNPs showed evidence
of association with LOAD. These variants include SNPs located in TNK1 and PCK1 as well as
an intergenic SNP near SERPINA13.

TNK1 is a non-receptor tyrosine kinase that mediates phospholipid signal transduction. In
addition, together with TRAK2, TNK1 may be involved in protein trafficking and signal
transduction [153] and participate in the processing of amyloid precursor protein and amyloid
β-production [154-155]. Aberrant TNK1 activity may increase the risk of LOAD [156].

7.2. Coon 2007, Reiman 2007

In the same year, Coon et al. employed an ultra-high-density whole-genome association
analysis, demonstrating the ability to identify the APOE locus as a major susceptibility gene
for late onset AD [157]. This study used the Affymetrix 500K platform, including 502,627 SNPs,
and was performed in a population of 1086 histopathologically verified AD cases and controls.
The results obtained showed that the APOE locus is the major susceptibility gene for late onset
AD in the human genome, with an OR significantly greater than any other locus in the human
genome (Bonferroni corrected OR=4.01). The polymorphism identified in this study
(rs4420638) is located on chromosome 19 and is 14 kilobase pairs distal to the APOE epsilon
variant.
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In a subsequent study, the same group of researchers divided each cohort of LOAD cases and
controls into two subgroups: allelic APOE ε4 carriers and APOE ε4 noncarriers. The results
showed an association with six SNPs of the GRB-associated binding protein 2 (GAB2) gene
and a common haplotype encompassing the entire GAB2 gene [158]. SNP rs2373115 was
associated with an odds ratio of 4.06 (confidence interval 2.81–14.69) and interacts with APOE
ε4 to further modify risk.

The GAB2 protein is involved in a number of different pathways, and thus, it is possible that
GAB2 could affect mechanisms involved in cell survival, Tau phosphorylation and NFT
formation. Additionally, GAB2 may be involved in the production of Aβ [158], contributing
to the development of AD pathology. Finally, GAB2 has been found to be coexpressed with
other putative AD-related genes [159].

7.3. Abraham 2008

The GWAS conducted by Abraham in 2008 differs from all other currently published GWAS
addressing AD in that, in the initial screening in this study, DNA pools were utilized for
genotyping rather than individual DNA samples [160]. DNA samples were collected from
1,082 individuals with LOAD and 1,239 control subjects. The age at onset ranged from 60 to
95 years, and controls were matched for age (mean=76.53 years, SD=33), gender and ethnicity.
The construction of the pools was validated using the SNaPshot method. The pools were
genotyped using Illumina HumanHap300 and Illumina Sentrix HumanHap240S arrays,
testing 561,494 SNPs. The results showed an association of several SNPs close to the APOE
locus with LOAD, including 7 SNPs within 71 kb, with allele frequency differences of between
6% – 14%. Five of the seven SNPs were individually genotyped and were confirmed to present
highly significant associations with LOAD. Although these studies using pooled DNA samples
considerably reduce costs, their results may not accurately represent real allele frequency
distributions.

7.4. Bertram 2008.

Another GWAS addressing AD was performed by Bertram et al. in 2008. This study repre‐
sented the first to employ family-based methods for the initial screening. This case, a genome-
wide association (GWA) analysis was performed using 484,522 single-nucleotide
polymorphisms (SNPs) on a large (1,376 samples from 410 families) sample of AD families of
self-reported European descent. All 10,388 X chromosome markers were eliminated, as also
were 5,758 SNPs that did not pass genotype quality assessment or showed a minor allele
frequency (MAF). A total of 404,604 (80.8%) SNPs were finally used for screening [161].

In this study, five SNPs were identified as showing either a significant or marginally significant
genome-wide association with a multivariate phenotype combining affection status and onset
age. Four of these markers were not related to APOE4. The first marker, rs4420638, is located
340 bp 3’ of APOC1 on chromosome 19q13 and very likely reflects the effects of the APOE4
allele (rs429358). The other markers are rs11159647 (located in predicted gene NT_026437.1360
on chromosome 14q31.2), rs179943 (located in ATXN1 [MIM 601556] on chromosome 6p22.3,
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The first GWAS addressing Alzheimer´s disease was reported in 2007 by Grupe et al. A total
of 17, 343 SNPs, located in 11 221 unique genes were tested for an association with LOAD in
a case–control discovery sample from the UK (1808 LOAD cases and 2062 controls) [149]. These
researchers reported the identification of several candidate SNPs showing a significant
association with LOAD. Three of these SNPs (rs157581, rs405509 and rs1132899) are located
on chromosome 19, close to the APOE gene, and exhibit genome-wide significance (P val‐
ue=6.94E-81 to 0.0001) and linkage disequilibrium (LD) with the APOE4 and 2/3 variants (0.09
< D0 < 1). Furthermore, sixteen additional SNPs showed evidence of an association with LOAD
[P=0.0010-0.00006; odds ratio (OR)=1.07–1.45].

Of these SNPs, one was a missense mutation (rs3745833) located in the galanin-like peptide
precursor (GALP) gene. The associated SNP encodes a non-synonymous substitution
(Ili72Met) in exon 4. In the Caucasian population, the common minor C-allele increases the
risk for AD in 10% of individuals. The galanin gene has been implicated in neuronal survival,
regeneration and neuroprotection as well as the inhibition of cholinergic neurotransmission
and suppression of long-term potentiation [150-151]. In limbic brain regions of AD patients,
galanin expression is upregulated and could conceivably worsen the symptoms of the disease.
Transgenic mice overexpressing galanin display cognitive and neurochemical deficits similar
to those observed in AD patients [152].

Another important SNP was found to be located in PGBD1 (piggyBack transposable element
derived 1). The associated SNP (rs3800324) encodes a non-synonymous substitution
(Gly244Glu) in exon 5, and the presence of the minor A (Glu) allele significantly increases the
risk of AD by 20%. The function of this protein is not known, but it is specifically expressed in
the brain. Finally, in this study, the authors showed that four additional SNPs showed evidence
of association with LOAD. These variants include SNPs located in TNK1 and PCK1 as well as
an intergenic SNP near SERPINA13.

TNK1 is a non-receptor tyrosine kinase that mediates phospholipid signal transduction. In
addition, together with TRAK2, TNK1 may be involved in protein trafficking and signal
transduction [153] and participate in the processing of amyloid precursor protein and amyloid
β-production [154-155]. Aberrant TNK1 activity may increase the risk of LOAD [156].

7.2. Coon 2007, Reiman 2007

In the same year, Coon et al. employed an ultra-high-density whole-genome association
analysis, demonstrating the ability to identify the APOE locus as a major susceptibility gene
for late onset AD [157]. This study used the Affymetrix 500K platform, including 502,627 SNPs,
and was performed in a population of 1086 histopathologically verified AD cases and controls.
The results obtained showed that the APOE locus is the major susceptibility gene for late onset
AD in the human genome, with an OR significantly greater than any other locus in the human
genome (Bonferroni corrected OR=4.01). The polymorphism identified in this study
(rs4420638) is located on chromosome 19 and is 14 kilobase pairs distal to the APOE epsilon
variant.
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In a subsequent study, the same group of researchers divided each cohort of LOAD cases and
controls into two subgroups: allelic APOE ε4 carriers and APOE ε4 noncarriers. The results
showed an association with six SNPs of the GRB-associated binding protein 2 (GAB2) gene
and a common haplotype encompassing the entire GAB2 gene [158]. SNP rs2373115 was
associated with an odds ratio of 4.06 (confidence interval 2.81–14.69) and interacts with APOE
ε4 to further modify risk.

The GAB2 protein is involved in a number of different pathways, and thus, it is possible that
GAB2 could affect mechanisms involved in cell survival, Tau phosphorylation and NFT
formation. Additionally, GAB2 may be involved in the production of Aβ [158], contributing
to the development of AD pathology. Finally, GAB2 has been found to be coexpressed with
other putative AD-related genes [159].

7.3. Abraham 2008

The GWAS conducted by Abraham in 2008 differs from all other currently published GWAS
addressing AD in that, in the initial screening in this study, DNA pools were utilized for
genotyping rather than individual DNA samples [160]. DNA samples were collected from
1,082 individuals with LOAD and 1,239 control subjects. The age at onset ranged from 60 to
95 years, and controls were matched for age (mean=76.53 years, SD=33), gender and ethnicity.
The construction of the pools was validated using the SNaPshot method. The pools were
genotyped using Illumina HumanHap300 and Illumina Sentrix HumanHap240S arrays,
testing 561,494 SNPs. The results showed an association of several SNPs close to the APOE
locus with LOAD, including 7 SNPs within 71 kb, with allele frequency differences of between
6% – 14%. Five of the seven SNPs were individually genotyped and were confirmed to present
highly significant associations with LOAD. Although these studies using pooled DNA samples
considerably reduce costs, their results may not accurately represent real allele frequency
distributions.

7.4. Bertram 2008.

Another GWAS addressing AD was performed by Bertram et al. in 2008. This study repre‐
sented the first to employ family-based methods for the initial screening. This case, a genome-
wide association (GWA) analysis was performed using 484,522 single-nucleotide
polymorphisms (SNPs) on a large (1,376 samples from 410 families) sample of AD families of
self-reported European descent. All 10,388 X chromosome markers were eliminated, as also
were 5,758 SNPs that did not pass genotype quality assessment or showed a minor allele
frequency (MAF). A total of 404,604 (80.8%) SNPs were finally used for screening [161].

In this study, five SNPs were identified as showing either a significant or marginally significant
genome-wide association with a multivariate phenotype combining affection status and onset
age. Four of these markers were not related to APOE4. The first marker, rs4420638, is located
340 bp 3’ of APOC1 on chromosome 19q13 and very likely reflects the effects of the APOE4
allele (rs429358). The other markers are rs11159647 (located in predicted gene NT_026437.1360
on chromosome 14q31.2), rs179943 (located in ATXN1 [MIM 601556] on chromosome 6p22.3,
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rs3826656 (located in predicted gene NT_011109.848 on 19q13.33), and rs2049161 (located in
cDNA BC040718 on 18p11.31). These four SNPs were tested in three additional independent
AD family samples composed of nearly 2700 individuals from almost 900 families. SNP
rs11159647 on chromosome 14q31 was primarily associated with age of onset (p=0.006), with
a median reduction in onset age of 1.1 years being observed. Evidence of an association with
this allele was also found in GWA data generated in an independent sample of ~1,400 AD cases
and controls (p=0.04). None of these markers were previously described as modifiers of AD
risk or onset age (Bertram 2008). The SNP rs179943 on chromosome 6p22.3 is located within
an intron of the ataxin 1 (ATXN1) gene. Although the function of ataxin1 is not known, it has
been proposed to be associated with spinocerebellar ataxia type 1 (SCA1), a progressive
neurodegenerative disease. The SNP rs3826656 on 19q33 is located less than 2 kb proximal of
the transcription initiation site of CD33. This protein is a cell-surface receptor on cells of
monocytic or myeloid lineages. Additionally, it is a member of the SIGLEC family of lectins
that bind sialic acid and regulate the innate immune system via the activation of caspase-
dependent and caspase-independent cell death pathways.

7.5. Beecham 2009

Another GWAS was carried out by Beecham in 2009. This GWAS included 998 individuals of
European descent, including 492 LOAD cases and 496 cognitive controls, using Illumina’s
HumanHap550 BeadChip. An additional 238 cases and 220 controls were also used in this
study as a validation dataset for single-nucleotide polymorphisms (SNPs) that met the
genome-wide significance criteria. The results showed associations of 38 SNPs with LOAD
with uncorrected p values < 0.00005, six of which were in or near the APOE gene [162].

The most significant non-APOE SNP was rs11610206 on chromosome 12q13 (45.92 Mb), which
presented an uncorrected p=1.93X10-6. This SNP was genotyped in an independent replication
dataset of 238 cases and 220 controls, resulting in a p value of 3.452X10-7, which was more
significant than in the initial dataset. This SNP is not located in a known gene but is less than
10 kb from the FAM113B gene. Additionally, there are a number of nearby candidate genes,
such as the vitamin D (1,25-dihydroxyvitamin D3) receptor (VDR [MIM 601769]) and adhesion
molecule with Ig-like domain 2 (AMIGO2) genes.

These authors also compared their results with those obtained by Reiman, and four polymor‐
phisms were found that showed an association in both studies. Two of these SNPs, 1q42 and
19q13, are located within genes; the two other signals replicated in both datasets are not in
known genes. The 1q42 SNP (rs12044355) resides in the DISC1 gene, which has been associated
with schizophrenia and is linked to bipolar disorder, depression, and cognitive function. The
19q13 signal is located in and near exon 6 of zinc finger protein 224 (ZNF224 [MIM 194555]); two
of the associated markers (rs4508518 and rs3746319) are within the exon. The first SNP
(rs4508518) is a coding but synonymous polymorphism, whereas the second (rs3746319) leads
to a missense mutation.

Finally, nine candidate genes from the over 500 genes in the AlzGene candidate gene list
present SNPs with a nominal association in both GWASs. These genes (ADAM12, CSF1, GBP2,
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KCNMA1, NOS2A, SORCS2, SORCS3, SORL1, and WWC1) exhibited p values ranging from
0.003 to 0.05 in the individual GWAS and from 0.0001 to 0.01 in the joint analysis.

Of these genes, the main candidate associated with the development of LOAD in several
populations is the sortlin-related receptor (SORL1) gene. The mechanism by which SORL1
affects the development of Alzheimer´s disease is unknown, but it has been established to have
the ability to interact with APP and APOE, possibly affecting the formation and accumulation
of amyloid beta peptides.

7.6. Carrasquillo 2009

This genome-wide association study was performed in two stages using the Illumina Human‐
Hap300 array. In stage I, 313,504 SNPs were analyzed in 844 cases and 1,255 controls (2100
subjects from the Mayo clinic), and only six APOE-linked SNPs showed genome-wide
significance in this stage of study. Of these polymorphisms, only rs2075650 (located on
chromosome 19) showed genome-wide significance, and this SNP shows strong linkage
disequilibrium (LD) with APOE (P value 4.8x10-46). In stage II, the 25 SNPs showing the most
significant associations in stage I were genotyped in an additional 845 cases and 1,000 controls.
These 25 SNPs included 10 SNPs in the APOE region on chromosome 19, all of which presented
P values ranging from 9.5X10-79 to 0.05. The other 15 SNPs are located on other chromosomes.
One of two SNPs on the X chromosome, rs5984894 (P value 0.0006), is located within the gene
encoding protocadherin 11, X-linked (PCDH11X) in the Xq21.3/Yp11.2 region. To extend the
analysis of PCDH11X, three PCDH11X SNPs (rs5941047, rs4568761 and rs2573905) residing in
the same haplotype block as rs5984894 were genotyped in all stages. Highly significant
associations were observed for all three SNPs, with P values of 1.6×10-7 (rs2573905), 8.0×10-5

(rs5941047) and 0.001 (rs4568761) being obtained. rs2573905 is located 8,483 bp 3′ of rs5984894
and is in strong linkage disequilibrium with rs5984894 (r2=0.98, D'=0.99). Analysis of rs5984894
by multivariable logistic regression adjusted by sex showed that the association was stronger
in female homozygotes (OR=1.75, P=2.0x10-7) and heterozygotes (OR=1.26, P=0.01). For hemi‐
zygous males, a similar trend was observed (OR=1.18), although this did not reach statistical
significance (P-value 0.07) [163].

The PCDH11X gene contains at least 17 exons spanning over 700 kb. Alternative splicing of
PCDH11X produces several isoforms that are mainly expressed in the brain, with particularly
strong expression being detected in the cortex and hippocampus and weaker expression being
observed in the cerebellum. The PCDH11X protein plays a fundamental role in cell-cell
recognition and it is essential for the segmental development and function of the central
nervous system. However, among all published and reported AD GWASs, this is the only one
that reports involvement of an X chromosome locus, which, if confirmed, could at least
partially explain the well-established increased disease prevalence in women versus men.

7.7. Harold 2009

In the first stage of this study, an association with the APOE locus (rs2075650, p=1.8×10−157) was
established in 3,941 patients and 7,848 controls. Additionally, this GWA analysis identified
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rs3826656 (located in predicted gene NT_011109.848 on 19q13.33), and rs2049161 (located in
cDNA BC040718 on 18p11.31). These four SNPs were tested in three additional independent
AD family samples composed of nearly 2700 individuals from almost 900 families. SNP
rs11159647 on chromosome 14q31 was primarily associated with age of onset (p=0.006), with
a median reduction in onset age of 1.1 years being observed. Evidence of an association with
this allele was also found in GWA data generated in an independent sample of ~1,400 AD cases
and controls (p=0.04). None of these markers were previously described as modifiers of AD
risk or onset age (Bertram 2008). The SNP rs179943 on chromosome 6p22.3 is located within
an intron of the ataxin 1 (ATXN1) gene. Although the function of ataxin1 is not known, it has
been proposed to be associated with spinocerebellar ataxia type 1 (SCA1), a progressive
neurodegenerative disease. The SNP rs3826656 on 19q33 is located less than 2 kb proximal of
the transcription initiation site of CD33. This protein is a cell-surface receptor on cells of
monocytic or myeloid lineages. Additionally, it is a member of the SIGLEC family of lectins
that bind sialic acid and regulate the innate immune system via the activation of caspase-
dependent and caspase-independent cell death pathways.

7.5. Beecham 2009

Another GWAS was carried out by Beecham in 2009. This GWAS included 998 individuals of
European descent, including 492 LOAD cases and 496 cognitive controls, using Illumina’s
HumanHap550 BeadChip. An additional 238 cases and 220 controls were also used in this
study as a validation dataset for single-nucleotide polymorphisms (SNPs) that met the
genome-wide significance criteria. The results showed associations of 38 SNPs with LOAD
with uncorrected p values < 0.00005, six of which were in or near the APOE gene [162].

The most significant non-APOE SNP was rs11610206 on chromosome 12q13 (45.92 Mb), which
presented an uncorrected p=1.93X10-6. This SNP was genotyped in an independent replication
dataset of 238 cases and 220 controls, resulting in a p value of 3.452X10-7, which was more
significant than in the initial dataset. This SNP is not located in a known gene but is less than
10 kb from the FAM113B gene. Additionally, there are a number of nearby candidate genes,
such as the vitamin D (1,25-dihydroxyvitamin D3) receptor (VDR [MIM 601769]) and adhesion
molecule with Ig-like domain 2 (AMIGO2) genes.

These authors also compared their results with those obtained by Reiman, and four polymor‐
phisms were found that showed an association in both studies. Two of these SNPs, 1q42 and
19q13, are located within genes; the two other signals replicated in both datasets are not in
known genes. The 1q42 SNP (rs12044355) resides in the DISC1 gene, which has been associated
with schizophrenia and is linked to bipolar disorder, depression, and cognitive function. The
19q13 signal is located in and near exon 6 of zinc finger protein 224 (ZNF224 [MIM 194555]); two
of the associated markers (rs4508518 and rs3746319) are within the exon. The first SNP
(rs4508518) is a coding but synonymous polymorphism, whereas the second (rs3746319) leads
to a missense mutation.

Finally, nine candidate genes from the over 500 genes in the AlzGene candidate gene list
present SNPs with a nominal association in both GWASs. These genes (ADAM12, CSF1, GBP2,
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KCNMA1, NOS2A, SORCS2, SORCS3, SORL1, and WWC1) exhibited p values ranging from
0.003 to 0.05 in the individual GWAS and from 0.0001 to 0.01 in the joint analysis.

Of these genes, the main candidate associated with the development of LOAD in several
populations is the sortlin-related receptor (SORL1) gene. The mechanism by which SORL1
affects the development of Alzheimer´s disease is unknown, but it has been established to have
the ability to interact with APP and APOE, possibly affecting the formation and accumulation
of amyloid beta peptides.

7.6. Carrasquillo 2009

This genome-wide association study was performed in two stages using the Illumina Human‐
Hap300 array. In stage I, 313,504 SNPs were analyzed in 844 cases and 1,255 controls (2100
subjects from the Mayo clinic), and only six APOE-linked SNPs showed genome-wide
significance in this stage of study. Of these polymorphisms, only rs2075650 (located on
chromosome 19) showed genome-wide significance, and this SNP shows strong linkage
disequilibrium (LD) with APOE (P value 4.8x10-46). In stage II, the 25 SNPs showing the most
significant associations in stage I were genotyped in an additional 845 cases and 1,000 controls.
These 25 SNPs included 10 SNPs in the APOE region on chromosome 19, all of which presented
P values ranging from 9.5X10-79 to 0.05. The other 15 SNPs are located on other chromosomes.
One of two SNPs on the X chromosome, rs5984894 (P value 0.0006), is located within the gene
encoding protocadherin 11, X-linked (PCDH11X) in the Xq21.3/Yp11.2 region. To extend the
analysis of PCDH11X, three PCDH11X SNPs (rs5941047, rs4568761 and rs2573905) residing in
the same haplotype block as rs5984894 were genotyped in all stages. Highly significant
associations were observed for all three SNPs, with P values of 1.6×10-7 (rs2573905), 8.0×10-5

(rs5941047) and 0.001 (rs4568761) being obtained. rs2573905 is located 8,483 bp 3′ of rs5984894
and is in strong linkage disequilibrium with rs5984894 (r2=0.98, D'=0.99). Analysis of rs5984894
by multivariable logistic regression adjusted by sex showed that the association was stronger
in female homozygotes (OR=1.75, P=2.0x10-7) and heterozygotes (OR=1.26, P=0.01). For hemi‐
zygous males, a similar trend was observed (OR=1.18), although this did not reach statistical
significance (P-value 0.07) [163].

The PCDH11X gene contains at least 17 exons spanning over 700 kb. Alternative splicing of
PCDH11X produces several isoforms that are mainly expressed in the brain, with particularly
strong expression being detected in the cortex and hippocampus and weaker expression being
observed in the cerebellum. The PCDH11X protein plays a fundamental role in cell-cell
recognition and it is essential for the segmental development and function of the central
nervous system. However, among all published and reported AD GWASs, this is the only one
that reports involvement of an X chromosome locus, which, if confirmed, could at least
partially explain the well-established increased disease prevalence in women versus men.

7.7. Harold 2009

In the first stage of this study, an association with the APOE locus (rs2075650, p=1.8×10−157) was
established in 3,941 patients and 7,848 controls. Additionally, this GWA analysis identified
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strong associations of SNPs in two new loci: rs11136000, which is located in the CLU, or
APOJ, gene (p=1.4×10−9), and rs3851179, a SNP 5′ to the PICALM gene (p=1.9×10−8). rs11136000
is located within an intron of the clusterin (CLU, also known as APOJ) gene on chromosome
8, and rs3851179 is found 88.5 kb 5′ of PICALM on chromosome 11. In stage 2, these new SNPs
were genotyped in 2,023 AD cases and 2,340 age-matched controls from an independent
sample. Associations were found for both polymorphisms, with p=0.017 and OR=0.905 for
rs11136000 and p=0.014 and OR=0.897 for rs3851179. A meta-analysis of stages 1 and 2 was
also conducted in this study, and the results showed highly significant evidence of associations
for the CLU and PICALM loci (rs11136000 p=8.5×10−10 and rs3851179 p=1.3×10−9, respectively).
Finally, no significant interactions of novel SNPs associated with APOE status were observed
to influence AD risk (rs11136000xAPOE4 interaction p=0.674; rs3851179xAPOE4 interaction
p=0.735) [164].

CLU is a secreted chaperone that can also be found in the cytosol under some stress conditions.
It has been suggested that CLU is involved in several basic biological events, including cell
death, tumor progression, and neurodegenerative disorders. The genetic risk allele (C) of CLU
gene variant rs11136000 is carried by ∼88% of Caucasians; the C allele confers 1.16 greater
odds of developing late onset AD than the T allele [165].

PICALM is a phosphatidylinositol-binding clathrin assembly protein. This protein plays a role
in altering synaptic vesicle cycling or APP endocytosis. Although the presence of polymor‐
phism rs3851179 was associated with high significance related to the development of AD in
the Caucasian population, these results could not be replicated in Chinese or Italian popula‐
tions [166-167]. The results obtained in recent studies by Piaceri showed that the segregation
of the PICALM rs3851179 variant did not show a statistically significant difference between
LOAD cases and controls, suggesting a reduced risk of developing late onset Alzheimer´s
disease (LOAD).

7.8. Han 2010

Unlike the studies described above, this study additionally established a relationship between
the allelic variants found by GWAS and cerebrospinal fluid (CSF) levels of amyloid Ab1-42,
T-tau, and P-tau181P [168]. The data used in this study was obtained from the Alzheimer´s
Disease Neuroimaging Initiative (ADNI). This database consists of approximately 800 adults
with ages between 55-90 years, 243 of whom were normal subjects, while 235 presented mild
cognitive impairment, and 340 had been diagnosed with Alzheimer´s disease. These partici‐
pants were genotyped using Illumina Human Genome 610 Quad BeadChips, and the CSF
levels of amyloid Ab1-42, T-tau, and P-tau181P were determined in 410 subjects (119 normal,
115 MCI and 247 AD), of which 247 were men and 163 were women. An association analysis
using age and APOE4 genotype as covariates was also performed, but did not incorporate
principal component analysis.

The results showed that T-Tau levels are higher in AD patients than in control subjects. When
the results were adjusted using APOE and the age of individuals as covariates, it was not
possible to observe an association between SNPs and CSF levels among patients. This study
also identified polymorphisms associated with the development of AD that had been already

Neurochemistry336

reported in previous studies: CYP19A1 (rs2899472, p=1.90 × 10-7) and NCAM2 (rs1022442,
p=2.75 × 10-7).

8. Population genetics and genetic association studies: crucial issues to
enhance the transparency of results.

Although efforts to obtain genetic biomarkers that help in anticipate diagnostic of Alzheimer
disease, present-day the clinical research not have the results that expected. The publications
that relate genes with Alzheimer disease has increased exponentially however, numerous lines
of evidence have demostrated discrepant results among populations. These findings suggest
that it is neccesary diminish the confounder factors and focus on identify the cause [169]. Once
the causes are established, could integrated in practice of medicine helping with anticipate
diagnostic.

In order to avoid spurious associations Little J. et al published an initiative that pretends
increase the quality of reporting genetic association studies dissemining this information in
different journals (epidemiology, clinical investigation, internal medicine and basic research)
[170-176]. The publication refered as STREGA report (STrenghthening the REporting of
Geenetic Association studies) provides additional comments to 22 items reported previously
by STROBE (STrengthening the Reporting of OBservational Studies in Epidemiology) [177].
These comments include different items, however population genetics topics are crucial issues
whose depreciation, increase statistical mistakes type I and II [173].

One of the most important topics in genetic association studies (GAS) is Hardy-Weinberg
equilibrium. Hardy-Weinberg equilibrium (HWE) is represented by the equation (p+q)2=1,
whose perfect square binomial equation it is represented by p2+2pq+q2=1, where p2 and q2

represented homozygous state, whereas 2pq represented heterozygous state. Under random
maiting and non-overlapping, homozygous and heterozygous states are in equal proportions
(0.5 each one) maintaining the HWE. This equilibrium are also maintained when evolutionary
forces are absents (mutation, random drift, genetic flow, natural selection), the population size
it is nearby to the infinitum, and when frequencies of alleles in both sexes are equal [178].
However, some conditions could modify these proportions provoking a Hardy-Weinberg
departure (HWD). HWD is related with an excess of homozygous individuals (with subse‐
quent heterozygous deficit) or heterozygous individuals (with subsequent homozygous
deficit). Therefore, Hardy-Weinberg model is an essential element used to analyze genetic data,
and is the initial step for check the quality of genotyping, because genotyping errors due to
poor quality provoke HWD as a consequence of distort in genotype distribution [179].
Nevertheless, HWD are not only related with genotyping mistakes because some factors as
demographic events, young population, founder effect, inbreeding, and population stratifi‐
cation may provoke HWD.

Population stratification is the consequence of populations with a recent miscegenation.
Admixture populations show different allele frequencies among different subpopulations that
conform the whole population, which consequently is not a homogeneous population [180].
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strong associations of SNPs in two new loci: rs11136000, which is located in the CLU, or
APOJ, gene (p=1.4×10−9), and rs3851179, a SNP 5′ to the PICALM gene (p=1.9×10−8). rs11136000
is located within an intron of the clusterin (CLU, also known as APOJ) gene on chromosome
8, and rs3851179 is found 88.5 kb 5′ of PICALM on chromosome 11. In stage 2, these new SNPs
were genotyped in 2,023 AD cases and 2,340 age-matched controls from an independent
sample. Associations were found for both polymorphisms, with p=0.017 and OR=0.905 for
rs11136000 and p=0.014 and OR=0.897 for rs3851179. A meta-analysis of stages 1 and 2 was
also conducted in this study, and the results showed highly significant evidence of associations
for the CLU and PICALM loci (rs11136000 p=8.5×10−10 and rs3851179 p=1.3×10−9, respectively).
Finally, no significant interactions of novel SNPs associated with APOE status were observed
to influence AD risk (rs11136000xAPOE4 interaction p=0.674; rs3851179xAPOE4 interaction
p=0.735) [164].

CLU is a secreted chaperone that can also be found in the cytosol under some stress conditions.
It has been suggested that CLU is involved in several basic biological events, including cell
death, tumor progression, and neurodegenerative disorders. The genetic risk allele (C) of CLU
gene variant rs11136000 is carried by ∼88% of Caucasians; the C allele confers 1.16 greater
odds of developing late onset AD than the T allele [165].

PICALM is a phosphatidylinositol-binding clathrin assembly protein. This protein plays a role
in altering synaptic vesicle cycling or APP endocytosis. Although the presence of polymor‐
phism rs3851179 was associated with high significance related to the development of AD in
the Caucasian population, these results could not be replicated in Chinese or Italian popula‐
tions [166-167]. The results obtained in recent studies by Piaceri showed that the segregation
of the PICALM rs3851179 variant did not show a statistically significant difference between
LOAD cases and controls, suggesting a reduced risk of developing late onset Alzheimer´s
disease (LOAD).

7.8. Han 2010

Unlike the studies described above, this study additionally established a relationship between
the allelic variants found by GWAS and cerebrospinal fluid (CSF) levels of amyloid Ab1-42,
T-tau, and P-tau181P [168]. The data used in this study was obtained from the Alzheimer´s
Disease Neuroimaging Initiative (ADNI). This database consists of approximately 800 adults
with ages between 55-90 years, 243 of whom were normal subjects, while 235 presented mild
cognitive impairment, and 340 had been diagnosed with Alzheimer´s disease. These partici‐
pants were genotyped using Illumina Human Genome 610 Quad BeadChips, and the CSF
levels of amyloid Ab1-42, T-tau, and P-tau181P were determined in 410 subjects (119 normal,
115 MCI and 247 AD), of which 247 were men and 163 were women. An association analysis
using age and APOE4 genotype as covariates was also performed, but did not incorporate
principal component analysis.

The results showed that T-Tau levels are higher in AD patients than in control subjects. When
the results were adjusted using APOE and the age of individuals as covariates, it was not
possible to observe an association between SNPs and CSF levels among patients. This study
also identified polymorphisms associated with the development of AD that had been already
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reported in previous studies: CYP19A1 (rs2899472, p=1.90 × 10-7) and NCAM2 (rs1022442,
p=2.75 × 10-7).

8. Population genetics and genetic association studies: crucial issues to
enhance the transparency of results.

Although efforts to obtain genetic biomarkers that help in anticipate diagnostic of Alzheimer
disease, present-day the clinical research not have the results that expected. The publications
that relate genes with Alzheimer disease has increased exponentially however, numerous lines
of evidence have demostrated discrepant results among populations. These findings suggest
that it is neccesary diminish the confounder factors and focus on identify the cause [169]. Once
the causes are established, could integrated in practice of medicine helping with anticipate
diagnostic.

In order to avoid spurious associations Little J. et al published an initiative that pretends
increase the quality of reporting genetic association studies dissemining this information in
different journals (epidemiology, clinical investigation, internal medicine and basic research)
[170-176]. The publication refered as STREGA report (STrenghthening the REporting of
Geenetic Association studies) provides additional comments to 22 items reported previously
by STROBE (STrengthening the Reporting of OBservational Studies in Epidemiology) [177].
These comments include different items, however population genetics topics are crucial issues
whose depreciation, increase statistical mistakes type I and II [173].

One of the most important topics in genetic association studies (GAS) is Hardy-Weinberg
equilibrium. Hardy-Weinberg equilibrium (HWE) is represented by the equation (p+q)2=1,
whose perfect square binomial equation it is represented by p2+2pq+q2=1, where p2 and q2

represented homozygous state, whereas 2pq represented heterozygous state. Under random
maiting and non-overlapping, homozygous and heterozygous states are in equal proportions
(0.5 each one) maintaining the HWE. This equilibrium are also maintained when evolutionary
forces are absents (mutation, random drift, genetic flow, natural selection), the population size
it is nearby to the infinitum, and when frequencies of alleles in both sexes are equal [178].
However, some conditions could modify these proportions provoking a Hardy-Weinberg
departure (HWD). HWD is related with an excess of homozygous individuals (with subse‐
quent heterozygous deficit) or heterozygous individuals (with subsequent homozygous
deficit). Therefore, Hardy-Weinberg model is an essential element used to analyze genetic data,
and is the initial step for check the quality of genotyping, because genotyping errors due to
poor quality provoke HWD as a consequence of distort in genotype distribution [179].
Nevertheless, HWD are not only related with genotyping mistakes because some factors as
demographic events, young population, founder effect, inbreeding, and population stratifi‐
cation may provoke HWD.

Population stratification is the consequence of populations with a recent miscegenation.
Admixture populations show different allele frequencies among different subpopulations that
conform the whole population, which consequently is not a homogeneous population [180].
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Indeed, admixture population is an heterogeneous population with dissimilar ancestry
proportions. Consequently, the population stratification may lead to spurious associations
because each subpopulation are not equally represented [169, 179]. Applying these premises
to GAS, the differences of frequencies between cases and controls populations could be related
with dissimilar frequencies among different population strata rather than association of genes
with disease. Therefore, population stratification is the most common problem and one of the
most important confounder factors in GAS [180-181].

At first glance could appear that HWD are only related with false associations nevertheless,
HWD could also be a singnature of disease association, principally in case-control studies,
because if some allele is associated with a disease this association break the random maiting
provoking HWD [182-183]. This HWD is the result of differences between allele frequencies,
where one allele are overrepresented in cases group (excess of homozygous), whereas the same
allele are underrepresented in control cases (excess of heterozygous). In order to suport these
findings it is neccesary to know the frequency of distribution of this allele in the general
population. If the allele show a high frequency in the general population, this finding could
be not related with the disease [182, 184-185]. Conversely, if the prevalence of the allele is low
in the general population, these data may support a relationship between the allele and the
disease suggesting the allele could be a risk allele. As a consequence, the HWD is particularly
relevant in GAS.

In light of these evidence, several methods have been developed to detect HWD. The most
used method is chi square, however this statistic only must be used in homogeneous popula‐
tion [186]. Other approach is detect the intrapoblational variance (Fis), where Fis> 0 means a
homozygous excess, whereas Fis< 0 means heterozygous deficit [187]. Recently, Li M and Li C
have developed a likelihood test that allows assessment of HWD taking into account potential
association with the disease [182]. This method can differentitate HWD caused by disease
association, diminishing the over estimation of type I error and avoiding the false exclusion
of associated markers. Hence, is necessary diminish the effect of genetic structure in order to
detect susceptibility loci for complex disease. Studies to date suggest different methods, among
which are:

• Genomic control. This method diminish the population heterogeneity due to cryptic
relatedmess or correlation across individuals, correcting the variance inflation, which is
previously detected with unlinked null markers [188].

• Infer the number of populations. This Bayesian analysis inferrers the number of subpopu‐
lations (k) and correct them, decreasing the effect of admixture over GAS [189].

• Summarize the genetic background using hierarchical clustering through principal com‐
ponent analysis (PCA) and its variants enable the detecction of differences between samples,
detect clinal distributions and suggest other demographic events as isolation-by-distance
[190-191].

All of these bioinformatic models have been an excelent help to clarify the genetic associations
in population-based genetic associations increasing the statistical power. These methods have
detected limitations or errors in assessments genotypes (20-70%) [192], as well as spurious
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association rates (40%) [193]. However, these methods help to identify rare variants that could
have a role in common disease etiology [194]. Hence, all of these variants have an implications
in desing, analysis and interpretation of GAS, and are a good strategy for developing markers
to elucidate the origins of many human genetic diseases. This alternative approach of antici‐
pated diagnosis can significantly reduce treatment costs by providing preventive medicine

9. Conclusions

Alzheimer´s disease is one of the main causes of dementia. This disease is clinically charac‐
terized by the irreversible and progressive loss of memory and it is histopathologically
characterized by the presence of neuritic plaques (NP) and neurofibrillary tangles (NFT). Both
types of lesions are formed due to the accumulation of insoluble protein aggregates, consisting
of beta amyloid peptide and the microtubule binding protein Tau, respectively. Studies
performed in the last thirty years have provided important advances in understanding the
molecular mechanisms involved in the pathology of AD. Through genetic studies, it has been
possible to identify the presence of mutations in the APP, PS1 and PS2 genes as causal factors
for early onset Alzheimer´s disease (EOAD). These mutations are associated with beta amyloid
peptide accumulation, which generates a series of molecular events that lead to a neurodege‐
nerative process. With respect to late onset Alzheimer ́s disease (LOAD), the results obtained
to date do not support amyloid overproduction as a cause; in this case, it has been proposed
that alterations in the mechanisms responsible for peptide clearance indirectly favor the
amyloid accumulation. Amyloids have the ability to interact with several different receptor
types, including the Frizzled, insulin, NMDA and NGF receptors, triggering events leading to
neuronal death. Additionally, it is known that molecules such as APOE play an important role
in the clearance and aggregation of amyloid beta and other risk factors that may eventually
determine the conformational changes that allow amyloids to aggregate and form neuritic
plaques. For LOAD, APOE is the single most important risk factor. However, a recent GWAS
identified several susceptibility loci associated with disease development in different popu‐
lations, although these studies provide a better understanding of the pathophysiology of the
disease, these new genetic markers seem to have a weak genetic effect. Therefore, it is necessary
to consider using other tools to detect genotyping errors that can be caused among other
reasons, by population stratification.
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1. Introduction

Among neurodegenerative diseases, dementias are an heterogeneous group in terms of their
symptoms and pathological findings. One of the main risk factors for developing neurodege‐
nerative disease is aging. Currently there is no cure for these diseases, mainly due to the lack
of knowledge of the causes and mechanisms of the accumulation of abnormal protein aggre‐
gates within the cellular or extracellular body. This is a common characteristic pathological
feature in several neurodegenerative diseases. Pathological protein accumulations not only
define the characteristics of a particular neurodegenerative disease, but also are associated
with clinical progression, including cognitive impairment or motor disorders [1].

Research in this field had been focused on finding potential highly specific biomarkers that
correlates with the disease and can be detected at early stages of the pathology. In medicine,
a biomarker is defined as a featured specific somatic or measurable biological change related
to a health condition or disease [2]. A biomarker can be measured and objectively evaluated
as an indicator of normal biological processes or disease, as well as the pharmacological
response to treatment. In general, we can say that a biomarker can be used to diagnose the
disease, or to establish its severity and allow monitoring its progression and response [1, 3, 4].
A biomarker must adhere to the following statements: 1) detect a fundamental feature of the
neuropathology of the disease, 2) must be validated in cases confirmed by neuropathological
examination, 3) have a high sensitivity and specificity, above 80% for discriminating the

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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neuropathology in question, 4) must be reliable. [3] In clinical studies, the biochemical analyse
of cerebrospinal fluid, plasma and urine, constitute the preferred samples to search for
biomarkers [5]. On the other hand neuroimaging studies and detection of genetic markers are
also useful for tracking the progression of the disease [6-8]. However, these studies remain in
an experimental phase and need to be further investigated. The challenge is to find the
correlation between the biomarker expression, the cognitive decline and the onset of the
neuropsychiatric symptoms. It is also important to emphasize that the diagnosis of neurode‐
generative diseases is mainly clinical and in most of the cases it is done when the dementia
syndrome has already been established. To this day, the more accurate confirmation of the
diagnosis is the post-mortem pathological study. This greatly limits the early therapeutic
interventions. Optimally, it is expected that biomarker studies will focus at four levels: 1)
biomarkers of risk, which will help identify risk populations with mutations or changes in
gene sequence, 2) diagnostic biomarkers in the early differential diagnosis would be useful to
confirming the occurrence of the neurodegenerative disease, and thus allow the possibility of
an early therapeutic intervention. An example of this type of biomarker approach are the
neuroimaging studies, associated with the positron emission tomography, taking into
consideration the measurement of the degree of atrophy of the cortex, the amplitude of the
ventricles, as well as of hippocampus, 3) biomarkers of progression, these markers could
predict the evolution of the disease. Finally, 4) neuropathological-molecular biomarkers are
the abnormal neuropathological lesions that constitute the features of the disease. For example,
the abnormal processing and deposits of hallmark proteins (such as of tau protein, amyloid-
β peptide and α-synuclein) of neurodegenerative diseases.

In this chapter we will focus on the description and abnormal processing of tau protein,
amyloid β peptide and α-synuclein, and its implication as specific biomarkers of neurodegen‐
eration. First we will talk about abnormal processing and pathological aggregates of tau
protein. The group of diseases characterized by abnormal tau processing and deposits, are
known as tauopathies. Tauopathies include fronto temporal dementia (FTD), progressive
supranuclear palsy (PSP), neurofibrillary tangle-predominant dementia (NFTD) and Alz‐
heimer's disease (AD); these neurodegenerative diseases are characterized by the presence of
neurofibrillary tangles (NFTs), consisting of paired helical filaments (PHFs). These filaments
are mainly comprised of tau protein, and constitute specific markers of this kind of neurode‐
generation. Better understanding the process that lead to protein aggregations and its abnor‐
mal processing in pathological conditions, could improve the differential diagnosis and would
allow tracking the progression of the neurodegenerative disease.

2. Alzheimer's disease

Alzheimer's disease (AD) is the most common cause of dementia in older adults. Characterized
for a severe cerebral atrophy that is associated to the presence of two types of structures, the
neuritic plaques (NPs) and neurofibrillary tangles (NFTs). The density of these structures
correlates with the clinical state of dementia and their presence offers a definitive diagnosis of
AD at post mortem.

Neurochemistry356

2.1. Neuritic plaques

NPs, that could be found in normal aging brain, but in lower amount (approximately 1000
times less that in AD), are composed of a core of β amyloid fibrils (Aβ) closely associated with
dystrophic neuritis distributed to the periphery of the amyloid core (Fig 1A). The biological
Aβ peptide is a product of Amyloid precursor protein (APP) processed by several proteases
(Fig 2).
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Figure 1. Histopathological lesions of human brain with dementia. A, B) Alzheimer´s disease, C) Pick’s dementia, C)
corticobasal degeneration D) progressive supranuclear palsy neurodegeneration. Triple inmunolabelling with anti‐
bodies raised against phosphorylated tau protein. A) neuritic plaque, amyloid beta peptide is evidenced by thiazine
red dye, this dye recognized extracellular deposits of Aβ fibrillar. The dystrophic neurites are evidenced by antibodies
raised against phosphorylated tau protein. B) Neurofibrillary tangles, evidenced by antibodies raised against phos‐
phorylated tau protein at Thr231 (green channel) thiazine red (red channel) and phosphorylated tau at Ser396 (Blue
channel). C) Pick Bodies in neuronal cells (Molecular layer of hippocampus) are detected by antibodies against phos‐
phorylated tau protein at Thr231 (green) and phosphorylated tau at Ser396 (blue), thiazine red did not have affinity to
this accumulation of tau protein. C) Ballooned neurons. Immunoreactivity to antibodies raised against phosphorylated
tau at Thr231 (red channel), and tau pSer396 (blue channel). The expression of truncated tau protein at Asp423 (de‐
tected by antibody TauC3) showed a weak staining in a doted patter in the NFTs (green Channel). D) Immunureactivity
of oligodendroglial coiled bodies and tufted astrocyes to phosphorylated tau protein at Ser202 and Ser205 (AT8 anti‐
body, green channel) and phosphorylated tau at Ser396 (blue channel). Thiazine red showed a strong affinity for ac‐
cumulations of tau protein in astrocytes and microglia.
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Figure 2. Processing of amyloid precursor protein. A) APP processing is the starting point of the formation of amyloid
plaques. APP is a transmembranal protein that is processed by a series of proteolytical enzymes, releasing several frag‐
ments among themis the Aβ fragment that is released into the extracellular space which accumulates and forms amy‐
loid-β plaques. B, C) APP processing to generate sAPPa fragment. C) non-amyloidogenic pathway of APP processing by
α-secretase, generating a fragment called sPPAα, which is secreted into the extracellular space, subsequently proteo‐
lyzed by γ-secretase fragment remains in the membrane, leading to a small fragment called p3. D-E) amyloidogenic
pathway. Alternative processing of APP, which generates the amyloid-β peptide, initiated by β-secretase, releasing a
fragment called sPPAβ, being liberated into the extracellular space, the γ-secretase subsequently proteolyzed a frag‐
ment that is enclosed within the cell membrane releasing amyloid-β fragment into the extracellular space, that later
could form amyloid-β plaques.

3. Amyloid precursor protein

The amyloid precursor protein (APP) is a type I transmembrane glycoprotein of approximately
120 kDa. APP has several isoforms derived from differential splicing, where the predominant
variants are APP695, APP770 APP751(the numbers correspond to the number of amino acids
(aa.) in each isoform). These three isoforms have in common the transmembrane region and
the intracellular domain, however, in the brain, APP695 is the predominant APP specie present
in neurons, while APP770 and APP751 and are primarily expressed in glial cells [9].

The human gene encoding APP, is located on chromosome 21, and was first identified in 1987
[10]. More than 76 mutations have been identified in APP, that cause the inherited form of AD
and a related condition hereditary known as cerebral amyloid angiopathy. These mutations
consist in amino acid substitutions within or adjacent the Aβ domain. However, even though
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APP mutations are found only in rare cases of AD, they are important because they provide
evidence that Aβ and APP play a central role in the pathogenesis of AD.

The APP is mainly located in the cell membrane, but has also been localized in the trans-Golgi,
endoplasmic reticulum (ER) and endosomal and lysosomal membranes [11]. Aβ peptide
release occurs where the secretase complex is precent and, therefore, is likely to be produced
in various cell compartments. Most tissues and cells has the enzymatic machinery necessary
to produce and degrade Aβ. This suggests that the production of Aβ from APP has a normal
biological function. Since the discovery of the APP, a number of physiological functions have
been attributed to this molecule, some of them unique to certain isoforms, but their actual
functions remain unclear. It is important to mention that a number of functional domains have
been assigned to the extracellular and intracellular APP regions. Most of these domains are
binding sites for metals (copper and zinc), extracellular matrix components (heparin, collagen
and laminin), neurotrophins and adhesion molecules, and protease inhibition domain (the
protease inhibitor domain Kunitz present in the isoforms APP751 and APP770) [12].

APP processing by the complex of secretase enzymes, occurs thru two pathways: The non-
amyloidogenic (Fig. 2 B, C) and amyloidogenic (Fig. 2 D, E). In the non-amyloidogenic
pathway, APP is cleaved by the α-secretase, a membrane-associated zinc metalloprotease that
belongs to the ADAM family (an enzyme in the family of metalloproteases and disintegrins
such as ADAM9, ADAM10 and ADAM17). The cleavage by α-secretase occurs at amino acid
position 83, counting from the carboxyl terminal domain of APP, where is a large ectodomain
called sPPAα which is secreted into the extracellular milieu [13]. The resulting fragment of 83
amino acids, known as C83, is retained in the membrane and subsequently cut by the γ-
secretase, resulting in a shorter fragment called p3, which is considered non-amyloidogenic
although it is deposited in diffuse plaques [14]. The γ-secretase has been identified as an
enzyme complex comprised of presenilin 1 or 2 (PS1 and PS2), nicastrin, APH-1 (anterior
pharynx defective 1) and PEN-2 (presenilin enhancer 2). Importantly, the cleavage made by
α-secretase occurs within Aβ sequence, between residues 16 and 17, which excludes the
formation of this peptide (Fig. 2 B, C).

The amyloidogenic pathway is an alternative processing for APP resulting in the generation
of Aβ. Initial proteolysis is mediated by β-secretase, the enzyme known as BACE1 (β-site APP-
cleaving enzyme), at aminoacid position 99, counting from the C-terminus. This cut results in
the release of a fragment called sPPAβ to the extracellular space and leaves the fragment C99
within the membrane, and generates the amino terminus for Aβ[15]. Subsequently, γ-secretase
cuts at different points of the carboxyl terminus of the Aß, between amino acid residues 38 and
43, finally releasing the Aβ peptides [16]. (Fig. 2 D and E).

4. Β-amyloid peptide

Most of the secreted Aβ peptide consist of 40 amino acid residues (Aβ40), while a small
proportion, about 10%, comprise 42 amino acid residues (Aβ42) [11]. Because Aβ42 is more
hydrophobic, aggregates rapidly and is more prone to form fibrils, which explains why this
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isoform is predominantly found in brain plaques of AD patients. Historically, Aβ (1-40 aa.)
and Aβ (1-42aa.) are the the main focus of research in the neurodegeneration field, because
they are the most frequently found in NPs of AD brains. However, it is well established that
Aβ truncated or modified forms at the N-and C-terminus are also present in AD brains. The
Aβ C-terminus truncation may be due to the action of different γ-secretases. Furthermore, it
has been confirmed a greater heterogeneity of species of Aβ truncated at the amino terminus
in the core of the NPs [17].

5. N-terminal truncated species of amyloid β

The loss of the hydrophilic part located at Aβ amino terminus increases the hydrophobicity of
this peptide, which favors their propensity to aggregate and deposit. It has been proposed that
Aβ species truncated at the N-terminus play an important role in the pathogenesis of AD. In
this respect, with mass spectrometry it has been identified in NPs, besides isoforms 40 and 42,
two other peptideswith truncations at the amino terminus, one in the amino acid 3 of Aβ (3-42
aa.) and another at amino acid residue 11 of Aβ (11-42 aa.), with relative molecular masses of
4.2 kDa and 3.5 kDa, respectively [17]. Other in vitro studies have shown that a small increase
in the physiological production of these species may be sufficient to trigger the formation of
neuronal processes which induce changes in cytoskeletal proteins, moreover, It has been
proposed that these amino-terminus truncated Aβ peptides might act as a center of aggregation
of other Aβ neurotoxic species, that predominate in the core of the NPs [18]. Truncated species
may be generated from APP through alternative processing by the BACE enzyme or produced
from the full-length Aβ peptide (1-42 aa.) by extracellular amino peptidases. It is known that
two isoforms of BACE are involved in the production of Aβ: BACE1 and BACE2, however it
is established that the main neuronal protease BACE1 is required to cut an APP in sites 1 and
11 of the Aβ peptide. BACE1 is a transmembranal glycoprotein type I, that exhibits all the
Properties of β-secretase. For example, the optimum pH is slightly acidic, is located in cell
compartments where Aβ is generated, and cleaves APP in the β cleavage site with a high
affinity for the swedish APP (swAPP), which is a mutated APP, associated with familial AD,
known to increase the production of Aβ. Finally, BACE1 is present in the secretory cells (i.e.
microglia) of Aβ and is highly expressed in neurons.

6. Aggregation of amyloid β

A common feature among several neurodegenerative diseases is that some mutations associ‐
ated to them, lead to the expression of protein variants with an increased tendency to aggre‐
gate. Thus, conformational changes and aggregation of Aβ peptide are central features in AD.

Currently, there is evidence that Aβ monomers are not toxic to the cells and have a protective
effects on neurons against oxidative stress [19]. However, there are many reports that indicate
that the oligomers of Aβ, also known as soluble oligomeric ligands of amyloid-β peptide
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(ADDLs) could be even more toxic than Aβ fibrils. The ADDLs mediated toxicity was described
by Klein and colleagues, which found that the oligomers cause neuronal death in hippocampal
slices at nanomolar concentrations [20].

The polymerization of Aβ monomers in the extracellular space of the brain appears to correlate
with the presence of metals [21]. These same metals may generate reactive oxygen species
(ROS), oxidative stress-producing agents. Iron, for example, is in the NPs. This could indicate
that this metal has a toxic effect due to the promotion of ROS, but could also promote Aβ
assembly [18]. It is known that transition metals produce oxidative stress through the gener‐
ation of reactive oxygen species (ROS) and recently was noted that the presence of these metals
may be related to the polymerization of the monomers of Aβ in the brain neuropil space [21].
Thus iron in NPs, seems to have toxic effects because it promotes the formation of ROS as it
enhances Aβ assembly [18].

7. Tau protein – AD brains

7.1. Normal tau

The interaction between the microtubule motor proteins and microtubules is regulated by tau
protein, which operates and controls the movement of axonal organelles such as mitochondria
and vesicles favoring the function and viability of neuronal cells [22] (Fig 3A). Proline-rich
region at the N-terminus, interact with proteins containing an SH3 domain and with FYN
tyrosine kinase. FYN interaction is highly relevant for routing toward the postsynaptic region,
since this kinase phosphorylates the NMDA receptor 2B subunit [23]. This phosphorylation
enables interaction of NMDA receptor with the postsynaptic density protein 95 (PSD95) and
this interaction is required for the excitotoxic signaling[24].

Two main regions characterize the tau molecule, the N-terminal portion that accounts for two-
thirds of the molecule, and the proline-rich region. The N-terminus region is subdivided into
two subregions: one acidic, which has been proposed as a possible binding site for metals [25].
The other region is the proline-rich region. This site has a high amount of amino acids
potentially susceptible to phosphorylation and appears to be important for the binding of tau
to microtubules [26]. Other important regions in tau protein are: the microtubule binding
domains including the repeats 3 or 4 with 31 or 32 aa's. and theC-terminal region, that also
contains a proline rich region and an acidic region (Fig 3).

tau is encoded by a single gene located on chromosome 17q21. The gene has 16 exons, in which
through alternative splicing 6 isoforms are generated in the Central Nervous System (CNS).
These isoforms vary in length by including exons 2, 3 and 10, with a maximum length of 441
amino acids in the largest protein isoform. In sporadic AD, no mutations of the tau protein
have been reported.

The tau protein is susceptible to posttranslational modifications that have direct effects on their
function (Fig. 3B). The most important modification is the phosphorylation of certain residues
that regulate microtubule binding. The coordinated activity of kinases and phosphatases
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enhances Aβ assembly [18].

7. Tau protein – AD brains

7.1. Normal tau
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region at the N-terminus, interact with proteins containing an SH3 domain and with FYN
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this interaction is required for the excitotoxic signaling[24].
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thirds of the molecule, and the proline-rich region. The N-terminus region is subdivided into
two subregions: one acidic, which has been proposed as a possible binding site for metals [25].
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potentially susceptible to phosphorylation and appears to be important for the binding of tau
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domains including the repeats 3 or 4 with 31 or 32 aa's. and theC-terminal region, that also
contains a proline rich region and an acidic region (Fig 3).

tau is encoded by a single gene located on chromosome 17q21. The gene has 16 exons, in which
through alternative splicing 6 isoforms are generated in the Central Nervous System (CNS).
These isoforms vary in length by including exons 2, 3 and 10, with a maximum length of 441
amino acids in the largest protein isoform. In sporadic AD, no mutations of the tau protein
have been reported.
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regulate the phosphorylated state of the protein, which decreases when the level of phosphor‐
ylation promotes microtubule binding. Otherwise, the increased phosphorylation of the
protein in these residues facilitates disassembly of the microtubule. tau protein has 85 potential
phosphorylation sites, of which a large amount is not involved in the normal regulation of its
association with microtubules [27].

tau protein may undergo other posttranslational modifications such as glycosylation, nitration,
poliamination, ubiquitination and SUMOlyzation [28], which role is not well understood.
These changes seem to be more involved in the deregulation of the normal function of the tau
protein favouring other effects such as loss of function and promotion of abnormal aggregation
characteristic of the large group of diseases with tau alterations (tauopathies), including AD.

7.2. Abnormal post-translational modification of tau

Several studies have confirmed the importance of tau abnormalities as a mechanism that
alters  its  microtubule  binding  capability,  and  promotes  abnormal  aggregation  [29,  30].
Phosphorylation is  a major post-translational  modification of  tau that  regulates microtu‐
bule binding and release. Tau protein is equipped with 85 phosphorylation sites, 45 serines,
35  threonines,  and  5  tyrosines  [28].  Increased  phosphorylation  reduces  its  affinity  for
microtubules,  resulting in disruption of the cytoskeleton, particularly phosphorylation at
threonine 231 and serine 293, 324 and 356. It has been described 30 phosphorylation sites
related to AD. In vivo, the kinases that are more associated with tau phosphorylation are
glycogen synthase kinase-3β (GSK3β), cyclin-dependent kinase 5 (CDK5) and the microtu‐
bule-affinity regulating kinase (MARK) [28, 31].
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Figure 3. Schematic representation of the functional domains of the longest tau isoform. The projection domain, in‐
cluding an acidic and a proline-rich region, interacts with cytoskeletal elements between microtubules in axons. The
N-terminal region is also involved in signal transduction pathways by interacting with proteins as PLC-γ and Src-kinas‐
es. The C-terminus part, referred to as microtubules binding domain, regulates the rate of microtubules polymeriza‐
tion. In this schematic diagram it is depicted the site were some tau antibodies specifically recognize tau protein
epitopes.

Neurochemistry362

Kinases that contribute mainly in the abnormal phosphorylation of tau protein are: GSK3β,
CDK5 and MARK. In AD and other tauopathies an alteration in the expression or in the activity
of these kinases has been reported [32, 33].

Moreover, tau protein is a substrate for various proteases such as calpain, caspase 6 and
caspase-3,  shown  by  in  vitro  experiments  [34,  35].  However,  this  effect  has  not  been
recognized as a normal mechanism and it has been proposed that endogenous proteoly‐
sis contributes tau aggregation process and abnormal toxicity. The most relevant trunca‐
tions in AD are those occurring in the Asp421 and Glu391 of tau C-terminus [34, 36-38].
There is controversy about the genesis of these truncations, and it has even been postulat‐
ed that they are mutually exclusive, but occur in a continuous process along AD porogres‐
sion  [39-41]  and  contribute  to  the  formation  of  NFTs  [40].  Moreover,  it  has  also  been
proposed  that  such  truncations  occur  very  early  in  the  disease  and  do  not  necessarily
participate in tau assembled, thus these truncations can be observed in the unassembled
amorphous aggregates of tau protein [42]. Notwithstanding these studies it has been found
that there is a pathological effect of these truncations, reflected in an increased cytotoxici‐
ty when they are overexpressed in cultured neuronal cells in vitro. Finally, the accumula‐
tion of these truncated forms in brain tissue of subjects with AD, seems to correlate with
AD clinical diagnosis and progression [40], which makes the truncation of tau protein an
important biomarker in the diagnosis AD.

The truncated form of tau protein in the Glu391, is characterized as a 12 kDa fragment, with a
length of 92 to 95 amino acids corresponding to the region of the microtubule binding domain.
This fragment is known as paired helical filament minimum core (PHFcore) [43]. tau PHFcore
has high affinity for the intact tau protein. The association of tau full length with the PHF core,
triggers a molecular mechanism of phosphorylation and subsequent truncations that could
induce the formation of a new tau fragment truncated at Glu391 that would have affinity for
more intact tau molecules, thus inducing phosphorylations and truncations of these intact full
length tau molecules, self-propagating this capture-breaking process generating more
aggregated PHFcores that forms stable insoluble filaments [36]. The PHFcore fragment is
recognized by antibody 423 [44]. So far the PHFcore seems to be the only peptide whose
cytotoxicity has been demonstrated by Fasulo et al [45], in COS cells co-transfected with the
cDNA of full length tau protein and the sequence for the PHFcore, reporting that these cells
died by apoptosis. This showed the high toxicity of tau truncated at Glu391. This finding in a
cell model, together with molecular neuropathology studies, which showed that tau truncation
at Glu391 correlates with AD pathology and other tauopathies, suggests that this PHF core
could be used as an accurate marker for this type of neurodegenerative disease. This type of
propagation of the pathological tau specie (PHFcore), resembles prions disease “infectious
process”, thus modified tau could induce pathological changes in normal tau, which in turn
would modify more normal tau molecules. This new approach to understanding AD pathol‐
ogy in terms of protein seeding had been proposed by several groups [46-48], however, since
1993, the group of Novak [43], had already called the PHFcore as "tauon", considering its prion
like behaviour.
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Kinases that contribute mainly in the abnormal phosphorylation of tau protein are: GSK3β,
CDK5 and MARK. In AD and other tauopathies an alteration in the expression or in the activity
of these kinases has been reported [32, 33].

Moreover, tau protein is a substrate for various proteases such as calpain, caspase 6 and
caspase-3,  shown  by  in  vitro  experiments  [34,  35].  However,  this  effect  has  not  been
recognized as a normal mechanism and it has been proposed that endogenous proteoly‐
sis contributes tau aggregation process and abnormal toxicity. The most relevant trunca‐
tions in AD are those occurring in the Asp421 and Glu391 of tau C-terminus [34, 36-38].
There is controversy about the genesis of these truncations, and it has even been postulat‐
ed that they are mutually exclusive, but occur in a continuous process along AD porogres‐
sion  [39-41]  and  contribute  to  the  formation  of  NFTs  [40].  Moreover,  it  has  also  been
proposed  that  such  truncations  occur  very  early  in  the  disease  and  do  not  necessarily
participate in tau assembled, thus these truncations can be observed in the unassembled
amorphous aggregates of tau protein [42]. Notwithstanding these studies it has been found
that there is a pathological effect of these truncations, reflected in an increased cytotoxici‐
ty when they are overexpressed in cultured neuronal cells in vitro. Finally, the accumula‐
tion of these truncated forms in brain tissue of subjects with AD, seems to correlate with
AD clinical diagnosis and progression [40], which makes the truncation of tau protein an
important biomarker in the diagnosis AD.

The truncated form of tau protein in the Glu391, is characterized as a 12 kDa fragment, with a
length of 92 to 95 amino acids corresponding to the region of the microtubule binding domain.
This fragment is known as paired helical filament minimum core (PHFcore) [43]. tau PHFcore
has high affinity for the intact tau protein. The association of tau full length with the PHF core,
triggers a molecular mechanism of phosphorylation and subsequent truncations that could
induce the formation of a new tau fragment truncated at Glu391 that would have affinity for
more intact tau molecules, thus inducing phosphorylations and truncations of these intact full
length tau molecules, self-propagating this capture-breaking process generating more
aggregated PHFcores that forms stable insoluble filaments [36]. The PHFcore fragment is
recognized by antibody 423 [44]. So far the PHFcore seems to be the only peptide whose
cytotoxicity has been demonstrated by Fasulo et al [45], in COS cells co-transfected with the
cDNA of full length tau protein and the sequence for the PHFcore, reporting that these cells
died by apoptosis. This showed the high toxicity of tau truncated at Glu391. This finding in a
cell model, together with molecular neuropathology studies, which showed that tau truncation
at Glu391 correlates with AD pathology and other tauopathies, suggests that this PHF core
could be used as an accurate marker for this type of neurodegenerative disease. This type of
propagation of the pathological tau specie (PHFcore), resembles prions disease “infectious
process”, thus modified tau could induce pathological changes in normal tau, which in turn
would modify more normal tau molecules. This new approach to understanding AD pathol‐
ogy in terms of protein seeding had been proposed by several groups [46-48], however, since
1993, the group of Novak [43], had already called the PHFcore as "tauon", considering its prion
like behaviour.
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Glycation is a non-enzymatic glycosylation observed during aging, and its modified products
cannot be degraded or eliminated by the normal clearance mechanisms. These products also
contribute to the generation of free radicals. tau is a substrate of glycation and this modification
increases the capability of tau to form aggregates and stabilize the formation of polymers of
this protein [49]. O-GlcNAcylation may regulate phosphorylation of tau in a site-specific
manner. Moreover O-GlcNAcylation at Ser356 greatly slows down the aggregation speed of
tau and also reduces its phosphorylation by GSK3β and CDK5 [50].

Other dementias known as tauopathies, such as Pick's disease, hereditary frontotemporal
dementia with Parkinsonism linked to chromosome 17, sporadic corticobasal degeneration
and progressive supranuclear palsy, are also associated with post-translational modifications
of tau protein. In these neurological disorders, it has been described that tau protein is
aggregated in characteristic lesions that include pick bodies (Fig 1D), the NFTs, granulo-
vacuolar degenerations, the threads of neuropil, and dystrophic neurites. In most of these
lesions, it has been reported that tau protein undergoes the same posttranslational modifica‐
tions that occur in AD, mainly hyperphosphorylation at various domains [51]. However, in
other diseases characterized by the presence of filamentous tau protein, known as tauopathies,
several mutations of this gene occur, mainly the P301L mutation, which is associated with the
frontotemporal degeneration with parkinsonism linked to chromosome 17 (FTLD17). This
mutation is the most widely studied in various in vivo models [52]. Apart from mutations, there
are truncations in tau protein that are associated to this disease, such as endogenous truncation
and mainly the C-terminus truncation at the Asp421 [51].

8. α-synuclein and Parkinson's disease

In elder adults, Parkinson's disease (PD) is a major cause of movement disorders. This disease
is characterized by loss of dopaminergic neurons of the compact substantia nigra, which results
in lowering of dopamine in the striatum. PD belongs to a group of neurodegenerative disorders
called Lewy bodies diseases (ECL) [53] (Fig 1 C). The major components of Lewy bodies are
aggregates of filamentous α-synuclein (αS) protein (Fig 5C). The human α-S is a 140 amino
acid protein. This protein consists of three regions: an amphipathic N-terminal (amino acids
residues 1-60), non-β-amyloid component (NAC) hydrophobic central region (amino acids
residues 61-95) and an acidic C-terminal region (amino acids 96-140) [54].

αS belongs to the family of Synuclein included beta-synuclein (β-S), and γ-synuclein (γ-S) [54].
The Synuclein genes are highly conserved between species. Synuclein family was found in
vertebrates and has never been observed in unicellular organisms. In invertebrates it has been
observed an homologous to the synuclein protein.

With regard to the normal function of the αS, little is known. However, it is reported that αS
is expressed at high levels in the brain, specifically associated to neurons, and also has been
observed expression in other tissues such as hematopoietic cells. αS can be associated to lipids,
in neurons it has been observed associated with synaptic vesicles modulating its activity,
suggesting that under normal conditions αS could be involved in various functions associated
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with neurotransmission and synaptic plasticity [55]. Also, it was shown that αS participates
in synaptic plasticity during development and learning [54] and in the regulation of synaptic
vesicle mobilization in nerve terminals [56].

Immunostaining with antibodies recognizing αS in normal human brain, shown a diffuse
pattern in the neuropil-like synaptic region. However, in PD brains, αS immunoreactivity is
also strong in some of the Lewy bodies and neuronal processes [57]. Currently, ubiquitin
immunostaining and eosin staining, are the most widely used technique to demonstrate Lewy
bodies in PD brains. Biochemical studies have shown that αS is the most abundant protein in
Lewy bodies and it is located in the fibrous material contained in this structure. αS pathological
deposits are less soluble than the normal synuclein. This is possibly due to posttranslational
modifications such as truncations, nitrations, and phosphorylations, ubiquitination. αS
undergoes pathological modifications in PD. It should be emphasized that although αS is a
neuropathological marker of PD as well as dementia with Lewy bodies (DLB), there is no
evidence that αS is related to the cause of these disease.

In vitro studies suggest that the hydrophobic region of αS NAC is essential for the aggregation
and toxicity of the molecule [58]. This region is partially absent in β-Synuclein (βS), which may
explain why the βS has a low ability to auto-aggregate and form oligomers and fibrils [59, 60].
Hashimoto et al (2001), demonstrated, that βS interacts with αS and it is capable of preventing
αS aggregation in vitro and in vivo [59]. In vitro studies have shown that βS by itself tends to
associate strongly with αS to form aggregates [61][58]. Studies suggest that the aggregates are
formed from intermediate forms (with unchanged conformation) partially folded structures,
which would give rise to the fibrils. Previous structures of these fibrils are oligomers and
annular protofibrils forming pore-like structures [62]. However, the mechanisms by which
they form oligomers and then fibrils are not yet understood.

Some changes in αS protein are posttranslational, which have been associated with a role as
mediators of the cytotoxicity of this protein.

Furthermore, the pathological αS is characterized by phosphorylation at Ser129 which is
detected  by  immunohistochemistry  in  Lewy  bodies  in  PD  human  brain.  The  Kinase
responsible  for  this  phosphorylation  is  casein  kinase  II  and GRK2/5,  which  phosphory‐
lates αS in vitro. Originally, the Ser129 phosphorylation was found in a Drosophila model,
which generated a pseudophosphorilation (S129A) from the regular αS. This modification
resulted in a tendency to intracellular accumulation of  this protein (αS),  compared with
wildtype organisms. This change was not associated with any toxicity, olthough this still
is  controversial  and it  is  need to clarify the role of  phosphorylation at  Ser129 αS in the
molecular pathology of PD.

The truncation of αS has been associated with its high capacity of aggregation. Ttransgenic
mice expressing truncated αS have substantial cell loss especially in the brain. Truncated
species of αS were found in the lysosome suggesting its proteolysis in these organelles,
nonetheless α-synuclein is also a substrate for cytoplasmic calpains [57].

In  the  pathogenesis  of  diseases  with  Lewy Bodies,  interactions  between β-amyloid pro‐
tein and αS are crucial. For example, Aβ worsens associated deficit coused by αS accumu‐
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Other dementias known as tauopathies, such as Pick's disease, hereditary frontotemporal
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In elder adults, Parkinson's disease (PD) is a major cause of movement disorders. This disease
is characterized by loss of dopaminergic neurons of the compact substantia nigra, which results
in lowering of dopamine in the striatum. PD belongs to a group of neurodegenerative disorders
called Lewy bodies diseases (ECL) [53] (Fig 1 C). The major components of Lewy bodies are
aggregates of filamentous α-synuclein (αS) protein (Fig 5C). The human α-S is a 140 amino
acid protein. This protein consists of three regions: an amphipathic N-terminal (amino acids
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αS belongs to the family of Synuclein included beta-synuclein (β-S), and γ-synuclein (γ-S) [54].
The Synuclein genes are highly conserved between species. Synuclein family was found in
vertebrates and has never been observed in unicellular organisms. In invertebrates it has been
observed an homologous to the synuclein protein.

With regard to the normal function of the αS, little is known. However, it is reported that αS
is expressed at high levels in the brain, specifically associated to neurons, and also has been
observed expression in other tissues such as hematopoietic cells. αS can be associated to lipids,
in neurons it has been observed associated with synaptic vesicles modulating its activity,
suggesting that under normal conditions αS could be involved in various functions associated
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with neurotransmission and synaptic plasticity [55]. Also, it was shown that αS participates
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tein and αS are crucial. For example, Aβ worsens associated deficit coused by αS accumu‐

Accumulation of Abnormally Processed Tau Protein in Neuronal Cells as a Biomarker for Dementia
http://dx.doi.org/10.5772/58305

365



lation and also promotes oligomerization of αS [63]. It has also been demonstrated that in
pathological  conditions  both  aggregates  of  αS  and  Aβ,  are  membrane-associated.  It  is
suggested  that  lipid  rafts  can  be  a  suitable  site  for  abnormal  interactions  between  the
aggregated forms of  α-S and Aβ.  These aggregated forms are  also described in various
intracellular membranous structures [59].

To elucidate how the interactions between αS and Aβ influence its aggregation properties, in
vitro studies were done. Evidence, demonstrated that β-amyloid promotes αS aggregation in
vivo, on the other hand, in APP transgenic mice, it was observed an accumulation of αS.
Therefore, It was hypothesized that β-amyloid, αS, and tau protein promote the accumulation
of each other [64], in recent years, there have been a number of studies that support this
hypothesis.

The αS has become one of the key proteins in the aetiology and pathogenesis of some of the
most common neurodegenerative diseases, such asPD.

It is suggested that the Lewy bodies (LB) constitute an histpopathological marker that
correlates with the onset of symptoms of dementia. In 10-20% of the cases of dementia with
LB it is observed also the presence of NFTs and NPs at Braak stages V and VI, suggesting that
this type of neurodegeneration could share pathologic features with AD. The molecular
analysis of LB in PD and dementia associated with Parkinson's disease are indistinguishable,
however the difference is based on the localization of these lesions. Using double immunos‐
taining it is possible to observed the presence of epitopes of phosphorylated and non-phos‐
phorylated tau protein, in the periphery of the LB or colocalizing with these structure and with
αS aggregates. in vitro studies had shown that alpha synuclein preformed fibrils may promote
the formation of fibrils of phosphorylated recombinant tau protein, that is insoluble and
thioflavin-S positive.

9. Taupathies

The Tauopathies are classified according to the predominant species of tau that accumulates:
tau proteins containing 3 (3R) or 4 repeats (4R) of microtubule binding domain. In Pick's disease
(PiD), 3R tau predominates, whereas 4R tau is characteristic of corticobasal degeneration (CBD)
and progressive supranuclear palsy (PSP) [65].

PiD is the least common FTLD-tau characterized by neuronal Pick bodies in a stereotypic
neuroanatomical distribution. PSP and CBD are more common than PiD and have extensive
clinical and pathologic overlap, with no distinctive clinical syndrome or biomarker that
permits their differentiation. The hallmark’s to diagnosis rests upon postmortem analysis of
the human brain and demonstration of the presence of tangles, oligodendroglial coiled bodies
and tufted astrocytes in PSP or threads, pretangles and astrocytic plaques in CBD. The
anatomical distribution of tau pathology determines the clinical presentation of PSP and CBD,
as well as PiD

Neurochemistry366

10. Pick´s disease

In Pick's  disease the first  symptoms occur in emotional  and social  functioning.  It  is  the
mood changes, often biased towards euphoria, disinhibition and deterioration in social skills
that are so noticeable. Pick's disease generally occurs between the ages of forty and sixty
years of age. In PiD brain tissue changes and neuronal loss occurs in focal areas rather than
the generalized damage of Alzheimer's. Pick's disease affects the frontal and temporal lobes
of the brain. Marked shrinkage, called atrophy, of the frontal lobes of the brain occurs that
can be seen on brain scans. Pick's disease is marked by the presence of abnormalities in
brain cells called Pick's bodies. These are found in the affected areas as well as elsewhere
in the brain. Pick's bodies are fibres that look very different from the neurofibrillary tangles
found in Alzheimer's disease. Pick's bodies are straight rather than paired and helical. Pick
bodies, are characterized by the presence of distinct argyrophilic (silver staining) spheri‐
cal  inclusions called Pick bodies and globose neurons.  Pick bodies are composed of  tau
protein enriched in 3R tau, which can be evidenced with biochemical studies [66] or more
recently with antibodies specific to tau isoforms. Mondragon-Rodriguez et al (2008) [51],
conducted  an  immunohistochemical  study  and  confocal  microscopy  analysis  of  brains
section of Pick body dementia, and showed phosphorylation epitopes and conformational
changes of tau protein that are described in AD.

11. Cortico basal degeneration

CBD is a progressive neurological disorder characterized by neuronal cell loss and atrophy
(shrinkage) of multiple areas of the brain including the cerebral cortex and the basal ganglia.
CBD progresses gradually. Initial symptoms, which typically begin at or around age 60, may
first appear on one side of the body (unilateral), but eventually affect both sides as the disease
progresses. Symptoms are similar to those found in Parkinson disease, such as poor coordi‐
nation, akinesia (an absence of movements), rigidity (a resistance to imposed movement),
disequilibrium (impaired balance); and limb dystonia (abnormal muscle postures). Other
symptoms such as cognitive and visual-spatial impairments, apraxia (loss of the ability to make
familiar, purposeful movements), hesitant and halting speech, myoclonus (muscular jerks), and
dysphagia (difficulty swallowing) may also occur. An individual with CBD eventually becomes
unable to walk.

CBD is a sporadic neurodegenerative process related to abnormal aggregation of hyperphos‐
phorylated tau protein.  This  disease  is  associated with abnormal  insoluble  tau isoforms
with  four  conserved  repeat  sequences  (4R  tau).  Neuropathological  criteria  for  CBD
emphasize  the  histopathological  findings  of  tau-immunoreactive  lesions  in  addition  to
ballooned neurons,  cortical  atrophy,  and nigral  degeneration.  The  ballooned achromatic
neurons, were once emphasized as a major component of the histopathology and gave the
disorder its original name. Abnormal tau immunoreactivity is found in both the neurons
and the glia. In neurons, tau immunohistochemistry reveals diffuse or granular cytoplas‐
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mic staining, pre-tangles, and small neurofibrillary tangles. These probably account for the
corticobasal  inclusions found in subcortical  gray matter regions including the substantia
nigra.  tau immunoreactive  threads in  both neurons and glia  are  numerous in  gray and
white matter. CBD pathology includes astrocytic plaques with tau deposition largely in the
distal processes of astrocytes. These astrocytic plaques are distinct from tufted astrocytes
found in PSP, where tau is deposited more proximally to the cell body as well as in distal
processes. Both CBD and PSP had in common oligodendroglial inclusions, coiled bodies,
and threads, although the astrocytic changes can distinguish between the two disease (CBD
or PSD). In addition, while threads are numerous and diffuse in CBD, they are rarely seen
in  the  cerebral  cortices  in  PSP,  although  they  may  be  dense  in  other  areas.  A  recent
neuropathological  study  has  discovered  the  presence  of  TAR-DNA-binding  protein  43
(TDP-43) in a subset of patients with CBD pathology. There was no clear clinical correla‐
tion with the presence of TDP-43 inclusions in CBD [67].

12. Progressive supranuclear palsy

Progressive supranuclear palsy affects men and women equally and in most cases it appears
as a atypical parkinsonism with axial rigidity, postural instability and unexplained falls, with
most patients also developing progressive vertical gaze palsy (for which the disorder is
named), dysarthria and dysphagia [68] PSP has asymmetric cortical atrophy and can clinically
mimic CBS. The pathologic diagnosis is made by the microscopic findings of globose neuro‐
fibrillary tangles and variable neuron loss with gliosis of the globus pallidus, subthalamic
nucleus, periaqueductal grey matter of pons, and substantia nigra. Mutant tau protein is
present in inclusions [69, 70].

Whereas 4R tau is characteristic of corticobasal degeneration (CBD) and progressive supra‐
nuclear palsy. Diagnosis rests upon postmortem examination of the brain and demonstration
of globose tangles, oligodendroglial coiled bodies and tufted astrocytes. The core neuroana‐
tomical regions affected in all cases of PSP include the basal ganglia, subthalamic nucleus and
the substantia nigra. Cortical involvement is greatest in motor and premotor cortices. Pathol‐
ogy of the cerebellar dentate nucleus and the cerebellar outflow pathway (dentato-rubro-
thalamic pathway) is usually severe and associated with profound atrophy of the superior
cerebellar peduncle.

13. Conclusion

This review, gives a neuropathological approach towards finding biomarkers for dementia.
However, finding the optimal biomarker for each neurodegenerative disease is still in an
experimental face. In the case of AD, it is required far deeper molecular and immunohisto‐
chemical studies of abnormal tau posttranslational modifications (i.e. phosphorylation and
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truncation) and better understanding of its contribution to the development of dementia,
particularly, it is important to understand the role of the paired helical filaments, that accu‐
mulate in the neuronal soma, promoting degeneration and cell death. Of relevance is to
consider that in other dementias such as tauopathies, tau protein processing resembles the
initial steps in AD, although there is no well-defined neuropathological impact of tau aggre‐
gation in lesions such as Pick bodies, Lewy bodies, as well as the presence of tau in NFTs and
glial cells in CBD and PSP. Therefore, all efforts should be focused on determining reliable
biomarkers for each of the dementias with the aim of generating new improved diagnostic
approaches for early detection of these neurodegenerative diseases.

Acknowledgements

The authors wish to express their gratitude to the Mexican families who donate the brain of
their loved ones affected with AD, and made possible our research. We also want to thank Ms.
Maricarmen De Lorenz for her outstanding technical and secretarial support and Mrs. Amparo
Viramontes Pintos, for her support in the maintenance of brain tissue. This work was sup‐
ported by the Grant from CONACYT, No. 142293.

Author details

J. Luna-Muñoz1, A. Martínez-Maldonado2, V. Ibarra-Bracamontes2, M. A. Ontiveros-Torres3,
I. Ferrer4, B. Floran-Garduño2, M. del C. Cárdenas-Aguayo5, R. Mena1,2 and
M.A. Meraz Ríos5

1 National Brain Bank, Laboratorio Nacional de Servicios experimentales (LaNSE), Centro de
Investigación y de Estudios Avanzados del IPN, (CINVESTAV-IPN), México City, México

2 Department of Physiology, Biophysics and Neuroscience, Centro de Investigación y de
Estudios Avanzados del IPN, (CINVESTAV-IPN), México City, México

3 Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN,
(CINVESTAV-IPN), México City, México

4 CIBERNED (Centro de Investigación Biomédica en Red de enfermedades
neurodegenerativas), Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge,
Universitat de Barcelona, Hospitalet de Llobregat, Spain

5 Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados
del IPN, (CINVESTAV-IPN), México City, México

Accumulation of Abnormally Processed Tau Protein in Neuronal Cells as a Biomarker for Dementia
http://dx.doi.org/10.5772/58305

369



mic staining, pre-tangles, and small neurofibrillary tangles. These probably account for the
corticobasal  inclusions found in subcortical  gray matter regions including the substantia
nigra.  tau immunoreactive  threads in  both neurons and glia  are  numerous in  gray and
white matter. CBD pathology includes astrocytic plaques with tau deposition largely in the
distal processes of astrocytes. These astrocytic plaques are distinct from tufted astrocytes
found in PSP, where tau is deposited more proximally to the cell body as well as in distal
processes. Both CBD and PSP had in common oligodendroglial inclusions, coiled bodies,
and threads, although the astrocytic changes can distinguish between the two disease (CBD
or PSD). In addition, while threads are numerous and diffuse in CBD, they are rarely seen
in  the  cerebral  cortices  in  PSP,  although  they  may  be  dense  in  other  areas.  A  recent
neuropathological  study  has  discovered  the  presence  of  TAR-DNA-binding  protein  43
(TDP-43) in a subset of patients with CBD pathology. There was no clear clinical correla‐
tion with the presence of TDP-43 inclusions in CBD [67].

12. Progressive supranuclear palsy

Progressive supranuclear palsy affects men and women equally and in most cases it appears
as a atypical parkinsonism with axial rigidity, postural instability and unexplained falls, with
most patients also developing progressive vertical gaze palsy (for which the disorder is
named), dysarthria and dysphagia [68] PSP has asymmetric cortical atrophy and can clinically
mimic CBS. The pathologic diagnosis is made by the microscopic findings of globose neuro‐
fibrillary tangles and variable neuron loss with gliosis of the globus pallidus, subthalamic
nucleus, periaqueductal grey matter of pons, and substantia nigra. Mutant tau protein is
present in inclusions [69, 70].

Whereas 4R tau is characteristic of corticobasal degeneration (CBD) and progressive supra‐
nuclear palsy. Diagnosis rests upon postmortem examination of the brain and demonstration
of globose tangles, oligodendroglial coiled bodies and tufted astrocytes. The core neuroana‐
tomical regions affected in all cases of PSP include the basal ganglia, subthalamic nucleus and
the substantia nigra. Cortical involvement is greatest in motor and premotor cortices. Pathol‐
ogy of the cerebellar dentate nucleus and the cerebellar outflow pathway (dentato-rubro-
thalamic pathway) is usually severe and associated with profound atrophy of the superior
cerebellar peduncle.

13. Conclusion

This review, gives a neuropathological approach towards finding biomarkers for dementia.
However, finding the optimal biomarker for each neurodegenerative disease is still in an
experimental face. In the case of AD, it is required far deeper molecular and immunohisto‐
chemical studies of abnormal tau posttranslational modifications (i.e. phosphorylation and

Neurochemistry368

truncation) and better understanding of its contribution to the development of dementia,
particularly, it is important to understand the role of the paired helical filaments, that accu‐
mulate in the neuronal soma, promoting degeneration and cell death. Of relevance is to
consider that in other dementias such as tauopathies, tau protein processing resembles the
initial steps in AD, although there is no well-defined neuropathological impact of tau aggre‐
gation in lesions such as Pick bodies, Lewy bodies, as well as the presence of tau in NFTs and
glial cells in CBD and PSP. Therefore, all efforts should be focused on determining reliable
biomarkers for each of the dementias with the aim of generating new improved diagnostic
approaches for early detection of these neurodegenerative diseases.

Acknowledgements

The authors wish to express their gratitude to the Mexican families who donate the brain of
their loved ones affected with AD, and made possible our research. We also want to thank Ms.
Maricarmen De Lorenz for her outstanding technical and secretarial support and Mrs. Amparo
Viramontes Pintos, for her support in the maintenance of brain tissue. This work was sup‐
ported by the Grant from CONACYT, No. 142293.

Author details

J. Luna-Muñoz1, A. Martínez-Maldonado2, V. Ibarra-Bracamontes2, M. A. Ontiveros-Torres3,
I. Ferrer4, B. Floran-Garduño2, M. del C. Cárdenas-Aguayo5, R. Mena1,2 and
M.A. Meraz Ríos5

1 National Brain Bank, Laboratorio Nacional de Servicios experimentales (LaNSE), Centro de
Investigación y de Estudios Avanzados del IPN, (CINVESTAV-IPN), México City, México

2 Department of Physiology, Biophysics and Neuroscience, Centro de Investigación y de
Estudios Avanzados del IPN, (CINVESTAV-IPN), México City, México

3 Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN,
(CINVESTAV-IPN), México City, México

4 CIBERNED (Centro de Investigación Biomédica en Red de enfermedades
neurodegenerativas), Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge,
Universitat de Barcelona, Hospitalet de Llobregat, Spain

5 Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados
del IPN, (CINVESTAV-IPN), México City, México

Accumulation of Abnormally Processed Tau Protein in Neuronal Cells as a Biomarker for Dementia
http://dx.doi.org/10.5772/58305

369



References

[1] Shaw, L.M., et al., Biomarkers of neurodegeneration for diagnosis and monitoring therapeu‐
tics. Nat Rev Drug Discov, 2007. 6(4): p. 295-303.

[2] Atkinson, A.J., Jr. et al., Biomarkers and surrogate endpoints: preferred definitions and con‐
ceptual framework. Clin Pharmacol Ther, 2001. 69(3): p. 89-95.

[3] Anoop, A., et al., CSF Biomarkers for Alzheimer's Disease Diagnosis. Int J Alzheimers
Dis, 2010. 2010.

[4] Blennow, K., CSF biomarkers for Alzheimer's disease: use in early diagnosis and evaluation
of drug treatment. Expert Rev Mol Diagn, 2005. 5(5): p. 661-72.

[5] Mossello, E., et al., Biomarkers of Alzheimer's disease: from central nervous system to pe‐
riphery? Int J Alzheimers Dis, 2011. 2011: p. 342980.

[6] Allan, C.L. and K.P. Ebmeier, The influence of ApoE4 on clinical progression of dementia:
a meta-analysis. Int J Geriatr Psychiatry, 2011. 26(5): p. 520-6.

[7] Allan, C.L., et al., Imaging and biomarkers for Alzheimer's disease. Maturitas, 2010. 65(2):
p. 138-42.

[8] Tanzi, R.E., et al., The gene defects responsible for familial Alzheimer's disease. Neurobiol
Dis, 1996. 3(3): p. 159-68.

[9] Selkoe, D.J., The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's
disease. Trends Cell Biol, 1998. 8(11): p. 447-53.

[10] Tanzi, R.E., et al., Amyloid beta protein gene: cDNA, mRNA distribution, and genetic link‐
age near the Alzheimer locus. Science, 1987. 235(4791): p. 880-4.

[11] LaFerla, F.M., K.N. Green, and S. Oddo, Intracellular amyloid-beta in Alzheimer's dis‐
ease. Nat Rev Neurosci, 2007. 8(7): p. 499-509.

[12] Thinakaran, G. and E.H. Koo, Amyloid precursor protein trafficking, processing, and func‐
tion. J Biol Chem, 2008. 283(44): p. 29615-9.

[13] Kojro, E. and F. Fahrenholz, The non-amyloidogenic pathway: structure and function of al‐
pha-secretases. Subcell Biochem, 2005. 38: p. 105-27.

[14] Haass, C., et al., beta-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular
mechanisms. J Biol Chem, 1993. 268(5): p. 3021-4.

[15] Vassar, R., et al., Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the
transmembrane aspartic protease BACE. Science, 1999. 286(5440): p. 735-41.

[16] Jarrett, J.T., E.P. Berger, and P.T. Lansbury, Jr., The carboxy terminus of the beta amyloid
protein is critical for the seeding of amyloid formation: implications for the pathogenesis of
Alzheimer's disease. Biochemistry, 1993. 32(18): p. 4693-7.

Neurochemistry370

[17] Larner, A.J., Hypothesis: amyloid beta-peptides truncated at the N-terminus contribute to
the pathogenesis of Alzheimer's disease. Neurobiol Aging, 1999. 20(1): p. 65-9.

[18] Manzano-Leon, N. and J. Mas-Oliva, [Oxidative stress, beta-amyloide peptide and Alz‐
heimer's disease]. Gac Med Mex, 2006. 142(3): p. 229-38.

[19] Kontush, A., Alzheimer's amyloid-beta as a preventive antioxidant for brain lipoproteins.
Cell Mol Neurobiol, 2001. 21(4): p. 299-315.

[20] Klein, W.L., Abeta toxicity in Alzheimer's disease: globular oligomers (ADDLs) as new vac‐
cine and drug targets. Neurochem Int, 2002. 41(5): p. 345-52.

[21] Duce, J.A., et al., Iron-export ferroxidase activity of beta-amyloid precursor protein is inhib‐
ited by zinc in Alzheimer's disease. Cell, 2010. 142(6): p. 857-67.

[22] Hong, M., et al., Mutation-specific functional impairments in distinct tau isoforms of he‐
reditary FTDP-17. Science, 1998. 282(5395): p. 1914-7.

[23] Lee, G., R.L. Neve, and K.S. Kosik, The microtubule binding domain of tau protein. Neu‐
ron, 1989. 2(6): p. 1615-24.

[24] Amadoro, G., et al., NMDA receptor mediates tau-induced neurotoxicity by calpain and
ERK/MAPK activation. Proc Natl Acad Sci U S A, 2006. 103(8): p. 2892-7.

[25] Perez, M., et al., Ferritin is associated with the aberrant tau filaments present in progressive
supranuclear palsy. Am J Pathol, 1998. 152(6): p. 1531-9.

[26] Goode, B.L., et al., Functional interactions between the proline-rich and repeat regions of
tau enhance microtubule binding and assembly. Mol Biol Cell, 1997. 8(2): p. 353-65.

[27] Hanger, D.P., B.H. Anderton, and W. Noble, Tau phosphorylation: the therapeutic chal‐
lenge for neurodegenerative disease. Trends Mol Med, 2009. 15(3): p. 112-9.

[28] Martin, L., X. Latypova, and F. Terro, Post-translational modifications of tau protein: im‐
plications for Alzheimer's disease. Neurochem Int, 2011. 58(4): p. 458-71.

[29] Johnson, G.V. and W.H. Stoothoff, Tau phosphorylation in neuronal cell function and dys‐
function. J Cell Sci, 2004. 117(Pt 24): p. 5721-9.

[30] Iqbal, K., et al., Mechanisms of tau-induced neurodegeneration. Acta Neuropathol, 2009.
118(1): p. 53-69.

[31] Gendron, T.F. and L. Petrucelli, The role of tau in neurodegeneration. Mol Neurodege‐
ner, 2009. 4: p. 13.

[32] Chung, S.H., Aberrant phosphorylation in the pathogenesis of Alzheimer's disease. BMB
Rep, 2009. 42(8): p. 467-74.

[33] Noble, W., et al., Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced
tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A, 2005. 102(19): p. 6990-5.

Accumulation of Abnormally Processed Tau Protein in Neuronal Cells as a Biomarker for Dementia
http://dx.doi.org/10.5772/58305

371



References

[1] Shaw, L.M., et al., Biomarkers of neurodegeneration for diagnosis and monitoring therapeu‐
tics. Nat Rev Drug Discov, 2007. 6(4): p. 295-303.

[2] Atkinson, A.J., Jr. et al., Biomarkers and surrogate endpoints: preferred definitions and con‐
ceptual framework. Clin Pharmacol Ther, 2001. 69(3): p. 89-95.

[3] Anoop, A., et al., CSF Biomarkers for Alzheimer's Disease Diagnosis. Int J Alzheimers
Dis, 2010. 2010.

[4] Blennow, K., CSF biomarkers for Alzheimer's disease: use in early diagnosis and evaluation
of drug treatment. Expert Rev Mol Diagn, 2005. 5(5): p. 661-72.

[5] Mossello, E., et al., Biomarkers of Alzheimer's disease: from central nervous system to pe‐
riphery? Int J Alzheimers Dis, 2011. 2011: p. 342980.

[6] Allan, C.L. and K.P. Ebmeier, The influence of ApoE4 on clinical progression of dementia:
a meta-analysis. Int J Geriatr Psychiatry, 2011. 26(5): p. 520-6.

[7] Allan, C.L., et al., Imaging and biomarkers for Alzheimer's disease. Maturitas, 2010. 65(2):
p. 138-42.

[8] Tanzi, R.E., et al., The gene defects responsible for familial Alzheimer's disease. Neurobiol
Dis, 1996. 3(3): p. 159-68.

[9] Selkoe, D.J., The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's
disease. Trends Cell Biol, 1998. 8(11): p. 447-53.

[10] Tanzi, R.E., et al., Amyloid beta protein gene: cDNA, mRNA distribution, and genetic link‐
age near the Alzheimer locus. Science, 1987. 235(4791): p. 880-4.

[11] LaFerla, F.M., K.N. Green, and S. Oddo, Intracellular amyloid-beta in Alzheimer's dis‐
ease. Nat Rev Neurosci, 2007. 8(7): p. 499-509.

[12] Thinakaran, G. and E.H. Koo, Amyloid precursor protein trafficking, processing, and func‐
tion. J Biol Chem, 2008. 283(44): p. 29615-9.

[13] Kojro, E. and F. Fahrenholz, The non-amyloidogenic pathway: structure and function of al‐
pha-secretases. Subcell Biochem, 2005. 38: p. 105-27.

[14] Haass, C., et al., beta-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular
mechanisms. J Biol Chem, 1993. 268(5): p. 3021-4.

[15] Vassar, R., et al., Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the
transmembrane aspartic protease BACE. Science, 1999. 286(5440): p. 735-41.

[16] Jarrett, J.T., E.P. Berger, and P.T. Lansbury, Jr., The carboxy terminus of the beta amyloid
protein is critical for the seeding of amyloid formation: implications for the pathogenesis of
Alzheimer's disease. Biochemistry, 1993. 32(18): p. 4693-7.

Neurochemistry370

[17] Larner, A.J., Hypothesis: amyloid beta-peptides truncated at the N-terminus contribute to
the pathogenesis of Alzheimer's disease. Neurobiol Aging, 1999. 20(1): p. 65-9.

[18] Manzano-Leon, N. and J. Mas-Oliva, [Oxidative stress, beta-amyloide peptide and Alz‐
heimer's disease]. Gac Med Mex, 2006. 142(3): p. 229-38.

[19] Kontush, A., Alzheimer's amyloid-beta as a preventive antioxidant for brain lipoproteins.
Cell Mol Neurobiol, 2001. 21(4): p. 299-315.

[20] Klein, W.L., Abeta toxicity in Alzheimer's disease: globular oligomers (ADDLs) as new vac‐
cine and drug targets. Neurochem Int, 2002. 41(5): p. 345-52.

[21] Duce, J.A., et al., Iron-export ferroxidase activity of beta-amyloid precursor protein is inhib‐
ited by zinc in Alzheimer's disease. Cell, 2010. 142(6): p. 857-67.

[22] Hong, M., et al., Mutation-specific functional impairments in distinct tau isoforms of he‐
reditary FTDP-17. Science, 1998. 282(5395): p. 1914-7.

[23] Lee, G., R.L. Neve, and K.S. Kosik, The microtubule binding domain of tau protein. Neu‐
ron, 1989. 2(6): p. 1615-24.

[24] Amadoro, G., et al., NMDA receptor mediates tau-induced neurotoxicity by calpain and
ERK/MAPK activation. Proc Natl Acad Sci U S A, 2006. 103(8): p. 2892-7.

[25] Perez, M., et al., Ferritin is associated with the aberrant tau filaments present in progressive
supranuclear palsy. Am J Pathol, 1998. 152(6): p. 1531-9.

[26] Goode, B.L., et al., Functional interactions between the proline-rich and repeat regions of
tau enhance microtubule binding and assembly. Mol Biol Cell, 1997. 8(2): p. 353-65.

[27] Hanger, D.P., B.H. Anderton, and W. Noble, Tau phosphorylation: the therapeutic chal‐
lenge for neurodegenerative disease. Trends Mol Med, 2009. 15(3): p. 112-9.

[28] Martin, L., X. Latypova, and F. Terro, Post-translational modifications of tau protein: im‐
plications for Alzheimer's disease. Neurochem Int, 2011. 58(4): p. 458-71.

[29] Johnson, G.V. and W.H. Stoothoff, Tau phosphorylation in neuronal cell function and dys‐
function. J Cell Sci, 2004. 117(Pt 24): p. 5721-9.

[30] Iqbal, K., et al., Mechanisms of tau-induced neurodegeneration. Acta Neuropathol, 2009.
118(1): p. 53-69.

[31] Gendron, T.F. and L. Petrucelli, The role of tau in neurodegeneration. Mol Neurodege‐
ner, 2009. 4: p. 13.

[32] Chung, S.H., Aberrant phosphorylation in the pathogenesis of Alzheimer's disease. BMB
Rep, 2009. 42(8): p. 467-74.

[33] Noble, W., et al., Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced
tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A, 2005. 102(19): p. 6990-5.

Accumulation of Abnormally Processed Tau Protein in Neuronal Cells as a Biomarker for Dementia
http://dx.doi.org/10.5772/58305

371



[34] Gamblin, T.C., et al., Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in
Alzheimer's disease. Proc Natl Acad Sci U S A, 2003. 100(17): p. 10032-7.

[35] Park, S.Y., et al., Caspase-3- and calpain-mediated tau cleavage are differentially prevented
by estrogen and testosterone in beta-amyloid-treated hippocampal neurons. Neuroscience,
2007. 144(1): p. 119-27.

[36] Wischik, C.M., et al., Structural characterization of the core of the paired helical filament of
Alzheimer disease. Proc Natl Acad Sci U S A, 1988. 85(13): p. 4884-8.

[37] Wischik, C.M., et al., Isolation of a fragment of tau derived from the core of the paired helical
filament of Alzheimer disease. Proc Natl Acad Sci U S A, 1988. 85(12): p. 4506-10.

[38] Garcia-Sierra, F., et al., Conformational changes and truncation of tau protein during tan‐
gle evolution in Alzheimer's disease. J Alzheimers Dis, 2003. 5(2): p. 65-77.

[39] Mondragon-Rodriguez, S., et al., Cleavage and conformational changes of tau protein fol‐
low phosphorylation during Alzheimer's disease. Int J Exp Pathol, 2008. 89(2): p. 81-90.

[40] Basurto-Islas, G., et al., Accumulation of aspartic acid421- and glutamic acid391-cleaved
tau in neurofibrillary tangles correlates with progression in Alzheimer disease. J Neuropa‐
thol Exp Neurol, 2008. 67(5): p. 470-83.

[41] Garcia-Sierra, F., S. Mondragon-Rodriguez, and G. Basurto-Islas, Truncation of tau
protein and its pathological significance in Alzheimer's disease. J Alzheimers Dis, 2008.
14(4): p. 401-9.

[42] Luna-Munoz, J., et al., Earliest stages of tau conformational changes are related to the ap‐
pearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer's disease. J
Alzheimers Dis, 2007. 12(4): p. 365-75.

[43] Novak, M., J. Kabat, and C.M. Wischik, Molecular characterization of the minimal pro‐
tease resistant tau unit of the Alzheimer's disease paired helical filament. EMBO J, 1993.
12(1): p. 365-70.

[44] Novak, M., et al., Characterisation of the first monoclonal antibody against the pronase re‐
sistant core of the Alzheimer PHF. Prog Clin Biol Res, 1989. 317: p. 755-61.

[45] Fasulo, L., et al., Tau truncation in Alzheimer’s disease: expression of a fragment encom‐
passing PHF core tau induces apoptosis in COS cells. Alzheimer’s Rep., 1998. 1: p. 25-32.

[46] Walker, L.C., et al., Mechanisms of Protein Seeding in Neurodegenerative Diseases. Arch
Neurol, 2012: p. 1-7.

[47] Walker, L.C., et al., Mechanisms of protein seeding in neurodegenerative diseases. JAMA
Neurol, 2013. 70(3): p. 304-10.

[48] Jucker, M. and L.C. Walker, Pathogenic protein seeding in Alzheimer disease and other
neurodegenerative disorders. Ann Neurol, 2011. 70(4): p. 532-40.

Neurochemistry372

[49] Ledesma, M.D., M. Medina, and J. Avila, The in vitro formation of recombinant tau poly‐
mers: effect of phosphorylation and glycation. Mol Chem Neuropathol, 1996. 27(3): p.
249-58.

[50] Yu, C.H., et al., O-GlcNAcylation modulates the self-aggregation ability of the fourth micro‐
tubule-binding repeat of tau. Biochem Biophys Res Commun, 2008. 375(1): p. 59-62.

[51] Mondragon-Rodriguez, S., et al., Conformational changes and cleavage of tau in Pick bod‐
ies parallel the early processing of tau found in Alzheimer pathology. Neuropathol Appl
Neurobiol, 2008. 34(1): p. 62-75.

[52] Gotz, J., et al., A decade of tau transgenic animal models and beyond. Brain Pathol, 2007.
17(1): p. 91-103.

[53] Goedert, M., Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci, 2001.
2(7): p. 492-501.

[54] Clayton, D.F. and J.M. George, The synucleins: a family of proteins involved in synaptic
function, plasticity, neurodegeneration and disease. Trends Neurosci, 1998. 21(6): p.
249-54.

[55] Cheng, F., G. Vivacqua, and S. Yu, The role of alpha-synuclein in neurotransmission and
synaptic plasticity. J Chem Neuroanat, 2010. 42(4): p. 242-8.

[56] Cabin, D.E., et al., Synaptic vesicle depletion correlates with attenuated synaptic responses
to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci, 2002.
22(20): p. 8797-807.

[57] Cookson, M.R., alpha-Synuclein and neuronal cell death. Mol Neurodegener, 2009. 4: p.
9.

[58] Kim, E.M., et al., Effects of intrahippocampal NAC 61-95 injections on memory in the rat
and attenuation with vitamin E. Prog Neuropsychopharmacol Biol Psychiatry, 2009.
33(6): p. 945-51.

[59] Hashimoto, M., et al., beta-Synuclein inhibits alpha-synuclein aggregation: a possible role
as an anti-parkinsonian factor. Neuron, 2001. 32(2): p. 213-23.

[60] Uversky, V.N., et al., Biophysical properties of the synucleins and their propensities to fi‐
brillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol
Chem, 2002. 277(14): p. 11970-8.

[61] Gao, H.M., et al., Neuroinflammation and oxidation/nitration of alpha-synuclein linked to
dopaminergic neurodegeneration. J Neurosci, 2008. 28(30): p. 7687-98.

[62] Ding, T.T., et al., Annular alpha-synuclein protofibrils are produced when spherical protofi‐
brils are incubated in solution or bound to brain-derived membranes. Biochemistry, 2002.
41(32): p. 10209-17.

Accumulation of Abnormally Processed Tau Protein in Neuronal Cells as a Biomarker for Dementia
http://dx.doi.org/10.5772/58305

373



[34] Gamblin, T.C., et al., Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in
Alzheimer's disease. Proc Natl Acad Sci U S A, 2003. 100(17): p. 10032-7.

[35] Park, S.Y., et al., Caspase-3- and calpain-mediated tau cleavage are differentially prevented
by estrogen and testosterone in beta-amyloid-treated hippocampal neurons. Neuroscience,
2007. 144(1): p. 119-27.

[36] Wischik, C.M., et al., Structural characterization of the core of the paired helical filament of
Alzheimer disease. Proc Natl Acad Sci U S A, 1988. 85(13): p. 4884-8.

[37] Wischik, C.M., et al., Isolation of a fragment of tau derived from the core of the paired helical
filament of Alzheimer disease. Proc Natl Acad Sci U S A, 1988. 85(12): p. 4506-10.

[38] Garcia-Sierra, F., et al., Conformational changes and truncation of tau protein during tan‐
gle evolution in Alzheimer's disease. J Alzheimers Dis, 2003. 5(2): p. 65-77.

[39] Mondragon-Rodriguez, S., et al., Cleavage and conformational changes of tau protein fol‐
low phosphorylation during Alzheimer's disease. Int J Exp Pathol, 2008. 89(2): p. 81-90.

[40] Basurto-Islas, G., et al., Accumulation of aspartic acid421- and glutamic acid391-cleaved
tau in neurofibrillary tangles correlates with progression in Alzheimer disease. J Neuropa‐
thol Exp Neurol, 2008. 67(5): p. 470-83.

[41] Garcia-Sierra, F., S. Mondragon-Rodriguez, and G. Basurto-Islas, Truncation of tau
protein and its pathological significance in Alzheimer's disease. J Alzheimers Dis, 2008.
14(4): p. 401-9.

[42] Luna-Munoz, J., et al., Earliest stages of tau conformational changes are related to the ap‐
pearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer's disease. J
Alzheimers Dis, 2007. 12(4): p. 365-75.

[43] Novak, M., J. Kabat, and C.M. Wischik, Molecular characterization of the minimal pro‐
tease resistant tau unit of the Alzheimer's disease paired helical filament. EMBO J, 1993.
12(1): p. 365-70.

[44] Novak, M., et al., Characterisation of the first monoclonal antibody against the pronase re‐
sistant core of the Alzheimer PHF. Prog Clin Biol Res, 1989. 317: p. 755-61.

[45] Fasulo, L., et al., Tau truncation in Alzheimer’s disease: expression of a fragment encom‐
passing PHF core tau induces apoptosis in COS cells. Alzheimer’s Rep., 1998. 1: p. 25-32.

[46] Walker, L.C., et al., Mechanisms of Protein Seeding in Neurodegenerative Diseases. Arch
Neurol, 2012: p. 1-7.

[47] Walker, L.C., et al., Mechanisms of protein seeding in neurodegenerative diseases. JAMA
Neurol, 2013. 70(3): p. 304-10.

[48] Jucker, M. and L.C. Walker, Pathogenic protein seeding in Alzheimer disease and other
neurodegenerative disorders. Ann Neurol, 2011. 70(4): p. 532-40.

Neurochemistry372

[49] Ledesma, M.D., M. Medina, and J. Avila, The in vitro formation of recombinant tau poly‐
mers: effect of phosphorylation and glycation. Mol Chem Neuropathol, 1996. 27(3): p.
249-58.

[50] Yu, C.H., et al., O-GlcNAcylation modulates the self-aggregation ability of the fourth micro‐
tubule-binding repeat of tau. Biochem Biophys Res Commun, 2008. 375(1): p. 59-62.

[51] Mondragon-Rodriguez, S., et al., Conformational changes and cleavage of tau in Pick bod‐
ies parallel the early processing of tau found in Alzheimer pathology. Neuropathol Appl
Neurobiol, 2008. 34(1): p. 62-75.

[52] Gotz, J., et al., A decade of tau transgenic animal models and beyond. Brain Pathol, 2007.
17(1): p. 91-103.

[53] Goedert, M., Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci, 2001.
2(7): p. 492-501.

[54] Clayton, D.F. and J.M. George, The synucleins: a family of proteins involved in synaptic
function, plasticity, neurodegeneration and disease. Trends Neurosci, 1998. 21(6): p.
249-54.

[55] Cheng, F., G. Vivacqua, and S. Yu, The role of alpha-synuclein in neurotransmission and
synaptic plasticity. J Chem Neuroanat, 2010. 42(4): p. 242-8.

[56] Cabin, D.E., et al., Synaptic vesicle depletion correlates with attenuated synaptic responses
to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci, 2002.
22(20): p. 8797-807.

[57] Cookson, M.R., alpha-Synuclein and neuronal cell death. Mol Neurodegener, 2009. 4: p.
9.

[58] Kim, E.M., et al., Effects of intrahippocampal NAC 61-95 injections on memory in the rat
and attenuation with vitamin E. Prog Neuropsychopharmacol Biol Psychiatry, 2009.
33(6): p. 945-51.

[59] Hashimoto, M., et al., beta-Synuclein inhibits alpha-synuclein aggregation: a possible role
as an anti-parkinsonian factor. Neuron, 2001. 32(2): p. 213-23.

[60] Uversky, V.N., et al., Biophysical properties of the synucleins and their propensities to fi‐
brillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol
Chem, 2002. 277(14): p. 11970-8.

[61] Gao, H.M., et al., Neuroinflammation and oxidation/nitration of alpha-synuclein linked to
dopaminergic neurodegeneration. J Neurosci, 2008. 28(30): p. 7687-98.

[62] Ding, T.T., et al., Annular alpha-synuclein protofibrils are produced when spherical protofi‐
brils are incubated in solution or bound to brain-derived membranes. Biochemistry, 2002.
41(32): p. 10209-17.

Accumulation of Abnormally Processed Tau Protein in Neuronal Cells as a Biomarker for Dementia
http://dx.doi.org/10.5772/58305

373



[63] Mandal, P.K., et al., Interaction between Abeta peptide and alpha synuclein: molecular
mechanisms in overlapping pathology of Alzheimer's and Parkinson's in dementia with Lewy
body disease. Neurochem Res, 2006. 31(9): p. 1153-62.

[64] Giasson, B.I., et al., Initiation and synergistic fibrillization of tau and alpha-synuclein. Sci‐
ence, 2003. 300(5619): p. 636-40.

[65] Dickson, D.W., et al., Neuropathology of frontotemporal lobar degeneration-tau (FTLD-
tau). J Mol Neurosci, 2011. 45(3): p. 384-9.

[66] Buee, L. and A. Delacourte, Comparative biochemistry of tau in progressive supranuclear
palsy, corticobasal degeneration, FTDP-17 and Pick's disease. Brain Pathol, 1999. 9(4): p.
681-93.

[67] Kouri, N., et al., Corticobasal degeneration with olivopontocerebellar atrophy and TDP-43
pathology: an unusual clinicopathologic variant of CBD. Acta Neuropathol, 2013. 125(5):
p. 741-52.

[68] Steele, J.C., J.C. Richardson, and J. Olszewski, Progressive Supranuclear Palsy. A Hetero‐
geneous Degeneration Involving the Brain Stem, Basal Ganglia and Cerebellum with Vertical
Gaze and Pseudobulbar Palsy, Nuchal Dystonia and Dementia. Arch Neurol, 1964. 10: p.
333-59.

[69] Bigio, E.H., Making the diagnosis of frontotemporal lobar degeneration. Arch Pathol Lab
Med, 2013. 137(3): p. 314-25.

[70] Boeve, B.F., Parkinson-related dementias. Neurol Clin, 2007. 25(3): p. 761-81, vii.

Neurochemistry374

Chapter 13

Energy-Dependent Mechanisms of Cholinergic
Neurodegeneration

Agnieszka Jankowska-Kulawy, Anna Ronowska and
Andrzej Szutowicz

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/58339

1. Introduction

Dementia is a typical symptom of many neurodegenerative diseases. The characteristic feature
of this pathology is preferential loss of cholinergic neurons in the brain septum, that are
responsible for almost all cognitive functions in humans and animals. Alzheimer disease (AD)
is one of the most common neurodegenerative diseases in elderly populations. There are
estimations that 30 million people worldwide are suffering from AD. Incidency of AD
continues to grow, becoming not only a medical but also a socio-economical problem,
especially when number of patients by 2050 will triple in connection with the lengthening of
the human life span. The human brain constitutes only 2% of body weight, but consumes about
20% of the total body energy output under resting conditions. In contrast to other tissues,
glucose is an almost exclusive energy substrate for the brain. In hypoxia or ketonemia brain
may consume certain amounts of lactate and beta-hydroxybutyrate, which, however, cannot
fully replace glucose to meet brain demands for energy. That is due to the fact that neurons,
constituting 10% of all brain cells, produce and consume about 80% of its energy. In addition
they have no capacity to store an inventory of high energy compounds. Therefore, the effective
functioning of neurons is dependent on the continuous supply of equivalent amounts of
glucose and oxygen. Most of the energy produced in the neurons, (60-70%) is consumed for
the maintenance and restoration of the pre-and postsynaptic membrane potentials.

Energy homeostasis of the brain is a very complex process due to the high sensitivity of
neurons to metabolic stress, isolation of the brain due to the existence of the blood brain
barrier, high energy requirements of the brain, and finally due to limited glycogen stores,
as a dynamic source of energy. However the first step in neurodegeneration is mitochondri‐
al dysfunction. This appears during some pathologic conditions such as: hypoxia, hypogly‐

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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cemia,  amyloid β accumulation,  Zn,  Fe,  Al  excess,  free  radicals  formation and thiamine
deficiency.  All  these  pathologic  signals  strongly  inhibited  activity  of  the  key  enzymes
engaged in energy metabolism.

In some cholinergic encephalopathies an impairment of brain energy metabolism occurs, a
process known as hypometabolism. Studies of brain PET using [18F] fluorodeoxyglucose reveal
impaired glucose uptake and metabolism in different regions of an encephalopathic brain. The
extent of these deficits correlates with the degree of cognitive impairment in the AD patients.
On the other hand, PET combined with Pittsburgh compound-B application, can specifically
determine the amyloid-β accumulation in the patient’s brain. Hence, it is possible to diagnose
the AD in the early stages. Another characteristic feature of neurodegeneration of AD type, is
inhibition of tricarboxylic acid cycle and the respiratory chain enzymes activities. Thus, there
is a reduction in the synthesis and utilization of acetyl-CoA resulting from significant decreases
in pyruvate dehydrogenase (PDHC) and α-ketoglutarate dehydrogenase (KDHC) complex
activities. Marked inhibition of aconitase and isocitrate dehydrogenase (IDH) activities was
also reported in brain regions affected by AD pathology. This particular susceptibility of
cholinergic neurons to several neurotoxic signals may be caused by the fact that they use acetyl-
CoA not only to produce energy but also to synthesize acetylcholine. Thus the changes
observed in AD brains concern he loss of several cholinergic markers including choline
acetyltransferase (ChAT), acetylcholine esterase (AChE), high affinity choline uptake system
(HACU), vesicular acetylcholine transporter (VAChT) and resulting from them reductions in
ACh content and its quantal release. As a consequence, an impairment of signal transduction
processes caused by a loss of muscarinic (MAChR) and nicotinic (NAChR) receptors and a decrease
in the acetylcholine level take effect. The decrease of different cholinergic markers and protein
levels were also observed post mortem in affected areas of human brain. It gives rise to a
suggestion that impairment of cholinergic neurons in AD may precede later stages of the
neurodegeneration process. These observations support the idea the key role of cholinergic
dysfunction in triggering the process of AD dementia. It is widely proven that neuroinflam‐
mation is a prominent feature in AD brains and that inflammatory responses play a significant
role in progression of the disease. Prolonged and spread activation of microglia in AD brain
correlates with the extent of brain atrophy and cognitive decline. However the role of micro‐
lglia in the development of AD is controversial. There are some data about impairment of
energy metabolism in astrocytes in AD and other neurodegenerative conditions.

Astrocytes play several important functions in the metabolism of the brain including inter‐
compartmental turnover of amino acid neurotransmitters and energy substrates. Among
others, these cells provide neurons with lactate, glutamine and aspartate for energy production
as well as with the precursors for neurotransmitter. The end-feet of astrocytes occupy a
strategically special location in brain between capillary endothelial cells and neurons. In
addition, astrocytes as a member of the tripartite synapse remove efficiently neurotransmitters
such as glutamate from the synaptic cleft and have important functions in regulating extrac‐
ellular ion homeostasis. Due to the extensive contacts with both blood vessels and neurons
astrocytes play a key role in the control of cerebral energy and transmitter metabolism.
Astrocyte function and astrocyte-neuronal interactions are very important for synaptic
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plasticity. Thus impairment of astrocyte metabolism in various brain pathologies also has its
negative influence on neuronal functions.

2. Brain energy metabolism

Particular cellular compartments of the brain differ markedly in their rates of energy genera‐
tion and consumption. Among them, neurons constituting only 10% of the brain cells, consume
up to 80% of its total energy output. Neuronal cells have no capacity to store any meaningful
reserves of high energy compounds. Therefore, the effective functioning of neurons is
dependent on the permanent supply of equivalent amounts of glucose and oxygen. About
60-70% of the energy produced in the neurons is consumed for the maintenance and restoration
of the pre-and postsynaptic membrane potentials after the functional depolarization taking
place with frequency from several to tens of Hz. Furthermore, the synthesis of neurotransmit‐
ters, particularly acetylcholine (ACh), also consumes fraction of pyruvate derived acetyl-CoA,
a key substrate for tricarboxylic acid cycle (TCA). Neurotransmission requires a transmem‐
brane lipid asymmetry and the constant rearrangement of phospholipids. The amount of
energy consumed in these processes is constitutes about 25% of the total pool [1]. Therefore,
the energy expenditures for maintenance metabolic activity of the brain are very high and can
be a factor limiting the number of neurons that can be fully active at any given time [2].

Glucose from brain vascular compartment is transported across the blood brain barrier and
astrocytes extensions by transporters GLUT1 of high-density and medium affinity for glucose
(Km 5-10 mmol/L). Their expression in endothelium is reduced by chronic hyperglycemia [3].
On the other hand, neurons on their plasma membranes contain high density of transporters
GLUT3 of high affinity to glucose (Km 1-2 mmol/L), expression of which may increase during
chronic hypoglycemia [3-4]. In turn, astrocytes, take up glucose through the transporter
GLUT1. The high rate of glucose uptake by neurons and astrocytes makes its concentration in
extracellular spaces of the brain to be one third lower than in the blood plasma. Thus, under
physiological conditions, the transport of glucose into neurons is the maximum a rate of about
6.5 μmol/s in the whole brain [3]. It should be noted that GLUT1 transporters are insensitive
to hypoglycemia, whereas GLUT3 to hyperglycemia [5]. These properties make the transport
of glucose into neurons optimized, which assures a relatively constant supply of this energy
substrate, despite large fluctuations in blood glucose concentrations under physiological and
pathological conditions.

An additional fraction of energy substrates is provided by astrocytes, which by their exten‐
sions take up the glucose directly from the circulation and display a high rate of glycolytic cycle.
Therefore, they synthesize and release large amounts of lactate, which may be taken up by
neurons through their monocarboxylic acids transporters MCT1 and MCT4. Lactate is transport‐
ed into neurons serving as a source of pyruvate, the direct precursor of acetyl-CoA [6-7]. There
are claims, that the lactate under certain physiologic and pathologic conditions may provide up
to 25% of the energy in neurons [5,8-10]. In addition, high-fat diets, starvation, as well as diabetic
ketoacidosis can activate uptake of BHB, through the beta-hydroxybutyrate dehydrogenase-
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mation is a prominent feature in AD brains and that inflammatory responses play a significant
role in progression of the disease. Prolonged and spread activation of microglia in AD brain
correlates with the extent of brain atrophy and cognitive decline. However the role of micro‐
lglia in the development of AD is controversial. There are some data about impairment of
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Astrocytes play several important functions in the metabolism of the brain including inter‐
compartmental turnover of amino acid neurotransmitters and energy substrates. Among
others, these cells provide neurons with lactate, glutamine and aspartate for energy production
as well as with the precursors for neurotransmitter. The end-feet of astrocytes occupy a
strategically special location in brain between capillary endothelial cells and neurons. In
addition, astrocytes as a member of the tripartite synapse remove efficiently neurotransmitters
such as glutamate from the synaptic cleft and have important functions in regulating extrac‐
ellular ion homeostasis. Due to the extensive contacts with both blood vessels and neurons
astrocytes play a key role in the control of cerebral energy and transmitter metabolism.
Astrocyte function and astrocyte-neuronal interactions are very important for synaptic
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plasticity. Thus impairment of astrocyte metabolism in various brain pathologies also has its
negative influence on neuronal functions.
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tion and consumption. Among them, neurons constituting only 10% of the brain cells, consume
up to 80% of its total energy output. Neuronal cells have no capacity to store any meaningful
reserves of high energy compounds. Therefore, the effective functioning of neurons is
dependent on the permanent supply of equivalent amounts of glucose and oxygen. About
60-70% of the energy produced in the neurons is consumed for the maintenance and restoration
of the pre-and postsynaptic membrane potentials after the functional depolarization taking
place with frequency from several to tens of Hz. Furthermore, the synthesis of neurotransmit‐
ters, particularly acetylcholine (ACh), also consumes fraction of pyruvate derived acetyl-CoA,
a key substrate for tricarboxylic acid cycle (TCA). Neurotransmission requires a transmem‐
brane lipid asymmetry and the constant rearrangement of phospholipids. The amount of
energy consumed in these processes is constitutes about 25% of the total pool [1]. Therefore,
the energy expenditures for maintenance metabolic activity of the brain are very high and can
be a factor limiting the number of neurons that can be fully active at any given time [2].

Glucose from brain vascular compartment is transported across the blood brain barrier and
astrocytes extensions by transporters GLUT1 of high-density and medium affinity for glucose
(Km 5-10 mmol/L). Their expression in endothelium is reduced by chronic hyperglycemia [3].
On the other hand, neurons on their plasma membranes contain high density of transporters
GLUT3 of high affinity to glucose (Km 1-2 mmol/L), expression of which may increase during
chronic hypoglycemia [3-4]. In turn, astrocytes, take up glucose through the transporter
GLUT1. The high rate of glucose uptake by neurons and astrocytes makes its concentration in
extracellular spaces of the brain to be one third lower than in the blood plasma. Thus, under
physiological conditions, the transport of glucose into neurons is the maximum a rate of about
6.5 μmol/s in the whole brain [3]. It should be noted that GLUT1 transporters are insensitive
to hypoglycemia, whereas GLUT3 to hyperglycemia [5]. These properties make the transport
of glucose into neurons optimized, which assures a relatively constant supply of this energy
substrate, despite large fluctuations in blood glucose concentrations under physiological and
pathological conditions.

An additional fraction of energy substrates is provided by astrocytes, which by their exten‐
sions take up the glucose directly from the circulation and display a high rate of glycolytic cycle.
Therefore, they synthesize and release large amounts of lactate, which may be taken up by
neurons through their monocarboxylic acids transporters MCT1 and MCT4. Lactate is transport‐
ed into neurons serving as a source of pyruvate, the direct precursor of acetyl-CoA [6-7]. There
are claims, that the lactate under certain physiologic and pathologic conditions may provide up
to 25% of the energy in neurons [5,8-10]. In addition, high-fat diets, starvation, as well as diabetic
ketoacidosis can activate uptake of BHB, through the beta-hydroxybutyrate dehydrogenase-
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acetoacetyl-CoA synthetase-beta-ketothiolase steps. The level of BHB in extracellular compart‐
ment is about 3.4 mmol/L. After being taken up into the cells by MCT1/MCT4 it becomes a source
of  acetyl-CoA  independent  of  pyruvate  dehydrogenase  complex  (PDHC)  [4].  Therefore
ketogenic diet is used to treat syndromes of congenital deficiency of PDHC, although the
effectiveness of this treatment is limited [1,11-13]. Patients improvement is limited to the general
conditions including alleviation of seizures. Deep losses of cognitive functions remain uncor‐
rected. Hence, neither lactate nor ketoacids can’t completely replace glucose as energy sub‐
strate for neurons.In this respect, there is no explanation why under in vitro conditions pyruvate/
lactate remain better energy/acetyl-CoA sources than the glucose [9,14].

3. Cholinergic neurons and their role in central nervous system

Cholinergic neurons constitute only 1-10% of the total pool of neurons depending on the region
of the brain, but are indispensable for its basic function-cognition. With other transmitter
systems (glutamatergic, GABAergic etc.) they form structural networks for short-and long-
term memory formation as well as multiple associative functions [15]. The cholinergic
neurotransmission is linked with cognition, higher feelings, the analysis of visual stimuli,
olfactory and auditory processes, sustain attention, recall previously stored memory traces
and the regulation of behavior. The cholinergic system regulates cerebral blood flow and
controls the level of activity of the cerebral cortex, including the sleep-wake cycle [30]
[15,17,30]. It also modulates cognitive functions plasticity processes in the brain [16,18].
Cholinergic motor neurons innervating neuro-muscular junctions are indispensable for
contraction of all groups of striated muscles [16,19].

The prevalence of neurodegenerative pathologies increases with age. Many of them, including
Alzheimer’s disease (AD) or Wernicke or hypoxic encephalopathies, are connected with decay
of cholinergic innervation in the regions of brain cortex responsible for diverse cognitive
functions. Post mortem examinations reveal decrease in their number, atrophy, loss of arbori‐
zation and the reduction of the level and activity of cholinergic markers such as choline
acetyltransferase (ChAT) vesicular acetylcholine transporter (VAChT) or high affinity choline
uptake system (HACU). They are linked with the impairment of cholinergic neurotranssmi‐
tion. They correlate with results of the cognitive status of the patients shortly before their death
in a progressive physiological age-associated memory impairment and cognitive function
[19-20]. Recent reports indicate that accelerated and excessive cholinergic neuron atrophy and
loss of their connections are the main feature of cellular pathology underlying AD [21].
Reductions of the number of septal cholinergic neurons were reported to vary from 10% to
90% [22-23].

4. Selective vulnerability of cholinergic neurons

Cholinergic neurons compared to other types of neurons exhibit significantly higher sensitivity
to various pathogenic agents [7,16,24-26]. Different groups of cholinergic neurons in the central
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nervous system are characterized by the different sensitivity to similar, harmful active signals
and factors. In AD first of all cholinergic neurons of septum are found to be damaged. This
type of neurons have nerve endings in the hippocampus and different regions of cerebral
cortex. On the other hand, cholinergic interneurons in the striatum and motor neurons in
anterior horns of medulla oblongata remain intact, sometimes to the final stages of the disease.
Pathological changes were observed in the cholinergic terminals in medial temporal lobe [27].
Early, selective changes in cholinergic neurons are also observed in the olfactory cortex,
amygdala, CA-1 region and subiculum. Recent studies have shown that early amyloid
overload in the amygdalar regions was associated with appearance of neurofibrillary tangles
inside the neurons. These areas of the brain are known to be responsible for the formation of
declarative and long-term memory [28-30]. Abundant deposits of amyloid-β (Aβ) also occur
in the frontal, temporal and parietal lobes. In the final stages of AD up to 60-65% losses of
cholinergic neurons in different areas of the hippocampus, and the accumulation of neurofi‐
brillary tangles in other neurons have been reported [24]. Abundance of neurofibrillary tangles
correlated with gravity of clinical symptoms of dementia. On the contrary, the presence of
senile plaques was also found in several older patients, who were free from cognitive deficits
[31]. Selective neurodegeneration of specific areas of the hippocampus leads to the functional
isolation and contributes to the short term memory impairment, which can be seen particularly
in the initial stage of the disease. Variable sensitivity of brain regions rich in cholinergic
neurons to neurodegeneration may be due to the influence of other regionally characteristic,
diverse neurotransmitter networks, as well as the variable interactions with astrocytic and
microglial cells. It can also result from phenotypic diversity of individual groups of cholinergic
neurons. The underlying cause of the varying sensitivity of different groups of cholinergic
neurons may be the level of their cholinergic neurotransmission, the presence of different
classes of glutamatergic receptors as well as the frequency of their basic electrophysiological
activity. Studies on different whole brain and cell lines indicate, that particular sensitivity of
cholinergic neurons to cytotoxic stimuli may be due to the fact that they are using acetyl-CoA,
not only, as the other group of neurons, to produce energy, but also for the synthesis of the
neurotransmitter, which is ACh [7,26,32].

5. Alzheimer’s disease

Alzheimer disease (AD) is one of the most common neurodegenerative diseases in elderly
populations. It is estimated that 30 millions people are suffering from AD around the world.
The number of cases of AD continues to grow, it is anticipated that the number of patients by
2050 will triplicate as a result of increasing longevity in modern societies.

AD is characterized by a decrease in the number of neurons and their interconnections, linked
with progressive impairments of memory and cognitive functions, disorientation and the
appearance of neurodegenerative alterations in affected areas of the brain. Disruption of axonal
transport in cholinergic neurons is one of the earliest signs of AD observed both in humans
and in experimental studies using transgenic mice [33]. The typical hallmark of AD is prefer‐
ential loss of cholinergic neurons and their extensions in the olfactory bulbs, hippocampus,
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of  acetyl-CoA  independent  of  pyruvate  dehydrogenase  complex  (PDHC)  [4].  Therefore
ketogenic diet is used to treat syndromes of congenital deficiency of PDHC, although the
effectiveness of this treatment is limited [1,11-13]. Patients improvement is limited to the general
conditions including alleviation of seizures. Deep losses of cognitive functions remain uncor‐
rected. Hence, neither lactate nor ketoacids can’t completely replace glucose as energy sub‐
strate for neurons.In this respect, there is no explanation why under in vitro conditions pyruvate/
lactate remain better energy/acetyl-CoA sources than the glucose [9,14].

3. Cholinergic neurons and their role in central nervous system

Cholinergic neurons constitute only 1-10% of the total pool of neurons depending on the region
of the brain, but are indispensable for its basic function-cognition. With other transmitter
systems (glutamatergic, GABAergic etc.) they form structural networks for short-and long-
term memory formation as well as multiple associative functions [15]. The cholinergic
neurotransmission is linked with cognition, higher feelings, the analysis of visual stimuli,
olfactory and auditory processes, sustain attention, recall previously stored memory traces
and the regulation of behavior. The cholinergic system regulates cerebral blood flow and
controls the level of activity of the cerebral cortex, including the sleep-wake cycle [30]
[15,17,30]. It also modulates cognitive functions plasticity processes in the brain [16,18].
Cholinergic motor neurons innervating neuro-muscular junctions are indispensable for
contraction of all groups of striated muscles [16,19].

The prevalence of neurodegenerative pathologies increases with age. Many of them, including
Alzheimer’s disease (AD) or Wernicke or hypoxic encephalopathies, are connected with decay
of cholinergic innervation in the regions of brain cortex responsible for diverse cognitive
functions. Post mortem examinations reveal decrease in their number, atrophy, loss of arbori‐
zation and the reduction of the level and activity of cholinergic markers such as choline
acetyltransferase (ChAT) vesicular acetylcholine transporter (VAChT) or high affinity choline
uptake system (HACU). They are linked with the impairment of cholinergic neurotranssmi‐
tion. They correlate with results of the cognitive status of the patients shortly before their death
in a progressive physiological age-associated memory impairment and cognitive function
[19-20]. Recent reports indicate that accelerated and excessive cholinergic neuron atrophy and
loss of their connections are the main feature of cellular pathology underlying AD [21].
Reductions of the number of septal cholinergic neurons were reported to vary from 10% to
90% [22-23].

4. Selective vulnerability of cholinergic neurons

Cholinergic neurons compared to other types of neurons exhibit significantly higher sensitivity
to various pathogenic agents [7,16,24-26]. Different groups of cholinergic neurons in the central
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nervous system are characterized by the different sensitivity to similar, harmful active signals
and factors. In AD first of all cholinergic neurons of septum are found to be damaged. This
type of neurons have nerve endings in the hippocampus and different regions of cerebral
cortex. On the other hand, cholinergic interneurons in the striatum and motor neurons in
anterior horns of medulla oblongata remain intact, sometimes to the final stages of the disease.
Pathological changes were observed in the cholinergic terminals in medial temporal lobe [27].
Early, selective changes in cholinergic neurons are also observed in the olfactory cortex,
amygdala, CA-1 region and subiculum. Recent studies have shown that early amyloid
overload in the amygdalar regions was associated with appearance of neurofibrillary tangles
inside the neurons. These areas of the brain are known to be responsible for the formation of
declarative and long-term memory [28-30]. Abundant deposits of amyloid-β (Aβ) also occur
in the frontal, temporal and parietal lobes. In the final stages of AD up to 60-65% losses of
cholinergic neurons in different areas of the hippocampus, and the accumulation of neurofi‐
brillary tangles in other neurons have been reported [24]. Abundance of neurofibrillary tangles
correlated with gravity of clinical symptoms of dementia. On the contrary, the presence of
senile plaques was also found in several older patients, who were free from cognitive deficits
[31]. Selective neurodegeneration of specific areas of the hippocampus leads to the functional
isolation and contributes to the short term memory impairment, which can be seen particularly
in the initial stage of the disease. Variable sensitivity of brain regions rich in cholinergic
neurons to neurodegeneration may be due to the influence of other regionally characteristic,
diverse neurotransmitter networks, as well as the variable interactions with astrocytic and
microglial cells. It can also result from phenotypic diversity of individual groups of cholinergic
neurons. The underlying cause of the varying sensitivity of different groups of cholinergic
neurons may be the level of their cholinergic neurotransmission, the presence of different
classes of glutamatergic receptors as well as the frequency of their basic electrophysiological
activity. Studies on different whole brain and cell lines indicate, that particular sensitivity of
cholinergic neurons to cytotoxic stimuli may be due to the fact that they are using acetyl-CoA,
not only, as the other group of neurons, to produce energy, but also for the synthesis of the
neurotransmitter, which is ACh [7,26,32].

5. Alzheimer’s disease

Alzheimer disease (AD) is one of the most common neurodegenerative diseases in elderly
populations. It is estimated that 30 millions people are suffering from AD around the world.
The number of cases of AD continues to grow, it is anticipated that the number of patients by
2050 will triplicate as a result of increasing longevity in modern societies.

AD is characterized by a decrease in the number of neurons and their interconnections, linked
with progressive impairments of memory and cognitive functions, disorientation and the
appearance of neurodegenerative alterations in affected areas of the brain. Disruption of axonal
transport in cholinergic neurons is one of the earliest signs of AD observed both in humans
and in experimental studies using transgenic mice [33]. The typical hallmark of AD is prefer‐
ential loss of cholinergic neurons and their extensions in the olfactory bulbs, hippocampus,
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frontal, occipital and parietal lobes [34]. Differential sensitivity of between particular groups
of cholinergic neurons may be due to their highly variable phenotypes as well as functional
status (septal and motor neurons as an example) [35]. Clinical and animal studies demonstrat‐
ed that loss of septal cholinergic neurons occurred well before those of other groups of neuronal
and glial cells. Particular susceptibility of cholinergic neurons may be caused by the fact that
in pathological neurodegenerative conditions, their demand for acetyl units for ACh synthesis
overlaps with inhibition of PDHC [7,26,32]. This conclusion remains in accord with studies on
human AD brains, that revealed a decrease of PDHC, α-ketoglutarate dehydrogenase (KDHC)
and aconitase activities in areas affected by this pathology [7,35-36].

Accumulation of Aβ/senile plaques in extracellular compartment and hyperphosphorylated
tau protein inside the neurons are characteristic histopathological findings in AD brains [37].

The process of Aβ peptide accumulation and its polymerization under favorable conditions is
very slow. It gave rise to the hypothesis that amyloidosis is just an outcome but not the cause
of AD degeneration [38-40]. Aβ synthesized mainly as 40 amino acid peptide, with minute
fractions of 39, 41 and 43 amino acid peptides, all of none or limited neurotoxicity. The 42
aminoacid Aβ is apparently most toxic peptide in its mono-and oligomeric forms [30,41-42].
Amyloid peptides are formed by proteolytic processing of amyloid precursor protein (APP)
in sequential reactions catalysed by β-and γ-secretase, respectively. Amyloid polymers are
thought to disrupt the neuronal cells through formation high flow uncontrollable Ca-cation
channels in their plasma membranes [41-42]. That triggers intensive red-ox processes being
the source of excessive amounts of free radicals. Peroxidation of membrane phospholipids
disrupts ions transport across cell membranes, including calcium homeostasis and causes
changes in the functioning of the cell membrane receptor proteins. Aggregation and polymer‐
ization of Aβ peptide and the accumulation of paired helical filaments in neurons and the
synaptic endings impairs axonal transport leading to degeneration and death of neurons.

Biochemical alterations observed in the AD brains are associated with decreased activities of
enzymes involved in energy metabolism as well as in those responsible for the biosynthesis,
release and breakdown of ACh, such as ChAT, acetylcholine esterase (AChE), HACU or
VAChT. The impairment of signal transduction processes caused by decreased densities in
muscarinic (MAChR) and nicotinic (NAChR) receptors and inhibition of the ACh synthesis and
quantal release were also reported [7,30,42].

AChE is an enzyme present both in the axons and nerve ending of cholinergic neurons and in
postsynaptic neurons in the cerebral cortex. Therefore its activity/level is also decreased in
parallel with the loss of cholinergic neurons taking place in AD and other encephalopathies,
[43-44]. These changes were also accompanied by impaired axonal transport, which is one of
the earliest functional alterations in cholinergic neurons of AD brains [43]. The decrease of
activities/levels different cholinergic markers were also observed post mortem in affected brain
areas [45-46]. It gave rise to the suggestion that impairment of cholinergic neurons in AD may
precede later stages of neurodegeneration process [30]. These observations support the
hypothesis of the pivotal role of cholinergic dysfunction in the pathomechanisms of AD
dementia.
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6. Hypometabolism in Alzheimer’s disease

Energy homeostasis of the brain is a very complex process. This is due to the high sensitivity
of neurons to metabolic stress, existence of the blood brain barrier, high-energy requirements
of the brain, and finally due to limited reserves of energy precursor substrates. In AD an
impairment of brain energy metabolism occurs, a process known as hypometabolism [1,47-48].
Studies with positron emission tomography (PET) using [18F] fluorodeoxyglucose exhibit
impaired glucose metabolism in brain regions of both sides in the temporal, parietal and
cingulate cortex. The extent of these changes correlates with cognitive impairment in the
affected patients. These changes are one of the well established diagnostic criteria for AD. PET
combined with marking Pittsburgh blue (Pittsburgh compound-B) can specifically determine
the Aβ deposits in the brain, so it is possible to diagnose the AD in its early stages [49-54].
Disturbances in glucose metabolism are associated with the reduction in the density of glucose
transporters GLUT1 and GLUT3 in the neurons. Also activity of phosphofructokinase and
glyceraldehyde-3-phosphate are diminished yielding suppression of the glycolytic metabo‐
lism, and facilitation of amyloidogenic transformation of APP and apoptosis [55-56].

However, the most important alteration in AD brains seems to be suppression of acetyl-
CoA synthesis and TCA as well  as the respiratory chain proteins.  Reductions of PDHC,
KDHC complex activities may be key factor in this pathomechanism due to reduction of
acetyl-CoA synthesis and its utilization in TCA cycle, respectively. Studies of cholinergic
septal neuronal cell lines have shown, that neurotoxins associated with AD pathomechan‐
isms caused direct/instant inhibition of aconitase, PDHC, KDHC and suppressed synthe‐
sis  and utilization  of  acetyl-CoA in  mitochondria  yielding  increased  mortality  in  septal
cholinergic SN56 neuronal cells with high expression of the cholinergic phenotype [7,32].
One of the main changes observed an early stage of AD is the impairment of oxidative
phosphorylation,  which  leads  to  decrease  of  electron transport  in  the  respiratory  chain,
mainly in complex IV,  which is  associated with inhibition/decreased expression of  cyto‐
chrome oxidase and ATP synthase.  In this way, in the AD brains reduced of ATP level
occurs.  At  this  stage  of  the  disease  morphological  changes  of  mitochondria  were  also
observed. Disturbances in membrane fluidity and structure, reduction of the mitochondri‐
al combs, density of mitochondria were also observed [57-59].

7. Pivotal role of acetyl-CoA

The principal, immediate source of acetyl-CoA in the brain is pyruvate formed from the
glycolytic metabolism of glucose. The reaction of the oxidative decarboxylation of pyruvate
supplying acetyl-CoA is catalyzed by PDHC, located in the mitochondria. More than 97% of
acetyl residues via citrate synthase is metabolized to citrate and consumed in TCA cycle to
produce the energy needed to restore the membrane potential during depolarization-repola‐
rization cycles of several Hz frequency. Only 3% of the pool of generated acetyl-CoA is used
in the synthesis of ACh, which takes place in the cytoplasmic compartment [60-63]. However,
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frontal, occipital and parietal lobes [34]. Differential sensitivity of between particular groups
of cholinergic neurons may be due to their highly variable phenotypes as well as functional
status (septal and motor neurons as an example) [35]. Clinical and animal studies demonstrat‐
ed that loss of septal cholinergic neurons occurred well before those of other groups of neuronal
and glial cells. Particular susceptibility of cholinergic neurons may be caused by the fact that
in pathological neurodegenerative conditions, their demand for acetyl units for ACh synthesis
overlaps with inhibition of PDHC [7,26,32]. This conclusion remains in accord with studies on
human AD brains, that revealed a decrease of PDHC, α-ketoglutarate dehydrogenase (KDHC)
and aconitase activities in areas affected by this pathology [7,35-36].

Accumulation of Aβ/senile plaques in extracellular compartment and hyperphosphorylated
tau protein inside the neurons are characteristic histopathological findings in AD brains [37].

The process of Aβ peptide accumulation and its polymerization under favorable conditions is
very slow. It gave rise to the hypothesis that amyloidosis is just an outcome but not the cause
of AD degeneration [38-40]. Aβ synthesized mainly as 40 amino acid peptide, with minute
fractions of 39, 41 and 43 amino acid peptides, all of none or limited neurotoxicity. The 42
aminoacid Aβ is apparently most toxic peptide in its mono-and oligomeric forms [30,41-42].
Amyloid peptides are formed by proteolytic processing of amyloid precursor protein (APP)
in sequential reactions catalysed by β-and γ-secretase, respectively. Amyloid polymers are
thought to disrupt the neuronal cells through formation high flow uncontrollable Ca-cation
channels in their plasma membranes [41-42]. That triggers intensive red-ox processes being
the source of excessive amounts of free radicals. Peroxidation of membrane phospholipids
disrupts ions transport across cell membranes, including calcium homeostasis and causes
changes in the functioning of the cell membrane receptor proteins. Aggregation and polymer‐
ization of Aβ peptide and the accumulation of paired helical filaments in neurons and the
synaptic endings impairs axonal transport leading to degeneration and death of neurons.

Biochemical alterations observed in the AD brains are associated with decreased activities of
enzymes involved in energy metabolism as well as in those responsible for the biosynthesis,
release and breakdown of ACh, such as ChAT, acetylcholine esterase (AChE), HACU or
VAChT. The impairment of signal transduction processes caused by decreased densities in
muscarinic (MAChR) and nicotinic (NAChR) receptors and inhibition of the ACh synthesis and
quantal release were also reported [7,30,42].

AChE is an enzyme present both in the axons and nerve ending of cholinergic neurons and in
postsynaptic neurons in the cerebral cortex. Therefore its activity/level is also decreased in
parallel with the loss of cholinergic neurons taking place in AD and other encephalopathies,
[43-44]. These changes were also accompanied by impaired axonal transport, which is one of
the earliest functional alterations in cholinergic neurons of AD brains [43]. The decrease of
activities/levels different cholinergic markers were also observed post mortem in affected brain
areas [45-46]. It gave rise to the suggestion that impairment of cholinergic neurons in AD may
precede later stages of neurodegeneration process [30]. These observations support the
hypothesis of the pivotal role of cholinergic dysfunction in the pathomechanisms of AD
dementia.
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6. Hypometabolism in Alzheimer’s disease

Energy homeostasis of the brain is a very complex process. This is due to the high sensitivity
of neurons to metabolic stress, existence of the blood brain barrier, high-energy requirements
of the brain, and finally due to limited reserves of energy precursor substrates. In AD an
impairment of brain energy metabolism occurs, a process known as hypometabolism [1,47-48].
Studies with positron emission tomography (PET) using [18F] fluorodeoxyglucose exhibit
impaired glucose metabolism in brain regions of both sides in the temporal, parietal and
cingulate cortex. The extent of these changes correlates with cognitive impairment in the
affected patients. These changes are one of the well established diagnostic criteria for AD. PET
combined with marking Pittsburgh blue (Pittsburgh compound-B) can specifically determine
the Aβ deposits in the brain, so it is possible to diagnose the AD in its early stages [49-54].
Disturbances in glucose metabolism are associated with the reduction in the density of glucose
transporters GLUT1 and GLUT3 in the neurons. Also activity of phosphofructokinase and
glyceraldehyde-3-phosphate are diminished yielding suppression of the glycolytic metabo‐
lism, and facilitation of amyloidogenic transformation of APP and apoptosis [55-56].

However, the most important alteration in AD brains seems to be suppression of acetyl-
CoA synthesis and TCA as well  as the respiratory chain proteins.  Reductions of PDHC,
KDHC complex activities may be key factor in this pathomechanism due to reduction of
acetyl-CoA synthesis and its utilization in TCA cycle, respectively. Studies of cholinergic
septal neuronal cell lines have shown, that neurotoxins associated with AD pathomechan‐
isms caused direct/instant inhibition of aconitase, PDHC, KDHC and suppressed synthe‐
sis  and utilization  of  acetyl-CoA in  mitochondria  yielding  increased  mortality  in  septal
cholinergic SN56 neuronal cells with high expression of the cholinergic phenotype [7,32].
One of the main changes observed an early stage of AD is the impairment of oxidative
phosphorylation,  which  leads  to  decrease  of  electron transport  in  the  respiratory  chain,
mainly in complex IV,  which is  associated with inhibition/decreased expression of  cyto‐
chrome oxidase and ATP synthase.  In this way, in the AD brains reduced of ATP level
occurs.  At  this  stage  of  the  disease  morphological  changes  of  mitochondria  were  also
observed. Disturbances in membrane fluidity and structure, reduction of the mitochondri‐
al combs, density of mitochondria were also observed [57-59].

7. Pivotal role of acetyl-CoA

The principal, immediate source of acetyl-CoA in the brain is pyruvate formed from the
glycolytic metabolism of glucose. The reaction of the oxidative decarboxylation of pyruvate
supplying acetyl-CoA is catalyzed by PDHC, located in the mitochondria. More than 97% of
acetyl residues via citrate synthase is metabolized to citrate and consumed in TCA cycle to
produce the energy needed to restore the membrane potential during depolarization-repola‐
rization cycles of several Hz frequency. Only 3% of the pool of generated acetyl-CoA is used
in the synthesis of ACh, which takes place in the cytoplasmic compartment [60-63]. However,
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under resting conditions acetyl-CoA molecules practically do not pass through the inner
mitochondrial membrane into the cytoplasm. Therefore acetyl moiety for ACh synthesis must
be transported to the cytoplasm through the intermediate metabolites, such as citrate, acetyl-
L-carnitine, for which the inner mitochondrial membrane has a suitable transport systems [64].
In cytoplasm, acetyl-CoA is resynthesized from these compounds. It has been found, that in
brain nerve terminals about 30-50% of acetyl-CoA pool is transported from the mitochondria
to synaptoplasm, as citrate [65-67]. In cholinergic neurons and nerve terminals the metabolic
flow through this pathway is facilitated by the preferential localization of ATP-citrate lyase
(ACL) [67-70].

In various forms of dementia including AD, thiamine deficiency, hypoxia or dialysis evoked
encephalopathies in humans and animal models of dementia, loss of cognitive functions
correlated with preferential deficits of cholinergic markers. Another striking feature in all of
these pathologies was the decrease in energy metabolism in the affected regions of the brain
[7,21,35,57-58,71]. The decreases in glucose metabolism and reduced stores of phosphocreatine
and ATP have been shown during the life of the patients, by PET investigations [51-52,54]. This
is confirmed by post mortem studies, which show that the cause of these changes may be
decreased activity of PDHC, aconitase and KDHC in pathologically altered regions of the
central nervous system [26,71-74]. These changes correlated with both the loss of cholinergic
markers and the degree of degreased cognitive scores, before the death of the patient [19,30,75].
Studies on isolated cholinergic murine septal neuronal cell lines displayed strong inverse
correlations between rates of cell death and PDHC activities or acetyl-CoA levels in their
mitochondrial compartment under various neurodegenerative and neuroprotective condi‐
tions [7,40,76-80]. On the other hand, ChAT activity, ACh level and synthesis as well as quantal
release correlated directly with levels of acetyl-CoA in cytoplasmic compartment of the
cholinergic neurons [7,81].

8. Acute and chronic neurotoxicity

Cognitive deficits, the main clinical symptoms of cholinergic encephalopathies may in some
cases combine with motor disability [82]. These changes correlate well with the degree of
functional and structural losses of basal forebrain cholinergic neurons projecting axons to
hippocampus and different cortical areas, motor neurons innervating different groups of
striated muscles [45]. In these cases suppression of energy metabolism, correlates with losses
of cholinergic markers in affected areas of brain cortex or spinal cord segments. Dysfunction
of brain mitochondria is thought to be both the consequence of pathologic insults as well as a
source of signals triggering neurodegeneration. Therefore, alterations in PDHC synthesized
acetyl-CoA metabolism in the cholinergic neurons should be considered both as a source of
disturbances in their transmitter functions and viability (Fig. 1) [7,32]. Several pathologic
disturbances of aging brain cause excessive depolarization and overload of neuronal cells with
Ca2+and other divalent cations yielding diverse cytotoxic reactions.
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Figure 1. Putative neurotoxic signals affecting pathways acetyl-CoA and energy metabolism in brain cells and their
specific interactions with cholinergic neurons.

Glutamateric neurotransmitter system constitutes 50% of all brain neurons and synaptic
terminals. Prolonged pathologic depolarization yields an excessive co-release of glutamate and
Zn from brain terminals triggering action potentials through NMDA, AMPA receptors and
other voltage gated Ca channels located on postsynaptic neurons including cholinergic ones
[83-85]. They cause dysfunction of postsynaptic neurons that may lead to apoptosis and
necrosis [86-87]. Energy deficits also inhibit uptake of glutamate by adjacent astrocytes, due
to the down-regulation of EAA, GLAST and GLT1 transporters and inhibition of their
glutamine synthetase [88]. Sustained elevations of glutamate and Zn levels within the synaptic
clefts, yield prolonged depolarization of postsynaptic neurons, as well as astroglial and
microglial cells [89]. The disruption of Ca2+homeostasis affects enzymes linked with pathways
involved in energy, neurotransmitter, and NO metabolism. The Ca2+excess in the mitochondria
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Glutamateric neurotransmitter system constitutes 50% of all brain neurons and synaptic
terminals. Prolonged pathologic depolarization yields an excessive co-release of glutamate and
Zn from brain terminals triggering action potentials through NMDA, AMPA receptors and
other voltage gated Ca channels located on postsynaptic neurons including cholinergic ones
[83-85]. They cause dysfunction of postsynaptic neurons that may lead to apoptosis and
necrosis [86-87]. Energy deficits also inhibit uptake of glutamate by adjacent astrocytes, due
to the down-regulation of EAA, GLAST and GLT1 transporters and inhibition of their
glutamine synthetase [88]. Sustained elevations of glutamate and Zn levels within the synaptic
clefts, yield prolonged depolarization of postsynaptic neurons, as well as astroglial and
microglial cells [89]. The disruption of Ca2+homeostasis affects enzymes linked with pathways
involved in energy, neurotransmitter, and NO metabolism. The Ca2+excess in the mitochondria
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compartment may lead to PDHC activity inhibition due to activation of PDH kinase. That may
cause acetyl-CoA deficits in subcellular compartments of cholinergic neuronal cells [40,90-91].
During brain hypoxic/ischemic episodes the earliest event is excitotoxic activation caused by
prolonged release of glutamate and Zn from glutaminergic nerve terminals. The excess of
glutamate/Zn in the synaptic cleft results in, through multiple receptors and transporters,
excitotoxic depolarization of postsynaptic neurons and adjacent glial cells as well. These
alterations pave the road to subsequent chronic steps of neurodegeneration yielding charac‐
teristic histopathologic picture of amyloidosis-β and tauopathy [92-93].

9. Amyloid-β toxicity

It has been found that AD frequently combines with stroke and cerebral vessel thrombosis and
other defects of capilary circulation [94]. Transient hypoxic and hypoperfusion conditions,
frequent in eldery people brains, may also augment Aβ accumulation by activation of γ and
β-secretases. They catalyze amyloidogenic cleavage of APP and increase Aβ accumulation in
extra-and intracellular compartments of the brain [95].

There is a common view that different extra-and intracellular deposits of Aβ are the main cause
of neuronal injury in the course of AD. Neurotoxic properties of Aβ have been demonstrated
in several experimental paradigms. It has been shown, that Aβ added to the cell cultures
inhibited the key enzymes of TCA cycle, as well as PDHC [77, 92,96]. It resulted in depletion
of acetyl-CoA yielding supression of respiratory chain and ATP levels in affected neuronal
cells [76-77,97]. These alterations could be aggravated by Aβ-evoked disruption of endogenous
metal homeostasis, including calcium, iron, zinc and copper [98]. Accumulation of these metals
as well as xenobiotic. Espesially aluminium, has been found in AD amyloid lesions. Each of
these metals may aggravate inhibitory effects of Aβ on oxidative/energy metabolism and
cholinergic neurotransmission, yielding increased mortality of cholinergic neurons both in
cultures and in brain tissue in situ [32]. Aβ fibrilar polymers were reported to form high
conductance Ca-channels in cell plasma membranes, with apparent impairment of energy
metabolism and activation catabolic pathways [99-100]. Subtoxic levels of Aβ were found to
directly inhibit PDHC activity in brain nerve terminals [96]. Accumulation of extracellular
Aβ aggravated suppressive effect of NGF mediated by p75 receptors abundantly expressed in
septal cholinergic neurons, yielding different suppressive and neurotoxic reactions [32,101].
Aβ also facilitaed inflammatory responses of microglial cells, that promote neurodegenerative
processes through excessive production of inflammatory cytokines [102]. However, a recent
report reveals that Aβ accumulation in sensitive regions of human cortex correlated neither
with loss of cholinergic innervation nor with impairment of respective cognitive functions
[103]. That supports earlier notions that Aβ should be considered rather as an outcome than
the cause of AD encephalopathy. Nevertheless, that does not rule out the possibility that
accumulated Aβ may combine with preceding cytotoxic signals, yielding augmentation of
neurodegeneration processes.
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10. Zinc neurotoxicity

Zinc is an essential trace element for living organisms, being the component of active centers
of about 300 enzymes and proteins including: carboxypeptidase, aspartate carbamoyltrans‐
ferase, alcohol dehydrogenases, peroxide dismutase, zinc finger structures of transcription
factors and several others [104-105]. It down-regulates the activity of NMDA receptors and
other transporter proteins. As a crucial structural element in zinc-fingers, Zn is a regulator of
transcription and other adaptative reactions of the organism [106-107]. It inhibits the opening
of NMDA channels [108], that during sustained depolarization may take up the excess of this
metal from-the synaptic cleft into the postsynaptic neurons [108].

Zinc concentration in synaptic vesicles of glutaminergic terminals may reach levels of few
hundred mmol/L as it forms complex with L-glutamate to assure isoosmolality of the vesicular
fluid. In accordance with this the highest whole tissue concentration of Zn, about 0.15
mmol/L, was found in the grey matter. During pathologic brain depolarization glutamate is
released with zinc from glutaminergic terminals to synaptic clefts, where it can reach concen‐
trations as high as 0.3 mmol/L. Under physiological conditions Zn is quickly cleared from the
synaptic cleft mainly by astrocytes and postsynaptic neurons.

There are three groups of proteins specifically regulating Zn distribution in brain cells. They
include: ZnT1, located in the neuronal plasma membranes; ZnT2 in endoplasmic reticulum
and ZnT3 in synaptic vesicles of nerve terminals [109]. These proteins are activated when zinc
concentration in the cytoplasm is elevated. Apart from that, the neuron-specific membrane
transporters Zip1, 4, 6 participate in zinc turnover [110]. Zip 1 and 4 remove zinc from the cell,
whereas Zip 6 accumulates this cation in the intracellular compartment [111]. It is however
not known how ZnTs functions combine with various Ca-channel/transporter activities in the
regulation of Zn levels and compartmentalization in the neuronal cells.

Several pathologic conditions cause excessive release of zinc from presynaptic glutamatergic
vesicles. High amounts of free Zn are taken-up by postsynaptic neurons and adjacent glial
cells. There is no evidence whether large amounts of Zn can be released from other locations
apart synaptic vesicles. There was increasing Zn2+accumulation in degenerating neurons after
excitotoxic stimulation of transgenic mice, lacking ZnT3 transporter that results in no zinc
accumulation in vesicles [112]. Our earlier study revealed that high zinc accumulation in
cultured neurons caused inhibition of key enzymes of energy metabolism [40,80]. Namely,
Zn2+directly inhibited PDHC and KDHC as well as aconitase activities which led to reduction
of acetyl-CoA and ATP levels [40,80]. These Zn/glutamate induced energy deficits along with
sustained depolarization along may cause Ca and free radical overloads. That triggers
excessive synthesis of nitric oxide (NO), by nNOS and iNOS present in adjacent postsynaptic
neuronal and glial cells, respectively. As a result excess of highly toxic peroxynitrite radicals
accumulate in affected area. NO excess was reported to cause irreversible inhibition of
aconitase and isocitrate dehydrogenase and the reversible one PDHC and KDHC [32,77,98].
These effects apparently aggravated cytotoxic effects of Zn, triggering vicious cycle of
cholinergic neurodegeneration [76,80-81]. There are evidences that aberrant Zn homeostasis
is involved in the pathogenesis of AD [113]. Zn may be directly involved in the process of
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directly inhibit PDHC activity in brain nerve terminals [96]. Accumulation of extracellular
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report reveals that Aβ accumulation in sensitive regions of human cortex correlated neither
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the cause of AD encephalopathy. Nevertheless, that does not rule out the possibility that
accumulated Aβ may combine with preceding cytotoxic signals, yielding augmentation of
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amyloidogenesis as APP protein was found to contain Zn binding motif [113] located within
the cysteine-rich region of its ectodomain. This points out that Zn may play a role in yet
unknown functions of APP.

High dietary intake of Zn significantly increased the Zn and APP levels in transgenic APP/P1
mouse brains. It also enhanced amyloidogenic cleavage of APP protein both under in vivo and
in vitro conditions [114]. In mouse brain Zn inhibited α-sectetase activity, elevating the β and
γ-secretase activities promoting accumulation of Aβ(1-40), the main component of Aβ plaques
[108,115]. There was accompanied by the impairment of learning capacity in the Morris water
maze test [114]. Zinc cytotoxic effects were observed not only in AD but also in several other
brain pathologies including: epilepsy, mechanical trauma, ischemic stroke, hypoglycemia,
hypoxia, thiamine deficits and other inherited or acquired metabolic blocks [115].

Besides, chronic pathological conditions may down-regulate expression of different classes of
ZnT in astrocytes. In the same conditions Zn may be released to perisynaptic compartments
[116]. Hence, Zn excitotoxicity would not be caused by overall increase of its concentration in
the brain, but by its aberrant redistribution between different extra-and intracellular compart‐
ments of the brain [117].

Increased Zn concentrations in extracellular space may induce oligomerization of Aβ, aggra‐
vating its cytotoxic effect in AD brains. That is why short-time elevation of Zn concentrations
in extracellular fluid (ECF) might trigger the long-term amyloidogenetic process. These signals
were found to exert negative influence on cholinergic neurons that are responsible for cognitive
functions and short-time memory formation [32]. It seems that high expression of the choli‐
nergic phenotype in neurons (SN56) of septal origin makes them particularly susceptible to
Zn-cytotoxic signaling [7,40,80].

There was also reported that xenobiotic metal Al may also accumulate in the brains in age-
dependent manner [118-119]. It could inhibit calcium channels and Na/Ca exchanger in
mitochondrial membranes what might increase mitochondrial and decrease cytoplasmic
calcium levels in nerve terminals and cholinergic neuronal cells [32,74]. All these pathogens
either alone or in combination were found to cause the decrease acetyl-CoA synthesis in
neuronal mitochondria and reduction of energy production yielding increased cholinergic
neuron susceptibility to degeneration [32,80]. In addition, lowering the cytoplasmic level of
calcium could reduce direct transport of acetyl-CoA from mitochondria to cytoplasm through
permeability transition pores (PTP) [32,74]. Shortages of acetyl-CoA in cytoplasmic compart‐
ment cause inhibition of acetylcholine synthesis and release [40].

On the other hand, primary or secondary Zn deficits could also induce neurodegenerative
brain injury. Such conditions were found in the elderly people who maintained themselves on
Zn-deficient diet [41]. Some life periods such as intensive growth, pregnancy, lactation,
intensive physical exercises increase demand for Zn facilitating appearance of its deficits. That
is why numerous therapeutical and schedules recommend taking supplements that contain
Zn organic complexes: zinc bisglicine, or zinc bisaspartate. They are claimed to be safer in use
than nonchelatable inorganic Zn salts. However, there is no convincing data that would
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support this claim. Zn deficits in experimental animals were reported to cause to have
increased oxidative stress and/or had greater rate of lipid peroxidation [120].
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Figure 2. Differential neurotoxicities in nondifferentiated and differentiated cholinergic SN56 neuroblastoma cells.
Recalculated from: [32,40,81,158-159].

11. NO excess

Glutamate-Zn evoked increases of [Ca2+]/[calmodulin-Ca] in cytoplasmic compartments of
postsynaptic neurons and adjacent glial cells activated nNOS and iNOS, respectively. It seems
however, that only increased expression of Ca-independent iNOS in the microglial/astroglial
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amyloidogenesis as APP protein was found to contain Zn binding motif [113] located within
the cysteine-rich region of its ectodomain. This points out that Zn may play a role in yet
unknown functions of APP.

High dietary intake of Zn significantly increased the Zn and APP levels in transgenic APP/P1
mouse brains. It also enhanced amyloidogenic cleavage of APP protein both under in vivo and
in vitro conditions [114]. In mouse brain Zn inhibited α-sectetase activity, elevating the β and
γ-secretase activities promoting accumulation of Aβ(1-40), the main component of Aβ plaques
[108,115]. There was accompanied by the impairment of learning capacity in the Morris water
maze test [114]. Zinc cytotoxic effects were observed not only in AD but also in several other
brain pathologies including: epilepsy, mechanical trauma, ischemic stroke, hypoglycemia,
hypoxia, thiamine deficits and other inherited or acquired metabolic blocks [115].

Besides, chronic pathological conditions may down-regulate expression of different classes of
ZnT in astrocytes. In the same conditions Zn may be released to perisynaptic compartments
[116]. Hence, Zn excitotoxicity would not be caused by overall increase of its concentration in
the brain, but by its aberrant redistribution between different extra-and intracellular compart‐
ments of the brain [117].

Increased Zn concentrations in extracellular space may induce oligomerization of Aβ, aggra‐
vating its cytotoxic effect in AD brains. That is why short-time elevation of Zn concentrations
in extracellular fluid (ECF) might trigger the long-term amyloidogenetic process. These signals
were found to exert negative influence on cholinergic neurons that are responsible for cognitive
functions and short-time memory formation [32]. It seems that high expression of the choli‐
nergic phenotype in neurons (SN56) of septal origin makes them particularly susceptible to
Zn-cytotoxic signaling [7,40,80].

There was also reported that xenobiotic metal Al may also accumulate in the brains in age-
dependent manner [118-119]. It could inhibit calcium channels and Na/Ca exchanger in
mitochondrial membranes what might increase mitochondrial and decrease cytoplasmic
calcium levels in nerve terminals and cholinergic neuronal cells [32,74]. All these pathogens
either alone or in combination were found to cause the decrease acetyl-CoA synthesis in
neuronal mitochondria and reduction of energy production yielding increased cholinergic
neuron susceptibility to degeneration [32,80]. In addition, lowering the cytoplasmic level of
calcium could reduce direct transport of acetyl-CoA from mitochondria to cytoplasm through
permeability transition pores (PTP) [32,74]. Shortages of acetyl-CoA in cytoplasmic compart‐
ment cause inhibition of acetylcholine synthesis and release [40].

On the other hand, primary or secondary Zn deficits could also induce neurodegenerative
brain injury. Such conditions were found in the elderly people who maintained themselves on
Zn-deficient diet [41]. Some life periods such as intensive growth, pregnancy, lactation,
intensive physical exercises increase demand for Zn facilitating appearance of its deficits. That
is why numerous therapeutical and schedules recommend taking supplements that contain
Zn organic complexes: zinc bisglicine, or zinc bisaspartate. They are claimed to be safer in use
than nonchelatable inorganic Zn salts. However, there is no convincing data that would
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support this claim. Zn deficits in experimental animals were reported to cause to have
increased oxidative stress and/or had greater rate of lipid peroxidation [120].
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Figure 2. Differential neurotoxicities in nondifferentiated and differentiated cholinergic SN56 neuroblastoma cells.
Recalculated from: [32,40,81,158-159].
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cells may contribute significantly to neurodegeneration. It has been demonstrated, that only
iNOS-dependent activation may elevate the NO levels in the brain up to low micromolar,
pathologically relevant, concentrations [121]. In fact, bacterial lipopolysaccharides could
induce several-fold increase of NO synthesis by microglia [121]. On the other hand, fraction
of NO produced by nNOS/eNOS may reach levels two orders of magnitude lower, and is likely
to play a physiologic roles of “volume transmitter” and guanyl cyclase activator [89]. Perox‐
ynitrite radicals were found to react with wide range of intracellular biomolecules linked with
energy and glycolytic metabolism and several regulatory and transport or neurotransmitter
pathways, as well as with antioxidant systems. Excess of endogenous NO exerts rapid but
reversible inhibition of cytochrome c oxidase and less potent one for other proteins of respi‐
ratory chain and ATP-synthetase, as well [122]. However, NO may also inhibit earlier steps of
energy metabolism including: PDHC, aconitase, isocitrate NADP-dehydrogenase, as well as
KDHC [40,76,77]. Other enzymes of TCA cycle: succinate dehydrogenase, fumarase, and
malate dehydrogenase were not affected by these conditions. That could cause deficits of
acetyl-CoA and ATP in NO/ONOO-exposed neuronal [32,76]. Cholinergic neurons with
residual expression of the cholinergic phenotype appeared to be more resistant to NO
neurotoxicity than those with high expression of the cholinergic phenotype, apparently due
to negligible demand for acetyl-CoA to support ACh synthesis in the former.

Lipoic acid or acetyl-L-carnitine were found to exert positive effects on viability in NO or Zn-
exposed cholinergic SN56 cells through preservation of acetyl-CoA availability in their
mitochondrial and cytoplasmic compartments [32,77]. However, delay in cytoprotectant
application markedly diminished their efficacy, apparently due to instant, irreversible
inactivation of aconitase by Zn and NO/ONOO-[40,123]. ChAT appeared to be resistant to
direct, acute exposition to NO-excess. However, its expression was adaptatively down-
regulated by chronic cytotoxic conditions decreasing acetyl-CoA provision into cytoplasmic
compartment [124].

12. Thiamine deficiency

Thiamine pyrophosphate (TPP) is a cofactor for E1 subunits of PDHC and KDHC, that are key
rate limiting steps regulating acetyl-CoA synthesis and its metabolic flux through TCA cycle,
respectively [61,71,118,125-126]. Activities of these enzymes in the brain mitochondria are
several times higher than in nonneuronal tissues, due to high demand for energy in this tissue.
Therefore, thiamine pyrophosphate deficits (TD) evoked by chronic alcoholism, starvation or
thiamine depleting diets caused dramatic clinical symptoms of motor, cognitive and metabolic
disturbances in the form of Wernicke–Korsakoff encephalopathy, muscular dystonia, edema
and lactic acidosis, with frequently fatal outcomes [125,127-128]. On the other hand, early
supplementation of TPP deficient subjects with thiamine, reversed symptoms of these
pathologies [129]. The majority of TD-evoked neurologic and cognitive disturbances may be
explained by the impairment of cholinergic neurotransmission. In TD brains there are two
major mechanisms that are responsible for dysfuctioning and loss of cholinergic neurons: the
primary limitation of acetyl-CoA provision and excytotoxic Zn overload. The first one is caused
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by the impaired synthesis of acetyl-CoA by PDHC, what strightly leads to the excytotoxic
release of glutamate-Zn from energy depleted glutamatergic neurons [108]. In whole brain and
cellular models of TD, the reduction of mitochondrial levels of acetyl-CoA correlated with
losses of cholinergic markers and viability of the neurons [81,119,130-131].

The decreases of cytoplasmic acetyl-CoA in amprolium-induced TD SN56 cells and brain nerve
terminals, from pyrythiamine treated rats, resulted from limited synthesis of this metabolite
in the mitochondrial compartment by TD-deficient PDHC. In consequence, lower rates of ACh
synthesis and its quantal release in TD cholinergic neurons positively correlated with de‐
creased concentration of acetyl-CoA in their cytoplasmic compartment [81,130]. These findings
fit to a general rule that the rate of ACh synthesis/release depends on the availability of acetyl-
CoA in cytoplasmic/synaptoplasmic compartment of cholinergic neurons, irrespective of the
type of neurotoxic signal [7,32]. However, unlike for AD or other neurotoxic conditions, acute
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Figure 3. Existence of significant correlations between: intramitochondrial acetyl-CoA metabolism and cholinergic
neuronal cell injury (AB) and cytoplasmic acetyl-CoA levels and transmitter functions (CD) of cholinergic neuronal cells
of septal origin. Data collected from: [32,40,81,124].

Energy-Dependent Mechanisms of Cholinergic Neurodegeneration
http://dx.doi.org/10.5772/58339

389



cells may contribute significantly to neurodegeneration. It has been demonstrated, that only
iNOS-dependent activation may elevate the NO levels in the brain up to low micromolar,
pathologically relevant, concentrations [121]. In fact, bacterial lipopolysaccharides could
induce several-fold increase of NO synthesis by microglia [121]. On the other hand, fraction
of NO produced by nNOS/eNOS may reach levels two orders of magnitude lower, and is likely
to play a physiologic roles of “volume transmitter” and guanyl cyclase activator [89]. Perox‐
ynitrite radicals were found to react with wide range of intracellular biomolecules linked with
energy and glycolytic metabolism and several regulatory and transport or neurotransmitter
pathways, as well as with antioxidant systems. Excess of endogenous NO exerts rapid but
reversible inhibition of cytochrome c oxidase and less potent one for other proteins of respi‐
ratory chain and ATP-synthetase, as well [122]. However, NO may also inhibit earlier steps of
energy metabolism including: PDHC, aconitase, isocitrate NADP-dehydrogenase, as well as
KDHC [40,76,77]. Other enzymes of TCA cycle: succinate dehydrogenase, fumarase, and
malate dehydrogenase were not affected by these conditions. That could cause deficits of
acetyl-CoA and ATP in NO/ONOO-exposed neuronal [32,76]. Cholinergic neurons with
residual expression of the cholinergic phenotype appeared to be more resistant to NO
neurotoxicity than those with high expression of the cholinergic phenotype, apparently due
to negligible demand for acetyl-CoA to support ACh synthesis in the former.

Lipoic acid or acetyl-L-carnitine were found to exert positive effects on viability in NO or Zn-
exposed cholinergic SN56 cells through preservation of acetyl-CoA availability in their
mitochondrial and cytoplasmic compartments [32,77]. However, delay in cytoprotectant
application markedly diminished their efficacy, apparently due to instant, irreversible
inactivation of aconitase by Zn and NO/ONOO-[40,123]. ChAT appeared to be resistant to
direct, acute exposition to NO-excess. However, its expression was adaptatively down-
regulated by chronic cytotoxic conditions decreasing acetyl-CoA provision into cytoplasmic
compartment [124].

12. Thiamine deficiency

Thiamine pyrophosphate (TPP) is a cofactor for E1 subunits of PDHC and KDHC, that are key
rate limiting steps regulating acetyl-CoA synthesis and its metabolic flux through TCA cycle,
respectively [61,71,118,125-126]. Activities of these enzymes in the brain mitochondria are
several times higher than in nonneuronal tissues, due to high demand for energy in this tissue.
Therefore, thiamine pyrophosphate deficits (TD) evoked by chronic alcoholism, starvation or
thiamine depleting diets caused dramatic clinical symptoms of motor, cognitive and metabolic
disturbances in the form of Wernicke–Korsakoff encephalopathy, muscular dystonia, edema
and lactic acidosis, with frequently fatal outcomes [125,127-128]. On the other hand, early
supplementation of TPP deficient subjects with thiamine, reversed symptoms of these
pathologies [129]. The majority of TD-evoked neurologic and cognitive disturbances may be
explained by the impairment of cholinergic neurotransmission. In TD brains there are two
major mechanisms that are responsible for dysfuctioning and loss of cholinergic neurons: the
primary limitation of acetyl-CoA provision and excytotoxic Zn overload. The first one is caused
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by the impaired synthesis of acetyl-CoA by PDHC, what strightly leads to the excytotoxic
release of glutamate-Zn from energy depleted glutamatergic neurons [108]. In whole brain and
cellular models of TD, the reduction of mitochondrial levels of acetyl-CoA correlated with
losses of cholinergic markers and viability of the neurons [81,119,130-131].

The decreases of cytoplasmic acetyl-CoA in amprolium-induced TD SN56 cells and brain nerve
terminals, from pyrythiamine treated rats, resulted from limited synthesis of this metabolite
in the mitochondrial compartment by TD-deficient PDHC. In consequence, lower rates of ACh
synthesis and its quantal release in TD cholinergic neurons positively correlated with de‐
creased concentration of acetyl-CoA in their cytoplasmic compartment [81,130]. These findings
fit to a general rule that the rate of ACh synthesis/release depends on the availability of acetyl-
CoA in cytoplasmic/synaptoplasmic compartment of cholinergic neurons, irrespective of the
type of neurotoxic signal [7,32]. However, unlike for AD or other neurotoxic conditions, acute
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Figure 3. Existence of significant correlations between: intramitochondrial acetyl-CoA metabolism and cholinergic
neuronal cell injury (AB) and cytoplasmic acetyl-CoA levels and transmitter functions (CD) of cholinergic neuronal cells
of septal origin. Data collected from: [32,40,81,124].
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TD altered ChAT activity neither in pyrithiamine-rat brain synaptosomes nor in amprolium-
SN56 cells [132]. These data prove that, at least in early stages of TD, the structure of cholinergic
neurons remained well preserved and that inhibition of ACh quantal release is exclusively due
to the inhibition of acetyl-CoA provision to the site of its synthesis.

13. Glia and neurotoxicity

Astrocytes play several important functions in the metabolism of the brain including inter‐
compartmental turnover of aminoacid neurotransmitters and energy substrates. They supply
neurons with lactate, glutamine and aspartate for energy production neurotransmitter
synthesis [133]. The end-feet of astrocytes occupy a strategic sites between capillary endothelial
cells and neurons. In addition, astrocytes as a member of the tripartitie synapse remove
efficiently neurotransmitters such as glutamate from the synaptic cleft and have important
functions in maintenance of ion homeostasis in the extracellular compartments of the brain
[134]. Due to the extensive contact with both blood vessels and neurons, astrocytes play the
key role in the control of cerebral energy and transmitter metabolism. Astrocyte viability and
astrocyte-neuronal interactions take part in processes of synaptic plasticity. Thus impairment
in astrocyte metabolism in various brain pathologies also has its negative influence on neuronal
functions.

There are some data about impairment of energy metabolism in astrocytes in AD and other
neurodegenerative diseases [135]. However, most of them have been collected using isolated
astroglial cells or whole brain models without taking into account subcellular distribution of
energy metabolism. Therefore, like in the neuronal cells [7] putative aberrations of acetyl-CoA
metabolism in the cytoplasmic and mitochondrial compartments of astrocytes, should be
investigated in different models of AD and other cholinergic encephalopathies. The main role
of astrocytes is to protect and support neurons. Astrocytes are capable to produce net lactate,
L-glutamine and accumulate glycogen. They consume about 15-20% of the glucose in the brain
[136,137]. Thanks to this they can deliver lactate to neurons, through monocarboxylate
transporters MCT1, MCT 2. Lactate, after conversion to pyruvate may serve as an alternative
to glucose source of acetyl-CoA under hypoglycaemic or hypoxic conditions. During physio‐
logic activation of glutamatergic endings Na+dependent transport of glutamate into astrocytes
by GLT1 and GLAST transporters was found to be enhanced. Subsequently glutamate was
converted there to L-glutamine [136]. There are no Zip transporters on the surface of astrocyte’s
cellular membrane. Therefore uptake of zinc from synaptic cleft occurs through high density
divalent metal transporters: DMT1. Except of Zn ions astrocytes may take up also iron and
copper [138]. Apart from that, astrocytes contain high levels of metalothioneins (MTs). In
consequence they can take up Zn from synaptic cleft and bind it forming complexes with MTs
[139]. That is why impairment of astrocytes under cytotoxic conditions may limit their
neuroprotective functions and indirectly facilitate neurodegenerative processes.

There are several therapeutic and preventive approaches to AD and other cholinergic ence‐
phalopathies of advanced age. However, now days only cholinomimetics and GABA-
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antagonists are approved for treatment of AD and related dementive disorders. They, however
neither prevent nor slow down the progress of cognitive loses [102]. Other, therapeutic
approaches such as choline supplementation, provision of acetyl-CoA precursors, or free
radical scavengers, neurotrophin supply, antiinflamatory drugs application, inhibition of Aβ
synthesis or reduction of its overload appeared to be ineffective.

Neuroinflammation is one of principal pathomechanisms of AD which significantly contrib‐
utes to the progress of the disease [102]. Prolonged and widely spread activation of microglia
in AD brain correlates with the extent of brain atrophy and cognitive decline. However, the
role of microlglia in the development of AD is a subject of discrepant reports. On one hand,
microglial fagocytosis of Aβ is belived to be a protective mechanism againts neurodegenera‐
tion [140]. Both atrocytes and microglia release both pro-and anti-inflammatory cytokines and
prostaglandins, as well as oxygen, nitrosyl radicals. Cytokines through TLR-4 receptors were
found to stimulate variety of intracellular signaling pathways that have been implicated in
neuronal damage in AD. Therefore, people taking chronically nonsteroid anti-inflammatory
drugs displayed lower prevalence of this pathology [141]. Microglial activation by many
endogenous and signaling compounds such as L-glutamate, ATP, 7-ketocholesterol, cAMP
were reported to cause inhibition of several enzymes of their energy metabolism [32,141]. Both
Zn and Aβ oligomers are capable of microglia activation. This results in release of soluble
neurotoxic compounds that compromise integrity of neurons and synapses [142]. Also Zn in
rather low concentrations (30-50 micromol/L) activates microglia through mechanism de‐
pendent on activation of transcription factor NF-kappaB [143]. Simultaneously active com‐
pounds derived from activated microglia augment Zn release from glutamatergic neuronal
endings what may accelerate neurodegenerative processes [144].

The activation of both astrocytes and microglial cells is associated with the induction of major
proinflammatory pathways [145]. Gene expression profile analysis confirmed the prominent
upregulation of genes associated with the immune/inflammatory pathways, including several
chemokines and pro-inflammatory cytokines [146]. Activation the IL-1β pathway has been
revealed both, in glial as well as in neuronal cells in brains of chronically epileptic rats [147].
Both the complement pathway and the plasminogen system are also activated within the
hippocampus affected by multiple-sclerosis [148-149]. Both IL-1β, complement components
and plasminogen activators were found to increase the permeability of the blood brain barrier
(BBB) [150,151]. Toll-like receptor (TLR) signaling pathways in brains affected by various
pathologies such as epilepsy, ischemia or AD, may contribute to neuronal injury [152].
Moreover microRNAs (miRNA) also play a role in the regulation of the innate and adaptive
immune responses. In particular, miR-146a, which can be induced by different pro-inflamma‐
tory stimuli such as IL-1β and TNF-α, has been shown to critically modulate innate immunity
through regulation of TLR signaling and cytokine responses [153]. Interestingly, this miRNA
is upregulated in TLR as well as in experimental models of epilepsy. These observations
suggest miRNA as potential targets to modulate inflammatory pathways.

Moreover activation of microglia is the well known source of nitric oxide and other reactive
oxygen species (ROS) [154]. There are data showing that NO produced by activated microglia
inhibits the activity KDHC [155].
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neurons remained well preserved and that inhibition of ACh quantal release is exclusively due
to the inhibition of acetyl-CoA provision to the site of its synthesis.
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compartmental turnover of aminoacid neurotransmitters and energy substrates. They supply
neurons with lactate, glutamine and aspartate for energy production neurotransmitter
synthesis [133]. The end-feet of astrocytes occupy a strategic sites between capillary endothelial
cells and neurons. In addition, astrocytes as a member of the tripartitie synapse remove
efficiently neurotransmitters such as glutamate from the synaptic cleft and have important
functions in maintenance of ion homeostasis in the extracellular compartments of the brain
[134]. Due to the extensive contact with both blood vessels and neurons, astrocytes play the
key role in the control of cerebral energy and transmitter metabolism. Astrocyte viability and
astrocyte-neuronal interactions take part in processes of synaptic plasticity. Thus impairment
in astrocyte metabolism in various brain pathologies also has its negative influence on neuronal
functions.

There are some data about impairment of energy metabolism in astrocytes in AD and other
neurodegenerative diseases [135]. However, most of them have been collected using isolated
astroglial cells or whole brain models without taking into account subcellular distribution of
energy metabolism. Therefore, like in the neuronal cells [7] putative aberrations of acetyl-CoA
metabolism in the cytoplasmic and mitochondrial compartments of astrocytes, should be
investigated in different models of AD and other cholinergic encephalopathies. The main role
of astrocytes is to protect and support neurons. Astrocytes are capable to produce net lactate,
L-glutamine and accumulate glycogen. They consume about 15-20% of the glucose in the brain
[136,137]. Thanks to this they can deliver lactate to neurons, through monocarboxylate
transporters MCT1, MCT 2. Lactate, after conversion to pyruvate may serve as an alternative
to glucose source of acetyl-CoA under hypoglycaemic or hypoxic conditions. During physio‐
logic activation of glutamatergic endings Na+dependent transport of glutamate into astrocytes
by GLT1 and GLAST transporters was found to be enhanced. Subsequently glutamate was
converted there to L-glutamine [136]. There are no Zip transporters on the surface of astrocyte’s
cellular membrane. Therefore uptake of zinc from synaptic cleft occurs through high density
divalent metal transporters: DMT1. Except of Zn ions astrocytes may take up also iron and
copper [138]. Apart from that, astrocytes contain high levels of metalothioneins (MTs). In
consequence they can take up Zn from synaptic cleft and bind it forming complexes with MTs
[139]. That is why impairment of astrocytes under cytotoxic conditions may limit their
neuroprotective functions and indirectly facilitate neurodegenerative processes.

There are several therapeutic and preventive approaches to AD and other cholinergic ence‐
phalopathies of advanced age. However, now days only cholinomimetics and GABA-
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antagonists are approved for treatment of AD and related dementive disorders. They, however
neither prevent nor slow down the progress of cognitive loses [102]. Other, therapeutic
approaches such as choline supplementation, provision of acetyl-CoA precursors, or free
radical scavengers, neurotrophin supply, antiinflamatory drugs application, inhibition of Aβ
synthesis or reduction of its overload appeared to be ineffective.

Neuroinflammation is one of principal pathomechanisms of AD which significantly contrib‐
utes to the progress of the disease [102]. Prolonged and widely spread activation of microglia
in AD brain correlates with the extent of brain atrophy and cognitive decline. However, the
role of microlglia in the development of AD is a subject of discrepant reports. On one hand,
microglial fagocytosis of Aβ is belived to be a protective mechanism againts neurodegenera‐
tion [140]. Both atrocytes and microglia release both pro-and anti-inflammatory cytokines and
prostaglandins, as well as oxygen, nitrosyl radicals. Cytokines through TLR-4 receptors were
found to stimulate variety of intracellular signaling pathways that have been implicated in
neuronal damage in AD. Therefore, people taking chronically nonsteroid anti-inflammatory
drugs displayed lower prevalence of this pathology [141]. Microglial activation by many
endogenous and signaling compounds such as L-glutamate, ATP, 7-ketocholesterol, cAMP
were reported to cause inhibition of several enzymes of their energy metabolism [32,141]. Both
Zn and Aβ oligomers are capable of microglia activation. This results in release of soluble
neurotoxic compounds that compromise integrity of neurons and synapses [142]. Also Zn in
rather low concentrations (30-50 micromol/L) activates microglia through mechanism de‐
pendent on activation of transcription factor NF-kappaB [143]. Simultaneously active com‐
pounds derived from activated microglia augment Zn release from glutamatergic neuronal
endings what may accelerate neurodegenerative processes [144].

The activation of both astrocytes and microglial cells is associated with the induction of major
proinflammatory pathways [145]. Gene expression profile analysis confirmed the prominent
upregulation of genes associated with the immune/inflammatory pathways, including several
chemokines and pro-inflammatory cytokines [146]. Activation the IL-1β pathway has been
revealed both, in glial as well as in neuronal cells in brains of chronically epileptic rats [147].
Both the complement pathway and the plasminogen system are also activated within the
hippocampus affected by multiple-sclerosis [148-149]. Both IL-1β, complement components
and plasminogen activators were found to increase the permeability of the blood brain barrier
(BBB) [150,151]. Toll-like receptor (TLR) signaling pathways in brains affected by various
pathologies such as epilepsy, ischemia or AD, may contribute to neuronal injury [152].
Moreover microRNAs (miRNA) also play a role in the regulation of the innate and adaptive
immune responses. In particular, miR-146a, which can be induced by different pro-inflamma‐
tory stimuli such as IL-1β and TNF-α, has been shown to critically modulate innate immunity
through regulation of TLR signaling and cytokine responses [153]. Interestingly, this miRNA
is upregulated in TLR as well as in experimental models of epilepsy. These observations
suggest miRNA as potential targets to modulate inflammatory pathways.

Moreover activation of microglia is the well known source of nitric oxide and other reactive
oxygen species (ROS) [154]. There are data showing that NO produced by activated microglia
inhibits the activity KDHC [155].
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Numberous data proved that prolonged activation of microglia leads to excessive secretion of
NO, ROS and proinflamatory cytokines [156]. Lypopolysacharide (LPS) derived from bacteria
exerts the capacity to activate microglial cells. In such conditions the cells secrete augmented
levels of Il-1β, Il-6, TNF-α. TNF-α in nonactivated microglia is produced in insignificant
concentration whereas in LPS-activated cells the level of its release is several times expanded
[157]. Microglia may be also stimulated by Aβ what in consequence conducts to excessive
release of TNF-α, that becomes the neurotoxic factor. However some data reports that low
Il-1β concentrations may have positive effect on highly differentiated cholinergic neurons by
increasing the ChAT expression and activity in cholinergic neurons treated by neurotoxic
concentrations of Aβ [124]. In consequence the level of ACh was also elevated. Moreover these
data also proved that added Il-1β reversed the inhibitory effect of cytotoxic factors on acetyl-
CoA level in cytoplasmic compartment. These changes in cholinergic phenotype correlated
well with cell viability and morphology. From the other hand Il-1β-activation was completely
inhibited by IL-6 or TNF-α.

The other data proves that in the cocultures of neuronal cells with microglial cells the last ones
protect neurons from death caused by some cytotoxic factors such as elevated Zn or NO levels
(Gul-Hinc et al. unpublished). The cytoprotective effect may be caused by the restoration by
microglia the proper level of Il-6 in cholinergic neurons and restoration of the high activity of
PDHC and acetyl-CoA level. From the other hand LPS-induced excessive release of TNF-α by
microglia exerts the cytotoxic effect that is independent on acetyl-CoA level.

14. Conclusions

There is some data concerning the mechanism of cholinergic encephalopathies in particular
Alzheimer disease. They are mainly focused on disturbances in Aβ metabolism and only little
of them reflect changes in energy metabolism particularly after various cytotoxic factors.
However there is the existence of significant correlation between components of pyruvate-
acetyl-CoA-acetycholine pathway. Cytotoxic insults that are responsible for AD such as: Aβ,
Zn, Al, NOO., TD directly or indirectly inhibits the activity of PDHC and KDHC what leads
to acetyl-CoA synthesis. Consequently, there is inhibition of activity of three carboxylic acid
cycle what causes the development of neurodegenerative changes in brain. Characterictic
feature of some neurodegenerative diseases in preferential loss of cholinergic neurons what
correlates with the degree of energy metabolism inhibition. Some data proved that survival of
cholinergic neurons is limited by the level of acetyl-CoA in mitochondrial compartment.
Moreover it is independent in the reason. The particular susceptibility of cholinergic neurons
to various cytotoxic insults is triggered by relative shortage of this metabolite in mitochondria
and used for acetylcholine synthesis. That is why it might be said that PDHC activity strait
determine acetyl-CoA level in mitochondria what limits its utilization for energy production
and acetylcholine synthesis under cytotoxic insults.
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