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Preface 
 
 
In the era globalisation the emerging technologies are governing engineering industries to a 
multifaceted state. The escalating complexity has demanded researchers to find the possible 
ways of easing the solution of the problems. This has motivated the researchers to grasp 
ideas from the nature and implant it in the engineering sciences. This way of thinking led to 
emergence of many biologically inspired algorithms that have proven to be efficient in 
handling the computationally complex problems with competence such as Genetic 
Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), etc.  
 
Motivated by the capability of the biologically inspired algorithms the present book on 
“Swarm Intelligence: Focus on Ant and Particle Swarm Optimization” aims to present 
recent developments and applications concerning optimization with swarm intelligence 
techniques.  The papers selected for this book comprise a cross-section of topics that reflect a 
variety of perspectives and disciplinary backgrounds.  In addition to the introduction of 
new concepts of swarm intelligence, this book also presented some selected representative 
case studies covering power plant maintenance scheduling; geotechnical engineering; 
design and machining tolerances; layout problems; manufacturing process plan; job-shop 
scheduling; structural design; environmental dispatching problems; wireless 
communication; water distribution systems; multi-plant supply chain; fault diagnosis of 
airplane engines; and process scheduling.  I believe these 27 chapters presented in this book 
adequately reflect these topics. 

Recent Development of Swarm Intelligence Techniques 
 
The 1st chapter, “Chaotic Rough Particle Swarm Optimization Algorithms”, relates to the 
issues of generating random sequences with a long period and good uniformity.  This topic 
is very important for easily simulating complex phenomena, sampling, numerical analysis, 
decision making and especially in heuristic optimization. In this chapter sequences 
generated from chaotic systems will substitute random numbers in all phases of PSO where 
it is necessary to make a random-based choice. By this way it is intended to develop the 
global convergence and to prevent to stick on a local solution. Furthermore, this chapter 
proposes a generalization of PSO based on rough values. The proposed chaotic rough 
particle swarm optimization algorithm (CRPSO) can complement the existing tools 
developed in rough computing using chaos. Definitions of basic building blocks of CRPSO 
such as rough decision variable, rough particle, and different chaotic maps will be provided. 
Applications of CRPSO in real life problems will be performed and comparisons will be 
made with others PSO algorithms and different optimization techniques. 
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The 2nd chapter, “Integration Method of Ant Colony Algorithm and Rough Set Theory for 

Simultaneous Real Value Attribute Discretization and Attribute Reduction”, first 
discusses the relationship between the problems of real value attribute discretization and 
attribute reduction in rough set theory.  These two problems can be further syncretized as a 
unified problem based on the notion of distinction table. In this study, the authors consider 
that both the problems of finding a minimal set of cuts and that of finding a minimal set of 
attributes preserving the discernability of objects are important. Thus, an objective function 
with a weight parameter, which can balance these two objectives, is introduced.   Secondly, 
the relationship between the unified problem and the set covering problem is analyzed, and 
a novel ant colony algorithm is proposed and employed to solve the set covering problem, 
which can automatically solve the problems of real value attribute discretization and 
attribute reduction. In order to avoid premature and enhance global search ability, a 
mutation operation will be added to the proposed ant colony algorithm. Moreover, a 
deterministic local search operation will be also adopted, which can improve the search 
speed of the algorithm. Thirdly, the validity and effectiveness of the proposed ant colony 
algorithm will be illustrated through case studies, and a comparison of different 
discretization algorithms will also be provided. 

The 3rd chapter, “A New Ant Colony Optimization Approach for the Degree-Constrained 
Minimum Spanning Tree Problem Using Pruefer and Blob Codes Tree Coding”, proposes 
a new ACO algorithm for the degree constrained minimum spanning tree (d-MST) problem 
that can address this challenge in a novel way. Instead of constructing the d-MST directly on 
the construction graph, ants construct the encoded d-MST. The authors use two well- 
known tree-encodings: the Prüfer code, and the more recent Blob code. Under the proposed 
approach, ants will select graph vertices and place them into the Prüfer or Blob code being 
constructed.  The proposed approach produced solutions that are competitive with state-of-
the-art metaheuristics for d-MST. 

The 4th chapter, “Robust PSO-Based Constrained Optimization by Perturbing the PSO 

Memory”, reviews the standard PSO algorithm, and several proposals to improve both 
exploration and exploitation: local and global topologies, particle motion equations, swarm 
neighborhoods, and social interaction. For all these approaches the common shared feature 
is the change of the PSO main algorithm. The authors describe a rather different approach: 
the perturbation of the particle memory. In the PSO algorithm, the next particle position is 
based on its own flying experience (pbest), and the current best individual in either the 
entire swarm (gbest), or in a swarm neighborhood (lbest). Since the values for gbest or lbest 
are determined from the pbest values available at any generation, in the end, it is the pbest 
which is mainly responsible for the particle’s next position. Therefore, a way to reduce 
premature convergence is to improve the pbest of each particle. The proposed approach 
aims to prevent convergence to local optima by improving the swarm exploration and 
exploitation through two perturbation operators. These external operators improve the 
memory of the best visited locations, and do not modify the main PSO paradigm. 

The 5th chapter, “Using Crowding Distance to Improve Multi-Objective PSO with Local 

Search”, a local search and diversity maintaining mechanism based on crowding distance is 
incorporated into the Multi-Objective Particle Swarm Optimization (MOPSO). The local 
search procedure intends to explore the less-crowded area in the current archive to possibly 
obtain better non-dominated solutions nearby. The non-dominated solutions situated in the 
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more-crowded area will be removed from the archive once the archive size reaches a pre-
specified level in order to maintain a well-balanced set of non-dominated solutions. Besides
these, the non-dominated solutions in the less-crowded area are used to guide the
population fly over sparse area of the current archive, such that a more uniform and diverse
front might be formed by the optimizer. The proposed approach seeks to reach a reasonable
compromise between the computational simplicity and efficiency. Several test problems and
statistical comparison techniques are employed to check the performance of the approach.

The 6th chapter, “Simulation Optimization Using Swarm Intelligence as Tool for
Cooperation Strategy Design in 3D Predator-Prey Game”, the objective of this research is
an automatic design of autonomous agents, which situated in inherently cooperative, but
noisy and uncertain environments are capable of accomplishing complex tasks through
interaction. It is adhered to the methodological holism based on the belief that any complex
system or society is more than the sum of its individual entities. As an application example,
a problem was taken as a basis where a predators' group must catch a prey in a three-
dimensional continuous ambient. A synthesis of system strategies was implemented of
which internal mechanism involves the integration between simulators by PSO. The system
had been tested in several simulation settings and it was capable to synthesize automatically
successful hunting strategies, substantiating that the developed tool can provide, as long as
it works with well-elaborated patterns, satisfactory solutions for problems of complex
nature, of difficult resolution starting from analytical approaches.

The 7th chapter, “Differential Meta-model and Particle Swarm Optimization”, the authors
firstly give a brief introduction of the biological model of PSO, and then a differential meta-
model is introduced to analysis the PSO evolutionary behavior. Under this method,
differential evolutionary particle swarm optimization algorithms with two different types of
controllers are discussed in third part. Finally, an extension to this model is illustrated to
enhance the velocity information utilization ratio.

The 8th chapter, “Artificial Bee Colony Algorithm and Its Application to Generalized

Assignment Problem”, introduces a relatively new member of swarm intelligence called
Artificial Bee Colony (ABC). ABC tries to model natural behavior of real honey bees in food
foraging. Honey bees use several mechanisms like waggle dance to optimally locate food
sources and to search new ones. This makes them a good candidate for developing new
intelligent search algorithms. In this chapter a review of work on ABC algorithms will be
given. Afterwards, development of an ABC algorithm for solving generalized assignment
problems which are known as NP-hard problems will be presented in detail along with
some comparisons.

The 9th chapter, “Finite Element Mesh Decomposition Using Evolving Ant Colony
Optimization”, presents the application of evolving ant colony optimization to the
decomposition (partitioning) of finite element meshes. The purpose of mesh decomposition
is to allow large and complex finite element computations to be conducted in parallel
(distributed) environment. The evolving ant colony optimization method in conjunction
with a greedy algorithm and the collaboration of a neural network predictor provides the
decomposition solutions to finite element meshes. This chapter also provides valuable
information on ant colony optimization method which uses the evolutionary concepts in
addition to swarm hypothesis for the partitioning of graph systems (special case: finite
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more-crowded area will be removed from the archive once the archive size reaches a pre-
specified level in order to maintain a well-balanced set of non-dominated solutions. Besides 
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intelligent search algorithms. In this chapter a review of work on ABC algorithms will be 
given. Afterwards, development of an ABC algorithm for solving generalized assignment 
problems which are known as NP-hard problems will be presented in detail along with 
some comparisons.  

The 9th chapter, “Finite Element Mesh Decomposition Using Evolving Ant Colony 
Optimization”, presents the application of evolving ant colony optimization to the 
decomposition (partitioning) of finite element meshes. The purpose of mesh decomposition 
is to allow large and complex finite element computations to be conducted in parallel 
(distributed) environment. The evolving ant colony optimization method in conjunction 
with a greedy algorithm and the collaboration of a neural network predictor provides the 
decomposition solutions to finite element meshes. This chapter also provides valuable 
information on ant colony optimization method which uses the evolutionary concepts in 
addition to swarm hypothesis for the partitioning of graph systems (special case: finite 
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element meshes). Finite element mesh partitioning (also referred to as domain 
decomposition or sub-domain generation) has been the subject of interest for many 
researchers in the areas of Civil, Structural, Aeronautical, Electrical, and Mechanical 
engineering. The proposed chapter also presents the application of predictive neural 
networks in collaboration with the ant colony optimization method for the decomposition of 
finite element meshes. 

The 10th chapter, “Swarm Intelligence and Image Segmentation”, presents a hybrid 
algorithm which combines SI with K-means. The authors also use the same method to 
combine SI with SCL. Their aim is to make the segmentation results of both K-means and 
SCL less dependent on the initial cluster centers and learning rate respectively, hence more 
stabilized and more accurate, by introducing hybrid techniques using the K-means and 
competitive learning algorithms, with Swarm Intelligence including ACO and PSO 
heuristics. This improvement is due to the larger search space provided by these techniques 
and their methodology of considering both spatial and intensity features of an image. In this 
chapter, the authors study the hybridization of PSO with each of the K-means and the SCL 
algorithms. A thorough comparison study on ACO-K-means, PSO-K-means, ACO-SCL, 
PSO-SCL, K-means, and SCL algorithms will also be provided. 

The 11th chapter, “Particle Swarm Optimization- Stochastic Trajectory Analysis and 

Parameter Selection”, proposes to investigate two important topics in Particle Swarm 
Optimization (PSO) which are trajectory analysis of particles and parameter selection. In the 
first part of this chapter, the trajectory of particle in a general PSO algorithm is theoretically 
investigated, considering the randomness thoroughly. By regarding each particle's position 
on each evolutionary step as a stochastic vector, the general PSO algorithm determined by 

five-dimensional parameter tuple { , c1, c2, a, b} is formally analyzed using stochastic 
process theory. Because the position of particle at each step is stochastic and cannot be 
determined directly, its expected value, variance and covariance are investigated instead of 
the position itself, and corresponding explicit expression of each particle’s trajectory is 
determined. The trajectory analysis leads to a sufficient condition to ensure the convergence 
of particle swarm system, which is verified by simulation experiments.  At the same time, 
the relationship between convergent speed of particle’s trajectory and parameter sets is 
studied. Those results give some hints on how the chosen parameters can influence the 
performance of PSO algorithm, and thus parameter selection guideline is given. After that, a 
set of suggested parameter { =0.715, c1=c2=1.7} is given, which is compared against three 
sets of parameters which are proposed in literatures. 

The 12th chapter, “Stochastic Metaheuristics as Sampling Techniques using Swarm 
Intelligence”, focuses on stochastic methods, which form the majority of metaheuristics. 
Stochastic optimization metaheuristics can be viewed as methods manipulating a sample of 
the objective function, with different probabilistic operators. These operators are often met 
in several metaheuristics, despite the fact that they are presented as different ones, because 
of the metaphoric aspects of the algorithmic idea. The authors propose to consider three 
types of metaheuristics, according to the way they generate the sample: (i) directly; (ii) 
explicitly; or (iii) implicitly. The first type uses the objective function as a probability density 
function (pdf) to generate the sample, whereas the explicit methods make use of a specific 
pdf to do so. Methods of the last type construct an implicit probability density function, they 
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are the most known algorithms. The different operators can be classified into three
archetypal behaviors: diversification, intensification and learning. Moreover, one of the key
aspects of the metaheuristics is the way these operators are designed. The authors argue that
most of these algorithms make use of swarm intelligence techniques for their operators. This
feature is evident for operators specialized in learning.

The 13th chapter, “Artificial Ants in the Real World: Solving On-line Problems using Ant
Colony Optimization”, pointed out several new future directions for Ant Colony
Optimization (AGO) researches including (i) how to adjust parameters which depends on
the optimization problems; (ii) how to reduce the execution time; (iii) the optimization
improvement by using incremental local search; and (iv) the aggregation of different and 
new concepts to AGO.

New Industrial Applications of Swarm Intelligence Techniques 

The 14th chapter, “Application of PSO to design UPFC-based stabilizers”, the objective of
this chapter is to investigate the potential of particle swarm optimization as a tool in
designing an unified power flow controller (UPFC) -based stabilizers to improve power
system transient stability. To estimate the controllability of each of the UPFC control signals 
on the electromechanical modes, singular value decomposition is employed. The problem of
designing all the UPFC-based stabilizers individually is formulated as an optimization
problem. Particle swarm optimizer is utilized to search for the optimum stabilizer parameter 
settings that optimize a given objective function. Coordinated design of the different
stabilizers is also carried out by finding the best parameter settings for more than one
stabilizer at a given operating condition in a coordinated manner.

The 15th chapter, “CSV-PSO and Its Application in Geotechnical Engineering”, introduces
a new algorithm to recognize the parameters for the visco-elastic-brittle-plastic model of
rock masses using a parallel improved practice swarm optimization (PSO). Using case
studies, the algorithm is used to recognize parameters of surrounding rocks for a long
tunnel excavated at depth of 1500-2500 m, which has serious rockburst and water burst
problem during construction. The analysis on tunnel stability based the recognized 
parameters are good guidance to safe excavation of tunnel and to avoid accident occurrence.

The 16th chapter, “Power Plant Maintenance Scheduling Using Ant Colony Optimization”, a
formulation has been developed that utilizes ant colony optimization (ACO) to obtain the
optimal start times of power plant maintenance tasks of fixed durations and tested on a 21 unit
benchmark case study. Subsequently, the formulation has been extended to take into account a
number of practical issues commonly encountered in real world optimization maintenance
scheduling, such as the shortening and deferral of maintenance tasks, and tested on a 5-unit
hydropower system.  The above power plant maintenance scheduling optimization
formulations are further tested on four case studies, including two benchmark case studies
previously solved using genetic algorithms (GAs) and tabu search (TS), and modified
versions of the two case studies. In particular, a general heuristic formulation is introduced
and its effectiveness in solving PPMSO problems is investigated. In addition, the 
performance of ACO-PPMSO when coupled with two local search strategies is investigated.
The usefulness of both a heuristic formulation and the two local search strategies are 
assessed using two different ACO algorithms, including the Elitist-Ant System (EAS) and



VIII

element meshes). Finite element mesh partitioning (also referred to as domain
decomposition or sub-domain generation) has been the subject of interest for many
researchers in the areas of Civil, Structural, Aeronautical, Electrical, and Mechanical
engineering. The proposed chapter also presents the application of predictive neural
networks in collaboration with the ant colony optimization method for the decomposition of
finite element meshes.

The 10th chapter, “Swarm Intelligence and Image Segmentation”, presents a hybrid
algorithm which combines SI with K-means. The authors also use the same method to
combine SI with SCL. Their aim is to make the segmentation results of both K-means and
SCL less dependent on the initial cluster centers and learning rate respectively, hence more
stabilized and more accurate, by introducing hybrid techniques using the K-means and 
competitive learning algorithms, with Swarm Intelligence including ACO and PSO
heuristics. This improvement is due to the larger search space provided by these techniques
and their methodology of considering both spatial and intensity features of an image. In this
chapter, the authors study the hybridization of PSO with each of the K-means and the SCL
algorithms. A thorough comparison study on ACO-K-means, PSO-K-means, ACO-SCL,
PSO-SCL, K-means, and SCL algorithms will also be provided.

The 11th chapter, “Particle Swarm Optimization- Stochastic Trajectory Analysis and

Parameter Selection”, proposes to investigate two important topics in Particle Swarm
Optimization (PSO) which are trajectory analysis of particles and parameter selection. In the
first part of this chapter, the trajectory of particle in a general PSO algorithm is theoretically
investigated, considering the randomness thoroughly. By regarding each particle's position
on each evolutionary step as a stochastic vector, the general PSO algorithm determined by

five-dimensional parameter tuple { , c1, c2, a, b} is formally analyzed using stochastic
process theory. Because the position of particle at each step is stochastic and cannot be
determined directly, its expected value, variance and covariance are investigated instead of
the position itself, and corresponding explicit expression of each particle’s trajectory is
determined. The trajectory analysis leads to a sufficient condition to ensure the convergence
of particle swarm system, which is verified by simulation experiments.  At the same time,
the relationship between convergent speed of particle’s trajectory and parameter sets is
studied. Those results give some hints on how the chosen parameters can influence the
performance of PSO algorithm, and thus parameter selection guideline is given. After that, a
set of suggested parameter { =0.715, c1=c2=1.7} is given, which is compared against three
sets of parameters which are proposed in literatures.

The 12th chapter, “Stochastic Metaheuristics as Sampling Techniques using Swarm
Intelligence”, focuses on stochastic methods, which form the majority of metaheuristics.
Stochastic optimization metaheuristics can be viewed as methods manipulating a sample of
the objective function, with different probabilistic operators. These operators are often met
in several metaheuristics, despite the fact that they are presented as different ones, because
of the metaphoric aspects of the algorithmic idea. The authors propose to consider three 
types of metaheuristics, according to the way they generate the sample: (i) directly; (ii)
explicitly; or (iii) implicitly. The first type uses the objective function as a probability density
function (pdf) to generate the sample, whereas the explicit methods make use of a specific
pdf to do so. Methods of the last type construct an implicit probability density function, they
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are the most known algorithms. The different operators can be classified into three 
archetypal behaviors: diversification, intensification and learning. Moreover, one of the key 
aspects of the metaheuristics is the way these operators are designed. The authors argue that 
most of these algorithms make use of swarm intelligence techniques for their operators. This 
feature is evident for operators specialized in learning.  

The 13th chapter, “Artificial Ants in the Real World: Solving On-line Problems using Ant 
Colony Optimization”, pointed out several new future directions for Ant Colony 
Optimization (AGO) researches including (i) how to adjust parameters which depends on 
the optimization problems; (ii) how to reduce the execution time; (iii) the optimization 
improvement by using incremental local search; and (iv) the aggregation of different and 
new concepts to AGO. 

New Industrial Applications of Swarm Intelligence Techniques 

The 14th chapter, “Application of PSO to design UPFC-based stabilizers”, the objective of 
this chapter is to investigate the potential of particle swarm optimization as a tool in 
designing an unified power flow controller (UPFC) -based stabilizers to improve power 
system transient stability. To estimate the controllability of each of the UPFC control signals 
on the electromechanical modes, singular value decomposition is employed. The problem of 
designing all the UPFC-based stabilizers individually is formulated as an optimization 
problem. Particle swarm optimizer is utilized to search for the optimum stabilizer parameter 
settings that optimize a given objective function. Coordinated design of the different 
stabilizers is also carried out by finding the best parameter settings for more than one 
stabilizer at a given operating condition in a coordinated manner.  

The 15th chapter, “CSV-PSO and Its Application in Geotechnical Engineering”, introduces 
a new algorithm to recognize the parameters for the visco-elastic-brittle-plastic model of 
rock masses using a parallel improved practice swarm optimization (PSO). Using case 
studies, the algorithm is used to recognize parameters of surrounding rocks for a long 
tunnel excavated at depth of 1500-2500 m, which has serious rockburst and water burst 
problem during construction. The analysis on tunnel stability based the recognized 
parameters are good guidance to safe excavation of tunnel and to avoid accident occurrence.   

The 16th chapter, “Power Plant Maintenance Scheduling Using Ant Colony Optimization”, a 
formulation has been developed that utilizes ant colony optimization (ACO) to obtain the 
optimal start times of power plant maintenance tasks of fixed durations and tested on a 21 unit 
benchmark case study. Subsequently, the formulation has been extended to take into account a 
number of practical issues commonly encountered in real world optimization maintenance 
scheduling, such as the shortening and deferral of maintenance tasks, and tested on a 5-unit 
hydropower system.  The above power plant maintenance scheduling optimization 
formulations are further tested on four case studies, including two benchmark case studies 
previously solved using genetic algorithms (GAs) and tabu search (TS), and modified 
versions of the two case studies. In particular, a general heuristic formulation is introduced 
and its effectiveness in solving PPMSO problems is investigated. In addition, the 
performance of ACO-PPMSO when coupled with two local search strategies is investigated. 
The usefulness of both a heuristic formulation and the two local search strategies are 
assessed using two different ACO algorithms, including the Elitist-Ant System (EAS) and 
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Max-Min Ant System (MMAS). A wide range of ACO parameters are considered.  
The 17th chapter, “Particle Swarm Optimization for simultaneous Optimization of Design 
and Machining Tolerances”, proposes a sophisticated constraints handling scheme suitable 
for the optimization mechanism of PSO to solve complicated engineering problems. The issue 
in this work concerns about the application of the constraints handling scheme in tolerances 
optimization. Tolerance assignment in product design and process planning (machining) 
affects both the quality and the cost of the overall product cycle. It is a crucial issue to 
determine how much the tolerance should be relaxed during the assignment process. 
However, this separated approach in tolerance design always suffers from several drawbacks. 
This chapter concerns about the simultaneous tolerance optimization in the concurrent 
engineering context. Generally, this problem is characterized by nonlinear objective, multiple 
independent variables, and tight constraints. To demonstrate the efficiency and effectiveness 
of the proposed approach, an example involving simultaneously assigning both design and 
machining tolerances based on optimum total machining cost is employed. The experimental 
results based on the comparison between PSO and GA show that the new PSO model is a 
powerful tool and can be extended into many other engineering applications. 

The 18th chapter, “Hybrid method for the layout problem”, proposes a method for solving 
a facility layout problems modeled as a Quadratic Assignment Problem (QAP). It is based 
upon ant colony optimization with a Guided Local Search (GLS) procedure to escape from 
local minima. The method is first applied to a particular industrial problem, and then, the 
performance is evaluated on small instances as well as large instances from the public 
library QAPLIB.  

The 19th chapter, “Selection of best alternative process plan in automated manufacturing 

environment: An approach based on particle swarm optimization”, attempts to solve the 
complex Process Plan Selection (PPS) problem using an Intelligent Particle Swarm 
Optimization algorithm with modified concept of Local Repeller (IPSO-LR). This chapter 
formulates the PPS problem in a more justifiable way by the incorporation of a new 

parameter termed as Similarity Attribute ( ë ) that keeps the track of similarity among part 

types to be manufactured. The algorithm emulates the behaviour of particles in a swarm 
and explores the search area by interacting with neighbours and utilizes the successes of 
other particles with regard to reaching towards optima. Robustness and efficacy of the 
proposed strategy is established by solving the problem of real dimensions and comparing 
the results with the established solution methodologies in process planning field.       

The 20th chapter, “Job-shop scheduling and visibility studies with a hybrid ACO 
algorithm”, solves job-shop scheduling problems and compares different types of ACO 
variants, namely Elitist AS (EAS), Ant Colony System (ACS), Rank-based AS (RAS), and 
MIN-MAX AS (MMAS). The post-processing algorithm will be included in the comparisons 
and similar visibility schemes will also be taken into considerations in this new work. The 
same well known job-shop scheduling problem MT10 (Muth-Thompson) will be used when 
evaluating the suitability of the different approaches for solving job-shop scheduling 
problems. 

The 21st chapter, “Particle Swarm Optimization in Structural Design”, presents the 
implementation and application of particle swarm optimization for constrained structural 
design tasks. This chapter starts by presenting a general background of the particle swarm 
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algorithm, including its basic implementation and convergence properties. Subsequently, it
discusses different improvements which can be made to the basic algorithm to handle
constrained optimization problems. The improvements include violated point redirection,
and the use of different constraint handling approaches such as penalty, adaptive penalty,
and augmented Lagrangian formulations. The effect of the swarm setting parameters and 
the usefulness of the constraint handling improvements are shown for classic structural
optimization problems. In the scope of such examples, guidelines for the setting parameters 
to guarantee proper convergence are shown, and the behavior of the constraint handling
approaches are discussed. This chapter finalizes with discussion of outstanding issues
regarding the practical application of particle swarms for constrained optimization in
structures and other fields.

The 22nd chapter, “Reserve-Constrained Multiarea Environmental/Economic Dispatch
Using Enhanced Particle Swarm Optimization”, extends the concept of Multiarea
Economic Dispatch (MAED) into Multiarea Environmental/Economic Dispatch (MAEED)
by taking into account the environmental issue. The objective of MAEED is to dispatch the
power among different areas by simultaneously minimizing the operational costs and
pollutant emissions. In this chapter, the MAEED problem is first formulated and then an
enhanced multi-objective particle swarm optimization (MOPSO) algorithm is developed to
derive its Pareto-optimal solutions. The tie-line transfer limits are considered as a set of
constraints during the optimization process to ensure the system security. Furthermore, the
area spinning reserve requirements are incorporated in order to increase the system
reliability. The reserve sharing scheme is applied to ensure that each area is capable of
satisfying the reserve demand. Simulations based on a four-area test power system are
carried out to illustrate the effectiveness of the proposed optimization procedure as well as
the impacts caused by the different problem formulations.

The 23rd chapter, “Hybrid Ant Colony Optimization for the Channel Assignment Problem
in Wireless Communication”, presents a hybrid ant colony optimization (ACO) algorithm
embodied with the sequential packing heuristic to take advantages of both approaches. The
ACO algorithm provides an elegant framework for maintaining a good balance between
exploration and exploitation during the search, while the sequential packing heuristic is
customized to the channel assignment problem and is helpful in intensifying the promising
area previously found. The performance of the proposed algorithm is evaluated using a set
of benchmark problems named Philadelphia that has been broadly used in the relevant
literature. As such the proposed algorithm can be directly compared to previous
approaches.  

The 24th chapter, “Case Study Based Convergence Behaviour Analysis of ACO Applied to

Optimal Design of Water Distribution Systems”, focuses on the application of ACO to the
optimal design of water distribution systems. The emphasis of this chapter is to: (i) illustrate
an example of how ACO can be applied to a long standing engineering problem; (ii) assess 
the performance of a number of ACO algorithms applied to this problem; and (iii) analyze 
the algorithms performances at a behavioral level to further understand the algorithms 
themselves and the nature of the optimization problem.
The 25th chapter, “A CMPSO algorithm based approach to solve the multi-plant supply
chain problem”, presents the idea behind this proposed CMPSO algorithm which is come
from the limitations associated with the existing PSO algorithm under the discussed
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Max-Min Ant System (MMAS). A wide range of ACO parameters are considered.
The 17th chapter, “Particle Swarm Optimization for simultaneous Optimization of Design
and Machining Tolerances”, proposes a sophisticated constraints handling scheme suitable
for the optimization mechanism of PSO to solve complicated engineering problems. The issue
in this work concerns about the application of the constraints handling scheme in tolerances
optimization. Tolerance assignment in product design and process planning (machining)
affects both the quality and the cost of the overall product cycle. It is a crucial issue to
determine how much the tolerance should be relaxed during the assignment process.
However, this separated approach in tolerance design always suffers from several drawbacks.
This chapter concerns about the simultaneous tolerance optimization in the concurrent
engineering context. Generally, this problem is characterized by nonlinear objective, multiple 
independent variables, and tight constraints. To demonstrate the efficiency and effectiveness
of the proposed approach, an example involving simultaneously assigning both design and 
machining tolerances based on optimum total machining cost is employed. The experimental
results based on the comparison between PSO and GA show that the new PSO model is a 
powerful tool and can be extended into many other engineering applications.

The 18th chapter, “Hybrid method for the layout problem”, proposes a method for solving
a facility layout problems modeled as a Quadratic Assignment Problem (QAP). It is based
upon ant colony optimization with a Guided Local Search (GLS) procedure to escape from
local minima. The method is first applied to a particular industrial problem, and then, the
performance is evaluated on small instances as well as large instances from the public
library QAPLIB.

The 19th chapter, “Selection of best alternative process plan in automated manufacturing

environment: An approach based on particle swarm optimization”, attempts to solve the
complex Process Plan Selection (PPS) problem using an Intelligent Particle Swarm
Optimization algorithm with modified concept of Local Repeller (IPSO-LR). This chapter
formulates the PPS problem in a more justifiable way by the incorporation of a new

parameter termed as Similarity Attribute ( ë ) that keeps the track of similarity among part

types to be manufactured. The algorithm emulates the behaviour of particles in a swarm
and explores the search area by interacting with neighbours and utilizes the successes of
other particles with regard to reaching towards optima. Robustness and efficacy of the
proposed strategy is established by solving the problem of real dimensions and comparing
the results with the established solution methodologies in process planning field.

The 20th chapter, “Job-shop scheduling and visibility studies with a hybrid ACO
algorithm”, solves job-shop scheduling problems and compares different types of ACO
variants, namely Elitist AS (EAS), Ant Colony System (ACS), Rank-based AS (RAS), and
MIN-MAX AS (MMAS). The post-processing algorithm will be included in the comparisons
and similar visibility schemes will also be taken into considerations in this new work. The 
same well known job-shop scheduling problem MT10 (Muth-Thompson) will be used when
evaluating the suitability of the different approaches for solving job-shop scheduling
problems. 

The 21st chapter, “Particle Swarm Optimization in Structural Design”, presents the
implementation and application of particle swarm optimization for constrained structural
design tasks. This chapter starts by presenting a general background of the particle swarm
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algorithm, including its basic implementation and convergence properties. Subsequently, it 
discusses different improvements which can be made to the basic algorithm to handle 
constrained optimization problems. The improvements include violated point redirection, 
and the use of different constraint handling approaches such as penalty, adaptive penalty, 
and augmented Lagrangian formulations. The effect of the swarm setting parameters and 
the usefulness of the constraint handling improvements are shown for classic structural 
optimization problems. In the scope of such examples, guidelines for the setting parameters 
to guarantee proper convergence are shown, and the behavior of the constraint handling 
approaches are discussed. This chapter finalizes with discussion of outstanding issues 
regarding the practical application of particle swarms for constrained optimization in 
structures and other fields.  

The 22nd chapter, “Reserve-Constrained Multiarea Environmental/Economic Dispatch 
Using Enhanced Particle Swarm Optimization”, extends the concept of Multiarea 
Economic Dispatch (MAED) into Multiarea Environmental/Economic Dispatch (MAEED) 
by taking into account the environmental issue. The objective of MAEED is to dispatch the 
power among different areas by simultaneously minimizing the operational costs and 
pollutant emissions. In this chapter, the MAEED problem is first formulated and then an 
enhanced multi-objective particle swarm optimization (MOPSO) algorithm is developed to 
derive its Pareto-optimal solutions. The tie-line transfer limits are considered as a set of 
constraints during the optimization process to ensure the system security. Furthermore, the 
area spinning reserve requirements are incorporated in order to increase the system 
reliability. The reserve sharing scheme is applied to ensure that each area is capable of 
satisfying the reserve demand. Simulations based on a four-area test power system are 
carried out to illustrate the effectiveness of the proposed optimization procedure as well as 
the impacts caused by the different problem formulations.  

The 23rd chapter, “Hybrid Ant Colony Optimization for the Channel Assignment Problem 
in Wireless Communication”, presents a hybrid ant colony optimization (ACO) algorithm 
embodied with the sequential packing heuristic to take advantages of both approaches. The 
ACO algorithm provides an elegant framework for maintaining a good balance between 
exploration and exploitation during the search, while the sequential packing heuristic is 
customized to the channel assignment problem and is helpful in intensifying the promising 
area previously found. The performance of the proposed algorithm is evaluated using a set 
of benchmark problems named Philadelphia that has been broadly used in the relevant 
literature. As such the proposed algorithm can be directly compared to previous 
approaches.  

The 24th chapter, “Case Study Based Convergence Behaviour Analysis of ACO Applied to 

Optimal Design of Water Distribution Systems”, focuses on the application of ACO to the 
optimal design of water distribution systems. The emphasis of this chapter is to: (i) illustrate 
an example of how ACO can be applied to a long standing engineering problem; (ii) assess 
the performance of a number of ACO algorithms applied to this problem; and (iii) analyze 
the algorithms performances at a behavioral level to further understand the algorithms 
themselves and the nature of the optimization problem. 
The 25th chapter, “A CMPSO algorithm based approach to solve the multi-plant supply 
chain problem”, presents the idea behind this proposed CMPSO algorithm which is come 
from the limitations associated with the existing PSO algorithm under the discussed 
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problem scenario. The proposed CMPSO algorithm has been applied in multi-plant supply 
chain environment which has proven to be NP hard problem.  In order to prove the efficacy 
and robustness of the proposed CMPSO algorithm, it has been compared with the existing 
evolutionary algorithms. Furthermore the authors have also shown the statistically 
validation of CMPSO algorithm. The proposed research aims towards exploring the 
applicability of PSO technique under diverse situations by inheriting some new concepts. 
These hybrid PSO techniques (such as CMPSO) could be applied to efficiently solve number 
of computationally complex problems prevailing in manufacturing environment. 

The 26th chapter, “Ant colonies for performance optimization of multi-components 

systems subject to random failures”, focuses on the use of ant colonies to solve optimal 
design problems including (i) the reliability optimization of series systems with multiple-
choice constraints incorporated at each subsystem, to maximize the system reliability subject 
to the system budget; (ii) the redundancy allocation problem (RAP) of binary series-parallel 
systems. This is a well known NP-hard problem which involves the selection of elements 
and redundancy levels to maximize system reliability given various system-level 
constraints. As telecommunications and internet protocol networks, manufacturing and 
power systems are becoming more and more complex, while requiring short developments 
schedules and very high reliability, it is becoming increasingly important to develop 
efficient solutions to the RAP; and (iii) buffers and machines selections in unreliable series-
parallel production lines.  The objective is to maximize production rate subject to a total cost 
constraint. The optimal design problem is formulated as a combinatorial optimization one 
where the decision variables are buffers and types of machines, as well as the number of 
redundant machines.    

The 27th chapter, “Distributed Particle Swarm Optimization for Structural Bayesian 
Network Learning”, presents a recent study of the PSO implementation on a cluster of 
computers using parallel computing tools and algorithms. The PSO is used to discover the 
best Bayesian Network structure for diagnosing faults in airline engines. This chapter 
focuses on PSO implementation as well as Bayesian Network learning from large datasets. 
Learning Bayesian Networks from large datasets is an NP hard problem with disabling 
computational limits.  By applying PSO in a distributed fashion, the computational limits 
can be eased and better networks can be generated.  

I find great pleasure to announce that this book has attracted a great attention and response 
from researchers in the area of Swarm Intelligence.   In particular, these chapters constitute 
state of the art research-based contributes in the field of swarm intelligence with particular 
focus on the ant and particle Swarm Optimization techniques.  I sincerely hope you find the 
chapters as useful and interesting as I did. I look forward to seeing another technological 
breakthrough in this area in the near future. 

Felix T. S. Chan  
Manoj Kumar Tiwari 
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problem scenario. The proposed CMPSO algorithm has been applied in multi-plant supply
chain environment which has proven to be NP hard problem. In order to prove the efficacy
and robustness of the proposed CMPSO algorithm, it has been compared with the existing
evolutionary algorithms. Furthermore the authors have also shown the statistically
validation of CMPSO algorithm. The proposed research aims towards exploring the
applicability of PSO technique under diverse situations by inheriting some new concepts.
These hybrid PSO techniques (such as CMPSO) could be applied to efficiently solve number
of computationally complex problems prevailing in manufacturing environment.
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Chaotic Rough Particle Swarm Optimization 
Algorithms 

Bilal Alatas and Erhan Akin 
Firat University  

Turkey 

1. Introduction  
The problem of finding appropriate representations for various is a subject of continued 
research in the field of artificial intelligence and related fields. In some practical situations, 
mathematical and computational tools for faithfully modeling or representing systems with 
uncertainties, inaccuracies or variability in computation should be provided; and it is 
preferable to develop models that use ranges as values. A need to provide tolerance ranges 
and inability to record accurate values of the variables are examples of such a situation 
where ranges of values must be used (Lingras, 1996). Representations with ranges improve 
data integrity for non-integral numerical attributes in data storage and would be preferable 
due to no lose of information. Rough patterns proposed by Lingras are based on an upper 
and a lower bound that form a rough value that can be used to effectively represent a range 
or set of values for variables such as daily weather, stock price ranges, fault signal, hourly 
traffic volume, and daily financial indicators (Lingras, 1996; Lingras & Davies, 2001). The 
problems involving, on input/output or somewhere at the intermediate stages, interval or, 
more generally, bounded and set-membership uncertainties and ambiguities may be 
overcome by the use of rough patterns. Further developments in rough set theory have 
shown that the general concept of upper and lower bounds provide a wider framework that 
may be useful for different types of applications (Lingras & Davies, 2001). 
Generating random sequences with a long period and good uniformity is very important for 
easily simulating complex phenomena, sampling, numerical analysis, decision making and 
especially in heuristic optimization. Its quality determines the reduction of storage and 
computation time to achieve a desired accuracy. Chaos is a deterministic, random-like 
process found in non-linear, dynamical system, which is non-period, non-converging and 
bounded.  Moreover, it has a very sensitive dependence upon its initial condition and 
parameter (Schuster, 1998). The nature of chaos is apparently random and unpredictable 
and it also possesses an element of regularity. Mathematically, chaos is randomness of a 
simple deterministic dynamical system and chaotic system may be considered as sources of 
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Chaotic sequences have been proven easy and fast to generate and store, there is no need for 
storage of long sequences (Heidari-Bateni & McGillem, 1994). Merely a few functions 
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by changing its initial condition. Moreover these sequences are deterministic and 
reproducible. The choice of chaotic sequences is justified theoretically by their 
unpredictability, i.e., by their spread-spectrum characteristic, and ergodic properties. 
In this chapter, a generalization of particle swarm optimization (PSO) based on rough values 
has been proposed. Furthermore, sequences generated from chaotic systems substitute 
random numbers in all phases of PSO where it is necessary to make a random-based choice. 
By this way it is intended to develop the global convergence and to prevent to stick on a 
local solution. The proposed chaotic rough particle swarm optimization algorithm (CRPSO) 
can complement the existing tools developed in rough computing using chaos. Definitions 
of basic building blocks of CRPSO such as rough decision variable, rough particle, and 
different chaotic maps have been provided. Application of CRPSO in data mining has also 
been performed. 

2. Rough Particle Swarm Optimization (RPSO) 
Objects, instances, or records can be described by a finite set of attributes. The description of 
an object is an n-dimensional vector, where n is the number of attributes that characterizes 
an object. A pattern is a class of objects based on the values of some attributes of objects 
belonging to the class. 
Let x be an attribute in the description of an object and xx  , represent lower and upper 

bounds (endpoints) of x such that x ≤ x  . A rough pattern value of each attribute variable 
consists of lower and upper bounds and can be presented as Eq. (1). It can be 
diagrammatically seen in Figure 5. It is as a closed, compact, and bounded subset of the set 
of real numbers R. 

 ( )xxx ,=  (1) 

 

x

x x
 

Figure 1. A rough value 

If 0 ≤  x  the rough value is called a positive rough value, and we write x > 0. Conversely, if 
x ≤  0 we call the rough value a negative rough value, and write x < 0. Positive or negative 

rough values are the two types of sign coherent rough values. If x  = 0 or x  = 0 we call the 
rough value a zero-bound rough value. A zero-bound positive rough value is called a zero-
positive rough value. Similarly, a zero-bound negative rough value is called a zero-negative 
rough value. A rough value that has both positive and negative values is called a zero-
straddling rough value. These definitions are summed up in Table 1. 
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Definition Condition 
positive rough value (x>0) Iff x >0 
negative rough value (x<0) Iff x <0 

zero-positive rough value (x ≥ 0) Iff x =0 

zero-negative rough value (x ≤ 0) Iff x =0 
zero-straddling rough value (x<>0) Iff x >0 and x <0 

Table 1. Definitions on rough values 

The midpoint (mid), radius (rad), and width of a rough value x are defined as: 

 ( ) ( ) 2/xxxmid +=  (2) 

 ( ) ( ) 2/xxxrad −=  (3) 

 ( ) ( )xxxwidth −= =2rad(x) (4) 

Since x = (mid(x)-rad(x), mid(x)+rad(x)) rough values can also be represented in terms of 
midpoint and radius instead of endpoints. 
Rough values are useful in representing an interval or set of values for an attribute, where 
only lower and upper bounds are considered relevant in a computation. It may be very 
popular for many areas of computational mathematics. For example, by computing with 
rough values, it is possible (with some error) to evaluate a function over an entire interval 
rather than a single value. In other words, if we evaluate a function f(x) over some interval 
of x (e.g. x∈  ( xx  , )), we know what the possibly overestimated bounds of the function are 
within that interval. Since working with rough values always produces exact or 
overestimated bounds, it cannot miss a critical value in a function. Therefore, it is very 
useful for robust root finding, global maximum/minimum finding, and other optimization 
problems. 
In fact, a conventional pattern can be easily represented as a rough pattern by using both 
lower and upper bounds to be equal to the value of the variable.  Some operations on rough 
values can be implemented as: 
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<××
≥××=×=×=×
0,
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cifxcxc
cifxcxccxxxxcxc  (10) 

In fact, these operations are borrowed from the conventional interval calculus (Lingras & 
Davies, 1999). 
The algebraic properties of addition and multiplication operations on rough values have 
been described in Table 2. 

Algebraic 
properties Description Condition 

x+y=y+x 
Commutativity 

xy=yx 
No condition 

(x+y)+z=x+(y+z) 
Associativity 

(xy)z=x(yz) 
No condition 

0+x=x  Neutral 
Element 

1.x=x 
No condition 

x(y+z)=xy+xz If xx =  

x(y+z)=xy+xz If y ≥ 0 and z ≥ 0 (non-negative terms) 

x(y+z)=xy+xz If y ≤ 0 and z ≤ 0 (non-positive terms) 

x(y+z)=xy+xz If x ≥ 0, y =0 and z =0  

(positive factor, zero-straddling terms) 

x(y+z)=xy+xz If x ≤ 0, y =0 and z =0 (negative factor, zero-

straddling terms) 

x(y-z)=xy-xz If y ≥ 0 and z ≤ 0 (non-negative terms variation) 

Distributivity 

x(y-z)=xy-xz If y ≤ 0 and z ≥ 0 (non-positive terms variation) 

Table 2. Algebraic properties 

A rough particle r is string of rough parameters ri: 

 ( )nirr i ≤≤= 1|  (11) 

A rough parameter ri is a pair of conventional parameters, one for lower bound called lower 
parameter ( ir ) and the other for upper bound called upper parameter ( ir ): 
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 ( )iii rrr ,=  (12) 

Figure 2 shows examples of rough particles. 
 

 
Figure 2. Rough particles 

The value of each rough parameter is the range for that variable. The use of range shows 
that the information represented by a rough particle is not precise. Hence, an information 
measure called precision may be useful when evaluating the fitness levels (Lingras, 1996; 
Lingras & Davies, 2001). 
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Here, ( )irRangemax  is the length of maximum allowable range for the value of rough 
parameter ri. 
The conventional parameters and particles used in PSO algorithms are special cases of their 
rough equivalents as shown in Figure 3. For a conventional particle p, precision(p) has the 
maximum possible value of zero. 
 

 
Figure 3. Conventional particle and its rough equivalent 

In boundary constraint problems, it is essential to ensure that values of decision variables lie 
inside their allowed ranges after velocity or position update equations. This technique can 
also be generalized for RPSO algorithm. Constraint that the lower bounds in rough variables 
should be less than the upper bounds is already satisfied with RPSO algorithm. 

3. Chaotic Particle Swarm Optimization (CPSO) 
Generating random sequences with a long period and good uniformity is very important for 
easily simulating complex phenomena, sampling, numerical analysis, decision making and 
especially in heuristic optimization. Its quality determines the reduction of storage and 
computation time to achieve a desired accuracy. Generated such sequences may be 
“random” enough for one application however may not be random enough for another.  
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Chaos is a deterministic, random-like process found in non-linear, dynamical system, which 
is non-period, non-converging and bounded.  Moreover, it has a very sensitive dependence 
upon its initial condition and parameter (Schuster, 1998)]. The nature of chaos is apparently 
random and unpredictable and it also possesses an element of regularity. Mathematically, 
chaos is randomness of a simple deterministic dynamical system and chaotic system may be 
considered as sources of randomness.  
A chaotic map is a discrete-time dynamical system 

 x f x x kk k k+ = < < =1 0 1 0 1 2( ), , , , ,  L  (14) 

running in chaotic state. The chaotic sequence { }  ,2 ,1 ,0: L=kxk can be used as spread-
spectrum sequence as random number sequence. 
Chaotic sequences have been proven easy and fast to generate and store, there is no need for 
storage of long sequences (Heidari-Bateni & McGillem, 1994). Merely a few functions 
(chaotic maps) and few parameters (initial conditions) are needed even for very long 
sequences. In addition, an enormous number of different sequences can be generated simply 
by changing its initial condition. Moreover these sequences are deterministic and 
reproducible.  
Recently, chaotic sequences have been adopted instead of random sequences and very 
interesting and somewhat good results have been shown in many applications such as 
secure transmission (Wong et al., 2005; Suneel, 2006), and nonlinear circuits (Arena et al., 
2000), DNA computing (Manganaro & Pineda, 1997), image processing (Gao et al., 2006). 
The choice of chaotic sequences is justified theoretically by their unpredictability, i.e., by 
their spread-spectrum characteristic and ergodic properties. 
One of the major drawbacks of the PSO is its premature convergence, especially while 
handling problems with more local optima. In this paper, sequences generated from chaotic 
systems substitute random numbers for the PSO parameters where it is necessary to make a 
random-based choice. By this way, it is intended to improve the global convergence and to 
prevent to stick on a local solution. For example, the value of inertia weight is the key factors 
to affect the convergence of PSO. Furthermore the values of random numbers that affect the 
stochastic nature are also key factors that affect the convergence of PSO. In fact, however, 
these parameters can’t ensure the optimization’s ergodicity entirely in phase space, because 
they are random in traditional PSO. 
New approaches introducing chaotic maps with ergodicity, irregularity and the stochastic 
property in PSO to improve the global convergence by escaping the local solutions have 
been provided. The use of chaotic sequences in PSO can be helpful to escape more easily 
from local minima than can be done through the traditional PSO. When a random number is 
needed by the classical PSO algorithm it is generated by iterating one step of the chosen 
chaotic map that has been started from a random initial condition at the first iteration of the 
PSO. New chaos embedded PSO algorithms may be simply classified and described as Table 
3. In this table first column represents the name of PSO. The second column represents 
which values it effect to. And the last column, divided in to three sub columns, represents 
the bounds of the values they can take from the selected chaotic maps. For example CPSO3 
only effects to second acceleration coefficient (c2) and the values taken from the selected 
chaotic map is scaled between 0.5 and 2.5. When rough representation is used these names 
take a “R” for representing the “Rough” after “C” that represents “Chaotic”. Namely when 
rough representation is used for “CPSO1” it is named as “CRPSO1”. 
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Name Effect Scaled Values of Chaotic Maps 

CPSO1 Initial velocities and position Lower bound - upper bound of each 
decision variable 

CPSO2 c1 0.5 – 2.5 - - 
CPSO3 c2 0.5 – 2.5 - - 
CPSO4 c1 and c2 0.5 – 2.5  0.5 – 2.5 - 
CPSO5 r1 0.0 – 1.0 - - 
CPSO6 r2 0.0 – 1.0 - - 
CPSO7 r1 and r2 0.0 – 1.0  0.0 – 1.0 - 
CPSO8 w, r1, and r2 0.0 – 1.0  0.0 – 1.0 0.0 – 1.0 
CPSO9 w 0.0 – 1.0 - - 
CPSO10 w and c1 0.0 – 1.0  0.5 – 2.5 - 
CPSO11 w and c2 0.0 – 1.0  0.5 – 2.5 - 
CPSO12 w, c1, and c2 0.0 – 1.0 0.5 – 2.5 0.5 – 2.5 

Table 3. Characteristics of CPSO algorithms 

Note that CPSO1 can be used together with the other CPSO classes. The chaotic maps that 
generate chaotic sequences in PSO phases used in the experiments are listed below. 
Logistic Map: One of the simplest maps which was brought to the attention of scientists by 
Sir Robert May in 1976 that appears in nonlinear dynamics of biological population 
evidencing chaotic behavior is logistic map, whose equation is the following (May, 1976): 

 Xn+1 = aXn(1 – Xn) (15) 

In this equation, Xn is the n-th chaotic number where n denotes the iteration number. 
Obviously, Xn ∈ (0, 1) under the conditions that the initial X0 ∈ (0, 1) and that X0 ∉ {0.0, 0.25, 
0.5, 0.75, 1.0}. a=4 have been used in the experiments. 
Sinusoidal Iterator: The second chaotic sequence generator used in this paper is the so-
called sinusoidal iterator (Peitgen et al., 1992) and it is represented by 

 )sin(2
1 nnn xaxX π=+  (16) 

When a=2.3 and X0=0.7 it has the simplified form represented by 

 )sin(1 nn xX π=+  (17) 

It generates chaotic sequence in (0, 1)  
Gauss Map: The Gauss map is used for testing purpose in the literature (Peitgen et al., 1992) 
and is represented by: 
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and  z denotes the largest integer less than z and acts as a shift on the continued fraction 
representation of numbers. This map also generates chaotic sequences in (0, 1). 
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Table 3. Characteristics of CPSO algorithms 

Note that CPSO1 can be used together with the other CPSO classes. The chaotic maps that 
generate chaotic sequences in PSO phases used in the experiments are listed below. 
Logistic Map: One of the simplest maps which was brought to the attention of scientists by 
Sir Robert May in 1976 that appears in nonlinear dynamics of biological population 
evidencing chaotic behavior is logistic map, whose equation is the following (May, 1976): 

 Xn+1 = aXn(1 – Xn) (15) 

In this equation, Xn is the n-th chaotic number where n denotes the iteration number. 
Obviously, Xn ∈ (0, 1) under the conditions that the initial X0 ∈ (0, 1) and that X0 ∉ {0.0, 0.25, 
0.5, 0.75, 1.0}. a=4 have been used in the experiments. 
Sinusoidal Iterator: The second chaotic sequence generator used in this paper is the so-
called sinusoidal iterator (Peitgen et al., 1992) and it is represented by 

 )sin(2
1 nnn xaxX π=+  (16) 

When a=2.3 and X0=0.7 it has the simplified form represented by 
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It generates chaotic sequence in (0, 1)  
Gauss Map: The Gauss map is used for testing purpose in the literature (Peitgen et al., 1992) 
and is represented by: 
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and  z denotes the largest integer less than z and acts as a shift on the continued fraction 
representation of numbers. This map also generates chaotic sequences in (0, 1). 
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Zaslavskii Map: The Zaslavskii Map (Zaslavskii, 1978) is an also an interesting dynamic 
system and is represented by: 

 ( ) )1mod(11 +++=+ naYvnXnX  (20) 

 ( ) nY
r

e
n
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−
+=+ π2cos1  (21) 

Its unpredictability by its spread-spectrum characteristic and its large Lyapunov exponent 
are theoretically justified. The Zaslavskii map shows a strange attractor with largest 
Lyapunov exponent for v=400, r=3, a=12. Note that in this case, Yn+1∈ [-1.0512, 1.0512]. 

4. CRPSO in Data Mining 
CRPSO has been used for mining numeric association rules (ARs) from databases in which 
records concerned are categorical or numeric. In a numeric AR, attributes are not limited to 
being Boolean but can be numeric (e.g. age, salary, and heat) or categorical (e.g. sex, brand). 
Thus, numeric ARs are more expressive and informative than Boolean ARs (Ke et al., 2006). 
An example of a numeric AR in an employee database is:  
“Age ∈[25, 36] ∧ Sex=Male⇒ Salary∈[2000-2400] ∧ Have_Car=Yes” 
(Support = 4%, Confidence = 80%). 

In this numeric AR, “Age∈[25, 36] ∧ Sex=Male” is antecedent and “Salary∈[2000-
2400] ∧ Have_Car=Yes” is consequent part. This numeric AR states that “4% (support) of 
the employees are males aged between 25 and 36 and earning a salary of between $2.000 and 
$2.400 and have a car”, while “80 % (confidence) of males aged between 25 and 36 are 
earning a salary of between $2.000 and $2.400 and have a car”. 
Following subsections are description of CRPSO for mining numeric ARs. 

4.1 Particle representation 
In this work, the particles which are being produced and modified along the search process 
represent rules. Each particle consists of decision variables which represent the items and 
intervals. A positional encoding, where the i-th item is encoded in the i-th decision variable 
has been used. Each decision variable has three parts. The first part of each decision variable 
represents the antecedent or consequent of the rule and can take three values: ‘0’, ‘1’ or ‘2’. If 
the first part of the decision variable is ‘0’, it means that this item will be in the antecedent of 
the rule and if it is ‘1’, this item will be in the consequent of the rule. If it is ‘2’, it means that 
this item will not be involved in the rule. All decision variables which have ‘0’ on their first 
parts will form the antecedent of the rule while decision variables which have ‘1’ on their 
first part will form the consequent of the rule. While the second part represents the lower 
bound, the third part represents the upper bound of the item interval. The structure of a 
particle has been illustrated in Figure 4, where m is the number of attributes of data being 
mined (Alatas et al., 2007). 

Variable1 Variable2 ... Variablem 
AC1 LB1 UB1 AC2 LB2 UB2    ACm LBm UBm 

Figure 4. Particle representation 
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Rounding operator that converts a continuous value to an integer value for the first parts of 
this representation by truncation is performed when evaluating.  Rounded variables are not 
elsewhere assigned in order to let CRPSO algorithm work with a swarm of continuous 
variables regardless of the object variable type for maintaining the diversity of the swarm 
and the robustness of the algorithm. 
In the implementation of this particle representation, the second and third part of decision 
variables will be considered as one value, namely rough value. At first glance, this 
representation seems to appropriate for only numeric attributes. However it is very 
straightforward to extend it for discrete, nominal, and numeric attributes. The numeric 
attributes locates at the beginning of the representation and discrete ones at the end. For 
discrete attributes only ACi and Vi where Vi is the value of the attribute are used. Namely, 
instead of LBi and UBi, only Vi is used for values of discrete or nominal attributes. 

4.2 Fitness Function 
The mined rules have to acquire large support and confidence. CRPSO has been designed 
to find the intervals in each of the attributes that conform an interesting rule, in such a 
way that the fitness function itself is the one that decides the amplitude of the intervals. 
That is why, the fitness value has to appropriately shelter these and it has been shown in 
Eq. (22). 

Fitness = 1α × cover (Ant+Cons)+ 2α ×
cover(Ant)

Cons)cover(Ant + + 3α × (NA)- 4α ×

Int- 5α × marked
(22) 

This fitness function has four parts. Here, Ant and Cons are distinct itemsets that are 
involved in the antecedent and consequent part of the rule respectively. cover (Ant+Cons) is 
ratio of the records that contain Ant+Cons to the total number of records in the database. The 
first part can be considered as support of the rule that is statistical significance of an AR. In 
fact, the second part can be considered as confidence value. The third part is used for 
number of attributes in the particle. NA is number of attributes in the database that has not 
‘2’ in first parts of decision variable of particles. The motivation behind this term is to bias 
the system to give more quality information to the final user. The last part of the fitness is 
used to penalize the amplitude of the intervals that conform the itemset and rule. In this 
way, between two particles that cover the same number of records and have the same 
number of attributes, the one whose intervals are smaller gives the best information. Int has 
been computed as shown in Eq. (23) where ampm is the amplitude factor determined for each 
attribute for balancing the effect of Int to the fitness. 

 
m

mm

amp
LBUB −  (23) 

marked is used to indicate that an attribute of a records has previously been covered by a 
rule. Algorithm is forced to mine different rules in later searches by this way. 

1α , 2α , 3α , 4α , 5α   are user specified parameters and one might increase or decrease the 
effects of parts of fitness function by means of these parameters. Int part of the fitness 
calculation concerns particles parts representing numeric attributes. 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

8 

Zaslavskii Map: The Zaslavskii Map (Zaslavskii, 1978) is an also an interesting dynamic 
system and is represented by: 

 ( ) )1mod(11 +++=+ naYvnXnX  (20) 

 ( ) nY
r

e
n
XnY

−
+=+ π2cos1  (21) 

Its unpredictability by its spread-spectrum characteristic and its large Lyapunov exponent 
are theoretically justified. The Zaslavskii map shows a strange attractor with largest 
Lyapunov exponent for v=400, r=3, a=12. Note that in this case, Yn+1∈ [-1.0512, 1.0512]. 

4. CRPSO in Data Mining 
CRPSO has been used for mining numeric association rules (ARs) from databases in which 
records concerned are categorical or numeric. In a numeric AR, attributes are not limited to 
being Boolean but can be numeric (e.g. age, salary, and heat) or categorical (e.g. sex, brand). 
Thus, numeric ARs are more expressive and informative than Boolean ARs (Ke et al., 2006). 
An example of a numeric AR in an employee database is:  
“Age ∈[25, 36] ∧ Sex=Male⇒ Salary∈[2000-2400] ∧ Have_Car=Yes” 
(Support = 4%, Confidence = 80%). 

In this numeric AR, “Age∈[25, 36] ∧ Sex=Male” is antecedent and “Salary∈[2000-
2400] ∧ Have_Car=Yes” is consequent part. This numeric AR states that “4% (support) of 
the employees are males aged between 25 and 36 and earning a salary of between $2.000 and 
$2.400 and have a car”, while “80 % (confidence) of males aged between 25 and 36 are 
earning a salary of between $2.000 and $2.400 and have a car”. 
Following subsections are description of CRPSO for mining numeric ARs. 

4.1 Particle representation 
In this work, the particles which are being produced and modified along the search process 
represent rules. Each particle consists of decision variables which represent the items and 
intervals. A positional encoding, where the i-th item is encoded in the i-th decision variable 
has been used. Each decision variable has three parts. The first part of each decision variable 
represents the antecedent or consequent of the rule and can take three values: ‘0’, ‘1’ or ‘2’. If 
the first part of the decision variable is ‘0’, it means that this item will be in the antecedent of 
the rule and if it is ‘1’, this item will be in the consequent of the rule. If it is ‘2’, it means that 
this item will not be involved in the rule. All decision variables which have ‘0’ on their first 
parts will form the antecedent of the rule while decision variables which have ‘1’ on their 
first part will form the consequent of the rule. While the second part represents the lower 
bound, the third part represents the upper bound of the item interval. The structure of a 
particle has been illustrated in Figure 4, where m is the number of attributes of data being 
mined (Alatas et al., 2007). 

Variable1 Variable2 ... Variablem 
AC1 LB1 UB1 AC2 LB2 UB2    ACm LBm UBm 

Figure 4. Particle representation 

Chaotic Rough Particle Swarm Optimization Algorithms 

 

9 

Rounding operator that converts a continuous value to an integer value for the first parts of 
this representation by truncation is performed when evaluating.  Rounded variables are not 
elsewhere assigned in order to let CRPSO algorithm work with a swarm of continuous 
variables regardless of the object variable type for maintaining the diversity of the swarm 
and the robustness of the algorithm. 
In the implementation of this particle representation, the second and third part of decision 
variables will be considered as one value, namely rough value. At first glance, this 
representation seems to appropriate for only numeric attributes. However it is very 
straightforward to extend it for discrete, nominal, and numeric attributes. The numeric 
attributes locates at the beginning of the representation and discrete ones at the end. For 
discrete attributes only ACi and Vi where Vi is the value of the attribute are used. Namely, 
instead of LBi and UBi, only Vi is used for values of discrete or nominal attributes. 

4.2 Fitness Function 
The mined rules have to acquire large support and confidence. CRPSO has been designed 
to find the intervals in each of the attributes that conform an interesting rule, in such a 
way that the fitness function itself is the one that decides the amplitude of the intervals. 
That is why, the fitness value has to appropriately shelter these and it has been shown in 
Eq. (22). 
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This fitness function has four parts. Here, Ant and Cons are distinct itemsets that are 
involved in the antecedent and consequent part of the rule respectively. cover (Ant+Cons) is 
ratio of the records that contain Ant+Cons to the total number of records in the database. The 
first part can be considered as support of the rule that is statistical significance of an AR. In 
fact, the second part can be considered as confidence value. The third part is used for 
number of attributes in the particle. NA is number of attributes in the database that has not 
‘2’ in first parts of decision variable of particles. The motivation behind this term is to bias 
the system to give more quality information to the final user. The last part of the fitness is 
used to penalize the amplitude of the intervals that conform the itemset and rule. In this 
way, between two particles that cover the same number of records and have the same 
number of attributes, the one whose intervals are smaller gives the best information. Int has 
been computed as shown in Eq. (23) where ampm is the amplitude factor determined for each 
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m
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marked is used to indicate that an attribute of a records has previously been covered by a 
rule. Algorithm is forced to mine different rules in later searches by this way. 

1α , 2α , 3α , 4α , 5α   are user specified parameters and one might increase or decrease the 
effects of parts of fitness function by means of these parameters. Int part of the fitness 
calculation concerns particles parts representing numeric attributes. 
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4.3 Mutation 
Mutation has also been performed in this study. Mutation operator is introduced which 
mutates a single decision vector of a particle with probability pmut. Four possible mutations 
(Mata et al., 2002) have been used for CRPSO algorithms: 
• Shifting the whole interval towards the right: The values in lower and upper bounds 

are increased. 
• Shifting the whole interval towards the left: The values in lower and upper bounds 

are decreased. 
• Incrementing the interval size: The value of lower bound is decreased and the value of 

upper bound is increased. 
• Reducing the interval size: The value of lower bound is increased and the value of 

upper bound is decreased. 
When a particle is chosen to be mutated each decision value is then mutated by one of this 
four mutation types or not with probability l/m, where m is the number of decision value in 
the particle. Particle positions are updated only if the mutated particles have better fitness. 

4.4 Refinement of bound intervals 
At the end of the CRPSO search, a refinement in the attributes bounds that belong to the 
covered rule is performed. This refinement process consists reducing the interval size until 
the support value is smaller than the support of the original rule encoded in the related 
particle. 

4.5. Parameter Control 
The used parameter values for the experiments have been shown in Table 4. Minimum and 
maximum values for velocity and position depend on the bounds of the decision values. 1α , 

2α , 3α , 4α , and 5α  that have been used in fitness values were selected as 0.8, 0.8, 0.05, 0.1, 
and 0.2 respectively. 

 

Parameters Swarm 
size 

No. of 
generations 

Mutation 
Probability 

Values 20 1000 0.5 

Table 4. Used parameters for PSO algorithms 

5. Experimental Results 
Synthetic database is created using the function 2 (Agrawal et al., 1993) to distribute the 
values in records in such a way that they are grouped in pre determined sets. The function 
is shown in Figure 5. The goal is to most accurately find the intervals of each of the 
created regions. Namely, a group is assigned to each record, depending on the values that 
the attributes age and salary take. Figure 6 shows a graphic representation of the 
distribution of 5000 records according to the function where only records belong to Group 
A are presented. 
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If ((age < 40) ∧ (50K ≤ salary ≤ 100K)) ∨  
((40 ≤ age<60) ∧ (75K ≤ salary ≤ 125K)) ∨  

((age ≥ 60) ∧ (25K ≤ salary ≤ 75K))⇒Group A 
else⇒Group B  

Figure 5. Function used for the experiment 

 
Figure 6. Graphic representation of the function for the experiment 

The database has been generated by uniformly distributing the records between the lower 
and upper values of its domains. For attribute salary the extreme values are from 20000 to 
150000 and for attribute age salary the extreme values are from 20 to 80. The third attribute 
for the group has also been added. According to the function almost 37.9% of the records 
belong to Group A. the ARs are those that have the attrşbutes salary and age in the 
antecedent and the attribute Group in the consequent. That is why, representation of the 
particle respects to this case. 
For a fair comparison of the results initial swarm is initialized in a different way. A same 
record of the database is chosen and the rule is generated departing from it, defining for 
each value of vi of the selected attribute ai, lower limit vi-θ and upper limit vi +θ . θ  is a 
percentage of the value vi. In this way the swarm is conditioned to cover at least one record. 
This has not been performed for CRPSO1. 
An intuitive measure to verify the efficacy of the CRPSO algorithms, verifying that the 
mined ARs have larger quality, consists of checking that the intervals of the rules accord to 
the ones synthetically generated. Mean support and confidence values of mined rules from 
rough PSO algorithm are 12.21 and 93.33. Acceleration coefficients have been selected as 2 
and inertia weight has been gradually decreased from 0.9 to 0.4 for CRPSO1 algorithm. 
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This has not been performed for CRPSO1. 
An intuitive measure to verify the efficacy of the CRPSO algorithms, verifying that the 
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The obtained results from the proposed CRPSO algorithms are shown in Tables 5. All of the 
algorithms have mined three rules and mean support and confidence values of these rules 
have been depicted in this table. If the mean support values are multiplied by 3, values close 
to 37.9% may be found, which means that the rules have practically covered all the records. 
Confidence values are also close to 100%, since in the regions there are no records of other 
groups. Interesting result is that, CRPSO7, CRPSO8, and CRPSO12 have the best 
performances. CRPSO7 using Zaslavskii map seems the best PSO among others. The mined 
rules from CRPSO7 using Zaslavskii map is shown in Table 6. 

Logistic Map 

 CRPSO1 CRPSO2 CRPSO3 CRPSO4 CRPSO5 CRPSO6 CRPSO7 CRPSO8 CRPSO9 CRPSO 
10 

CRPSO 
11 

CRPSO 
12 

Sup 
(%) 11.24 10.64 10.96 11.98 10.78 10.80 12.48 12.28 10.82 10.66 11.02 11.54 

Conf
(%) 98.14 98.12 97.01 97.64 97.42 97.96 99.01 98.98 98.42 98.24 98.56 99.08 

Sinusoidal Iterator 

 CRPSO1 CRPSO2 CRPSO3 CRPSO4 CRPSO5 CRPSO6 CRPSO7 CRPSO8 CRPSO9 CRPSO 
10 

CRPSO 
11 

CRPSO 
12 

Sup 
(%) 11.20 11.24 10.86 11.62 10.86 10.96 12.38 12.28 10.58 10.90 11.06 11.24 

Conf
(%) 98.48 98.46 98.08 98.06 97.56 97.02 99.08 98.96 98.54 97.98 99.02 98.96 

Gauss Map 

 CRPSO1 CRPSO2 CRPSO3 CRPSO4 CRPSO5 CRPSO6 CRPSO7 CRPSO8 CRPSO9 CRPSO 
10 

CRPSO 
11 

CRPSO 
12 

Sup 
(%) 11.91 11.05 10.86 10.24 10.84 10.97 12.28 12.23 10.81 10.23 9.99 11.98 

Conf
(%) 97.22 97.62 98.68 98.16 98.26 97.64 99.04 99.06 98.48 97.86 97.56 98.62 

Zaslavskii Map 

 CRPSO1 CRPSO2 CRPSO3 CRPSO4 CRPSO5 CRPSO6 CRPSO7 CRPSO8 CRPSO9 CRPSO 
10 

CRPSO 
11 

CRPSO 
12 

Sup 
(%) 11.05 11.26 10.24 10.22 10.97 10.96 12.62 12.41 10.96 10.82 10.88 11.94 

Conf
(%) 97.56 97.55 97.22 98.08 98.48 98.69 99.65 99.12 98.62 98.86 97.16 98.84 

Table 5. Mean support and confidence values of the rules mined by different CRPSO 
algorithms 

Rule Sup(%) Conf(%) 
If age∈ [20, 40] ∧ salary∈ [50136, 99869]⇒Group A 12.63 98.94 
If age∈ [41, 59] ∧ salary∈ [76779, 12469]⇒Group A 12.62 100 
If age∈ [61, 80] ∧ salary∈ [25440, 73998]⇒Group A 12.61 100 

Table 6. ARs mined by CRPSO7 using Zaslavskii map 

6. Conclusions 
In this chapter chaotic rough PSO, CRPSO, algorithms that use rough decision variables and 
rough particles that are based on notion of rough patterns have been proposed. Different 
chaotic maps have been embedded to adapt the parameters of PSO algorithm. This has been 
done by using of chaotic number generators each time a random number is needed by the 
classical PSO algorithm. Twelve PSO methods have been proposed and four chaotic maps 
have been analyzed in the data mining application. It has been detected that coupling 
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emergent results in different areas, like those of PSO and complex dynamics, can improve 
the quality of results in some optimization problems and also that chaos may be a desired 
process. It has been also shown that, these methods have somewhat increased the solution 
quality, that is in some cases they improved the global searching capability by escaping the 
local solutions. The proposed CRPSO algorithms can complement the existing tools 
developed in rough computing using chaos. These proposed methods seem to provide 
useful extensions for practical applications. More elaborated experiments by using 
optimized parameters may be performed with parallel or distributed implementation of 
these methods. 
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The obtained results from the proposed CRPSO algorithms are shown in Tables 5. All of the 
algorithms have mined three rules and mean support and confidence values of these rules 
have been depicted in this table. If the mean support values are multiplied by 3, values close 
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Confidence values are also close to 100%, since in the regions there are no records of other 
groups. Interesting result is that, CRPSO7, CRPSO8, and CRPSO12 have the best 
performances. CRPSO7 using Zaslavskii map seems the best PSO among others. The mined 
rules from CRPSO7 using Zaslavskii map is shown in Table 6. 

Logistic Map 

 CRPSO1 CRPSO2 CRPSO3 CRPSO4 CRPSO5 CRPSO6 CRPSO7 CRPSO8 CRPSO9 CRPSO 
10 

CRPSO 
11 

CRPSO 
12 

Sup 
(%) 11.24 10.64 10.96 11.98 10.78 10.80 12.48 12.28 10.82 10.66 11.02 11.54 

Conf
(%) 98.14 98.12 97.01 97.64 97.42 97.96 99.01 98.98 98.42 98.24 98.56 99.08 

Sinusoidal Iterator 

 CRPSO1 CRPSO2 CRPSO3 CRPSO4 CRPSO5 CRPSO6 CRPSO7 CRPSO8 CRPSO9 CRPSO 
10 

CRPSO 
11 

CRPSO 
12 

Sup 
(%) 11.20 11.24 10.86 11.62 10.86 10.96 12.38 12.28 10.58 10.90 11.06 11.24 

Conf
(%) 98.48 98.46 98.08 98.06 97.56 97.02 99.08 98.96 98.54 97.98 99.02 98.96 

Gauss Map 

 CRPSO1 CRPSO2 CRPSO3 CRPSO4 CRPSO5 CRPSO6 CRPSO7 CRPSO8 CRPSO9 CRPSO 
10 

CRPSO 
11 

CRPSO 
12 

Sup 
(%) 11.91 11.05 10.86 10.24 10.84 10.97 12.28 12.23 10.81 10.23 9.99 11.98 

Conf
(%) 97.22 97.62 98.68 98.16 98.26 97.64 99.04 99.06 98.48 97.86 97.56 98.62 

Zaslavskii Map 

 CRPSO1 CRPSO2 CRPSO3 CRPSO4 CRPSO5 CRPSO6 CRPSO7 CRPSO8 CRPSO9 CRPSO 
10 

CRPSO 
11 

CRPSO 
12 

Sup 
(%) 11.05 11.26 10.24 10.22 10.97 10.96 12.62 12.41 10.96 10.82 10.88 11.94 

Conf
(%) 97.56 97.55 97.22 98.08 98.48 98.69 99.65 99.12 98.62 98.86 97.16 98.84 

Table 5. Mean support and confidence values of the rules mined by different CRPSO 
algorithms 

Rule Sup(%) Conf(%) 
If age∈ [20, 40] ∧ salary∈ [50136, 99869]⇒Group A 12.63 98.94 
If age∈ [41, 59] ∧ salary∈ [76779, 12469]⇒Group A 12.62 100 
If age∈ [61, 80] ∧ salary∈ [25440, 73998]⇒Group A 12.61 100 

Table 6. ARs mined by CRPSO7 using Zaslavskii map 

6. Conclusions 
In this chapter chaotic rough PSO, CRPSO, algorithms that use rough decision variables and 
rough particles that are based on notion of rough patterns have been proposed. Different 
chaotic maps have been embedded to adapt the parameters of PSO algorithm. This has been 
done by using of chaotic number generators each time a random number is needed by the 
classical PSO algorithm. Twelve PSO methods have been proposed and four chaotic maps 
have been analyzed in the data mining application. It has been detected that coupling 
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emergent results in different areas, like those of PSO and complex dynamics, can improve 
the quality of results in some optimization problems and also that chaos may be a desired 
process. It has been also shown that, these methods have somewhat increased the solution 
quality, that is in some cases they improved the global searching capability by escaping the 
local solutions. The proposed CRPSO algorithms can complement the existing tools 
developed in rough computing using chaos. These proposed methods seem to provide 
useful extensions for practical applications. More elaborated experiments by using 
optimized parameters may be performed with parallel or distributed implementation of 
these methods. 
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1. Introduction 
Discretization of real value attributes (features) is an important pre-processing task in data 
mining, particularly for classification problems, and it has received significant attentions in 
machine learning community (Chmielewski & Grzymala-Busse, 1994; Dougherty et al., 1995; 
Nguyen & Skowron, 1995; Nguyen, 1998; Liu et al., 2002). Various studies have shown that 
discretization methods have the potential to reduce the amount of data while retaining or 
even improving predictive accuracy. Moreover, as reported in a study (Dougherty et al., 
1995), discretization makes learning faster. However, most of the typical discretization 
methods can be considered as univariate discretization methods, which may fail to capture 
the correlation of attributes and result in degradation of the performance of a classification 
model.  
As reported (Liu et al., 2002), numerous discretization methods available in the literatures 
can be categorized in several dimensions: dynamic vs. static, local vs. global, splitting vs. 
merging, direct vs. incremental, and supervised vs. unsupervised. A hierarchical framework 
was also given to categorize the existing methods and pave the way for further 
development. A lot of work has been done, but still many issues remain unsolved, and new 
methods are needed (Liu et al. 2002).  
Since there are lots of discretization methods available, how does one evaluate discretization 
effects of various methods? In this study, we will focus on simplicity based criteria while 
preserving consistency, where simplicity is evaluated by the number of cuts. The fewer the 
number of cuts obtained by a discretization method, the better the effect of that method. 
Hence, real value attributes discretization can be defined as a problem of searching a global 
minimal set of cuts on attribute domains while preserving consistency, which has been 
shown as NP-hard problems (Nguyen, 1998).  
Rough set theory (Pawlak, 1982) has been considered as an effective mathematical tool for 
dealing with uncertain, imprecise and incomplete information and has been successfully 
applied in such fields as knowledge discovery, decision support, pattern classification, etc. 
However, rough set theory is just suitable to deal with discrete attributes, and it needs 
discretization as a pre-processing step for dealing with real value attributes. Moreover, 
attribute reduction is another key problem in rough set theory, and finding a minimal 
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1995), discretization makes learning faster. However, most of the typical discretization 
methods can be considered as univariate discretization methods, which may fail to capture 
the correlation of attributes and result in degradation of the performance of a classification 
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As reported (Liu et al., 2002), numerous discretization methods available in the literatures 
can be categorized in several dimensions: dynamic vs. static, local vs. global, splitting vs. 
merging, direct vs. incremental, and supervised vs. unsupervised. A hierarchical framework 
was also given to categorize the existing methods and pave the way for further 
development. A lot of work has been done, but still many issues remain unsolved, and new 
methods are needed (Liu et al. 2002).  
Since there are lots of discretization methods available, how does one evaluate discretization 
effects of various methods? In this study, we will focus on simplicity based criteria while 
preserving consistency, where simplicity is evaluated by the number of cuts. The fewer the 
number of cuts obtained by a discretization method, the better the effect of that method. 
Hence, real value attributes discretization can be defined as a problem of searching a global 
minimal set of cuts on attribute domains while preserving consistency, which has been 
shown as NP-hard problems (Nguyen, 1998).  
Rough set theory (Pawlak, 1982) has been considered as an effective mathematical tool for 
dealing with uncertain, imprecise and incomplete information and has been successfully 
applied in such fields as knowledge discovery, decision support, pattern classification, etc. 
However, rough set theory is just suitable to deal with discrete attributes, and it needs 
discretization as a pre-processing step for dealing with real value attributes. Moreover, 
attribute reduction is another key problem in rough set theory, and finding a minimal 
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attribute reduction has also been shown as a NP-hard problem (Komorowski et al., 1998). 
Two main approaches to find a minimal attribute reduction can be categorized as 
discernibility functions-based and attribute dependency-based, respectively (Han et al., 
2004). These algorithms, however, suffer from intensive computations of either discernibility 
functions or positive regions. An alternative way to find a minimal attribute reduction is to 
adopt meta-heuristic algorithms, such as genetic algorithm (Wróblewski, 1995), particle 
swarm optimization (Wang et al., 2007), and ant colony algorithm (Jensen & Shen, 2003). To 
our knowledge, there are rare studies about how discretization pre-processing influences 
attribute reduction and how one integrates these two steps into a unified framework. In this 
chapter, we will try to give a systematic view into this problem, and will introduce ant 
colony algorithm to solve it. 
Ant colony algorithm (Colorni et al., 1991; Dorigo et al., 1996) is a kind of meta-heuristic 
algorithms and has been successfully applied to solve many combinatorial optimization 
problems, such as travelling salesman problem (Gambardella & Dorigo, 1995; Dorigo et al., 
1996; Dorigo & Gambardella, 1997; Stützle & Hoos, 1997), sequential ordering problem 
(Gambardella & Dorigo, 2000), generalized assignment problem (Lourenço & Serra, 2002), 
scheduling problem (Stützle, 1998; Merkle et al., 2002; Merkle & Middendorf, 2003), network 
routing problem (Schoonderwoerd et al., 1996; Di Caro & Dorigo, 1998; ), set covering 
problem (Hadji et al., 2000; Rahoual et al., 2002; Lessing et al., 2004), etc. Great achievements 
of ant colony algorithm have attracted lots of attentions from different disciplinary 
researchers, and its application fields have been expanded from combinatorial optimization 
to continuous optimization problems, single-objective problems to multi-objective problems, 
static problems to dynamic problems, etc.. In this chapter, we just focus on the discrete style 
of ant colony algorithm, and it is reconstructed to be adapted to simultaneously solve real 
value attribute discretization and attribute reduction.  
This chapter is structured as follows. In section 2, preliminaries of rough set theory will be 
shortly described firstly, secondly the mathematical definition of real value attribute 
discretization and attribute reduction will be introduced, and then the relationship between 
discretization and reduction will be discussed and a unified framework will be proposed by 
introducing a weight parameter. The relationship between the unified framework and set 
covering problems will be analyzed in section 3. A detailed implementation of ant colony 
algorithm for simultaneously solving attribute discretization and reduction will be 
presented in section 4. The experimental results and discussion will be given in sections 5. 
Section 6 will make conclusions and provide future research directions. 

2. Rough set theory, discretization and reducts 
2.1 Preliminaries of rough set theory  
In rough set theory, table, also called information system, is often used to organize sample 
data, where rows and columns of a table denote objects and attributes, respectively. If 
attributes in a table consist of conditional attributes and decision attribute, the information 
system will be called a decision table. The mathematical definition of an information system 
and a decision table can be shown as follows. 
Information system and decision table  (Komorowski et al., 1998) : an information system 
is a pair ),( AU=Α , where U  is a non-empty finite set of objects called a universe and A  is 
a non-empty finite set of attributes such that  aVUa →:  for every Aa∈ . The set aV  is called 
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the value set of a . A decision table is an information system of the form )}{,( dAU U=Α , 
where Ad ∉  is the decision attribute. The elements of A  are called conditional attributes. 
Let },,{ 1 nxxU L= , )}(,,2,1{ drVd L= , and },,{ 1 maaA L= , where n , )(dr  and m  are the 
numbers of samples, decision classes, and attributes, respectively. The decision attribute d  
determines a partition },,{ )(1 drXX L  of the universe U , where })(:{ kxdUxX k =∈=  for 

)(,,1 drk L= . The set kX  is called the thk  decision class of Α . 
Intuitively, a decision table Α  is considered consistent if the following statement is satisfied.  
If Uxx ∈∀ 21,  and )()( 21 xdxd ≠ , then Aa∈∃ , )()( 21 xaxa ≠ . 
In other words, for any two objects with different decision class, there at least exists one 
attribute to discern them. In this study, we assume that the decision table Α  is consistent, if 
not specifically denoted. 
Before the discussion of attribute reduction, the notion of relative indiscernibility relation 
based on decision table Α  is briefly introduced as follows. 
Relative indiscernibility relation: for any subset of attributes AB ⊆ , an equivalence 
relation called the relative B -indiscerniblity relation, denoted by ),( dBIND , is defined by 

))}()(())()((:),{(),( jBiBjiji xInfxInfxdxdUUxxdBIND =∨=×∈= . 
where }for:))(,{()( UxBaxaaxInfB ∈∈=  is called B -information function. For any two 
objects ix  and jx  satisfying relation ),( dBIND  are either belonging to the same decision 
class, or having the same value for every attribute a  in subset B . Hence, if any objects ix  
and jx  fitting relation ),( dAIND  are belonging to the same class, the decision table Α  is 
considered consistent. 

2.2 Reduct and Discretization  
In this subsection, the notions of reduct and discretization will be firstly introduced, and 
then the relationship between them will be discussed based on the notion of a distinction 
table. 
An attribute Ba∈  is relative dispensable in a subset of attributes AB ⊆ , if 

),()},{( dBINDdaBIND =− , otherwise attribute a  is relative indispensable. It means that 
attribute a  can not influence the indiscernibility relation if it is dispensable. 
A reduct of decision table Α  is a minimal set of attributes AB ⊆  such that 

),(),( dAINDdBIND =  (Komorowski et al., 1998). In other words, a reduct is a minimal set of 
attributes from A  that preserves the partitioning of the universe and hence the ability to 
perform classifications as the whole attribute set A  does. Meanwhile, the minimal set of 
attributes AB ⊆  means that every attribute Ba∈  is indispensable with respect to B . 
Now, a formal description of the real value discretization can be presented as follows 
(Komorowski et al., 1998). 
We assume ℜ⊂∈ ),[ aaa rlV  to be a real interval for any Aa∈ and a given decision table 

)}{,( dAU U=Α  to be consistent. Any pair of ),( ca  where Aa∈  and ℜ∈c  will be called a 
cut on aV . For Aa∈ , any set of cuts: )},(,),,{( 1

a
k

a
a
caca L  on aV  defines a partition aP  of aV  

into subintervals expressed by )},[,),,[),,{[ 12110
a
k

a
k

aaaa
a aa

cccccc += LP , where 
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introducing a weight parameter. The relationship between the unified framework and set 
covering problems will be analyzed in section 3. A detailed implementation of ant colony 
algorithm for simultaneously solving attribute discretization and reduction will be 
presented in section 4. The experimental results and discussion will be given in sections 5. 
Section 6 will make conclusions and provide future research directions. 
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In rough set theory, table, also called information system, is often used to organize sample 
data, where rows and columns of a table denote objects and attributes, respectively. If 
attributes in a table consist of conditional attributes and decision attribute, the information 
system will be called a decision table. The mathematical definition of an information system 
and a decision table can be shown as follows. 
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is used to represent the set of cuts on aV  for convenience, which can uniquely define the 
partition aP . Hence any family }:{ Aaa ∈= PP  is called a partition on decision table Α  and 
can be represented by aAa C∈= UP . 
Moreover, according to the notion of the set of cuts, a new decision table )( PP }{dU,A U=Α  
can be defined, where }},,0{,,),[)()(:{ 1 a

a
i

a
i kiUxccxaixaaA L=∈∈⇔== +

PPP . 
Using meta-heuristic algorithms for real value attribute discretization, usually one needs to 
identify an initial set of cuts first and then screen these cuts. In this paper, each cut in an 
initial set of cuts is also called candidate cut. Assuming an arbitrary attribute Aa∈  defines a 
sequence of its different attribute values ( a

n
a

a
xx <<L1 ) and the length of this sequence is 

denoted by an  ( nna ≤ ), the initial set of cuts on aV can be represented by 

}
2
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2

{ 121
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xxxxC

++= −
L  which includes 1−an  elements, and the initial set of cuts on 

decision table Α  will be aAa C∈= UP . Then, a new decision table )( PP }{dU,A U=Α  can be 
established. It should be noticed that the new decision table with the initial set of cuts is 
consistent if the original decision table Α  is consistent. 
In order to select cuts from the initial set of cuts, the effect of each cut on classification 
performance should be analyzed to construct a distinction table DT . Each pair of two 
objects with different decision classes correspond to a row in distinction table, so the total 

number of rows in a distinction table is ∑ ∑
−

= +=

=
1)(

1

)(

1

)()(
dr

p

dr

pq
qp XcardXcardN , where  )( pXcard  

denotes the number of objects in decision class p . Each cut from the initial set of cuts 
corresponds to a column in distinction table, so the total number of columns is 

∑
∈

−=
Aa

anM )1( . Let the thi  row and thj  column of a distinction table represent one pair of 
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entry value of the distinction table corresponding to the thi  row and thj  column, denoted by 
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Obviously, a decision table is considered consistent if each row of the distinction table has at 
least one entry with the value of 1, which also means that there at least exists one 
discernable cut for any pair of objects from different decision classes.  
According to the definition of distinction table, a real value attribute discretization problem 
can be equivalently represented as searching a minimal set of cuts },,1{ MJ L⊆  such that 
for any row },,1{ Ni L∈  of the decision table, there at least exists one cut Jj∈  whose value 
of ijdt  is equal to 1.  That is to say the minimal set of cuts J  from the whole initial set of cuts 
can preserve the consistence of decision table. Correspondingly, an attribute reduction 
problem can also be represented as searching the set of cuts },,1{ MJ L⊆  corresponding to 
the minimal number of attributes such that for any row },,1{ Ni L∈ of the decision table, 
there at least exists one cut Jj∈  whose value of ijdt  is equal to 1.  
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According to the above definitions, it is concluded that both the real value attribute 
discretization and reduction can be defined as finding a minimal set of cuts from the initial 
set of cuts, and the only difference between them is the computation of objective function. 
Hence, let )(1 Jf  and )(2 Jf  denote the number of cuts in J  and the number of attributes 
corresponding to the set of cuts J , respectively. Consequently, a weight parameter w  is 
introduced to balance these two objective functions, and thus both the real value attribute 
discretization and reduction can be further syncretised into a unified framework, which can 
be described as equation (1). 
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where the thi  constraint, ∑
∈

≥
Jj

ijdt 1 , represents that there at least exists a cut in J  that can 

discern the pair of two objects in the thi  row. This insures the consistence of the obtained 
reduct decision table with regard to J . 
In general, the weight parameter w  is dependent on a practical problem and user’s 
preference, so it is usually determined empirically. However, the above problem can also be 
described as a bi-objective optimization problem, which can be further solved by multi-
objective optimization methods to provide a Pareto-optimal solution set. Thus the decision 
maker can decide to choose one Pareto-optimal solution based on his preference and 
justification. In this study, we just focus on a single objective optimization problem through 
introducing the weight parameter w . Moreover, the costs of attributes may be different, so 
the objective function in equation (1) should be modified while taking account of the costs of 
attributes. An attribute associated with lower cost will be favored. The proposed algorithm 
of this study is able to deal with different costs of attributes, but we just focus on the 
problem with the same costs of all attributes in the case studies of this study. 

3. Set covering problem 
The set covering problem (SCP) is an NP-hard problem combinatorial optimization problem 
that arises in a large variety of practical applications, such as resource allocation (Revelle, et 
al., 1970), airline crew scheduling (Housos & Elmoth, 1997), and so on. In this subsection, we 
study the relationship between SCP and the unified problem shown as equation (1), which 
can help us to design a more efficient ant colony algorithm profiting from the existing 
different heuristic and local search methods for solving SCP.  
Given a zero-one matrix S  with m  rows and n  columns, let jcost  be the cost of column j , 

where nj ,,1L= . The thi  row is said to be covered by column j  if the entry ijs  is equal to 1. 
The problem of set covering is to find a subset of columns with a minimal cost to cover all 
rows, and can be formulated as equation (2), where  T

1 ],,[ nxx L=x  denotes a solution of 
SCP and jx  denotes the thj  element of the solution x  indicating whether column j  
belongs to the solution based on the value of jx  (“1”, belonging while “0”, not belonging). 
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According to the above definitions, it is concluded that both the real value attribute 
discretization and reduction can be defined as finding a minimal set of cuts from the initial 
set of cuts, and the only difference between them is the computation of objective function. 
Hence, let )(1 Jf  and )(2 Jf  denote the number of cuts in J  and the number of attributes 
corresponding to the set of cuts J , respectively. Consequently, a weight parameter w  is 
introduced to balance these two objective functions, and thus both the real value attribute 
discretization and reduction can be further syncretised into a unified framework, which can 
be described as equation (1). 
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that arises in a large variety of practical applications, such as resource allocation (Revelle, et 
al., 1970), airline crew scheduling (Housos & Elmoth, 1997), and so on. In this subsection, we 
study the relationship between SCP and the unified problem shown as equation (1), which 
can help us to design a more efficient ant colony algorithm profiting from the existing 
different heuristic and local search methods for solving SCP.  
Given a zero-one matrix S  with m  rows and n  columns, let jcost  be the cost of column j , 

where nj ,,1L= . The thi  row is said to be covered by column j  if the entry ijs  is equal to 1. 
The problem of set covering is to find a subset of columns with a minimal cost to cover all 
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If the distinction table DT  is regarded as matrix S , the unified problem of simultaneous 
real value attribute discretization and reduction shown as equation (1) can be handled as 
SCP, whose main goal is also to find a subset of columns via a minimal objective function to 
cover all rows. The only minor difference between them is the definition of the objective 
function. Hence, the existing heuristic methods for solving SCP should be modified to be 
suited to solve the unified problem shown as equation (1). 
Now, we will reformulate the unified problem in equation (1) based on the description form 
of SCP, as shown in equation (3). In this study, we assume the candidate cuts belonging to 
the same attribute are arranged together. 
 

 

[ ] [ ]

njx

mixs

Ll

ln

l
Indexx

y

ycostf

xf

fff

j

n

j
jij

l

q
q

n

p
pIndex

l

L

l
ll

n

j
j

ww

l

,,1,}1,0{

,,1,1

,,1
otherwise,0

1,

1,0
,1if,1

.t.s

)(

)(

)()()(min

1

1

1
1

1
2

1
1

1
21

L

L

L

=∈

=≥∑

=
















>∑

=
=≥∑

=

∑ ⋅=

∑=

+=

=

−

=
=

+

=

=

−

x

x

xxx

 (3) 

 
where L  is the number of attributes; ln  is the number of candidate cuts on the thl attribute 

domain; ∑
=

=
L

l
lnn

1

 is the total number of candidate cuts on the whole attributes domain, also 

called the number of columns; ly  is the indicator whether the thl  attribute is selected with 
regard to solution x ; m  is the number of rows. In the case studies, we assume costs of all 
attributes to be the same. 
Up to now, the relationship between SCP and the unified framework is analyzed, and the 
similarities and differences between them are discussed. In the next section, we will propose 
a novel ant colony algorithm for solving the problem shown in equation (3).  
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4. Ant colony algorithm 
For simultaneously solving real value attribute discretization and reduction shown as 
equation (3), solution construction and pheromone update are two key issues for an ant 
colony algorithm. In the solution construction step, heuristic information should be 
reasonably designed to improve the optimization efficiency. Moreover, we will also 
introduce a local search strategy to improve the search speed of algorithm. 

4.1 Fundamental notions 
In this subsection, we will introduce some notions which will be used for the description of 
the algorithm. 
Search domain, feasible domain and feasible solution: a search domain consists of n2  
solutions, where n  denotes the total number of candidate cuts on the whole attributes 
domain; those solutions in search domain meeting the constraints of equation (3) are 
denoted as feasible solutions, and all feasible solutions form a feasible domain. 
Cover: if ijs  is equal to 1, we can say the thi  row is covered by the thj  column. Let 

∑
=

=
m

i
ijj s

1

κ  denote the number of rows covered by the thj  column. In general, the larger the 

value of jκ , the more important the thj  column.  
Node, taboo node set and feasible node set: every element of set },,1{ nL  is called a node, 
let jnode  denote the thj  node, where nj ,,1L= . Let ktabu  denote the set of nodes that has 

been visisted by the thk  ant and be called taboo node set which is set equal to null initially. 
Let kallow  denote the set of nodes that remain to be visisted by the thk  ant and be called 
feasible node set which is set equal to an all columns set },,1{ nL  initially. In nature, the 
solution construction is a process of iteratively selecting unvisited node from kallow  until a 
feasible solution is constructed. From another point of view, if ktabu  covers all rows, the 
solution construction ends and ktabu  is a feasible solution. 
Covered rows set and uncovered rows set: Let }1,|{ =∈∃= ijk stabujiCRS  and 

CRSmUCRS \},,1{ L=  denote the set of covered rows and that of uncovered rows by ktabu  
respectively. During the process of solution construction, the number of covered rows will 
increase, and the number of uncovered rows will decrease. The solution construction will 
continue until the set of uncovered rows UCRS   is equal to null set.  
Pheromone: let )(tjτ  denote the quantity of pheromone defined in the thj  column at time t . 
At time 0, all columns’ pheromones 0τ  are set equal to 0.5.  
Heuristic information: the heuristic information adopted in this study differs from that in 
other combinatorial optimization problems. Generally, in other combinatorial optimization 
problems, such as travelling salesman problem, the heuristic information is calculated 
before the solution construction step, while in this study, it is dynamically calculated during 
solution construction. Let jη  denote the heuristic information in the thj  column, where 

kallowj∈ . In this study, the calculation of heuristic information not only depends on cut 
infomation (which is usually adopted by the existing heuristic methods in literatures), but 
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SCP, whose main goal is also to find a subset of columns via a minimal objective function to 
cover all rows. The only minor difference between them is the definition of the objective 
function. Hence, the existing heuristic methods for solving SCP should be modified to be 
suited to solve the unified problem shown as equation (1). 
Now, we will reformulate the unified problem in equation (1) based on the description form 
of SCP, as shown in equation (3). In this study, we assume the candidate cuts belonging to 
the same attribute are arranged together. 
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where L  is the number of attributes; ln  is the number of candidate cuts on the thl attribute 
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 is the total number of candidate cuts on the whole attributes domain, also 

called the number of columns; ly  is the indicator whether the thl  attribute is selected with 
regard to solution x ; m  is the number of rows. In the case studies, we assume costs of all 
attributes to be the same. 
Up to now, the relationship between SCP and the unified framework is analyzed, and the 
similarities and differences between them are discussed. In the next section, we will propose 
a novel ant colony algorithm for solving the problem shown in equation (3).  
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colony algorithm. In the solution construction step, heuristic information should be 
reasonably designed to improve the optimization efficiency. Moreover, we will also 
introduce a local search strategy to improve the search speed of algorithm. 
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In this subsection, we will introduce some notions which will be used for the description of 
the algorithm. 
Search domain, feasible domain and feasible solution: a search domain consists of n2  
solutions, where n  denotes the total number of candidate cuts on the whole attributes 
domain; those solutions in search domain meeting the constraints of equation (3) are 
denoted as feasible solutions, and all feasible solutions form a feasible domain. 
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Node, taboo node set and feasible node set: every element of set },,1{ nL  is called a node, 
let jnode  denote the thj  node, where nj ,,1L= . Let ktabu  denote the set of nodes that has 

been visisted by the thk  ant and be called taboo node set which is set equal to null initially. 
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feasible node set which is set equal to an all columns set },,1{ nL  initially. In nature, the 
solution construction is a process of iteratively selecting unvisited node from kallow  until a 
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solution construction ends and ktabu  is a feasible solution. 
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respectively. During the process of solution construction, the number of covered rows will 
increase, and the number of uncovered rows will decrease. The solution construction will 
continue until the set of uncovered rows UCRS   is equal to null set.  
Pheromone: let )(tjτ  denote the quantity of pheromone defined in the thj  column at time t . 
At time 0, all columns’ pheromones 0τ  are set equal to 0.5.  
Heuristic information: the heuristic information adopted in this study differs from that in 
other combinatorial optimization problems. Generally, in other combinatorial optimization 
problems, such as travelling salesman problem, the heuristic information is calculated 
before the solution construction step, while in this study, it is dynamically calculated during 
solution construction. Let jη  denote the heuristic information in the thj  column, where 

kallowj∈ . In this study, the calculation of heuristic information not only depends on cut 
infomation (which is usually adopted by the existing heuristic methods in literatures), but 
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also depends on extra attribute information. The concrete implementation for each solution 
construction step by ant k is shown below. 
1. For each cut or column, i.e. kallowj∈ , determine which attribute it belongs to, for 

example, assume the thj  column belong to  the thl  attribute. 
2. Obtain the value of lCN , which denotes the number of selected candidate cuts of the thl  

attribute during solution contruction. 
3. Calculate extra attribute information lν , defined by equation (4). 
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where c (c>1) is a prescribed parameter. It means that if none candidate cuts of thl  attribute 
are selected or the number of selected cuts of thl  attribute is larger than maxCN , the value of 

lν  is set equal to lcost/1 , otherwise, it is set equal to lcostc / . On the one hand, we tend to 
choose a candidate cut of an attribute whose several candidate cuts have been selected 
during solution construction, because this may help decrease the number of selected 
attributes; on the other hand, we would not like to choose too many candidate cuts of an 
attribute, because this is not conducive to understanding the decision model and could 
decreases the robustness of the decision model as well. Hence, a prescribed parameter, 

maxCN , which denotes the maximum number of selected candidate cuts for each attribute, is 
introduced to decrease the probability of the above phenomenon. In this study, the values of 
c  and maxCN  are empiricallly set equal to 4 and 5, respectively. 
4. Calculate cut information jκ  defined by equation (5), which denotes the number of 

rows covered by the thj  column from the set of uncovered rows UCRS . 

 ∑
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=
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ijj sκ , kallowj∈  (5) 

5. Calculate the heuristic information jη  defined by equation (6), using cut information 
and extra attribute information.  

 ljj νκη ⋅= , kallowj∈  (6) 

6. Nomalize the heuristic information via equation (7). 
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Selection probability: in the solution construction step, let ),( tjpk  denote the selection 
probability of column j  by the thk  ant at time t , and be expressed by equation (8). 
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where β  is a heuristic factor, which determines the relative importance of pheromone 
versus heuristic information. In this study, it is set equal to 2. 

4.2 Solution construction 
Unlike the solution construction of travelling salesman problems, where each ant must visit 
each city node, in this study, each ant will end the solution construction when all rows are 
covered by the selected column nodes.  
The detailed implementation of solution construction by ant k  is shown as follows. 
Step1 set Φ=ktabu , },,1{ nallowk L= , Φ=CRS , },,1{ mUCRS L= , and 0=lCN  for all 

},,1{ Ll L∈ ; 
Step2 calculate the heuristic information jη  based on section 4.1, where kallowj∈ ;  
Step3 generate a uniform random number r  in [0, 1]. If the value of r  is less than 0q , the 
next node u  is selected by equation (9); otherwise, the next node u  is selected based on the 
probability shown as equation (8). It should be noticed that 0q  can be considered as an 
exploitation probability factor and is used to control how strongly an ant exploit 
deterministically the combined past search experience and heuristic information. By 
adjusting parameter 0q , we can balance the trade-off between exploitation and biased 
exploration.  

 }][)({maxarg βητ jj
allowj

tu
k

∗=
∈

 (9) 

Step4 implement local pheromone update operation for column u by using equation (10). 

 0)()1()( ξττξτ +−= tt uu  (10) 

where ξ , 10 << ξ , is a parameter called local pheromone update strength factor. The effect 
of local pheromone update is to make the desirability of columns change dynamically: each 
time when an ant choose a column, this column becomes slightly less desirable for the other 
ants. Hence, this can prevent ants from converging to a common solution and help increase 
exploration. 
Step5 determine which attribute the selected node u  belongs to If this node belongs to 
the thl  attribute, set 1+= ll CNCN , }{utabutabu kk U= , }{\ uallowallow kk = , 

},,1|{ ujUCRSisiCRSCRS ij =∈== U , and },,1|{\ ujUCRSisiUCRSUCRS ij =∈== ; 
Step6 if UCRS  is not a null set, go back to Step2; otherwise, solution construction is 
finished, and return a feasible solution ktabu . 

4.3 Redundant columns remove 
After a feasible solution ktabu  is constructed, all redundant columns will be removed from 
the solution. Column j  is considered redundant if }{\ jtabuk  is also a feasible solution. Let 
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also depends on extra attribute information. The concrete implementation for each solution 
construction step by ant k is shown below. 
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are selected or the number of selected cuts of thl  attribute is larger than maxCN , the value of 

lν  is set equal to lcost/1 , otherwise, it is set equal to lcostc / . On the one hand, we tend to 
choose a candidate cut of an attribute whose several candidate cuts have been selected 
during solution construction, because this may help decrease the number of selected 
attributes; on the other hand, we would not like to choose too many candidate cuts of an 
attribute, because this is not conducive to understanding the decision model and could 
decreases the robustness of the decision model as well. Hence, a prescribed parameter, 

maxCN , which denotes the maximum number of selected candidate cuts for each attribute, is 
introduced to decrease the probability of the above phenomenon. In this study, the values of 
c  and maxCN  are empiricallly set equal to 4 and 5, respectively. 
4. Calculate cut information jκ  defined by equation (5), which denotes the number of 

rows covered by the thj  column from the set of uncovered rows UCRS . 
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5. Calculate the heuristic information jη  defined by equation (6), using cut information 
and extra attribute information.  
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6. Nomalize the heuristic information via equation (7). 
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Selection probability: in the solution construction step, let ),( tjpk  denote the selection 
probability of column j  by the thk  ant at time t , and be expressed by equation (8). 
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where β  is a heuristic factor, which determines the relative importance of pheromone 
versus heuristic information. In this study, it is set equal to 2. 

4.2 Solution construction 
Unlike the solution construction of travelling salesman problems, where each ant must visit 
each city node, in this study, each ant will end the solution construction when all rows are 
covered by the selected column nodes.  
The detailed implementation of solution construction by ant k  is shown as follows. 
Step1 set Φ=ktabu , },,1{ nallowk L= , Φ=CRS , },,1{ mUCRS L= , and 0=lCN  for all 

},,1{ Ll L∈ ; 
Step2 calculate the heuristic information jη  based on section 4.1, where kallowj∈ ;  
Step3 generate a uniform random number r  in [0, 1]. If the value of r  is less than 0q , the 
next node u  is selected by equation (9); otherwise, the next node u  is selected based on the 
probability shown as equation (8). It should be noticed that 0q  can be considered as an 
exploitation probability factor and is used to control how strongly an ant exploit 
deterministically the combined past search experience and heuristic information. By 
adjusting parameter 0q , we can balance the trade-off between exploitation and biased 
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Step4 implement local pheromone update operation for column u by using equation (10). 

 0)()1()( ξττξτ +−= tt uu  (10) 

where ξ , 10 << ξ , is a parameter called local pheromone update strength factor. The effect 
of local pheromone update is to make the desirability of columns change dynamically: each 
time when an ant choose a column, this column becomes slightly less desirable for the other 
ants. Hence, this can prevent ants from converging to a common solution and help increase 
exploration. 
Step5 determine which attribute the selected node u  belongs to If this node belongs to 
the thl  attribute, set 1+= ll CNCN , }{utabutabu kk U= , }{\ uallowallow kk = , 

},,1|{ ujUCRSisiCRSCRS ij =∈== U , and },,1|{\ ujUCRSisiUCRSUCRS ij =∈== ; 
Step6 if UCRS  is not a null set, go back to Step2; otherwise, solution construction is 
finished, and return a feasible solution ktabu . 

4.3 Redundant columns remove 
After a feasible solution ktabu  is constructed, all redundant columns will be removed from 
the solution. Column j  is considered redundant if }{\ jtabuk  is also a feasible solution. Let 
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∈ ijCoverij ωσ  represent an associate variable to judge whether column j  is redundant, 

where ktabuj∈ , }1|{)( == ijsijCover  denotes the subset of rows covered by column j , and 

iω  is the number of selected columns covering row i . It should be noticed that column j  is 
redundant if and only if 0>jσ .  
If there is only one redundant column, it is easy to remove this column from the solution. 
However, if there are several redundant columns, we will remove the redundant column 
step by step until there is none redundant column. The detailed implementation is shown as 
follows. 
Step1 calculate the value of jσ , where ktabuj∈ , and determine the set of redundant 
columns, }0|{ >= jjRCS σ . If RCS  is equal to null set, stop; otherwise, go to Setp2; 
Step2 for each column RCSj∈ , determine which attribute it belongs to. And also let RAS  
denote the subset of attributes at least one of whose selected candidate cuts is redundant; 
Step3 calculate the value of lCN  defined in subsection 4.1, where RASl∈ , and sort them by 
ascending. If the minimal value is equal to 1, go to Step4; otherwise, go to Step5; 
Step4 find the subset of attributes minRAS with minimal value lCN  from RAS . If there exist 
several attributes with the same largest cost in minRAS , randomly remove one column which 
belongs to one of attributes in minRAS ; otherwise, remove the column corresponding to the 
largest attribute cost. Set }{\ jtabutabu kk = , and go back to Step1; 
Step5 find the subset of attributes maxRAS  with maximal value lCN  from RAS . If there exist 
several attributes with the same largest cost in maxRAS , randomly remove one column which 
belongs to one of attributes in maxRAS ; otherwise, remove the column with largest 
corresponding attribute cost. Set }{\ jtabutabu kk = , and go back to Step1. 
Based on the above discussion about the redundant column removal, it should be noticed 
that the goal of Step4 is to decrease the number of attributes in the final solution while 
taking account of the costs of attributes; moreover, the goal of Step5 is conducive to creating 
a final decision model with smaller number of cuts on each attribute domain. 

4.4 Local search 
To improve the solution quality and global convergence speed, a simple local search 
procedure is applied after solution construction. The introduced local search consists of two 
phases, removing columns and adding columns.  
In the phase of removing columns, a number of columns determined by a user-defined 
parameter λ , 10 << λ , are removed from the constructed feasible solution. However it 
may result in the infeasibility of a new partial solution because some rows will not be 
covered. The parameter λ  is used to control how many columns will be removed from the 
solution ktabu , and the new partial solution new

ktabu  consists of ( ))1(|| λ−×ktabuceil  
columns, where || ktabu  denotes the number of columns in set ktabu , ceil  denotes a 
function of round an element to the nearest integer. 
In the phase of adding columns, firstly, a size reduction problem is constructed, which is 
based on the uncovered rows and the columns that could cover these rows, and then this 
size reduction problem is solved by a greedy algorithm based on the heuristic information 
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discussed in subsection 4.1. The column with the largest heuristic information will be 
selected step by step until the all rows are covered by the selected columns. The main steps 
of the column adding procedure are the same as the solution construction described in 
subsection 4.2, and the only difference between them is the step of column selection. 
Therefore we just briefly introduce the implementation below. Let LLmt  denotes the local 
search iteration number, which is set equal to 5 in this study. 
Step1 set 1=t ; 
Step2 randomly remove  ( )λ×|| ktabuceil  columns from solution ktabu , and construct a size 
reduction problem. Let new

ktabu  denotes the new partial infeasible solution; 
Step3 solve this size reduction problem by a greedy algorithm based on the dynamically 
calculated heuristic information. Let '

ktabu  denotes the solution of this reduced size 
problem, and set new

kkk tabutabutabu U'' = ; 
Step4 remove the redundant columns from '

ktabu ; 
Step5 if the objective function value of '

ktabu  is less than that of ktabu , set '
kk tabutabu = ; 

Step6 set 1+= tt , and if t  is less than LLmt , go back to Step2; otherwise, stop the local 
search procedure and return ktabu . 

4.5 Pheromone update 
When all ants finish the solution construction procedure and the local search procedure, the 
operation of global pheromone update will be implemented, which includes pheromone 
release and pheromone evaporate. In nature, pheromone release reflects the positive 
feedback mechanism in ant colony algorithm; while pheromone evaporate operation follows 
ant biology background and helps avoid excessive pheromone drowned heuristic 
information to some extent.  
In this study, in addition to the local pheromone update operation discussed in Step4 of the 
solution construction in subsection 4.2, two types of global pheromone update operations 
(iteration-best based and global-best based) are also adopted, defined by equations (11) and 
(12), respectively. 
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where ρ , 10 << ρ , is the pheromone evaporate factor; ibS  denotes the best solution in 
current iteration; gbS  denotes the global best found solution since the start of the algorithm;  
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feedback mechanism in ant colony algorithm; while pheromone evaporate operation follows 
ant biology background and helps avoid excessive pheromone drowned heuristic 
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where ρ , 10 << ρ , is the pheromone evaporate factor; ibS  denotes the best solution in 
current iteration; gbS  denotes the global best found solution since the start of the algorithm;  
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)( ibSf  and )( gbSf  are the objective function vale of ibS  and  gbS , respectively; ib
jτ∆  and 

gb
jτ∆  are the quantities of pheromone released to column j  based on these two pheromone 

update operations, respectively. 
The global-best based pheromone update operation could make the search be concentrated 
around a current solution and limit the exploration of possible better ones, hence it is prone 
to trap into local optima; while the iteration-best based pheromone update operation could 
alleviate the danger of trapping into local optima but it may adversely reduce the 
convergence speed. Therefore, a mixed strategy, proposed by Stützle & Hoos (2000), is 
adopted in this study. Moreoever, in this study, another regulating strategy for these two 
types of pheromone update operations is also introduced, and the probability of the 
implementation of iteration-best based pheromone update operation is based on a bell-
function defined by equation (13). In each iteration, if a generated uniform random number 
in the interval [0, 1] is less then the value of ibp , the iteration-best based pheromone update 
operation will be executed; otherwise, the global-best based pheromone update operation 
will be executed. 
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where a , b  and c  are three parameters, specified by user. In this study, a , b  and c  are 
set equal to 3/Lmt ( Lmt  denotes the maximal iteration number), 2.5 and 0, respectively. 
When Lmt  is set equal to 100, the curve of number of iteration vs. ibp  is shown as Fig.1. In 
the early stage, the value of probability ibp  is relatively large, so the algorithm can benefit 
from stronger exploration of the search space, which can help escape from local optima and 
avoid the stagnation phenomenon. In the later stage, the value of probability ibp  is 
relatively small, so the algorithm can benefit from stronger exploitation of all best solution 
candidates, which can be conducive to improving the convergence speed. 

4.6 Framework of ant colony algorithm 
In this subsection, we will briefly present the whole framework of ant colony algorithm for 
simultaneous real value attribute discretization and reduction as follows. 
1. Determine the candidate cuts and construct distinction table based on samples. 
2. Parameters setting, such as weight parameter w , exploitation probability factor 0q , 

local pheromone update strength factor ξ , pheromone evaporate factor ρ , local search 
magnitude factor λ , number of ants ANum , and maximum iteration number Lmt . 

3. Pheromone initialization. 
4. Set 1=t . 
5. For each ant, implement solution construction operation. 
6. For each feasible solution, remove all redundant columns. 
7. For the set of best solutions in this iteration, implement local search operation. 
8. Determine the iteration-best solution, and update the global-best solution. 
9. Implement pheromone update operation. 
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10. Set 1+= tt , if t  is less than Lmt , go back to step 5; otherwise, terminate and return 
the best solution. 

 
Figure 1. The curve of number of iteration vs. ibp  ( Lmt = 100) 

5. Experimental results and discussion 
In this section, firstly, four datasets used for this study are briefly described; secondly, the 
effect of parameters on performance are studied and some suggestions for setting these 
parameters are presented; finally, the comparisons of our method with other three rough set 
theory based heuristic methods are provided. 

5.1 Description of datasets 
In this study, four datasets are used to validate the effectiveness of the proposed method, 
one dataset is nature spearmint essence (NSE), while the other three datasets are Glass, 
Wine and Iris obtained from the UCI (University of California, Irvine) machine learning 
repository available by the link: http://www.ics.uci.edu/~mlearn/MLRepository.html. The 
main characteristics of these four data sets are summarized in Table 1. The last column 
shows the number of initial cuts for these four datasets. 

 

Dataset Cases Categorical 
attributes 

Continuous 
Attributes Classes Number of 

Initial cuts 

NSE 55 0 56 3 770 

Glass 214 0 9 6 930 

Wine 178 0 13 3 1263 

Iris 150 0 4 3 119 

Table 1. Four datasets used for this study 
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5.2 Parameters setting in ant colony algorithm 
In this subsection, we will use the NSE dataset for studying the effect of parameters on 
performance, and some suggestions for setting these parameters will also be presented. In 
this study, we focus on the four controllable parameters which affect the performance of ant 
colony algorithm, exploitation probability factor 0q  shown in subsection 4.2, local 
pheromone update strength factor ξ  shown in equation (10), pheromone evaporate factor 
ρ  shown in equations (11) and (12), and local search magnitude factor λ  shown in 
subsection 4.4. The number of ants ANum  is also an important parameter in ant colony 
algorithm. Dependent on the complexcity of a problem, this parameter must be sufficiently 
large to explore all potential solutions. In general, the larger the value of ANum , the better 
the final solution quality obtained by ant colony algorithm, and also the longer the 
execution time. Hence, the selection of number of ants should balance the trade-off between 
the solution quality and execution time. According to empirical studies, the value of ANum  
is suggested to set equal to between [5, 20]. 
In order to study the effect of the parameters on the performance on the NSE dataset, a base 
value for each parameter is arbitrarily set as: 5.0=w , 5.00 =q , 1.0=ξ , 05.0=ρ , 2.0=λ , 

10=ANum , 100=Lmt . When tuning one parameter, the other parameters are kept as their 
base values. Moreover, to reduce the influence of incidental variation, the tests for each 
parameter are all executed 10 times independently, and both the average value of objective 
function and the average iteration number of the first finding of the best solution are used 
for evaluating the effect of each parameter on performance. However, due to the existence of 
random factors, the tests can only reflect to some extent the impact of the various 
parameters on the final results. 

5.2.1 Exploitation probability factor 
Exploitation probability factor 0q  is used to control how strongly an ant deterministically 
exploits the combined past search experience and heuristic information. The larger the value 
of 0q , the larger the exploitation probability. Fig.2 and Fig.3 show the effect of exploitation 
probability factor 0q  on the average value of the objective function and the average iteration 
number, respectively. Fig.2 shows that the best algorithm performance when 0q  is equal to 
0.4 or 0.7. Fig.3 shows that with the increase of the value of 0q , the average iteration number 
decreases. The possible reason could be with the large value of 0q , ant colony algorithm 
focuses on exploiting the space around the best found solution, so the convergence speed 
may be improved. However, a large value of 0q  may also lead to stagnation and the 
decrease of the probability of finding global optimum. Hence, the selection of “optimal” 
exploitation probability factor should balance the trade-off between exploration and 
exploitation performance. According to this study, the value of 0q  is suggested to set equal 
to between [0.4, 0.8], but it could vary in other cases. 
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Figure 2. Effect of exploitation probability factor 0q  on average value of objective function 
for the NSE dataset 

 
Figure 3. Effect of exploitation probability factor 0q  on average iteration number for the 
NSE dataset 

5.2.2 Pheromone evaporate factor 
In ant colony algorithm, cooperation among ants is based on pheromone, and global 
pheromone update operation can help ants maintain a well coordinated pheromone 
mediated cooperation. Fig.4 and Fig.5 show the effect of pheromone evaporate factor ρ  on 
the average value of objective function and the average iteration number, respectively.  
Fig.4 shows that the average quality of final solution is the best when ρ  is equal to 0.05. On 
the one hand, according to equations (11) and (12), the larger the value of ρ , the more the 
amount of pheromone released in the best found solutions, which will attract more ants in 
the next iteration but probably also lead to stagnation. On the other hand, as shown in Fig.5, 
a large value of ρ  can enhance the amount of different pheromone between the relative 
better solutions and relative worse solutions, so the convergence speed can be improved. 
However, the final solution could be a local optimum. Extremely, if the value of ρ  is set 
equal to 0, the cooperation among ants will disappear, which would lead to a bad 
performance. Balancing the trade-off between the solution quality and execution time, the 
value of ρ  is suggested to set between [0.05, 0.2]. 
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probability factor 0q  on the average value of the objective function and the average iteration 
number, respectively. Fig.2 shows that the best algorithm performance when 0q  is equal to 
0.4 or 0.7. Fig.3 shows that with the increase of the value of 0q , the average iteration number 
decreases. The possible reason could be with the large value of 0q , ant colony algorithm 
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decrease of the probability of finding global optimum. Hence, the selection of “optimal” 
exploitation probability factor should balance the trade-off between exploration and 
exploitation performance. According to this study, the value of 0q  is suggested to set equal 
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Figure 2. Effect of exploitation probability factor 0q  on average value of objective function 
for the NSE dataset 

 
Figure 3. Effect of exploitation probability factor 0q  on average iteration number for the 
NSE dataset 

5.2.2 Pheromone evaporate factor 
In ant colony algorithm, cooperation among ants is based on pheromone, and global 
pheromone update operation can help ants maintain a well coordinated pheromone 
mediated cooperation. Fig.4 and Fig.5 show the effect of pheromone evaporate factor ρ  on 
the average value of objective function and the average iteration number, respectively.  
Fig.4 shows that the average quality of final solution is the best when ρ  is equal to 0.05. On 
the one hand, according to equations (11) and (12), the larger the value of ρ , the more the 
amount of pheromone released in the best found solutions, which will attract more ants in 
the next iteration but probably also lead to stagnation. On the other hand, as shown in Fig.5, 
a large value of ρ  can enhance the amount of different pheromone between the relative 
better solutions and relative worse solutions, so the convergence speed can be improved. 
However, the final solution could be a local optimum. Extremely, if the value of ρ  is set 
equal to 0, the cooperation among ants will disappear, which would lead to a bad 
performance. Balancing the trade-off between the solution quality and execution time, the 
value of ρ  is suggested to set between [0.05, 0.2]. 
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Figure 4. Effect of pheromone evaporate factor ρ  on average value of objective function for 
the NSE dataset 

 
Figure 5. Effect of pheromone evaporate factor ρ  on average iteration number for the NSE 
dataset 

5.2.3 Local pheromone update strength factor 
Similar to the function of pheromone evaporate factor, local pheromone update strength 
factor ξ  also helps ants maintain a well coordinated pheromone mediated cooperation. 
Local pheromone update operation helps ants choose those columns that have never been 
explored previously, which can prevent the ants from converging to a common premature 
solution. Fig.6 and Fig.7 show the effect of the local pheromone update strength factor ξ  on 
the average value of the objective function and the average iteration number, respectively. 
Fig.6 shows that the best average quality of final solution is obtained at ξ  being 0.01 or 0.1, 
and Fig.7 shows the least average iteration number when ξ  is equal to 0.05. In general, the 
local pheromone update operation just changes the desirability of columns for following 
ants, which can be conducive to increasing exploration. The larger the value of ξ , the more 
likely the probability for the system pheromone to go back to the initial level. Although it 
can enhance the exploration performance, it also weakens the pheromone level released by 
previous ants and leads to a lower convergence speed. Hence, we should reasonably select 
the value of ξ  to balance the trade-off between exploration and convergence speed. The 
value of ξ  is suggested to set between [0.05, 0.2] for this study. 
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Figure 6. Effect of local pheromone update strength factor ξ  on average value of objective 
function for the NSE dataset 
 
 

 
Figure 7. Effect of local pheromone update strength factor ξ  on average iteration number 
for the NSE dataset 

5.2.4 Local search magnitude factor 
Local search operation usually can improve both the final solution quality and the speed of 
finding the best solution. Local search magnitude factor λ  plays an important role in 
determining neighbourhood magnitude of a current solution. The larger the value of λ , the 
larger the neighbourhood magnitude. However, due to a limited iteration number of local 
search, a large value of λ  could decrease the probability of finding a better solution in the 
neighbourhood area of the current solution. Fig.8 and Fig.9 show the effect of local search 
magnitude factor λ  on the average value of the objective function and the average iteration 
number, respectively. Fig.8 shows that the best average quality of final solutions is obtained 
at λ  being 0.3. As shown in Fig.9, with the increase of the value of λ , the average iteration 
number decreases. Balancing the trade-off the final solution quality and execution time, the 
value of λ  is suggested set between [0.2, 0.4]. 
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Figure 8. Effect of local search magnitude factor λ  on average value of objective function for 
the NSE dataset 

 
Figure 9. Effect of local search magnitude factor λ  on average iteration number for the NSE 
dataset 

5.3 Performance comparison 
In this subsection, the other three rough set theory based heuristic methods are used for 
performance comparison with ant colony algorithm. These three methods include greedy 
method (Nguyen & Skowron, 1995), modified greedy method, and attribute importance 
based method (Hou et al., 2000). All of these three methods are deterministic methods, so 
their obtained results are unique for a given problem. The parameters setting for ant colony 
algorithm is shown as follows: 5.00 =q , 1.0=ξ , 05.0=ρ , 2.0=λ , 10=ANum , and 

100=Lmt . To reduce the influence of incidental variation, the tests for each dataset are all 
executed 10 times independently. For performance comparison, on the one hand, we will 
provide the attribute numbers AttrNum  and cut numbers CutNum  obtained by these four 
methods; on the other hand, by introducing the weight parameter, we will give an 
exponential weighted value EWV , where ww AttrNumCutNumEWV −+= 1 , for a 
comprehsneive examination of the results obtained by these four methods. Due to the 
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stochastic character of ant colony algorithm, the three performance comparison metrics are 
the average results of the 10 executations.  
Table 2 shows the performance comparison of four methods for the NSE, Glass, Wine and 
Iris datasets, where the weight parameter w  is set equal to 0.5 for computing exponential 
weighted value. It can be seen from Table 2 that (1) the attribute numbers obtained by ant 
colony algorithm are remarkably less than those obtained by greedy method and modified 
greedy method for all the four datasets, (2) although ant colony algorithm yields a little 
more cuts than the greedy method and modified greedy method for the NSE and Glass 
datasets, the cut numbers generated by ant colony algorithm are less than or equal to those 
obtained by these two methods for the Wine and Iris datasets, (3) the cut numbers obtained 
by ant colony algorithm are remarkably less than those obtained by attribute importance 
based method for the NSE, Glass and Wine datasets, and (4) although ant colony algorithm 
requires a little more attributes than the attribute importance based method for the Wine 
dataset, the attribute numbers obtained by ant colony algorithm are less than or equal to 
those obtained by that method for the NSE, Glass, and Iris datasets. These superiorities of 
ant colony algorithm could be supported by the fact that both greedy method and modified 
greedy method more focus on finding the minimal number of cuts while attribute 
importance based method more focus on finding the minimal number of attributes. 
Different from them, ant colony algorithm can simultaneously consider both objectives, 
minimal numbers of cuts and attributes.  
It can also be seen from Table 2 that the exponential weighted value EWV  obtained by ant 
colony algorithm is better than those obtained by the other three methods for the NSE, Glass 
and Wine datasets; and for the Iris dataset, the exponential weighted value EWV  obtained 
by ant colony algorithm and attribute importance based method both rank top 1. Moreover, 
in our experiments, the standard deviations of these three metrics in 10 runs are very close 
to 0 for all the four datasets, which illustrates the stability of the ant colony algorithm. 

Methods 

Metrics 
Attribute 
Importance 
Based 
Method 

Greedy 
Method 

Modified 
Greedy 
Method 

Ant Colony 
Algorithm 

AttrNum  3 7 6 3 
CutNum  19 7 7 8 NSE 
EWV  6.091 5.095 5.292 4.560 
AttrNum  5 8 8 4.4 
CutNum  41 14 14 15.6 Glass 
EWV  8.639 6.570 6.570 6.043 
AttrNum  2 6 5 3 
CutNum  21 6 6 6 Wine 
EWV  5.997 4.899 4.686 4.182 
AttrNum  3 4 4 3 
CutNum  6 10 10 6 Iris 
EWV  4.182 5.162 5.162 4.182 

Table 2. Performance comparison with four methods for four datasets ( 5.0=w ) 
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Fig.10 shows the exponential weighted values of the four methods for the NSE dataset with 
different weight parameters. Through changing the relative importance between the cut 
number and the attribute number by employing the weight parameter w , ant colony 
algorithm can easily find the optimal cut and attribute numbers, whose corresponding 
exponential weighted value is better than those obtained by the other three methods. Hence, 
from a balanced choice of optimal attributes and cuts, ant colony algorithm outperforms the 
other three methods. 

 
Figure 10. Performance comparison of four methods for the NSE dataset with different 
weight parameter w  

6. Conclusions 
In this study, ant colony algorithm is proposed for simultaneous real value attributes 
discretization and reduction. Based on the concept of distinction table in rough set theory, 
the relationship between discretization and reduction is discussed, and these two different 
problems can be integrated into a unified framework. Moreover, the relationship between 
this unified framework and set covering problem is analyzed. The detailed strategy for ant 
colony algorithm to solve this problem is proposed and applied to the four datasets. The 
obtained results demonstrate the effectiveness of the proposed method, showing the better 
performance than those of the other three rough set theory based heuristic methods.  
However, this is a preliminary study, because we only considered the pre-processing step 
for pattern classification, and how this pre-processing step influences the final classification 
prediction performance has not been studied. Hence in the future research direction, we will 
focus on improving the performance of ant colony algorithm including global convergence 
performance and convergence speed and apply these proposed methods to problems with 
mass data. Meanwhile, we will combine the present method with any classification 
methods, such as rough set theory, decision tree, support vector machine, etc., for practical 
pattern classification problems.  
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1. Introduction  
This chapter describes a novel ACO algorithm for the degree-constrained minimum 
spanning tree (d-MST) problem. Instead of constructing the d-MST directly on the 
construction graph, ants construct the encoded d-MST. Two well-known tree codings are 
used: the Prüfer code, and the more recent Blob code (Picciotto, 1999). Both of these tree 
codings are bijective because they represent each spanning tree of the complete graph on 
|V| labelled vertices as a code of |V|-2 vertex labels. Each spanning tree corresponds to a 
unique code, and each code corresponds to a unique spanning tree. Under the proposed 
approach, ants will select graph vertices and place them into the Prüfer code or Blob code 
being constructed.  The use of tree codings such as Prüfer code or Blob code makes it easier 
for the proposed ACO to solve another variant of the d-MST problem with both lower and 
upper bound constraints on each vertex (lu-dMST). A general lu-dMST problem formulation 
is given. This general lu-dMST problem formulation could be used to denote d-MST 
problem formulation also. Subsequently, Prüfer code and Blob code tree encoding and 
decoding are presented and then followed by the design of two ACO approaches using 
these tree codings to solve d-MST and lu-dMST problems. Next, results from these ACO 
approaches are compared on structured hard (SHRD) graph data set for both d-MST and lu-
dMST problems, and important findings are reported.  

2. Problem Formulation  
In this chapter, a special case of degree-constrained minimum spanning tree where the 
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This similar to the problem being solved by Chou et al. (2001), and is named lu-dMST in this 
chapter. Chou et al. (2001) named this problem as DCMST. The d-MST problem is different 
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being constructed.  The use of tree codings such as Prüfer code or Blob code makes it easier 
for the proposed ACO to solve another variant of the d-MST problem with both lower and 
upper bound constraints on each vertex (lu-dMST). A general lu-dMST problem formulation 
is given. This general lu-dMST problem formulation could be used to denote d-MST 
problem formulation also. Subsequently, Prüfer code and Blob code tree encoding and 
decoding are presented and then followed by the design of two ACO approaches using 
these tree codings to solve d-MST and lu-dMST problems. Next, results from these ACO 
approaches are compared on structured hard (SHRD) graph data set for both d-MST and lu-
dMST problems, and important findings are reported.  

2. Problem Formulation  
In this chapter, a special case of degree-constrained minimum spanning tree where the 
lower and upper bound of the number of edges is imposed on each vertex is considered. 
This similar to the problem being solved by Chou et al. (2001), and is named lu-dMST in this 
chapter. Chou et al. (2001) named this problem as DCMST. The d-MST problem is different 
since it has only the upper bound constraint. Chou et al. (2001) also proposed the following 
notation to be used for the lu-dMST problem formulation: 
G = (V, E) connected weighted undirected graph. 
i, j = index of labelled vertices i, j = 0, 1, 2, …, |V – 1|. 
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V = {v0, v1, ..., v|V|-1} is a finite set of vertices in the G. 
E = {eij | i ∈ V, j ∈ V, i ≠ j} is a finite set of edges in the G. 
T = set of all spanning trees corresponding to the G. 
x = a subgraph of G.  
Cij = nonnegative real number edge cost that connect vertex i and vertex j. 
Ld(i) is lower bound degree constraint on vertex i. Lower bound can vary from vertex to 
vertex. 
Ud(i) is upper bound degree constraint on vertex i. Upper bound can vary from vertex to 
vertex. 
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The objective function (1) seeks to minimize the total connection cost between vertices. The 
total cost could be distance, material cost, or customers’ requirement cost. The subconstraint 
(i < j) shows that graph is symmetric because vertex i must be less than vertex j where i, j ∈ 
V. Constraints (2) and (3) specify the lower and upper bounds degree constraints on the 
number of edges connecting to a vertex. The lower and upper bounds can vary from vertex 
to vertex. In the d-MST problem, there is only a degree constraint on each vertex. This is 
given by a constant value d. For the d-MST problem, the lower bound equals 1 and the 
upper bound equals d on each vertex. Therefore the lu-dMST problem formulation is a 
generalization of d-MST. At the same time, the lu-dMST problem is also NP-hard because 
the lu-dMST problem is a general problem formulation that can be used to represent d-MST 
problem (Garey & Johnson, 1979; Sipser, 2006). 
Constraint (4) is an anticycle constraint and constraint (5) indicates that the number of edges 
in a spanning tree is always equal to the number of vertices minus one. At the same time, 
the designed networks should not have self-loop, cycles and missing vertices. Equation (6) 
expresses the binary decision variable Xij equals to one if the edge between vertices i to j is 
part of the subgraph x, and x is a spanning tree in T; zero, otherwise. A subgraph x of G is 
said to be a spanning tree in T if x: 
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a. contains all the vertices of G and the vertices can be in non-order form; 
b. is connected and graph contains no cycles. 
Note that in a complete graph having |V| vertices, the number of edges, |E|, is |V|(|V|-
1)/2, and the number of spanning trees is |V||V|-2. 

3. Prüfer code and Blob code tree codings 
The Prüfer code of spanning trees is based on Prüfer’s constructive proof of Cayley’s Formula. 
Cayley showed that the number of distinct spanning trees in a complete undirected graph on 
|V| vertices is |V||V|-2 (Cayley, 1889; Gross & Yellen, 2006). Prüfer described a one-to-one 
mapping between these trees and strings of length |V|-2 over an integer of |V| vertex labels 
(Prüfer, 1918; Gross & Yellen, 2006). Thus, a Prüfer code of length |V|-2 whose vertices are the 
labels {0, 1, …, |V|-1} from a spanning tree of the complete graph on |V| vertices for |V| ≥ 2 
is any sequence of integers between 0 and|V|-1, with repetitions allowed. The following Fig. 1 
shows Prüfer tree encoding algorithm that constructs a Prüfer code from a given standard 
labelled tree. It defines a encoding function fe : T|V| � C|V|-2 from the set T|V| of trees on |V| 
labelled vertices to the set C|V|-2 of Prüfer code of length |V|-2. For example, a Prüfer code (3, 
3, 6, 4, 0) corresponds to a spanning tree on seven vertices graph in Fig. 2.  The first position 
value for Prüfer code is 3 because the Prüfer encoding algorithm finds the neighbour of vertex 
v of degree 1 with the smallest label in the spanning tree T is 3 whereby v = 1. Then the vertex 
labelled v = 1 is removed from the spanning tree T. This process is repeated to find the second 
position value for Prüfer code until only two vertices are remained in the spanning tree T. Two 
vertices remained in the spanning tree T as in the example mentioned below are vertices 
labelled 0 and 6. Notice also for example in Fig. 2 that the degree of each vertex in the 
spanning tree can be easily checked because it is one more than the number of times its label 
appears in the Prüfer code.  
Fig. 3 shows the Prüfer decoding algorithm that maps a given Prüfer code to a standard 
labelled tree. The Prüfer decoding algorithm defines a function fd : C|V|-2 � T|V| from the set 
of Prüfer code of length |V|-2 to the set of labelled trees on the |V| vertices. For example, 
the Prüfer decoding algorithm identifies the tree’s edges in this order: (1, 3), (2, 3), (3, 6), (5, 
4), (4, 0), and (0, 6) as in Fig. 2. The Prüfer code’s integers appear as the second vertices in 
the tree’s first five edges. The last edge (0, 6) is joined by remaining two integers in list L 
(line 12 of Fig. 3) to produce the spanning tree with its vertex-labelling. Notice that the tree 
obtained in Fig. 2 by Prüfer decoding of the sequence (3, 3, 6, 4, 0) is the same as the tree that 
used by Prüfer-encoded sequence of (3, 3, 6, 4, 0) at the beginning. This inverse relationship 
between the encoding and decoding functions asserts that the decoding function fd : C|V|-2 � 
T|V| is the inverse of the encoding function fe : T|V| � C|V|-2. 
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labelledTreeToPruferCode(T = (V, E), Cij)  
code  ( ) 
Initialise T to be the given tree. 
for i = 1 to |V|-2 do 

Let v be the vertex of degree 1 with the smallest label in T. 
Let code[i-1] be the label of the only neighbour of v. 
T  T  – {v} 

return code 

Figure 1. The pseudocode of Prüfer encoding from the labelled tree to its Prüfer code 
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The objective function (1) seeks to minimize the total connection cost between vertices. The 
total cost could be distance, material cost, or customers’ requirement cost. The subconstraint 
(i < j) shows that graph is symmetric because vertex i must be less than vertex j where i, j ∈ 
V. Constraints (2) and (3) specify the lower and upper bounds degree constraints on the 
number of edges connecting to a vertex. The lower and upper bounds can vary from vertex 
to vertex. In the d-MST problem, there is only a degree constraint on each vertex. This is 
given by a constant value d. For the d-MST problem, the lower bound equals 1 and the 
upper bound equals d on each vertex. Therefore the lu-dMST problem formulation is a 
generalization of d-MST. At the same time, the lu-dMST problem is also NP-hard because 
the lu-dMST problem is a general problem formulation that can be used to represent d-MST 
problem (Garey & Johnson, 1979; Sipser, 2006). 
Constraint (4) is an anticycle constraint and constraint (5) indicates that the number of edges 
in a spanning tree is always equal to the number of vertices minus one. At the same time, 
the designed networks should not have self-loop, cycles and missing vertices. Equation (6) 
expresses the binary decision variable Xij equals to one if the edge between vertices i to j is 
part of the subgraph x, and x is a spanning tree in T; zero, otherwise. A subgraph x of G is 
said to be a spanning tree in T if x: 
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a. contains all the vertices of G and the vertices can be in non-order form; 
b. is connected and graph contains no cycles. 
Note that in a complete graph having |V| vertices, the number of edges, |E|, is |V|(|V|-
1)/2, and the number of spanning trees is |V||V|-2. 

3. Prüfer code and Blob code tree codings 
The Prüfer code of spanning trees is based on Prüfer’s constructive proof of Cayley’s Formula. 
Cayley showed that the number of distinct spanning trees in a complete undirected graph on 
|V| vertices is |V||V|-2 (Cayley, 1889; Gross & Yellen, 2006). Prüfer described a one-to-one 
mapping between these trees and strings of length |V|-2 over an integer of |V| vertex labels 
(Prüfer, 1918; Gross & Yellen, 2006). Thus, a Prüfer code of length |V|-2 whose vertices are the 
labels {0, 1, …, |V|-1} from a spanning tree of the complete graph on |V| vertices for |V| ≥ 2 
is any sequence of integers between 0 and|V|-1, with repetitions allowed. The following Fig. 1 
shows Prüfer tree encoding algorithm that constructs a Prüfer code from a given standard 
labelled tree. It defines a encoding function fe : T|V| � C|V|-2 from the set T|V| of trees on |V| 
labelled vertices to the set C|V|-2 of Prüfer code of length |V|-2. For example, a Prüfer code (3, 
3, 6, 4, 0) corresponds to a spanning tree on seven vertices graph in Fig. 2.  The first position 
value for Prüfer code is 3 because the Prüfer encoding algorithm finds the neighbour of vertex 
v of degree 1 with the smallest label in the spanning tree T is 3 whereby v = 1. Then the vertex 
labelled v = 1 is removed from the spanning tree T. This process is repeated to find the second 
position value for Prüfer code until only two vertices are remained in the spanning tree T. Two 
vertices remained in the spanning tree T as in the example mentioned below are vertices 
labelled 0 and 6. Notice also for example in Fig. 2 that the degree of each vertex in the 
spanning tree can be easily checked because it is one more than the number of times its label 
appears in the Prüfer code.  
Fig. 3 shows the Prüfer decoding algorithm that maps a given Prüfer code to a standard 
labelled tree. The Prüfer decoding algorithm defines a function fd : C|V|-2 � T|V| from the set 
of Prüfer code of length |V|-2 to the set of labelled trees on the |V| vertices. For example, 
the Prüfer decoding algorithm identifies the tree’s edges in this order: (1, 3), (2, 3), (3, 6), (5, 
4), (4, 0), and (0, 6) as in Fig. 2. The Prüfer code’s integers appear as the second vertices in 
the tree’s first five edges. The last edge (0, 6) is joined by remaining two integers in list L 
(line 12 of Fig. 3) to produce the spanning tree with its vertex-labelling. Notice that the tree 
obtained in Fig. 2 by Prüfer decoding of the sequence (3, 3, 6, 4, 0) is the same as the tree that 
used by Prüfer-encoded sequence of (3, 3, 6, 4, 0) at the beginning. This inverse relationship 
between the encoding and decoding functions asserts that the decoding function fd : C|V|-2 � 
T|V| is the inverse of the encoding function fe : T|V| � C|V|-2. 
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labelledTreeToPruferCode(T = (V, E), Cij)  
code  ( ) 
Initialise T to be the given tree. 
for i = 1 to |V|-2 do 

Let v be the vertex of degree 1 with the smallest label in T. 
Let code[i-1] be the label of the only neighbour of v. 
T  T  – {v} 

return code 

Figure 1. The pseudocode of Prüfer encoding from the labelled tree to its Prüfer code 
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Figure 2. A Prüfer code and the spanning tree on seven vertices that it represents and vice 
versa via Prüfer encoding and decoding algorithms 
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pruferCodeToLabelledTree(code) 
Initialise code as the Prufer input sequence of length |V|-2. 
Initialise forest F as |V| isolated vertices, labelled from 0 to |V|-1. 
L  {0, 1, …, |V|-1} 
ET   { } 
for i = 1 to |V|-2 do 

Let k be the smallest integer in list L that is not in the code. 
Let j be the first integer in the code. 
ET   ET  ∪ {(k, j)} 
L  L – {k} 
Remove the first occurrence of j from the code. 

Add an edge joining the vertices labelled with the two remaining integers in list L. 
return ET 

Figure 3. The pseudocode of Prüfer decoding from the Prüfer code to its labelled tree 
There are many other mappings from integers of |V|-2 vertex labels to spanning trees. 
Picciotto (1999) has described three tree codings, different from Prüfer code. One of the tree 
codings is called the Blob code. In Picciotto’s presentation, Prüfer codes decoded as Blob 
codes represent directed spanning trees rooted at vertex 0. In such a tree, there is a directed 
path from every vertex to vertex 0, and only vertex 0 has no out-edge. Ignoring the edges’s 
direction yields an undirected spanning tree.   
Figure 4 shows the Blob encoding algorithm for finding Blob code for a spanning tree. A blob 
is an aggregation of one or more vertices. This algorithm is progressively identifying 
vertices, starting at |V|-1 and ending with a blob-vertex consisting of all the vertices from 1 
to |V|-1. As the blob grows, so does the code; meanwhile, the number of directed edges 
shrinks. At first, an undirected spanning tree is temporarily regarded as a directed spanning 
tree rooted at vertex labelled 0 to determine the successor succ(v) of every vertex v ∈ [1, 
|V|-1] where succ(v) is the first vertex on the unique path from vertex v to vertex 0 in a 
spanning tree. The Blob encoding algorithm uses this directed spanning tree rooted at vertex 
labelled 0 as a set of directed edges whose vertices are the labels {0, 1, ..., |V|-1} as its input. 
The algorithm uses two functions: succ(v) returns the first vertex on the unique path from 
vertex v to vertex 0 in a spanning tree, and (path(v) ∩ blob) returns TRUE if the directed path 
(an ordered list of vertices) using those directed edges from vertex v toward vertex 0 
intersects the blob, FALSE otherwise. 
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labelledTreeToBlobCode(T = (V, E), Cij)  
blob  {|V|-1} 
blobCode  ( ) //an array of length |V|-2 
for i = 1 to |V|-2 do 

if path(|V|-1–i) ∩ blob ≠ Ø then 
    blobCode[|V|-2-i]  succ(|V|-1-i)  
    ET   ET  – {(|V|-1-i � succ(|V|-1-i))} 

        blob  blob ∪ {|V|-1-i} 
else 
    blobCode[|V|-2-i]  succ(blob) 
    ET   ET  – {(blob � succ(blob))} 
    ET   ET  ∪ {(blob � succ(|V|-1-i))} 
    ET   ET  – {(|V|-1-i � succ(|V|-1-i))} 
    blob  blob ∪ {|V|-1-i} 

return blobCode 

Figure 4. The pseudocode of Blob encoding from the labelled tree to its Blob code 

An example of a Blob code corresponds to a directed spanning tree on seven vertices graph 
is given in Fig. 5. The successor succ(v) information for this directed spanning tree is shown 
in Table 1. Once this table has been constructed, the Blob code corresponding to this 
directed spanning tree on seven vertices graph is equal to (3, 3, 6, 4, 0). Initially on line 2 of 
Fig. 4, a blob containing a single vertex 6 is created, the vertex 6 is the largest label and 
blobCode = ( ). The blobCode is an array of length |V|-2. The Blob encoding algorithm’s first 
iteration (path(|V|-1-i) ∩ blob) = (path(5) ∩ blob) is FALSE on line 5 of Fig. 4. So the else 
block is followed whereby blobCode[4] = 0; delete (blob � 0) edge; add an edge from blob � 
succ(5) which is 4; delete the edge (5 � 4) and put 5 into the blob. The second iteration 
(path(4) ∩ blob) is also FALSE. So the else block is followed whereby blobCode[3] = 4; delete 
(blob � 4) edge; add an edge from blob � succ(4) which is 0; delete the edge (4 � 0) and put 
4 into the blob. The third iteration (path(3) ∩ blob) is TRUE. The then block is followed in the 
algorithm whereby blobCode[2] = 6 which is succ(3); delete the edge (3 � 6) and put 3 in the 
blob. This process continues through two more iterations which blobCode[1] = 3 and 
blobCode[0] = 3 are obtained, and hence the Blob code of length |V|-2 is equal to blobCode = 
(3, 3, 6, 4, 0) is determined. It happened that this Blob code is the same with Prüfer code as in 
Fig. 2 using the same spanning tree as an example.  

0
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45

6

(3, 3, 6, 4, 0)

 
Figure 5. A Blob code and a rooted directed spanning tree on seven vertices that it 
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Figure 2. A Prüfer code and the spanning tree on seven vertices that it represents and vice 
versa via Prüfer encoding and decoding algorithms 
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pruferCodeToLabelledTree(code) 
Initialise code as the Prufer input sequence of length |V|-2. 
Initialise forest F as |V| isolated vertices, labelled from 0 to |V|-1. 
L  {0, 1, …, |V|-1} 
ET   { } 
for i = 1 to |V|-2 do 

Let k be the smallest integer in list L that is not in the code. 
Let j be the first integer in the code. 
ET   ET  ∪ {(k, j)} 
L  L – {k} 
Remove the first occurrence of j from the code. 

Add an edge joining the vertices labelled with the two remaining integers in list L. 
return ET 

Figure 3. The pseudocode of Prüfer decoding from the Prüfer code to its labelled tree 
There are many other mappings from integers of |V|-2 vertex labels to spanning trees. 
Picciotto (1999) has described three tree codings, different from Prüfer code. One of the tree 
codings is called the Blob code. In Picciotto’s presentation, Prüfer codes decoded as Blob 
codes represent directed spanning trees rooted at vertex 0. In such a tree, there is a directed 
path from every vertex to vertex 0, and only vertex 0 has no out-edge. Ignoring the edges’s 
direction yields an undirected spanning tree.   
Figure 4 shows the Blob encoding algorithm for finding Blob code for a spanning tree. A blob 
is an aggregation of one or more vertices. This algorithm is progressively identifying 
vertices, starting at |V|-1 and ending with a blob-vertex consisting of all the vertices from 1 
to |V|-1. As the blob grows, so does the code; meanwhile, the number of directed edges 
shrinks. At first, an undirected spanning tree is temporarily regarded as a directed spanning 
tree rooted at vertex labelled 0 to determine the successor succ(v) of every vertex v ∈ [1, 
|V|-1] where succ(v) is the first vertex on the unique path from vertex v to vertex 0 in a 
spanning tree. The Blob encoding algorithm uses this directed spanning tree rooted at vertex 
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The algorithm uses two functions: succ(v) returns the first vertex on the unique path from 
vertex v to vertex 0 in a spanning tree, and (path(v) ∩ blob) returns TRUE if the directed path 
(an ordered list of vertices) using those directed edges from vertex v toward vertex 0 
intersects the blob, FALSE otherwise. 
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labelledTreeToBlobCode(T = (V, E), Cij)  
blob  {|V|-1} 
blobCode  ( ) //an array of length |V|-2 
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else 
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    ET   ET  ∪ {(blob � succ(|V|-1-i))} 
    ET   ET  – {(|V|-1-i � succ(|V|-1-i))} 
    blob  blob ∪ {|V|-1-i} 
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Figure 4. The pseudocode of Blob encoding from the labelled tree to its Blob code 

An example of a Blob code corresponds to a directed spanning tree on seven vertices graph 
is given in Fig. 5. The successor succ(v) information for this directed spanning tree is shown 
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algorithm whereby blobCode[2] = 6 which is succ(3); delete the edge (3 � 6) and put 3 in the 
blob. This process continues through two more iterations which blobCode[1] = 3 and 
blobCode[0] = 3 are obtained, and hence the Blob code of length |V|-2 is equal to blobCode = 
(3, 3, 6, 4, 0) is determined. It happened that this Blob code is the same with Prüfer code as in 
Fig. 2 using the same spanning tree as an example.  
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v succ(v) 

1 3 

2 3 

3 6 

4 0 

5 4 

6 0 

Table 1. The successor succ(v) information of every vertex v ∈ [1, |V|-1] 
Nevertheless Blob code is already proven to be a different coding system from the Prüfer 
code by Picciotto (1999) in his PhD thesis even tough Blob code contains the same number of 
times of its vertex label as it appears in the Prüfer code for the same spanning tree 
representation. The reason for this is the sequences of both Blob code and Prüfer code can 
have distinct vertex label for each of their sequence position to represent the same spanning 
tree. An example suffices to prove that Blob code = (2, 4, 4, 6, 2, 4) is different from the 
Prüfer code = (6, 2, 4, 2, 4, 4) even though these codes are used to represent the same 
spanning tree. 
To identify the directed spanning tree that a Blob code represents, the Blob decoding 
algorithm begins with a single directed edge from a blob to vertex 0. This blob contains all the 
other vertices except vertex labelled 0, and as the algorithm proceeds, it always contains 
vertices numbered i, i+1, …, |V|-2 as i moves from 1 to |V|-2. The algorithm scans the code 
and adjusts the developing spanning tree depending on whether or not the directed path 
from each vertex in Blob code toward vertex 0 intersects the blob, which shrinks by one 
vertex on each iteration. The following Fig. 6 summarizes the Blob decoding algorithm, 
which also uses the same two functions as Blob encoding algorithm: succ(v) and (path(v) ∩ 
blob). The edges directions are ignored to obtain the undirected spanning tree that the Blob 
code represents. 
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blobCodeToLabelledTree(blobCode) 
blob  {1, 2, …, |V|-1} 
ET   {(blob � 0)} 
for i = 1 to |V|-2 do 
    blob  blob – {i} 
    if path(blobCode[i–1]) ∩ blob ≠ Ø then 
        ET  ET ∪ {(i � blobCode[i–1])} 

else 
    ET   ET  ∪ {(i � succ(blob))} 
    ET   ET  – {(blob � succ(blob))} 
    ET   ET  ∪ {(blob � blobCode[i–1])} 

// now blob is a vertex labelled |V|-1 
blob  {|V|-1} in any edges where the blob appears.  
return ET 

Figure 6. The pseudocode of Blob decoding from the Blob code to its labelled tree 
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Figure 5 shows the Blob code (3, 3, 6, 4, 0) and the spanning tree to which it decodes via the 
Blob decoding algorithm. The algorithm identifies the tree’s (directed) edges in this order: 
(1, 3), (2, 3), (3, 6), (4, 0), (5, 4), and (6, 0). Initially on line 2 of Fig. 6, the blob contains vertices 
1 through 6 and the tree consists of the single edge (blob  0). The algorithm’s first iteration 
removes vertex 1 from the blob. The blobCode[0] = 3 and the blob contains vertex 3, so that 
(path(3) ∩ blob) is TRUE and the edge (1  3) is added to the tree. The second iteration 
removes vertex 2 from the blob. The blobCode[1] = 3, (path(3) ∩ blob) is also TRUE, and the 
edge (2  3) is added to the tree. The third iteration removes vertex 3 from the blob. The 
blobCode[2] = 6, (path(6) ∩ blob) is TRUE, and the edge (3  6) is added to the tree. The fourth 
iteration removes vertex 4 from the blob. The blobCode[3] = 4, (path(4) ∩ blob) is FALSE. So the 
else block is followed whereby succ(blob) which is 0; an edge (4  0) is added to the tree; 
delete the edge (blob  0) and add an edge (blob  4). This process continues through one 
more iteration, each of which increases the number of the tree’s edges by one. Then, the blob 
itself is replaced by vertex 6 as on line 13 of Fig. 6. The Blob code’s integers appear as the 
destination vertices of the first five edges. An efficient implementation of the algorithm 
represents the directed edges in an array that is indexed by the vertex labels. If (i  j) is an 
edge, then the array entry indexed i holds j. As in Prüfer codes, the degree of each vertex in 
the spanning tree is one more than the number of times its label appears in the Blob code 
decoded by the Blob decoding algorithm. This is the same directed spanning tree that was 
encoded by the Blob encoding algorithm as shown as example above. So, the Blob decoding 
algorithm has indeed reversed the Blob encoding algorithm.  

4. An ACO algorithm using Prüfer code and Blob code tree codings for d-
MST problem 
In the design of an ACO algorithm, it has been customary to have the ants work directly on 
the construction graph. For pheromones associated with the graph edges, a common 
difficulty is the number of pheromone updates is in the order of O(|V|2), V being the set of 
vertices of the construction graph. A new ACO algorithm for the d-MST problem is 
proposed that can address this challenge in a novel way. Instead of constructing the d-MST 
directly on the construction graph, ants construct the encoded d-MST as solution 
components. Two well-known tree codings either by using the Prüfer code or the more 
recent Blob code is used. Under the proposed approach, ants will select graph vertices and 
place them into the Prüfer code or Blob code being constructed.  The advantages of using 
tree codings as ACO solution components are it reduces the complexity of the number of 
pheromone update operations to O(|V|-2) attributed to the length of the Prüfer or Blob 
codes, capable of representing all possible spanning trees from these tree codings, capable of 
representing only graph spanning trees, and the degree of each vertex in the decoded 
spanning tree is easily determined whether it’s satisfied the degree constraint, d or not. The 
degree of each vertex in the spanning tree is one more than the number of times its label 
appears in the Prüfer or Blob codes.  
The pseudocode of the proposed ACO approach for d-MST problem is given in Fig. 7. Both 
of the Prüfer coding and the Blob coding can be applied using this pseudocode. This ACO 
approach uses local search procedure. The pseudocode of the local search procedure using 
exchange mutation is given in Fig. 8. Two separate experiments are conducted for the ACO 
approach in Fig. 7. The first experiment uses the Prüfer encoding and decoding algorithms. 
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v succ(v) 

1 3 

2 3 

3 6 

4 0 

5 4 

6 0 

Table 1. The successor succ(v) information of every vertex v ∈ [1, |V|-1] 
Nevertheless Blob code is already proven to be a different coding system from the Prüfer 
code by Picciotto (1999) in his PhD thesis even tough Blob code contains the same number of 
times of its vertex label as it appears in the Prüfer code for the same spanning tree 
representation. The reason for this is the sequences of both Blob code and Prüfer code can 
have distinct vertex label for each of their sequence position to represent the same spanning 
tree. An example suffices to prove that Blob code = (2, 4, 4, 6, 2, 4) is different from the 
Prüfer code = (6, 2, 4, 2, 4, 4) even though these codes are used to represent the same 
spanning tree. 
To identify the directed spanning tree that a Blob code represents, the Blob decoding 
algorithm begins with a single directed edge from a blob to vertex 0. This blob contains all the 
other vertices except vertex labelled 0, and as the algorithm proceeds, it always contains 
vertices numbered i, i+1, …, |V|-2 as i moves from 1 to |V|-2. The algorithm scans the code 
and adjusts the developing spanning tree depending on whether or not the directed path 
from each vertex in Blob code toward vertex 0 intersects the blob, which shrinks by one 
vertex on each iteration. The following Fig. 6 summarizes the Blob decoding algorithm, 
which also uses the same two functions as Blob encoding algorithm: succ(v) and (path(v) ∩ 
blob). The edges directions are ignored to obtain the undirected spanning tree that the Blob 
code represents. 
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blobCodeToLabelledTree(blobCode) 
blob  {1, 2, …, |V|-1} 
ET   {(blob � 0)} 
for i = 1 to |V|-2 do 
    blob  blob – {i} 
    if path(blobCode[i–1]) ∩ blob ≠ Ø then 
        ET  ET ∪ {(i � blobCode[i–1])} 

else 
    ET   ET  ∪ {(i � succ(blob))} 
    ET   ET  – {(blob � succ(blob))} 
    ET   ET  ∪ {(blob � blobCode[i–1])} 

// now blob is a vertex labelled |V|-1 
blob  {|V|-1} in any edges where the blob appears.  
return ET 

Figure 6. The pseudocode of Blob decoding from the Blob code to its labelled tree 
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Figure 5 shows the Blob code (3, 3, 6, 4, 0) and the spanning tree to which it decodes via the 
Blob decoding algorithm. The algorithm identifies the tree’s (directed) edges in this order: 
(1, 3), (2, 3), (3, 6), (4, 0), (5, 4), and (6, 0). Initially on line 2 of Fig. 6, the blob contains vertices 
1 through 6 and the tree consists of the single edge (blob  0). The algorithm’s first iteration 
removes vertex 1 from the blob. The blobCode[0] = 3 and the blob contains vertex 3, so that 
(path(3) ∩ blob) is TRUE and the edge (1  3) is added to the tree. The second iteration 
removes vertex 2 from the blob. The blobCode[1] = 3, (path(3) ∩ blob) is also TRUE, and the 
edge (2  3) is added to the tree. The third iteration removes vertex 3 from the blob. The 
blobCode[2] = 6, (path(6) ∩ blob) is TRUE, and the edge (3  6) is added to the tree. The fourth 
iteration removes vertex 4 from the blob. The blobCode[3] = 4, (path(4) ∩ blob) is FALSE. So the 
else block is followed whereby succ(blob) which is 0; an edge (4  0) is added to the tree; 
delete the edge (blob  0) and add an edge (blob  4). This process continues through one 
more iteration, each of which increases the number of the tree’s edges by one. Then, the blob 
itself is replaced by vertex 6 as on line 13 of Fig. 6. The Blob code’s integers appear as the 
destination vertices of the first five edges. An efficient implementation of the algorithm 
represents the directed edges in an array that is indexed by the vertex labels. If (i  j) is an 
edge, then the array entry indexed i holds j. As in Prüfer codes, the degree of each vertex in 
the spanning tree is one more than the number of times its label appears in the Blob code 
decoded by the Blob decoding algorithm. This is the same directed spanning tree that was 
encoded by the Blob encoding algorithm as shown as example above. So, the Blob decoding 
algorithm has indeed reversed the Blob encoding algorithm.  

4. An ACO algorithm using Prüfer code and Blob code tree codings for d-
MST problem 
In the design of an ACO algorithm, it has been customary to have the ants work directly on 
the construction graph. For pheromones associated with the graph edges, a common 
difficulty is the number of pheromone updates is in the order of O(|V|2), V being the set of 
vertices of the construction graph. A new ACO algorithm for the d-MST problem is 
proposed that can address this challenge in a novel way. Instead of constructing the d-MST 
directly on the construction graph, ants construct the encoded d-MST as solution 
components. Two well-known tree codings either by using the Prüfer code or the more 
recent Blob code is used. Under the proposed approach, ants will select graph vertices and 
place them into the Prüfer code or Blob code being constructed.  The advantages of using 
tree codings as ACO solution components are it reduces the complexity of the number of 
pheromone update operations to O(|V|-2) attributed to the length of the Prüfer or Blob 
codes, capable of representing all possible spanning trees from these tree codings, capable of 
representing only graph spanning trees, and the degree of each vertex in the decoded 
spanning tree is easily determined whether it’s satisfied the degree constraint, d or not. The 
degree of each vertex in the spanning tree is one more than the number of times its label 
appears in the Prüfer or Blob codes.  
The pseudocode of the proposed ACO approach for d-MST problem is given in Fig. 7. Both 
of the Prüfer coding and the Blob coding can be applied using this pseudocode. This ACO 
approach uses local search procedure. The pseudocode of the local search procedure using 
exchange mutation is given in Fig. 8. Two separate experiments are conducted for the ACO 
approach in Fig. 7. The first experiment uses the Prüfer encoding and decoding algorithms. 
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The second experiment uses the Blob encoding and decoding algorithms. Lines from 2 to 4 
of Fig. 7 set several parameters for the ACO approach. The parameters are:  
• τ0 is the initial pheromone, 
• maximum edge weight cost for SHRD graph is set to 20*|V|, 
• pheromone trails τvr be the desirability of assigning vertex v to a tree code of array 

index r is initially set to a small value as τ0 = |V|2*20*|V|, where v ∈ [0, |V|-1] and r ∈ 
[0, |V|-3]. Note that, [0, |V|-1] is the vertex labels in the spanning tree from 0 to |V|-1 
and [0, |V|-3] is the array indices of the tree code (in array structure) of length |V|-2 
from 0 to |V|-3, 

• mAnts  is the number of ants, 
• antDeg[k][v] is the array of ant k degree for each vertex v in the spanning tree where k ∈ 

[1, mAnts] and v ∈ [0, |V|-1], 
• ant[k].avlVtx is the list of ant k available vertices to be selected from the spanning tree 

vertices where k ∈ [1, mAnts], 
• antTreeCode[k][r] is the array of ant k tree code of length |V|-2 where k ∈ [1, mAnts] and 

r ∈ [0, |V|-3],   
• d-PrimCode[r] is the tree code of d-Prim degree-constrained spanning tree (d-ST) of 

length |V|-2 where r ∈ [0, |V|-3]. The d-Prim algorithm as described in (Narula & Ho, 
1980; Knowles & Corne, 2000) is a greedy algorithm and might not always find the 
globally optimal solution. It is based upon alterations or additions to Prim’s algorithm 
(Prim, 1957) for finding a MST. The d-PrimCode is encoded from its d-Prim d-ST by 
using tree encoding algorithms, 

• d-STgbCode[r] is the tree code of global-best degree-constrained spanning tree of length 
|V|-2 where r ∈ [0, |V|-3]. Initially d-STgbCode  d-PrimCode,  

• ant_d-STCost[k] is the total weight cost of d-STk of antTreeCode[k] where k ∈ [1, mAnts]. 
The antTreeCode[k] cost is computed from its d-ST by using tree decoding algorithm, 

• d-PrimCost is the total weight cost of d-Prim d-ST. The d-Prim d-ST is determined by 
using d-Prim algorithm, 

• Lgb is the total weight cost of d-STgb. Initially Lgb  d-PrimCost,  
• a positive integer which governs the influences of pheromone trails α, 
• evaporation rate ρ,  
• a positive integer Q, and 
• termination_cond is the termination condition where it can be either a predefined 

number of iterations has been reached or a satisfactory solution has been found. 
The ACO algorithm starts by initialising d-STgbCode of length |V|-2 to be equal to the d-
PrimCode as on line 3 of Fig. 7. d-Prim d-ST is encoded by using tree encoding algorithm to 
obtain its d-PrimCode. Then, the ants start to construct their tree code solutions. Initially, 
antDeg[k][v] is set to 1 where k ∈ [1, mAnts] and v ∈ [0, |V|-1] as on line 8 of Fig. 7. The 
reason for this is the degree of each vertex in the spanning tree is one more than the number 
of times label of vertices appears in the Prüfer or Blob codes and initially for each ant their 
antTreeCode[k] is emptied. Next, for each ant their ant[k].avlVtx is initially set to {0, 1, …, 
|V|-1} where the spanning tree vertex labels start from 0 to |V|-1 (line 9 of Fig. 7). Line 12 
of Fig. 7 the ants start to construct their first (index 0) tree code solutions by selecting a 
vertex v from ant[k].avlVtx randomly. A particular vertex v will be removed from 
ant[k].avlVtx so that the vertex v won’t be available anymore if (antDeg[k][v] = Ud(v)). The 
reason for this is to ensure that degree constraint is not violated. For the remaining tree code 
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position value that is starting from its second position (index 1) to its last position (index 
|V|-3) as lines from 16 to 32 of Fig. 7, every ant will select a vertex v among the available 
vertices from ant[k].avlVtx probabilistically by applying the roulette wheel selection 
(Goldberg, 1989; Michaelwicz, 1996; Dorigo & Stützle, 2004) method. According to the 
probability on line 25 of Fig. 7, only the pheromone trail τvr indicates the desirability of 
assigning vertex v to a tree code at array index r is being used. Notice also that this 
probability formula does not use any visibility measure because the pheromone trail τvr does 
not means that an edge cost connecting from vertex v (the ant k tree code array value) to 
vertex r (the ant k tree code array index) always exists.  
After every ant k has completed their antTreeCode[k] of length |V|-2, then the ant_d-
STCost[k] is determined from their antTreeCode[k] where antTreeCode[k] is decoded by using 
the tree decoding algorithm to obtain the ant k d-STk. If the ant_d-STCost[k] is less costly than 
the current Lgb as on line 36 of Fig. 7, then the current d-STgbCode will be replaced to be equal 
to antTreeCode[k]. Next, the local search procedure by using exchange mutation is applied as 
on line 39 of Fig. 7. The new mutated tree code will always produce a new feasible d-ST. The 
detail of exchange mutation is given in Fig. 8. The exchange mutation used here takes the 
current d-STgbCode and the current Lgb as its inputs. Then, two different positions from             
d-STgbCode are being selected randomly so that both of the position values can be exchanged. 
As on line 10 of Fig. 8, the number of times for the exchange mutation procedure that takes 
the mutated code as its input to be repeated is equal to |V|/2 if |V| is an even number, 
else (|V|+1)/2. Notice that, lines from 14 to 30 of Fig. 8, the exchange mutation will be 
stopped even if the number of repetition has not been completed; if the current new 
mutated d-ST code is less costly than the current d-STgb code. Then, the current d-STgb code 
will be replaced by the better mutated d-ST code. If the mutated d-ST code is not better than 
the current d-STgb code, the current d-STgb code will be remained without any changes made 
to its spanning tree code as implied on line 31 of Fig. 8.  
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procedure ACO for d-MST 
Set parameters. 
d-STgbCode  d-PrimCode //d-Prim d-ST is encoded by using tree encoding algorithm  
Lgb  d-PrimCost 
while termination_cond = false do 

        for k = 1 to mAnts do  
            for v = 0 to |V|-1 do                
                antDeg[k][v] = 1 //each ant k spanning tree vertices initial degree is set to 1 
            ant[k].avlVtx  {0, 1, …, |V|-1}         
        for k = 1 to mAnts do 
            v  select from ant[k].avlVtx randomly 
            antTreeCode[k][0] = v 
            antDeg[k][v] = antDeg[k][v] + 1 

     if antDeg[k][v] = Ud(v) then  
          ant[k].avlVtx  ant[k].avlVtx – {v} 

        r  0 
        while (r < |V|-2) do 
            r  r + 1  
            for k = 1 to mAnts do 
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The second experiment uses the Blob encoding and decoding algorithms. Lines from 2 to 4 
of Fig. 7 set several parameters for the ACO approach. The parameters are:  
• τ0 is the initial pheromone, 
• maximum edge weight cost for SHRD graph is set to 20*|V|, 
• pheromone trails τvr be the desirability of assigning vertex v to a tree code of array 

index r is initially set to a small value as τ0 = |V|2*20*|V|, where v ∈ [0, |V|-1] and r ∈ 
[0, |V|-3]. Note that, [0, |V|-1] is the vertex labels in the spanning tree from 0 to |V|-1 
and [0, |V|-3] is the array indices of the tree code (in array structure) of length |V|-2 
from 0 to |V|-3, 

• mAnts  is the number of ants, 
• antDeg[k][v] is the array of ant k degree for each vertex v in the spanning tree where k ∈ 

[1, mAnts] and v ∈ [0, |V|-1], 
• ant[k].avlVtx is the list of ant k available vertices to be selected from the spanning tree 

vertices where k ∈ [1, mAnts], 
• antTreeCode[k][r] is the array of ant k tree code of length |V|-2 where k ∈ [1, mAnts] and 

r ∈ [0, |V|-3],   
• d-PrimCode[r] is the tree code of d-Prim degree-constrained spanning tree (d-ST) of 

length |V|-2 where r ∈ [0, |V|-3]. The d-Prim algorithm as described in (Narula & Ho, 
1980; Knowles & Corne, 2000) is a greedy algorithm and might not always find the 
globally optimal solution. It is based upon alterations or additions to Prim’s algorithm 
(Prim, 1957) for finding a MST. The d-PrimCode is encoded from its d-Prim d-ST by 
using tree encoding algorithms, 

• d-STgbCode[r] is the tree code of global-best degree-constrained spanning tree of length 
|V|-2 where r ∈ [0, |V|-3]. Initially d-STgbCode  d-PrimCode,  

• ant_d-STCost[k] is the total weight cost of d-STk of antTreeCode[k] where k ∈ [1, mAnts]. 
The antTreeCode[k] cost is computed from its d-ST by using tree decoding algorithm, 

• d-PrimCost is the total weight cost of d-Prim d-ST. The d-Prim d-ST is determined by 
using d-Prim algorithm, 

• Lgb is the total weight cost of d-STgb. Initially Lgb  d-PrimCost,  
• a positive integer which governs the influences of pheromone trails α, 
• evaporation rate ρ,  
• a positive integer Q, and 
• termination_cond is the termination condition where it can be either a predefined 

number of iterations has been reached or a satisfactory solution has been found. 
The ACO algorithm starts by initialising d-STgbCode of length |V|-2 to be equal to the d-
PrimCode as on line 3 of Fig. 7. d-Prim d-ST is encoded by using tree encoding algorithm to 
obtain its d-PrimCode. Then, the ants start to construct their tree code solutions. Initially, 
antDeg[k][v] is set to 1 where k ∈ [1, mAnts] and v ∈ [0, |V|-1] as on line 8 of Fig. 7. The 
reason for this is the degree of each vertex in the spanning tree is one more than the number 
of times label of vertices appears in the Prüfer or Blob codes and initially for each ant their 
antTreeCode[k] is emptied. Next, for each ant their ant[k].avlVtx is initially set to {0, 1, …, 
|V|-1} where the spanning tree vertex labels start from 0 to |V|-1 (line 9 of Fig. 7). Line 12 
of Fig. 7 the ants start to construct their first (index 0) tree code solutions by selecting a 
vertex v from ant[k].avlVtx randomly. A particular vertex v will be removed from 
ant[k].avlVtx so that the vertex v won’t be available anymore if (antDeg[k][v] = Ud(v)). The 
reason for this is to ensure that degree constraint is not violated. For the remaining tree code 
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position value that is starting from its second position (index 1) to its last position (index 
|V|-3) as lines from 16 to 32 of Fig. 7, every ant will select a vertex v among the available 
vertices from ant[k].avlVtx probabilistically by applying the roulette wheel selection 
(Goldberg, 1989; Michaelwicz, 1996; Dorigo & Stützle, 2004) method. According to the 
probability on line 25 of Fig. 7, only the pheromone trail τvr indicates the desirability of 
assigning vertex v to a tree code at array index r is being used. Notice also that this 
probability formula does not use any visibility measure because the pheromone trail τvr does 
not means that an edge cost connecting from vertex v (the ant k tree code array value) to 
vertex r (the ant k tree code array index) always exists.  
After every ant k has completed their antTreeCode[k] of length |V|-2, then the ant_d-
STCost[k] is determined from their antTreeCode[k] where antTreeCode[k] is decoded by using 
the tree decoding algorithm to obtain the ant k d-STk. If the ant_d-STCost[k] is less costly than 
the current Lgb as on line 36 of Fig. 7, then the current d-STgbCode will be replaced to be equal 
to antTreeCode[k]. Next, the local search procedure by using exchange mutation is applied as 
on line 39 of Fig. 7. The new mutated tree code will always produce a new feasible d-ST. The 
detail of exchange mutation is given in Fig. 8. The exchange mutation used here takes the 
current d-STgbCode and the current Lgb as its inputs. Then, two different positions from             
d-STgbCode are being selected randomly so that both of the position values can be exchanged. 
As on line 10 of Fig. 8, the number of times for the exchange mutation procedure that takes 
the mutated code as its input to be repeated is equal to |V|/2 if |V| is an even number, 
else (|V|+1)/2. Notice that, lines from 14 to 30 of Fig. 8, the exchange mutation will be 
stopped even if the number of repetition has not been completed; if the current new 
mutated d-ST code is less costly than the current d-STgb code. Then, the current d-STgb code 
will be replaced by the better mutated d-ST code. If the mutated d-ST code is not better than 
the current d-STgb code, the current d-STgb code will be remained without any changes made 
to its spanning tree code as implied on line 31 of Fig. 8.  
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procedure ACO for d-MST 
Set parameters. 
d-STgbCode  d-PrimCode //d-Prim d-ST is encoded by using tree encoding algorithm  
Lgb  d-PrimCost 
while termination_cond = false do 

        for k = 1 to mAnts do  
            for v = 0 to |V|-1 do                
                antDeg[k][v] = 1 //each ant k spanning tree vertices initial degree is set to 1 
            ant[k].avlVtx  {0, 1, …, |V|-1}         
        for k = 1 to mAnts do 
            v  select from ant[k].avlVtx randomly 
            antTreeCode[k][0] = v 
            antDeg[k][v] = antDeg[k][v] + 1 

     if antDeg[k][v] = Ud(v) then  
          ant[k].avlVtx  ant[k].avlVtx – {v} 

        r  0 
        while (r < |V|-2) do 
            r  r + 1  
            for k = 1 to mAnts do 
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          The ant k tree code of array index r of iteration t will select a vertex v  
                  among the list  of available vertices from ant[k].avlVtx, according to  
                  probability: 
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                antTreeCode[k][r] = v 
                antDeg[k][v] = antDeg[k][v] + 1      

         if antDeg[k][v] = Ud(v) then  
             ant[k].avlVtx  ant[k].avlVtx – {v} 
for k = 1 to mAnts do 

ant_d-STCost[k]  compute the d-STk cost from antTreeCode[k] by using  
                                 tree decoding algorithm 

    if ant_d-STCost[k] < Lgb then  
        Lgb  ant_d-STCost[k] 
        d-STgbCode  antTreeCode[k] 

        d-STgbCode  Local search by using exchange mutation(d-STgbCode, Lgb) //Fig. 8    
        The pheromone trails are updated: 
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 where Lgb is the total weight cost of decoded d-STgbCode by using tree decoding  
 algorithms to obtain its d-STgb cost.  

    end while 
end procedure 

Figure 7. The pseudocode of the proposed ACO approach for d-MST problem. Both tree 
codings can be applied using this pseudocode 
 
 
 

Back to the last step in an iteration of ACO on line 40 of Fig. 7 is the pheromone update. 
Only global pheromone update procedure is applied. The global update pheromone 
procedure decreases the value of the pheromone trails on τvr by a constant factor ρ and at the 
same time also deposit pheromone of an amount Q/Lgb. The v and r of τvr is corresponding 
to be the desirability of assigning vertex v in d-STgb code of length |V|-2 at array index r 
where v ∈ [0, |V|-1] and r ∈ [0, |V|-3]. Q is a positive integer and Lgb is the total weight 
cost of decoded d-STgb tree code of the current iteration by using tree decoding algorithm to 
obtain its d-STgb cost.  
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procedure Local search by using exchange mutation(d-STgbCode, Lgb) 
    mutatedCode  d-STgbCode //tree code of length |V|-2 

indexFirst  random[0, |V|-3] 
do { 
    indexSecond  random[0, |V|-3] 
} while (indexFirst = indexSecond)      
tempInteger  mutatedCode[indexSecond] 
mutatedCode[indexSecond]  mutatedCode[indexFirst] 
mutatedCode[indexFirst]  tempInteger 
if (|V|%2 = 0) then //if |V| is an even integer 
    numberOfTimes  |V|/2  
else 
    numberOfTimes  (|V|+1)/2      

    count  0 
do { 
    count  count + 1  
    mutatedCodeCost  compute the mutated tree code length from its  
                                       mutatedCode by using tree decoding algorithm 
     if (mutatedCodeCost < Lgb) then 
         Lgb = mutatedCodeCost  
         return mutatedCode 
     else           
         indexFirst  random[0, |V|-3] 
         do { 
              indexSecond  random[0, |V|-3] 
         } while (indexFirst = indexSecond)      
         tempInteger  mutatedCode[indexSecond] 
         mutatedCode[indexSecond]  mutatedCode[indexFirst] 
         mutatedCode[indexFirst]  tempInteger 
} while (count < numberOfTimes)  

return d-STgbCode 

Figure 8. The pseudocode of the local search procedure by using exchange mutation 

5. An ACO algorithm using Prüfer code and Blob code tree codings for lu-
dMST problem 
Four modifications have been made to the algorithm mentioned in section 4 to solve another 
variant of the d-MST problem with both lower and upper bound constraints on each vertex. 
The pseudocode of the proposed ACO approach for lu-dMST problem is given in Fig. 9. The 
Prüfer coding and Blob coding can be applied using this pseudocode. Again, two separate 
experiments are conducted. The first experiment is using the Prüfer coding and the second 
experiment is using the Blob coding. The use of tree codings such as Prüfer and Blob codes 
have made it easier to solve lu-dMST problem because the degree of the spanning tree is 
equal to one more of the number of times label of vertices appears in the Prüfer or Blob 
codes. It is also easy to determine if both the lower and upper bound constraints on each 
vertex are satisfied.   
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          The ant k tree code of array index r of iteration t will select a vertex v  
                  among the list  of available vertices from ant[k].avlVtx, according to  
                  probability: 
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                antTreeCode[k][r] = v 
                antDeg[k][v] = antDeg[k][v] + 1      

         if antDeg[k][v] = Ud(v) then  
             ant[k].avlVtx  ant[k].avlVtx – {v} 
for k = 1 to mAnts do 

ant_d-STCost[k]  compute the d-STk cost from antTreeCode[k] by using  
                                 tree decoding algorithm 

    if ant_d-STCost[k] < Lgb then  
        Lgb  ant_d-STCost[k] 
        d-STgbCode  antTreeCode[k] 

        d-STgbCode  Local search by using exchange mutation(d-STgbCode, Lgb) //Fig. 8    
        The pheromone trails are updated: 
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 where Lgb is the total weight cost of decoded d-STgbCode by using tree decoding  
 algorithms to obtain its d-STgb cost.  

    end while 
end procedure 

Figure 7. The pseudocode of the proposed ACO approach for d-MST problem. Both tree 
codings can be applied using this pseudocode 
 
 
 

Back to the last step in an iteration of ACO on line 40 of Fig. 7 is the pheromone update. 
Only global pheromone update procedure is applied. The global update pheromone 
procedure decreases the value of the pheromone trails on τvr by a constant factor ρ and at the 
same time also deposit pheromone of an amount Q/Lgb. The v and r of τvr is corresponding 
to be the desirability of assigning vertex v in d-STgb code of length |V|-2 at array index r 
where v ∈ [0, |V|-1] and r ∈ [0, |V|-3]. Q is a positive integer and Lgb is the total weight 
cost of decoded d-STgb tree code of the current iteration by using tree decoding algorithm to 
obtain its d-STgb cost.  

A New Ant Colony Optimization Approach for the Degree-Constrained  
Minimum Spanning Tree Problem Using Prüfer and Blob Codes Tree Coding 

 

47 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

procedure Local search by using exchange mutation(d-STgbCode, Lgb) 
    mutatedCode  d-STgbCode //tree code of length |V|-2 

indexFirst  random[0, |V|-3] 
do { 
    indexSecond  random[0, |V|-3] 
} while (indexFirst = indexSecond)      
tempInteger  mutatedCode[indexSecond] 
mutatedCode[indexSecond]  mutatedCode[indexFirst] 
mutatedCode[indexFirst]  tempInteger 
if (|V|%2 = 0) then //if |V| is an even integer 
    numberOfTimes  |V|/2  
else 
    numberOfTimes  (|V|+1)/2      

    count  0 
do { 
    count  count + 1  
    mutatedCodeCost  compute the mutated tree code length from its  
                                       mutatedCode by using tree decoding algorithm 
     if (mutatedCodeCost < Lgb) then 
         Lgb = mutatedCodeCost  
         return mutatedCode 
     else           
         indexFirst  random[0, |V|-3] 
         do { 
              indexSecond  random[0, |V|-3] 
         } while (indexFirst = indexSecond)      
         tempInteger  mutatedCode[indexSecond] 
         mutatedCode[indexSecond]  mutatedCode[indexFirst] 
         mutatedCode[indexFirst]  tempInteger 
} while (count < numberOfTimes)  

return d-STgbCode 

Figure 8. The pseudocode of the local search procedure by using exchange mutation 

5. An ACO algorithm using Prüfer code and Blob code tree codings for lu-
dMST problem 
Four modifications have been made to the algorithm mentioned in section 4 to solve another 
variant of the d-MST problem with both lower and upper bound constraints on each vertex. 
The pseudocode of the proposed ACO approach for lu-dMST problem is given in Fig. 9. The 
Prüfer coding and Blob coding can be applied using this pseudocode. Again, two separate 
experiments are conducted. The first experiment is using the Prüfer coding and the second 
experiment is using the Blob coding. The use of tree codings such as Prüfer and Blob codes 
have made it easier to solve lu-dMST problem because the degree of the spanning tree is 
equal to one more of the number of times label of vertices appears in the Prüfer or Blob 
codes. It is also easy to determine if both the lower and upper bound constraints on each 
vertex are satisfied.   
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The first modification is to add new parameter ant[k].lwrBndList for each ant. The 
ant[k].lwrBndList parameter is the ant k lower bound list where k ∈ [1, mAnts]. The intention 
is that each ant will populate the vertices from ant[k].lwrBndList into antTreeCode[k] before 
selecting vertices from ant[k].avlVtx. This ant[k].lwrBndList parameter is needed for the ants 
to meet their lower bound degree constraint requirement. Each ant initialises their 
ant[k].lwrBndList as ant[k].lwrBndList  ant[k].lwrBndList ∪ {v} if Ld(v) > 1 for each v in V. 
Because the Ud(v) can be vary from vertex to vertex and be equal to one, the ant k also need 
to initialises their ant[k].avlVtx as ant[k].avlVtx  ant[k].avlVtx ∪ {v} if Ud(v) ≠ 1 for each v in 
V.  
The second modification (line 4 of Fig. 9) is that the d-PrimCode is used to initialise the 
pheromone trails instead of being used as the starting solution for d-STgb code as in Fig. 7. 
The reason for this is most of the time, the d-Prim algorithm generates spanning tree that 
does not satisfy the lower bound degree constraint requirement for lu-dMST problem. The 
degree constraint for d-Prim is set to the maximum value of Ud(i) where i ∈ V. The d-Prim d-
ST is encoded to d-PrimCode by using tree encoding algorithm. 
The third modification (lines 25 to 45 of Fig. 9) is the ants’ tree code solution construction 
process to obtain their antTreeCode[k]. According to probability on line 35 of Fig. 9, the ant k 
will select a vertex v from ant[k].lwrBndList if ant[k].lwrBndList ≠ { } before the ant k can select 
a vertex v from ant[k].avlVtx for their antTreeCode[k]. The reason for this is to do away with 
repair function. If the repair option is used extensively it may be computationally expensive 
to repair infeasible ants’ tree code solutions instead of the computation time could be better 
used for the ants to explore a better solution. A particular vertex v will be removed from 
ant[k].lwrBndList if (antDeg[k][v] = Ld(v)) and at the same time the vertex v will also be 
removed from ant[k].avlVtx if (antDeg[k][v] = Ud(v)). This is to ensure that both the lower and 
upper bound degree constraints during the ants’ solutions construction process are adhered 
to. The objective function returns the cost of the lower and upper degree-constrained 
spanning tree (lu-dST). After every ant has completed their antTreeCode[k] of length |V|-2, 
then the best antTreeCode[k] will become the lu-dSTgbCode. The cost of the best antTreeCode[k] 
is determined by using tree decoding algorithms. Then, the same local search procedure by 
using exchange mutation as for d-MST problem is applied. This local search procedure is 
already given in Fig. 8.  
The final modification is to add an extra pheromone update. The pheromone trails τvr are 
updated by using the v and r of d-PrimCode as follows: 

 τvr(t+1) = (1 – ρ)τvr(t) + Q/d-PrimCost.  (7) 

where the d-Prim degree constraint is set randomly between two and the maximum value of 
Ud(i) where i ∈ V. The d-Prim d-ST is encoded to d-PrimCode by using tree encoding 
algorithm. This d-PrimCode can be differed from the d-PrimCode as on line 4 of Fig. 9. This 
additional pheromone update idea is to enable the ants to consider others possible vertex v 
for their tree code solutions.  
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procedure ACO for lu-dMST 
Set parameters. 
Set Lgb to the maximum real number. 
The pheromone trails τvr are initialised by using v and r of d-PrimCode as follows: 
τvr(t+1) =  (1 – ρ)τvr(t) + Q/d-PrimCost  
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where d-Prim degree constraint is set to the maximum value of Ud(i) where i ∈ V. The  
d-Prim d-ST is encoded to d-PrimCode by using tree encoding algorithm.   
while termination_cond = false do 

        for k = 1 to mAnts do  
            for v = 0 to |V|-1 do                
                antDeg[k][v] = 1 //each ant k spanning tree vertices initial degree is set to 1 
                if Ld(v) > 1 then 
                    ant[k].lwrBndList  ant[k]. lwrBndList ∪ {v} 
                if Ud(v) ≠ 1 then 
                    ant[k].avlVtx  ant[k].avlVtx ∪ {v} 
        for k = 1 to mAnts do 
            v  select from ant[k].avlVtx randomly 
            antTreeCode[k][0] = v 
            antDeg[k][v] = antDeg[k][v] + 1 

     if antDeg[k][v] = Ld(v) then  
          ant[k].lwrBndList  ant[k]. lwrBndList – {v} 
     if antDeg[k][v] = Ud(v) then  
          ant[k].avlVtx  ant[k].avlVtx – {v} 

        r  0 
        while (r < |V|-2) do 
            r  r + 1  
            for k = 1 to mAnts do 

          The ant k tree code of array index r of iteration t will select a vertex v from the  
          spanning tree vertices, according to probability: 
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                antTreeCode[k][r] = v 
                antDeg[k][v] = antDeg[k][v] + 1 

         if antDeg[k][v] = Ld(v) then  
             ant[k].lwrBndList  ant[k]. lwrBndList – {v} 
         if antDeg[k][v] = Ud(v) then  
             ant[k].avlVtx  ant[k].avlVtx – {v} 
for k = 1 to mAnts do 

ant_lu-dSTCost[k]  compute the lu-dSTk cost from its antTreeCode[k] by using  
                                    tree decoding algorithm 

    if ant_lu-dSTCost[k] < Lgb then  
        Lgb  ant_lu-dSTCost[k] 
        lu-dSTgbCode  antTreeCode[k] 
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The first modification is to add new parameter ant[k].lwrBndList for each ant. The 
ant[k].lwrBndList parameter is the ant k lower bound list where k ∈ [1, mAnts]. The intention 
is that each ant will populate the vertices from ant[k].lwrBndList into antTreeCode[k] before 
selecting vertices from ant[k].avlVtx. This ant[k].lwrBndList parameter is needed for the ants 
to meet their lower bound degree constraint requirement. Each ant initialises their 
ant[k].lwrBndList as ant[k].lwrBndList  ant[k].lwrBndList ∪ {v} if Ld(v) > 1 for each v in V. 
Because the Ud(v) can be vary from vertex to vertex and be equal to one, the ant k also need 
to initialises their ant[k].avlVtx as ant[k].avlVtx  ant[k].avlVtx ∪ {v} if Ud(v) ≠ 1 for each v in 
V.  
The second modification (line 4 of Fig. 9) is that the d-PrimCode is used to initialise the 
pheromone trails instead of being used as the starting solution for d-STgb code as in Fig. 7. 
The reason for this is most of the time, the d-Prim algorithm generates spanning tree that 
does not satisfy the lower bound degree constraint requirement for lu-dMST problem. The 
degree constraint for d-Prim is set to the maximum value of Ud(i) where i ∈ V. The d-Prim d-
ST is encoded to d-PrimCode by using tree encoding algorithm. 
The third modification (lines 25 to 45 of Fig. 9) is the ants’ tree code solution construction 
process to obtain their antTreeCode[k]. According to probability on line 35 of Fig. 9, the ant k 
will select a vertex v from ant[k].lwrBndList if ant[k].lwrBndList ≠ { } before the ant k can select 
a vertex v from ant[k].avlVtx for their antTreeCode[k]. The reason for this is to do away with 
repair function. If the repair option is used extensively it may be computationally expensive 
to repair infeasible ants’ tree code solutions instead of the computation time could be better 
used for the ants to explore a better solution. A particular vertex v will be removed from 
ant[k].lwrBndList if (antDeg[k][v] = Ld(v)) and at the same time the vertex v will also be 
removed from ant[k].avlVtx if (antDeg[k][v] = Ud(v)). This is to ensure that both the lower and 
upper bound degree constraints during the ants’ solutions construction process are adhered 
to. The objective function returns the cost of the lower and upper degree-constrained 
spanning tree (lu-dST). After every ant has completed their antTreeCode[k] of length |V|-2, 
then the best antTreeCode[k] will become the lu-dSTgbCode. The cost of the best antTreeCode[k] 
is determined by using tree decoding algorithms. Then, the same local search procedure by 
using exchange mutation as for d-MST problem is applied. This local search procedure is 
already given in Fig. 8.  
The final modification is to add an extra pheromone update. The pheromone trails τvr are 
updated by using the v and r of d-PrimCode as follows: 

 τvr(t+1) = (1 – ρ)τvr(t) + Q/d-PrimCost.  (7) 

where the d-Prim degree constraint is set randomly between two and the maximum value of 
Ud(i) where i ∈ V. The d-Prim d-ST is encoded to d-PrimCode by using tree encoding 
algorithm. This d-PrimCode can be differed from the d-PrimCode as on line 4 of Fig. 9. This 
additional pheromone update idea is to enable the ants to consider others possible vertex v 
for their tree code solutions.  
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procedure ACO for lu-dMST 
Set parameters. 
Set Lgb to the maximum real number. 
The pheromone trails τvr are initialised by using v and r of d-PrimCode as follows: 
τvr(t+1) =  (1 – ρ)τvr(t) + Q/d-PrimCost  
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where d-Prim degree constraint is set to the maximum value of Ud(i) where i ∈ V. The  
d-Prim d-ST is encoded to d-PrimCode by using tree encoding algorithm.   
while termination_cond = false do 

        for k = 1 to mAnts do  
            for v = 0 to |V|-1 do                
                antDeg[k][v] = 1 //each ant k spanning tree vertices initial degree is set to 1 
                if Ld(v) > 1 then 
                    ant[k].lwrBndList  ant[k]. lwrBndList ∪ {v} 
                if Ud(v) ≠ 1 then 
                    ant[k].avlVtx  ant[k].avlVtx ∪ {v} 
        for k = 1 to mAnts do 
            v  select from ant[k].avlVtx randomly 
            antTreeCode[k][0] = v 
            antDeg[k][v] = antDeg[k][v] + 1 

     if antDeg[k][v] = Ld(v) then  
          ant[k].lwrBndList  ant[k]. lwrBndList – {v} 
     if antDeg[k][v] = Ud(v) then  
          ant[k].avlVtx  ant[k].avlVtx – {v} 

        r  0 
        while (r < |V|-2) do 
            r  r + 1  
            for k = 1 to mAnts do 

          The ant k tree code of array index r of iteration t will select a vertex v from the  
          spanning tree vertices, according to probability: 
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                antTreeCode[k][r] = v 
                antDeg[k][v] = antDeg[k][v] + 1 

         if antDeg[k][v] = Ld(v) then  
             ant[k].lwrBndList  ant[k]. lwrBndList – {v} 
         if antDeg[k][v] = Ud(v) then  
             ant[k].avlVtx  ant[k].avlVtx – {v} 
for k = 1 to mAnts do 

ant_lu-dSTCost[k]  compute the lu-dSTk cost from its antTreeCode[k] by using  
                                    tree decoding algorithm 

    if ant_lu-dSTCost[k] < Lgb then  
        Lgb  ant_lu-dSTCost[k] 
        lu-dSTgbCode  antTreeCode[k] 
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        lu-dSTgbCode  Local search by using exchange mutation(lu-dSTgbCode, Lgb) //Fig. 8 
        Then, the pheromone trails are updated as global update as follows:  
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t tτ ρ τ τ
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/ ;

 = as global update. 
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k
vr

Q Lτ
 ∆  
 

 

where Lgb is the total weight cost of decoded lu-dSTgbCode by using tree decoding 
algorithms to  obtain its lu-dSTgb cost.  
The pheromone trails τvr are updated by using v and r of d-PrimCode as follows: 
τvr(t+1) = (1 – ρ)τvr(t) + Q/d-PrimCost  
where the d-Prim degree constraint is set randomly between two and the maximum 
of Ud(i) where i ∈ V. The d-Prim d-ST is encoded to d-PrimCode by using tree 
encoding algorithm.  

    end while 
end procedure 

Figure 9. The pseudocode of the proposed ACO approach for lu-dMST problem. Both tree 
codings can be applied using this pseudocode 

6. Performance comparisons of Prüfer ACO and Blob ACO on structured 
hard (SHRD) graph data set for d-MST problem 
The Prüfer-coded ACO and Blob-coded ACO are tested on structured hard (SHRD) graphs 
as used in (Raidl, 2000; Mohan et al., 2001; Bui & Zrncic, 2006) for the d-MST problem. The 
SHRD graphs are constructed by using non-Euclidean distance as follows. The first vertex is 
connected to all other vertices by an edge of length l; the second vertex is connected to all 
vertices bar the first by an edge of length 2l and so on. Then SHRD is randomised slightly by 
adding a uniformly distributed perturbation between 1 and 18 where l = 20. The details to 
generate a SHRD graph is given in Fig. 10. This reduces the likelihood of a large number of 
optimal solutions existing but doesn’t change the underlying complexity of the problem. 
These are difficult to solve optimally compared to other data sets such as Euclidean data sets 
of degree 3 or more (Mohan et al., 2001). The MST for SHRD is a star graph where one 
vertex has degree |V|-1 and the all other vertices have degree 1. The SHRD graphs are 
complete graphs with undirected non-negative weighted edges. 
The parameter ρ for Prüfer-coded ACO and Blob-coded ACO is tuned from 0.0 to 0.9. For 
each ρ, average solution costs over 50 independent runs are recorded. Each run terminates 
after 274 (50 * | |V ) iterations. The setting that produced the lowest average solution cost 
will be the Prüfer-coded ACO and Blob-coded ACO parameter value used for SHRD data 
set. Table 2 shows the parameter tuning results for Prüfer-coded ACO and Blob-coded ACO 
approaches on SHRD data set. The lowest ρ values for Prüfer-coded ACO and Blob-coded 
ACO from Table 2 are in bold print. Separate parameter values are used for Prüfer-coded 
ACO and Blob-coded ACO on the SHRD problem instances. The parameter value of ρ = 0.1 
is chosen for Prüfer-coded ACO while value of ρ = 0.9 is chosen for Blob-coded ACO. There 
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is so much difference between Prüfer-coded ACO and Blob-coded ACO parameter value of 
ρ. One of the probable reasons is the Blob code exhibits higher locality under mutation of 
one symbol compares to Prüfer code. On average only about two edges for a spanning tree 
is changed after changing one symbol in a Blob code to be decoded by the Blob decoding 
algorithm (Julstrom, 2001). Table 3 shows the values of the ACO parameters. All results are 
obtained using a PC with Pentium 4 processor with 512 megabytes of memory, running at 
3.0 GHz under Windows XP Professional.  
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procedure generateSHRDgraph  
    Let total number of vertices as |V| 
    Let graph edges as edge[|V|][|V|] 
    for i = 0 to |V|-1 do 

    for j = 0 to i do 
        if i = j then 
            edge[i][j] = 1000000000.000000           
        else  
            edge[i][j] = 20*j + random[1, 18] 
            edge[j][i] = edge[i][j] 

    // Print lower left SHRD triangular graph matrix only 
    for i = 1 to |V|-1 do 

    for j = 0 to i-1 do     
        Print edge[i][j] and “ ”. 

        Print newline. 
end procedure 

Figure 10. The pseudocode to generate a SHRD graph 

 

  Prüfer-coded ACO Blob-coded ACO 

ρ = 0.0 1554.74 1532.66 
0.1 1551.96 1533.74 
0.2 1554.14 1532.22 
0.3 1556.68 1532.04 
0.4 1553.48 1533.66 
0.5 1554.92 1533.66 
0.6 1553.94 1535.20 
0.7 1553.90 1533.52 
0.8 1552.70 1535.26 
0.9 1552.00 1530.34 

Table 2. Parameter ρ tuning for Prüfer-coded ACO and Blob-coded ACO average results, 
problem shrd305, d = 5, |V| = 30, number of iterations = 50 * | |V = 274, number of runs = 
50 
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        lu-dSTgbCode  Local search by using exchange mutation(lu-dSTgbCode, Lgb) //Fig. 8 
        Then, the pheromone trails are updated as global update as follows:  
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where Lgb is the total weight cost of decoded lu-dSTgbCode by using tree decoding 
algorithms to  obtain its lu-dSTgb cost.  
The pheromone trails τvr are updated by using v and r of d-PrimCode as follows: 
τvr(t+1) = (1 – ρ)τvr(t) + Q/d-PrimCost  
where the d-Prim degree constraint is set randomly between two and the maximum 
of Ud(i) where i ∈ V. The d-Prim d-ST is encoded to d-PrimCode by using tree 
encoding algorithm.  

    end while 
end procedure 

Figure 9. The pseudocode of the proposed ACO approach for lu-dMST problem. Both tree 
codings can be applied using this pseudocode 

6. Performance comparisons of Prüfer ACO and Blob ACO on structured 
hard (SHRD) graph data set for d-MST problem 
The Prüfer-coded ACO and Blob-coded ACO are tested on structured hard (SHRD) graphs 
as used in (Raidl, 2000; Mohan et al., 2001; Bui & Zrncic, 2006) for the d-MST problem. The 
SHRD graphs are constructed by using non-Euclidean distance as follows. The first vertex is 
connected to all other vertices by an edge of length l; the second vertex is connected to all 
vertices bar the first by an edge of length 2l and so on. Then SHRD is randomised slightly by 
adding a uniformly distributed perturbation between 1 and 18 where l = 20. The details to 
generate a SHRD graph is given in Fig. 10. This reduces the likelihood of a large number of 
optimal solutions existing but doesn’t change the underlying complexity of the problem. 
These are difficult to solve optimally compared to other data sets such as Euclidean data sets 
of degree 3 or more (Mohan et al., 2001). The MST for SHRD is a star graph where one 
vertex has degree |V|-1 and the all other vertices have degree 1. The SHRD graphs are 
complete graphs with undirected non-negative weighted edges. 
The parameter ρ for Prüfer-coded ACO and Blob-coded ACO is tuned from 0.0 to 0.9. For 
each ρ, average solution costs over 50 independent runs are recorded. Each run terminates 
after 274 (50 * | |V ) iterations. The setting that produced the lowest average solution cost 
will be the Prüfer-coded ACO and Blob-coded ACO parameter value used for SHRD data 
set. Table 2 shows the parameter tuning results for Prüfer-coded ACO and Blob-coded ACO 
approaches on SHRD data set. The lowest ρ values for Prüfer-coded ACO and Blob-coded 
ACO from Table 2 are in bold print. Separate parameter values are used for Prüfer-coded 
ACO and Blob-coded ACO on the SHRD problem instances. The parameter value of ρ = 0.1 
is chosen for Prüfer-coded ACO while value of ρ = 0.9 is chosen for Blob-coded ACO. There 
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is so much difference between Prüfer-coded ACO and Blob-coded ACO parameter value of 
ρ. One of the probable reasons is the Blob code exhibits higher locality under mutation of 
one symbol compares to Prüfer code. On average only about two edges for a spanning tree 
is changed after changing one symbol in a Blob code to be decoded by the Blob decoding 
algorithm (Julstrom, 2001). Table 3 shows the values of the ACO parameters. All results are 
obtained using a PC with Pentium 4 processor with 512 megabytes of memory, running at 
3.0 GHz under Windows XP Professional.  
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procedure generateSHRDgraph  
    Let total number of vertices as |V| 
    Let graph edges as edge[|V|][|V|] 
    for i = 0 to |V|-1 do 

    for j = 0 to i do 
        if i = j then 
            edge[i][j] = 1000000000.000000           
        else  
            edge[i][j] = 20*j + random[1, 18] 
            edge[j][i] = edge[i][j] 

    // Print lower left SHRD triangular graph matrix only 
    for i = 1 to |V|-1 do 

    for j = 0 to i-1 do     
        Print edge[i][j] and “ ”. 

        Print newline. 
end procedure 

Figure 10. The pseudocode to generate a SHRD graph 

 

  Prüfer-coded ACO Blob-coded ACO 

ρ = 0.0 1554.74 1532.66 
0.1 1551.96 1533.74 
0.2 1554.14 1532.22 
0.3 1556.68 1532.04 
0.4 1553.48 1533.66 
0.5 1554.92 1533.66 
0.6 1553.94 1535.20 
0.7 1553.90 1533.52 
0.8 1552.70 1535.26 
0.9 1552.00 1530.34 

Table 2. Parameter ρ tuning for Prüfer-coded ACO and Blob-coded ACO average results, 
problem shrd305, d = 5, |V| = 30, number of iterations = 50 * | |V = 274, number of runs = 
50 
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 Prüfer-coded ACO Blob-coded ACO 

ρ 0.1 0.9 
mAnts  |V| |V| 

Q 1.0 1.0 
α 1 1 

SHRD maxEdgeCost 20*|V| 20*|V| 
τ0 |V|2*20*|V| |V|2*20*|V| 

iterations 50 * | |V  50 * | |V  

Table 3. The ACO parameters and their values for artificial ant k using Prüfer code and Blob 
code tree codings on SHRD problem instances 

Problem 
  

Prüfer 
ACO 
avg. 

Prüfer 
ACO 
best 

Prüfer 
ACO 
time 

Blob 
ACO 
avg. 

Blob 
ACO 
best 

Blob 
ACO 
time 

Enhanced 
k-ACO 

avg. 

Enhanced 
k-ACO 

best 

Enhanced 
k-ACO 

time 

SHRD153 16.94 18.89 15 17.95 19.84 21 20.26 21.19 120  

SHRD154 9.94 12.01 15 12.25 14.37 21 12.29 15.35 120  

SHRD155 8.04 9.60 15 7.87 9.60 21 8.95 9.60 120  

SHRD203 8.74 10.74 38 10.22 11.39 52 11.72 12.12 180  

SHRD204 6.45 7.79 38 7.05 8.47 52 9.22 9.48 180  

SHRD205 5.70 7.15 38 6.46 8.03 52 8.17 8.47 180  

SHRD253 16.26 18.67 87 17.82 19.13 118 19.81 20.40 360  

SHRD254 3.36 4.82 87 4.40 5.55 118 6.41 6.72 360  

SHRD255 5.45 7.19 87 7.39 8.29 118 8.91 9.02 360  

SHRD303 9.14 10.71 145 9.88 11.52 197 12.30 12.46 660  

SHRD304 8.20 10.04 145 9.63 11.06 197 11.61 11.80 660  

SHRD305 3.59 5.40 145 4.68 5.96 197 6.37 6.58 660  
Total 

Average: 8.48  
10.25 

 
855  9.63  

11.10 
    

1164 11.34 11.93 3960  

Table 4. Average and best results (quality gains over d-Prim in %), and total times (in 
seconds) on SHRD problem instances.  Label SHRD153 means SHRD graph 15-vertex with 
degree constraint, d=3 and so on 
Table 4 summarises the results of Prüfer-coded ACO and Blob-coded ACO on SHRD data 
set. The Prüfer-coded ACO and Blob-coded ACO were run 50 independent times on each 
problem instance. Each run is terminated after 50 * | |V  iterations. The number of vertices 
are in the range 15, 20, 25, and 30. The maximum degree was set to 3, 4 and 5. The results for 
the enhanced kruskal-ACO are adopted from (Bau et al., 2007). At this time, the enhanced 
kruskal-ACO is used as a performance benchmark. It is one of the best approaches for the d-
MST problem on the SHRD graphs (Bau et al., 2007). Besides average gains, the gains of the 
best run and total times (in seconds) that are required for 50 runs are reported in Table 4. 
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The total times in seconds for 50 runs is recorded so that the time required between ACO 
without tree coding and ACO using tree coding can be compared. The enhanced kruskal-
ACO is referred to as Enhanced k-ACO but the Prüfer-coded ACO and Blob-coded ACO are 
referred to as Prüfer ACO and Blob ACO. Between Prüfer ACO and Blob ACO, the highest 
average gains are underlined. 
It can be concluded that Enhanced k-ACO has higher total average results compared to Blob 
ACO. In turn, Blob ACO has higher total average results compared to Prüfer ACO. Between 
Prüfer ACO and Blob ACO, Blob ACO almost always identifies trees of higher gains except 
on a SHRD155 d=5 problem instance. Between Blob ACO and Enhanced k-ACO, Blob ACO 
achieves results very close to Enhanced k-ACO. On all the problem instances, the maximum 
average result difference between them is only by 2.42 on a SHRD303 d=3. When all three 
ACO approaches are compared, the Enhanced k-ACO attains the highest total average 
compared to the Prufer ACO and Blob ACO. The reason for this is probably due to the fact 
that Enhanced k-ACO uses visibility measure during the ants’ solution construction. 
However on all problem instances, the Prüfer ACO and Blob ACO performed faster in terms 
of computation time compared to the Enhanced k-ACO. The Prüfer ACO requires only 
about 22% and Blob ACO requires only about 29% as much time as does the Enhanced k-
ACO. 

7. Performance comparisons of Prüfer ACO and Blob ACO on structured 
hard (SHRD) graph data set for lu-dMST problem 
Four networks of varying sizes based on SHRD graphs are generated. The number of 
vertices are 20, 40, 60, and 80, similar to those used in (Chou et al., 2001). The SHRD 20-
vertex problem instance set is labelled as SHRD20, the SHRD 40-vertex problem instance set 
is labelled as SHRD40 and so on. For each vertex, an integer from a range of one to four is 
randomly generated for the lower bound degree constraint, Ld(i), and one to eight is 
randomly generated for the upper bound degree constraint, Ud(i) where i ∈ V. This means 
that the maximum value for the upper bound degree constraint is eight. The minimum 
value of Ld(i) and Ud(i) is always equal to 1, and Ud(i) is always greater than or equal to Ld(i). 
In order to ensure that the network forms at least one feasible solution, the sum for each 
vertex of lower bound degree constraint is set between |V| and 2(|V|-1) as follows: 
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And, the sum for each vertex of upper bound degree constraint is set between 2(|V|-1) and 
|V|(|V|-1) as follows: 
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The reason for this is that a spanning tree always consists of |V|-1 edges, an edge consists 
of exactly two distinct vertices, and the total number of the degrees of an edge is two. 
Therefore, the sum over the degrees deg(i) of a spanning tree on each vertex i in V as given in 
(Gross & Yellen, 2006) can be calculated as follows: 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

52 

 Prüfer-coded ACO Blob-coded ACO 

ρ 0.1 0.9 
mAnts  |V| |V| 

Q 1.0 1.0 
α 1 1 

SHRD maxEdgeCost 20*|V| 20*|V| 
τ0 |V|2*20*|V| |V|2*20*|V| 

iterations 50 * | |V  50 * | |V  

Table 3. The ACO parameters and their values for artificial ant k using Prüfer code and Blob 
code tree codings on SHRD problem instances 

Problem 
  

Prüfer 
ACO 
avg. 

Prüfer 
ACO 
best 

Prüfer 
ACO 
time 

Blob 
ACO 
avg. 

Blob 
ACO 
best 

Blob 
ACO 
time 

Enhanced 
k-ACO 

avg. 

Enhanced 
k-ACO 

best 

Enhanced 
k-ACO 

time 

SHRD153 16.94 18.89 15 17.95 19.84 21 20.26 21.19 120  

SHRD154 9.94 12.01 15 12.25 14.37 21 12.29 15.35 120  

SHRD155 8.04 9.60 15 7.87 9.60 21 8.95 9.60 120  

SHRD203 8.74 10.74 38 10.22 11.39 52 11.72 12.12 180  

SHRD204 6.45 7.79 38 7.05 8.47 52 9.22 9.48 180  

SHRD205 5.70 7.15 38 6.46 8.03 52 8.17 8.47 180  

SHRD253 16.26 18.67 87 17.82 19.13 118 19.81 20.40 360  

SHRD254 3.36 4.82 87 4.40 5.55 118 6.41 6.72 360  

SHRD255 5.45 7.19 87 7.39 8.29 118 8.91 9.02 360  

SHRD303 9.14 10.71 145 9.88 11.52 197 12.30 12.46 660  

SHRD304 8.20 10.04 145 9.63 11.06 197 11.61 11.80 660  

SHRD305 3.59 5.40 145 4.68 5.96 197 6.37 6.58 660  
Total 

Average: 8.48  
10.25 

 
855  9.63  

11.10 
    

1164 11.34 11.93 3960  

Table 4. Average and best results (quality gains over d-Prim in %), and total times (in 
seconds) on SHRD problem instances.  Label SHRD153 means SHRD graph 15-vertex with 
degree constraint, d=3 and so on 
Table 4 summarises the results of Prüfer-coded ACO and Blob-coded ACO on SHRD data 
set. The Prüfer-coded ACO and Blob-coded ACO were run 50 independent times on each 
problem instance. Each run is terminated after 50 * | |V  iterations. The number of vertices 
are in the range 15, 20, 25, and 30. The maximum degree was set to 3, 4 and 5. The results for 
the enhanced kruskal-ACO are adopted from (Bau et al., 2007). At this time, the enhanced 
kruskal-ACO is used as a performance benchmark. It is one of the best approaches for the d-
MST problem on the SHRD graphs (Bau et al., 2007). Besides average gains, the gains of the 
best run and total times (in seconds) that are required for 50 runs are reported in Table 4. 
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The total times in seconds for 50 runs is recorded so that the time required between ACO 
without tree coding and ACO using tree coding can be compared. The enhanced kruskal-
ACO is referred to as Enhanced k-ACO but the Prüfer-coded ACO and Blob-coded ACO are 
referred to as Prüfer ACO and Blob ACO. Between Prüfer ACO and Blob ACO, the highest 
average gains are underlined. 
It can be concluded that Enhanced k-ACO has higher total average results compared to Blob 
ACO. In turn, Blob ACO has higher total average results compared to Prüfer ACO. Between 
Prüfer ACO and Blob ACO, Blob ACO almost always identifies trees of higher gains except 
on a SHRD155 d=5 problem instance. Between Blob ACO and Enhanced k-ACO, Blob ACO 
achieves results very close to Enhanced k-ACO. On all the problem instances, the maximum 
average result difference between them is only by 2.42 on a SHRD303 d=3. When all three 
ACO approaches are compared, the Enhanced k-ACO attains the highest total average 
compared to the Prufer ACO and Blob ACO. The reason for this is probably due to the fact 
that Enhanced k-ACO uses visibility measure during the ants’ solution construction. 
However on all problem instances, the Prüfer ACO and Blob ACO performed faster in terms 
of computation time compared to the Enhanced k-ACO. The Prüfer ACO requires only 
about 22% and Blob ACO requires only about 29% as much time as does the Enhanced k-
ACO. 

7. Performance comparisons of Prüfer ACO and Blob ACO on structured 
hard (SHRD) graph data set for lu-dMST problem 
Four networks of varying sizes based on SHRD graphs are generated. The number of 
vertices are 20, 40, 60, and 80, similar to those used in (Chou et al., 2001). The SHRD 20-
vertex problem instance set is labelled as SHRD20, the SHRD 40-vertex problem instance set 
is labelled as SHRD40 and so on. For each vertex, an integer from a range of one to four is 
randomly generated for the lower bound degree constraint, Ld(i), and one to eight is 
randomly generated for the upper bound degree constraint, Ud(i) where i ∈ V. This means 
that the maximum value for the upper bound degree constraint is eight. The minimum 
value of Ld(i) and Ud(i) is always equal to 1, and Ud(i) is always greater than or equal to Ld(i). 
In order to ensure that the network forms at least one feasible solution, the sum for each 
vertex of lower bound degree constraint is set between |V| and 2(|V|-1) as follows: 

 
| | 1

0
| | ( ) 2(| | 1)

V

d
i

V L i V
−

=

≤ ≤ −∑ . (8) 

And, the sum for each vertex of upper bound degree constraint is set between 2(|V|-1) and 
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The reason for this is that a spanning tree always consists of |V|-1 edges, an edge consists 
of exactly two distinct vertices, and the total number of the degrees of an edge is two. 
Therefore, the sum over the degrees deg(i) of a spanning tree on each vertex i in V as given in 
(Gross & Yellen, 2006) can be calculated as follows: 
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Table 5 summarises the results of these Prüfer-coded ACO and Blob-coded ACO approaches 
on SHRD graph. The Prüfer-coded ACO and Blob-coded ACO approaches were each run 50 
independent times on each problem instance. Each run is terminated after 50 * | |V  
iterations. The numbers of vertices are in the range 20, 40, 60, and 80. For each i ∈ V, the 1 ≤ 
Ld(i) ≤ 4, 1 ≤ Ud(i) ≤ 8, and Ud(i) ≥ Ld(i). Besides average solution cost, the solution cost of the 
best run and total times (in seconds) required for 50 independent runs are reported in Table 
5. The solution cost is used here for performance comparison rather than the quality gain. 
The Prüfer-coded ACO and Blob-coded ACO approaches are referred to as Prüfer ACO and 
Blob ACO. The parameter values of Prüfer ACO and Blob ACO for lu-dMST problem are 
the same as the parameter values of Prüfer ACO and Blob ACO for d-MST problem. 
As shown in Table 5, it can be concluded that Blob ACO always has the better results 
compared to Prüfer ACO. The Blob ACO always identifies trees of lower solution cost for all 
the problem instances in the SHRD graphs. The overall effectiveness of the Blob ACO 
compared to Prüfer ACO is probably due to the fact that it uses better tree coding scheme. 
Prüfer code is a poor representation of spanning trees for EA (Gottlieb et al., 2001; Julstrom, 
2001). Small changes in Prüfer code often cause large changes in the spanning trees they 
represent. However on all problem instances, the Prüfer ACO requires lesser time than the 
Blob ACO. This does not bring to a conclusion that Blob tree coding always requires more 
time compared to Prüfer tree coding. In a recent study of the Blob code spanning tree 
representations, Paulden and Smith (2006) have described linear-time encoding and 
decoding algorithms for the Blob code, which supersede the usual quadratic-time 
algorithms. 
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Prüfer ACO
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Prüfer ACO
Time (secs) 

Blob ACO 
avg. 

Blob ACO 
best 

Blob ACO 
Time (secs) 

SHRD20 1429.28 1304 33 1391.56 1286 50 

SHRD40 5573.04 4941 330 5034.32 4673 458 

SHRD60 12167.48 11003 1345 11448.68 10625 1715 

SHRD80 16683.12 14839 3483 15013.24 13844 4610 
Total 

Average: 35852.92 32087 5191  32887.80 30428 6833  

Table 5. Average solution cost on SHRD problem instances with both lower and upper 
bound degree constraints.  Label SHRD20 means SHRD graph 20-vertex and so on 

8. Conclusion 
The design and implementation of Blob-coded ACO and Prüfer-coded ACO for d-MST and 
lu-dMST problems have been presented. This ACO approaches is different because it 
constructs the encoded of the solution and can speed up computation time. Performance 
studies have revealed that Blob-coded ACO is almost always better than Prüfer-coded ACO 
for both types of problems for the SHRD graphs. However for the d-MST problem, Blob-
coded ACO does not perform better than the enhanced kruskal-ACO approach in any single 
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problem instance for SHRD graphs. Finally, the Blob code may be a useful coding of 
spanning trees for ants’ solution construction in ACO algorithms for the d-MST and lu-
dMST problems in terms of computation time. There may be other codings of spanning trees 
even more appropriate for ants’ solution construction such as Happy code or Dandellion 
code as mentioned by Picciotto (1999) in his PhD thesis. 
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1. Introduction  
A successful evolutionary algorithm is one with the proper balance between exploration 
(searching for good solutions), and exploitation (refining the solutions by combining 
information gathered during the exploration phase). Diversity maintenance is important in 
constrained search space algorithms because the additional pressure set on the population 
to reach the feasible region reduces the diversity. Since reduced diversity promotes 
premature convergence, new exploration and exploitation techniques have been 
incorporated into the PSO main paradigm.  
In this chapter the authors review the standard PSO algorithm, and several proposals to 
improve both exploration and exploitation: local and global topologies, particle motion 
equations, swarm neighbourhoods, and interaction models. For all these approaches the 
common shared feature is the modification of the PSO main algorithm.  
The present chapter, however,  describes a rather different approach: the perturbation of the 
particle memory. In the PSO algorithm, the next particle’s position is based on their flying 
experience (pbest), and the current best individual in either the entire swarm (gbest), or in a 
swarm neighbourhood (lbest). Since the values for gbest or lbest are determined from the 
pbest values available at any generation, in the end, it is the pbest which is mainly 
responsible for the particle’s next position. Therefore, a way to reduce premature 
convergence is to improve the pbest of each particle. 
Our approach aims to prevent convergence to local optima by improving the swarm 
exploration and exploitation through two perturbation operators. These external operators 
improve the memory of the best visited locations, and do not modify the main PSO 
paradigm. 
The rest of this Chapter is organized as follows: In Section 2, we introduce the premature 
convergence problem. We extend this discussion in the context of constrained optimization, 
in Section 3. Our approach is introduced in Section 4; giving a brief explanation about every 
component adopted in the PSO algorithm. In Section 5, a well-known benchmark is used to 
compare our approach against other PSO based methods and evolutionary algorithms 
representative of the state-of-the-art. The conclusion is given in Section 6, complemented 
with future work guidelines in Section 7.  
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2. Premature Convergence 
A natural problem in evolutionary computation is the premature convergence. It means that 
the evolutionary algorithm could stay trapped in a region containing a local optimum. 
Premature convergence can be caused by the lost of diversity, which occurs when the 
population reaches a suboptimal state where evolutionary algorithm can no longer produce 
offspring which outperforms their parents (Fogel, 1994). A way to attain diversity 
maintenance is by keeping a balance between exploration and exploitation (Holland, 1975). 

2.1 Exploration and Exploitation 
The balance between exploration and exploitation is a well known issue in evolutionary 
computation (Michalwicz & Fogel, 2000). But, why is it hard to find an optimal balance? 
First, we review the classical concepts: exploration is the act of searching for the purpose of 
discovery; and exploitation is the act of utilizing something for any purpose (Agnes, 2004). Then, 
at the context of evolutionary computation, we could define exploration as the act of searching 
through all space regions for discovering promissory solutions; and exploitation as the act of 
utilizing local information for refining the solution.   
Accord with the given definition, Downing explained: exploitation is encouraged by elitist 
selection and smaller population sizes or by using lower mutation rates to promote correlation 
between parent and offspring. Conversely, exploration is encouraged by promoting greater population 
diversity and selecting parents less discerningly, or by increasing mutation rate. (Downing, 2006). 
We can observe that exploration and exploitation are opposite goals; both compete for 
limited resources, for instance, the number of fitness function evaluations. So, a trade-off 
between exploration and exploitation is necessary. The search horizon has to be sufficiently 
close for maintaining exploitation and at the same time sufficiently distant to discover 
significant novelty (Jacoby, 2005). 
The common approach in evolutionary computation about the control of exploration and 
exploitation is framed in terms of balancing variation and selection processes. There are 
several works focused to solve the equilibrium dilemma between variation and selection. 
Even more, there are proposals from other areas (e.g. management, economics) for solving 
related problems (March, 1991). In the following sections, we review some approaches and 
propose a new solution for balancing variation and selection in the PSO algorithm.  

2.2 Diversity Control in PSO 
In PSO, the diversity comes from two sources. One is the difference between the particle’s 
current position and its best neighbor, and the other is the difference between the particle’s 
current position and its best historical value. Although variation provides exploration, it can 
only be sustained for a limited number of generations because convergence of the flock to 
the best is necessary to refine the solution (exploitation).  
In an early analysis, Angeline shows that PSO may not converge, neither refine solutions 
when variation is null, that is, when all the particles rest near by the best spot (Angeline, 
1998). A few months after Angeline’s work, the first formal analysis of a simple PSO was 
developed by Ozcan and Mohan (Ozcan & Mohan, 1998), which obtained the PSO 
trajectories. Based on this work, Clerc and Kennedy analyzed a particle’s trajectory and 
determined the relationship between the acceleration parameters that avoid the divergence 
of the particle (Clerc & Kennedy, 2002). But, when the problem of converge premature 
seemed solved; Van Den Bergh proves that the PSO trajectories does not converge to the 
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global optimal (Van Den Bergh, 2002). In his Ph.D. thesis, Van Den Bergh explains the 
attributes that a hybrid PSO must accomplish to become a global search algorithm. There 
are several proposes related with developing a global search based on the PSO algorithm. In 
this context, we can find approaches for dealing with constraints, which is the topic of this 
chapter. 

3 Constraint-Handling in PSO 
Real optimization problems are subject to a number of equality and inequality constraints, 
which can be linear or nonlinear. These constraints determine which areas of the search 
space are feasible and which are infeasible. In addition to these constraints, boundary 
constraints are usually imposed to the search space (Michalewicz, 1992). Also, there is the 
possibility that the feasible space is fragmented and separated by infeasible regions, 
requiring that both the feasible and infeasible regions be searched.  
PSO is an unconstrained search technique. Thus, adopting a constraint handling technique 
into the main PSO algorithm is an open research area. There is a considerable amount of 
research regarding mechanisms that allow the evolutionary algorithms to deal with equality 
and inequality constraints. Some constraint-handling approaches tend to incorporate either 
information about infeasibility or distance to the feasible region, into the fitness function in 
order to guide the search. These techniques are based on penalty functions (Parsopoulos & 
Vrahatis, 2002). In their work Parsopoulos and Vrahatis used a multi-stage assignment 
penalty function without diversity control. Other approaches propose a constraint handling 
technique based on maintaining a feasible population (EI-Gallad et al., 2001), and also some 
algorithms require a feasible initial population (Hu & Eberhart, 2002; He et al., 2004). In 
2003, Coath and Halgamuge presented a comparison of the two constraint-handling 
methods in PSO: penalty function and feasibility preservation (Coath & Halgamuge, 2003).  
Their experiments clearly detect the need of some form of diversity control.  
In a more sophisticated approach, Zhang et al. introduced a special technique, called periodic 
mode, to handle inequality constraints. This method consists in keeping the global-best near 
the boundary thus the flock which is constantly pulled to the border, can sustain exploration 
(Zhang et al., 2004). A few more sophisticated approaches include applying multi-objective 
optimization techniques to handle constraints. For instance Toscano and Coello (Toscano & 
Coello, 2004), use a feasibility tournament proposed by Deb (Deb 2000) to handle constraints 
with PSO. The feasibility tournament applies a set of rules similar to the Pareto dominance 
concept used in multi-objective optimization.  
Notably, equality and inequality constraints demand an intelligence exploration of the 
search space to find the global optimum region. Likewise, an efficient and effective 
exploitation is required in the boundaries of the feasible region, whenever the inequality 
constraints are active or equality constraints are present. PSO should find a solution that 
both optimizes the objective function and satisfies all constraints. 

4. Constrained Optimization via Particle Swarm Optimization  
A brief analysis of the state-of-the-art in PSO to solve constrained optimization problems 
was presented. Now, we are going to introduce our approach called Particle Evolutionary 
Swarm Optimization (PESO) (Muñoz et al., 2005). In this section we explain our approach; 
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and in the next section we perform a comparison with another PSO-based constraint 
optimization works.  

4.1 Interaction Model 
First we should choose an appropriate interaction model for solving constrained 
optimization problems. In an early analysis, Kennedy provided empirically evidence that 
the social-only model is faster and more efficient than the full and cognitive-only models 
(Kennedy, 1997). These models were defined by omitting components of the velocity 
formula. The full model is composed by the cognition component and the social component. 
Dropping the social component results in the cognition-only model, whereas dropping the 
cognition component defines the social-only model. In a fourth model, selfless model, the 
neighbourhood best is chosen only from the neighbours, without considering the current 
individual. Carlisle and Dozier tested these four models in dynamic changing environments 
(Carlisle & Dozier, 2000). They empirically prove that the social-only model consistently 
found solutions faster than the full model, but the reliability of the social-only model is lower 
than the full model.  
We test the four models proposed by Kennedy, (Kennedy, 1997). We confirm that the social-
model is faster than the full model, but it is not enough robust due to its premature 
convergence behaviour.  Therefore, we adopt the full model which is more reliable for 
constrained optimization. 

4.2 Social Network Structure 
In the PSO topology, each particle moves following a leader; this fact is modelled by one of 
three components of the velocity formula. A leader can be global to all the flock, or local to a 
flock’s neighbourhood. In the latter case there are as many local leaders as neighbourhoods. 
Having more than one leader in the flock translates into more attractors or good spots in 
space. Therefore, the use of neighbourhoods is a natural approach to fight premature 
convergence (Mendes et al., 2004). 
Particles in the same neighbourhood communicate with one another by exchanging 
information for moving towards a better position. The flow of information through the 
flock, depends on the neighbourhood structure. Figure 1 presents a few neighbourhood 
structures developed for PSO. 
In a highly connected neighbourhood structure, the information about the best particle in 
the swarm is quickly transmitted through the whole flock. This means faster convergence, 
which implies a higher risk to converge to a local minimum. Also, Kennedy & Mendes 
empirically shows that the star neighbourhood is faster than the other topologies, but it meets 
the optimal fewer times than any other one (Kennedy & Mendes, 2002). They suggest trying 
the Von Neumann neighbourhood structure, which performed more consistently in their 
experiments than the topologies commonly found in current practice. However, in the 
experiments developed by Kennedy & Mendes, they used a set of unconstrained 
optimization problems. However, based on their recommendation, we propose a new 
neighbourhood structure, which we define as singly-linked ring.     
The singly-linked ring rises from analysing the ring neighbourhood as a double-linked list; like 
it is showed in Figure 2-a. Suppose that every particle is assigned a permanent label which is 
used to construct the neighbourhoods. Then, a particle k has two neighbours, particles k-1 
and k+1. In turn, particles k-1 and k+1 have particle k as a neighbour.  In this way, there is a 
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mutual attraction between consecutive particles, forming overlapped clusters. Also, the slow 
convergence of the ring structure has been empirically showed (Kennedy, 1999; Kennedy & 
Mendes, 2002; Carlisle & Dozier, 2000).  
 
 
 

   
Figure 1. Neighbourhood Structures. A representation of the social networks applied in PSO 

The successful of the Von Neumann neighbourhood is due to the interaction that each 
particle has with other particles, an average of 5 neighbours. This promotes the 
exploitation, but unfortunately fails to provide the exploration required by the 
constrained optimization problems. Thus, we propose the topology presented in Figure 2-
b. The singly-linked ring keeps two neighbours for each particle, but breaks the mutual 
attraction between neighbours. Besides, the information through the whole swarm is 
transmitted faster than in the original ring topology. Therefore, the singly-linked ring keeps 
the exploration at the search space, and increases the exploitation of the best solutions 
(Hernández et al., 2007). 
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Figure 2. Ring Neighbourhood Structures. a) Original ring topology, b) Singly-Linked ring 

4.3 Feasibility Tournament     
The first step for developing a PSO-based constraint optimization is to choose a constraint-
handling method. There are three methods that have been used by other approaches: penalty 
function, feasibility preservation and feasibility tournament. 
The penalty function method involves a number of parameters which must be set right in any 
problem to obtain good solutions. This fact has motivated sophisticated penalty function 
approaches and extensive experimentation for setting up appropriate parameters 
(Michalewicz & Schoenauer, 1996).  According with Deb (Deb, 2000), there are two problems 
associated with the static penalty function: the optimal solution depends on penalty 
parameters and the inclusion of the penalty term distorts the objective function. 
Now, we give the details of the feasibility preservation method. There are two main problems 
associated with this method: it needs a feasible initial population and special operators to 
keep the population into the feasible region. Also, the method could be unreliable handling 
problems with active constraints, since it does not allow unfeasible solutions and has not 
information about the boundaries.  
The feasibility tournament proposes to use a tournament selection operator, where two 
solutions are compared at time, and the following criteria are always applied: 
1. Any feasible solution is preferred to any infeasible solution. 
2. Among two feasible solutions, the one having better objective function value is 

preferred. 
3. Among two infeasible solutions, the one having smaller sum of constraint violation is 

preferred. 
The feasibility tournament does not require tuning parameters or applying special operators. 
Just a simple comparison is used to choose the best individual. Even, in any of the above 
three scenarios, solutions are never compared in terms of both objective function and sum of 
constraint violation. This method was implemented by Toscano and Coello in a PSO with 
global topology, obtaining competitive results (Toscano & Coello, 2004). Our approach 
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applies this method in a local topology, allowing feasible and infeasible solutions in the pbest 
particles. It enriches the information about the search space, especially at boundaries. 
Nevertheless, for handling equality constraints, it is not enough just converting them into 
inequality constraints: 

 g(x) = δ-|h(x)| (1) 

Our approach applies a dynamic tolerance for handling equality constraints. First, we rewrite 
them as inequality constraints of the form |h(x)|< δ, where δ is called the tolerance. Then, 
the tolerance is linearly decremented from 1.0 to a specified target value (1E-06 in our 
experiments) during the first 90% of function evaluations. For the last 10% the tolerance is 
kept fixed; thus, the particles have additional time to achieve convergence. This technique 
proved to be very effective in the test problems that we present in the Section 5.  

4.4 Perturbing the PSO Memory 
In Section 2, we mention the Van Den Bergh’s PhD thesis and his contributions in the PSO 
context. He gives a set of requirements that an evolutionary algorithm must accomplish to 
be a global search algorithm. Also, he shows that the PSO algorithm is not in fact a global 
search algorithm (Van Den Bergh, 2002). Nevertheless, Van Den Bergh gives a theorem 
which specifies under which conditions an algorithm can be considered a global  
optimization method. The theorem implies that a general algorithm, without a priori 
knowledge, must be able to generate an infinite number of samples distributed throughout 
the whole of S in order to guarantee that it will find the global optimum with asymptotic 
probability 1 (Van Den Bergh, 2002).  
This can be achieved by periodically adding randomised particles to the swarm. 
Nevertheless, resetting the position of the particles is not a trivial task; a bad decision affects 
directly in the exploitation of the best solutions. We propose, based on the observation that 
the pbest particles drive the swarm, perturbing the pbest of each particle.  
Our approach has three stages. In the first stage, an iteration of the standard PSO algorithm 
with the features described in this Section 4 is applied. Then the perturbations are applied to 
pbest in the next two stages. The goal of the second stage is to add a perturbation generated 
from the linear combination of three different particles for every dimension. This 
perturbation is preferred over other operators because it preserves the distribution of the 
population. This operator is used for reproduction by the Differential Evolution algorithm 
(Price et al., 2005). In our approach this perturbation is called C-Perturbation. It is applied to 
the members of pbest to yield a set of temporal particles tempC. Then each member of tempC 
is compared with its corresponding father and pbest is updated applying the feasibility 
tournament. Figure 3 shows the pseudo-code of the C-Perturbation operator.  
In the third stage every vector is perturbed again so a particle could be deviated from its 
current direction as responding to external, maybe more promissory, stimuli. This 
perturbation is implemented by adding small random numbers to every design variable. 
The perturbation, called M-Perturbation, is applied to every member of pbest to yield a set of 
temporal particles tempM. Then each member of tempM is compared with its corresponding 
father and pbest is updated applying the feasibility tournament. Figure 4 shows the pseudo-
code of the M-Perturbation operator, where LL and UL are the lower and upper limits of the 
search space. The perturbation is added to every dimension of the decision vector with 
probability 1/d, where d is the dimension of the decision variable vector.  
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Figure 3. C-Perturbation Operator. Pseudo-code of the C-Perturbation applies by PESO 

These perturbations have the additional advantage of keeping the self-organization 
potential of the flock since they only work on the pbest particles, as we can observe in Figure 
5. The current PSO population is not perturbed, but few or may be several pbest particles 
have been moved to a better position. This is an improved form for adding randomised 
particles to the swarm, compared with those propose by Van Den Bergh (Van Den Bergh, 
2002). Our approach not only resets the position of the pbest particles, also improves them; 
probably driving the swarm to a promise region. 
 
 

 
Figure 4. M-Perturbation Operator. Pseudo-code of the M-Perturbation applies by PESO 

For   k = 0   To   n 
 
    For   j = 0   To   d 
 
        r = U ( 0 , 1 ) 
 
        If   r < 1/d   Then 
             
            Temp [ k , j ] = Random ( LL , UL )  
         
        Else 
 
            Temp [ k , j ] = Pi+1 [ k , j ]  
 
    End For 
 
End For

For   k = 0   To   n 
 
    For   j = 0   To   d 
 
        r = U ( 0 , 1 ) 
 
        p1 = k 
 
        p2 = random ( n ) 
 
        p3 = random ( n ) 
 
        Temp [ k , j ] = Pi+1 [ p1 , j ] + r * ( Pi+1 [ p2 , j ] - Pi+1 [ p3 , j ] )  
 
    End For 
 
End For
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Figure 5. Effects of the perturbation operators. (a) Shows the movement of particle at 
iteration T+1 without perturbing the PBest in the iteration T. (b) Shows the movement of 
particle at iteration T+1 with the influence of PBest at iteration T+1, which is the final 
position after applying the perturbation operators on the PBest in the iteration T 

4.5 PSO Parameters 
The parameters play an important roll in the successful of any evolutionary algorithm. 
There are several works that discuss a number of control parameters like swarm size (Van 
Den Bergh, 2001), neighbourhood size (Suganthan, 1999), or acceleration coefficients 
(Ratnaweera et al., 2002a; Ratnaweera et al., 2002b). 
Our approach generally uses a swarm size of n=100 particles, a neighbourhood size of k=2, 
and the following set of acceleration coefficients: w=U(0.5, 1.0), c1=1.0, c2=1.0, where U is a 
uniform distribution. These parameters have not been deeply studied; only the 
neighbourhood size, which has been explained in this Section. Nevertheless, the acceleration 
coefficients accomplish the mathematical model gave by Clerc & Kennedy to avoid 
divergence of the particle trajectories (Clerc & Kennedy, 2002).  

4.6 Our Approach PESO 
In summary the proposed algorithm, PESO, is a local PSO with a singly-linked ring 
neighbourhood. PESO handles constraints adopting a feasibility tournament complemented 
with a dynamic tolerance for handling equality constraints. The main components of PESO 
are the C-Perturbation and M-Perturbation operators applied to the pbest population.  
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5. Experiments  
PESO is applied to solve the benchmark used in the Special Session on Constrained Real-
Parameter Optimization, CEC-06 (Liang et al., 2006). The benchmark is an extended version 
of 24 functions from the original benchmark of Runnarson and Yao, with 13 functions 
(Runnarson & Yao, 2000). It is integrated by linear and non-linear functions with linear and 
non-linear constraints. The benchmark was proposed by Mezura, in his Ph.D. thesis 
(Mezura, 2004). 

TP Optimal Best Median Mean Worst S.D. 
g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 0 
g02 -0.803619 -0.803619 -0.803617 -0.801320 -0.786566 4.59E-03 
g03 -1.000000 -1.000005 -1.000005 -1.000005 -1.000003 3.15E-07 
g04 -30665.538 -30665.53867 -30665.53867 -30665.53867 -30665.53867 0 
g05 5126.49811 5126.498096 5126.498096 5126.498096 5126.498096 0 
g06 -6961.8138 -6961.813876 -6961.813876 -6961.813876 -6961.813876 0 
g07 24.306209 24.306209 24.306210 24.306212 24.306219 3.34E-06 
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 0 
g09 680.630057 680.630057 680.630057 680.630057 680.630057 0 
g10 7049.248 7049.248020 7049.248638 7049.250087 7049.263662 3.61E-03 
g11 0.750000 0.749999 0.749999 0.749999 0.749999 0 
g12 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 0 
g13 0.053950 0.053950 0.053950 0.053950 0.053965 2.76E-06 
g14 -47.764411 -47.761108 -47.747212 -47.741430 -47.670921 2.15E-02 
g15 961.715172 961.715171 961.715171 961.715171 961.715171 0 
g16 -1.905155 -1.905155 -1.905155 -1.905155 -1.905155 0 
g17 8876.98068 8856.502344 8863.875542 8877.812811 8941.344349 30.1195 
g18 -0.8660 -0.866025 -0.866025 -0.866001 -0.865568 8.74E-05 
g19 32.386 32.349645 32.386872 32.411596 32.571543 6.30E-02 
g20 0.096737 *0.204095 *0.209711 *0.212003 *0.233281 6.94E-03 
g21 193.778349 205.852693 279.309106 273.298016 303.454837 23.8556 
g22 382.902205 *157.5136 *3161.1026 *5376.2265 *18732.7838 5.01E+03 
g23 -400.0025 -361.856637 -136.564268 -138.407772 3.775736 84.5217 
g24 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 0 

Table 1. PESO results in the Benchmark. *Infeasible Solution 

5.1 PESO Results 
In Table 1, we present the results of PESO in the benchmark problems, where S.D. means 
standard deviation. For every test problem 30 runs was developed, and in each run 350,000 
fitness function evaluations were applied to test our. In only two test problems, g20 and g22, 
PESO did not find a feasible solution. These problems have 14 and 19, equality constraints 
respectively. Also, PESO presents a poor performance in test problems g21 and g23, where it 
did not reach the optimal value, but always found a feasible solution at the 30 runs. In the 
rest of the benchmark, PESO attains the global optimal. PESO was able to outperform the 
best know solution in test problems g03, g05, g11, g13, g17 and g19, due the conversion of 
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equality constraints to inequality constraints with a tolerance value of 1E-06. The whole 
benchmark was resolved using the same parameters, but there are several test problems, 
which were solved with less than 350000 fitness function evaluations. This fact is showed in 
Table 2.   

 

TP Best Median Mean Worst S.D. F.R. S.R. 
g01 90800 95000 95396.67 99400 2613.29 30 30 
g02 142900 175800 179395.45 232100 28120.18 30 22 
g03 315100 315100 315123.33 315600 97.14 30 30 
g04 59600 65100 65086.67 70000 2713.28 30 30 
g05 315100 315100 315256.67 315900 245.91 30 30 
g06 47100 54200 53410.00 57000 2577.80 30 30 
g07 185500 227600 233400.00 304500 32253.97 30 30 
g08 3600 6850 6470.00 8500 1381.94 30 30 
g09 69900 78500 79570.00 102400 7154.65 30 30 
g10 167200 221300 224740.00 307200 38407.87 30 30 
g11 315100 315100 315100.00 315100 0 30 30 
g12 400 6900 6646.67 10400 2606.98 30 30 
g13 315100 315150 315546.67 318100 710.87 30 30 
g14 326900 326900 326900.00 326900 0 30 1 
g15 315100 315100 315100.00 315100 0 30 30 
g16 37200 41000 40960.00 45400 2210.88 30 30 
g17 315100 316100 316608.70 318800 1061.69 30 23 
g18 102200 153600 167088.89 252900 43430.30 30 27 
g19 206800 259650 264414.29 331000 36456.84 30 14 
g20 NR NR NR NR NR 0 0 
g21 NR NR NR NR NR 30 0 
g22 NR NR NR NR NR 0 0 
g23 NR NR NR NR NR 30 0 
g24 14900 19350 19156.67 22200 1927.24 30 30 

Table 2. Convergence of PESO in the Benchmark. NR Optimal not reached 

In Table 2, we present the number of fitness function evaluations that PESO requires to 
attain a value within 1E-4 of the optimal. Also, the number of feasible runs, F.R. and the 
number of successful runs, S.R. are showed. We define like F.R. that run, which finds at least 
one feasible solution in less than 350000 fitness evaluations. On the other hand, when the 
best value found is within 1E-4 of the optimal the run is successful. Only the successful runs 
were used to calculate the measures presented in Table 2. Test problems with equality 
constraints require at least 315000 fitness function evaluations, due the dynamic tolerance 
applied in PESO. The experiments show a poor performance of PESO in test problems g20, 
g21, g22 and g23. These problems have several equality constraints; in fact the problems g20 
and g22 have more than 10 of them. Now, we compare our approach against other PSO 
based methods and evolutionary algorithms representative of the state-of-the-art. 
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5. Experiments  
PESO is applied to solve the benchmark used in the Special Session on Constrained Real-
Parameter Optimization, CEC-06 (Liang et al., 2006). The benchmark is an extended version 
of 24 functions from the original benchmark of Runnarson and Yao, with 13 functions 
(Runnarson & Yao, 2000). It is integrated by linear and non-linear functions with linear and 
non-linear constraints. The benchmark was proposed by Mezura, in his Ph.D. thesis 
(Mezura, 2004). 

TP Optimal Best Median Mean Worst S.D. 
g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 0 
g02 -0.803619 -0.803619 -0.803617 -0.801320 -0.786566 4.59E-03 
g03 -1.000000 -1.000005 -1.000005 -1.000005 -1.000003 3.15E-07 
g04 -30665.538 -30665.53867 -30665.53867 -30665.53867 -30665.53867 0 
g05 5126.49811 5126.498096 5126.498096 5126.498096 5126.498096 0 
g06 -6961.8138 -6961.813876 -6961.813876 -6961.813876 -6961.813876 0 
g07 24.306209 24.306209 24.306210 24.306212 24.306219 3.34E-06 
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 0 
g09 680.630057 680.630057 680.630057 680.630057 680.630057 0 
g10 7049.248 7049.248020 7049.248638 7049.250087 7049.263662 3.61E-03 
g11 0.750000 0.749999 0.749999 0.749999 0.749999 0 
g12 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 0 
g13 0.053950 0.053950 0.053950 0.053950 0.053965 2.76E-06 
g14 -47.764411 -47.761108 -47.747212 -47.741430 -47.670921 2.15E-02 
g15 961.715172 961.715171 961.715171 961.715171 961.715171 0 
g16 -1.905155 -1.905155 -1.905155 -1.905155 -1.905155 0 
g17 8876.98068 8856.502344 8863.875542 8877.812811 8941.344349 30.1195 
g18 -0.8660 -0.866025 -0.866025 -0.866001 -0.865568 8.74E-05 
g19 32.386 32.349645 32.386872 32.411596 32.571543 6.30E-02 
g20 0.096737 *0.204095 *0.209711 *0.212003 *0.233281 6.94E-03 
g21 193.778349 205.852693 279.309106 273.298016 303.454837 23.8556 
g22 382.902205 *157.5136 *3161.1026 *5376.2265 *18732.7838 5.01E+03 
g23 -400.0025 -361.856637 -136.564268 -138.407772 3.775736 84.5217 
g24 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 0 

Table 1. PESO results in the Benchmark. *Infeasible Solution 

5.1 PESO Results 
In Table 1, we present the results of PESO in the benchmark problems, where S.D. means 
standard deviation. For every test problem 30 runs was developed, and in each run 350,000 
fitness function evaluations were applied to test our. In only two test problems, g20 and g22, 
PESO did not find a feasible solution. These problems have 14 and 19, equality constraints 
respectively. Also, PESO presents a poor performance in test problems g21 and g23, where it 
did not reach the optimal value, but always found a feasible solution at the 30 runs. In the 
rest of the benchmark, PESO attains the global optimal. PESO was able to outperform the 
best know solution in test problems g03, g05, g11, g13, g17 and g19, due the conversion of 
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equality constraints to inequality constraints with a tolerance value of 1E-06. The whole 
benchmark was resolved using the same parameters, but there are several test problems, 
which were solved with less than 350000 fitness function evaluations. This fact is showed in 
Table 2.   

 

TP Best Median Mean Worst S.D. F.R. S.R. 
g01 90800 95000 95396.67 99400 2613.29 30 30 
g02 142900 175800 179395.45 232100 28120.18 30 22 
g03 315100 315100 315123.33 315600 97.14 30 30 
g04 59600 65100 65086.67 70000 2713.28 30 30 
g05 315100 315100 315256.67 315900 245.91 30 30 
g06 47100 54200 53410.00 57000 2577.80 30 30 
g07 185500 227600 233400.00 304500 32253.97 30 30 
g08 3600 6850 6470.00 8500 1381.94 30 30 
g09 69900 78500 79570.00 102400 7154.65 30 30 
g10 167200 221300 224740.00 307200 38407.87 30 30 
g11 315100 315100 315100.00 315100 0 30 30 
g12 400 6900 6646.67 10400 2606.98 30 30 
g13 315100 315150 315546.67 318100 710.87 30 30 
g14 326900 326900 326900.00 326900 0 30 1 
g15 315100 315100 315100.00 315100 0 30 30 
g16 37200 41000 40960.00 45400 2210.88 30 30 
g17 315100 316100 316608.70 318800 1061.69 30 23 
g18 102200 153600 167088.89 252900 43430.30 30 27 
g19 206800 259650 264414.29 331000 36456.84 30 14 
g20 NR NR NR NR NR 0 0 
g21 NR NR NR NR NR 30 0 
g22 NR NR NR NR NR 0 0 
g23 NR NR NR NR NR 30 0 
g24 14900 19350 19156.67 22200 1927.24 30 30 

Table 2. Convergence of PESO in the Benchmark. NR Optimal not reached 

In Table 2, we present the number of fitness function evaluations that PESO requires to 
attain a value within 1E-4 of the optimal. Also, the number of feasible runs, F.R. and the 
number of successful runs, S.R. are showed. We define like F.R. that run, which finds at least 
one feasible solution in less than 350000 fitness evaluations. On the other hand, when the 
best value found is within 1E-4 of the optimal the run is successful. Only the successful runs 
were used to calculate the measures presented in Table 2. Test problems with equality 
constraints require at least 315000 fitness function evaluations, due the dynamic tolerance 
applied in PESO. The experiments show a poor performance of PESO in test problems g20, 
g21, g22 and g23. These problems have several equality constraints; in fact the problems g20 
and g22 have more than 10 of them. Now, we compare our approach against other PSO 
based methods and evolutionary algorithms representative of the state-of-the-art. 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

68 

5.2 Comparison PESO versus Turbulent PSO 
First we compare PESO against another PSO approach which applies feasibility tournament to 
handle constrained optimization problems. In Section 3, we mention that Toscano and 
Coello proposed a constraint handling technique for PSO (Toscano & Coello). Their 
approach handles constraints through a feasibility tournament, and keeps diversity by adding 
mutations to the velocity vector using a turbulence operator. They test the original 
benchmark with 13 test functions (Runnarson & Yao, 2000). The comparison is shown in 
Table 3. TC-PSO (Toscano and Coello’s PSO) performed 340,000 fitness function evaluations, 
10,000 less than PESO, but it is not significative for the comparison. The performance of 
PESO is better than TC-PSO on test problems g02, g05, g07, g09, g10 and g13. 

TP Optimal PESO TC-PSO 
g01 -15.000000 -15.000000 -15.000000 
g02 -0.803619 -0.803619 -0.803432 
g03 -1.000000 -1.000005 -1.004720 
g04 -30665.538 -30665.53867 -30665.500000
g05 5126.49811 5126.498096 5126.640000 
g06 -6961.8138 -6961.813876 -6961.810000 
g07 24.306209 24.306209 24.351100 
g08 -0.095825 -0.095825 -0.095825 
g09 680.630057 680.630057 680.638000 
g10 7049.248 7049.248020 7057.590000 
g11 0.750000 0.749999 0.749999 
g12 -1.000000 -1.000000 -1.000000 
g13 0.053950 0.053950 0.068665 

Table 3. Comparison of two PSO with feasibility tournament for handling constraints. Best 
results of PESO and TC-PSO into 30 runs 

5.3 Comparison PESO versus Feasible PSO 
Now, we compare PESO against the approach proposes by Hu and Eberhart (Hu & 
Eberhart, 2002). They apply a global PSO based on feasibility preservation for handling 
constraint problems. They only test the first 12 test functions of the benchmark. The 
comparison is shown in Table 4. HE-PSO (Hu and Eberhart’s PSO) performed 100,000 
fitness function evaluations. For developing a real comparison, PESO performed 100,000 
fitness function evaluations. Nevertheless, the comparison is not equal since we do not take 
into account the number of constraint evaluations that HE-PSO performs to preserve 
feasibility. Also, we must mention that the randomly initialized particles are not always in 
the feasible space. So initialization may take a longer time. The performance of PESO is 
better than HE-PSO on test problems g02, g06, g07, g09 and g10. Even, there is not available 
information about the performance of HE-PSO at test problem g05. We should observe that 
PESO is robust to the number of fitness function evaluations. It is not a surprise, since in 
Table 2 we can observe the convergence rate of PESO for every test problem. In the first 12 
test problems there are 3 with equality constraints; therefore, their convergence rate is 
driven by the dynamic tolerance. In the rest, there are 6 test problems with a best 
convergence rate lower than 100,000 fitness function evaluations. Only test problems g02, 
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g07 and g10 have a best convergence rate upper than 100,000, which cause a little decrease 
in their best solution found around 30 runs. 

TP Optimal PESO HE-PSO 
g01 -15.000000 -15.000000 -15.0 
g02 -0.803619 -0.803613 -0.7130 
g03 -1.000000 -1.000005 -1.0 
g04 -30665.538 -30665.53867 -30665.5 
g05 5126.49811 5126.498096 - 
g06 -6961.8138 -6961.813876 -6961.7 
g07 24.306209 24.306248 24.4420 
g08 -0.095825 -0.095825 -0.0958250
g09 680.630057 680.630057 680.657 
g10 7049.248 7049.250802 7131.01 
g11 0.750000 0.749999 0.75 
g12 -1.000000 -1.000000 -1.0 

Table 4. Comparison of PESO against HE-PSO. Best results of PESO and HE-PSO into 30 
runs 

5.4 Comparison PESO versus Periodic Mode PSO 
In Section 3, we mention the special technique for handling inequality constraints 
introduced by Zhang et al., called periodic mode (Zhang et al., 2004). Their method keeps the 
global-best near the boundary thus the flock which is constantly pulled to the border, can 
sustain exploration. They only tested the 9 functions with inequality constraints of the 
benchmark proposed by Runnarson and Yao (Runnarson & Yao, 2000). The comparison is 
shown in Table 5.  

TP Optimal PESO PM-PSO 
g01 -15.000000 -15.000000 -15.000000
g02 -0.803619 -0.803613 -0.64330 
g04 -30665.538 -30665.53867 -30665.54 
g06 -6961.8138 -6961.813876 -6961.814 
g07 24.306209 24.306248 24.306 
g08 -0.095825 -0.095825 -0.095825 
g09 680.630057 680.630057 680.630 
g10 7049.248 7049.250802 7049.5 

Table 5. Comparison of PESO against PM-PSO. Best results of PESO and PM-PSO into 30 
runs 

The PM-PSO algorithm (periodic mode PSO) performed 1,500,000 fitness function 
evaluations. Although, PESO performed four times less fitness function evaluations than 
PM-PSO, we did not increase the number of fitness function evaluations, because PESO 
performance is competitive with the general parameters applied in these experiments. The 
performance of PESO is better than PM-PSO on test problems g02 and g10. 
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5.2 Comparison PESO versus Turbulent PSO 
First we compare PESO against another PSO approach which applies feasibility tournament to 
handle constrained optimization problems. In Section 3, we mention that Toscano and 
Coello proposed a constraint handling technique for PSO (Toscano & Coello). Their 
approach handles constraints through a feasibility tournament, and keeps diversity by adding 
mutations to the velocity vector using a turbulence operator. They test the original 
benchmark with 13 test functions (Runnarson & Yao, 2000). The comparison is shown in 
Table 3. TC-PSO (Toscano and Coello’s PSO) performed 340,000 fitness function evaluations, 
10,000 less than PESO, but it is not significative for the comparison. The performance of 
PESO is better than TC-PSO on test problems g02, g05, g07, g09, g10 and g13. 

TP Optimal PESO TC-PSO 
g01 -15.000000 -15.000000 -15.000000 
g02 -0.803619 -0.803619 -0.803432 
g03 -1.000000 -1.000005 -1.004720 
g04 -30665.538 -30665.53867 -30665.500000
g05 5126.49811 5126.498096 5126.640000 
g06 -6961.8138 -6961.813876 -6961.810000 
g07 24.306209 24.306209 24.351100 
g08 -0.095825 -0.095825 -0.095825 
g09 680.630057 680.630057 680.638000 
g10 7049.248 7049.248020 7057.590000 
g11 0.750000 0.749999 0.749999 
g12 -1.000000 -1.000000 -1.000000 
g13 0.053950 0.053950 0.068665 

Table 3. Comparison of two PSO with feasibility tournament for handling constraints. Best 
results of PESO and TC-PSO into 30 runs 

5.3 Comparison PESO versus Feasible PSO 
Now, we compare PESO against the approach proposes by Hu and Eberhart (Hu & 
Eberhart, 2002). They apply a global PSO based on feasibility preservation for handling 
constraint problems. They only test the first 12 test functions of the benchmark. The 
comparison is shown in Table 4. HE-PSO (Hu and Eberhart’s PSO) performed 100,000 
fitness function evaluations. For developing a real comparison, PESO performed 100,000 
fitness function evaluations. Nevertheless, the comparison is not equal since we do not take 
into account the number of constraint evaluations that HE-PSO performs to preserve 
feasibility. Also, we must mention that the randomly initialized particles are not always in 
the feasible space. So initialization may take a longer time. The performance of PESO is 
better than HE-PSO on test problems g02, g06, g07, g09 and g10. Even, there is not available 
information about the performance of HE-PSO at test problem g05. We should observe that 
PESO is robust to the number of fitness function evaluations. It is not a surprise, since in 
Table 2 we can observe the convergence rate of PESO for every test problem. In the first 12 
test problems there are 3 with equality constraints; therefore, their convergence rate is 
driven by the dynamic tolerance. In the rest, there are 6 test problems with a best 
convergence rate lower than 100,000 fitness function evaluations. Only test problems g02, 
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g07 and g10 have a best convergence rate upper than 100,000, which cause a little decrease 
in their best solution found around 30 runs. 

TP Optimal PESO HE-PSO 
g01 -15.000000 -15.000000 -15.0 
g02 -0.803619 -0.803613 -0.7130 
g03 -1.000000 -1.000005 -1.0 
g04 -30665.538 -30665.53867 -30665.5 
g05 5126.49811 5126.498096 - 
g06 -6961.8138 -6961.813876 -6961.7 
g07 24.306209 24.306248 24.4420 
g08 -0.095825 -0.095825 -0.0958250
g09 680.630057 680.630057 680.657 
g10 7049.248 7049.250802 7131.01 
g11 0.750000 0.749999 0.75 
g12 -1.000000 -1.000000 -1.0 

Table 4. Comparison of PESO against HE-PSO. Best results of PESO and HE-PSO into 30 
runs 

5.4 Comparison PESO versus Periodic Mode PSO 
In Section 3, we mention the special technique for handling inequality constraints 
introduced by Zhang et al., called periodic mode (Zhang et al., 2004). Their method keeps the 
global-best near the boundary thus the flock which is constantly pulled to the border, can 
sustain exploration. They only tested the 9 functions with inequality constraints of the 
benchmark proposed by Runnarson and Yao (Runnarson & Yao, 2000). The comparison is 
shown in Table 5.  

TP Optimal PESO PM-PSO 
g01 -15.000000 -15.000000 -15.000000
g02 -0.803619 -0.803613 -0.64330 
g04 -30665.538 -30665.53867 -30665.54 
g06 -6961.8138 -6961.813876 -6961.814 
g07 24.306209 24.306248 24.306 
g08 -0.095825 -0.095825 -0.095825 
g09 680.630057 680.630057 680.630 
g10 7049.248 7049.250802 7049.5 

Table 5. Comparison of PESO against PM-PSO. Best results of PESO and PM-PSO into 30 
runs 

The PM-PSO algorithm (periodic mode PSO) performed 1,500,000 fitness function 
evaluations. Although, PESO performed four times less fitness function evaluations than 
PM-PSO, we did not increase the number of fitness function evaluations, because PESO 
performance is competitive with the general parameters applied in these experiments. The 
performance of PESO is better than PM-PSO on test problems g02 and g10. 
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5.5 Comparison PESO versus Diversity-DE 
Now, we compare PESO against other evolutionary algorithms. We believe that could be 
interesting a comparison against a Differential Evolution algorithm, since PESO applies a C-
Perturbation similar to the operator used for reproduction in this algorithm. Mezura et al. 
modified the Differential Evolution algorithm in a way that every parent may have 
more than one offspring (Mezura et al., 2005). The winner is the best child but then 
the child is compared to the current parent. Another tournament is performed but 
this time the winner is found by tossing a coin and comparing by fitness value, or 
by constraint violation; similar to Stochastic Ranking (Runnarson & Yao, 2000). The 
comparison of the first 13 test functions is shown in Table 6; the number of fitness 
evaluations for both algorithms is 225,000. The performance of PESO and 
Diversity-DE is very similar. A little advantage is shown by PESO on test problems 
g09 and g13. 

TP Optimal PESO Diversity-DE
g01 -15.000000 -15.000000 -15.000000 
g02 -0.803619 -0.803618 -0.803619 
g03 -1.000000 -1.000005 -1.000 
g04 -30665.538 -30665.53867 -30665.539 
g05 5126.49811 5126.498096 5126.497 
g06 -6961.8138 -6961.813876 -6961.814 
g07 24.306209 24.306211 24.306 
g08 -0.095825 -0.095825 -0.095825 
g09 680.630057 680.630057 680.638 
g10 7049.248 7049.248435 7049.248 
g11 0.750000 0.749999 0.75 
g12 -1.000000 -1.000000 -1.000000 
g13 0.053950 0.053950 0.053941 

Table 6. Comparison of PESO against Diversity-DE. Best results of PESO and Diversity-DE 
into 30 runs 

5.6 Comparison PESO versus SMES 
The extend benchmark was proposed by Mezura in his Ph.D. thesis (Mezura, 2004). 
Therefore, it is interesting to compare PESO against the approach developed by Mezura, 
called SMES. SMES works over a simple multimembered evolution strategy: (µ+λ)-ES. The 
modifications introduced into SMES are the reduction of the initial step size of the sigma 
values to favour finer movements in the search space. A panmictic recombination operator 
based on a combination of the discrete and intermediate recombination operators. Also, 
SMES changes the original deterministic replacement of the ES, sorting the solutions by 
applying a comparison mechanism based on feasibility. This allows remaining in the next 
generation, the best infeasible solution, from either the parents or the offspring population. 
In Table 7 we show the comparison of PESO and SMES. In this case both algorithms 
performed 240,000 fitness function evaluations. It can be seen that PESO is clearly better 
than SMES in problems g05, g07, g10, g13, g14, g15, g17, g19, g21 and g23. PESO and SMES 
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were unable to find feasible solutions for test problems g20 and g22. But, PESO finds 
feasible solutions for test problems g17, g21 and g23, where SMES could not find feasible 
solutions in any single run. 

TP Optimal PESO SMES 
g01 -15.000000 -15.000000 -15.000000 
g02 -0.803619 -0.803618 -0.803601 
g03 -1.000000 -1.000005 -1.000000 
g04 -30665.538 -30665.53867 -30665.539 
g05 5126.49811 5126.498096 5126.599 
g06 -6961.8138 -6961.813876 -6961.814 
g07 24.306209 24.306211 24.327 
g08 -0.095825 -0.095825 -0.095825 
g09 680.630057 680.630057 680.632 
g10 7049.248 7049.248871 7051.903 
g11 0.750000 0.749999 0.750000 
g12 -1.000000 -1.000000 -1.000000 
g13 0.053950 0.053950 0.053986 
g14 -47.764411 -47.760600 -47.535 
g15 961.715172 961.715171 *961.698 
g16 -1.905155 -1.905155 -1.905 
g17 8876.98068 8860.030895 *8890.1826 
g18 -0.8660 -0.866025 -0.866 
g19 32.386 32.351376 34.223 
g20 0.096737 *0.204095 *0.211364 
g21 193.778349 236.928359 *347.9809 
g22 382.902205 *157.5136 *2340.6166 
g23 -400.0025 -369.765012 *-1470.1525
g24 -5.508013 -5.508013 -5.508 

Table 7. Comparison of PESO against SMES. Best results of PESO and SMES into 30 runs. 
*Infeasible Solution 

5.7 Comparison PESO versus ISRES 
An algorithm representative of the state-of-the-art is the Stochastic Ranking algorithm was 
proposed by Runarsson and Yao (Runnarson & Yao, 2000). Later, the authors provided a 
new improved version, called Improved Stochastic Ranking Evolution Strategy, (ISRES) 
(Runnarson & Yao, 2005). The algorithm is a simple evolution strategy enhanced with a 
stochastic sorting, which decides, through a probability fixed value, performing a 
comparison using only the function value or the constraint violation. The ISRES’s 
code is available at Runarsson’s page, and we used it, for developing the experiments for 
test problems g14 through g24. The parameters used were the same as the suggested by the 
authors (Runnarson & Yao, 2005). The comparison is shown in Table 8. Both algorithms 
performed the same number of fitness function evaluations, 350000. Note that ISRES finds 
the best values for test problems g21 and g23. But PESO is better in problems g13 and g17. In 
test problem g21, PESO found feasible solutions in all 30 runs, whereas ISRES only had 5 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

70 

5.5 Comparison PESO versus Diversity-DE 
Now, we compare PESO against other evolutionary algorithms. We believe that could be 
interesting a comparison against a Differential Evolution algorithm, since PESO applies a C-
Perturbation similar to the operator used for reproduction in this algorithm. Mezura et al. 
modified the Differential Evolution algorithm in a way that every parent may have 
more than one offspring (Mezura et al., 2005). The winner is the best child but then 
the child is compared to the current parent. Another tournament is performed but 
this time the winner is found by tossing a coin and comparing by fitness value, or 
by constraint violation; similar to Stochastic Ranking (Runnarson & Yao, 2000). The 
comparison of the first 13 test functions is shown in Table 6; the number of fitness 
evaluations for both algorithms is 225,000. The performance of PESO and 
Diversity-DE is very similar. A little advantage is shown by PESO on test problems 
g09 and g13. 

TP Optimal PESO Diversity-DE
g01 -15.000000 -15.000000 -15.000000 
g02 -0.803619 -0.803618 -0.803619 
g03 -1.000000 -1.000005 -1.000 
g04 -30665.538 -30665.53867 -30665.539 
g05 5126.49811 5126.498096 5126.497 
g06 -6961.8138 -6961.813876 -6961.814 
g07 24.306209 24.306211 24.306 
g08 -0.095825 -0.095825 -0.095825 
g09 680.630057 680.630057 680.638 
g10 7049.248 7049.248435 7049.248 
g11 0.750000 0.749999 0.75 
g12 -1.000000 -1.000000 -1.000000 
g13 0.053950 0.053950 0.053941 

Table 6. Comparison of PESO against Diversity-DE. Best results of PESO and Diversity-DE 
into 30 runs 

5.6 Comparison PESO versus SMES 
The extend benchmark was proposed by Mezura in his Ph.D. thesis (Mezura, 2004). 
Therefore, it is interesting to compare PESO against the approach developed by Mezura, 
called SMES. SMES works over a simple multimembered evolution strategy: (µ+λ)-ES. The 
modifications introduced into SMES are the reduction of the initial step size of the sigma 
values to favour finer movements in the search space. A panmictic recombination operator 
based on a combination of the discrete and intermediate recombination operators. Also, 
SMES changes the original deterministic replacement of the ES, sorting the solutions by 
applying a comparison mechanism based on feasibility. This allows remaining in the next 
generation, the best infeasible solution, from either the parents or the offspring population. 
In Table 7 we show the comparison of PESO and SMES. In this case both algorithms 
performed 240,000 fitness function evaluations. It can be seen that PESO is clearly better 
than SMES in problems g05, g07, g10, g13, g14, g15, g17, g19, g21 and g23. PESO and SMES 
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were unable to find feasible solutions for test problems g20 and g22. But, PESO finds 
feasible solutions for test problems g17, g21 and g23, where SMES could not find feasible 
solutions in any single run. 

TP Optimal PESO SMES 
g01 -15.000000 -15.000000 -15.000000 
g02 -0.803619 -0.803618 -0.803601 
g03 -1.000000 -1.000005 -1.000000 
g04 -30665.538 -30665.53867 -30665.539 
g05 5126.49811 5126.498096 5126.599 
g06 -6961.8138 -6961.813876 -6961.814 
g07 24.306209 24.306211 24.327 
g08 -0.095825 -0.095825 -0.095825 
g09 680.630057 680.630057 680.632 
g10 7049.248 7049.248871 7051.903 
g11 0.750000 0.749999 0.750000 
g12 -1.000000 -1.000000 -1.000000 
g13 0.053950 0.053950 0.053986 
g14 -47.764411 -47.760600 -47.535 
g15 961.715172 961.715171 *961.698 
g16 -1.905155 -1.905155 -1.905 
g17 8876.98068 8860.030895 *8890.1826 
g18 -0.8660 -0.866025 -0.866 
g19 32.386 32.351376 34.223 
g20 0.096737 *0.204095 *0.211364 
g21 193.778349 236.928359 *347.9809 
g22 382.902205 *157.5136 *2340.6166 
g23 -400.0025 -369.765012 *-1470.1525
g24 -5.508013 -5.508013 -5.508 

Table 7. Comparison of PESO against SMES. Best results of PESO and SMES into 30 runs. 
*Infeasible Solution 

5.7 Comparison PESO versus ISRES 
An algorithm representative of the state-of-the-art is the Stochastic Ranking algorithm was 
proposed by Runarsson and Yao (Runnarson & Yao, 2000). Later, the authors provided a 
new improved version, called Improved Stochastic Ranking Evolution Strategy, (ISRES) 
(Runnarson & Yao, 2005). The algorithm is a simple evolution strategy enhanced with a 
stochastic sorting, which decides, through a probability fixed value, performing a 
comparison using only the function value or the constraint violation. The ISRES’s 
code is available at Runarsson’s page, and we used it, for developing the experiments for 
test problems g14 through g24. The parameters used were the same as the suggested by the 
authors (Runnarson & Yao, 2005). The comparison is shown in Table 8. Both algorithms 
performed the same number of fitness function evaluations, 350000. Note that ISRES finds 
the best values for test problems g21 and g23. But PESO is better in problems g13 and g17. In 
test problem g21, PESO found feasible solutions in all 30 runs, whereas ISRES only had 5 
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successful runs. Both PESO and ISRES were unable to find feasible solutions for test 
problems g20 and g22. 

TP Optimal PESO ISRES 
g01 -15.000000 -15.000000 -15.000000 
g02 -0.803619 -0.803619 -0.803619 
g03 -1.000000 -1.000005 -1.001 
g04 -30665.538 -30665.53867 -30665.539 
g05 5126.49811 5126.498096 5126.497 
g06 -6961.8138 -6961.813876 -6961.814 
g07 24.306209 24.306209 24.306 
g08 -0.095825 -0.095825 -0.095825 
g09 680.630057 680.630057 680.630 
g10 7049.248 7049.248020 7049.248 
g11 0.750000 0.749999 0.750 
g12 -1.000000 -1.000000 -1.000000 
g13 0.053950 0.053950 0.053942 
g14 -47.764411 -47.761180 -47.761129 
g15 961.715172 961.715171 961.715171 
g16 -1.905155 -1.905155 -1.905155 
g17 8876.98068 8856.502344 8889.9003 
g18 -0.8660 -0.866025 -0.866025 
g19 32.386 32.349645 32.348689 
g20 0.096737 *0.204095 - 
g21 193.778349 205.852693 193.785034 
g22 382.902205 *157.5136 - 
g23 -400.0025 -361.856637 -400.000551
g24 -5.508013 -5.508013 -5.508013 

Table 8. Comparison of PESO against ISRES. Best results of PESO and ISRES into 30 runs. 
*Infeasible Solution 

6. Conclusion  
In this chapter, we described a robust PSO for solving constrained optimization problems. 
We discussed the premature convergence problem, which still is an issue in evolutionary 
computation. A brief trip was made through several proposals to attain a balance between 
exploration and exploitation. Also, we briefly review recent works that contribute with 
interesting ideas for handling-constraints in PSO.  
This work presents an algorithm called PESO to handle constrained optimization problems. 
Based on the empirical and theoretical results of several works, we explain and validate 
every component applied in PESO. We empirically show the performance of PESO in a well-
know benchmark. PESO has shown high performance in constrained optimization problems 
of linear or nonlinear nature. Three important contributions of PESO are worth to mention: 
A new neighbourhood structure for PSO, the incorporation of perturbation operators 
without modifying the essence of the PSO, and a special handling technique for equality 
constraints.  
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The first contribution is the singly-linked neighbourhood structure. It increases the 
exploitation of the algorithm, breaking the double-link that exists between the particles 
using the original ring neighbourhood structure. PESO implements a singly-linked ring 
with a neighbourhood of size n = 2, but a general algorithm to build neighbourhoods of size 
n is given by Hernández et al. (Hernández et al., 2007). 
Another relevant idea developed by PESO, is the perturbation of the target to keep flock’s 
diversity and space exploration. Two perturbation operators, C-perturbation and M-
perturbation are applied to the pbest. It is equivalent to perturb the particle’s memory and not 
its behaviour; as it is performed by other approaches that tend to destroy the flock’s 
organization capacity. 
The last feature of PESO is its special technique to handle equality constraints. It is 
performed through a dynamic tolerance that allows unfeasible particles at the first 
generations, but it decreases the tolerance value until reach a desired error. The dynamic 
tolerance helps to keep the flock near the feasible region, while exploring promising regions. 
The results on the benchmark problems provide evidence that PESO is highly competitive. 
So far, PESO performed very well at solving the current state-of-the-art problems, but it 
should be improved to handle problems with a higher number of equality constraints.   

7. Future Research  
PESO shows a competitive performance solving constrained optimization problems, so 
global (unconstrained) optimization and multi-objective optimization problems are 
attractive topics for future research. But, there are other research areas that could be 
explored in this approach. 
As we mention in Section 4, the acceleration parameters have not been studied yet. A set of 
sub-swarms could improve the robustness of the PSO (Liang & Suganthan, 2006). One of the 
main research areas in evolutionary computation is the application to real optimization 
problems. In that field, we used PESO to solve system reliability optimization problems 
(Muñoz, 2004).      
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successful runs. Both PESO and ISRES were unable to find feasible solutions for test 
problems g20 and g22. 
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1. Introduction 
Biology inspired algorithms have been gaining popularity in recent decades and beyond. 
These methods are based on biological metaphor such as Darwinian evolution and swarm 
intelligence. One of the most recent algorithms in this category is the Particle Swarm 
Optimization (PSO). PSO is a population-based approach using a set of candidate solutions, 
called particles, which move within the search space. The trajectory followed by each 
particle is guided by its own experience as well as by its interaction with other particles. 
Specific methods of adjusting the trajectory are motivated by the observations in birds, 
fishes, or other organisms that move in swarms. 
Multi-objective optimization (MOO) is an important field to apply swarm intelligence meta-
heuristics because there is not only one solution for MOO ingeneral. The solution of a MOO 
problem is generally referred as a non-dominated solution, which is different from the 
optimal solution of single-objective optimization problem. A solution is said to be non-
dominated over another only if it has superior, at least no inferior, performance in all 
objectives. Hence, non-dominance means that the improvement of one objective could only 
be achieved at the expense of other objectives. This concept always gives not a single 
solution, but rather a set of solutions called the non-dominated set or non-dominated 
archive. 
Generally speaking, there are two approaches to MOO: classical methods and evolutionary 
methods. Classical methods first convert separate objective functions into a single objective 
function by weighted sum method, utility function method, or goal programming method, 
and then solve them by traditional optimization techniques. Such modelling puts the 
original problem in an inadequate manner, using a surrogate variable with incomplete 
information. Subsequent optimization techniques also contradicts our intuition that single-
objective optimization is a degenerate case of MOO (Deb, 2001). The result of classical 
approach is a compromise solution whose non-dominance can not be guaranteed (Liu et al., 
2003). Lastly, but not the least, a single optimized solution could only be found in each 
simulation run of traditional optimization techniques such that it limits the choices available 
to the decision maker. Therefore, using a population of solutions to evolve towards several 
non-dominated solutions in each run makes evolutionary algorithms, such as swarm 
intelligence methods, popular in solving MOO problems.  
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One of the successful applications of PSO to MOO problems, named Multi-Objective PSO 
(MOPSO), is the seminal work of Coello-Coello and Lechuga (2002). In a subsequent study 
done by them, MOPSO is not only a viable alternative to solve MOO problems, but also the 
only one, compared with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb 
et al., 2002), the Pareto Archive Evolutionary Strategy (PAES) (Knowles and Corne, 2000), 
and the micro-Genetic Algorithm (microGA) (Coello-Coello and Pulido, 2001) for MOO, can 
cover the full Pareto-optimal front of all the test functions therein.  
The goal of generating the non-dominated front is itself multi-objective. That is, designing a 
Pareto optimizer usually has two major goals – how to converge to the true Pareto-optimal 
front while achieving a well-distributed set of solutions (Zitzler et al., 2004). Tsou et al. 
(2006) proposed an improved MOPSO with local search and clustering procedure trying to 
attain to these goals. Although the best way to obtain a well-distributed set of solutions 
would be probably to use some clustering algorithm, this effort is usually computationally 
expensive (Kukkonen and Deb, 2006). This paper extends the research of Tsou et al. (2006), 
but the clustering algorithm is dropped out. A local search and flight mechanism based on 
crowding distance is incorporated into the MOPSO. The local search procedure intends to 
explore the less-crowded area in the current archive to possibly obtain more non-dominated 
solutions nearby. Besides this, the non-dominated solutions in the less-crowded area are 
used to guide the population fly over sparse area of the current archive. Such that a more 
uniform and diverse front might be formed by the optimizer. In a short, mechanisms based 
on the crowding distance not only implicitly maintain the diversity of the external archive, 
but also facilitate the convergence of MOPSO to the true Pareto-optimal front. Our approach 
seeks to reach a reasonable compromise between the computational simplicity and 
efficiency. Several test problems are employed to verify the performance of our approach.  
The rest of this paper is organized as follows. Section 2 reviews the basic concept of MOO. 
MOPSO with a random line search is described in Section 3.1. Extensions based on 
crowding distance are presented in Section 3.2. Section 4 reports the experimental results 
against four test problems. Finally, conclusions and future research are drawn out in Section 
5.  

2. Multi-objective Optimization 
Without loss of generality, a MOO problem (also known as a vector optimization problem) 
is the problem of simultaneously minimizing K  objectives ( )kf xr , 1,2, ,k K= L , of a vector 
xr  in the feasible region Ω . That is, 

 [ ]1 2Vector minimize ( ) ( ), ( ),..., ( ) T
Kf f f

∈Ω
=

x
f x x x x

r

r r r r r  (1) 

, where [ ]1 2, ,..., T
Dx x x=xr is a D -dimensional vector and ( )kf xr  ( 1,2,...,k K= ) are linear or 

nonlinear functions. A decision vector 1 2( , ,..., )Du u u=ur  is said to strongly dominate 

1 2( , ,..., )Dv v v=vr  (denoted by u vr r
p ) if and only if {1,2,..., }i K∀ ∈ , ( ) ( )i if f<u vr r

. Less 
stringently, a decision vector ur  weakly dominates vr  (denoted by u vr r

p ) if and only if 
{1,2,..., }i K∀ ∈ , ( ) ( )i if f≤u vr r  and {1,2,..., }i K∃ ∈ , ( ) ( )i if f<u vr r
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Certainly, we are not interested in solutions dominated by other solutions. A set of decision 
vectors is said to be a non-dominated set if no member of the set is dominated by any other 
member. The true Pareto-optimal front is the non-dominated set of solutions which are not 
dominated by any feasible solution. One way to solving a MOO problem is to approximate 
the Pareto-optimal front by the non-dominated solutions generating from the solution 
algorithm.  

3. MOPSO with Local Search 
To speak of MOPSO, let us start with the PSO. In PSO, a population is initialized with 
random solutions, called “particles”. All particles have fitness values that are evaluated by 
the function to be optimized. Each particle flies through the problem space with a velocity, 
which is constantly updated by the particle’s own experience and the experience of the 
particle’s neighbors, to search for optima iterations by iterations. Compared to genetic 
algorithms, the advantages of PSO are that it is easy to implement and there are fewer 
parameters to adjust. 
In every iteration, the velocity of each particle is updated by two best values. The first one is 
the best solution it has achieved so far. This value is called pbest. Another best value tracked 
by the optimizer is the best value obtained so far by the neighbourhood of each particle. 
This best value is a local best and is called lbest. If the neighbourhood is defined as the whole 
population, each particle will move towards its best previous position and towards the best 
position ever been in the whole swarm, this version is called gbest model. In this paper, we 
use the global version of PSO. The velocity and position of each particle are updated by the 
following equations.  

 ( ) ( )
1 2( ) ( )i new i old i i i

d d d dd dv v c RAND p x c RAND g xω= ⋅ + ⋅ ⋅ − + ⋅ ⋅ −  (2) 

 

 ( ) ( )i new i newi
dd dx x v= + , (3) 

 
where 

( )i old
dv  is the old velocity of particle i  along dimension d , 

( )i new
dv  is the new velocity of particle i  along dimension d , 

ω  is the inertia weight which is usually between 0.8 and 1.2, 

1c  and 
2c  are the learning factors (or acceleration coefficients), usually between 1 and 4, 

i
dx  is the current position of particle i  along dimension d , 
i
dp  is the personal best solution of particle i  along dimension d , 

dg  is the global best solution the whole population ever been along dimension d , and 

RAND  is a random number between 0 and 1. 
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The difficulty in extending the PSO to MOO problems is how to select a global guide for 
each particle. Because there is not a single optimum in MOO, the non-dominated solutions 
found by MOPSO so far are all stored in an archive. Each particle can randomly select a non-
dominated solution from the archive as the global guide of its next flight. Although this 
selection method is simple, it can promote convergence (Alvarez-Benitez et al., 2005). The 
pseudo-code of MOPSO is shown in Fig. 1. 

MOPSO() 

01: Initialize() 

02: iter ←  1 

03: while iter < MAXITER do 

04:      Flight() 

05:      CalculateObjVector() 

06:      UpdateNondominatedSet() 

07:      iter = iter + 1 

08: end while 

Figure 1. The pseudo-code of MOPSO 

3.1 Local search 
Local search plays a role in adding an exploitative component allows algorithms to make 
use of local information to guide the search towards better regions in the search space. This 
feature leads to faster convergence with less computational burden. One of the simplest 
local search algorithms is the random line search. It starts with calculating the maximum 
step length according to the parameter δ . For a non-dominated solution, improvement is 
sought coordinate by coordinate. The temporary D - dimensional vector, zr , first holds the 
initial information of each particle. Next, two random numbers are generated to set moving 
direction and step length for each coordinate, respectively. If the vector zr  observes a better 
non-dominated solution, the non-dominated set is updated and the local search for particle 
i  ends. The local search procedure (shown in Fig. 2) incorporated into the MOPSO is so 
called MOPSO-LS. 
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LocalSearch(δ ) 

01: { }( )max d d

d
L u lδ= ⋅ −  

02: (10%S random  of A)=% %  

03: for i = 1 to S%  

04:      i=z xr r  

05:      for d  = 1 to D  do 

06:           1 (0,1)RANDλ =  

07:           2 (0,1)RANDλ =  

08:            if 1λ  > 0.5 then 

09:                 2
d dz z Lλ= +  

10:            else 

11:                 2
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each particle. Because there is not a single optimum in MOO, the non-dominated solutions 
found by MOPSO so far are all stored in an archive. Each particle can randomly select a non-
dominated solution from the archive as the global guide of its next flight. Although this 
selection method is simple, it can promote convergence (Alvarez-Benitez et al., 2005). The 
pseudo-code of MOPSO is shown in Fig. 1. 

MOPSO() 

01: Initialize() 

02: iter ←  1 

03: while iter < MAXITER do 

04:      Flight() 

05:      CalculateObjVector() 

06:      UpdateNondominatedSet() 

07:      iter = iter + 1 

08: end while 

Figure 1. The pseudo-code of MOPSO 

3.1 Local search 
Local search plays a role in adding an exploitative component allows algorithms to make 
use of local information to guide the search towards better regions in the search space. This 
feature leads to faster convergence with less computational burden. One of the simplest 
local search algorithms is the random line search. It starts with calculating the maximum 
step length according to the parameter δ . For a non-dominated solution, improvement is 
sought coordinate by coordinate. The temporary D - dimensional vector, zr , first holds the 
initial information of each particle. Next, two random numbers are generated to set moving 
direction and step length for each coordinate, respectively. If the vector zr  observes a better 
non-dominated solution, the non-dominated set is updated and the local search for particle 
i  ends. The local search procedure (shown in Fig. 2) incorporated into the MOPSO is so 
called MOPSO-LS. 

Using Crowding Distance to Improve Multi-Objective PSO with Local Search 

 

81 

LocalSearch(δ ) 

01: { }( )max d d

d
L u lδ= ⋅ −  

02: (10%S random  of A)=% %  

03: for i = 1 to S%  

04:      i=z xr r  

05:      for d  = 1 to D  do 

06:           1 (0,1)RANDλ =  

07:           2 (0,1)RANDλ =  

08:            if 1λ  > 0.5 then 

09:                 2
d dz z Lλ= +  

10:            else 

11:                 2
d dz z Lλ= −  

12:            end if 

13:      end for 

14:      CalculateObjVector( zr ) 

15:      if iz xr r
p  or iz xr r

pf  then 

16:           UpdateNondominatedSet( zr ) 

17:           i =x zr r  

18:      end if 

19: end for 

Figure 2. The pseudo-code of local search procedure 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

82 

3.2 Enhancements from crowding distance 
The crowding distance of a non-dominated solution provides an estimate of the density of 
solutions surrounding it (Deb et al., 2002). It is calculated by the size of the largest cuboid 
enclosing each particle without including any other point. After normalizing the crowding 
distance for each non-dominated solution, we sort them in ascending order (Line 01 in Fig. 
4). As mentioned earlier, the selection of global guide is a critical step in MOPSO. It affects 
both the convergence to the true Pareto-optimal front and a well-distributed front. Instead 
of randomly choosing a global guide from the whole non-dominated archive, it is randomly 
selected from the top 10% less crowded area of the archive for each particle that is 
dominated by any solution located in this area. Global guides of other particles are 
randomly selected from the whole archive as usual. This is the flight procedure used in 
MOPSO-CDLS (Line 03 in Fig. 4). Raquel and Naval (2005) were the first ones to incorporate 
the crowding distance into the global best selection in MOPSO, however, each particle 
associated with its own global guide solely selected from the top 10% less crowded area of 
the archive. It is too restrictive for those particles far away from the less crowded area and 
could possibly perturb their happy flight. 

Flight() 
01: SortArchiveByCrowdingDistance() 
02: for i  = 1 to m  do 
03:      if ixr  is dominated by the top 10% less crowded area in A%   
           then 
04:           ( ) ( )

Gbesti Random top 10% less crowded area in A=xr %  
05:      else 
06:           ( ) ( )

Gbesti Random A=xr %  
07:      end if 
08:      for d  = 1 to D  do 
09:           1 2( ) ( )i i i i i i

d d d d d dv v c RAND p x c RAND g xω← + ⋅ ⋅ − + ⋅ ⋅ −  
10:           i i i

d d dx x v← +  
11:      end for 
12:      CalculateObjVector( ixr ) 
13:      UpdateNondominatedSet( ixr ) 
14: end for 

Figure 4. The pseudo-code of flight procedure 
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Besides the flight mechanism based on crowding distance, the local search procedure is also 
modified to only be executed on the non-dominated solutions in the top 10% less crowded 
area of the archive. That is, Line 02 in Fig. 2 is modified as 

10%S top  less crowded area of A=% % . It is expected that better solutions, at least non-
dominated, could be found by the random line search around the less crowded area. Dual 
effects of pushing further towards the true Pareto-optimal front as well as maintaining a 
diverse and well-distributed archive might be arisen.  

4. Experimental Results 
The well-known ZDT test problems (Zitzler et al., 2000) were used to validate the MOPSO-
CDLS. ZDT1 is an easy bi-objective problem and has a convex and continuous Pareto-
optimal front. ZDT2 has a non-convex but still continuous front. The front of ZDT3 is 
convex, however, it is discontinuous. In other words, it has several disconnected Pareto-
optimal front. The last test problem, ZDT4, is convex but has many local fronts. 
The population size for MOPSO-LC and MOPSO-CDLC are set to 25 with a step size 25 till 
75. The numbers of iterations are set to 30 with a step size 10 till 50. To compare all results in 
a quantitative way, we use the following performance measures: archive count A% , set 

coverage metric ( , )C U V , spacing ( S ), and maximum spread ( D ) (Okabe et al., 2002). 
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Tables 1-4 are the results of four test problems for both algorithms. C and L in the 
parentheses of the first row stand for MOPSO-CDLS and MOPSO-LS, respectively. Some 
findings are explained in the following.  
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Iter. Pop. C(C,L) C(L,C) S(C) S(L) D(C) D(L) Count(C) Count(L) Time(C) Time(L) 
30 25 0.901639 0 0.170416 0.088285 1.417687 1.52305 61 55 0.89 0.843 
30 50 0.785714 0 0.029987 0.086507 1.414402 1.519982 70 55 1.078 0.969 
30 75 0.071429 0.114286 0.026999 0.033471 1.414214 1.414214 70 68 1.203 1.047 
40 25 0.125 0.138889 0.045418 0.044254 1.41424 1.414214 72 73 1.313 1.188 
40 50 0.811594 0 0.057449 0.064995 1.414903 1.519977 69 56 1.406 1.313 
40 75 0.830986 0 0.059604 0.077409 1.414214 1.519981 71 59 1.672 1.391 
50 25 0.876923 0 0.045133 0.08563 1.414563 1.519915 65 57 1.656 1.468 
50 50 0.104478 0.044776 0.04486 0.063149 1.414214 1.414214 67 68 1.937 1.671 
50 75 0.1 0.1125 0.046662 0.067414 1.414214 1.414214 80 72 2.125 1.797 

Table 1. Computational results of ZDT1 problem 

Iter. Pop. C(C,L) C(L,C) S(C) S(L) D(C) D(L) Count(C) Count(L) Time(C) Time(L) 
30 25 0.609756 0 0.074917 0.123052 1.414265 1.417507 41 34 0.921 0.843 
30 50 0.885714 0 0.13882 0.087169 1.414214 1.3933 35 34 0.985 0.906 
30 75 0.125 0.025 0.093266 0.116607 1.414214 1.414063 40 35 1.047 0.937 
40 25 0.939394 0 0.108248 0.14694 1.413647 1.373224 33 31 1.25 1.109 
40 50 0.228571 0.028571 0.123745 0.138773 1.414214 1.414332 35 34 1.344 1.25 
40 75 0.222222 0.027778 0.052225 0.10615 1.414212 1.414 36 37 0.688 0.594 
50 25 0.894737 0 0.05814 0.104946 1.412791 1.392065 38 36 1.593 1.453 
50 50 0.27027 0.027027 0.047095 0.110726 1.414142 1.414255 37 35 1.015 0.797 
50 75 0.228571 0 0.123088 0.138386 1.414227 1.414231 35 40 1.781 1.562 

Table 2. Computational results of ZDT2 problem 

Iter. Pop. C(C,L) C(L,C) S(C) S(L) D(C) D(L) Count(C) Count(L) Time(C) Time(L) 
30 25 0.473684 0 0.032093 0.291718 0.335081 1.864763 19 18 0.672 0.734 
30 50 0.410256 0.025641 0.093437 0.337072 1.95883 1.884636 39 36 0.922 0.812 
30 75 0.142857 0.119048 0.053984 0.107845 1.961352 1.927156 42 51 1.047 0.891 
40 25 0.5 0.033333 0.122377 0.53802 1.934344 1.947032 30 20 1.094 0.969 
40 50 0.2 0.228571 0.030287 0.159101 1.950184 1.94119 35 41 1.203 1.141 
40 75 0.163265 0.204082 0.006431 0.008037 1.95511 1.949345 49 47 1.328 1.235 
50 25 0.870968 0 0.37742 0.183748 1.953586 2.028031 31 27 1.438 1.313 
50 50 0.266667 0.088889 0.097678 0.169007 1.931062 1.955391 45 43 1.609 1.453 
50 75 0.148936 0.170213 0.16836 0.135811 1.958623 1.962591 47 53 1.688 1.531 

Table 3. Computational results of ZDT3 problem 

Iter. Pop. C(C,L) C(L,C) S(C) S(L) D(C) D(L) Count(C) Count(L) Time(C) Time(L) 
30 25 0.583333 0.027778 0.085428 0.120843 1.415008 1.431134 36 29 0.844 0.782 
30 50 0.428571 0.071429 0.070559 0.070263 1.438755 1.429762 42 31 0.875 0.813 
30 75 0.513514 0.162162 0.054137 0.11659 1.409016 1.430743 37 36 0.922 0.844 
40 25 0.612903 0.032258 0.124403 0.212547 1.417124 1.453333 31 26 1.093 1.078 
40 50 0.452381 0.214286 0.083199 0.076452 1.412184 1.410637 42 39 1.172 1.156 
40 75 0.589286 0.142857 0.073391 0.101297 1.422002 1.416985 56 54 1.282 1.156 
50 25 0.575758 0.212121 0.088226 0.082615 1.440936 1.437883 33 33 1.438 1.328 
50 50 0.565217 0.173913 0.079993 0.097561 1.43185 1.429264 46 47 1.562 1.422 
50 75 0.433333 0.1 0.037096 0.077393 1.42348 1.417994 60 59 1.656 1.516 

Table 4. Computational results of ZDT4 problem 

1. In view of the set coverage metric in Tables 1-4, MOPSO-CDLS exhibit better results 
than MOPSO-LS even in more difficult problem such as ZDT3 and ZDT4. That is, the 
non-dominated solutions generated by MOPSO-CDLS are closer to the Pareto-optimal 
front than those by MOPSO-LS. 
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2. For the maximum spread in Tables 1-4, there is no significant difference for both 
algorithms. However, MOPSO-CDLS outperforms MOPSO-LS in the spacing metric. 
This implies MOPSO-CDLS can generate well-distributed front than MOPSO-LS. 

3. It is not surprising that particles flying towards sparse area and gathering local 
information around it make MOPSO-CDLS find more non-dominated solutions than 
MOPSO-LS on the average. 

4. Certainly, crowding distance calculation need additional time to execute. Although the 
execution time (in second) of MOPSO-CDLS is a little bit longer than that of MOPSO-LS 
in all tables, MOPSO-CDLS is still a reasonable simple and efficient algorithm for MOO. 

5. Conclusions 
It is well known that local search, even in its simplest form, prevents search algorithms from 
premature convergence and, therefore, possibly drives the solution closer to true Pareto-
optimal front. A local search procedure and a flight mechanism both based on crowding 
distance are incorporated into the MOPSO, so called MOPSO-CDLS, in this paper. 
Computational results against ZDT1-4 problems show that it did improve the MOPSO with 
random line search in all aspects except the execution time. Local search in less crowded 
area of the front not only reserves the exploitation capability, but also helps to achieve a 
well-distributed non-dominated set. Global guides randomly selected from the less crowded 
area help the particles dominated by the solutions in this area to explore more diverse 
solutions and in a hope to better approximate the true front.  
This study intends to highlight a direction of combining more intelligent local search 
algorithms into a Pareto optimization scheme. Mechanisms based on crowding distance 
employed here did not explicitly maintain the diversity of non-dominated solutions which is 
its original intention, but they indeed facilitate the possibilities of flying towards the Pareto-
optimal front and generating a well-distributed non-dominated set. Further researches 
include comparisons with other multi-objective evolutionary algorithms and 
accommodating constraints-handling mechanism in the Pareto optimizer. 
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1. Introduction 
It has long been established that simulation is a powerful tool for aiding decision making. 
This is due to a number of factor, such as the inherent ability to evaluate complex systems 
with large number of variables and interactions for which there is no analytical solution. It is 
considered as a tool to answer “what if” questions, not a solution generator technique. This 
scenario could be changed with the aid of optimization procedures, and so simulation could 
answer not only “what if” questions but also answers “how to” questions, providing the 
best set of input variables and maximize or minimize some performance measure. For the 
purposes of optimization, the simulation is simply a “black box” which computes a 
realization of the (stochastic) function value for a given combination of the parameter values 
(Magoulas et al., 2002). 
Simulation optimization is the process of finding the best values of some decision variables 
for a system where the performance is evaluated based on the output of a simulation model 
of this system. The components of a typical optimization system are present in a simulation 
optimization system: decision variables, objective function and constraints. The decision 
variables must be contained in some feasible region defined by the constraints. The objective 
function is a real valued function defined on these variables, but due to the complexity and 
stochastic nature of the underlying system an analytical expression can not be determined 
and the value returned by the stochastic simulation must be used instead. 
The predator-prey game is a multi-agent system, which originally came from the field of 
Artificial Intelligence (AI). At first, this field was called Distributed Artificial Intelligence 
(DAI); instead of reproducing the knowledge and reasoning of one intelligent agent as in AI, 
the objective became to reproduce the knowledge and reasoning of several heterogeneous 
agents that need to jointly solve planning problems. Some researchers have focused more on 
the agent and its autonomy (for instance, the definition of an agent proposed by Wooldridge 
and Jennings (1999): “an agent is a computer system that is situated in some environment, 
and that is capable of autonomous action in this environment in order to meet its design 
objectives”), while others, engaged in the field of multi-agent systems, have focused more 
on the organization of multiple agent interactions (Huhns & Stephens, 1999). 
The aiming of this work is to propose a simulation optimization tool for solutions' synthesis 
to a problem involving a dynamic and complex system (to bring forth strategies for a 
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hunting game between predators and prey in a three-dimensional environment) whose 
solution involves their agents' emergent behavior (in this case, the predators'). Moreover, 
this simulation optimization uses the PSO as optimization algorithm which in turn, is also 
based on emergent behavior. That is, a tool that employs emergence to project emergence. 
The organization of this work is as follows: Section 2 contains a review of the Particle Swarm 
Optimization (PSO). Section 3 describes the 3D predator-prey game: the predator and prey 
behaviors, the parameter of the hunting game and predator's model of strategy. Section 4 
presents the developed tool. The results are presented in Section 5, and some concluding 
remarks are given in Section 6. 

2. Particle Swarm Optimization (PSO) 
PSO is based on the collective motion of a flock of particles: the particle swarm. Each 
member of the particle swarm is moved through a problem space by two elastic forces. One 
attracts it with random magnitude towards the best location so far encountered by any 
member of the swarm. The position and velocity of each particle are updated at each time 
step (possibly with the maximum velocity being bounded to maintain stability) until the 
swarm as a whole converges. 
The update rule for PSO contains only two parameters: the relative importance of the 
influences on a particle of the particle best and the swarm best solutions, and the number of 
particles to be used as neighbor. A particle can use as reference the best result obtained by 
any particle of the swarm, or just for their neighbor particles. In that case, the analogy is in 
the topological mean, and not for the eventual momentary proximity in the parameter 
space. Thus, the size of this neighborhood to be considered is a variable in the algorithm.  
Perhaps inspired by the original derivation of PSO (an abstract version of the factors 
involved in the feeding behavior of flocks of birds), early progress in PSO often took the 
form of adding terms based on biological or physical analogies. One of the most successful 
of these was the “inertia weight” (a friction coefficient added to the velocity update rule). It 
is employed to control the impact of the previous history of velocities on the current 
velocity. In this way, the “inertia weight” regulates the trade-off between the global and 
local exploration of the swarm. A large inertia weight facilitates global exploration, while a 
small one tends to facilitate local exploration, fine-tuning the current search space. 
The PSO happens in accordance to the following formula: 

 vi(t)=w vi(t-1) + ϕ1 [pi – xi(t-1)] + ϕ2 [pg – xi(t-1)] (1) 

Where pi is the best position found by the particle i so far, pg is the best position among all 
particles, and ϕ1 and ϕ2 are positive random variables, evenly distributed in the intervals [0, 
ϕ1max] and [0, ϕ2max], calculated at each iteration for each particle. w is the inertia weight. The 
position of each particle is updated at every iteration using the vector of velocity (adopting 
the time unit as the iteration step): 

 xi(t) = xi(t-1) + vi(t) (2) 

PSO belongs to the class of the evolutionary algorithms based on population, as well as the 
genetic algorithms. However, unlike those, that uses as a metaphor the survival of the 
better-adapted ones, in PSO the motivation is the simulation of social behavior. Such as the 
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other evolutionary algorithms, PSO is initialized with a population of random solutions. The 
main difference is that in PSO, each potential (individual) solution is also associated to a 
random velocity in the initialization process; the potential solutions, designated as particles, 
may therefore “fly” through the parameter space of the problem. 

3. The Hunting Game 
DAI is a field that has been quickly unfolded and diversified since its beginning in the 
second half of the 1970's decade. It still represents a promising research and application 
domain as well, characterized by its multi-disciplinary nature, gathering concepts from 
fields such as Computer Science, Sociology, Economy, Administration, Work Management 
and Philosophy.  
DAI's primary focus is on the coordination as interaction form, particularly significant to 
reach the goal or to fulfill the tasks. And the two basic and contrasting standards of 
coordination are competition and cooperation. In the competition, several agents work 
against each others because their goals are conflicting. In the cooperation, the agents work 
together and they congregate their knowledge and capacities to reach a joint objective 
(Weiss, 2000). In this work, by the own nature of the application chosen (group hunting), 
only cooperative strategies will be considered. 
The hunting's problem (or persecution's game) is a classical theme in AI. Just as originally 
proposed (Benda & Jagannathan, 1985), it is made of two classes of agents (predators and 
preys, classically four predators and a single prey) disposed in a rectilinear grid (plane and 
discrete domain), all at the same velocity. The predators' purpose is to catch the prey. To 
encircle it, each predator should occupy an adjacent “square” to the prey in the rectilinear 
grid. The prey, in turn, “wins” the game if it gets to escape away from the “board's” domain 
borders before being caught. In this classic version, the agents' movement is quite simple: at 
each “step” or simulation cycle, each agent can move a “square” in vertical or horizontal 
direction, since this square is not occupied yet. In general the prey is programmed with 
random movement, while the predators' strategy is the focus on the approaches of AI. 
This kind of problem acts as an excellent benchmark for comparative evaluation on different 
approaches of artificial intelligence, using central, local or distributed control (Manela & 
Campbell, 1995). Given the nature of the problem, each individual influences and is 
influenced by the whole system and, since that the goal cannot be reached by a single agent 
separately, it is only natural the emergence of cooperative strategies. This work proposes an 
evolution in the game in its classical form, so that the hunt and the persecution extrapolate 
the discrete plane, expanding to a continuous and three-dimensional domain. Another 
evolution point consists of a more elaborated formulation for the behaviors and the 
strategies, for both predators and prey. 

3.1 Behavior of Prey and Predators 
In this section, the concepts for the three dimensional hunting are defined. Catching is the 
situation in which at least one of the predators reaches the prey. Technically speaking, it 
invades a kind of “vital bubble”, a small sphere related to the prey's body volume and 
having it as the center. The prey, in its turn, has as a goal to avoid being caught by the 
predators for a determined period. Time limiting is due to a series of practical 
circumstances, among them all the fact that the performance in the game will serve, in the 
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end, as a target function of the algorithm's optimization; and it should naturally have a 
foreseen stop criterion to the cases of which predators are unable to succeed in catching the 
prey. The prey's behavior in this 3D pursuing game in the continuous space also evolved in 
relation to its classical version. It is under the control of a Finite State Machine (FSM). The 
projected machine to describe the prey's behavior has three states: 
• Free walk: Initial state of the game. In this state, the prey behaves as it does in the 

classical version, having random movement at a low velocity given by vyw. 
• Escape: The prey, when noticing that is being hunted, because at least a predator is 

inside of its “perception bubble” with velocity above certain limit given by vdc or had it 
settled whatever the velocity, in its “proximity bubble”, begins to move in its maximum 
velocity given by vye, to a calculated direction considering the two closest predators' 
standings. The perception and proximity bubbles are spheres centered in the prey with 
radius of Rye and Ryx, respectively (Figure 1). If the conditions that determined to get 
into this state have dropped away, the prey turns in to the Free Walk state. 

• Caught: In this state, at least one predator has already invaded the prey's “vital 
bubble”. It is considered being caught and its action is ceased. The game is closed. The 
vital bubble is a sphere centered at the prey with radius of Ryv (Figure 1). 

Predators' behavior is controlled by a FSM set by the following three states described below: 
• Hunt: Initial state of the game. The predator moves with a velocity that has direction 

and module defined by its strategy. This strategy's synthesis what will be exactly the 
target of this work, the product of the synthesis' tool that involves a simulator and an 
optimization algorithm. 

• Pursue: The predator sets itself in this state when the prey sets in escaping mode, 
perceiving the approach of this one or even another predator. When pursuing, the 
predator has its moving direction exclusively based on the prey's position, and it moves 
itself at maximum velocity given by vdp, thereon, having no more any kind of strategy. 

• Capture: The predator invaded the prey's “vital bubble” and its catching proceeded. 
The game is over. 

3.2 Hunting Game's Parameters 
Given the general rules, the game of three-dimensional hunt still has certain versatility 
margin. Several combinations can be checked and compared, depending on how some free 
parameters are defined; this joined to some simulation parameters arranges the 
configuration's settings of the game: number of predators nd, game time limit tmax, initial 
distance D0 and coefficient of inertia C. 
The predators have to capture the prey under the considered time limit; in case this time 
has passed, the prey is considered as the winner. The initial distance defines the distance 
between the prey and each one of the predators in the beginning of the game. The 
coefficient of inertia must be between 0 and 1, and it simulates the inertia effect, both for 
the predators and prey, at each simulation step. It is applied accordingly to the following 
expression: 

 v(t) ← C  v(t-1) + (1 - C) v(t) (3) 
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Figure 1. Perception, proximity and vital bubbles of the prey 

It is natural to expect that, for each (coherent) group of free parameters, the strategies' 
synthesis tool presents a different result, since the circumstances aroused by these 
parameters in the hunt conditions be sufficiently distinct. 

3.3 The Predators' Strategies 
The predators do not need to move in-group, but to increase their survival chances they 
should be capable of self-organize in order to encircle and to capture a prey, thus 
guaranteeing their food. Evidently, without using any type of direct communication during 
the task. Police officers' teams use the radio to coordinate their encircling maneuvers, but 
wolves do not use walkie-talkies at the time they leave in pack for hunting a moose 
(Parunak, 1997). Through some rules based on visual tracks about the moose's grounding 
and of the other wolves, they must be able to encircle the moose without any explicit form of 
communication or negotiation (nothing such like “I'll go to the northward; why don't you go 
southward?”). 
All of the predators should share (as part of the problem's definition) the same hunt 
strategy, which does not involve memory or direct communication among the agents. 
Taking as a base the predators' sensorial world at the hunting time, the strategy ought to, at 
most, take into consideration the following parameters: direction of the prey qy, direction of 
the closest predator (neighbor) qn and distance of the prey Dy. As the kinematical reference 
for the predators are their own positions, the first two parameters should be calculated in 
the following way: 

 qy = (Py – Pd)/(|Py - Pd|) (4) 

qn = (Pn – Pd)/(|Pn – Pd|) 

Where Py, Pd and Pn are the vectors of position (in relation to the center of the coordinate 
system) of the prey, the current predator and its closest neighbor, respectively. The only 
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Figure 1. Perception, proximity and vital bubbles of the prey 
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capacity of allowed decision to the predators in the game is to control its own moving, that 
is, dynamically change its vectorial velocity using the parameters provided by its sensorial 
system (qy, qn and Dy ). The strategy formulation developed for this work obeys to the 
following expression: 

 D = min ( Dy / D0 , 1) (5) 

vd(d) = vdp dX1 (dX2 qy + X3 d qn) / (| dX2 qy + X3 d qn|) 

Where vd(d) is the velocity of the predator as a function of normalized distance to the prey; 
and X1, X2 and X3 are decision parameters (provided by the strategies' synthesis tool). The 
variable X1 is related to the influence of the predator's distance to the prey in the module of 
its velocity; X2 reflects the importance of the prey's direction in the vectorial composition of 
the velocity's direction, whilst X3 represents the influence of the closest neighbor’s direction. 
The strategies are then defined by triple ordinates (X1, X2,X3) that define the behavior of the 
predators' movement. The presented formulation allows no-linearity and a wide range of 
possibilities both for the module and the vectorial composition of the velocity as a function 
of the predators' distance to the prey. Evidently, the same problem would hold other 
countless strategy formulations. Amplifying the sensorial capacity, for instance, the 
predators' velocity could also be a function of the distance to the closest neighbor. Or even 
maintaining the defined sensorial group in this work, quite diverse mathematical 
expressions could be formulated. 

4. Synthesis of Strategies by the Particle Swarm 
Simulation environments are important to evaluate the performance of strategies that could 
not be tested in any type of analytical expression. The same strategy is used by a predators' 
group, each influencing towards movement of another, in a chain reaction. The hunt can 
only be verified through the strategies' effects overtime. Based on this model, a simulation 
environment was implemented, and beside an optimization algorithm, it composes a 
synthesis tool that will provide, at the end of the process, a satisfactory solution for the 
initial problem. That tool was implemented in the program called PREDATOR. During the 
process of strategies' synthesis, the simulator changes information continuously with the 
optimizer. The optimizer, tracking its algorithm (particle swarm), defines some “points” in 
the space of solutions and it submits, one by one, these solution-candidates to the simulator, 
that receives and interprets them as the entry parameters for the simulation. At the end of 
the simulation, the outcomes of this are sent back to the optimizer, which interprets this 
information as the objective function of the solution-candidate that had been sent. It 
processes this information inside the algorithm routine and sends the next solution-
candidate, restarting a cycle that only ends when the optimizer finds some of its stopping 
criteria. Figure 2 shows the optimization flow diagram. 
To illustrate the simulation of the hunt game in the program PREDATOR, all agents were 
represented by fishes. These animals were chosen because, unlike humans, they are subject 
to huntings that can only be modeled in three-dimensional domains. 
In the simulation, predators and prey's velocities possess a term of “momentum”, which 
emulates a kind of “inertia”, even without processing the dynamic equations that would 
necessarily involve forces and the agents' masses. This mechanism avoids that the agents (in 
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this case the fishes) might be moved in an implausible way in the simulation setting, 
executing curves and maneuvers visibly out of the dynamic reality that should reign in a 
real situation. 
The program PREDATOR was designed in a way to present a quite simple and intuitive 
interface (Figure 3). All of the buttons and displays were clustered in a control panel, in 
which their buttons allows the user to load a file containing one of the three types of 
possible configurations: simulation, optimization and animation (of the particles' movement 
resulting from an optimization process). In the illustrated example in Figure 3, the strategy 
used in the simulation is the correspondent to the particle of number 1 of the 40th iteration 
(40-01), the line right below exhibits their parameters' strategy (X1, X2 and X3) and the 
inferior line presents the predators' medium distance in pursuing (the number of predators 
in pursuing is presented between parenthesis). There are two chronometers to the right in 
the panel. The first indicates the hunting 1 time; and the second, which starts only when the 
first one stops, marks the pursuing 2 time. There is also a field indicating the prey's current 
state (in the example, in escape). 

 
Figure 2. Optimization flow diagram 
                                                                 
1 All agents are in the first state of their FSMs. 
2 All agents are in the second state of their FSMs. 
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In spite of the interface's detailed information about positions and the fishes' velocities, to 
follow the simulation through the observation of tables is a superhuman task. To help the 
user to understand the simulation, the program PREDATOR provides four visualization 
windows, which exhibit the perspective projections of the tracking cameras (Figure 3). Even 
with all of the visualization resources implemented, it is not easy to process the visual 
information of the four (or even three) images in real time. Behind this difficulty there is 
probably a hidden evolutionary reason. The user (that is a human being) didn't have, unlike 
what probably happened with the fishes, his cognitive system adapted to process visual 
information coming from all directions. In an attempt to build a “bridge” among these 
differences in visual processing, a “3D radar” was implemented. This radar consists of two 
disks, being the superior used to represent the front part of the prey and the inferior the 
back part, working as if it was a rear-view mirror. 

 
Figure 3. Window of the program PREDATOR 

The optimization algorithm, “embedded” in the PREDATOR program, in order to evaluate 
the result of the simulation, uses the following rule that works as the objective function: 
• For strategies that get to capture the prey in an available time (the free variable tmax), the 

result of the simulation is: 

 f(X1,X2,X3) = thunt + tpurs (6) 

Where thunt is the time used in the hunt and tpurs the time spent in the pursuing (both in 
seconds), that are exhibited in the two chronometers of the control panel; 
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• For strategies that don't get to capture the prey inside of the available time, the result of 
the simulation is: 

 f(X1,X2,X3) = tmax ( 1 + Daverage  / D0 ) (7) 

Where tmax is the time limit allowed for the simulation (in seconds), Daverage is the 
medium distance of the predators to the prey at the end of the simulation and D0 the 
initial distance between the predators and the prey (both in meters). 

Besides the simulations' configuring information, necessary for the simulating that will 
evaluate the strategies generated by PSO, the program also reads the adjustment parameters 
in the configuration file from PSO's algorithm itself. Moreover, besides the kinematics' 
variables of the particles, they comprise the maximum number of iterations, the number of 
particles, the number of simulations by particle and the size of the neighborhood (number of 
particles of the subset considered as each particle's “neighborhood”, including itself, for the 
comparison among the best individual results obtained as yet). 

5. Results 
Dozens of optimization tests were accomplished, varying not only the simulation's 
configuration features, in order to analyze different “rules” for the three-dimensional 
hunting game, but also the optimizing configuration, to study the sensibility of the 
parameters of the PSO. 
The parameter “number of simulations by particle” revealed itself, soon in the preliminary 
tests, of fundamental importance within the optimization process. In some tests considering 
just a single simulation run by particle, it was common that some particles presented 
performance of difficult reproduction, which were resultants from simulator initializations 
extremely advantageous (all of the predators already actually encircling the prey, for 
instance). As the initialization of the predators' positions is stochastic, that is a phenomenon 
hard to avoid. And, as a consequence, these results got registered in the algorithm and they 
“pulled”, in a certain measure, the swarm for a solution often far from being the most 
appropriate, but only “lucky” when first (and only) evaluated. 
Although the PSO's algorithm is strong enough to escape from these traps, its 
performance gets quite harmed, once several iterations are wasted while the influence of 
these exceptional results does not weaken. Increasing this parameter from 1 to 5, these 
situations were practically eliminated, and as the performance's average of the 
simulations is the one to be considered as the particles' objective function, this repetition 
ends up working as a type of filter against the results derived from extraordinary random 
conditions. 
The optimization’s amount of time, considering as stop criterion the maximum number of 
iterations, is certainly a function of a series of parameters, that might be divided in two 
groups: the simulation and optimization one. In the first group, the most evident is the 
simulation time limit (45 seconds to most tests). In the second, they are preponderantly the 
maximum number of iterations (50 or 100), the number of particles (tests were made with 10 
and 20) and the number of simulations for particle (5 in most of the tests). 
The parameter tmax limits the time for the simulation, and consequently affects the hunting. 
Its value is intrinsically related to the velocity of the fishes and the several bubbles radius. 
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The parameter tmax has a fundamental influence in the objective function. A tmax with a small 
value will not allow the development of some strategies which are not so interesting 
initially. However, these strategies can generate very interesting solutions at the end. A 
larger value of tmax can reduce the problem; however, values too large of tmax will increase 
exaggeratedly the computational time. Finally, it is suggested that before the optimization, a 
sequence of preliminary simulations must be done, so that it is possible to estimate the 
impact of the parameters in the hunting. 
A basic simulation setting was made (see Table 1), for reference, and tested with a series of 
preliminary tests. Variations of this basic setting were elaborated with the purpose of 
detecting the sensibility of some parameters. 
The simulations could be watched in the Predator’s visualization windows, real time. The 
program also renders three views of the paths described by the agents during the pursue, 
condensing all the animation in a single picture. An example can be seen in Fig. 4, which 
shows the trajectories of all agents in a successful hunt. The sudden trajectory change made 
by all fishes (easily seen in the path of agent number 5 in the top view) is related to the 
moment the fishes stop moving to encircle the prey and start pursuing it. 

np  = 6   (number of predators) 

tmax  = 45 s  (time limit of the game) 

vpw = 0,2 m/s   (prey's walk velocity) 

vye = 1,0 m/s  (prey's escape velocity) 

D0  = 10 m  (initial distance) 

Rpe  = 5 m  (radius of the prey’s bubble of perception) 

Rpr  = 3 m   (radius of the prey’s bubble of proximity) 

Rv = 0,3 m   (radius of the prey’s vital bubble) 

vdw = 1,0 m/s   (predators’ pursuing velocity) 

vdp = 0,6 m/s   (predators’ critical approach velocity) 

C = 0,95  (inertia coefficient) 

Table 1. Basic scenario configuration 

Some optimizer configurations were tested to generate the best strategy for this basic 
simulation setting, taking as base values suggested by the literature of this area (Kennedy & 
Eberhart, 2001). Different PSO's adjustments took to strategy parameters with very much 
alike performances, all providing very fast hunts. These configurations (and results) are 
shown in Table 2. Figure 5 allows an analysis of the convergence from four different 
adjustment settings of used PSO. 
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Configuration A has a slower convergence as a consequence of the reduced number of 
simulations, while configurations B and C (with very similar adjusts) presented convergence 
curves very similar. Configuration D showed a faster convergence, which can be a 
consequence of the greater number of particles allowing an efficient exploration of the 
parameter space. 
 
 

 
 

Figure 4. Trace of 6 predators (blue) hunting the prey (red) 

The strategy parameters created in these tests are triple ordinates very similar, indicating 
“points” in the universe of solutions very close to one another. One of those tests, for 
instance, generated as the best strategy (for the particle number 14, in the 50th iteration) that 
one capable of capturing the prey after a hunt of, on average, 10.2 seconds, and defined by 
the parameters (X1, X2, X3) = (0.0753; 1.6763; -0.2653). 
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 CfgOtim A CfgOtim B CfgOtim C CfgOtim D 

Number of Particles 10 10 10 20 

Number of Simulations/Particle 1 5 5 5 

Neighborhood Size 5 5 5 5 

Inertia weight (w) 1,0 1,0 1,0 1,0 

ϕ1max 0,5 0,5 0,4 0,7 

ϕ2max 0,2 0,2 0,2 0,4 

Vmax 1,0 2,0 2,0 2,0 

Hunt time of the best generated 
strategy (s) 11,63 10,4 11,4 10,2 

Table 2. Generated strategies for the basic scenario 

 
Figure 5. Convergence Analysis 

Besides the results shown in Fig. 4, it is possible to visually observe the PSO optimization 
process through the animation mode of the PREDATOR program. Fig. 6 presents 4 frozen 

                                                                 
3 Value obtained at iteration number 163. 
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moments of an animation basic scenario, with PSO configured with 20 particles. Each frame 
contains three cameras illustrating the three views (top, front and rear) of the parameter 
space, represented as a gray box with dimensions defined by the constraints.  

 
Figure 6. Twenty particles (PSO) searching for better strategies at four frozen moments: t=1 
(upper left), t=6 (upper right), t=11 (lower left) and t=16 (lower right) 

6. Conclusions 
The problem solving capability of the multiagent systems using co-operative strategies 
expands the solution universe of some classes of problems to beyond some human limits of 
reasoning and intuition. The hard time we have trying to mentally process, in a parallel 
fashion, the several “instances” sensorial-cognitive-motor that represents the agents is the 
reason that makes invariably surprising the system’s behavior as a whole. That is the 
emergent behavior. 
In this work, we tried to demonstrate that it is possible to project these Distributed Artificial 
Intelligence systems knowing just how to model the problem. The “fine tuning” of the 
project details was accomplished by a synthesis tool, using an optimization systems that also 
takes advantage of the emergent behavior (of the PSO particles). Therefore, part of the 
problem’s complexity was solved without any analytical approach, but using instead an 
intelligent and automatic solution searching process. 
The results obtained in this work can attest that the tool of synthesis developed is really 
capable to provide, as long as working with well elaborated models, satisfactory solutions 
for problems of complex nature, of difficult resolution by analytical approaches. 
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 CfgOtim A CfgOtim B CfgOtim C CfgOtim D 

Number of Particles 10 10 10 20 

Number of Simulations/Particle 1 5 5 5 

Neighborhood Size 5 5 5 5 

Inertia weight (w) 1,0 1,0 1,0 1,0 
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Figure 5. Convergence Analysis 
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3 Value obtained at iteration number 163. 
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moments of an animation basic scenario, with PSO configured with 20 particles. Each frame 
contains three cameras illustrating the three views (top, front and rear) of the parameter 
space, represented as a gray box with dimensions defined by the constraints.  

 
Figure 6. Twenty particles (PSO) searching for better strategies at four frozen moments: t=1 
(upper left), t=6 (upper right), t=11 (lower left) and t=16 (lower right) 
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project details was accomplished by a synthesis tool, using an optimization systems that also 
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problem’s complexity was solved without any analytical approach, but using instead an 
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Delegating the task of solving a problem for a tool in the moulds proposed in this work 
means, in a final analysis, to trust in the emergent properties of a complex system to 
produce solutions for another system (not coincidentally, also complex). These solutions are 
not pre-defined in the program. Neither are we capable to easily understand the solutions 
generated in terms of the program code. This tends to go in the opposite direction of the 
essence from traditional engineering. However, will eventually unveils a field still poorly 
explored in the area of project development. 
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1. Introduction 
Optimization has been an active area of research for several decades. As many real-world 
optimization problems become increasingly complex, better optimization algorithms are 
always needs. Without loss of generally, the unconstrained optimization problem is 
identified with the discovery of the global minimizer of a real valued objective function 

  (1) 

i.e.   finding a point  such that 

  (2) 

Where  is a nonempty compact set. 
There are two main categories for global optimization methods: deterministic and 
probabilistic methods. Traditionally, the deterministic methods need some information to 
determine the optima such as grads etc. However, for many real-world optimization 
problems, the optimization function may be discontinuous. Furthermore, the deterministic 
methods only can be applied into the problems with slow dimension because of the huge 
time-cost for large dimensionality. Therefore, from the 1960's, many researchers pay their 
attentions to the probabilistic methods. All of these rely on probabilistic judgements to 
determine whether or not search should depart from the neighbourhood of a local optimum 
(Forgo, 1988; Hansen, 1992; Rao,  1996). 
Different from adaptive stochastic search algorithms, evolutionary computation (EC) is a 
new kind of probabilistic method. They exploit a ser of potential solutions (called 
population), and detect the optimal problem solution through cooperation and competition 
among the individuals of the population. The well-known EC methods are all inspired from 
the evolution of nature such as: genetic algorithm (GA) (Goldberg, 1989; Michalewica, 1994), 
evolution strategy (ES) (Back, 1996; Schwefel, 1975), evolutionary programming (EP) (Fogel, 
1996), and artificial life methods. 
Recently, particle swarm optimization (PSO) method (Kennedy and Eberhart, 1995) is 
proposed known as a member of the wide category of swarm intelligence methods 
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(Kennedy and Eberhart, 2001). It simulates the animal social behaviour such as birds 
flocking, fish schooling, and animal herding. 
In this paper, the basic concept of particle swarm optimization is explained. Then, a new 
framework for PSO - differential meta-model is proposed. Thirdly, a new modified variants 
— differential evolutionary PSO with PID controller is designed. Finally, we provide a 
conclusion and some future search topic. 

2. Particle Swarm Optimization 
In a PSO system, multiple candidate solutions coexist and collaborate simultaneously. Each 
solution called a "particle", flies in the problem search space looking for the optimal position 
to land. A particle, as time passes through its quest, adjusts its position according to its own 
"experience" as well as the experience of neighbouring particles. Tracking and memorizing 
the best position encountered build particle's experience. For that reason, PSO possesses a 
memory (i.e. every particle remembers the best position it reached during the past). PSO 
system combines local search method (through self experience) with global search methods 
(through neighbouring experience), attempting to balance exploration and exploitation. 
Each particle maintains two character items: velocity and position. Both of them are updated 
as follows: 

  (3) 
  (4) 

where vj (t) denotes the velocity vector of particle j at time t. xj (t) represents the position 
vector of particle j at time t . Vector pj is the memory of particle j at current generation, and 
vector pg is the best location found by the whole swarm. Cognitive coefficient 1 and social 
coefficient 2 are known as acceleration coefficients. 1 and 2 are two random number with 
uniform distribution. To reduce the likelihood, a threshold is introduced to limit the value of 
vjk (t +1) ( kth  value of velocity vector) so that 

  (5) 
The well-known earliest modification is the introduction of inertia weight w (Shi and 
Eberhart, 1998). The inertia weight is a scaling factor associated with the velocity during the 
previous time step, resulting a new velocity update equation, so that 

  (6) 
Therefore, the original PSO can be obtained by setting w =1. Empirical experiments have 
been performed with an inertia weight set to decrease linearly from 0.9 to 0.4 during the 
course of a simulation. There are still many other variants to improve the convergence 
speed, such as PSO with constriction factor (Clerc, 1999), Spatial neighbourhood 
(Suganthan, 1999), etc. The details please refer to the corresponding references. 

3. Differential Meta-model Particle Swarm Optimization 
In this section, a uniform model -differential meta-model (Zeng and Cui, 2005) is presented 
based on the analysis of the standard PSO and its several variants. Then, the convergence 
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performance is analyzed with linear control theory, and the upper bound estimate of the 
convergence speed is given using Lyapunov function. Finally, an adaptive parameters 
adjusted algorithms is given to improve the global optimality of convergence. 

3.1 Differential Meta-model 
Consider the following differential equations: 

  

(7)

 
If Euler numeral integral method is used with step length one, we can obtain the following 
results: 
1. When w = 1 and  = 1 , the original PSO is obtained; 
2. The standard PSO with inertia weight w is obtained with w  1 and  = 1. 

 

3. When w = 1 and , the PSO with constriction 

factor is obtained. 
4. When w = 0 and  = 1, the stochastic PSO is obtained (Cui and Zeng,2004).  
Therefore, based on the choice of the parameters w and  , the different PSO evolutionary 
model is represented by equation (7). In other words, equation (7) can be used to express the 
meta-model for PSO, called differential meta-model of PSO. For convenience, the following 
symbols are defined as: 

  
(8)

 

  (9) 

  (10) 

  (11) 
Then, equation (7) can be expressed as 

  

(12)

 
which is the standard form of differentia meta-model of PSO. 
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3.2 Analysis of PSO Evolutionary Behavior 
The first-order approximate for v(t +1) is used to replace v(t + 1), i.e.,  

 
then resulting the following equation (12): 

  

(13)

 
Define: 

  
(14)

 
The standard state equation of linear system is obtained: 

  
(15)

 
and its solution is solved as follows: 

  
(16)

 
From linear system theory, if all eigenvalues of matrix A have negative real part, equation 
(16) is convergence. The eigen-equation of matrix A is listed as follows: 

  (17) 
and its eigenvalues are solved: 

  
(18)

 

Therefore, both eigenvalues of matrix A have negative real part if  < 0 is true. 
In other words, if  < 0 is satisfied, the differential PSO evolutionary model 
described by equation (13) is convergent, and the limit is obtained by the follows. 

  
(19)

 
that is: 
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(20) 

  
(21) 

Equation (21) implies that following conclusion is true: 

  
(22) 

Because of the randomness of  and , the above equation is satisfied if and only if 
    is true. 

It can be seen that all the particles according to the evolutionary equation (13) is convergent 
to the best position pg  discovered by any of the particles when  < 0 is satisfied. In 
other words, if the best position pg  keeps constant within the test generation, the positions 
of all particles will converge to pg. 

Meanwhile, from equation (15) and  , the behavior of PSO is actually identical 

to the trajectory of a linear system under the step signal inputs with stochastic disturbance, 
and the amplitude of step signal inputs is increased or not decreased within the evolution of 
PSO. 
In following section, the upper bound estimate of convergence speed for equation (15) is 
deduced. A Lyapunov function is defined as follows 

  (23) 
and 

  (24) 
where P is a positive definite matrix and Q is a positive definite symmetrical matrix, and 
following Lyapunov equation is satisfied: 

  (25) 
From the view of linear system, the convergence performance of system can be evaluated 
by: 

  
(26)

 

Evidently, the less is  and the larger for absolute  , the larger value , the faster 
convergence speed, and vice versa. 
Integrate equation (26) with t from 0 to t, resulting: 

  
(27) 
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Further, 

  
(28) 

Equation (28) is hard to solve, since then, we suppose 

  
(29)

 
 in equation (28) is replaced by , may result 

  (30) 

It can be seen that when  is determined, the upper bound estimate of  convergent 
time can be evaluated. From equations (23) and (24), we have 

  
(31) 

Then, for linear constant system, 

  (32) 

where,  (•) is the minimum eigenvalue of ( • ). 

3.3 Adaptive Parameter Adjustment Strategy 
A differential form of PSO is given in equation (12), and the convergence condition is easy to 
satisfy. In order to improve the global convergence performance, an adaptive parameter 
adjustment strategy is discussed in this part. 
From the conducted convergence condition  < 0 , we have the less value  
< 0 , the faster convergence speed it is. By this way, we select the parameter values so that 
the convergence condition  < 0 is always true in the evolutionary iteration. 
Further, we let  < 0 has little absolute value in the earlier stage, while in the later 
stage of evolution,  < 0 has a larger absolute value. In other words, there is a slow 
convergence speed and a powerful global exploration capacity in the earlier period of 
evolution, as well as in the later period of evolution, the local exploitation capacity is 
addressed and convergence speed is faster. In order to balance the ability of the global 
exploration and the local exploitation, an adaptive parameter adjustment strategy is 
proposed. 
With the definition of   , 

  (33) 
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The convergence condition implies . Evidently, the differential PSO algorithm 
has three parameters ,  and . From the experiment results,  +  =4 can make a 
better performance. Therefore, the parameters are adjusted as follows: 

  (34) 

  (35) 

  (36) 

Where t is evolutionary generation, a and /? are two adjusted parameters to control the 
change rate. Generally, =0.01~0.001, =0.01~0.005. 

4. Differential Evolutionary Particle Swarm Optimization with Controller (Zeng 
& Cui, 2005) 

With the same model (7), we suppose 
 

then euation (7) can be changed as follows: 

  

(37)

 

The PSO algorithm described by differential evolutionary equations (37) is called differential 
evolutionary PSO (DEPSO). The analysis of the evolutionary behavior of DEPSO is made by 
transfer function as follows. The first order difference approximation of vi (t + 1) is vi (t + 1) 

= —, then equation (37) will be 

  

(38)

 

Laplace transformation is made on equation (38), and suppose the initial values of vi (t) and 
xi (t) are zero, we have 

  (39) 

  (40) 
From equation (39), it is known that 
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(41) 

Substituting (41) into (40) yields 

  
(42) 

Suppose  and  are two input variables,  is output variable, then the system 
structure reflecting by equation (42) can be shown as in Fig.l. 

 
Figure 1. The System Diagram of DEPSO 

The open-loop transfer function from  to  is 

  
(43) 

And the eigenequation is 1 + GK (s) = 0, thus results in 

  (44) 

the two eigenvalues are 

  
(45)

 

DEPSO will converge when 1 and 2 have negative real parts. This is obtained with 

  (46) 

So, the convergence of DEPSO with  as input can be guaranteed if 

  (47) 
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By the same way, the convergence of DEPSO with  and  as input and output 
respectively can be guaranteed if  > 0 . Therefore, the convergence condition of 
DEPSO is 

  (48) 

From Fig.l, it is obvious that  

  
(49)

 
From (48), we have 

 
 (50) 

 
it means 

  (51) 

Since 1 and 2 are stochastic variables, it is obviously that the above equation is satisfied 
only if 

  (52) 
To improve the dynamic evolutionary behaviour of DEPSO, the evolutionary function of 
DEPSO is considered as a control plant and PID controller is introduced. The parameter of 
PID controller can be dynamically adjusted in the evolutionary process, and the new 
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From Fig.2, we have 

  
(53)
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The open-loop transfer function taking  as input is : 
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5. Conclusion 
This chapter introduces one uniform differential meta-model, and a new variant 
development for PSO combined with PID controller is proposed. The current results show it 
is an interesting area with the control theory to improve the performance. The future 
research includes incorporating some other controllers into the PSO methodology. 
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1. Introduction 
There is a trend in the scientific community to model and solve complex optimization 
problems by employing natural metaphors. This is mainly due to inefficiency of classical 
optimization algorithms in solving larger scale combinatorial and/or highly non-linear 
problems. The situation is not much different if integer and/or discrete decision variables 
are required in most of the linear optimization models as well. One of the main 
characteristics of the classical optimization algorithms is their inflexibility to adapt the 
solution algorithm to a given problem. Generally a given problem is modelled in such a way 
that a classical algorithm like simplex algorithm can handle it. This generally requires 
making several assumptions which might not be easy to validate in many situations. In 
order to overcome these limitations more flexible and adaptable general purpose algorithms 
are needed. It should be easy to tailor these algorithms to model a given problem as close as 
to reality. Based on this motivation many nature inspired algorithms were developed in the 
literature like genetic algorithms, simulated annealing and tabu search. It has also been 
shown that these algorithms can provide far better solutions in comparison to classical 
algorithms. A branch of nature inspired algorithms which are known as swarm intelligence 
is focused on insect behaviour in order to develop some meta-heuristics which can mimic 
insect's problem solution abilities. Ant colony optimization, particle swarm optimization, 
wasp nets etc. are some of the well known algorithms that mimic insect behaviour in 
problem modelling and solution. Artificial Bee Colony (ABC) is a relatively new member of 
swarm intelligence. ABC tries to model natural behaviour of real honey bees in food 
foraging. Honey bees use several mechanisms like waggle dance to optimally locate food 
sources and to search new ones. This makes them a good candidate for developing new 
intelligent search algorithms. In this chapter an extensive review of work on artificial bee 
algorithms is given. Afterwards, development of an ABC algorithm for solving generalized 
assignment problem which is known as NP-hard problem is presented in detail along with 
some comparisons. 
It is a well known fact that classical optimization techniques impose several limitations on 
solving mathematical programming and operational research models. This is mainly due to 
inherent solution mechanisms of these techniques. Solution strategies of classical 
optimization algorithms are generally depended on the type of objective and constraint 
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functions (linear, non-linear etc.) and the type of variables used in the problem modelling 
(integer, real etc.). Their efficiency is also very much dependent on the size of the solution 
space, number of variables and constraints used in the problem modelling, and the structure 
of the solution space (convex, non-convex, etc.). They also do not offer general solution 
strategies that can be applied to problem formulations where, different type of variables, 
objective and constraint functions are used. For example, simplex algorithm can be used to 
solve models with linear objective and constraint functions; geometric programming can be 
used to solve non-linear models with a posynomial or signomial objective function etc. 
(Baykasoğlu, 2001). However, most of the optimization problems require different types of 
variables, objective and constraint functions simultaneously in their formulation. Therefore, 
classic optimization procedures are generally not adequate or easy to use for their solution. 
Researchers have spent a great deal of effort in order to adapt many optimization problems 
to the classic optimization procedures. It is generally not easy to formulate a real life 
problem that suits a specific solution procedure. In order to achieve this, it is necessary to 
make some modifications and/or assumptions on the original problem parameters 
(rounding variables, softening constraints etc.). This certainly affects the solution quality. A 
new set of problem and model independent nature inspired heuristic optimization 
algorithms were proposed by researchers to overcome drawbacks of the classical 
optimization procedures. These techniques are efficient and flexible. They can be modified 
and/or adapted to suit specific problem requirements (see Figure 1). Research on these 
techniques is still continuing all around the globe. 
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SOLUTION

TECHNIQUEModifications

PROBLEM SOLUTION
TECHNIQUEModifications

Classical
Optimisation
Techniques

Nature
Inspired
Heuristic
Optimisation
Techniques

Not easy
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IF Linear Programming Model  USE
(Simplex);
IF Integer Programming Model  USE
(Branch and Bound);
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Any model  USE    (Genetic Algorithms)
Any Model  USE    (Simulated Annealing)
Any Model  USE    (Ant Colony Optimization)
Any Model  USE    (Artificial Bee Colony)
...

General
purpose

Problem
dependent

 
Figure 1. A pictorial comparison of classical and modern heuristic optimisation strategies 
(Adapted from Baykasoğlu, 2001) 

A branch of nature inspired algorithms which are called as swarm intelligence is focused on 
insect behaviour in order to develop some meta-heuristics which can mimic insect's problem 
solution abilities. Interaction between insects contributes to the collective intelligence of the 
social insect colonies. These communication systems between insects have been adapted to 
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scientific problems for optimization. One of the examples of such interactive behaviour is 
the waggle dance of bees during the food procuring. By performing this dance, successful 
foragers share the information about the direction and distance to patches of flower and the 
amount of nectar within this flower with their hive mates. So this is a successful mechanism 
which foragers can recruit other bees in their colony to productive locations to collect 
various resources. Bee colony can quickly and precisely adjust its searching pattern in time 
and space according to changing nectar sources. 
The information exchange among individual insects is the most important part of the 
collective knowledge. Communication among bees about the quality of food sources is 
being achieved in the dancing area by performing waggle dance (Figure 2). 

 
Figure 2. Waggle dance of honey bees 

The previous studies on dancing behaviour of bees show that while performing the waggle 
dance, the direction of bees indicates the direction of the food source in relation to the Sun, 
the intensity of the waggles indicates how far away it is and the duration of the dance 
indicates the amount of nectar on related food source. Waggle dancing bees that have been 
in the hive for an extended time adjust the angles of their dances to accommodate the 
changing direction of the sun. Therefore bees that follow the waggle run of the dance are 
still correctly led to the food source even though its angle relative to the sun has changed. So 
collective intelligence of bees based on the synergistic information exchange during waggle 
dance. 
Observations and studies on honey bee behaviours resulted in a new generation of 
optimization algorithms. In this chapter a detailed review of bee colony based algorithms is 
given. Afterwards a bee based algorithm that we name as "artificial bee colony" is explained 
in detail along with an application to "generalized assignment problem" which is known as 
a NP-hard problem. 

2. Description of the Behaviour of Bees in Nature 
Social insect colonies can be considered as dynamical system gathering information from 
environment and adjusting its behaviour in accordance to it. While gathering information 
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and adjustment processes, individual insects don't perform all the tasks because of their 
specializations. Generally, all social insect colonies behave according to their own division 
labours related to their morphology. Bee system consists of two essential components:  
• Food Sources 

The value of a food source depends on different parameters such as its proximity to the 
nest, richness of energy and ease of extracting this energy.  

• Foragers 
• Unemployed foragers: If it is assumed that a bee have no knowledge about the food 

sources in the search field, bee initializes its search as an unemployed forager. 
There are two possibilities for an unemployed forager: 

 Scout Bee (S in Figure 3): If the bee starts searching spontaneously without 
any knowledge, it will be a scout bee. The percentage of scout bees varies 
from 5% to 30% according to the information into the  nest.  The mean 
number  of  scouts  averaged  over conditions is about 10% (Seeley, 1995). 

 Recruit (R in Figure 3): If the unemployed forager attends to a waggle  
dance  done by some other bee, the bee will start searching by using the 
knowledge from waggle dance. 

• Employed foragers (EF in Figure 3): When the recruit bee finds and exploits the food 
source, it will raise to be an employed forager who memorizes the location of the 
food source. After the employed foraging bee loads a portion of nectar from the 
food source, it returns to the hive and unloads the nectar to the food area in the 
hive. There are three possible options related to residual amount of nectar for the 
foraging bee. 

 If the nectar amount decreased to a low level or exhausted, foraging bee 
abandons  the food source and become an unemployed bee. 

 If there are still sufficient amount of nectar in the food source, it can 
continue to  forage without sharing the food source information with the 
nest mates 

 Or it can go to the dance area to perform waggle dance for informing the 
nest mates about the same food source. The probability values for these 
options highly related to the quality of the food source. 

• Experienced foragers: These types of forager use their historical memories for the 
location and quality of food sources. 

 It can be an inspector which controls the recent status of food source 
already discovered.  

 It can be a reactivated forager by using the information from waggle dance. 
It tries to explore the same food source discovered by itself if there are 
some other bees confirm the quality of same food source (RF in FigureS). 

 It can be scout bee to search new patches if the whole food source is 
exhausted (ES in Figure 3). 

 It can be a recruit bee which is searching a new food source declared in 
dancing area by another employed bee (ER in Figure 3). 
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Figure 3. Typical behaviour of honey bee foraging 

3. Review and Categorization of Studies on Artificial Bee Systems 
The foraging behaviour, learning, memorizing and information sharing characteristics of 
bees have recently been one of the most interesting research areas in swarm intelligence.  
Studies on honey bees are in an increasing trend in the literature during the last few years.  
After a detailed literature survey, the previous algorithms are categorized in this work by 
concerning the behavioural characteristics of honey bees.   
• Foraging behaviours 
• Marriage behaviours 
• Queen bee concept 
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After a detailed literature survey, the previous algorithms are categorized in this work by 
concerning the behavioural characteristics of honey bees.   
• Foraging behaviours 
• Marriage behaviours 
• Queen bee concept 
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The researches, their main contributions and applications are summarized as shown in 
Table 1. 

Type Honey Bee Literature Algorithm Application 
Yonezawa and Kikuchi (1996) 
Seeley and Buhrman (1999) 
Schmickl et al. (2005)  
Lemmens (2006) 

 Biological simulation 

Sato and Hagiwara (1997) Bee System Genetic Algorithm 
Improvement 

Karaboga (2005) Artificial Bee Colony 
Algorithm (ABC) Continuous Optimization 

Yang (2005) Virtual Bee Algorithm 
(VBA) Continuous Optimization 

Basturk and Karaboga (2006) ABC Continuous Optimization 

Pham et al. (2006a) Bees Algorithm (BA) Continuous Optimization 

Lucic and Teodorovic (2001) Bee System (BS) Travelling Salesman 
Problem(TSP) 

Lucic (2002) BS TSP and Stochastic Vehicle 
Routing Problem 

Lucic and Teodorovic (2002) BS TSP
Lucic and Teodorovic (2003a) BS TSP

Lucic and Teodorovic (2003b) BS + Fuzzy Logic Stochastic Vehicle Routing 

Teodorovic and Dell'Orco (2005)
Bee Colony 
Optimization (BCO) + 
Fuzzy Bee System (FBS)

Ride-Matching Problem 

Nakrani and Tovey (2003) A Honey Bee Algorithm Dynamic Allocation of 
Internet Service 

Wedde et al. (2004) BeeHive Telecommunication Network 
Routing 

Bianco (2004)  Large Scale Precise 
Navigation 

Chong et al. (2006)  Job Shop Scheduling 
Drias et al. (2005) Bees Swarm Max-W-Sat Problem 
Pham et al. (2006b) BA LVQ-Neural Network 
Pham et al. (2006c) BA MLP- Neural Network 
Pham et al. (2006d) BA Neural Network 
Quijano and Passino (2007) Dynamic Resource 
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Markovic et al. (2007) BCO Based Max-Routing and 
Wavelength Assignment 
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Abbass (2001a,b,c) Marriage in Honey-Bees 
Optimization (MBO) 3-Sat Problem 

Teo and Abbass (2001, 2003) Modified MBO 3-Sat Problem 

Bozorg Haddad and Af shar 
(2004) MBO Water Resources 

Management Problems 

Bozorg Haddad et al. (2006) Honey-Bees Mating 
Optimization -HBMO

Nonlinear constrained and 
unconstrained optimization 

Chang (2006) MBO Based Stochastic Dynamic 
Programming 

Afshar et al. (2007) Improved HBMO Continuous Optimization 

Fathian et al. (2007) HBMO Based Data Mining -Clustering 

Koudil et al. (2007) MBO Based Integrated 
Partitioning/Scheduling 

M
ar
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ag

e 
Be
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Benatchba et al. (2005) MBO Based Data Mining 

Sung (2003) Queen-Bee Evolution 
Algorithm(QBE) 

Genetic Algorithm 
Improvement 

Qin et al. (2004) QBE Based Economic Power Dispatch 

Kara (2004) Bee Crossover Genetic Algorithm 
Improvement Q

ue
en

 B
ee

 

Azeem and Saad (2004) Modified QBE Genetic Algorithm 
Improvement

Table 1. Categorization of literature and applications 

In this section, contributions of these researches are explained in detailed to clarify the 
background of honey bees based optimization algorithms. 
Yonezawa and Kikuchi (1996) examine the foraging behaviour of honey bees and construct 
an algorithm to indicate the importance of group intelligence principals. The algorithm is 
simulated with one and three foraging bees and the computational simulation results 
showed that three foraging bees are faster than the system with one foraging bee at decision 
making process. They also indicate that the honey bees have an adaptive foraging behaviour 
at complex environment. 
Seeley and Buhrman (1999) investigated the nest site selection behaviour of honey bee 
colonies. The nest site selection process starts with several hundred scout bees that search 
for potential nest sites. The scouts then return to the cluster, report their findings by means 
of waggle dances, and decide the new nest site. The type of waggle dance depends on the 
quality of the site being advertised. The authors repeated the observations of Lindauer in 
1955 by taking advantage of modern video-recording and bee-labelling techniques on three 
honey bee colonies. Many of the results confirmed with the previous study and some of the 
results provided new and important insights. They pointed out that a colony's strategy of 
decision making is a weighted additive strategy which is the most accurate but most 
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information demanding one. This strategy evaluates each alternative according to the 
relative attributes, gives weights to each attribute according to its importance, sums the 
weighted attributes for each alternative, and finally chooses the alternative whose total 
valuation is the highest. Similarly, the bee colony considers a dozen or more alternative nest 
sites, evaluates each alternative nest site with respect to at least six distinct attributes with 
different weightings e.g. cavity volume, entrance height, entrance area, entrance direction 
etc. Consequently, the bee colony uses this strategy by distributing among many bees both 
the task of evaluating the alternative sites and the task of identifying the best of these sites. 
Schmickl et al. (2005) evaluate the robustness of bees' foraging behaviour by using a multi-
agent simulation platform. They investigate how the time-pattern of environmental 
fluctuations affects the foraging strategy and the efficiency of the foraging. They conclude that 
the collective foraging strategy of a honeybee colony is robust and adaptive, and that its 
emergent features allow the colony to find optimal solutions. 
Lemmens (2006) investigated whether pheromone-based navigational algorithms (inspired 
by biological ant colony behaviour) are outperformed by non-pheromone-based 
navigational algorithms (inspired by biological bee colony behaviour) in the task of 
foraging. The results of the experiments showed that (i) pheromone-based navigational 
algorithms use less time per iteration step in small-sized worlds, (ii) non-pheromone-based 
algorithms are significantly faster when finding and collecting food and use fewer time 
steps to complete the task, and (iii) with growing world sizes, the non-pheromone-based 
algorithm eventually outperforms pheromone-based algorithms on a time per time step 
measure. In spite of all these profits it is mentioned that non-pheromone-based algorithms 
are less adaptive than pheromone-based algorithms. 
Sato and Hagiwara (1997) proposed an improved genetic algorithm based on foraging 
behaviour of honey bees. In a honey bee colony, each bee looks for the feed individually. 
When a bee finds feed, then it notifies the information to the other many bees by dance and 
they engage in a job to carry the feed. When they finish the work, each bee tries to find new 
one individually again. Similarly in the proposed algorithm, named Bee System, global search 
is done first, and some chromosomes with pretty high fitness (superior chromosomes) are 
obtained using the simple genetic algorithm. Second, many chromosomes obtain the 
information of superior chromosomes by the concentrated crossover and they search 
intensively around there using multiple populations. In the conventional crossover each pair is 
made randomly, while in the concentrated crossover all of the chromosomes make pair with 
superior chromosome. Lastly, pseudo-simplex method is contributed to enhance the local 
search ability of the Bee System. If the solution found by one cycle is not satisfactory, the global 
search is repeated. As it is known genetic algorithms have good global search ability, however 
they lack the local search ability. On the other hand with Bee System probability of falling into 
a local optimum is low because of the combination of local and global search since the aim of 
the algorithm is to improve the local search ability of genetic algorithm without degrading the 
global search ability. In the experimental studies Bee System is compared with the 
conventional genetic algorithm and it is found that Bee System shows better performance than 
the conventional genetic algorithm especially for highly complex multivariate functions. 
Karaboga (2005) analyzes the foraging behaviour of honey bee swarm and proposes a new 
algorithm simulating this behaviour for solving multi-dimensional and multi-modal 
optimization problems, called Artificial Bee Colony (ABC). The main steps of the algorithm are: 
1) send the employed bees onto the food sources and determine their nectar amounts; 2) calculate 
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the probability value of the sources with which they are preferred by the onlooker bees; 3) stop 
the exploitation process of the sources abandoned by the bees; 4) send the scouts into the search 
area for discovering new food sources, randomly; 5) memorize the best food source found so far. 
In the algorithm, an artificial bee colony consists of three groups of bees: employed bees, 
onlookers and scouts. Employed bees are associated with a particular food source which they are 
currently exploiting. They carry the information about this particular source and share this 
information with a certain probability by waggle dance. Unemployed bees seek a food source to 
exploit. There are two types of unemployed bees: scouts and onlookers. Scouts search the 
environment for new food sources without any guidance. Occasionally, the scouts can 
accidentally discover rich, entirely unknown food sources. On the other hand onlookers observe 
the waggle dance and so are placed on the food sources by using a probability based selection 
process. As the nectar amount of a food source increases, the probability value with which the 
food source is preferred by onlookers increases, too. In the ABC algorithm the first half of the 
colony consists of the employed bees and the second half includes the onlookers. For every food 
source, there is only one employed bee. Another issue that is considered in the algorithm is that 
the employed bee whose food source has been exhausted by the bees becomes a scout. In other 
words, if a solution representing a food source is not improved by a predetermined number of 
trials, then the food source is abandoned by its employed bee and the employed bee is converted 
to a scout. The algorithm is tested on three well known test functions. From the simulation 
results, it is concluded that the proposed algorithm can be used for solving uni-modal and multi-
modal numerical optimization problems. 
Yang (2005) presents a virtual bee algorithm (VBA) which is effective on function 
optimization problems. The main steps of the algorithm are: 1) create an initial population of 
virtual bees where each bee is associated with a memory; 2) encode the optimization 
function into virtual food; 3) define the criterion for communicating food location with 
others; 4) march all the virtual bees randomly to new positions for virtual food searching, 
find food and communicate with neighbouring bees by virtual waggle dance; 5) evaluate the 
encoded intensity /locations of bees; 6) decode the results to obtain the solution to the 
problem. However the proposed algorithm is similar with genetic algorithm, it is much 
more efficient due to the parallelism of the multiple independent bees. To realize this 
statement, the VBA algorithm is tested on two functions with two parameters, one is single-
peaked and the other is multi-peaked. The results show that the new algorithm is much 
efficient than genetic algorithm. 
Basturk and Karaboga (2006) presented another ABC algorithm and expanded the 
experimental results of Karaboga (2005). The performance of the algorithm is tested on five 
multi-dimensional benchmark functions and the results were compared with genetic 
algorithms. It is pointed out that ABC algorithm outperforms genetic algorithm for 
functions having multi-modality and uni-modality. 
Pham et al. (2006a) proposed an optimization algorithm inspired by the natural foraging 
behaviour of honey bees, called Bees Algorithm. The proposed algorithm is also applicable to 
both combinatorial and functional optimization problems. In real life, foraging process begins 
by scout bees being sent to search for promising flower patches. When they return to the hive, 
unload their nectar and go to the dance floor to perform a dance known as the waggle dance 
which is essential for colony communication. After waggle dancing, the dancer goes back to the 
flower patch with follower bees that were waiting inside the hive. More follower bees are sent 
to more promising patches. This allows the colony to gather food quickly and efficiently. 
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Similarly Bees Algorithm starts with scout bees being placed randomly on the search space. The 
main steps of the algorithm are: 1) initialize population with random solutions; 2) evaluate 
fitness of the population; 3) determine a certain number of fittest bees and select their sites for 
neighbourhood search; 4) recruit a certain number of bees for selected sites, evaluate their 
fitness; 5) select the fittest bee from each site to form the new population; 6) assign remaining 
bees to search randomly and evaluate their fitness. The Bees Algorithm is applied to two 
standard functional optimization problems with two and six dimensions, respectively. The 
results showed that the Bees Algorithm is able to find solutions very close to the optimum. The 
algorithm is also applied to eight benchmark functions and the results were compared with 
deterministic simplex method, stochastic simulated annealing optimization procedure, genetic 
algorithm and ant colony system. Bees Algorithm generally outperformed other techniques in 
terms of speed of optimization and accuracy of results. On the other hand Bees Algorithm has 
too many tuneable parameters. 
Luck and Teodorovic (2001) published the first study on Bee System based on the PhD thesis 
of Luck for 6 Travelling Salesman Problem (TSP) test problems. Luck (2002) aimed to 
explore the possible applications of collective bee intelligence in solving complex traffic and 
transportation engineering problems. In this context, (TSP) and stochastic vehicle routing 
problem (SVRP) were studied. TSP is an NP-hard problem that aims to find the minimum 
distance circuit passing through each node only once. The algorithm starts with locating the 
hive in one of the nodes on the graph that the bees are collecting nectar i.e. the graph in 
which the travelling salesman route should be discovered. The artificial bees collect the 
nectar during a certain prescribed time interval and the position of the hive is randomly 
changed. The bees start to collect the nectar from the new location and again the location of 
the hive is randomly changed. The iteration in the searching process represents one change 
of the hive's position and the iteration ends when one or more feasible solution is created. 
The artificial bees live in an environment characterized by discrete time and consequently 
each iteration is composed of a certain number of stages. During any stage, bees choose 
nodes to be visited in a random manner. By this probability function it is provided that the 
greater the distance between two nodes, the lower the probability that a bee chooses this 
link. The influence of the distance is lower at the beginning of the search process. The 
greater the number of iterations, the higher the influence of the distance. On the other hand 
the greater the total number of bees that visited by certain link in the past, the higher the 
probability is of choosing that link in the future. This represents the interaction between 
individual bees in the colony. During one stage the bee visits a certain number of nodes, 
create a partial travelling salesman tour, and return to the hive. In the hive the bee 
participates in a decision making process. The bee decides whether to recruit the nest mates 
by dancing before returning to the food source, to continue to forage at the food source 
without recruiting the nest mates, or to abandon the food source. The second alternative has 
very low probability since bees are social insects and communicate each other. The 
probability that a bee uses the same partial tour (or abandons it) depends on the length of 
the partial tour. The longer the tour that the bee has discovered, the smaller is the 
probability that the bee will fly again along the same tour. It is noted that the nectar quantity 
along a certain link is inversely proportional to the link length. At the beginning of any stage 
if a bee does not use the same partial travelling salesman tour, the bee goes to the dancing 
area and follows another bee according to a probability function. This function depends on 
the total length of the partial route and the number of bees that are advertising this route. 
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Additionally, before relocating the hive, 2-opt and 3-opt heuristic algorithms are applied to 
improve the solution obtained by the bees in the current iteration. On the other hand in 
nature, not all bees start foraging simultaneously and in the algorithm it is assumed that at 
the beginning of each iteration all bees are in the hive and the number of foraging bees in 
every subsequent stage is increased. The performance of the algorithm was tested on 10 
benchmark problems. Experimental results showed that in all instances with less than 100 
nodes, the Bee System produced the optimal solution and the times required to find the best 
solutions by the Bee System were low. At the second part of this thesis Bee System was 
integrated with fuzzy logic and this approach was applied to Vehicle Routing Problems 
(VRP). The procedure and the results were presented at Luck and Teodorovic (2003b). Luck 
and Teodorovic (2002, 2003a) published their second and third study on Bee System based 
on Luck's (2002) 8 and 10 TSP test problems. 
Luck and Teodorovic (2003b) combined Bee System algorithm, which was first proposed by 
Luck and Teodorovic (2001), and fuzzy logic approach to obtain good solutions for 
stochastic VRP. The proposed approach contains two steps: 1) solve VRP as a TSP by using 
Bee System and obtain frequently an infeasible solution to the original problem; 2) decide 
when to finish one vehicle's route and when to start with the next vehicle's route by using 
the solution created at the previous step and fuzzy rule base generated by Wang-Mendel's 
algorithm. Stochastic VRP is to find a set of routes that would minimize transportation cost 
where the locations of the depot, nodes to be served and vehicle capacity are known, and 
demand at the nodes only approximated. Due to the uncertainty of demand at the nodes, a 
vehicle might not be able to service a node once it arrives there due to insufficient capacity. 
It is assumed in such situations that the vehicle returns to the depot, empties what it has 
picked up thus far, returns to the node where it had a failure, and continues service along 
the rest of the planned route. Consequently, demand at nodes is treated as a random 
variable and actual demand value is known only after the visit to the node. The developed 
model was tested on 10 TSP examples. In order to convert the original TSP problems into the 
corresponding VRPs, the first node was treated as a depot. The results were compared with 
the best solution obtained by the heuristic algorithm based on Bee System. The results were 
found to be very close to the best solution assuming that the future node demand pattern 
was known. 
Teodorovic and Dell'Orco (2005) proposed Bee Colony Optimization (BCO) meta-heuristic 
which was the generalization of the Bee System presented by Luck (2002). The BCO was 
capable to solve deterministic combinatorial problems, as well as combinatorial problems 
characterized by uncertainty. The primary goal of their paper was to explore the possible 
applications of collective bee intelligence in solving combinatorial problems characterized 
by uncertainty. In this respect Fuzzy Bee System (FBS) was introduced where the agents use 
approximate reasoning and rules of fuzzy logic in their communication and acting. The 
performance of FBS algorithm was tested on ride-matching problem which aims to 
constitute routing and scheduling of the vehicles and passengers by minimizing the total 
distance travelled by all participants, minimizing the total delay, or equalizing vehicle 
utilization. There were no theoretical results that could support proposed approach but 
preliminary results were very promising. 
Nakrani and Tovey (2003) proposed a honey bee algorithm for dynamic allocation of 
internet services. In the proposed algorithm, servers and HTTP request queues in an 
Internet server colony were modelled as foraging bees and flower patches respectively. The 
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neighbourhood search; 4) recruit a certain number of bees for selected sites, evaluate their 
fitness; 5) select the fittest bee from each site to form the new population; 6) assign remaining 
bees to search randomly and evaluate their fitness. The Bees Algorithm is applied to two 
standard functional optimization problems with two and six dimensions, respectively. The 
results showed that the Bees Algorithm is able to find solutions very close to the optimum. The 
algorithm is also applied to eight benchmark functions and the results were compared with 
deterministic simplex method, stochastic simulated annealing optimization procedure, genetic 
algorithm and ant colony system. Bees Algorithm generally outperformed other techniques in 
terms of speed of optimization and accuracy of results. On the other hand Bees Algorithm has 
too many tuneable parameters. 
Luck and Teodorovic (2001) published the first study on Bee System based on the PhD thesis 
of Luck for 6 Travelling Salesman Problem (TSP) test problems. Luck (2002) aimed to 
explore the possible applications of collective bee intelligence in solving complex traffic and 
transportation engineering problems. In this context, (TSP) and stochastic vehicle routing 
problem (SVRP) were studied. TSP is an NP-hard problem that aims to find the minimum 
distance circuit passing through each node only once. The algorithm starts with locating the 
hive in one of the nodes on the graph that the bees are collecting nectar i.e. the graph in 
which the travelling salesman route should be discovered. The artificial bees collect the 
nectar during a certain prescribed time interval and the position of the hive is randomly 
changed. The bees start to collect the nectar from the new location and again the location of 
the hive is randomly changed. The iteration in the searching process represents one change 
of the hive's position and the iteration ends when one or more feasible solution is created. 
The artificial bees live in an environment characterized by discrete time and consequently 
each iteration is composed of a certain number of stages. During any stage, bees choose 
nodes to be visited in a random manner. By this probability function it is provided that the 
greater the distance between two nodes, the lower the probability that a bee chooses this 
link. The influence of the distance is lower at the beginning of the search process. The 
greater the number of iterations, the higher the influence of the distance. On the other hand 
the greater the total number of bees that visited by certain link in the past, the higher the 
probability is of choosing that link in the future. This represents the interaction between 
individual bees in the colony. During one stage the bee visits a certain number of nodes, 
create a partial travelling salesman tour, and return to the hive. In the hive the bee 
participates in a decision making process. The bee decides whether to recruit the nest mates 
by dancing before returning to the food source, to continue to forage at the food source 
without recruiting the nest mates, or to abandon the food source. The second alternative has 
very low probability since bees are social insects and communicate each other. The 
probability that a bee uses the same partial tour (or abandons it) depends on the length of 
the partial tour. The longer the tour that the bee has discovered, the smaller is the 
probability that the bee will fly again along the same tour. It is noted that the nectar quantity 
along a certain link is inversely proportional to the link length. At the beginning of any stage 
if a bee does not use the same partial travelling salesman tour, the bee goes to the dancing 
area and follows another bee according to a probability function. This function depends on 
the total length of the partial route and the number of bees that are advertising this route. 
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Additionally, before relocating the hive, 2-opt and 3-opt heuristic algorithms are applied to 
improve the solution obtained by the bees in the current iteration. On the other hand in 
nature, not all bees start foraging simultaneously and in the algorithm it is assumed that at 
the beginning of each iteration all bees are in the hive and the number of foraging bees in 
every subsequent stage is increased. The performance of the algorithm was tested on 10 
benchmark problems. Experimental results showed that in all instances with less than 100 
nodes, the Bee System produced the optimal solution and the times required to find the best 
solutions by the Bee System were low. At the second part of this thesis Bee System was 
integrated with fuzzy logic and this approach was applied to Vehicle Routing Problems 
(VRP). The procedure and the results were presented at Luck and Teodorovic (2003b). Luck 
and Teodorovic (2002, 2003a) published their second and third study on Bee System based 
on Luck's (2002) 8 and 10 TSP test problems. 
Luck and Teodorovic (2003b) combined Bee System algorithm, which was first proposed by 
Luck and Teodorovic (2001), and fuzzy logic approach to obtain good solutions for 
stochastic VRP. The proposed approach contains two steps: 1) solve VRP as a TSP by using 
Bee System and obtain frequently an infeasible solution to the original problem; 2) decide 
when to finish one vehicle's route and when to start with the next vehicle's route by using 
the solution created at the previous step and fuzzy rule base generated by Wang-Mendel's 
algorithm. Stochastic VRP is to find a set of routes that would minimize transportation cost 
where the locations of the depot, nodes to be served and vehicle capacity are known, and 
demand at the nodes only approximated. Due to the uncertainty of demand at the nodes, a 
vehicle might not be able to service a node once it arrives there due to insufficient capacity. 
It is assumed in such situations that the vehicle returns to the depot, empties what it has 
picked up thus far, returns to the node where it had a failure, and continues service along 
the rest of the planned route. Consequently, demand at nodes is treated as a random 
variable and actual demand value is known only after the visit to the node. The developed 
model was tested on 10 TSP examples. In order to convert the original TSP problems into the 
corresponding VRPs, the first node was treated as a depot. The results were compared with 
the best solution obtained by the heuristic algorithm based on Bee System. The results were 
found to be very close to the best solution assuming that the future node demand pattern 
was known. 
Teodorovic and Dell'Orco (2005) proposed Bee Colony Optimization (BCO) meta-heuristic 
which was the generalization of the Bee System presented by Luck (2002). The BCO was 
capable to solve deterministic combinatorial problems, as well as combinatorial problems 
characterized by uncertainty. The primary goal of their paper was to explore the possible 
applications of collective bee intelligence in solving combinatorial problems characterized 
by uncertainty. In this respect Fuzzy Bee System (FBS) was introduced where the agents use 
approximate reasoning and rules of fuzzy logic in their communication and acting. The 
performance of FBS algorithm was tested on ride-matching problem which aims to 
constitute routing and scheduling of the vehicles and passengers by minimizing the total 
distance travelled by all participants, minimizing the total delay, or equalizing vehicle 
utilization. There were no theoretical results that could support proposed approach but 
preliminary results were very promising. 
Nakrani and Tovey (2003) proposed a honey bee algorithm for dynamic allocation of 
internet services. In the proposed algorithm, servers and HTTP request queues in an 
Internet server colony were modelled as foraging bees and flower patches respectively. The 
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algorithm was compared with an omniscient algorithm that computes an optimal allocation 
policy, a greedy algorithm that uses past history to compute allocation policy, and an 
optimal-static algorithm that computes omnisciently the best among all possible static 
allocation policies. The experimental results showed that the algorithm performs better than 
static or greedy algorithms. On the other hand it was outperformed by greedy algorithm for 
some low variability access patterns. 
Wedde et al. (2004) introduced a fault-tolerant, adaptive and robust routing protocol 
inspired from dance language and foraging behaviour of honey bees for routing in 
telecommunication network, called BeeHive. In order to evaluate the performance of the 
algorithm, it was tested on Japanese Internet Backbone and compared with AntNet, DGA 
and OSPF. The results showed that BeeHive achieves a similar or better performance as 
compared to the other algorithms. 
Bianco (2004) presented a mapping paradigm for large scale precise navigation that takes 
inspiration from the bees' large scale navigation behaviour. Bees performed very long 
navigations when they feed, travelling for many kilometres but, at the same time, getting an 
excellent precision when they return to their small hives. Test results demonstrated that 
such capabilities were sufficient to get rather good precision. 
Chong et al. (2006) presented a novel approach that uses the honey bees foraging model, 
inspired by Nakrani and Tovey (2004), to solve the job shop scheduling problem. Job shop 
scheduling is concerned with finding a sequential allocation of competing resources that 
optimizes a particular objective function. Each machine can process only one job and each 
job can be processed by only one machine at a time. The performance of the algorithm was 
tested on 82 job shop problem instances and compared with ant colony and tabu search 
algorithms. The experimental results conducted that tabu search outperforms other two 
heuristics according to solution quality and execution time. On the other hand bee algorithm 
performed slightly better than ant algorithm and the execution time for both heuristics was 
approximately equal. 
Drias et al. (2005) introduced a new intelligent approach named Bees Swarm Optimization 
(BSO), which is inspired from the behaviour of real bees especially harvesting the nectar of 
the easiest sources of access while always privileging the richest. The proposed algorithm 
was adapted to the maximum weighted satisfiability problem (MAX-W-SAT) problem 
which was NP-Complete. MAX-W-SAT problem asks for the maximum weight which can 
be satisfied by any assignment, given a set of weighted clauses. The performance of the 
algorithm was compared with GRASP, SSAT and AGO and it was concluded that BSO 
outperformed the other evolutionary algorithms. 
Pham et al. (2006b) presented the use of the Bees Algorithm, proposed by Pham et al. 
(2006a) to train the Learning Vector Quantization (LVQ) neural network for control chart 
pattern recognition. The training of a LVQ network can be regarded as the minimization of 
an error function. The error function defines the total difference between the actual output 
and the desired output of the network over a set of training patterns. In terms of the Bees 
Algorithm, each bee represents a LVQ network with a particular set of reference vectors. 
The aim of the algorithm was to find the bee with the set of reference vectors producing the 
smallest value of the error function. Despite the high dimensionality of the problem, the 
algorithm still succeeded to train more accurate classifiers than that produced by the 
standard LVQ training algorithm. 
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Pham et al. (2006c) presented the use of the Bees Algorithm, proposed by Pham et al. (2006a) 
to train the Multi-layered Perceptron (MLP) neural network for control chart pattern 
recognition. The training of a MLP network can be regarded as the minimization of an error 
function. The error function defines the total difference between the actual output and the 
desired output of the network over a set of training patterns. In terms of the Bees Algorithm, 
each bee represents a MLP network with a particular set of weight vectors. The aim of the 
algorithm was to find the bee with the set of weight vectors producing the smallest value of 
the error function. Despite the high dimensionality of the problem, the algorithm succeeded 
to train more accurate classifiers than back propagation algorithm. 
Pham et al. (2006d) presented an application of the Bees Algorithm, proposed by Pham et al. 
(2006a) to the optimization of neural networks for the identification of defects in wood 
veneer sheets. The Bees Algorithm was used instead of a back propagation algorithm to 
optimize the weights of the neural network. The optimization using the Bees Algorithm 
involves the bees searching for the optimal values of the weights assigned to the connections 
between the neurons within the network where each bee represents a neural network with a 
particular set of weights. The aim of the Bees Algorithm was to find the bee producing the 
smallest value of the error function. The experimental results show that the Bees Algorithm 
was able to achieve an accuracy that was comparable to the back propagation method. 
However, the Bees Algorithm proved to be considerably faster. 
Quijano and Passino (2007) developed an algorithm, based on the foraging behaviour of 
honey bees, to solve resource allocation problem. The primary sources for constructing 
components of the proposed model were: dance strength determination, dance threshold, 
unloading area, dance floor and recruitment rates, explorer allocation and its relation to 
recruitment. They also proposed an engineering application on dynamic resource allocation 
for multi-zone temperature control, to highlight the main features of the dynamical 
operation of the honey bee social foraging algorithm. 
Markovic et al. (2007) used the BCO algorithm, which was introduced by Teodorovic and 
Dell'orco (2005) to solve Max-Routing and Wavelength Assignment (Max-RWA) problem in 
all-optical networks. The Max-RWA problem is to maximize the number of established 
lightpaths in a given optical network for a given traffic demand matrix and the given 
number of wavelengths. The proposed BCO-RWA algorithm was tested on European 
Optical Network and the results were compared with the results obtained by the LP 
relaxation approach and the tabu meta-heuristic algorithm. The BCO-RWA algorithm 
always outperformed the results of the compared algorithms and was able to produce very 
good solutions in a reasonable computation time. 
Abbass (2001a) presented the first novel search algorithm inspired by the marriage process 
in honey bees. A honey bee colony consists of the queen(s), drones, worker(s), and broods. 
In this study the colony was assumed to have a single queen and a single worker. In real life 
a mating flight starts with a dance performed by the queens and the drones follow the 
queens to mate with them. In each mating, sperm reaches the spermatheca and accumulates 
there to form the genetic pool of the colony. Each time a queen lays fertilized eggs, she 
retrieves at random a mixture of the sperms accumulated in the spermatheca to fertilize the 
egg. Similarly at the MBO algorithm the mating flight can be visualized as a set of 
transitions in a state space where the queen moves between the different states in the space 
and mate with the drone encountered at each state probabilistically. The probability of 
mating is high when either the queen is still in the start of her mating flight and therefore 
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algorithm was compared with an omniscient algorithm that computes an optimal allocation 
policy, a greedy algorithm that uses past history to compute allocation policy, and an 
optimal-static algorithm that computes omnisciently the best among all possible static 
allocation policies. The experimental results showed that the algorithm performs better than 
static or greedy algorithms. On the other hand it was outperformed by greedy algorithm for 
some low variability access patterns. 
Wedde et al. (2004) introduced a fault-tolerant, adaptive and robust routing protocol 
inspired from dance language and foraging behaviour of honey bees for routing in 
telecommunication network, called BeeHive. In order to evaluate the performance of the 
algorithm, it was tested on Japanese Internet Backbone and compared with AntNet, DGA 
and OSPF. The results showed that BeeHive achieves a similar or better performance as 
compared to the other algorithms. 
Bianco (2004) presented a mapping paradigm for large scale precise navigation that takes 
inspiration from the bees' large scale navigation behaviour. Bees performed very long 
navigations when they feed, travelling for many kilometres but, at the same time, getting an 
excellent precision when they return to their small hives. Test results demonstrated that 
such capabilities were sufficient to get rather good precision. 
Chong et al. (2006) presented a novel approach that uses the honey bees foraging model, 
inspired by Nakrani and Tovey (2004), to solve the job shop scheduling problem. Job shop 
scheduling is concerned with finding a sequential allocation of competing resources that 
optimizes a particular objective function. Each machine can process only one job and each 
job can be processed by only one machine at a time. The performance of the algorithm was 
tested on 82 job shop problem instances and compared with ant colony and tabu search 
algorithms. The experimental results conducted that tabu search outperforms other two 
heuristics according to solution quality and execution time. On the other hand bee algorithm 
performed slightly better than ant algorithm and the execution time for both heuristics was 
approximately equal. 
Drias et al. (2005) introduced a new intelligent approach named Bees Swarm Optimization 
(BSO), which is inspired from the behaviour of real bees especially harvesting the nectar of 
the easiest sources of access while always privileging the richest. The proposed algorithm 
was adapted to the maximum weighted satisfiability problem (MAX-W-SAT) problem 
which was NP-Complete. MAX-W-SAT problem asks for the maximum weight which can 
be satisfied by any assignment, given a set of weighted clauses. The performance of the 
algorithm was compared with GRASP, SSAT and AGO and it was concluded that BSO 
outperformed the other evolutionary algorithms. 
Pham et al. (2006b) presented the use of the Bees Algorithm, proposed by Pham et al. 
(2006a) to train the Learning Vector Quantization (LVQ) neural network for control chart 
pattern recognition. The training of a LVQ network can be regarded as the minimization of 
an error function. The error function defines the total difference between the actual output 
and the desired output of the network over a set of training patterns. In terms of the Bees 
Algorithm, each bee represents a LVQ network with a particular set of reference vectors. 
The aim of the algorithm was to find the bee with the set of reference vectors producing the 
smallest value of the error function. Despite the high dimensionality of the problem, the 
algorithm still succeeded to train more accurate classifiers than that produced by the 
standard LVQ training algorithm. 
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Pham et al. (2006c) presented the use of the Bees Algorithm, proposed by Pham et al. (2006a) 
to train the Multi-layered Perceptron (MLP) neural network for control chart pattern 
recognition. The training of a MLP network can be regarded as the minimization of an error 
function. The error function defines the total difference between the actual output and the 
desired output of the network over a set of training patterns. In terms of the Bees Algorithm, 
each bee represents a MLP network with a particular set of weight vectors. The aim of the 
algorithm was to find the bee with the set of weight vectors producing the smallest value of 
the error function. Despite the high dimensionality of the problem, the algorithm succeeded 
to train more accurate classifiers than back propagation algorithm. 
Pham et al. (2006d) presented an application of the Bees Algorithm, proposed by Pham et al. 
(2006a) to the optimization of neural networks for the identification of defects in wood 
veneer sheets. The Bees Algorithm was used instead of a back propagation algorithm to 
optimize the weights of the neural network. The optimization using the Bees Algorithm 
involves the bees searching for the optimal values of the weights assigned to the connections 
between the neurons within the network where each bee represents a neural network with a 
particular set of weights. The aim of the Bees Algorithm was to find the bee producing the 
smallest value of the error function. The experimental results show that the Bees Algorithm 
was able to achieve an accuracy that was comparable to the back propagation method. 
However, the Bees Algorithm proved to be considerably faster. 
Quijano and Passino (2007) developed an algorithm, based on the foraging behaviour of 
honey bees, to solve resource allocation problem. The primary sources for constructing 
components of the proposed model were: dance strength determination, dance threshold, 
unloading area, dance floor and recruitment rates, explorer allocation and its relation to 
recruitment. They also proposed an engineering application on dynamic resource allocation 
for multi-zone temperature control, to highlight the main features of the dynamical 
operation of the honey bee social foraging algorithm. 
Markovic et al. (2007) used the BCO algorithm, which was introduced by Teodorovic and 
Dell'orco (2005) to solve Max-Routing and Wavelength Assignment (Max-RWA) problem in 
all-optical networks. The Max-RWA problem is to maximize the number of established 
lightpaths in a given optical network for a given traffic demand matrix and the given 
number of wavelengths. The proposed BCO-RWA algorithm was tested on European 
Optical Network and the results were compared with the results obtained by the LP 
relaxation approach and the tabu meta-heuristic algorithm. The BCO-RWA algorithm 
always outperformed the results of the compared algorithms and was able to produce very 
good solutions in a reasonable computation time. 
Abbass (2001a) presented the first novel search algorithm inspired by the marriage process 
in honey bees. A honey bee colony consists of the queen(s), drones, worker(s), and broods. 
In this study the colony was assumed to have a single queen and a single worker. In real life 
a mating flight starts with a dance performed by the queens and the drones follow the 
queens to mate with them. In each mating, sperm reaches the spermatheca and accumulates 
there to form the genetic pool of the colony. Each time a queen lays fertilized eggs, she 
retrieves at random a mixture of the sperms accumulated in the spermatheca to fertilize the 
egg. Similarly at the MBO algorithm the mating flight can be visualized as a set of 
transitions in a state space where the queen moves between the different states in the space 
and mate with the drone encountered at each state probabilistically. The probability of 
mating is high when either the queen is still in the start of her mating flight and therefore 
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her speed is high, or when the fitness of the drone is as good as the queen's. The algorithm 
starts with initializing the queen's genotype at random. After that a heuristic is used to 
improve the queen's genotype realized by workers. Afterwards, a set of mating flights is 
undertaken. In each mating flight, the queen's energy and speed are initialized randomly. 
The queen then moves between different states (solutions) in the space according to her 
speed and mates with the drone. If a drone is successfully mated with the queen (the drone 
passes the probabilistic decision rule), its sperm is added to the queen's spermatheca (list of 
partial solutions) and the queen's speed and energy are reduced. After the queen finishes 
her mating flight, she returns to the nest, selects a sperm randomly, performs crossover and 
mutation. The worker is then used to improve the resultant brood and the number of 
workers represents the number of heuristics encoded in the program. Afterwards, the queen 
is replaced with the fittest brood if the latter is better than the former. The remaining broods 
are then killed and a new mating flight starts. The MBO algorithm has three user-defined 
parameters: the queen's spermatheca size representing the maximum number of matings in 
a single mating flight, the number of broods that will be born by the queen, and the amount 
of time devoted to brood care signifying the depth of local search. A general constraint 
satisfaction problem (CSP) is the problem of finding an assignment to a set of variables that 
satisfies a set of constraints over the domains of those variables. The prepositional 
satisfiability problems (SAT) is a special case of CSP where the domain of each variable is 
either true or false. Also 3-SAT is a special case of SAT where each constraint contains three 
variables. The MBO algorithm was applied to a hundred different 3-SAT problems and the 
experimental results conducted that the algorithm was very successful. The heuristics that 
workers use was Greedy SAT (GSAT) and random walk. At the experimental studies GSAT, 
random walk, MBO with GSAT and MBO with random walk were compared and MBO-
GSAT performed the best among the other three. 
Abbass (2001b) presented a variation of the MBO algorithm which was first proposed by 
Abbass (2001a) where the colony contains a single queen with multiple workers. For the 
workers six different heuristics were used: GSAT, random walk, random flip, random new, 
1-point and 2-point crossover. The algorithm was tested on a group of one-hundred hard 3-
SAT problems. The best results were occurred with the smallest colony size and average 
spermatheca size. On the other hand, the fittest worker was GSAT, which was followed by 
random walk. It was also showed that MBO performed better than GSAT alone although 
GSAT was the heuristic with the highest fitness in MBO. 
Abbass (2001c) analyzed the marriage behaviour of honey bees again as the continuation of 
the work (Abbass, 2001a). The difference between these studies was the number of queens 
and workers. Abbass (2001c) considered the honey bee colony with more than one queen in 
addition to a group of workers, where at the colony of Abbass (2001a) there was only one 
queen and one worker. In the paper MBO algorithm was applied to fifty different 3-SAT 
problems containing 50 variables and 215 constraints. The experimental results concluded 
that the largest spermatheca size, an average colony size, and the smallest number of queens 
gave the best performance. On the other hand the algorithm was compared with WalkSAT, 
one of the state-of-the-art algorithms for SAT, and MBO algorithm outperformed WalkSAT. 
Teo and Abbass (2001) presented a modification of MBO algorithm which can be considered 
as an extension of Abbass (2001a) and Abbass (2001c). The purpose of this modification was 
to use a more conventional annealing approach during the trajectory acceptance decision to 
guide the search process towards a more optimal solution space. New trajectories were only 
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be accepted as a potential drone for mating if it was a more optimal trajectory that was if the 
trajectory was fitter than the queen's genotype. Otherwise, if it was a trajectory that takes the 
search to a less optimal solution space, then it is only accepted probabilistically subject to the 
new annealing function. In other words, rather than accepting all the trajectories created 
during a queen's flight as in the original MBO algorithm, a new trajectory is accepted only if 
it is a move to a fitter solution space. Otherwise, the algorithm will accept a transition to a 
less optimal solution space probabilistically according to a function of the queen's fitness. 
On the other hand, five different heuristics were used for improving broods by workers: 
GSAT, random walk, probabilistic greedy, one point crossover, and WalkSAT. As in Abbass 
(2001a) Teo and Abbass again considered the honey bee colony with only one queen. 
Experimental studies were conducted in three manner: testing each of five different 
heuristics working alone without MBO, testing the performance of each heuristic with the 
original MBO and modified MBO, and lastly testing the proposed algorithm against the 
original MBO using the five different heuristics operating in combination as a committee of 
heuristics. For the test problems, ten different 3-SAT problems were generated each 
comprising of 1075 constraints and 250 variables. The heuristic performance's resulted with 
the following order for the first group of experiments: WalkSAT, GSAT, random walk, 
probabilistic greedy and one point crossover. At the second group of experiments both the 
original and proposed annealing functions used during the mating flight process were 
similarly efficient with all heuristics. However, the effectiveness of MBO with WalkSAT in 
finding solutions was improved slightly by the new annealing function as the proposed 
version of MBO found more solutions than the original version. Lastly at the third group of 
experiments both annealing strategies were again similarly efficient. 
Teo and Abbass (2003) proposed another modification of MBO algorithm based on Teo and 
Abbass (2001). In both Abbass (2001a) and Teo and Abbass (2001), the annealing function 
used the queen's fitness as the basis for accepting/rejecting a transition in the drone's space, 
either during the spawning or mating stage. In a conventional simulated annealing 
approach, the previous state was used as the basis for the transition. Moreover, from a 
biological point of view, the drone's creation is independent of the queen as they usually 
come from another colony, although they might be related. Therefore, it is more natural to 
accept a transition based on the drone's own fitness. As a result the objective of their paper 
was to test a purely conventional annealing approach as the basis for determining the pool 
of drones. The performance of the modified algorithm was tested on ten different 3-SAT 
problems and compared with the previous versions of MBO. All heuristics were failed to 
find even a single solution when working alone whereas their performances were improved 
significantly when combined with MBO. On the other hand the proposed version of MBO 
dominated the previous studies and able to find solutions for problems where the previous 
versions cannot. 
Bozorg Haddad and Afshar (2004) benefited from MBO algorithm based on the study of 
Abbass (2001c) and performed an application to water resources management problems. 
The algorithm was modelled to find good solutions for optimum management of a single 
reservoir. The results compared very well with similar heuristic methods as well as global 
optimal results. 
Bozorg Haddad et al. (2006) proposed Honey-Bees Mating Optimization (HBMO) algorithm, 
based on Abbass (2001a, 2001c), to solve highly non-linear constrained and unconstrained 
real valued mathematical models. The performance of the HBMO was tested on several 
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her speed is high, or when the fitness of the drone is as good as the queen's. The algorithm 
starts with initializing the queen's genotype at random. After that a heuristic is used to 
improve the queen's genotype realized by workers. Afterwards, a set of mating flights is 
undertaken. In each mating flight, the queen's energy and speed are initialized randomly. 
The queen then moves between different states (solutions) in the space according to her 
speed and mates with the drone. If a drone is successfully mated with the queen (the drone 
passes the probabilistic decision rule), its sperm is added to the queen's spermatheca (list of 
partial solutions) and the queen's speed and energy are reduced. After the queen finishes 
her mating flight, she returns to the nest, selects a sperm randomly, performs crossover and 
mutation. The worker is then used to improve the resultant brood and the number of 
workers represents the number of heuristics encoded in the program. Afterwards, the queen 
is replaced with the fittest brood if the latter is better than the former. The remaining broods 
are then killed and a new mating flight starts. The MBO algorithm has three user-defined 
parameters: the queen's spermatheca size representing the maximum number of matings in 
a single mating flight, the number of broods that will be born by the queen, and the amount 
of time devoted to brood care signifying the depth of local search. A general constraint 
satisfaction problem (CSP) is the problem of finding an assignment to a set of variables that 
satisfies a set of constraints over the domains of those variables. The prepositional 
satisfiability problems (SAT) is a special case of CSP where the domain of each variable is 
either true or false. Also 3-SAT is a special case of SAT where each constraint contains three 
variables. The MBO algorithm was applied to a hundred different 3-SAT problems and the 
experimental results conducted that the algorithm was very successful. The heuristics that 
workers use was Greedy SAT (GSAT) and random walk. At the experimental studies GSAT, 
random walk, MBO with GSAT and MBO with random walk were compared and MBO-
GSAT performed the best among the other three. 
Abbass (2001b) presented a variation of the MBO algorithm which was first proposed by 
Abbass (2001a) where the colony contains a single queen with multiple workers. For the 
workers six different heuristics were used: GSAT, random walk, random flip, random new, 
1-point and 2-point crossover. The algorithm was tested on a group of one-hundred hard 3-
SAT problems. The best results were occurred with the smallest colony size and average 
spermatheca size. On the other hand, the fittest worker was GSAT, which was followed by 
random walk. It was also showed that MBO performed better than GSAT alone although 
GSAT was the heuristic with the highest fitness in MBO. 
Abbass (2001c) analyzed the marriage behaviour of honey bees again as the continuation of 
the work (Abbass, 2001a). The difference between these studies was the number of queens 
and workers. Abbass (2001c) considered the honey bee colony with more than one queen in 
addition to a group of workers, where at the colony of Abbass (2001a) there was only one 
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be accepted as a potential drone for mating if it was a more optimal trajectory that was if the 
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Bozorg Haddad and Afshar (2004) benefited from MBO algorithm based on the study of 
Abbass (2001c) and performed an application to water resources management problems. 
The algorithm was modelled to find good solutions for optimum management of a single 
reservoir. The results compared very well with similar heuristic methods as well as global 
optimal results. 
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constrained and unconstrained mathematical optimization functions and compared with the 
results obtained by genetic algorithm. Results from the genetic algorithm and HBMO 
algorithm converge well with minor improvement in the HBMO solution. Moreover, to 
illustrate the model application and performance, the HBMO algorithm was also used for 
developing an optimum operation policy for a single reservoir. The HBMO again generated 
a significantly better solution. 
Chang (2006) gave the first demonstration of the capability of the MBO approach in a 
theoretical perspective for solving combinatorial optimization problems and stochastic 
sequential decision making problems. The paper first concerned with MBO algorithm for 
solving non-stochastic combinatorial optimization problems and proved that MBO has the 
ability to converge to the global optimum value. MBO was then adapted into an algorithm 
called "Honey-Bees Policy Iteration" (HBPI) for solving infinite horizon discounted cost 
stochastic dynamic programming (SDP) problems, also known as markov decision 
processes (MDPs) and HBPI algorithm was also proved converging to the optimal value. 
Chang (2006) points out that MBO can be considered as a hybrid scheme of simulated 
annealing and genetic algorithm. Simulated annealing corresponds to the queen's mating 
flight to obtain the potential drone sperms in her spermatheca and genetic algorithm 
corresponds to broods generation and improvements step with some differences. 
Afshar et al. (2007) presented an improved version of the HBMO algorithm for continuous 
optimization problems and its application to a nonlinear-constrained continuous single 
reservoir problem. By the comparison with global optimum values obtained from LINGO 
8.0 NLP solver, it was observed that the convergence of the algorithm to the optimum was 
very rapid. 
Fathian et al. (2007) presented an application of HBMO algorithm for clustering which is one 
of the attractive data mining techniques that is in use in many fields. To evaluate the 
performance of the algorithm in clustering, it was tested on several real datasets and 
compared with several typical stochastic algorithms including the ACO algorithm, the 
simulated annealing approach, the genetic algorithms, and the tabu search approach. The 
results illustrated that the proposed HBMO approach can be considered as a viable and an 
efficient heuristic to find optimal or near optimal solutions to clustering problems since the 
results were very encouraging in terms of the quality of solutions found, the average 
number of function evaluations and the processing time required. 
Koudil et al. (2007) adapted MBO algorithm which was first presented by Abbass (2001) to 
solve integrated partitioning/scheduling problem in codesign. The proposed approach was 
tested on a benchmark problem and the results were compared with genetic algorithm. The 
test results showed that MBO achieves good results in terms of solution quality, and it gives 
better results than genetic algorithm in terms of execution times. 
Benatchba et al. (2005) used the MBO algorithm which was first presented by Abbass (2001a, 
2001b, 2001c) to solve a data mining problem expressed as a Max-Sat problem. For MBO, 
four different heuristics were used for improving broods by workers: a local search 
algorithm LS, GSAT, HSAT, and GWSAT. The training set used as benchmark was extracted 
from a medical one, aiming at analyzing the most revealing symptoms of the presence or not 
of a laparotomy of the principal bile duct. The best result obtained with MBO was the 
solution with 96% satisfaction by using GSAT as a worker. 
Sung (2003) proposed queen-bee evolution to enhance the capability of genetic algorithms. 
In the queen-bee evolution algorithm the queen-bee crossbreeds with the other bees selected 
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as parents by a different selection algorithm instead of known selection algorithms such as 
roulette wheel selection. This procedure increases the exploitation of genetic algorithms but 
on the other hand increases the probability of falling into premature convergence. To 
decrease this probability some individuals were strongly mutated instead of mutating all 
individuals with small mutation probability as in the normal evolution. The proposed 
algorithm was tested with one combinational and two typical function optimization 
problems. Experimental results demonstrated that the proposed algorithm enabled genetic 
algorithms to quickly approach to the global optimum. 
Qin et al. (2004) applied queen bee evolution which was proposed by Sung (2003) into 
economic power dispatch problem (EPD). EPD problem is to minimize the overall cost rate 
and meet the load demand of a power system simultaneously and formulated as a nonlinear 
constrained complex optimization problem. The numerical results demonstrated that the 
proposed algorithm was faster and more robust than the conventional genetic algorithm. 
Kara (2004) proposed a new crossover type, which is called Bee Crossover to improve the 
genetic algorithm's performance. The bee queen has the sexual intercourses with other male 
bees, and similarly a specified chromosome can be considered as bee queen for the first 
parent of crossover and the other parent is one of the remaining chromosomes in the colony. 
The author proposed three different crossover types. At the first type, the chromosome with 
the best fitness value is fixed parent and all the remaining chromosomes are crossed over 
with this fixed parent at least once in each generation. At the second type, the chromosome 
with the worst fitness value is a fixed parent and the remaining procedure is the same with 
the first type. At the third type, population is sorted with respect to the fitness values and 
the fixed parent in the first generation is determined by the first chromosome in this list. In 
the second generation, the fixed parent is the second chromosome in the list and so on. The 
performance of these crossover types were compared with uniform crossover. The results 
showed that in the most of time, honey bee crossovers obtained results in less number of 
iterations and the worst results were obtained by uniforms crossover. On the other hand, 
uniform crossover lost the diversity of population in a small range of time while honey bee 
crossovers lost the population diversity in the larger ranges of time. 
Azeem and Saad (2004) proposed a modified queen bee evolution which was first presented 
by Sung (2003). In the proposed algorithm, if any solution has the fitness very close or above 
of the fitness of the queen bee, this solution is identified to a new pool as a queen bee where 
the original algorithm is limited to a single pool. Another difference between the original 
and proposed algorithm is on the crossover operator. The original algorithm utilizes 
uniform crossover where each gene is crossed with some probability. On the other hand 
proposed algorithm uses weighted uniform crossover where weights are assigned to each 
gene according to the similarity of the test patterns in the population. With this type of 
crossover, genetic algorithm will search more new state spaces. The algorithm was tested for 
tuning of scaling factor for the Fuzzy Knowledge Base Controller (FKBC) on two complex 
non-linear examples. Experiments showed that FKBC yielded superior results than 
conventional control algorithms in the complex situations where the system model or 
parameters were difficult to obtain. Moreover, the results were compared with roulettes 
wheel parent selection and obtained results were encouraging. 
In the following sections of this work the first application of a nature inspired bee based 
algorithm (that we name as Artificial Bee Colony, ABC) to generalized assignment problem 
is presented. 
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4. Generalized Assignment Problem 
The Generalized Assignment Problem (GAP) aims that assigning a set of tasks to a set of 
agents with minimum cost. Each agent represents a single resource with limited capacity. 
Each task must be assigned to only one agent and it requires a certain amount of the 
resource of the agent. 
There are many application domains of GAP such as computer and communication 
networks, location problems, vehicle routing, group technology, scheduling etc. Extended 
review of this problem and its possible applications is presented in Martello and Toth (1981, 
1990), Cattrysse (1990) and Cattrysse et al. (1994). Several exact algorithms for GAP have 
been proposed by Ross and Soland (1975), Fisher et al. (1986), Martello and Toth (1990) and 
recently Savelsberg (1997) and Nauss (2003). Also several heuristics have been proposed to 
solve GAP. Martello and Toth (1981, 1990) proposed a combination of local search and 
greedy method. Osman (1995) developed new Simulated Annealing and Tabu Search 
algorithms to investigate their performance on GAP. Chu and Beasley (1997) presented a 
Genetic Algorithm for GAP that tries to improve feasibility and optimality simultaneously. 
Different variable depth search algorithms (Racer and Amini (1994), Yagiura et al. (1998, 
1999)), Ejection Chain based Tabu Search algorithms (Laguna et al. (1995), Diaz and 
Fernandez (2001), Yagiura et al. (2004)), Path Relinking approaches (Alfandari et al. (2001, 
2002, 2004), Yagiura et al. (2001, 2002, 2006)) , Ant Colony Optimization (Randall (2004)), 
Max-Min Ant System Heuristic based on greedy randomized adaptive heuristic (Lourencp 
and Serra (2002)) can be mentioned as the other meta-heuristic approaches proposed for 
GAP in recent years. 
The aim of this study is to present an artificial bee colony algorithm to solve GAP. Our main 
interest on this problem came from its NP-hard structure that was proved by Fisher et al. 
(1986). Moreover, Mortello and Toth (1990) presented the NP-completeness of proving that a 
solution is a feasible solution. GAP can be formulated as an integer programming model as 
follows; 

 

jmjinix

niix

mjjbxa

tosubject

xc

ij

m

j
ij

j

n

i
ijij

n

i

m

j
ijij

∀≤≤∀≤≤∈

≤≤∀=

≤≤∀≤

∑

∑

∑∑

=

=

= =

1,1}1,0{

1,1

1,

min

1

1

1 1

 

I is set of tasks (i=1,..,n); J is set of agents (j= 1,..,m); bj = resource capacity of agent j; aij = 
resource needed if task i is assigned to agent j ; cij = cost of task i if assigned to agent j 
xij = decision variable (xij=1, if task i is assigned to agent j; 0, otherwise) 
The first constraint set is related to the resource capacity of agents.  The second constraint 
set ensure that each task is assigned to only one agent. 
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5. Artificial Bee Colony Algorithm for GAP 
In this section the general ABC framework and the principal algorithms for the initial 
solution and neighbour solutions generation for GAP are presented. The general steps of the 
proposed ABC algorithm are presented in Table 2. 

1. Initialize parameters 
2. Construct initial Employed Bee Colony solutions by using 

Greedy Randomized Adaptive Search Heuristic (GRAH) 
3. Evaluate fitness value for each bee 
4. I=0 
5. Repeat 
6. N=0 
7. repeat 

a. Apply Shift neighbourhood 
b. Apply DoubleShift neighbourhood 
c. Calculate probabilities related to fitness values 
d. Assign Onlooker Bees to Employed Bees according to probabilities 
e. For all Onlooker Bees 

i.     Ejection -Chain Neighbourhood 
f. Find best Onlooker, replace with respective Employed Bee 

iffit(Best Onlooker)<fit(Employed) 
g. Find best Feasible Onlooker, replace with Best solution, 

if fit (BestFeas Onlooker)<fit(Best) 
h.    N=N+1 

8. Until (N=Employed Bee) 
9. I=I+1 
10. Until (I=MaxIteration)  

Table 2. ABC algorithm for GAP 

 

Each step of the general ABC algorithm is detailed in Table 3. 

0.Parameter Initialization 
n = Number of employed bees 
m = Number of onlooker bees (m>n) 
Iteration : Maximum iteration number 
αj : initial value of penalty parameter for jth agent 
EC-Length : Length of ejection chain neighbourhood 

 1. Initialize employed bees with GRAH algorithm 
iσ : ith employed bee in the population 

        2. Evaluate employed bees 
Fitness Function (for minimization) 
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     3. Repeat 
               Cycle = 1 

1. Number of Scout bees = 0,1*n 
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2. For each Employed Bee 
a. Apply SHIFT Neighbourhood 

i. If fit(ShiftNeighbour)<fit(EmployedBee) then 
1. Employed Bee = Shift Neighbour 

b. Apply DOUBLESHIFT Neighbourhood 
i. If fit(DoubleShiftNeighbour)<fit(EmployedBee) then 

1. Employed Bee = DoubleShift Neighbour 
c. Determine probabilities by using fitness function 

i

i
i fit

fit
p

∑
−








=

1
1

 (for minimization)  

d. Calculate the number of onlooker bees which will be sent to food sources 
of employed bees, according to previously determined probabilities 

e. Ni= Number of onlooker bees sent to ith sites = pi*m  
f. Oij: jth onlooker bee of ith solution (j=1,…,Ni) 
               {Oi1, Oi2,…,OiNi}=EjectionChain( iσ ) 
g. Calculate fitness values for each onlooker bee 

If the best fitness value of onlooker bees is better than the 
fitness value of employed bee, employed bee solution 
is replaced with this onlooker solution.  

If (min (fit(Oij))<fit( iσ ) then iσ = Oij 

3. Best Solution 
If fit(BestCycle-1)> Min(Fit( iσ ))i=1..n  then BestCycle= iσ  
Else  BestCycle= BestCycle-1 

Until (i=n) 
4. Scout bees   

a. Initialize scout bees with GRAH algorithm 
b. The worst employed bees as many as the number of scout bees in 

the population are respectively compared with the scout solutions. 
If the scout solution is better than employed solution, employed 
solution is replaced with scout solution. Else employed solution is 
transferred to the next cycle without any change. 

5. Cycle = Cycle+1 
Until (cycle =Iteration) 

Table 3. Detailed ABC algorithm for GAP 

Initial bee colony is constructed by using GRAH algorithm (Lourenço and Serra, 2001).  The 
greedy heuristic constructs a solution as follows: 
• At each step, a next task to be assigned is selected. 
• The agent (the selected task is going to be assigned to) is determined. 
• Repeat these two steps until all tasks have been assigned to an agent. 
In GRAH procedure the choice is probabilistic bias to a probability function. This function is 
updated at each iteration in a reinforcement way by using the features of good solutions. The 
main execution steps of the GRAH algorithm is summarized as shown in Table 4. 
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1. Let     jS =Ø   m1,...,j =∀  (Sj is the set of task assigned to agent j) 

2. Construct a list of agents for each task, Li, initially Li={1,…,m} ∀i.  
3. Consider any order of the tasks, i=1. 
4. While (not all tasks have been assigned) repeat 

4.1 Choose randomly an agent j* from Li  following the probability function that 
depends on the resource of agent j and the resource need by task i:  
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       The agent with minimal cost has greater probability to be chosen. 
4.2 Assign task i to agent }{: **

* iSSj jj ∪= .  Let   i=i+1   and   if  
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jSi ij ab
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>∑ ∈
 remove j* from any list. Repeat step 4 (Note that the capacity 

constraint can be violated). 
5. Let   ji =)(σ  if   

jSi ∈    

Table 4. The GRAH Algorithm 

6. Neighbourhood Structures 
Shift Neighbourhood: This type of neighbour is obtained from original solution by changing 
the agent assignment of one task. The algorithm steps are summarized in Table 5. An 
example implementation of this algorithm is portrayed in Figure 4. 
Double Shift Neighbourhood: This neighbourhood structure is the special case of the long chain 
neighbourhood. Since the two shift moves are performed in double shift, this is the (EC-
Length=2) state of the long chain. Double shift neighbourhood contains the swap 
neighbourhood, which is the interchange of agents of two different tasks assigned to, within 
its scope. In the long chain neighbourhood, task for each shift move is selected from B list. In 
double shift neighbourhood, new shift move is determined by using the set of all tasks. 
Because, there is no restriction to achieve a new shift move. A simplified demonstration of 
the neighbourhood is shown in Figure 5. 

Shift (σ ) 
1. Let  }}...1{|{ niiS ∈= , k=1, ShiftNeighbour= σ  

2. If   S =Ø  then stop; otherwise ik is ejected from kσ . }{ kiSS −=  
3. Let j* be the agent j that minimizes 
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4. Assign ik  to j*, output 'σ  , calculate Fitness( 'σ ) 

5. If   Fitness( 'σ )<Fitness (ShiftNeighbor) then ShiftNeighbour = 'σ  
6.  k:= k+1, return to Step 2 
7. Output ShiftNeighbour  

Table 5. Shift neighbourhood 
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2. For each Employed Bee 
a. Apply SHIFT Neighbourhood 

i. If fit(ShiftNeighbour)<fit(EmployedBee) then 
1. Employed Bee = Shift Neighbour 

b. Apply DOUBLESHIFT Neighbourhood 
i. If fit(DoubleShiftNeighbour)<fit(EmployedBee) then 

1. Employed Bee = DoubleShift Neighbour 
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Table 3. Detailed ABC algorithm for GAP 

Initial bee colony is constructed by using GRAH algorithm (Lourenço and Serra, 2001).  The 
greedy heuristic constructs a solution as follows: 
• At each step, a next task to be assigned is selected. 
• The agent (the selected task is going to be assigned to) is determined. 
• Repeat these two steps until all tasks have been assigned to an agent. 
In GRAH procedure the choice is probabilistic bias to a probability function. This function is 
updated at each iteration in a reinforcement way by using the features of good solutions. The 
main execution steps of the GRAH algorithm is summarized as shown in Table 4. 
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Figure 4. Shift neighbourhood structure 

 
Figure 5. Double shift neighbourhood structure 

Long Chain Neighbourhood: A neighbour is obtained by performing the multiple shift moves 
whose length is specified as chain length. A simple explanation of the neighbourhood 
structure and main steps of the algorithm are presented here, but detailed information can 
be obtained from Yagiura et al. (2004). Assume that task io is ejected from agent σ(i0) as a 
free task where σ(i0) denotes the agent that task i0 is assigned to. The amount of resource of 
σ(i0) is increased by this ejection move. Avail is defined as the resulting amount of resource 
as shown in the following equation. 
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Assuming that task i1 is the task whose shift into σ(i0) is most profitable among the tasks 
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 Task i1 is shifted into agent σ(i0). This is called as reference 

Artificial Bee Colony Algorithm and Its Application to Generalized Assignment Problem 

 

135 

structure. After this first ejection move, the free task i0 will be tried to assign into some other 
agents according to its effect on fitness function as shown in Table 6 (Step 4). This is called as 
the trial move. The next ejection move is applied to the previous reference structure, not to 
the solutions generated by the trial moves. Same steps are repeated until the stopping 
criterion is satisfied. The general mechanism of the long chain neighbourhood is presented 
in Table 6 and portrayed in Figure 6. 

Long Chain (σ ) 
1. Let S :=Ø . 
2. If   S =I’,   stop; otherwise randomly choose a '\0 SIi ∈  , 

Let }{: 0iSS ∪= ,   and   σσ =:' . (Job i0 is ejected from )( 0iσ .) 

3. Let j* be the agent j that minimizes },0max{
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4. If =≤ }{\)( lkiiB kl  Ø,   return to Step 2; otherwise let l:=l+1  and proceed to Step 5. 

5. Randomly choose   }1{\)( 1 −≤∈ − lkiiBi kll   and let  )(:)( 1
'

−= ll ii σσ     (an 
ejection move of job il). 
 Then execute the following Steps (a) and (b) (two trial moves). 
(a) Let   )(:)( 0

'
lii σσ =    (i0 is inserted into )( liσ ), and output 'σ . 

(b) Let   *:)( 0
' ji =σ    (i0 is inserted into i*), and output 'σ . 

6. Return to Step 4. 

Table 6. Long chain neighbourhood structure 
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As shown in Figure 6, Task 5 is selected as the free task and removed from Agent 2. After 
avail(TaskS) is updated, Task 13 is determined for the shift move which has the best score 
among the other tasks satisfying avail(Task5). Task 13 removed from Agent 5 and assigned 
to Agent 2. This is the reference structure for neighbourhood. In the next step, a trial move 
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Figure 5. Double shift neighbourhood structure 
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structure. After this first ejection move, the free task i0 will be tried to assign into some other 
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As shown in Figure 6, Task 5 is selected as the free task and removed from Agent 2. After 
avail(TaskS) is updated, Task 13 is determined for the shift move which has the best score 
among the other tasks satisfying avail(Task5). Task 13 removed from Agent 5 and assigned 
to Agent 2. This is the reference structure for neighbourhood. In the next step, a trial move 
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to assign the free task Task 5 to an agent is determined according to the assignment effect on 
fitness function value. Assuming that Agent 1 is determined, Task 5 is assigned to that agent 
to complete the trial move. The result of a trial move is the complete neighbour for the original 
solution. This neighbour is obtained by applying l=2 (two shift moves) which is also called as 
double shift neighbourhood. If the length of ejection chain > 2, then the same steps are 
repeated on the previous reference structure, which is in the case of the free task is not 
assigned to an agent. In Figure 6, avail(Task!3) is updated and Task 2 is determined for the 
next shift move. After Task 2 is assigned to Agent 5, a new trial move is performed to assign 
ejection task. Assuming that the most profitable agent is Agent 2, Task 5 is assigned to Agent 2 
to obtain a complete neighbour solution. This is the long chain with length 3 (three shift 
moves).   Same steps are repeated to complete the previously determined length of ejection. 

 
Figure 6. Long chain neighbourhood structure (l=3) 

7. Computational Study 
The proposed ABC algorithm is coded in C# and tested in a set of problems ranging from 5 
agents-15 tasks to 10 agents-60 tasks. These test problems are publicly available from the 
www.OR-Library.com. The set of test problems can be divided into two groups: Gapl-
Gap6/easy and Gap7-Gapl2/difficult. Each problem set consists of 5 different problems 
with the same size, so there are 12*5 =60 problems to solve. These set of problems are of 
maximization form of GAP and optimal values are known. 
In this section, a simple GAP example is designed to explain the execution of one iteration of 
the proposed ABC algorithm. An example consisting of 3 agent and 6 task assignment 
problem is implemented to solve as a minimization problem. A bee solution is represented 
as an array of tasks which contains the assignment of agents. 
There are 3 Employed Bees and 5 Onlooker Bees in the example. Initial solutions of bee 
colony are generated by using the GRAH algorithm. A shift neighbourhood structure is 
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applied to each Employed Bee. For Bee 1, after shift neighbourhood, a better solution is 
obtained by changing the assignment of Task 1 from Agent 2 to Agent 1 and original Bee 1 
solution is changed to neighbour solution as shown in Figure 7. In the second step, double 
shift neighbourhood is applied to new Bee 1. Since there is no solution better than Bee 1, 
employed bee solution is not changed by this neighbourhood. Shift and Double Shift steps 
are repeated for Bee 2 and Bee 3. After these steps, a transient bee colony is constituted to 
determine the probabilities. These probabilities are calculated by using the equation in Table 
3 (3.2.c) to determine the number of onlooker bees assigned to each employed bee. As 
shown in Figure 7, the worst bee (Bee 3) retains the minimum number of onlooker bee. For 
each employed bee, ejection chain neighbourhood is applied and the quantity of neighbours 
generated is determined according to the number of onlooker assigned to employed bee. 
The fitness value of onlooker bees are compared with the original employed bee fitness and 
the best onlooker is selected as the winner. Updated bee colony for the next iteration is 
shown in Figure 7. In addition to this updating stage, the best feasible solution among the 
bee colony is compared to the best solution found so far. If the employed bee is better than 
the best, the best solution is updated. 
Experimental Setup for GAP Problems 
Parameters of proposed algorithm are defined as follows; 
• Number of employed bees (n) 
• Number of onlooker bees (m>n) 
• Number of scout bees (0.1*n) 
• Maximum iteration number (Iteration) 
• Initial value of penalty coefficient (aj) 
• Length of ejection chain neighbourhood (EC-Length) 
Penalty function is used to calculate the fitness function. While constructing initial solutions 
by using the GRAH algorithm and generating neighbours by using shift, double shift and 
ejection chain algorithms, proposed approach allows producing infeasible solutions. 
Consequently, there is an additional term in the objective function determined by penalizing 
the infeasible solutions with aj coefficient (aj >0). Fitness function is computed by using the 
following equation. 
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The first term in the equation denotes the total cost of assignment of tasks to agents. The 
second term is defined as an additional penalty function for minimization, αj represents the 
cost of using one unit of overloaded capacity of jth agent. Initial values of αj’s are determined 
as user defined parameter. If a solution is not feasible the second term will be positive and 
therefore the search will be directed to feasible solution. If the capacity is not exceeded, this 
term will be 0 to ensure not penalized. The parameter aj can be increased during the run to 
penalize infeasible solutions and drive the search to feasible ones which means the adaptive 
control of penalty costs. 
Initial values of αj’s are designed as user defined (αj>0). Updating stage is adapted from 
Yagiura et al. (2004) by using the following equations. After the generation of onlooker 
neighbours of each employed bee αj values are updated. 
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applied to each Employed Bee. For Bee 1, after shift neighbourhood, a better solution is 
obtained by changing the assignment of Task 1 from Agent 2 to Agent 1 and original Bee 1 
solution is changed to neighbour solution as shown in Figure 7. In the second step, double 
shift neighbourhood is applied to new Bee 1. Since there is no solution better than Bee 1, 
employed bee solution is not changed by this neighbourhood. Shift and Double Shift steps 
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bee colony is compared to the best solution found so far. If the employed bee is better than 
the best, the best solution is updated. 
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• Maximum iteration number (Iteration) 
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Penalty function is used to calculate the fitness function. While constructing initial solutions 
by using the GRAH algorithm and generating neighbours by using shift, double shift and 
ejection chain algorithms, proposed approach allows producing infeasible solutions. 
Consequently, there is an additional term in the objective function determined by penalizing 
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The first term in the equation denotes the total cost of assignment of tasks to agents. The 
second term is defined as an additional penalty function for minimization, αj represents the 
cost of using one unit of overloaded capacity of jth agent. Initial values of αj’s are determined 
as user defined parameter. If a solution is not feasible the second term will be positive and 
therefore the search will be directed to feasible solution. If the capacity is not exceeded, this 
term will be 0 to ensure not penalized. The parameter aj can be increased during the run to 
penalize infeasible solutions and drive the search to feasible ones which means the adaptive 
control of penalty costs. 
Initial values of αj’s are designed as user defined (αj>0). Updating stage is adapted from 
Yagiura et al. (2004) by using the following equations. After the generation of onlooker 
neighbours of each employed bee αj values are updated. 
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Figure 7. A sample execution of neighbourhood structure 
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1. If there is no feasible solution found in onlooker neighbours, αj are increased for all 
Jj ∈  by  
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2.  (Otherwise) If at least one feasible solution found within onlooker neighbours, all αj  are 
decreased by using the same equations except that )(σdecq  instead of )(σincq  and 
stepsizedec instead of stepsizeinc. 
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Parameter Setting 
Parameters of algorithm are treated as two different sets. As mentioned before Gapl to Gap6 
problem sets are specified as easy while Gap7 to Gapl2 as difficult. Accordingly, two 
different parameter sets are determined as shown in Table 7. 

Parameter Gapl-Gap6 Gap7-Gapl2 

# of Iteration 100 250 
# of Employed Bee  50 50 
# of Onlooker Bee 100 500 
# of Scout Bee 5 5 
α 1 1 
EC-Length 5 10 

Table 7. Parameter setting 

Five runs for each problem are evaluated. Different algorithms that solved Gapl-Gapl2 in 
the literature are determined for comparison. The values in Table 8 represent the mean 
deviation from the optimal value for each problem set. Proposed algorithm found the 
optimal solutions in all five runs for all problem sets with previously defined parameters. 
As compared to other 12 algorithms the proposed algorithm is unambiguously the best 
performer. 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

138 

 
Figure 7. A sample execution of neighbourhood structure 

Artificial Bee Colony Algorithm and Its Application to Generalized Assignment Problem 

 

139 

1. If there is no feasible solution found in onlooker neighbours, αj are increased for all 
Jj ∈  by  







>∆
>∆+

=
∈ othervisebbbq

q

jhhhhJh
inc
j

j
inc
jj

j ,/}0{min)(
0)),(1(

αασ
ασα

α  

Where 







 >
=∆ ∈

∈

othervise

qif
q

cstepsizein inc
jJjinc

jJj

,0

0)(max,
)(max

σ
σ  

2.  (Otherwise) If at least one feasible solution found within onlooker neighbours, all αj  are 
decreased by using the same equations except that )(σdecq  instead of )(σincq  and 
stepsizedec instead of stepsizeinc. 

jj
inc

j bpq /)()( σσ =  



 =−

=
othervise

pif
q jdec

j ,0
0)(,1

)(
σ

σ  

Parameter Setting 
Parameters of algorithm are treated as two different sets. As mentioned before Gapl to Gap6 
problem sets are specified as easy while Gap7 to Gapl2 as difficult. Accordingly, two 
different parameter sets are determined as shown in Table 7. 

Parameter Gapl-Gap6 Gap7-Gapl2 

# of Iteration 100 250 
# of Employed Bee  50 50 
# of Onlooker Bee 100 500 
# of Scout Bee 5 5 
α 1 1 
EC-Length 5 10 

Table 7. Parameter setting 

Five runs for each problem are evaluated. Different algorithms that solved Gapl-Gapl2 in 
the literature are determined for comparison. The values in Table 8 represent the mean 
deviation from the optimal value for each problem set. Proposed algorithm found the 
optimal solutions in all five runs for all problem sets with previously defined parameters. 
As compared to other 12 algorithms the proposed algorithm is unambiguously the best 
performer. 
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 ABC MTH FJVBB FSA MTBB SPH LT1FA RSSA TS6 TS1 GAk GA, ASH+LS 
+TS 

Gapl 0.00 5.43 0.00 0.00 0.00 0.08 1.74 0.00 0.00 0.00 0.00 0.00 - 
Gap2 0.00 5.02 0.00 0.19 0.00 0.11 0.89 0.00 0.24 0.10 0.00 0.01 - 
Gap3 0.00 2.14 0.00 0.00 0.00 0.09 1.26 0.00 0.03 0.00 0.00 0.01 - 
Gap4 0.00 2.35 0.83 0.06 0.18 0.04 0.72 0.00 0.03 0.03 0.00 0.03 - 
Gap5 0.00 2.63 0.07 0.11 0.00 0.35 1.42 0.00 0.04 0.00 0.00 0.10 - 
Gap6 0.00 1.67 0.58 0.85 0.52 0.15 0.82 0.05 0.00 0.03 0.01 0.08 - 
Gap7 0.00 2.02 1.58 0.99 1.32 0.00 1.22 0.02 0.02 0.00 0.00 0.08 0.00 
Gap8 0.00 2.45 2.48 0.41 1.32 0.23 1.13 0.10 0.14 0.09 0.05 0.33 0.042 
Gap9 0.00 2.18 0.61 1.46 1.06 0.12 1.48 0.08 0.06 0.06 0.00 0.17 0.00 
Gap10 0.00 1.75 1.29 1.72 1.15 0.25 1.19 0.14 0.15 0.08 0.04 0.27 0.013 
Gap11 0.00 1.78 1.32 1.10 2.01 0.00 1.17 0.05 0.02 0.02 0.00 0.20 0.00 
Gap12 0.00 1.37 1.37 1.68 1.55 0.10 0.81 0.11 0.07 0.04 0.01 0.17 0.00 
ABC: The Proposed Algorithm, MTH: Martello and Toth (1981) constructive heuristic, FJVBB: Fisher et 
al. (1986) branch and bound procedure with and upper CPU limit, FSA: Cattrysse (1990) fixing 
simulated annealing algorithm, MTBB: Martello and Toth (1991) branch and bound procedure with an 
upper CPU limit, SPH: Cattrysse et al. (1994) set partitioning heuristic, LT1FA: Osman (1995) long term 
descent, 1-interchange mechanism and first admissible, RSSA: Osman (1995) hybrid SA/TS with 
different seed values, TS6: Osman (1995) long term TS, BA selection, Rl tabu restrictions and Al 
aspiration criterion, TS1: Osman (1995) long term TS, FA selection, Rl tabu restrictions and Al aspiration 
criterion, GAi>: Chu and Beasley (1997) genetic algorithm with heuristic operator, GAa: Chu and 
Beasley (1997) genetic algorithm without heuristic algorithm 

Table 8. Comparison of results 

8. Conclusion 
In this study a relatively new member of swarm intelligence family that is named as 
"artificial bee colony" is explained in detail. Actually, different names were used in the 
literature for the algorithms inspired from natural honey bees. Here we prefer to use the 
name "artificial bee colony" to reflect population characteristic of the algorithm. A very 
detailed literature review along with a categorization is presented in this study. All 
accessible previous work on bee based optimization algorithms is tried to be reviewed. Most 
of the work in the literature is carried out in last two years and researchers mainly 
concentrated on continuous optimization and TSP problems. Previous work has presented 
that bee inspired algorithms have a very promising potential for modelling and solving 
complex optimization problems. But there is still a long way to go in order to fully utilise the 
potential of bee inspired algorithms. Such an attempt is also made in this study to present 
performance of a bee inspired algorithm, "artificial bee colony" on a NP-hard problem which 
is known as generalised assignment problem. The proposed bee algorithm is found very 
effective in solving small to medium sized generalized assignment problems. Actually, the 
proposed algorithm easily found all optimal solutions where the compared 12 algorithms 
were not able to find for most of the cases. Our research is still under progress and we are 
hoping to find effective solutions for large size and tightly constrained generalised 
assignment problems. These problems are over complex, therefore their solution can be 
considered as a very good indicator for the potential of the nature inspired algorithms 
including "artificial bee colony".  
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1. Introduction 
Combinatorial optimization problems arise in many areas of science and engineering. 
Unfortunately, due to the NP (non-polynomial) nature of these problems, the computations 
increase with the size of the problem (Bahreininejad & Topping, 1996; Topping & 
Bahreininejad, 1997).  
Finite Elements (FE) mesh decomposition (partitioning) is a well known NP-hard 
optimization problem and is used to split a computationally expensive FE mesh into smaller 
subdomains (parts) for parallel FE analysis. Partitioning must be performed to ensure: 
• Load balancing: for a mesh idealized using a single element type, then the number of 

elements in each partition must be the same, and 
• Inter-processor communication: the partitions must be performed so that the number of 

nodes or edges shared between the subdomains is minimized to ensure that the 
minimum inter-processor communication during the subsequent parallel FE analysis is 
achieved (Topping & Bahreininejad, 1997; Topping & Khan, 1996). 

Numerous methods have been used to decompose FE meshes (Farhat, 1988; Simon, 1991; 
Toping & Khan, 1996; Topping & Bahreininejad, 1997).   
For automatic partitioning of FE meshes, Farhat (1988) proposed a domain decomposition 
method which is based on a greedy algorithm. The method provides FE mesh partitions in 
relatively short duration of time. The division of a mesh with respect to assigning a certain 
number of mesh elements to a mesh partition may be accomplished with simple arithmetic. 
In this method, the partitions are created sequentially from an overall FE mesh until the 
number of partitions become equal to the desired number.  
Each FE element node is assigned a weight factor which is equal to the number of elements 
connecting to that particular node. The inner boundary of a partition is defined as the 
common boundary between two partitions. Two elements are considered to be adjacent if 
they share a vertex (node). The number of elements per partitions is determined by the total 
number of elements in the mesh, the number of different type of elements used in the mesh 
(triangular, quadrilateral, etc.), and the number of required partitions. In the case of a single 
type of elements, it is equal to the ratio between the total number of elements within the 
mesh and the number of required partitions (Farhat, 1988).  
Although Farhat’s method provides quick partitioning of FE meshes, the optimality of the 
mesh partitions with respect to the number of interfaces between adjacent partitions is not 
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guaranteed. In addition, the resulting partitions by this method are sensitive to the elements 
and node numbering of the FE mesh. Hence, for a given mesh topology, different solutions 
may be found if different node/element numbering of mesh elements are used. 
Simon’s method (1991) performs recursive bisection of FE mesh and uses eigenvector 
information to determine the partitions which have an equal number of elements on each 
side of the bisected mesh and have a minimum inner boundary. The rationale behind using 
recursive bisection instead of dividing the mesh into N number of partitions in a single step 
is based upon the following considerations: 
• It is easier to bisect a graph rather than dividing it into more than two parts. The graph 

is bisected such that the requirements of load balancing and the minimization of the 
inner boundary nodes/edges between parts are effectively met for the two partitions. 

• There is an aspect of parallelism within the recursive bisection. Initially a mesh may be 
divided into two parts and then each of these parts may be worked upon in parallel to 
form four partitions of the total mesh under consideration. Hence, the extent of 
parallelism that may be employed increase exponentially with the increase in the 
number of recursions. 

The Simon’s method provides efficient partitions, however the main drawback is the 
computational cost to reach a desired solution which increases nonlinearly with the increase 
in the size of the mesh.  
The Subdomain Generation Methods (SGM) proposed by Topping and Khan (1996) and 
followed on by Topping and Bahreininejad (1997) presented a technique which incorporates 
an optimization algorithm (genetic algorithms or Hopfield-type neural network) and a 
trained multi-layered feedforward neural network based on the backpropagation algorithm 
(Rumelhart et al., 1986; Pao, 1989; Topping & Bahreininejad, 1997) to decompose FE meshes. 
The trained backpropagation neural network is used to estimate (predict) the number of 
elements which will be generated inside every individual element of the (initial) coarse 
mesh after mesh generation procedure is carried out. The estimated number of elements is 
incorporated into the optimization algorithm (module) to decompose a coarse FE domain 
rather than decomposing the fine mesh generated from the refinement of the initial mesh.  
Ant Colony Optimization (ACO) is a type of algorithm that seeks to model the emergent 
behaviour observed in ant colonies and utilize this behaviour to solve combinatorial 
problems (Colorni, et al., 1991; Dorigo & Gambardella, 1997; Bonabeau, et al., 2000; 
Maniezzo & Carbonaro, 2001). This technique has been applied to several problems, most of 
which are graph related because the ant colony metaphor can be most easily applied to such 
types of problems. 
A hybrid optimization approach is presented here to solve the FE mesh bisection problem. 
The algorithm incorporates several ACO features as well as local optimization techniques 
using a recursive bisection procedure. The algorithm was tested on a FE mesh with refined 
mesh sizes of 27155 triangular elements.  
The chapter consists of an introduction to the ACO technique in Section 2. Section 3 
describes how the ACO concept can be applied to FE mesh bisection. Local optimization 
techniques have been presented to improve the solution quality of the ACO for FE mesh 
bisection problem.  
The predictive ACO bisection approach is described in Section 4 which uses a trained multi-
layered feedforward neural network based on the backpropagation algorithm. The trained 
neural network is used to estimate the number of triangular elements that will be generated 
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after FE mesh generation (refinement) is carried out. Section 5 presents a recursive mesh 
bisection case study using the proposed hybrid ACO and neural networks mesh recursive 
bisection procedure. This FE mesh is also partitioned using a greedy FE mesh decomposing 
algorithm proposed by Farhat (Farhat, 1988). The comparison between the obtained results 
from the proposed hybrid ACO method and Farhat’s greedy algorithm is presented. Finally 
conclusions are given in Section 6. 

2. The Ant Colony Optimization Method 
The ACO is a heuristic technique that seeks to imitate the behaviour of a colony of ants and 
their ability to collectively solve a problem. It has been observed (Colorni, et al., 1991; 
Dorigo & Gambardella, 1997; Bonabeau, et al., 2000; Maniezzo & Carbonaro, 2001) that a 
colony of ants is able to find the shortest path to a food source. As an ant moves and 
searches for food, it lays down a chemical substance called pheromone along its path. As the 
ant travels, it looks for pheromone trails on its path and prefers to follow trails with higher 
levels of pheromone deposits. 
If there are two possible paths to reach a food source, as shown in Fig 1, an ant will lay the 
same amount of pheromone at each step regardless of the path chosen (minor evaporation 
of pheromone occurs during time). However, it will return to its starting point quicker when 
it takes the shorter path which contains more pheromone. It is then able to return to the food 
source to collect more food.  
Thus, in an equal amount of time, the ant would lay a higher concentration of pheromone 
over its path if it takes the shorter path, since it would complete more trips in the given time. 
The pheromone is then used by other ants to determine the shortest path to find food as 
described in (Dorigo & Gambardella, 1997; Bonabeau, et al., 2000).  

 
Figure 1. The pheromone deposition of ants (shown as dots) and their pursuing of the 
shortest path 

The ACO technique has been successfully applied to the graph bisection problem by Bui 
and Strite (2002). They utilized the idea of finding shortest paths and the idea of territorial 
colonization and swarm intelligence in the ACO algorithms. Kuntz and Snyers (1994) and 
Kuntz, et al. (1997) applied these concepts to a graph clustering problem. Their algorithm 
combines the features of the ACO technique with swarm intelligence to form a model which 
is an artificial system designed to perform a certain task. Their model referred to the 
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organisms as animats, (ant agents), reflecting the fact that the system draws ideas from 
several sources and not just ant colonies. These ideas are important in the graph partitioning 
problem because the graph can be viewed as territory to be colonized (Bui & Strite, 2002; 
Bahreininejad, 2004; Bahreininejad & Hesamfar, 2006).  
The combination of these two ideas of animats following paths and forming colonies is used 
to solve the FE mesh bisection problem using triangular elements. However, the proposed 
ACO method can be used for the decomposition any graph based problem. 

3. ACO for FE Mesh Bisection 
The basic foundation of the ACO algorithm is to consider each (triangular) element in the FE 
mesh as a location that can hold any number of animats. The animats can move around the 
FE mesh by moving across (triangular) edges shared between two elements to reach a new 
element. Each animat belongs to one of two species (e.g. species A and B). However, animats 
of both species follow the same rules.  
To start the algorithm, an initial number of animats are placed on the FE mesh. Their species 
and location are chosen randomly. At any point throughout the algorithm, the configuration 
of animats on the FE mesh constitutes a bisection of the mesh in the following way 
(Bahreininejad, 2004; Bahreininejad & Hesamfar, 2006).  
Each element is considered to be colonized by one species. At a given time, it is said to be 
colonized by whichever species that has the greater number of animats on it. Any ties are 
recorded and after the colonies of all other elements are calculated, the ties are broken in a 
random order by assigning the element to the species which results in a lower cut-size 
(inner boundary between bisections). The set of all elements colonized by species A 
constitutes A’s colony and likewise the elements colonized by species B form B’s colony. 
In addition, each element can hold a quantity of pheromone. The two species produce 
separate types of pheromone, so an amount of A pheromone and/or B pheromone is left on 
each element. The idea of the algorithm is for each species of animats to form a colony 
consisting of a set of elements that are highly connected to each other while highly 
disconnected from the other colony. The result should be two sets of elements that are 
highly connected amongst themselves, but have few edges going between the two sets.  
For an individual animat, the goal will be to lay down pheromone when the current element 
is a good position for animats of its own species and to move to new elements that it wants 
to add to its species’ colony. If each animat follows these goals, the result will be a 
partitioning of the elements into two sets of similar size with few edges going between the 
two sets. A greedy algorithm is also formulated which fine tunes the bisection obtained 
from the ACO procedure. 

3.1 ACO implementation 
The ACO algorithm is an iterative procedure in which a percentage of animats are activated 
in each of the iterations. When an animat is activated, it adds an amount of pheromone to 
the element it is currently residing. It then may die with a certain probability or it may 
reproduce with a certain probability and it will move to a new element.  
These operations involve only local information known by the animat. The animat is 
assumed to know the current time (i.e. iteration number), information about the element it is 
located at (such as the number and species of other animats on that element), and 
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information about the elements adjacent to its location. The mesh is updated with the new 
information after the completion every iteration. 
The algorithm is divided up into S number of sets, each comprised of I number of iterations. 
After each set is carried out, the configuration of the mesh is forced into a bisection using a 
greedy algorithm (Bahreininejad, 2004; Bahreininejad & Hesamfar, 2006). During each set, 
the parameters corresponding to the probabilities for activation, death and reproduction are 
modified. The parameters are changed in such a way that at the beginning of a set, colonial 
changes are high and by the end of the set the colonies should converged to a stable 
configuration. 
The next set begins at the state where the previous set ended. However, if the animats 
follow their usual rules too soon, they may not be able to move away from the local 
optimum that has been reached.  
Therefore, for all, but the initial set, a shake is performed for a certain number of the first 
iterations to help move the configuration, or distribution, of animats on the elements away 
from the solution to which it had prematurely converged as described in (Bui & Strite, 2002; 
Bahreininejad, 2004; Bahreininejad & Hesamfar, 2006). The shake allows animats to select 
moves randomly instead of following the normal rules for movement. The length of the shake is 
changed during the algorithm. The first shake lasts for a fixed number of iterations and for the 
subsequent shakes, the length decreases linearly until the last set where no shaking occurs.  
The bisection should come closer to the optimal bisection as the number of iterations 
increases and consequently shorter and shorter shakes are needed. The length of the shake is 
given by the following equation: 
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where Lmax is the maximum shake length, Si is the ith set and Stotal is the total number of sets. 

3.1.1 Iteration and activation of animats 
An iteration of the algorithm consists of a percentage of the animats being activated and 
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organisms as animats, (ant agents), reflecting the fact that the system draws ideas from 
several sources and not just ant colonies. These ideas are important in the graph partitioning 
problem because the graph can be viewed as territory to be colonized (Bui & Strite, 2002; 
Bahreininejad, 2004; Bahreininejad & Hesamfar, 2006).  
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to solve the FE mesh bisection problem using triangular elements. However, the proposed 
ACO method can be used for the decomposition any graph based problem. 

3. ACO for FE Mesh Bisection 
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mesh as a location that can hold any number of animats. The animats can move around the 
FE mesh by moving across (triangular) edges shared between two elements to reach a new 
element. Each animat belongs to one of two species (e.g. species A and B). However, animats 
of both species follow the same rules.  
To start the algorithm, an initial number of animats are placed on the FE mesh. Their species 
and location are chosen randomly. At any point throughout the algorithm, the configuration 
of animats on the FE mesh constitutes a bisection of the mesh in the following way 
(Bahreininejad, 2004; Bahreininejad & Hesamfar, 2006).  
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separate types of pheromone, so an amount of A pheromone and/or B pheromone is left on 
each element. The idea of the algorithm is for each species of animats to form a colony 
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3.1 ACO implementation 
The ACO algorithm is an iterative procedure in which a percentage of animats are activated 
in each of the iterations. When an animat is activated, it adds an amount of pheromone to 
the element it is currently residing. It then may die with a certain probability or it may 
reproduce with a certain probability and it will move to a new element.  
These operations involve only local information known by the animat. The animat is 
assumed to know the current time (i.e. iteration number), information about the element it is 
located at (such as the number and species of other animats on that element), and 
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information about the elements adjacent to its location. The mesh is updated with the new 
information after the completion every iteration. 
The algorithm is divided up into S number of sets, each comprised of I number of iterations. 
After each set is carried out, the configuration of the mesh is forced into a bisection using a 
greedy algorithm (Bahreininejad, 2004; Bahreininejad & Hesamfar, 2006). During each set, 
the parameters corresponding to the probabilities for activation, death and reproduction are 
modified. The parameters are changed in such a way that at the beginning of a set, colonial 
changes are high and by the end of the set the colonies should converged to a stable 
configuration. 
The next set begins at the state where the previous set ended. However, if the animats 
follow their usual rules too soon, they may not be able to move away from the local 
optimum that has been reached.  
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from the solution to which it had prematurely converged as described in (Bui & Strite, 2002; 
Bahreininejad, 2004; Bahreininejad & Hesamfar, 2006). The shake allows animats to select 
moves randomly instead of following the normal rules for movement. The length of the shake is 
changed during the algorithm. The first shake lasts for a fixed number of iterations and for the 
subsequent shakes, the length decreases linearly until the last set where no shaking occurs.  
The bisection should come closer to the optimal bisection as the number of iterations 
increases and consequently shorter and shorter shakes are needed. The length of the shake is 
given by the following equation: 
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where b corresponds to the bias of the neural network and θ is the shape factor.  
Considering the maximum (0.8) and minimum (0.2) values of the activation probability for 
the first and the Itotal iterations respectively, chosen by the user and replacing them for )( iIa  
in Equation 3, therefore: 
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Using Equations 4 and 5, b and θ are given by: 
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Replacing Equations 6 and 7 in Equation 3, hence Equation 2 will be obtained. The function 
starts at a maximum and ends at a minimum. The maximum and minimum values are 
defined values set by the user in an ACO configuration file.  
After the activations of animats have been completed, a percentage of the pheromone on 
each element is evaporated. Bui and Strite (2002) explain that the evaporation prevents 
pheromone from building up too much and highly populated elements from being 
overemphasized which in turn prevents the algorithm from converging prematurely. When 
an animat is activated: 
• It deposits pheromone on its current element,  
• It dies or reproduces with a certain probability, 
• It moves to another element.  
These operations are performed by the animat using local information to make decisions. 

3.1.2 Pheromone 
The purpose of pheromone is to allow the algorithm to retain a memory of good 
configurations that have been found in the past. Members of each species deposit their 
pheromone on an element to indicate that this is a good configuration and more animats of 
their species should come to this element.  
The effect of pheromone on the overall performance of the algorithm is to control the 
animats’ movements prohibiting them to set astray over the optimization domain, In other 
words, pheromone is used a means to control animats’ movements throughout the 
algorithm, thus enabling the optimization process to move towards a solution.  
When an animat is activated, it determines the colonization percentage of its adjacent 
elements. If the FE mesh element is highly connected to elements colonized by the animat’s 
species, then the animat knows that this element is a good candidate for being colonized by 
its own species. The animat then attempts to reinforce this element by depositing a larger 
amount of its pheromone.   
However, if the animat determines that the element is not highly connected to elements 
colonized by its own species, it will lay down less pheromone to discourage more of its 
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species to come to this element. In addition, the animats place lesser amounts of pheromone 
in the early iterations and more pheromone in later iterations.  
The reason for this is that, in early iterations more change is needed. This allows the animats 
to explore more of the search space in the beginning and to exploit more of their current 
configuration near the end.  
There is also a limit to the amount of pheromone of each species that can be stored on an 
element. The limit for the amount of pheromone for an element is the product of the 
connectivity degree of that element to its adjacent elements and the pheromone limit 
parameter. This allows densely connected elements to accumulate more pheromone. The 
formula for the amount of pheromone to be deposited is given as: 

 
total

i

total

col
i I

I
a
aIaph =),(  (8) 

where a is the animat, acol is the number of elements adjacent to the animat’s current location 
which are colonized by the animat’s species, and atotal is the total number of elements 
adjacent to the animat’s current location. 

3.1.3 Death 
The animat will die with a death probability which is fixed throughout the algorithm. The 
main purpose of death is to avoid overpopulation of animats. Overpopulation may 
influence the speed of computations. In addition, death can manipulate the algorithm’s 
configurations by adding changes to animat’s species.  
The activation probability changes throughout the set so that early in a set, more animats are 
activated and therefore more animats die early in the set. The purpose of this is to have 
shorter life spans in the beginning, which allows more changes in the configuration. Later in 
the set, the animats are allowed to live longer and thus, there is less change and the solution 
is able to converge. An animat is removed from the list if it is selected to die. 

3.1.4 Reproduction 
If an animat is not selected for death, the algorithm proceeds to the reproduction step. An 
animat is selected for reproduction with fixed reproduction probability. However, the 
number of new animats that are produced depends on time (iterations).  
In the first iteration of a set, the average number of animats born is βinit and it decreases 
linearly over time to βfinal in the last iteration of a set. The changing birth rate serves to allow 
more change in earlier iterations, in which animats live for shorter lengths of time. The 
number of animats born is defined by: 
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The actual number of animats born is selected uniformly at random over a range, centered 
on the average birth rate for the iteration. The number of animats born can be up to βrange 
more or less than the specified average. The βrange is usually taken as 50 percent (Pao, 1989, 
Bahreininejad, 2004; Bahreininejad & Hesamfar, 2006). 
New animats are the same species as their parents. If the element on which the parent is 
located is colonized by its own species, the newly born animats are all placed on that 
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pheromone from building up too much and highly populated elements from being 
overemphasized which in turn prevents the algorithm from converging prematurely. When 
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The purpose of pheromone is to allow the algorithm to retain a memory of good 
configurations that have been found in the past. Members of each species deposit their 
pheromone on an element to indicate that this is a good configuration and more animats of 
their species should come to this element.  
The effect of pheromone on the overall performance of the algorithm is to control the 
animats’ movements prohibiting them to set astray over the optimization domain, In other 
words, pheromone is used a means to control animats’ movements throughout the 
algorithm, thus enabling the optimization process to move towards a solution.  
When an animat is activated, it determines the colonization percentage of its adjacent 
elements. If the FE mesh element is highly connected to elements colonized by the animat’s 
species, then the animat knows that this element is a good candidate for being colonized by 
its own species. The animat then attempts to reinforce this element by depositing a larger 
amount of its pheromone.   
However, if the animat determines that the element is not highly connected to elements 
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species to come to this element. In addition, the animats place lesser amounts of pheromone 
in the early iterations and more pheromone in later iterations.  
The reason for this is that, in early iterations more change is needed. This allows the animats 
to explore more of the search space in the beginning and to exploit more of their current 
configuration near the end.  
There is also a limit to the amount of pheromone of each species that can be stored on an 
element. The limit for the amount of pheromone for an element is the product of the 
connectivity degree of that element to its adjacent elements and the pheromone limit 
parameter. This allows densely connected elements to accumulate more pheromone. The 
formula for the amount of pheromone to be deposited is given as: 

 
total

i

total

col
i I

I
a
aIaph =),(  (8) 

where a is the animat, acol is the number of elements adjacent to the animat’s current location 
which are colonized by the animat’s species, and atotal is the total number of elements 
adjacent to the animat’s current location. 

3.1.3 Death 
The animat will die with a death probability which is fixed throughout the algorithm. The 
main purpose of death is to avoid overpopulation of animats. Overpopulation may 
influence the speed of computations. In addition, death can manipulate the algorithm’s 
configurations by adding changes to animat’s species.  
The activation probability changes throughout the set so that early in a set, more animats are 
activated and therefore more animats die early in the set. The purpose of this is to have 
shorter life spans in the beginning, which allows more changes in the configuration. Later in 
the set, the animats are allowed to live longer and thus, there is less change and the solution 
is able to converge. An animat is removed from the list if it is selected to die. 
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If an animat is not selected for death, the algorithm proceeds to the reproduction step. An 
animat is selected for reproduction with fixed reproduction probability. However, the 
number of new animats that are produced depends on time (iterations).  
In the first iteration of a set, the average number of animats born is βinit and it decreases 
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The actual number of animats born is selected uniformly at random over a range, centered 
on the average birth rate for the iteration. The number of animats born can be up to βrange 
more or less than the specified average. The βrange is usually taken as 50 percent (Pao, 1989, 
Bahreininejad, 2004; Bahreininejad & Hesamfar, 2006). 
New animats are the same species as their parents. If the element on which the parent is 
located is colonized by its own species, the newly born animats are all placed on that 
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element. However, if the element is colonized by the opposite species, only βstay percent of 
the offspring animats are placed there. The remaining new animats will be placed on the 
element to which the parent animat moves in the next step.  
The justification for this is that, if the parent animat is already at an element populated by its 
own colony and moves to another element, it should leave its offspring behind to help 
maintain the majority on that element. If the parent’s species is not in majority, it should 
take most of its children to the new element in which it is trying to create a colony. 
However, the parent leaves some of its offspring behind so that some of its species remain at 
that element (in case that element really should be part of their colony).  
There are two other constraints on reproduction. First, there is a limit of βlimit to how many 
offspring an animat can produce during its lifetime. This value is fixed throughout the 
algorithm and is the same for each animat. Once the limit is reached, the animat can no 
longer reproduce. This serves to prevent one species from taking over the entire FE mesh 
and forcing the other species into extinction.  
Another problem arises when an animat reproduces and places all of its children on its 
current element. Once one of the children is activated, it will in turn reproduce and deposit 
more children on the same element before moving.  
This overemphasizes that element and does not allow the colonies to change much from 
their original starting configuration. Because of this, animats are not able to reproduce until 
they have made a fixed minimum number of moves. This ensures that the mesh is explored 
and that new configurations are created by the reproduction and movement rather than 
being inhibited by these operations. 
Therefore, the main aim of reproduction is to encourage the species of animats which have 
colonized an element. This can influence the rate of convergence of the overall algorithm.  

3.1.5 Movement 
Movement is by far the most important operation the animats perform. The animats’ 
movement is the main mechanism by which the solution is produced. The animat can move 
to any element which is connected to its current location by an edge. There are two factors 
used to select a move from the set of possible moves. For each element to which the animat 
could move, the connectivity to other elements is examined. The animat should move to an 
element that is highly connected to other elements colonized by its own species. In addition, 
the animat should learn from the past and take into account the pheromone that other 
animats have deposited. 
Throughout the course of a set, these two factors are weighted differently. Initially, the 
pheromone is weighted at ωpmin with the weight increasing linearly to ωpmax. Conversely, the 
connectivity is weighted at ωcmax to begin and decreases linearly to ωcmin. In this way, the 
configuration of the colonies changes greatly in early iterations and over time, learning is 
incorporated into the algorithm.  
These basic factors drive the animats to create colonies of highly connected elements which 
are highly disconnected from the elements colonized by the opposing species. These factors 
are the basis of move selection.  
The probability of moving to an adjacent element is proportional to the two combined 
factors. Specifically, the factors are combined according to Equation 10 to create a 
probability of moving to a specific element e. 
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where ec is the number of elements adjacent to e that are colonized by the animat’s own 
species, c is the connectivity weight where maxmin cc c ωω ≤≤ , ep is the amount of pheromone 
of the animat’s species on element e, p is the pheromone weight where  maxmin pp p ωω ≤≤ , 
and ε is a fixed amount added to prevent any probabilities from being zero. The values of c 
and p are given by the following equations: 
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In order to encourage animats to explore more of the FE mesh, the probability of selecting 
the move which would result in the animat returning to its previous location is reduced. A 
factor is used and initialized by a defined value and decreases linearly after the completion 
of each set until it reaches zero in the final set.  
Therefore, animats move in order to find suitable locations to colonize their species. The 
movement is aimed to find locations (elements) for colonization so that such locations are 
highly connected while highly disconnected from the locations of the colonization of other 
animat’s species. This is the main purpose of the ACO algorithm for partitioning graphs. 

3.1.6 Between the sets 
After each set of iterations, several other operations are performed based on the history of 
animates activities. 
First, the algorithm looks for mistakes the animats have made. The algorithm looks for 
individual elements with a high percentage of their adjacent elements colonized by the 
opposite species. Therefore an element colonized by spices A having a high percentage of it 
adjacent elements colonized by species B is swapped to the B colony. 
Next the algorithm looks for any discontinuities which may be generated during each set. In 
each set the program swaps the smallest discontinuous colonization of each species. This is 
carried out using a recursive greedy optimization procedure (Bahreininejad, 2004; 
Bahreininejad & Hesamfar, 2006) which will be discussed further. As was discussed earlier, 
any given configuration of animats on the FE mesh does not necessarily induce bisection. 
Therefore, if one species is colonizing more elements than the other, some elements will be 
swapped to the other species. The elements to be swapped are selected from the set of border 
elements, that is, elements that are adjacent to an element of the opposite colony. By 
changing the colony of only border elements, the algorithm continues in the direction the 
animats were heading, rather than selecting elements in a region that is completely 
dominated by one species and creating an irregularity. Elements are selected to be swapped 
by making the greedy choice from amongst the border elements. This is carried out, for 
triangular elements, according to the pseudo code procedure shown in Table 1. 
After each element is selected, the swap is performed and the subsequent choices are made 
based on the new configuration of the colonies. At this point, the two colonies form 
bisection and this information is recorded.    



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

152 

element. However, if the element is colonized by the opposite species, only βstay percent of 
the offspring animats are placed there. The remaining new animats will be placed on the 
element to which the parent animat moves in the next step.  
The justification for this is that, if the parent animat is already at an element populated by its 
own colony and moves to another element, it should leave its offspring behind to help 
maintain the majority on that element. If the parent’s species is not in majority, it should 
take most of its children to the new element in which it is trying to create a colony. 
However, the parent leaves some of its offspring behind so that some of its species remain at 
that element (in case that element really should be part of their colony).  
There are two other constraints on reproduction. First, there is a limit of βlimit to how many 
offspring an animat can produce during its lifetime. This value is fixed throughout the 
algorithm and is the same for each animat. Once the limit is reached, the animat can no 
longer reproduce. This serves to prevent one species from taking over the entire FE mesh 
and forcing the other species into extinction.  
Another problem arises when an animat reproduces and places all of its children on its 
current element. Once one of the children is activated, it will in turn reproduce and deposit 
more children on the same element before moving.  
This overemphasizes that element and does not allow the colonies to change much from 
their original starting configuration. Because of this, animats are not able to reproduce until 
they have made a fixed minimum number of moves. This ensures that the mesh is explored 
and that new configurations are created by the reproduction and movement rather than 
being inhibited by these operations. 
Therefore, the main aim of reproduction is to encourage the species of animats which have 
colonized an element. This can influence the rate of convergence of the overall algorithm.  

3.1.5 Movement 
Movement is by far the most important operation the animats perform. The animats’ 
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In order to encourage animats to explore more of the FE mesh, the probability of selecting 
the move which would result in the animat returning to its previous location is reduced. A 
factor is used and initialized by a defined value and decreases linearly after the completion 
of each set until it reaches zero in the final set.  
Therefore, animats move in order to find suitable locations to colonize their species. The 
movement is aimed to find locations (elements) for colonization so that such locations are 
highly connected while highly disconnected from the locations of the colonization of other 
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Therefore, if one species is colonizing more elements than the other, some elements will be 
swapped to the other species. The elements to be swapped are selected from the set of border 
elements, that is, elements that are adjacent to an element of the opposite colony. By 
changing the colony of only border elements, the algorithm continues in the direction the 
animats were heading, rather than selecting elements in a region that is completely 
dominated by one species and creating an irregularity. Elements are selected to be swapped 
by making the greedy choice from amongst the border elements. This is carried out, for 
triangular elements, according to the pseudo code procedure shown in Table 1. 
After each element is selected, the swap is performed and the subsequent choices are made 
based on the new configuration of the colonies. At this point, the two colonies form 
bisection and this information is recorded.    
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WHILE 
Number of elements in colony A is not equal to number of elements in colony B 

DO 
BEGIN 

Swap border elements of colony with greater number of elements based on 
priority rules 
Priority Rules 

First, randomly swap elements with two edges in boundary and will result in 
one edge in boundary after swapping  
Second, randomly swap elements with one edge in boundary and will result 
in one edge in boundary after swapping 
Third, randomly swap elements with one edge in boundary and will result in 
two edges in boundary after swapping 

END 

Table 1. The pseudo rules for the element swap procedure 

Now, if this was not the final set, the mesh and population is prepared to start a new set by 
performing two more manipulations. The number of animats on the mesh may differ from 
the initial number of animats of both species. Usually after a set, the number of animats is 
higher than the initial number. The problem with this is that, if it continues, the number of 
animats grows so large that the computations become prohibitively expensive (since a 
percentage of animats are activated in each of the iterations). To correct this, the number of 
animats is reduced to the initial number. This is carried out by randomly removing animats 
until the correct population size is reached. This disruption of the colonies is negligible since 
each new set begins with a shake anyway.  
Finally, the number of animats in the two species is equalized. Normally the number of 
animats in each species is quite close, since the colonies have been forced into bisection. 
However, this may not always be the case. The bisection may not guarantee that the two 
species have the same number of animats. To improve this possible problem, animats are 
added to equalize the number of animats in each species. Usually this is a very small 
number and thus is not problematic in consideration of the previous operation (reducing the 
number of animats to the initial number).  The new animats are added only to elements 
where their own species is already in majority. Thus, this operation does not significantly 
alter the configuration of the colonies; it merely gives added strength to the colonies in 
which animats are added.  
Following this operation, a new set is begun. Again, the time (iteration) is initialized and all 
probabilities relating to time are reset. Therefore, as the animats have converged on a 
possible solution, starting a new set allows the animats to move away from that solution in 
expectation of finding a better solution in case this solution was a local optimum. After a 
total of specified sets have been completed, the solution should represent partitioning with 
minimum cut-size. 

3.2 Greedy algorithm for partition enhancement 
The ACO algorithm should ensure the minimum cut-size and balanced partitions. However, 
sometimes discontinuous partitions may be developed where islands of partitions are 
generated (e.g. a domain is bisected and three partitions are generated where one of the 
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partitions is composed of two separate partitions). A recursive greedy algorithm is used to 
improve the partition solutions given by the ACO and will swap the smallest generated 
discontinuity in each set. 
 The algorithm consists of two major parts. Initially, it searches and identifies each 
discontinuity. This is carried out by means of a recursive procedure which calls itself in 
order to give an index to an element and all its adjacent elements with similar spices.  
Therefore, when an element colonized by one of the spices has been given an index, all its 
adjacent elements with the same species will also get the same index. This scheme is 
illustrated according to the pseudo code procedure shown in Table 2.  The procedure in 
Table 2 is used by another procedure to index all the mesh elements using different index 
for each partition. This scheme is shown in Table 3. 
After that the algorithm will swap the colonization of the smallest generated discontinuity 
with the colonization of other species in each set. This is carried out according to the pseudo 
code procedure shown in Table 3. Table 4 presents the pseudo code procedure for the 
proposed ACO-based algorithm for FE mesh recursive bisection. 

3.3 Flying ants 
Another approach to deal with cases where discontinuous partitions may occur was to 
assume that ants (animats) are able to fly which agrees with flying ants present in nature. 
This is especially true when a colony of ants may become localized and surrounded by ants 
of other colony and ants in the localized colony will find it impossible to search for better 
places to colonize. 

Procedure GiveIndex(i) 
BEGIN 

index of element i = index 
FOR k = 1 to Number of adjacent 
  elements of element i 
IF colonization of adjacent element k = colonization of element i  
THEN 
   GiveIndex(adjacent element k)       

END 

Table 2. The pseudo code for indexing an element of a discontinuity and all its adjacent 
elements with the same colonization 

FOR I = 1 to NumElements do 
   IF index of Element i = 0 
   THEN 
      BEGIN 
         index = index + 1 
         GiveIndex(i) 
      END 
Determine the index which refers to a discontinuity with smallest number of elements 
in each species.  
Swap the colonization of elements correspond to that index. 

Table 3. The pseudo rule for indexing all the mesh elements using different indexing scheme 
and swapping process of the smallest discontinuity 
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discontinuity in each set. 
 The algorithm consists of two major parts. Initially, it searches and identifies each 
discontinuity. This is carried out by means of a recursive procedure which calls itself in 
order to give an index to an element and all its adjacent elements with similar spices.  
Therefore, when an element colonized by one of the spices has been given an index, all its 
adjacent elements with the same species will also get the same index. This scheme is 
illustrated according to the pseudo code procedure shown in Table 2.  The procedure in 
Table 2 is used by another procedure to index all the mesh elements using different index 
for each partition. This scheme is shown in Table 3. 
After that the algorithm will swap the colonization of the smallest generated discontinuity 
with the colonization of other species in each set. This is carried out according to the pseudo 
code procedure shown in Table 3. Table 4 presents the pseudo code procedure for the 
proposed ACO-based algorithm for FE mesh recursive bisection. 

3.3 Flying ants 
Another approach to deal with cases where discontinuous partitions may occur was to 
assume that ants (animats) are able to fly which agrees with flying ants present in nature. 
This is especially true when a colony of ants may become localized and surrounded by ants 
of other colony and ants in the localized colony will find it impossible to search for better 
places to colonize. 

Procedure GiveIndex(i) 
BEGIN 

index of element i = index 
FOR k = 1 to Number of adjacent 
  elements of element i 
IF colonization of adjacent element k = colonization of element i  
THEN 
   GiveIndex(adjacent element k)       

END 

Table 2. The pseudo code for indexing an element of a discontinuity and all its adjacent 
elements with the same colonization 

FOR I = 1 to NumElements do 
   IF index of Element i = 0 
   THEN 
      BEGIN 
         index = index + 1 
         GiveIndex(i) 
      END 
Determine the index which refers to a discontinuity with smallest number of elements 
in each species.  
Swap the colonization of elements correspond to that index. 

Table 3. The pseudo rule for indexing all the mesh elements using different indexing scheme 
and swapping process of the smallest discontinuity 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

156 

This brings the idea of using flying ants approach to prevent ants getting stuck in 
localizations. In this approach, all the animats are capable of flying from the beginning of 
the optimization. The moving probability is determined using Equation (3) except that all 
the elements in the mesh are considered.  
The animats can fly to the element with the highest moving probability in the mesh. 
However, the animats which already exist in the element with the highest moving 
probability prior to the arrival of new animats will have to move to the element with the 
second highest moving probability. This process is carried out by both spices of animats. 
The animats continue searching for better elements to colonize. 

4. Neural Network Predictor 
The Subdomain Generation Methods (SGM) proposed by Topping and Khan (1996) and 
followed on by Topping and Bahreininejad (1997) presented a technique which incorporates 
an optimization algorithm (genetic algorithms or Hopfield-type neural network) and a 
trained multi-layered feedforward neural network based on backpropagation algorithm. 
The trained backpropagation neural network is used to estimate the number of elements 
which will be generated inside every individual element of the coarse mesh after mesh 
generation procedure is carried out.  
The estimated number of elements is incorporated into the optimization algorithm to 
decompose a coarse FE domain rather than decomposing the fine mesh generated from the 
refinement of the initial mesh.  
A backpropagation-based multi-layered network with 5-12-8-6-1 (five units in intput layer, 
12 units in the first hidden layer, 8 units in the second hidden layer, 6 units in the third 
hidden layer and finally one unit in the output layer) topology was adopted and trained 
which is capable of estimating a number up to 1760 triangular elements corresponding to 
the generated elements after mesh refinement is carried out.  
The inputs to this network are the three scaled side lengths of each triangular element and 
the two scaled mesh parameters of each element. The scaling was made using one of the 
three mesh parameters (Topping & Bahreininejad, 1997).  
The predicted number of elements generated in each element of the coarse mesh after mesh 
refinement, is used after the last set is completed. This information is used in a greedy 
algorithm which forces the solution to a bisection considering the same priority rules 
presented in Section 3.2. 
The original SGM method partitions a FE mesh based on the coarse mesh using genetic 
algorithms (Topping & Khan, 1996). The generated subdomains are then refined 
individually using adaptive mesh refinement procedure. 
In most cases, it has been observed that the total number of elements generated by the 
refinement of individual subdomains may not be the same as the total number of elements 
generated after the mesh refinement of the initial coarse mesh.  
The presented method partitions the coarse mesh based on ACO and the SGM neural 
predictor approach and the resulting subdomains are mapped onto the final refined mesh.  
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BEGIN 
 Randomly add animats to the mesh 
 FOR Set = 1 to S       
 BEGIN 
  FOR iteration = 1 to I 
  BEGIN 
   FOR animat = 1to N  
   BEGIN 
    Activate e(iteration)% of animats 
    Determine degree of species in each element 
    IF animat activated 
    BEGIN 
     Add ph(animat, iteration) pheromone to animat’s location 
     Kill rd% of animats of elements 
     IF animat is not chosen for death 
     BEGIN 
      IF animat meets reproduction criteria 
      BEGIN 
       rr% of animats reproduce   
      ENDIF 
      IF iteration is in shake length 
      BEGIN 
        Move animats randomly 
      ELSE    
          Move based on pheromone and connectivity 
      ENDIF 
     ENDIF 
    ENDIF 
  ENDFOR 
  Evaporate Y% of pheromone 
  ENDFOR 
  Look for mistakes and swap elements 
  Run the greedy algorithm to reduce discontinuities 
  Record the bisection solution  
  Reduce total number of animats to the initial value 
  Equalize the number of animats in each species 
 ENDFOR 
 Return the best solution 
END 

Table 4. The pseudo rules for the proposed ACO algorithm for FE mesh decomposition 

5. ACO Partitioning Case Study 
A case study is presented to illustrate the ACO-based optimization approach for recursive 
FE mesh bisection. The optimization procedure is based on flying ants ACO using the neural 
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The predicted number of elements generated in each element of the coarse mesh after mesh 
refinement, is used after the last set is completed. This information is used in a greedy 
algorithm which forces the solution to a bisection considering the same priority rules 
presented in Section 3.2. 
The original SGM method partitions a FE mesh based on the coarse mesh using genetic 
algorithms (Topping & Khan, 1996). The generated subdomains are then refined 
individually using adaptive mesh refinement procedure. 
In most cases, it has been observed that the total number of elements generated by the 
refinement of individual subdomains may not be the same as the total number of elements 
generated after the mesh refinement of the initial coarse mesh.  
The presented method partitions the coarse mesh based on ACO and the SGM neural 
predictor approach and the resulting subdomains are mapped onto the final refined mesh.  
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network predictor. This method was compared with a greedy algorithm for partitioning FE 
meshes by Farhat.  
The case study was carried out on a PC with Intel Pentium III 500 MHz processor. Twenty 
simulation runs were conducted and Table 5 represents the ACO parameters adopted for 
the final solutions. The computation times were less than 20 seconds for the proposed 
method and 38 seconds for the Farhat’s method. 
In this case study, an inverted U-shaped domain shown in Fig 2 was used for partitioning 
the domain into eight subdomains.  
Fig 3 represents the resulting partitioned mesh by recursively bisecting the coarse mesh into 
eight subdomains using the proposed method. Fig 4 represents the partitioning of the 
refined mesh into eight subdomains using Farhat’s method.  
Table 6 shows the cut-size and the number of elements in each partition after recursive 
bisection using the proposed approach.  
Table 7 shows the result obtained from the mesh decomposition into eight subdomains 
using Farhat’s method. 
The imbalance between the actual and the desired number of elements in each generated 
subdomain using the ACO method is shown in Table 6.  

Parameter Value 
Number of iterations per set 100 
Number of sets 10 
Maximum shake length 5 
Initial number of animats 100 
Number of moves needed before an animat can reproduce 2 
Maximum number of offspring per animat 10 
Average number of animats born in first iteration 4 
Expected number of animats born in final iteration 2 
Minimum pheromone weight 0 
Maximum pheromone weight 1 
Minimum connection weight 250 
Maximum connection weight 500 
Pheromone limit 1000 
Percentage range from average number of animats born 0.5 
Maximum activation probability 0.8 
Minimum activation probability 0.2 
Death probability 0.035 
Reproduction probability 0.011 
Minimum probability for moving to an element 0.1 
Reduction factor for returning to previous location 0.9 
Percentage of offspring that stay on old location when not colonized 0.2 
Percentage of adjacent elements needed for swap 0.75 
Percentage of animats needed for majority 0.9 
Evaporation rate 0.2 

Table 5. Ant colony optimization run-time parameters 
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The load imbalance problem may have occurred from the inaccuracy of the predictive 
neural network to closely estimate the number of elements which will be generated in a 
single element of the coarse mesh after mesh refinement is carried out. A better trained 
neural network may improve the quality of the solutions. 
 

  
Figure 2. The initial mesh with 75 elements and the final refined mesh with 27155 elements 

 

  
Figure 3. The initial coarse mesh and the final mesh devided into 8 subdomains using the 
proposed method 
The imbalance of elements shown in Table 6 may not pose a serious threat. In fact, this may 
be used advantageously on coarse grained parallel networked computers where system 
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architecture and the computational load among machines may differ (heterogeneous 
environment).  

 
Figure 4. The the final mesh devided into 8 subdomains using the Farhat’s method where 
the disjointed subdomains are shown with the arrows 
On the other hand, Farhat’s method offers the best load balancing results while producing a 
large number of interfacing edges. In parallel FE computations, the number of interfacing 
edges imposes a great deal of inter-processor communications. Thus the efficiency of 
parallel computations can greatly depend of lower cut-size (interfacing edges/nodes) 
between the subdomains. The proposed ACO method can produce much more appealing 
cut-sizes which reduces the inter-processor communications during parallel FE 
computations while producing satisfactory load balancing between partitions.  
 

Subd. Number Num. of elements Desired num. of elements Diff. 

1 3266 3394.375 -128.375 
2 3907 3394.375 512.625 
3 3604 3394.375 209.625 
4 3243 3394.375 -151.375 
5 3881 3394.375 486.625 
6 3400 3394.375 5.625 
7 3153 3394.375 -241.375 
8 2701 3394.375 -693.375 

Total number of interfacing edges 370 

Table 6. Comparison between the desired and the obtained number of elements in each 
subdomain and the number of interfacing edges using the proposed method 
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Subd. Number Num. of elements Desired num. of elements Diff. 

1 3395 3394.375 0.625 
2 3395 3394.375 0.625 
3 3395 3394.375 0.625 
4 3395 3394.375 0.625 
5 3395 3394.375 0.625 
6 3395 3394.375 0.625 
7 3395 3394.375 0.6255 
8 3390 3394.375 -4.375 

Total number of interfacing edges 1234 

Table 7. Comparison between the desired and the obtained number of elements in each 
subdomain and the number of interfacing edges using Farhat’s method 

6. Conclusions 
The application of ant colony optimization using swarm intelligence concepts, in 
combination with a trained feedforward neural network predictor which estimates the 
number of elements which will be generated within each element of the (initial) coarse mesh 
after mesh refinement is carried out, to the recursive bisection of finite elements meshes was 
described. This algorithm combines the features of the classical ant colony optimization 
technique with swarm intelligence to form a model which is an artificial system designed to 
perform a certain task. This model is used to solve the finite elements mesh recursive 
bisection problem which should ensure the minimum cut-size between bisections while 
maintaining balanced bisections.  
A recursive greedy algorithm is also presented to improve the partition solutions given by 
the ant colony optimization algorithm and will swap the smallest generated discontinuity in 
each set of partitions. 
A trained feedforward neural network predictor is used to estimate the number of elements 
which will be generated within each element of the coarse mesh after mesh refinement is 
carried out. This information is used to partition a coarse mesh using the proposed method 
based on the estimated number of elements after mesh refinement is conducted (i.e. 
partitioning is not carried out on the final refined mesh. The optimization method uses the 
estimated number of elements which will be generated after mesh generation is carried out 
and partitions the coarse mesh.) 
The presented case study demonstrates the efficiency of the proposed method in 
comparison with a well known mesh decomposing algorithm. The predictive ant colony 
optimization technique produced good-quality solutions in short period of time.  
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1. Introduction  
Image segmentation plays an essential role in the interpretation of various kinds of images. 
Image segmentation techniques can be grouped into several categories such as edge-based 
segmentation, region-oriented segmentation, histogram thresholding, and clustering 
algorithms (Gonzalez & Woods, 1992). The aim of a clustering algorithm is to aggregate data 
into groups such that the data in each group share similar features while the data clusters 
are being distinct from each other. 
The K-means algorithm is a widely used method used for finding the structure of data (Tou 
& Gonzalez 1974). This unsupervised clustering technique has a strong tendency to get 
stuck into local minima when finding an optimal solution. Therefore, clustering results are 
heavily dependent on the initial cluster centers distribution. Hence, the search for good 
initial parameters is a challenging issue and the clustering algorithms require a great deal of 
experimentation to determine the input parameters for the optimal or suboptimal clustering 
results. 
Competitive learning model introduced in (Rumelhart & Zipser, 1986) is an interesting and 
powerful learning algorithm which can be used in unsupervised training for image 
classification (Hung, 1993). Simple Competitive Learning (SCL), shows stability over 
different run trials but this stable result is not always the global optima. In fact, in some 
cases the SCL converges to local optima over all run trials and the learning rate needs to be 
adjusted in the course of experimentation so that the global optimization can be achieved. 
There are a number of techniques, developed for optimization, inspired by the behaviours of 
natural systems (Pham & Karaboga, 2000). Swarm intelligence (SI) including Ant Colony 
Optimization (ACO) introduced in (Dorigo et al., 1996) and Particle Swarm Optimization 
(PSO) introduced in (Kennedy & Eberhart, 1995) has been introduced in the literature as an 
optimization technique. There are several SI approaches for data clustering in the literature 
which use clustering techniques such as K-means algorithm. In most of these approaches 
ACO or PSO are used to obtain the initial cluster centers for the K-means algorithm. We 
propose a hybrid algorithm which combines SI with K-means. We also use the same method 
to combine SI with SCL. 
Our aim is to make segmentation results of both K-means and SCL less dependent on the 
initial cluster centers and learning rate respectively. Hence, their results are more accurate 
and stabilized by employing the ACO and PSO optimization techniques. This improvement 
is due to the larger search space provided by these techniques. In addition, our 
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1. Introduction  
Image segmentation plays an essential role in the interpretation of various kinds of images. 
Image segmentation techniques can be grouped into several categories such as edge-based 
segmentation, region-oriented segmentation, histogram thresholding, and clustering 
algorithms (Gonzalez & Woods, 1992). The aim of a clustering algorithm is to aggregate data 
into groups such that the data in each group share similar features while the data clusters 
are being distinct from each other. 
The K-means algorithm is a widely used method used for finding the structure of data (Tou 
& Gonzalez 1974). This unsupervised clustering technique has a strong tendency to get 
stuck into local minima when finding an optimal solution. Therefore, clustering results are 
heavily dependent on the initial cluster centers distribution. Hence, the search for good 
initial parameters is a challenging issue and the clustering algorithms require a great deal of 
experimentation to determine the input parameters for the optimal or suboptimal clustering 
results. 
Competitive learning model introduced in (Rumelhart & Zipser, 1986) is an interesting and 
powerful learning algorithm which can be used in unsupervised training for image 
classification (Hung, 1993). Simple Competitive Learning (SCL), shows stability over 
different run trials but this stable result is not always the global optima. In fact, in some 
cases the SCL converges to local optima over all run trials and the learning rate needs to be 
adjusted in the course of experimentation so that the global optimization can be achieved. 
There are a number of techniques, developed for optimization, inspired by the behaviours of 
natural systems (Pham & Karaboga, 2000). Swarm intelligence (SI) including Ant Colony 
Optimization (ACO) introduced in (Dorigo et al., 1996) and Particle Swarm Optimization 
(PSO) introduced in (Kennedy & Eberhart, 1995) has been introduced in the literature as an 
optimization technique. There are several SI approaches for data clustering in the literature 
which use clustering techniques such as K-means algorithm. In most of these approaches 
ACO or PSO are used to obtain the initial cluster centers for the K-means algorithm. We 
propose a hybrid algorithm which combines SI with K-means. We also use the same method 
to combine SI with SCL. 
Our aim is to make segmentation results of both K-means and SCL less dependent on the 
initial cluster centers and learning rate respectively. Hence, their results are more accurate 
and stabilized by employing the ACO and PSO optimization techniques. This improvement 
is due to the larger search space provided by these techniques. In addition, our 
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methodology of considering both spatial and spectral features of the image helps to produce 
results with improved accuracy. 
We have integrated the K-means and simple competitive learning algorithms with ACO in 
(Saatchi & Hung, 2005) and (Saatchi & Hung, 2006) respectively. In this paper we will study 
the hybridization of PSO with each of the K-means and the SCL algorithms. A thorough 
comparison study on ACO-K-means, PSO-K-means, ACO-SCL, PSO-SCL, K-means and SCL 
algorithms will also be provided. 

2. Clustering Algorithms 
2.1 K-means 
The K-means algorithm, first introduced in (McQueen, 1967), is an is an unsupervised 
clustering algorithm which partitions a data set into a certain number of clusters. The K-
means algorithm is based on the minimization of a performance index which is defined as 
the sum of the squared distances from all points in a cluster domain to the cluster center 
(Tou & Gonzalez, 1974). First K random initial cluster centers are chosen. Then, each sample 
is assigned to a cluster based on the minimum distance to the cluster centers. Finally cluster 
centers are updated to the average of the values in each cluster. This is repeated until cluster 
centers no longer change. Steps in the K-Means algorithm are:  
Step 1: Initialize K initial cluster centers randomly. 
Step 2: For each pixel, calculate the distance to the cluster centers and assign the pixel to a 
cluster which has the minimum distance to its center. 
Step 3: Calculate the average of the pixel values in each cluster and take them as new cluster 
centers. 
Step 4: Repeat steps 2 and 3 until new cluster centers converge to the previous ones. 
The K-means algorithm tends to find the local minima rather than the global minima. 
Therefore, it is heavily influenced by the choice of initial cluster centers and the distribution 
of data. Most of the time the results become more acceptable when initial cluster centers are 
chosen relatively far apart since the main clusters in a given data are usually distinguished 
in such a way. If the main clusters in a given data are too close to one another in the feature 
space, the K-means algorithm fails to recognize these clusters. For its improvement the K-
means algorithm needs to be enhanced with the optimization technique in order to be less 
dependent on a given data set and initial cluster centers. 

2.2 Simple Competitive Learning 
Competitive learning model introduced by Rumelhart and Zipser in (Rumelhart & Zipser, 
1986) is an interesting and powerful learning algorithm which can be used in unsupervised 
training for image classification (Hung, 1993). Several different competitive learning 
algorithms have been proposed by neural network researchers. These algorithms are 
capable of detecting various features represented in input signals. They have been applied 
in several different areas such as graph bipartitioning, vector quantization, etc (Hertz & 
Krogh, 1991). In this section the unsupervised simple competitive learning will be briefly 
presented. 
The neural network models are characterized by the topology, activation function and 
learning rules. The topology of the simple competitive learning algorithm can be 
represented as a one-layered output neural net. Each input node is connected to each output 
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node. The number of input nodes is determined by the dimension of the training patterns. 
Unlike the output nodes in the Kohonen’s feature map, there is no particular geometrical 
relationship between the output nodes in the simple competitive learning. In the following 
development, a 2-D one-layered output neural net will be used. During the process of 
training, the input vectors are fed into the network sequentially in time. The “trained” 
classes are represented by the output nodes and the center of each class is stored in the 
connection weights between input and output nodes. 
The following algorithm outlines the operation of the simple competitive learning as applied 
to unsupervised training in (Hung, 1993); Let L denote the dimension of the input vectors, 
which for us is the number of spectral bands. We assume that a 2-D (N x N) output layer is 
defined for the algorithm, where N is chosen so that the expected number of the classes is 
less than or equal to N2. 
Step 1: Initialize weights wij(t) (i = 1, …, L and j = 1, …, N x N) to small random values. 
Steps 2 to 5 are repeated for each pixel in the training data set for each iteration. 
Step 2: Present an input pixel X (t) = (x1,…, xL) at time t. 
Step 3: Compute the distance dj between xi and each output node using  
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where i, j, L, wij and xi are similarly defined as in steps 1 and 2. 
Step 4: Select an output node j* which has the minimum distance. This node is called the 
best matching unit (BMU) or the winning node. 
Step 5: Update weights of the winning node j* using 
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where Δ(t) is a monotonically slowly decreasing function of t and its value is between 0 and 
1. 
Step 6: Select a subset of these N2 output nodes as classes. 
SCL shows stability over different run trials but this stable result is not always the global 
optima. In fact, in some cases the SCL converges to local optima over all run trials and the 
learning rate needs to be adjusted in the course of experimentation so that the global 
optimization can be achieved. 

3. Swarm Intelligence 
There are a number of techniques, developed for optimization, inspired by the behaviours of 
natural systems (Pham & Karaboga, 2000). In this study, we employ swarm intelligence, a 
natural optimization technique for optimizing both K-means and SCL algorithms. 

3.1 Ant Colony Optimization 
The ACO heuristic is inspired by the foraging behaviour of a real ant colony in finding the 
shortest path between the nest and the food. This is achieved by a deposited and 
accumulated chemical substance called pheromone by the passing ant which moves towards 
the food. In its searching the ant uses its own knowledge of where the smell of the food 
comes from (we call it as heuristic information) and the other ants’ decision of the path toward 
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methodology of considering both spatial and spectral features of the image helps to produce 
results with improved accuracy. 
We have integrated the K-means and simple competitive learning algorithms with ACO in 
(Saatchi & Hung, 2005) and (Saatchi & Hung, 2006) respectively. In this paper we will study 
the hybridization of PSO with each of the K-means and the SCL algorithms. A thorough 
comparison study on ACO-K-means, PSO-K-means, ACO-SCL, PSO-SCL, K-means and SCL 
algorithms will also be provided. 
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The K-means algorithm, first introduced in (McQueen, 1967), is an is an unsupervised 
clustering algorithm which partitions a data set into a certain number of clusters. The K-
means algorithm is based on the minimization of a performance index which is defined as 
the sum of the squared distances from all points in a cluster domain to the cluster center 
(Tou & Gonzalez, 1974). First K random initial cluster centers are chosen. Then, each sample 
is assigned to a cluster based on the minimum distance to the cluster centers. Finally cluster 
centers are updated to the average of the values in each cluster. This is repeated until cluster 
centers no longer change. Steps in the K-Means algorithm are:  
Step 1: Initialize K initial cluster centers randomly. 
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cluster which has the minimum distance to its center. 
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of data. Most of the time the results become more acceptable when initial cluster centers are 
chosen relatively far apart since the main clusters in a given data are usually distinguished 
in such a way. If the main clusters in a given data are too close to one another in the feature 
space, the K-means algorithm fails to recognize these clusters. For its improvement the K-
means algorithm needs to be enhanced with the optimization technique in order to be less 
dependent on a given data set and initial cluster centers. 
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1986) is an interesting and powerful learning algorithm which can be used in unsupervised 
training for image classification (Hung, 1993). Several different competitive learning 
algorithms have been proposed by neural network researchers. These algorithms are 
capable of detecting various features represented in input signals. They have been applied 
in several different areas such as graph bipartitioning, vector quantization, etc (Hertz & 
Krogh, 1991). In this section the unsupervised simple competitive learning will be briefly 
presented. 
The neural network models are characterized by the topology, activation function and 
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node. The number of input nodes is determined by the dimension of the training patterns. 
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relationship between the output nodes in the simple competitive learning. In the following 
development, a 2-D one-layered output neural net will be used. During the process of 
training, the input vectors are fed into the network sequentially in time. The “trained” 
classes are represented by the output nodes and the center of each class is stored in the 
connection weights between input and output nodes. 
The following algorithm outlines the operation of the simple competitive learning as applied 
to unsupervised training in (Hung, 1993); Let L denote the dimension of the input vectors, 
which for us is the number of spectral bands. We assume that a 2-D (N x N) output layer is 
defined for the algorithm, where N is chosen so that the expected number of the classes is 
less than or equal to N2. 
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where Δ(t) is a monotonically slowly decreasing function of t and its value is between 0 and 
1. 
Step 6: Select a subset of these N2 output nodes as classes. 
SCL shows stability over different run trials but this stable result is not always the global 
optima. In fact, in some cases the SCL converges to local optima over all run trials and the 
learning rate needs to be adjusted in the course of experimentation so that the global 
optimization can be achieved. 

3. Swarm Intelligence 
There are a number of techniques, developed for optimization, inspired by the behaviours of 
natural systems (Pham & Karaboga, 2000). In this study, we employ swarm intelligence, a 
natural optimization technique for optimizing both K-means and SCL algorithms. 

3.1 Ant Colony Optimization 
The ACO heuristic is inspired by the foraging behaviour of a real ant colony in finding the 
shortest path between the nest and the food. This is achieved by a deposited and 
accumulated chemical substance called pheromone by the passing ant which moves towards 
the food. In its searching the ant uses its own knowledge of where the smell of the food 
comes from (we call it as heuristic information) and the other ants’ decision of the path toward 
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the food (pheromone information). After it decides its own path, it confirms the path by 
depositing its own pheromone making the pheromone trail denser and more probable to be 
chosen by other ants. This is a learning mechanism ants possess besides their own recognition 
of the path. As a result of t this consultation with the ants’ behaviors already shown in 
searching for the food and returning to the nest, the best path which is the shortest is marked 
between the location of the nest and the location of the food. 
 

 
Figure 1. Ants finding the shortest path around an obstacle as a result of pheromone 
concentration 

It was reported in the literature (Dorigo et al, 1996) that the experiments show when the ants 
have two or more fixed paths with the same length available from a nest to the food, they 
eventually concentrate on one of the paths and when the available paths are different in 
length they often concentrate on the shortest path. This is shown in Figure 1, when an 
obstacle is placed on the established path of ants, they first wander around the obstacle 
randomly. The ants going on a shorter path reach the food and return back to the nest more 
quickly. After a certain amount of time, the shorter path will be reinforced by pheromone. 
This path eventually becomes the preferred path of the ants (Zheng et al., 2003). 
ACO uses this learning mechanism for the optimization. Furthermore, in the ACO 
algorithm, the pheromone level is updated based on the best solution obtained by a number 
of ants. The pheromone amount that is deposited by the succeeding ant is defined to be 
proportional to the quality of the solution it produces. For the real ants as shown in Figure 1, 
the best solution is the shortest path and it is marked with a strong pheromone trail. In the 
shortest path problem using the ACO algorithm, the pheromone amount deposited is 
inversely proportional to the length of the path.  
In their research, Dorigo et al (1996) took the ant system as a colony of cooperating agents 
for solving the traveling salesman problem (TSP). Considering the short path problem, 
suppose for any pair of nodes Vi and Vj on the graph G, there is a connection cost attached to 
the edge (Vi, Vj) and the pheromone trail and heuristic information are stored on the edge. 
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The goal of an ACO heuristic is then to find the shortest path on graph G. In ACO heuristic, 
m artificial ants are normally used to find the best solution. Suppose an ant k is in vertex Vi 
at certain step i during its search process. This ant selects the connection with the probability 
(Dorigo et al., 1996):  

 

⎪
⎩

⎪
⎨

⎧
∈

= ∑ ∈

otherwise

Itallowedj
P k

Itallowedh ihih

ijij
k

ij
k

,0

),(,
),(

βα

βα

ητ
ητ

 (3) 

where Pkij is the probability of ant k choosing the path (Vi, Vj) from Vi. Parameters τij and ηij 
are the pheromone and heuristic information assigned to the edge (Vi, Vj) respectively, α 
and β are constants that determine the relative influence of the pheromone and heuristic 
information, and allowedk(t, I) is the set of vertices which is allowed to be visited according to 
problem constraints.  
Then ant k moves and deposits a pheromone on the trail, which is defined below:   
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where Q is a positive constant and Lk is the cost of the path used by ant k. After all m ants 
completed their path finding, the pheromone on each edge is updated according to the 
following formula:   

  (5) 
ij

m

k

k
ijij τττρ ⇒Δ+− ∑

=1

)1(

where ρ is the evaporation factor (0 ≤ ρ ≤ 1) which causes the earlier pheromones vanish 
over the iterations. Therefore, as the solution becomes better, the corresponding pheromone 
have more effect on the next solution rather than the earlier pheromones which correspond 
to the initial undesired solutions found.  
This pheromone information will be a guide for the new set of ants. Each time, the current 
best solution is saved, and this process will be repeated until a termination criterion is met.  

3.2 Particle Swarm Optimization 
The PSO algorithm is inspired by the group behavior of schools of fish, flocks of birds and 
swarms of insects. As an example, birds are likely to find food in flocks, without knowing its 
location in advance. It seems that members of the flock buildup their intuition in order to 
find their nutriment. As sociobiologist E. O. Wilson (Wilson, 1975) has written, in reference 
to fish schooling, “In theory at least, individual members of the school can profit from the 
discoveries and previous experience of all other members of the school during the search for 
food. This advantage can become decisive, outweighing the disadvantages of competition 
for food items, whenever the resource is unpredictably distributed in patches.” (p. 209) 
The PSO algorithm consists of a swarm of particles flying through the search space 
(Kaewkamnerdpong & Bentley, 2005). Each particle’s position is a potential solution to the 
problem. Each particle’s velocity is modified based on its distance from its personal best 
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suppose for any pair of nodes Vi and Vj on the graph G, there is a connection cost attached to 
the edge (Vi, Vj) and the pheromone trail and heuristic information are stored on the edge. 
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The goal of an ACO heuristic is then to find the shortest path on graph G. In ACO heuristic, 
m artificial ants are normally used to find the best solution. Suppose an ant k is in vertex Vi 
at certain step i during its search process. This ant selects the connection with the probability 
(Dorigo et al., 1996):  
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where Pkij is the probability of ant k choosing the path (Vi, Vj) from Vi. Parameters τij and ηij 
are the pheromone and heuristic information assigned to the edge (Vi, Vj) respectively, α 
and β are constants that determine the relative influence of the pheromone and heuristic 
information, and allowedk(t, I) is the set of vertices which is allowed to be visited according to 
problem constraints.  
Then ant k moves and deposits a pheromone on the trail, which is defined below:   
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where Q is a positive constant and Lk is the cost of the path used by ant k. After all m ants 
completed their path finding, the pheromone on each edge is updated according to the 
following formula:   
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where ρ is the evaporation factor (0 ≤ ρ ≤ 1) which causes the earlier pheromones vanish 
over the iterations. Therefore, as the solution becomes better, the corresponding pheromone 
have more effect on the next solution rather than the earlier pheromones which correspond 
to the initial undesired solutions found.  
This pheromone information will be a guide for the new set of ants. Each time, the current 
best solution is saved, and this process will be repeated until a termination criterion is met.  

3.2 Particle Swarm Optimization 
The PSO algorithm is inspired by the group behavior of schools of fish, flocks of birds and 
swarms of insects. As an example, birds are likely to find food in flocks, without knowing its 
location in advance. It seems that members of the flock buildup their intuition in order to 
find their nutriment. As sociobiologist E. O. Wilson (Wilson, 1975) has written, in reference 
to fish schooling, “In theory at least, individual members of the school can profit from the 
discoveries and previous experience of all other members of the school during the search for 
food. This advantage can become decisive, outweighing the disadvantages of competition 
for food items, whenever the resource is unpredictably distributed in patches.” (p. 209) 
The PSO algorithm consists of a swarm of particles flying through the search space 
(Kaewkamnerdpong & Bentley, 2005). Each particle’s position is a potential solution to the 
problem. Each particle’s velocity is modified based on its distance from its personal best 

 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 168 

position and the global best position. In other words the particles move according to their 
experience and that of their neighbors which yields to the best fitness value. 
Each particle i maintains the following information (van der Merwe & Engelbrecht, 2003): 
• xi, the current position of the particle, 
• vi, the current velocity of the particle, 
• yi, the personal best position of the particle (pbest); the best position visited so far by the 

particle, and 
• ŷ, the global best position of the swarm (gbest); the best position visited so far by the 

entire swarm.  
The objective function evaluates the positions of the particles. Personal best position (pbest) 
is then obtained as follows (van der Merwe & Engelbrecht, 2003):  
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where f is the objective function. The global best position (gbest) is obtained as follows (van 
der Merwe & Engelbrecht, 2003):  
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For each iteration of a PSO algorithm, vi and xi are updated as follows (van der Merwe & 
Engelbrecht, 2003):  
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where ω is the inertia weight which serves as a memory of previous velocities. The inertia 
weight controls the impact of the previous velocity. The cognitive component, yi(t)–xi 
represents the particle’s own experience as to where the best solution is. The social 
component, ŷ(t) – xi represents the belief of the entire swarm as to where the best solution is. 
c1 and c2 are acceleration constants and r1(t) , r2(t) ~ U(0,1) ,where U(0,1) is a random number 
between 0 and 1. 
The PSO algorithm is repeated until a termination criterion is reached or the changes in 
velocity get near to zero. A fitness function is used to evaluate the optimality of the solution. 
The following algorithm outlines a PSO based image classification (Omran et al., 2002). In 
this algorithm, a single particle xi represents N cluster means such that xi=(mi1,...,mij,…,miN) 
where mij represents the j-th cluster centroid vector of the i-th particle. Therefore, a swarm 
represents a number of candidate cluster centers. The fitness of each set of cluster is 
measured using: 

 ))((),(),( minmax2max1 iiiii xdzxZdZxf −+= ωω  (10) 

where zmax=2s -1 for an s-bit image; Z is a matrix representing the assignment of pixels to 
clusters of particle i. Each element zijp indicates if pixel zp belongs to cluster Cij of particle i. 
The constants w1 and w2 are user defined constants. Also, 
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is the maximum average Euclidean distance of particles to their associated clusters and 
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is the minimum Euclidean distance between any pair of clusters. The algorithm is as 
follows: 
Step 1: Initialize cluster centers for each particle randomly. 
Step 2: For each particle, assign each pixel to a cluster that has the minimum distance to its 
cluster center. 
Step 3: Calculate the fitness function for each particle and find the global best solution. 
Step 4: Update the cluster centers using Eqs. (8) and (9). 
Step 5: Repeat the procedure until the stopping criterion is reached. 

4. Swarm Intelligence and K-means 
4.1 The Hybrid ACO-K-means Algorithm 
We propose a hybrid ACO-K-means algorithm which uses the ACO to improve the 
performance of the K-means algorithm for clustering. The proposed algorithm starts by 
choosing the number of clusters and a random initial cluster center for each cluster. ACO 
plays its part in assigning each pixel to a cluster. This is done according to a probability 
which is inversely proportional to the distance (similarity) between the pixel and cluster 
centers and a variable, τ, representing the pheromone level. We define pheromone to be 
proportional to minimum distance between each pair of cluster centers and inversely 
proportional to the distances between each pixel and its cluster center. So the pheromone 
gets larger when the cluster centers are far apart and clusters are more compact (our 
criterion for best solution), making the probability of assigning a pixel to that cluster high. 
Pheromone evaporation is considered to weaken the influence of the previously chosen 
solutions, which are less likely to be desired. Similar to the K-means algorithm, at this stage 
new cluster centers are updated by calculating the average of the pixels in each cluster and 
this will be repeated until cluster centers no longer change. But unlike K-means, this 
algorithm doesn’t stop here. We assume that the clustering job is performed by an ant and 
there are m ants repeating this job, each with their own random initialization, and they all 
will end up with a solution. A criterion is defined to find the best solution and the 
pheromone level is updated accordingly for the next set of m ants as a leading guide. If the 
termination criterion is satisfied, the algorithm will be terminated. Hence, an optimal 
solution is obtained. 
The algorithm starts by assigning a pheromone level τ and a heuristic information η to each 
pixel. Then each ant will assign each pixel to a cluster with the probability distribution P 
derived from Eq. (13), (Dorigo et al., 1996): 
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position and the global best position. In other words the particles move according to their 
experience and that of their neighbors which yields to the best fitness value. 
Each particle i maintains the following information (van der Merwe & Engelbrecht, 2003): 
• xi, the current position of the particle, 
• vi, the current velocity of the particle, 
• yi, the personal best position of the particle (pbest); the best position visited so far by the 

particle, and 
• ŷ, the global best position of the swarm (gbest); the best position visited so far by the 

entire swarm.  
The objective function evaluates the positions of the particles. Personal best position (pbest) 
is then obtained as follows (van der Merwe & Engelbrecht, 2003):  
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where f is the objective function. The global best position (gbest) is obtained as follows (van 
der Merwe & Engelbrecht, 2003):  
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For each iteration of a PSO algorithm, vi and xi are updated as follows (van der Merwe & 
Engelbrecht, 2003):  
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where ω is the inertia weight which serves as a memory of previous velocities. The inertia 
weight controls the impact of the previous velocity. The cognitive component, yi(t)–xi 
represents the particle’s own experience as to where the best solution is. The social 
component, ŷ(t) – xi represents the belief of the entire swarm as to where the best solution is. 
c1 and c2 are acceleration constants and r1(t) , r2(t) ~ U(0,1) ,where U(0,1) is a random number 
between 0 and 1. 
The PSO algorithm is repeated until a termination criterion is reached or the changes in 
velocity get near to zero. A fitness function is used to evaluate the optimality of the solution. 
The following algorithm outlines a PSO based image classification (Omran et al., 2002). In 
this algorithm, a single particle xi represents N cluster means such that xi=(mi1,...,mij,…,miN) 
where mij represents the j-th cluster centroid vector of the i-th particle. Therefore, a swarm 
represents a number of candidate cluster centers. The fitness of each set of cluster is 
measured using: 

 ))((),(),( minmax2max1 iiiii xdzxZdZxf −+= ωω  (10) 

where zmax=2s -1 for an s-bit image; Z is a matrix representing the assignment of pixels to 
clusters of particle i. Each element zijp indicates if pixel zp belongs to cluster Cij of particle i. 
The constants w1 and w2 are user defined constants. Also, 
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is the minimum Euclidean distance between any pair of clusters. The algorithm is as 
follows: 
Step 1: Initialize cluster centers for each particle randomly. 
Step 2: For each particle, assign each pixel to a cluster that has the minimum distance to its 
cluster center. 
Step 3: Calculate the fitness function for each particle and find the global best solution. 
Step 4: Update the cluster centers using Eqs. (8) and (9). 
Step 5: Repeat the procedure until the stopping criterion is reached. 

4. Swarm Intelligence and K-means 
4.1 The Hybrid ACO-K-means Algorithm 
We propose a hybrid ACO-K-means algorithm which uses the ACO to improve the 
performance of the K-means algorithm for clustering. The proposed algorithm starts by 
choosing the number of clusters and a random initial cluster center for each cluster. ACO 
plays its part in assigning each pixel to a cluster. This is done according to a probability 
which is inversely proportional to the distance (similarity) between the pixel and cluster 
centers and a variable, τ, representing the pheromone level. We define pheromone to be 
proportional to minimum distance between each pair of cluster centers and inversely 
proportional to the distances between each pixel and its cluster center. So the pheromone 
gets larger when the cluster centers are far apart and clusters are more compact (our 
criterion for best solution), making the probability of assigning a pixel to that cluster high. 
Pheromone evaporation is considered to weaken the influence of the previously chosen 
solutions, which are less likely to be desired. Similar to the K-means algorithm, at this stage 
new cluster centers are updated by calculating the average of the pixels in each cluster and 
this will be repeated until cluster centers no longer change. But unlike K-means, this 
algorithm doesn’t stop here. We assume that the clustering job is performed by an ant and 
there are m ants repeating this job, each with their own random initialization, and they all 
will end up with a solution. A criterion is defined to find the best solution and the 
pheromone level is updated accordingly for the next set of m ants as a leading guide. If the 
termination criterion is satisfied, the algorithm will be terminated. Hence, an optimal 
solution is obtained. 
The algorithm starts by assigning a pheromone level τ and a heuristic information η to each 
pixel. Then each ant will assign each pixel to a cluster with the probability distribution P 
derived from Eq. (13), (Dorigo et al., 1996): 

 

∑ =

= K

j nn

nin
ni

XX
XXXP

jj

i

0
)]([)]([

)]([)]([)(
βα

βα

ητ
ητ   (13) 

 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 170 

where Pi(Xn) is the probability of assigning pixel Xn to cluster i, τi(Xn) and ηi(Xn) are the 
pheromone and heuristic information assigned to pixel Xn in cluster i respectively, α and β 
are constant parameters that determines the relative influence of the pheromone and 
heuristic information, and K is the number of clusters. Heuristic information ηi(Xn) is 
obtained from: 
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where Xn is the nth pixel, CCi is the ith spectral cluster center and PCi is the ith spatial cluster center. 
CDist (Xn, CCi) is the Euclidean distance between Xn and CCi , considering the color features of 
the pixels and PDist (Xn, PCi) is the Euclidean distance between Xn and PCi, considering the 
position of the pixels on the image. Constant κ is used to balance the value of η with τ. 
The value for the pheromone level τ assigned to each pixel is initialized to 1 so that it does 
not have any effect on the probability at the beginning. This pheromone gets larger over the 
iterations which we describe later. 
Suppose m number of ants is chosen for clustering an image. Each ant is giving its own 
clustering solution. After m ants have done their clustering, the current best solution is 
chosen and the assigned pheromone to this solution is incremented. All the cluster centers 
are updated using the cluster centers of the current best solution. The next set of ants is 
inspired from the previous set. In each of the iterations, each one of the m ants search for a 
solution based on its own heuristic knowledge and the best solution found by the previous 
m ants. This is repeated a certain amount of times until the overall best solution is obtained.  
The best solution of the m solutions found in each of iterations is selected according to two 
factors; Euclidean distance between cluster centers in terms of spectral values (separateness of 
clusters), and sum of the Euclidean distances between each pixel and its cluster center, in terms 
of spectral and spatial values (similarity and compactness of each cluster). To choose the best 
solution: 1) the Euclidean distance between cluster centers in terms of spectral signatures 
should be large so the clusters are more distinct, 2) the sum of the Euclidean distances between 
each pixel and its cluster center in terms of spectral signatures should be small so that each 
cluster becomes more homogeneous, and 3) the sum of the Euclidean distances between each 
pixel and its cluster center in terms of spatial signatures should be small so that each cluster 
becomes more compact. To achieve the first one, for each clustering performed by ant k (k = 
1,…,m), we compute the distances between every pair of cluster centers and sort these 
distances. Then we select the minimum distance Min(k). Now we compare all these minimums 
performed by all the ants, and select the maximum of them [MinMax(k)]. To achieve the 
second and third, for each clustering performed by ant k we compute the sum of the distances 
between each pixel and its cluster center, and sort these sums of the distances. Then we select 
the maximum and compare all these maximums performed by all ants, and select the 
minimum of them. The second maximum and third maximum of the solutions are compared 
in the same way and the minimum is selected. Each time a solution is selected it gets an 
additional vote. The solution with the largest vote is selected as the best solution. 
After the best solution is found, the pheromone value is updated according to Eq. (15) (Li & 
Xu, 2003): 

 τi(Xn)  ← (1- ρ ) τ i(Xn)+ Σi Δτ i(Xn)  (15) 
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where ρ is the evaporation factor (0 ≤ ρ ≤ 1) which causes the earlier pheromones vanish 
over the iterations. Therefore as the solution becomes better, the corresponding pheromone 
have more effect on the next solution rather than the earlier pheromones which correspond 
to the initial undesired solutions found. The parameter Δτi(Xn) in Eq. (15) is the amount of 
pheromone added to previous pheromone by the succeeded ant, which is obtained from:  
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In Eq. (16), Q is a positive constant which is related to the quantity of the added pheromone 
by ants. Min(k′) is the minimum distance between every two cluster centers obtained by ant 
k′ (the winner ant) in spectral feature space. AvgCDist(k′,i) is the average of the spectral 
Euclidean distances and AvgPDist(k′,i) is the average of the spatial Euclidean distances 
between all pixels in cluster i and their spectral cluster center and spatial cluster center 
obtained by ant k′, respectively. Min(k′) causes the pheromone become larger when clusters 
get more far apart and hence raise the probability. AvgCDist(k′,i) and AvgPDist(k’,i) cause the 
pheromone become larger when the cluster has more similar pixels and is more compact 
respectively. In other words, the more the Min(k′) is, the more far apart our clusters are 
which is desired and the larger the pheromone is. The less the AvgCDist(k′,i) and AvgPDist 
(k′,i) are, the more similar and compact our clusters are which is desired and the larger the 
pheromone is. 
Next, cluster centers are updated using the cluster centers of the best solution. This 
algorithm is repeated a certain amount of times until the very best solution is obtained. 
The Hybrid ACO-K-means algorithm is described below: 
Step 1: Initialize pheromone level assigned to each pixel to 1, the number of clusters to K and 
number of ants to m. 
Step 2: Initialize m sets of K random cluster centers to be used by m ants. 
Step 3: Let each ant, assign each pixel Xn to one of the clusters (i), randomly, with the 
probability distribution Pi(Xn) given in Eq. (13). 
Step 4: Calculate new cluster centers; If the new cluster centers are approximately equal to 
the old ones, go to next step. Otherwise, go to Step 3. 
Step 5: Save the best solution among the m solutions found. 
Step 6 Update the pheromone level for each pixel according to the best solution using Eqs. 
(15) and (16). 
Step 7: Assign cluster center values of the best clustering solution to the clusters centers of 
all ants. 
Step 8: If the termination criterion is satisfied go to the next step. Otherwise, go to Step 3. 
Step 9: Output the optimal solution. 

4.2 The Hybrid PSO-K-means Algorithm 
As discussed in section 3.2, in the PSO based clustering presented in (Omran et al., 2002) the 
cluster centers assigned to particles were initialized randomly. Each pixel was distributed  to 
a cluster with minimal Euclidean distance. Then PSO was used to refine the cluster centers 
using a fitness function. In (van der Merwe & Engelbrecht, 2003) the K-means algorithm was 
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where Pi(Xn) is the probability of assigning pixel Xn to cluster i, τi(Xn) and ηi(Xn) are the 
pheromone and heuristic information assigned to pixel Xn in cluster i respectively, α and β 
are constant parameters that determines the relative influence of the pheromone and 
heuristic information, and K is the number of clusters. Heuristic information ηi(Xn) is 
obtained from: 
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where Xn is the nth pixel, CCi is the ith spectral cluster center and PCi is the ith spatial cluster center. 
CDist (Xn, CCi) is the Euclidean distance between Xn and CCi , considering the color features of 
the pixels and PDist (Xn, PCi) is the Euclidean distance between Xn and PCi, considering the 
position of the pixels on the image. Constant κ is used to balance the value of η with τ. 
The value for the pheromone level τ assigned to each pixel is initialized to 1 so that it does 
not have any effect on the probability at the beginning. This pheromone gets larger over the 
iterations which we describe later. 
Suppose m number of ants is chosen for clustering an image. Each ant is giving its own 
clustering solution. After m ants have done their clustering, the current best solution is 
chosen and the assigned pheromone to this solution is incremented. All the cluster centers 
are updated using the cluster centers of the current best solution. The next set of ants is 
inspired from the previous set. In each of the iterations, each one of the m ants search for a 
solution based on its own heuristic knowledge and the best solution found by the previous 
m ants. This is repeated a certain amount of times until the overall best solution is obtained.  
The best solution of the m solutions found in each of iterations is selected according to two 
factors; Euclidean distance between cluster centers in terms of spectral values (separateness of 
clusters), and sum of the Euclidean distances between each pixel and its cluster center, in terms 
of spectral and spatial values (similarity and compactness of each cluster). To choose the best 
solution: 1) the Euclidean distance between cluster centers in terms of spectral signatures 
should be large so the clusters are more distinct, 2) the sum of the Euclidean distances between 
each pixel and its cluster center in terms of spectral signatures should be small so that each 
cluster becomes more homogeneous, and 3) the sum of the Euclidean distances between each 
pixel and its cluster center in terms of spatial signatures should be small so that each cluster 
becomes more compact. To achieve the first one, for each clustering performed by ant k (k = 
1,…,m), we compute the distances between every pair of cluster centers and sort these 
distances. Then we select the minimum distance Min(k). Now we compare all these minimums 
performed by all the ants, and select the maximum of them [MinMax(k)]. To achieve the 
second and third, for each clustering performed by ant k we compute the sum of the distances 
between each pixel and its cluster center, and sort these sums of the distances. Then we select 
the maximum and compare all these maximums performed by all ants, and select the 
minimum of them. The second maximum and third maximum of the solutions are compared 
in the same way and the minimum is selected. Each time a solution is selected it gets an 
additional vote. The solution with the largest vote is selected as the best solution. 
After the best solution is found, the pheromone value is updated according to Eq. (15) (Li & 
Xu, 2003): 

 τi(Xn)  ← (1- ρ ) τ i(Xn)+ Σi Δτ i(Xn)  (15) 

 

Swarm Intelligence and Image Segmentation 171 

where ρ is the evaporation factor (0 ≤ ρ ≤ 1) which causes the earlier pheromones vanish 
over the iterations. Therefore as the solution becomes better, the corresponding pheromone 
have more effect on the next solution rather than the earlier pheromones which correspond 
to the initial undesired solutions found. The parameter Δτi(Xn) in Eq. (15) is the amount of 
pheromone added to previous pheromone by the succeeded ant, which is obtained from:  
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In Eq. (16), Q is a positive constant which is related to the quantity of the added pheromone 
by ants. Min(k′) is the minimum distance between every two cluster centers obtained by ant 
k′ (the winner ant) in spectral feature space. AvgCDist(k′,i) is the average of the spectral 
Euclidean distances and AvgPDist(k′,i) is the average of the spatial Euclidean distances 
between all pixels in cluster i and their spectral cluster center and spatial cluster center 
obtained by ant k′, respectively. Min(k′) causes the pheromone become larger when clusters 
get more far apart and hence raise the probability. AvgCDist(k′,i) and AvgPDist(k’,i) cause the 
pheromone become larger when the cluster has more similar pixels and is more compact 
respectively. In other words, the more the Min(k′) is, the more far apart our clusters are 
which is desired and the larger the pheromone is. The less the AvgCDist(k′,i) and AvgPDist 
(k′,i) are, the more similar and compact our clusters are which is desired and the larger the 
pheromone is. 
Next, cluster centers are updated using the cluster centers of the best solution. This 
algorithm is repeated a certain amount of times until the very best solution is obtained. 
The Hybrid ACO-K-means algorithm is described below: 
Step 1: Initialize pheromone level assigned to each pixel to 1, the number of clusters to K and 
number of ants to m. 
Step 2: Initialize m sets of K random cluster centers to be used by m ants. 
Step 3: Let each ant, assign each pixel Xn to one of the clusters (i), randomly, with the 
probability distribution Pi(Xn) given in Eq. (13). 
Step 4: Calculate new cluster centers; If the new cluster centers are approximately equal to 
the old ones, go to next step. Otherwise, go to Step 3. 
Step 5: Save the best solution among the m solutions found. 
Step 6 Update the pheromone level for each pixel according to the best solution using Eqs. 
(15) and (16). 
Step 7: Assign cluster center values of the best clustering solution to the clusters centers of 
all ants. 
Step 8: If the termination criterion is satisfied go to the next step. Otherwise, go to Step 3. 
Step 9: Output the optimal solution. 

4.2 The Hybrid PSO-K-means Algorithm 
As discussed in section 3.2, in the PSO based clustering presented in (Omran et al., 2002) the 
cluster centers assigned to particles were initialized randomly. Each pixel was distributed  to 
a cluster with minimal Euclidean distance. Then PSO was used to refine the cluster centers 
using a fitness function. In (van der Merwe & Engelbrecht, 2003) the K-means algorithm was 
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applied to feed one particle of the initial swarm and the rest of the swarm were initialized 
randomly. Then the same algorithm described above is employed. We propose a new 
hybridization of PSO-K-means algorithm where the K-means is applied to all particles and 
solutions are evaluated in a way similar to the evaluation used in the proposed ACO-K-
means algorithm.  
The proposed PSO-K-means algorithm is presented as follows: 
Step 1: Initialize the number of clusters to K and number of particles to m. 
Step 2: Initialize m sets of K random cluster centers to be used by m particles. 
Step 3: For each particle, let each pixel x belong to a cluster in which it has the smallest 
Euclidean distance to the centroid.  
Step 4: Calculate new cluster centers; If the new cluster centers converge to the old ones, go 
to the next step. Otherwise, go to Step 3. 
Step 5: Save the best solution found so far performed by each particle. Call it pbest or 
personal best solution. 
Step 6: Save the best solution among the m personal best solutions found. Call it gbest or 
global best solution. 
Step 7: Update cluster centers of each particle according to the cluster center values of the 
pbest and gbest solution, using Eqs. (8) and (9).  
Step 8: If the termination criterion is satisfied go to next step. Otherwise, go to Step 3. 
Step 9: Output the optimal solution. 

5. Swarm Intelligence and Simple Competitive Learning 
5.1 The Hybrid ACO-SCL Algorithm 
We apply the ACO to simple competitive learning algorithm and investigate its 
performance. Similar to our previous hybrid algorithms described in section 4, the 
pheromone and heuristic information are defined to satisfy the clustering criteria which 
include the similarity of data in each cluster, distinction of the clusters and compactness of 
each cluster. At the end of all iterations, the best solution is selected in the same way as what 
we used for the ACO-K-means algorithm.  
The ACO-SCL algorithm is described as follows. Let L denote the dimension of the input 
vectors, which for us is the number of spectral bands. We assume that a 2-D (N × N) output 
layer is defined for the algorithm, where N is chosen so that the expected number of the 
classes is less than or equal to N2. Here weights of the nodes contain cluster center values. 
Step 1: Initialize the number of clusters to K and the number of ants to m. Initialize 
pheromone level assigned to each pixel to 1 so that it does not have any effect on the 
probability using later at the beginning. 
Step 2: Initialize m sets of K different random cluster centers to be used by m ants. 
Step 3: Let each ant, assign each pixel Xn to one of the clusters (i), randomly, with the 
probability distribution Pi(Xn) given in Eq. (13) where heuristic information ηi(Xn) is 
obtained from Eq. (14). 
Step 4: For each input pixel the cluster center of the cluster which it belongs to is considered 
as the BMU. Calculate new cluster centers using: 
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where Δ(t) is a monotonically slowly decreasing function of t and its value is between 0 and 
1. L is the number of spectral bands. 
Step 5: Save the best solution among the m solutions found. 
Step 6: Update the pheromone level for each pixel according to the best solution. The 
pheromone value is updated according to Eq. (15). 
Step 7: Assign cluster center values of the best clustering solution to the clusters centers of 
all ants. 
Step 8: If the termination criterion is satisfied go to next step. Otherwise, go to Step3. 
Step 9: Output the optimal solution. 

5.2  The Hybrid PSO-SCL Algorithm 
The PSO-SCL algorithm which combines the PSO and SCL, is described as follows. Let L 
denote the dimension of the input vectors, which for us is the number of spectral bands. We 
assume that a 2-D (N × N) output layer is defined for the algorithm, where N is chosen so 
that the expected number of the classes is less than or equal to N2. Here weights of the nodes 
contain cluster center values. 
Step 1: Initialize the number of clusters to K and the number of particles to m.  
Step 2: Initialize m sets of K different random cluster centers to be used by m particles. 
Step 3: For each particle, let each pixel x belong to a cluster in which it has the smallest  
Euclidean distance to the centroid. 
Step 4: For each input pixel the cluster center of the cluster which it belongs to is considered 
as the BMU. Calculate new cluster centers using Eq. (17).  
Step 5: Save the best solution found so far performed by each particle. Call it pbest or 
personal best solution. 
Step 6: Save the best solution among the m personal best solutions found. Call it gbest or 
global best solution. 
Step 7: Update cluster centers of each particle according to the cluster center values of the 
pbest and gbest solution, using Eq. (8).  
Step 8: If the termination criterion is satisfied go to next step. Otherwise, go to Step 3. 
Step 9: Output the optimal solution. 

6. Simulation Results 
Experimental results from our proposed hybrid algorithms were compared with those of the 
K-means and the SCL algorithms, and discussed in this section. Since the SCL is very 
dependent on the learning rate, i.e. ∆(t) in Eq. (17), we performed some experiments on 
choosing a value for ∆(t). Considering that ∆(t) is a monotonically slowly decreasing 
function of t and its value is between 0 and 1, we suggest the following formula: 

 1
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where t and r denote iteration and a rate which is a constant that we obtained by 
experiments, respectively. The experiments were performed over 20 run trials on several 
different images, for r from 10 to 50 incrementing by 10. Two of them reported in this 
chapter. Experiments showed better results for r = 10. Therefore, the experiment was 
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applied to feed one particle of the initial swarm and the rest of the swarm were initialized 
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Step 4: Calculate new cluster centers; If the new cluster centers converge to the old ones, go 
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Step 7: Update cluster centers of each particle according to the cluster center values of the 
pbest and gbest solution, using Eqs. (8) and (9).  
Step 8: If the termination criterion is satisfied go to next step. Otherwise, go to Step 3. 
Step 9: Output the optimal solution. 

5. Swarm Intelligence and Simple Competitive Learning 
5.1 The Hybrid ACO-SCL Algorithm 
We apply the ACO to simple competitive learning algorithm and investigate its 
performance. Similar to our previous hybrid algorithms described in section 4, the 
pheromone and heuristic information are defined to satisfy the clustering criteria which 
include the similarity of data in each cluster, distinction of the clusters and compactness of 
each cluster. At the end of all iterations, the best solution is selected in the same way as what 
we used for the ACO-K-means algorithm.  
The ACO-SCL algorithm is described as follows. Let L denote the dimension of the input 
vectors, which for us is the number of spectral bands. We assume that a 2-D (N × N) output 
layer is defined for the algorithm, where N is chosen so that the expected number of the 
classes is less than or equal to N2. Here weights of the nodes contain cluster center values. 
Step 1: Initialize the number of clusters to K and the number of ants to m. Initialize 
pheromone level assigned to each pixel to 1 so that it does not have any effect on the 
probability using later at the beginning. 
Step 2: Initialize m sets of K different random cluster centers to be used by m ants. 
Step 3: Let each ant, assign each pixel Xn to one of the clusters (i), randomly, with the 
probability distribution Pi(Xn) given in Eq. (13) where heuristic information ηi(Xn) is 
obtained from Eq. (14). 
Step 4: For each input pixel the cluster center of the cluster which it belongs to is considered 
as the BMU. Calculate new cluster centers using: 
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where Δ(t) is a monotonically slowly decreasing function of t and its value is between 0 and 
1. L is the number of spectral bands. 
Step 5: Save the best solution among the m solutions found. 
Step 6: Update the pheromone level for each pixel according to the best solution. The 
pheromone value is updated according to Eq. (15). 
Step 7: Assign cluster center values of the best clustering solution to the clusters centers of 
all ants. 
Step 8: If the termination criterion is satisfied go to next step. Otherwise, go to Step3. 
Step 9: Output the optimal solution. 

5.2  The Hybrid PSO-SCL Algorithm 
The PSO-SCL algorithm which combines the PSO and SCL, is described as follows. Let L 
denote the dimension of the input vectors, which for us is the number of spectral bands. We 
assume that a 2-D (N × N) output layer is defined for the algorithm, where N is chosen so 
that the expected number of the classes is less than or equal to N2. Here weights of the nodes 
contain cluster center values. 
Step 1: Initialize the number of clusters to K and the number of particles to m.  
Step 2: Initialize m sets of K different random cluster centers to be used by m particles. 
Step 3: For each particle, let each pixel x belong to a cluster in which it has the smallest  
Euclidean distance to the centroid. 
Step 4: For each input pixel the cluster center of the cluster which it belongs to is considered 
as the BMU. Calculate new cluster centers using Eq. (17).  
Step 5: Save the best solution found so far performed by each particle. Call it pbest or 
personal best solution. 
Step 6: Save the best solution among the m personal best solutions found. Call it gbest or 
global best solution. 
Step 7: Update cluster centers of each particle according to the cluster center values of the 
pbest and gbest solution, using Eq. (8).  
Step 8: If the termination criterion is satisfied go to next step. Otherwise, go to Step 3. 
Step 9: Output the optimal solution. 

6. Simulation Results 
Experimental results from our proposed hybrid algorithms were compared with those of the 
K-means and the SCL algorithms, and discussed in this section. Since the SCL is very 
dependent on the learning rate, i.e. ∆(t) in Eq. (17), we performed some experiments on 
choosing a value for ∆(t). Considering that ∆(t) is a monotonically slowly decreasing 
function of t and its value is between 0 and 1, we suggest the following formula: 
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where t and r denote iteration and a rate which is a constant that we obtained by 
experiments, respectively. The experiments were performed over 20 run trials on several 
different images, for r from 10 to 50 incrementing by 10. Two of them reported in this 
chapter. Experiments showed better results for r = 10. Therefore, the experiment was 
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repeated similarly but this time for r from 1 to 10 incrementing by 1. This experiment 
showed better results for r between 1 and 5. In our experiments r is chosen to be 2. 

The ACO-K-means and ACO-SCL algorithms were shown to be dependant on 
parameterization as well. Parameters used in these algorithms, other than r include κ, Q, ρ, 
α, and β. Parameters α, β and κ are used to keep the values of τ and η in the same order. 
Parameter Q controls the added amount of pheromone and ρ eliminates the influence of the 
earlier added pheromone. Considering that r should be between 1 and 5 from the previous 
experiment, r was chosen to be 2. Evaporation factor was set to be ρ = 0.8. According to the 
performance of the experiments, parameters κ and Q were shown to have little influence on 
the results, while α and β were more influential. The parameter values tested were as 
follows: κ =1000 and 10000, Q =10 and 100, α =0.1 to 50 incrementing by 10, and β =0.1 to 50 
incrementing by 10. Each experiment was performed for 20 run trials on each image. There 
were unacceptable results when β =0.1. There were good results when α =0.1, for images 
shown here but they were unstable. There were some sets of parameters that still did well 
for one of the images but not for the other. Knowing that α should be small while β 
should not be small, we set up another experiment: κ =1000 and 10000, Q =10 and 100, α 
=0.1 to 2 incrementing by 0.1, β =50 to 5 decrementing by 5. All the results were 
acceptable but not all of them were stable. So in this experiment stability of the results 
was examined. Experimental results show that β should not be very large, otherwise it 
becomes unstable. When β is chosen to be 5 and α is between 0.1 and 2, the result showed 
to be more stabled. From these sets of experiments, the chosen parameters are as follows:  r 
= 2, ρ = 0.8, α = 2, β = 5, κ = 1000, and Q = 10. The number of ants was chosen to be m = 5. 

The PSO-K-means and PSO-SCL algorithms also include a set of parameters to be 
determined empirically. The parameters were chosen as suggested by (van der Merwe and 
Engelbrecht, 2003) which resulted in good convergence. Parameters were set as follows: c1 , 
c2 = 1.49 and ω = 0.72. The number of ants was chosen to be m = 10. 

We examined the proposed hybrid algorithms and compared the results with those of the K-
means and the SCL algorithms in Figs. 2 to 5. Images used include flamingo, cubes, aurora 
and river. The number of clusters to be found in all images is 3 except for cubes which is 4. 
The most dominant results of the algorithms over 20 different run trials are presented. The 
improvement of the ACO and PSO on the K-means algorithm is obvious in all of the images 
tested. In cubes, flamingo and Aurora images it can be seen that the K-means algorithm has 
unstable results and in some cases it misses some clusters while the ACO-K-means and 
PSO-K-means algorithms are more stable and they clearly recognize the clusters. In the river 
image the results show that the K-means algorithm can generate stable results and the ACO-
K-means algorithm seems to be less stable, but it is apparent that even for this image, the 
ACO-K-means algorithm can improve the classification results. This is also the case with the 
ACO-SCL and PSO-SCL algorithms as opposed to SCL in Aurora image. Results on Aurora 
image clearly show that the ACO and PSO algorithms can improve the SCL in cases where 
the SCL algorithm is trapped into local optima. To further investigate the behavior of the 
algorithms described, we obtained the classification accuracy percentage of the results on 
the river image. Each algorithm is run 30 times on the river image, shown in Fig. 5 (a). Then ,  
by comparing the classification results with the ground truth data, shown in Fig. 5 (h), the 
error matrix for each classified image is calculated. The best, worst and average cases are 
shown in Fig. 6. The stability of the SCL algorithm over the ACO-SCL and the PSO-SCL 
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algorithms can be inferred from this figure. But, as it was stated before in the aurora image 
this stable result is not always a global optima. Similarly, it can be inferred from Fig. 6  that 
the K-means algorithm is more stable than the ACO-K-means algorithm  in the case of river 
image. Nevertheless, results of the ACO-K-means algorithm include some very good results 
with much higher classification accuracy percentage than those of the K-means algorithm.  
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(e) (f) (g1) (g2) (g3) 

Figure 2. The most dominant classified results among 20 runs (a) Original image, (b1 & b2) 
K-means (c) Hybrid ACO-K-means, (d) Hybrid PSO-K-means, (e) SCL, (f) Hybrid ACO-SCL, 
(g1, g2, & g3) Hybrid PSO-SCL 
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Figure 3. The most dominant classified results among 20 runs (a) Original image, (b1, b2, b3 
& b4) K-means, (c) Hybrid ACO-K-means, (d) Hybrid PSO-K-means, (e) SCL, (f) Hybrid 
ACO-SCL, (g) Hybrid PSO-SCL 
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repeated similarly but this time for r from 1 to 10 incrementing by 1. This experiment 
showed better results for r between 1 and 5. In our experiments r is chosen to be 2. 

The ACO-K-means and ACO-SCL algorithms were shown to be dependant on 
parameterization as well. Parameters used in these algorithms, other than r include κ, Q, ρ, 
α, and β. Parameters α, β and κ are used to keep the values of τ and η in the same order. 
Parameter Q controls the added amount of pheromone and ρ eliminates the influence of the 
earlier added pheromone. Considering that r should be between 1 and 5 from the previous 
experiment, r was chosen to be 2. Evaporation factor was set to be ρ = 0.8. According to the 
performance of the experiments, parameters κ and Q were shown to have little influence on 
the results, while α and β were more influential. The parameter values tested were as 
follows: κ =1000 and 10000, Q =10 and 100, α =0.1 to 50 incrementing by 10, and β =0.1 to 50 
incrementing by 10. Each experiment was performed for 20 run trials on each image. There 
were unacceptable results when β =0.1. There were good results when α =0.1, for images 
shown here but they were unstable. There were some sets of parameters that still did well 
for one of the images but not for the other. Knowing that α should be small while β 
should not be small, we set up another experiment: κ =1000 and 10000, Q =10 and 100, α 
=0.1 to 2 incrementing by 0.1, β =50 to 5 decrementing by 5. All the results were 
acceptable but not all of them were stable. So in this experiment stability of the results 
was examined. Experimental results show that β should not be very large, otherwise it 
becomes unstable. When β is chosen to be 5 and α is between 0.1 and 2, the result showed 
to be more stabled. From these sets of experiments, the chosen parameters are as follows:  r 
= 2, ρ = 0.8, α = 2, β = 5, κ = 1000, and Q = 10. The number of ants was chosen to be m = 5. 

The PSO-K-means and PSO-SCL algorithms also include a set of parameters to be 
determined empirically. The parameters were chosen as suggested by (van der Merwe and 
Engelbrecht, 2003) which resulted in good convergence. Parameters were set as follows: c1 , 
c2 = 1.49 and ω = 0.72. The number of ants was chosen to be m = 10. 

We examined the proposed hybrid algorithms and compared the results with those of the K-
means and the SCL algorithms in Figs. 2 to 5. Images used include flamingo, cubes, aurora 
and river. The number of clusters to be found in all images is 3 except for cubes which is 4. 
The most dominant results of the algorithms over 20 different run trials are presented. The 
improvement of the ACO and PSO on the K-means algorithm is obvious in all of the images 
tested. In cubes, flamingo and Aurora images it can be seen that the K-means algorithm has 
unstable results and in some cases it misses some clusters while the ACO-K-means and 
PSO-K-means algorithms are more stable and they clearly recognize the clusters. In the river 
image the results show that the K-means algorithm can generate stable results and the ACO-
K-means algorithm seems to be less stable, but it is apparent that even for this image, the 
ACO-K-means algorithm can improve the classification results. This is also the case with the 
ACO-SCL and PSO-SCL algorithms as opposed to SCL in Aurora image. Results on Aurora 
image clearly show that the ACO and PSO algorithms can improve the SCL in cases where 
the SCL algorithm is trapped into local optima. To further investigate the behavior of the 
algorithms described, we obtained the classification accuracy percentage of the results on 
the river image. Each algorithm is run 30 times on the river image, shown in Fig. 5 (a). Then ,  
by comparing the classification results with the ground truth data, shown in Fig. 5 (h), the 
error matrix for each classified image is calculated. The best, worst and average cases are 
shown in Fig. 6. The stability of the SCL algorithm over the ACO-SCL and the PSO-SCL 
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algorithms can be inferred from this figure. But, as it was stated before in the aurora image 
this stable result is not always a global optima. Similarly, it can be inferred from Fig. 6  that 
the K-means algorithm is more stable than the ACO-K-means algorithm  in the case of river 
image. Nevertheless, results of the ACO-K-means algorithm include some very good results 
with much higher classification accuracy percentage than those of the K-means algorithm.  
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Figure 3. The most dominant classified results among 20 runs (a) Original image, (b1, b2, b3 
& b4) K-means, (c) Hybrid ACO-K-means, (d) Hybrid PSO-K-means, (e) SCL, (f) Hybrid 
ACO-SCL, (g) Hybrid PSO-SCL 

 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 176 

     
(a) (b1) (b2) (c1) (c2) 
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Figure 4. The most dominant classified results among 20 runs (a) Original image, (b1 & b2) K-
means, (c1 & c2) Hybrid ACO-K-means, (d) Hybrid PSO-K-means, (e) SCL, (f) Hybrid ACO-
SCL, (g) Hybrid PSO-SCL 
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Figure 5. The most dominant classified results among 20 runs (a) Original image, (b) K-
means, (c) Hybrid ACO-K-means, (d) Hybrid PSO-K-means, (e) SCL, (f) Hybrid ACO-SCL, 
(g) Hybrid PSO-SCL, (h) The ground truth data 

Besides, the stability of the K-means algorithm over the ACO-K-means algorithm inferred 
from fig. 6, is a particular case, i.e. for the river image. The K-means algorithm is not stable 
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in general. In fact in the case of flamingo and cubes, ACO-K-means algorithm produced 
more stabled results compared to K-means algorithm. 
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Figure 6. Comparison of the results generated by algorithms using error matrix evaluation 
on the river image 

7. Conclusion 
Experimental results showed that SI techniques can improve the K-means and the SCL 
algorithms in recognizing the clusters. The K-means algorithm often fails to realize clusters 
since it is heavily dependent on the initial cluster centers. The ACO-K-means and PSO-K-
means algorithms provides a larger search space compared to the K-means algorithm. By 
employing these algorithms for clustering, the influence of the improperly chosen initial 
cluster centers will be diminished over a number of iterations. Therefore, these algorithms 
are less dependent on randomly chosen initial seeds and is more likely to find the global 
optimal solution. 
We have also shown that SI can be beneficial to the SCL algorithm. SI can help SCL find the 
global optima using the same parameter set and learning rate as those used in the SCL and 
recognize the clusters where the SCL fails to do, in some cases. This can be advantageous 
since for SCL to find the global optima the learning rate should be adjusted in the course of 
experimentation. 
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in general. In fact in the case of flamingo and cubes, ACO-K-means algorithm produced 
more stabled results compared to K-means algorithm. 
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since it is heavily dependent on the initial cluster centers. The ACO-K-means and PSO-K-
means algorithms provides a larger search space compared to the K-means algorithm. By 
employing these algorithms for clustering, the influence of the improperly chosen initial 
cluster centers will be diminished over a number of iterations. Therefore, these algorithms 
are less dependent on randomly chosen initial seeds and is more likely to find the global 
optimal solution. 
We have also shown that SI can be beneficial to the SCL algorithm. SI can help SCL find the 
global optima using the same parameter set and learning rate as those used in the SCL and 
recognize the clusters where the SCL fails to do, in some cases. This can be advantageous 
since for SCL to find the global optima the learning rate should be adjusted in the course of 
experimentation. 

 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 178 

8. References 
Dorigo, M.; Maniezzo, V. & Colorni, A. (1996). Ant system: optimization by a colony of 

cooperating agents, In: IEEE Transactions on Systems, Man and Cybernetics, Part B, 
Vol. 26, 1996, pp. 29-41 

Gonzalez, R.C. & Woods, R.E. (1992). Digital Image Processing. Addison-Wesley, 1992 
Hertz, J.; Krogh, A. & Palmer R.G. (1991). Introduction to the theory of neural computation, 

Addison-Wesley, Redwood City, 1991 
Hung C.C. (1993). Competitive learning networks for unsupervised training, INT. J. Remote 

Sensing, vol. 14, no. 12, 1993, pp. 2411-2415 
Kaewkamnerdpong, B. & Bentley, P.J. (2005). Perceptive Particle Swarm Optimisation: an 

Investigation, IEEE Swarm Intelligence Symposium, pp. 169-176, Pasadena, CA, USA, 
June, 2005 

Kennedy, J. & Eberhart, R. (1995). Particle Swarm Optimization, In: Proceedings of IEEE 
International Conference on Neural Networks, pp.1942-1948, 1995 

Li, Y. & Xu, Z. (2003). An Ant Colony Optimization Heuristic for Solving Maximum 
Independent Set Problems, In: Proceedings of the 5th International Conference on 
Computational Intelligence and Multimedia Applications, pp. 206-211, Xi'an, China, 
Sept. 2003 

McQueen, J.B. (1967). Some Methods of Classification and Analysis of Multivariate 
Observations, In L. M. LeCam and J. Neyman, editors, Proceedings of the Fifth 
Berkeley Symposium on Mathematical Statistic and Probability, pp. 281-297, University 
of California Press, Berkley, CA, 1967 

Omran, M.; Salman, A. & Engelbrecht, A.P. (2002). Image Classification Using Particle 
Swarm Optimization, 2002 

Pham, D.T. & Karaboga, D. (2000). Intelligent Optimization Techniques: Genetic Algorithms, 
Tabu Search, Simulated Annealing and Neural Networks, Springer, 2000 

Rumelhart, D.E. & Zipser, D. (1986). Feature discovery by competitive learning, In Parallel 
Distributed Processing: Explorations in the Microstructure of Cognition, eds. J.L. 
McClelland & D.E. Rumelhart, MIT Press, Cambridge, M.A., 1986, pp. 151-193 

Saatchi, S. & Hung, C.C. (2005). Hybridization of the Ant Colony Optimization with the K-
means Algorithm for Clustering, Image Analysis, Proceedings Lecture Notes in 
Computer Science 3540, 2005, pp. 511- 520 

Saatchi, S.; Hung, C.C. & Kuo, B.C. (2006). A comparison of the improvement of k-means 
and simple competitive learning algorithms using ant colony optimization, In 
Proceedings of the 7th International Conference on Intelligent Technology, Taipei, 
Taiwan, December, 2006 

Tou, J.T. & Gonzalez, R.C. (1974). Pattern Recognition Principles, Addison-Wesley, 1974  
van der Merwe, D.W. & Engelbrecht A.P. (2003). Data Clustering Using Particle Swarm 

Optimization, 2003 Congress on Evolutionary Computation, 2003, pt. 1, Vol.1, pp. 215-
220 

Wilson, E.O. (1975). Sociobiology: the new synthesis, Belk Press, Cambridge, MA, 1975 
Zheng, H.; Zheng, Z. & Xiang Y. (2003). The application of ant colony system to image 

textute classification [textute read texture], In: Proceedings of the 2nd International 
Conference on Machine Learning and Cybernetics, vol. 3, pp. 1491-1495, Xi'an, China, 
Nov. 2003 

 

 

11 

Particle Swarm Optimization – Stochastic 
Trajectory Analysis and Parameter Selection 

M. Jiang, Y. P. Luo and S. Y. Yang 
Tsinghua University 

China 

1. Introduction 
Two important topics in Particle Swarm Optimization (PSO) research filed are trajectory 
analysis of particles and parameter selection method. Trajectory analysis is important 
because it can help to determine where the position of each particle is at each evolutionary 
step, and consequently it can help to clarify the running mechanism of PSO algorithm, so as 
to explain why and when PSO algorithm can be successful to solve optimization problems. 
Parameter selection of PSO algorithm is important because the performance of PSO 
algorithm is sensitive to the chosen parameters. 
Till now, some research works have been published in literatures to investigate both of these 
two topics, but unfortunately, the trajectory analysis is based on simplified deterministic 
algorithms, regardless of the randomness in real PSO algorithm; and the parameter selection 
is based on experimental results instead of theoretical results. 
This chapter is proposed to investigate both of these two important topics. In this chapter, 
the trajectory of particle in a general PSO algorithm is theoretically investigated, considering 
the randomness thoroughly. For arbitrary dimension d of an arbitrary particle i in the 
general particle swarm system, the update equations investigated in this chapter are given 
in Eqs. (1) and (2), where t is the evolutionary  step, V is the velocity of particle i, X is the 
position of particle i, Pi is the history best position found by particle i, and Pg is the history 
best position found by the total swarm. 

 ))()()(())()()(()()1( ,22,11 tXtPtrctXtPtrctVtV d
i

d
g

d
i

d
i

d
i

d
i

d
i

d
i −+−+=+ ω  (1) 

 )1()()1( ++=+ tbVtaXtX d
i

d
i

d
i   (2) 

By regarding each particle's position on each evolutionary step as a stochastic vector, the 
general PSO algorithm determined by five-dimensional parameter tuple {ω, c1, c2, a, b} is 
formally analyzed using stochastic process theory. Because the position of particle at each 
step is stochastic and can not be determined directly, its expected value and variance are 
investigated instead of the position itself. To make the analysis possible, the particle swarm 
is supposed to be in stagnation phase.  
At the same time, the relationship between convergent speed of particle’s trajectory and 
parameter sets is studied. Those results give some hints on how the chosen parameters can 
influence the performance of PSO algorithm, and thus parameter selection guideline is 
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1. Introduction 
Two important topics in Particle Swarm Optimization (PSO) research filed are trajectory 
analysis of particles and parameter selection method. Trajectory analysis is important 
because it can help to determine where the position of each particle is at each evolutionary 
step, and consequently it can help to clarify the running mechanism of PSO algorithm, so as 
to explain why and when PSO algorithm can be successful to solve optimization problems. 
Parameter selection of PSO algorithm is important because the performance of PSO 
algorithm is sensitive to the chosen parameters. 
Till now, some research works have been published in literatures to investigate both of these 
two topics, but unfortunately, the trajectory analysis is based on simplified deterministic 
algorithms, regardless of the randomness in real PSO algorithm; and the parameter selection 
is based on experimental results instead of theoretical results. 
This chapter is proposed to investigate both of these two important topics. In this chapter, 
the trajectory of particle in a general PSO algorithm is theoretically investigated, considering 
the randomness thoroughly. For arbitrary dimension d of an arbitrary particle i in the 
general particle swarm system, the update equations investigated in this chapter are given 
in Eqs. (1) and (2), where t is the evolutionary  step, V is the velocity of particle i, X is the 
position of particle i, Pi is the history best position found by particle i, and Pg is the history 
best position found by the total swarm. 
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By regarding each particle's position on each evolutionary step as a stochastic vector, the 
general PSO algorithm determined by five-dimensional parameter tuple {ω, c1, c2, a, b} is 
formally analyzed using stochastic process theory. Because the position of particle at each 
step is stochastic and can not be determined directly, its expected value and variance are 
investigated instead of the position itself. To make the analysis possible, the particle swarm 
is supposed to be in stagnation phase.  
At the same time, the relationship between convergent speed of particle’s trajectory and 
parameter sets is studied. Those results give some hints on how the chosen parameters can 
influence the performance of PSO algorithm, and thus parameter selection guideline is 
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given. According to the analysis result, it is believed that parameters {a, b} would only 
increase the complexity of PSO algorithm without enhancing performance of PSO 
algorithm, thus it is suggested to fix both of them to be 1 in PSO algorithm. For more details, 
see Section 4. 
Then, a set of suggested parameter {ω=0.715, c1=c2=1.7} is given, which is compared against 
three sets of parameters which are proposed in literatures. 
The structure of this chapter is as follows. Section 2 overviews related works. Stochastic 
convergence analysis of the general PSO algorithm is investigated in Section 3. Some 
parameter selection guidelines are given in Section 4; and a set of parameters is suggested. 
In Section 5, experiments are conducted to compare different parameter sets. Section 6 
concludes this chapter. 

2. Related Works 
Ozcan and Mohan published the first theoretical studies of particle trajectories (Ozcan & 
Mohan, 1998; Ozcan & Mohan, 1999). In their first study (Ozcan & Mohan, 1998), a 
simplified PSO system was considered with 
• one partcle in the swarm, 
• one-dimensional particles, 
• Pi=Pg=P keeps constant, 
• no inertia weight, i.e. 1=ω , 
• no stochastic component, i.e. 222111 )(,)( ctct ==== φφφφ  for all t. 
Later, Ozcan and Mohan generalized their findings to a PSO system with multiple, multi-
dimensional particles with Pi and Pg not necessarily the same point (Ozcan & Mohan, 1999). 
For the more general system, Ozcan and Mohan derived the following particle position 
update equation (Ozcan & Mohan, 1999): 

 gjijijijij PPtXtXtX 2121 )2()1()2()( φφφφ +=−+−−−−  (3) 

From Eq. (3), when  40 21 <+< φφ , the following closed form can be easily obtained: 

 ijijijijijij tttX κθθ +Γ+Λ= )cos()sin()(  (4) 

where ijΛ , ijΓ , ijθ  and ijκ  are constants derived from the initial conditions and the value 
of 1φ  and 2φ : 
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The main conclusion from their work is that particle trajectories follow periodic sinusoidal 
waves. An optimum is searched by randomly 'catching’ another wave, and manipulating its 
frequency and amplitude. In addition to this general finding, Ozcan and Mohan studied the 
trajectories of particles under a number of special cases. 
For the same simple PSO system as given above, Clerc and  Kennedy provided a theoretical 
analysis of particle trajectories to ensure convergence to a stable point (Clerc & Kennedy, 
2002), 
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the main result of this work is the introduction of the constriction coefficient, which is 
derived to prevent the velocity to grow out of bounds, with the advantage that, 
theoretically, velocity clamping is no longer required. In addition, Clerc and Kennedy also 
studied several different classes of constriction models. As a result of this study, the velocity 
update equation changes to (Clerc & Kennedy, 2002) 
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where χ is the constriction coefficient calculated as 
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with 421 ≥+= φφφ  and κ�[0, 1]. The constant κ controls the speed of convergence. For κ≈0, 
fast convergence to a stable points is obtained, while a κ≈1 results in slow convergence. 
Both above two studies consider a simplified PSO system without an inertia weight, i.e. only 
the simple situation with 1=ω  is studied. van den Bergh analyzed the convergence of the 
PSO algorithm with inertia weight (van den Bergh, 2001). Considering the velocity and 
position of a particle at discrete time steps, the following non-homogeneous recurrence 
relation is obtained: 
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The characteristic equation corresponding to the recurrence relation  is 
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where 

 ωφφωγ 4)1( 2
21 −−−+=  (17) 

For initial conditions 0)0( XX =  and 1)1( XX = , the explicit closed form of the recurrence 
relation is then given by 

 tt
t kkkX 23121 λλ ++=  (18) 

where 

 
21

21
1 φφ

φφ
+
+

= gi PP
k  (19) 

 
)1(

)(

1

21102
2 −

+−−=
λγ

λ XXXXk  (20) 

 
)1(

)(

2

21011
3 −

−+−=
λγ

λ XXXXk  (21) 

and gi PPXXX 2101212 )1( φφωφφω ++−−−+= . 
Note that the above equation assumes that ii PtP =)(  and gg PtP =)(  for all t. The closed form 
representation in Eq. (18) therefore remains valid until a better position X (and thus Pi and  
Pg) is discovered. When a better position is discovered, the above equations can be used 
again after recalculating the coefficients k1, k2 and k3. 
van den Bergh only discussed the situation with imaginary eigenvalues, i.e. 

ωφφω 4)1( 2
21 <−−+ . He obtained the conclusion that when { } 1,max 21 <λλ , the particle’s 

position sequence will  converge and 
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That means, under the condition that { } 1,max 21 <λλ , a particle converges to a weighted 
average of its individual best and global best positions. 
In the case that 1φ  and 2φ  are stochastic, the average behavior of the system can then be 
observed by considering the expected values of 1φ  and 2φ  (assuming uniform distribution): 

2/][ 11 cE =φ , 2/][ 22 cE =φ . Using the expected values, the limit becomes 
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where ]1,0[)/( 212 ∈+= ccca . 
Furthermore, with experimental analysis, van den Bergh proposed parameter range to 
satisfy the condition of { } 1,max 21 <λλ , i.e., 12/)( 21 −+> ccω . van den Bergh also 
discussed on convergence of particle trajectory with certain parameters, but the 
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experimental results did not conform to his conjecture. This disagreement was informally 
explained by stochastic probability.  
Some other similar results were proposed by Yasuda (Yasuda et al, 2003) and Trelea (Trelea, 
2003). Although those results provide insights into how particle swarm system works, all 
those analysis discard the randomness in the PSO algorithm, and are all based on a 
simplified deterministic algorithm. Obviously, those analytical results more or less deviate 
from the real particle swarm system due to the loss of randomness. Recently, researchers 
have begun to make progress in the analysis of randomness in PSO algorithm. Clerc (Clerc, 
2006) mathematically analyzed the stochastic behavior of the particles when the swarm is in 
stagnation, but he only discussed properties of stochastic coefficients and did not regard the 
velocity (and position) as stochastic variable, and thus he seemed unaware of the dependent 
relationship between velocity and the stochastic coefficients. Later, Jiang (Jiang et al, 2007a) 
extended Clerc’s results by regarding each particle's position on each evolutionary step as a 
stochastic vector. Then the PSO algorithm was analyzed using stochastic process theory. 
Some stochastic characteristics (including expected value, variance, and auto-variance) of 
particle's position are obtained, both in explicit and implicit representations, and 
corresponding properties are analyzed.  
Jiang (Jiang et al, 2007b) present the first formal stochastic convergence analysis of the 
standard particle swarm optimization (PSO) algorithm, which involves with randomness. 
By regarding each particle's position on each evolutionary step as a stochastic vector, the 
standard PSO algorithm determined by non-negative real parameter tuple {ω, c1, c2} was 
analyzed using stochastic process theory. The stochastic convergent condition of the particle 
swarm system and corresponding parameter selection guidelines were also derived. 

3. Stochastic Convergence Analysis of PSO in Stagnation 
In this section, stochastic convergence analysis of the particle swarm system is conducted, 
assuming the particle swarm is in stagnation. The particle swarm system is thought to be in 
stagnation, if arbitrary particle i’s history best position Pi and the total swarm’s history best 
position Pg keep constant over some time steps.  
There exist many factors that would influence the convergence property and performance of 
PSO algorithm, including selection of parameter tuple {ω, c1, c2, a, b}; velocity clamping; 
position clamping; topology of neighborhood; etc. This chapter focuses on analyzing how 
the selection of parameter tuple {ω, c1, c2, a, b} would influence the trajectories of particles in 
the PSO algorithm. Factors such as velocity clamping, position clamping, topology of 
neighborhood may influence the trajectories of particles, but the discussion of those factors 
is beyond the scope of this chapter. At the same time, the situation with variable parameter 
values during evolution is also not discussed here. That means, the PSO algorithm studied 
here is only determined by fixed real-value parameter set {ω, c1, c2, a, b}. Velocity and 
position clamping are not considered, and the neighborhood of any particle is the whole 
swarm.  
When the particle swarm system is in stagnation, arbitrary Pi and Pg would keep constant 
over some time steps, then it’s easy to find out that all particles would evolve 
independently. Thus, only particle i needs to be studied. For i is chosen arbitrarily, the result 
can be applied to all other particles. At the same time, it appears from Eqs. (1) and (2) that 
each dimension is updated independently. Thus, without loss of generality, the algorithm 
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description can be reduced to the one-dimensional case. By omitting particle and dimension 
notations, and considering discrete time situation, update equations become: 

 )()( ,22,111 tgttittt XPrcXPrcVV −+−+=+ ω  (24) 

 11 ++ += ttt bVaXX  (25) 

It’s obviously that the velocity is only an auxiliary variable, and the position is the real 
significant variable. By substituting Eq. (24) into Eq. (25), the following non-homogeneous 
recurrence relation is obtained: 

 gtitttttt PbrcPbrcXaXbrcbrcaX ,22,111,22,111 )( ++−−−+= −+ ωω  (26) 

From Eq. (26), it’s easy to know that single value of coefficients 1c  and b  is not important at 
all. The important factor is the multiple bc1 . Coefficient 2c  and b  share the same 
relationship. Thus, without loss of generality, we can choose 1≡b  if 0≠b . As a matter of 
fact, when 0=b , it’s easy to get )0()1( 1 d

i
td

i XatX +=+  from Eq. (2), whose convergence 
condition is 1≤a . This case is not an interesting one, thus it is supposed that 0≠b  in 
following analysis. Thus we can suppose 1≡b , and the iteration equation becomes 

 gtitttttt PrcPrcXaXrcrcaX ,22,111,22,111 )( ++−−−+= −+ ωω  (27) 

Notice that there exist random numbers in Eq. (27), and that X0, X1 are also random 
numbers, thus each Xt should be regarded as a random variable, and the iterative process 
{Xt} should be regarded as a stochastic process. The expectation and variance of each 
random variable Xt can then be calculated, and the convergence property of the iterative 
process can be analyzed. 

3.1 Convergence analysis of the expectation of particle's position 
In this subsection, the iteration equation of EXt is obtained, where EXt is the expectation of 
random variable Xt. Based on the iteration equation, the convergent condition of sequence 
{EXt} is analyzed. 
According to Eq. (27), iteration equation of sequence {EXt} can be easily obtained. 
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The characteristic equation of the iterative process shown in Eq. (28) is 

 0)
2

( 212 =++−+− ωλωλ acca  (29) 

Theorem 1. If and only if conditions 11 <<− ωa  and )1)(1(2)1)(1(2 21 acca ++<+<−− ωω  
are satisfied together, iterative process {EXt} is guaranteed to converge to 

])1)(1(2/[)( 2121 ccaPcPcEX gi ++−−+= ω . 
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Proof:  Let 2/)( 21 cca +−+= ωψ , the convergent condition of iterative process {EXt} is that 
the absolute values (or complex modulus) of both eigenvalues 1Eλ , 2Eλ  are less than 1. 

That is, 12/42 <−± ωψψ a . Consider two cases: 

1. ωψ a42 <  

Here, both eigenvalues are complex numbers, ωψωψλλ aaEE =−+== 4/)4( 222
2

2
1 , so 

{ } 1,max 21 <λλ  requires only 1<ωa . Condition (1) itself requires 0>ωa  and 

)2(2)2(2 21 ωωωω aaccaa ++<+<−+ . 

2. ωψ a42 ≥  
Here, both eigenvalues are real numbers. Condition (2) is satisfied if 

0≤ωa ; 
or 

0>ωa , and )2(221 ωω aacc ++≥+  or )2(221 ωω aacc −+≤+ . Consider two more 
cases.  

0<ψ  
Here { } 1,max 21 <EE λλ  requires }a)(1)1(2 ),2(2min{21 ++++<+ ωωacc . 
Conditions (2) and (2.1) together lead to 

10 << ωa  and )1)(1(2)2(2 21 accaa ++<+≤++ ωωω ; 
or 

01 ≤<− ωa  and )1)(1(2)(2 21 acca ++<+≤+ ωω ; 
0≥ψ  
Here { } 1,max 21 <EE λλ  requires }1)(a)1(2 ),2(2max{21 −−−+>+ ωω acc . 
Conditions (2) and (2.2) together lead to 

10 << ωa  and )2(21)(a)1(2 21 ωωω aacc −+<+≤−− ; 
or 

01 ≤<− ωa  and )(2)1)(1(2 21 ωω +<+≤−− acca ; 
Synthesize case (1) and case (2), the guaranteed convergent condition of 
iterative process {EXt} is  

11 <<− ωa  and )1)(1(2)1)(1(2 21 acca ++<+<−− ωω . 
When iterative process {EXt} is convergent, the convergent value EX can be calculated using 

2/)()2/)(( 2121 gi PcPcEXaEXccaEX ++−+−+= ωω . That gets 
])1)(1(2/[)( 2121 ccaPcPcEX gi ++−−+= ω .  

It’s easy to know that, even if sequence }{ tEX can converge, generally speaking, gPEX ≠  is 
always true. 

3.2 Convergence analysis of the variance of particle's position 
To further study the convergence property of particle swarm, the variance sequence should 
be studied. In this subsection, the iteration equation of DXt is obtained, where DXt is the 
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variance of random variable Xt. Based on the iteration equation, the convergent condition of 
sequence {DXt} is analyzed. 
In order to make the procedure of calculating DXt clear, some symbols should be introduced 
firstly. Let ωϖ a= , 2/)( 21 cc +=υ , υωψ −+= a , υ−+= ttt rcrcR ,22,11 , 

gtitt PrcPrcQ ,22,11 += , from Eq. (27), it is easy to ontain that 

 ttttt QXXRX +−−= −+ 11 )( ϖψ  (30) 

Since tr ,1 , tr ,2  are two independent uniform random number ranged in [0,1], it's obvious 

that 0=tER , 2/)( 21 git PcPcEQ += , 12/)( 2
2

2
1 ccDRt += , 12/)( 22

2
22

1 git PcPcDQ += , and 

12/)()( 2
2

2
1 gitt PcPcQRE += . Notice that tEQ , tDR , tDQ , and )( ttQRE  are all constants, let 

tE EQQ = , tDRR = , tD DQQ = , )( ttQRET = . 
If 0=R , that means 021 == cc , which is not an interesting case. Thus we suppose 0>R  in 
all following discussions . 
Notice that tX  and 1−tX  are both independent on tR  and tQ , but tX  and 1−tX  are 
dependent. Thus the following expectation can be obtained. 
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From Eqs. (31)-(33), eliminating )( 1 tt XXE +  and )( 1−tt XXE , get 
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Substitute Ettt QEXEXEX +−= ++ ϖψ 12 , Ettt QEXEXEX +−= +− 11 ψϖ  and 22 )( ttt EXEXDX −=  
into Eq. (34), obtain 
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The characteristic equation of the iterative process shown in Eq. (35) is 

 0)()( 32223 =−−−+−+− ϖλϖψϖλϖψλ RR  (36) 

The iteration equation and characteristic equation of iterative process {DXt} are both quite 
complex, and it is hard to analyze these two equations directly. Fortunately, the convergent 
condition of the iterative process {DXt} defined in Eq. (35) is comparatively simple. Before 
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discussing convergence property of iterative process {DXt}, we can firstly determine the 
intervals in which the three eigenvalues of the characteristic equation are located. Let 

 32223 )()()( ϖλϖψϖλϖψλλ −−−+−+−= RRf  (37) 

First of all, consider two special cases.  
If 0=ϖ , then two among three eigenvalues are zeros. Without loss of generality, let 

032 == DD λλ , then 02
1 >+= RD ψλ .  

If 0=ψ , then ϖλ −=3D  and 1Dλ , 2Dλ  are roots of equation 022 =−− ϖλλ R . Since 0>R , 

get ϖϖλλ >++= 2/)4(},max{ 22
21 RRDD . Then ϖλλ <},min{ 21 DD  must be 

satisfied due to 3
321 ϖλλλ =DDD .   

Next consider two general cases. 
When 0>R , 0≠ψ  and 0>ϖ , it is easily verified that  

0)0( 3 <−= ϖf  ; 02)( 2 <−= Rf ϖϖ ; 02)( 22 <−=− ϖψϖf . 

According to conclusions in elementary mathematics, because )( ϖ−f , )0(f  and )(ϖf  have 
the same sign, the number of roots in the interval )0,( ϖ−  and ),0( ϖ  must both be even. 

Thus there must be at least one root located in interval ),( ∞ϖ  to satisfy 03
321 >=ϖλλλ DDD . 

When 0>R , 0≠ψ  and 0<ϖ , it is easily verified that  

0)0( 3 >−= ϖf  ; 02)( 2 <−= Rf ϖϖ ; 02)( 22 <−=− ϖψϖf . 

Likely, according to conclusions in elementary mathematics, there must be one root located 
in the interval )0,(ϖ  and one root located in the interval ),0( ϖ− . The third root must be 

located in the interval  ),( ∞−ϖ  to satisfy 03
321 <=ϖλλλ DDD . 

Without loss of generality, suppose 321 DDD λλλ ≥≥ , then it is clear that relationship 

321max DDDD λλϖλλ ≥≥>=  exists, and 1Dλ  must be a positive real number. 
Theorem 2. Given 0>R , if and only if 11 <<− ϖ  and 0)1( >f  are satisfied together, it is 
guaranteed that 1},,max{ 321max <= DDDD λλλλ . 

Proof: Obviously, If 1≥ϖ , then 1max ≥> ϖλ D , which violate 1},,max{ 321 <DDD λλλ . 
Thus only cases with 11 <<− ϖ  needs to be discussed. At this point, if and only if 0)1( >f , 
it is guaranteed that Dmaxλ  is located in the interval )1,(ϖ . □ 
As a matter of fact, conditions 11 <<− ϖ  and 0)1( >f  satisfied together implies that 

)1)(1(2)1)(1(2 21 acca ++<+<−− ωω . Because 22 )1()1()1()1()1( ψϖϖϖϖ −−+−−+= Rf , 

then 11 <<− ϖ  and 0)1( >f  lead to 222 )1()1/()1()1( ϖϖϖϖψ +<−+−+< R , that is 
)1)(1(2)1)(1(2 21 acca ++<+<−− ωω . 

Theorem 3. Given 0>R , if and only if 11 <<− ϖ  and 0)1( >f  are satisfied together, 
iterative process {DXt} is guaranteed to converge to 
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where )1(f  is defined in Eq. (37). 
Proof : The iteration equation of DXt, Eq. (35), contains items related to EXt, thus the 
condition shown in Theorem 1 should be satisfied firstly to make DXt convergent. As stated 
above, 11 <<− ϖ  and 0)1( >f  implies that )1)(1(2)1)(1(2 21 acca ++<+<−− ωω . Thus 
conditions 11 <<− ϖ  and 0)1( >f  together make sure that the conditions stated in Theorem 
1 are satisfied. 
After EXt is convergent, the convergent condition of iterative process {DXt} is that the 
absolute values(or complex modulus) of the three eigenvalues 1Dλ , 2Dλ , 3Dλ  are all less 
than 1. Theorem 2 proves that, 11 <<− ϖ  and 0)1( >f  are the necessary and sufficient 
condition of 1},,max{ 321 <DDD λλλ . 
Thus, 11 <<− ϖ  and 0)1( >f  together give the necessary and sufficient conditions to 
guarantee iterative process {DXt} convergent. If iterative process {DXt} is convergent, the 
convergent value can be easily calculated to be  
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It’s easy to know that, even if sequence }{ tDX can converge, generally speaking, the 
convergent value can not reach zero. 

4. Parameter Selection Guidelines 
Holland discussed the balance between exploration and exploitation that an algorithm must 
maintain (Holland, 1975). Exploration ability is related to the algorithm's tendency to 
explore new regions of the search space, while exploitation is the tendency to search a 
smaller region more thoroughly.  
Researchers in PSO community used to believe that inertia weight ω balances exploration 
and exploitation in PSO algorithm, but new theoretical results give a different new 
explanation (Jiang et al, 2007a). It is believed that inertia weight can not balance exploration 
and exploitation by itself in PSO algorithm. The factor to balance exploration and 
exploitation should be the value of Dmaxλ . The larger Dmaxλ  is, the stronger is the 
exploration ability of the PSO algorithm. An empirical evidence can be found in (Xie et al, 
2004), which shows that the relationship between exploration ability of PSO algorithm and 
inertia weight ω is not monotone. For more explanation about this matter, please refer to 
(Jiang et al, 2007a). 
It is widely accepted that PSO algorithm have a good global search ability, while its fine-
tune ability is relatively weak. That is to say, PSO algorithm can easily locate the good area 
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of the solution space in which good solutions are located, while the procedure to find the 
good solutions is not equally easy for PSO algorithm. Thus it is quite important for PSO 
algorithm to enhance local search ability. While in PSO algorithm determined by five-
dimensional parameter tuple {ω, c1, c2, a, b}, generally speaking, the expectation of each 
particle’s position can never reach Pg, and the variance of particle’s position can never drop 
to zero. This is not a desired property for PSO algorithm, for this will make the fine-tune 
ability of PSO algorithm even worse. 
If 0)1)(1( =−− ωa , then when Pi is equal to Pg, the expectation of particle’s position will 
converge to Pg, and the variance of particle’s position will converge to zero. This may help 
PSO algorithm to enhance fine-tune ability. Without loss of generality, suppose a=1. Then 
the PSO algorithm reduces to a simpler version totally determined by three-dimensional 
parameter tuple {ω, c1, c2}. For this simpler version, the following two corollaries apply.  
Corollary 1. For PSO algorithm determined by three-dimensional parameter tuple, if and 
only if conditions 11 <<− ω  and )1(40 21 ω+<+< cc  are satisfied together, iterative process 
{EXt} is guaranteed to converge to )/()( 2121 ccPcPcEX gi ++= . 
Corollary 2. For PSO algorithm determined by three-dimensional parameter tuple, given 

0>R , if and only if 11 <<− ω  and 0)1( >f  are satisfied together, iterative process {DXt} is 

guaranteed to converge to 6/)1(/)/()1()()( 2
21

22
21 fccPPccDX ig ++−= ω . 

It is easily verified that, in the simpler PSO version, when Pi is equal to Pg, the expectation of 
particle’s position will gradually converge to Pg, and the variance will gradually converge to 
zero. This means that the PSO algorithm can thoroughly search around the best position 
found so far. If the convergent speed of variance is slow, it is more likely to find good 
solutions in the good area. 
Below is the graphical illustrations of parameter ranges, which are determined by conditions 
shown in above two corollaries. 
The parameter range to guarantee the convergence of iterative process {EXt} is illustrated in 
Fig. 1. The cyan(light) area in Fig. 1 corresponds to case (1) discussed in Theorem 1, and the 
blue(dark) area in Fig. 1 corresponds to case (2) discussed in Theorem 1. 
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Figure 1 Parameter range to guarantee the convergence of iterative process {EXt}. The 
cyan(light) area corresponds to case with complex eigenvalues, the blue(dark) area 
corresponds to case with real eigenvalues 
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where )1(f  is defined in Eq. (37). 
Proof : The iteration equation of DXt, Eq. (35), contains items related to EXt, thus the 
condition shown in Theorem 1 should be satisfied firstly to make DXt convergent. As stated 
above, 11 <<− ϖ  and 0)1( >f  implies that )1)(1(2)1)(1(2 21 acca ++<+<−− ωω . Thus 
conditions 11 <<− ϖ  and 0)1( >f  together make sure that the conditions stated in Theorem 
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It’s easy to know that, even if sequence }{ tDX can converge, generally speaking, the 
convergent value can not reach zero. 

4. Parameter Selection Guidelines 
Holland discussed the balance between exploration and exploitation that an algorithm must 
maintain (Holland, 1975). Exploration ability is related to the algorithm's tendency to 
explore new regions of the search space, while exploitation is the tendency to search a 
smaller region more thoroughly.  
Researchers in PSO community used to believe that inertia weight ω balances exploration 
and exploitation in PSO algorithm, but new theoretical results give a different new 
explanation (Jiang et al, 2007a). It is believed that inertia weight can not balance exploration 
and exploitation by itself in PSO algorithm. The factor to balance exploration and 
exploitation should be the value of Dmaxλ . The larger Dmaxλ  is, the stronger is the 
exploration ability of the PSO algorithm. An empirical evidence can be found in (Xie et al, 
2004), which shows that the relationship between exploration ability of PSO algorithm and 
inertia weight ω is not monotone. For more explanation about this matter, please refer to 
(Jiang et al, 2007a). 
It is widely accepted that PSO algorithm have a good global search ability, while its fine-
tune ability is relatively weak. That is to say, PSO algorithm can easily locate the good area 
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good solutions is not equally easy for PSO algorithm. Thus it is quite important for PSO 
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dimensional parameter tuple {ω, c1, c2, a, b}, generally speaking, the expectation of each 
particle’s position can never reach Pg, and the variance of particle’s position can never drop 
to zero. This is not a desired property for PSO algorithm, for this will make the fine-tune 
ability of PSO algorithm even worse. 
If 0)1)(1( =−− ωa , then when Pi is equal to Pg, the expectation of particle’s position will 
converge to Pg, and the variance of particle’s position will converge to zero. This may help 
PSO algorithm to enhance fine-tune ability. Without loss of generality, suppose a=1. Then 
the PSO algorithm reduces to a simpler version totally determined by three-dimensional 
parameter tuple {ω, c1, c2}. For this simpler version, the following two corollaries apply.  
Corollary 1. For PSO algorithm determined by three-dimensional parameter tuple, if and 
only if conditions 11 <<− ω  and )1(40 21 ω+<+< cc  are satisfied together, iterative process 
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It is easily verified that, in the simpler PSO version, when Pi is equal to Pg, the expectation of 
particle’s position will gradually converge to Pg, and the variance will gradually converge to 
zero. This means that the PSO algorithm can thoroughly search around the best position 
found so far. If the convergent speed of variance is slow, it is more likely to find good 
solutions in the good area. 
Below is the graphical illustrations of parameter ranges, which are determined by conditions 
shown in above two corollaries. 
The parameter range to guarantee the convergence of iterative process {EXt} is illustrated in 
Fig. 1. The cyan(light) area in Fig. 1 corresponds to case (1) discussed in Theorem 1, and the 
blue(dark) area in Fig. 1 corresponds to case (2) discussed in Theorem 1. 
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Figure 1 Parameter range to guarantee the convergence of iterative process {EXt}. The 
cyan(light) area corresponds to case with complex eigenvalues, the blue(dark) area 
corresponds to case with real eigenvalues 
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The parameter ranges to guarantee the convergence of iterative process {DXt} are illustrated 
in Fig. 2-3. In Fig. 2, the relationship between c1 and c2 is illustrated. The relationship 
between lower and higher range of ω and c1, c2 are illustrated in Fig. 3. 
The parameter selection of PSO algorithm in literatures favors c1=c2=c, so more detailed 
discussion on this condition is given. The relationship between ω and c is illustrated in Fig. 
4, in which blue(dark) area is the parameter range to guarantee the convergence of 
expectation sequence of particle’s position, and the cyan(light) area is the parameter range to 
guarantee the convergence of variance sequence of particle’s position. 
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Figure 2 Relationship between c1 and c2 to guarantee the convergence of iterative process 
{DXt} 

 

 

 
Figure 3 Relationship between lower(left) and higher(right) range of ω and c1, c2 to 
guarantee the convergence of iterative process {DXt} 
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Figure 4 Relationship between ω and c when c1=c2=c to simultaneously guarantee the 
convergence of iterative processes {EXt} and {DXt} 

Based on the theoretical analysis results obtained above and related experimental results, in 
order to help PSO algorithm to search the solution space more thoroughly, it is necessary to 
determine parameters to make 1max ≈Dλ . Thus we propose a new set of parameters: 
{ω=0.715, c1=c2=1.7}. This set of parameters can help PSO algorithm to search the solution 
space thoroughly, slowly converge to the best position found so far, so as to find the optima 
with higher probability. In next section, the PSO algorithm using our suggested parameters 
will be compared against PSO algorithms using parameters suggested in literatures. 

5. Performance Comparison 
Parameter selection of PSO algorithm is quite important and have drawn attention from 
many researchers. Different researchers have proposed many different sets of parameters, 
such as 729.0=ω , 494.121 == cc (Clerc & Kennedy, 2002); 6.0=ω , 7.121 == cc (Trelea, 
2003); 729.0=ω , 2.0411 =c , 0.9482 =c (Carlisle & Dozier, 2001). For those parameters, 
corresponding Dmaxλ  can be calculated. When 729.0=ω  and 494.121 == cc , 942.0max =Dλ ; 
when 6.0=ω  and 7.121 == cc , 889.0max =Dλ ; and when 729.0=ω , 2.0411 =c , 0.9482 =c , 

975.0max =Dλ . Obviously, Dmaxλ  corresponding to all those three sets of parameters are all 
around 1, this may help to explain why the performance of PSO algorithm using those sets 
of parameters are promising. But it is easy to find out that Dmaxλ  corresponding to those 
parameters is still not large enough to enhance the exploration ability of PSO algorithm, so 
that the algorithm is often trapped in local optima. For above reasons, we propose a new set 
of parameters: ω=0.715, c1=c2=1.7 (corresponding to 995.0max =Dλ ), and performance 
comparison is conducted. 
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Based on the theoretical analysis results obtained above and related experimental results, in 
order to help PSO algorithm to search the solution space more thoroughly, it is necessary to 
determine parameters to make 1max ≈Dλ . Thus we propose a new set of parameters: 
{ω=0.715, c1=c2=1.7}. This set of parameters can help PSO algorithm to search the solution 
space thoroughly, slowly converge to the best position found so far, so as to find the optima 
with higher probability. In next section, the PSO algorithm using our suggested parameters 
will be compared against PSO algorithms using parameters suggested in literatures. 

5. Performance Comparison 
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many researchers. Different researchers have proposed many different sets of parameters, 
such as 729.0=ω , 494.121 == cc (Clerc & Kennedy, 2002); 6.0=ω , 7.121 == cc (Trelea, 
2003); 729.0=ω , 2.0411 =c , 0.9482 =c (Carlisle & Dozier, 2001). For those parameters, 
corresponding Dmaxλ  can be calculated. When 729.0=ω  and 494.121 == cc , 942.0max =Dλ ; 
when 6.0=ω  and 7.121 == cc , 889.0max =Dλ ; and when 729.0=ω , 2.0411 =c , 0.9482 =c , 

975.0max =Dλ . Obviously, Dmaxλ  corresponding to all those three sets of parameters are all 
around 1, this may help to explain why the performance of PSO algorithm using those sets 
of parameters are promising. But it is easy to find out that Dmaxλ  corresponding to those 
parameters is still not large enough to enhance the exploration ability of PSO algorithm, so 
that the algorithm is often trapped in local optima. For above reasons, we propose a new set 
of parameters: ω=0.715, c1=c2=1.7 (corresponding to 995.0max =Dλ ), and performance 
comparison is conducted. 
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No Free Lunch theorem (Wolpert & Macready, 1997) asserts that no algorithm can be better 
than any other, over all possible functions. Thus it does not seem interesting to demonstrate 
that the PSO algorithm with suggested parameters is good on some functions and not on 
others. What we hope for is a problem-solver that can work well with a wide range of 
problems. Thus, in the current exercises we combine results from a set of test functions, all 
of which are commonly used in experimentation with optimization algorithms. 
Based on three performance measures proposed by Mendes (Mendes et al, 2004), we 
compare several PSO algorithms with different sets of parameters. Those measures are 
average standardized optima, average success iterations and average success rate. 
1. Standardized Optima 
The first measure is simply the best function result after some arbitrary number of iterations; 
here we use 2,000. Basically this is a measure of sloppy speed. It does not necessarily 
indicate whether the algorithm is close to the global optimum; a relatively high score can be 
obtained on some of these multimodal functions simply by finding the best part of a locally 
optimal region. 
It is not possible to combine raw results from different functions, as they are all scaled 
differently. For instance, almost any decent algorithm will find a function result less than 
0.01 on the sphere function, but a result of 40.0 on Rosenbrock is considered good. In order 
to combine the function outputs, we standardized the results of each function to a mean of 
0.0 and standard deviation of 1.0. All results of all trials for a single function are 
standardized to the same scale; as all of these problems involve minimization, a lower result 
is better, and after standardization a negative result means to be better than average. After 
standardizing each function separately, we can combine them and find the average for each 
single condition.  
2. Success Iterations 
The second measure is the number of iterations required to reach a criterion. This is also a 
measure of speed, but in this case the criteria are intended to indicate that the searcher has 
arrived in the region of the global optimum. 
There is, however, a problem with this measure, too. That is, some trials might never reach 
the criteria. Many hours have been lost waiting, trying to give each version a fair chance to 
find the global optimum, often in vain. Trials where the criteria are not met after a 
reasonable time — here we use 10,000 iterations — must be coded as infinite, which means 
among other things that the mean is meaningless. 
The proper measure of central tendency for such a data set is the median. If the majority of 
trials are coded as infinite, then the median is represented as infinity, shown in the results 
tables with the lemniscus. In order to combine iteration data, mean of the medians is used, 
with the caveat that if any median were infinite, the mean would be infinite, too.  
It is obviously that the first measure is different from the second one. The first measure 
determines whether the algorithm can get a good solution fast, e.g., after only 2,000 
iterations, while the second measure determines how long it takes to find the global 
optimum if left to run, or whether it can find it at all. Generally speaking, iterations to 
calculate the second performance should be much larger than iterations to calculate the first 
measure. 
3. Success Rate 
The third measure is perhaps the most important one. This is a simple binary code 
indicating whether the criteria were met within 10,000 iterations or not. Averaged over all 
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function trials, this gives the proportion of trials that successfully found the global optimum. 
There is no trick to this one; the mean of the ones and zeroes, where one indicates success 
and zero failure, gives the proportion of successes. Iteration used for this measure is the 
same as that used for the second measure, i.e., 10,000 iterations. 
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Table 1 Benchmark functions 

Function Dimension n Value Range [X min, Xmax] Criteria 

10 [-32,32]10 1 

30 [-32,32]30 2 Ackley 

50 [-32,32]50 2 

10 [-600,600]10 0.1 

30 [-600,600]30 0.05 Griewank 

50 [-600,600]50 0.05 

10 [-5.12,5.12]10 10 

30 [-5.12,5.12]30 60 Rastrigin 

50 [-5.12,5.12]50 100 

10 [-30,30]10 5 

30 [-30,30]30 20 Rosenbrock 

50 [-30,30]50 50 

10 [-100,100]10 1e-5 

30 [-100,100]30 1e-5 Sphere 

50 [-100,100]50 1e-5 

Table 2 Value range and criteria of benchmark functions 
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that the PSO algorithm with suggested parameters is good on some functions and not on 
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is better, and after standardization a negative result means to be better than average. After 
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among other things that the mean is meaningless. 
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It is obviously that the first measure is different from the second one. The first measure 
determines whether the algorithm can get a good solution fast, e.g., after only 2,000 
iterations, while the second measure determines how long it takes to find the global 
optimum if left to run, or whether it can find it at all. Generally speaking, iterations to 
calculate the second performance should be much larger than iterations to calculate the first 
measure. 
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The third measure is perhaps the most important one. This is a simple binary code 
indicating whether the criteria were met within 10,000 iterations or not. Averaged over all 
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function trials, this gives the proportion of trials that successfully found the global optimum. 
There is no trick to this one; the mean of the ones and zeroes, where one indicates success 
and zero failure, gives the proportion of successes. Iteration used for this measure is the 
same as that used for the second measure, i.e., 10,000 iterations. 
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Based on those three measures, we conduct experiments on five benchmark problems, 
which are commonly used in literature. Those five benchmark functions are Ackley, 
Griewank, Rastrigin, Rosenbrock and Sphere. Corresponding function formula, optima and 
optimal positions are shown in Table 1; value range and criteria are listed in Table  2. 
Features of those five functions are: Sphere is a simple unimodal function; Rosenbrock is 
also an unimodal function, but Rosenbrock's variables are strongly dependent and gradient 
information often misleads algorithms; Ackley, Griewank and Rastrigin are multimodal 
functions with many local optima. Griewank is strongly multi-modal with significant 
interaction between its variables, caused by the product term. This function has the 
interesting property that the number of local minima increases with dimensionality. 
The four sets of parameters used to be compared are listed as follows: 
Set A (Clerc & Kennedy, 2002): 729.0=ω , 494.121 == cc ; 
Set B (Carlisle & Dozier, 2001): 729.0=ω , 2.0411 =c , 0.9482 =c ; 
Set C (Trelea, 2003): 6.0=ω , 7.121 == cc ; 
Set D: 715.0=ω , 7.121 == cc . 

 Set A Set B Set C Set D 

Ackley 
0.1139 

(0.4041) 
0.1155 

(0.3483) 
0.1765 

(0.4460) 
0.0511 

(0.2553) 

Griewank 
0.0944 

(0.0583) 
0.0606 

(0.0357) 
0.0876 

(0.0457) 
0.0803 

(0.0411) 

Rastrigin 
8.7357 

(4.5793) 
4.7758 

(2.2978) 
8.6263 

(4.0645) 
6.0593 

(3.4700) 

Rosenbrock 
2.4308 

(9.2956) 
3.2329 

(11.1348) 
2.0431 

(9.2136) 
8.5559 

(25.0940) 

Mean 
(Deviation) 

Sphere 
0 

(0) 
0 

(0) 
0 

(0) 
0 

(0) 

Ackley 0.92 0.90 0.86 0.96 

Griewank 0.64 0.90 0.67 0.72 

Rastrigin 0.68 1.00 0.69 0.88 

Rosenbrock 1.00 0.99 1.00 1.00 

Success 
Rate 

Sphere 1.00 1.00 1.00 1.00 

Ackley 84 72.5 63 108 

Griewank 265 192 160.5 426 

Rastrigin 179 161 141 201 

Rosenbrock 333.5 319.5 280.5 538.5 

Success 
Iteration 

Sphere 186 162 139 259 

Table 3. Experimental results on 10-dimensional functions 
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Experiments are conducted on all five benchmark functions, considered dimensions are 10, 
30 and 50, corresponding particle swarm sizes are separately 20, 40 and 100. Each algorithm 
with each set of parameter is run 100 times, and the final result is the statistical result of all 
100 runs. 
The intermediate experimental results include mean function value (deviation), success rate 
and success iteration. Experimental results related to 10-dimensional functions are listed in 
Table 3. Experimental results related to 30-dimensional functions are listed in Table 4. And 
experimental results related to 50-dimensional functions are listed in Table 5. Although we 
don’t want to compare the PSO algorithm using different parameters on each single 
function, it is clearly shown in Table 3-5 that the performance of PSO algorithm using our 
suggested parameters is promising. 

 Set A Set B Set C Set D 

Ackley 1.2639 
(0.9417) 

1.3589 
(0.8030) 

1.3556 
(0.9833) 

0.0250 
(0.1761) 

Griewank 0.0155 
(0.0196) 

0.0208 
(0.0242) 

0.0160 
(0.0199) 

0.0113 
(0.0144) 

Rastrigin 59.0109 
(18.2530) 

41.0719 
(10.1841) 

57.5682 
(15.3826) 

42.9026 
(11.8995) 
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(28.7922) 
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31.9139 
(34.7045) 
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Griewank 0.91 0.86 0.90 0.98 

Rastrigin 0.61 0.94 0.59 0.94 

Rosenbrock 0.99 0.90 0.97 0.84 

Success Rate 

Sphere 1.00 1.00 1.00 1.00 

Ackley 190 142.5 150.5 280 

Griewank 285 197 237 503.5 

Rastrigin 287.5 182.5 179.5 345.5 

Rosenbrock 1832 2051 1689 5323 

Success 
Iteration 

Sphere 435.5 295 363 772 

Table 4. Experimental results on 30-dimensional functions 

The final synthesized results are listed in Table 6. Experimental data shown in Table 6 
clearly indicates that the PSO algorithm using parameter set D outperforms other algorithm 
in the measures of standardized optima and average success rate, and is outperformed by 
other algorithms in the measure of success iteration. Both two phenomena can be explained 
by Dmaxλ  corresponding to each set of parameters.  
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function, it is clearly shown in Table 3-5 that the performance of PSO algorithm using our 
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Table 4. Experimental results on 30-dimensional functions 

The final synthesized results are listed in Table 6. Experimental data shown in Table 6 
clearly indicates that the PSO algorithm using parameter set D outperforms other algorithm 
in the measures of standardized optima and average success rate, and is outperformed by 
other algorithms in the measure of success iteration. Both two phenomena can be explained 
by Dmaxλ  corresponding to each set of parameters.  
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 Set A Set B Set C Set D 

Ackley 1.2454 
(0.9683) 

1.8311 
(0.5866) 

1.2278 
(0.8901) 

0 
(0) 

Griewank 0.0130 
(0.0229) 

0.0108 
(0.0200) 

0.0140 
(0.0219) 

0.0079 
(0.0118) 

Rastrigin 118.1610 
(24.7108) 

87.0787 
(16.8852) 

113.8330 
(23.4990) 

70.3967 
(15.1534) 

Rosenbrock 71.0803 
(41.1463) 

70.3772 
(40.7945) 

67.8099 
(33.8612) 

87.6412 
(42.7683) 

Mean 
(Deviation) 

Sphere 0 
(0) 

0 
(0) 

0 
(0) 

0 
(0) 

Ackley 0.77 0.60 0.82 1.00 

Griewank 0.94 0.94 0.93 0.98 

Rastrigin 0.25 0.80 0.27 0.97 

Rosenbrock 0.80 0.60 0.91 0.61 

Success Rate 

Sphere 1.00 1.00 1.00 1.00 

Ackley 257 214 214 471 

Griewank 383 214 338 789 

Rastrigin ∞ 262 ∞ 597 

Rosenbrock 2188 3981 2205 5474 

Success 
Iteration 

Sphere 603 332 531 1281 

Table 5. Experimental results on 50-dimensional functions 

 Dimension Set A Set B Set C Set D 

10 0.1193 -0.2070 0.1137 -0.0260 

30 0.1134 -0.0121 0.1337 -0.2350 Standardized 
Optima 

50 0.1286 0.0032 0.0882 -0.2199 

10 0.848 0.958 0.844 0.912 

30 0.866 0.896 0.832 0.952 Average 
Success Rate 

50 0.752 0.788 0.786 0.912 

10 209.5 181.4 156.8 306.5 

30 606 573.6 523.8 1444.8 
Average 
Success 
Iteration 50 ∞ 1000.3 ∞ 1722.3 

Table 6 Synthesized performance comparison results 
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Parameter set D corresponds to a largest Dmaxλ  among all four set of parameters, thus PSO 
algorithm using parameter set D has the strongest exploration ability, so it is not easy to be 
trapped into local optima. When the dimension increase, the solution space get more 
complex, and PSO algorithm gets more likely to be trapped into local optima. At this time, 
the influence of exploration ability to the performance of algorithm would be more 
significant. This is why PSO algorithm using parameter set D can outperform other 
algorithm in the measures of standardized optima and average success rate, and this 
advantage gets more significant when the dimension increases. 
Also due to the strong exploration ability that PSO algorithm using parameter set D has, the 
algorithm has to waste a lot of time in exploring new search area, so as to influence the speed. 

6. Conclusion 
The stochastic process theory is applied to analyze the particle swarm optimization 
algorithm determined by five-dimensional real-value parameter tuple {ω, c1, c2, a, b}, 
considering the randomness thoroughly. Specifically speaking, stochastic convergence 
analysis is conducted on PSO algorithm when it is in stagnation phase, and the convergent 
properties of expectation and variance sequence of particle’s position are studied. The 
analysis results determines corresponding parameter ranges, both in formular and graphical 
form. This result is helpful to understand the mechanism of PSO algorithm and select 
appropriate parameters to make PSO algorithm more powerful. 
After the theoretical stochastic convergence analysis of PSO algorithm in stagnation phase, 
parameter selection guidelines are discussed, and a set of suggested parameters {ω=0.715, 
c1=c2=1.7} is given, which is compared against other three sets of parameters which are 
proposed in literatures. Experimental result shows that the PSO algorithm using our 
suggested parameters can achieve robust performance, but the time expires before reaching 
optimal area is longer than PSO algorithm using other suggested parameters. 
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1. Introduction 
Optimization problems appear in many fields, as various as identification problems, 
supervised learning of neural networks, shortest path problems, etc. Metaheuristics [22] are 
a family of optimization algorithms, often applied to "hard" combinatorial problems for 
which no more efficient method is known. They have the advantage of being generic 
methods, thus do not require a complex tuning for each problem, and can be used as a kind 
of "black boxes". Recall that, generally, optimization algorithms search for a point into the 
search space, so as to optimize (i.e., minimize or maximize) the objective function (also called 
fitness or goal function). Metaheuristics are often divided into two sets: 
1. Algorithms handling a single point, making it evolve towards a solution. 
2. Algorithms handling a population, i.e., a finite set of points, and computing a new 

population at each iteration. 
An essential observation is that the population of the second category is a stochastic 
sampling of the objective function. Although those classes are not disjoint (an algorithm can 
belong to both classes, according to the point of view), we only consider population 
metaheuristics, which are simply referred as metaheuristics hereafter. 
An important contribution in this domain comes from the theory of self-organization [10, 
p.8], which allows to analyze the properties of several metaheuristics stemming from real-
world metaphors, often biological ones. This theory (notably studied except the biology [47]) 
describes the conditions of appearance of complex phenomena from distributed systems, the 
agents of which are the object of simple, but numerous interactions. The theory puts in front 
concepts such as communication, feedback, amplification of fluctuations and emergence. In 
the metaheuristics field, swarm intelligence was so explicitely used on two main fronts: via 
an approach "self-organized systems" (having given place to ant colony algorithms) and via 
an approach "socio-cognitive systems" (having led to the particle swarm optimization). 
We suggest putting the theory of the swarm intelligence in connection with the concept of 
adaptive learning search, which tries to describe key points of modern metaheuristics, 
notably by insisting on the role of the learning and the mechanisms of intensification and 
diversification. More generally, we think that the theory of self-organization combined with 
the adaptive learning search gives keys to design the basic components of metaheuristics, 
recovering from swarm intelligence. 
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2. Fundamental concepts 
2.1 Adaptive Memory Programming 
Adaptive Memory Programming (AMP) is a common framework to metaheuristics [53], 
described in Algorithm 1.. It stresses out the concepts of memory, intensification, and 
diversification. In the literature of evolutionary algorithms, these two last notions are often 
replaced by the words exploitation and exploration, which have a similar meaning. 

 
Algorithm 1. AMP framework 

We briefly detail each element of the AMP framework: 
• Memory stands for the information collected by the algorithm on the objective function 

distribution. It can be represented either as a simple set of points, or as more complex 
structures, like pheromone tracks in ant colony algorithms.  Memory can be defined as 
global (compared to the problem as a whole) or inter-individual (a solution relative to 
another one). 

• Intensification exploits the information obtained, in order to improve the current 
solutions. This is typically a local search algorithm (for instance with the Nelder-Mead 
algorithm [45] or a taboo search). 

• Diversification aims at collecting new information, by exploring the search space. 
The three components presented are not always clearly distinct, and are strongly 
interdependent in an algorithm. An example of metaheuristic that fits well the AMP model 
is the method GRASP [50]. 

2.2 Objective Function Sampling and AMP 
Metaheuristics share a certain number of properties. An essential one is that they handle a 
sampling of the objective function, via common processes. 
The probabilistic sampling should ideally pick the best solutions with higher probability. 
However, in an optimization problem, the effective goal is not to sample the objective 
function, but to find the distribution's optimum. Thus, sampling must concentrate on the 
areas of interest, while converging gradually towards the optimum by means of "learning" 
algorithms. From the point of view of sampling, this convergence is carried out by a 
progressive fall of dispersion in these areas. 
In the majority of metaheuristics, the sampling of the objective function is probabilistic 
(diversification, also named exploration, synonym used almost indifferently [51, p.292])). 
Ideally, this sampling should be performed with respect to an approximation of the 
distribution of the points, so as to locate an area of interest, and then converge towards the 
optimum (intensification, or exploitation). 
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Most of the metaheuristics do not have any a priori information on the distribution, thus 
implicitely learn it by diversification and intensification, such as ant colony algorithms, and 
"classical" metaheuristics. Conversely, some methods use an approximation of the 
distribution, and are called explicit methods (see [3]). 

2.3 General Scopes 
We assisted to several attempts of structuration in the scope of distribution sampling. For 
instance, Monmarche et al. proposed the model Probabilistic Search Metaheuristic [42, 43] 
(PSM), based on the comparison of the algorithms PBIL [2, 4], BSC [52], and the ant system 
algorithm [13]. The general principle of a PSM method is presented in Algorithm 2.. Notice 
the relation of this approach with the estimation of distribution algorithms. However, the 
PSM approach is limited to the use of probability vectors, while specifying an essential 
update rule for these vectors. 

 
Algorithm 2. The scope of the PSM method 

 

 
Algorithm 3. The IDEA approach 
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The EDA's were presented as evolutionary algorithms, with an explicit diversification [44]. 
They are undoubtedly the algorithms closest to a general scope. The Iterated Density 
Evolutionary Algorithms [7, 8, 9] (IDEA) are a generalization of those, presented in 
Algorithm 3.. 
IDEA uses a more general diversification than PSM, while not being limited to a probability 
vector as model, but specifying that the search for the best probability distribution forms an 
integral part of the algorithm. However, the fall of dispersion is carried out by selecting the 
best individuals, no precision on the use of different intensification principles is given. 

2.4 I&D frame 
A classical problem when designing metaheuristics is the difficulty to achieve the balance 
between intensification and diversification. This has lead Blum and Roli to propose the I&D 
frame [51], which emphasizes the fact that the different components of a metaheuristic 
cannot be categorized as performing strict intensification or diversification. They propose to 
consider that components could be spaced out between three poles, determined upon the 
origin of the information comes from: 
• the objective function, 
• a random process, 
• other functions. 
Furthermore, each component can be considered as intrinsic or strategic, depending whether 
the component is defined by the basic idea of the metaheuristic, or added to it to improve its 
performances. 
However, this framework does not give precise indication on the algorithms design, nor on 
the relation between components and probabilistic sampling aspects. 

2.5 Self-organization and swarm intelligence 
As a field of research, swarm intelligence deals with the study of self-organization in natural 
and artificial swarm systems. The self-organization is a phenomenon described in many 
disciplines, notably in the fields of physics and biology. A formal definition has been 
proposed in [10, p.8]: 

Self-organization is a process in which pattern at the global level of a system emerges 
solely from numerous interactions among lower-level components of the system. 
Moreover, the rules specifying interactions among the system's components are 
executed using only local information, without reference to the global pattern. 

Two terms need clarification for a better understanding, "pattern" and "to emerge". 
Generally, the first one applies to an "organized arrangement of objects in space or time". 
Additionally, an emerging property of a system is a characteristic which appears unforeseen 
(not being explicitly determined), from the interactions among the components of this 
system. 
Thus, the crucial question is to understand how the components of a system interact with 
each other to produce a complex pattern (in relative sense of the term, i.e. more complex than 
the components themselves). A certain number of necessary phenomena have been 
identified: these are the processes of feedback and the management of the information flow. 
The positive feedbacks are processes which result in reinforcing the action, for example by 
amplification, facilitation, self-catalysis, etc. Positive feedbacks are able to amplify the 
fluctuations of the system, permitting the updating of even imperceptible informations. Such 
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processes can easily lead to an explosion of the system, if they are not controlled by 
applying negative feedbacks. Hence negative feedbacks act as stabilizers for the system. When 
they are coupled, such feedback processes can generate powerful models. 
Within the framework of biological behavior, it is easy to understand that the interactions 
among the components of a system will very often give rise to communications processes i.e. 
transfer of information between individuals. Generally, individuals can communicate, either 
by means of signals, i.e. by using a specific means to carry information, or by means of 
indices, where information is carried accidentally. In a similar manner, information can 
come directly from other individuals, or pass via the state of a work in progress. This second 
possibility of exchanging information, by means of modifying the environment, is called the 
stigmergy. 
Generally, all these processes are more or less inter-connected, allowing a system consisting 
of a large number of individuals to act together to solve problems that are too complex for a 
single individual. 
Certain characteristics of the self-organized systems are very interesting, in particular their 
dynamism, or their capacity to generate stable patterns. Within the framework of the study of 
the behavior of the social insects, certain concepts related to the principle of self-
organization deserve to be underlined: the intrinsic decentralisation of these systems, their 
organization in dense heterarchy and the recurring use of the stigmergy. Indeed, these 
concepts are sometimes used to view the same problem from different angles and partially 
cover the principles of self-organization. 
In a swarm intelligence system, there is no decision-making at a given level, in a specified 
order and no predetermined actions. In fact, in a decentralized system, each individual has a 
local vision of his environment, and thus does not know the problem as a whole. The 
literature of the multi-agent systems (see [24] for an initial approach) often employs this 
term or that of "distributed artificial intelligence" [34]. However, generally this discipline 
tends to study more complex behaviors patterns, founded in particular in cognitive sciences. 
To be precise, the advantages of decentralized control are the robustness and the flexibility [6]. 
Robust systems are desired because of their ability to continue to function in the event of 
breakdown of one of their components; flexible devices are welcome, because they can be 
useful for dynamic problems. 

2.6 Adaptive Learning Search 
Adaptive Learning Search (ALS) is a framework for considering the structure of 
metaheuristics [21], relying on the AMP, the I&D frame and the notion of objective function 
sampling. 
Instead of considering only a memorization process, as in AMP, we propose to consider a 
learning phase. Indeed, the memory concept is quite static and passive; in a sampling 
approach, it suggests that the sample is simply stored, and that the metaheuristic only takes 
into account the previous iteration, without considering the whole optimization process. We 
emphasize on the fact that the memorized data is not only a raw input, but provides 
information on the distribution, and thus on the solutions. 
Thereby, we propose to consider three terms to describe the characteristic processes in a 
population metaheuristic: learning, diversification and intensification. Metaheuristics 
progress in an iterative way, archetypally by alternating phases of intensification, 
diversification and learning, or mixing these notions in a more narrow way. The state of 
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departure is often randomly chosen, the algorithm running until a criterion of stop is 
reached. A simple ALS algorithm could thus be organized as presented in Algorithm 4. 

 
Algorithm 4. ALS algorithm 

The diversification indicates the processes harvesting information about the optimized 
problem. The intensification aims at using the information already harvested to define how 
much an area is interesting. The memory is the support of the learning, which allows the 
algorithm to take into account only zones where the global optimum may be, so avoiding 
the local optima. The notions of intensification and diversification are important in the 
design of metaheuristics, which have to reach a delicate balance between these two 
dynamics of search. Both notions are not thus contradictory, but additional, and there are 
numerous strategies mixing at the same moment both of the aspects. 
We use here a terminology similar to the one used for the I&D frame, but slightly modified 
to be easier to comprehend and manipulate. Notably, we have chosen to assign the terms to 
archetypal processes: 
Intensification: the sampling only uses informations from the objective function (local 

search, determinist selection operators, etc.), 
Diversification: the sampling is purely random (noise, uniform mutation operator), 
Learning: use of a distribution constructed from the whole set of solutions sampled from the 

start of the algorithm. 
Moreover, in ALS, we proposed to split up metaheuristics in three categories, according to 
the way the sampling is managed: 
Implicit: an implicit probability density function (PDF) is used to draw the sample (e.g. 

evolutionary algorithms), 
Explicit: a specific PDF is used (e.g. estimation of distribution algorithms), 
Direct: an approximation of the objective function is used as a PDF (e.g. simulated 

annealing). 
The implicit methods permit to avoid the hard choice of the PDF model to use, but are 
difficult to control and understand. Explicit methods permit to control their components 
almost independently, but are pledged to the choice of a model. The direct algorithms use 
the "ideal" model (the objective function itself), but make the intensification difficult. 
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Figure 1. The three classes of metaheuristics proposed in adaptive learning search are 
defined according to the sampling of the objective function. They combine themselves with 
the three archetypal components, that form the set of possible behaviours 

3. Metaheuristics 
Metaheuristics form a wide class of methods, among which the more interesting are often 
stochastic algorithms manipulating a sample of points (also called a "population" of 
"individuals"). In this section, we will briefly introduce some of the best known metaheuristics, 
from the simulated annealing (which does not use swarm intelligence) to ant colony 
algorithms (a method well known for using swarm intelligence). Each metaheuristic is here 
described along with its position regarding adaptive learning search and swarm intelligence. 

3.1 Simulated Annealing 
The simulated annealing [37, 11] was created from the analogy between a physical process 
(the annealing) and an optimization problem. As a metaheuristic, it is based on works 
simulating the evolution of a solid towards its minimal energetic state [41, 30]. 
The classic description of simulated annealing presents it as a probabilistic algorithm, where 
a point evolves in the search space.   The method uses the Metropolis algorithm, recalled in 
Algorithm 5., inducing a markovian process [1, 38]. The simulated annealing, in its usual 
version ("homogeneous"), calls this method at each iteration. 

 
Algorithm 5. Sampling with the Metropolis method 
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It is possible to see the simulated annealing as a population algorithm. Indeed, the Metropolis 
algorithm directly samples the objective function using a degenerated parametric Boltzmann 
distribution (of parameter T). Hence, one of the essential parameters is the temperature 
decrease, for which many laws were proposed [54]. There also exist some versions of the 
simulated annealing more centred on the handling of a points population [32, 55, 40, 33]. 
Here, the Metropolis method represents the diversification (coupled with the learning), 
while the temperature decrease is controlling the intensification process. Note that other 
methods than Metropolis' may be used [14, 48]. 
Algorithm 6. presents a synthesis of the simulated annealing. The learning step is not 
present in basic versions, but many existing variants have tried to link the temperature to 
certain characteristics of the sampling obtained through the Metropolis method [25, 46, 19]. 

 
Algorithm 6. ALS model for the simulated annealing 

Simulated annealing cannot be considered as a metaheuristic using swarm intelligence 
operators. Indeed, the behavior of the system is defined by a global rule (the Metropolis 
method), without any use of local interactions. Finally, the simulated annealing is mainly 
characterized by its direct sampling of the objective function. The mechanism behind this 
algorithm is one of the most common to all the metaheuristics and should thus be 
underlined. 

3.2 Estimation of Distribution Algorithms 
Estimation of Distribution Algorithms (EDA) were first created as an alternative to 
evolutionary algorithms [44]: the main difference is that crossover and mutation steps are 
replaced by the choice of random individuals with respect to an estimated distribution 
obtained from the previous populations. The general process is presented in Algorithm 7. 
The main difficulty is how to estimate the distribution; the algorithms used for this are 
based on an evaluation of the dependency of the variables, and can belong to three different 
categories: 
1. Models without any dependency: the probability distribution is factorized from 

univariant independent distributions, over each dimension.  That choice has the defect 
not to be realistic in case of hard optimization, where a dependency between variables 
is often the rule. 

2. Models with bivariant dependency: the probability distribution is factorized from 
bivariant distributions. In this case, the learning of distribution can be extended to the 
notion of structure. 

Stochastic Metaheuristics as Sampling Techniques using Swarm Intelligence 

 

207 

3. Models with multiple dependencies: the factorization of the probability distribution is 
obtained from statistics with an order higher than two. 

 
Algorithm 7. Estimation of distribution algorithm 

For continuous problems, the distribution model is often based on a normal distribution. 
Some important variants were proposed, using for example "data clustering" for multimodal 
optimization, parallel variants for discrete problems (see [39]). Convergence theorems were 
also formulated, in particular with modeling by Markov chains, or dynamic systems. 
EDA algorithms in the ALS scope are modelled in Algorithm 8. 

 
Algorithm 8. ALS model for estimation of distribution algorithms 

3.3 Particle Swarm Optimization 
The particle swarm optimization ("Particle Swarm Optimization", PSO) [35, 36] evolved 
from an analogy drawn with the collective behavior of the animal displacements (in fact, the 
metaphor was largely derived from socio-psychology). Indeed, for certain groups of 
animals, e.g. the fish schools, the dynamic behavior in relatively complex displacements can 
be observed, where the individuals themselves have access only to limited information, like 
the position and the speed of their closer neighbors. For example, it can be observed that a 
fish school is able to avoid a predator in the following manner: initially it gets divided into 
two groups, then the original school is reformed, while maintaining the cohesion among the 
school. 
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3. Models with multiple dependencies: the factorization of the probability distribution is 
obtained from statistics with an order higher than two. 

 
Algorithm 7. Estimation of distribution algorithm 
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Algorithm 8. ALS model for estimation of distribution algorithms 
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animals, e.g. the fish schools, the dynamic behavior in relatively complex displacements can 
be observed, where the individuals themselves have access only to limited information, like 
the position and the speed of their closer neighbors. For example, it can be observed that a 
fish school is able to avoid a predator in the following manner: initially it gets divided into 
two groups, then the original school is reformed, while maintaining the cohesion among the 
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The authors, who proposed the method of particle swarm optimization, drew their original 
inspiration by first comparing the behaviors in accordance with the theory of socio-
psychology for data processing and the decision-making in social groups, side by side. It is 
an exceptional and remarkable achievement that this metaheuristic was originally conceived 
for the continuous domain, and, till date, majority of its applications are in this domain. The 
method conceives a large group of particles, in the form of vectors, moving in the search 
space. Each particle i is characterized by its position  and a vector of change in position 
(called velocity) . In each iteration, the movement of the particle can be characterized as: 

. The core of the method consists in the manner in which  is 
chosen, after each iteration. Socio-psychology suggests that the movements of the 
individuals (in a socio-cognitive chart) are influenced by their last behavior and that of their 
neighbors (closely placed in the social network and not necessarily in space). Hence, the 
updating of the position of the particles is dependent on the direction of their movement, 
their speed, the best preceding position  and the best position  among the neighbors: 

 
The change in position, in each iteration, is thus implemented according to the following 
relation: 

 

where the  parameters are drawn randomly from the discourse  and are 
influential in striking a balance between the relative roles of the individual experience 
(governed by ) and of the social communication (governed by ). Uniform random 
selection of these two parameters is justified from the fact that it does not give any a priori 
importance to any of the two sources of information. The algorithm also employs another 
parameter, Vmax, to limit the rapidity of movement in each dimension, so that it can prevent 
any "explosion" of the system, in case there are too large amplifications of the oscillations. 
The algorithm could implement an effective compromise between intensification and 
diversification. The only problem arises when the points  and  move apart, in that case 
the particles will continue to oscillate between these two points without converging. An 
interesting characteristic of this algorithm is that, if a new optimum is discovered after the 
algorithm converged (i.e., after a phase of intensification), the particles will explore the 
search space around the new point (i.e. a phase of diversification). 
The ALS modelling of this generic scheme is presented in Algorithm 13. 

 
Algorithm 9. ALS model for particle swarm optimization 
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In this algorithm, the positive feedbacks are situated at the level of the particles attraction. 
The moves limitations of each particle form the negative feedbacks. There is a memory 
situated at the local level, between neighbor particles, as each one does only move according 
to the state of its closest neighbors, and not according to the whole system. 
The readers are redirected to read [36] to obtain a detailed, state of the art, understanding of 
the particle swarm optimization and the concepts associated with it and [12] for a synthesis. 

3.4 Evolutionary Algorithms 
Evolutionary algorithms [23] are inspired from the biological process of the adaptation of 
alive beings to their environment. The analogy between an optimization problem and this 
biological phenomenon has been formalized by several approaches [31, 26, 49], leading for 
example to the famous family of genetic algorithms [27]. The term population metaheuristics 
fits particularly well; following the metaphor, the successive populations are called 
generations. A new generation is computed in three stages, detailed below. 
1. Selection: improves the reproduction ability of the best adapted individuals. 
2. Crossover:  produces one or two new individuals from their two parents, while 

recombining their characteristics. 
3. Mutation: randomly modifies the characteristics of an individual. 
One clearly identifies the third step with the diversification stage, while the first one stands 
for the intensification. We interpret the crossover as a learning from the previous 
information (i.e. from the ancesters). Several methods [52, 29, 28, 5] were designed for the 
diversification operators, which emphasize the implicit process of distribution sampling. 
The ALS modelling of this generic scheme is presented in Algorithm 13. 

 
Algorithm 10. ALS model for evolutionary algorithms 

In this family of metaheuristics, feedback processes are sometimes difficult to figure out, as 
there are many variants. Generally speaking, the positive feedbacks are situated on selection 
operators, whereas negative feedbacks are typically implemented in mutation operators. 
There is a form of local memory, as the evolution of each individual at each iteration is 
linked to the evolution of its neighbors. 

3.5 Immune Systems 
The term "artificial immune systems" (AIS) is applicable for a vast range of different 
systems, in particular for metaheuristic optimization, inspired by the operation of the 
immune system of the vertebrates. A great number of systems have been conceived in 
several varied fields e.g. robotics, the detection of anomalies or optimization (see [18] for a 
detailed exploration of various applications) . 
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The immune system is responsible for the protection of the organism against the 
"aggressions" of external organisms. The metaphor from which the AIS algorithms originate 
harps on the aspects of training and memory of the immune system known as adaptive (in 
opposition to the system known as innate), in particular by discriminating between self and 
non-self. 

 
Algorithm 11. A simple example of the algorithm of artificial immune system 

The principal ideas used for the design of this metaheuristic are the selections operated on 
the lymphocytes accompanied by the positive feedback, allowing the multiplication and the 
implementation of memory by the system. Indeed, these are the chief characteristics to 
maintain the self-organized characteristics of the system. 
The approach used in the AIS algorithms is very similar to that of the evolutionary 
algorithms but was also compared with that of the neural networks. Within the framework 
of difficult optimization, the AIS can be regarded to take the shape of evolutionary 
algorithm, introducing particular operators. To operate the selection, it has to be based, for 
example, on a measurement of affinity (i.e. between the receiver of a lymphocyte and an 
antigen). The process of mutation takes place through an operator of hyper-mutation, 
resulting directly from the metaphor. In the final analysis, the algorithm developed is very 
close to a genetic algorithm (see algorithm 11.). 
The ALS modelling of this generic scheme is presented in Algorithm 12. 

 
Algorithm 12. ALS model for immune systems 
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A description of the basic theory and many applications of the artificial immune systems can 
be found in [17], [18] and in [16], and also in a book of reference [15]. 

3.6 Ant Colony Algorithms 
An elegant description of ant colony algorithms was proposed in [20], which can be applied 
to the (combinatorial) problems where a partial construction of the solution is possible. This 
description, although restrictive, makes it possible to highlight the original contributions of 
these metaheuristics (called ACO, for "Ant Colony Optimization", by the authors). 

Artificial ants used in ACO are stochastic solution construction procedures that 
probabilistically build a solution by iteratively adding solution components to 
partial solutions by taking into account (i) heuristic information on the problem 
instance being solved, if available, and (ii) (artificial) pheromone trails which 
change dynamically at run-time to reflect the agents' acquired search experience. 

A more precise formalization exists [20]. It develops a representation of the problem on the 
basis of a basic behavior of the ants and a general organization of the metaheuristic under 
consideration. Several concepts have also been laid down to facilitate the understanding of 
the principles of these algorithms, in particular the definition of the trails of pheromone as 
an adaptive memory, the need for an adjustment of intensification /diversification and finally, 
the use of a local search. 
The problem is represented by a set of solutions, an objective function assigning a value for 
each solution and a set of constraints. The objective is to find the global optimum satisfying 
the constraints. The various states of the problem are characterized similarly to a sequence 
of components. It should be noted that, in certain cases, a cost can be associated to the states 
which do not belong to the set of solutions. In this representation, the ants build solutions 
while moving on a graph G = (C,L), where the nodes are the components of C and the set L 
connects the components of C'. The constraints of the problem are implemented directly in 
the rules of displacement of the ants (either by preventing the movements which violate the 
constraints, or by penalizing such solutions). 
The movements of the ants can be characterized like a stochastic procedure of building 
constructive solutions on the graph G = (C, L). In general, the ants try to work out feasible 
solutions, but if necessary, they can produce unfeasible solutions. The components and the 
connections can be associated with the trails of pheromone  (establishing an adaptive 
memory describing the state of the system) and a heuristic value  (representing a priori 
information about the problem, or originating from a source other than that of the ants; it is 
very often the cost of the state in progress). The trails of pheromone and the value of the 
heuristics can be associated either with the components, or with the connections. 
Each ant has a memory to store the path traversed, an initial state and the stopping 
conditions. The ants move according to a probabilistic rule of decision function of the local 
trails of pheromone, state of the ant and constraints of the problem. At the time of addition of 
a component to the solution in progress, the ants can update the trail associated with the 
component or the corresponding connection. Once the solution is built, they can update the 
trail of pheromone components or connections used. Lastly, an ant has the capacity of at 
least building a solution for the problem. 
In addition to the rules governing the behavior of the ants, another major process is 
activated: the evaporation of the trails of pheromone. In fact, with each iteration, the value of 
the trails of pheromone is decreased. The goal of this reduction is to avoid a too fast 
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convergence and the trapping of the algorithm in local minima. This causes a gradual lapse 
in memory which helps in exploration of new areas. 
According to the authors of the AGO formalism, it is possible to implement other processes 
requiring a centralized control (and thus not being able to be directly controlled by some 
ants), as additional processes. In our opinion, this is not desirable; in fact, one then loses the 
decentralized characteristic of the system. Moreover, the implementation of the additional 
processes with rigorous formalization becomes difficult, because one should be able to view 
any process there. 
The use of the stigmergy is a crucial factor for the ant colony algorithms. Hence, the choice of 
the method for implementation of the trails of pheromone is significant to obtain the best 
results. This choice is mainly related to the possibilities of representation of the search space, 
each representation being able to bring a different way to implement the trails. For example, 
for the traveling salesman problem, an effective implementation consists in using a trail ij 
between two cities i and j like a representation of the interest to visit the city j after the city i. 
Another possible representation, less effective in practice, consists in considering ij as a 
representation of the interest to visit i as the jth city. In fact, the trails of pheromone describe 
the state of the search for the solution by the system in each iteration and the agents modify 
the way in which the problem will be represented and perceived by the other agents. This 
information is shared by the ants by means of modifications of the environment, in form of an 
indirect communication: the stigmergy. 
The structure of ant colony metaheuristics comprises of an intrinsic parallelism. Generally, the 
good quality solutions emerge as a result of the indirect interactions taking place inside the 
system, not of an explicit implementation of exchanges. Here each ant takes only the local 
information about its environment (the trails of pheromones) into account; it is thus very 
easy to parallel such an algorithm. It is interesting to note that the various processes in 
progress in the metaheuristic (i.e. the behavior of the ants, evaporation and the additional 
processes) can also be implemented independently, the user has the liberty to decide the 
manner in which they will interact. 

 
Algorithm 13. ALS model for ant colony algorithms 

4. Conclusion 
Population metaheuristics can be viewed as algorithms handling a probabilistic sampling of 
a probability distribution, representing the objective function of an optimization problem. 
These algorithms can be described either as implicit, explicit or direct, according to their 
way of sampling the objective function. These algorithms are iteratively manipulating the 
sample thanks to components that can be classified among three tendencies: learning, 
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intensification and diversification. These metaheuristics can thus be viewed as adaptive 
learning search algorithms. 
A lot of the stochastic metaheuristics make use of swarm intelligence to design efficient 
components that can solve a large scale of different hard optimization problems. Among 
them, implicit metaheuristics like evolutionary computation or particle swarm optimization 
are the most known for their self-organized aspects. 
These two theories are thus complementary and, from the point of view of the design of 
metaheuristics, there is a simple relation between them: the ALS describes the "goal" to be 
reached, and the theory of the swarm intelligence a "means" to reach this goal. So, an 
effective metaheuristic should, according to the adaptive learning search, set up 
mechanisms of learning, intensification and diversification, stays the question of the means 
to be used to set up these mechanisms. The swarm intelligence proposes a model of 
implementation: an algorithm on base of population defining simple interactions at the local 
level, allowing the emergence of a complex behavior at the global level. 
Both presented theories should allow to better understand the functioning of existing 
metaheuristics and to direct the design of new ones. The concepts important to retain are the 
use by modern metaheuristics of learning, intensification and diversification, as well as the 
distributed aspect and the flexible hose of the swarm intelligence. However it is necessary to 
underline the difficulty to design a swarm intelligence system, what explains that the 
inspiration comes from the biology, where such systems are relatively common. The main 
difficulties are the following ones: 
• Design sampling operators from which it is easy to extract the relevant information to 

direct the search, 
• Set the balance between techniques of intensification, diversification and learning, 
• Maintain the flexibility of the algorithm, so that it adapts itself to the problem. 

5. Bibliography 
E. H. L. Aarts and P. J. M. Van Laarhoven. Statistical cooling : a general approach to 

combinatorial optimisation problems. Philips J. of Research, 40:193-226, 1985. [1] 
S. Baluja. Population-based Incremental Learning: A Method for Integrating Genetic Search 

Based Function Optimization and Competitive Learning. Technical Report CMU-CS-
94-163, Carnegie Mellon University, 1994. [2] 

S. Baluja. Genetic Algorithms and Explicit Search Statistics. Advances in Neural Information 
Processing Systems, 9:319-325, 1997. [3] 

S. Baluja and R. Caruana. Removing the Genetics from the Standard Genetic Algorithm. In 
A. Prieditis and S. Russel, editors, International Conference on Machine Learning, 
pages 38-46, Lake Tahoe, California, 1995. Morgan Kaufmann. [4] 

S. Baluja and S. Davies. Fast probabilistic modeling for combinatorial optimization. In 
Fifteenth National Conference on Artificial Intelligence, Tenth Conference on Innovative 
Applications of Artificial Intelligence, Madison, Wisconsin, 1998. [5] 

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence, From Natural to Artificial 
Systems. Oxford University Press, 1999. [6] 

P. A. N. Bosnian and D. Thierens. An algorithmic framework for density estimation based 
evolutionary algorithm. Technical Report UU-CS-1999-46, Utrech University, 1999. 
[7] 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

212 

convergence and the trapping of the algorithm in local minima. This causes a gradual lapse 
in memory which helps in exploration of new areas. 
According to the authors of the AGO formalism, it is possible to implement other processes 
requiring a centralized control (and thus not being able to be directly controlled by some 
ants), as additional processes. In our opinion, this is not desirable; in fact, one then loses the 
decentralized characteristic of the system. Moreover, the implementation of the additional 
processes with rigorous formalization becomes difficult, because one should be able to view 
any process there. 
The use of the stigmergy is a crucial factor for the ant colony algorithms. Hence, the choice of 
the method for implementation of the trails of pheromone is significant to obtain the best 
results. This choice is mainly related to the possibilities of representation of the search space, 
each representation being able to bring a different way to implement the trails. For example, 
for the traveling salesman problem, an effective implementation consists in using a trail ij 
between two cities i and j like a representation of the interest to visit the city j after the city i. 
Another possible representation, less effective in practice, consists in considering ij as a 
representation of the interest to visit i as the jth city. In fact, the trails of pheromone describe 
the state of the search for the solution by the system in each iteration and the agents modify 
the way in which the problem will be represented and perceived by the other agents. This 
information is shared by the ants by means of modifications of the environment, in form of an 
indirect communication: the stigmergy. 
The structure of ant colony metaheuristics comprises of an intrinsic parallelism. Generally, the 
good quality solutions emerge as a result of the indirect interactions taking place inside the 
system, not of an explicit implementation of exchanges. Here each ant takes only the local 
information about its environment (the trails of pheromones) into account; it is thus very 
easy to parallel such an algorithm. It is interesting to note that the various processes in 
progress in the metaheuristic (i.e. the behavior of the ants, evaporation and the additional 
processes) can also be implemented independently, the user has the liberty to decide the 
manner in which they will interact. 

 
Algorithm 13. ALS model for ant colony algorithms 

4. Conclusion 
Population metaheuristics can be viewed as algorithms handling a probabilistic sampling of 
a probability distribution, representing the objective function of an optimization problem. 
These algorithms can be described either as implicit, explicit or direct, according to their 
way of sampling the objective function. These algorithms are iteratively manipulating the 
sample thanks to components that can be classified among three tendencies: learning, 

Stochastic Metaheuristics as Sampling Techniques using Swarm Intelligence 

 

213 

intensification and diversification. These metaheuristics can thus be viewed as adaptive 
learning search algorithms. 
A lot of the stochastic metaheuristics make use of swarm intelligence to design efficient 
components that can solve a large scale of different hard optimization problems. Among 
them, implicit metaheuristics like evolutionary computation or particle swarm optimization 
are the most known for their self-organized aspects. 
These two theories are thus complementary and, from the point of view of the design of 
metaheuristics, there is a simple relation between them: the ALS describes the "goal" to be 
reached, and the theory of the swarm intelligence a "means" to reach this goal. So, an 
effective metaheuristic should, according to the adaptive learning search, set up 
mechanisms of learning, intensification and diversification, stays the question of the means 
to be used to set up these mechanisms. The swarm intelligence proposes a model of 
implementation: an algorithm on base of population defining simple interactions at the local 
level, allowing the emergence of a complex behavior at the global level. 
Both presented theories should allow to better understand the functioning of existing 
metaheuristics and to direct the design of new ones. The concepts important to retain are the 
use by modern metaheuristics of learning, intensification and diversification, as well as the 
distributed aspect and the flexible hose of the swarm intelligence. However it is necessary to 
underline the difficulty to design a swarm intelligence system, what explains that the 
inspiration comes from the biology, where such systems are relatively common. The main 
difficulties are the following ones: 
• Design sampling operators from which it is easy to extract the relevant information to 

direct the search, 
• Set the balance between techniques of intensification, diversification and learning, 
• Maintain the flexibility of the algorithm, so that it adapts itself to the problem. 

5. Bibliography 
E. H. L. Aarts and P. J. M. Van Laarhoven. Statistical cooling : a general approach to 

combinatorial optimisation problems. Philips J. of Research, 40:193-226, 1985. [1] 
S. Baluja. Population-based Incremental Learning: A Method for Integrating Genetic Search 

Based Function Optimization and Competitive Learning. Technical Report CMU-CS-
94-163, Carnegie Mellon University, 1994. [2] 

S. Baluja. Genetic Algorithms and Explicit Search Statistics. Advances in Neural Information 
Processing Systems, 9:319-325, 1997. [3] 

S. Baluja and R. Caruana. Removing the Genetics from the Standard Genetic Algorithm. In 
A. Prieditis and S. Russel, editors, International Conference on Machine Learning, 
pages 38-46, Lake Tahoe, California, 1995. Morgan Kaufmann. [4] 

S. Baluja and S. Davies. Fast probabilistic modeling for combinatorial optimization. In 
Fifteenth National Conference on Artificial Intelligence, Tenth Conference on Innovative 
Applications of Artificial Intelligence, Madison, Wisconsin, 1998. [5] 

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence, From Natural to Artificial 
Systems. Oxford University Press, 1999. [6] 

P. A. N. Bosnian and D. Thierens. An algorithmic framework for density estimation based 
evolutionary algorithm. Technical Report UU-CS-1999-46, Utrech University, 1999. 
[7] 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

214 

P.A.N. Bosnian and D. Thierens. Continuous iterated density estimation evolutionary 
algorithms within the IDEA framework. In M. Muehlenbein and A.O. Rodriguez, 
editors, Proceedings of the Optimization by Building and Using Probabilistic Models 
OBUPM Workshop at the Genetic and Evolutionary Computation Conference GECCO-
2000, pages 197—200, San Francisco, California, 2000. Morgan Kauffmann. [8] 

P.A.N. Bosnian and D. Thierens. IDEAs based on the normal kernels probability density 
function. Technical Report UU-CS-2000-11, Utrecht University, 2000. [9] 

S. Camazine, J.L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-
Organization in Biological Systems. Princeton University Press, 2000. [10] 

V. Cerny. Thermodynamical approach to the traveling salesman problem : an efficient 
simulation algorithm. J. of Optimization Theory and Applications, 45(1):41-51, 
1985. [11] 

M. Clerc. L'optimisation par essaim particulaire : principes, modeles et usages. 
Technique et Science Informatiques, 21:941—964, 2002. [12] 

A. Colorni, M. Dorigo, and V. Maniezzo. Distributed Optimization by Ant Colonies. In 
F. Varela and P. Bourgine, editors, Proceedings of ECAL'91 -First European 
Conference on Artificial Life, pages 134-142, Paris, France, 1992. Elsevier 
Publishing. [13] 

M. Creutz. Microcanonical Monte Carlo simulation. Physical Review Letters, 50(19):1411-
1414, May 1983. [14] 

D. Dasgupta. Artificial Immune Systems and their applications. Springer Verlag, 1999. [15] 
D. Dasgupta and N. Attoh-Okine. Immune-based systems: A survey. In Proceedings of 

the IEEE International Conference on Systems, Man and Cybernetics, volume 1, 
pages 369—374, Orlando, October 1997. IEEE Press. [16] 

L.N. De Castro and F. Von Zuben. Artificial Immune Systems: Part I: Basic Theory and 
Applications. Technical Report TR-DCA 01/99, Department of Computer 
Engineering and Industrial Automation, School of Electrical and Computer 
Engineering, State University of Campinas, Brazil, December 1999. [17] 

L.N. De Castro and F. Von Zuben. Artificial Immune Systems: Part II -A Survey of 
Applications. Technical Report DCA-RT 02/00, Department of Computer 
Engineering and Industrial Automation, School of Electrical and Computer 
Engineering, State University of Campinas, Brazil, February 2000. [18] 

P. M. C. De Oliveira. Broad Histogram : An Overview, arxiv :cond-mat/0003300vl, 2000. 
[19] 

M. Dorigo and T. Stiitzle. Handbook of Metaheuristics, volume 57 of International series in 
operations research and management science, chapter The Ant Colony 
Optimization Metaheuristics: Algorithms, Applications and Advances. Kluwer 
Academic Publishers, Boston Hardbound, January 2003. [20] 

J. Dreo, J.-P. Aumasson, W. Tfaili, and P. Siarry. Adaptive learning search, a new tool to 
help comprehending metaheuristics. International Journal on Artificial 
Intelligence Tools, 16(3), June 2007. [21] 

J. Dreo, A. Petrowski, P. Siarry, and E. D. Taillard. Metaheuristics for hard optimization. 
Springer, 2006. [22] 

J. E. Eiben, A. E. Smith. Introduction to Evolutionary Computing. Springer Verlag, 2003. [23] 
J. Ferber. Les systemes multi-agents. Vers une intelligence collective. In-terEditions, 1997. [24] 

Stochastic Metaheuristics as Sampling Techniques using Swarm Intelligence 

 

215 

A. M. Ferrenberg and R. H. Swendsen. Optimized Monte Carlo Data Analysis. Phys. Rev. 
Lett, 63:1195, 1989. [25] 

L. J. Fogel, A. J. Owens, and M. J. Walsh. Artifical Intelligence through Simulated Evolution. 
Wiley, 1966. [26] 

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine learning. Addison-
Wesley, 1989. [27] 

G. Harik. Linkage learning in via probabilistic modeling in the EcGA. Technical Report 99010, 
IlliGAL, 1999. [28] 

G. Harik, F. G. Lobo, and D. E. Goldberg. The compact genetic algorithm. In IEEE Conference 
on Evolutionary Computation, pages 523-528, 1998. [29] 

W. K. Hastings. Monte Carlo sampling method using Markov chains and their applications. 
Biometrika, 57, 1970. [30] 

J. H. Holland. Outline for logical theory of adaptive systems. J. Assoc. Comput. Mach., 3:297-
314, 1962. [31] 

K. Hukushima and K Nemoto. Exchange Monte Carlo method and application to spin glass 
simulations. J. Phys. Soc. Jpn., 65:1604-1608, 1996. [32] 

Y. Iba. Population Annealing: An approach to finite-temperature calculation. In Joint 
Workshop of Hayashibara Foundation and SMAPIP. Hayashibara Forum, 2003. [33] 

N. R. Jennings. Coordination Techniques for Distributed Artificial Intelligence. In G. M. P. 
O'Hare and N. R. Jennings, editor, Foundations of Distributed Artificial Intelligence, 
pages 187-210. John Wiley & Sons, 1996. [34] 

J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proc. IEEE Int. Conf. on 
Neural Networks, volume IV, pages 1942-1948, Piscat-away, NJ: IEEE Service Center, 
1995. [35] 

J. Kennedy, R.C. Eberhart, and Y. Shi. Swarm Intelligence. Evolutionary Computation. 
Morgan Kaufmann, April 2001. [36] 

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing. Science, 
220(4598):671-680, 1983. [37] 

W. Krauth. Advances in Computer Simulation, chapter Introduction To Monte Carlo 
Algorithms. Springer-Verlag, 1998. [38] 

P. Larranaga and J.A. Lozano. Estimation of Distribution Algorithms, A New Tool for 
Evolutionary Computation. Genetic Algorithms and Evolutionary Computation. 
Kluwer Academic Publishers, 2002. [39] 

F. Liang and W. H. Wong. Evolutionary Monte Carlo: Application to Cp Model Sampling 
and Change Point Theorem. Statistica Sinica, 10, 2000. [40] 

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of 
state calculations by fast computing machines. Journal of Chemical Physics, 21:1087-
1092, 1953. [41] 

N. Monmarche, E. Ramat, G. Dromel, M. Slimane, and G. Venturini. On the similarities 
between AS, BSC and PBIL: toward the birth of a new meta-heuristics. E3i 215, 
Universite de Tours, 1999. [42] 

N. Monmarche, N. Ramat, L. Desbarat, and G. Venturini. Probabilistic search with genetic 
algorithms and ant colonies. In A.S. Wu, editor, Proceedings of the 2000 Genetic and 
Evolutionary Computation Conference Workshop, pages 209-211, 2000. [43] 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

214 

P.A.N. Bosnian and D. Thierens. Continuous iterated density estimation evolutionary 
algorithms within the IDEA framework. In M. Muehlenbein and A.O. Rodriguez, 
editors, Proceedings of the Optimization by Building and Using Probabilistic Models 
OBUPM Workshop at the Genetic and Evolutionary Computation Conference GECCO-
2000, pages 197—200, San Francisco, California, 2000. Morgan Kauffmann. [8] 

P.A.N. Bosnian and D. Thierens. IDEAs based on the normal kernels probability density 
function. Technical Report UU-CS-2000-11, Utrecht University, 2000. [9] 

S. Camazine, J.L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-
Organization in Biological Systems. Princeton University Press, 2000. [10] 

V. Cerny. Thermodynamical approach to the traveling salesman problem : an efficient 
simulation algorithm. J. of Optimization Theory and Applications, 45(1):41-51, 
1985. [11] 

M. Clerc. L'optimisation par essaim particulaire : principes, modeles et usages. 
Technique et Science Informatiques, 21:941—964, 2002. [12] 

A. Colorni, M. Dorigo, and V. Maniezzo. Distributed Optimization by Ant Colonies. In 
F. Varela and P. Bourgine, editors, Proceedings of ECAL'91 -First European 
Conference on Artificial Life, pages 134-142, Paris, France, 1992. Elsevier 
Publishing. [13] 

M. Creutz. Microcanonical Monte Carlo simulation. Physical Review Letters, 50(19):1411-
1414, May 1983. [14] 

D. Dasgupta. Artificial Immune Systems and their applications. Springer Verlag, 1999. [15] 
D. Dasgupta and N. Attoh-Okine. Immune-based systems: A survey. In Proceedings of 

the IEEE International Conference on Systems, Man and Cybernetics, volume 1, 
pages 369—374, Orlando, October 1997. IEEE Press. [16] 

L.N. De Castro and F. Von Zuben. Artificial Immune Systems: Part I: Basic Theory and 
Applications. Technical Report TR-DCA 01/99, Department of Computer 
Engineering and Industrial Automation, School of Electrical and Computer 
Engineering, State University of Campinas, Brazil, December 1999. [17] 

L.N. De Castro and F. Von Zuben. Artificial Immune Systems: Part II -A Survey of 
Applications. Technical Report DCA-RT 02/00, Department of Computer 
Engineering and Industrial Automation, School of Electrical and Computer 
Engineering, State University of Campinas, Brazil, February 2000. [18] 

P. M. C. De Oliveira. Broad Histogram : An Overview, arxiv :cond-mat/0003300vl, 2000. 
[19] 

M. Dorigo and T. Stiitzle. Handbook of Metaheuristics, volume 57 of International series in 
operations research and management science, chapter The Ant Colony 
Optimization Metaheuristics: Algorithms, Applications and Advances. Kluwer 
Academic Publishers, Boston Hardbound, January 2003. [20] 

J. Dreo, J.-P. Aumasson, W. Tfaili, and P. Siarry. Adaptive learning search, a new tool to 
help comprehending metaheuristics. International Journal on Artificial 
Intelligence Tools, 16(3), June 2007. [21] 

J. Dreo, A. Petrowski, P. Siarry, and E. D. Taillard. Metaheuristics for hard optimization. 
Springer, 2006. [22] 

J. E. Eiben, A. E. Smith. Introduction to Evolutionary Computing. Springer Verlag, 2003. [23] 
J. Ferber. Les systemes multi-agents. Vers une intelligence collective. In-terEditions, 1997. [24] 

Stochastic Metaheuristics as Sampling Techniques using Swarm Intelligence 

 

215 

A. M. Ferrenberg and R. H. Swendsen. Optimized Monte Carlo Data Analysis. Phys. Rev. 
Lett, 63:1195, 1989. [25] 

L. J. Fogel, A. J. Owens, and M. J. Walsh. Artifical Intelligence through Simulated Evolution. 
Wiley, 1966. [26] 

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine learning. Addison-
Wesley, 1989. [27] 

G. Harik. Linkage learning in via probabilistic modeling in the EcGA. Technical Report 99010, 
IlliGAL, 1999. [28] 

G. Harik, F. G. Lobo, and D. E. Goldberg. The compact genetic algorithm. In IEEE Conference 
on Evolutionary Computation, pages 523-528, 1998. [29] 

W. K. Hastings. Monte Carlo sampling method using Markov chains and their applications. 
Biometrika, 57, 1970. [30] 

J. H. Holland. Outline for logical theory of adaptive systems. J. Assoc. Comput. Mach., 3:297-
314, 1962. [31] 

K. Hukushima and K Nemoto. Exchange Monte Carlo method and application to spin glass 
simulations. J. Phys. Soc. Jpn., 65:1604-1608, 1996. [32] 

Y. Iba. Population Annealing: An approach to finite-temperature calculation. In Joint 
Workshop of Hayashibara Foundation and SMAPIP. Hayashibara Forum, 2003. [33] 

N. R. Jennings. Coordination Techniques for Distributed Artificial Intelligence. In G. M. P. 
O'Hare and N. R. Jennings, editor, Foundations of Distributed Artificial Intelligence, 
pages 187-210. John Wiley & Sons, 1996. [34] 

J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proc. IEEE Int. Conf. on 
Neural Networks, volume IV, pages 1942-1948, Piscat-away, NJ: IEEE Service Center, 
1995. [35] 

J. Kennedy, R.C. Eberhart, and Y. Shi. Swarm Intelligence. Evolutionary Computation. 
Morgan Kaufmann, April 2001. [36] 

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing. Science, 
220(4598):671-680, 1983. [37] 

W. Krauth. Advances in Computer Simulation, chapter Introduction To Monte Carlo 
Algorithms. Springer-Verlag, 1998. [38] 

P. Larranaga and J.A. Lozano. Estimation of Distribution Algorithms, A New Tool for 
Evolutionary Computation. Genetic Algorithms and Evolutionary Computation. 
Kluwer Academic Publishers, 2002. [39] 

F. Liang and W. H. Wong. Evolutionary Monte Carlo: Application to Cp Model Sampling 
and Change Point Theorem. Statistica Sinica, 10, 2000. [40] 

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of 
state calculations by fast computing machines. Journal of Chemical Physics, 21:1087-
1092, 1953. [41] 

N. Monmarche, E. Ramat, G. Dromel, M. Slimane, and G. Venturini. On the similarities 
between AS, BSC and PBIL: toward the birth of a new meta-heuristics. E3i 215, 
Universite de Tours, 1999. [42] 

N. Monmarche, N. Ramat, L. Desbarat, and G. Venturini. Probabilistic search with genetic 
algorithms and ant colonies. In A.S. Wu, editor, Proceedings of the 2000 Genetic and 
Evolutionary Computation Conference Workshop, pages 209-211, 2000. [43] 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

216 

H. Miihlenbein and G. Paa/3. From recombination of genes to the estimation of 
distributions I. Binary parameters. Lecture Notes in Computer Science 1411: Parallel 
Problem Solving from Nature, PPSN IV:178-187, 1996. [44] 

J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal, 
7:308—313, 1965. [45] 

M. E. J. Newman and R. G. Palmer. Error estimation in the histogram Monte Carlo method. 
arxiv:cond-mat/98043006, 1998. [46] 

G. Nicolis and I. Prigogine. Self-organization in Non-equilibrium Systems. New York, 1977. [47] 
Y Okamoto and U. H. E. Hansmann. Thermodynamics of helix-coil transitions studied by 

multicanonical algorithms. J. Phys. Chem., 99:11276— 11287, 1995. [48] 
I. Rechenberg. Cybernetic Solution Path of an Experimental Problem. Royal Aircraft 

Establishment Library Translation, 1965. [49] 
M.G.C. Resende. Greedy randomized adaptive search procedures (GRASP). Technical 

Report TR 98.41.1, AT&T Labs-Research, 2000. [50] 
Christian Blum Andrea Roli. Metaheuristics in combinatorial optimization: Overview and 

conceptual comparison. ACM Computing Surveys, 35(3):268-308, September 2003. 
[51] 

G. Syswerda. Simulated Crossover in Genetic Algorithms. In L. D. Whitley, editor, Second 
workshop on Foundations of Genetic Algorithms, pages 239-255, San Mateo, California, 
1993. Morgan Kaufmann. [52] 

E. D. Taillard, L. M. Gambardella, M. Gendreau, and J.-Y. Potvin. Adaptive Memory 
Programming: A Unified View of Meta-Heuristics. European Journal of Operational 
Research, 135(1): 1—16, 1998. [53] 

E. Triki, Y. Collette, and P. Siarry. A theoretical study on the behavior of simulated 
annealing leading to a new cooling schedule. European Journal of Operational 
Research, 166:77-92, 2005. [54] 

O. Wendt and W. Konig. Cooperative Simulated Annealing: How Much Cooperation is 
Enough ? Technical Report 97-19, Institute of Information Systems, Goethe 
University, Frankfurt, 1997. [55] 

13 

Artificial Ants in the Real World: Solving On-line 
Problems Using Ant Colony Optimization 

Bruno R. Neryl, Rodrigo F. de Mellol, André P. L. F. de Carvalhol and 
Laurence T. Yang2 

1Universidade de São Paulo, 2St. Francis Xavier University 
1Brazil, 2Canada 

1. Introduction 
In the last years, there has been a large growth in the research of computational techniques 
inspired in nature. This area, named Bioinspired Computing, has provided biologically 
motivated solutions for several real world problems. Among Bioinspired Computing 
techniques, one can mention Artificial Neural Networks (ANN), Evolutionary Algorithms 
(EA), Artificial Immune Systems (AIS) and Ant Colony Optimization (ACO). 
ACO is a meta-heuristic based on the structure and behavior of ant colonies. It has been 
successfully applied to several optimization problems. Several real world optimization 
problems may change the configuration of its search space with time. These problems are 
known as dynamic optimization problems. This chapter presents the main concepts of ACO 
and show how it can be applied to solve real optimization problems on dynamic 
environments. As a case study, it will be illustrated how ACO can be applied to process 
scheduling problems. 
The chapter starts describing how real ants forage for food, environmental modifications 
related to this activity (for example, the blockage of a path) and the effects of these 
modifications in the colony. After, a brief review of previous works on Ant Colony 
Optimization is presented. 
For computer simulations, the activities of an ant colony may be modeled as a graph. After 
modeling the problem of foraging for food (as a graph), the goal (finding the shortest path at 
a given moment) is defined and the mechanism to solve the problem is presented. 
The need to model an on-line problem as a graph, the goal of finding the shortest path and 
the mechanisms adopted for solving the problem (an adapted version of the AntSystem) are 
detailed. 
Before ACO is applied to the process scheduling problem, the problem is analyzed and 
modeled using a graph representation. Next, simulation results obtained in a set of 
experiments are presented, which are validated by results obtained in a real 
implementation. Important issues related with the use of ACO for process scheduling, like 
parameter adjustments, are discussed. 
In the conclusion of this chapter, we point out a few future directions for ACO researches. 
The use of computational techniques inspired in nature has become very frequent in the last 
years. This area, named Bioinspired Computing, provides efficient biologically motivated 
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solutions for several real world problems. Among the most popular bioinspired techniques, 
we may cite Artificial Neural Networks (ANN), Evolutionary Algorithms (EA), Artificial 
Immune Systems (AIS) and Ant Colony Optimization (ACO). 
ACO [DMC96], a meta-heuristic based on the structure and behavior of ant colonies, has 
been successfully applied to several optimization problems [FMS05, PB05, BN06, SF06, 
PLF02, WGDK06, CF06, HND05]. For such, it has attracted a large deal of attention lately. 
Next, we will briefly describe key recent works using ACO to solve real world problems. 
Foong et al. [FMS05] proposed a power plant maintenance scheduling optimization 
considering ant colony optimization algorithms. In this work,the performance of two ACO 
algorithms were compared: Best Ant System (BAS) and Max-Min Ant System (MMAS). 
Experimental results suggested that the performance of the studied algorithms can be 
significantly better than those obtained by other meta-heuristics, such as genetic algorithms 
and simulated annealing, in this particular application. The work considered as case study a 
21-unit power plant maintenance problem investigated in previous researches. In this study, 
parameters like the number of ants, initial pheromone level, reward factor and others were 
varied to investigate the ACO search sensitivity. 
Pinto and Baran [PB05] presented two multiobjective algorithms for the Multicast Traffic 
Engineering problem considering new versions of the Multi-Objective Ant Colony System 
(MOACS) and the Max-Min Ant System (MMAS). These ACO algorithms simultaneously 
optimize the maximum link usage, the cost of a multicast routing tree, the average delay 
and maximum end-to-end delay. Results showed a promising performance of the proposed 
algorithms for a multicast traffic engineering optimization. 
Bui and Nguyen [BN06] proposed an algorithm to solve the graph coloring problem. The 
algorithm employed a set of agents, called ants, to color the graph. The ants were 
distributed on the vertices of the input graph based on the conflicts. Each ant colored a 
portion of the graph. Although based on traditional ACO algorithms, each ant solved part of 
the problem, making it suitable for distributed problems. 
Smaldon and Freitas [SF06] investigated a new version of the Ant-Miner algorithm [PLF02], 
named Unordered Rule Set Ant-Miner, which produces an unordered set of classification 
rules. The proposed version was compared to the original Ant-Miner algorithm in six 
public-domain datasets, presenting similar accuracy. However, it discovered more modular 
rules, which could be interpreted independently from others, supporting its application for 
interpreting discovered knowledge in data mining systems. 
Wang et al. [WGDK06] proposed a design exploration method to exploit the duality between 
the time and resource constrained scheduling problems. The proposed approach used the 
Max-Min Ant Colony Optimization to solve both the time and the resource constrained 
scheduling problems. Compared to using force directed scheduling exhaustively at every 
time step, the proposed algorithm provided relevant solution quality savings with similar 
execution time. 
Chan and Freitas [CF06] proposed a new ant colony algorithm for multi-label classification, 
named MuLAM (Multi-Label Ant-Miner). This algorithm is a major extension of Ant-Miner, 
the first ant colony algorithm for discovering classification rules. According to experimental 
results, MuLAM presented a better predictive accuracy than other classification techniques 
investigated. 
Hijazi et al. [HND05] used an ant colony algorithm in the wireless communication domain. 
The problem investigated was how to detect users in a multi-user environment in 
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synchronous MC-CDMA (Multi-Carrier Code Division Multiple Access) systems, 
minimizing the interference noise. The optimization solutions found by the ACO reduced 
the execution time requirements by as much as 98% when compared to an exhaustive search 
method. 
All previous works found biological inspired motivations to solve real world problems. We 
believe that the approach followed by ant colonies to find the shortest path between their 
nest and a food source can provide an efficient solution to the process scheduling problem. 
For such, this chapter presents concepts on Ant Colony Optimization and how it can be 
applied to optimize process scheduling. This chapter is organized as follows: the section 2 
presents ant colony optimization concepts; the problem of foraging for food and how ants 
solve it is presented in section 3; examples of Ant Colony Optimization algorithms are 
shown in section 4; the section 5 presents how Ant Colony Optimization can be used for a 
real class problem, in this case the process scheduling; the section 6 shows the conclusions 
and future directions, finally the references. 

2. How real ants work 
Apparently simple organisms, ants can deal with complex tasks by acting collectively. This 
collective behavior is supported by the release of a chemical substance, named pheromone. 
During their movement, ants deposit pheromone in their followed paths. The presence of 
pheromone in a path attracts other ants. In this way, pheromone plays a key role in the 
information exchange between ants, allowing the accomplishment of several important 
tasks. A classical example is the selection of the shortest path between their nest and a food 
source. 
For instance, consider four ants and two possible paths, P1 and P2 (Figure 1), which link a 
nest NE to a food source FS, such that P1 > P2. Initially, all the ants (A1, A2, A3 and A4) are in 
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Figure 1. Ants foraging for food 

1. In NE, the ants (A1, A2, A3 and A4) do not know the localization of the food source (FS).   
Thus, they randomly choose between P1 and P2, with the same probability. Assume that 
ants A1 and A2 choose P1, and ants A3 and A4 choose P2. 

2. While the ants pass by P1 and P2, they leave a certain amount of pheromone on the 
paths, C1 and C2, respectively. 

3. As P1 < P2, A 3 and A4 arrive to FS before A1 and A2. In this moment, C2 = 2. Since A1 and 
A2 have not arrived to FS, C1 = 0. In order to come back to NE, A3 and A4 must choose 
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solutions for several real world problems. Among the most popular bioinspired techniques, 
we may cite Artificial Neural Networks (ANN), Evolutionary Algorithms (EA), Artificial 
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synchronous MC-CDMA (Multi-Carrier Code Division Multiple Access) systems, 
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solve it is presented in section 3; examples of Ant Colony Optimization algorithms are 
shown in section 4; the section 5 presents how Ant Colony Optimization can be used for a 
real class problem, in this case the process scheduling; the section 6 shows the conclusions 
and future directions, finally the references. 

2. How real ants work 
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pheromone in a path attracts other ants. In this way, pheromone plays a key role in the 
information exchange between ants, allowing the accomplishment of several important 
tasks. A classical example is the selection of the shortest path between their nest and a food 
source. 
For instance, consider four ants and two possible paths, P1 and P2 (Figure 1), which link a 
nest NE to a food source FS, such that P1 > P2. Initially, all the ants (A1, A2, A3 and A4) are in 
NE and must choose between the paths P1 and P2 to arrive to FS. 

 
Figure 1. Ants foraging for food 

1. In NE, the ants (A1, A2, A3 and A4) do not know the localization of the food source (FS).   
Thus, they randomly choose between P1 and P2, with the same probability. Assume that 
ants A1 and A2 choose P1, and ants A3 and A4 choose P2. 

2. While the ants pass by P1 and P2, they leave a certain amount of pheromone on the 
paths, C1 and C2, respectively. 

3. As P1 < P2, A 3 and A4 arrive to FS before A1 and A2. In this moment, C2 = 2. Since A1 and 
A2 have not arrived to FS, C1 = 0. In order to come back to NE, A3 and A4 must choose 
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again between P1 and P2. As in FS, C2 > C1, the probability of these ants choosing P2 is 
higher. Assume that A3 and A4 choose P2. 

4. When A3 and A4 arrive to NE again, C2 arrives to 4.    This increase in C2 and 
consolidates the rank of P2 as the shortest path.   When A1 and A2 arrive to FS, C2 = 4 
and C1 = 2. Thus, the probability of A1 and A2 coming back to NE through P2 becomes 
higher. 

In the previous example, at the beginning, when there is no pheromone, an ant looking for 
food randomly chooses between P1 and P2 with a probability of 0.5 (50% of possibility for 
each path). When there is pheromone on at least one of the paths, the probability of selecting 
a given path is proportional to the amount of pheromone on it. Thus, paths with a higher 
concentration of pheromone have a higher chance of being selected. 
However, this simple approach leads to the problem of stagnation. Suppose, for example, 
that ants get addicted to a particular path. Sometimes in near future, that path may become 
congested, becoming non-optimal. Another problem arises when a favorite path is 
obstructed and can no longer be used by the ants. In the case of real ants, the environment 
solves this problem by evaporation1, i.e., reducing the pheromone values to prevent high 
concentration in optimal paths (which avoid the exploration of possible - new or better - 
alternatives). 

3. Solving problems using ACO 
In order to understand how ant colonies may be used to solve problems, we have to 
understand the problem of foraging for food and how ants solve it. Suppose that each 
location (nest, food source, etc.) is represent by a node and each path by an edge in a graph, 
as shown in Figure 2. 

 
Figure 2: The forage problem modeled as a graph 

Thus, to solve a problem using ant colony optimization we have to represent its domain as a 
graph and its goal as finding a good path. Assume the problem of the traveling salesman 
[FS91] where, given a set of n towns, it is necessary to find a minimal length closed tour that 
visits each town once. The towns are easily represented as the graph nodes and the paths, as 
the graph edges. 

                                                                 
1 When applying ant colonies to solve real problems, this approach may be used together with an 
heuristic one, combining the pheromone concentration with another information to take decisions. 
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Another example is the problem of graph coloring: consider a graph G = (V, E) where V is a 
set of vertices and E is a set of edges. The goal is to assign colors to the vertices in such a 
way that connected vertices do not have the same color. This must me done using as few 
different colors as possible. 

4. Algorithms for Ant Colony Optimization 
Based on the representation presented in the previous section, Dorigo et al. [DMC96] 
proposed an algorithm called ant-cycle which mimics the ants behavior. Dorigo showed 
how this algorithm can be used to solve the traveling salesman problem. 
In Dorigo's algorithm, n ants are distributed in the n towns, one ant at each town. Each ant 
chooses among the linked towns the next visited town. The probability of each town being 
selected is a function of the next town distance and the amount of pheromone on the link 
between the current and the next towns. Ants can visit each town only once (this is achieved 
using a tabu list [BR03]). After completing a path, each ant leaves an amount of pheromone 
on the visited links. The shortest path found by an ant or set of ants is usually followed by 
the remaining ants, defining an optimal or suboptimal path. A pheromone evaporation 
process is frequently used to avoid the selection of the first tours and stagnation. A generic 
version of the ACO algorithm may be seen in Algorithm 1. 

 

Set parameters, initialize pheromone trails 
loop 

while termination conditions not met do  
Construct AntSolutions  
ApplyLocalSearch (optional)  
UpdatePheromones 

end while 
end loop 
Choose best solution 

Algorithm 1 Dorigo's algorithm (ACO heuristic)  

The same approach (Ant Colony Optimization) was used by Negara [G.N06] to solve the 
coloring graph problem (Algorithm 2). The author considered an adjacent matrix A to 
represent the graph G = (V,E) where: auv = 1, if the edge (u, v)  E auv  0, otherwise 
(considering u, v  V). Such work considers the parallel solution of the problem where 
agents cope among themselves sharing experiences. It also considers elitism where the good 
agents can modify the mutual knowledge. 

5. Applying on the real world: process scheduling 
The increasing availability of low cost microprocessors and the evolution of computing 
networks have made economically feasible the construction of sophisticated distributed 
systems. In such systems, processes execute on computers and communicate to each other to 
perform a collaborative computing task. A load balancing algorithm is frequently adopted 
to distribute processes among available computers. 
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graph and its goal as finding a good path. Assume the problem of the traveling salesman 
[FS91] where, given a set of n towns, it is necessary to find a minimal length closed tour that 
visits each town once. The towns are easily represented as the graph nodes and the paths, as 
the graph edges. 

                                                                 
1 When applying ant colonies to solve real problems, this approach may be used together with an 
heuristic one, combining the pheromone concentration with another information to take decisions. 

Artificial Ants in the Real World: Solving On-line Problems Using Ant Colony Optimization 

 

221 

Another example is the problem of graph coloring: consider a graph G = (V, E) where V is a 
set of vertices and E is a set of edges. The goal is to assign colors to the vertices in such a 
way that connected vertices do not have the same color. This must me done using as few 
different colors as possible. 

4. Algorithms for Ant Colony Optimization 
Based on the representation presented in the previous section, Dorigo et al. [DMC96] 
proposed an algorithm called ant-cycle which mimics the ants behavior. Dorigo showed 
how this algorithm can be used to solve the traveling salesman problem. 
In Dorigo's algorithm, n ants are distributed in the n towns, one ant at each town. Each ant 
chooses among the linked towns the next visited town. The probability of each town being 
selected is a function of the next town distance and the amount of pheromone on the link 
between the current and the next towns. Ants can visit each town only once (this is achieved 
using a tabu list [BR03]). After completing a path, each ant leaves an amount of pheromone 
on the visited links. The shortest path found by an ant or set of ants is usually followed by 
the remaining ants, defining an optimal or suboptimal path. A pheromone evaporation 
process is frequently used to avoid the selection of the first tours and stagnation. A generic 
version of the ACO algorithm may be seen in Algorithm 1. 

 

Set parameters, initialize pheromone trails 
loop 

while termination conditions not met do  
Construct AntSolutions  
ApplyLocalSearch (optional)  
UpdatePheromones 

end while 
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Choose best solution 

Algorithm 1 Dorigo's algorithm (ACO heuristic)  

The same approach (Ant Colony Optimization) was used by Negara [G.N06] to solve the 
coloring graph problem (Algorithm 2). The author considered an adjacent matrix A to 
represent the graph G = (V,E) where: auv = 1, if the edge (u, v)  E auv  0, otherwise 
(considering u, v  V). Such work considers the parallel solution of the problem where 
agents cope among themselves sharing experiences. It also considers elitism where the good 
agents can modify the mutual knowledge. 

5. Applying on the real world: process scheduling 
The increasing availability of low cost microprocessors and the evolution of computing 
networks have made economically feasible the construction of sophisticated distributed 
systems. In such systems, processes execute on computers and communicate to each other to 
perform a collaborative computing task. A load balancing algorithm is frequently adopted 
to distribute processes among available computers. 
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read matrix A 
for iteration do 

for ant a in Ants do 
a colors the graph based on previous experience using one of the specific 
coloring algorithms 
if a is elitist then 

a modifies the matrix A 
end if 

end for 
end for 
Use results 

Algorithm 2. Negara's algorithm 

A load balancing algorithm is responsible to equally distribute the processes load among the 
computers of a distributed environment [SKS92]. Krueger and Livny [KL87] demonstrate 
that such algorithms reduce the mean and standard deviation of process response times. 
Lower response times result in higher performance. 
The load balancing algorithms involve four policies: transference, selection, location and 
information [SKS92]. The transference policy determines whether a computer is in a suitable 
state to participate in a task transfer, either as a server or as a process receiver. The selection 
policy defines the process to be transferred from the busiest computer to the idlest one. The 
location policy is responsible to find a suitable transfer partner (sender or receiver) for a 
computer, once the transfer policy has decided about its state. A serving computer 
distributes processes, when it is overloaded; a receiving computer requests processes, when 
it is idle. The information policy defines when and how the information regarding the 
computer availability is updated in the system. Several works related to load balancing can 
be found in the literature [ZF87, TL89, SKS92, MTPY04, SdMS+05]. 
Zhou and Ferrari [ZF87] evaluated five server-initiated load balancing algorithms, i.e. 
initiated by the most overloaded computer: Disted, Global, Central, Random and Lowest. In 
Disted, when a computer suffers any modification in its load, it emits messages to the other 
computers to inform its current load. In Global, one computer centralizes all the computer 
load information and sends broadcast messages in order to keep the other computers 
updated. In Central, as in Global, a central computer receives all the load information 
related to the system; however, it does not update the other computers with this 
information. This central computer decides the resources allocation in the environment. In 
Random, no information about the environment load is handled. Now, a computer is 
selected by random in order to receive a process to be initiated. In Lowest, the load 
information is sent when demanded. When a computer starts a process, it requests 
information and analyzes the loads of a small set of computers and submit the processes to 
the idlest one, the computer with the shortest process queue. 
Theimer and Lantz [TL89] implemented algorithms similar to Central, Disted and Lowest. 
They analyzed these algorithms for systems composed of a larger number of computers 
(about 70). For the Disted and Lowest algorithms, a few process receiver and sender groups 
were created. The communication within these groups was handled by using a multicast 
protocol, in order to minimize the message exchange among the computers. Computers 
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with load lower than a inferior limit participate of the process receiver group, whilst those 
with load higher than a superior limit participate of the process sender group. 
Theimer and Lantz recommend decentralized algorithms, such as Lowest and Disted, as 
they do not generate single points of failure, as Central does. Central presents the highest 
performance for small and medium size networks, but its performance decreases in larger 
environments. They concluded that algorithms like Lowest work with the probability of a 
computer being idle [TL89]. They assume system homogeneity, as they use the size of the 
CPU waiting queue as the load index. The process behavior is not analyzed; therefore, the 
actual load of each computer is not measured. 
Shivaratri, Krueger and Singhal [SKS92] analyzed the server-initiated, receiver-initiated, 
symmetrically initiated, adaptive symmetrically initiated and stable symmetrically initiated 
algorithms. In their studies, the length of the process waiting queue at the CPU was 
considered as the load index. This measure was chosen because it's simple and, therefore, 
can be obtained with fewer resources. They concluded that the receiver-initiated algorithms 
present a higher performance than the server-initiated ones. In their conclusions, the 
algorithm with the highest final performance was the stable symmetrically initiated. This 
algorithm preserves the history of the load information exchanged in the system and takes 
actions to transfer the processes by using this information. 
Mello et al. [MTPY04] proposed a load balancing algorithm for distributing processes on 
heterogeneous capacity computers. This algorithm, named TLBA (Tree Load Balancing 
Algorithm), organizes computers in a virtual tree topology and starts delivering processes 
from the root to the leaves. In their experiments, this algorithm presented a very good 
performance, with low mean response time. 
Senger et al. [SdMS+05] proposed GAS, a genetic scheduling algorithm which uses 
information regarding the capacity of the processing elements, applications' communication 
and processing load, in order to allocate resources on heterogeneous and distributed 
environments. GAS uses Genetic Algorithms to find out the most appropriate computing 
resource subset to support applications. 
Motivated by all the previous ACO presented works (section 1) and the scheduling problem, 
Nery et al. [NMdCYOB] proposed an algorithm inspired in ant colonies to schedule 
processes on heterogeneous capacity computer clusters, which can be considered as an 
alternative approach for load balancing systems. Such algorithm is named Ant Scheduler 
and is based in ant colony optimization techniques. The next sections describe the algorithm 
and compare its results with others found in literature. 

5.1 The Ant Scheduler 
The problem of process allocation in heterogeneous multicomputing environments can be 
modeled by using graphs, as illustrated in Figure 3 [AAB+00]. In this case, each process is a 
request for execution that has the nodes S and T as origin and destination, respectively. S 
and T are connected by N different paths, each corresponding to a computer in a cluster. 
This graph is employed to improve the general performance of the system by minimizing 
the mean congestion of the paths. 
The good results obtained by ACO in graph-based problems favor the use of ACO for the 
optimization of process allocation on heterogeneous cluster computing environments. For 
such, each initiated process can be seen as an ant looking for the best path starting in the 
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Lower response times result in higher performance. 
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state to participate in a task transfer, either as a server or as a process receiver. The selection 
policy defines the process to be transferred from the busiest computer to the idlest one. The 
location policy is responsible to find a suitable transfer partner (sender or receiver) for a 
computer, once the transfer policy has decided about its state. A serving computer 
distributes processes, when it is overloaded; a receiving computer requests processes, when 
it is idle. The information policy defines when and how the information regarding the 
computer availability is updated in the system. Several works related to load balancing can 
be found in the literature [ZF87, TL89, SKS92, MTPY04, SdMS+05]. 
Zhou and Ferrari [ZF87] evaluated five server-initiated load balancing algorithms, i.e. 
initiated by the most overloaded computer: Disted, Global, Central, Random and Lowest. In 
Disted, when a computer suffers any modification in its load, it emits messages to the other 
computers to inform its current load. In Global, one computer centralizes all the computer 
load information and sends broadcast messages in order to keep the other computers 
updated. In Central, as in Global, a central computer receives all the load information 
related to the system; however, it does not update the other computers with this 
information. This central computer decides the resources allocation in the environment. In 
Random, no information about the environment load is handled. Now, a computer is 
selected by random in order to receive a process to be initiated. In Lowest, the load 
information is sent when demanded. When a computer starts a process, it requests 
information and analyzes the loads of a small set of computers and submit the processes to 
the idlest one, the computer with the shortest process queue. 
Theimer and Lantz [TL89] implemented algorithms similar to Central, Disted and Lowest. 
They analyzed these algorithms for systems composed of a larger number of computers 
(about 70). For the Disted and Lowest algorithms, a few process receiver and sender groups 
were created. The communication within these groups was handled by using a multicast 
protocol, in order to minimize the message exchange among the computers. Computers 
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with load lower than a inferior limit participate of the process receiver group, whilst those 
with load higher than a superior limit participate of the process sender group. 
Theimer and Lantz recommend decentralized algorithms, such as Lowest and Disted, as 
they do not generate single points of failure, as Central does. Central presents the highest 
performance for small and medium size networks, but its performance decreases in larger 
environments. They concluded that algorithms like Lowest work with the probability of a 
computer being idle [TL89]. They assume system homogeneity, as they use the size of the 
CPU waiting queue as the load index. The process behavior is not analyzed; therefore, the 
actual load of each computer is not measured. 
Shivaratri, Krueger and Singhal [SKS92] analyzed the server-initiated, receiver-initiated, 
symmetrically initiated, adaptive symmetrically initiated and stable symmetrically initiated 
algorithms. In their studies, the length of the process waiting queue at the CPU was 
considered as the load index. This measure was chosen because it's simple and, therefore, 
can be obtained with fewer resources. They concluded that the receiver-initiated algorithms 
present a higher performance than the server-initiated ones. In their conclusions, the 
algorithm with the highest final performance was the stable symmetrically initiated. This 
algorithm preserves the history of the load information exchanged in the system and takes 
actions to transfer the processes by using this information. 
Mello et al. [MTPY04] proposed a load balancing algorithm for distributing processes on 
heterogeneous capacity computers. This algorithm, named TLBA (Tree Load Balancing 
Algorithm), organizes computers in a virtual tree topology and starts delivering processes 
from the root to the leaves. In their experiments, this algorithm presented a very good 
performance, with low mean response time. 
Senger et al. [SdMS+05] proposed GAS, a genetic scheduling algorithm which uses 
information regarding the capacity of the processing elements, applications' communication 
and processing load, in order to allocate resources on heterogeneous and distributed 
environments. GAS uses Genetic Algorithms to find out the most appropriate computing 
resource subset to support applications. 
Motivated by all the previous ACO presented works (section 1) and the scheduling problem, 
Nery et al. [NMdCYOB] proposed an algorithm inspired in ant colonies to schedule 
processes on heterogeneous capacity computer clusters, which can be considered as an 
alternative approach for load balancing systems. Such algorithm is named Ant Scheduler 
and is based in ant colony optimization techniques. The next sections describe the algorithm 
and compare its results with others found in literature. 
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The problem of process allocation in heterogeneous multicomputing environments can be 
modeled by using graphs, as illustrated in Figure 3 [AAB+00]. In this case, each process is a 
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The good results obtained by ACO in graph-based problems favor the use of ACO for the 
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nest in order to arrive as fast as possible to the food source. In this search, each computer 
can be seen as a path and the conclusion of the program execution as the food source. 

 
Figure 3. A cluster modeled as a graph of resources 

The Ant Scheduler algorithm is based on the ant-cycle proposed by Dorigo et al. [DMC96]. 
When the computer responsible for the distribution of processes (master) in the cluster is 
started, each edge in the graph has its pheromone intensity initiated with a value i = c. 
When a process is launched, it is seen as an ant able to move. Thus, this process must select 
one of the paths (the computers of the cluster) to its destination (complete execution). The 
probability of an ant choosing a path i is given by Equation 1, where i is the pheromone 
level on path i, i is a value associated to the computer i by a heuristic function, and the 
parameters  and  control the relevance of i and i. 

  
(1)

 
This heuristic function is proportional to the load of the ith computer. The denominator is 
the sum of the pheromone levels weighted by the heuristic function and controlled by the 
parameters  and . When an ant arrives to its destination (when a process finishes), it 
deposits a  amount of pheromone in the covered path (equation 2: where Q is a constant 
and T is the time spent by the ant to arrive at its destination (the process running time)). 

  (2) 
In order to prevent an addiction to a particular computer, the paths face continuous 
pheromone evaporation. Thus, in regular time intervals, the amount of pheromones changes 
according to the rule of equation 3, where  is a coefficient such that (1 — ) represents the 
pheromone evaporation between t and t + 1. Additionally, i is reseted ( i = 0) in regular 
time intervals. 

  (3) 

One problem with this approach is the possibility of a poor performance due to the different 
range of values for i and i. In order to overcome this problem, these values are normalized 
using a logarithmic scale, modifying the equation 1 and originating the equation 4. 
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(4)

 
Another problem found was the frequent allocation of a low value, between 0 and 1, to i, 
making log i < 0, leading to unrealistic values for the probability function. This problem 
was solved by using log  + i instead of log i, where  = 1. This resulted in the equation 5. 

  
(5)

 
The Ant Scheduler is composed of the Algorithms 3, 4 and 5. The first algorithm is executed 
when a new process, with possibility of migration, is initiated. When a process completes its 
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5.2 Simulation 
Several experiments have been carried out on environments with 32 computers for the 
evaluation of the Ant Scheduler algorithm behavior. The Ant Scheduler parameters used 
were  = 1,  = 1,  = 0.8 and Q = 0.1. Parallel applications of up to 8, 64 and 128 tasks have 
been evaluated. This configuration allows the evaluation of the algorithm in situations 
where there are many tasks synchronized with others, that is, tasks that communicate 
among themselves to solve the same computing problem. 
The workload imposed by such applications follows the workload model by Feitelson 
2[FJ97j. This model is based on the analysis of six execution traces of the following 
production environments: 128-node iPSC/860 at NASA Ames; 128-node IBM SP1 at 
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nest in order to arrive as fast as possible to the food source. In this search, each computer 
can be seen as a path and the conclusion of the program execution as the food source. 

 
Figure 3. A cluster modeled as a graph of resources 
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One problem with this approach is the possibility of a poor performance due to the different 
range of values for i and i. In order to overcome this problem, these values are normalized 
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Argonne; 400-node Paragon at SDSC; 126-node Butterfly at LLNL; 512-node IBM SP2 at 
CTC; 96-node Paragon at ETH. 
According to this model, the arrival of processes is derived from an exponential probability 
distribution function (pdf) with mean equal to 1,500 seconds. This model was adopted to 
simulate and allow a comparative evaluation of Ant Scheduler and other algorithms found 
in the literature. 
In order to carry out the experiments and evaluate the scheduling algorithm proposed in 
this study, the authors used the model for creation of heterogeneous distributed 
environments and evaluation of the parallel applications response time - UniMPP (Unified 
Modeling for Predicting Performance) [dMS06]. The adopted model is able to generate the 
mean execution time of the processes submitted to the system. The mean response time is 
generated after reaching the confidence interval of 95%. 
In this model, every processing element (PE), PEi, is composed of the sextuple {pci, mmi, 
vmi,dri,dwi,loi}, where pci is the total computing capacity of each computer measured in 
instructions per time unit, mmi is the main memory total capacity, vmi is the virtual memory 
total capacity, dri is the hard disk reading throughput, dwi is the hard disk writing 
throughput, and loi is the time between sending and receiving a message. 
In this model, every process is represented by the sextuple {mpj,   smj,   pdf dmj,    pdf drj,  pdf 
dwj,  pdf netj}, where mpj represents the processing consumption, smj is the amount of static 
memory allocated by the process, pdf dmj is the probability distribution for the memory 
dynamic occupation, pdf drj is the probability distribution for file reading, pdf dwj is the 
probability distribution for file writing, and pdf netj is the probability distribution for 
messages sending and receiving. 
In order to evaluate the Ant Scheduler algorithm, a class was included in the object-oriented 
simulator3 [dMS06j. This class implements the functionalities of Ant Scheduler and has been 
aggregated to the UniMPP model simulator to generate the mean response times of an 
application execution. These results were used to evaluate the performance of Ant Scheduler 
and to allow comparisons with other algorithms. 

5.2.1 Environment parameters 
Experiments were conduced in environments composed of 32 computers. In these 
experiments, each PEi for the UniMPP model was probabilistically defined. The parameters 
pci, mmi, vmi, dri, dwi were set by using an uniform probability distribution function with the 
mean of 1,500 Mips (millions of instructions per second), 1,024 MBytes (main memory), 
1,024 MBytes (virtual memory), 40 MBytes (file reading transference rate from hard disk) 
and 30 MBytes (file writing transference rate to hard disk). These measures were based on 
the actual values obtained using a group of machines from our research laboratory 
(Distributed Systems and Concurrent Programming Laboratory). These measures followed 
the benchmark proposed by Mello and Senger [dMS06]4. These parameter values and the 
use of probability distributions allow the creation of heterogeneous environments to 
evaluate the Ant Scheduler algorithm. 
The Feitelson's workload model was used to define the occupation parameter (in Mips) of 
the processes (or tasks) that take part of the parallel application. The remaining parameters 

                                                                 
3 SchedSim - available at website http://www.icmc.usp.br/~mello. 
4 available at http://www.icmc.usp.br/~mello/ 
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required for the UniMPP to represent a process were defined as: smj, the amount of static 
memory used by the process, based on an exponential distribution with a mean of 300 
KBytes; pdf dmj, the amount of memory dynamically allocated, defined by an exponential 
distribution with a mean of 1, 000 KBytes; pdf drj, the file reading probability, defined by an 
exponential distribution with a mean of one read at each 1, 000 clock ticks, same value used 
to parameterize the writing in files (pdf dwj); pdf netj, the receiving and sending of network 
messages, parameterized by an exponential distribution with a mean of one message at each 
1,000 clock ticks. 
During the experiments, all computers were located at the same network, as an ordinary 
cluster. Within the network, the computers present a delay (RTT - Round-Trip Time 
according to the model by Hockey [Hoc96]) of 0.0001 seconds (mean value extracted by the 
net benchmark by Mello and Senger [dMS06] for a Gigabit Ethernet network). 

5.2.2 Algorithms simulated 
The performance of Ant Scheduler is compared with 5 other scheduling and load balancing 
algorithms proposed in literature: DPWP [ASSS99], Random, Central, Lowest [ZF87], TLBA 
[MTPY04] and GAS [SdMS+05]. 
The DPWP (Dynamic Policy Without Preemption) algorithm performs the parallel 
applications scheduling taking into account a distributed and heterogeneous execution 
scenario [ASSS99]. This algorithm allows the scheduling of the applications developed on 
PVM, MPI and CORBA. The details involved in the task attributions are supervised by the 
scheduling software, AMIGO [SouOO]5. 
The load index used in this algorithm is the queue size of each PE (processing element). 
Through this index, the load of a PE is based on the ratio between its number of tasks being 
executed and its processing capacity. The processing capacity is measured by specific 
benchmarks [SouOO, SSSSOlj. The DPWP scheduling algorithm uses load indexes to create 
an ordered list of PEs. The parallel application tasks are attributed to the PEs of this list, in a 
circular structure. 
The Lowest, Central and Random algorithms were investigated for load balancing in 
[ZF87]. These algorithms are defined by two main components: LIM (Load information 
manager) and LBM (Load balance manager). The first component is responsible for the 
information policy and for monitoring the computers' load in order to calculate the load 
indexes. The latter defines how to use the collected information to find out the most 
appropriate computer to schedule processes. The approach followed by these components 
to perform their tasks allows the definition of distinct algorithms. These algorithms differ 
from the scheduling algorithms by being designed to perform the load balance, thus there is 
no global scheduling software to which the applications are submitted. In fact, each PE 
should locally manage the application tasks that reach it, initiating them locally or defining 
how another PE will be selected to execute tasks. 
 
 
 
 

                                                                 
5 We have compared our results to this work, because it was also developed in our laboratory. 
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The Lowest algorithm aims to achieve the load balance by minimizing the number of 
messages exchanged among its components. When a task is submitted to the environment, 
the LIM receiving the request defines a limited set of remote LIMs. The loads of the PEs of 
this set are received and the idlest PE is selected to receive the task. 
The Central algorithm employs a master LBM and a master LIM. Both of them centralize the 
decision making related to the load balance. The master LIM receives the load indexes sent 
by the slave LIMs. The master LBM receives the requests to allocate processes to the system 
and uses the information provided by the master LIM to make these allocations. 
The Random algorithm does not use information regarding the system load to make 
decisions. When a task is submitted to the execution environment, the algorithm randomly 
selects a PE. The load index used by the Lowest and Central algorithms is calculated based 
on the number of processes in the execution queue. Zhou and Ferrari [ZF87] have observed 
that the Lowest and Central algorithms present similar performance and that the Random 
algorithms present the worst results of all. They also suggested the Lowest algorithm for 
distributed scenarios, because it's not centralized. 
The TLBA (Tree Load Balancing Algorithm) algorithm aims at balancing loads in scalable 
heterogeneous distributed systems [MTPY04]. This algorithm creates a logical 
interconnection topology with all PEs, in a tree format, and performs the migration of tasks 
in order to improve the system load balance. 
The GAS (Genetic Algorithm for Scheduling) algorithm uses Genetic Algorithms to propose 
optimized scheduling solutions [SdMS+05j. The algorithm considers knowledge about the 
execution time and applications' behavior to define the most adequate set of computing 
resources to support a parallel application on a distributed environment composed of 
heterogeneous capacity computers. GAS uses the crossover and mutation operators to 
optimize the probabilistic search for the best solution for a problem. Based on Genetics and 
Evolution, Genetic Algorithms are very suitable for global search and can be efficiently 
implemented in parallel machines. 

5.2.3 Experimental results 
For the validation of the Ant Scheduler algorithm, its performance was compared with 
results obtained by the five algorithms previously described. For such, the authors carried 
out simulations where all these algorithms were evaluated running parallel applications 
composed of different numbers of tasks. Figures 4 and 5 show the process mean response 
times for parallel applications with up to 64 and 128 tasks, respectively. 
Random had the worst results, while Ant Scheduler presented the best performance. The 
poor performance obtained by GAS can be explained by the fact that its execution time 
increases according to the number of computers. This occurs due to the use of larger chro-
mosomes (this approach is based on Genetic Algorithms), which have to be evaluated by the 
fitness function. This evaluation requires a long time, which is added to the scheduling cost, 
jeopardizing the process execution time. It is hard to observe the curve for Ant Scheduler in 
Figure 4 due to the small mean response times in comparison with the other algorithms. 
These results show that, in all the scenarios investigated, the Ant Scheduler presented the 
best performance. 
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Figure 4. Simulation results: 64 tasks 

 
Figure 5. Simulation results: 128 tasks 

5.3 Implementation 
In order to allow real experiments, Ant Scheduler was implemented using the Linux kernel 
2.4.24. This implementation uses the process migration service of the openMosix6 patch. 
openMosix is a software designed to balance the load of clusters by distributing processes. 
                                                                 
6 openMosix is a Linux kernel patch developed by Moshe Bar which allows automatic process 
migration in a cluster environment — Available at http://openmosix.sourceforge.net/ 
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The implementation was performed by adding a set of traps inside the Linux kernel. The 
first trap was implemented in the system call do_fork. Whenever a new process is started, 
do_fork is called. This system call executes the first trap of Ant Scheduler, which chooses the 
node where the new process will run. This phase is based on the pheromone level and the 
computing capacity of each node. Similarly, when a process finishes, the system call do_exit 
is made. This system call executes the second trap of Ant Scheduler, which updates the 
amount of pheromone in the computer (ant's path) where the process was running. 
These traps were implemented in a kernel module by using function pointers, allowing 
simple changes to use another process scheduling algorithm. When the module is loaded, it 
registers its functions (traps). This module also starts a thread that periodically updates the 
pheromone level of each computer applying the equation 3. 
Experiments were carried out to evaluate the process execution time for an environment 
using Ant Scheduler and openMosix on a set of five Dual Xeon 2.4 Ghz computers. Table 1 
presents the results in process mean execution time (in seconds) for a load of 10 low-load, 10 
mean-load and 10 high-load applications executing simultaneously. According to these 
results, the use of Ant Scheduler reduced the mean response time. 

Experiment without with 

 Ant Scheduler Ant Scheduler 

1 351.00 327.00 
2 351.00 336.00 
3 351.00 318.00 
4 354.00 321.00 
5 351.00 318.00 
6 351.00 333.00 
7 351.00 321.00 
8 351.00 336.00 
9 348.00 309.00 
10 348.00 315.00 
Mean 350.70 323.40 
Std Dev 1.615 8.777 

Table 1. Experimental Results 

In order to evaluate the statistical significance of the results obtained, the authors applied 
the Student's t-test. In this analysis, the authors used the standard error sx for small data 
samples [W.C88], given by equation 6, where s is the standard deviation and n is the number 
of samples. Applying the equation, the standard errors of 0.51 and 2.775 were obtained 
without Ant Scheduler and with Ant Scheduler, respectively. 

  (6) 

In the test, the null hypothesis proposed is H0: with = without, with the alternative hypothesis 
HA: with < without to evaluate whether the results are statistically equivalent. The hypothesis 
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H0 considers the results of the Ant Scheduler and the standard openMosix to be similar. If 
the test is rejected, the alternative hypothesis HA is accepted. This hypothesis considers the 
process mean response time for the environment adopted. Such mean response time is 
lower when the processes are distributed using the Ant Scheduler, what confirms its 
superiority. 
The significance level used for one-tailed test is  = 0.0005. with is the process mean response 
time with Ant Scheduler; without is the process mean response time with the standard 
openMosix. For the adopted significance level , the data sets have to present a difference of 
at least 4.781 in the t-test to reject the hypothesis. This value is found in tables of critical 
values for the t-student distribution. 
Applying the equation 7, the value 9.83 is found, confirming that the results present statistic 
differences with p < 0.005, rejecting the hypothesis H0. In this way the hypothesis HA is valid 
and the system with Ant Scheduler presents better results than standard openMosix. 

  (7) 
By applying statistic tools7 over the data sets, it's possible to find the most precise  = 
0.0000018 for a one-tailed test. This value shows how many times the alternative hypothesis 
is true. In this case, HA can be considered true in 9,999,982 out of 10,000,000 executions, 
showing that Ant Scheduler reduces the response time. Only in 18 of these executions the 
results of Ant Scheduler and openMosix would not present significant statistical differences. 

6. Conclusions and future directions 
The behavior of real ants motivated Dorigo et al. [DMC96] to propose the Ant Colony 
Optimization (ACO) technique, which can be used to solve problems in dynamic 
environments. This technique has been successfully applied to several optimization 
problems [FMS05, PB05, BN06, SF06, PLF02, WGDK06, CF06, HND05]. Such results have 
motivated this chapter which presents ACO concepts, case studies and also a complete 
example on process scheduling optimization. 
Besides the successful adoption of ACO, it presents some relevant questions which have 
been motivating future directions such as: how to adjust parameters which depend on the 
optimization problem [SocOSj; how to reduce the execution time [G.N06, MBSD06]; the 
optimization improvement by using incremental local search [BBSD06]; and the aggregation 
of different and new concepts to ACO [RL04]. Those works confirm ACO is an important 
optimization technique and also that is has been improved and present a promising future. 
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is made. This system call executes the second trap of Ant Scheduler, which updates the 
amount of pheromone in the computer (ant's path) where the process was running. 
These traps were implemented in a kernel module by using function pointers, allowing 
simple changes to use another process scheduling algorithm. When the module is loaded, it 
registers its functions (traps). This module also starts a thread that periodically updates the 
pheromone level of each computer applying the equation 3. 
Experiments were carried out to evaluate the process execution time for an environment 
using Ant Scheduler and openMosix on a set of five Dual Xeon 2.4 Ghz computers. Table 1 
presents the results in process mean execution time (in seconds) for a load of 10 low-load, 10 
mean-load and 10 high-load applications executing simultaneously. According to these 
results, the use of Ant Scheduler reduced the mean response time. 

Experiment without with 

 Ant Scheduler Ant Scheduler 

1 351.00 327.00 
2 351.00 336.00 
3 351.00 318.00 
4 354.00 321.00 
5 351.00 318.00 
6 351.00 333.00 
7 351.00 321.00 
8 351.00 336.00 
9 348.00 309.00 
10 348.00 315.00 
Mean 350.70 323.40 
Std Dev 1.615 8.777 

Table 1. Experimental Results 

In order to evaluate the statistical significance of the results obtained, the authors applied 
the Student's t-test. In this analysis, the authors used the standard error sx for small data 
samples [W.C88], given by equation 6, where s is the standard deviation and n is the number 
of samples. Applying the equation, the standard errors of 0.51 and 2.775 were obtained 
without Ant Scheduler and with Ant Scheduler, respectively. 

  (6) 

In the test, the null hypothesis proposed is H0: with = without, with the alternative hypothesis 
HA: with < without to evaluate whether the results are statistically equivalent. The hypothesis 
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H0 considers the results of the Ant Scheduler and the standard openMosix to be similar. If 
the test is rejected, the alternative hypothesis HA is accepted. This hypothesis considers the 
process mean response time for the environment adopted. Such mean response time is 
lower when the processes are distributed using the Ant Scheduler, what confirms its 
superiority. 
The significance level used for one-tailed test is  = 0.0005. with is the process mean response 
time with Ant Scheduler; without is the process mean response time with the standard 
openMosix. For the adopted significance level , the data sets have to present a difference of 
at least 4.781 in the t-test to reject the hypothesis. This value is found in tables of critical 
values for the t-student distribution. 
Applying the equation 7, the value 9.83 is found, confirming that the results present statistic 
differences with p < 0.005, rejecting the hypothesis H0. In this way the hypothesis HA is valid 
and the system with Ant Scheduler presents better results than standard openMosix. 

  (7) 
By applying statistic tools7 over the data sets, it's possible to find the most precise  = 
0.0000018 for a one-tailed test. This value shows how many times the alternative hypothesis 
is true. In this case, HA can be considered true in 9,999,982 out of 10,000,000 executions, 
showing that Ant Scheduler reduces the response time. Only in 18 of these executions the 
results of Ant Scheduler and openMosix would not present significant statistical differences. 

6. Conclusions and future directions 
The behavior of real ants motivated Dorigo et al. [DMC96] to propose the Ant Colony 
Optimization (ACO) technique, which can be used to solve problems in dynamic 
environments. This technique has been successfully applied to several optimization 
problems [FMS05, PB05, BN06, SF06, PLF02, WGDK06, CF06, HND05]. Such results have 
motivated this chapter which presents ACO concepts, case studies and also a complete 
example on process scheduling optimization. 
Besides the successful adoption of ACO, it presents some relevant questions which have 
been motivating future directions such as: how to adjust parameters which depend on the 
optimization problem [SocOSj; how to reduce the execution time [G.N06, MBSD06]; the 
optimization improvement by using incremental local search [BBSD06]; and the aggregation 
of different and new concepts to ACO [RL04]. Those works confirm ACO is an important 
optimization technique and also that is has been improved and present a promising future. 
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1. Introduction  
Today, power demand grows rapidly and expansion in transmission and generation is 
restricted with the limited availability of resources and the strict environmental constraints. 
Consequently, power systems are today much more loaded than before. In addition, 
interconnection between remotely located power systems turned out to be a common practice. 
These give rise to low frequency oscillations in the range of 0.1-3.0 Hz. If not well damped, 
these oscillations may keep growing in magnitude until loss of synchronism results. 
Power system stabilizers (PSSs) have been used in the last few decades to serve the purpose 
of enhancing power system damping to low frequency oscillations. PSSs have proved to be 
efficient in performing their assigned tasks. A wide spectrum of PSS tuning approaches has 
been proposed. These approaches have included pole placement (Chen & Hsu, 1987), 
damping torque concepts (Gibbard, 1988), H∞ (Klein et al, 1995), variable structure 
(Samarasinghe & Pahalawaththa, 1997), and the different optimization and artificial 
intelligence techniques (Abdel-Magid et al, 1999; Abido, 2001; Abido & Abdel-Magid, 1997). 
However, PSS may adversely affect voltage profile and may not be able to suppress 
oscillations resulting from severe disturbances, such as three-phase faults at generator 
terminals (Mehran et al, 1992). 
On the other hand, Flexible AC Transmission Systems (FACTS) have shown very promising 
results when used to improve power system steady-state performance. In addition, because 
of the extremely fast control action associated with FACTS-device operations, they have 
been very promising candidates for utilization in power system damping enhancement. 
A unified power flow controller (UPFC) is the most promising device in the FACTS concept. 
It has the ability to adjust the three control parameters, i.e. the bus voltage, transmission line 
reactance, and phase angle between two buses. A major function of the UPFC is to 
redistribute power flow among transmission lines during steady state. During transients, it 
can be used to improve the damping of low frequency oscillations. To perform these tasks, 
the UPFC needs to be equipped with a power flow controller, a DC voltage regulator, and a 
supplementary damping controller.  
Till now, not much research has been devoted to the analysis and control of UPFCs. Several 
trials have been reported in the literature to model a UPFC for steady-state and transient 
studies. Based on Nabavi-Iravani model (Nabavi-Niaki & Iravani, 1996), Wang developed a 
linearized UPFC model (Wang, 1999a & b) which has been incorporated into the Heffron-



Multiprocessor Scheduling: Theory and Applications 

 

234 

Gang Wang, Wenrui Gong, Brian DeRenzi, and Ryan Kastner. Design space exploration 
using time and resource duality with the ant colony optimization. In DAC '06: 
Proceedings of the 43rd annual conference on Design automation, pages 451-454, New 
York, NY, USA, 2006. ACM Press. [WGDK06] 

S.  Zhou and D.  Ferrari.  An experimental study of load balancing performance. Technical 
Report UCB/CSD 87/336, PROGRES Report N.o 86.8, Computer Science Division 
(EECS), Universidade da California, Berkeley, California 94720, Jan. 1987. [ZF87] 

14 

Application of PSO to design UPFC-based 
stabilizers  

Ali T. Al-Awami1, Mohammed A. Abido1 and Youssef L. Abdel-Magid2 
1King Fahd University of Petroleum & Minerals, 2The  Petroleum Institute 

1Saudi Arabia, 2United Arab Emirates 

1. Introduction  
Today, power demand grows rapidly and expansion in transmission and generation is 
restricted with the limited availability of resources and the strict environmental constraints. 
Consequently, power systems are today much more loaded than before. In addition, 
interconnection between remotely located power systems turned out to be a common practice. 
These give rise to low frequency oscillations in the range of 0.1-3.0 Hz. If not well damped, 
these oscillations may keep growing in magnitude until loss of synchronism results. 
Power system stabilizers (PSSs) have been used in the last few decades to serve the purpose 
of enhancing power system damping to low frequency oscillations. PSSs have proved to be 
efficient in performing their assigned tasks. A wide spectrum of PSS tuning approaches has 
been proposed. These approaches have included pole placement (Chen & Hsu, 1987), 
damping torque concepts (Gibbard, 1988), H∞ (Klein et al, 1995), variable structure 
(Samarasinghe & Pahalawaththa, 1997), and the different optimization and artificial 
intelligence techniques (Abdel-Magid et al, 1999; Abido, 2001; Abido & Abdel-Magid, 1997). 
However, PSS may adversely affect voltage profile and may not be able to suppress 
oscillations resulting from severe disturbances, such as three-phase faults at generator 
terminals (Mehran et al, 1992). 
On the other hand, Flexible AC Transmission Systems (FACTS) have shown very promising 
results when used to improve power system steady-state performance. In addition, because 
of the extremely fast control action associated with FACTS-device operations, they have 
been very promising candidates for utilization in power system damping enhancement. 
A unified power flow controller (UPFC) is the most promising device in the FACTS concept. 
It has the ability to adjust the three control parameters, i.e. the bus voltage, transmission line 
reactance, and phase angle between two buses. A major function of the UPFC is to 
redistribute power flow among transmission lines during steady state. During transients, it 
can be used to improve the damping of low frequency oscillations. To perform these tasks, 
the UPFC needs to be equipped with a power flow controller, a DC voltage regulator, and a 
supplementary damping controller.  
Till now, not much research has been devoted to the analysis and control of UPFCs. Several 
trials have been reported in the literature to model a UPFC for steady-state and transient 
studies. Based on Nabavi-Iravani model (Nabavi-Niaki & Iravani, 1996), Wang developed a 
linearized UPFC model (Wang, 1999a & b) which has been incorporated into the Heffron-



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

236 

Phillips model (Heffron & Phillips, 1952).  Only a single operating point has been considered 
in the design process presented in (Wang, 1999a), which does not guarantee robust 
performance. 
A number of control schemes have been suggested to perform the oscillation-damping task. 
Huang et al. (2000) attempted to design a conventional fixed-parameter lead-lag controller 
for a UPFC installed in the tie line of a two-area system to damp the interarea mode of 
oscillation. Mok et al. (2000) considered the design of an adaptive fuzzy logic controller for 
the same purpose. Dash et al. (2000) suggested the use of a radial basis function NN for a 
UPFC to enhance system damping performance. Robust control schemes, such as H∞ and 
singular value analysis, have also been explored (Vilathgamuwa et al, 2000; Pal, 2002).  To 
avoid pole-zero cancellation associated with the H∞ approach, the structured singular value 
analysis have been utilized in (Seo et al, 2001) to select the parameters of the UPFC 
controller to have the robust stability against model uncertainties.   However, the adaptive 
and robust control schemes proposed in (Mok et al, 2000; Dash et al, 2000; Vilathgamuwa et 
al, 2000; Pal, 2002; Seo et al, 2001) are still not widely implemented in power systems. In 
addition, the work cited proposed different techniques to design the damping controller 
without considering the power flow controller and the DC voltage regulator, or to design 
the three controllers sequentially, i.e. one at a time. To the best of the authors’ knowledge, 
there has been no attempt till now to design the three controllers simultaneously. 

1.1 Objectives 
The objective of this chapter is to investigate the potential of particle swarm optimization as 
a tool in designing UPFC-based stabilizers to improve power system transient stability. To 
estimate the controllability of each of the UPFC control signals on the electromechanical 
modes, singular value decomposition is employed. The problem of designing all the UPFC-
based stabilizers individually is formulated as an optimization problem. Particle swarm 
optimizer is utilized to search for the optimum stabilizer parameter settings that optimize a 
given objective function. Coordinated design of the different stabilizers is also carried out by 
finding the best parameter settings for more than one stabilizer at a given operating 
condition in a coordinated manner.  
To further illustrate the potential of PSO in handling complex design problems, robust 
controller design using simultaneous stabilization is also explored. That is, to ensure the 
robustness of the proposed control schemes, the design procedure is repeated considering a 
wide range of operating conditions simultaneously in the design stage. To assess the 
effectiveness of the proposed designs, eigenvalue analysis as well as nonlinear time-domain 
simulations are carried out.  
Two different objective functions will be considered. The first objective is eigenvalue-based 
while the other is time-domain-based. It will be shown that using a time-domain-based 
objective function has two advantages: 
• Nonlinear models of the power system can be used in the design stage without the need 

for linearization. 
• Coordinated designs of several controllers with different objectives can be achieved. 

(Abido et al, 2006b) 
This chapter aims to demonstrate the potential of PSO in: 
• Designing an individual UPFC-based stabilizer considering a single operating 

condition. 
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• Designing an individual UPFC-based stabilizer considering a wide range of operating 
conditions, i.e. robust control. 

• Designing multiple UPFC-based stabilizers in a coordinated manner considering a wide 
range of operating conditions. 

• Designing multiple UPFC-based stabilizers with different objectives in a coordinated 
manner using a time-domain objective function. 

1.2 Definitions 
At this point, it is worth emphasizing the meaning of the following terms: 
Individual and coordinated designs: Individual design refers to the process of designing a 
single controller in the absence of any other controllers. Coordinated design, however, refers 
to the process of designing more than one controller concurrently so that coordination 
among the different controllers is achieved. 
Single-point and robust tuning: Single-point tuning refers to the situation where a single 
operating condition is considered in the design stage. Robust tuning refers to the situation 
where multiple operating conditions are considered in the design stage to achieve robustness. 
Simultaneous stabilization: Simultaneous stabilization refers to the technique used to design 
a controller taking into account several operating conditions. This technique guarantees the 
stability of the system at all the operating conditions considered in the design stage. The 
way simultaneous stabilization is implemented in this work, for the case of the eigenvalue-
based objective function, is:  
1. Declare a vector J 
2. Pick an operating condition. 
3. Linearize the system model around that operating condition.  
4. Find the system complex eigenvalues and stack them in the vector J. 
5. Repeat the same process (steps 2-4) until all operating conditions are covered. That is, 

vector J will contain all complex eigenvalues corresponding to all the considered 
operating conditions. 

6. Search for the optimum controller’s parameters that will push all those complex 
eigenvalues of J furthest to the left of the complex s-plane. 

2. Problem Statement 
Figure 1 shows a SMIB system equipped with a UPFC. The UPFC consists of an excitation 
transformer (ET), a boosting transformer (BT), two three-phase GTO based voltage source 
converters (VSCs), and a DC link capacitors. The four input control signals to the UPFC are 
mE, mB, δE, and δB, where 

mE is the excitation amplitude modulation ratio, 
mB is the boosting amplitude modulation ratio, 
δE is the excitation phase angle, and 
δB is the boosting phase angle. 

2.1 Power System Nonlinear Model 
By applying Park’s transformation and neglecting the resistance and transients of the ET 
and BT transformers, the UPFC can be modeled as (Wang 1999a); Abido et al, 2006b): 
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Phillips model (Heffron & Phillips, 1952).  Only a single operating point has been considered 
in the design process presented in (Wang, 1999a), which does not guarantee robust 
performance. 
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• Nonlinear models of the power system can be used in the design stage without the need 

for linearization. 
• Coordinated designs of several controllers with different objectives can be achieved. 
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where vEt, iE, vBt, and iB are the excitation voltage, excitation current, boosting voltage, and 
boosting current, respectively; Cdc and vdc are the DC link capacitance and voltage, 
respectively. 
The ET, BT and line 2 currents can be stated as: 
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 where xE and xB are the ET and BT reactances, respectively; the reactances xqE, xdE, xBB, xd1- 
xd7, and xq1- xq7 are as shown in (Abido et al, 2006b). 
The non-linear model of the SMIB system of Figure 1 is: 
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Pm and Pe are the input and output power, respectively; M and D the inertia constant and 
damping coefficient, respectively; ωb the synchronous speed; δ and ω the rotor angle and 
speed, respectively; Eq', E'fd, and v the generator internal, field and terminal voltages, 
respectively; T'do the open circuit field time constant; xd, x'd, and xq the d-axis reactance, d-
axis transient reactance, and q-axis reactance, respectively; KA and TA the exciter gain and 
time constant, respectively; Vref the reference voltage; and uPSS the PSS control signal. 

2.2 Power System Linearized Model 
The non-linear dynamic equations can be linearized around a given operating point to have 
the linear model given by: 
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where K1 – K9, Kpu, Kqu, and Kvu are linearization constants. 

2.3 Structures of UPFC Controllers 
The UPFC damping controllers are of the structure shown in Figure 2, where u can be mE, δE, 
mB, or δB.  
In order to maintain the power balance between the series and shunt converters, a DC 
voltage regulator must be incorporated. The DC voltage is controlled through modulating 
the phase angle of the ET voltage, δE. In addition, to dispatch the power flow among 
transmission lines, a power flow controller is included. The power flow is controlled 
through modulation the amplitude of the BT voltage, mB. Therefore, the δE and mB damping 
controllers to be considered are those shown in Figure 3 and Figure 4, where the DC voltage 
regulator and the power flow controller are PI-controllers.  

2.4 Objective Functions and Stabilizers’ Design 
To select the best stabilizer parameters that enhance most the power system transient 
performance, two objective functions are considered, one is eigenvalue-based and the other 
is time-domain-based. The eigenvalue-based objective function is: 

 Je = max[σ] (19) 

where σ is a vector of the real parts of all the complex eigenvalues (the damping factors) of 
the system at all loading conditions considered. 

 
Figure 2. UPFC with lead-lag damping controllers 
The objective function Je identifies the maximum value of the damping factors, i.e. the real 
parts of the eigenvalues, among all the system complex modes of all loading conditions 
considered in the design process. Hence, the goal is to Minimize Je to shift the poorly 
damped eigenvalues to the left in the s-plane improving the system response settling time 
and enhancing the system relative stability. It is worth emphasizing that by minimizing Je, 
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all the operating conditions considered in the design stage are damped simultaneously.  It is 
noteworthy that Je is used to design the damping controllers only. That is, the UPFC DC 
voltage regulator and power flow controller must be designed beforehand. 
In order to be able to design the damping controller, DC voltage regulator, and power flow 
controller in a coordinated manner, a time-domain-based objective function is used. This 
objective function is called the integral of time multiplied by absolute error (ITAE) and is 
defined as 

 α ω β γ= ∆ + ∆ + ∆∫ ∫ ∫2| | | | | |t e dcJ t dt t P dt t V dt  (20) 

where ∆ω, ∆Pe2, and ∆Vdc are the deviations in system speed, real power flow of line 2, and 
DC voltage of the capacitor link, α, β, and γ are weighting factors. 

 
Figure 3. UPFC with lead-lag damping controller and DC voltage regulator 

 
Figure 4. UPFC with lead-lag damping controller and power flow controller 
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where i = 1, 2, 3, or 4, and Kj and Tji are the gain and time constants of the jth damping 
controllers.  
The proposed approach employs PSO to search for the optimum parameter settings of the 
given controllers. 

3. Controllability Measure 
To measure the controllability of the EM mode by a given input (control signal), the singular 
value decomposition (SVD) is employed. The matrix B can be written as B = [b1 b2 b3 b4 b5]  
where bi is a column vector corresponding to the ith input. 
The minimum singular value, σmin, of the matrix [λI-A bi] indicates the capability of the ith 
input to control the mode associated with the eigenvalue λ. Actually, the higher the σmin,  
the higher the controllability of this mode by the input considered. As such, the 
controllability of the EM mode can be examined with all inputs in order to identify the most 
effective one to control the mode. (Hamdan, 1999; Al-Awami et al, 2005) 

4. Particle Swarm Optimization 
Particle Swarm Optimization (PSO) was introduced first in (Kennedy & Eberhart, 1995).   
PSO approach features many advantages; it is simple, fast and can be coded in few lines.   
Also, its storage requirement is minimal.    
Moreover, this approach is advantageous over evolutionary and genetic algorithms in many 
ways.   First, PSO has memory.   That is, every particle remembers its best solution (personal 
best – pbest) as well as the group best solution (global best – gbest).   Another advantage of 
PSO is that the initial population of the PSO is maintained, and so there is no need for 
applying operators to the population, a process that is time- and memory-storage 
consuming. (Kennedy & Eberhart, 1995; Eberhart & Kennedy, 1995; Shi & Eberhart, 1998) 
PSO starts with a population of random solutions “particles” in a D-dimension space. The ith 
particle is represented by Xi=(xi1, xi2, …, xiD). PSO consists of, at each step, changing the 
velocity of each particle toward its pbest and gbest according to equation (21). The velocity of 
particle i is represented as Vi=(vi1, vi2, …, viD). The position of the ith particle is then updated 
according to equation (22) (Kennedy & Eberhart, 1995; Eberhart & Kennedy, 1995; Shi & 
Eberhart, 1998).    

 = + − + −1 1 2 2( ) ( )id id id id gd gdv wv c r p x c r p x  (21) 

 = +id id idx x v  (22) 

where,        =idp pbest   and    =gdp gbest  

An excellent simplified description of the PSO algorithm can be found in (Abido, 2001).  
Figure 5 shows a flow chart of the PSO algorithm that is adopted for this specific problem. It 
is described as follows: 
Step 1: Define the problem space and set the boundaries, i.e. the acceptable limits of the 
controller parameters. 
Step 2: Initialize an array of particles with random positions and their associated velocities 
inside the problem space. These particle positions represent the initial set of solutions. 
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where i = 1, 2, 3, or 4, and Kj and Tji are the gain and time constants of the jth damping 
controllers.  
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Step 7: If the current global minimum is better than gbest, then assign the current global 
minimum to gbest and assign the current coordinates to gbestx coordinates. 
Step 8: Change the velocities according to (21). 
Step 9: Move each particle to the new position according to (22) and return to Step 3. 
Step 10: Repeat Step 3- Step 9 until a stopping criteria is satisfied. 
To adopt the PSO algorithm so that simultaneous stabilization is achieved, i.e. several 
operating points are considered simultaneously, the fitness function evaluation process 
contains an inner loop, see Figure 6. That is, for every operating point i, the objective Ji is 
computed. Then, 1 2( , ,..., )max

opNJ J JJ = , where Nop is the number of operating points 

considered, is evaluated. (Al-Awami et al, 2006a; Al-Awami et al, 2007; Abido et al, 2006b) 
The proposed PSO–based approach was implemented using a MATLAB library built by the 
authors. In all implementations, the inertia weight, w, is linearly decreasing from 0.9 to 0.4, 
c1 and c2 are selected as 2, and the maximum number of iterations is 400. 

5. Simulation Results 
5.1 Electromechanical Mode Controllability Measure 
Singular value decomposition (SVD) is employed to measure the controllability of the 
electromechanical mode (EM) from each of the four UPFC inputs: mE, δE, mB, and δB. For 
comparison, the power system stabilizer input, upss, is also included. The minimum singular 
value, σmin, is estimated over a wide range of operating conditions. For SVD analysis, Pe 
ranges from 0.05 to 1.4 pu and Qe= [-0.4, 0, 0.4]. At each loading condition, the system model 
is linearized, the EM mode is identified, and the SVD-based controllability measure is 
implemented. (Al-Awami et al, 2007) 

 
Figure 6. Particle Swarm Optimization adopted for simultaneous stabilization  
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For comparison purposes, the minimum singular value for all inputs at Qe = - 0.4, 0.0 and 0.4 pu 
is shown in Figures 7, 8, and 9, respectively.  From these figures, the following can be noticed: 
• EM mode controllability via δE is always higher than that of any other input. 
• The capabilities of δE and mB to control the EM mode is higher than that of PSS. 
• The EM mode is more controllable with PSS than with either mE or δB. 
• All control signals except mB at Qe = 0 and δE suffer from low controllability to EM mode 

at low loading conditions.  

5.2 Design and Analysis Using Eigenvalue-based Objective Function Je 
In this section, stabilizer design is carried out using the eigenvalue-based objective function, 
Je, given by (19). Both single-point tuning and robust tuning using simultaneous 
stabilization are presented. A coordinated design of stabilizers is also demonstrated. The 
system used is that shown in Figure 1 and the system data used is given in the Appendix. 
(Al-Awami et al, 2007; Al-Awami et al, 2005; Al-Awami et al, 2006) 
To assess the effectiveness of the proposed controllers, four different loading conditions are 
considered for eigenvalue analysis, see Table 1. 
Moreover, the nominal and light loading conditions with 6-cycle three-phase fault 
disturbances are considered for nonlinear time-domain simulations. 

Loading Condition (Pe, Qe) pu 
Nominal 

Light 
Heavy 

Leading Pf  

(1.0, 0.015) 
(0.3, 0.015) 
(1.1, 0.400) 
(0.7, -0.30) 

Table 1. Loading conditions 

5.2.1 Single-point Tuning Using Je 
The PSS, mE-, δE-, mB-, and δB-based stabilizers are designed individually considering the 
nominal loading condition. PSO is used to search for the optimum parameter settings of 
each controller individually so as to minimize the maximum damping factor of all the 
system complex eigenvalues at nominal loading condition. The final settings of the 
optimized parameters for the proposed stabilizers and the minimum damping factors 
achieved are given in Table 2. 
The system electromechanical mode without and with the proposed stabilizers at the four 
operating points, nominal, light, heavy, and leading Pf, are given in Table 3. Table 3 clearly  
demonstrate the effectiveness of the δE- and mB-based stabilizers in enhancing system 
stability. Again, It can be observed that, in most cases, the EM mode is either unstable or 
poorly damped when driven by mE- or δB-based stabilizers. This conclusion is in line with 
those already drawn from SVD analysis. Because of their poor performance, the mE- and δB-
based stabilizers will be excluded from the analysis hereafter. 
The system behaviour due to the utilization of the proposed controllers under transient 
conditions has been tested by applying a 6-cycle 3-phase fault at the infinite bus at t = 1s. The 
system response at nominal loading is shown in Figures 10 and 11, and the response at light 
loading is shown in Figures 12 and 13. From these figures, the following can be observed: 

• The three stabilizers designed with the proposed PSO-based technique effectively 
improve the stability of the power system under study. 
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For comparison purposes, the minimum singular value for all inputs at Qe = - 0.4, 0.0 and 0.4 pu 
is shown in Figures 7, 8, and 9, respectively.  From these figures, the following can be noticed: 
• EM mode controllability via δE is always higher than that of any other input. 
• The capabilities of δE and mB to control the EM mode is higher than that of PSS. 
• The EM mode is more controllable with PSS than with either mE or δB. 
• All control signals except mB at Qe = 0 and δE suffer from low controllability to EM mode 

at low loading conditions.  

5.2 Design and Analysis Using Eigenvalue-based Objective Function Je 
In this section, stabilizer design is carried out using the eigenvalue-based objective function, 
Je, given by (19). Both single-point tuning and robust tuning using simultaneous 
stabilization are presented. A coordinated design of stabilizers is also demonstrated. The 
system used is that shown in Figure 1 and the system data used is given in the Appendix. 
(Al-Awami et al, 2007; Al-Awami et al, 2005; Al-Awami et al, 2006) 
To assess the effectiveness of the proposed controllers, four different loading conditions are 
considered for eigenvalue analysis, see Table 1. 
Moreover, the nominal and light loading conditions with 6-cycle three-phase fault 
disturbances are considered for nonlinear time-domain simulations. 
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Leading Pf  

(1.0, 0.015) 
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(1.1, 0.400) 
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Table 1. Loading conditions 

5.2.1 Single-point Tuning Using Je 
The PSS, mE-, δE-, mB-, and δB-based stabilizers are designed individually considering the 
nominal loading condition. PSO is used to search for the optimum parameter settings of 
each controller individually so as to minimize the maximum damping factor of all the 
system complex eigenvalues at nominal loading condition. The final settings of the 
optimized parameters for the proposed stabilizers and the minimum damping factors 
achieved are given in Table 2. 
The system electromechanical mode without and with the proposed stabilizers at the four 
operating points, nominal, light, heavy, and leading Pf, are given in Table 3. Table 3 clearly  
demonstrate the effectiveness of the δE- and mB-based stabilizers in enhancing system 
stability. Again, It can be observed that, in most cases, the EM mode is either unstable or 
poorly damped when driven by mE- or δB-based stabilizers. This conclusion is in line with 
those already drawn from SVD analysis. Because of their poor performance, the mE- and δB-
based stabilizers will be excluded from the analysis hereafter. 
The system behaviour due to the utilization of the proposed controllers under transient 
conditions has been tested by applying a 6-cycle 3-phase fault at the infinite bus at t = 1s. The 
system response at nominal loading is shown in Figures 10 and 11, and the response at light 
loading is shown in Figures 12 and 13. From these figures, the following can be observed: 

• The three stabilizers designed with the proposed PSO-based technique effectively 
improve the stability of the power system under study. 
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• As expected from SVD analysis, the δE-based stabilizer is robust to operating point 
variations. 

• Both UPFC-based stabilizer outperform the PSS in terms of their effect on voltage 
profile.  

 
Figure 7. Minimum singular value with all stabilizers at Qe = – 0.4 

 
Figure 8. Minimum singular value with all stabilizers at Qe=0.0 

 
Figure 9. Minimum singular value with all stabilizers at Qe=0.4 
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 PSS mE δE mB δB 

K 
T1 
T2 
T3 
T4 

29.26 
2.92 
1.19 
0.13 
0.01 

-29.83 
0.25 
2.46 
2.95 
0.01 

-100.00 
5.00 
1.08 
0.06 
1.44 

100.00 
0.11 
0.01 
2.18 
2.35 

-72.89 
2.02 
0.13 
2.94 
2.42 

Je -5.44 -1.69 -4.63 -4.15 -1.39 

Table 2. Optimal parameter settings with Je, single-point tuning, individual design 

 No Control PSS mE δE mB δB 

N 
L 
H 
Lpf 

1.50 ±  5.33i 
1.39 ± 5.08i 
1.41 ± 5.00i 
1.45 ± 5.35i 

-5.44 ± 0.18i
-1.10 ± 4.67i
-1.71 ± 2.00i
-5.70 ±16.79i

-1.69 ±  7.62i
0.90 ±  5.37i 
0.08 ±  7.05i 
-0.81 ± 6.34i

-4.62 ±  5.88i
-3.17 ± 5.88i 
-1.81 ± 1.74i
-1.97 ± 5.48i

-4.15 ±  6.06i
-3.24 ± 6.88i
-4.62 ± 3.75i
-1.37 ± 6.07i

-1.39 ±  6.02i 
1.30 ± 5.12i 
-1.79 ± 5.48i 
-0.26 ± 5.58i 

Table 3. System electromechanical modes at all loading conditions with no parameter 
uncertainties with Je settings, single-point tuning, individual design (N: Nominal, L: Light, 
H: Heavy, Lpf: Leading power factor) 

5.2.2 Robust Tuning with Simultaneous Stabilization Using Je 
In this situation, the objective is to design robust stabilizers to ensure their effectiveness over 
a wide range of operating conditions. Both individual and coordinated designs are 
considered. The design process takes into account several loading conditions including 
nominal, light, heavy, and leading Pf conditions. These conditions are considered without 
and with system parameter uncertainties, such as machine inertia, line impedance, and field 
time constant. The total number of 16 operating conditions is considered during the design 
process as given in Table 4. 

 
Figure 10. Speed response for 6-cycle fault with nominal loading, Je settings, single-point 
tuning, individual design 
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Figure 11. Terminal voltage response for 6-cycle fault with nominal loading, Je settings, 
single-point tuning, individual design 

 
Figure 12. Speed response for 6-cycle fault with light loading, Je settings, single-point tuning, 
individual design 

 
Figure 13. Terminal voltage response for 6-cycle fault with light loading, Je settings, single-
point tuning, individual design 
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Loading Condition (Pe, Qe) pu Parameter Uncertainties 

N 
L 
H 
Lpf 

(1.0, 0.015) 
(0.3, 0.100) 
(1.1, 0.100) 
(0.7, -0.30) 

No parameter uncertainties 
30% increase of line reactance XBV 
25% decrease of machine inertia M 
30% decrease of field time constant T'do 

Table 4. Loading conditions and parameter uncertainties considered in the design stage 

Table 5 lists the open-loop eigenvalues associated with the electromechanical modes of all 
the 16 operating points considered in the robust design process, respectively. It is evident 
that all these modes are unstable. 
In the individual design, the PSS, δE-, and mB--based stabilizers are designed individually 
considering all the operating points mentioned above. PSO is used to optimize the 
parameters of each controller that minimize the maximum damping factor of all the 
complex eigenvalues associated with the 16 operating points simultaneously. The final 
settings of the optimized parameters for the proposed stabilizers and the minimum 
damping factors achieved are given in Table 6.  
The system electromechanical mode without and with the proposed stabilizers at the four 
operating points, nominal, light, heavy, and leading Pf, are given in Table 7. Table 7 clearly 
demonstrate the effectiveness of the proposed stabilizers in enhancing system stability. 
Comparing Table 7 with Table 3, the effectiveness of robust tuning with simultaneous 
stabilization can be observed. For example, the maximum damping factor of the system 
electromechanical modes using single-point tuning for PSS is -1.10. However, the maximum 
damping factor using robust tuning with simultaneous stabilization is -2.58.  
The system behaviour due to the utilization of the proposed stabilizers under transient 
conditions has been tested by applying a 6-cycle 3-phase fault at the infinite bus at t = 1s. 
The system response at nominal loading is shown in Figures 14 and 15, and the response at 
light loading is shown in Figures 16 and 17. These simulation results prove the effectiveness 
of the proposed technique in designing robust stabilizers. It can be observed by comparing 
Figure 12 with Figure 16 that including the light loading condition in the robust tuning 
technique helped improve PSS response to transients in the system. In addition, it can be 
readily seed again that both UPFC-based stabilizer outperform the PSS in terms of their 
effect on voltage profile.  

 No parameter 
uncertainties 

30% increase of 
line reactance X 

25% decrease of 
machine inertia M 

30% decrease of 
field time 

constant T'do 
N 
L 
H 
Lpf 

1.50 ± 5.33i 
1.39 ± 5.08i 
1.41 ± 5.00i 
1.45 ± 5.35i 

1.41 ± 4.99i 
1.32 ± 4.74i 
1.25 ± 4.52i 
1.40 ± 5.08i 

1.80 ± 5.94i     
1.67 ± 5.66i 
1.70 ± 5.57i 
1.74 ± 5.97i 

1.5034 ± 5.40i 
1.3951 ± 5.09i 
1.4038 ± 5.08i 
1.4498 ± 5.39i 

Table 5. Open-loop eigenvalues associated with the EM modes of all the 16 points 
considered in the robust design process 

Although the controllability measure analysis based on the singular value decomposition 
and the nonlinear time-domain simulation show the relative robustness of the δE-based 
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individual design 

 
Figure 13. Terminal voltage response for 6-cycle fault with light loading, Je settings, single-
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field time 

constant T'do 
N 
L 
H 
Lpf 

1.50 ± 5.33i 
1.39 ± 5.08i 
1.41 ± 5.00i 
1.45 ± 5.35i 

1.41 ± 4.99i 
1.32 ± 4.74i 
1.25 ± 4.52i 
1.40 ± 5.08i 

1.80 ± 5.94i     
1.67 ± 5.66i 
1.70 ± 5.57i 
1.74 ± 5.97i 

1.5034 ± 5.40i 
1.3951 ± 5.09i 
1.4038 ± 5.08i 
1.4498 ± 5.39i 

Table 5. Open-loop eigenvalues associated with the EM modes of all the 16 points 
considered in the robust design process 

Although the controllability measure analysis based on the singular value decomposition 
and the nonlinear time-domain simulation show the relative robustness of the δE-based 
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stabilizer in damping the EM mode oscillation, there is still room for more improvement 
through coordination with the mB-based stabilizer. In the following, the coordinated design 
of δE- and mB-based stabilizers is considered at all the 16 operating points described earlier. 
PSO is used to simultaneously search for the optimum parameter settings of both controllers 
that minimize the maximum damping factor of all the system complex eigenvalues at all the 
16 operating points concurrently. The final settings of the optimized parameters for the 
proposed stabilizers are given in Table 8. 

 PSS δE mB 

K 
T1 
T2 
T3 
T4 

95.58 
4.34 
0.01 
0.07 
3.51 

-100.00 
5.00 
1.03 
0.06 
1.54 

96.8 
4.99 
2.57 
0.12 
0.01 

Je -1.95 -1.77 -3.54 
Table 6. Optimal parameter settings with Je, multiple-point tuning, individual design 

 No Control PSS δE mB 
N 
L 
H 
Lpf 

1.50 ±  5.33i 
1.39 ± 5.08i 
1.41 ± 5.00i 
1.45 ± 5.35i 

-2.58 ± 17.5i 
-3.91 ± 3.62i 

-2.80 ± 17.0i 
-2.72 ± 16.2i 

-3.52 ± 5.32i 
-2.93 ± 5.65i 
-1.92 ± 1.76i 
-1.82 ± 5.47i 

-3.91± 12.7i  
-3.71 ± 12.1i 
-3.56± 13.1i 
-3.53 ± 2.61i 

Table 7. System electromechanical modes at all loading conditions with no parameter 
uncertainties with Je settings, robust tuning, individual design  

 
Figure 14. Speed response for 6-cycle fault with nominal loading, Je settings, robust tuning, 
individual design 

The system electromechanical modes without and with the proposed δE- and mB-based 
controllers when applied individually and through coordinated design at the four loading 
conditions; nominal, light, heavy, and leading Pf, are given in Table 9. It is evident that the 
damping factor of the EM mode is greatly enhanced using the proposed coordinated 
stabilizers design.  
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Figure 15. Terminal voltage response for 6-cycle fault with nominal loading, Je settings, 
robust tuning, individual design 

 
Figure 16. Speed response for 6-cycle fault with light loading, Je settings, robust tuning, 
individual design 

 
Figure 17. Terminal voltage response for 6-cycle fault with light loading, Je settings, robust 
tuning, individual design 
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through coordination with the mB-based stabilizer. In the following, the coordinated design 
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PSO is used to simultaneously search for the optimum parameter settings of both controllers 
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Figure 14. Speed response for 6-cycle fault with nominal loading, Je settings, robust tuning, 
individual design 

The system electromechanical modes without and with the proposed δE- and mB-based 
controllers when applied individually and through coordinated design at the four loading 
conditions; nominal, light, heavy, and leading Pf, are given in Table 9. It is evident that the 
damping factor of the EM mode is greatly enhanced using the proposed coordinated 
stabilizers design.  
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Figure 15. Terminal voltage response for 6-cycle fault with nominal loading, Je settings, 
robust tuning, individual design 

 
Figure 16. Speed response for 6-cycle fault with light loading, Je settings, robust tuning, 
individual design 

 
Figure 17. Terminal voltage response for 6-cycle fault with light loading, Je settings, robust 
tuning, individual design 
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Moreover, the nonlinear time-domain simulations are carried out at the nominal and light 
loading conditions specified previously. The speed deviations, DC voltage, electrical power, 
and δE and mB control signals for a 6-cycle three-phase fault at nominal loading conditions 
are shown in Figures 18-22, respectively. The simulation results indicate a clear 
enhancement of the proposed coordinated δE-mB design over both individual designs. This 
enhancement can be easily recognized from the sound reduction in overshoot and settling 
time of the speed, electrical power and DC voltage responses as well as the reduction in the 
control efforts of the coordinated design as compared with the control efforts of the two 
individual designs. Similar conclusions can be drawn from light loading results. Due to 
limitation in space, only speed deviations at light loading conditions are shown, see Figure 
23. It is noteworthy that using coordination, the problem of low effectiveness of the mB-
based stabilizer individual designs at light loading level has been solved. 

 Individual Coordinated 
 δE mB δE mB 

K 
T1 
T2 
T3 
T4 

-100.00 
5.00 
1.03 
0.06 
1.54 

96.8 
4.99 
2.57 
0.12 
0.01 

-66.18 
1.53 
1.61 
4.42 
3.95 

100.00 
5.00 
3.09 
5.00 
3.32 

Table 8. Optimal parameter settings with Je, multiple-point tuning, coordinated design 

Loading δE mB δE & mB 
N 
L 
H 
Lpf 

-3.52 ± 5.32i 
-2.93 ± 5.65i 
-1.92 ± 1.76i 
-1.82 ± 5.47i 

-3.91 ± 12.72i  
-3.71 ± 12.19i 
-3.56 ± 13.12i 
-3.53 ± 2.61i 

-7.51 ± 10.64i 
-5.81 ± 11.04i 
-7.21 ± 11.65i 
-5.86 ± 6.46i 

Table 9  System eigenvalues with all the stabilizers at different loading conditions 

5.3 Coordinated Design of Damping Stabilizers and Internal Controllers Using Time-
domain-based Objective Function Jt 
In this section, stabilizer design is carried out using the time-domain-based objective 
function, Jt, given by (20). Using Jt, the need for linearizing the nonlinear power system 
model is eliminated. That is, the nature of the objective function makes it suitable for both 
linear and nonlinear systems (Al-Awami et al, 2006b; Abido et al, 2006b). Moreover, it is 
possible to design several controllers with different objectives in a coordinated manner 
(Abido et al, 2006b). As will be shown, using the time-domain-based objective function, it is 
possible to design the UPFC damping controller, DC voltage regulator, and power flow 
controller, each of which has a different objective, in a coordinated manner. In this section, a 
coordinated design of UPFC damping stabilizers and internal controllers at nominal loading 
conditions is demonstrated. The effectiveness of the proposed controllers in damping low 
frequency oscillations is verified through eigenvalue analysis and non-linear time 
simulation. A comparison with a sequential design of the controllers under study is also 
included. The system used is that shown in Figure 1 and the system data used is given in the 
Appendix. (Abido et al, 2006b) 
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Figure 18. Speed response for 6-cycle fault with nominal loading, Jt settings, robust tuning, 
coordinated design 

 
Figure 19. UPFC DC voltage response for 6-cycle fault with nominal loading, Jt settings, 
robust tuning, coordinated design 

 
Figure 20. Electrical Power response for 6-cycle fault with nominal loading, Jt settings, 
robust tuning, coordinated design 
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Moreover, the nonlinear time-domain simulations are carried out at the nominal and light 
loading conditions specified previously. The speed deviations, DC voltage, electrical power, 
and δE and mB control signals for a 6-cycle three-phase fault at nominal loading conditions 
are shown in Figures 18-22, respectively. The simulation results indicate a clear 
enhancement of the proposed coordinated δE-mB design over both individual designs. This 
enhancement can be easily recognized from the sound reduction in overshoot and settling 
time of the speed, electrical power and DC voltage responses as well as the reduction in the 
control efforts of the coordinated design as compared with the control efforts of the two 
individual designs. Similar conclusions can be drawn from light loading results. Due to 
limitation in space, only speed deviations at light loading conditions are shown, see Figure 
23. It is noteworthy that using coordination, the problem of low effectiveness of the mB-
based stabilizer individual designs at light loading level has been solved. 
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function, Jt, given by (20). Using Jt, the need for linearizing the nonlinear power system 
model is eliminated. That is, the nature of the objective function makes it suitable for both 
linear and nonlinear systems (Al-Awami et al, 2006b; Abido et al, 2006b). Moreover, it is 
possible to design several controllers with different objectives in a coordinated manner 
(Abido et al, 2006b). As will be shown, using the time-domain-based objective function, it is 
possible to design the UPFC damping controller, DC voltage regulator, and power flow 
controller, each of which has a different objective, in a coordinated manner. In this section, a 
coordinated design of UPFC damping stabilizers and internal controllers at nominal loading 
conditions is demonstrated. The effectiveness of the proposed controllers in damping low 
frequency oscillations is verified through eigenvalue analysis and non-linear time 
simulation. A comparison with a sequential design of the controllers under study is also 
included. The system used is that shown in Figure 1 and the system data used is given in the 
Appendix. (Abido et al, 2006b) 

Application of PSO to design UPFC-based stabilizers 

 

253 

 
Figure 18. Speed response for 6-cycle fault with nominal loading, Jt settings, robust tuning, 
coordinated design 

 
Figure 19. UPFC DC voltage response for 6-cycle fault with nominal loading, Jt settings, 
robust tuning, coordinated design 

 
Figure 20. Electrical Power response for 6-cycle fault with nominal loading, Jt settings, 
robust tuning, coordinated design 
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Figure 21. δE control signal response for 6-cycle fault with nominal loading, Jt settings, 
robust tuning, coordinated design 

 
Figure 22. mB control signal response for 6-cycle fault with nominal loading, Jt settings, 
robust tuning, coordinated design 

 
Figure 23. Speed signal response for 6-cycle fault with light loading, Jt settings, robust 
tuning, coordinated design 
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5.3.1 Sequential Controller Design 
In this stage, the three controllers are designed sequentially (Abido et al, 2006b). That is, (1) 
the DC voltage regulator (VR) is designed first, then (2) the power flow controller (PFC) is  
designed in the presence of the regulator, and finally (3) the damping controllers (DC) are 
designed, one at a time, in the presence of the other two controllers (VR and PFC). In each 
step, PSO has been used to find the optimum parameters of each controller that optimize the 
objective function defined by (20). A nominal loading condition has been considered in the 
design stage, see Table 10.  
Since each of the three controllers has a different function, the objective function weights 
and the disturbances used in the design stage are different. Table 11 shows the details of 
each step in the sequential design. Step (1) resulted in the following optimum parameters for 
the DC voltage regulator: kdp = – 4.56, kdi = – 19.98. Step (2) resulted in the following 
optimum parameters for the power flow controller: kpp = 0.0005, kpi = – 0.0047. The final 
settings of the optimized parameters for the proposed damping controllers are given in 
Table 12.  
To test the performance of these stabilizers, eigenvalue analysis and nonlinear time-domain 
simulations are carried out. The system data is given in the Appendix The system EM 
modes and their corresponding damping ratios with the PSS and UPFC-based controllers 
when tested at nominal loading are given in Table 13. Moreover, the speed deviations for a 
6-cycle three-phase fault at nominal loading conditions are shown in Figure 24. It is evident 
that the sequential designs give rise to poorly damped or even unstable responses.  

Loading Condition Pe (pu) Qe (pu) 

Nominal 
Light 

1.000 
0.300 

0.015 
0.100 

Table 10. Loading Conditions  

Weights of J 
Controller 

α β γ 
Disturbance 

VR 
PFC 
DC 

0 
0 
1 

0 
1 
0 

1 
0 
0 

step change in VDCref 
step change in Pe2ref 
Impulse change in Pm 

Table 11. Objective Function Weights and Disturbances Used in Steps (1)-(3) for the 
Sequential Design 

 δE mB PSS 

K 
T1 
T2 
T3 
T4 

83.94 
1.18 
1.01 
1.50 
0.57 

92.31  
0.40 
0.63 
1.49 
0.72 

71.37 
0.27 
0.69 
0.34 
0.05 

J 36.21 139.88 0.29 

Table 12. The Optimal Parameter Settings of the Individual Controllers – Sequential Design 
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Figure 21. δE control signal response for 6-cycle fault with nominal loading, Jt settings, 
robust tuning, coordinated design 

 
Figure 22. mB control signal response for 6-cycle fault with nominal loading, Jt settings, 
robust tuning, coordinated design 

 
Figure 23. Speed signal response for 6-cycle fault with light loading, Jt settings, robust 
tuning, coordinated design 
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5.3.1 Sequential Controller Design 
In this stage, the three controllers are designed sequentially (Abido et al, 2006b). That is, (1) 
the DC voltage regulator (VR) is designed first, then (2) the power flow controller (PFC) is  
designed in the presence of the regulator, and finally (3) the damping controllers (DC) are 
designed, one at a time, in the presence of the other two controllers (VR and PFC). In each 
step, PSO has been used to find the optimum parameters of each controller that optimize the 
objective function defined by (20). A nominal loading condition has been considered in the 
design stage, see Table 10.  
Since each of the three controllers has a different function, the objective function weights 
and the disturbances used in the design stage are different. Table 11 shows the details of 
each step in the sequential design. Step (1) resulted in the following optimum parameters for 
the DC voltage regulator: kdp = – 4.56, kdi = – 19.98. Step (2) resulted in the following 
optimum parameters for the power flow controller: kpp = 0.0005, kpi = – 0.0047. The final 
settings of the optimized parameters for the proposed damping controllers are given in 
Table 12.  
To test the performance of these stabilizers, eigenvalue analysis and nonlinear time-domain 
simulations are carried out. The system data is given in the Appendix The system EM 
modes and their corresponding damping ratios with the PSS and UPFC-based controllers 
when tested at nominal loading are given in Table 13. Moreover, the speed deviations for a 
6-cycle three-phase fault at nominal loading conditions are shown in Figure 24. It is evident 
that the sequential designs give rise to poorly damped or even unstable responses.  
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Disturbance 
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Table 11. Objective Function Weights and Disturbances Used in Steps (1)-(3) for the 
Sequential Design 
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83.94 
1.18 
1.01 
1.50 
0.57 

92.31  
0.40 
0.63 
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0.72 

71.37 
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J 36.21 139.88 0.29 

Table 12. The Optimal Parameter Settings of the Individual Controllers – Sequential Design 
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 δE mB PSS 

EM 
ζ 

1.30 ± 3.10i 
-0.39 

1.79 ± 7.39i 
-0.24 

-0.80 ± 5.04i 
0.16 

Table 13. System Eigenvalues of the Individual Controllers at Nominal Loading – Sequential 
Design 

 

 
Figure 24. Speed response for a 6-cycle fault with nominal loading – sequential design 

5.3.2 Coordinated Controller Design 
In this stage, the three controllers are designed in a coordinated manner (Abido et al, 2006b). 
That is, PSO is used to concurrently find the optimum parameters of the VR, PFC, and DC 
minimizing the error objective function defined in (20). In order to end up with the optimum 
controllers, the objective function weights and the disturbances have to be selected carefully. 
Table 14 shows the objective function weights used in every case. In all cases, the following 
two disturbances have been used: 

1. An impulse change in Pm  
2. A step change in Pe2ref. 

The final settings of the optimized parameters for the proposed controllers are given in 
Table 15.  
To test the performance of the proposed stabilizers, eigenvalue analysis and nonlinear time-
domain simulations are carried out.  
The system EM modes and their corresponding damping ratios with the proposed PSS and 
UPFC-based controllers when tested at nominal and light loading conditions are given in 
Table 16. It is evident that system stability is greatly enhanced by the proposed coordinated 
designs.  

Weights of J 
Damping Controller 

α β γ 

δE 
mB 
PSS 

100 
120 
100 

1 
1 
1 

30 
10 
10 

Table 14. Objective Function Weights and Disturbances Used in the Simultaneous Design 
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 δE mB PSS 

K 
T1 
T2 
T3 
T4 
kpp 
kpi 
kdp 
kdi 

100.00 
1.28 
0.76 
0.05 
0.57 
0.51 
-0.92 
-7.69 
-2.19 

100.00 
1.50 
0.49 
1.50 
0.49 

-13.21 
-14.60 
-20.00 
-15.46 

1.64 
0.62 
0.17 
1.01 
0.05 

-19.93 
-17.44 
-13.77 
-5.41 

J 124.9 35.0 27.0 

Table 15. The Optimal Parameter Settings of the Individual Controllers – Simultaneous 
Design 

  δE mB PSS 

N 
EM 

ζ 
-2.15 ± 6.97i 

0.30 
-2.37 ± 6.49i 

0.34 
-1.97 ± 5.25i 

0.35 

L 
EM 

ζ 
-2.18 ± 6.59i 

0.31 
-2.44 ± 6.30i 

0.36 
-1.80 ± 8.72i 

0.20 

Table 16. System Eigenvalues of the Individual Controllers at Nominal (N) and Light (L) 
Loading – Simultaneous Design 

Moreover, the nonlinear time-domain simulations are carried out at nominal and light 
loading conditions. The deviations in speed, power flow of line 2, and DC voltage for a 6-
cycle three-phase fault at nominal loading condition are shown in Figures 25-27, 
respectively. From these figures, it is observed that: 
• The proposed coordinated designs give rise to superior responses. 
• After the fault, the three signals shown in Figures 25-27 have settled with no steady-

state error, excellent settling time, and reasonably good overshoot. 
• The δE-based controller outperforms the mB-based controller and PSS, especially in 

terms of overshoot. 

 
Figure 25. Speed response for a 6-cycle fault with nominal loading – Coordinated design 
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Table 13. System Eigenvalues of the Individual Controllers at Nominal Loading – Sequential 
Design 

 

 
Figure 24. Speed response for a 6-cycle fault with nominal loading – sequential design 

5.3.2 Coordinated Controller Design 
In this stage, the three controllers are designed in a coordinated manner (Abido et al, 2006b). 
That is, PSO is used to concurrently find the optimum parameters of the VR, PFC, and DC 
minimizing the error objective function defined in (20). In order to end up with the optimum 
controllers, the objective function weights and the disturbances have to be selected carefully. 
Table 14 shows the objective function weights used in every case. In all cases, the following 
two disturbances have been used: 

1. An impulse change in Pm  
2. A step change in Pe2ref. 

The final settings of the optimized parameters for the proposed controllers are given in 
Table 15.  
To test the performance of the proposed stabilizers, eigenvalue analysis and nonlinear time-
domain simulations are carried out.  
The system EM modes and their corresponding damping ratios with the proposed PSS and 
UPFC-based controllers when tested at nominal and light loading conditions are given in 
Table 16. It is evident that system stability is greatly enhanced by the proposed coordinated 
designs.  
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Table 16. System Eigenvalues of the Individual Controllers at Nominal (N) and Light (L) 
Loading – Simultaneous Design 

Moreover, the nonlinear time-domain simulations are carried out at nominal and light 
loading conditions. The deviations in speed, power flow of line 2, and DC voltage for a 6-
cycle three-phase fault at nominal loading condition are shown in Figures 25-27, 
respectively. From these figures, it is observed that: 
• The proposed coordinated designs give rise to superior responses. 
• After the fault, the three signals shown in Figures 25-27 have settled with no steady-

state error, excellent settling time, and reasonably good overshoot. 
• The δE-based controller outperforms the mB-based controller and PSS, especially in 

terms of overshoot. 

 
Figure 25. Speed response for a 6-cycle fault with nominal loading – Coordinated design 
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Figure 26. Power flow response of line 2 for a 6-cycle fault with nominal loading – 
Coordinated design 

 
Figure 27. DC voltage response for a 6-cycle fault with nominal loading – Coordinated 
design 

 
Figure 28. Speed response for a 6-cycle fault with light loading – coordinated design 
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Figure 29. Power flow response of line 2 for a 6-cycle fault with light loading – simultaneous 
design 

 
Figure 30. DC voltage response for a 6-cycle fault with light loading – simultaneous design 

In addition, the deviations in torque angle, power flow of line 2, and DC voltage for a 6-
cycle three-phase fault at light loading conditions are shown in Figures 28-30, respectively. 
From these figures it can be concluded that the δE-based controller is the most effective 
controller in terms of overshoot, settling time, and steady-state error. This shows that the 
performance of δE-based controller is almost unaffected with the loading level. The 
performance of mB-based controller and PSS, however, is degraded at this loading condition. 

6. Conclusion 
In this work, the problem of enhancing the power system dynamic stability through 
individual and coordinated design of UPFC-based damping stabilizers has been 
investigated. The controllability of the electromechanical mode over a wide range of 
operating conditions by a given control input has been measured using a singular value 
decomposition-based approach. Such a study is very important as it laid the foundations of 
the requirements of the coordinated design problem. The stabilizer design problem has been 
formulated as an optimization problem with an eigenvalue-based as well as a time domain-
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Figure 26. Power flow response of line 2 for a 6-cycle fault with nominal loading – 
Coordinated design 

 
Figure 27. DC voltage response for a 6-cycle fault with nominal loading – Coordinated 
design 

 
Figure 28. Speed response for a 6-cycle fault with light loading – coordinated design 
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Figure 29. Power flow response of line 2 for a 6-cycle fault with light loading – simultaneous 
design 

 
Figure 30. DC voltage response for a 6-cycle fault with light loading – simultaneous design 

In addition, the deviations in torque angle, power flow of line 2, and DC voltage for a 6-
cycle three-phase fault at light loading conditions are shown in Figures 28-30, respectively. 
From these figures it can be concluded that the δE-based controller is the most effective 
controller in terms of overshoot, settling time, and steady-state error. This shows that the 
performance of δE-based controller is almost unaffected with the loading level. The 
performance of mB-based controller and PSS, however, is degraded at this loading condition. 

6. Conclusion 
In this work, the problem of enhancing the power system dynamic stability through 
individual and coordinated design of UPFC-based damping stabilizers has been 
investigated. The controllability of the electromechanical mode over a wide range of 
operating conditions by a given control input has been measured using a singular value 
decomposition-based approach. Such a study is very important as it laid the foundations of 
the requirements of the coordinated design problem. The stabilizer design problem has been 
formulated as an optimization problem with an eigenvalue-based as well as a time domain-
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based objective functions, which was then solved by particle swarm optimization. The use 
of the first objective function results in placing the electromechanical modes of oscillations 
furthest to the left of the complex s-plane, thus improving the damping of these modes. The 
use of the second objective function results in improving the time domain specifications of 
the system performance in terms of overshoot and settling time.  
Individual design as well as coordinated design of the proposed stabilizers with and 
without system parameter uncertainties have been investigated and discussed. It has been 
concluded that the eigenvalue-based objective function can be used to design efficient 
individual as well as coordinated stabilizers. However, the time-domain-based objective 
function has the advantage of designing several controllers with different objectives in a 
coordinated manner. This feature has been utilized to design the UPFC damping stabilizers 
and internal controllers in a coordinated manner.  
In all cases, the damping characteristics of the proposed control schemes to low frequency 
oscillations over a wide range of operating conditions have been evaluated using the 
eigenvalue analysis. The effectiveness of the proposed control schemes in enhancing the 
power system dynamic stability has been verified through comprehensive nonlinear time-
domain simulations for a variety of loading conditions. It was clearly shown that the 
coordinated design approach outperforms the individual designs.  

7. Appendix 
M = 8.0s; T’do = 5.044; D = 0.0; xd = 1.0; 
x’d = 0.3; xq = 0.6; XT = 0.6; 0.2PSSu ≤ pu; 
KA = 50;  TA = 0.05; Tw = 5.0; 7.3fdE ≤ pu; 

v = 1.05 pu; xtE  = 0.1; xBV = 0.6; Ks = 1.0;  
Ts = 0.05; xE = 0.1; xB = 0.1; Cdc = 3; 
Vdc=2;    

All resistances and reactances are in pu and time constants are in seconds. 
Notes: 

1. All simulations using the eigenvalue-based objective function Je are carried out 
assuming line 1 open, i.e. xT = ∞. 

2. All simulations using the eigenvalue-based objective function Je are carried out 
assuming kdp = - 10 and kdi = 0. 
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1. Introduction  
Since the particle swarm optimization (PSO), being a stochastic global optimization 
technique,was proposed by Kennedy and Eberhart in 1995(Kennedy & Eberhart, 1995; 
Eberhart & Kennedy, 1995), it has attracted interests of many researchers worldwide and 
has found many applications in various fields such as autocontrol, machinofacture, 
geotechnical engineering et al. (Mark & Feng, 2002; Dong et al, 2003; Su & Feng, 2005). There 
are two main reasons: one is the preferable performance of PSO, the other is its simplicity in 
operation. In order to avoid the premature and divergence phenomena often  occurring in 
optimization process by using the PSO, especially for multi-dimension and multi-extremum 
complex problems, as well as to improve the convergence velocity and precision of the PSO 
to a maximum extent, many kinds of schemes were introduced to enhance the PSO. The 
following are some representative schemes: inertia weight (Shi & Eberhart, 1998), 
constriction factor (Eberhart & Shi, 2000), crossover operation (Lovbjerg et al, 2001) and self-
adaptation (Lü & Hou, 2004). The PSO modified by introducing the inertia weight or 
crossover operation or self-adaptation technique has an excellent convergence capability 
with a decreased velocity of convergence. The PSO with a constriction factor can reach the 
global goal quickly, but the divergence phenomenon sporadically occurs in the optimized 
solutions. 
So we proposed an improved PSO, named CSV-PSO,  in which flight velocity limit and 
flight space of particles are constricted dynamically with flying of particles (Chen & Feng, 
2005). A great deal of numerical calculation indicates CSV-PSO has a faster convergence 
velocity, greater convergence probability and is a more stable. But this algorithm with a 
random number generator having time as its random seed may obtain different goal values 
at different running time. It is difficult to determine uniqueness of solution, especially for 
complicated engineering problem. So a random number generator with mixed congruential 
method is introduced to solve uncertainty of solution, and its random seed can be set 
artificially. To indicate advantage of the proposed algorithm, it is compared with other 
modified vertions and sensitivity analysis is carried out for its several important parameters, 
which the five benchmark functions are as examples. The results show CSV-PSO with a new 
random number generator is excellent. Back analysis which is based on monitoring 
information with numerical method is a very time-consuming job in geotechnical 
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engineering field. It is necessary to introduce a scheme for improving calculation efficiency. 
A parallel strategy is adopted, and a parallel CSV-PSO with master-slave mode, called 
PCSV-PSO, is proposed. Finally, rheological parameters of soft and weak rock mass, as an 
engineering practical example, are identified using back analysis of displacement based on 
PCSV-PSO, at the No. 72 experimental tunnel, left bank of Longtan hydropower station, 
China. The results show that the proposed method is feasible, efficient and robust in multi-
parameter optimization and is a new analysis tool for engineering application. 

2. PSO 

In PSO algorithm, the birds are abstractly represented as particles which are mass-less and 
volume-less and extended to D dimensional space. The position of the particle i  in 

the D dimensional space is represented by a vector ),,,( 21 iDiii XXXX ⋅⋅⋅= , and the flying 

velocity is represented by a vector ),,,( 21 iDiii VVVV ⋅⋅⋅= . The vectors ),,,( 21 iDiii PPPP ⋅⋅⋅=  and 

),,,( 21 gDggg PPPP ⋅⋅⋅=  are the optimal position of the particle i  recognized so far and the 
optimal position of the entire particle swarms recognized so far, respectively. The position 

of each particle in the D dimensional space, iX , is a tentative solution in the problem space. 

The fitness of the model, representing applicability of the iX , can be obtained by 

substituting iX to the target function. Therefore, the search procedure of PSO algorithm 
depends on interaction among particles. The position and velocity of the particle i can be 
updated as Eq.(1) and (2) ( Kennedy & Eberhart,1995; Shi & Eberhart,1998) . 

 )()( 2211 idgdidididid XPrcXPrcwVV −+−+=  (1) 

 ididid VXX +=  (2) 

In which, w  is inertia weight; 1c  and 2c  are constants for learning, 1c >0, 2c >0; 1r and 2r  are 
random numbers in [0,1]; Dd ,,2,1 ⋅⋅⋅= . 
The basic PSO algorithm has advantages of simple operation and convenient application. 
However, as other optimization algorithms such as genetic algorithms, the basic PSO 
algorithm has also the problems of premature and slow convergence, therefore, an 
improvement in accuracy is needed. 

3. CSV-PSO 
In order to improve the convergence velocity and precision of the PSO algorithm, the CSV-
PSO algorithm which can adjust inertia weight, flight velocity limit and flight space of 
particles dynamically and nonlinearly was proposed. This Algorithm has been documented 
in our early paper (Chen & Feng, 2005). Random Number Generator and parallel CSV-PSO 
algorithm (PCSV-PSO) are described in detail and CSV-PSO algorithm is briefly introduced 
in this section. 
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3.1 Random Number Generator 
Random number is the crucial factor for the performance of swarm intelligence algorithms, 
and a good random number generator can always get twice the result with half the effort. A 
algorithm with random number generator that time is as its random seed always tends to 
give different results in different runtime, which brings troubles for the final determination 
of solving proposal of engineering problems. To resolve this problem, a random number 
generator with the mixed congruential method is proposed in the paper. This generator can 
generate random numbers of uniform distribution in the interval of (0, 1) and random seed 
can be set artificially. A great deal numerical results show that this technique is excellent. 
The process of the generation of random seeds is as following. 
The iterative formulae of the mixed congruential method are: 

 ))(mod(1 Mcxx ii +=+ λ  (3) 

 Mxr ii /11 ++ =  (4) 

Where λ 、 0x 、 c and M  are constants and can set beforehand, 1+ix is the remainder of M  

divided by cxi +λ  and 1+ir  is a random number within the interval of (0, 1). Each random 
number generated by the mixed congruential method in accordance with an index number 
and is stored in an internal array after random number generator is initialized. If random 
number is needed, the random number generator will firstly call the computing function of 
the mixed congruential method to generate random integer used as index, then the random 
number is picked up from internal array in terms of the index, finally the random number 
generator carries out the mixed congruential method again to update the internal array. The 
random number sequences obtained by this method are much better than those obtained by 
common mixed congruential methods. The C language codes which are used to describe the 
above mentioned method are as follows: 
 

double CRandom::ran(long *idum) 
{ 
// idum is random seed 
const long M1=259200l;    
const long IA1=7141l;    
const long IC1=54773l;    
const double RM1 = (1.0/M1); 
const long M3=243000l;   
const long IA3=4561l;    
const long IC3=52349l;    
static long ix1,ix2,ix3;    
static double r[98];   
double temp;   
static int iff=0; 
long j;   //int j; 
if (*idum < 0 || iff == 0) { 
ff=1; 
x1=(IC1-(*idum)) % M1; 
ix1=(IA1*ix1+IC1) % M1; 
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PCSV-PSO, at the No. 72 experimental tunnel, left bank of Longtan hydropower station, 
China. The results show that the proposed method is feasible, efficient and robust in multi-
parameter optimization and is a new analysis tool for engineering application. 

2. PSO 

In PSO algorithm, the birds are abstractly represented as particles which are mass-less and 
volume-less and extended to D dimensional space. The position of the particle i  in 

the D dimensional space is represented by a vector ),,,( 21 iDiii XXXX ⋅⋅⋅= , and the flying 

velocity is represented by a vector ),,,( 21 iDiii VVVV ⋅⋅⋅= . The vectors ),,,( 21 iDiii PPPP ⋅⋅⋅=  and 

),,,( 21 gDggg PPPP ⋅⋅⋅=  are the optimal position of the particle i  recognized so far and the 
optimal position of the entire particle swarms recognized so far, respectively. The position 

of each particle in the D dimensional space, iX , is a tentative solution in the problem space. 

The fitness of the model, representing applicability of the iX , can be obtained by 

substituting iX to the target function. Therefore, the search procedure of PSO algorithm 
depends on interaction among particles. The position and velocity of the particle i can be 
updated as Eq.(1) and (2) ( Kennedy & Eberhart,1995; Shi & Eberhart,1998) . 

 )()( 2211 idgdidididid XPrcXPrcwVV −+−+=  (1) 

 ididid VXX +=  (2) 

In which, w  is inertia weight; 1c  and 2c  are constants for learning, 1c >0, 2c >0; 1r and 2r  are 
random numbers in [0,1]; Dd ,,2,1 ⋅⋅⋅= . 
The basic PSO algorithm has advantages of simple operation and convenient application. 
However, as other optimization algorithms such as genetic algorithms, the basic PSO 
algorithm has also the problems of premature and slow convergence, therefore, an 
improvement in accuracy is needed. 

3. CSV-PSO 
In order to improve the convergence velocity and precision of the PSO algorithm, the CSV-
PSO algorithm which can adjust inertia weight, flight velocity limit and flight space of 
particles dynamically and nonlinearly was proposed. This Algorithm has been documented 
in our early paper (Chen & Feng, 2005). Random Number Generator and parallel CSV-PSO 
algorithm (PCSV-PSO) are described in detail and CSV-PSO algorithm is briefly introduced 
in this section. 
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3.1 Random Number Generator 
Random number is the crucial factor for the performance of swarm intelligence algorithms, 
and a good random number generator can always get twice the result with half the effort. A 
algorithm with random number generator that time is as its random seed always tends to 
give different results in different runtime, which brings troubles for the final determination 
of solving proposal of engineering problems. To resolve this problem, a random number 
generator with the mixed congruential method is proposed in the paper. This generator can 
generate random numbers of uniform distribution in the interval of (0, 1) and random seed 
can be set artificially. A great deal numerical results show that this technique is excellent. 
The process of the generation of random seeds is as following. 
The iterative formulae of the mixed congruential method are: 

 ))(mod(1 Mcxx ii +=+ λ  (3) 

 Mxr ii /11 ++ =  (4) 

Where λ 、 0x 、 c and M  are constants and can set beforehand, 1+ix is the remainder of M  

divided by cxi +λ  and 1+ir  is a random number within the interval of (0, 1). Each random 
number generated by the mixed congruential method in accordance with an index number 
and is stored in an internal array after random number generator is initialized. If random 
number is needed, the random number generator will firstly call the computing function of 
the mixed congruential method to generate random integer used as index, then the random 
number is picked up from internal array in terms of the index, finally the random number 
generator carries out the mixed congruential method again to update the internal array. The 
random number sequences obtained by this method are much better than those obtained by 
common mixed congruential methods. The C language codes which are used to describe the 
above mentioned method are as follows: 
 

double CRandom::ran(long *idum) 
{ 
// idum is random seed 
const long M1=259200l;    
const long IA1=7141l;    
const long IC1=54773l;    
const double RM1 = (1.0/M1); 
const long M3=243000l;   
const long IA3=4561l;    
const long IC3=52349l;    
static long ix1,ix2,ix3;    
static double r[98];   
double temp;   
static int iff=0; 
long j;   //int j; 
if (*idum < 0 || iff == 0) { 
ff=1; 
x1=(IC1-(*idum)) % M1; 
ix1=(IA1*ix1+IC1) % M1; 
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ix3=ix1 % M3; 
for (j=0;j<=97;j++) { 
 ix1=(IA1*ix1+IC1) % M1; 
 r[j]=ix1*RM1; 
} 
*idum=1; 
} 
ix1=(IA1*ix1+IC1) % M1; 
ix3=(IA3*ix3+IC3) % M3; 
j=(97*ix3)/M3; 
if (j > 97 || j < 0) cout<<"RAN: This cannot happen."<<endl; 
temp=r[j]; 
r[j]=ix1*RM1; 
return (double)temp; 
} 

3.2 CSV-PSO 
3.2.1 Inertia Weight 
The notion of inertia weight parameter is introduced by Shi and Eherhart (Shi & Eberhart, 
1998) to control the impact of the previous history of velocities on current velocity. This 
enables to influence the tradeoff between global and local exploration abilities of the 
particles. A larger inertia weight facilitates global optimization, while smaller inertia weight 
facilitates local optimization.A decreasing inertia weight with iteration was introduced in 
terms of a linear formulation by Shi and Eherhart. A equation for ineria weight modification 
is proposed by a great deal numerical simulations here as following:  
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k
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Where 0w  is a constant given; k  is number of fly; n  is a constant determined for fitness 
function in global optimum problem. 

3.2.2 Limit of the Flying Velocity 
The limit of the flying velocity of the particles is an important factor that affects velocity of 
convergence of the PSO (Eberhart & Shi, 2000).In fact, a good limitation is of advantage to 
both velocity and precision of convergence.Here we adopt Eq. (6) and (7) to determine limit 
of the flying velocity of the particles. 
In which, dUpmax , dDownmin , dVmax , dVmin are the upper limit and the lower limit of the 
position and the upper limit and lower limit of the velocity at d dimensional space, 
respectively, Dd ,,2,1 ⋅⋅⋅= . The parameter α can be determined using Eq. (8). 
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Where 0α is a given constant; k  is number of fly; m is a constant determined for fitness 
function in optimum problem. 

3.2.3 Compression of Search Space  

Particles approach excellent domain step by step with the “flying” of particles continuously. 
If domain for searching global goal is compressed properly in the “flying” process, 
convergence of PSO will be accelerated. So the equations for compressing search space are 
introduced as following: 

 cdcddd GGpUpU +−′=′ )( max0max β  (9) 

 cdcddd GGnDownDow +−′=′ )( min0min β  (10) 

Where 10 0 << β ; dpU max′ , dnDow min′  and cdG  are the upper limit, the lower limit and the 
geometrical center of gravity of particle swarm in the d dimensional direction of the 
compressed space, respectively; cdG  can be calculated using Eq. (11) (Clerc, 1999) as 
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Where popN  is the population of the particles; idx  is position of  the No. i particle in 
the d dimensional direction. 

3.2.4 CSV-PSO Algorithm 
In process of space compressing, on the one hand the global optimum probably is out of 
searching ranges so that the global goal is unable to be found, on the other hand flying 
velocity of particles is decreased, which can be obviously by Eq. (6) and (7), and the 
performance of the algorithm jumpting out local solution is reduced. Therefore, searching 
space and flying velocity limit can’t be compressed without limitations. The compression 
should is finished when limit of flying velocity is less a small given value. Particles may fly 
to the same local value with “flying” of particles continuouly. Therefore, stagnancy 
phenominon may occur in PSO (The so called stagnancy phenominon is that best particle 
doesn’t move toward any direction during “flying” of particles).  If no measure is taken, the 
PSO may need a long time to get rid of the particle stagnancy or traps into local goal forever. 
Initializing partial particles’ position and flying velocity is an efficient method again when 
the present best particle is not move to global goal within some “flying” times. The particles 
are divided into two parts: one part are given new position and flying velocity in 
compressed space, the other is initialized in original space. These ensure that the algorithm 
have a better convergence precision and a faster convergence velocity. The whole optimized 
process of CSV-PSO is as following: 
Step 1: Initialize the inertia weight 0w , learning factors 1c and 2c , the population of 
group popN , number of stagnancy generation sN , constants 0α and 0β , and end remark of 

evolutionary process gN and 0ε , go to Step 2. 
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The limit of the flying velocity of the particles is an important factor that affects velocity of 
convergence of the PSO (Eberhart & Shi, 2000).In fact, a good limitation is of advantage to 
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of the flying velocity of the particles. 
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position and the upper limit and lower limit of the velocity at d dimensional space, 
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Where 0α is a given constant; k  is number of fly; m is a constant determined for fitness 
function in optimum problem. 

3.2.3 Compression of Search Space  

Particles approach excellent domain step by step with the “flying” of particles continuously. 
If domain for searching global goal is compressed properly in the “flying” process, 
convergence of PSO will be accelerated. So the equations for compressing search space are 
introduced as following: 
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geometrical center of gravity of particle swarm in the d dimensional direction of the 
compressed space, respectively; cdG  can be calculated using Eq. (11) (Clerc, 1999) as 
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Where popN  is the population of the particles; idx  is position of  the No. i particle in 
the d dimensional direction. 

3.2.4 CSV-PSO Algorithm 
In process of space compressing, on the one hand the global optimum probably is out of 
searching ranges so that the global goal is unable to be found, on the other hand flying 
velocity of particles is decreased, which can be obviously by Eq. (6) and (7), and the 
performance of the algorithm jumpting out local solution is reduced. Therefore, searching 
space and flying velocity limit can’t be compressed without limitations. The compression 
should is finished when limit of flying velocity is less a small given value. Particles may fly 
to the same local value with “flying” of particles continuouly. Therefore, stagnancy 
phenominon may occur in PSO (The so called stagnancy phenominon is that best particle 
doesn’t move toward any direction during “flying” of particles).  If no measure is taken, the 
PSO may need a long time to get rid of the particle stagnancy or traps into local goal forever. 
Initializing partial particles’ position and flying velocity is an efficient method again when 
the present best particle is not move to global goal within some “flying” times. The particles 
are divided into two parts: one part are given new position and flying velocity in 
compressed space, the other is initialized in original space. These ensure that the algorithm 
have a better convergence precision and a faster convergence velocity. The whole optimized 
process of CSV-PSO is as following: 
Step 1: Initialize the inertia weight 0w , learning factors 1c and 2c , the population of 
group popN , number of stagnancy generation sN , constants 0α and 0β , and end remark of 

evolutionary process gN and 0ε , go to Step 2. 
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Step 2: The positions of the particles are randomly generated in 





maxmin ,UpDown . The 

limitations of flying velocity of the particles, minV and maxV , are calculated using Eqs. (6) and 

(7). And then, the flying velocity of the particles is initialized randomly in 





maxmin ,VV . Set 

up 0=n , go to Step 3. 
Step 3: Substitute iX  to goal function to calculate the fitness of the No. i particle )( iXf . The 

global optimal position of the particle swarm group b
gX and the best position of particle 

individual during the fly b
iX are determined according to the fitness )( iXf , go to Step 4. 

Step 4: Substitute b
gX  to goal function to calculate the best fitness of this flying b

gf . If b
gf  is 

obviously better than that of the former flying, go to Step 5. Otherwise, go to Step 6. 
Step 5:  If b

gf < 0ε or n> gN , then the optimization process ends. Otherwise, let 1+= nn , the 
position and flying velocity of the particles are updated by using Eqs. (1) and (2) and 

insured in [ ]maxmin ,UpDown  and [ ]maxmin ,VV , go to Step 3. 

Step 6: Use Eq.(5) to dynamically update w . If b
gf is not changed in all sN continuously, go 

to Step 7. Otherwise, go to Step 5； 
Step 7: Use Eq.(6) and (7) to modify dynamically the limit of flying velocity of the particles, 
and use Eqs. (9) and (10) to compress the search space of the particles, go to Step 8. 
Step 8: The particles are divided into two parts. One part is initialized in the compressed 

space 



 '

max
'
min ,UpDown  and another part is renewedly initialized in the original space 







maxmin ,UpDown , go to Step 5. 

3.3 Performance Analysis of CSV-PSO 
To test performance of the CSV-PSO with random numbers generated by the mixed 
congruential method, five nonlinear benchmark functions, whose basic characteristics and 
properties are listed as table 1, are used. To facilitate the description of the two CSV-PSO  
algorithms: one uses time as random seed, the other utilizes mixed congruential method to 
produce random numbers and random seed can be set artificially, the former is called CSV-
PSO1 and the latter is named CSV-PSO2.  

3.3.1 Convergence Velocity 
For comparison, in all cases and all improved PSO algorithms, the population size was set to 
30; the maximum number of iteration was set to 10,000; the factors for learning c1 and c2 are 
both set to 2.0 and five benchmark functions are set as shown in table 1. Inertia weights of 
CSV-PSO1 and CSV-PSO2 are set to 1.0 at the beginning of the run, different from that of 
Eberhart and Shi (Eberhart & Shi, 2000) and they can be decreased to a very small positive 
value by Eq. (5) .Newly introduced parameters sN , 0α and 0β are 50,0.9 and 0.8 respectively 
and the α calculated by Eq. (8) can’t be less 0.1. It is special for function Schaffer’s f6 that 
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0α was set to 0.5 in CSV-PSO1. Each version of PSO is run 20 times for each test function, 
among them the first four are run randomly and the last are run with random seed from 5 to 
950 by an increment 50 for each run. Average number of iteration and ranges of iteration 
number for five functions are listed in table 2 where each method is convergent by 20 runs. 
The result of the former three versions is gained by Eberhart and Shi (Eberhart & Shi, 2000), 
and the fourth was from our reference (Chen & Feng, 2005). 
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Table 1. Five benchmark functions for testing 

 Inertia 
Weight 

Constriction 
Factor 

(Vmax=100000) 

Constriction 
Factor 

( Vmax=Xmax) 

CSV-
PSO1 

CSV-
PSO2 

averN 1537.8 552.05 529.65 680.15 599.45 
Sphere 

rN  1485-1615 503-599 495-573 456-935 473-842 

averN 3517.35 1424.1 992 203.2 297.05 Rosen-
brock 

rN  2866-4506 475-4793 402-1394 108-545 130-732 

averN 1320.9 6823 213.45 215.45 707.05 
Rastr-igrin 

rN  743-1704 233-7056 161-336 86-726 100-2060 

averN 2757.7 437 312.6 510.45 622.26 Griew- 
ank 

rN  2638-3035 384-663 282-366 385-707 318-3647 

averN 512.35 430.55 532.4 111.9 466.65 Schaf- 
fer’s f6 

rN  339-748 105-899 94-2046 3-332 41-1981 

Table 2. Convergence velocity of several versions of PSO for the five test functions 

averN  and rN are average value and ranges of convergent iteration number among 20 runs 
respectively in the table 2. For example, averN  and rN are average value and ranges of iteration 
number of 17 runs separately when there are 3 divergent runs in 20 runs. If one run doesn’t 
reach the goal in 10000 iterations, this run is regarded as divergence. Where constriction factor 
version (Vmax=100000) and improved constriction factor version (Vmax=Xmax) have one divergence 
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Step 2: The positions of the particles are randomly generated in 
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algorithms: one uses time as random seed, the other utilizes mixed congruential method to 
produce random numbers and random seed can be set artificially, the former is called CSV-
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For comparison, in all cases and all improved PSO algorithms, the population size was set to 
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both set to 2.0 and five benchmark functions are set as shown in table 1. Inertia weights of 
CSV-PSO1 and CSV-PSO2 are set to 1.0 at the beginning of the run, different from that of 
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0α was set to 0.5 in CSV-PSO1. Each version of PSO is run 20 times for each test function, 
among them the first four are run randomly and the last are run with random seed from 5 to 
950 by an increment 50 for each run. Average number of iteration and ranges of iteration 
number for five functions are listed in table 2 where each method is convergent by 20 runs. 
The result of the former three versions is gained by Eberhart and Shi (Eberhart & Shi, 2000), 
and the fourth was from our reference (Chen & Feng, 2005). 
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Table 2. Convergence velocity of several versions of PSO for the five test functions 

averN  and rN are average value and ranges of convergent iteration number among 20 runs 
respectively in the table 2. For example, averN  and rN are average value and ranges of iteration 
number of 17 runs separately when there are 3 divergent runs in 20 runs. If one run doesn’t 
reach the goal in 10000 iterations, this run is regarded as divergence. Where constriction factor 
version (Vmax=100000) and improved constriction factor version (Vmax=Xmax) have one divergence 
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of 20 runs for function Rastrigrin for respectively; Constriction factor version (Vmax=100000) has 3 
divergences, improved constriction factor version (Vmax=Xmax) has one divergence, and CSV-
PSO2 has one divergence for function Griewank among 20 runs. In comparison with other 
versions, CSV-PSO has a better convergence velocity, and is more stable. Performance of CSV-
PSO2 is a bit worse than that of CSV-PSO1, but it is better than other versions, its random seed 
can be set artificially and unique solution can be obtained at each run using CSV-PSO2. 

3.3.2 Precision of Convergence 
A 30-dimension function Rosenbrock, whose variables are in interval of [-10, 10], is taken as 
an example for analyzing convergence precision of several improved versions of PSO. For 
comparison, in all versions of PSO, the population size was set to 20; the maximum number 
of iteration was set to 2000; the factors for learning c1 and c2 are both set to 2.0; Initial inertia 
weights of CSV-PSO1 and CSV-PSO2 are 1.0, which are different from that of other versions. 
Newly introduced parameters sN , 0α and 0β are 50, 0.9 and 0.8 respectively. Each version of 
PSO is run 20 times for test function, the first five are run randomly and the last is run with 
random seed from 5 to 950 by an increment 50 for each run. Average value of 20 runs for 
each version is listed in table 3. The result of the former two columns is gained by Clerc and 
Kennedy (Clerc and Kennedy, 2002), the third and the fourth are from the literature (Ke et 
al., 2003), the fifth and the last are obtained by CSV-PSO1 and CSV-PSO2 respectively. In 
fact, when the goal of 0.4 is obtained using the proposed method in the paper, average 
iteration number of 20 runs is just 913.24. So the proposed method has a better velocity and 
precision of convergence for function Rosenbrock. 

Constriction factor1 Constriction factor2 Inertia weight MPSO CSV-PSO1 CSV-PSO2 
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3.4 Sensitivity Analysis of Parameters 
Sensitivity analysis of parameters, on the one hand, can make algorithm do its better, and on the 
another hand, can offer reasonable basis for parameter selection. There has been a lot of research 
about basic parameter analysis of the PSO algorithm, and now we just analyze the sensitivity of 
several parameters used by the CSV-PSO algorithm. The five benchmark functions are selected 
as testing examples, whose characteristics and properties are shown in table 1.  

3.4.1 Random Seeds 
The initial population of PSO algorithm is generated randomly, and the main operations 
(such as the updating of the position and velocity of particles etc.) of PSO contain random 
factors. So, random seed must have some effect on algorithm performance. But how does it 
affect and are there any lows to follow? Effect of Random seed on CSV-PSO is analyzed and 
discussed based on five benchmark function in table 1 as following.  
Parameters setting of CSV-PSO: the population size was set to 20; the maximum number of 
flight is 2000 times; the factors for learning c1 and c2 are both set to 2.0; initial inertia weights  
is 1.0; number of stagnancy iteration is 10; constant 0α and 0β is set to 0.9 and 0.8 
respectively the α obtained by Eq. (8) can’t be less 0.1; random seed is from 0 to 1000 by an 
increment 50 for each scheme; goal values of five functions are listed as table 1 and number 
of maximum iteration is the terminating condition of algorithm. 
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Figure 5. Effect of different random seed on precision of function Schaffer’f6 

The effects of random seeds on performance of algorithm for five functions are shown in 
Fig. 1 to Fig. 5.  It is obviously that random seed greatly affects the convergence velocity and 
precision of the CSV-PSO. If random seed is appropriate, convergence velocity of CSV-PSO 
is quite fast; otherwise, convergence is slower and divergence is also probable. However, 
this effect is random and doesn’t comply with any distinctive laws. 

3.4.2 Stagnancy Number Ns 
In process of optimization, the best particle may not move toward any direction during a 
short-term flying before goal value is obtained. This is named stagnancy phenomenon. To 
obtained the global goal value quickly, it is necessary to initialize part of the particles once 
more to break this temporary stagnation. But no final conclusion about the how many the 
stagnancy number is has yet been reached. How to determine stagnancy number Ns will be 
discussed in this section by taking the functions in table 1 as examples.  

 Sphere Rosenbrock Rastrigrin Griewank Schaffer’s f6 
Optimal value 13982.13 123073.22 264.40 126.83 9.71E-3 

Table 4. Optimal value of 5 functions when stagnancy number is 1 
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The effects of random seeds on performance of algorithm for five functions are shown in 
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more to break this temporary stagnation. But no final conclusion about the how many the 
stagnancy number is has yet been reached. How to determine stagnancy number Ns will be 
discussed in this section by taking the functions in table 1 as examples.  
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Most of the parameters in this section are set to be the same value as section 3.4.1 except for 
random seed and stagnancy number. Random seed is set to 100 and stagnancy number is set 
to be from 1 to 501 by an increment 10 for each solution. How the stagnancy number affects 
the convergence precision is indicated in Fig. 6 to Fig. 10. Because when the stagnancy 
number is 1, the optimal value is still very large at reaching end conditions, so these values 
are listed in table 4 separately. 
Much numerical simulation has shown that there is stagnancy during the flight of particles. 
It is concluded that it is very important what time initializing part of particles is. If part of 
particles are initialized again when stagnancy just now happens (e.g. stagnancy number is 
1.) during flight of particles, performance of CSV-PSO is least desirable and the algorithm is 
hard to converge. However, if the initializing is too late (e.g. stagnancy number is 500), the 
algorithm is also not stable and easily divergent, which are seen from table 4 and Fig. 6 to 
Fig. 10. The whole range can be divided into three intervals [1, 30), [30,120] and 
(120,501].The proposed algorithm is not easy to converge at intervals [1, 30) and (120,501] 
and has a trend that convergence becomes more and more difficult along with the increasing 
of stagnancy number at interval (120,501]. So it is suggested that initializing part of particles 
once again with stagnancy number between 30 and 120 will achieve better convergence. 
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3.4.3 Constant 0α   
Constant 0α is a parameter that determines limit of flying velocity of particles, which is 
shown by Eq. (6), (7) and (8). Many numerical tests show that different 0α  result in different 
velocity and precision of convergence in CSV-PSO. Parameters of CSV-PSO different from 
section 3.4.2 are stagnancy number and constant 0α  which are set to 20 and from 0 to 3.0 by 
an increment 0.1 for each scheme separately. And the α  can be decreased without limitation 
by Eq. (8). The optimal values of each function vary with increasing of constant 0α  as 
shown in Fig. 11 to Fig. 15. As being comparatively large when constant 0α is 0, optimal 
values for five functions are listed separately in table 5. 

 Sphere Rosenbrock Rastrigrin Griewank Schaffer’s f6 
Optimal value 51773.71 1690084.40 373.47 466.96 5.04 E-2 

Table 5. Optimal value of 5 functions at 0α =0 
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Figure 12. Effect of different constant 0α  on precision of function Rosenbrock 

It is concluded that convergence precision of CSV-PSO for each function is very poor at 
meeting end condition of iteration when 0α  is 0 from table 5. If iteration continues, given 
goal value is also obtained hardly. This is because PSO has had no optimizing capacity 
when 0α  is 0, which is in accordance with the principle of the algorithm. Particles move 
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Most of the parameters in this section are set to be the same value as section 3.4.1 except for 
random seed and stagnancy number. Random seed is set to 100 and stagnancy number is set 
to be from 1 to 501 by an increment 10 for each solution. How the stagnancy number affects 
the convergence precision is indicated in Fig. 6 to Fig. 10. Because when the stagnancy 
number is 1, the optimal value is still very large at reaching end conditions, so these values 
are listed in table 4 separately. 
Much numerical simulation has shown that there is stagnancy during the flight of particles. 
It is concluded that it is very important what time initializing part of particles is. If part of 
particles are initialized again when stagnancy just now happens (e.g. stagnancy number is 
1.) during flight of particles, performance of CSV-PSO is least desirable and the algorithm is 
hard to converge. However, if the initializing is too late (e.g. stagnancy number is 500), the 
algorithm is also not stable and easily divergent, which are seen from table 4 and Fig. 6 to 
Fig. 10. The whole range can be divided into three intervals [1, 30), [30,120] and 
(120,501].The proposed algorithm is not easy to converge at intervals [1, 30) and (120,501] 
and has a trend that convergence becomes more and more difficult along with the increasing 
of stagnancy number at interval (120,501]. So it is suggested that initializing part of particles 
once again with stagnancy number between 30 and 120 will achieve better convergence. 
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3.4.3 Constant 0α   
Constant 0α is a parameter that determines limit of flying velocity of particles, which is 
shown by Eq. (6), (7) and (8). Many numerical tests show that different 0α  result in different 
velocity and precision of convergence in CSV-PSO. Parameters of CSV-PSO different from 
section 3.4.2 are stagnancy number and constant 0α  which are set to 20 and from 0 to 3.0 by 
an increment 0.1 for each scheme separately. And the α  can be decreased without limitation 
by Eq. (8). The optimal values of each function vary with increasing of constant 0α  as 
shown in Fig. 11 to Fig. 15. As being comparatively large when constant 0α is 0, optimal 
values for five functions are listed separately in table 5. 
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It is concluded that convergence precision of CSV-PSO for each function is very poor at 
meeting end condition of iteration when 0α  is 0 from table 5. If iteration continues, given 
goal value is also obtained hardly. This is because PSO has had no optimizing capacity 
when 0α  is 0, which is in accordance with the principle of the algorithm. Particles move 
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toward an object by mainly interaction among particles. When 0α  is 0, the upper and lower 
limits of particles’ velocity are both zero indicated by formula (6), (7) and (8), further the 
velocity of flying is also zero, and locations and velocities of particles can’t both be updated.  
So that the whole population are stagnant and the PSO finally loses optimizing capacity. 
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It is shown that the convergence capability of CSV-PSO undergoes three stages 
approximately along with the increasing of 0α by Fig. 11 to Fig. 15. The first stage is at 
interval [0, 0.5) and convergence of the algorithm is unstable. Some functions can converge 
quickly to goal value while others will not in this stage. CSV-PSO has more stable 
convergence at interval [0.5, 1] for five testing functions. Convergent capability of the 
algorithm becomes much more poor and unstable when 0α is more than 1. So interval [0.5, 
1.0] is proposed. 
In addition, numerical calculation indicates that if population scale is too small, algorithms 
may converge difficultly and the precision is bad, so enlarging the population can improve 
the convergence capability and enhance the precision of the algorithm; increasing iteration 
number can also improve the precision of the algorithm to some degree. 

4. PCSV-PSO 

Although the convergence speed and precision of the CSV-PSO have been are further 
improved, it is necessary to further improve calculation efficiency for some practical 
engineering application consuming a large amount of calculation time (such as rheology 
parameters back analysis, seepage simulation, etc.). Therefore, a parallel CSV-PSO algorithm 
based on MPI(Message Passing Interface, named PCSV-PSO), is proposed in the paper. As 
the calculations for parameter recgnition are mainly consumed in evaluation of particles’ 
fitness,  global parallel strategies (master-slave mode) is adopted in CSV-PSO algorithm in 
the paper. MPI is one of the most popular parallel techniques based on message passing 
mechanism (Du, 2001). It offers a criterion of message passing programming, which has 
nothing with languages and platforms, and can be widely accepted. In addition, it  codes are 
practical, transplantable, high-efficiency and flexible. 
Operation procedure can be simply introduced as following: 
Firstly, the host computer allocates assignments for each process according to formula (12): 

 
m
NN ='  (12) 

Where N is the total number of assignments produced by CSV-PSO (namely N groups of 
schemes for problems to be solved), m is the number of personal computers(PC) 
participating in parallel calculation, 'N  is the number of assignments of each process. 
Secondly, each process executes its assignments separately, and the calculation result will be 
evaluated by formula (13) (That is evaluation of solutions of problem.). 

 ][
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In which, )(Xfi and tu  are calculation value and observed object value respectively; n is the 
total number of observed object value. 
Then, the calculating result of each process is taken back, and position, velocity, velocity 
limit and searching space of particles and inertia weight are updated according to Eq. (1),(2) 
and (5) to (10) on master PC. 
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toward an object by mainly interaction among particles. When 0α  is 0, the upper and lower 
limits of particles’ velocity are both zero indicated by formula (6), (7) and (8), further the 
velocity of flying is also zero, and locations and velocities of particles can’t both be updated.  
So that the whole population are stagnant and the PSO finally loses optimizing capacity. 
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It is shown that the convergence capability of CSV-PSO undergoes three stages 
approximately along with the increasing of 0α by Fig. 11 to Fig. 15. The first stage is at 
interval [0, 0.5) and convergence of the algorithm is unstable. Some functions can converge 
quickly to goal value while others will not in this stage. CSV-PSO has more stable 
convergence at interval [0.5, 1] for five testing functions. Convergent capability of the 
algorithm becomes much more poor and unstable when 0α is more than 1. So interval [0.5, 
1.0] is proposed. 
In addition, numerical calculation indicates that if population scale is too small, algorithms 
may converge difficultly and the precision is bad, so enlarging the population can improve 
the convergence capability and enhance the precision of the algorithm; increasing iteration 
number can also improve the precision of the algorithm to some degree. 

4. PCSV-PSO 

Although the convergence speed and precision of the CSV-PSO have been are further 
improved, it is necessary to further improve calculation efficiency for some practical 
engineering application consuming a large amount of calculation time (such as rheology 
parameters back analysis, seepage simulation, etc.). Therefore, a parallel CSV-PSO algorithm 
based on MPI(Message Passing Interface, named PCSV-PSO), is proposed in the paper. As 
the calculations for parameter recgnition are mainly consumed in evaluation of particles’ 
fitness,  global parallel strategies (master-slave mode) is adopted in CSV-PSO algorithm in 
the paper. MPI is one of the most popular parallel techniques based on message passing 
mechanism (Du, 2001). It offers a criterion of message passing programming, which has 
nothing with languages and platforms, and can be widely accepted. In addition, it  codes are 
practical, transplantable, high-efficiency and flexible. 
Operation procedure can be simply introduced as following: 
Firstly, the host computer allocates assignments for each process according to formula (12): 
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Where N is the total number of assignments produced by CSV-PSO (namely N groups of 
schemes for problems to be solved), m is the number of personal computers(PC) 
participating in parallel calculation, 'N  is the number of assignments of each process. 
Secondly, each process executes its assignments separately, and the calculation result will be 
evaluated by formula (13) (That is evaluation of solutions of problem.). 
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In which, )(Xfi and tu  are calculation value and observed object value respectively; n is the 
total number of observed object value. 
Then, the calculating result of each process is taken back, and position, velocity, velocity 
limit and searching space of particles and inertia weight are updated according to Eq. (1),(2) 
and (5) to (10) on master PC. 
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Finally, determine whether the result can meet the requirement of calculation. If so, 
terminate the parallel calculation; otherwise, allocate new assignments to slave computers, 
and begin new iteration.Repeat the above processes until the requried optimization solution 
is obtained. 
By using the above proposed method, fitness calculation of particles (one group of solved 
schemes for problems) is independent in each PC, wherears evaluation of all particles and 
all operation(such as updating of position, velocity, velocity limit and search space of 
particles and inertia weight, etc) are executed only by master PC. The host PC communicates 
with slave PCs only when allocating assignments and taking back result. Thus reduces the 
communication overhead prominently. Hence, the efficiency of parallel calculation is high.  

5. Application of PCSV-PSO in Geotechnical Engineering 

Rock is a typical complex anisotropic natural geological material including all kind of 
fissures, joints and defects, so mechanical characteristic and physical property are obviously 
different for different rocks, even if for the same rock. Hard brittle rock buried deeply under 
high ground stress has a greater chance of rockburst when surrounding condition of rock is 
changed by excavation, artificial blasting or other factors. While soft and weak rock shows 
another mechanics property, which deformation increases under constant stress condition 
or stress decreases under constant deformation condition gradually with time in long-term 
run of rock engineering, named time dependant characteristic. For accurate describing 
physical and mechanical property and learning deformation laws in situ of studied rock, 
back analysis based on measured information in situ is used widely in geotechnical field and 
many achievements have been obtained (Wang & Yang, 1987; Gavrus et al., 1996; Deng et 
al., 2001; Liu et al., 2005).  Measured displacement regarded as the goal, back analysis 
method for rheological parameters of rockmass based on FLAC3D codes using PCSV-PSO is 
introduced firstly. Then this method is used for inversing rheological parameters of argillite 
at the No. 72 testing tunnel of left bank slope, Longtan Hydropower station, China. 

5.1 Back Analysis of Rheologcial Parameters of Rockmass Based on PCSV-PSO 
It is essential for inversing analysis method that searching a set of parameters makes 
calculated response accord with actual response in the whole space using an optimal 
technique. So for time dependant engineering problem, goal function used as back analysis 
can be written as following: 
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Where X is a set of parameters required for inversing analysis; )(Xfit and itu are calculated 
displacement and measured displacement of the No. i monitoring site at t time respectively; 
n is total number of monitoring sites and T is total time for monitoring. 
The back analysis method which is based on FLAC3D solver with PCSV-PSO can be 
described as following (also seen from Fig. 16): 
Step 1: Initializing parameters of PCSV-PSO and ranges of parameters requiring to be 
analyzed inversely;  
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Step 2: Initializing position and velocity of particles, population size N, namely N sets of 
parameters requiring to be analyzed inversely; 
Step 3: Host PC allocates missions to m-1 slave PC and itself. N/m missions are allocated to 
each PC; 
Step 4: Invoking FLAC3D solver and calculating displacement of key points; 
Step 5: Calculating fitness of particles by formula (14), and return the result to host PC; 
Step 6: If the fitness is less than given value or iteration number is larger than maximum  
iteration number given, a set of optimal  parameters is selected out by rheology mechanics 
characteristic of rock and some engineering experiences and back analysis is finished; 
otherwise, go to step 7; 
Step 7: Updating limit of velocity, searching space and position and velocity of each particle 
inertia weight and so on, then go to step 3. 
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Figure 16. Flow chart of back analysis of parameters based on FLAC3D using PCSV-PSO 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

278 

Finally, determine whether the result can meet the requirement of calculation. If so, 
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5.2 An application in Geotechnical Engineering 

5.2.1 Introduction of Longtan Hydropower Project 
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Figure 17. Distributing of creep regions of left slope at Longtan Hydropower Project 
Longtan Hydropower Project, which is an important one in the implementation of national 
Great Western Development and the Power Transmission Project from West to East, is 
located in Tian’e county of Guangxi Autonomous Region, upstream of Hongshui River. It is 
the second largest hydropower project under construction in China, next to Three Gorges 
Project. The height of mountains is about 600m at both sides of the dam site. Slope on the 
left bank is 420m high and the slope angle is between 28 to 37 degrees, with a thickness of 
residual diluvial layer between 0.5 and 2m and locally from 8 to 25m. More than 500 faults 
are exposed in the Dam Area and about 50 ones of them are bigger.  There are two big creep 
regions with sandstone and shale of Middle-lower Triassic Formation near dam site in the 
left of whole reservoir region, named creep regions A and B, which is shown as Fig. 17. 
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Figure 18. Engineering geological profile at location of No.72 testing tunnel 
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Figure 19. Disposal of monitoring sections at No.72 testing tunnel 
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Figure 20. Disposal of survey lines at each monitoring section 

As the geological conditions are quite complicated in this region, in order to know the 
geological conditions, rockmass physical and mechanical property, deformation 
characteristics and strike variation, the No.72 exploratory testing tunnel was excavated in 
one of  the two creep regions on the left bank. Its location is shown in Fig. 17 and the main 
faults and strata which it passes through are shown in Fig. 18. 
The No.72 test tunnel locates in the core of the left bank high slope, which is surrounded by 
shale and all of its 6 monitoring sections are also surrounded by shale mainly. The main tunnel 
is 180m long, and the branch tunnel is 136m far from the opening. The monitoring sections Ⅰ, 
Ⅱ, Ⅲ and Ⅵ, whose size is 2m width and 3m height, are located at 83.9, 132.4, 139.4 and 172m 
far from the opening of main tunnel and the monitoring sectionsⅣ and Ⅴ, having 2 m×2m 
sizes, are 3.7 and 6.5m far away from the opening of branch tunnel as shown as Fig. 19. The 
shape of all profiles is city gate. The measuring method is that the six convergent survey lines 
are fixed on four points of each profile. The survey lines are disposed as Fig. 20. 

5.2.2 Numerical Calculation Model  
To eliminate the boundary effect as much as possible, calculation ranges in which width is 
100m at X direction, length is 280m at Y direction and height is from 240m yellow sea height 
to slope surface at Z direction is determined. The calculation region is shown in Fig. 21 in 
horizontal plane. 3D Meshes are generated in terms of the calculation region determined 
above, which contain 37343 elements and 8601 nodes of meshes. Local mesh refinement 
technique is used near six monitoring sections. Solid elements are used to simulate faults 
having some thickness. The model of calculation mesh of the whole ranges is shown in Fig. 
22. Distribution of faults and test tunnels in calculation range is displayed in Fig. 23. 
Initial stress fields adopt 3D initial stress fields regressed by Hu et al. (Hu et al., 2005). 
Bottom surface, planes vertical to X-axis and Y-axis are all constrained at normal direction 
and natural slope surface is free. According to deformation monitoring data in situ, testing 
tunnels go through instant elastic, attenuation and relatively stable deformation three 
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As the geological conditions are quite complicated in this region, in order to know the 
geological conditions, rockmass physical and mechanical property, deformation 
characteristics and strike variation, the No.72 exploratory testing tunnel was excavated in 
one of  the two creep regions on the left bank. Its location is shown in Fig. 17 and the main 
faults and strata which it passes through are shown in Fig. 18. 
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far from the opening of main tunnel and the monitoring sectionsⅣ and Ⅴ, having 2 m×2m 
sizes, are 3.7 and 6.5m far away from the opening of branch tunnel as shown as Fig. 19. The 
shape of all profiles is city gate. The measuring method is that the six convergent survey lines 
are fixed on four points of each profile. The survey lines are disposed as Fig. 20. 

5.2.2 Numerical Calculation Model  
To eliminate the boundary effect as much as possible, calculation ranges in which width is 
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to slope surface at Z direction is determined. The calculation region is shown in Fig. 21 in 
horizontal plane. 3D Meshes are generated in terms of the calculation region determined 
above, which contain 37343 elements and 8601 nodes of meshes. Local mesh refinement 
technique is used near six monitoring sections. Solid elements are used to simulate faults 
having some thickness. The model of calculation mesh of the whole ranges is shown in Fig. 
22. Distribution of faults and test tunnels in calculation range is displayed in Fig. 23. 
Initial stress fields adopt 3D initial stress fields regressed by Hu et al. (Hu et al., 2005). 
Bottom surface, planes vertical to X-axis and Y-axis are all constrained at normal direction 
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stages. Therefore, the combined model of Kelvin-Voigt model for viscoelastic property of 
rock and Mohr-Coulomb model which is used to express plastic characteristic of material is 
adopted to describe viscoelastic plastic property of shale as Fig. 24. 
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Figure 21. Calculation region for numerical model of the No.72 testing tunnel 
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Figure 22. Three-dimension mesh model for calculation 
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Figure 23. Distribution of faultages and testing tunnels 
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Figure 24.  Combined model for describing viscoelastic-plastic characteristic 

According to excavation schemes, monitoring data and the feasibility of numerical 
simulation, 180m-long NO.72 testing tunnel is excavated by 13 stages and each stage is 
finished once. As displacement monitoring is later than excavation and instant deformation 
of surrounding rock can’t be reflected in displacement monitoring, proper measure must be 
taken to make process of numerical simulation agree with that of monitoring in situ. 
FLAC3D of the ITASCA company is used as a solver when numerical simulation starts. For 
each excavation, elastic and plastic analysis is carried out at first followed by rheological 
calculation. Strong weathered, weak weathered, slightly weathered shale and fresh 
sandstone interbedded with fresh shale four kinds material are considered for elastic and 
plastic calculation. Fully weathered and strong weathered shale are regarded as the same 
material and weak weathered and fresh shale are regarded with the same property in 
viscoelastic plastic numerical simulation. Several large faults F1、F4、F63 and F119 crossed by 
the No.72 testing tunnel are taken into concern in elasticplastic and viscoelastic plastic 
simulations. 

5.2.3 The goal of back analysis 
As excavation and all kind of artificial factors, monitoring data are not full and have big 
variations in profiles Ⅱ and Ⅳ. In addition, the distance of profiles Ⅱand Ⅲ and location of 
profiles Ⅳ and Ⅴ are very close and profiles Ⅳ and Ⅴ are in the branch tunnel, therefore,  
only monitoring data of profiles Ⅰ,Ⅲ,Ⅴand Ⅵ are selected as the goal of back analysis, 
where only suvey lines AD,BD and CD of the first profile, suvey lines AC,CD and BD of the 
third profile, suvey lines AB,CD,AC and BC of the fifth profile and suvey lines AD and CD 
of the sixth profile are used as effective survey lines. The goal function of back analysis is 
described by formula (14). 

5.2.4 Identification of Parameters of Constitutive Model 
For Mohr-Coulomb model, mechanical property parameters of strong weathered, weak 
weathered, slightly weathered shale, fresh sandstone interbedded with fresh shale and the 
four faults are determined as listed in table 6 based on geological conditions and mechanical 
testing, in which elastic modulus are the same as elastic modulus of each rock in series 
branch of viscoelastic model and is gained by latter inversing analysis. 
For Kelvin-Voigt model, its parameters are recognized using displacement back analysis 
method with PCSV-PSO as mentioned in section 5.1. Total eight PCs which are equipped 
with 2.8GHz CPU, 512MB memory, 10MBps/100MBps net card and 80GB hard disk 
participate in this parallel calculation of inversing analysis. Other equipments include a 
HUB with 16 interfaces, a 17 inch terminal, a manual control switch and some net wires, etc.  

Sorts of rockmass Unit Tensile Shear strength Poisson's 
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weight  
(kN·m-3) 

strength 
(Mpa) 

Friction 
angle(°) C(Mpa)  ratio 

Strong weathered shale 25.5 0.08 36.9 0.49 0.34 
weak weathered shale 26.5 0.8 50.2 1.18 0.28 
slightly weathered shale 26.8 0.8 47.7 1.48 0.26 
fresh sandstone with fresh 
shale 26.9 1.3 52.4 1.96 0.25 

Faults F1、F4、F63 and F119 21 0 18 0.04 0.34 
Table 6. Property of several rockmass for Mohr-Coulomb model 

Before the parameters are identified using swarm intelligence method, they must have 
ranges themselves. The ranges of parameters of Kelvin-Voigt model are determined by 
engineering experience, geology investigation, rock testing in laboratory and in field and a 
small amount of numerical calculation, as shown in table 7. 

Fully and strong weathered shale Weak weathered and new shale 
E1(GPa) η1 (GPa.d) E2 (GPa) E1(GPa) η1 (GPa.d) E2 (GPa) 
20-40 5-20 1-15 80-110 5-20 5-20 

Table 7. Ranges of parameters of Kelvin-Voigt model for the two rockmass 

The parameters of PCSV-PSO are set as follows: the maximum number of iteration is 20, the 
population size is 16, learning factors c1 and c2 are both 2.0, initial inertia weight is 1.0, 
constants 0α  and 0β  are set to be 0.9 and 0.8 respectively, random seed is set to be 100 and 
the maximum stagnancy number is 10.  

Fully and strong weathered shale Weak weathered and new shale 
E1(GPa) η1 (GPa.d) E2 (GPa) E1(GPa) η1 (GPa.d) E2 (GPa) 
31.90 9.02 5.82 92.52 78.41 12.98 

Table 8. Recognized parameters of Kelvin-Voigt model for the two rockmass 
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Figure 25. Comparison calculated deformation with monitored it at profileⅠ 
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Figure 26. Comparison calculated deformation with monitored it at profile Ⅲ 

As numerical simulation of rock rheology is a time-consuming job, although maximum 
number of iteration and the population size are set to smaller values, it still consumes 
almost two days until the final parameters of the two rocks are obtained using the proposed 
method in section 5.1. If finishing a scheme needs 50 minutes averagely, it will consume 
about 10 days that parameters are identified in single PC. So efficiency is improved highly 
using the PCSV-PSO algorithm. When iteration is executed 20 times, the final identified 
parameters are obtained in table 8 and the residual sum of squares of the calculated 
deformation and actual deformation is 9.36×10-5 m2. The calculated deformation is 
compared with actual deformation, as shown in the Fig. 25 to Fig. 28. It is concluded that the 
calculation result of all survey lines of the four profiles is acceptable for practical 
engineering, the simulating trend of deformation with the above identified parameters 
accords with that recorded in the field from Fig. 25 to Fig. 28 and the proposed algorithm is 
a faster and more efficiency back analysis method for identifying parameters. 
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Figure 27. Comparison calculated deformation with monitored it at profile Ⅴ 
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almost two days until the final parameters of the two rocks are obtained using the proposed 
method in section 5.1. If finishing a scheme needs 50 minutes averagely, it will consume 
about 10 days that parameters are identified in single PC. So efficiency is improved highly 
using the PCSV-PSO algorithm. When iteration is executed 20 times, the final identified 
parameters are obtained in table 8 and the residual sum of squares of the calculated 
deformation and actual deformation is 9.36×10-5 m2. The calculated deformation is 
compared with actual deformation, as shown in the Fig. 25 to Fig. 28. It is concluded that the 
calculation result of all survey lines of the four profiles is acceptable for practical 
engineering, the simulating trend of deformation with the above identified parameters 
accords with that recorded in the field from Fig. 25 to Fig. 28 and the proposed algorithm is 
a faster and more efficiency back analysis method for identifying parameters. 
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Figure 27. Comparison calculated deformation with monitored it at profile Ⅴ 
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Figure 28. Comparison calculated deformation with monitored it at profile Ⅵ 

6. Conclusion 
Two modified versions of PSO are introduced: one is CSV-PSO algorithm in which 
random numbers are generated by the mixed congruential method, and another is PCSV-
PSO algorithm for recognizing rheological parameters of rockmass. A great deal of 
numerical simulations show that the CSV-PSO algorithm has better convergence 
performance and  more accurate convergence precision, its run is more stable and it can 
provide certainty solution in different runtime. Sensitivity analysis of the CSV-PSO 
algorithm indicates that random seed, stagnancy number and constant 0α  determining 
flying velocity of particles have a great effect on performance of the algorithm. Proper 
random seed can accelerate convergence of the algorithm; while bad random seed can not 
only slow convergence velocity but also possibly result in divergence. However, no 
obvious law can be followed. If the stagnancy number is too small or too large, the 
algorithm is hard to converge and unstable. The interval in which the algorithm 
converges more easily is [30,120]. If the constant 0α  is smaller in interval [0, 0.5], the 
optimizing capability of the algorithm is poorer and if the constant 0α  is zero, the 
algorithm loses optimizing capability. However, if constant 0α  is too large, the velocity of 
particles will be large so that the algorithm can’t also unstably converge. That interval 
[0.5, 1.0] is suggested is proper for convergence of the algorithm. Based on monitoring 
information in situ, identifying mechanical parameters of rockmass using back analysis 
technique is a time-consuming task. Rheological parameters of the two rocks at the No.72 
testing tunnel of left bank slope, Longtan Hydropower Station, China, as an example, are 
identified using the PCSV-PSO algorithm. The results indicate PCSV-PSO algorithm is a 
new feasible and high efficient analytical tool for solving geotechnical engineering 
problem. 
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Figure 28. Comparison calculated deformation with monitored it at profile Ⅵ 
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1. Introduction 
Under the pressure of rapid development around the globe, power demand has drastically 
increased during the past decade. To meet this demand, the development of power system 
technology has become increasingly important in order to maintain a reliable and economic 
electric power supply (Lin et al., 1992). One major concern of such development is the 
optimization of power plant maintenance scheduling. Maintenance is aimed at extending 
the lifetime of power generating facilities, or at least extending the mean time to the next 
failure for which repair costs may be significant. In addition, an effective maintenance policy 
can reduce the frequency of service interruptions and the consequences of these 
interruptions (Endrenyi et al., 2001). In other words, having an effective maintenance 
schedule is very important for a power system to operate economically and with high 
reliability.  
Determination of an optimum maintenance schedule is not an easy process. The difficulty lies 
in the high degree of interaction between several subsystems, such as commitment of 
generating units, economical planning and asset management. Often, an iterative negotiation 
is carried out between asset managers, production managers and schedule planners until a 
satisfactory maintenance schedule is obtained. In addition, power plant maintenance 
scheduling is required to be optimized with regard to a number of uncertainties, including 
power demand, forced outage of generating units, hydrological considerations in the case of 
hydropower systems and trading value forecasts in a deregulated electricity market. 
Consequently, the number of potential maintenance schedules is generally extremely large, 
requiring a systematic approach in order to ensure that optimal or near-optimal maintenance 
schedules are obtained within an acceptable timeframe. 
Over the past two decades, many studies have focused on the development of methods for 
optimizing maintenance schedules for power plants. Traditionally, mathematical 
programming approaches have been used, including dynamic programming (Yamayee et 
al., 1983), integer programming (Dopazo & Merrill, 1975), mixed-integer programming 
(Ahmad & Kothari, 2000) and the implicit enumeration algorithm (Escudero et al., 1980). 
More recently, metaheuristics have been favored, including genetic algorithms (GAs) 
(Aldridge et al., 1999), simulated annealing (SA) (Satoh & Nara, 1991) and tabu search (TS) 
(El-Amin et al., 2000). These methods have generally been shown to outperform 
mathematical programming methods and other conventional approaches in terms of the 
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generating units, economical planning and asset management. Often, an iterative negotiation 
is carried out between asset managers, production managers and schedule planners until a 
satisfactory maintenance schedule is obtained. In addition, power plant maintenance 
scheduling is required to be optimized with regard to a number of uncertainties, including 
power demand, forced outage of generating units, hydrological considerations in the case of 
hydropower systems and trading value forecasts in a deregulated electricity market. 
Consequently, the number of potential maintenance schedules is generally extremely large, 
requiring a systematic approach in order to ensure that optimal or near-optimal maintenance 
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More recently, metaheuristics have been favored, including genetic algorithms (GAs) 
(Aldridge et al., 1999), simulated annealing (SA) (Satoh & Nara, 1991) and tabu search (TS) 
(El-Amin et al., 2000). These methods have generally been shown to outperform 
mathematical programming methods and other conventional approaches in terms of the 
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quality of the solutions found, as well as computational efficiency (Aldridge et al., 1999; 
Satoh & Nara, 1991). 
Ant Colony Optimization is a relatively new metaheuristic for combinatorial optimization 
problems that is based on the foraging behavior of ant colonies (Dorigo & Stützle, 2004). 
Compared to other optimization methods, such as GA, ACO has been found to produce 
better solutions in terms of computational efficiency and quality when applied to a number 
of combinatorial optimization problems, such as the Traveling Salesman Problem (TSP) 
(Dorigo & Gambardella, 1997a). Recently, ACO has also been successfully applied to 
scheduling, including the job-shop, flow-shop and resource-constrained project scheduling 
problems (Bauer et al., 1999; Colorni et al., 1994; Merkle et al., 2002; Stützle, 1998).  Recently, a 
formulation that enables ACO to be applied to the power plant maintenance scheduling 
optimization (PPMSO) problem has been introduced by the authors of this chapter (Foong et 
al., 2005). The formulation was tested on a 21-unit case study and shown to  outperform 
other metaheuristic methods previously applied to the same case study (Foong et al., 2005). 
In Foong et al. (Accepted for publication), the formulation was further tested on a simplified 
version of a real hydro PPMSO problem, which was solved again using an improved 
version of the formulation  (Foong et al., 2008). 
The overall aim of this chapter is to formalize the ACO-PPMSO formulation presented in 
Foong et al. (2005) and to extend the testing of the formulation by applying it to three 
additional case studies. In addition, the utility of a local search strategy and a heuristic 
formulation when adopting ACO-PPMSO are examined. In section 2, the general 
formulation of the PPMSO problem is introduced, are the proposed approach for using 
ACO to solve this problem (ACO-PPMSO) is introduced in section 3. The four problem 
instances on which the proposed approach has been tested are described in section 4 and the 
experimental procedures, results and discussion are presented in section 5. In section 6, a 
summary and conclusions are given. 

2. Power Plant Maintenance Scheduling Optimization 
PPMSO is generally considered as a minimization problem (S, f, Ω), where S is the set of all 
maintenance schedules, f is the objective function which assigns an objective function value 
f(s) to each trial maintenance schedule s ∈ S, and Ω is a set of constraints. Mathematically, 
PPMSO can be defined as the determination of a set of globally optimal maintenance 
schedules S* ⊂ S, such that the objective function is minimized f(s* ∈ S*) ≤ f(s ∈ S) (for a 
minimization problem) subject to a set of constraints Ω. Specifically, PPMSO has the 
following characteristics: 
• It consists of a finite set of decision points D = {d1, d2,…, dN} comprised of N maintenance 

tasks to be scheduled; 
• Each maintenance task dn ∈ D has a normal (default) duration NormDurn and is carried 

out during a planning horizon Tplan. 
Two decision variables need to be defined for each task dn, including: 
1. The start time for the maintenance task, startn, with the associated set of options: 

Tn,chdurn = { t  ∈ Tplan; chdurn ∈ Kn: earn ≤ t ≤ latn – chdurn + 1} where the terms in brackets 
denote the set of time periods when maintenance of unit dn may start; earn is the earliest 
time for maintenance task dn to begin; latn is the latest time for maintenance task dn to 
end and chdurn is the chosen maintenance duration for task dn. 
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2. The duration of the maintenance task, chdurn, with the associated finite set of decision 
paths: Kn = {0, sn, 2sn, …, NormDurn – sn, NormDurn }, where the terms in brackets denote 
the set of optional maintenance durations for task dn, and sn is the time step considered 
for maintenance duration shortening. 

A trial maintenance schedule, s ∈ S = 〈(start1, chdur1), (start2, chdur2), …, (startN, chdurN)〉 is 
comprised of maintenance commencement times, startn, and durations, chdurn, for all N 
maintenance tasks that are required to be scheduled. 
Binary variables, which can take on values 0 or 1, are used to represent the state of a task in 
a given time period in the mathematical equations of the PPMSO problem formulation. Xn,t 
is set to 1 to indicate that task dn ∈ D is scheduled to be carried out during period t ∈ Tplan. 
Otherwise, Xn,t is set to a value of 0, as given by: 

 Xn,t =
1
0

if task dn  is being maintained in period t
otherwise

 
 
 

 (1) 

In addition, the following sets of variables are defined: 
• Sn,t = {k ∈ Tn,chdurn , chdurn ∈ Kn: t – chdurn + 1 ≤ k ≤ t} is the set of start times k, such that 

if maintenance task dn starts at time k for a duration of chdurn, that task will be in 
progress during time t; 

• Dt = {dn: t ∈ Tn } is the set of maintenance tasks that is considered for period t. 
Objectives and constraints  
Traditionally, cost minimization and maximization of reliability have been the two 
objectives commonly used when optimizing power plant maintenance schedules. Two 
examples of reliability objectives are evening out the system reserve capacity throughout the 
planning horizon, and maximizing the total reservoir storage water volumes at the end of 
the planning horizon, in the case of a hydropower system. An additional objective 
associated with the more generalized definition of PPMSO is the minimization of the total 
maintenance duration shortened/deferred (Foong et al., 2008). The rationale behind this 
objective is that shortening of maintenance duration (i.e. speeding up the completion of 
maintenance tasks) requires additional personnel and equipment, whereas deferral of 
maintenance tasks might result in unexpected breakdown of generating units, and in both 
events, additional costs are incurred by the power utility operator.  
Constraints specified in PPMSO problems are also power plant specific. The formulation of 
some common constraints include the allowable maintenance window, continuity, load, 
availability of resources, precedence of maintenance tasks, reliability and the minimum 
maintenance duration required, which are presented in Eqs. 2 to 6.  
The timeframes within which individual tasks in the system are required to start and finish 
maintenance form maintenance window constraints, which can be formulated as: 

 earn ≤ startn ≤ latn – chdurn + 1      for all dn ∈ D. (2) 

where startn and chdurn are the start time and maintenance duration, respectively, chosen for 
task dn. 
Load constraints (Eq. 3) are usually rigid/hard constraints in PPMSO problems, which 
ensure that feasible maintenance schedules that do not cause demand shortfalls throughout 
the whole planning horizon are obtained: 
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denote the set of time periods when maintenance of unit dn may start; earn is the earliest 
time for maintenance task dn to begin; latn is the latest time for maintenance task dn to 
end and chdurn is the chosen maintenance duration for task dn. 
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2. The duration of the maintenance task, chdurn, with the associated finite set of decision 
paths: Kn = {0, sn, 2sn, …, NormDurn – sn, NormDurn }, where the terms in brackets denote 
the set of optional maintenance durations for task dn, and sn is the time step considered 
for maintenance duration shortening. 

A trial maintenance schedule, s ∈ S = 〈(start1, chdur1), (start2, chdur2), …, (startN, chdurN)〉 is 
comprised of maintenance commencement times, startn, and durations, chdurn, for all N 
maintenance tasks that are required to be scheduled. 
Binary variables, which can take on values 0 or 1, are used to represent the state of a task in 
a given time period in the mathematical equations of the PPMSO problem formulation. Xn,t 
is set to 1 to indicate that task dn ∈ D is scheduled to be carried out during period t ∈ Tplan. 
Otherwise, Xn,t is set to a value of 0, as given by: 

 Xn,t =
1
0

if task dn  is being maintained in period t
otherwise

 
 
 

 (1) 

In addition, the following sets of variables are defined: 
• Sn,t = {k ∈ Tn,chdurn , chdurn ∈ Kn: t – chdurn + 1 ≤ k ≤ t} is the set of start times k, such that 

if maintenance task dn starts at time k for a duration of chdurn, that task will be in 
progress during time t; 

• Dt = {dn: t ∈ Tn } is the set of maintenance tasks that is considered for period t. 
Objectives and constraints  
Traditionally, cost minimization and maximization of reliability have been the two 
objectives commonly used when optimizing power plant maintenance schedules. Two 
examples of reliability objectives are evening out the system reserve capacity throughout the 
planning horizon, and maximizing the total reservoir storage water volumes at the end of 
the planning horizon, in the case of a hydropower system. An additional objective 
associated with the more generalized definition of PPMSO is the minimization of the total 
maintenance duration shortened/deferred (Foong et al., 2008). The rationale behind this 
objective is that shortening of maintenance duration (i.e. speeding up the completion of 
maintenance tasks) requires additional personnel and equipment, whereas deferral of 
maintenance tasks might result in unexpected breakdown of generating units, and in both 
events, additional costs are incurred by the power utility operator.  
Constraints specified in PPMSO problems are also power plant specific. The formulation of 
some common constraints include the allowable maintenance window, continuity, load, 
availability of resources, precedence of maintenance tasks, reliability and the minimum 
maintenance duration required, which are presented in Eqs. 2 to 6.  
The timeframes within which individual tasks in the system are required to start and finish 
maintenance form maintenance window constraints, which can be formulated as: 

 earn ≤ startn ≤ latn – chdurn + 1      for all dn ∈ D. (2) 

where startn and chdurn are the start time and maintenance duration, respectively, chosen for 
task dn. 
Load constraints (Eq. 3) are usually rigid/hard constraints in PPMSO problems, which 
ensure that feasible maintenance schedules that do not cause demand shortfalls throughout 
the whole planning horizon are obtained: 
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 Pn,t
dn ∈D
∑ − Xn,kPn

k∈Sn ,t

∑
dn ∈Dt

∑ ≥ Lt   for all t ∈ Tplan . (3) 

where Lt is the anticipated load for period t and Pn is the loss of generating capacity 
associated with maintenance task dn. 
Resource constraints are specified in the case where the availability of certain resources, 
such as highly skilled technicians, is limited. In general, resources of all types assigned to 
maintenance tasks should not exceed the associated resource capacity at any time period, as 
given by: 

 Xn,kResn,k
r

k∈Sn ,t

∑ ≤ ResAvait
r

dn ∈Dt

∑   for all t ∈Tplan ,r ∈ R.  (4) 

where Resn ,k
r  is the amount of resource of type r available that is required by task dn at 

period k; ResAvait
r  is the associated capacity of resource of type r available at period t and R 

is the set of all resource types. 
Precedence constraints that reflect the relationships between the order of maintenance of 
generating units in a power system are usually specified in PPMSO problems. An example 
of such a constraint is a case where task 2 should not commence before task 1 is completed, 
as given by: 

 start2 >  start1 + chdur1 – 1. (5) 

where startn is the start time chosen for task dn. 
In the case of maintenance duration shortening, there is usually a practical limit to the extent 
that the duration can be shortened. Due to the different characteristics of maintenance tasks, 
minimum maintenance durations may vary with individual tasks: 

 NormDurn ≥ chdurn ≥ MinDurn, for all dn ∈ D. (6) 

where chdurn is the maintenance duration of task dn; MinDurn is the minimum shortened 
outage duration for task dn; NormDurn is the normal duration of maintenance task dn. 

3. ACO for Power Plant Maintenance Scheduling Optimization (ACO-PPMSO) 
Ant Colony Optimization (ACO) is a metaheuristic inspired by the foraging behavior of ant 
colonies (Dorigo & Stützle, 2004). By marking the paths they have followed with pheromone 
trails, ants are able to communicate indirectly and find the shortest distance between their 
nest and a food source when foraging for food. When adapting this search metaphor of ants 
to solve discrete combinatorial optimization problems, artificial ants are considered to 
explore the search space of all possible solutions. The ACO search begins with a random 
solution (possibly biased by heuristic information) within the decision space of the problem. 
As the search progresses over discrete time intervals, ants deposit pheromone on the 
components of promising solutions. In this way, the environment of a decision space is 
iteratively modified and the ACO search is gradually biased towards more desirable regions 
of the search space, where optimal or near-optimal solutions can be found. Readers are 
referred to Dorigo & Stützle (2004) for a detailed discussion of ACO metaheuristics and the 
benchmark combinatorial optimization problems to which ACO has been applied. Due to its 
robustness in solving these problems, ACO has recently been applied to, and obtained some 
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encouraging results for, real-world engineering problems, such as the design of optimal 
water distribution systems (Maier et al., 2003) and in the area of power systems (Gomez et 
al., 2004; Huang, 2001; Kannan et al., 2005; Su et al., 2005). 
As is the case with other metaheuristics, ACO can be linked with existing simulation models 
of power systems, regardless of their complexity, when solving a PPMSO problem. In 
addition, the unique way in which ACO problems are represented by using a graph makes 
ACO inherently suitable for handling various constraints that are commonly encountered in 
PPMSO problems. In this section, the novel formulation that enables ACO to be applied to 
PPMSO problems (herein referred to as ACO-PPMSO) introduced by Foong et al. (2005) is 
formalized.  

3.1 Problem representation 
Before the PPMSO problem can be optimized using ACO, it has to be mapped onto a graph 
shown in Fig. 1, which is expressed in terms of a set of decision points consisting of the N 
maintenance tasks that need to be scheduled D = {d1, d2, d3,…, dN}. 

 

 
Figure 1. Proposed ACO-PPMSO graph 

In accordance with the formulation introduced, there are three variables that need to be 
defined V = {v1, v2, v3} for each maintenance task: 
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∑
dn ∈Dt
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where Lt is the anticipated load for period t and Pn is the loss of generating capacity 
associated with maintenance task dn. 
Resource constraints are specified in the case where the availability of certain resources, 
such as highly skilled technicians, is limited. In general, resources of all types assigned to 
maintenance tasks should not exceed the associated resource capacity at any time period, as 
given by: 
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where Resn ,k
r  is the amount of resource of type r available that is required by task dn at 

period k; ResAvait
r  is the associated capacity of resource of type r available at period t and R 

is the set of all resource types. 
Precedence constraints that reflect the relationships between the order of maintenance of 
generating units in a power system are usually specified in PPMSO problems. An example 
of such a constraint is a case where task 2 should not commence before task 1 is completed, 
as given by: 

 start2 >  start1 + chdur1 – 1. (5) 

where startn is the start time chosen for task dn. 
In the case of maintenance duration shortening, there is usually a practical limit to the extent 
that the duration can be shortened. Due to the different characteristics of maintenance tasks, 
minimum maintenance durations may vary with individual tasks: 
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where chdurn is the maintenance duration of task dn; MinDurn is the minimum shortened 
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Ant Colony Optimization (ACO) is a metaheuristic inspired by the foraging behavior of ant 
colonies (Dorigo & Stützle, 2004). By marking the paths they have followed with pheromone 
trails, ants are able to communicate indirectly and find the shortest distance between their 
nest and a food source when foraging for food. When adapting this search metaphor of ants 
to solve discrete combinatorial optimization problems, artificial ants are considered to 
explore the search space of all possible solutions. The ACO search begins with a random 
solution (possibly biased by heuristic information) within the decision space of the problem. 
As the search progresses over discrete time intervals, ants deposit pheromone on the 
components of promising solutions. In this way, the environment of a decision space is 
iteratively modified and the ACO search is gradually biased towards more desirable regions 
of the search space, where optimal or near-optimal solutions can be found. Readers are 
referred to Dorigo & Stützle (2004) for a detailed discussion of ACO metaheuristics and the 
benchmark combinatorial optimization problems to which ACO has been applied. Due to its 
robustness in solving these problems, ACO has recently been applied to, and obtained some 
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encouraging results for, real-world engineering problems, such as the design of optimal 
water distribution systems (Maier et al., 2003) and in the area of power systems (Gomez et 
al., 2004; Huang, 2001; Kannan et al., 2005; Su et al., 2005). 
As is the case with other metaheuristics, ACO can be linked with existing simulation models 
of power systems, regardless of their complexity, when solving a PPMSO problem. In 
addition, the unique way in which ACO problems are represented by using a graph makes 
ACO inherently suitable for handling various constraints that are commonly encountered in 
PPMSO problems. In this section, the novel formulation that enables ACO to be applied to 
PPMSO problems (herein referred to as ACO-PPMSO) introduced by Foong et al. (2005) is 
formalized.  

3.1 Problem representation 
Before the PPMSO problem can be optimized using ACO, it has to be mapped onto a graph 
shown in Fig. 1, which is expressed in terms of a set of decision points consisting of the N 
maintenance tasks that need to be scheduled D = {d1, d2, d3,…, dN}. 
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For maintenance task dn, a set of decision paths DPc,n is associated with decision variable vc,n 
(where subscript c = 1, 2 or 3) (shown as dashed lines in Fig. 1). For decision variable v1,n, 
these correspond to the options of carrying out the maintenance tasks dn at normal duration, 
shortening the maintenance duration and deferring maintenance tasks. For decision variable 
v2,n, these correspond to the optional shortened durations available for the maintenance 
tasks. For decision variable v3,n, these correspond to the optional start times for maintenance 
tasks dn. It should be noted that, as the latest finishing time of maintenance tasks is usually 
fixed, there are different sets of start time decision paths, each corresponding to a 
maintenance duration decision path (Fig. 1). This graph can then be utilized to construct 
trial solutions using the ACO-PPMSO algorithm introduced in section 3.2.2. 

3.2 ACO-PPMSO Algorithm 
The new formulation proposed for power plant maintenance scheduling using Ant Colony 
Optimisation is implemented via an ACO-PPMSO algorithm, represented by the flowchart 
given in Fig. 2. The mechanisms involved in each procedure of the proposed ACO-PPMSO 
algorithm are detailed in sections 3.2.1 to 3.2.6. 

 

 
Figure 2. ACO-PPMSO algorithm 
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3.2.2 Construction of a trial maintenance schedule 
A trial maintenance schedule is constructed using the ACO-PPMSO graph shown in Fig. 1. 
In order to generate one trial maintenance schedule, an ant travels to one of the decision 
points (maintenance tasks) at a time. At each decision point, dn, a three-stage selection 
process that corresponds to the three decision variables, v1,n, v2,n and v3,n, is performed.  
At each stage, the probability that decision path opt is chosen for maintenance of task dn in 
iteration t is given by: 

 pn,opt ( t ) =
τ n,opt ( t )[ ]α

⋅ ηn ,opt[ ]β

τ n ,y ( t )[ ]α
⋅ ηn,y[ ]β

y∈DPc,n

∑
. (7) 

subscripts c = 1, 2 and 3 refer to the three decision variables, v1,n, v2,n and v3,n; τn,opt(t) is the 
pheromone intensity deposited on the decision path opt for task dn in iteration t; ηn,opt is the 
heuristic value of decision path opt for task dn; α and β are the relative importance of 
pheromone intensity and the heuristic, respectively.  
It should be noted that the term opt in Eq. 7 represents the decision path under 
consideration, of all decision paths contained in set DPc,n. When used for stages 1, 2 and 3, 
respectively, the terms opt and DPc,n are substituted with those associated with the decision 
variable considered at the corresponding stage (Table 1). The pheromone level associated 
with a particular decision path (e.g. deferral of a particular maintenance task) is a reflection 
of the quality of the maintenance schedules that have been generated previously that 
contain this particular option. The heuristic associated with a particular decision path is 
related to the likely quality of a solution that contains this option, based on user-defined 
heuristic information. The following paragraphs detail the three-stage selection process for 
decision point (maintenance task) dn, including the adaptations required when using Eq. 7 
for each stage. 

 Stage 1 Stage 2 Stage 3 

c 1 2 3 

opt stat ∈ DP1,n dur ∈ DP2,n day ∈ DP3,n,chdurn  

DPc,n DP1,n={normal, shorten, 
defer} 

DP2,n = {0, sn, 
2sn,…, 

NormDurn} 

DP3,n,chdurn = {chdurn ∈ DP2,n: earn, 
earn+1,…, latn – chdurn + 1} 

τ n ,opt  τ n,stat  τ n,dur  τ n ,chdurn ,day  

ηn,opt  ηn,defer < ηn ,shorten < ηn ,normal  ηn ,durn ∝ dur  ηn,chdurn ,day = ηn ,chdurn ,day
Res( )w ⋅ηn ,chdurn ,day

Load

 

Table 1. Adaptations for Eq. 7 in stages 1, 2 and 3 of the selection process 

Stage 1: In stage 1, a decision needs to be made whether to perform the maintenance task 
under consideration at normal or shortened duration, or to defer it (decision variable v1,n in 
Fig. 1). In this case, c = 1 and opt = stat ∈ DP1,n={normal, shorten, defer} is the set of decision 
paths associated with decision variable v1,n for task dn. The probability of each of these 
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3.2.2 Construction of a trial maintenance schedule 
A trial maintenance schedule is constructed using the ACO-PPMSO graph shown in Fig. 1. 
In order to generate one trial maintenance schedule, an ant travels to one of the decision 
points (maintenance tasks) at a time. At each decision point, dn, a three-stage selection 
process that corresponds to the three decision variables, v1,n, v2,n and v3,n, is performed.  
At each stage, the probability that decision path opt is chosen for maintenance of task dn in 
iteration t is given by: 

 pn,opt ( t ) =
τ n,opt ( t )[ ]α

⋅ ηn ,opt[ ]β

τ n ,y ( t )[ ]α
⋅ ηn,y[ ]β

y∈DPc,n

∑
. (7) 

subscripts c = 1, 2 and 3 refer to the three decision variables, v1,n, v2,n and v3,n; τn,opt(t) is the 
pheromone intensity deposited on the decision path opt for task dn in iteration t; ηn,opt is the 
heuristic value of decision path opt for task dn; α and β are the relative importance of 
pheromone intensity and the heuristic, respectively.  
It should be noted that the term opt in Eq. 7 represents the decision path under 
consideration, of all decision paths contained in set DPc,n. When used for stages 1, 2 and 3, 
respectively, the terms opt and DPc,n are substituted with those associated with the decision 
variable considered at the corresponding stage (Table 1). The pheromone level associated 
with a particular decision path (e.g. deferral of a particular maintenance task) is a reflection 
of the quality of the maintenance schedules that have been generated previously that 
contain this particular option. The heuristic associated with a particular decision path is 
related to the likely quality of a solution that contains this option, based on user-defined 
heuristic information. The following paragraphs detail the three-stage selection process for 
decision point (maintenance task) dn, including the adaptations required when using Eq. 7 
for each stage. 
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Table 1. Adaptations for Eq. 7 in stages 1, 2 and 3 of the selection process 

Stage 1: In stage 1, a decision needs to be made whether to perform the maintenance task 
under consideration at normal or shortened duration, or to defer it (decision variable v1,n in 
Fig. 1). In this case, c = 1 and opt = stat ∈ DP1,n={normal, shorten, defer} is the set of decision 
paths associated with decision variable v1,n for task dn. The probability of each of these 
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options being chosen is a function of the strength of the pheromone trails and heuristic 
value associated with the option (Eq. 7). For the PPMSO problem, the heuristic formulation 
should generally be defined such that normal maintenance durations are preferred over 
duration shortening, and deferral is the least favored option (Eq. 8). However, real costs 
associated with duration shortening and deferral options can be used if the extra costs 
incurred associated with these options are quantifiable and available. The adaptations 
required for Eq. 7 to be used at the stage 1 selection process are summarized in Table 1. It is 
suggested that values of the heuristics should be selected such that: 

 ηn,defer < ηn ,shorten < ηn ,normal . (8) 

Stage 2: Once a decision has been made at stage 1, the selection process proceeds to stage 2 
(decision variable v2,n in Fig. 1), where the duration of the maintenance task under 
consideration, dn, is required to be selected from a set of available decision paths DP2,n = {0, 
sn, 2sn, . . . , NormDurn}. The symbols sn and NormDurn denote the time step for maintenance 
duration shortening, and the normal maintenance duration, respectively. For Eq. 7 to be 
used at stage 2, the terms c and opt in the equation are substituted by the values 2 and dur ∈ 
DP2,n, respectively. It should be noted that if the ‘normal’ or ‘defer’ options were chosen at 
stage 1, the normal duration of the maintenance task, or a duration of 0, respectively, are 
automatically chosen for the task. In the case of duration shortening, a constraint is normally 
specified where each maintenance task has a minimum duration at which the completion of 
the task cannot be further accelerated due to limitations, such as the availability of highly 
specialized technicians. This constraint can be addressed at this stage such that only feasible 
trial maintenance schedules (with regard to this constraint) are constructed (see section 3.3 
for details of such constraint-handling techniques). The pheromone trails and heuristic 
values associated with optional durations are used to determine the probability that these 
durations are chosen. In order to favor longer maintenance durations (i.e. the smallest 
amount of shortening compared with the normal maintenance duration), it is suggested that 
the heuristic value associated with a decision path should be directly proportional to the 
maintenance duration (Eq. 9).  

 ηn ,dur ∝ dur . (9) 

The substitutions for the various terms in Eq. 7 when used in stage 2 are summarized in 
Table 1. 
Stage 3: Once a maintenance duration has been selected, the solution construction process 
enters stage 3 (decision variable v3,n in Fig. 1), where a start time for the maintenance task is 
selected from the set of optional start times available DP3,n,chdurn = {chdurn ∈ DP2,n: earn, 
earn+1,…, latn – chdurn + 1}, given a chosen duration of chdurn. In order to utilize Eq. 7 at 
stage 3, adjustments are made such that c = 3 and opt = day ∈ DP3,n,chdurn . It should be noted 
that this stage is skipped if the ‘defer’ option is chosen at stage 1. The probability that a 
particular start day is chosen is a function of the associated pheromone trail and heuristic 
value. The suggested heuristic formulation for selection of the maintenance start day is 
given by Eqs. 10 to 15. 

 ηn,chdurn ,day = ηn ,chdurn ,day
Res( )w ⋅ηn ,chdurn ,day

Load . (10) 
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 ηn,chdurn ,day
Res =

YResV(k)=0 ⋅Rn,chdurn ,day ( k )
k∈Jn ,chdurn ,day

∑

(YResV(k)=0 −1) ⋅Rn,chdurn ,day ( k )
k∈Jn ,chdurn ,day

∑
. (11) 

 ηn,chdurn ,day
Load =

YLoadV(k)=0 ⋅Cn,chdurn ,day ( k )
k∈Jn ,chdurn ,day

∑

(YLoadV(k)=0 −1) ⋅Cn,chdurn ,day ( k )
k∈Jn ,chdurn ,day

∑
. (12) 

 YResV(k)=0 =
1
0
 
 
 

 
if no violation of resource constraints in time period k

otherwise
 (13) 

 YLoadV(k)=0 =
1
0

 
if no violation of load constraints in time period k

otherwise
 
 
 

 (14) 

 w =
1
0
 
 
 

 
if resource constraints are considered

otherwise
 (15) 

where ηn,chdurn ,day ( t )  is the heuristic for start time day ∈ DP3,n,chdurn for task dn, given a chosen 
duration chdurn,; Rn,chdurn ,day ( k )  represents the prospective resources available in reserve in 
time period k if task dn is to commence at start time day and takes chdurn to complete (less 
than 0 in the case of resource deficits); Cn,chdurn ,day ( k )  is the prospective power generation 
capacity available in reserve in time period k if task dn is to commence at start time day and 
takes chdurn to complete (less than 0 in the case of power generation reserve deficits); 
J n,chdurn ,day={day ∈ DP3,n,chdurn : day ≤ k ≤ day + chdurn – 1} is the set of time periods k such that if 
task dn starts at start time day, that task will be in maintenance during period k. 
As mentioned above, the heuristic formulation in Eq. 10 includes a resource-related term, 
ηn,chdurn ,day
Res , and a load-related term, ηn,chdurnday

Load . These two terms are expected to evenly 
distribute maintenance tasks over the entire planning horizon, which potentially maximizes 
the overall reliability of a power system. For PPMSO problem instances that do not consider 
resource constraints, the value of w in Eq. 10 can be set to 0 (Eq. 15). In order to implement 
the heuristic, each ant is provided with a memory matrix on resource reserves and another 
matrix on generation capacity reserves prior to construction of a trial solution. This is 
updated every time a unit maintenance commencement time is added to the partially 
completed schedule. 
The three-stage selection process is then repeated for another maintenance task (decision 
point). A complete maintenance schedule is obtained once all maintenance tasks have been 
considered. 

3.2.3 Evaluation of trial maintenance schedule 
Once a complete trial maintenance schedule, s ∈S, has been constructed by choosing a 
maintenance commencement time and duration at each decision point (i.e. for each 
maintenance task to be scheduled), an ant-cycle has been completed. The trial schedule’s 
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options being chosen is a function of the strength of the pheromone trails and heuristic 
value associated with the option (Eq. 7). For the PPMSO problem, the heuristic formulation 
should generally be defined such that normal maintenance durations are preferred over 
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incurred associated with these options are quantifiable and available. The adaptations 
required for Eq. 7 to be used at the stage 1 selection process are summarized in Table 1. It is 
suggested that values of the heuristics should be selected such that: 

 ηn,defer < ηn ,shorten < ηn ,normal . (8) 
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∑
. (11) 
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∑
. (12) 

 YResV(k)=0 =
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 (13) 
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As mentioned above, the heuristic formulation in Eq. 10 includes a resource-related term, 
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Load . These two terms are expected to evenly 
distribute maintenance tasks over the entire planning horizon, which potentially maximizes 
the overall reliability of a power system. For PPMSO problem instances that do not consider 
resource constraints, the value of w in Eq. 10 can be set to 0 (Eq. 15). In order to implement 
the heuristic, each ant is provided with a memory matrix on resource reserves and another 
matrix on generation capacity reserves prior to construction of a trial solution. This is 
updated every time a unit maintenance commencement time is added to the partially 
completed schedule. 
The three-stage selection process is then repeated for another maintenance task (decision 
point). A complete maintenance schedule is obtained once all maintenance tasks have been 
considered. 

3.2.3 Evaluation of trial maintenance schedule 
Once a complete trial maintenance schedule, s ∈S, has been constructed by choosing a 
maintenance commencement time and duration at each decision point (i.e. for each 
maintenance task to be scheduled), an ant-cycle has been completed. The trial schedule’s 
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objective function cost (OFC) can then be determined by an evaluation function, which is a 
function of the values of objectives and constraint violations: 

 OFC(s)= f obj1( s),obj2( s),...,objZT ( s),vio1( s),vio2( s),...,vioCT ( s)( ). (16) 

where OFC(s) is the objective function cost associated with a trial maintenance schedule, s; 
obj1(s) is the value of the first objective; vio1(s) is the degree of violation of the first constraint; 
ZT is the total number of objectives; CT is the total number of  constraints that cannot be 
satisfied during the construction of trial solutions. 
It should be noted that not all constraints specified in a problem are accounted for using Eq. 
16. Maintenance windows, precedence and minimum duration constraints, just to name a 
few, can be satisfied during the construction of a trial solution and would not appear in Eq. 
16. In other words, a complete trial solution would have satisfied these constraints already 
before the evaluation process is carried out. On the other hand, load constraints can only be 
checked upon completion of a complete trial solution and therefore the violations of these 
constraints, if there are any, can only be reflected through penalty terms in the objective 
function (Eq. 16). Detailed categorizations of constraints commonly encountered in PPMSO 
problems, as well as the appropriate methods of handling them, are presented in section 3.3. 
In general, the trial schedule has to be run through a simulation model in order to calculate 
some elements of the objective function and whether certain constraints (those accounted for 
through penalty terms) have been violated.  
After m ants have performed procedures 3.2.2 and 3.2.3, where m (the number of ants) is 
predefined in procedure 3.2.1, an iteration cycle has been completed. At this stage, a total of 
m maintenance schedules have been generated for this iteration. It should be noted that all 
ants in an iteration can generate their trial solutions concurrently, as they are working on the 
same set of pheromone trail distributions in decision space. 

3.2.4 Local search 
Recently, local search has been utilized to improve the optimisation ability of ACO. While it 
has been found to result in significant improvements in some applications (den Besten et al., 
2000; Dorigo & Gambardella, 1997b), little success has been obtained in others (Merkle et al., 
2002). Local search has also been found useful for some problems (Foong et al., 2008) where 
the formulation of heuristics is difficult (Dorigo & Stützle, 2004). 
In this formulation, local search is coupled with ACO to solve the PPMSO problem. The 
local search operator proposed in this chapter is called PPMSO-2-opt, which is a 
modification of the 2-opt strategy used when solving the Travelling Salesman Problem (TSP) 
(Stützle et al., 1997), where two edges of connected cities are exchanged. In PPMSO-2-opt, 
‘neighbor maintenance schedules’ are generated by exchanging the maintenance start times 
of a pair of randomly selected tasks of the ‘target maintenance schedule’. It should be noted 
that the maximum number of possible ‘neighbor maintenance schedules’ formed based on a 

‘target maintenance schedule’ ( NC 2 = N!
2!⋅(N − 2)!

) can be specified as the termination 

criterion of the local search. Otherwise, a smaller number of local solutions can be defined as 
the stopping criterion.  
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3.2.5 Pheromone updating 
Two mechanisms, namely pheromone evaporation and pheromone rewarding, are involved 
in the pheromone updating process. Pheromone evaporation reduces all pheromone trails 
by a factor. In this way, exploration of the search space is encouraged by preventing a rapid 
increase in pheromone on frequently-chosen paths. Pheromone rewarding is performed in a 
way that reinforces good solutions. 
Despite its original inspiration from the foraging behaviour of ant colonies, various ACO 
algorithms have evolved, such as Elitist-Ant System (EAS) (Dorigo (1992); Dorigo et al. 
(1996)) and Max-Min Ant System (MMAS) (Stützle & Hoos, 1997; Stützle & Hoos, 2000). 
These algorithms are distinguished from each other in the way pheromone updating is 
performed. In the ACO-PPMSO formulation, pheromone updating is performed on the 
pheromone matrices used for the three-stage selection process. A general pheromone 
updating formulation (regardless of the ACO algorithm adopted) is introduced for this 
purpose: 

 τ ∗ (t +1) = ρ ⋅τ ∗ ( t ) + ∆τ ∗ ( t ) . (17) 

 ∆τ ∗ ( t )= q =
Q

OFC( supdate )
0

 
 
 

  

if * ∈ supdate
otherwises∈Solupdate

∑  (18) 

where t is the index of iteration; (1 - ρ) is the pheromone evaporation rate; the subscript 
asterisk * of τ∗ denotes the element of the pheromone matrix under consideration ( τ n,opt , 
τ n,dur  and τ n ,dur ,day  for decision variables v1, v2 and v3, respectively); supdate  is any trial 
schedule contained in Solupdate(t), which is the set of trial schedules chosen to be rewarded in 
iteration t; ∆τ ∗ ( t )  is the amount of pheromone rewarded to pheromone trail τ ∗  at the end 
of iteration t; OFC( supdate )  is the objective function cost associated with the trial schedule 
supdate  that contains element *; Q is the reward factor (a user-defined parameter).  
As EAS and MMAS are utilized in solving the PPMSO case study systems presented in 
section 4, the following additional specifications are made according to the general 
pheromone updating rules: 
(A) Elitist-Ant System (EAS) 
In EAS, only the least-OFC schedule(s) in every iteration is/are rewarded (Eq. 19). 

 Solupdate ( t ) = siter−best ( t ) . (19) 

where siter−best ( t )  is the best maintenance schedule evaluated in iteration t. 
(B) Max-Min Ant System (MMAS) 
Similarly to EAS, MMAS only rewards iteration-best trial solution(s) (Eq. 19). Additionally, 
upper and lower bounds are imposed on the pheromone trails in order to prevent 
premature convergence and greater exploration of the solution surface. These bounds are 
given by:  

 τ max( t +1)= 1
1− ρ

⋅ Q
OFCiter−best ( t )

.  (20) 
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checked upon completion of a complete trial solution and therefore the violations of these 
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function (Eq. 16). Detailed categorizations of constraints commonly encountered in PPMSO 
problems, as well as the appropriate methods of handling them, are presented in section 3.3. 
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some elements of the objective function and whether certain constraints (those accounted for 
through penalty terms) have been violated.  
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predefined in procedure 3.2.1, an iteration cycle has been completed. At this stage, a total of 
m maintenance schedules have been generated for this iteration. It should be noted that all 
ants in an iteration can generate their trial solutions concurrently, as they are working on the 
same set of pheromone trail distributions in decision space. 

3.2.4 Local search 
Recently, local search has been utilized to improve the optimisation ability of ACO. While it 
has been found to result in significant improvements in some applications (den Besten et al., 
2000; Dorigo & Gambardella, 1997b), little success has been obtained in others (Merkle et al., 
2002). Local search has also been found useful for some problems (Foong et al., 2008) where 
the formulation of heuristics is difficult (Dorigo & Stützle, 2004). 
In this formulation, local search is coupled with ACO to solve the PPMSO problem. The 
local search operator proposed in this chapter is called PPMSO-2-opt, which is a 
modification of the 2-opt strategy used when solving the Travelling Salesman Problem (TSP) 
(Stützle et al., 1997), where two edges of connected cities are exchanged. In PPMSO-2-opt, 
‘neighbor maintenance schedules’ are generated by exchanging the maintenance start times 
of a pair of randomly selected tasks of the ‘target maintenance schedule’. It should be noted 
that the maximum number of possible ‘neighbor maintenance schedules’ formed based on a 

‘target maintenance schedule’ ( NC 2 = N!
2!⋅(N − 2)!

) can be specified as the termination 

criterion of the local search. Otherwise, a smaller number of local solutions can be defined as 
the stopping criterion.  

Power Plant Maintenance Scheduling Using Ant Colony Optimization 

 

299 
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by a factor. In this way, exploration of the search space is encouraged by preventing a rapid 
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performed. In the ACO-PPMSO formulation, pheromone updating is performed on the 
pheromone matrices used for the three-stage selection process. A general pheromone 
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where t is the index of iteration; (1 - ρ) is the pheromone evaporation rate; the subscript 
asterisk * of τ∗ denotes the element of the pheromone matrix under consideration ( τ n,opt , 
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schedule contained in Solupdate(t), which is the set of trial schedules chosen to be rewarded in 
iteration t; ∆τ ∗ ( t )  is the amount of pheromone rewarded to pheromone trail τ ∗  at the end 
of iteration t; OFC( supdate )  is the objective function cost associated with the trial schedule 
supdate  that contains element *; Q is the reward factor (a user-defined parameter).  
As EAS and MMAS are utilized in solving the PPMSO case study systems presented in 
section 4, the following additional specifications are made according to the general 
pheromone updating rules: 
(A) Elitist-Ant System (EAS) 
In EAS, only the least-OFC schedule(s) in every iteration is/are rewarded (Eq. 19). 
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where siter−best ( t )  is the best maintenance schedule evaluated in iteration t. 
(B) Max-Min Ant System (MMAS) 
Similarly to EAS, MMAS only rewards iteration-best trial solution(s) (Eq. 19). Additionally, 
upper and lower bounds are imposed on the pheromone trails in order to prevent 
premature convergence and greater exploration of the solution surface. These bounds are 
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 τ max( t +1)= 1
1− ρ

⋅ Q
OFCiter−best ( t )
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 τ c,min ( t +1) =
τ max ( t +1)(1− pbest

nc )

( avgc −1) pbestn
. (21) 

where nc is the number of decision points for decision variable vc; avgc is the average number 
of decision paths available at each decision point for decision variable vc; subscript c = 1, 2 
and 3 refers to the three decision variables considered in procedure 3.2.2; pbest is the 
probability that the paths of the current iteration-best-solution, siter-best(t), will be selected, 
given that non-iteration best-options have a pheromone level of τmin(t) and all iteration-best 
options have a pheromone level of τmax(t).  
The lower and upper bound of pheromone are applied to all decision paths in the search 
space: 

 τ c,min ( t ) ≤ τ n ,opt ( t ) ≤ τ max ( t ) ; opt ∈ DPc,n c = 1,2,3 for all t ,n.  (22) 

3.2.6 Termination of run 
Procedures 3.2.2 to 3.2.5 are repeated until the termination criterion of an ACO run is met, 
e.g. either the maximum number of evaluations allowed has been reached or stagnation of 
the objective function cost has occurred. A set of maintenance schedules resulting in the 
minimum OFC is the final outcome of the optimisation run. 

3.3 Constraints Handling 
ACO is an unconstrained optimisation metaheuristic. As constraints are inevitable in 
PPMSO problems, there is a need to find ways of incorporating constraints during 
optimisation. In this research, two different constraint handling techniques are adopted. In 
order to decide which of the two techniques should be used, constraints encountered in 
PPMSO problems have been characterized using the following classification scheme:  
Direct vs. indirect constraints: Constraints can be characterized based on the earliest stage 
at which they can be addressed during optimisation. The maintenance window (Eq. 2), 
precedence (Eq. 5) and minimum maintenance duration (Eq. 6) constraints can be addressed 
when trial solutions are being generated during ant cycles (procedure described in section 
3.2.2). On the other hand, the violation of load (Eq. 3) and resource (Eq. 4) constraints often 
cannot be identified from a partially built trial maintenance schedule. As part of the 
classification scheme introduced in this paper, the former constraints are referred to as 
direct constraints and the latter as indirect constraints.  
Rigid vs. soft constraints: Constraints can also be classified based on their “rigidity”. For 
rigid constraints, such as maintenance windows, minimum maintenance duration, 
precedence and load constraints, even the slightest violations are generally intolerable. On 
the other hand, constraints, such as resource constraints, may be able to be violated to a 
degree specified by decision makers and are therefore referred to as “soft” constraints. 
The two constraint handling techniques used in the ACO-PPMSO formulation and the 
constraint types they are able to accommodate include: 
Graph-based technique: This technique utilizes candidate lists during ant cycles when trial 
solutions are being constructed (Fig. 1). Given a partially built trial schedule, a candidate list 
consists of the optional start times that are available for a maintenance task, such that the 
constraints under consideration are not violated. Direct and some rigid constraints, such as 
the maintenance window, precedence and minimum duration constraints, can be accounted 
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for using this technique. During the construction of a trial maintenance schedule, an ant 
incrementally adds start times to a partially built schedule. By dynamically updating the 
candidate lists of ‘unvisited units’, only start times that would result in solutions that satisfy 
the maintenance window and precedence constraints are considered.  
Penalty-based technique: In ACO-PPMSO, penalty functions, which transform a constrained 
optimisation problem into an unconstrained problem by adding or subtracting a value 
to/from the objective function cost based on the degree of constraint violation (Coello 
Coello, 2002), are used to address indirect or potentially soft constraints, such as the 
availability of personpower to perform the maintenance and load constraints. When dealing 
with soft constraints, penalty factors may be varied to reflect the amount of constraint 
violation that may be tolerated. Penalty costs also have to be used to account for indirect 
constraints, as the degree of constraint violation is not known until a complete trial solution 
has been constructed, as discussed earlier. In such cases, the degree of violation generally 
has to be obtained with the aid of a simulation model. 
The ability to implement direct and some rigid constraints using the graph-based technique 
is one of the attractive features of using ACO for PPMSO. Firstly, by preventing the 
generation of infeasible solutions, the number of simulation model runs required is reduced. 
This is advantageous for real-world PPMSO problems, as the number of times the 
simulation model has to be run is a major source of computational overhead. Moreover, 
there are difficulties associated with the use of penalty-based techniques that remain 
unresolved at the time of writing, in spite of extensive research into this area (Coello Coello, 
2002). For example, hand tuning is required for assigning appropriate penalty factors to 
each constraint and objective term in the objective function. 

4. Problem Instances 
In order to test the utility of the proposed ACO-PPMSO formulation, it is applied to 4 
problem instances, including 21- and 22-unit benchmark case studies from the literature and 
modified versions of these case studies. The 21- and 22-unit case studies have been chosen 
as they enable comparisons to be made with results obtained in previous studies. However, 
as these case studies can be solved without the need for maintenance shortening and 
deferral, modifications to the case studies are introduced in this chapter to test this feature of 
the proposed formulation. Details of the four problem instances are given below. 

4.1 21-unit system 
The first case study considered in this research is the 21-unit power plant maintenance 
problem investigated by Aldridge et al. (1999) and Dahal et al. (1999; , 2000) using a number 
of metaheuristics.  This case study is a modified version of the 21-unit problem introduced 
by Yamayee et al. (1983), and consists of 21 generating facilities, of which 20 units are 
thermal and one is hydropower. Due to space constraints, system details are not presented 
here but can be found in Aldridge et al. (1999). All of the machines are to be scheduled for 
maintenance either in the first or second half of a year’s planning horizon, which results in a 
combinatorial optimisation problem with approximately 5.18 x 1028 total possible solutions. 
The objective of the problem is to even out reserve generation capacity over the planning 
horizon, which can be achieved by minimizing the sum of squares of the reserve (SSR) 
generation capacity in each week. 
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τ max ( t +1)(1− pbest
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. (21) 
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ACO is an unconstrained optimisation metaheuristic. As constraints are inevitable in 
PPMSO problems, there is a need to find ways of incorporating constraints during 
optimisation. In this research, two different constraint handling techniques are adopted. In 
order to decide which of the two techniques should be used, constraints encountered in 
PPMSO problems have been characterized using the following classification scheme:  
Direct vs. indirect constraints: Constraints can be characterized based on the earliest stage 
at which they can be addressed during optimisation. The maintenance window (Eq. 2), 
precedence (Eq. 5) and minimum maintenance duration (Eq. 6) constraints can be addressed 
when trial solutions are being generated during ant cycles (procedure described in section 
3.2.2). On the other hand, the violation of load (Eq. 3) and resource (Eq. 4) constraints often 
cannot be identified from a partially built trial maintenance schedule. As part of the 
classification scheme introduced in this paper, the former constraints are referred to as 
direct constraints and the latter as indirect constraints.  
Rigid vs. soft constraints: Constraints can also be classified based on their “rigidity”. For 
rigid constraints, such as maintenance windows, minimum maintenance duration, 
precedence and load constraints, even the slightest violations are generally intolerable. On 
the other hand, constraints, such as resource constraints, may be able to be violated to a 
degree specified by decision makers and are therefore referred to as “soft” constraints. 
The two constraint handling techniques used in the ACO-PPMSO formulation and the 
constraint types they are able to accommodate include: 
Graph-based technique: This technique utilizes candidate lists during ant cycles when trial 
solutions are being constructed (Fig. 1). Given a partially built trial schedule, a candidate list 
consists of the optional start times that are available for a maintenance task, such that the 
constraints under consideration are not violated. Direct and some rigid constraints, such as 
the maintenance window, precedence and minimum duration constraints, can be accounted 
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for using this technique. During the construction of a trial maintenance schedule, an ant 
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candidate lists of ‘unvisited units’, only start times that would result in solutions that satisfy 
the maintenance window and precedence constraints are considered.  
Penalty-based technique: In ACO-PPMSO, penalty functions, which transform a constrained 
optimisation problem into an unconstrained problem by adding or subtracting a value 
to/from the objective function cost based on the degree of constraint violation (Coello 
Coello, 2002), are used to address indirect or potentially soft constraints, such as the 
availability of personpower to perform the maintenance and load constraints. When dealing 
with soft constraints, penalty factors may be varied to reflect the amount of constraint 
violation that may be tolerated. Penalty costs also have to be used to account for indirect 
constraints, as the degree of constraint violation is not known until a complete trial solution 
has been constructed, as discussed earlier. In such cases, the degree of violation generally 
has to be obtained with the aid of a simulation model. 
The ability to implement direct and some rigid constraints using the graph-based technique 
is one of the attractive features of using ACO for PPMSO. Firstly, by preventing the 
generation of infeasible solutions, the number of simulation model runs required is reduced. 
This is advantageous for real-world PPMSO problems, as the number of times the 
simulation model has to be run is a major source of computational overhead. Moreover, 
there are difficulties associated with the use of penalty-based techniques that remain 
unresolved at the time of writing, in spite of extensive research into this area (Coello Coello, 
2002). For example, hand tuning is required for assigning appropriate penalty factors to 
each constraint and objective term in the objective function. 

4. Problem Instances 
In order to test the utility of the proposed ACO-PPMSO formulation, it is applied to 4 
problem instances, including 21- and 22-unit benchmark case studies from the literature and 
modified versions of these case studies. The 21- and 22-unit case studies have been chosen 
as they enable comparisons to be made with results obtained in previous studies. However, 
as these case studies can be solved without the need for maintenance shortening and 
deferral, modifications to the case studies are introduced in this chapter to test this feature of 
the proposed formulation. Details of the four problem instances are given below. 

4.1 21-unit system 
The first case study considered in this research is the 21-unit power plant maintenance 
problem investigated by Aldridge et al. (1999) and Dahal et al. (1999; , 2000) using a number 
of metaheuristics.  This case study is a modified version of the 21-unit problem introduced 
by Yamayee et al. (1983), and consists of 21 generating facilities, of which 20 units are 
thermal and one is hydropower. Due to space constraints, system details are not presented 
here but can be found in Aldridge et al. (1999). All of the machines are to be scheduled for 
maintenance either in the first or second half of a year’s planning horizon, which results in a 
combinatorial optimisation problem with approximately 5.18 x 1028 total possible solutions. 
The objective of the problem is to even out reserve generation capacity over the planning 
horizon, which can be achieved by minimizing the sum of squares of the reserve (SSR) 
generation capacity in each week. 
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Constraints to be satisfied include: 
1. Maintenance window constraints: The earliest start time and latest finish time of 

maintenance tasks for each machine are detailed in Aldridge et al. (1999). 
2. Resource constraints: A limit of 20 maintenance personpower is available each week. 
3. Demand constraints: A single peak load of 4739 MW has to be met. 
Problem formulation 
Mathematically, this optimisation problem can be defined as the determination of 
maintenance schedule(s) such that SSR, which is defined as the sum of square of reserve 
generation capacity within the planning horizon, is minimized: 

 Min SSR = Pn
n=1

N

∑ − Xn,kPn
k∈Sn ,t
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where Pn is the generating capacity of unit dn; Lt is the anticipated load for period t, subject to 
the maintenance window, load and personpower constraints, as given by: 

 earn ≤ startn ≤ latn – NormDurn + 1      for all dn ∈ D. (24) 
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 ≥ Lt   for all t ∈ Tplan . (26) 

where earn is the earliest start time for unit dn; latn is the latest start time for unit dn; 
NormDurn is the outage duration (week) for unit dn; startn is the maintenance start time for 
unit dn and ResAvait  is the personpower available at period t. 
It should be noted that personpower is considered as a type of resource constraint. The 
maintenance window constraints are taken into account by the construction graph-based 
technique (section 3.3), whereas both load and personpower constraints are indirect and are 
therefore taken into account by using penalty-based techniques (section 3.3). 
When applying the ACO-PPMSO formulation to this case study, the heuristic developed as 
part of this research (Eqs. 10 to 15) was used together with pheromone for selection of start 
times when generating trial maintenance schedules. It should be noted that the value of w in 
Eq. 10 was set to 1, as utilization of resource (personpower) constraints is considered in this 
case. Upon completion of a trial maintenance schedule, a simulation model was used to 
calculate the SSR value and any violations of personpower or load constraints associated 
with schedule s. The quality of individual maintenance schedules in this problem is given by 
an objective function cost (OFC), which is a function of the value of SSR and the total 
violation of personpower and load constraints (Eq. 27).  

 OFC( s) = SSR( s) ⋅ ManViotot ( s) + 1( )⋅ LoadViotot ( s) + 1( ). (27) 

where OFC(s) is the objective function cost ($) associated with schedule s; SSR(s)  is the sum 
of squares of reserve generation capacity (MW2) associated with schedule s; ManViotot(s) is 
the total personpower shortfall (person) associated with schedule s; LoadViotot(s) is the total 
demand shortfall (MW) associated with schedule s. 
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The calculation of constraint violations is given in Eqs. 28 to 31. For a trial maintenance 
schedule, the total personpower shortfall associated with schedule s, ManViotot(s), is given 
by summation of the personpower shortage in all periods within the planning horizon: 

 ManViotot ( s) = Xn,kResn,k −ResAvait
k∈Sn ,t

∑
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t∈TMV

∑ . (28) 

where TMV is the period where personpower constraints are violated, and is given by: 

 TMV = t : Xn,kResn ,k > ResAvait
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The total demand shortfall associated with schedule s, LoadViotot(s), is the summation of 
demand shortfall in all periods within the planning horizon. The calculation of this value 
may be represented by the following equation. 

 LoadViotot ( s) = Pn
n
∑ − Xn,kPn

k∈Sn ,t

∑
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t∈TLV
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where TLV is the period where load constraints are violated, and is given by: 

 TLV = ( t : Pn
n
∑ − Xn,kPn

k∈Sn ,t

∑
dn∈Dt

∑ < Lt ) . (31) 

The OFC can be viewed as the virtual cost associated with a maintenance schedule.  

4.2 22-unit system 
The 22-unit power plant maintenance scheduling optimisation problem was first solved by 
Escudero et al. (1980) using an implicit enumeration algorithm and later by El-Amin et al. 
(2000) using tabu search. In this problem, each generating unit is required to be scheduled for 
maintenance once within a planning horizon of 52 weeks. Details of the system can be found in 
Escudero et al. (1980). The objective when scheduling for maintenance is to even out reserve 
generation capacity over the planning horizon subject to the following constraints: 
1. The maintenance window constraints specify that all units can be maintained anytime 

within the planning horizon and have to finish maintenance by week 52, except for unit 
10, which can only be taken offline between weeks 6 and 22. 

2. Load constraints require peak demands (see Escudero et al., 1980) to be met.  
3. The reliability constraint requires a minimum reserve of 20% of the peak demand 

throughout the planning horizon.  
4. The two precedence constraints specify that maintenance of units 2 and 5 has to be 

carried out before that of units 3 and 6, respectively.  
5. Units 15 and 16, as well as units 21 and 22, cannot be maintained simultaneously due to 

personpower constraints. 
Problem formulation 
In order to even out reserve generation capacity, the formulation used in both Escudero et al. 
(1980) and El-Amin et al. (2000) for the 22-unit problem was designed to minimize the 
summed deviation of generation reserve from the average reserve over the entire planning 
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Constraints to be satisfied include: 
1. Maintenance window constraints: The earliest start time and latest finish time of 

maintenance tasks for each machine are detailed in Aldridge et al. (1999). 
2. Resource constraints: A limit of 20 maintenance personpower is available each week. 
3. Demand constraints: A single peak load of 4739 MW has to be met. 
Problem formulation 
Mathematically, this optimisation problem can be defined as the determination of 
maintenance schedule(s) such that SSR, which is defined as the sum of square of reserve 
generation capacity within the planning horizon, is minimized: 

 Min SSR = Pn
n=1
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where Pn is the generating capacity of unit dn; Lt is the anticipated load for period t, subject to 
the maintenance window, load and personpower constraints, as given by: 

 earn ≤ startn ≤ latn – NormDurn + 1      for all dn ∈ D. (24) 

 Xn,kResn,k ≤ ResAvait
k∈Sn ,t

∑
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∑     for all t ∈Tplan . (25) 
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 ≥ Lt   for all t ∈ Tplan . (26) 

where earn is the earliest start time for unit dn; latn is the latest start time for unit dn; 
NormDurn is the outage duration (week) for unit dn; startn is the maintenance start time for 
unit dn and ResAvait  is the personpower available at period t. 
It should be noted that personpower is considered as a type of resource constraint. The 
maintenance window constraints are taken into account by the construction graph-based 
technique (section 3.3), whereas both load and personpower constraints are indirect and are 
therefore taken into account by using penalty-based techniques (section 3.3). 
When applying the ACO-PPMSO formulation to this case study, the heuristic developed as 
part of this research (Eqs. 10 to 15) was used together with pheromone for selection of start 
times when generating trial maintenance schedules. It should be noted that the value of w in 
Eq. 10 was set to 1, as utilization of resource (personpower) constraints is considered in this 
case. Upon completion of a trial maintenance schedule, a simulation model was used to 
calculate the SSR value and any violations of personpower or load constraints associated 
with schedule s. The quality of individual maintenance schedules in this problem is given by 
an objective function cost (OFC), which is a function of the value of SSR and the total 
violation of personpower and load constraints (Eq. 27).  

 OFC( s) = SSR( s) ⋅ ManViotot ( s) + 1( )⋅ LoadViotot ( s) + 1( ). (27) 

where OFC(s) is the objective function cost ($) associated with schedule s; SSR(s)  is the sum 
of squares of reserve generation capacity (MW2) associated with schedule s; ManViotot(s) is 
the total personpower shortfall (person) associated with schedule s; LoadViotot(s) is the total 
demand shortfall (MW) associated with schedule s. 
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The calculation of constraint violations is given in Eqs. 28 to 31. For a trial maintenance 
schedule, the total personpower shortfall associated with schedule s, ManViotot(s), is given 
by summation of the personpower shortage in all periods within the planning horizon: 

 ManViotot ( s) = Xn,kResn,k −ResAvait
k∈Sn ,t
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where TMV is the period where personpower constraints are violated, and is given by: 

 TMV = t : Xn,kResn ,k > ResAvait
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The total demand shortfall associated with schedule s, LoadViotot(s), is the summation of 
demand shortfall in all periods within the planning horizon. The calculation of this value 
may be represented by the following equation. 

 LoadViotot ( s) = Pn
n
∑ − Xn,kPn
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where TLV is the period where load constraints are violated, and is given by: 

 TLV = ( t : Pn
n
∑ − Xn,kPn

k∈Sn ,t

∑
dn∈Dt

∑ < Lt ) . (31) 

The OFC can be viewed as the virtual cost associated with a maintenance schedule.  

4.2 22-unit system 
The 22-unit power plant maintenance scheduling optimisation problem was first solved by 
Escudero et al. (1980) using an implicit enumeration algorithm and later by El-Amin et al. 
(2000) using tabu search. In this problem, each generating unit is required to be scheduled for 
maintenance once within a planning horizon of 52 weeks. Details of the system can be found in 
Escudero et al. (1980). The objective when scheduling for maintenance is to even out reserve 
generation capacity over the planning horizon subject to the following constraints: 
1. The maintenance window constraints specify that all units can be maintained anytime 

within the planning horizon and have to finish maintenance by week 52, except for unit 
10, which can only be taken offline between weeks 6 and 22. 

2. Load constraints require peak demands (see Escudero et al., 1980) to be met.  
3. The reliability constraint requires a minimum reserve of 20% of the peak demand 

throughout the planning horizon.  
4. The two precedence constraints specify that maintenance of units 2 and 5 has to be 

carried out before that of units 3 and 6, respectively.  
5. Units 15 and 16, as well as units 21 and 22, cannot be maintained simultaneously due to 

personpower constraints. 
Problem formulation 
In order to even out reserve generation capacity, the formulation used in both Escudero et al. 
(1980) and El-Amin et al. (2000) for the 22-unit problem was designed to minimize the 
summed deviation of generation reserve from the average reserve over the entire planning 
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horizon, LVL. Mathematically, the optimisation of this case study can be described as the 
minimization of the sum of the deviation of generation reserve from the average reserve 
over the planning horizon (Eqs. 32 to 34): 

 Min LVL = Resavg −Rest
t∈Tplan

∑
 
 
 

  

 
 
 

  
. (32) 

where the generation reserve ( Rest ) and average reserve ( Resavg ) are given by: 

 Rest = Pn
n=1
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T
. (34) 

where Lt is the anticipated load demand for period t; Pn is the generating capacity of unit dn; 
T is the total number of time indices, subject to the following constraints: 

 earn ≤ startn ≤ latn – NormDurn + 1      for all dn ∈ D. (35) 
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X16,k = 0 for k = start15 ,...,start15 +NormDur15 −1[ ]
X 21,k = 0 for k = start22 ,...,start22 +NormDur22 −1[ ]
X 22,k = 0 for k = start21 ,...,start21 +NormDur21 −1[ ]
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It is interesting to note that, given the same objective, the objective functiom formulations 
used by Escudero et al. (1980) and El-Amin et al. (2000) are quite different from that of 
Aldridge et al. (1999). 
As there is no resource utilization throughout the planning horizon, there is no need for the 
inclusion of the resources term in the heuristic formulation (Eq. 10) for this case study (thus 
w may be set to 0). The precedence and maintenance window constraints of this system are 
direct and rigid constraints, which can be incorporated by using the graph-based technique, 
whereas the load and reliability constraints need to be taken into account using penalty 
functions. The objective function cost (OFC) used in this case study is a function of the 
reserve generation capacity LVL value and the total violation of load and reliability 
constraints (Eq. 40).  
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 OFC( s)= LVL( s) ⋅ LoadResViotot ( s)+1( ). (40) 

where OFC(s) is the objective function cost ($) associated with schedule s; LVL(s) is the level 
of reserve generation capacity (MW) associated with schedule s; LoadResViotot(s) is the total 
demand and reserve shortfall (MW) associated with schedule s. 
It should be noted that the inclusion of a load constraint violation term in Eq. 40 is not 
necessary because violation of load constraints would be reflected as violation of reserve 
constraints. The calculation of constraint violations is given by Eqs. 41 and 42. The total load 
and reserve shortfall associated with schedule s, LoadResViotot(s), is the summation of load 
and reserve shortfall in all periods within the planning horizon: 

 LoadResViotot ( s)= Pn
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where TLV is the period where load and reserve constraints are violated, and is given by: 

 TLV = ( t : Pn
n
∑ − Xn,kPn

k∈Sn ,t

∑
dn∈Dt

∑ < 1.2Lt ) . (42) 

4.3 Modified 21-unit system 
The 21-unit case study system described in section 4.1 was modified in the following ways 
in order to ensure that maintenance task shortening and/or deferral are required to satisfy 
load constraints: 
1. The original system load (4739MW) is increased by 5% throughout the whole planning 

horizon, and another 5% increment for weeks 15 to 25. 
2. While all maintenance tasks have the option of being deferred, some maintenance tasks 

can be carried out in durations shorter than the original outage duration (shown in 
Table 2). The personpower requirements for shortened durations are also detailed in 
Table 2. 

Unit No., 
n 

Optional Outage 
Duration, (weeks) 

Personpower required for each week, 
Resn,wk(wk=1,2,…, NormDurn ) (person) 

5 10, 10, 10, 8, 5 
1 

3 15, 14, 14 
2 3 15, 15, 10 
5 3 17, 17, 16 
8 4 13, 13, 13, 6 

8 3, 3, 3, 2, 2, 3, 3, 3 
6 4, 4, 3, 3, 4, 4 
4 6, 5, 5, 6 

9 

2 11, 11 
10 2 15, 15 
14 2 20, 20 
20 2 20, 20 

Table 2. Personpower utilization for the modified 21-unit case study system 
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horizon, LVL. Mathematically, the optimisation of this case study can be described as the 
minimization of the sum of the deviation of generation reserve from the average reserve 
over the planning horizon (Eqs. 32 to 34): 

 Min LVL = Resavg −Rest
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where the generation reserve ( Rest ) and average reserve ( Resavg ) are given by: 
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where Lt is the anticipated load demand for period t; Pn is the generating capacity of unit dn; 
T is the total number of time indices, subject to the following constraints: 

 earn ≤ startn ≤ latn – NormDurn + 1      for all dn ∈ D. (35) 
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X 21,k = 0 for k = start22 ,...,start22 +NormDur22 −1[ ]
X 22,k = 0 for k = start21 ,...,start21 +NormDur21 −1[ ]
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It is interesting to note that, given the same objective, the objective functiom formulations 
used by Escudero et al. (1980) and El-Amin et al. (2000) are quite different from that of 
Aldridge et al. (1999). 
As there is no resource utilization throughout the planning horizon, there is no need for the 
inclusion of the resources term in the heuristic formulation (Eq. 10) for this case study (thus 
w may be set to 0). The precedence and maintenance window constraints of this system are 
direct and rigid constraints, which can be incorporated by using the graph-based technique, 
whereas the load and reliability constraints need to be taken into account using penalty 
functions. The objective function cost (OFC) used in this case study is a function of the 
reserve generation capacity LVL value and the total violation of load and reliability 
constraints (Eq. 40).  
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 OFC( s)= LVL( s) ⋅ LoadResViotot ( s)+1( ). (40) 

where OFC(s) is the objective function cost ($) associated with schedule s; LVL(s) is the level 
of reserve generation capacity (MW) associated with schedule s; LoadResViotot(s) is the total 
demand and reserve shortfall (MW) associated with schedule s. 
It should be noted that the inclusion of a load constraint violation term in Eq. 40 is not 
necessary because violation of load constraints would be reflected as violation of reserve 
constraints. The calculation of constraint violations is given by Eqs. 41 and 42. The total load 
and reserve shortfall associated with schedule s, LoadResViotot(s), is the summation of load 
and reserve shortfall in all periods within the planning horizon: 
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where TLV is the period where load and reserve constraints are violated, and is given by: 

 TLV = ( t : Pn
n
∑ − Xn,kPn

k∈Sn ,t

∑
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∑ < 1.2Lt ) . (42) 

4.3 Modified 21-unit system 
The 21-unit case study system described in section 4.1 was modified in the following ways 
in order to ensure that maintenance task shortening and/or deferral are required to satisfy 
load constraints: 
1. The original system load (4739MW) is increased by 5% throughout the whole planning 

horizon, and another 5% increment for weeks 15 to 25. 
2. While all maintenance tasks have the option of being deferred, some maintenance tasks 

can be carried out in durations shorter than the original outage duration (shown in 
Table 2). The personpower requirements for shortened durations are also detailed in 
Table 2. 

Unit No., 
n 

Optional Outage 
Duration, (weeks) 

Personpower required for each week, 
Resn,wk(wk=1,2,…, NormDurn ) (person) 

5 10, 10, 10, 8, 5 
1 

3 15, 14, 14 
2 3 15, 15, 10 
5 3 17, 17, 16 
8 4 13, 13, 13, 6 

8 3, 3, 3, 2, 2, 3, 3, 3 
6 4, 4, 3, 3, 4, 4 
4 6, 5, 5, 6 

9 

2 11, 11 
10 2 15, 15 
14 2 20, 20 
20 2 20, 20 

Table 2. Personpower utilization for the modified 21-unit case study system 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

306 

Problem formulation 
Despite the possibility of shortening and deferral options in this case study, they are 
unfavorable from both an economic and operations point of view. Therefore, the objective 
function used for the original version of this case study (Eq.  27) has been modified to: 

 OFC( s) = SSR( s) ⋅ ManViotot ( s) + 1( )⋅ LoadViotot ( s) + 1( )⋅(DurCut tot ( s) + 1). (43) 

where OFC(s) is the objective function cost ($) associated with schedule s; SSR(s) is the sum 
of squares of reserve generation capacity (MW2) associated with schedule s; ManViotot(s) is 
the total personpower shortfall (person) associated with schedule s; LoadViotot(s) is the total 
demand shortfall (MW) associated with schedule s; DurCuttot(s) is the total reduction in 
maintenance duration (weeks) due to shortening and deferral associated with schedule s. 
While the calculation of total demand shortfall associated with schedule s, LoadViotot(s), total 
personpower shortfall associated with schedule s, ManViotot(s), and the sum of squares of 
reserve generation capacity associated with schedule s, SSR(s), are detailed in section 4.1, the 
value of DurCuttot(s) is given by: 

 DurCut tot ( s) = ( NormDurn − chdurn ( s))
n=1

21

∑ . (44) 

where NormDurn is the normal duration of maintenance task dn, and chdurn(s) is the 
maintenance duration (week) of task dn associated with schedule s. 
It should be noted that by using Eq. 43 to direct the search during an ACO run, a trial 
maintenance schedule that includes shortened and/or deferred maintenance tasks is being 
assigned a higher OFC, which represent an unfavorable solution to ACO during pheromone 
update. 
As part of the modified case study, the minimum-duration constraints can be addressed 
during the stage-2 selection process when a trial solution is being constructed (section 3.2.2) 
by allowing only optional durations that are greater than the minimum duration for each 
maintenance task. In this way, trial solutions constructed will not violate the minimum 
duration constraints. For example, machine unit 1 that normally requires 7 days to be 
maintained, can be shortened to 5 or 3 days, or be deferred altogether (Table 2). 

4.4 Modified 22-unit system 
The 22-unit case study detailed in section 4.2 was modified as follows in order to ensure that 
maintenance task shortening and/or deferral are required to satisfy load constraints: 
1. The weekly loads for the modified 22-unit case study system are increased by 60%.  
2. Maintenance tasks 1 to 13 are allowed to be performed within the first half of the 

planning horizon, while the remainder of the tasks have to be performed in the second 
half (except for unit 10 as in original case study). 

3. While all maintenance tasks can be deferred, the maintenance tasks listed in Table 3 can 
be shortened to the optional duration(s) specified. 

Unit No., n 1 5 6 8 9 10 11 12 14 15 16 17 18 22 

Optional shortened 
durations (weeks) 4, 2 4, 2 2 2 3 10, 8, 6, 

4 2 6, 4 4 3 4 3 3 3 

Table 3. Details of the modified 22-unit system 
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Problem formulation 
The objective function used for the original 22-unit case study (Eq. 40) has been modified to 
accommodate the options of shortening and deferral, and is given by: 

 OFC( s) = LVL( s) ⋅ LoadResViotot ( s) + 1( )⋅(DurCut tot ( s) + 1) . (45) 

where OFC(s) is the objective function cost ($) associated with schedule s; LVL(s) is the level 
of reserve generation capacity (MW) associated with schedule s; LoadResViotot(s) is the total 
load constraint violation (MW) associated with schedule s; DurCuttot(s) is the total reduction 
in maintenance duration (weeks) due to shortening and deferral associated with schedule s. 
The calculation of the total load constraint violation associated with schedule s, 
LoadResViotot(s), and the level of reserve generation capacity associated with schedule s, 
LVL(s) have been detailed previously in section 4.2, whereas the value of the total duration 
shortened and deferred associated with schedule s, DurCuttot(s), is given by: 

 DurCut tot ( s) = ( NormDurn − chdurn ( s))
n=1

22

∑ . (46) 

where NormDurn is the normal duration (weeks) of maintenance task dn, and chdurn(s) is the 
maintenance duration (weeks) of task dn associated with schedule s. 

5. Experimental Procedure, Results and Analysis 
5.1 Experimental procedure 
Experiments have been conducted on both the original and modified versions of the 21-unit 
and 22-unit case studies to assess the utility of the proposed ACO-PPMSO formulation. 
Particular emphasis was given to assessing the usefulness of the heuristics developed, the 
impact of the local search operator and the overall performance of the proposed ACO-
PPMSO formulation. 
A. Usefulness of heuristic formulation 
The effectiveness of the new heuristic formulations for general PPMSO problems (Eqs. 10 to 
15) introduced in section 3.2.2 was examined by conducting optimisation runs with and 
without the heuristics (the latter was achieved by setting the relative weight of the heuristic, 
β, in Eq. 7 to 0). In addition, the sensitivity of optimisation results to increasing values of 
β was checked. It should be noted that, as a control, the value of α in Eq. 7 was fixed at 1. 
B. Impact of local search operator 
The impact of local search on the performance of the ACO-PPMSO algorithm was also 
investigated, both with and without heuristic. The total number of trial solutions evaluated 
in the ACO runs with local search was identical to those without local search.  
C. Overall performance of ACO-PPMSO 
In order to check the overall utility of the ACO-PPMSO formulation, the results obtained for 
the two original case studies were compared with those obtained using other optimisation 
methods in previous studies and the ability to account for maintenance shortening and 
deferral was assessed on the two modified case studies.  
In order to achieve the objectives outlined above, the testing procedure shown in Fig. 3 was 
implemented separately for each of the four case studies. Items A, B and C mentioned above 
were investigated at Stages A, B and C in the testing procedure, respectively.  
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Problem formulation 
Despite the possibility of shortening and deferral options in this case study, they are 
unfavorable from both an economic and operations point of view. Therefore, the objective 
function used for the original version of this case study (Eq.  27) has been modified to: 

 OFC( s) = SSR( s) ⋅ ManViotot ( s) + 1( )⋅ LoadViotot ( s) + 1( )⋅(DurCut tot ( s) + 1). (43) 

where OFC(s) is the objective function cost ($) associated with schedule s; SSR(s) is the sum 
of squares of reserve generation capacity (MW2) associated with schedule s; ManViotot(s) is 
the total personpower shortfall (person) associated with schedule s; LoadViotot(s) is the total 
demand shortfall (MW) associated with schedule s; DurCuttot(s) is the total reduction in 
maintenance duration (weeks) due to shortening and deferral associated with schedule s. 
While the calculation of total demand shortfall associated with schedule s, LoadViotot(s), total 
personpower shortfall associated with schedule s, ManViotot(s), and the sum of squares of 
reserve generation capacity associated with schedule s, SSR(s), are detailed in section 4.1, the 
value of DurCuttot(s) is given by: 

 DurCut tot ( s) = ( NormDurn − chdurn ( s))
n=1

21

∑ . (44) 

where NormDurn is the normal duration of maintenance task dn, and chdurn(s) is the 
maintenance duration (week) of task dn associated with schedule s. 
It should be noted that by using Eq. 43 to direct the search during an ACO run, a trial 
maintenance schedule that includes shortened and/or deferred maintenance tasks is being 
assigned a higher OFC, which represent an unfavorable solution to ACO during pheromone 
update. 
As part of the modified case study, the minimum-duration constraints can be addressed 
during the stage-2 selection process when a trial solution is being constructed (section 3.2.2) 
by allowing only optional durations that are greater than the minimum duration for each 
maintenance task. In this way, trial solutions constructed will not violate the minimum 
duration constraints. For example, machine unit 1 that normally requires 7 days to be 
maintained, can be shortened to 5 or 3 days, or be deferred altogether (Table 2). 

4.4 Modified 22-unit system 
The 22-unit case study detailed in section 4.2 was modified as follows in order to ensure that 
maintenance task shortening and/or deferral are required to satisfy load constraints: 
1. The weekly loads for the modified 22-unit case study system are increased by 60%.  
2. Maintenance tasks 1 to 13 are allowed to be performed within the first half of the 

planning horizon, while the remainder of the tasks have to be performed in the second 
half (except for unit 10 as in original case study). 

3. While all maintenance tasks can be deferred, the maintenance tasks listed in Table 3 can 
be shortened to the optional duration(s) specified. 

Unit No., n 1 5 6 8 9 10 11 12 14 15 16 17 18 22 

Optional shortened 
durations (weeks) 4, 2 4, 2 2 2 3 10, 8, 6, 

4 2 6, 4 4 3 4 3 3 3 

Table 3. Details of the modified 22-unit system 
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Problem formulation 
The objective function used for the original 22-unit case study (Eq. 40) has been modified to 
accommodate the options of shortening and deferral, and is given by: 

 OFC( s) = LVL( s) ⋅ LoadResViotot ( s) + 1( )⋅(DurCut tot ( s) + 1) . (45) 

where OFC(s) is the objective function cost ($) associated with schedule s; LVL(s) is the level 
of reserve generation capacity (MW) associated with schedule s; LoadResViotot(s) is the total 
load constraint violation (MW) associated with schedule s; DurCuttot(s) is the total reduction 
in maintenance duration (weeks) due to shortening and deferral associated with schedule s. 
The calculation of the total load constraint violation associated with schedule s, 
LoadResViotot(s), and the level of reserve generation capacity associated with schedule s, 
LVL(s) have been detailed previously in section 4.2, whereas the value of the total duration 
shortened and deferred associated with schedule s, DurCuttot(s), is given by: 

 DurCut tot ( s) = ( NormDurn − chdurn ( s))
n=1

22

∑ . (46) 

where NormDurn is the normal duration (weeks) of maintenance task dn, and chdurn(s) is the 
maintenance duration (weeks) of task dn associated with schedule s. 

5. Experimental Procedure, Results and Analysis 
5.1 Experimental procedure 
Experiments have been conducted on both the original and modified versions of the 21-unit 
and 22-unit case studies to assess the utility of the proposed ACO-PPMSO formulation. 
Particular emphasis was given to assessing the usefulness of the heuristics developed, the 
impact of the local search operator and the overall performance of the proposed ACO-
PPMSO formulation. 
A. Usefulness of heuristic formulation 
The effectiveness of the new heuristic formulations for general PPMSO problems (Eqs. 10 to 
15) introduced in section 3.2.2 was examined by conducting optimisation runs with and 
without the heuristics (the latter was achieved by setting the relative weight of the heuristic, 
β, in Eq. 7 to 0). In addition, the sensitivity of optimisation results to increasing values of 
β was checked. It should be noted that, as a control, the value of α in Eq. 7 was fixed at 1. 
B. Impact of local search operator 
The impact of local search on the performance of the ACO-PPMSO algorithm was also 
investigated, both with and without heuristic. The total number of trial solutions evaluated 
in the ACO runs with local search was identical to those without local search.  
C. Overall performance of ACO-PPMSO 
In order to check the overall utility of the ACO-PPMSO formulation, the results obtained for 
the two original case studies were compared with those obtained using other optimisation 
methods in previous studies and the ability to account for maintenance shortening and 
deferral was assessed on the two modified case studies.  
In order to achieve the objectives outlined above, the testing procedure shown in Fig. 3 was 
implemented separately for each of the four case studies. Items A, B and C mentioned above 
were investigated at Stages A, B and C in the testing procedure, respectively.  
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To minimize the impact the ACO algorithms and parameters used have on the evaluation of 
the effectiveness of the heuristic, local search and overall performance of the ACO-PPMSO 
algorithm, two ACO algorithms, namely Elitist-Ant System and MMAS, and a range of 
parameters (shown in the dashed box in Fig. 3) were used to solve the problem instance 
under consideration. In addition, each run was repeated 50 times with different random 
number seeds in order to minimize the influence of random starting values in the solution 
space on the results obtained and to enable Student’s t-test to be conducted to determine 
whether any differences in the results obtained were significant. In total, 3,024 different 
combinations of parameters, each with 50 different starting random number seeds, were 
evaluated as part of this study. In order to facilitate fair comparisons, the same number of 
evaluations per optimisation run were used as in previous studies that investigated the 21-
unit case problem (30,000 evaluations). In this research, ‘one ACO run’ is defined as the use 
of an ACO algorithm with or without using heuristic information, with or without local 
search and with a defined set of parameters to solve a PPMSO instance. An example of an 
ACO run is the use of EAS to solve the modified 21-unit case study with heuristic 
information and local search and a defined parameter set of m = 200; ρ = 0.9; τ0 = 0.1; Q = 
500,000; α = 1, β = 11, repeated for 50 random number seeds. The overall performance of a 
parameter set is then assessed based on the objective function cost (OFC) averaged over the 
50 simulations using different random number seeds. An analysis of the results obtained 
with the testing procedure outlined in Fig. 3 is given in section 5.2. 
 

 

Figure 3. Expermental procedure 

5.2 Results and analysis 
The experimental results obtained for the original 21- and 22-unit case studies are 
summarized in Tables 4 to 7, while those for the modified case studies are presented in 
Tables 8 to 11. 
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Heu-
ristic 

Local 
search 

Best OFC 
($M) 

Average 
OFC ($M)

Worst OFC 
($M) 

Std dev. 
($M) 

Average 
evaluationsa 

Best parameter settings 
{m; ρ; τ0; β}b 

  
14.84 

[8.64%] 
140.49 

[928.48%] 
365.13 

[2572.99%] 86.00 28,841 {300; 0.9; 0.01; 0} 

  
13.68 

[0.15%] 
13.71 

[0.37%] 
13.85 

[1.39%] 0.03 20,692 {200; 0.9; 0.01; 9} 

  
13.74 

[0.59%] 
51.62 

[277.89%] 
138.80 

[916.11%] 33.72 25,494 {300; 0.8; 0.1; 0} 

  
13.66 
[0%] 

13.70 
[0.29%] 

13.82 
[1.17%] 0.03 22,434 {200; 0.9; 0.01; 9} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
bm: number of ants; (1- ρ): pheromone evaporation rate; τ0: initial pheromone trail; β: relative weight of heuristic in Eq. 7 
Table 4. Results for the 21-unit unit problem instance given by Elitist-Ant System (EAS) 
[deviation from best-known OFC of  $13.66M] 
Heu-
ristic 

Local 
search 

Best OFC 
($M) 

Average 
OFC ($M) 

Worst OFC 
($M) 

Std dev. 
($M) 

Average 
evaluationsc 

Best parameter settings 
{m; ρ; pbest; β}d 

  
13.86 

[1.46%] 
16.11 

[17.94%] 
43.35 

[217.35%] 5.95 16,480 {10; 0.3; 0.2; 0} 

  
13.66 
[0%] 

13.68 
[0.15%] 

13.72 
[0.44%] 0.01 13,593 {20; 0.4; 0.35; 5} 

  
13.80 

[1.02%] 
17.90 

[31.04%] 
69.04 

[405.42%] 10.51 18,089 {50; 0.2; 0.05; 0} 

  
13.66 
[0%] 

13.69 
[0.22%] 

13.78 
[0.88%] 0.02 15,867 {50; 0.5; 0.5; 11} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
dm: number of ants; (1- ρ): pheromone evaporation rate; pbest: refer to Eq. 21; β: relative weight of heuristic in Eq. 7. 

Table 5. Results for the 21-unit unit problem instance given by Max-Min Ant System 
(MMAS) [deviation from best-known OFC of  $13.66M] 

Heur-
istic 

Local 
search 

Best OFC 
($M) 

Average 
OFC ($M) 

Worst OFC 
($M) 

Std dev. 
($M) 

Average 
evaluationsa 

Best parameter settings  
{m; ρ; τ0; β}b 

  
63.41 

[21.80%] 
72.27 

[38.82%] 
81.15 

[55.88%] 4.17 29,294 {200; 0.9; 100; 0} 

  
58.41 

[12.20%] 
64.31 

[23.53%] 
73.25 

[40.70%] 3.21 28,384 {300; 0.9; 1; 11} 

  
58.91 

[13.16%] 
67.03 

[28.76%] 
79.99 

[53.65%] 4.70 25,858 {300; 0.8; 1; 0} 

  
55.67 

[6.93%] 
60.55 

[16.31%] 
67.97 

[30.56%] 2.90 26,931 {300; 0.8; 10; 11} 
a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
bm: number of ants; (1- ρ): pheromone evaporation rate; τ0: initial pheromone trail; β: relative weight of heuristic in Eq. 7. 

Table 6. Results for the 22-unit unit problem instance given by Elitist-Ant System (EAS) 
[deviation from best-known OFC of $52.06] 

Heur-
istic 

Local 
search 

Best OFC 
($M) 

Average OFC 
($M) 

Worst OFC 
($M) 

Std dev. 
($M) 

Average 
evaluations 

Best parameter settings 
{m; ρ; pbest; β}d 

  
59.91 

[15.08%] 
66.90 

[28.51%] 
76.17 

[46.31%] 3.67 24,597 {100; 0.9; 0.5; 0} 

  
55.72 

[7.03%] 
62.22 

[19.52%] 
68.65 

[31.87%] 2.97 28,433 {200; 0.9; 0.2; 11} 

  
57.64 

[10.72%] 
64.81 

[24.49%] 
76.65 

[47.23%] 4.27 27,455 {200; 0.8; 0.5; 0} 

  
54.56 

[4.80%] 
59.42 

[14.14%] 
66.56 

[27.85%] 2.87 24,537 {200; 0.8; 0.35; 11} 
a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
dm: number of ants; (1- ρ): pheromone evaporation rate; pbest: refer to Eq. 21; β: relative weight of heuristic in Eq. 7. 

Table 7. Results for the 22-unit unit problem instance given by Max-Min Ant System 
(MMAS) [deviation from best-known OFC of $52.06M] 
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To minimize the impact the ACO algorithms and parameters used have on the evaluation of 
the effectiveness of the heuristic, local search and overall performance of the ACO-PPMSO 
algorithm, two ACO algorithms, namely Elitist-Ant System and MMAS, and a range of 
parameters (shown in the dashed box in Fig. 3) were used to solve the problem instance 
under consideration. In addition, each run was repeated 50 times with different random 
number seeds in order to minimize the influence of random starting values in the solution 
space on the results obtained and to enable Student’s t-test to be conducted to determine 
whether any differences in the results obtained were significant. In total, 3,024 different 
combinations of parameters, each with 50 different starting random number seeds, were 
evaluated as part of this study. In order to facilitate fair comparisons, the same number of 
evaluations per optimisation run were used as in previous studies that investigated the 21-
unit case problem (30,000 evaluations). In this research, ‘one ACO run’ is defined as the use 
of an ACO algorithm with or without using heuristic information, with or without local 
search and with a defined set of parameters to solve a PPMSO instance. An example of an 
ACO run is the use of EAS to solve the modified 21-unit case study with heuristic 
information and local search and a defined parameter set of m = 200; ρ = 0.9; τ0 = 0.1; Q = 
500,000; α = 1, β = 11, repeated for 50 random number seeds. The overall performance of a 
parameter set is then assessed based on the objective function cost (OFC) averaged over the 
50 simulations using different random number seeds. An analysis of the results obtained 
with the testing procedure outlined in Fig. 3 is given in section 5.2. 
 

 

Figure 3. Expermental procedure 

5.2 Results and analysis 
The experimental results obtained for the original 21- and 22-unit case studies are 
summarized in Tables 4 to 7, while those for the modified case studies are presented in 
Tables 8 to 11. 

Power Plant Maintenance Scheduling Using Ant Colony Optimization 

 

309 

Heu-
ristic 

Local 
search 

Best OFC 
($M) 

Average 
OFC ($M)

Worst OFC 
($M) 

Std dev. 
($M) 

Average 
evaluationsa 

Best parameter settings 
{m; ρ; τ0; β}b 

  
14.84 

[8.64%] 
140.49 

[928.48%] 
365.13 

[2572.99%] 86.00 28,841 {300; 0.9; 0.01; 0} 

  
13.68 

[0.15%] 
13.71 

[0.37%] 
13.85 

[1.39%] 0.03 20,692 {200; 0.9; 0.01; 9} 

  
13.74 

[0.59%] 
51.62 

[277.89%] 
138.80 

[916.11%] 33.72 25,494 {300; 0.8; 0.1; 0} 

  
13.66 
[0%] 

13.70 
[0.29%] 

13.82 
[1.17%] 0.03 22,434 {200; 0.9; 0.01; 9} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
bm: number of ants; (1- ρ): pheromone evaporation rate; τ0: initial pheromone trail; β: relative weight of heuristic in Eq. 7 
Table 4. Results for the 21-unit unit problem instance given by Elitist-Ant System (EAS) 
[deviation from best-known OFC of  $13.66M] 
Heu-
ristic 

Local 
search 

Best OFC 
($M) 

Average 
OFC ($M) 

Worst OFC 
($M) 

Std dev. 
($M) 

Average 
evaluationsc 

Best parameter settings 
{m; ρ; pbest; β}d 

  
13.86 

[1.46%] 
16.11 

[17.94%] 
43.35 

[217.35%] 5.95 16,480 {10; 0.3; 0.2; 0} 

  
13.66 
[0%] 

13.68 
[0.15%] 

13.72 
[0.44%] 0.01 13,593 {20; 0.4; 0.35; 5} 

  
13.80 

[1.02%] 
17.90 

[31.04%] 
69.04 

[405.42%] 10.51 18,089 {50; 0.2; 0.05; 0} 

  
13.66 
[0%] 

13.69 
[0.22%] 

13.78 
[0.88%] 0.02 15,867 {50; 0.5; 0.5; 11} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
dm: number of ants; (1- ρ): pheromone evaporation rate; pbest: refer to Eq. 21; β: relative weight of heuristic in Eq. 7. 

Table 5. Results for the 21-unit unit problem instance given by Max-Min Ant System 
(MMAS) [deviation from best-known OFC of  $13.66M] 

Heur-
istic 

Local 
search 

Best OFC 
($M) 

Average 
OFC ($M) 

Worst OFC 
($M) 

Std dev. 
($M) 

Average 
evaluationsa 

Best parameter settings  
{m; ρ; τ0; β}b 

  
63.41 

[21.80%] 
72.27 

[38.82%] 
81.15 

[55.88%] 4.17 29,294 {200; 0.9; 100; 0} 

  
58.41 

[12.20%] 
64.31 

[23.53%] 
73.25 

[40.70%] 3.21 28,384 {300; 0.9; 1; 11} 

  
58.91 

[13.16%] 
67.03 

[28.76%] 
79.99 

[53.65%] 4.70 25,858 {300; 0.8; 1; 0} 

  
55.67 

[6.93%] 
60.55 

[16.31%] 
67.97 

[30.56%] 2.90 26,931 {300; 0.8; 10; 11} 
a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
bm: number of ants; (1- ρ): pheromone evaporation rate; τ0: initial pheromone trail; β: relative weight of heuristic in Eq. 7. 

Table 6. Results for the 22-unit unit problem instance given by Elitist-Ant System (EAS) 
[deviation from best-known OFC of $52.06] 

Heur-
istic 

Local 
search 

Best OFC 
($M) 

Average OFC 
($M) 

Worst OFC 
($M) 

Std dev. 
($M) 

Average 
evaluations 

Best parameter settings 
{m; ρ; pbest; β}d 

  
59.91 

[15.08%] 
66.90 

[28.51%] 
76.17 

[46.31%] 3.67 24,597 {100; 0.9; 0.5; 0} 

  
55.72 

[7.03%] 
62.22 

[19.52%] 
68.65 

[31.87%] 2.97 28,433 {200; 0.9; 0.2; 11} 

  
57.64 

[10.72%] 
64.81 

[24.49%] 
76.65 

[47.23%] 4.27 27,455 {200; 0.8; 0.5; 0} 

  
54.56 

[4.80%] 
59.42 

[14.14%] 
66.56 

[27.85%] 2.87 24,537 {200; 0.8; 0.35; 11} 
a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
dm: number of ants; (1- ρ): pheromone evaporation rate; pbest: refer to Eq. 21; β: relative weight of heuristic in Eq. 7. 

Table 7. Results for the 22-unit unit problem instance given by Max-Min Ant System 
(MMAS) [deviation from best-known OFC of $52.06M] 
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Heu-
ristic 

Local 
search 

Best OFC
($M) 

Average 
OFC ($M) 

Worst OFC 
($M) 

Std 
dev. 
($M) 

Average 
DurCuttot 

(wks) 

Average 
evaluationsa

Best parameter 
settings {m; ρ; τ0; β}b 

  
65.61 

[317.63%]
120.39 

[666.33%] 
209.05 

[1230.68%] 39.16 17.6 27,538 {300; 0.9; 0.01; 0} 

  
16.15 

[2.80%] 
24.42 

[55.44%] 
31.06 

[97.71%] 5.16 6.4 29,029 {500; 0.9; 0.01; 1} 

  
68.42 

[335.52%]
135.13 

[760.15%] 
219.07 

[1294.46%] 36.67 19.3 28,784 {300; 0.9; 0.01; 0} 

  
16.12 

[2.61%] 
26.87 

[71.04%] 
41.24 

[162.51%] 5.17 6.9 28,213 {500; 0.9; 0.01; 1} 
a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
bm: number of ants; (1- ρ): pheromone evaporation rate; τ0: initial pheromone trail; β: relative weight of heuristic in Eq. 7. 

Table 8. Results for the Modified 21-unit unit problem instance given by Elitist-Ant System 
(EAS) [deviation from best-known OFC of $15.71M] 
 

Heu-
ristic 
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Best OFC
($M) 

Average 
OFC ($M) 

Worst OFC 
($M) 

Std 
dev. 
($M) 

Average 
DurCuttot 

(wks) 

Average 
evaluationsc

Best parameter 
settings {m; ρ; pbest; β}d 

  
28.69 

[82.62%] 
61.32 

[290.32%] 
119.15 

[658.43%] 19.54 11.8 16,934 {20; 0.2; 0.2; 0} 

  
15.97 

[1.65%] 
19.69 

[25.33%] 
29.03 

[84.79%] 4.02 5.6 18,551 {50; 0.2; 0.05; 1} 

  
33.64 

[114.13%]
71.67 

[356.21%] 
132.10 

[740.87%] 24.64 12.6 24,898 {500; 0.1; 0.05; 0} 

  
15.71 
[0%] 

22.04 
[40.29%] 

29.66 
[88.80%] 4.86 6.1 23,713 {500; 0.7; 0.05; 1} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
dm: number of ants; (1- ρ): pheromone evaporation rate; pbest: refer to Eq. 21; β: relative weight of heuristic in Eq. 7. 

Table 9. Results for the Modified 21-unit problem instance given by Max-Min Ant System 
(MMAS) [deviation from best-known OFC of $15.71M] 

 

Heu-
ristic 

Local 
search 

Best OFC
($) 

Average 
OFC ($) 

Worst 
OFC ($) 

Std 
dev. 
($) 

Average 
DurCuttot 

(wks) 

Average 
evaluationsa

Best parameter settings 
{m; ρ; τ0; β}b 

  
2186.22 

[138.64%]
2797.85 

[205.40%]
4267.31 

[365.80%] 410.33 21.9 27,896 {300; 0.9; 0.01; 0} 

  1365.60 
[49.06%] 

1756.34 
[91.72%] 

2153.97 
[135.12%] 175.55 13.8 28,648 {500; 0.9; 0.01; 11} 

  
2331.92 

[154.54%]
2876.16 

[213.95%]
4357.14 

[375.61%] 501.14 23.2 26,187 {300; 0.9; 0.01; 0} 

  
1174.10 
[28.16%] 

1724.37 
[88.23%] 

2238.34 
[144.33%] 172.63 13.7 21,718 {300; 0.9; 0.01; 11} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
bm: number of ants; (1- ρ): pheromone evaporation rate; τ0: initial pheromone trail; β: relative weight of heuristic in Eq. 7. 

Table 10. Results for the Modified 22-unit unit problem instance given by Elitist-Ant System 
(EAS) [deviation from best-known OFC of $916.12] 
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Heu-
ristic 

Local 
search 

Best OFC
($) 

Average 
OFC ($) 

Worst 
OFC ($) 

Std 
dev. 
($) 

Average 
DurCuttot 

(wks) 

Average 
evaluations

Best parameter settings 
{m; ρ; pbest; β}d 

  
1439.33 
[57.11%] 

2076.43 
[126.65%]

3998.67 
[336.78%] 440.16 15.6 26,219 {300; 0.6; 0.2; 0} 

  
1008.13 
[10.04%] 

1489.54 
[62.59%] 

2017.44 
[120.22%] 280.45 12.1 23,329 {20; 0.3; 0.35; 11} 

  
1614.39 
[76.22%] 

2068.8 
[125.82%]

3936.71 
[329.72%] 425.87 15.0 20,767 {20; 0.3; 0.2; 0} 

  
1001.12 
[9.28%] 

1513.86 
[65.25%] 

2084.59 
[127.55%] 306.26 12.4 21,347 {50; 0.1; 0.35; 11} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
dm: number of ants; (1- ρ): pheromone evaporation rate; pbest: refer to Eq. 21; β: relative weight of heuristic in Eq. 7. 

Table 11. Results for the Modified 22-unit unit problem instance given by Max-Min Ant 
System (MMAS)   [deviation from best-known OFC of $916.12] 

Stage A: Impact of heuristic 
Overall, the new heuristic formulation for applying ACO to PPMSO problems significantly 
improved the results obtained for all four case studies, with and without the use of a local 
search operator and for both ACO algorithms (using a Student’s t-test at a 95% significance 
level). It can be seen that when the heuristic was used, not only were the average OFCs 
improved, but the standard deviations of the OFCs were also significantly smaller for all 
case studies (Tables 4 to 11), indicating that use of the new heuristic formulation enables 
good solutions to be found consistently.  
In order to gain a better understanding of the searching behavior of the ACO algorithms in 
solving each of the four case studies with and without heuristic, the optimisation process of 
the ACO runs was examined. The investigation is facilitated by utilizing the following terms 
to describe a given ACO-PPMSO run:   
• Objective function values (SSR, LVL and DurCuttot) associated with iteration-best 

schedules (referred to as IB-SSR, IB-LVL and IB-DurCuttot hereafter) 
• Violation of various constraints (demand and personpower shortfall) associated with 

iteration-best schedules (referred to as IB-LoadViotot, IB-ManViotot and IB-LoadResViotot 
hereafter)   

The optimization process of only one ACO-PPMSO run for the modified 21-unit case system 
is used for discussion purposes (Fig. 4). Figs. 4a and 4b compare the behaviour of the ACO-
PPMSO in solving the case system with and without heuristic. Overall, the ACO-PPMSO 
algorithm is found to explore the problem search space effectively by minimizing the 
objective function values (SSR, LVL and DurCuttot) for the four case studies investigated. 
This is illustrated by the decreasing trends of the IB-SSR and IB-DurCuttot curves in Figs. 4a 
and 4b. 
For all case studies, it is found that when the heuristic is used, the IB-SSR and IB-LVL 
obtained during the early stages of the optimisation runs were substantially lower (compare 
IB-SSR curves in Figs. 4a and 4b). In addition, it is observed that during the early stages of 
the ACO runs, fewer trial solutions that violated constraints were constructed when the 
heuristic was utilized (lower IB-LoadViotot, IB-ManViotot and IB-LoadResViotot). It is also 
found that the improvement in OFCs obtained when the heuristic is used for the modified 
21- and 22-unit case studies is partly attributed to a significant reduction in duration 
shortened. This is clearly shown in the comparison between Figs. 4a and 4b by the fact that 
the IB-DurCuttot curve is consistently lower throughout an ACO run when the heuristic 
formulation is used.  
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Heu-
ristic 

Local 
search 

Best OFC
($M) 

Average 
OFC ($M) 

Worst OFC 
($M) 

Std 
dev. 
($M) 

Average 
DurCuttot 

(wks) 

Average 
evaluationsa

Best parameter 
settings {m; ρ; τ0; β}b 

  
65.61 

[317.63%]
120.39 

[666.33%] 
209.05 

[1230.68%] 39.16 17.6 27,538 {300; 0.9; 0.01; 0} 

  
16.15 

[2.80%] 
24.42 

[55.44%] 
31.06 

[97.71%] 5.16 6.4 29,029 {500; 0.9; 0.01; 1} 

  
68.42 

[335.52%]
135.13 

[760.15%] 
219.07 

[1294.46%] 36.67 19.3 28,784 {300; 0.9; 0.01; 0} 

  
16.12 

[2.61%] 
26.87 

[71.04%] 
41.24 

[162.51%] 5.17 6.9 28,213 {500; 0.9; 0.01; 1} 
a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
bm: number of ants; (1- ρ): pheromone evaporation rate; τ0: initial pheromone trail; β: relative weight of heuristic in Eq. 7. 

Table 8. Results for the Modified 21-unit unit problem instance given by Elitist-Ant System 
(EAS) [deviation from best-known OFC of $15.71M] 
 

Heu-
ristic 

Local 
search 

Best OFC
($M) 

Average 
OFC ($M) 

Worst OFC 
($M) 

Std 
dev. 
($M) 

Average 
DurCuttot 

(wks) 

Average 
evaluationsc

Best parameter 
settings {m; ρ; pbest; β}d 

  
28.69 

[82.62%] 
61.32 

[290.32%] 
119.15 

[658.43%] 19.54 11.8 16,934 {20; 0.2; 0.2; 0} 

  
15.97 

[1.65%] 
19.69 

[25.33%] 
29.03 

[84.79%] 4.02 5.6 18,551 {50; 0.2; 0.05; 1} 

  
33.64 

[114.13%]
71.67 

[356.21%] 
132.10 

[740.87%] 24.64 12.6 24,898 {500; 0.1; 0.05; 0} 

  
15.71 
[0%] 

22.04 
[40.29%] 

29.66 
[88.80%] 4.86 6.1 23,713 {500; 0.7; 0.05; 1} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
dm: number of ants; (1- ρ): pheromone evaporation rate; pbest: refer to Eq. 21; β: relative weight of heuristic in Eq. 7. 

Table 9. Results for the Modified 21-unit problem instance given by Max-Min Ant System 
(MMAS) [deviation from best-known OFC of $15.71M] 

 

Heu-
ristic 

Local 
search 

Best OFC
($) 

Average 
OFC ($) 

Worst 
OFC ($) 

Std 
dev. 
($) 

Average 
DurCuttot 

(wks) 

Average 
evaluationsa

Best parameter settings 
{m; ρ; τ0; β}b 

  
2186.22 

[138.64%]
2797.85 

[205.40%]
4267.31 

[365.80%] 410.33 21.9 27,896 {300; 0.9; 0.01; 0} 

  1365.60 
[49.06%] 

1756.34 
[91.72%] 

2153.97 
[135.12%] 175.55 13.8 28,648 {500; 0.9; 0.01; 11} 

  
2331.92 

[154.54%]
2876.16 

[213.95%]
4357.14 

[375.61%] 501.14 23.2 26,187 {300; 0.9; 0.01; 0} 

  
1174.10 
[28.16%] 

1724.37 
[88.23%] 

2238.34 
[144.33%] 172.63 13.7 21,718 {300; 0.9; 0.01; 11} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
bm: number of ants; (1- ρ): pheromone evaporation rate; τ0: initial pheromone trail; β: relative weight of heuristic in Eq. 7. 

Table 10. Results for the Modified 22-unit unit problem instance given by Elitist-Ant System 
(EAS) [deviation from best-known OFC of $916.12] 
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Heu-
ristic 

Local 
search 

Best OFC
($) 

Average 
OFC ($) 

Worst 
OFC ($) 

Std 
dev. 
($) 

Average 
DurCuttot 

(wks) 

Average 
evaluations

Best parameter settings 
{m; ρ; pbest; β}d 

  
1439.33 
[57.11%] 

2076.43 
[126.65%]

3998.67 
[336.78%] 440.16 15.6 26,219 {300; 0.6; 0.2; 0} 

  
1008.13 
[10.04%] 

1489.54 
[62.59%] 

2017.44 
[120.22%] 280.45 12.1 23,329 {20; 0.3; 0.35; 11} 

  
1614.39 
[76.22%] 

2068.8 
[125.82%]

3936.71 
[329.72%] 425.87 15.0 20,767 {20; 0.3; 0.2; 0} 

  
1001.12 
[9.28%] 

1513.86 
[65.25%] 

2084.59 
[127.55%] 306.26 12.4 21,347 {50; 0.1; 0.35; 11} 

a Number of evaluations to reach the best solution in one run averaged over 50 runs with different random starting positions. 
dm: number of ants; (1- ρ): pheromone evaporation rate; pbest: refer to Eq. 21; β: relative weight of heuristic in Eq. 7. 

Table 11. Results for the Modified 22-unit unit problem instance given by Max-Min Ant 
System (MMAS)   [deviation from best-known OFC of $916.12] 

Stage A: Impact of heuristic 
Overall, the new heuristic formulation for applying ACO to PPMSO problems significantly 
improved the results obtained for all four case studies, with and without the use of a local 
search operator and for both ACO algorithms (using a Student’s t-test at a 95% significance 
level). It can be seen that when the heuristic was used, not only were the average OFCs 
improved, but the standard deviations of the OFCs were also significantly smaller for all 
case studies (Tables 4 to 11), indicating that use of the new heuristic formulation enables 
good solutions to be found consistently.  
In order to gain a better understanding of the searching behavior of the ACO algorithms in 
solving each of the four case studies with and without heuristic, the optimisation process of 
the ACO runs was examined. The investigation is facilitated by utilizing the following terms 
to describe a given ACO-PPMSO run:   
• Objective function values (SSR, LVL and DurCuttot) associated with iteration-best 

schedules (referred to as IB-SSR, IB-LVL and IB-DurCuttot hereafter) 
• Violation of various constraints (demand and personpower shortfall) associated with 

iteration-best schedules (referred to as IB-LoadViotot, IB-ManViotot and IB-LoadResViotot 
hereafter)   

The optimization process of only one ACO-PPMSO run for the modified 21-unit case system 
is used for discussion purposes (Fig. 4). Figs. 4a and 4b compare the behaviour of the ACO-
PPMSO in solving the case system with and without heuristic. Overall, the ACO-PPMSO 
algorithm is found to explore the problem search space effectively by minimizing the 
objective function values (SSR, LVL and DurCuttot) for the four case studies investigated. 
This is illustrated by the decreasing trends of the IB-SSR and IB-DurCuttot curves in Figs. 4a 
and 4b. 
For all case studies, it is found that when the heuristic is used, the IB-SSR and IB-LVL 
obtained during the early stages of the optimisation runs were substantially lower (compare 
IB-SSR curves in Figs. 4a and 4b). In addition, it is observed that during the early stages of 
the ACO runs, fewer trial solutions that violated constraints were constructed when the 
heuristic was utilized (lower IB-LoadViotot, IB-ManViotot and IB-LoadResViotot). It is also 
found that the improvement in OFCs obtained when the heuristic is used for the modified 
21- and 22-unit case studies is partly attributed to a significant reduction in duration 
shortened. This is clearly shown in the comparison between Figs. 4a and 4b by the fact that 
the IB-DurCuttot curve is consistently lower throughout an ACO run when the heuristic 
formulation is used.  



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

312 

2

4

6

8

10

12

14

16

18

20

1 201 401 601 801 1001 1201 1401
Iteration

0

10

20

30

40

50

60

D
ur

at
io

n 
(w

ee
ks

)

IB-SSR

IB-totalcutdurIB-DurCuttot

IB-SSR

 
(a) Without heuristic‡ 
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(b) With heuristic‡‡ 

‡ Parameter settings used shown in the first row, last column of Table 9 (random number seed = 655) 
‡‡ Parameter settings used shown in the second row, last column of Table 9 (random number seed = 655) 
IB-SSR: Sum of squares of reserve associated with iteration-best schedules;  
IB-DurCuttot: Total reduction in outage duration due to shortening and deferral associated with iteration-best 
schedules 
Figure 4. Modified 21-unit case system - Comparison of the SSR- and total duration 
shortened values associated with iteration-best schedules during optimisation run (Best-
known SSR = 2.62 x 106 MW2 with 5-week deferral) 
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In view of the experimental results, the heuristic formulation is useful for ACO-PPMSO in 
three ways. Firstly, as the distribution of pheromone intensity within the search space of a 
problem is uniform at the beginning of an ACO run (assuming a single initial pheromone 
value is used), the optimisation process initially resembles a random search. During this 
period, the heuristic formulation can guide the algorithm to search in regions where feasible 
solutions are located with a higher probability. In this way, the number of infeasible 
solutions being constructed and rewarded with pheromone can be reduced. Secondly, even 
if a heuristic is not essential for constructing feasible/near feasible trial solutions (as is the 
case when the PPMSO problem is not highly constrained), the heuristic can assist with 
constructing trial solutions that consist of fewer overlapping tasks. In this way, the 
generation capacities throughout the planning horizon associated with trial maintenance 
schedules being constructed are more evenly distributed, which is one of the common 
objectives of PPMSO problems. Thirdly, when shortening and deferral options are allowed, 
use of the heuristic increases the probabilities that longer outage durations are chosen 
throughout an entire ACO run. This is particularly useful when shortening and deferral 
options are frequently chosen at random during the early stage of an ACO run. 
In relation to the two ACO algorithms investigated (EAS and MMAS), the results obtained 
indicate that the heuristic has a significant positive impact on both EAS and MMAS. This is 
probably due to the ability of heuristic information to identify regions of the search space 
where high-quality initial solutions lie, reducing the number of low-quality trial solutions 
being reinforced at the beginning of an optimisation run. In addition, the results indicate 
that the ACO-PPMSO heuristic has a bigger positive impact on EAS compared to MMAS. 
EAS tends to stagnate after a number of iterations, which increases the impact of the quality 
of the initial solutions. The importance of the regions where the ants initially search using 
EAS is also highlighted by the relatively larger number of ants found for the best parameter 
settings than those for MMAS (Tables 4, 6, 8 and 10), implying that a search with more ants 
in each iteration (resulting in a smaller number of iterations during an optimisation run, as 
the total number of function evaluations is fixed) works better than one with fewer ants 
(resulting in a larger number of iterations during an optimisation run, as the total number of 
function evaluations is fixed). On the other hand, relatively smaller ant populations are 
found to perform best for MMAS (Tables 5, 7, 9 and 11), which might be attributed to the 
continuous exploration during an MMAS run (Fig. 4b) as a result of the lower and upper 
bound for pheromone values. It is interesting to observe that despite the expected overall 
downward trends throughout an optimisation run, the IB-SSR and IB-LVL curves spike 
occasionally throughout a run when a small population of ants is used (Fig. 4b). This 
phenomenon is found to be caused by the choice of non-best solutions after a short 
convergence (stagnation in OFC), which altered the distribution of pheromone over the 
problem search space. It should be noted that the possibility of having an iteration-best 
solution that is not the best-so-far solution is higher when a smaller population of ants is used. 
B. Impact of local search 
The optimisation results obtained by coupling the PPMSO-2-opt local search operator with the 
ACO algorithms investigated (Stage B of the testing procedure in Fig. 3) are tabulated in Tables 4 
to 11. The unpaired Student’s t-test was used to check the significance of the impact of the local 
search operator in solving the four case studies with and without heuristic (Tables 12 and 13).  
Overall, the impact of the PPMSO-2-opt local search operator ranges from being 
insignificant, to significantly improving or degrading the performance of the ACO 
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(b) With heuristic‡‡ 

‡ Parameter settings used shown in the first row, last column of Table 9 (random number seed = 655) 
‡‡ Parameter settings used shown in the second row, last column of Table 9 (random number seed = 655) 
IB-SSR: Sum of squares of reserve associated with iteration-best schedules;  
IB-DurCuttot: Total reduction in outage duration due to shortening and deferral associated with iteration-best 
schedules 
Figure 4. Modified 21-unit case system - Comparison of the SSR- and total duration 
shortened values associated with iteration-best schedules during optimisation run (Best-
known SSR = 2.62 x 106 MW2 with 5-week deferral) 
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In view of the experimental results, the heuristic formulation is useful for ACO-PPMSO in 
three ways. Firstly, as the distribution of pheromone intensity within the search space of a 
problem is uniform at the beginning of an ACO run (assuming a single initial pheromone 
value is used), the optimisation process initially resembles a random search. During this 
period, the heuristic formulation can guide the algorithm to search in regions where feasible 
solutions are located with a higher probability. In this way, the number of infeasible 
solutions being constructed and rewarded with pheromone can be reduced. Secondly, even 
if a heuristic is not essential for constructing feasible/near feasible trial solutions (as is the 
case when the PPMSO problem is not highly constrained), the heuristic can assist with 
constructing trial solutions that consist of fewer overlapping tasks. In this way, the 
generation capacities throughout the planning horizon associated with trial maintenance 
schedules being constructed are more evenly distributed, which is one of the common 
objectives of PPMSO problems. Thirdly, when shortening and deferral options are allowed, 
use of the heuristic increases the probabilities that longer outage durations are chosen 
throughout an entire ACO run. This is particularly useful when shortening and deferral 
options are frequently chosen at random during the early stage of an ACO run. 
In relation to the two ACO algorithms investigated (EAS and MMAS), the results obtained 
indicate that the heuristic has a significant positive impact on both EAS and MMAS. This is 
probably due to the ability of heuristic information to identify regions of the search space 
where high-quality initial solutions lie, reducing the number of low-quality trial solutions 
being reinforced at the beginning of an optimisation run. In addition, the results indicate 
that the ACO-PPMSO heuristic has a bigger positive impact on EAS compared to MMAS. 
EAS tends to stagnate after a number of iterations, which increases the impact of the quality 
of the initial solutions. The importance of the regions where the ants initially search using 
EAS is also highlighted by the relatively larger number of ants found for the best parameter 
settings than those for MMAS (Tables 4, 6, 8 and 10), implying that a search with more ants 
in each iteration (resulting in a smaller number of iterations during an optimisation run, as 
the total number of function evaluations is fixed) works better than one with fewer ants 
(resulting in a larger number of iterations during an optimisation run, as the total number of 
function evaluations is fixed). On the other hand, relatively smaller ant populations are 
found to perform best for MMAS (Tables 5, 7, 9 and 11), which might be attributed to the 
continuous exploration during an MMAS run (Fig. 4b) as a result of the lower and upper 
bound for pheromone values. It is interesting to observe that despite the expected overall 
downward trends throughout an optimisation run, the IB-SSR and IB-LVL curves spike 
occasionally throughout a run when a small population of ants is used (Fig. 4b). This 
phenomenon is found to be caused by the choice of non-best solutions after a short 
convergence (stagnation in OFC), which altered the distribution of pheromone over the 
problem search space. It should be noted that the possibility of having an iteration-best 
solution that is not the best-so-far solution is higher when a smaller population of ants is used. 
B. Impact of local search 
The optimisation results obtained by coupling the PPMSO-2-opt local search operator with the 
ACO algorithms investigated (Stage B of the testing procedure in Fig. 3) are tabulated in Tables 4 
to 11. The unpaired Student’s t-test was used to check the significance of the impact of the local 
search operator in solving the four case studies with and without heuristic (Tables 12 and 13).  
Overall, the impact of the PPMSO-2-opt local search operator ranges from being 
insignificant, to significantly improving or degrading the performance of the ACO 
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algorithm investigated. While having a positive impact on solving the original 22-unit case 
study, regardless of which of the two ACO algorithms was used, the PPMSO-2-opt local 
search operator was found to improve only the performance of EAS when the heuristic was 
not used for solving the original 21-unit case study. As for the modified case studies, the 
performance of ACO in solving the modified 21-unit case study was reduced significantly 
when the PPMSO-2-opt local search operator was adopted, while the impact of the local 
search was not significant when applied to the modified 22-unit case study. 

 21-unit system 22-unit system Modified 21-unit system Modified 22-unit system 
Heuristic EAS MMAS EAS MMAS EAS MMAS EAS MMAS 

 + NIL + + − − NIL NIL 

 NIL NIL + + − − NIL NIL 
Notation: 
+: Significant positive impact; −: Significant negative impact; NIL: Insignificant impact. 

Table 12. Impact of PPMSO-2-opt local search operator with and without heuristic 

From the results of the Stage B testing, it is interesting to observe that despite the similarity 
in the number of generating units for the 21- and 22-unit case study systems, the impact of 
the PPMSO-2-opt local search algorithm on the optimisation results of these case studies was 
quite different, which is likely to be caused by the difference in the problem characteristics 
of the two systems.  
In order to better understand the results obtained, a series of tests were conducted to 
investigate the mechanism of PPMSO-2-opt in detail. The satisfaction of constraints 
associated with iteration-best solutions (target solutions) used for the local search operation 
and the % of infeasible local solutions generated when using MMAS were examined. It 
should be noted that the results were obtained using the proposed heuristic formulation. 
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Figure 5. Infeasible local solutions obtained using PPMSO-2-opt (original 21-unit case study 
using MMAS) 
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It can be seen that for the original 21-unit case study (Fig. 5), a large number of infeasible 
local solutions were generated by PPMSO-2-opt in every iteration, even with feasible 
iteration-best solutions (target maintenance schedules). A local solution generated by simply 
exchanging the maintenance start time of two randomly chosen generating units without 
any guidelines is likely to result in infeasible solutions in such a highly constrained search 
space. As a result, PPMSO-2-opt seems to have an insignificant or even detrimental impact 
when coupled with ACO for solving the aforementioned case studies. This is particularly 
evident for the modified 21-unit case study, where as many as 50% to 80% of the local 
solutions generated by PPMSO-2-opt in every iteration are infeasible with regard to both 
load and personpower constraints, which is responsible for the significant decrease in ACO 
performance. These results suggest that the PPMSO-2-opt local search operator is not well 
suited to problems with highly constrained search spaces.  
On the other hand, the local solutions generated by PPMSO-2-opt in solving the original 22-
unit case study are all feasible, as the iteration-best solutions are also feasible.  In fact, this is 
the only case study for which PPMSO-2-opt is found to be effective in improving the 
optimisation ability of ACO. Compared to the other three case systems, the original 22-unit 
case system is less constrained. Therefore, the results obtained indicate that PPMSO-2-opt 
can be useful for solving problems that are not highly constrained. 
C. Overall performance of ACO-PPMSO 
Original 21-unit and 22-unit case studies 
By using the ACO-PPMSO algorithm, a new best-known objective value has been found for 
both the original 21-unit case study (SSR = 13.66 x 106 MW2) and the original 22-unit case 
study (LVL = 52.06 MW). 
A comparison of the results obtained by ACO-PPMSO with those obtained by various 
metaheuristics in other studies for the 21-unit case study, including those by Aldridge et al. 
(1999), who used a simple genetic algorithm (GA), a generational  GA (GNGA) and a steady 
state GA (SSGA), and Dahal et al. (2000), who applied Simulated Annealing (SA) and an 
Inoculated GA to this problem, is shown in Fig. 6. As mentioned previously, the number of 
evaluations (trial solutions) allowed in the ACO runs and those of the other metaheuristics 
was identical. In particular, the best and average results of the metaheuristics were 
compared. While the best and average results given by the simple GA, SSGA, GNGA, 
inoculated GA and SA were obtained by 10 runs with different starting positions (Aldridge 
et al., 1999; Dahal et al., 1999; Dahal et al., 2000), those of EAS and MMAS were obtained 
using 50 runs.  
It can be seen that the EAS and MMAS algorithms have outperformed the algorithms that 
have been applied to this case study previously. It should be noted that a new best-found 
solution (SSR = 13.66 x 106 MW2) for the 21-unit case study has been found by EAS and 
MMAS using the new ACO-PPMSO formulation. In addition, it can be seen that the 
differences between the average and best results of the ACO algorithms are much smaller 
than those for other metaheuristics (Fig. 6), which indicates a consistent performance of the 
ACO-PPMSO formulation.  
Among the metaheuristics previously used for solving the 21-unit case study, the inoculated 
GA, where the initial population is generated using a heuristic that ranks the generating 
units in order of decreasing capacity, was found to perform best in terms of the average 
results obtained. This highlights the potential benefit of a heuristic in solving PPMSO 
problems. 
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Figure 5. Infeasible local solutions obtained using PPMSO-2-opt (original 21-unit case study 
using MMAS) 
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have been applied to this case study previously. It should be noted that a new best-found 
solution (SSR = 13.66 x 106 MW2) for the 21-unit case study has been found by EAS and 
MMAS using the new ACO-PPMSO formulation. In addition, it can be seen that the 
differences between the average and best results of the ACO algorithms are much smaller 
than those for other metaheuristics (Fig. 6), which indicates a consistent performance of the 
ACO-PPMSO formulation.  
Among the metaheuristics previously used for solving the 21-unit case study, the inoculated 
GA, where the initial population is generated using a heuristic that ranks the generating 
units in order of decreasing capacity, was found to perform best in terms of the average 
results obtained. This highlights the potential benefit of a heuristic in solving PPMSO 
problems. 
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Figure 6. Comparison between results obtained using other optimisation methods (Aldridge 
et al., 1999; Dahal et al., 1999; Dahal et al., 2000) and the ACO algorithms 

As mentioned previously, a new best-found solution (SSR = 13.66 x 106 MW2) has been 
found by the ACO-PPMSO formulation proposed in this chapter. An examination of the 
solutions obtained for the 21-unit case study found that different maintenance schedules are 
associated with the new best-found SSR solution. In other words, there is more than one 
optimal solution in the problem search space.  

In Fig. 7, the reserve level across the planning horizon associated with the best-known 
schedule found by ACO-PPMSO for the original 22-unit case study is compared with those 
obtained by implicit enumeration (Escudero et al., 1980) and tabu search (El-Amin et al., 
2000). It can be seen that the reserve level given by the ACO schedule is more evenly spread 
out (summed deviation of generation reserve from the average reserve, LVL = 52.06 MW) 
than those obtained with implicit enumeration (LVL = 118.81 MW) and tabu search (LVL = 
256.93 MW). It should be noted that due to insufficient information about the optimum 
solution in El-Amin et al. (2000), the LVL value of tabu search shown in Fig. 7 was calculated 
using the best available published information. 
Modified 21-unit and 22-unit case studies 
As the modified versions of the 21- and 22-unit case studies have been introduced in this 
chapter to test the developed ACO-PPMSO formulation, there are no previous results 
available for comparison purposes. As can be seen in Tables 7 to 10, the optimized 
maintenance schedules of both the modified 21- and 22-unit case studies include the 
shortening and/or deferral of maintenance tasks (average duration shortened/deferred > 0). 
The best-found objective function costs (OFCs) found for the modified 21-unit case study is 
$15.71M and $916.12 for the modified 22-unit case study. In the maintenance schedules 
associated with the best-found OFC for the modified 21-unit case study, the maintenance 
tasks for generating units 11 and 21 are deferred, while all other tasks are carried out as 
normal. For the modified 22-unit case study, maintenance tasks for generating units 10, 16 
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and 17 are shortened by 2, 4 and 2 weeks, respectively. It should be noted that all constraints 
are satisfied by the best-found schedules. 
The results for the modified versions of the 21-unit and 22-unit case studies indicate that the 
ACO-PPMSO formulation introduced in this chapter is able to identify maintenance 
schedules that satisfy hard system constraints (eg. system demands) by shortening and 
deferring maintenance tasks. More importantly, the shortening and deferral options were 
only used if necessary, as only a few, but not all, maintenance tasks were 
shortened/deferred. 
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Figure 7. Comparison of reserve levels obtained using ACO, implicit enumeration (Escudero 
et al., 1980) and tabu search (El-Amin et al., 2000) 

5. Summary and Conclusions 
In this chapter, a formulation for applying Ant Colony Optimization (ACO) to power plant 
maintenance scheduling optimization (PPMSO) has been developed and successfully tested 
using four case studies (original and modified versions of two benchmark case studies from 
the literature). In particular, the performance of the heuristic formulation developed, the 
two local search algorithms introduced and the overall utility of the ACO-PPMSO 
formulation were investigated. The results obtained have shown that the heuristic 
formulation improves the performance of the ACO-PPMSO algorithm significantly when 
applied to the four case studies investigated. It was found that while the PPMSO-2-opt local 
search operator seems to work well for unconstrained problems, it is not suitable for highly-
constrained PPMSO problems. Lastly, the results obtained by ACO-PPMSO for the two 
original case studies were better than those obtained by other optimisation methods, such as 
various genetic algorithm (GAs) formulations and simulated annealing (SA). For the 21-unit 
and 22-unit case studies, a new optimal solution has been found by the ACO-PPMSO 
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As mentioned previously, a new best-found solution (SSR = 13.66 x 106 MW2) has been 
found by the ACO-PPMSO formulation proposed in this chapter. An examination of the 
solutions obtained for the 21-unit case study found that different maintenance schedules are 
associated with the new best-found SSR solution. In other words, there is more than one 
optimal solution in the problem search space.  

In Fig. 7, the reserve level across the planning horizon associated with the best-known 
schedule found by ACO-PPMSO for the original 22-unit case study is compared with those 
obtained by implicit enumeration (Escudero et al., 1980) and tabu search (El-Amin et al., 
2000). It can be seen that the reserve level given by the ACO schedule is more evenly spread 
out (summed deviation of generation reserve from the average reserve, LVL = 52.06 MW) 
than those obtained with implicit enumeration (LVL = 118.81 MW) and tabu search (LVL = 
256.93 MW). It should be noted that due to insufficient information about the optimum 
solution in El-Amin et al. (2000), the LVL value of tabu search shown in Fig. 7 was calculated 
using the best available published information. 
Modified 21-unit and 22-unit case studies 
As the modified versions of the 21- and 22-unit case studies have been introduced in this 
chapter to test the developed ACO-PPMSO formulation, there are no previous results 
available for comparison purposes. As can be seen in Tables 7 to 10, the optimized 
maintenance schedules of both the modified 21- and 22-unit case studies include the 
shortening and/or deferral of maintenance tasks (average duration shortened/deferred > 0). 
The best-found objective function costs (OFCs) found for the modified 21-unit case study is 
$15.71M and $916.12 for the modified 22-unit case study. In the maintenance schedules 
associated with the best-found OFC for the modified 21-unit case study, the maintenance 
tasks for generating units 11 and 21 are deferred, while all other tasks are carried out as 
normal. For the modified 22-unit case study, maintenance tasks for generating units 10, 16 
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and 17 are shortened by 2, 4 and 2 weeks, respectively. It should be noted that all constraints 
are satisfied by the best-found schedules. 
The results for the modified versions of the 21-unit and 22-unit case studies indicate that the 
ACO-PPMSO formulation introduced in this chapter is able to identify maintenance 
schedules that satisfy hard system constraints (eg. system demands) by shortening and 
deferring maintenance tasks. More importantly, the shortening and deferral options were 
only used if necessary, as only a few, but not all, maintenance tasks were 
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5. Summary and Conclusions 
In this chapter, a formulation for applying Ant Colony Optimization (ACO) to power plant 
maintenance scheduling optimization (PPMSO) has been developed and successfully tested 
using four case studies (original and modified versions of two benchmark case studies from 
the literature). In particular, the performance of the heuristic formulation developed, the 
two local search algorithms introduced and the overall utility of the ACO-PPMSO 
formulation were investigated. The results obtained have shown that the heuristic 
formulation improves the performance of the ACO-PPMSO algorithm significantly when 
applied to the four case studies investigated. It was found that while the PPMSO-2-opt local 
search operator seems to work well for unconstrained problems, it is not suitable for highly-
constrained PPMSO problems. Lastly, the results obtained by ACO-PPMSO for the two 
original case studies were better than those obtained by other optimisation methods, such as 
various genetic algorithm (GAs) formulations and simulated annealing (SA). For the 21-unit 
and 22-unit case studies, a new optimal solution has been found by the ACO-PPMSO 
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formulation. In addition, the results given by ACO-PPMSO were more consistent compared 
with those obtained using other metaheuristics previously applied to the two benchmark 
case studies. The maintenance schedules found for the modified case studies have also been 
examined and it was found that the ACO-PPMSO formulation is able to meet hard system 
constraints by shortening and deferring maintenance. The results of experiments carried out 
using the original and modified versions of the 21-unit and 22-unit case studies indicate that 
the ACO-PPMSO formulation presented in this chapter has potential for solving real-world 
PPMSO problems.  
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1. Introduction  
Tolerance assignment in product design and process planning (machining) affects both the 
quality and the cost of the overall product cycle.  It is a crucial issue to determine how much 
the tolerance should be relaxed during the assignment process, since a tight tolerance 
implies a high manufacturing cost and a loose tolerance results in low manufacturing cost. 
Hence, during tolerance assignment, a balance between a reduction in quality loss and a 
reduction in manufacturing cost must be considered.  Traditionally, in the two stages 
(product design and process planning) tolerances (Ngoi & Teck, 1997) are often conducted 
separately. This is probably due to the fact that they deal with different type of tolerances. 
Product design is concerned with related component tolerances, whereas process designing 
focus on the process tolerance according to the process specification. However, this 
separated approach in tolerance design always suffers from several drawbacks. First of all, it 
is difficult to obtain optimal design tolerance because the designer can not determine the 
exact manufacturing cost without the specified manufacturing information. Therefore, the 
manufacturing engineer must frequently communicate with the designer to adjust the 
design tolerances and obtain the appropriate process planning. However, this task is time-
consuming and painstaking. In addition, design tolerances are further distributed for 
machining tolerances. Nevertheless, the machining tolerances commonly can not occupy the 
design tolerances space. Thus the final tolerance distribution is suboptimal and accordingly, 
the actual cost will be inevitably higher than the desired cost. Moreover, due to the specified 
procedure, the manufacturing engineer is not informed the design details and does not have 
the overview of the whole product.  
To overcome the above drawbacks, we need to develop a simultaneous tolerance design. 
Zhang (Zhang, 1996) presented the concept of simultaneous tolerance, proposed a general 
mathematical model for tolerance optimization in concurrent engineering context, and then 
introduced a new concept of interim tolerances that help determine appropriate 
manufacturing processes. Singh (Singh et al., 2003) utilized genetic algorithms and penalty 
function approach to solve the problem of simultaneous selection of design and 
manufacturing tolerances based on the minimization of the total manufacturing cost. Gao 
and Huang (Gao & Huang, 2003) utilized a nonlinear programming model for optimal 
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process tolerance simultaneously based on the objective of total manufacturing cost with 
different weighting factors. (Huang et al., 2006) proposed a robust optimum tolerance 
design method in a concurrent environment to balance the conflict design targets between 
manufacturing tolerances and product satisfaction. A nonlinear optimal model was also 
established to minimize the summation of manufacturing costs and product quality loss. 
Doubtlessly, the tremendous achievement has been obtained in the simultaneous tolerance 
optimization in the concurrent engineering context.  However, this problem is characterized 
by nonlinear objective, multiple independent variables, and tight constraints which will turn 
the search space into a noisy solution surface. Even worse, most of the real world problems 
become more and more complex with the higher requirement of accuracy and the critical 
function of product. Traditional operational research algorithms are successful in locating 
the optimal solution, but they are usually problem dependent and lack of generality. Some 
modern heuristic methods are relatively more robust and flexible to solve these complex 
problems, but they may risk being trapped to a local optimum and are usually slow in 
convergence and require heavy computational cost. In view of the above problems and the 
past successful applications of PSO in nonlinear optimization, maybe PSO is a potential 
remedy to these drawbacks.  
PSO is a novel population based heuristic, which utilizes the swarm intelligence generated 
by the cooperation and competition between the particles in a swarm (Kennedy & Eberhart, 
1995, Shi & Eberhart, 1998). Compared with evolutionary algorithms (genetic algorithm, 
evolutionary programming, evolutionary strategy, and genetic programming), PSO still 
maintains the population based global search strategy but adopts the velocity-displacement 
model with more efficient information flow and easier implementing procedures. It has 
been used successfully to address problems such as complex nonlinear function 
optimization (Shi & Eberhart, 1999), task assignment (Salman & Ahmad, 2002) and optimum 
design of PID controller (Gaing, 2004). (Noorul et al., 2006) utilized PSO to achieve the 
multiple objective of minimum quality loss function and manufacturing cost for the 
machining tolerance allocation of the over running clutch assembly. The presented method 
outperforms other methods such as GP and GA, but it considered only two dimensional 
tolerance allocation of clutch assembly consisting of three components. Besides, the 
constraints are too loose and can not satisfy the practical requirement. This paper attempts 
to solve more complex tolerance assignment problems by PSO with a sophisticated 
constraints handling strategy. 
This paper is organized as follows. In section 2, the problem of simultaneous design was 
described. The basic PSO algorithm was reviewed and the new sophisticated constraints 
handling strategy corresponding to PSO was presented in Section 3. Section 4 gave an 
example and the evaluation of the proposed technique is carried out on the example. Some 
conclusions and further discussion are offered in Section 5. 

2. Simultaneous design 
As mentioned before, design processes are commonly divided into two main stages: product 
design and process design. Dimensional tolerance analysis is very important in both 
product and process design. In product design stage, the functional and assembly tolerances 
should be appropriately distributed among the constituent dimensions, this kind of 
tolerances are called design tolerances. In the meantime, each design tolerance for the single 
dimension should be subsequently refined to satisfy the requirement for process plans in 
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machining a part. Such tolerances for the specified machining operation are called 
manufacturing tolerance. However, the traditional process of design and machining 
tolerance allocations based on experiences can not guarantee optimum tolerance for 
minimum production cost. This work aimed at selecting the optimal tolerances sequences to 
achieve the minimum manufacturing cost considering the two types of tolerances 
simultaneously by a powerful global optimization tool. This problem is formulated as 
follows. 

2.1 Objective Function 
We take the manufacturing cost as the objective function. Generally, the processing of 
mechanical product is conducted in a series of process plans. Different process consumes 
different expense because different process is associated with different machining methods. 
Therefore, the cost of manufacture of the product is the summation of all operation cost. The 
machining operation can be modeled with many mathematical models for the cost-tolerance 
relationship. In this work, a modified form of the exponential cost (Singh et al., 2003) 
function will be adopted. The manufacturing cost of the machining tolerance is formulated 
as equation (1). 
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operation associated with the ith dimension respectively. n is the number of the dimensions 
and mi is  number of operations corresponding to dimension i. The constants a0, a1, a2, a3 
sever as control parameters.  

2.2 Constraints 
Apart from the constraint of economical manufacturing ranges (process limits), the above 
objective is subjected to both the design and manufacturing tolerances. 
(1) The design tolerances are those on the principal design dimensions (usually assembly 
dimensions) that relate to the functionality of the components. The principal design usually 
in turn relies on the other related dimensions which form a dimension chain. This results in 
a set of constraints on the principal design tolerances that should be suit for the optimal 
solution of the tolerance assignment. The aim of these constraints is to guarantee that the 
synthesized tolerance in the dimension chain does not exceed the desired tolerance of the 
principal dimension. There are many approaches available to formulate the synthesized 
tolerance.  They are different tradeoff between the tolerances and the manufacturing cost. 
Four commonly used approaches (Singh et al., 2003) were adopted in this work. 
(2) Manufacturing tolerances constraints are equivalent to stock allowance constraints. Stock 
allowance is associated with the stock removal, the layer to be removed from the surface in 
the machining process. Due to the tolerances of the dimensions, the stock removal is also not 
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process tolerance simultaneously based on the objective of total manufacturing cost with 
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problems, but they may risk being trapped to a local optimum and are usually slow in 
convergence and require heavy computational cost. In view of the above problems and the 
past successful applications of PSO in nonlinear optimization, maybe PSO is a potential 
remedy to these drawbacks.  
PSO is a novel population based heuristic, which utilizes the swarm intelligence generated 
by the cooperation and competition between the particles in a swarm (Kennedy & Eberhart, 
1995, Shi & Eberhart, 1998). Compared with evolutionary algorithms (genetic algorithm, 
evolutionary programming, evolutionary strategy, and genetic programming), PSO still 
maintains the population based global search strategy but adopts the velocity-displacement 
model with more efficient information flow and easier implementing procedures. It has 
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machining tolerance allocation of the over running clutch assembly. The presented method 
outperforms other methods such as GP and GA, but it considered only two dimensional 
tolerance allocation of clutch assembly consisting of three components. Besides, the 
constraints are too loose and can not satisfy the practical requirement. This paper attempts 
to solve more complex tolerance assignment problems by PSO with a sophisticated 
constraints handling strategy. 
This paper is organized as follows. In section 2, the problem of simultaneous design was 
described. The basic PSO algorithm was reviewed and the new sophisticated constraints 
handling strategy corresponding to PSO was presented in Section 3. Section 4 gave an 
example and the evaluation of the proposed technique is carried out on the example. Some 
conclusions and further discussion are offered in Section 5. 

2. Simultaneous design 
As mentioned before, design processes are commonly divided into two main stages: product 
design and process design. Dimensional tolerance analysis is very important in both 
product and process design. In product design stage, the functional and assembly tolerances 
should be appropriately distributed among the constituent dimensions, this kind of 
tolerances are called design tolerances. In the meantime, each design tolerance for the single 
dimension should be subsequently refined to satisfy the requirement for process plans in 
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fixed. This gives rise to another kind of tolerances, manufacturing tolerances, which can be 
formulated as follows: 
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)1( −jiδ are the machining tolerances of process j and j-1 for part i 

respectively.  is the difference between the nominal and the minimum machining 

allowances for machining process j. 
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3. Particle Swarm Optimization 
3.1 Background 
The investigation and analysis on the biologic colony demonstrated that intelligence 
generated from complex activities such as cooperation and competition among individuals 
can provide efficient solutions for specific optimization problems (Kennedy et al., 2001). 
Inspired by the social behavior of animals such as fish schooling and bird flocking, Kennedy 
and Eberhart designed the Particle Swarm Optimization (PSO) in 1995 (Kennedy & 
Eberhart, 1995).  
This method is a kind of evolutionary computing technology based on swarm intelligence. 
The basic idea of bird flocking can be depicted as follows: In a bird colony, each bird looks 
for its own food and in the meantime they cooperate with each other by sharing information 
among them. Therefore, each bird will explore next promising area by its own experience 
and experience from the others. Due to these attractive characteristics, i.e. memory and 
cooperation, PSO is widely applied in many research area and real-world engineering fields 
as a powerful optimization tool. 

3.2 Drawbacks of Traditional Constraints Handling Strategy 
Although PSO has successfully solved many research problems, the applications are mainly 
focused on unconstrained optimization problems. Some researchers attempt to solve the 
constrained problem by optimizing constrained problems indirectly using the traditional 
penalty function strategy.  
Penalty function is an effective auxiliary tool to deal with simple constrained problems and 
has been the most popular approach because of their simplicity and ease of implementation. 
Nevertheless, since the penalty function approach is generic and applicable to any type of 
constraint, their performance is not always satisfactory, especially when the problems 
become more difficult and the imposed constrained conditions become more complex, this 
method usually fails to generate the best solution, sometimes even cannot achieve a feasible 
one. The underlying limitation is that unfair competition exists in the population. Thus to 
deal with this problem, the dynamic and adaptive penalty coefficients should be introduced, 
which are highly dependent on the specific problem.  
When combined with PSO, the above problem is more severe in that PSO has an inherent 
mechanism based on memory information. This mechanism can produce high efficiency and 
effectiveness, but also low the flexibility for constrained optimization simultaneously. That 
is, the penalty factors cannot be changed during the iteration. In fact, the most difficult 
aspect of the penalty function strategy is to find appropriate penalty parameters to guide the 
search towards the constrained optimum. It is desirable to design a new constraint handling 
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scheme suit for PSO to effectively solve numerous engineering problems and maintain high 
efficiency. 

3.3 Constraints Handling Strategy for PSO 
Taking account of the memory mechanism of PSO and penalty strategy, a new constraint-
handling strategy is presented in Figure.1. 
The core characteristics of the proposed strategy can be described as follows:  
1. Corresponding to the memory mechanism of PSO, a special notation-Particle has been 

Feasible (PF) is introduced, which is used to record whether the current particle has 
ever satisfied all the constraint conditions. This notation preserves historical constrain 
status for each particle.  

2. Each particle updates its individual best and neighborhood best according to the 
historical constraint information PF, the current constrain status (Current particle is 
Feasible, CF) and the objective function with the penalty term. 

3. The algorithm selects the velocity updating strategy according to the historical 
information PF.  

4. When updating the personal and neighborhood best, the algorithm adopts the static 
penalty strategy instead of the dynamic and the adaptive ones to guarantee the fairness. 
The detailed procedure for updating the personal and neighborhood best values based 
on the above constrain handling strategy is presented in Figure.1. 

For Each Particle { 
   If PF＝true Then 

      If  ( ) ( )f x f pi i≤ and CF= true Then 

         ＝ip xi  

         If ( ) ( )f p f li i≤ Then 

           ＝   i
         End if 

p il

      End if 
   Else if PF＝false Then 

      If CF＝ true Then 

         ＝ip xi  

         PF＝true 

         If ( ) ( )f p f li i≤  Then 

            ＝  ip il
         End if 

      Else if ( ) ( )f x f pi i≤  Then 

         ＝ip xi  
      End if 
  End if 

Figure 1. The proposed constraint handling strategy for PSO 
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Special attention should be paid that the PSO algorithm based on the proposed constraint 
handling strategy does not have to guarantee the existence of feasible solutions in the initial 
population. With the randomized initial velocity, the PSO itself has the ability to explore the 
feasible space. In addition, the penalty function imposed on the violated particles also direct 
the search of PSO towards the feasible region. Therefore once feasible solutions emerge in 
the neighborhood population, the neighborhood best will be preserved in the subsequent 
iteration procedure. According to the velocity updating formula, each particle will obtain 
updating information from its neighborhood best particle, so the corresponding particle 
would return to the feasible solution space immediately. 

4. Design Example 
To validate the effectiveness of the new proposed strategy and illustrate the application of 
the concurrent design, the cylinder-piston assembly (Singh et al., 2003) (shown in Figure.2) 
is described. In this example, the piston diameter is 50.8mm, the cylinder bore diameter is 
50.856mm, and the clearance is 025.0056.0 ± mm. The machining process plan is: (1) for the 
piston: rough turning, finish turning, rough grinding, and finally finish grinding. (2) for the 
cylinder bore: drilling, boring, semi-finish boring, and finally grinding. The ranges of the 
principal machining tolerances for the piston and cylinder bore were the same as in the 
(Singh et al., 2003). 

cδ

pδ

Δ
 

Figure 2. Cylinder-piston assembly 

To formulate this problem, the objective and the constraints should be determined. In this 
problem, the principal tolerances are the design tolerances and the machining tolerances for 
the piston and the cylinder bore. So there are only two design tolerance parameters, for the 
piston diameter and cylinder bore diameter respectively. In the meantime, we have four 
machining tolerances for the piston diameter and four machining tolerances for the cylinder 
bore diameter. Therefore we have to consider totally 10 tolerances for the piston-cylinder 
bore assembly as follows. (1)The design tolerance parameters: d11δ  for the piston and  

d21δ  
for the cylinder bore. Four stack-up conditions (Singh et al., 2003) (worst case, RSS, Spotts’ 
modified method and estimated mean shift criteria) are employed to formulate the 
corresponding constraints. (2)The machining tolerance parameters are: 

ijδ  where i=1,2 and 

j=1,2,3,4. Here, the first subscript 1 refer to piston and 2 refer to the cylinder bore. The 
second subscript refers to the four machining processes. Usually, the process tolerance for 
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the final finishing operation is same as the design tolerance, i.e. 
1411 δδ =d

 and
2412 δδ =d

. Thus, 
there are actually 8 tolerance parameters to be considerd.  The machining tolerance 
constraints are formulated based on Equation 3. The manufacturing decision is the total 
machining cost and is determined by summing the machining cost-tolerance model as 
Equation 1 and Equation 2 subjecting to the constraints and ranges of the principal design 
and machining tolerances. The constant parameters are the same as in (Singh et al., 2003). 

GA PSO 

Piston Cylinder Cost Time (s) Piston Cylinder Min Ave Max Time 
(s) 

0.0162 0.0162 0.0163 0.0163 
0.0037 0.0038 0.0037 0.0037 
0.0013 0.0012 0.0013 0.0013 
0.0005 0.0005 

66.85 350 

0.0005 0.0005 

66.74 66.74 66.74 83 

 (a) Based on the worst case criteria 

GA PSO 

Piston Cylinder Cost Time (s) Piston Cylinder Min Ave Max Time 
(s) 

0.0161 0.0161 0.0161 0.0162 
0.0039 0.0038 0.0039 0.0038 
0.0011 0.0012 0.0011 0.0012 
0.0007 0.0006 

65.92 330 

0.0007 0.0006 

66.82 66.82 66.82 80 

(b) Based on the worst RSS criteria 

GA PSO 

Piston Cylinder Cost Time (s) Piston Cylinder Min Ave Max Time 
(s) 

0.0160 0.0159 0.0162 0.0162 
0.0038 0.0038 0.0038 0.0038 
0.0012 0.0012 0.0012 0.0012 
0.0006 0.0005 

66.23 330 

0.0006 0.0006 

65.93 65.93 65.93 78 

(c) Based on the worst Spotts' criteria 

GA PSO 

Piston Cylinder Cost Time (s) Piston Cylinder Min Ave Max Time 
(s) 

0.0162 0.0151 0.0161 0.0162 
0.0037 0.0038 0.0039 0.0038 
0.0012 0.0011 0.0011 0.0012 
0.0006 0.0006 

66.26 350 

0.0006 0.0006 

65.82 65.82 65.82 82 

(d) Based on the worst mean shift or Greenwood and Chase's unified criteria 

Table 1. Optimal tolerances allocation using GA and PSO 
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Special attention should be paid that the PSO algorithm based on the proposed constraint 
handling strategy does not have to guarantee the existence of feasible solutions in the initial 
population. With the randomized initial velocity, the PSO itself has the ability to explore the 
feasible space. In addition, the penalty function imposed on the violated particles also direct 
the search of PSO towards the feasible region. Therefore once feasible solutions emerge in 
the neighborhood population, the neighborhood best will be preserved in the subsequent 
iteration procedure. According to the velocity updating formula, each particle will obtain 
updating information from its neighborhood best particle, so the corresponding particle 
would return to the feasible solution space immediately. 

4. Design Example 
To validate the effectiveness of the new proposed strategy and illustrate the application of 
the concurrent design, the cylinder-piston assembly (Singh et al., 2003) (shown in Figure.2) 
is described. In this example, the piston diameter is 50.8mm, the cylinder bore diameter is 
50.856mm, and the clearance is 025.0056.0 ± mm. The machining process plan is: (1) for the 
piston: rough turning, finish turning, rough grinding, and finally finish grinding. (2) for the 
cylinder bore: drilling, boring, semi-finish boring, and finally grinding. The ranges of the 
principal machining tolerances for the piston and cylinder bore were the same as in the 
(Singh et al., 2003). 

cδ

pδ

Δ
 

Figure 2. Cylinder-piston assembly 

To formulate this problem, the objective and the constraints should be determined. In this 
problem, the principal tolerances are the design tolerances and the machining tolerances for 
the piston and the cylinder bore. So there are only two design tolerance parameters, for the 
piston diameter and cylinder bore diameter respectively. In the meantime, we have four 
machining tolerances for the piston diameter and four machining tolerances for the cylinder 
bore diameter. Therefore we have to consider totally 10 tolerances for the piston-cylinder 
bore assembly as follows. (1)The design tolerance parameters: d11δ  for the piston and  

d21δ  
for the cylinder bore. Four stack-up conditions (Singh et al., 2003) (worst case, RSS, Spotts’ 
modified method and estimated mean shift criteria) are employed to formulate the 
corresponding constraints. (2)The machining tolerance parameters are: 

ijδ  where i=1,2 and 

j=1,2,3,4. Here, the first subscript 1 refer to piston and 2 refer to the cylinder bore. The 
second subscript refers to the four machining processes. Usually, the process tolerance for 
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the final finishing operation is same as the design tolerance, i.e. 
1411 δδ =d

 and
2412 δδ =d

. Thus, 
there are actually 8 tolerance parameters to be considerd.  The machining tolerance 
constraints are formulated based on Equation 3. The manufacturing decision is the total 
machining cost and is determined by summing the machining cost-tolerance model as 
Equation 1 and Equation 2 subjecting to the constraints and ranges of the principal design 
and machining tolerances. The constant parameters are the same as in (Singh et al., 2003). 

GA PSO 

Piston Cylinder Cost Time (s) Piston Cylinder Min Ave Max Time 
(s) 

0.0162 0.0162 0.0163 0.0163 
0.0037 0.0038 0.0037 0.0037 
0.0013 0.0012 0.0013 0.0013 
0.0005 0.0005 

66.85 350 

0.0005 0.0005 

66.74 66.74 66.74 83 

 (a) Based on the worst case criteria 

GA PSO 
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(s) 

0.0161 0.0161 0.0161 0.0162 
0.0039 0.0038 0.0039 0.0038 
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65.92 330 

0.0007 0.0006 

66.82 66.82 66.82 80 

(b) Based on the worst RSS criteria 
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0.0160 0.0159 0.0162 0.0162 
0.0038 0.0038 0.0038 0.0038 
0.0012 0.0012 0.0012 0.0012 
0.0006 0.0005 

66.23 330 

0.0006 0.0006 

65.93 65.93 65.93 78 

(c) Based on the worst Spotts' criteria 

GA PSO 

Piston Cylinder Cost Time (s) Piston Cylinder Min Ave Max Time 
(s) 

0.0162 0.0151 0.0161 0.0162 
0.0037 0.0038 0.0039 0.0038 
0.0012 0.0011 0.0011 0.0012 
0.0006 0.0006 

66.26 350 

0.0006 0.0006 

65.82 65.82 65.82 82 

(d) Based on the worst mean shift or Greenwood and Chase's unified criteria 

Table 1. Optimal tolerances allocation using GA and PSO 
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Figure 3. Variation of the minimum, maximum and average of the manufacturing costs with 
progress of the algorithm (Greenwood and Chase's unified, or estimated mean shift criteria) 

 
Figure 4. Minimum manufacturing cost in a given number of generations 
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The proposed PSO algorithm with special constraints handling strategy was used to solve 
this problem. To validate its efficiency, this new approach was compared with GA in (Singh 
et al., 2003). In the optimization process of HPSO, we set the population size popsize=80, the 
maximum iteration number itermax=600. These two parameters are the same as those in GA. 
The other parameters are set as the common used method. The inertial weight decreases 
from 0.9 to 0.4 linearly and the accelerated parameters c1=c2=2.  
The optimal tolerance allocated using HPSO and GA based on the above four criteria and 
the corresponding CPU time are listed in Table 1. The computational results clearly 
indicate that HPSO outperformed GA in the terms of solution quality as well as 
computational expense. In addition, HPSO is able to find the optimum in each trial, that 
is, it has significantly larger probability of converging to optimal solutions. It is necessary 
to point out that one important merit of PSO algorithm is the high precision of the 
solutions. However, due to the limitation of display capacity of the tables, the entire data 
are rounded.  
The statistical results obtained under the Greenwood and Chase’s estimated mean shift 
criteria are demonstrated in Figure.3. Similar curves can be obtained for other cases. 
Improvement in the fitness function causes reduction in the assembly manufacturing cost 
and the amount of infeasibility in subsequent generations. Figure.3 reflects the general 
behavior about convergence of PSO algorithm. Sharply contrast with GA, the PSO algorithm 
has consistent convergence. The average and worst fitness are not fluctuant as in GA. 
Figure.4 demonstrates the minimum manufacturing cost under all four stack-up conditions. 
The different tendency and position of the curve reveals the difference of the fitness 
(manufacturing cost). 

5. Conclusion 
Tolerance assignment is very important  in product design and machining. The conventional 
sequentially tolerance allocation suffers from several drawbacks. Therefore, a simultaneous 
tolerance assignment approach is adopted to overcome these drawbacks. However, the 
optimization task is usually difficult to tackle due to the nonlinear, multi-variable and high 
constrained characteristics. In trying to solve such constrained optimization problem, 
penalty function based methods have been the most popular approach. However, since the 
penalty function approach is generic and applicable to any type of constraint, their 
performance is not always satisfactory and consistent. In view of the memory characteristics 
of PSO, a new constraints handling strategy suit for PSO is designed. This new strategy can 
adequately utilize the historical information in PSO algorithm. The application on a 
cylinder-piston assembly example demonstrates its high efficiency and effectiveness. 
However, when we attempt to extend the proposed approach to the constrained 
optimization with large number of complex equality constraints, subtle drawbacks emerged, 
as the constrained range is so narrow that the equality constraints are hard to satisfy. This 
problem reveals the new research direction, which is the effective equality constraint 
handling strategy desirable to develop for PSO based nonlinear programming. Furthermore, 
powerful local search methods should be introduced to combine with PSO to improve the 
ability of refined search. In view of its successful application in the above problems 
especially those engineering ones, PSO can be considered as a general nonlinear constrained 
optimization tool, and thus could be applied to more engineering optimization problems 
that can be modeled as nonlinear programming problems. 
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performance is not always satisfactory and consistent. In view of the memory characteristics 
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adequately utilize the historical information in PSO algorithm. The application on a 
cylinder-piston assembly example demonstrates its high efficiency and effectiveness. 
However, when we attempt to extend the proposed approach to the constrained 
optimization with large number of complex equality constraints, subtle drawbacks emerged, 
as the constrained range is so narrow that the equality constraints are hard to satisfy. This 
problem reveals the new research direction, which is the effective equality constraint 
handling strategy desirable to develop for PSO based nonlinear programming. Furthermore, 
powerful local search methods should be introduced to combine with PSO to improve the 
ability of refined search. In view of its successful application in the above problems 
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1. Introduction  
Due to increased competition, the manufacturers are brought to quickly respond to the 
needs of customers for on-time delivery of high quality products. Many studies have been 
made to realize these objectives such as he studies on the facility layout problem (FLP). 
It is to find a good configuration of the machines, equipments or other resources in a given 
facility in order to optimize the production flows while minimizing the total cost. The FLP 
arises in many industry cases, such as facility reorganization, construction of new 
production units, or equipment assignment. 
To solve this problem, we develop an ant colony optimization algorithm combined with a 
local search method. This chapter presents the algorithm, its performance evaluation et 
application to an industrial case. 
The remainder of this chapter is organised as follows: In section 2, the layout problem is 
described. In section 3, we present the general framework of the ACO algorithm and its  
enhancement by guided local search. Computational results on the performance evaluation 
of the algorithm using a set of benchmark instances are presented in section 4, and the 
application of the algorithm to an industrial case is reported in section 5. In section 6, we 
conclude this chapter with some remarks. 

2. The layout problem 
The layout problem is commonly met in the industry. A full description of the problem can 
be found in (Kusiak & Heragu, 1987). Layout problem is known to be NP-Hard (Sahni & 
Gonzales, 1976).  
There are many cases where FLP is considered in facility reorganization, construction of 
new production units, or equipment assignment. Layout problem could be also found in 
many classical and theoretical studies. However, only few layout industrial cases are treated 
in the literature. Hicks (2004), developed a genetic algorithm for minimizing material 
movement in a manufacturing cell with application to practical problems related to the 
capital good industry. Lee et al. (2002) proposed a genetic algorithm for solving multi-floor 
facility layout problems with the facility’s inner structure consisting of walls and passages. 
A study related to the fashion industry was presented by Martens (2004).  
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production units, or equipment assignment. 
To solve this problem, we develop an ant colony optimization algorithm combined with a 
local search method. This chapter presents the algorithm, its performance evaluation et 
application to an industrial case. 
The remainder of this chapter is organised as follows: In section 2, the layout problem is 
described. In section 3, we present the general framework of the ACO algorithm and its  
enhancement by guided local search. Computational results on the performance evaluation 
of the algorithm using a set of benchmark instances are presented in section 4, and the 
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The FLP has been formulated as a Quadratic Assignment Problem (QAP). Other 
formulations also exist such as mixed integer programming (Meller et al., 1999) and graph 
theoretic model (Caccetta & Kusumah, 2001). 
Many methods are used to solve the layout problem and they are essentially based on meta-
heuristics such as Genetic Algorithms (GA) (Lee et al., 2002), Tabu Search (Chiang & 
Chiang, 1998), Simulated Annealing (SA) (Baykasoglu & Gindy, 2001), Ant Colony 
(Solimanpur et al., 2004). In our study, we consider a layout problem modelled as a QAP. 

3. Hybrid Ant Colony Optimization  
3.1 Ant colony optimization (ACO) 
The principle of ACO algorithms (Corne & Dorigo, 1999; Dorigo et al., 2000) is based on the 
way ants search for food. Each ant takes into consideration (probabilistic choice) pheromone 
trails left by all other ant colony members which preceded its course, the pheromone trail 
being a trace, a smell left by every ant on its way. This pheromone evaporates with time, 
and therefore the probabilistic choice for each ant changes with time. After many ant 
courses, the path to the food will be characterized by higher pheromone traces and thus all 
ants will follow the same path. This collective behaviour, based upon a shared memory 
among all colony ants could be adapted and used for solving combinatorial optimization 
problems with the following analogies: 
• The real ant search space becomes the space of the combinatorial problem solutions.  
• The amount of food inside a source becomes the evaluation of the objective function for 

the corresponding solution. 
• The pheromone trails become an adaptive shared memory.  
Ant colony optimization (ACO) problems could therefore be encoded as finding the shortest 
path in a graph. One of the first applications of ACO was the travelling salesman problem.  
In the general case, the ant colony algorithm applies the artificial ants’ concept; it is 
represented by the following steps:  

Step 1: Initialization of parameters 
Step 2: Construction of solutions  
Step 3: Local search algorithm  
Step 4: Pheromone updating rule  
Step 5: Return to 2 until a given stopping criterion satisfied 

Ant colony optimization (ACO) is a method widely used for solving quadratic assignment 
problem. The first application was proposed by Maniezzo et al. in 1994. Since that, many 
applications were proposed, and the differences were in the generation of solutions, the 
local search method and the pheromone updating. Stutzle & Dorigo (1997) reviewed the ant 
algorithm applied to solve QAP and reported that the ACO algorithms are among the well 
performing methods to solve QAP. The MAX-MIN ant system algorithm (MMAS) proposed 
by Stutzle & Hoos (2000) allows only the best solution to add pheromone trail during the 
pheromone trail update. A bound is used for trail levels to avoid premature convergence of 
the search. Gambardella et al (1997) proposed a hybrid ant system HAS-QAP to solve QAP. 
The originality of their approach is in that the pheromone trail was not used to construct 
solutions but to modify them in the local search.  
Most of the proposed metaheuristics for the FLP problem are effective for small instances. 
Their performances become worse with the increase of the problem size (i.e. number of 
resources). Solimanpur et al. (2004) proposed an ACO algorithm for the inter-cell layout 
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problem formulated as QAP. They proposed a technique based on the partial contribution of 
each assignment for the calculation of a lower bound used in (Maniezzo, 1999). It was 
limited to only 30 departments because of the complexity of the problem. In a previous 
study, ANTabu (Stützle & Dorigo, 1999) using an ant colony optimization with a tabu local 
search procedure, was successfully applied to the QAP for large instances (i.e. 256 
resources). 
The ant colony algorithm adapted to the layout problem is composed of the following 
elements: 

1. Construction of solutions 
In the proposed algorithm, it is assumed that each ant initially assigns a task i to location j 
noted (i,j), then another task to another location k, and so on until a complete solution is 
obtained. A tabu list represents the set of tasks that the ants has already assigned, the list of 
the couples (i,j). This list ensures that all the tasks are assigned to locations. The criterion of 
the tasks assignment takes into account the probability of assignment with a given site, and 
depends on two terms, one relating to each ant (visibility) and the other relating to the 
quantity of pheromones deposited by the whole of the ants.  

2. Heuristic information  
The ants are not completely blind, they calculate the cost relating to the assignment of a task 
to a given site. This cost takes into account the flow and distances matrix. Heuristic 
information, called visibility is a function of the assignment cost. Several formulas were used 
in the literature and each one is adapted to a given problem.  Concerning QAP, the 
assignment of a task i to the site l depends on the tasks assigned before. We define the cost 
associated with the assignment (i,l) as:  

 C(i,l) = ∑
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where, r denotes a permutation of resources under construction. The visibility which 
represents the desirability of move is defined as:  

 

∑
−

=

×+×+

= 1

1
)()( )(1

1
l

s
lssirslisr

il

dfdf

η  (2) 

The reason for which number 1 is added to the denominator of the fraction in (2) is for 
avoiding division by 0. This formula means that the assignments with smaller contribution 
to the objective function would be more desirable for selection. 

3. Pheromone updating 
The pheromone updating mechanism is represented by the following equation 

 ∑∆+−=
k

k
ililil tt τλττ )1()(  (3) 

where, )(tilτ  is the quantity of pheromone associated with the assignment of the task i to 
location l for each ant k for the iteration t. As an ant chooses this assignment, the quantity 

)(tilτ  increases. The parameter λ  is a scaling factor. A large λ results in quick convergence 
to a local optima solution.  
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problems with the following analogies: 
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Ant colony optimization (ACO) problems could therefore be encoded as finding the shortest 
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problem formulated as QAP. They proposed a technique based on the partial contribution of 
each assignment for the calculation of a lower bound used in (Maniezzo, 1999). It was 
limited to only 30 departments because of the complexity of the problem. In a previous 
study, ANTabu (Stützle & Dorigo, 1999) using an ant colony optimization with a tabu local 
search procedure, was successfully applied to the QAP for large instances (i.e. 256 
resources). 
The ant colony algorithm adapted to the layout problem is composed of the following 
elements: 
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noted (i,j), then another task to another location k, and so on until a complete solution is 
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the couples (i,j). This list ensures that all the tasks are assigned to locations. The criterion of 
the tasks assignment takes into account the probability of assignment with a given site, and 
depends on two terms, one relating to each ant (visibility) and the other relating to the 
quantity of pheromones deposited by the whole of the ants.  

2. Heuristic information  
The ants are not completely blind, they calculate the cost relating to the assignment of a task 
to a given site. This cost takes into account the flow and distances matrix. Heuristic 
information, called visibility is a function of the assignment cost. Several formulas were used 
in the literature and each one is adapted to a given problem.  Concerning QAP, the 
assignment of a task i to the site l depends on the tasks assigned before. We define the cost 
associated with the assignment (i,l) as:  
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where, r denotes a permutation of resources under construction. The visibility which 
represents the desirability of move is defined as:  
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The reason for which number 1 is added to the denominator of the fraction in (2) is for 
avoiding division by 0. This formula means that the assignments with smaller contribution 
to the objective function would be more desirable for selection. 

3. Pheromone updating 
The pheromone updating mechanism is represented by the following equation 
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where, )(tilτ  is the quantity of pheromone associated with the assignment of the task i to 
location l for each ant k for the iteration t. As an ant chooses this assignment, the quantity 

)(tilτ  increases. The parameter λ  is a scaling factor. A large λ results in quick convergence 
to a local optima solution.  
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Finally,  
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denotes the magnitude of change in the trail level of an assignment through ant. As seen, the 
smaller is the fitness solution fit[k] obtained by ant k, the more would be the increment in 
trail levels selected by ant k.  

4. Selection probability 
An ant k chooses task i to assign to location l by the following probability:  
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where, α contributes to make a balance between the choice adopted by the whole of the ants (α 
near to 1) and the choice of each ant based on its own visibility (α near to 0). We note that a 
task is assigned to a location if the relative quantity of pheromones is significant or if the 
associated cost is weak. Finally, the task having the largest probability is assigned to location l. 

5. Local search  
We choose local search method 2-opt which is simple and well adapted to QAP (Solimanpur 
et al., 2004). This method applies to a given solution all possible permutations of pairs of 
tasks. The permutation giving the minimal cost is selected as a local minimum next to the 
starting solution. This process is repeated until no improvement is observed. 
In order to limit computation time during the exchanges, we made the following 
simplification; if the exchange is done between the elements iπ  and jπ  of the 
permutation π , the difference in the objective function value will be then:  
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This algebric simplification was used by Gambardella et al. in 1997 when they propose 
HAS-QAP, a hybrid ant colony system applied to the quadratic assignment problem. 
The local search does not necessarily lead to a global minimum. In most cases, it converges 
to a local minimum. For this, a guided local search (GLS) method is used to "penalize" the 
local minimum found in order to converge to the global minimum. GLS will be explained in 
detail later. 

6. Diversification 
Used by Gambardella in 1997, the diversification mechanism is activated if during a number 
of iterations max_iter, no improvement to the best generated solution is detected. 
Diversification consists of erasing all the information contained in the pheromone trail by a 
re-initialization of the pheromone trail matrix and of generating randomly a new current 
solution for all the ants but one that receives the best solution produced by the search so far. 
Another possibility is to erase all pheromone trails except for the best solution.  
Ant colony algorithm 
We propose the following general ant colony optimization algorithm with 2-opt. 
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Step 1: initialization of parameters for all the tasks and locations  
Step 2: for each ant 

Assign tasks to locations with a probability p 
Update the pheromones  
If the best solution is not improved until max_iter iterations, 0=ilτ , except for the best solution. 

Step 3: Return to Step2  until stopping criterion is satisfied. 

3.2 Enhancement of ACO by Guided Local Search (GLS) 
Guided Local Search (GLS) (Mills and Tsang, 2002) is a metaheuristic which sits as a good 
local search algorithm. When the given local search algorithm settles in a local optimum, 
GLS changes the objective function, by increasing penalties in an augmented objective 
function, associated with features contained in the local optimum. The local search then 
continues to search using the augmented objective function.   
The choice of solution features depends on the problem type, and each feature fi defined 
must have the following components: 
1. An indicator function Ii(s) indicating whether the feature is present in the current solution 

or not. It is equal to 1 if the feature fi is present in the solution s and 0 otherwise. 
2. A cost function ci(s) which gives the cost of having fi in s. 
3. A penalty pi initially set to 0, used to penalize the occurrence of fi in local minima. 
When the local search returns a local minimum s, GLS increases the penalty of the features 
of s which have maximum utility util(s,fi) defined as follow : 
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The idea is to penalise the features, which have highest costs first. GLS uses an augmented 
cost function (8) in order to guide the local search out of a local optimum. The idea is to 
make the local minimum more costly than the solutions in the surrounding search space, 
where the same features are not present.   
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where, g(s) is the cost function and λ’ a parameter used to alter the diversification of the 
search for solutions. A higher value for λ’  will result in more diverse search. 

The application of GLS for the QAP problem is realised with the following analogies: 
• The feature fi,πi of a solution s corresponds to the assignment of task i to the location πi. 
• The cost related to feature fi,πi depends on the interaction of the task i with all other 

tasks of the solution s. This cost is given by 
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• The value  λ’  well adapted to the QAP is given by 
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Finally,  
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task is assigned to a location if the relative quantity of pheromones is significant or if the 
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This algebric simplification was used by Gambardella et al. in 1997 when they propose 
HAS-QAP, a hybrid ant colony system applied to the quadratic assignment problem. 
The local search does not necessarily lead to a global minimum. In most cases, it converges 
to a local minimum. For this, a guided local search (GLS) method is used to "penalize" the 
local minimum found in order to converge to the global minimum. GLS will be explained in 
detail later. 

6. Diversification 
Used by Gambardella in 1997, the diversification mechanism is activated if during a number 
of iterations max_iter, no improvement to the best generated solution is detected. 
Diversification consists of erasing all the information contained in the pheromone trail by a 
re-initialization of the pheromone trail matrix and of generating randomly a new current 
solution for all the ants but one that receives the best solution produced by the search so far. 
Another possibility is to erase all pheromone trails except for the best solution.  
Ant colony algorithm 
We propose the following general ant colony optimization algorithm with 2-opt. 
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Step 1: initialization of parameters for all the tasks and locations  
Step 2: for each ant 

Assign tasks to locations with a probability p 
Update the pheromones  
If the best solution is not improved until max_iter iterations, 0=ilτ , except for the best solution. 

Step 3: Return to Step2  until stopping criterion is satisfied. 

3.2 Enhancement of ACO by Guided Local Search (GLS) 
Guided Local Search (GLS) (Mills and Tsang, 2002) is a metaheuristic which sits as a good 
local search algorithm. When the given local search algorithm settles in a local optimum, 
GLS changes the objective function, by increasing penalties in an augmented objective 
function, associated with features contained in the local optimum. The local search then 
continues to search using the augmented objective function.   
The choice of solution features depends on the problem type, and each feature fi defined 
must have the following components: 
1. An indicator function Ii(s) indicating whether the feature is present in the current solution 

or not. It is equal to 1 if the feature fi is present in the solution s and 0 otherwise. 
2. A cost function ci(s) which gives the cost of having fi in s. 
3. A penalty pi initially set to 0, used to penalize the occurrence of fi in local minima. 
When the local search returns a local minimum s, GLS increases the penalty of the features 
of s which have maximum utility util(s,fi) defined as follow : 
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The application of GLS technique to the QAP problem could be summarized in the following: 
Starting from the current solution, a local search method (2-opt for example) is used to find 
a local minimum, with respect to the augmented cost function. If this minimum has a cost 
(not augmented) lower than the lowest cost ever found, it is saved as the best ever found 
solution. Finally, the assignment having the maximum utility would have its corresponding 
penalty increased. 
The GLSQAP algorithm could be summarized as follows: 

Step 1: Calculation of  λ’ 
Step 2: The best solution s’ = initial solution s 
Step 3: Perform a local search 2-opt with respect to the augmented cost function, s* is found as 
the solution having the lower augmented cost. 

If cost (s*) < cost (s’), replace s’ by s*. 
Find the assignment (feature) of s* having the maximum utility, let it be fi,πi for example. 
Increase the corresponding penalty: pi,πi= pi,πi+1. 

Step 4: Return  to step 3 until a given stopping criterion is satisfied. 
Step 5: s’ is the best solution found for the original problem. 

Finally, the algorithm procedure of ant colony optimization with GLS is given as follows:  
Step 1: initialization of parameters  
Step 2: for all ants 
a. Assign tasks to locations with the given assignment probability 
b. Perform the guided local search GLSQAP 
c. Update the pheromones 
d. If the best solution is not improved until max_iter iterations, 0=ilτ , except for the best 

solution.  
 Step 3 : Return to step2 until a stopping criterion is satisfied. 

4. Computational results 
The algorithm was implemented using Visual C++ 6.0. on a Pentium 3 with 1.8 Ghz CPU 
speed. In the proposed algorithm four parameters: ant number AN, alpha, max_iter and 0τ  affect 
the performance of the algorithm. To find the appropriate parameters for our problem, pilot 
runs were performed. Ant number AN was tested between 5 and 60, and a compromise 
between the quality of the results and the convergence time was found for AN = 20. When AN 
was fixed, the best convergence was found for max_iter = 10 and alpha = 0.6.  
Usually, alpha is close to 0.5. In our case the value 0.6 indicates that the construction of the 
solutions more supports the pheromone trails than the individual ant investigation. This value 
was found to be well adapted with the GLS procedure. Table 1 lists the appropriate values:  

Parameter Value 
AN 20 
Alpha 0.6 
max_iter 10 
0τ  0 

Table 1. Parameter values 
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The performance of this algorithm was tested on instances from the library QAPLIB 
(Burkard et al., 1991). We first compare our algorithm with the HAS-QAP (Gambardella et 
al., 1997) method based on ant colonies. We then compare it with ANTabu (Talbi et al., 2001) 
which is compared with other methods based on genetic algorithms, simulated annealing, 
tabu search or ant colony and with a recent ant colony optimization algorithm proposed by 
Solimanpur et al. (2004), which is adapted for problems with a small number of locations. 
Table 2 compares the results of all the cited algorithms for small instances with a number of 
locations falling between 19 and 30.  
The instances we chose include the regular and irregular problems of QAPLIB. The difference 
relative to the QAPLIB best known solution is given as a percentage gap. It is almost 
impossible to have the same experimental settings as for previous studies, but in order to give 
an idea on the computation time, the mean execution time over 10 runs is shown in table 2.  

 
Best 
known 
value 

HAS_QAP ANTabu ACO 
Solimanpur ACO_GLS Time 

(s) 

Els 19 17212548 0.923 0 0 0   4 
Tai 20b 122455319 0.243 0 0 0  5 
Chr 25a 3796 3.0822 0.8957 0 0  3 
Bur 26a 5426670 0 0 0 0 35 
Bur 26b 3817852 0 0.0169 0 0 34 
Bur 26c 5426795 0 0 0 0 34 
Bur 26d 3821225 0 0 0 0 35 
Bur 26e 5386859 0 0 0 0 34 
Bur 26f 3782044 0 0 0 0 34 
Bur 26g 10117172 0 0 0 0 33 
Kra30a 88900 0.6299 0.2677 0 0 35 
Kra 30b 91420 0.0711 0 0.0153 0  19 
Nug30 6124 0.098 0 0.013 0 3 

aValues indicate the average gap between solution value and best known value in percent  
Table 2. Compare results on QAP instances selected from QAPLIB (best results are in 
boldface)a 

Table 3 proves that for the instances with up to 30 tasks, ACO_GLS performs better than all 
other algorithms in comparison. 
In order to generalize the application of our algorithm, large instances from the QAPLIB 
were studied with different classes of problems. Results are shown in Table 3. We have 
compared those algorithms on a set of 12 instances, ranging from 35 to 128 locations.  
For larger instances, the results given by ANTabu are a little bit better, so we may have to 
perform more complicated local search in order to escape local minima in the problems with 
large instances. It is shown (table 3) that our algorithm ACO_GLS performs better than HAS-
QAP. However, our algorithm can still obtain satisfactory solutions for large instance. 
The proposed ACO-GLS algorithm proved to converge perfectly for instances up to 40 
locations as shown in tables 2 and 3. This performance is quite satisfactory for industrial 
problems because real life problems usually do not exceed 30 to 40 locations. Therefore, this 
algorithm will be a very useful tool for layout optimization in the real life industrial case 
explained in this paper. 
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Solimanpur et al. (2004), which is adapted for problems with a small number of locations. 
Table 2 compares the results of all the cited algorithms for small instances with a number of 
locations falling between 19 and 30.  
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relative to the QAPLIB best known solution is given as a percentage gap. It is almost 
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large instances. It is shown (table 3) that our algorithm ACO_GLS performs better than HAS-
QAP. However, our algorithm can still obtain satisfactory solutions for large instance. 
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locations as shown in tables 2 and 3. This performance is quite satisfactory for industrial 
problems because real life problems usually do not exceed 30 to 40 locations. Therefore, this 
algorithm will be a very useful tool for layout optimization in the real life industrial case 
explained in this paper. 
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 Best known value HAS_QAP ANTabu ACO_GLS Time (s) 
Tai 35a 2422002 1.762 0.215 0  109 
Tai 35b 283315445 0.343 0.0408 0 112 
Tai 40a 3139370 1.989 0.442 0 204 
Tai 50a 4941410 2.800 0.781 1,28 228 
Tai 60a 7208572 3.070 0.919 1.25 342 
Tai 80a 13557864 0.663 0.663 1.53 1524 
Wil 50 48816 0.061 0.008 0.01 1197 
Sko42 15812 0.076 0 0 82 
Sko49 23410 0.141 0.038 0.10 105 
Sko56 34524 0.101 0.002 0.19 294 
Sko64 48498 0.129 0.001 0.008 522 
Esc 128 64 - 0 0 1292 

Table 3. Compare results on QAP instances selected from QAPLIB (best results are in 
boldface) 

5. Application to an industrial case 
Our study (Hani et al., 2006; Hani et al., 2007) concerns an industrial layout problem for a 
train maintenance facility of the French railway system (SNCF).  
The train maintenance facility is composed of buildings established on parallel rail tracks 
[15]. The cars to be treated arrive in batches and travel in the various buildings according to 
the sequence of their operations. They may travel transversally carried from one building to 
another by a transport which moves on a fixed trajectory. An on-rail transport permits 
movement along the rails. Some tasks require long processing, which would occupy their 
locations for a long time. These tasks represent bottlenecks for the facility.  

 
Figure 1. One example structure  
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In the current application, and due to the paucity of locations, some cars must be moved out 
of its building in order to give access to other cars in need of repair. The current facility 
layout has proved to be quite constraining for the production planning of the repair line. 
The problem is to find a layout of the resources in individual buildings in order to optimize 
the flow of cars between the buildings.  
Figure 2 shows an example of a building composed of two parallel tracks and 6 locations. 
Access to the building is possible only via the lateral side. Suppose a car needs to pass from 
outside to location 2, and then to location 6. Then it is necessary to move the car which 
occupies location 1 or location 3 in order to let the new car access location 2. Then, in order 
to go to location 6, it is necessary to move the car on location 3 or that on location 1.  
In other words, the problem is to find a new configuration of the resources in one of the 
buildings (figure 1) in order to optimize (minimize) the flow among all resources (facilities). 

 
Figure 2. One building example 

In order to model our problem, each rail is decomposed into zones called car locations where 
the maintenance tasks are performed.  
The car locations can be categorized into three types: 
• If a location is cluttered (e.g., stocks, workbench, etc.), then it is called unusable. 
• If a location is occupied by a fixed resource (such as big machines for electric tests), it is 

called specialized since theses resources cannot be moved. 
• If a location is neither unusable nor specialized, it is said to be standardized. 
Note that when unusable locations exist, access becomes even more difficult, as for example 
having location 6 as unusable in figure 2. 
Outside the building, there exists a transport system which carries cars from one side to 
another of the facility. There are three transporters: two transversal and one on-rail 
transport that effects the movement of the cars on the rails.  
In other words, the problem is to find a new resource configuration in one of the buildings 
(figure 2) in order to optimize (minimize) the production flow between all resources 
(facilities).  
We consider N resources to be assigned to N sites or car locations in the building. Given a 
distance matrix D, where each element dk,w denotes a distance between location k and w, for 
k,w = 1, 2, . . . N, a flow matrix F, where each element fi,j denotes a flow cost between 
resource i and j , for i, j = 1, 2, . . . N.   
The flow cost depends on the number of trips between two resources in a given time 
horizon. In the problem considered, the matrix flow is not symmetric because of precedence 
constraints.  
The distance matrix is symmetric. The distance calculation is related to the minimum vehicle 
number to move inside a building in order to make an exchange. As an example in figure 1, 
d(2,3) = 0, d(1,5) = 1 (by crossing position 4) et d(2,5) = 2 (by crossing position 1 and 4). 
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 Best known value HAS_QAP ANTabu ACO_GLS Time (s) 
Tai 35a 2422002 1.762 0.215 0  109 
Tai 35b 283315445 0.343 0.0408 0 112 
Tai 40a 3139370 1.989 0.442 0 204 
Tai 50a 4941410 2.800 0.781 1,28 228 
Tai 60a 7208572 3.070 0.919 1.25 342 
Tai 80a 13557864 0.663 0.663 1.53 1524 
Wil 50 48816 0.061 0.008 0.01 1197 
Sko42 15812 0.076 0 0 82 
Sko49 23410 0.141 0.038 0.10 105 
Sko56 34524 0.101 0.002 0.19 294 
Sko64 48498 0.129 0.001 0.008 522 
Esc 128 64 - 0 0 1292 

Table 3. Compare results on QAP instances selected from QAPLIB (best results are in 
boldface) 
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In the current application, and due to the paucity of locations, some cars must be moved out 
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Figure 2. One building example 
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The flow cost depends on the number of trips between two resources in a given time 
horizon. In the problem considered, the matrix flow is not symmetric because of precedence 
constraints.  
The distance matrix is symmetric. The distance calculation is related to the minimum vehicle 
number to move inside a building in order to make an exchange. As an example in figure 1, 
d(2,3) = 0, d(1,5) = 1 (by crossing position 4) et d(2,5) = 2 (by crossing position 1 and 4). 
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Our problem is modeled as a QAP. The flow cost depends on the number of trips between 
two resources in a given time horizon. In the problem considered, the matrix flow is not 
symmetric because of precedence constraints.  
The distance matrix is symmetric. The distance calculation is related to the minimum 
number of vehicles to move inside a building in order to make an exchange. 
Model parameters: 

N: total number of locations 
rij : Resource j assigned to task i 
Dk,w : Distance between locations k and w. This distance is defined as the number of 

usable locations between both resources. 

'', jiij rrf : Production flow between the resources rij and ri’j’. This flow is evaluated as 

the number of cars passing between the two resources. 
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In order to optimize the production flow, we define a quadratic function Z to minimize: 
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If the unusable locations are excluded, the following constraints should be added: 
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Constraints (15) and (16) are the standard constraints for the regular assignment problem. 
Constraint (17) implies that all occupied locations are either specialized or standardized. 
The industrial problem consists of 72 locations with 27 unusable, 39 specialized and 6 
standardized locations. 15 tasks with total of 27 resources had to be assigned. The actual 
resources assignment was taken as an initial condition for the algorithm. All calculations 
were done based upon data for one year planning.  
As previously stated, the application of the hybrid GA algorithm to the industrial case has to 
exclude unusable and specialized locations from the locations choice; only standardized 
locations are considered.  
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The actual layout in the workshop produces a cost of 425, however, our algorithm 
ACO_GLS produces a solution with an improvement of 19.6% with respect to the actual 
layout. This means that it converges to a better solution, which proves its ability to solve an 
industrial layout problem.  
We also found the exact solution of the problem by using an enumeration method since only 
six tasks needed to be assigned. The solution is the same as what was found by the 
algorithm. This implies that the algorithm converges to the optimal solution for this 
industrial problem.  
The proposed application may be useful for the industrial case in the future. In fact, as 
stated above in the problem description, the industry is trying to increase its performance 
which means solving other facility problems. In addition, other vehicle sequences will be 
added, and many locations need to become free in order to accept new tasks. As it can be 
imagined, the future problem in the industry is to layout a greater number of locations 
which may reach 30 to 40 locations. The proposed ACO-GLS needs to be tested for large 
instance problems and its performance has to be evaluated with respect to other known 
algorithms. For this purpose, public sequences were tested and results were compared with 
other studies.  

6. Conclusion 
We have proposed a robust meta-heuristic algorithm for the layout problem modelled as a 
QAP. The algorithm is based on ant colony algorithm combined with a guided local search, 
and it uses an augmented cost function in order to guide the local search out of a local 
optimum. The performance of the proposed algorithm was also evaluated on a number of 
benchmark problems selected from the literature and compared with other heuristics 
developed for the facility layout problem as well as other algorithms recently developed for 
the QAP. The experimental results reveal that the proposed algorithm is effective and 
efficient for the facility layout problem considered. Other heuristic algorithms for the FLP 
shall be devised, tested, and compared with our algorithm in future studies. 
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Our problem is modeled as a QAP. The flow cost depends on the number of trips between 
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The actual layout in the workshop produces a cost of 425, however, our algorithm 
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layout. This means that it converges to a better solution, which proves its ability to solve an 
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1. Introduction 
In the present flexible and automated manufacturing environment, selection of optimal 
process plan is a crucial decision making problem. The systematic determination of 
processing steps for the transformation of raw material to its finished product is identified 
as process planning. The real world dynamic shop floor is characterized by the availability 
of several machines, tools, fixtures/jigs etc., and demands the completion of several design 
tasks before the commencement of manufacturing actual manufacturing of a part type. 
Different geometrical and tolerance relationships among several features of the part types 
necessitate the arrangement of different setups to carry out various and hence, diverse 
alternative process plans to manufacture a part come into existence. Any of these feasible 
process plans can be used to produce the particular part type from its raw material [1], [2]. 
Due to the incorporation of dynamic shop floor situations such as bottleneck machines, non 
availability of tools, machine breakdown, etc., the process plan selection problem becomes 
non linear and NP hard in nature. The proliferation of Computer Aided Process Planning 
(CAPP) systems has made it easy and more efficient to tackle these types of non linear 
process planning systems. The scheduling complexity in the manufacturing systems was 
discussed in [2] and it was proposed that this can be reduced with the limited number of 
tools and auxiliary devices. The three reasons given by [2] to solve the process plan selection 
problem are:  production cost, tool magazine capacity limitation, and reduction of auxiliary 
devices. Later, the process plan selection problem was attempted in [1] considering three 
objectives such as to minimize total time, minimize number of setups and to minimize 
dissimilarity among process plans.  Reference [3] contributed in solving process plan 
selection problem using fuzzy approach to deal with the imprecise information. Reference 
[4] incorporated the factors such as similarity index within a process plan and degree of 
similarity among various process plans. They used fuzzy approach to take care of the part 
type processing sequence.  PPS problem has also been attempted using Hybrid Hopfield 
Neural network and Genetic Algorithm Approach [13].  
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1. Introduction 
In the present flexible and automated manufacturing environment, selection of optimal 
process plan is a crucial decision making problem. The systematic determination of 
processing steps for the transformation of raw material to its finished product is identified 
as process planning. The real world dynamic shop floor is characterized by the availability 
of several machines, tools, fixtures/jigs etc., and demands the completion of several design 
tasks before the commencement of manufacturing actual manufacturing of a part type. 
Different geometrical and tolerance relationships among several features of the part types 
necessitate the arrangement of different setups to carry out various and hence, diverse 
alternative process plans to manufacture a part come into existence. Any of these feasible 
process plans can be used to produce the particular part type from its raw material [1], [2]. 
Due to the incorporation of dynamic shop floor situations such as bottleneck machines, non 
availability of tools, machine breakdown, etc., the process plan selection problem becomes 
non linear and NP hard in nature. The proliferation of Computer Aided Process Planning 
(CAPP) systems has made it easy and more efficient to tackle these types of non linear 
process planning systems. The scheduling complexity in the manufacturing systems was 
discussed in [2] and it was proposed that this can be reduced with the limited number of 
tools and auxiliary devices. The three reasons given by [2] to solve the process plan selection 
problem are:  production cost, tool magazine capacity limitation, and reduction of auxiliary 
devices. Later, the process plan selection problem was attempted in [1] considering three 
objectives such as to minimize total time, minimize number of setups and to minimize 
dissimilarity among process plans.  Reference [3] contributed in solving process plan 
selection problem using fuzzy approach to deal with the imprecise information. Reference 
[4] incorporated the factors such as similarity index within a process plan and degree of 
similarity among various process plans. They used fuzzy approach to take care of the part 
type processing sequence.  PPS problem has also been attempted using Hybrid Hopfield 
Neural network and Genetic Algorithm Approach [13].  



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

344 

However, in this paper an attempt has been made to solve the PPS problem by giving a 
more rational view to part type processing sequence. Here, in addition to fuzzy membership 
vector a new feature called Similarity Attribute ( λ ) has been introduced that takes care of 
the similarity among different part types. Based on the consolidated approach incorporating 
fuzzy membership vector and similarity attribute, the part type processing sequence is 
evaluated. To ease the solution strategy, the undertaken PPS problem is modeled as a 
Traveling Salesman Problem (TSP) that helps to do away the problem complexity and 
ensures the easy application of various Artificial intelligence (AI) tools. The PPS problem is 
mapped as a TSP considering the distance of the tour in the terms of the objective function. 
Due to its NP-hard nature [5] and wide range applicability, TSP has been one of the most 
studied combinatorial optimization problem. This paper proposes a new Intelligent Particle 
Swarm Optimization algorithm with the modified concept of Local Repeller (IPSO-LR) to 
solve the aforementioned PPS problem. 
Particle Swarm Optimization (PSO) is a new population based evolutionary computation 
technique that proceed via self adaptive search. In general, the evolutionary algorithms are 
based on population of individuals simulating some biological phenomenon. Particle 
Swarm Optimization is one of the recent developments of evolutionary systems first 
introduced by Kennedy and Eberhart in 1995 [6]. Unlike other evolutionary systems, no 
direct recombination of genetic material is incorporated in PSO while the search is in 
progress. The most important and distinctive feature of PSO is its working that is based on 
social behavior of particles or individuals in the swarm. The algorithm develops the search 
strategy by adjusting the trajectory of each particle towards own previous best location and 
best position of neighboring particles within the search space. Since its introduction, PSO 
has been tested invariably on several computationally complex NP hard problems [7]. The 
recent challenges are to employ the algorithm to the real world problems of various 
complexities than those on which initial versions of it have been applied. Most of the recent 
developments in the PSO are based on improving its ability to come out of local optima, as it 
is recognized as common problem encountered by swarms. In this paper, a new improved 
swarm algorithm is used that has enhanced capability to come out of local minima. 
The application of IPSO-LR algorithm has been demonstrated considering one illustrative 
example. To assess the robustness of IPSO-LR based solution strategy, five well known test 
parts from the literature have been considered and five new parts have been developed. 
Rest of the paper has been organized as follows: The Process Plan Selection problem and its 
TSP formulation have been discussed in section 2. Section 3 gives an overview of PSO and 
details IPSO-LR algorithm. Section 4 illustrates the application of IPSO-LR to solve PPS 
problem with the help of an illustrative example. Computational experiments and the 
discussion of the results are provided in section 5. Section 6 concludes the paper. 

2. Problem Environment 
The PPS problem is concerned to the problem of making optimal choices among several 
alternatives and is featured by the selection of machines, cutting tools, fixtures, setups, etc. 
The problem is to select exactly one process plan for each part type from a number of 
accessible and feasible process plans and to provide optimal processing sequence for the 
manufacturing of part types. The problem formulation adopted in this paper is the extended 
and modified version of the formulation proposed by [4] and [8]. This paper aims to select a 
process plan for each part type, keeping in view the wider range of objectives as 
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minimization of  batch size, time remaining from due dates and number of machinable 
features, as well as calculating the part type processing sequence, that determine the 
processing cost and optimum utilization of resources, in a much more justifiable way. The 
various parameters involved in the process plan selection (PPS) problem can be summarized 
as: 
1. A seven digit code to denote the machines, operations, tools, fixtures, etc., for each step 

of a process plan. 
2. Material handling time for a process plan and the machining time on different machines 

for a process plan.  
3.  Batch size, due dates remaining and other manufacturing related features of a part 

type. 
Minimization of batch size, total time remaining from due dates, number of machinable 
features and process plan execution time, as well as calculating part type processing 
sequence along with optimum utilization of resources are considered as main objectives 
targeted in the paper. To pursue these objectives, an integrated objective function is 
formulated that incorporates the parameters defined in [4] along with addition of a new 
parameter λ . These parameters warrants due attention because of their immense impact on 
the solution strategy and objective function formulation, and can be summed up as follows:  
1. Similarity Index (SI) of a process plan of a part type. 
2. Degree of Similarity (DS) among various process plans of a part type. 
3. Membership vector ( µ ) of a part type. 
4. Similarity attribute ( λ ) of different part types. 
The details about the calculations and authenticity of first three parameters can be referred 
in [4]. This paper adds a new dimension to the solution of the PPS problem by the 
incorporation of a new parameter termed as Similarity Attribute. The formulation proposed 
by [4] did not take into account the similarity among the processing of part types that is a 
crucial parameter affecting the dynamics and cost efficiency of the shop floor. Hence, 
Similarity attribute ( λ ) has been incorporated in the objective function to make it more 
authentic. Its calculation strategy has been provided in section 4, where solution strategy for 
the underlying problem has been illustrated. Minimization of the aforementioned first two 
parameters provides cost efficiency and the values of rest two determine the part type 
processing sequence. Thus, to accomplish objectives highlighted in this paper, they have 
been integrated into single sub objective that is a trade-off between all the aforementioned 
features (detailed in section 3). To develop the solution strategy for the PPS problem, it is 
formulated as a Traveling Salesman Problem (TSP).  It’s basic TSP formulation is described 
in the following discussion: 

2.1 TSP Formulation of the PPS Problem 
In a TSP with one salesman, the salesman has to visit each city in his/her designated area 
and then come back to the home town [5]. Here, each process plan is considered as a city (i.e. 
a node) and a salesman is restricted to move through only one node among the nodes 
characterizing a part type. A tour is considered to be complete when the particle has moved 
through a node of each part type. In the TSP model of the problem, the value of objective 
function represents the total distance covered by the salesman in a tour. The criterion to 
move from one node to another depends upon the solution strategy; in the context of the 
PPS problem, it is based on the probability to choose, thus, not based on the integer model. 
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However, in this paper an attempt has been made to solve the PPS problem by giving a 
more rational view to part type processing sequence. Here, in addition to fuzzy membership 
vector a new feature called Similarity Attribute ( λ ) has been introduced that takes care of 
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details IPSO-LR algorithm. Section 4 illustrates the application of IPSO-LR to solve PPS 
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and modified version of the formulation proposed by [4] and [8]. This paper aims to select a 
process plan for each part type, keeping in view the wider range of objectives as 
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minimization of  batch size, time remaining from due dates and number of machinable 
features, as well as calculating the part type processing sequence, that determine the 
processing cost and optimum utilization of resources, in a much more justifiable way. The 
various parameters involved in the process plan selection (PPS) problem can be summarized 
as: 
1. A seven digit code to denote the machines, operations, tools, fixtures, etc., for each step 

of a process plan. 
2. Material handling time for a process plan and the machining time on different machines 

for a process plan.  
3.  Batch size, due dates remaining and other manufacturing related features of a part 

type. 
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3. Membership vector ( µ ) of a part type. 
4. Similarity attribute ( λ ) of different part types. 
The details about the calculations and authenticity of first three parameters can be referred 
in [4]. This paper adds a new dimension to the solution of the PPS problem by the 
incorporation of a new parameter termed as Similarity Attribute. The formulation proposed 
by [4] did not take into account the similarity among the processing of part types that is a 
crucial parameter affecting the dynamics and cost efficiency of the shop floor. Hence, 
Similarity attribute ( λ ) has been incorporated in the objective function to make it more 
authentic. Its calculation strategy has been provided in section 4, where solution strategy for 
the underlying problem has been illustrated. Minimization of the aforementioned first two 
parameters provides cost efficiency and the values of rest two determine the part type 
processing sequence. Thus, to accomplish objectives highlighted in this paper, they have 
been integrated into single sub objective that is a trade-off between all the aforementioned 
features (detailed in section 3). To develop the solution strategy for the PPS problem, it is 
formulated as a Traveling Salesman Problem (TSP).  It’s basic TSP formulation is described 
in the following discussion: 

2.1 TSP Formulation of the PPS Problem 
In a TSP with one salesman, the salesman has to visit each city in his/her designated area 
and then come back to the home town [5]. Here, each process plan is considered as a city (i.e. 
a node) and a salesman is restricted to move through only one node among the nodes 
characterizing a part type. A tour is considered to be complete when the particle has moved 
through a node of each part type. In the TSP model of the problem, the value of objective 
function represents the total distance covered by the salesman in a tour. The criterion to 
move from one node to another depends upon the solution strategy; in the context of the 
PPS problem, it is based on the probability to choose, thus, not based on the integer model. 
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Hence the formulation can be considered as TSP with Mixed Integer Programming (MIP). 
The details are provided in the next section that provides an insight to the basics of PSO as 
well as details IPSO-LR algorithm.  

3. Proposed IPSO-LR Algorithm 
PSO belongs to a broad class of population based optimization technique that is guided by 
the social behavior of flocking organisms, like birds, honeybees, etc. The fundamental rules 
adhered by the individuals comprising a flock may be outlined as to match velocities with 
nearest neighbors, and to be closer with the others in the swarm. Thus mutation with 
conscience has been claimed for PSO [9]-[12]. In this case, each particle tends to accelerate 
towards its own previous best position and towards the best position of neighbor particles 
encountered, with the usual result being clustering of individuals in optimal regions of 
space. Since the advent of PSO, the challenge has been to apply PSO to the problems of 
various domains. In this paper, a new Intelligent Particle Swarm Optimization Algorithm 
(IPSO-LR) with the modified concept of local repeller has been developed to efficiently 
model the problem in the algorithmic context as well as to avoid the problem of entrapment 
in local optima.  
At each position, the velocity and position of each particle is being updated using some 
basic equations and rules. The velocity of particle at each position is updated utilizing the 
aforementioned characteristics and the relation detailed in the following subsection: 

3.1 Velocity Evaluation 
The model for velocity and position updating signifies the intelligence of the swarm and can 
be mathematically formulated as: 

 Ni ∈∀ , vi next =    ]randrand [ )nix( × (.) × sc+ )cix (× (.) ×cc + iv ∆∆χ  (1) 

where, vi  is the  current velocity of the particle; N  is the number of particles; χ  is the 
constriction coefficient, and is mathematically expressed as:  

  
]β4 - 2β - β -2 [

κ2
 = χ  (2) 

     s.t.                           ]0,1]∈       4,>,       2 κ βc+1c=β  

Further, rand (.) is a random function with a range [0, 1]; cc and cs are positive constant 
parameters, called acceleration coefficients (which control the maxi-mum step size the 
particle can do). cc and cs controls the impact of previous values of particle positions and 
velocities on its current one. Suitable selection of acceleration coefficients can provide a 
balance between the global and the local search. The constriction factor χ  helps to ensure 
convergence [9], whereas the factors such as cc and cs along with rand (.) guarantee the 
thorough search in the region near to oi and ni. Different configurations of  χ  as well as their 
theoretical analysis can be found in [9].  
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In the velocity relation, cix ∆ and nix ∆  are self best positional differences and 

neighborhood best positional  difference. In the equation (2), cix ∆ and nix ∆  are calculated 

by the following relations:   

 cix ∆ = oi – xni ; and , nix ∆ = ni – xni ,  (3) 

where,  
oi : Position of previous best position of particle. 
xni : Position of nth feasible node.  Here, n ∈ Nfi (i.e. set denoting feasible nodes to 
move, for particle i. ) 
ni  : Previous best position of neighboring particles. 
In the above discussion, the position of a particle is characterized by the set of variables 
characterizing a node. The velocity of ith particle to each feasible node is calculated as per the 
aforementioned equation that is followed by the position updating according to the relation: 

 Ni ∈∀ , xi  = xi vmax f ,  (4) 

where, xi denotes the position of the particle; xi vmax f  is the position of the node for which the 
velocity found is maximum. The self previous best position of each particle is updated using 
the following relation: 

 Ni ∈∀ ,



<   )if(o) if(x if            ix
)if(o) if(x if            io

 =  io
≥

  (5) 

where, f (xi) denotes the respective objective function value considered in the problem. The 
previous best position of neighboring particles is updated according to the following 
relation: 

 
i

Ni ∈∀ ,        )if(o 
iomin =  in  (6) 

where, Ni is the set denoting neighbors of particle i. 
to reduce the probability of leaving the search space, the velocity of particles is restricted to 
the range of [ -Vmax , +Vmax ], where,  

 maxx × υ = maxV ;    0 1≤    ≤   1.0 υ   (7) 

3.2 Sociometry of IPSO-LR 
Neighborhood is the most decisive criterion that directs the search procedure of swarms. It 
signifies how the movement a particle is influenced by the information carried by the other 
particles. The neighborhood is exploited for the mutual sharing of crucial information 
among particles that helps them in further movement and diversify search technique. The 
topological structure of population controls its propensity of exploration versus exploitation 
[11]. The initial versions of particle swarm select a particle from the specified neighbors as a 
source of influence and ignore others. This type of strategy only provides a choice of 
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aforementioned characteristics and the relation detailed in the following subsection: 

3.1 Velocity Evaluation 
The model for velocity and position updating signifies the intelligence of the swarm and can 
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Further, rand (.) is a random function with a range [0, 1]; cc and cs are positive constant 
parameters, called acceleration coefficients (which control the maxi-mum step size the 
particle can do). cc and cs controls the impact of previous values of particle positions and 
velocities on its current one. Suitable selection of acceleration coefficients can provide a 
balance between the global and the local search. The constriction factor χ  helps to ensure 
convergence [9], whereas the factors such as cc and cs along with rand (.) guarantee the 
thorough search in the region near to oi and ni. Different configurations of  χ  as well as their 
theoretical analysis can be found in [9].  
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In the velocity relation, cix ∆ and nix ∆  are self best positional differences and 

neighborhood best positional  difference. In the equation (2), cix ∆ and nix ∆  are calculated 

by the following relations:   
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where,  
oi : Position of previous best position of particle. 
xni : Position of nth feasible node.  Here, n ∈ Nfi (i.e. set denoting feasible nodes to 
move, for particle i. ) 
ni  : Previous best position of neighboring particles. 
In the above discussion, the position of a particle is characterized by the set of variables 
characterizing a node. The velocity of ith particle to each feasible node is calculated as per the 
aforementioned equation that is followed by the position updating according to the relation: 
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choosing a particle from the neighborhood; the more is its size, the more is the likeliness of 
choosing the better one.  
In this paper, a cluster type of network topology is adopted as it produces promising results 
as compared to that of other neighborhood topologies like ring, all, pyramid, triangular, 
frame, etc. [12]. In the proposed strategy, various process plans of a part type are in 
neighborhood with each other as they characterize same attributes of a part type. Thus, 
various process plans (particles) of a part type form a cluster that shares information among 
the members. In this case, the number of clusters formed is equal to the number of process 
plans. As evident from Figure 1, each cluster is in further interaction with other clusters 
through the arcs joining the two closest nodes of each pair of clusters. 

3.3 Modified Strategy to Avoid Local Optima 
Entrapment in the local optima is the situation where the algorithm sticks to some 
premature solutions and does not show any improvement. To alleviate this problem, the 
concept of local repeller [12] with some modifications to suit the problem structure has been 
utilized. The most alluring trait of this technique is its simplicity and efficacy to avoid local 
optima. As and when the path corresponding to local optima is encountered, the sequence 
of process plans that is identified to be constituent of local optimum is made ‘repelling’ i.e 
.the particles are compelled to explore the search space more thoroughly and hence, the 
search is directed towards global optimum. This strategy guarantees the escape from the 
local optima and thus is very effective. 

4. Implementation of IPSO-LR Algorithm on the PPS Problem ( Illustrative 
Example) 
4.1 Problem Characteristics 
This paper adopts the formulation of PPS problem from [4] and [8]. To denote the machines, 
operations, tools, fixtures etc. a seven-digit code has been used. The data related to 
alternative process plans, processing time on different machines, material handling time for 
the different process plans, the batch size, due dates remaining and features of each part 
type are adopted from [8]. 
In the undertaken problem, the objectives considered are minimization of batch size, time 
remaining from due dates and number of machinable features, as well as calculating part 
type processing sequence along with optimum utilization of resources. The objectives like 
maximization of batch size, minimization of time remaining from due dates and 
minimization of number of machinable features are incorporated in the definition of 
membership vector µ  [4]. The parameter Similarity attribute ( λ ) quantifies the similarity 
among the part types that is based on the number of machines, fixtures, tools and operations 
performed to produce these. Its formulation is given as follows: 

;     ;     ;     ;
fC

 ifC
 = imλ

tC

 itC
 = iλ

oC

 ioC
 = ioλ

mC

 imC
 = imλ  ⇒

4
imλ + imλ + iλ + imλ = iλ ;  (8) 

where,  imλ  ,imλ  ,iλ  ,imλ  are the constants denoting contribution of attributes related to 

machines, operations, tools and fixtures, respectively, to the calculation of similarity 
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attribute; Cim , Cio , Cit, Cif are the cardinalities of the sets denoting number of machines, 
operations, tools and fixtures, respectively,  utilized by the process plans of part type i ; Cm , 
Co  , Ct , Cf  are the cardinalities of sets denoting the total number of machines, operations, 
tools and fixtures, respectively,  used to manufacture all the part types from all the possible 
alternatives.  
The parameter DS is a measure of accounting for the similarity among the several process 
plans of the different part types. It results from the comparison of their constituent elements, 
namely the operation codes. The parameter SI defines the similarity contained in a process 
plan itself. It denotes the ease with which a part can be made from the particular process 
plan. The details about the calculation of DS and SI can be referred from [4]. 

4.2 IPSO-LR Algorithm Based Solution Strategy 
To initialize the process, all the particles are randomly distributed over the nodes. Here, the 
number of particles equals the number of nodes present in the TSP formulation. The most 
critical step in the application of IPSO-LR to solve the PPS problem is the characterization of 
the parameters that represents position. In the formulation used in the proposed paper, a 
node (i.e. a process plan) characterizes the position of the particle. In this case, the velocity to 
each feasible node j from the particle on node i is calculated as per the following equation: 

 vij =    ]randrand [ )nijx( × (.) × sc+ )cijx (× (.) ×cc + iv ∆∆χ  (9) 

Here, cijx ∆ and nijx ∆  are the positional differences that needs to be defined in the 

problem context. In the scenario of PPS problem, these can be evaluated using the following  
relations:  

t × B    +]jixλ+jixµ×)jixSI+io(SI×jix,ioDS - [1  A = cij∆x ×
 
 

 t × B    +]jixλ+jixµ×)jixSI+in(SI×jix,inDS - [1  A = cij∆x ×  (10) 

Having updated the velocity, the position of particle is updated as per equation 9. Another 
major difference in the application of IPSO-LR from the traditional PSO lies in the definition 
of previous best position of the particle, oi, and neighbor’s previous best position, ni. Because 
of the TSP structure of the problem the particles cannot be always in the constant motion 
and hence, after completing the tour, particles are again randomly distributed over the 
nodes and set to move. The updated previous best position and neighborhood best position 
guide the particles in the consecutive generations to choose the better alternatives. The 
pseudo code for the IPSO-LR algorithm applied to the PPS problem is given below: 
 
Create the initial population P and set itermax , and iterLRmax ( i.e. number of iterations for 
which if    solution is not improved, then local optimum is considered to be encountered) 
iter = 0; 
iterLR = 0; 
for each particle i ∈  P: 
      initialize the xi , vi , oij ,nij ,neighborhood Ni , global best position gij and value of overall   
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choosing a particle from the neighborhood; the more is its size, the more is the likeliness of 
choosing the better one.  
In this paper, a cluster type of network topology is adopted as it produces promising results 
as compared to that of other neighborhood topologies like ring, all, pyramid, triangular, 
frame, etc. [12]. In the proposed strategy, various process plans of a part type are in 
neighborhood with each other as they characterize same attributes of a part type. Thus, 
various process plans (particles) of a part type form a cluster that shares information among 
the members. In this case, the number of clusters formed is equal to the number of process 
plans. As evident from Figure 1, each cluster is in further interaction with other clusters 
through the arcs joining the two closest nodes of each pair of clusters. 

3.3 Modified Strategy to Avoid Local Optima 
Entrapment in the local optima is the situation where the algorithm sticks to some 
premature solutions and does not show any improvement. To alleviate this problem, the 
concept of local repeller [12] with some modifications to suit the problem structure has been 
utilized. The most alluring trait of this technique is its simplicity and efficacy to avoid local 
optima. As and when the path corresponding to local optima is encountered, the sequence 
of process plans that is identified to be constituent of local optimum is made ‘repelling’ i.e 
.the particles are compelled to explore the search space more thoroughly and hence, the 
search is directed towards global optimum. This strategy guarantees the escape from the 
local optima and thus is very effective. 

4. Implementation of IPSO-LR Algorithm on the PPS Problem ( Illustrative 
Example) 
4.1 Problem Characteristics 
This paper adopts the formulation of PPS problem from [4] and [8]. To denote the machines, 
operations, tools, fixtures etc. a seven-digit code has been used. The data related to 
alternative process plans, processing time on different machines, material handling time for 
the different process plans, the batch size, due dates remaining and features of each part 
type are adopted from [8]. 
In the undertaken problem, the objectives considered are minimization of batch size, time 
remaining from due dates and number of machinable features, as well as calculating part 
type processing sequence along with optimum utilization of resources. The objectives like 
maximization of batch size, minimization of time remaining from due dates and 
minimization of number of machinable features are incorporated in the definition of 
membership vector µ  [4]. The parameter Similarity attribute ( λ ) quantifies the similarity 
among the part types that is based on the number of machines, fixtures, tools and operations 
performed to produce these. Its formulation is given as follows: 
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attribute; Cim , Cio , Cit, Cif are the cardinalities of the sets denoting number of machines, 
operations, tools and fixtures, respectively,  utilized by the process plans of part type i ; Cm , 
Co  , Ct , Cf  are the cardinalities of sets denoting the total number of machines, operations, 
tools and fixtures, respectively,  used to manufacture all the part types from all the possible 
alternatives.  
The parameter DS is a measure of accounting for the similarity among the several process 
plans of the different part types. It results from the comparison of their constituent elements, 
namely the operation codes. The parameter SI defines the similarity contained in a process 
plan itself. It denotes the ease with which a part can be made from the particular process 
plan. The details about the calculation of DS and SI can be referred from [4]. 

4.2 IPSO-LR Algorithm Based Solution Strategy 
To initialize the process, all the particles are randomly distributed over the nodes. Here, the 
number of particles equals the number of nodes present in the TSP formulation. The most 
critical step in the application of IPSO-LR to solve the PPS problem is the characterization of 
the parameters that represents position. In the formulation used in the proposed paper, a 
node (i.e. a process plan) characterizes the position of the particle. In this case, the velocity to 
each feasible node j from the particle on node i is calculated as per the following equation: 

 vij =    ]randrand [ )nijx( × (.) × sc+ )cijx (× (.) ×cc + iv ∆∆χ  (9) 

Here, cijx ∆ and nijx ∆  are the positional differences that needs to be defined in the 

problem context. In the scenario of PPS problem, these can be evaluated using the following  
relations:  

t × B    +]jixλ+jixµ×)jixSI+io(SI×jix,ioDS - [1  A = cij∆x ×
 
 

 t × B    +]jixλ+jixµ×)jixSI+in(SI×jix,inDS - [1  A = cij∆x ×  (10) 

Having updated the velocity, the position of particle is updated as per equation 9. Another 
major difference in the application of IPSO-LR from the traditional PSO lies in the definition 
of previous best position of the particle, oi, and neighbor’s previous best position, ni. Because 
of the TSP structure of the problem the particles cannot be always in the constant motion 
and hence, after completing the tour, particles are again randomly distributed over the 
nodes and set to move. The updated previous best position and neighborhood best position 
guide the particles in the consecutive generations to choose the better alternatives. The 
pseudo code for the IPSO-LR algorithm applied to the PPS problem is given below: 
 
Create the initial population P and set itermax , and iterLRmax ( i.e. number of iterations for 
which if    solution is not improved, then local optimum is considered to be encountered) 
iter = 0; 
iterLR = 0; 
for each particle i ∈  P: 
      initialize the xi , vi , oij ,nij ,neighborhood Ni , global best position gij and value of overall   
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      global best tour gj ( of all the particles). // Here,  oij ,nij , gij , gj are the arrays containing the    
       values of respective positions in each part type. 
repeat: 
      for (j=1:N)                              // Here, N is the  
                                                  number of part types. 

repeat: 
      for each particle i ∈  P: 
            if f (xij) < f (oij) 

                  then oij = xij; 
            endif 
            if  f (oij) < f (gij) 
                  then gij = oij; 
            endif             
      endfor 
      if sum of the tour <  (gj) 
             then gj = sum of the tour; 
                     iterLR = 0; 
      else  iterLR = iterLR + 1; 
      endif 
      if  iterLR = iterLRmax 

                    then mark the tour as repelling ( i.e. any  
                      particle trying to complete this   
                      tour is  randomly thrown away.  
     Update xi and vi accordingly. 

      endfor 
      iter = iter + 1; 
until iter = itermax;  

5. Computational Experience 
This section aims to provide the summary of numerical simulation of the proposed 
algorithm along with the comparative results with other established techniques from the 
literature in a condensed form. The number of alternative solutions increases exponentially 
as the number of part types and their alternative process plans increase. The complexity of 
the undertaken problem can be gauged by the fact that aforementioned 10 parts and their 52 

alternative process plans give rise to a total of  1310×28.1  feasible solutions. By the 
application of IPSO-LR the best alternative process plans and their sequence obtained is 
listed in Table 1. 
Application of the ACO strategy [8] also renders similar results. The applicability and 
efficacy of the proposed algorithm is evident from the fact that IPSO-LR outperforms other 
established techniques from the literature to solve the complex process plan selection 
problem with various formulations. In fact, due to its less computational complexity, the 
proposed IPSO-LR algorithm gains an edge over other techniques when the problems 
pertaining to real size data sets (like the undertaken data set) are concerned. The proposed 
algorithm is characterized by faster convergence along with the better and logical escape 
from the local optima.  
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Part type 
processing 
sequence 

Part 
type 

Process 
plan 

selected 
Route of the plan 

1 3 5 M011103,L020201,L070501,L080601,L120101,L100801,L050301 
2 2 3 M011103,L020201,L030201,M151304,L080601 
3 9 3 M011103, L020201,L080601,L090701,L110901 
4 7 3 M011103, L02021,L030201,L080601,L070501,L060401,L120101 
5 8 2 M011103, L020201,L030201,L060401,L070501,L080601 
6 10 11 M011108,L020201,L030201,L040202,L080601,L090701,L110901 
7 6 5 M011103, L020201,L040201,L060401,M100804 
8 1 6 M011103,L020201,L030201,M100704 
9 5 2 L010101,L020201,L030201,L040202,M151304,M100804 
10 4 1 L010101,L020201,L060401,L120101,M171504 

Table 1. Optimal Process Plan Selected 

     
Figure 1. Graphical representation of PPS problem 

Figure 2 provides a comparative plot between the fitness index of particles and the number 
of generations for the proposed strategy and ACO based strategy [8].  Here, the fitness index 
is defined as: 

 ;
-

worstObj
worstObj

best
Obj

 = fi  (11) 

Where, Objbest and Objworst are the objective function values of the particles covering shortest 
tour and longest tour respectively. 
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Figure 2. Comparative convergence with ACO [ 8] 

The comparative convergence trend of the algorithm with ACO based approach proves the 
compatibility of the proposed algorithm, as shown in the Figure 2. Figure 3 plots the CPU 
time vs number of iterations. From the plot (Figure 2), it can be visualized that the value of 
fitness index decreases as the number of generations increase that in turn proves the 
clustering of particles around best solution. This clustering is further proved by the Figure 4 
that provides the plot between the percentages of particles that deviates from the best 
particle by not more than 5%.  
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Figure 3. Variation of CPU time (ms) with number of iterations 

0

20

40

60

80

100

10 20 50 100 250 500 1000

iterations

%
 p

ar
tic

le
s

 
Figure 4. Percentage of deviating particles 

In order to illustrate further the effectiveness of the proposed IPSO-LR algorithm, various 
problems taken from the literature [2], [3], [14] have been tested with the same formulation 
of objective functions and parameter as is proposed in them. As a matter of fact, the 
proposed approach obtains the best solutions for different process plan selection examples, 
the comparative results of which are provided in Table 2. 
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Example of [ 1] Example of [ 2] Example of [ 3] 

Applied methodology Objective 
function 

value 

Process 
plan 

selected 

Objective 
function 

value 

Process 
plan 

selected 

Objective 
function 

value 

Process 
plan 

selected 
Reference [1] 33.1    1, 3, 7 30.8    1,4,7,9 61    3, 5, 7 
Reference [2] 34.5   1, 3, 5 30.8    1,4,7,9 59    3, 4, 6 
Reference [ 3] 32.5 1, 4, 5 30.8    1,4,7,9 61 3, 5, 6 

ACO approach [8] 32.5 1, 4, 5 30.8    1,4,7,9 59    3, 4, 6 
Proposed IPSO-LR 

approach 32.5 1, 4, 5 30.8    1,4,7,9 59    3, 4, 6 

Table 2. Comparative results of various methodologies from the literature 

In nutshell, the aforementioned computational results not only prove the efficacy and 
supremacy of the proposed strategy but also provide a new dimension to the solution of 
complex PPS problems in the practical environment.     

6. Conclusive Remarks 
Ever so changing competitive manufacturing structure is challenged by the issue to properly 
optimize resource allocation and their uses in order to get the best out of available 
alternatives. The PPS problem (amidst unpredictable disruptions observed in shop floor), is 
of substantial importance in flexible and automated manufacturing systems and needs 
much attention to be paid. The performance of flexible manufacturing systems is greatly 
influenced by the selection of viable and economic process plans among the other 
competing plans. This paper presents a new IPSO-LR algorithm to solve a complex real time 
PPS problem with the objectives like minimization of batch size, time remaining from due 
dates and number of machinable features, as well as calculating part type processing 
sequence along with optimum utilization of resources. The algorithm is characterized by the 
enhanced capability to come of local optima in a logical manner and has knack to handle the 
problems pertaining to large alternatives. The proposed work provides a new and broader 
dimension to the solution of PPS problem by consolidating a new parameter Similarity 
Attribute ‘ λ ’, that formulates the objective function in a more justifiable way. The real 
strength of swarms is derived from the interaction among particles while exploring the 
search space collaboratively. The terms of positional difference introduced in the velocity 
formula leads the particle to be successful regarding reaching towards optima and guides it 
by the previous successes of itself and other particles.  
This paper finds its contribution in the expanding area of research of intelligent automation in 
industries as well as in the broad field of interdependent evolutionary computation. The 
computational experience establishes the fact that the proposed algorithm is effective to model 
and solve PPS problems of varying complexities. Experimental results have shown the 
robustness of the algorithm and its outperforming behaviour over established techniques in 
the process planning field. Also, based on these results, the use of IPSO-LR algorithm seems to 
be encouraging in supporting the premise of automated and dynamic and intelligent process 
planning. Future work includes the development of web enabled intelligent Process Planning 
System with embedded features of e-Manufacturing and application of various tools and 
techniques related to Data Mining to refine the search algorithms. 
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1. Introduction  
 Manufacturing today is primarily cooked down to all-out efforts into profitability. Factories 
are moved to low-salary countries in order to ensure that profits are maintained and 
stockholders kept happy. Decisions like these are met with debates about morale, ethics and 
responsibilities that companies have to society, since losing an entire manufacturing plant 
can be devastating to a community. An alternative to industrial relocalization is trying to 
maintain profitability through development of effective production schedules, better 
utilization of resources and overall better planning in existing manufacturing plants. The 
significance of effective planning methods has, in other words, increased and will likely 
continue to do so. 
The focus of this chapter is to solve the MT10 job-shop scheduling problem using 4 different 
variants of the Ant Colony Optimization (ACO) algorithm and to try to rank them. A hybrid 
model, that uses a postprocessing algorithm to improve the resulting schedule, is also tried 
for all four ACO versions. The term visibility is explained in the context of job-shop 
scheduling, and incorporated into the test runs. 
When we are talking about job-shop scheduling problems (JSP), we mean a set of machines 
M, a set of jobs J and a set of operations O. For each operation there is a job to which it 
belongs, a machine on which it it has to be processed, a predetermined processing time on 
that machine as well as a predetermined processing order on the machines. The problem is 
to minimize the makespan while ensuring that no more than one job can be processed at the 
same time on the same machine, and seeing to that when a job starts, it must be completed 
(and can’t be interrupted).  
There have been numerous publications of successful algorithms applied to job-shop 
problems. Among exact mathematical methods are Mixed integer linear programming and 
Branch & Bound, among approximation methods there are List Scheduler Algorithms (see 
Panwalker & Iskander, 1977 for a survey), that assign one operation at a time from a list that 
is sorted by some priority rule, Shifting Bottleneck by Adams et al. (1988), Simulated 
Annealing by van Laarhoven et al. (1988), Tabu search was first used in job shop scheduling 
by Taillard (1989) and a Genetic algorithm approach by Nakano and Yamada (1991). 
A newcomer in these approaches to the JSP, ant colony optimization has become an 
increasingly popular candidate when it comes to algorithms that mimic behaviour of 
processes that exist in nature. The first ACO algorithm was introduced by Marco Dorigo in 
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processes that exist in nature. The first ACO algorithm was introduced by Marco Dorigo in 
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his doctoral thesis (1992) and was called an Ant System (AS). Since then AS has matured 
into an algorithm that does very well when it comes to problem types that are formulated as 
a traveling salesman problem (TSP) as well as the quadratic assignment problem (QAP). As 
a result of research into ACO algorithms, some very successful variants have emerged. 
We have the Elitist AS (EAS) proposed by Dorigo et al. (1996), in which the pheromone 
updating rules are biased towards the best solution found so far, the idea being to exploit 
the solution components within that solution. 
Ant Colony System (ACS) by Dorigo and Gambardella (1997) has several modifications to 
the original AS. It uses a modified rule when an ant chooses the next travel node, it uses a 
best-so-far pheromone update rule but applies pheromone evaporation only to the trail that 
belong to solution components that are in the best-so-far solution. It also uses a local 
pheromone update rule to decrease the pheromone values on visited solution components, 
in order to encourage exploration. 
Rank-based AS (RAS) by Bullnheimer et al. (1999), is a variant where the elite ant as well as 
a selection of ants with good solutions during that iteration get to update the pheromone 
trails. 
MAX-MIN AS (MMAS) by Stützle and Hoos (2000), is an approach that updates the 
pheromone trails, according to some convergence measure, with either the iteration-best ant 
or the best-so-far ant. The algorithm uses a lower bound for the pheromones (>0) as well as 
restricting the maximum amount of pheromone a trail can have. The lower bound 
encourage ant exploratory behaviour and the upper bound is prohibiting premature 
convergence due to the elite solution dominating the other solutions. 
Hypercube Framework (HCF) by Blum and Dorigo (2004) is more of a framework for 
implementing ACO algorithms. Among the benefits are automatic scaling of pheromone 
values to the interval [0,1]. 
In a paper by Colorni et al. (1993) AS was applied into job-shop scheduling and proved to be 
a noteworthy candidate when faced with the task of chosing a suitable algorithm for 
scheduling problems. The conclusions in the aforementioned paper were that AS is one of 
the most easily adaptable population-based heuristics so far proposed and that its 
computational paradigm is indeed effective under very different conditions. 
As an example of ACO robustness, Jayaraman et al. (2000) used an ACO algorithm in 
solving a combinatorial optimization problem of multiproduct batch scheduling as well as 
the continuous function optimization problem for the design of multiproduct plant with 
single product campaigns and horizon constraints. Further real-world applications with 
regard to ACO algorithms would be using ACO to solve an established set of vehicle 
routing problems as done by Bell and McMullen (2004) and a dynamic regional nurse-
scheduling problem in Austria by Gutjahr and Rauner (2005). The former paper concluded 
the results were competetive and in the latter paper ACO was compared to a greedy 
assignment algorithm and achieved highly significant improvements. 
Kuo-Ching Ying et al. (2004) applied the ant colony system to permutation flow-shop 
sequencing and effectively solved the n/m/P/Cmax problem, and commented that this 
suggests that the ant colony system metaheuristic is well worth exploring in the context of 
solving different scheduling problems. 
An example of ACO and flowshops in recent use would be a paper by Gajpal and Rajendran 
(2006), where they used a new ACO algorithm (NACO) to minimize the completion-
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variance of jobs, showing that work with ACO algorithms is an ongoing process to modify 
and improve the original AS and apply it to a variety of scheduling problems. 
For two of the top performing ACO algorithms, ACS and MMAS, convergence to the 
optimal solution has been proved (Dorigo and Stützle, 2004 as well as Stützle and Dorigo, 
2002). It is worth to remember that convergence results do not allow prediction of how 
quickly an optimal solution can be found. 

2. Problem description 
The Job-Shop Scheduling Problem (JSP) can be characterized as n jobs to be processed on m 
machines. In general it is a set of concurrent and conflicting goals to be satisfied using a 
finite set of resources where resources are called machines and basic tasks are called jobs. 
Each job is a request for scheduling a set of operations according to a process plan which 
specifies precedence restrictions. We have 

 }{ mMMM ,...,1=  a given set of machines 

 }{ nJJJ ,...,1=  a given set of jobs 

 }{ nOOO ,...,1=  a set of operations 

For each operation Ouij ∈  there is a job Ji to which it belongs, a machine Mj on which it has 

to be run and a processing time pij of the operation uij, where pij is a nonnegative integer. 
Every job is a chain of operations and every operation has to be processed on a given 
machine for a given time. The task is to find the starting times of all operations such that the 
completion time of the very last operation is minimal. The chain order of each job has to be 
maintained and each machine can only process one job at the same time. No job can be 
preempted; once an operation starts it must be completed. The solution s to an instance of 
the n x m JSP specifies a processing order for all of the jobs on each machine and implicitly 
defines an earliest starttime and earliest completion time for each operation. The maximum 
of the completion times is called makespan and most research address the problem of 
makespan minimization. 
Given an instance of JSP we can associate with it a disjunctive graph G = (V, A, E), where V 
is the node set, A is the conjunctive arc set and E is the disjunctive arc set. The nodes V 
correspond to all of the operations and two dummy nodes, a source and a sink. The 
conjunctive arcs A represent the precedence relationships between the operations of a single 
job and the disjunctive arcs E represent all pairs of operations to be performed on the same 
machine. All arcs emanating from a node have the processing time of the operation 
performed at that node as their length. The source has conjunctive arcs with length zero 
emanating to all the first operations of the job and the sink has conjunctive arcs coming from 
all the last operations. A feasible schedule corresponds to a selection of one arc from each 
disjunctive arc pair such that the resulting directed graph is acyclic, i.e. no loops can be 
found. The problem of minimizing the makespan reduces to finding a set of disjunctive arcs 
which minimize the length of the critical path in the directed graph. An in-depth description 
of disjunctive graphs with regard to job-shop problems can be found in for instance the 
article about AS and JSP by Colorni et al. (1993). 
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The MT10 problem is a 10 x 10 instance formulated by Muth and Thompson in 1963. It 
consists of 10 jobs processed on 10 machines, and every job has 10 tasks to perform. The 
processing times vary greatly with shortest duration being only 2 time units and longest 99 
time units. It has the reputation of being one of the most difficult combinatorial problems 
ever considered, and was not solved exactly until as late as 1989 by Carlier and Pinson using 
a branch and bound algorithm. It is a typical job-shop problem. 

3. ACO 
ACO belongs to the class metaheuristics. The term metaheuristic is derived from two greek 
words, heuristic which means “to find” and the prefix meta, which means “beyond, in the 
sense of an upper level”. It has come to mean a high-level strategy for guiding heuristics in a 
search for feasible solutions as well as a framework that can be specialized to solve 
optimization problems. ACO is also a succesful example of swarm intelligence, whose 
purpose is to design intelligent multi-agent systems by taking inspirations from the 
collective behaviour of social insects.  
ACO is modeled after the foraging behaviour of certain ant species. In the 1940s the French 
entomologist Pierre-Paul Grassé observed that some species of termites react to what he 
called “significant stimuli” (Grassé, 1946). He used the term “stigmergy” to describe the 
communication of ants, and he described this communication as workers being stimulated 
by the performance they have achieved. Ants alter their environment by means of 
pheromone trails. A pheromone is any chemical or set of chemicals produced by a living 
organism that transmits a message to other members of the same species. It is volatile and 
evaporates quickly, and ants secrete this chemical by walking and follow, in turn, other 
pheromone trails left by other ants. There are alarm pheromones, food trail pheromones and 
others that affect behavior or physiology. Strong food trail pheromone concentrations are 
perceived and stimulate ants to move into that direction. Ants are able to transport food 
through this mechanism by finding and maintaining the shortest path between the food 
source and the nest. Occasionally there will be the stray ant taking another route, and this 
event can be seen as exploration, the ants are constantly trying to find a more effective path. 
This mechanism was demonstrated by Denebourg et al. (1990), who in an experiment called 
“the double bridge” connected a nest of Argentine ants with a food source. Figure 1 (a) 
shows the experimental setup and figure 1 (b) another experimental setup by Goss et al. 
(1989). If the setup is that of figure 1 (a), initially, each ant randomly chooses one of the two 
bridges. Due to random fluctuations, after some time one of the two bridges presents a 
higher concentration of pheromone and attracts more ants. After a while almost the whole 
colony converges toward the use of the same bridge. With the setup illustrated in figure 1 
(b) another mechanism besides random fluctuations was demonstrated: the ants randomly 
choosing the shorter path travel between the nest and the food source faster and, given time, 
this means that pheromone will accumulate faster on this path, converging the population 
towards using this shorter path. 
The mechanism can be utilized in order to find the shortest path in, for instance, minimizing 
makespan for scheduling problems. The underlying problems are formulated as a TSP, that 
is, a connected, undirected graph G = (V, E) with weights on the edges between the nodes. 
The nodes V denote the cities, and the edge weight is the distance between two cities. The 
goal is to find a tour in G that connects all cities once so that the overall length is minimal.  
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Figure 1. Experimental setup for the double bridge experiments: (a) branches have equal 
length; (b) branches have different lengths 

Having artifical ants search the solution space simulate real ants searching their 
environment. The artifical ants can be equipped with some oddities that real life ants don’t 
have, for instance a local heuristic function to guide their search through a set of feasible 
solutions only, or an adaptive memory corresponding to the pheromone trail so that they 
can remember visited nodes. Also we require the ants to be symmetrical in the sense that 
they move from the nest to the food and back using the same path. The ACO algorithm also 
keeps tracks of visited nodes, meaning the ants have a memory which helps them select the 
next node from a list of possible choices. 

3.1 Ant System (AS) 
Each edge eij has a pheromone value τij associated with it, and this pheromone value can be 
read and modified by the ants. The algorithm starts with the user sprinkling some 
pheromone on random edges. All ants are initially in their home nest, and move to a node in 
their feasible list. When located at a node i an ant k uses the pheromone trails τij to compute 
the probability of choosing node j as the next node: 
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Nik is the feasible neighbourhood of ant k when in node i, that is, the list of cities that ant k 
has not yet visited. The parameter ηij = C / dij, where dij is the distance between nodes i and j, 
and C is a positive constant, is a measure of heuristic information, in other words ηij is our 
visibility. Parameters α and β determine the relative influence of the pheromone trail and the 
heuristic information. If α = 0 then the closest cities are more likely to be selected. If β = 0 
then only pheromone amplification is at work, which generally leads to the rapid emergence 
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of a stagnation situation, all ants eventually follow the same path and construct the same 
tour. Dorigo found in his studies (Dorigo et al. 1996) that typically β > α. 
Once all ants have completed their tour the pheromone trails get updated. The pheromone 
values are modified in order to bias ants in the future iterations to construct solutions 
similar to the best ones previously constructed. First the pheromone on all arcs is lowered 
by a constant, and then pheromone is added on the arcs that the ants have passed in their 
tour. Evaporation is implemented by: 

 ( ) ijij p ττ −← 1   (2) 

where 0 < p ≤ 1 is the evaporation rate. This enables the algorithm to “forget” previous bad 
decisions and avoids unlimited accumulation on the edges. The deposition of pheromone on 
the edges is done by means of global trail update 
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where ∆τijk is the amount of pheromone ant k deposits on the arcs it has visited, which 
usually amounts to the value Q / Ck, where Ck is the length of the tour and Q is a positive 
constant. This means that arcs used by many ants, and therefore part of short tours, receive 
more pheromone and are therefore more likely to be chosen by ants in future iterations of 
the algorithm. When using an elitist ant system, the solution presented by the best-solution-
so-far adds extra pheromone on its arcs. Equation (3) becomes 
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where e is a parameter that defines the weight given to the best-so-far tour and 

 bsbs
ij C/1=∆τ  if eij belongs to the ants tour, 0 otherwise (5) 

where Cbs is the length of the best-so-far tour. 
When initializing the system, all ants can be placed in the starting node or sprinkled 
randomly over all nodes. Dorigo studied the differences and came to the conclusion that it 
had little effect, though placing them randomly gave sometimes slightly better performance. 
Also, the differences between three AS algorithms, ant-cycle, ant-density and ant-quantity 
were studied in the same paper. In the latter two models each ant lay its trail at each step, 
without waiting for the end of the tour, whereas in the ant-cycle pheromone updates occur at 
the end of the tour. In the ant-density model a quantity Q of trail is left on edge (i,j) every 
time an ant goes from i to j, whereas in the ant-quantity model the amount of pheromone left 
was Q/dij. The ant-cycle model performed best and was chosen, and is the one depicted in the 
equations above. 
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3.2 Rank-based Ant System (RAS) 
This version is an extension to the original AS. After all m ants have generated a tour, the 
ants are sorted by tour length and the contribution of an ant to the pheromone trail update 
is weighted according to the rank µ of the ant. An elitist strategy is used as well. 
Only the ω best ants are considered and ω = σ - 1, where σ is the number of elitist ants in the 
system. This means that equation (4) is modified accordingly 
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µτ ij∆  increase of trail level on edge (i,j) caused by the µ-th best ant 

µL  tour length of the µ-th best ant 
*
ijτ∆  increase of trail level on edge (i,j) caused by the elitist ants 

σ  number of elitist ants 
*L  tour length of the best solution found 

In the paper (Bullnheimer et al. 1999) RAS is put to the test against AS, EAS as well as 
simulated annealing and a genetic algorithm. The conclusion was that RAS could for all 
problem instances compete with the classical metaheuristics regarding speed and quality, 
and that the ranking improved the performance of the ant system algorithm in every 
respect. 

3.3 Ant Colony System (ACS) 
ACS proposed by Dorigo and Gambardella (1997) introduced a new state transition rule to 
provide a direct way to balance between exploration of new edges and exploitation of a 
priori and accumulated knowledge about the problem.  
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is weighted according to the rank µ of the ant. An elitist strategy is used as well. 
Only the ω best ants are considered and ω = σ - 1, where σ is the number of elitist ants in the 
system. This means that equation (4) is modified accordingly 
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µ  ranking index 

µτ ij∆  increase of trail level on edge (i,j) caused by the µ-th best ant 

µL  tour length of the µ-th best ant 
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ijτ∆  increase of trail level on edge (i,j) caused by the elitist ants 

σ  number of elitist ants 
*L  tour length of the best solution found 

In the paper (Bullnheimer et al. 1999) RAS is put to the test against AS, EAS as well as 
simulated annealing and a genetic algorithm. The conclusion was that RAS could for all 
problem instances compete with the classical metaheuristics regarding speed and quality, 
and that the ranking improved the performance of the ant system algorithm in every 
respect. 

3.3 Ant Colony System (ACS) 
ACS proposed by Dorigo and Gambardella (1997) introduced a new state transition rule to 
provide a direct way to balance between exploration of new edges and exploitation of a 
priori and accumulated knowledge about the problem.  
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if the µ–th best ant travels on edge (i,j)

otherwise

if edge (i,j) is part of the best solution found
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where q is a random number uniformly distributed in [0,1] , qo is a parameter ( 0 ≤ qo ≤ 1) and 
J is a random node selected according to the probability distribution given in equation 1. 
This means that every time an ant in city i has to choose a city j to move to, it samples a 
random number q. If q ≤ qo then the best edge according to equation 3 is chosen, otherwise 
and edge is chose according to equation 1. 
While ants are constructing a solution a local pheromone updating rule is applied 
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and σ is a parameter 0 < σ < 1 and ∆τijk is 1/(nLnn), where n is the number of nodes in the 
problem and Lnn is the tour length produced by the nearest neighbour heuristic (see 
Rosenkrantz et al. 1977). 
The global pheromone updating rule is applied only to edges that belong to the best ant tour 
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and Lgb is the length of the globally best tour.  
Noticeable in ACS is that the local updating rule is applied in parallel, every time an ant 
selects a new node to travel to, but the global updating rule after all ants have completed 
their tour. 

3.4 Max-min Ant System (MMAS) 
This version by Stützle and Hoos (2000) differs from the original AS in three ways. Only the 
iteration best ant is allowed to apply pheronome, the strength of the pheromone trails have 
lower and upper bounds, and at start, all trails are initialized to their upper bound value to 
encourage early exploration. Equation 4 is modified 
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where ∆τijbest is the amount of pheromone the iteration best ant deposits on the arcs it has 
visited. 
The pheromone trail upper (τmax )and lower (τmin ) bounds for an edge can be calculated, a 
detailed description can be found in the paper by Stützle and Hoos.  
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if x > τmax

if x < τmin

otherwise

if (i,j) is part of the global best tour

otherwise
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At all times should the algorithm see to that the pheromone strength is between the given 
bounds on any edge. 
Studies were conducted in the paper to ascertain if the algorithm should use the iteration 
best ant or the global best (elite) ant as basis for the pheromone updates, and the results 
were that the iteration best ant performed better. Also the effects of using τmin or τmax as a 
starting value for the initial pheromone amount on the trails were studied, resulting in τmax 
being the better approach. 
An additional mechanism called pheromone trail smoothing was introduced in the paper for 
increased performance. Basically when the MMAS has converged, or is very close to 
convergence, the mechanism increases the pheromone trails proportionally to their 
difference to the maximum pheromone trail limit. As a conclusion it is stated that MMAS 
outperformed all other AS variants to date. 

4. The hybrid-ACO algorithm 
The algorithm consists of two parts. We have the ACO part, where ants crawl over the 
searchspace trying to construct a feasible tour. When all ants have constructed their tour, the 
timestamps have also been calculated for the individual operations in the schedule defined 
by a tour, which allows us to calculate the makespan. The postprocessing part springs to life 
when there is a complete schedule to operate on. The (global) pheromone update of the 
ACO occurs only after the postprocessing has finished, this is due to the postprocessing 
affecting the makespan of the schedule formed by the tour of the ant. After the pheromone 
update ACO continues with the next iteration. 

4.1 The postprocessing algorithm 
After all ants have constructed their tour, a postprocessing algorithm is applied. This 
algorithm is effectively a local search procedure, based upon the approach of Nowicki and 
Smutnicki (1996). 
The local search begins by identifying the critical path in the constructed schedule. The critical 
path can be decomposed into a number of blocks where a block is a maximal sequence of 
adjacent operations that require the same machine. Block length can vary from just one 
operation to all operations that are scheduled on one machine. Given a block, swapping 
operations take place. We start from the last block in the critical path which has a size larger 
than 1 and  its last operation in the block. The block size must be larger than 1 since otherwise 
no swap can be made. The identified operation is swapped with its predecessor in the same 
block, and the necessary changes are made into the tour of the ant as well as the timestamps of 
the scheduled operations. If the swap improves the makespan, it is accepted, otherwise the 
swap is undone and the next pair in the block is up for swapping. If a block contains no more 
swaps we move to the preceeding block. Note that an accepted swap means that the critical 
path may change and a new critical path must be identified. If no swap of operations in the 
critical path improve the makespan, the local search ends. 
This means that the tour of an ant may change in the postprocessing part of the algorithm. 
The tour of the ants after the very first completed postprocessing run may differ radically 
from the one presented by the first iteration of the ACO, but succeeding postprocessing runs 
after the first round of calculations are much easier on the ants and are not interrupting the 
pheromone trails too much. 
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by a tour, which allows us to calculate the makespan. The postprocessing part springs to life 
when there is a complete schedule to operate on. The (global) pheromone update of the 
ACO occurs only after the postprocessing has finished, this is due to the postprocessing 
affecting the makespan of the schedule formed by the tour of the ant. After the pheromone 
update ACO continues with the next iteration. 
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After all ants have constructed their tour, a postprocessing algorithm is applied. This 
algorithm is effectively a local search procedure, based upon the approach of Nowicki and 
Smutnicki (1996). 
The local search begins by identifying the critical path in the constructed schedule. The critical 
path can be decomposed into a number of blocks where a block is a maximal sequence of 
adjacent operations that require the same machine. Block length can vary from just one 
operation to all operations that are scheduled on one machine. Given a block, swapping 
operations take place. We start from the last block in the critical path which has a size larger 
than 1 and  its last operation in the block. The block size must be larger than 1 since otherwise 
no swap can be made. The identified operation is swapped with its predecessor in the same 
block, and the necessary changes are made into the tour of the ant as well as the timestamps of 
the scheduled operations. If the swap improves the makespan, it is accepted, otherwise the 
swap is undone and the next pair in the block is up for swapping. If a block contains no more 
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path may change and a new critical path must be identified. If no swap of operations in the 
critical path improve the makespan, the local search ends. 
This means that the tour of an ant may change in the postprocessing part of the algorithm. 
The tour of the ants after the very first completed postprocessing run may differ radically 
from the one presented by the first iteration of the ACO, but succeeding postprocessing runs 
after the first round of calculations are much easier on the ants and are not interrupting the 
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Figure 1 shows a critical path and possible swaps for an example schedule. 

 
Figure 1. A sample 4-machine schedule with the critical path marked in grey and possible 
swap pairs with arrows. The path is made of 4 blocks with the largest block consisting of 
four scheduled operations. 

5. What is visibility? 
An additional problem when working with ant systems is that of visibility. There are 
similarities between priority rules used in heuristic approaches and the visibility of a single 
ant, both are trying to evaluate and make a choice of where to go next from a specific node. 
Usually visibility is referred to as the neighbourhood of the ant, i.e. the nodes that are close 
to the node the ant is currently staying on. It is a measure of what nodes the ant can see 
around it when standing on a specified node. In equation 1, the parameter ηij is our measure 
of visibility and in TSP-problems the meaning is clear and all values of ηij can be computed a 
priori, since the node distances are known. No matter which node the ant stands on, the 
distance to all other nodes can be fetched from a pre-calculated distance table. When it 
comes to schedules it is not entirely straightforward what visibility is and what effect it has 
on computations with regard to ACO. The distance in time units from a node in the tour to 
the next is not known until you have calculated the timestamps for the entire tour so far. 
Another thing with ACO and the MT-10 problem is that the tabu list (already visited nodes) 
alone is not enough. Since the tasks in every job have to be done in correct order, that is, task 
A3 has to be done before A4 etc., a candidate list is needed. The candidate list has all the 
legal node choices an ant can make from the node it is currently standing on. This means 
that only the selection probabilities for the nodes in the candidate list need to be calculated, 
which speeds up the algorithm. In this case visibility for an ant is restricted to only the 
nodes in the candidate list. Figure 2 illustrates this phenomena. 
In order to understand more about visibility and its effects, some various approaches to 
ACO-visibility in schedules are undertaken and studied. Table 1 shortly outlines some 
different types of visibility. 

Type of visibility Explanation 
Distance  Distance-based, the starting time of an operation  (counted from t0) 
SPT  Shortest processing time first 
LPT  Longest processing time first 
TLM  Length of unscheduled tasks left on machine 
TLJ  Length of unscheduled tasks left in job 
TLJ+TLM(30-70) Length of unscheduled tasks left in job and on machine, weight 30%-70% 
TLJ+TLM(50-50) Length of unscheduled tasks left in job and on machine, weight 50%-50% 
TLJ+TLM(70-30) Length of unscheduled tasks left in job and on machine, weight 70%-30% 

Table 1. Various types of visibility for ACO 

Job-shop scheduling and visibility studies with a hybrid ACO algorithm 

 

365 

 
Figure 2. Visibility in scheduling. Since the ant has visited the nodes B1 and B2, the 
candidate list contains the next in the series, B3. Same for A2 and D2 since both A1 and D1 
are in the tour. The rest of the candidates are jobs that have not started yet, the first in their 
series of tasks. Every time a node is added to the tour, it is placed into the schedule and the 
timestamps for starting and finishing that task on the specific machine are calculated. When 
choosing the next node to travel to, visibility can be calculated for all the nodes in the 
candidate list. The good choices get better visibility rating, according to selected visibility 
method, and thus a better chance of being selected 

When the ant is selecting the next node to travel to, distance-based visibility is the earliest 
possible start time on the corresponding machine for the possible selections in its allowed 
list. The task that can start earlier than other candidates gets a higher probability of being 
chosen than a task that can start later and this can be achieved with a simple formula Q/tstart 
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be visited again 
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that replaces the definition of ηij in equation 1. SPT ranks the candidates according to length 
of their processing time, shorter processing time means a higher probability of being chosen, 
whereas LPT is the opposite; longer processing times means higher probability. TLM 
calculates the total processing time for all unscheduled tasks on the current machine. The 
longer the total processing time is, the higher the probability of being chosen. TLJ is similar, 
it calculates the total processing times for all the unscheduled tasks left in the current job. 
The longer the total processing time, the higher the probability. TLJ + TLM is a combination 
of TLJ and TLM, where each visibility is weighted differently. To get an outline of the 
impact of the weighting factors, 30-70, 50-50 and 70-30 proportional weights are used 
(percentage values). 

6. Computational experience and results 
The experiment setup was to take each ACO method and do 5 runs for each of the different 
types of visibility. Each run was 2,500 rounds of calculations, then the algorithm was halted. 
Two sets of runs were made, one without postprocessing, the other with. Average values 
and mean deviations were calculated. All units in table 3 and 4 are time units. Common 
parameter settings for ACO can be seen in table 2. 

 

Parameter value  meaning  
m  40  number of ants 
Q  80  pheromone deposited by an ant 
α  1  bias towards pheromone amplification 
β  2  bias towards closest nodes (visibility) 
p  0.007  evaporation rate 

Table 2. ACO parameter settings 

These parameters were kept the same for all comparative runs, i.e. for all visibility types 
during the runs with and without postprocessing. 
The column that dictates percentage deviation from optimum solution is calculated for the 
best found makespan of the runs. 
AS and RAS perform about the same, with RAS having the slight edge, smaller standard 
deviation and better mean values. ACS outperforms both AS and RAS, and MMAS 
outperforms them all. This is in line with the findings in quoted papers.  
The impact of the different visibilities vary for the different ACO methods, and it is quite an 
interesting read. As can be seen, best solution in table 3 was found by the TLJ visibility with 
ACS as the ACO method. The results for ACS with different visibilities are a bit jumpy, since 
ACS also holds the worst solution found. MMAS does good overall with all visibilities. 
The best found solution after 2,500 rounds of calculations is really not a very good one, it is 
still 13.1% from optimum, however, the algorithm has not stagnated and it continues to 
explore the search space and comes up with new solutions. The meaning of these runs is not 
to solve to optimality, rather to study the visibility effects and get a feel for the performance 
of the different ACO methods. 
Tweaking the parameter settings for each individual type of visibility may improve the 
results, but this way all the visibility types are on the same page for easy comparison. Same 
goes for the ACO methods. 
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ACO Type of visibility  worst best mean σ % from optimum  
AS Distance   2174  1373  1954.0  294.4  32.3% 

SPT   2273 1582  2134.8 276.4  41.2% 
LPT    2314  1491   2121.8  316.8  37.6% 
TLM    2406 1482  2117.4  324.7  37.2% 
TLJ    2218 1502  2020.8  266.3  38.1% 
TLJ+TLM(30-70)  2322 1457  2072.2  311.6  36.2% 
TLJ+TLM(50-50)  2357  1464  2114.4  333.0  36.5% 
TLJ+TLM(70-30)  2127  1459  1975.8  259.1  36.3% 

 
RAS Distance   2102 1488 1946. 6 230.4 37.5% 

SPT   2121  1508  1981.6  237.6  38.3% 
LPT    2384  1519  2151.0  318.4  38.7% 
TLM    2119  1486  1852.6  205.6  37.4% 
TLJ    2230  1466  2032.8  284.8  36.6% 
TLJ+TLM(30-70)  2145  1364  1929.6  290.4  31.8% 
TLJ+TLM(50-50)  2265  1520  2090.8  286.8  38.8% 
TLJ+TLM(70-30)  2008  1494  1871.0  190.3  37.8% 

 
ACS Distance   1251  1137  1184.6  42.0  18.2% 

SPT   2072  1867  2001.0  71.2  50.2% 
LPT    2213  1638  2072.6  218.8  43.2% 
TLM    1473  1381  1431.4  32.1  32.6% 
TLJ    1108  1070  1093.8  13.1  13.1% 
TLJ+TLM(30-70)  1459  1234  1373.0  81.1  24.6% 
TLJ+TLM(50-50)  1404  1279  1335.0  50.6  27.3% 
TLJ+TLM(70-30)  1273  1168  1231.6  37.9  20.4% 

 
MMAS Distance   1272  1183  1243.6  31.8  21.4% 

SPT   1363  1241  1332.4  46.2  25.1% 
LPT    1303  1237  1276.8  25.83  24.8% 
TLM    1301  1209  1273.0  33.0  23.1% 
TLJ    1286  1267  1279.8   7.0  26.6% 
TLJ+TLM(30-70)  1286  1211  1260.4  30.6  23.2% 
TLJ+TLM(50-50)  1286  1235  1260.2  19.2  24.7% 

 TLJ+TLM(70-30)  1295  1245  1269.0  18.1  25.3%   

Table 3. Results from computational runs without postprocessing 
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that replaces the definition of ηij in equation 1. SPT ranks the candidates according to length 
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Parameter value  meaning  
m  40  number of ants 
Q  80  pheromone deposited by an ant 
α  1  bias towards pheromone amplification 
β  2  bias towards closest nodes (visibility) 
p  0.007  evaporation rate 

Table 2. ACO parameter settings 

These parameters were kept the same for all comparative runs, i.e. for all visibility types 
during the runs with and without postprocessing. 
The column that dictates percentage deviation from optimum solution is calculated for the 
best found makespan of the runs. 
AS and RAS perform about the same, with RAS having the slight edge, smaller standard 
deviation and better mean values. ACS outperforms both AS and RAS, and MMAS 
outperforms them all. This is in line with the findings in quoted papers.  
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explore the search space and comes up with new solutions. The meaning of these runs is not 
to solve to optimality, rather to study the visibility effects and get a feel for the performance 
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Tweaking the parameter settings for each individual type of visibility may improve the 
results, but this way all the visibility types are on the same page for easy comparison. Same 
goes for the ACO methods. 
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ACO Type of visibility  worst best mean σ % from optimum  
AS Distance   2174  1373  1954.0  294.4  32.3% 

SPT   2273 1582  2134.8 276.4  41.2% 
LPT    2314  1491   2121.8  316.8  37.6% 
TLM    2406 1482  2117.4  324.7  37.2% 
TLJ    2218 1502  2020.8  266.3  38.1% 
TLJ+TLM(30-70)  2322 1457  2072.2  311.6  36.2% 
TLJ+TLM(50-50)  2357  1464  2114.4  333.0  36.5% 
TLJ+TLM(70-30)  2127  1459  1975.8  259.1  36.3% 

 
RAS Distance   2102 1488 1946. 6 230.4 37.5% 

SPT   2121  1508  1981.6  237.6  38.3% 
LPT    2384  1519  2151.0  318.4  38.7% 
TLM    2119  1486  1852.6  205.6  37.4% 
TLJ    2230  1466  2032.8  284.8  36.6% 
TLJ+TLM(30-70)  2145  1364  1929.6  290.4  31.8% 
TLJ+TLM(50-50)  2265  1520  2090.8  286.8  38.8% 
TLJ+TLM(70-30)  2008  1494  1871.0  190.3  37.8% 

 
ACS Distance   1251  1137  1184.6  42.0  18.2% 

SPT   2072  1867  2001.0  71.2  50.2% 
LPT    2213  1638  2072.6  218.8  43.2% 
TLM    1473  1381  1431.4  32.1  32.6% 
TLJ    1108  1070  1093.8  13.1  13.1% 
TLJ+TLM(30-70)  1459  1234  1373.0  81.1  24.6% 
TLJ+TLM(50-50)  1404  1279  1335.0  50.6  27.3% 
TLJ+TLM(70-30)  1273  1168  1231.6  37.9  20.4% 

 
MMAS Distance   1272  1183  1243.6  31.8  21.4% 

SPT   1363  1241  1332.4  46.2  25.1% 
LPT    1303  1237  1276.8  25.83  24.8% 
TLM    1301  1209  1273.0  33.0  23.1% 
TLJ    1286  1267  1279.8   7.0  26.6% 
TLJ+TLM(30-70)  1286  1211  1260.4  30.6  23.2% 
TLJ+TLM(50-50)  1286  1235  1260.2  19.2  24.7% 

 TLJ+TLM(70-30)  1295  1245  1269.0  18.1  25.3%   

Table 3. Results from computational runs without postprocessing 
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ACO Type of visibility  worst best mean σ % from optimum  
AS Distance   1341  1083  1231.6  84.4   14.1% 

SPT   1609  1055  1445.6  198.9 11.8% 
LPT    1608  1079  1464.4  195.2  13.8% 
TLM    1667  1048  1475.8  219.9  11.3% 
TLJ    1620  1061  1458.8  207.9  12.3% 
TLJ+TLM(30-70)  1599  1057  1437.8  195.1  12.0%   
TLJ+TLM(50-50)  1578  1059  1422.6  185.4  12.2%  
TLJ+TLM(70-30)  1580  1071  1420.6  183.3  13.2% 

 
RAS Distance   1292  1087  1207.6  71.8  14.4%  

SPT   1463  1069  1346.8  142.8  13.0% 
LPT    1538  1101  1351.2  148.3  15.5% 
TLM    1465  1088  1330.21  129.4  14.5% 
TLJ    1358  1068  1245.6  97.4  12.9% 
TLJ+TLM(30-70)  1457  1093  1339.0  127.3  14.9%   
TLJ+TLM(50-50)  1456  1067  1281.4  125.9  12.8% 
TLJ+TLM(70-30)  1502  1101  1378.6  145.9  15.5% 

 
ACS Distance   1053  1032  1045.0  7.4  9.9%  

SPT   1340  1123  1254.0  72.5  17.2% 
LPT    1178  1103  1157.2  27.5  15.7% 
TLM    1137  1038  1073.0  35.5  10.4% 
TLJ    988  981 982.8  2.7  5.2% 
TLJ+TLM(30-70)  1105  1008  1052.8  31.5  7.7%   
TLJ+TLM(50-50)  1060  999   1033.4  20.1  6.9%  
TLJ+TLM(70-30)  995  977   983.0  6.6  4.8% 

 
MMAS Distance   1013  1001  1003.8  4.6   7.1% 

SPT   1006  977  989.6  9.8   4.8% 
LPT    1019  991  1004.2  10.2  6.2% 
TLM    1014  988   1002.2  10.6  5.9% 
TLJ    1013  993   1001.2  6.7  6.3% 
TLJ+TLM(30-70)  994  982   987.4  5.1  5.3%   
TLJ+TLM(50-50)  1006  989  998.6  6.8  6.0%  

  TLJ+TLM(70-30)  1003  979   990.4  8.8  5.0%   

Table 4. Results from computational runs with postprocessing 
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Figure 3. A plot of the pheromonematrix when no postprocessing present. Very clear 
pheromonetrails are visible 

 
Figure 4. A plot of the pheromonematrix when using postprocessing. Clear pheromonetrails 
visible but distributed over more edges than in figure 4 
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As for the postprocessing version of the ACO methods, RAS beats AS in the sense that RAS 
has less deviation, which means it consistently gives good solutions, though AS did manage 
to find some better solutions. ACS is still a bit jumpy, it finds very good solutions for some 
visibility runs, but also performs poorly with for instance SPT and LPT. The various 
weighted combinations of TLJ + TLM seem to do better, overall, than other visibilities. 
TLJ+TLM(70-30) visibility in MMAS seems to work best, after 2,500 rounds of calculations 
the best found solution is 5.0% from optimum, though TLJ visibility and ACS are very close 
with a 5.2% solution. MMAS has less deviation, and thus is more likely to continue to 
produce good solutions every time it runs. 
It is clear that the postprocessing closes the performance gap between the different ACO 
methods, but the same internal ranking still holds true with postprocessing as without. The 
postprocessing also improves the performance dramatically for all versions of ACO 
algorithms tested. 
The algorithms were stopped after 2,500 rounds of calculations, so the question arises, how 
good a solution can be found if allowed to run without interruptions for a longer time? An 
additional run with the best visibility and ACO method from table 3 landed after 30,000 
rounds of calculations at a best found makespan of 1012 time units. which is 8.1% from 
optimum. An additional run with the best visibility and ACO method from table 4 landed 
after 30,000 rounds of calculations at a best found makespan of 948 time units, which is 1.9 
% from optimum. 

 
Figure 5. A finished schedule for the MT10 problem, made with the hybrid ACO (MMAS), 
with a makespan of 968 time units (3.9% from optimum) 

Another question that can be asked is does the postprocessing disturb the forming of 
pheromone trails in the system in any way? Figure 3 is the pheromonematrix of the MMAS 
with no postprocessing, taken after 2,500 rounds, and figure 4 is a similar one with 
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postprocessing. The dark dots depict a high concentration of pheromone whereas the 
presence of a lighter dot means no or very little pheromone is present. As one can imagine, 
the presence of a postprocessing routine that modifies ant tours messes with the ant 
pheromone trails, and you can clearly see if you compare figure 3 and figure 4 with each 
other that figure 4 shows more pheromone distribution in the system. There are still dark 
dots in figure 4 signifying established pheromone trails so we are not dealing with random 
search. In light of these figures you could eventually tweak the evaporation setting higher 
when using postprocessing, or bias the parameters more towards an emphasis on visibility. 
You could argue that the larger distribution of pheromone over the trails as seen in  figure 4 
encourages ant exploration more and actually helps in finding better solutions. 
A finished schedule produced by a hybrid ACO can be seen in figure 5. 

7. Conclusion 
When paired with the local search the ACO produces noteworthy results very fast (typically 
5% from optimum within 200 rounds of calculations). The Max-Min Ant System 
outperformed all other ACO versions, and it did so for all types of visibility tested, showing 
that it is indeed a leading candidate for choosing your ant system. 
There are various version of ACO available and this chapter served its purpose to both do 
an attempt at ranking them, showing the impact of various visibility methods as well as 
proving that pure ACO methods produce good results, but even better when combined with 
the postprocessing algorithm shown. Naturally, not every combination of ACO and a local 
search is guaranteed to work better than a pure ACO, but a hybrid version can improve the 
performance dramatically. 
If you are looking for a good, quick solution rather than an all-out effort to find the best 
solution, ACO perfomance is a noteworthy competitor to existing job-shop scheduling 
approaches. ACO is an easy algorithm to implement, with roughly the same amount of code 
and difficulty as that of a genetic algorithm. 
ACO is a good example of how harnessing, mimicking and utilizing processes occurring in 
nature for tough scientific problems can be a successful enterprise. 
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1. Introduction  
Optimization techniques play an important role as a useful decision making tool in the design 
of structures. By deriving the maximum benefits from the available resources, it enables the 
construction of lighter, more efficient structures while maintaining adequate levels of safety 
and reliability. A large number of optimization techniques have been suggested over the past 
decades to solve the inherently complex problem posed in structural design. Their scope varies 
widely depending on the type of structural problem to be tackled. Gradient-based methods, 
for example, are highly effectively in finding local optima when the design space is convex and 
continuous and when the design problem involves large number of design variables and 
constraints. If the problem constraints and objective function are convex in nature, then it is 
possible to conclude that the local optimum will be a global optimum. In most structural 
problems, however, it is practically impossible to check the convexity of the design space, 
therefore assuring an obtained optimum is the best possible among multiple feasible solutions. 
Global non-gradient-based methods are able to traverse along highly non-linear, non-convex 
design spaces and find the best global solutions. In this category many unconstrained 
optimization algorithms have been developed by mimicking natural phenomena such as 
Simulated Annealing (Kirkpatrick et al., 1983), Genetic Algorithms (Goldberg, 1989), and 
Bacterial Foraging (Passino, 2002) among others. Recently, a new family of more efficient 
global optimization algorithms have been developed which are better posed to handle 
constraints. They are based on the simulation of social interactions among members of a 
specific species looking for food sources. From this family of optimizers, the two most 
promising algorithms, which are the subject of this book, are Ant Colony Optimization 
(Dorigo, 1986), and Particle Swarm Optimization or PSO. In this chapter, we present the 
analysis, implementation, and improvement strategies of a particle swarm optimization 
suitable for constraint optimization tasks. We illustrate the functionality and effectiveness of 
this algorithm, and explore the effect of the different PSO setting parameters in the scope of 
classical structural optimization problems. 

1.1 The Structural Design Problem 
Before we describe the implementation of the particle swarm approach, it is necessary to 
define the general structural design problem to understand the different modification and 
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1. Introduction  
Optimization techniques play an important role as a useful decision making tool in the design 
of structures. By deriving the maximum benefits from the available resources, it enables the 
construction of lighter, more efficient structures while maintaining adequate levels of safety 
and reliability. A large number of optimization techniques have been suggested over the past 
decades to solve the inherently complex problem posed in structural design. Their scope varies 
widely depending on the type of structural problem to be tackled. Gradient-based methods, 
for example, are highly effectively in finding local optima when the design space is convex and 
continuous and when the design problem involves large number of design variables and 
constraints. If the problem constraints and objective function are convex in nature, then it is 
possible to conclude that the local optimum will be a global optimum. In most structural 
problems, however, it is practically impossible to check the convexity of the design space, 
therefore assuring an obtained optimum is the best possible among multiple feasible solutions. 
Global non-gradient-based methods are able to traverse along highly non-linear, non-convex 
design spaces and find the best global solutions. In this category many unconstrained 
optimization algorithms have been developed by mimicking natural phenomena such as 
Simulated Annealing (Kirkpatrick et al., 1983), Genetic Algorithms (Goldberg, 1989), and 
Bacterial Foraging (Passino, 2002) among others. Recently, a new family of more efficient 
global optimization algorithms have been developed which are better posed to handle 
constraints. They are based on the simulation of social interactions among members of a 
specific species looking for food sources. From this family of optimizers, the two most 
promising algorithms, which are the subject of this book, are Ant Colony Optimization 
(Dorigo, 1986), and Particle Swarm Optimization or PSO. In this chapter, we present the 
analysis, implementation, and improvement strategies of a particle swarm optimization 
suitable for constraint optimization tasks. We illustrate the functionality and effectiveness of 
this algorithm, and explore the effect of the different PSO setting parameters in the scope of 
classical structural optimization problems. 

1.1 The Structural Design Problem 
Before we describe the implementation of the particle swarm approach, it is necessary to 
define the general structural design problem to understand the different modification and 
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improvements made later to the basic algorithm. Mathematically, a structural design 
problem can be defined as: 

 
( )

[ ] ( ) [ ]{ }
∈

∈ ⊂ ℜ ≤ ∀ ∈n
l u j

min f x,p s.t. x D

where D = x|x x ,x ,g x,p 0 j 1,m
 (1) 

where a specific structural attribute (e.g. weight) is defined as an objective or merit function 
f which is maximized or minimized using proper choice of the design parameters. The 
design parameters specify the geometry and topology of the structure and physical 
properties of its members. Some of these are independent design variables (x) which are 
varied to optimize the problem; while others can be fixed value parameters (p). From the 
design parameters, a set of derived attributes are obtained some of which can be defined as 
behaviour constraints (g) e.g., stresses, deflections, natural frequencies and buckling loads 
etc., These behaviour parameters are functionally related through laws of structural 
mechanics to the design variables. The role of an optimization algorithm in structural design 
will be then to find the best combination of design variables that lead to the best objective 
function performance, while assuring all constraints are met.  

2. The Particle Swarm Algorithm 
The PSO algorithm was first proposed in 1995 by Kennedy and Eberhart. It is based on the 
premise that social sharing of information among members of a species offers an 
evolutionary advantage (Kennedy & Eberhart, 1995). Recently, the PSO has been proven 
useful on diverse engineering design applications such as logic circuit design (e.g. Coello & 
Luna, 2003), control design (e.g. Zheng et al., 2003) and power systems design (e.g. Abido, 
2002) among others. A number of advantages with respect to other global algorithms make 
PSO an ideal candidate for engineering optimization tasks.  The algorithm is robust and well 
suited to handle non-linear, non-convex design spaces with discontinuities. It is also more 
efficient, requiring a smaller number of function evaluations, while leading to better or the 
same quality of results (Hu et al., 2003; and Hassan et al., 2005). Furthermore, as we will see 
below, its easiness of implementation makes it more attractive as it does not require specific 
domain knowledge information, internal transformation of variables or other manipulations 
to handle constraints. 

2.1 Mathematical Formulation 
The particle swarm process is stochastic in nature; it makes use of a velocity vector to 
update the current position of each particle in the swarm. The velocity vector is updated 
based on the "memory" gained by each particle, conceptually resembling an 
autobiographical memory, as well as the knowledge gained by the swarm as a whole 
(Eberhart & Kennedy, 1995). Thus, the position of each particle in the swarm is updated 
based on the social behaviour of the swarm which adapts to its environment by returning to 
promising regions of the space previously discovered and searching for better positions over 
time. Numerically, the position x of a particle i at iteration k+1 is updated as: 

 i i i
k+1 k k+1x = x + v ∆t  (2) 
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where i
k+1v  is the corresponding updated velocity vector, and ∆t  is the time step value 

typically considered as unity (Shi & Eberhart, 1998a). The velocity vector of each particle is 
calculated as: 
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p - xp - x
v = wv + c r + c r

∆t ∆t
 (3) 

where i
kv  is the velocity vector at iteration k, i

kp  & g
kp  are respectively the best ever position 

of particle i and the global best position of the entire swarm up to current iteration k, and r 
represents a random number in the interval [0,1]. The remaining terms are configuration 
parameters that play an important role in the PSO convergence behaviour. The terms c1 and 
c2 represent "trust" settings which respectively indicate the degree of confidence in the best 
solution found by each individual particle (c1 - cognitive parameter) and by the swarm as a 
whole (c2 - social parameter). The final term w, is the inertia weight which is employed to 
control the exploration abilities of the swarm as it scales the current velocity value affecting 
the updated velocity vector. Large inertia weights will force larger velocity updates 
allowing the algorithm to explore the design space globally. Similarly, small inertia values 
will force the velocity updates to concentrate in the nearby regions of the design space.  
Figure 1 illustrates the particle position and velocity update as described above in a two-
dimensional vector space. Note how the updated particle position will be affected not only 
by its relationship with respect to the best swarm position but also by the magnitude of the 
configuration parameters. 
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Figure 1. PSO Position and Velocity Update 

2.2 Computational Algorithm 
As with all numerical based optimization approaches the PSO process is iterative in nature, 
its basic algorithm is constructed as follows: 
1. Initialize a set of particles positions i

0x  and velocities i
0v  randomly distributed 

throughout the design space bounded by specified limits. 
2. Evaluate the objective function values ( )f i

kx  using the design space positions i
kx . A 

total of n objective function evaluations will be performed at each iteration, where n is 
the total number of particles in the swarm. 
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3. Update the optimum particle position i
kp  at current iteration k and global optimum 

particle position g
kp . 

4. Update the position of each particle using its previous position and updated velocity 
vector as specified in Eq. (1) and Eq. (2). 

5. Repeat steps 2-4 until a stopping criterion is met. For the basic implementation the 
typical stopping criteria is defined based on a number of iterations reached. 

The iterative scheme behaviour for a two-dimensional variable space can be seen in Figure 
2, where each particle position and velocity vector is plotted at two consecutive iterations. 
Each particle movement in the design space is affected based on its previous iteration 
velocity (which maintains the particle “momentum” biased towards a specific direction) and 
on a combined stochastic measure of the previous best and global positions with the 
cognitive and social parameters. The cognitive parameter will bias each particle position 
towards its best found solution space, while the social parameter will bias the particle 
positions towards the best global solution found by the entire swarm.  For example, at the kth 
iteration the movement of the tenth particle in the figure is biased towards the left of the 
design space. However, a change in direction can be observed in the next iteration which is 
forced by the influence of the best design space location found by the whole swarm and 
represented in the figure as a black square. Similar behaviour can be observed in the other 
particles of the swarm. 
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Figure 2. PSO Position and Velocity Update 

An important observation is that the efficiency of the PSO is influenced to some extent by 
the swarm initial distribution over the design space. Areas not initially covered will only be 
explored if the momentum of a particle carries the particle into such areas. Such a case only 
occurs when a particle finds a new individual best position or if a new global best is 
discovered by the swarm. Proper setting of the PSO configuration parameters will ensure a 
good balance between computational effort and global exploration, so unexplored areas of 
the design space are covered. However, a good particle position initialization is desired. 
Different approaches have been used to initialize the particle positions with varying degrees 
of success. From an engineering design point of view, the best alternative will be to 
distribute particles uniformly covering the entire search space. A simpler alternative, which 
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has been proven successfully in practice, is to randomly distribute the initial position and 
velocity vectors of each particle throughout the design space. This can be accomplished 
using the following equations: 

 ( )i
0 min max minx = x + r x - x  (4) 

 ( )min max mini
0

x + r x - x
v =

∆t
 (5) 

where xmin and xmax represent the lower and upper design variables bounds respectively, and 
r represents a random number in the interval [0,1]. Note that both magnitudes of the 
position and velocity values will be bounded, as large initial values will lead to large initial 
momentum and positional updates. This large momentum causes the swarm to diverge 
from a common global solution increasing the total computational time. 

2.2 Algorithm Analysis 
A useful insight of the PSO algorithm behaviour can be obtained if we replace the velocity 
update equation (Eq. (3)) into the position update equation (Eq. (2)) to get the following 
expression: 
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Factorizing the cognitive and social terms from the above equation we obtain the following 
general equation: 
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c r p + c r px = x + wV ∆t + c r + c r - x
c r + c r

 (7) 

Note how the above equation has the same structure as the gradient line-search used in 
convex unconstrained optimization ( ˆi i

kk+1 kpx = + αx ) where: 
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= x + wV ∆tx
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 (8) 

So the behaviour of each particle in the swarm can be viewed as a traditional line-search 
procedure dependent on a stochastic step size (α) and a stochastic search direction ( kp ). 
Both the stochastic step size and search direction depend on the selection of social and 
cognitive parameters. In addition, the stochastic search direction behaviour is also driven by 
the best design space locations found by each particle and by the swarm as a whole. 
Behaviour confirmed from the Fig. 2 observations. Knowing that [ ]∈1 2r ,r 0,1 , then the step 

size will belong to the interval [ ]2c+10,c with a mean value of ( ) 21 2c + c . Similarly, the 

search direction will be bracketed in the interval ( ) 
 

gi i i
k 1 k 2 k 1 2 k-x , c p + c p c + c - x t . 
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Figure 2. PSO Position and Velocity Update 
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Two questions immediately arise from the above analysis. The first question is what type of 
convergence behaviour the algorithm will have. The second one is which values of the social 
and cognitive parameters will guarantee such convergence. To answer both questions let us 
start by re-arranging the position terms in equation (6) to get the general form for the ith 
particle position at iteration k+1 as:  

 ( ) gi i i i
k+1 k 1 1 2 2 k 1 1 k 2 2 kx = x 1 - c r - c r + wV ∆t + c r p + c r p  (9) 

A similar re-arrangment of the position term in equation (2) leads to: 

 ( ) gi
1 1 2 2i i i k k

k+1 k k 1 1 2 2
c r + c r p pV = -x + wV + c r + c r

∆t ∆t ∆t
 (10) 

Equations (8) and (9) can be combined and written in matrix form as:  
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i1 1 2 2i i 1 1 2 2
kk+1 k

2 21 1 2 2 g1 1i i
k+1 k k

1 - c r - c r w∆t c r c r px x
= + c rc r + c r c r pV V- w ∆t∆t∆t

 (11) 

which can be considered as a discrete-dynamic system representation for the PSO algorithm 

where 
Ti ix V 

  
,  is the state subject to an external input  

 
 

Tgip ,p , and the first and second 

matrices correspond to the dynamic and input matrices respectively.   
If we assume for a given particle that the external input is constant (as is the case when no 
individual or communal better positions are found) then a convergent behaviour can be 
maintained, as there is no external excitation in the dynamic system. In such a case, as the 
iterations go to infinity the updated positions and velocities will become the same from the 
kth to the kth+1 iteration reducing the system to: 

 
( )
( )

  
  
  
  
     

   
     
            

ii 1 11 1 2 2 2 2
kk

2 2 g1 1 2 2 1 1i
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 (12) 

which is true only when i
kV = 0  and both i

kx  and pi
k  coincide with pg

k . Therefore, we will 
have an equilibrium point for which all particles tend to converge as iteration progresses. 
Note that such a position is not necessarily a local or global minimizer. Such point, however, 
will improve towards the optimum if there is external excitation in the dynamic system 
driven by the discovery of better individual and global positions during the optimization 
process. 
The system stability and dynamic behaviour can be obtained using the eigenvalues derived 
from the dynamic matrix formulation presented in equation (11). The dynamic matrix 
characteristic equation is derived as:  

 ( )2
1 1 2 2λ - w - c r - c r + 1 λ + w = 0  (13) 

where the eigenvalues are given as:  

 
( )2

1 1 2 2 1 1 2 2
1,2

1+ w - c r - c r ± 1+ w - c r - c r - 4w
λ =

2
 (14) 

Particle Swarm Optimization in Structural Design 

 

379 

The necessary and sufficient condition for stability of a discrete-dynamic system is that all 
eigenvalues (λ) derived from the dynamic matrix lie inside a unit circle around the origin on 
the complex plane, so i=1,…,nλ |< 1 . Thus, convergence for the PSO will be guaranteed if the 
following set of stability conditions is met: 

 ( )
1 1 2 2

1 1 2 2

c r + c r > 0
c r + c r

- w < 1
2

w < 1

 (15) 

Knowing that [ ]∈1 2r ,r 0,1 the above set of conditions can be rearranged giving the following 
set of parameter selection heuristics which guarantee convergence for the PSO: 

 
( )

( )
1 2

1 2

0 < c + c < 4
c + c

- 1 < w < 1
2

 (16) 

While these heuristics provide useful selection bounds, an analysis of the effect of the 
different parameter settings is essential to determine the sensitivity of such parameters in 
the overall optimization procedure. Figure 3 shows the convergence histories for the well-
known 10-bar truss structural optimization problem (described in more detail on Section 4) 
under different social and cognitive parameter combinations which meet the above 
convergence limits. The results are representative of more than 20 trials for each tested case, 
where the algorithm was allowed to run for 1000 iterations, with a fixed inertia weight value 
of 0.875, and the same initial particles, velocity values, and random seed. 
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Two questions immediately arise from the above analysis. The first question is what type of 
convergence behaviour the algorithm will have. The second one is which values of the social 
and cognitive parameters will guarantee such convergence. To answer both questions let us 
start by re-arranging the position terms in equation (6) to get the general form for the ith 
particle position at iteration k+1 as:  

 ( ) gi i i i
k+1 k 1 1 2 2 k 1 1 k 2 2 kx = x 1 - c r - c r + wV ∆t + c r p + c r p  (9) 

A similar re-arrangment of the position term in equation (2) leads to: 

 ( ) gi
1 1 2 2i i i k k

k+1 k k 1 1 2 2
c r + c r p pV = -x + wV + c r + c r

∆t ∆t ∆t
 (10) 

Equations (8) and (9) can be combined and written in matrix form as:  

 ( )
    
    
    
    
         

   
   
   
     

i1 1 2 2i i 1 1 2 2
kk+1 k

2 21 1 2 2 g1 1i i
k+1 k k

1 - c r - c r w∆t c r c r px x
= + c rc r + c r c r pV V- w ∆t∆t∆t

 (11) 

which can be considered as a discrete-dynamic system representation for the PSO algorithm 

where 
Ti ix V 
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Tgip ,p , and the first and second 

matrices correspond to the dynamic and input matrices respectively.   
If we assume for a given particle that the external input is constant (as is the case when no 
individual or communal better positions are found) then a convergent behaviour can be 
maintained, as there is no external excitation in the dynamic system. In such a case, as the 
iterations go to infinity the updated positions and velocities will become the same from the 
kth to the kth+1 iteration reducing the system to: 
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which is true only when i
kV = 0  and both i

kx  and pi
k  coincide with pg

k . Therefore, we will 
have an equilibrium point for which all particles tend to converge as iteration progresses. 
Note that such a position is not necessarily a local or global minimizer. Such point, however, 
will improve towards the optimum if there is external excitation in the dynamic system 
driven by the discovery of better individual and global positions during the optimization 
process. 
The system stability and dynamic behaviour can be obtained using the eigenvalues derived 
from the dynamic matrix formulation presented in equation (11). The dynamic matrix 
characteristic equation is derived as:  
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The necessary and sufficient condition for stability of a discrete-dynamic system is that all 
eigenvalues (λ) derived from the dynamic matrix lie inside a unit circle around the origin on 
the complex plane, so i=1,…,nλ |< 1 . Thus, convergence for the PSO will be guaranteed if the 
following set of stability conditions is met: 

 ( )
1 1 2 2

1 1 2 2

c r + c r > 0
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2

w < 1

 (15) 

Knowing that [ ]∈1 2r ,r 0,1 the above set of conditions can be rearranged giving the following 
set of parameter selection heuristics which guarantee convergence for the PSO: 

 
( )

( )
1 2

1 2

0 < c + c < 4
c + c

- 1 < w < 1
2

 (16) 

While these heuristics provide useful selection bounds, an analysis of the effect of the 
different parameter settings is essential to determine the sensitivity of such parameters in 
the overall optimization procedure. Figure 3 shows the convergence histories for the well-
known 10-bar truss structural optimization problem (described in more detail on Section 4) 
under different social and cognitive parameter combinations which meet the above 
convergence limits. The results are representative of more than 20 trials for each tested case, 
where the algorithm was allowed to run for 1000 iterations, with a fixed inertia weight value 
of 0.875, and the same initial particles, velocity values, and random seed. 
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From the figure we can clearly see that when only social values are used to update the 
particle velocities, as is the case when c1=0 & c2=3, the algorithm converges to a local 
optimum within the first ten iterations. As no individual (local) exploration is allowed to 
improve local solutions, all the particles in the swarm converge rapidly to the best initial 
optimum found from the swarm. We can also see that by increasing the emphasis on the 
cognitive parameter while reducing the social parameters, better solutions are found 
requiring less number of iterations for convergence. When we place slightly higher 
emphasis in the local exploration by each particle, as is the case with c1=2.0 & c2=1.0 and 
c1=2.5 & c2=0.5, the algorithm provides the best convergence speed to accuracy ratio. This 
result is due to the fact that individuals concentrate more in their own search regions thus 
avoiding overshooting the best design space regions. At the same time, some global 
information exchange is promoted, thus making the swarm point towards the best global 
solution. However, increasing local exploration at the expense of global agreement has its 
limits as shown in the case where only cognitive values are used to update the particle 
velocities (c1=3 and c2=0). In this case, each particle in the swarm will explore around its 
best-found solution requiring a very large number of iterations to agree into a common 
solution, which for this example is not the global optimum. 
In a similar way to the above analysis, Figure 4 shows the effect of varying the inertia 
weight between its heuristic boundaries for a fixed set of "trust" settings parameters with 
c1=2.0 and c2=1.0 values. As before, the results are representative of more than 20 trials for 
each tested case where the algorithm was allowed to run for 1000 iterations with the same 
initial position, velocity and random seed. From the figure it is clear that reducing the inertia 
weight promotes faster convergence rates, as it controls the particle “momentum” bias 
towards a specific direction of the search space. Reducing the inertia weight beyond its 
allowable convergence limits comes at a cost as particles are forced to reduced their 
momentum stagnating at local optima as shown in the figure for the w=0.5 case. 
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It is important to note at this stage that the optimal selection of the PSO parameters is in 
general problem-dependent. However, the obtained results for our example confirms the 
expectations as derived from the theoretical analysis (see i.e. van den Bergh & Engelbrecht, 
2006; Trelea, 2003; and Clerc & Kennedy, 2002) and experiments (see i.e. Shi & Eberhart, 
1998b; Shi & Eberhart, 1999; and Eberhart & Shi, 2000) regarding the sensitivity and 
behaviour of such tuning parameters. As long as the stability conditions presented in Eq. 
(16) are met, it is observed that maintaining an approximately equal or slightly higher 
weighting of the cognitive vs. the social parameter (in the interval of 1.5 to 2.5) will lead to 
the optimal convergent behaviour for the PSO. 

3. Algorithm Improvements 
Thus far, we have only dealt with the most basic PSO algorithm. Two important concerns 
when dealing with practical engineering problems have been left out up to now: how to 
improve the convergence rate behaviour as particles converge to a solution, and how to 
handle constraints. As we will see below, different modifications can be made to the original 
algorithm to address these concerns making it much stronger to deal with constrained 
optimization problems such as those traditionally present in structural design. 

3.1 Updating the Inertia Weight 
As shown before, the PSO global convergence is affected by the degree of local/global 
exploration provided by the "trust" settings parameters while the relative rate of 
convergence is provided by the inertia weight parameter. An interesting observation can be 
made from the inertia weight analysis presented in Figure 4. For a fixed inertia value there is 
a significant reduction in the algorithm convergence rate as iterations progresses. This is the 
consequence of excessive momentum in the particles, which results in detrimentally large 
steps sizes that overshoot the best design areas. By observing the figure, an intuitive strategy 
comes to mind: during the initial optimization stages, allow large weight updates so the 
design space is searched thoroughly. Once the most promising areas of the design space 
have been found (and the convergence rate starts to slow down) reduce the inertia weight, 
so the particles momentum decreases allowing them to concentrate in the best design areas. 
Formally, different methods have been proposed to accomplish the above strategy. Notably, 
two approaches have been used extensively (see Shi & Eberhart, 1998a; and Fourie & 
Groenwold, 2002). In the first one, a variation of inertia weight is proposed by linearly 
decreasing w at each iteration as: 

 max min
k+1 max

max

w - ww = w - k
k

 (17) 

where an initial inertia value wmax is linearly decreased during kmax iterations.  
The second approach provides a dynamic decrease of the inertia weight value if the swarm 
makes no solution improvement after certain number of iterations. The updated is made 
from an initial weight value based on a fraction multiplier [ ]∈wk 0,1  as: 

 kwk+1 ww = k  (18) 
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where an initial inertia value wmax is linearly decreased during kmax iterations.  
The second approach provides a dynamic decrease of the inertia weight value if the swarm 
makes no solution improvement after certain number of iterations. The updated is made 
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The effect of the described inertia update methods against a fixed inertia weight of 0.875 is 
shown in Figure 5 for the 10-bar truss example used before. For the linear decrease method, 
the inertia weight is varied in the interval [0.95, 0.55]. This interval meets the specified 
convergence conditions (Eq. (16)) with c1=2.0 and c2=1.0 values. For the dynamic decrease 
case a fraction multiplier of kw = 0.975 is used if the improved solution does not change after 
five iterations, with an initial inertia weight specified as 0.95. As expected, an initial rapid 
convergence rate can be observed for the fixed inertia test, followed by a slow convergence 
towards the global optimum. The effect of dynamically updating the inertia weight is clear 
as both the linear and dynamic decrease methods present faster overall convergence rates. 
The dynamic update method provide the fastest convergence towards the solution, taking 
approximately 100 iterations as compared to 300 iterations taken by the linear decrease 
method, and the 600 iterations taken by the fixed inertia weight test. An intrinsic advantage 
is also provided by the dynamic decrease method as it depends solely on the value of past 
solutions adapting well to algorithmic termination and convergence check strategies. 
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3.2 Dealing with Constraints 
Similar to other stochastic optimization methods, the PSO algorithm is formulated as an 
unconstrained optimizer. Different strategies have been proposed to deal with constraints, 
making the PSO a strong global engineering optimizer. One useful approach is to restrict the 
velocity vector of a constrained violated particle to a usable feasible direction as shown in 
Fig. 6. By doing so, the objective function is reduced while the particle is pointed back 
towards the feasible region of the design space (Venter & Sobieszczanski-Sobieski, 2004). A 
new position for the violated constraint particles can be defined using Eq. (2) with the 
velocity vector modified as:  
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( ) ( )g ii i

k kk ki
k+1 1 1 2 2

p - xp - x
v = c r + c r

∆t ∆t
 (19) 

where the modified velocity vector includes only the particle self information of the best 
point and the information of the current best point in the swarm. The new velocity vector is 
only influenced then by the particle best point found so far and by the current best point in 
the swarm. If both of these best points are feasible, the new velocity vector will point back to 
a feasible region of the design space. Otherwise, the new velocity vector will point to a 
region of the design space that resulted in smaller constraint violations. The result is to have 
the violated particle move back towards the feasible region of the design space, or at least 
closer to its boundary, in the next design iteration. 

 
Figure 5. Violated Design Points Redirection 

The velocity redirection approach however, does not guarantee that for the optimum 
solution all constraints will be met as it does not deal with the constraint directly. One 
classic way to accommodate constraints directly is by augmenting the objective function 
with penalties proportional to the degree of constraint infeasibility as: 

 ( )
( )

( ) ( )
1

ˆ

k k
m

k j j k
j

f x if x is feasible

f x k g x otherwise
=


′ =  +


∑kf x  (20) 

where for m constraints kj is a prescribed scaling penalty parameter and ( )j kg x is a 
constraint value multiplier whose values are larger than zero if the constraint is violated: 

 ( ) ( )( )2ˆ max 0,j k j kg x g x =    (21) 

In a typical optimization procedure, the scaling parameter will be linearly increased at each 
iteration step so constraints are gradually enforced. The main concern with this method is 
that the quality of the solution will directly depend on the value of the specified scaling 
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parameters. A better alternative will be to accommodate constraints using a parameter-less 
scheme. Taking advantage of the available swarm information Eq. (22) and Eq. (23) show a 
useful adaptive penalty approach, where penalties are defined based on the average of the 
objective function and the level of violation of each constraint during each iteration step: 

 ( ) ( )
( ) 2

1

j k
j k m

l k
l

g x
k f x

g x
=

=
  ∑

 (22) 

with 

 ( ) ( )( )
1

1 ˆmax 0,
n

j k j k
k

g x g x
n =

= ∑  (23) 

where ( )kf x  is the average of the objective function values in the current swarm, and 

( )j kg x  is the violation of the lth constraint averaged over the current population. The above 
formulation distributes the penalty coefficients in a way that those constraints which are 
more difficult to be satisfied will have a relatively higher penalty coefficient. Such 
distribution is achieved by making the jth coefficient proportional to the average of the 
violation of the jth constraint by the elements of the current population. An individual in the 
swarm whose jth violation equals the average of the jth violation in the current population for 
all j, will have a penalty equal to the absolute value of the average objective function of the 
population. Similarly, the average of the objective function equals ( ) ( )k kf x f x+ .  

While the penalty based method works well in many practical cases, the numerically exact 
constrained optimum feasible solution can only be obtained at the infinite limit of the 
penalty factor. Recently, a new approach which circumvents the need for infinite penalty 
factors has been proposed by Sedlaczek & Eberhard (2005). It directly uses the general 
Lagrange function defined for an ith particle as: 

 ( ) ( ) ( )ℑ ∑
m

i i i i i
i k k j j k

j=1
x , = f x + λ g xλ  (24) 

where λ are Lagrange multipliers. This function can be used as an unconstrained pseudo 
objective function by realizing that the solution of a constrained optimization problem (Eq. 
(1)) with the correct set of multipliers is a stationary point for the function. The stationary is 
not necessarily a minimum of the Lagrange function. To preserve the stationary properties 
of the solution while assuring that it is a minimum, the Lagrange function is augmented 
using a quadratic function extension θ as (Gill et al. 1981): 

 ( ) ( ) ( ) ( )2, i
p jr θ θℑ +∑ ∑

m m
i i i i i i

i k k j j k p, j k
j=1 j=1

x , = f x + λ x r xλ  (25) 

with 

 ( ) ( ) 
 
  

ji i
j k j k

p,i

-λ
θ x = max g x ,

2r
 (26) 
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where the j p,i-λ 2r term is arbitrarily chosen from gradient-based optimization problems.  
Note from Eq. (25) how each constraint violation is penalized separately using an rp penalty 
factor. It can be shown that each constrain penalty factor will be of finite value in the 
solution of the augmented Lagrange function (Eq. (25)) hence in the solution of the original 
constrained problem (Eq. (1)). The multipliers and penalty factors values that lead to the 
optimum are unknown and problem dependent. Therefore, instead of the traditional single 
unconstrained optimization process, a sequence of unconstrained minimizations of Eq. (25) 
is required to obtain a solution. In such a sequence, the Lagrange multiplier is updated as: 

 ( ),1
2 i

p j j kvv v
r xθ

+
= +i i

j jλ λ  (27) 

In a similar way, the penalty factor is updated in a way such that it penalizes infeasible 
movements as: 

 

( ) ( ) ( )
( )

, 1

, ,1

,

2

1
2

i i i
p j j v j v j v gv
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p j p j j v gv

v

p j v

r if g x g x g x

r r if g x

r otherwise

ε

ε

−

+

 > ∧ >

= ≤




 (28) 

where gε  is a specified constrained violation tolerance. A lower bound limit of 

( ), 1 2p j gr ε≥ i
jλ is also placed in the penalty factor so its magnitude is effective in creating 

a measurable change in Lagrange multipliers. Based on the above formulation the 
augmented Lagrange PSO algorithm can be then constructed as follows: 
1. Initialize a set of particles positions i

0x  and velocities i
0v  randomly distributed 

throughout the design space bounded by specified limits. Also initialize the Lagrange 
multipliers and penalty factors, e.g. 

0
0=i

jλ , , 00p jr r= , and evaluate the initial particles 

corresponding function values using Eq. (25). 
2. Solve the unconstrained optimization problem described in Eq. (25) using the PSO 

algorithm shown in section 2.2 for kmax iterations. 
3. Update the Lagrange multipliers and penalty factors according to Eq. (27) and Eq. (28). 
4. Repeat steps 2-4 until a stopping criterion is met. 

4. PSO Application to Structural Design 

Particle swarms have not been used in the field of structural optimization until very 
recently, where they have show promising results in the areas of structural shape 
optimization (Fourie & Groenwold, 2002; Venter & Sobieszczanski-Sobieski, 2004) as well as 
topology optimization (Fourie & Groenwold, 2001). In this section, we show the application 
of the PSO algorithm to three classic non-convex truss structural optimization examples to 
demonstrate its effectiveness and to illustrate the effect of the different constraint handling 
methods. 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

384 

parameters. A better alternative will be to accommodate constraints using a parameter-less 
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where the j p,i-λ 2r term is arbitrarily chosen from gradient-based optimization problems.  
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jλ is also placed in the penalty factor so its magnitude is effective in creating 

a measurable change in Lagrange multipliers. Based on the above formulation the 
augmented Lagrange PSO algorithm can be then constructed as follows: 
1. Initialize a set of particles positions i

0x  and velocities i
0v  randomly distributed 

throughout the design space bounded by specified limits. Also initialize the Lagrange 
multipliers and penalty factors, e.g. 

0
0=i

jλ , , 00p jr r= , and evaluate the initial particles 

corresponding function values using Eq. (25). 
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4. PSO Application to Structural Design 

Particle swarms have not been used in the field of structural optimization until very 
recently, where they have show promising results in the areas of structural shape 
optimization (Fourie & Groenwold, 2002; Venter & Sobieszczanski-Sobieski, 2004) as well as 
topology optimization (Fourie & Groenwold, 2001). In this section, we show the application 
of the PSO algorithm to three classic non-convex truss structural optimization examples to 
demonstrate its effectiveness and to illustrate the effect of the different constraint handling 
methods. 
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4.1 Example 1 – The 10-Bar Truss 
Our first example considers a well-known problem corresponding to a 10-bar truss non-
convex optimization shown on Fig. 6 with nodal coordinates and loading as shown in Table 
1 and 2 (Sunar & Belegundu, 1991). In this problem the cross-sectional area for each of the 10 
members in the structure are being optimized towards the minimization of total weight. The 
cross-sectional area varies between 0.1 to 35.0 in2. Constraints are specified in terms of stress 
and displacement of the truss members. The allowable stress for each member is 25,000 psi 
for both tension and compression, and the allowable displacement on the nodes is ±2 in, in 
the x and y directions. The density of the material is 0.1 lb/in3, Young’s modulus is E = 104 
ksi and vertical downward loads of 100 kips are applied at nodes 2 and 4. In total, the 
problem has a variable dimensionality of 10 and constraint dimensionality of 32 (10 tension 
constraints, 10 compression constraints, and 12 displacement constraints). 

 
Figure 6. 10-Bar Space Truss Example 

Node x (in) y (in) 
1 720 360 
2 720 0 
3 360 360 
4 360 0 
5 0 360 
6 0 0 

Table 1. 10-Bar Truss Members Node Coordinates 

Node Fx Fy 
4 0 -100 
6 0 -100 

Table 2. 10-Bar Truss Nodal Loads 

Three different PSO approaches where tested corresponding to different constraint handling 
methodologies. The first approach (PSO1) uses the traditional fixed penalty constraint while 
the second one (PSO2) uses an adaptive penalty constraint. The third approach (PSO3) 
makes use of the augmented Lagrange multiplier formulation to handle the constraints. 
Based on the derived selection heuristics and parameter settings analysis, a dynamic inertia 
weight variation method is used for all approaches with an initial weight of 0.95, and a 
fraction multiplier of kw = 0.975 which updates the  inertia value if the improved solution 
does not change after five iterations. Similarly, the "trust" setting parameters where specified 
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as c1=2.0 and c2=1.0 for the PSO1 and PSO2 approaches to promote the best global/local 
exploratory behaviour. For the PSO3 approach the setting parameters where reduced in 
value to c1=1.0 and c2=0.5 to avoid premature convergence when tracking the changing 
extrema of the augment multiplier objective function. 
Table 3 shows the best and worst results of 20 independent runs for the different PSO 
approaches. Other published results found for the same problem using different 
optimization approaches including gradient based algorithms both unconstrained (Schimit 
& Miura, 1976), and constrained (Gellatly & Berke, 1971; Dobbs & Nelson, 1976; Rizzi, 1976; 
Haug & Arora, 1979; Haftka & Gurdal, 1992; Memari & Fuladgar, 1994), structural 
approximation algorithms (Schimit & Farshi, 1974), convex programming (Adeli & Kamal, 
1991, Schmit & Fleury, 1980), non-linear goal programming (El-Sayed & Jang, 1994), and 
genetic algorithms (Ghasemi et al, 1997; Galante, 1992) are also shown in Tables 3 and 4. 

Truss 
Area 

PSO1 
Best 

PSO1 
Worst 

PSO2 
Best 

PSO2 
Worst 

PSO3 
Best 

PSO3 
Worst 

Gellatly 
& 

Berke, 
1971 

Schimit 
& 

Miura, 
1976 

Ghasemi, 
1997 

Schimit 
& 

Farshi, 
1974 

Dobbs 
& 

Nelson, 
1976 

01 33.50 33.50 33.50 33.50 33.50 30.41 31.35 30.57 25.73 33.43 30.50 
02 0.100 0.100 0.100 0.100 0.100 0.380 0.100 0.369 0.109 0.100 0.100 
03 22.76 28.56 22.77 33.50 22.77 25.02 20.03 23.97 24.85 24.26 23.29 
04 14.42 21.93 14.42 13.30 14.42 14.56 15.60 14.73 16.35 14.26 15.43 
05 0.100 0.100 0.100 0.100 0.100 0.110 0.140 0.100 0.106 0.100 0.100 
06 0.100 0.100 0.100 0.100 0.100 0.100 0.240 0.364 0.109 0.100 0.210 
07 7.534 7.443 7.534 6.826 7.534 7.676 8.350 8.547 8.700 8.388 7.649 
08 20.46 19.58 20.47 18.94 20.47 20.83 22.21 21.11 21.41 20.74 20.98 
09 20.40 19.44 20.39 18.81 20.39 21.21 22.06 20.77 22.30 19.69 21.82 
10 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.320 0.122 0.100 0.100 

Weight 5024.1 5405.3 5024.2 5176.2 5024.2 5076.7 5112.0 5107.3 5095.7 5089.0 5080.0 

Table 3. 10-Bar Truss Optimization Results 
Truss 
Area 

Rizzi, 
1976 

Haug & 
Arora, 1979 Haftka & Gurdal, 1992 Adeli & Kamal, 

1991 
El-Sayed & 
Jang, 1994 Galante, 1992 Memari & 

Fuladgar, 1994 
01 30.73 30.03 30.52 31.28 32.97 30.44 30.56 
02 0.100 0.100 0.100 0.10 0.100 0.100 0.100 
03 23.934 23.274 23.200 24.65 22.799 21.790 27.946 
04 14.733 15.286 15.220 15.39 14.146 14.260 13.619 
05 0.100 0.100 0.100 0.10 0.100 0.100 0.100 
06 0.100 0.557 0.551 0.10 0.739 0.451 0.100 
07 8.542 7.468 7.457 7.90 6.381 7.628 7.907 
08 20.954 21.198 21.040 21.53 20.912 21.630 19.345 
09 21.836 21.618 21.530 19.07 20.978 21.360 19.273 
10 0.100 0.100 0.100 0.10 0.100 0.100 0.100 

Weight 5061.6 5060.9 5060.8 5052.0 5013.2 4987.0 4981.1 

Table 4. 10-Bar Truss Optimization Results (Continuation) 

We can see that all three PSO implementations provide good results as compared with other 
methods for this problem. However, the optimal solution found by the fixed penalty 
approach has a slight violation of the node 3 and node 6 constraints. This behaviour is 
expected from a fixed penalty as the same infeasibility constraint pressure is applied at each 
iteration; it also indicates that either we should increase the scaling penalty parameter or 
dynamically increase it, so infeasibility is penalized further as the algorithm gets closer to 
the solution. The benefit of a dynamic varying penalty is demonstrated by the adaptive 
penalty PSO which meets all constraints and has only two active constraints for the 
displacements at nodes 3 and 6. The augmented Lagrange multiplier approach also 
converges to the same feasible point as the dynamic penalty result. Furthermore, it does it in 
fewer number of iterations as compared to the other two approaches since convergence is 
checked directly using the Lagrange multiplier and penalty factor values. Note as well how 
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approach has a slight violation of the node 3 and node 6 constraints. This behaviour is 
expected from a fixed penalty as the same infeasibility constraint pressure is applied at each 
iteration; it also indicates that either we should increase the scaling penalty parameter or 
dynamically increase it, so infeasibility is penalized further as the algorithm gets closer to 
the solution. The benefit of a dynamic varying penalty is demonstrated by the adaptive 
penalty PSO which meets all constraints and has only two active constraints for the 
displacements at nodes 3 and 6. The augmented Lagrange multiplier approach also 
converges to the same feasible point as the dynamic penalty result. Furthermore, it does it in 
fewer number of iterations as compared to the other two approaches since convergence is 
checked directly using the Lagrange multiplier and penalty factor values. Note as well how 
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the fixed penalty approach has a larger optimal solution deviation as compared to the 
dynamic penalty and Lagrange multiplier approaches. 

4.2 Example 2 – The 25-Bar Truss 
The second example considers the weight minimization of a 25-bar transmission tower as 
shown on Fig 7 with nodal coordinates shown on Table 5 (Schmit & Fleury, 1980). The 
design variables are the cross-sectional area for the truss members, which are linked in eight 
member groups as shown in Table 6. Loading of the structure is presented on Table 7. 
Constraints are imposed on the minimum cross-sectional area of each truss (0.01 in2), 
allowable displacement at each node (±0.35 in), and allowable stresses for the members in 
the interval [-40, 40] ksi. In total, this problem has a variable dimensionality of eight and a 
constraint dimensionality of 84. 

 
Figure 7. 25-Bar Space Truss Example 

Node x (in) y (in) z (in) 
1 -37.5 0 200.0 
2 37.5 0 200.0 
3 -37.5 37.5 100.0 
4 37.5 37.5 100.0 
5 37.5 -37.5 100.0 
6 -37.5 -37.5 100.0 
7 -100.0 100.0 0.0 
8 100.0 100.0 0.0 
9 100.0 -100.0 0.0 
10 -100.0 -100.0 0.0 

Table 5. 25-Bar Truss Members Node Coordinates 
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Group Truss Members 
A1 1 
A2 2-5 
A3 6-9 
A4 10,11 
A5 12,13 
A6 14-17 
A7 18-21 
A8 22-25 

Table 6. 25-Bar Truss Members Area Grouping 

Node Fx Fy Fz 
1 1000 -10000 -10000 
2 0 -10000 -10000 
3 500 0 0 
6 600 0 0 

Table 7. 25-Bar Truss Nodal Loads 

As before, three different PSO approaches that correspond to different constraint handling 
methods were tested. The best and worst results of 20 independent runs for each tested 
method are presented on Table 8 as well as results from other research efforts obtained from 
local (gradient-based) and global optimizers. Clearly, all PSO approaches yield excellent 
solutions for both its best and worst results where all the constraints are met for all the PSO 
methods. The optimal solutions obtained have the same active constraints as reported in 
other references as follows: the displacements at nodes 3 and 6 in the Y direction for both 
load cases and the compressive stresses in members 19 and 20 for the second load case. As 
before, a larger solution deviation in the fixed penalty results is observed as compared to the 
other two PSO approaches. In addition, results from the augmented Lagrange method are 
obtained in less number of iterations as compared to the penalty-based approaches. 

Area 
Group 

PSO1 
Best 

PSO1 
Worst 

PSO2 
Best 

PSO2 
Worst 

PSO3 
Best 

PSO3 
Worst 

Zhou & 
Rosvany, 

1993 

Haftka & 
Gurdal, 

1992 

Erbatur, et 
al., 2000 

Zhu, 
1986 Wu, 1995 

A1 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.010 0.010 0.1 0.1 0.1 
A2 0.8977 0.1000 1.0227 0.9895 0.4565 1.0289 1.987 1.987 1.2 1.9 0.5 
A3 3.4000 3.3533 3.4000 3.4000 3.4000 3.4000 2.994 2.991 3.2 2.6 3.4 
A4 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.010 0.010 0.1 0.1 0.1 
A5 0.1000 0.1000 0.1000 3.4000 1.9369 0.1000 0.010 0.012 1.1 0.1 1.5 
A6 0.9930 0.7033 0.6399 0.6999 0.9647 0.8659 0.684 0.683 0.9 0.8 0.9 
A7 2.2984 2.3233 2.0424 1.9136 0.4423 2.2278 1.677 1.679 0.4 2.1 0.6 
A8 3.4000 3.4000 3.4000 3.4000 3.4000 3.4000 2.662 2.664 3.4 2.6 3.4 

Weight 489.54 573.57 485.33 534.84 483.84 489.424 545.16 545.22 493.80 562.93 486.29 

Table 8. 25-Bar Truss Optimization Results 

4.3 Example 3 – The 72-Bar Truss 
The final example deals with the optimization of a four-story 72-bar space truss as shown on 
Fig. 8. The structure is subject to two loading cases as presented on Table 9. The 
optimization objective is the minimization of structural weight where the design variables 
are specified as the cross-sectional area for the truss members. Truss members are linked in 
16 member groups as shown in Table 10. Constraints are imposed on the maximum 
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A3 3.4000 3.3533 3.4000 3.4000 3.4000 3.4000 2.994 2.991 3.2 2.6 3.4 
A4 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.010 0.010 0.1 0.1 0.1 
A5 0.1000 0.1000 0.1000 3.4000 1.9369 0.1000 0.010 0.012 1.1 0.1 1.5 
A6 0.9930 0.7033 0.6399 0.6999 0.9647 0.8659 0.684 0.683 0.9 0.8 0.9 
A7 2.2984 2.3233 2.0424 1.9136 0.4423 2.2278 1.677 1.679 0.4 2.1 0.6 
A8 3.4000 3.4000 3.4000 3.4000 3.4000 3.4000 2.662 2.664 3.4 2.6 3.4 

Weight 489.54 573.57 485.33 534.84 483.84 489.424 545.16 545.22 493.80 562.93 486.29 

Table 8. 25-Bar Truss Optimization Results 

4.3 Example 3 – The 72-Bar Truss 
The final example deals with the optimization of a four-story 72-bar space truss as shown on 
Fig. 8. The structure is subject to two loading cases as presented on Table 9. The 
optimization objective is the minimization of structural weight where the design variables 
are specified as the cross-sectional area for the truss members. Truss members are linked in 
16 member groups as shown in Table 10. Constraints are imposed on the maximum 
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allowable displacement of 0.25 in at the nodes 1 to 16 along the x and y directions, and a 
maximum allowable stress in each bar restricted to the range [-25,25] ksi. In total, this 
problem has a variable dimensionality of 16 and a constraint dimensionality of 264. 

Load Case Node Fx Fy Fz 
1 1 5 5 -5 
2 1 0 0 -5 
2 0 0 -5 0 
3 0 0 -5 0 
4 0 0 -5 0 

Table 9. 72-Bar Truss Nodal Loads 

 
Figure 8. 72-Bar Space Truss Example 

Results from the three PSO approaches as well as other references are shown in Table 11. As 
before, comparisons results include results from traditional optimization (Venkayya, 1971; 
Gellatly & Berke, 1971; Zhou & Rosvany, 1993), approximation concepts (Schimit & Farshi, 
1974), and soft-computing approaches (Erbatur, et al., 2000). Similar to the previous 
examples, all the tested PSO approaches provide better solutions as those reported in the 
literature, with the augmented Lagrange method providing the best solution with the lowest 
number of iterations. The obtained optimal PSO solutions meet all constraints requirements 
and have the following active constraints: the displacements at node 1 in both the X and Y 
directions for load case one, and the compressive stresses in members 1-4 for load case two. 
The above active constraints agree with those reported by the different references. 
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Area Members Group Truss Members 
A1 1, 2, 3, 4 
A2 5, 6, 7, 8, 9, 10, 11, 12 
A3 13, 14, 15, 16 
A4 17, 18 
A5 19, 20, 21, 22 
A6 23, 24, 25, 26, 27, 28, 29, 30
A7 31, 32, 33, 34 
A8 35, 36 
A9 37, 38, 39, 40 

A10 41, 42, 43, 44, 45, 46, 47, 48
A11 49, 50, 51, 52 
A12 53, 54 
A13 55, 56, 57, 58 
A14 59, 60, 61, 62, 63, 64, 65, 66
A15 67, 68, 69, 70 
A16 71, 72 

Table 10. 72-Bar Truss Members Area Grouping 

Area 
Group 

PSO1 
Best 

PSO1 
Worst 

PSO2 
Best 

PSO2 
Worst 

PSO3 
Best 

PSO3 
Worst 

Zhou & 
Rosvany, 

1993 

Venkayya, 
1971 

Erbatur, et 
al., 2000 

Schimit 
& 

Farshi, 
1974 

Gellatly 
& 

Berke, 
1971 

A01 0.1561 0.1512 0.1615 0.1606 0.1564 0.1568 0.1571 0.161 0.155 0.1585 0.1492 
A02 0.5708 0.5368 0.5092 0.5177 0.5553 0.5500 0.5356 0.557 0.535 0.5936 0.7733 
A03 0.4572 0.4323 0.4967 0.3333 0.4172 0.3756 0.4096 0.377 0.480 0.3414 0.4534 
A04 0.4903 0.5509 0.5619 0.5592 0.5164 0.5449 0.5693 0.506 0.520 0.6076 0.3417 
A05 0.5133 2.5000 0.5142 0.4868 0.5194 0.5140 0.5067 0.611 0.460 0.2643 0.5521 
A06 0.5323 0.5144 0.5464 0.5223 0.5217 0.4948 0.5200 0.532 0.530 0.5480 0.6084 
A07 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.100 0.100 0.120 0.1000 0.1000 
A08 0.1000 0.1000 0.1095 0.1000 0.1000 0.1001 0.100 0.100 0.165 0.1509 0.1000 
A09 1.2942 1.2205 1.3079 1.3216 1.3278 1.2760 1.2801 1.246 1.155 1.1067 1.0235 
A10 0.5426 0.5041 0.5193 0.5065 0.4998 0.4930 0.5148 0.524 0.585 0.5793 0.5421 
A11 0.1000 0.1000 0.1000 0.1000 0.1000 0.1005 0.1000 0.100 0.100 0.1000 0.1000 
A12 0.1000 0.1000 0.1000 0.1000 0.1000 0.1005 0.1000 0.100 0.100 0.1000 0.1000 
A13 1.8293 1.7580 1.7427 2.4977 1.8992 2.2091 1.8973 1.818 1.755 2.0784 1.4636 
A14 0.4675 0.4787 0.5185 0.4833 0.5108 0.5145 0.5158 0.524 0.505 0.5034 0.5207 
A15 0.1003 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.100 0.105 0.1000 0.1000 
A16 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.100 0.155 0.1000 0.1000 

Weight 381.03 417.45 381.91 384.62 379.88 381.17 379.66 381.20 385.76 388.63 395.97 

Table 11. 72-Bar Truss Optimization Results 

7. Summary and Conclusions 
Particle Swarm Optimization is a population-based algorithm, which mimics the social 
behaviour of animals in a flock. It makes use of individual and group memory to update 
each particle position allowing global as well as local search optimization. Analytically the 
PSO behaves similarly to a traditional line-search where the step length and search direction 
are stochastic. Furthermore, it was shown that the PSO search strategy can be represented as 
a discrete-dynamic system which converges to an equilibrium point. From a stability 
analysis of such system, a parameter selection heuristic was developed which provides an 
initial guideline to the selection of the different PSO setting parameters. Experimentally, it 
was found that using the derived heuristics with a slightly larger cognitive pressure value 
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allowable displacement of 0.25 in at the nodes 1 to 16 along the x and y directions, and a 
maximum allowable stress in each bar restricted to the range [-25,25] ksi. In total, this 
problem has a variable dimensionality of 16 and a constraint dimensionality of 264. 
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Figure 8. 72-Bar Space Truss Example 
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each particle position allowing global as well as local search optimization. Analytically the 
PSO behaves similarly to a traditional line-search where the step length and search direction 
are stochastic. Furthermore, it was shown that the PSO search strategy can be represented as 
a discrete-dynamic system which converges to an equilibrium point. From a stability 
analysis of such system, a parameter selection heuristic was developed which provides an 
initial guideline to the selection of the different PSO setting parameters. Experimentally, it 
was found that using the derived heuristics with a slightly larger cognitive pressure value 
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leads to faster and more accurate convergence. Improvements of the basic PSO algorithm 
were discussed. Different inertia update strategies were presented to improve the rate of 
convergence near optimum points. It was found that a dynamic update provide the best rate 
of convergence overall. In addition, different constraint handling methods were shown. 
Three non-convex structural optimization problems were tested using the PSO with a 
dynamic inertia update and different constraint handling approaches. Results from the 
tested examples illustrate the ability of the PSO algorithm (with all the different constraint 
handling strategies) to find optimal results, which are better, or at the same level of other 
structural optimization methods. From the different constraint handling methods, the 
augmented Lagrange multiplier approach provides the fastest and more accurate 
alternative. Nevertheless implementing such method requires additional algorithmic 
changes, and the best combination of setting parameters for such approach still need to be 
determined. The PSO simplicity of implementation, elegant mathematical features, along 
with the lower number of setting parameters makes it an ideal method when dealing with 
global non-convex optimization tasks for both structures and other areas of design.  
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1. Introduction 
Development of the power dispatch problem can be divided into several stages. The 
traditional economic dispatch (ED) has only one objective for minimizing fuel costs (Lee, et 
al., 1998). With the increasing awareness of environmental protection in recent years, 
environmental/economic dispatch (EED) is proposed as an alternative to achieve 
simultaneously the minimization of fuel costs and pollutant emissions (Abido, 2003; Talaq, 
et al., 1994). At the same time, only limited work has been carried out to deal with the mul-
tiarea economic dispatch (MAED), where power is dispatched within multiple areas (Chen 
& Chen, 2001; Jayabarathi, et al., 2000; Streiffert, 1995; Wang & Shahidepour, 1992; Yalcinoz 
& Short, 1998; Zhu, 2003). In this chapter, we further extend the concept of EED into the 
MAED scenario and a new concept termed multiarea environmental/economic dispatch 
(MAEED) is proposed by also minimizing the pollutant emissions in the MAED context. The 
MAEED problem is first presented and then an enhanced multiobjective particle swarm 
optimization (MOPSO) algorithm is developed to handle the MAEED problem. PSO has 
turned out to be capable of dealing with a variety of complex engineering optimization 
problems like MAEED considered in this study. In the problem formulation, the tie-line 
transfer capacities are treated as a set of design constraints to increase the system security. 
Furthermore, area spinning reserve requirements are also incorporated in order to ensure 
the system reliability. Reserve-sharing scheme is used to enable the area without enough 
capacity to meet its reserve demand. A four-area test power system is then used as an 
application example to verify the effectiveness of the proposed method through numerical 
simulations. A comparative study is also carried out to illustrate the different solutions 
obtained based on different problem formulations. 
The remainder of the chapter is organized as follows: In Section 2, the MAEED problem is 
formulated. The inner working of the particle swarm optimization (PSO) algorithm is 
discussed in Section 3. In Section 4, the proposed method for optimal MAEED is presented. 
Simulation results and analysis are given in Section 5. Finally, conclusions are drawn and 
future research directions are suggested. 
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2. Problem Formulation 
The optimal MAEED problem can be modeled as a bi-criteria optimization problem. The 
two conflicting objectives, i.e., operational costs and pollutant emissions, should be 
minimized simultaneously while fulfilling certain system constraints. 

2.1 Design objectives 
• Objective 1: Minimization of operational costs 
The generator cost curves are represented by quadratic functions. The total $/h fuel cost 
FC( ) can be represented as follows: 

  
(1)

 
where N is the number of areas, Mj is the number of generators committed to the operating 
system in area j, aij, bij, cij are the cost coefficients of the i-th generator in area j, and  is 
the real power output of the i-th generator in area j.  is the vector of real power outputs 
of generators in area j and defined as 

  (2) 

Thus, 

  (3) 
Another operational cost in MAEED is the transmission cost TC( ) for power transfer 
between areas. It can be expressed as follows: 

  
(4)

 
where  is the tie line flow from area j to area k, fjk is the transmission cost coefficient 
relevant to .  is the vector of real power transmission between areas and defined as 

   (5) 
As a result, the total operational costs can be calculated as 

  (6) 
• Objective 2: Minimization of pollutant emissions 
The SO2 and NOx emissions can be approximated by a quadratic function of the generator 
output: 

  
(7)

 
where ij, ij, and ij are coefficients of the i-th generator emission characteristics in area j. 
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2.2 Design constraints 
There are three kinds of constraints considered in the problem, i.e, the generation capacity of 
each generator, area power balance, and tie line transfer limits. 
• Constraint 1: Generation capacity constraint 
For normal system operations, real power output of each generator is restricted by lower 
and upper bounds as follows: 

  (8) 
where  and  are the minimum and maximum power produced by generator i in 
area j. 
• Constraint 2: Area power balance constraint 
In area j, the total power generation must cover the total demand  with the consideration 
of imported and exported power. The power transmission loss is not considered in this 
study. This relation can be expressed as 

  (9) 

• Constraint 3: Area spinning reserve constraint 
In area j, the spinning reserve requirement should be satisfied through multiarea reserve 
sharing: 

  
(10)

 

where the spinning reserve of unit i in area j  equals to , . is the 
required spinning reserve in area j, and  is the reserve contribution from area k to area 
j. 
A new vector  is defined here to represent the reserve sharing between areas: 

   (11) 
• Constraint 4: Tie line constraint 
The transfer including both generation and reserve from area j to area k should not exceed 
the tie line transfer capacities for security consideration: 

  (12) 
where  and  specify the tie-line transmission capability. 
In summary, the objective of MAEED optimization is to minimize F1 and F2 simultaneously 
subject to the constraints (8), (9), (10), and (12). 

3. Particle Swarm Optimization 
Particle swarm optimization (PSO) is inspired from the collective behavior exhibited in 
swarms of social insects (Kennedy & Eberhart, 1995). It has turned out to be an effective 
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optimizer in dealing with a broad variety of engineering design problems. In PSO, a swarm 
is made up of many particles, and each particle represents a potential solution (i.e., 
individual). PSO algorithms are global optimization algorithms and do not need the 
operations for obtaining gradients of the cost function. Initially the particles are randomly 
generated to spread in the feasible search space. A particle has its own position and flight 
velocity, which keep being adjusted during the optimization process. The update equations 
determine the position of each particle in the next iteration. Let k   denote the generation 
number, let N   denote the swarm population in each generation, let xi (k)  , i  {1,..., 
N}, denote the i-th particle of the k-th iteration, let vi (k)   denote its velocity, let c1, c2  

 and let r1(k), r2(k) ~ U(0,1) be uniformly distributed random numbers between 0 and 1, 
let w be the inertia weight factor, and let   [0,1] be the constriction factor for controlling 
the particle velocity magnitude. Then, the update equation is, for all i  {1,..., N} and all k  

, 

  
(13)

 

  (14) 
where Vi(0)  0 and 

  (15) 

  (16) 
Hence,  is the position that for the i-th particle yields the lowest cost over all 
generations, and  is the location of the best particle in the entire population of all 
generations. The inertia weight w is considered to be crucial in determining the PSO 
convergence behavior. It regulates the effect of the past velocities on the current velocity. By 
doing so, it controls the wide-ranging and nearby search of the swarm. A large inertia 
weight facilitates searching unexplored areas, while a small one enables fine-tuning the 
current search region. The inertia is usually set to be a large value initially in order to 
achieve better global exploration, and gradually it is reduced for obtaining more refined 
solutions. The term c1r1(k)(  — xi(k)) is relevant to cognition since it takes into 
account the particle's own flight experience, and the term c2r2(k)(  — xi(k)) is 
associated with social interaction between the particles. Therefore, the learning factors c1 
and c2 are also known as cognitive acceleration constant and social acceleration constant, 
respectively. The constriction factor  should be chosen to enable appropriate particle 
movement steps. Under the guidance of these two updating rules, the particles will be 
attracted to move toward the best position found thus far. That is, the optimal or near-
optimal solutions can be sought out due to this driving force. 

4. The Proposed Solution Method 
PSO-based approaches have shown advantages in resolving a wide variety of engineering 
optimization problems in terms of simplicity, convergence speed, and robustness (Kennedy 
& Eberhart, 2001). In this study, an enhanced particle swarm optimization algorithm (i.e., 
MOPSO) is proposed and it is then applied to deal with the MAEED problem. 
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4.1 Encoding scheme 
The first step in defining a PSO algorithm is to connect the "real world" to the "PSO world", 
that is, to build a bridge between the practical problem and the problem solver by which the 
optimization is performed. Encoding is to define a mapping from the phenotypes onto a set 
of genotypes. In PSO, each particle flying in the search space is a potential solution. The 
power output of each generating unit and the tie line flow is selected as the position of the 
particle in each dimension to constitute the individual, which is a potential solution for the 
MAEED problem. The position values in all dimensions are all real-coded and the i-th 
individual Pi can be represented as follows: 

  (17) 
where PS is the population size. 

4.2 Constraints handling 
Constraints lie at the heart of all constrained engineering optimization applications. Practical 
constraints, which are oftentimes nonlinear and non-trivial, confine the feasible solutions to 
a small subset of the entire design space. There are several prime approaches which can be 
applied to treat the constrained optimization problems, i.e., feasibility preservation, penalty 
functions, repair functions, restricting search to the feasible region, decoder functions, and 
other hybrid approaches (Eiben & Smith, 2003). Since PSO is essentially an unconstrained 
optimization algorithm, the constraints handling scheme needs to be incorporated into it in 
order to deal with the constrained power dispatch problem. Here a straightforward 
constraint-checking procedure is added. A feasible solution needs to satisfy all the 
constraints. Thus, for each potential solution, once a constraint is violated, it is not necessary 
to test its validity against other constraints anymore, which may be very many or highly 
complicated. In doing so, the overall time consumption is not proportional to the number of 
computational iterations and the computation time is significantly reduced. Furthermore, 
this approach is easy to implement as no pre-processing measures and complex numerical 
manipulations are needed. Since the individual fitness evaluation and its constraints are 
dealt with in a separate fashion, the approach can be commonly used in other optimization 
applications. In the selection of Pareto-optimal solutions, when any two individuals are 
compared, their constraints are examined first. If both satisfy the constraints, the concept of 
Pareto-dominance is then applied to determine which potential solution should be chosen. If 
both are infeasible solutions, then they are not qualified to be stored in the archive. If one is 
feasible and the other is not, the feasible dominates. Though this scheme is simple, it turns 
out to be quite effective in guaranteeing the feasibility of the non-dominated solutions 
throughout the optimization run. 

4.3 Guides selection 
A challenging task in applying PSO to handle multi-objective problems is to design a 
scheme for choosing both local and global guides for each particle in the swarm. Unlike 
single objective (SO) problems, there are no explicit concepts on how personal and global 
best positions can be identified in multi-objective (MO) problems. In the single-objective 
PSO, the global best particle can be readily found by choosing the particle with the best 
position. In MO optimization problems, the optimum solutions are Pareto-optimal. Thus, 
each particle should select the globally best particle based on the Pareto-optimal concept. 
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Oftentimes, the key task in MOPSO is to determine the best global search guide for each 
particle in the population. A fuzzification mechanism is introduced to the proposed multi-
objective particle swarm optimization algorithm for the selection of global best position 
gbest. Here we interpret gbest not just as a point but as an area, and each point in the area has 
different possibilities of being chosen as the . The fuzzification formula used in the 
study is N( , 2), which represents a set of normally distributed particles with  as 
their mean value and  as standard deviation. First, in each iteration, the original  is 
selected from the archive, which is however not used directly to update the particle speed 
and position. Instead, an area around it is randomly generated based on the normal 
distribution. Then, tournament selection is applied to choose the  from this area, which 
will be used to update the particle speed and position. It is obvious that large  values will 
result in large generated selection regions. Furthermore, in tournament selection, local 
competition is used to determine survivors. In this study, binary tournament selection is 
used where the individual with the higher fitness in the group of two individuals is selected, 
and the other is removed. This selection scheme can be deemed as an effective measure to 
increase the population diversity during the optimization process. 

4.4 Archiving 
The major function of the archive is to store a historical record of the non-dominated 
solutions found along the heuristic search process. The archive interacts with the 
generational population in each iteration so as to absorb superior current non-dominated 
solutions and eliminate inferior solutions currently stored in the archive. The non-
dominated solutions obtained at every iteration in the generational population (swarm) are 
compared with the contents of archive in a one-per-one basis. A candidate solution can be 
added to the archive if it meets any of the following conditions: 
• There is no solution currently stored in the archive; 
• The archive is not full and the candidate solution is not dominated by or equal to any 

solution currently stored in the archive; 
• The candidate solution dominates any existing solution in the archive; 
• The archive is full but the candidate solution is non-dominated and is in a sparser 

region than at least one solution currently stored in the archive. 

4.5 Optimization procedure 
The computational flow of the proposed optimization procedure is laid out as follows: 
• Step 1: Specify the lower and upper bound generation power of each unit as well as the 

tie-line transfer limits; specify the area loads and reserves. 
• Step 2: Randomly initialize the individuals of the population. 
• Step 3: Evaluate each individual Pi in the population based on the concept of Pareto-

dominance. 
• Step 4: Store the non-dominated members found thus far in the archive. 
• Step 5: Initialize the memory of each particle where a single local best  is stored. 

The memory is contained in another archive. 
• Step 6: Increase the iteration counter. 
• Step 7: Choose the personal best position  for each particle based on the memory 

record; Choose the global best  from the fuzzi-fied region using binary 
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tournament selection. The niching and fitness sharing mechanism is also applied 
throughout this process for enhancing solution diversity (Wang & Singh, 2007). 

• Step 8: Update the member velocity v of each individual Pi, based on (13) as follows: 

   

(18)

 
where GN is the total number of generators, and TLN is the number of tie lines. 

• Step 9: Modify the member position of each individual Pi, based on (14) as follows: 

  (19) 

• Step 10: Update the archive which stores non-dominated solutions according to the four 
selection criteria as discussed earlier. 

• Step 11: If the current individual is dominated by the  in the memory, then keep 
the  in the memory; Otherwise, replace the  in the memory with the current 
individual. 

• Step 12: If the maximum iterations are reached, then go to Step 13. Otherwise, go to Step 6. 
• Step 13: Output a set of Pareto-optimal solutions from the archive as the final solutions 

for further decision-making selection. 

5. An Application Example 
In this study, a four-area test system is used to investigate the effectiveness of the proposed 
MOPSO algorithm. There are four generators in each area with different fuel and emission 
characteristics, which are shown in Table 1 and Table 2, respectively. The tie-line transfer 
limits are shown in Table 3. The system base is 100 MVA. The area loads are 0.3, 0.5, 0.4, and 
0.6 p.u., respectively. The area spinning reserve is 30% of the load demand in each area. The 
transmission cost is not considered in simulations since it is normally small as compared 
with the total fuel costs. 
In the simulations, after some trials, both the population size and archive size are set to 100, 
and the number of generations is set to 500. The constants c1 and c2 are both chosen as 1. The 
inertia weight factor w decreases linearly during the optimization run according to 

  
(20)

 
where  is the number of generations and  is the current number of iterations. In 
the first 200 generations, the  is fuzzified using a large standard deviation to generate a 
region around the  according to Gaussian distribution. In the remaining 300 
generations, its value is decreased. This makes sense since, similar to the choice of w values, 
initial large standard deviation enables global search while the following small standard 
deviation facilitates local exploration using small movement in each iteration. The minimum 
fuel costs and minimum emissions obtained with and without inter-area aid are shown in 
Table 4 and Table 5, respectively. It should be noted that the negative values of tie-line flow 

, where k > j, indicate that the flow is sent from area k to area j. 
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study is N( , 2), which represents a set of normally distributed particles with  as 
their mean value and  as standard deviation. First, in each iteration, the original  is 
selected from the archive, which is however not used directly to update the particle speed 
and position. Instead, an area around it is randomly generated based on the normal 
distribution. Then, tournament selection is applied to choose the  from this area, which 
will be used to update the particle speed and position. It is obvious that large  values will 
result in large generated selection regions. Furthermore, in tournament selection, local 
competition is used to determine survivors. In this study, binary tournament selection is 
used where the individual with the higher fitness in the group of two individuals is selected, 
and the other is removed. This selection scheme can be deemed as an effective measure to 
increase the population diversity during the optimization process. 

4.4 Archiving 
The major function of the archive is to store a historical record of the non-dominated 
solutions found along the heuristic search process. The archive interacts with the 
generational population in each iteration so as to absorb superior current non-dominated 
solutions and eliminate inferior solutions currently stored in the archive. The non-
dominated solutions obtained at every iteration in the generational population (swarm) are 
compared with the contents of archive in a one-per-one basis. A candidate solution can be 
added to the archive if it meets any of the following conditions: 
• There is no solution currently stored in the archive; 
• The archive is not full and the candidate solution is not dominated by or equal to any 

solution currently stored in the archive; 
• The candidate solution dominates any existing solution in the archive; 
• The archive is full but the candidate solution is non-dominated and is in a sparser 

region than at least one solution currently stored in the archive. 

4.5 Optimization procedure 
The computational flow of the proposed optimization procedure is laid out as follows: 
• Step 1: Specify the lower and upper bound generation power of each unit as well as the 

tie-line transfer limits; specify the area loads and reserves. 
• Step 2: Randomly initialize the individuals of the population. 
• Step 3: Evaluate each individual Pi in the population based on the concept of Pareto-

dominance. 
• Step 4: Store the non-dominated members found thus far in the archive. 
• Step 5: Initialize the memory of each particle where a single local best  is stored. 

The memory is contained in another archive. 
• Step 6: Increase the iteration counter. 
• Step 7: Choose the personal best position  for each particle based on the memory 

record; Choose the global best  from the fuzzi-fied region using binary 
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tournament selection. The niching and fitness sharing mechanism is also applied 
throughout this process for enhancing solution diversity (Wang & Singh, 2007). 

• Step 8: Update the member velocity v of each individual Pi, based on (13) as follows: 

   

(18)

 
where GN is the total number of generators, and TLN is the number of tie lines. 

• Step 9: Modify the member position of each individual Pi, based on (14) as follows: 

  (19) 

• Step 10: Update the archive which stores non-dominated solutions according to the four 
selection criteria as discussed earlier. 

• Step 11: If the current individual is dominated by the  in the memory, then keep 
the  in the memory; Otherwise, replace the  in the memory with the current 
individual. 

• Step 12: If the maximum iterations are reached, then go to Step 13. Otherwise, go to Step 6. 
• Step 13: Output a set of Pareto-optimal solutions from the archive as the final solutions 

for further decision-making selection. 

5. An Application Example 
In this study, a four-area test system is used to investigate the effectiveness of the proposed 
MOPSO algorithm. There are four generators in each area with different fuel and emission 
characteristics, which are shown in Table 1 and Table 2, respectively. The tie-line transfer 
limits are shown in Table 3. The system base is 100 MVA. The area loads are 0.3, 0.5, 0.4, and 
0.6 p.u., respectively. The area spinning reserve is 30% of the load demand in each area. The 
transmission cost is not considered in simulations since it is normally small as compared 
with the total fuel costs. 
In the simulations, after some trials, both the population size and archive size are set to 100, 
and the number of generations is set to 500. The constants c1 and c2 are both chosen as 1. The 
inertia weight factor w decreases linearly during the optimization run according to 

  
(20)

 
where  is the number of generations and  is the current number of iterations. In 
the first 200 generations, the  is fuzzified using a large standard deviation to generate a 
region around the  according to Gaussian distribution. In the remaining 300 
generations, its value is decreased. This makes sense since, similar to the choice of w values, 
initial large standard deviation enables global search while the following small standard 
deviation facilitates local exploration using small movement in each iteration. The minimum 
fuel costs and minimum emissions obtained with and without inter-area aid are shown in 
Table 4 and Table 5, respectively. It should be noted that the negative values of tie-line flow 

, where k > j, indicate that the flow is sent from area k to area j. 
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Generator ij aij bij cij   
G1,1 150 189 0.50 0.0005 0.14 
G1,2 115 200 0.55 0.0005 0.10 
G1,3 40 350 0.60 0.0005 0.13 
G1,4 122 315 0.50 0.0005 0.12 
G2,1 125 305 0.50 0.0005 0.25 
G2,2 70 275 0.70 0.0005 0.12 
G2,3 70 345 0.70 0.0005 0.20 
G2,4 70 345 0.70 0.0005 0.18 
G3,1 130 245 0.50 0.0005 0.30 
G3,2 130 245 0.50 0.0005 0.30 
G3,3 135 235 0.55 0.0005 0.30 
G3,4 200 130 0.45 0.0005 0.30 
G4,1 70 345 0.70 0.0005 0.11 
G4,2 45 389 0.60 0.0005 0.20 
G4,3 75 355 0.60 0.0005 0.30 
G4,4 100 370 0.80 0.0005 0.30 

Table 1. Fuel cost coefficients and generator capacities (p.u.) 

Generator ij aij bij cij 
G1,1 0.016 -1.500 23.333 
G1,2 0.031 -1.820 21.022 
G1,3 0.013 -1.249 22.050 
G1,4 0.012 -1.355 22.983 
G2,1 0.020 -1.900 21.313 
G2,2 0.007 0.805 21.900 
G2,3 0.015 -1.401 23.001 
G2,4 0.018 -1.800 24.003 
G3,1 0.019 -2.000 25.121 
G3,2 0.012 -1.360 22.990 
G3,3 0.033 -2.100 27.010 
G3,4 0.018 -1.800 25.101 
G4,1 0.018 -1.810 24.313 
G4,2 0.030 -1.921 27.119 
G4,3 0.020 -1.200 30.110 
G4,4 0.040 -1.400 22.500 

Table 2. Pollutant emissions coefficients (p.u.) 
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Tie line jk   
1,2 0.001 0.060 
1,3 0.001 0.040 

1,4 0.001 0.200 

2,3 0.001 0.035 

2,4 0.001 0.055 

3,4 0.001 0.009 

Table 3. Tie-line transfer limits (p.u.) 

Generation/objectives w/ inter-area aid 
(p.u.) 

w/o inter-area aid 
(p.u.) 

1,1 0.1320 0.1074 
1,2 0.0649 0.0943 

1,3 0.1201 0.0503 

1,4 0.1128 0.0533 

2,1 0.2047 0.2507 

2,2 0.0657 0.0671 

2,3 0.1316 0.0980 

2,4 0.1503 0.0846 

3,1 0.0572 0.1083 

3,2 0.0971 0.1646 

3,3 0.0663 0.0662 

3,4 0.2278 0.0622 

4,1 0.0759 0.0754 

4,2 0.1123 0.1587 

4,3 0.0520 0.1071 

4,4 0.1402 0.2604 

1,2 -0.0316 - 
1,3 -0.0088 - 

1,4 0.1699 - 
2,3 -0.0320 - 

2,4 0.0516 - 

3,4 0.0048 - 

Mininium cost ($/hour) 2166.82 2191.14 
Emission (ton/hour) 3.3152 3.7493 

Table 4. Minimum fuel costs with and without inter-area aid 
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Tie line jk   
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1,4 0.001 0.200 

2,3 0.001 0.035 

2,4 0.001 0.055 

3,4 0.001 0.009 

Table 3. Tie-line transfer limits (p.u.) 

Generation/objectives w/ inter-area aid 
(p.u.) 

w/o inter-area aid 
(p.u.) 

1,1 0.1320 0.1074 
1,2 0.0649 0.0943 

1,3 0.1201 0.0503 

1,4 0.1128 0.0533 

2,1 0.2047 0.2507 

2,2 0.0657 0.0671 

2,3 0.1316 0.0980 

2,4 0.1503 0.0846 

3,1 0.0572 0.1083 

3,2 0.0971 0.1646 

3,3 0.0663 0.0662 

3,4 0.2278 0.0622 

4,1 0.0759 0.0754 

4,2 0.1123 0.1587 

4,3 0.0520 0.1071 

4,4 0.1402 0.2604 

1,2 -0.0316 - 
1,3 -0.0088 - 

1,4 0.1699 - 
2,3 -0.0320 - 

2,4 0.0516 - 
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Emission (ton/hour) 3.3152 3.7493 

Table 4. Minimum fuel costs with and without inter-area aid 
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Generation/objectives w/ inter-area aid 
(p.u.) 

w/o inter-area aid 
(p.u.) 

1,1 0.1277 0.1089 
1,2 0.0625 0.0940 

1,3 0.1188 0.0500 

1,4 0.0945 0.0500 

2,1 0.1684 0.2464 

2,2 0.0677 0.0676 

2,3 0.1891 0.1022 

2,4 0.1604 0.0852 

3,1 0.0619 0.1089 

3,2 0.0722 0.1659 

3,3 0.0901 0.0658 

3,4 0.1948 0.0619 

4,1 0.0900 0.0794 

4,2 0.1172 0.1639 

4,3 0.0595 0.1075 

4,4 0.1498 0.2512 

1,2 -0.0469 - 
1,3 -0.0020 - 

1,4 0.1427 - 

2,3 -0.020 - 

2,4 0.0499 - 

3,4 -0.0089 - 

Minimum emission (ton/hr) 3.2301 3.6923 
Fuel cost ($/hour) 2178.20 2191.27 

Table 5. Minimum emissions with and without inter-area aid 

From the simulation results, it is evident that both fuel costs and emissions of the MAEED 
with inter-area aid dominate those of the separate areas case. Thus, it is desirable to connect 
the multiple areas for achieving lower fuel costs and emissions while satisfying the load 
demands of different areas. Based on the above simulation results, we can find that except 
for area 1, other three areas are all capable of satisfying the reserve requirements by 
themselves. Only area 1 needs reserve sharing from other area in order to cover the 
additional power for reserve satisfaction. Here, it is assumed that the reserve sharing 
scheme is applied unless the capacity in the area cannot fulfill the area reserve demand 
itself. Table 6 illustrates the reserve sharing for the minimum cost and minimum emission 
cases.  represents the reserve contribution from generator Gij. Again, the negative 
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values of reserve sharing  where k > j, indicate that the reserve is sent from area k to 
area j when needed. 
From the simulation results, we can appreciate that when the area spinning reserve 
requirements are considered, higher operational costs and higher emissions are inevitably 
caused for achieving higher power system reliability. 

Reserve 
combination 

Minimum cost 
solution (p.u.) 

Minimum emission 
solution (p.u) 

1,1 0.0080 0.0123 
1,2 0.0351 0.0375 

1,3 0.0099 0.0112 

1,4 0.0072 0.0255 

2,1 0.0005 0.0005 

2,2 0.0005 0 

2,3 0.0005 0 

2,4 0.0005 0 

3,1 0.0070 0.0012 

3,2 0.0007 0 

3,3 0.0080 0.0008 

3,4 0.0100 0.0010 

4,1 0.0005 0 

4,2 0.0005 0 

4,3 0.0006 0 

4,4 0.0005 0 

1,2 -0.0020 -0.0005 
1,3 -0.0257 -0.0030 

1,4 -0.0021 0 

Table 6. Reserve sharing for enabling area 1 to satisfy the reserve demand 
 

6. Concluding Remarks 
In this chapter, a new concept termed multiarea environmental/economic dispatch 
(MAEED) is proposed, and an enhanced multiobjective particle swarm optimization 
(MOPSO) algorithm is used to derive a set of Pareto-optimal solutions. The tie-line transfer 
limits between areas are considered to ensure the power system security. Also, the area 
spinning reserve requirements are incorporated in order to increase the system reliability. A 
comparison is made between the solutions obtained from different problem formulations. In 
this work, reserve sharing is only applied when there exists an area without sufficient 
generation capacity for reserve requirement fulfillment. In the future work, the reserve can 
be simultaneously scheduled with the generation. Moreover, the power flow in each area 
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values of reserve sharing  where k > j, indicate that the reserve is sent from area k to 
area j when needed. 
From the simulation results, we can appreciate that when the area spinning reserve 
requirements are considered, higher operational costs and higher emissions are inevitably 
caused for achieving higher power system reliability. 
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In this chapter, a new concept termed multiarea environmental/economic dispatch 
(MAEED) is proposed, and an enhanced multiobjective particle swarm optimization 
(MOPSO) algorithm is used to derive a set of Pareto-optimal solutions. The tie-line transfer 
limits between areas are considered to ensure the power system security. Also, the area 
spinning reserve requirements are incorporated in order to increase the system reliability. A 
comparison is made between the solutions obtained from different problem formulations. In 
this work, reserve sharing is only applied when there exists an area without sufficient 
generation capacity for reserve requirement fulfillment. In the future work, the reserve can 
be simultaneously scheduled with the generation. Moreover, the power flow in each area 
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can be considered to further increase the system security. Other issues such as transmission 
losses, transmission costs, and buying and selling policies between areas can also be 
considered in MAEED problems. 
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1. Introduction  
Wireless communication is a central technology to many applications such as wireless TV, 
radio broadcasting, global positioning, satellite-based cellular systems, mobile telephony, 
wireless LAN, to name a few. The research and development of wireless products have also 
bloomed the wireless communication applications to a new era. However, the available 
bandwidth does not grow as fast as the exploding demands from the consumer markets, so 
we need an algorithm to effectively and repetitively assign the available channels to 
multiple demanding cells such that no electromagnetic interference is induced. The aim of 
the channel assignment problem (CAP) is to minimize the span, the spectrum between the 
maximum and minimum used frequency, of allocated channels with an associated 
assignment that satisfies the bandwidth demands without incurring electromagnetic 
interference among them. The CAP can be polynomially reduced to the graph-coloring 
problem which has been known to be NP-hard. This means the derivation of the exact 
solution to the CAP in the general case is computationally prohibitive. 
Most existing methods for tackling CAP are based on three approaches, namely, 
mathematical programming, heuristics, and metaheuristics. The mathematical programming 
techniques such as integer linear programming (Janssen & Kilakos, 1999; Mathar & Schmeink, 
2002) and branch-and-bound (Tcha et al., 1997) are efficient in finding the exact solutions, 
however, they are limited to the application of small-sized problems only. Heuristics such as 
ordering technique (Sivarajan et al., 2000) and sequential packing technique (Sung & Wong, 
1997) use a heuristic function for determining the order or packing of radio cells to allocate 
channels. These methods can quickly obtain a feasible solution even for a large problem but 
the solution quality varies a lot with the instances of the problem. Alternatively, more and 
more CAP researchers are attracted by the promising results on some applications using 
metaheuristics including genetic algorithms (Ngo & Li, 1998; Ghosh et al., 2003), simulated 
annealing (Aardal et al., 2003), tabu search (Hao & Perrier, 1999), and ant colony 
optimization (Montemanni, 2002). Their results have demonstrated some advantanges in 
problem scalability, easy implementation, economic computation, and high quality 
solutions over other approaches.  
Inspired by the success of metaheuristics, in this chapter we present a hybrid ant colony 
optimization (HACO) algorithm embodied with several problem-dependent heuristics to 
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can be considered to further increase the system security. Other issues such as transmission 
losses, transmission costs, and buying and selling policies between areas can also be 
considered in MAEED problems. 
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take advantages of various approaches. The HACO algorithm provides an elegant 
framework for maintaining a good balance between exploration and exploitation trajectories in 
the solution space during the search, while the embedded heuristics are customized to the 
properties of CAP and is helpful in intensifying the promising area previously found in the 
search history. The performance of our algorithm is evaluated using a set of benchmark 
problems named Philadelphia that has been broadly used in early literature. Compared to 
existing approaches, our algorithm manifests the robustness and efficicency in solving the 
tested problems. 
The remainder of this chapter is organized as follows. Section 2 presents the formulation of 
CAP considered in the chapter. Section 3 renders the details of the proposed HACO 
algorithm. In Section 4, the experimental results and discussions are presented. Finally, a 
conclusion is given in Section 5. 

2. Problem Formulation 
The objective of the CAP is to find an economic channel assignment with the minimum span 
of frequency spectrum to a number of demanding cells such that no electromagnetic 
interference is induced. There are three broadly considered electromagnetic compatibility 
(EMC) constraints as described as follows. 
• Co-channel constraint   The same channel cannot be assigned simultaneously to 

certain pairs of cells that are within a stipulated distance. 
• Adjacent channel constraint The adjacent channels are not allowed to be assigned to 

adjacent cells simultaneously.  
• Co-cell constraint      The separation in channel units between any pair of channels 

assigned to a cell should be larger than a minimum separation threshold. 
This chapter considers the CAP scenario involving the three EMC constraints. Assume that 
we are given n radio cells and m available channels, the three EMC constraints can be 
described together by a compatibility matrix C = { }

njiijc ≤≤ ,1
 which stipulates the minimum 

separation in channel units between any pair of channels assigned to cell i and cell j 
simultaneously. The demands of the n radio cells can be described by a demanding vector D 
= { } niid ≤≤1  where di indicates the amount of channels requested by cell i. The decision 

variables can be defined as F = { }
idjniijf ≤≤≤≤ 1,1
 where fij denotes the index of the jth allocated 

channel to cell i. The addressed CAP can be formulated as follows. 

 Min 1max
,,,

+−
∀ klijlkji

ff  (1) 

subject to 

 ikklij cff ≥−  ∀ i, j, k, l and (i, j) ≠ (k, l). (2) 

The objective function (1) describes the goal of the optimization problem that is to minimize 
the span in the channels assigned to the demanding cells. The constraint (2) stipulates that 
the channel assignment must satisfy all of the three EMC constraints described in terms of 
the compatibility matrix C. 
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3. Hybrid Ant Colony Optimization for the CAP 
In addition to the good generalization of metaheuristics, many successful applications using 
metaheurisitcs rely on an elaborately designed procedure for handling the problem-specific 
constraints. There are two different approaches for constraint handling. The relaxation method 
releases the constraints by adding a penalty to the objective value where the penalty is a 
monotonically increasing function of the degree of the solution infeasibility with respect to the 
constraints. The hybrid method employs a problem-specific heuristic to guide the generation of 
new solutions that satisfy the constraints. As the convergence rate of the relaxation method 
could be slow if the constraints are too complicate, we adopt the hybrid method to design our 
algorithm. In particular, the ordering technique (Sivarajan et al., 2000) and the sequential 
packing technique (Sung & Wong, 1997) that have been developed for solving the CAP are 
embedded into an ant colony optimization framework to create an efficient hybrid algorithm. 
Moreover, a local optimizer is proposed to improve the candidate solutions generated in each 
iteration such that the quality of the candidate solutions is guaranteed. 
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and inducing more EMC interference with its surrounding cells is associated with a greater 
degree and will be considered for assigning channels earlier.  
The sequential packing heuristic (Sung & Wong, 1997) sequentially packs the cells that are 
the “best” for the assignment of a particular channel considering the partial channel 
assignment already done. The “best” criterion is according to the heuristic that maximizes the 
overlap between the interfering area induced by the next cell which the channel is assigned to 
and that by the cells already been assigned channels. Fig. 1 gives an illustration of the 
sequential packing procedure. Assume that we start with packing with frequency f1 and it is 
first assigned to the central cell as shown in Fig. 1(a). The interfering area induced by the 
electromagnetic effect is marked by light stripes. It should be noted here, although there is 
only one assigned channel shown in this illustration, the interfering area induced by all of the 
already assigned channels should be marked. Thus, the unmarked cells are interference free 
and are candidates for the next cell to assign the channel. The sequential packing heuristic 
arbitrarily selects one from those that have the maximal interfering overlap with the marked 
area such that the usage of the assigned channel is maximized. All the unmarked cells 
surrounding the marked area in Fig. 1(a) are candidates for selecting the next cell to assign the 
same channel except the bottom-left and upper-right cells. Thus, we can select an arbitrary one 
as shown in Fig. 1(b). Again, the interfering area due to the new assignment of the channel is 
marked with light stripes. The process is iterated until all the cells are marked and no 
interference free cells can be selected, as shown in Figs. 1(c) and 1(d). The sequential packing 
heuristic starts with the assignment of the first channel and continues with the assignment of 
the rest channels in turn until the demands of all cells are fulfilled.  

3.2 The HACO algorithm 
Dorigo developed the first framework of ant colony optimization (ACO) in his Ph.D. 
dissertation (Dorigo, 1992). He related his ant algorithm to the natural metaphor that ants 
are able to construct the shortest feasible path from their colony to the feeding source by the 
use of pheromone trails. An ant leaves some quantities of pheromone on the path it walks 
along, the next ant senses the pheromone laid on different paths and chooses one to follow 
with a probability that is proportional to the intensity of pheromone on the path, then leaves 
its own pheromone. This is an autocatalytic (positive feedback) process that is prone to 
select the preferable path along which more ants have previously traversed. The ACO has 
manifested successful applications such as the travelling salesman problem (Dorigo & 
Gambardella, 1997), quadratic assignment problem (Maniezzo et al., 1994), combined heat 
and power economic dispatch problem (Song et al., 1999), and the digital curve 
segmentation problem (Yin, 2003). 
To circumvent the CAP problem by using the ACO, we propose a hybrid framework that 
embodies the ordering and sequential packing heuristics and a local optimiser into the ACO 
iterations. The details will be articulated in the following subsections. 

3.2.1 Graph representation  
ACO is a solution-construction algorithm that enables each of the artificial ants (which will 
be called ants hereafter for simplicity) to sequentially construct a solution by traversing a 
path on a problem-dependent graph. By iterating the solution construction process, the 
graph forms a pheromone field contributed by all the ants. Therefore, near-optimal solution 
can be constructed according to the pheromone attractiveness.  
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The conversion of a CAP problem to a corresponding graph is straightforward. Assume 
there are n radio cells, we can construct a graph G = <S, E>, where S = (s1, s2, …, sn) is the set 
of all radio cells and E = { }jinjieij ≠≤≤   ,,1  is the set of edges connecting any pairs of cells. 

Note that there is no loop, i.e., the edge connecting a cell to itself, in E because the co-cell 
constraint prohibits the same channel to be assigned twice within a cell.  

3.2.2 Node transition rule  
To allow the ant to traverse a path (in fact, it is to construct a solution), a node transition rule 
needs to be devised. The node transition rule is a probabilistic function which is defined on 
a biased probability distribution that is proportional to the product values of the pheromone 
intensity ijτ  and the visibility value ijη  associated with the edges. The value of ijτ  is initially 

set equal to a small constant and is iteratively updated using the pheromone updating rule 
as will be noted. While the value of ijη  is determined by a greedy heuristic jijij A δη =  where 

ijA  is the overlap area of the electromagnetic interference if cell j is selected as the next cell 

to assign the channel as explained in the sequential packing heuristic, and jδ  is the degree 

of cell j defined in the ordering heuristic. Hence, the visibility greedily prefers to transit to 
the next cell which causes a greater overlap interference area and has a larger demand and is 
located in a more complex topology with its surrounding cells.  
We now define the probability pij with which the ant transits from node i to node j as 
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where tabu is the set of cells containing those violating the EMC constraints and those whose 
demands have been fulfilled (so there is no need to be considered for channel assignemnt 
further), parameters α and β are the weights for the relative importance of pheromone and 
visibility. The ties with respect to pij are broken randomly.  
The solution construction process starts with the assignment of the first channel. When all 
cells are marked as interfering area due to this channel, the algorithm clears all the marks 
and continues with the assignment of the next channel. The assignment process is iterated 
until the demands of all the cells are fulfilled. As such, a feasible channel assignment is 
obtained.  

3.2.3 Pheromone Updating Rule  
After each ant has finished constructing a solution by traversing a path, the pheromone field 
(the pheromone intensity at the edges of the graph) should be updated according to the 
quality of the constructed solutions. As such, the experience can be accumulated in order to 
guide the future traverse conducted by the ants. In particular, the pheromone intensity at 
edge eij is updated by 
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where )1 ,0(∈ρ  is the evaporation rate of previous pheromone trails, and P is the number 

of ants used in the algorithm. We define k
ijτ∆  as the quantity of new pheromone trails left at 

edge eij by the kth ant and it is computed by 

 eij= Q/Spank , if eij was traversed by ant k at the current iteration; (5) 

 = 0,  otherwise,  

where Q is a constant and Spank is the span of the channel assignment constructed by the kth 
ant. Therefore, the edges that constitute shorter spans will receive greater amount of 
pheromone and serve as building blocks for constructing elite solutions in future iterations. 
This is an autocatalytic process and the near-optimal solution is more likely to be 
constructed as the pheromone field converges. 

3.2.4 Local optimizer 
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Figure 2. Illustration of the local optimizer process 

In order to ensure the quality of the solution that is used for pheromone updating, a local 
optimizer is devised to modify the solution found by each ant to a local optimum in a 
definite local neighborhood. The local optimizer randomly selects certain allocated channels 
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and replaces them with the best available channels under the EMC constraints. As the span 
can be shorten only when the least indexed and the greatest indexed allocated channels are 
replaced, we always include the two channels for replacement. An illustration of the local 
optimizer process is given in Fig. 2. Assume that the span of the currently allocated channels 
is equal to 73. The local optimizer will move the first (1) and the last indices (73) of the 
allocated channels to a tempary memory. However, the indices of the rest of the allocated 
channels are moved subject to a replacement probability. In this illustration, say, channels 20 
and 56 are selected for replacement. Then, for each of the holes left by the moves, the local 
optimizer tries to fill it with the best among available channels under the EMC constraints. 
In this illustration, say, the holes are filled with channels 16, 44, 49, and 54, respectively. 
After re-sorting the allocated channels, we observe that the span is equal to 61 which is 
shorter than that of the previous channel assignment. 

3.2.5 The algorithm 
The pseudo code of the HACO algorithm for the CAP problem is summarized in Fig. 3.  

 

 
1. Initialize 

Convert the CAP problem into the corresponding graph G = <S, E>  

Set the initial pheromone to a constant value 

2. Repeat 

For each ant do 

Randomly select a starting node  

Repeat 

 Move to the next node according to the node transition rule 

Until the demands of all radio cells are fulfilled 

Improve the channel assignment using the local optimizer 

End For 

For each edge do 

Update the pheromone intensity using the pheromone updating rule 

End For 

Until a maximal number of iterations are experienced 

3. Output the minimal span channel assignment found 

 

Figure 3. Pseudo code of the HACO algorithm 

4. Experimental Results and Discussions 
In this section, we present the computational results and evaluate the performance of the 
HACO algorithm. The platform of the experiments is a PC with a 2.4 GHz CPU and 256 MB 
RAM. The algorithm is coded in C++.  
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HACO algorithm. The platform of the experiments is a PC with a 2.4 GHz CPU and 256 MB 
RAM. The algorithm is coded in C++.  
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4.1 Benchmark instances 
The Philadelphia benchmark is one of the most widely used testing set of instances in the 
literature. It contains 21 hexagonal cells of a cellular phone network in Philadelphia. The 
hexagonal network structure is shown in Fig. 4. Following the literature, we use two 
nonhomogeneous demand vectors D1 and D2 detailed in Table 1 and four different settings 
of EMC constraints C1, C2, C3 and C4 in terms of specific values of the minimum separation 
threshold, as shown in Table 2. With the combinations of these settings, we get a set of eight 
problem instances shown in Table 3.  
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Table 1. Two nonhomogeneous demand vectors 
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Table 2. Four different settings of EMC constraints 

Problem 1 2 3 4 5 6 7 8 
EMC constraints C1 C2 C3 C4 C1 C2 C3 C4

Demand vectors D1 D1 D1 D1 D2 D2 D2 D2

Table 3. Eight testing problem instances 

4.2 Comparative results 
As we use the benchmark instances, the comparative performances of the proposed HACO 
algorithm and some representitives in the literature can be evaluated. The parameters 
involved in the HACO algorithm are optimally tuned based on intensive experiments. They 
are set as the values tabulated in Table 4. For the application of the HACO algorithm in real-
world cases, we set the stopping criterion of the algorithm to a fixed execution time intead 
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of setting to different execution times according to the hardness of the problems because it is 
hard to know in advance the hardness of the problem in hand by observing on the 
compatibility matrix and the demand vectors. For example, it is hard to know which of the 
eight problems listed in Table 3 is the most difficult at this stage, although it turns out that 
problems 2 and 6 are the most difficult in this set after conducting the experiments as will be 
noted. In the following, the maximal execution time of the HACO algorithm for each of the 
benchmark problems is set to 10 min. 

Parameter Value 
Number of ants (P) 20 
Pheromone weight (α) 2 
Visibility weight (β) 9 
Evaporation rate (ρ) 0.2 

Table 4. Parameter values used in the HACO algorithm 

Ghosh et al. (2003) summarized the numerical results of a number of representitives in the 
literature tested on the same eight instances listed in Table 3. We only quoted the most 
recent results no earlier than 1999 from their report. Table 5 shows the comparative 
performances of the competing algorithms. The lower bound for each of the problems is also 
listed. It is seen that the methods proposed by Ghosh et al. (2003) and Beckmann & Killat 
(1999) are able to solve each of the benchmark problems optimally. Both of the two 
approaches are based on genetic algorithms, manifesting the promising direction of solving 
CAP using metaheuristics. The HACO can optimally solve problems 1, 3, 4, 5, 7, and 8, but 
obtains near-optimal solutions for problems 2 and 6, which have been known to be the most 
difficult problems in Philadelphia dataset. Nonetheless, the HACO spent 10 min for solving 
either problem 2 or problem 6, the GA-based method in Ghosh et al. (2003) spent 12-80 h for 
solving the two problems. The method in Beckmann & Killat (1999) starts with a lower 
bound and increases one channel at a time if a feasible channel assignment cannot be found 
by their algorithm, however, a reachable lower bound is not available in the general cases. 
The rest of the competing algorithms are based on heuristics, their performances are not 
comparable to those based on metaheuristics such as GA or ACO. While the heuristic 
proposed in Battiti et al. (2001) can obtain competitive results, the method they adopted 
involves randomisation process, which is a central feature of metaheuristics.  

Problem 1 2 3 4 5 6 7 8 
Lower bound 381 427 533 533 221 253 309 309 
HACO 381 433 533 533 221 258 309 309 
Ghosh et al., 2003 381 427 533 533 221 253 309 309 
Chakraborty, 2001 381 463 533 533 221 273 309 309 
Battiti et al., 2001 381 427 533 533 221 254 309 309 
Tcha et al., 2000 381 433 533 533 - 260 - 309 
Beckmann & Killat, 1999 381 427 533 533 221 253 309 309 

Table 5. Comparative performances of the HACO algorithm and a number of representative 
algorithms in the literature 
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4.3 Convergence analysis 
It is important to analyze the convergence behavior of the practiced algorithm because even 
a pure random search can report a solution improving with elapsed execution time, but the 
explored solutions never converge. The information entropy was used here to measure the 
amount of information observed in the pheromone field. The expected information entropy 
E over all radio cells is defined as  

 nppE
n

i j
ijij∑∑

= ∀
−=

1
2log  (6) 

where pij is the node transition probability defined in Eq. (3). Hence, the less the value of E, 
the purer the information exhibited by pij related for each cell, which means the node 
transition rule becomes more deterministic due to a dominating probability and less 
information can be explored further.  
Fig. 5 shows the variations of the expected information entropy as the number of HACO 
iterations increases. It is observed that the value of the expected information entropy 
decreases rapidly during the first 20 iterations (note that, to clearly demonstrate this 
phenomenon, the scale on the x-axis is varied in different intervals). This is because the node 
transition probabilities are uniformly distributed at the initialization phase of the algorithm 
and the transition probabilities related to the preferable paths (with shoter frequency span) 
are reinforced by the pheromone updating rule during the iterations, thus the expected 
information entropy is quickly decreased. After the 20th iteration, the decreasing rate of the 
expected information entropy becomes moderate, and gradually reaches stagnation as the 
number of iterations approaches 2000. This is due to the fact that the node transition rule 
becomes more deterministic and guides the ants to the paths corresponding to elite 
solutions. Although the information (building blocks) exchange among the elite solutions is 
still ungoing in order to finely improve the best solution found, the information gain is less 
than that obtained at the earlier iterations, because there is a large overlap at the building 
blocks of the elite solutions. So the solution improving ratio per unit time becomes less 
economic as the elapsed execution time increases. The practitioners must determine the best 
stopping criterion according to the allocated computational resource for their applications. 
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5. Conclusion 
In this chapter, we investigate the channel assignment problem (CAP) that is critical in 
wireless communication applications. Researchers strive to develop algorithms that are able 
to effectively assign limited channels to a number of cells with nonhomogeneous demands. 
Inspired by the recent success of metaheuristics, a hybrid ant colony optimisation (HACO) is 
proposed in this chapter. The HACO embodies several problem-dependent heuristics 
including ordering, sequential packing, and a local optimiser into an ACO framework. The 
advantages of this hybrid are two-fold. First, the EMC constraints can be effectively handled 
by the problem-dependent heuristics instead of using a penalty function as observed in 
other works which may lengthen the elapsed time in order to reach convergence. Second, 
the embedded heuristics serve as intensification strategies conducted by the metaheuristic 
framework and help improve the generated solutions from different view points.  
The performance of the HACO algorithm is evaluated on the Philadelphia benchmark set, 
such that it can be compared to that of existing approaches. It is observed from the 
experimental results that the HACO algorithm can solve optimally six of the eight 
benchmark problems and obtain near-optimal solutions for the other two problems which 
have been known to be the most difficult in the literature. For practical reasons, we only 
allow the HACO algorithm to run for a relatively short time compared to that used by other 
approaches. It is plausible to get a better result if more computational time is allocated.  
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1. Introduction  
Based on its analogical link with nature, ant colony optimisation (ACO) aims to determine 
the least cost solution to an optimisation problem via the process of stigmergy 
(Dorigo et al. 2000). That is, the colony of artificial ants repeatedly stochastically constructs 
solutions and utilises the information gained from these solutions to guide the construction 
of future solutions. This process occurs in an attempt to increase the likelihood of the colony 
constructing the optimal solution. Each individual ant operates essentially randomly, but 
through alteration of its environment, a colony learns and assimilates information as a 
collective. 
A conceptualised characteristic of this process is that the colony’s searching behaviour 
changes with time. That is, it undergoes a highly variable, and broad reaching, initial search 
as the colony learns about the solution space, followed by a subsequent intensified searching 
in smaller regions of the solution space that the colony has learned as being promising. As 
such, ACO can be visualised as an initially widely spread colony converging to a point, or 
region, within the solution space.  
Typically algorithms, such as ACO, are assessed only based on their performance in terms 
of the quality of the solutions found, and the computational effort required to find them. In 
addition to these performance based indicators, much can be learned about the different 
algorithms by considering the behaviour of their searching and converging process. 
Algorithm developers qualitatively discuss mechanisms as being exploration encouraging 
or exploitation encouraging (Colorni et al. 1996). The question arises as to the actual 
manifestation of these mechanisms in an algorithm’s searching behaviour in terms of 
measurable quantities.  
Within this chapter, two simple statistics for achieving this are implemented. A statistic is 
formulated that describes the topological nature of the spread of solutions through the 
solution space, termed the mean colony distance. Combining this statistic with a measure of 
the quality of the solutions being found, it is shown to give significant insight into the 
behaviour of selected ACO algorithms as the colonies converge.  This chapter presents a 
purely computational analysis. For a theoretical treatment of ACO, the reader is referred to 
other work (e.g. Gutjahr, 2002).  
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solutions and utilises the information gained from these solutions to guide the construction 
of future solutions. This process occurs in an attempt to increase the likelihood of the colony 
constructing the optimal solution. Each individual ant operates essentially randomly, but 
through alteration of its environment, a colony learns and assimilates information as a 
collective. 
A conceptualised characteristic of this process is that the colony’s searching behaviour 
changes with time. That is, it undergoes a highly variable, and broad reaching, initial search 
as the colony learns about the solution space, followed by a subsequent intensified searching 
in smaller regions of the solution space that the colony has learned as being promising. As 
such, ACO can be visualised as an initially widely spread colony converging to a point, or 
region, within the solution space.  
Typically algorithms, such as ACO, are assessed only based on their performance in terms 
of the quality of the solutions found, and the computational effort required to find them. In 
addition to these performance based indicators, much can be learned about the different 
algorithms by considering the behaviour of their searching and converging process. 
Algorithm developers qualitatively discuss mechanisms as being exploration encouraging 
or exploitation encouraging (Colorni et al. 1996). The question arises as to the actual 
manifestation of these mechanisms in an algorithm’s searching behaviour in terms of 
measurable quantities.  
Within this chapter, two simple statistics for achieving this are implemented. A statistic is 
formulated that describes the topological nature of the spread of solutions through the 
solution space, termed the mean colony distance. Combining this statistic with a measure of 
the quality of the solutions being found, it is shown to give significant insight into the 
behaviour of selected ACO algorithms as the colonies converge.  This chapter presents a 
purely computational analysis. For a theoretical treatment of ACO, the reader is referred to 
other work (e.g. Gutjahr, 2002).  
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In this chapter, a case study based analysis of the convergence behaviour of four ACO 
algorithms applied to the water distribution system problem (WDSP) is presented. Water 
distribution systems are one of the largest and most costly infrastructure in all developed 
societies. As such, the problem of the optimal design of such systems has been a large area 
of active research within the Civil Engineering field since the late 1960s. The WDSP 
represents a difficult, highly constrained combinatorial optimisation problem. 
The four ACO algorithms studied are: ant system (AS), the first and most basic form of ACO 
(Dorigo et al. 1996); the elitist AS (ASelite), a version of AS utilising an elitism strategy 
(Dorigo et al. 1996); the elitist-rank AS (ASrank), similar to ASelite but with a rank based 
prioritisation of information about the solution space obtained by the ants (Bullnheimer et al. 
1999); the max-min AS (MMAS), an ACO algorithm that bounds the evolution of the 
artificial pheromone trails (Stützle & Hoos 2000). On a macro level, these algorithms differ 
in their assimilation of new information with previously learned information. By 
considering the comparative convergence behaviour of these algorithms, insight into the 
practical outworking of their different formulations is gained. 
The chapter is structured as follows. Firstly, in section 2 ACO is briefly presented and the 
pheromone updating mechanisms of the four algorithms are outlined.  In section 3, the 
WDSP is explained and defined. Section 4 presents the application of ACO to the WDSP, 
where the issues of unconstrained problem transformation and problem graph structure are 
discussed. In section 5, a topology of the solution space is defined and the topological 
measure used to quantify the spread of the colony’s solutions through the solution space is 
presented. In section 6, a detailed case study based analysis of the convergence behaviour of 
the algorithms is undertaken. Finally, the conclusions are given in section 7. 

2. Ant Colony Optimisation Algorithms 
This section is intended to provide a brief overview of ACO for the purpose of representing 
it in a multi-graph framework, so that its application to the WDSP in section 4 is easier to 
understand. For a detailed discussion of the traditional formulation, the reader is referred to 
Dorigo et al. (1999). 
ACO is an evolutionary algorithmic optimisation process based on the analogy of a colony 
of foraging ants determining the shortest path between a food source and its nest (see 
Dorigo et al. (1996) for examples). The colony is able to optimise the excursions of its ants 
through the process of stigmergy (Dorigo et al. 2000), where stigmergy refers to the indirect 
form of communication between the ants that arises from their deposition of pheromone 
trails. These trails act as sign posts encouraging ants to follow them. Gradually, over time 
increasingly shorter pheromone trails will be reinforced with greater amounts of 
pheromone. This in turn will encourage more ants to follow them, potentially finding small 
improvements, leaving the pheromone on the less frequently used, and longer, paths to 
evaporate into non-existence. 
ACO deals with a combinatorial optimisation problem organised as a graph G(N, L), where N 
is the set of nodes and L is the set of edges linking the nodes (the structure of the graph is 
unique for each problem type). A candidate solution S to the problem is constructed by an 
ant selecting a feasible path through G(N, L). The feasibility of the path is ensured by a 
special constraint function Θ, which lists the edges that are available for selection based on 
the previously constructed path of the ant. That is, given an ant has constructed a path S‘, 
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then Θ(S‘) describes the set of edges available for selection. An ant’s tour is complete when 
Θ(S‘) = Ø, at which point, S‘∈S, the set of all feasible tours through the graph.  
A probabilistic decision policy is implemented at each sequential node in an ant’s path for 
the selection of a new edge from the set Θ to add to their partially constructed path S‘. This 
policy is dependent on the pheromone intensity on a particular edge (representative of the 
colony’s learned information) and the desirability of the edge (a measure of the local effect 
that the selection of a particular edge will have on the value of the objective function 
(Dorigo et al. 1996)). More precisely, the probability pj|S‘(t) that edge j∈Θ(S‘) will be selected 
in iteration t given an ant’s partially constructed tour S‘ is 

 ( ) ( )[ ] [ ]
( )[ ] [ ]

( )
∑
Θ∈

=

'

'|

Sl
ll

jj
Sj t

t
tp βα

βα

ητ

ητ , (1) 

where τj(t) is the pheromone concentration associated with edge j at iteration t, ηj is the 
desirability factor and, α and β are the parameters controlling the relative importance of 
pheromone and desirability, respectively, in the decision process. If α >> β the algorithm 
will make decisions based mainly on the learned information, as represented by the 
pheromone, and if β >> α the algorithm will act as a greedy heuristic selecting mainly the 
lowest cost options, disregarding the impact of these decisions on the final solution quality. 
At the end of an iteration, all ants from the colony have constructed feasible paths through 
G(N, L). The edge pheromone values τj, j∈L are updated to include the new information 
gained by the colony from the set of the new paths created by the colony 
Σ(t) = {S1(t), …, Sm(t)}, where Sk(t)∈S is the path chosen by ant k, and m is the number of ants 
in the colony. The pheromone is updated from one iteration to the next by the transitional 
relationship 

 ( ) ( ) ( )tttt jjj ),(1 ΣΔ+=+ τρττ  (2) 

where ρ ∈(0, 1) is the pheromone persistence factor that mimics the natural operation of 
pheromone decay, and governs the influence of previously learned information on future 
decisions, and Δτj(Σ(t),t) is the pheromone addition for edge j, which governs the influence 
of the newly acquired information from iteration t, on future decisions. The function 
Δτj(Σ(t),t) can be viewed as the value placed on edge j based on the information contained in 
Σ(t), where value can be interpreted to mean the likelihood that edge j is contained in S*, the 
optimal solution to the problem. Practically, this means that edge j∈S is considered to have 
more value than j’∈S’ if f(S) < f(S’). The information in this set is essentially the resulting 
sample of relationships between the edges of the solutions in Σ(t) and the corresponding 
function values of these solutions. The premise of ACO is that by repeated iteration of this 
process the colony of ants will collectively guide itself to find the optimal path through 
G(N, L). 
The main differentiating factor between ACO variants is the formulation of Δτj(Σ(t),t), as this 
describes the manner in which new information is assimilated with existing learned 
information. In the following subsections, the pheromone updating procedures of the four 
ACO variants studied in this chapter are described. All of these algorithms use the decision 
policy from (1). 
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2.1 Ant System (AS) 
Ant System (AS) (Dorigo et al. 1996) is the original and simplest ACO algorithm. For AS, all 
of the ants within the colony add pheromone to their paths, and as such Δτj(t) is a function 
of all the solutions found at iteration t and is given by 
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where m is the number of ants in the colony (i.e. the number of solutions generated at each 
iteration), Q is the pheromone addition factor, f(· ) is the objective function to be minimised 
and IA{a} is the indicator function (equal to one if a∈A and zero otherwise). From (3), it is 
clear that better solutions (i.e. solutions with lower objective f values) are rewarded with 
greater pheromone addition. 

2.2 Elitist Ant System (ASelite)
To exploit information about the current global-best solution, Dorigo et al. (1996) proposed 
the use of an algorithm known as Elitist Ant System (ASelite). This algorithm uses elitist ants, 
which only reinforce the path of the current global-best solution after every iteration 
(analogous to elitism strategies used in genetic algorithms). Thus, the pheromone addition is 
given by 
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where the first part of (4) corresponds to the pheromone addition from the colony, as 
defined for AS in (3), and the second part corresponds to the pheromone addition from the 
elitist ants, where σ is the number of elitist ants and  Sgb,(t) is the set of edges comprising the 
global best solution found up until iteration t (i.e. this is equivalent to the addition of 
pheromone from σ ants). The updating rule for ASelite allows for exploration, as each of the 
m solutions found by the colony receives a pheromone addition, but also encourages 
exploitation, as the global-best path is reinforced with the greatest amount of pheromone. 
As σ increases, so does the emphasis on exploitation. 

2.3 Elitist-Rank Ant System (ASrank)
Proposed by Bullnheimer et al. (1999), the Elitist-Rank Ant System (ASrank) further develops 
the idea of elitism used in ASelite to involve a rank-based updating scheme. In ASrank, σ elitist 
ants reinforce the current global-best path, as in ASelite, and the ants that found the top σ – 1 
solutions within the iteration add pheromone to their paths with a scaling factor related to 
the rank of their solution. The pheromone update formula for ASrank is given by 
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where the first part of (5) corresponds to the addition from the elitist ants, and the second 
part from the ranked ants, where S(k)(t) is the set of edges selected by the kth ranking ant in 
iteration t. The edges that are selected by the kth ranking ant receive pheromone equivalent 
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to the addition from (σ  − k) ants. The potential advantages of this formulation, compared 
with AS and ASelite, are (i) only the top σ − 1 ranked ants are used to lay pheromone (and not 
all m ants), which allows for the retention of only good information, and (ii) greater 
importance is given to the higher ranking ants (i.e. the top ranked solution receives σ  − 1 
times the normal amount of pheromone and the (σ − 1)th ranked solution receives only the 
normal pheromone amount), so that better edges receive more pheromone. 

2.4 Max-Min Ant System (MMAS) 
To overcome the problem of premature convergence whilst still allowing for exploitation, 
Stützle and Hoos (2000) developed the Max-Min Ant System (MMAS). The basis of MMAS 
is the provision of dynamically evolving bounds on the pheromone trail intensities such that 
the pheromone intensity on all paths is always within a specified lower bound τmin(t)  of a 
theoretically asymptotic upper limit τmax(t), that is τmin(t) ≤ τ j(t) ≤ τmax(t) for all edges j. As a 
result of stopping the pheromone trails from decaying to zero, all paths always have a non-
trivial probability of being selected, and thus wider exploration of the search space is 
encouraged. The pheromone bounds at iteration t are given by (Stützle & Hoos 2000) 
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where Pbest is the (user selected) probability that the current global-best path, Sgb(t), will be 
selected, given that all non-global best edges have a pheromone level of τmin(t) and all global-
best edges have a pheromone level of τmax(t), and NOavg is the average number of edges at 
each decision point. It should be noted that lower values of Pbest indicate tighter bounds. 
As the bounds serve to encourage exploration, MMAS adds pheromone only to the 
iteration-best ant’s path S(1)(t) at the end of an iteration in order to ensure the exploitation of 
good solutions. To further exploit good information, the global-best solution Sgb(t) is 
updated every Tgb iterations. The MMAS pheromone update is given by 
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where the first part of (7) corresponds to the addition from the iteration best ant, and the 
second part from the global best ant, where N is the set of natural numbers.  
MMAS also utilises another mechanism known as pheromone trail smoothing (PTS). This 
reduces the relative difference between the pheromone intensities, and further encourages 
exploration. The PTS operation is given by 

 ( ) ( ) ( ) ( )( )tttt jjj ττδττ −+← max
,  (8) 

where 0 ≤ δ ≤ 1 is the PTS coefficient. If δ = 0, PTS has no effect, whereas if δ = 1, all 
pheromone paths are scaled up to τmax(t). The pheromone updating process of MMAS can be 
summarised as the three step process of: (i) decay and addition by (2) and (7), (ii) bounding 
by (6), and (iii) smoothing by (8). 

 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 422 

2.1 Ant System (AS) 
Ant System (AS) (Dorigo et al. 1996) is the original and simplest ACO algorithm. For AS, all 
of the ants within the colony add pheromone to their paths, and as such Δτj(t) is a function 
of all the solutions found at iteration t and is given by 

 ( ) ( )( ) ( ){ }jI
tSf

Qt tS

m

k k
j k∑

=

=Δ
1

τ ,  (3) 

where m is the number of ants in the colony (i.e. the number of solutions generated at each 
iteration), Q is the pheromone addition factor, f(· ) is the objective function to be minimised 
and IA{a} is the indicator function (equal to one if a∈A and zero otherwise). From (3), it is 
clear that better solutions (i.e. solutions with lower objective f values) are rewarded with 
greater pheromone addition. 

2.2 Elitist Ant System (ASelite)
To exploit information about the current global-best solution, Dorigo et al. (1996) proposed 
the use of an algorithm known as Elitist Ant System (ASelite). This algorithm uses elitist ants, 
which only reinforce the path of the current global-best solution after every iteration 
(analogous to elitism strategies used in genetic algorithms). Thus, the pheromone addition is 
given by 

 ( ) ( )( ) ( ){ } ( )( ) ( ){ }jI
tSf

QjI
tSf

Qt tS
gb

tS

m

k k
j gbk

στ +=Δ ∑
=1

 (4) 

where the first part of (4) corresponds to the pheromone addition from the colony, as 
defined for AS in (3), and the second part corresponds to the pheromone addition from the 
elitist ants, where σ is the number of elitist ants and  Sgb,(t) is the set of edges comprising the 
global best solution found up until iteration t (i.e. this is equivalent to the addition of 
pheromone from σ ants). The updating rule for ASelite allows for exploration, as each of the 
m solutions found by the colony receives a pheromone addition, but also encourages 
exploitation, as the global-best path is reinforced with the greatest amount of pheromone. 
As σ increases, so does the emphasis on exploitation. 

2.3 Elitist-Rank Ant System (ASrank)
Proposed by Bullnheimer et al. (1999), the Elitist-Rank Ant System (ASrank) further develops 
the idea of elitism used in ASelite to involve a rank-based updating scheme. In ASrank, σ elitist 
ants reinforce the current global-best path, as in ASelite, and the ants that found the top σ – 1 
solutions within the iteration add pheromone to their paths with a scaling factor related to 
the rank of their solution. The pheromone update formula for ASrank is given by 

  ( ) ( )( ) ( ){ } ( )
( )( )( ) ( ) ( ){ }∑

−

=

−+=Δ
1

1

σ

σστ
k

tS
k

tS
gb

j jI
tSf

QkjI
tSf

Qt
kgb

,  (5) 

where the first part of (5) corresponds to the addition from the elitist ants, and the second 
part from the ranked ants, where S(k)(t) is the set of edges selected by the kth ranking ant in 
iteration t. The edges that are selected by the kth ranking ant receive pheromone equivalent 

 

Case Study Based Convergence Behaviour Analysis of ACO Applied  
to Optimal Design of Water Distribution Systems 

423 

to the addition from (σ  − k) ants. The potential advantages of this formulation, compared 
with AS and ASelite, are (i) only the top σ − 1 ranked ants are used to lay pheromone (and not 
all m ants), which allows for the retention of only good information, and (ii) greater 
importance is given to the higher ranking ants (i.e. the top ranked solution receives σ  − 1 
times the normal amount of pheromone and the (σ − 1)th ranked solution receives only the 
normal pheromone amount), so that better edges receive more pheromone. 

2.4 Max-Min Ant System (MMAS) 
To overcome the problem of premature convergence whilst still allowing for exploitation, 
Stützle and Hoos (2000) developed the Max-Min Ant System (MMAS). The basis of MMAS 
is the provision of dynamically evolving bounds on the pheromone trail intensities such that 
the pheromone intensity on all paths is always within a specified lower bound τmin(t)  of a 
theoretically asymptotic upper limit τmax(t), that is τmin(t) ≤ τ j(t) ≤ τmax(t) for all edges j. As a 
result of stopping the pheromone trails from decaying to zero, all paths always have a non-
trivial probability of being selected, and thus wider exploration of the search space is 
encouraged. The pheromone bounds at iteration t are given by (Stützle & Hoos 2000) 

 ( )
( )n

bestavg

n
best

PNO

Pt
t

1

1)(
)( max

min
−

−
=

τ
τ , 

( )( )tSf
Qt gbρ

τ
−

=
1

1)(max
 (6) 

where Pbest is the (user selected) probability that the current global-best path, Sgb(t), will be 
selected, given that all non-global best edges have a pheromone level of τmin(t) and all global-
best edges have a pheromone level of τmax(t), and NOavg is the average number of edges at 
each decision point. It should be noted that lower values of Pbest indicate tighter bounds. 
As the bounds serve to encourage exploration, MMAS adds pheromone only to the 
iteration-best ant’s path S(1)(t) at the end of an iteration in order to ensure the exploitation of 
good solutions. To further exploit good information, the global-best solution Sgb(t) is 
updated every Tgb iterations. The MMAS pheromone update is given by 

 ( )
( )( )( ) ( ) ( ){ } ( )( ) ( ){ } { }gbtS

gb
tSj TtIjI

tSf
QjI

tSf
Qt

gb
 

1
1

N⋅+=Δτ ,  (7) 

where the first part of (7) corresponds to the addition from the iteration best ant, and the 
second part from the global best ant, where N is the set of natural numbers.  
MMAS also utilises another mechanism known as pheromone trail smoothing (PTS). This 
reduces the relative difference between the pheromone intensities, and further encourages 
exploration. The PTS operation is given by 

 ( ) ( ) ( ) ( )( )tttt jjj ττδττ −+← max
,  (8) 

where 0 ≤ δ ≤ 1 is the PTS coefficient. If δ = 0, PTS has no effect, whereas if δ = 1, all 
pheromone paths are scaled up to τmax(t). The pheromone updating process of MMAS can be 
summarised as the three step process of: (i) decay and addition by (2) and (7), (ii) bounding 
by (6), and (iii) smoothing by (8). 

 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 424 

3. The Water Distribution System Optimisation Problem 
Water distribution systems (WDSs) consist of the system of pipes, pumps, valves etc. that 
delivers water from sources to consumers. From an optimisation perspective, the water 
distribution system problem (WDSP) is defined as the selection of the lowest cost 
combination of appropriate component sizes (e.g. pipes) and settings (e.g. valve settings) 
such that the criteria of water demands and other design constraints (e.g. minimum 
pressures) are satisfied. A simple example of this is as follows. Consider two networks, the 
first comprising pipes with small diameters and the second comprising pipes with large 
diameters. The first network has a low cost, but as the pipe diameters are small, the 
frictional pressure loss through the network will be greater, which is likely to result in 
insufficient pressure at the demand points (nodes). The second system is likely to provide 
more than adequate pressure, as the pipe diameters are large, but is also more expensive. 
The optimal design is the least cost combination of pipe sizes that are able to provide 
adequate pressure at each of the nodes. Within the WDSP, the decision variables are 
associated with the pipes within the system where, more specifically, the design options are 
the following, (i) a diameter for a new pipe, (ii) the cleaning of an existing pipe to reduce the 
hydraulic resistance, and (iii) no action. 
As outlined in Zecchin et al. (2005), for the WDSP, a design involves the selection of a series 
of design options for all or some of the pipes within the network. A WDS design 
Ω = {Ω1, ..., Ωn} is defined as a set of n decisions where n is the number of pipes to be sized 
and/or rehabilitated, and Ωi is the selected option for pipe i, and is defined as 
Ωi∈Λi = {ωi,1, …, ωi, iNO }, where Λi is the set of all NOi options available for pipe i. For each 
option there is an associated cost, c(Ωi), of implementing that option, and one of three 
actions as listed above.  
The constraints on a solution are categorized as design constraints and hydraulic 
constraints. A design constraint is an inequality constraint that defines the minimum 
acceptable performance of a design, whereas hydraulic constraints are equality constraints 
that describe the distribution of the flow of water through the WDS (based on the 
fundamental equations for fluid flow within a closed conduit and the governing equations 
for fluid flow within a looped network). The design constraint for the WDSP specifies the 
minimum allowable pressure at each node, and is given as 

 
patternnodejiji NjNiHH ,..,1,..,1,, =∀=∀≥ ,  (9) 

where Hi,j is the actual head at node i for demand pattern j,  Hi,j  is the minimum allowable 
head at node i for demand pattern j, Nnode is the total number of nodes and Npattern is the 
number of demand patterns. 
The hydraulic equations for fluid flow within a WDS are the conservation of mass and the 
pipe headloss equations. As the fluid is assumed to be incompressible, the conservation of 
mass equations dictate that the flow rate into a node is equal to the flow rate out of a node. 
This can be expressed as 
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where Qi,j is the demand for node i and demand pattern j (by definition, a positive demand 
is one that draws water from the node), Qk,j is the flow in pipe k for demand pattern j, Θu,j is 
the set of all pipes for which node i is the upstream node, and Θd,j is the set of pipes for 
which node i  is the downstream node (note that the sign convention is that positive pipe 
flow occurs from upstream to downstream). 
The headloss equation is written as (Streeter & Wylie 1997) 
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where r
iΩ  is a hydraulic resistance term associated with decision Ωi, a is the flow exponent, 

and Npipe is the number of pipes, including new pipes. The headloss equation used within 
most WDSPs is the Hazen-Williams equation, for which r

iΩ  is expressed as  
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where Li is the length of pipe i, D
iΩ  is the diameter of pipe i for design Ω, C

iΩ  is the Hazen-
Williams coefficient for pipe i for design Ω, A is a constant that is dependent on the units 
used, and a and b are regression coefficients. The adopted values of A, a, and b are those 
used in the hydraulic solver software EPANET2 (Rossman 2000). 
The objective is the minimization of the material and installation costs, and so the WDSP can 
be expressed as 
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where C(Ω) is the cost of design Ω and c(Ωi) is the cost of decision Ωi. As is seen from (13), 
despite the simplicity of the objective function, the complexity of the optimisation problem 
arises from the nonlinear nature of the constraints dependency on the design options Ωi. 

4. Application of Ant Colony Optimisation to Water Distribution System 
Optimisation 
4.1 Transformation of constrained problem 
The WDSP is a constrained optimisation problem. ACO is unable to deal directly with 
constrained optimisation problems as, within its solution generation, it cannot adhere to 
constraints that separate feasible regions of a search space from infeasible regions (here 
feasibility refers to constraints (9)-(11) and not the Θ function). The standard technique to 
convert constrained problems to unconstrained problems is to use a penalty function (Coello 
Coello 2002). ACO algorithms direct their search solely based on information provided by 
the objective function. To guide the search away from the infeasible region and towards the 
feasible region, a penalty function increases the cost of infeasible solutions such that they are 
considered to be poor quality solutions. The unconstrained optimisation problem for the 
WDSP takes the form of minimising the sum of the real cost plus the penalty cost, that is 

 ( ) ( ) ( )Ω+Ω=Ω PCCNCmin  (14) 
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where Qi,j is the demand for node i and demand pattern j (by definition, a positive demand 
is one that draws water from the node), Qk,j is the flow in pipe k for demand pattern j, Θu,j is 
the set of all pipes for which node i is the upstream node, and Θd,j is the set of pipes for 
which node i  is the downstream node (note that the sign convention is that positive pipe 
flow occurs from upstream to downstream). 
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where NC(Ω) is the network cost for design Ω, C(Ω) is the material and installation cost 
given by (13) and PC(Ω) is the penalty cost incurred by Ω.  When evaluating a potential 
design, the set of heads {Hi,j : i = 1, …, Nnode, j = 1, …, Npattern} is calculated by a hydraulic 
solver. Therefore (10)-(11) are automatically satisfied, and hence, only (9) is required to be 
considered in the penalty cost. Within this study, PC(Ω) was taken to be proportional to the 
maximum nodal pressure deficit induced by Ω as in Maier et al. (2003). That is 
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where PEN is the penalty factor (user defined) with units of dollars per meter of pressure 
violation.  

4.2 Modification of ACO elements 
As in used in previous studies (Maier et al. 2003; Zecchin et. al. 2005; Zecchin et. al. 2006; 
Zecchin et. al. 2007), but formalised here, the graph G(N, L) of the WDSP can be represented 
as a multi-graph, with the set of nodes N = {1, 2, …, n + 1}. Each node i ≤ n is connected to the 
next via a set of directed edges θi = {(i, i+1)j : j = 1, 2,  …, NOi}, where (i, i+1)j is the jth edge 
connecting node i to node i + 1, NOi is the number of edges connecting node i to node i + 1 
and the set of all edges is L = {s : s∈θ1∪…∪θn}. The edge set θi is associated with the set of 
design options Λi, and the edge (i, i+1)j is associated with option ωi,j. A solution S, associated 
with design Ω, is a feasible tour through the graph and is an element of the solution space 
S = {S : S = {s1 , …, sn}, si∈θi, i = 1, …, n}, where the constraint function Θ is given by 
Θ({s1, …, si}) = θi for i ≤ n. 
As the objective is to minimise cost, lower cost options are more desirable. Therefore the 
desirability of an option is taken as the inverse of the cost of implementing that option 
(Maier et al. 2003). In other words   
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As lower cost diameter options are more desirable, a bias in the probability towards the 
selection of lower cost diameters results. For options with zero cost (i.e. the null option), a 
virtual-zero-cost was selected. 

4.3 Parameter Settings 
One of the limitations of ACO is that an extensive calibration phase is required to determine 
appropriate parameter settings. From an extensive analysis of ACO applied to the WDSP, 
Zecchin et al. (2005) determined a series of parameter guidelines relating the five 
fundamental ACO parameters (α, β, ρ, Q, τ0, and m) to WDSP characteristics (such as the 
number of decision points n, the average number of options per decision NOavg, and the cost 
of key design configurations such as Ωmax, the maximum cost design, and Ω*, the optimum, 
or near optimum, design). These are summarised in Table 1. 
Contrary to other problem types (Dorigo & Gambardella 1997), Zecchin et al. (2005) found 
that, for the WDSP, better performance was achieved when the ants gave greater emphasis 
to the learned pheromone values τ as opposed to the visibility values η, as manifested 
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through α > β. Better performance was achieved when the pheromone persistence factor 
was relatively high, facilitating slow convergence and long memory times for learned 
information. Zecchin et al. (2005) showed that the ratio of Q to τ0 is important (not the actual 
values of each) and empirical guidelines were determined accordingly. The best number of 
ants m was also found to be dependent on the number of options per decision, not just the 
number of decisions, as for other problem types (Dorigo et al. 1996). 

Parameter Heuristic 

α 1.0 

β 0.5 

ρ  0.98 

Q C(Ωmax) 

τ0 ( )*ΩNCnNOQ avg
 

M avgNOn  

Table 1. Parameter guidelines for ACO parameters from Zecchin et al. (2005) 

In addition to the guidelines derived for the ACO parameters, the following semi-
deterministic expression for PEN was derived in Zecchin et al. (2005) 

 

 HCCPEN ΔΩ−Ω= )()( minmax  (17) 

where Ωmin is the minimum cost network design, and ΔH is a user selected pressure deficit, 
based on the maximum acceptable pressure deficit for a feasible solution as defined by (9). 
The value of PEN ensures that all networks with a pressure violation greater than or equal 
to ΔH (an extremely small value) are made more expensive than the maximum feasible 
network cost C(Ωmin). 

5. Analysis of Algorithm Convergence Behaviour  
The standard approach to the analysis of optimisation algorithms is to assess their 
performance on a particular problem from statistics based on the lowest cost achieved by 
the algorithm (termed best-cost) and the computational time required for the algorithm to 
find the associated solution (termed search-time). A richer understanding of the performance 
of an algorithm can be achieved by considering statistics from the solutions generated by the 
algorithms during their run-time. A typical approach used by many authors (Simpson et al., 
1994; Cunha & Ribeiro, 2004; Afshar & Marino, 2007) is to track the minimum cost generated 
in each iteration as a means of assessing the algorithm’s convergence behaviour. This 
statistic is important, as it indicates the effectiveness of the search, but acts only as a 
surrogate measure of the actual convergence behaviour of the algorithm.  
This work aims to extend this qualitative performance assessment to include a topologically 
based statistic to describe an algorithm’s convergence behaviour. From the perspective of 
ACO, convergence is defined as the point in time at which all ants select the same path 

 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 426 

where NC(Ω) is the network cost for design Ω, C(Ω) is the material and installation cost 
given by (13) and PC(Ω) is the penalty cost incurred by Ω.  When evaluating a potential 
design, the set of heads {Hi,j : i = 1, …, Nnode, j = 1, …, Npattern} is calculated by a hydraulic 
solver. Therefore (10)-(11) are automatically satisfied, and hence, only (9) is required to be 
considered in the penalty cost. Within this study, PC(Ω) was taken to be proportional to the 
maximum nodal pressure deficit induced by Ω as in Maier et al. (2003). That is 

 ( ) { }⎪⎩

⎪
⎨
⎧

⋅⎟
⎠
⎞

⎜
⎝
⎛ −

==≥
=Ω

×∈
otherwise

 if

PENHH

NjNiHH
PC

jijiNNji

patternnodejiji

patternnode
,,],1[],1[),(

,,

max

 ..., ,1 , ..., ,1 ,0  (15) 

where PEN is the penalty factor (user defined) with units of dollars per meter of pressure 
violation.  
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through α > β. Better performance was achieved when the pheromone persistence factor 
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where Ωmin is the minimum cost network design, and ΔH is a user selected pressure deficit, 
based on the maximum acceptable pressure deficit for a feasible solution as defined by (9). 
The value of PEN ensures that all networks with a pressure violation greater than or equal 
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algorithms during their run-time. A typical approach used by many authors (Simpson et al., 
1994; Cunha & Ribeiro, 2004; Afshar & Marino, 2007) is to track the minimum cost generated 
in each iteration as a means of assessing the algorithm’s convergence behaviour. This 
statistic is important, as it indicates the effectiveness of the search, but acts only as a 
surrogate measure of the actual convergence behaviour of the algorithm.  
This work aims to extend this qualitative performance assessment to include a topologically 
based statistic to describe an algorithm’s convergence behaviour. From the perspective of 
ACO, convergence is defined as the point in time at which all ants select the same path 
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through the problem graph (i.e. the colony’s population of solutions is fixed at a certain 
point in the solution space S) from that point onward. Thus, convergence behaviour is the 
nature of the colony’s solution generation up until the point of convergence. Topologically, 
convergence means that the distance between all solutions generated by the colony is zero. 
Conversely, a non-converged search will have some spread of the solutions throughout the 
solution space. It is the quantification and tracking of this spread that is of interest in 
describing an algorithm’s convergence behaviour.  
The motive behind convergence analysis is to gain a greater understanding of how the 
different explorative and exploitative mechanisms in the ACO algorithms considered 
actually impact the algorithm’s search. Below, the topology of the solution space is first 
defined, and then the adopted convergence metric, the mean colony distance, is presented. 
It is important to note that the use of metrics is widely used in evolutionary algorithm based 
multi-objective optimisation (Deb 2001). However, this is fundamentally different to what is 
considered here. In multi-objective optimisation, the distribution of solutions throughout 
the multi-dimensional objective space is of primary interest, and thus the metrics operate in 
this space. Conversely, this chapter is concerned with the distribution of solutions within the 
solution space, and, as such, the mean colony distance is defined on this space.  

5.1 Topology of the Solution Space 
Fundamental to any topologically based statistic is the notion of distance between points 
(solutions) in the solution space. A measure of distance for all elements within the set S is 
equivalent to defining a metric d : S × S → R+ associated with S that defines the distance 
between two elements S, S’∈S (Cohen 2003). For sets whose elements have no specific 
numerical relation, the Hamming distance is a natural metric. This has been used by Bose et 
al. (1994) and Stützle & Hoos (2000) for the travelling salesperson problem. A generalisation 
that applies to sets whose elements are equal length lists of objects is 
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where S={s1, …, sn}, S’={s1’, …, sn’}, si, si’∈θi and di : θi  × θi → R+ is itself a metric for the set 
of all possible ith elements in the list. For the Hamming distance, di(·,·) is either zero or one, 
depending whether si and si’ are equal or not. However, if the elements in the set have some 
other attribute that can be exploited, such as a meaningful ordering based on some property, 
then the metric can be defined so as to include this information. 
Considering (12), it is seen that the selection of an option Ωi is essentially equivalent to 
selecting a resistance parameter r

iΩ . Therefore, it is meaningful to say that an option is closer 
to one option than another based purely on the relative differences between their associated 
resistance parameter values. The list of options Λi for pipe i can therefore be meaningfully 
ordered by the magnitude of their associated resistance parameter. That is, consider the 
following ordering of Λi, based on the resistance parameter Λi = {ωi,1, …, ωi, iNO }, where 
r

1,iω ≤ … ≤ r
iNOi ,ω , and the distance di between any two of these options ωi,j and ωi,k, is given by 

 ( ) ikijikijii kjd Λ∈−= ,,,, ,, ωωωω   where . (19) 
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In this context, the distance between two options is the number of positions in the ordered 
list Λi that separates the two options. 

5.2 Mean colony distance 
By ascribing a topology to the search space, the colony of solutions generated within an 
iteration can be considered to be spread, in some manner, over the topology. This spread of 
solutions gives an indication of how widely, or tightly, an algorithm is searching. To use the 
terminology of Colorni et al. (1996), whether the algorithm is exploring broadly through the 
search space or exploiting smaller regions of the search space. In order to quantify this 
spread, the mean of the distances between each of the ants’ solutions has been used in this 
chapter, which is henceforth referred to as the mean colony distance dΣ. Mathematically this 
is given as the summation of the distances of each unique pair of solutions divided by the 
total number of pairs, and is expressed as the map dΣ : Sm →R+ where 
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where m(m – 1)/2 is the number of unique pairs that exist in a colony of m ants. The 
usefulness of dΣ as a behavioural analysis measure is fully realised when considering its 
variation with time. For example: periods of high exploration when solutions are spread 
broadly throughout the search space correspond to large values of dΣ; periods during which 
the algorithm converges correspond to a series of decreasing dΣ values; the point at which 
the algorithm converges is given by dΣ = 0, as this indicates that all solutions in Σ(t) are 
equal. As such, dΣ provides a direct measure of an algorithm’s convergence behaviour. 

6. Case Studies 
Experiments were performed on four different case studies, the Two Reservoir Problem 
(TRP), the New York Tunnels Problem (NYTP), the Hanoi Problem (HP) and the Doubled 
New York Tunnels Problem (2-NYTP). The ACO algorithms were coded in FORTRAN 90 
with EPANET2 (Rossman 2000) as the hydraulic solver. Parameter settings from Zecchin et 
al. (2005), summarised in Table 1, were used for parameters α, β, ρ, τ0, m, and Q for all 
algorithms with the adjustment that τ0 was scaled by σ for ASelite and ASrank (in accordance 
with the logic of the derivation of Q in Zecchin et al. (2005)) and for MMAS, τ0 was set to an 
arbitrarily high number, as proposed by Stützle & Hoos (2000). For ASelite and ASrank, σ 
required calibration for each case study. For MMAS, fglobal was set to 10, as in Stützle & Hoos 
(2000) and Pbest and δ were calibrated for each case study. The best-cost and search-time 
statistics for AS, ASelite, and ASrank and MMAS are as presented in Zecchin et al. (2007). 

6.1 Case Study 1: Two-Reservoirs Problem 

6.1.1 Preliminaries 
The TRP was initially studied by Gessler (1985), and Simpson et al. (1994) introduced the 
metric version. The TRP is a 14-pipe network with two reservoirs (Figure 1). The TRP 
involves three demand cases: a peak hour demand case and two fire loading demand cases. 
There are nine existing pipes, of which three are considered for rehabilitation, duplication 
with one of eight pipe sizes, or to be left alone. There are five new pipes that must be sized 
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through the problem graph (i.e. the colony’s population of solutions is fixed at a certain 
point in the solution space S) from that point onward. Thus, convergence behaviour is the 
nature of the colony’s solution generation up until the point of convergence. Topologically, 
convergence means that the distance between all solutions generated by the colony is zero. 
Conversely, a non-converged search will have some spread of the solutions throughout the 
solution space. It is the quantification and tracking of this spread that is of interest in 
describing an algorithm’s convergence behaviour.  
The motive behind convergence analysis is to gain a greater understanding of how the 
different explorative and exploitative mechanisms in the ACO algorithms considered 
actually impact the algorithm’s search. Below, the topology of the solution space is first 
defined, and then the adopted convergence metric, the mean colony distance, is presented. 
It is important to note that the use of metrics is widely used in evolutionary algorithm based 
multi-objective optimisation (Deb 2001). However, this is fundamentally different to what is 
considered here. In multi-objective optimisation, the distribution of solutions throughout 
the multi-dimensional objective space is of primary interest, and thus the metrics operate in 
this space. Conversely, this chapter is concerned with the distribution of solutions within the 
solution space, and, as such, the mean colony distance is defined on this space.  

5.1 Topology of the Solution Space 
Fundamental to any topologically based statistic is the notion of distance between points 
(solutions) in the solution space. A measure of distance for all elements within the set S is 
equivalent to defining a metric d : S × S → R+ associated with S that defines the distance 
between two elements S, S’∈S (Cohen 2003). For sets whose elements have no specific 
numerical relation, the Hamming distance is a natural metric. This has been used by Bose et 
al. (1994) and Stützle & Hoos (2000) for the travelling salesperson problem. A generalisation 
that applies to sets whose elements are equal length lists of objects is 
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where S={s1, …, sn}, S’={s1’, …, sn’}, si, si’∈θi and di : θi  × θi → R+ is itself a metric for the set 
of all possible ith elements in the list. For the Hamming distance, di(·,·) is either zero or one, 
depending whether si and si’ are equal or not. However, if the elements in the set have some 
other attribute that can be exploited, such as a meaningful ordering based on some property, 
then the metric can be defined so as to include this information. 
Considering (12), it is seen that the selection of an option Ωi is essentially equivalent to 
selecting a resistance parameter r

iΩ . Therefore, it is meaningful to say that an option is closer 
to one option than another based purely on the relative differences between their associated 
resistance parameter values. The list of options Λi for pipe i can therefore be meaningfully 
ordered by the magnitude of their associated resistance parameter. That is, consider the 
following ordering of Λi, based on the resistance parameter Λi = {ωi,1, …, ωi, iNO }, where 
r

1,iω ≤ … ≤ r
iNOi ,ω , and the distance di between any two of these options ωi,j and ωi,k, is given by 

 ( ) ikijikijii kjd Λ∈−= ,,,, ,, ωωωω   where . (19) 
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In this context, the distance between two options is the number of positions in the ordered 
list Λi that separates the two options. 

5.2 Mean colony distance 
By ascribing a topology to the search space, the colony of solutions generated within an 
iteration can be considered to be spread, in some manner, over the topology. This spread of 
solutions gives an indication of how widely, or tightly, an algorithm is searching. To use the 
terminology of Colorni et al. (1996), whether the algorithm is exploring broadly through the 
search space or exploiting smaller regions of the search space. In order to quantify this 
spread, the mean of the distances between each of the ants’ solutions has been used in this 
chapter, which is henceforth referred to as the mean colony distance dΣ. Mathematically this 
is given as the summation of the distances of each unique pair of solutions divided by the 
total number of pairs, and is expressed as the map dΣ : Sm →R+ where 
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where m(m – 1)/2 is the number of unique pairs that exist in a colony of m ants. The 
usefulness of dΣ as a behavioural analysis measure is fully realised when considering its 
variation with time. For example: periods of high exploration when solutions are spread 
broadly throughout the search space correspond to large values of dΣ; periods during which 
the algorithm converges correspond to a series of decreasing dΣ values; the point at which 
the algorithm converges is given by dΣ = 0, as this indicates that all solutions in Σ(t) are 
equal. As such, dΣ provides a direct measure of an algorithm’s convergence behaviour. 

6. Case Studies 
Experiments were performed on four different case studies, the Two Reservoir Problem 
(TRP), the New York Tunnels Problem (NYTP), the Hanoi Problem (HP) and the Doubled 
New York Tunnels Problem (2-NYTP). The ACO algorithms were coded in FORTRAN 90 
with EPANET2 (Rossman 2000) as the hydraulic solver. Parameter settings from Zecchin et 
al. (2005), summarised in Table 1, were used for parameters α, β, ρ, τ0, m, and Q for all 
algorithms with the adjustment that τ0 was scaled by σ for ASelite and ASrank (in accordance 
with the logic of the derivation of Q in Zecchin et al. (2005)) and for MMAS, τ0 was set to an 
arbitrarily high number, as proposed by Stützle & Hoos (2000). For ASelite and ASrank, σ 
required calibration for each case study. For MMAS, fglobal was set to 10, as in Stützle & Hoos 
(2000) and Pbest and δ were calibrated for each case study. The best-cost and search-time 
statistics for AS, ASelite, and ASrank and MMAS are as presented in Zecchin et al. (2007). 

6.1 Case Study 1: Two-Reservoirs Problem 

6.1.1 Preliminaries 
The TRP was initially studied by Gessler (1985), and Simpson et al. (1994) introduced the 
metric version. The TRP is a 14-pipe network with two reservoirs (Figure 1). The TRP 
involves three demand cases: a peak hour demand case and two fire loading demand cases. 
There are nine existing pipes, of which three are considered for rehabilitation, duplication 
with one of eight pipe sizes, or to be left alone. There are five new pipes that must be sized 
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with one of eight diameters. The reader is referred to Simpson et al. (1994) for case study 
details. The problem, consists of 32,768,000 possible combinations.  

6.1.2 Results 
Based on the heuristics given in Table 1, {τ0, m} = {27, 25} and preliminary testing showed 
that a maximum number of iterations of Imax = 400 was sufficient for the algorithms to not 
significantly improve on their solution quality after this point. For each algorithm, a single 
run for the TRP consisted of 10,000 function evaluations. The range of parameters tested 
was: σ [2, 20] for ASelite; σ ∈ ∈[2, 20] for ASrank; {Pbest, δ}∈ [1× 10-5, 0.99]× [0, 0.99] for 
MMAS. ASelite achieved a mean performance within 1% of the known optimum for most of 
the tested values of σ, with better performances observed using 3 ≤ σ ≤ 5. Similarly, ASrank 
achieved a mean performance within 1% of the known optimum for all tested values of 
σ > 2 with lower mean best-cost values occurring for 10 ≤ σ ≤ 14. ASrank tended to be less 
sensitive to variations in σ than ASelite, as it was able to find the optimum in each run for a 
broader range of values for this parameter. MMAS achieved a mean performance within 1% 
of the optimum for values of Pbest ≥ 0.001 and δ ≤ 0.001, with the solution quality 
deteriorating for parameter values outside these ranges. The optimal parameter values were 
as follows: for ASelite, σ = 4; for ASrank, σ = 10; for MMAS, {Pbest, δ} = {0.5, 10-6}. 
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Figure 1. Network layout for the Two-Reservoir Problem 

Table 2 gives a comparison of the results obtained using the ACO algorithms considered 
and those obtained from a selection of other best performing algorithms that have been 
applied to the discrete version of the TRP previously. A detailed statistical analysis of these 
algorithms was given in Zecchin et al. (2007), but it is clear that all algorithms performed 
extremely well (finding the optimum for all 20 runs) and were, comparatively, 
computationally efficient. 
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Plots of the iteration best-costs fmin(t) and the mean colony distance dΣ(t), averaged over 20 
runs, are given in Figure 2 (a) and (b). In addition to this, other run-time properties (to be 
discussed) are given in Figure 2 (c). With regard to fmin(t), three distinct phases are observed. 
The first part of the search, phase-I, is a relatively short phase in which all algorithms find 
relatively poor quality solutions, which is followed by the second phase, phase-II, in which a 
dramatic increase in solution quality (reduction in the minimum cost) takes place, which 
leads into the third phase, phase-III, in which the rate of increase of the solution quality 
plateaus and the algorithms seem to not find any better solutions (or in some cases, the 
optimum is found repeatedly).  

Best-cost ($M) (% deviation from optimum) 
Algorithm 

Minimum Mean Maximum 

Mean search-time 
(evaluation no.) 

AS 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 2,084 

ASelite 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 1,842 

ASrank 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 1,523 

MMAS 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 2,993 

PEa 1.834 (4.80) - -    900 

GApropb 1.750 (0.00) 1.759 (0.51) 1.812 (3.54) 23,625  

GAtoutc 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 8,700 

SAd 1.750 (0.00) NA NA NA 

ACOAe 1.750 (0.00) 1.769 (1.09) 1.813 (3.60) 12,455  

TSf 1.728i - NA NA ~10,000     

ACOAi-bestg 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 8,509 

ACSh 1.750 (0.00) 1.770 (1.13) 1.904 (8.81) 5,014 
a Partial enumeration (Gessler 1985). b GA based on a proportionate selection rule (Simpson et al. 1994). 
c Tournament selection GA (Simpson & Goldberg 1994). d Simulated Annealing (Sousa & Cunha 1999). 
e An AS variant that subtracts pheromone (Maier et al. 2003). f Tabu Search (Cunha & Ribeiro 2004). 
g Iteration-best updating version of ACOA (Maier et al. 2003). h Ant Colony System (Zecchin et. al 2007). 
i Not feasible by complete enumeration results (Simpson et al. 1994). 

Table 2. Comparison of performance of AS, ASelite, ASrank, MMAS, and other algorithms 
from the literature applied to the Two-Reservoir Problem. Results for AS, ASelite, ASrank, and 
MMAS are based on 20 runs. NA means that the information is not available 

These three phases can also be seen clearly when considering the behaviour of dΣ in Figure 
2 (b). To make the distinction between the phases clearer, the bar chart in Figure 2 (c) indicates 
when the algorithms are in each of the phases (dark grey for phase-I, light grey for phase-II 
and the remaining white space for phase-III). For dΣ, phase-I corresponds to a brief period of 
extremely broad searching where almost no convergence behaviour is displayed, followed by 
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with one of eight diameters. The reader is referred to Simpson et al. (1994) for case study 
details. The problem, consists of 32,768,000 possible combinations.  

6.1.2 Results 
Based on the heuristics given in Table 1, {τ0, m} = {27, 25} and preliminary testing showed 
that a maximum number of iterations of Imax = 400 was sufficient for the algorithms to not 
significantly improve on their solution quality after this point. For each algorithm, a single 
run for the TRP consisted of 10,000 function evaluations. The range of parameters tested 
was: σ [2, 20] for ASelite; σ ∈ ∈[2, 20] for ASrank; {Pbest, δ}∈ [1× 10-5, 0.99]× [0, 0.99] for 
MMAS. ASelite achieved a mean performance within 1% of the known optimum for most of 
the tested values of σ, with better performances observed using 3 ≤ σ ≤ 5. Similarly, ASrank 
achieved a mean performance within 1% of the known optimum for all tested values of 
σ > 2 with lower mean best-cost values occurring for 10 ≤ σ ≤ 14. ASrank tended to be less 
sensitive to variations in σ than ASelite, as it was able to find the optimum in each run for a 
broader range of values for this parameter. MMAS achieved a mean performance within 1% 
of the optimum for values of Pbest ≥ 0.001 and δ ≤ 0.001, with the solution quality 
deteriorating for parameter values outside these ranges. The optimal parameter values were 
as follows: for ASelite, σ = 4; for ASrank, σ = 10; for MMAS, {Pbest, δ} = {0.5, 10-6}. 
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Table 2 gives a comparison of the results obtained using the ACO algorithms considered 
and those obtained from a selection of other best performing algorithms that have been 
applied to the discrete version of the TRP previously. A detailed statistical analysis of these 
algorithms was given in Zecchin et al. (2007), but it is clear that all algorithms performed 
extremely well (finding the optimum for all 20 runs) and were, comparatively, 
computationally efficient. 
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Plots of the iteration best-costs fmin(t) and the mean colony distance dΣ(t), averaged over 20 
runs, are given in Figure 2 (a) and (b). In addition to this, other run-time properties (to be 
discussed) are given in Figure 2 (c). With regard to fmin(t), three distinct phases are observed. 
The first part of the search, phase-I, is a relatively short phase in which all algorithms find 
relatively poor quality solutions, which is followed by the second phase, phase-II, in which a 
dramatic increase in solution quality (reduction in the minimum cost) takes place, which 
leads into the third phase, phase-III, in which the rate of increase of the solution quality 
plateaus and the algorithms seem to not find any better solutions (or in some cases, the 
optimum is found repeatedly).  

Best-cost ($M) (% deviation from optimum) 
Algorithm 

Minimum Mean Maximum 

Mean search-time 
(evaluation no.) 

AS 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 2,084 

ASelite 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 1,842 

ASrank 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 1,523 

MMAS 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 2,993 

PEa 1.834 (4.80) - -    900 

GApropb 1.750 (0.00) 1.759 (0.51) 1.812 (3.54) 23,625  

GAtoutc 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 8,700 

SAd 1.750 (0.00) NA NA NA 

ACOAe 1.750 (0.00) 1.769 (1.09) 1.813 (3.60) 12,455  

TSf 1.728i - NA NA ~10,000     

ACOAi-bestg 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 8,509 

ACSh 1.750 (0.00) 1.770 (1.13) 1.904 (8.81) 5,014 
a Partial enumeration (Gessler 1985). b GA based on a proportionate selection rule (Simpson et al. 1994). 
c Tournament selection GA (Simpson & Goldberg 1994). d Simulated Annealing (Sousa & Cunha 1999). 
e An AS variant that subtracts pheromone (Maier et al. 2003). f Tabu Search (Cunha & Ribeiro 2004). 
g Iteration-best updating version of ACOA (Maier et al. 2003). h Ant Colony System (Zecchin et. al 2007). 
i Not feasible by complete enumeration results (Simpson et al. 1994). 

Table 2. Comparison of performance of AS, ASelite, ASrank, MMAS, and other algorithms 
from the literature applied to the Two-Reservoir Problem. Results for AS, ASelite, ASrank, and 
MMAS are based on 20 runs. NA means that the information is not available 

These three phases can also be seen clearly when considering the behaviour of dΣ in Figure 
2 (b). To make the distinction between the phases clearer, the bar chart in Figure 2 (c) indicates 
when the algorithms are in each of the phases (dark grey for phase-I, light grey for phase-II 
and the remaining white space for phase-III). For dΣ, phase-I corresponds to a brief period of 
extremely broad searching where almost no convergence behaviour is displayed, followed by 
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phase-II, in which relatively rapid convergence is observed, and phase-III, in which the rate of 
convergence either plateaus or decreases gradually to dΣ(t) = 0, the point of convergence.  
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Figure 2. Plots of (a) the minimum cost ($M) found in each iteration fmin(t), (b) the mean 
colony distance dΣ(t), and (c) run-time statistics for AS, ASelite, ASrank, and MMAS applied to 
the Two Reservoir Problem. Plots (a) and (b) are averaged from 20 runs. Plot (c) depicts the 
three convergence phases: phase-I (dark grey); phase-II (light grey); phase-III (remaining 
white space). The line graphs overlaying the bar charts in (c) indicate the search-time 
statistics (based on 20 runs) with the dot indicating the mean search-time, and the left and 
right arrows indicating the mean minus and plus a standard deviation, respectively 

The nature and time spent in each of these three phases is different for each algorithm. As 
seen in Figure 2, AS, ASelite, and ASrank have a relatively short broad searching phase-I, 
followed by a rapid convergence in phase-II. In contrast, MMAS has a relatively long broad 
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searching phase-I, followed eventually by rapid phase-II convergence. The relatively long 
phase-I for MMAS may be attributed to the exploration encouraging mechanisms of 
pheromone bounding and pheromone smoothing. ASelite and ASrank have faster phase-II 
convergence than AS, which can possibly be attributed to the elitist exploitation 
mechanisms in these algorithms driving the search to converge faster. In phase-III, AS and 
ASelite experience a gradually reducing, but steady, convergence, albeit ASelite in a much 
tighter region after phase-II. In contrast to this, ASrank and MMAS plateau in their 
convergence, as seen by dΣ(t) tending to a constant value in phase-III. 
This difference in phase-III behaviour can be explained by a consideration of the pheromone 
adjustment operations of each algorithm. For ACO, convergence cannot only be defined in 
the context of the distribution of solutions throughout the solution space (i.e. the point at 
which dΣ(t) = 0), but also in a pheromone value context. That is, an ACO algorithm has 
converged when the pheromone value on all paths, except for a single path S∈S, is 
effectively zero (i.e. zero for all computational purposes). At such a point, ants will only 
select edges from path S. For both AS and ASelite, as pheromone values of paths become 
more dominant, the natural positive feedback process of the colony’s path selection will 
dictate that the pheromone value on all edges, other than that of the increasingly dominant 
path, will decay to zero. Thus, these algorithms will converge to the point where dΣ(t) = 0. 
However, both ASrank and MMAS contain mechanisms that moderate this positive feedback 
process. Firstly, in the update process for ASrank, in addition to the elitist ants, there are σ -1 
unique paths that receive a weighted pheromone addition within each iteration. What this 
means for ASrank is that there are always multiple paths for which the pheromone value does 
not decay to zero. Within MMAS, the pheromone bounding ensures that the pheromone 
values on all paths do not go below τmin(t). 
The search-time statistics in Figure 2(c) (the triangle and dot lines plots superimposed over 
the bar charts) indicate the range of iteration numbers in which each algorithm found Sgb, 
the global best solution for the run. Interestingly, all four algorithms tended to find their 
global best solutions towards the end of phase-I and the beginning of phase-II, albeit MMAS 
at a later stage than the other three algorithms. ASelite and AS had a greater variation in their 
search-times than ASrank, with MMAS having the greatest variation in its search-times.  

6.2 Case Study 2: New York Tunnels Problem 

6.2.1 Preliminaries 
The New York Tunnels Problem (NYTP) was first considered by Schaake and Lai (1969) 
while Dandy et al. (1996) was the first to apply an evolutionary algorithm to this problem. 
The network is a gravity system fed from a single reservoir, and consists of 20 nodes 
connected via 21 tunnels (Figure 3). There is a single demand case for the problem. Each 
tunnel has a null option, or the option to provide a duplicate tunnel with one of 15 different 
diameter sizes. The reader is referred to Dandy et al. (1996) for the case study details. This 
case study is the second smallest considered in this chapter, and has a search space of 
approximately 1.934 x 1025 possible combinations.  

6.2.2 Results 
Based on the heuristics given in Table 1 {τ0, m} = {140, 90} and based on preliminary analyses 
Imax = 500 was found to be sufficient. A single run of the NYTP consisted of 45,000 function 
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phase-II, in which relatively rapid convergence is observed, and phase-III, in which the rate of 
convergence either plateaus or decreases gradually to dΣ(t) = 0, the point of convergence.  
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Figure 2. Plots of (a) the minimum cost ($M) found in each iteration fmin(t), (b) the mean 
colony distance dΣ(t), and (c) run-time statistics for AS, ASelite, ASrank, and MMAS applied to 
the Two Reservoir Problem. Plots (a) and (b) are averaged from 20 runs. Plot (c) depicts the 
three convergence phases: phase-I (dark grey); phase-II (light grey); phase-III (remaining 
white space). The line graphs overlaying the bar charts in (c) indicate the search-time 
statistics (based on 20 runs) with the dot indicating the mean search-time, and the left and 
right arrows indicating the mean minus and plus a standard deviation, respectively 

The nature and time spent in each of these three phases is different for each algorithm. As 
seen in Figure 2, AS, ASelite, and ASrank have a relatively short broad searching phase-I, 
followed by a rapid convergence in phase-II. In contrast, MMAS has a relatively long broad 
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searching phase-I, followed eventually by rapid phase-II convergence. The relatively long 
phase-I for MMAS may be attributed to the exploration encouraging mechanisms of 
pheromone bounding and pheromone smoothing. ASelite and ASrank have faster phase-II 
convergence than AS, which can possibly be attributed to the elitist exploitation 
mechanisms in these algorithms driving the search to converge faster. In phase-III, AS and 
ASelite experience a gradually reducing, but steady, convergence, albeit ASelite in a much 
tighter region after phase-II. In contrast to this, ASrank and MMAS plateau in their 
convergence, as seen by dΣ(t) tending to a constant value in phase-III. 
This difference in phase-III behaviour can be explained by a consideration of the pheromone 
adjustment operations of each algorithm. For ACO, convergence cannot only be defined in 
the context of the distribution of solutions throughout the solution space (i.e. the point at 
which dΣ(t) = 0), but also in a pheromone value context. That is, an ACO algorithm has 
converged when the pheromone value on all paths, except for a single path S∈S, is 
effectively zero (i.e. zero for all computational purposes). At such a point, ants will only 
select edges from path S. For both AS and ASelite, as pheromone values of paths become 
more dominant, the natural positive feedback process of the colony’s path selection will 
dictate that the pheromone value on all edges, other than that of the increasingly dominant 
path, will decay to zero. Thus, these algorithms will converge to the point where dΣ(t) = 0. 
However, both ASrank and MMAS contain mechanisms that moderate this positive feedback 
process. Firstly, in the update process for ASrank, in addition to the elitist ants, there are σ -1 
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means for ASrank is that there are always multiple paths for which the pheromone value does 
not decay to zero. Within MMAS, the pheromone bounding ensures that the pheromone 
values on all paths do not go below τmin(t). 
The search-time statistics in Figure 2(c) (the triangle and dot lines plots superimposed over 
the bar charts) indicate the range of iteration numbers in which each algorithm found Sgb, 
the global best solution for the run. Interestingly, all four algorithms tended to find their 
global best solutions towards the end of phase-I and the beginning of phase-II, albeit MMAS 
at a later stage than the other three algorithms. ASelite and AS had a greater variation in their 
search-times than ASrank, with MMAS having the greatest variation in its search-times.  

6.2 Case Study 2: New York Tunnels Problem 

6.2.1 Preliminaries 
The New York Tunnels Problem (NYTP) was first considered by Schaake and Lai (1969) 
while Dandy et al. (1996) was the first to apply an evolutionary algorithm to this problem. 
The network is a gravity system fed from a single reservoir, and consists of 20 nodes 
connected via 21 tunnels (Figure 3). There is a single demand case for the problem. Each 
tunnel has a null option, or the option to provide a duplicate tunnel with one of 15 different 
diameter sizes. The reader is referred to Dandy et al. (1996) for the case study details. This 
case study is the second smallest considered in this chapter, and has a search space of 
approximately 1.934 x 1025 possible combinations.  

6.2.2 Results 
Based on the heuristics given in Table 1 {τ0, m} = {140, 90} and based on preliminary analyses 
Imax = 500 was found to be sufficient. A single run of the NYTP consisted of 45,000 function 
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evaluations. The range of parameters tested was: σ ∈ [2, 80] for ASelite; σ ∈ [2, 80] for ASrank; 
{Pbest, δ}∈ [1× 10-5, 0.99]× [0, 0.99] for MMAS. For 2 ≤ σ ≤ 20 the performance of ASelite 
varied less than 1%, but for σ > 20 the solution quality was increasingly worse. For ASrank, 
the performance varied less than 1% for the entire parameter range, with the better values 
being 8 ≤ σ ≤ 12. For MMAS, the performance varied less than 1% for 0.005 ≤ Pbest ≤ 0.99 and 
δ ≤ 0.0005, with the solution quality degrading for lower values of Pbest and higher values of 
δ. The optimal parameter settings were as follows: σ = 8 for ASelite; σ = 8 for ASrank; 
{Pbest, δ} = {0.05, 5x10-5} for MMAS. 
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Figure 3. Network layout for New York Tunnels Problem 

Table 3 gives a comparison of the performance of the ACO algorithms considered in this 
paper with that of the current best performing algorithms from the literature for the NYTP. 
A detailed statistical analysis of these algorithms was given in Zecchin et al. (2007), but all 
algorithms performed well, with ASelite, ASrank and MMAS, on average, finding solutions 
within a 1% cost of the known-optimum. 
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Best-cost ($M) (% deviation from optimum) 
Algorithm 

Minimum Mean Maximum 

Mean search-time 
(evaluation no.) 

AS 39.204 (1.47) 39.910 (3.29) 40.922 (5.91) 34,877 

ASelite 38.638 (0.00) 38.988 (0.91) 39.511 (2.26) 21,945 

ASrank 38.638 (0.00) 38.777 (0.36) 39.221 (1.51) 19,319 

MMAS 38.638 (0.00) 38.836 (0.51) 39.415 (2.01) 30,711 

PEa 41.800 (8.18) - - NA 

GAimpb 38.796 (0.41) NA NA 96,750 

GAc 37.13i - NA NA ~1,000,000      

ACOAi-bestd 38.638 (0.00) NA NA 13,928 

TSe 37.13i - NA NA ~10,000  

ASi-bestf 38.638 (0.00) 38.849 (0.55) 39.492 (2.21) 22,052 

ACSg 38.638 (0.00) 39.629 (2.57) 41.992 (8.68) 23,972 

GAadapth 38.638 (0.00) 38.770 (0.34) 39.07 (1.12) 15,680 

a Partial enumeration (Gessler, 1982). b Improved GA that used a variable exponent in fitness scaling, an 
adjacency mutation operator, and Gray code representation (Dandy et al. 1996). c Genetic algorithm 
(Savic & Walters, 1997). d Iteration-best updating version of ACO (Maier, et al. 2002). e Tabu search 
(Cunha & Ribeiro, 2004). f An improved iteration-best version of AS (Zecchin et al. 2005). g Ant colony 
system (Zecchin et al. 2007). h Parameter free, self-adapting, boundary searching genetic algorithm 
(Afshar & Marino, 2007). i Not assessed as feasible by EPANET2 (Maier et al., 2002). 

Table 3. Comparison of performance of AS, ACS, ASelite, ASrank, MMAS, and other 
algorithms from the literature applied to the New York Tunnels Problem. Results for AS, 
ASelite, ASrank, and MMAS are based on 20 runs. NA means that the information was not 
available 

Plots of the iteration best-costs fmin(t), the mean-colony-distance dΣ(t), and the searching 
phases and search-time statistics for the algorithms applied to the NYTP are given in Figure 
4(a)-(c). Again, the three distinct searching phases observed for the TRP are observed in the 
behaviour of fmin and dΣ. The relative behaviours of the algorithms applied to the NYTP are 
similar to that for the TRP, except for the faster convergence of AS in phase-I than that of 
both ASelite and ASrank. The effectiveness of the additional pheromone adjustment 
mechanisms in ASelite, ASrank and MMAS is made clear in Figure 4(a). This is seen by the fact 
that, for the majority of the phase-III searching, these algorithms have confined the search to 
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evaluations. The range of parameters tested was: σ ∈ [2, 80] for ASelite; σ ∈ [2, 80] for ASrank; 
{Pbest, δ}∈ [1× 10-5, 0.99]× [0, 0.99] for MMAS. For 2 ≤ σ ≤ 20 the performance of ASelite 
varied less than 1%, but for σ > 20 the solution quality was increasingly worse. For ASrank, 
the performance varied less than 1% for the entire parameter range, with the better values 
being 8 ≤ σ ≤ 12. For MMAS, the performance varied less than 1% for 0.005 ≤ Pbest ≤ 0.99 and 
δ ≤ 0.0005, with the solution quality degrading for lower values of Pbest and higher values of 
δ. The optimal parameter settings were as follows: σ = 8 for ASelite; σ = 8 for ASrank; 
{Pbest, δ} = {0.05, 5x10-5} for MMAS. 
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Table 3 gives a comparison of the performance of the ACO algorithms considered in this 
paper with that of the current best performing algorithms from the literature for the NYTP. 
A detailed statistical analysis of these algorithms was given in Zecchin et al. (2007), but all 
algorithms performed well, with ASelite, ASrank and MMAS, on average, finding solutions 
within a 1% cost of the known-optimum. 
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4(a)-(c). Again, the three distinct searching phases observed for the TRP are observed in the 
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similar to that for the TRP, except for the faster convergence of AS in phase-I than that of 
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that, for the majority of the phase-III searching, these algorithms have confined the search to 
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the high quality region of the solution space, as indicated by the near optimal fmin. In 
contrast, by the end of the run-time, AS has converged to a smaller region than MMAS, but 
the higher value of fmin indicates that the search is not in a near optimal region. This 
behaviour is also exhibited in the performance statistics of Table 3. 
Figure 4(c) gives a plot of the search-time statistics (the distribution of iteration times taken 
by the algorithms to find their global best run-time cost Sgb) for the NYTP.  In contrast to the 
TRP, the algorithms tended to find their Sgb relatively later in the searching phases. ASelite 
and ASrank tended to find their best cost just after the descent in phase-II, whereas AS and 
MMAS found their best cost well into phase-III. This observation is interesting, as even 
though ASelite and ASrank had clearly not converged (as dΣ > 0), and their search was 
intensified within a near optimal region of the solution space, they were both unable to find 
higher quality solutions in phase-III of their search. The implications of this are that the 
phase-III search for ASelite and ASrank is not an effective phase in their searching behaviour. 

6.3 Case Study 3: Hanoi Problem 

6.3.1 Preliminaries 
The Hanoi Problem (HP), first published by Fujiwara and Khang (1990), has been 
considered by numerous authors in its discrete problem formulation (Savic & Walters 
1997; Cunha & Sousa 1999; Wu et al. 2001). This case study is for a new design that 
consists of 34 pipes and 32 nodes organised in three loops (Figure 5).  The system is 
gravity fed by a single reservoir and has only a single demand case. For each link, there 
are six different new pipe options where a minimum diameter constraint is enforced. For 
case study details, the reader is referred to Cunha & Sousa (1999). This case study is the 
second largest considered in this chapter, having a problem size of approximately 
2.87 x 1026 combinations. 
Based on the heuristics given in Table 1 {τ0, m} = {26, 80} and Imax = 1,500 were found to be 
sufficient, implying that a single run for the HP consisted of 120,000 function evaluations. 
The range of parameters tested was: σ ∈ [2, 70] for ASelite; σ ∈ [2, 70] for ASrank,; for MMAS, 
{Pbest, δ}∈ [1 x 10-5, 0.99]x [0, 0.005]. In general, the performances of ASelite, ASrank, and 
MMAS were much more sensitive to their respective parameter settings for this case study, 
such that only moderate variations from the parameters selected resulted in the inability to 
find feasible solutions for some runs. For ASelite, no feasible solutions were found for σ ≤ 10, 
with the best performance occurring with σ = 40. For values of σ > 20, no feasible solutions 
were found within a greater number of runs for ASrank. For MMAS, no feasible solutions 
were found for Pbest ≤ 0.1 and δ ≥ 0.001, however, there was a less than 1% variation in 
solution quality for 0.5 ≤ Pbest ≤ 0.65. The selected parameter values were as follows: for 
ASelite, σ = 40; for ASrank, σ = 20; for MMAS, {Pbest, δ} = {0.5, 0}. An important point to note is 
that the best parameter settings for this case study vary greatly from those of all the other 
case studies. A common thread is that the optimal parameter settings for this case study 
increased each of the algorithms’ emphasis on exploitation. For example: for ASelite, and to a 
lesser degree ASrank, the number of elitist ants for this case study was far greater than for the 
other case studies; for MMAS, Pbest was higher (indicating looser pheromone bounds) and δ 
was set to a low value, both of these indicating a reduction in exploration potential. Despite 
this notable sensitivity, the parameter heuristics proposed by Zecchin et al. (2005) resulted in 
extremely good performance for MMAS and ASrank. 
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Figure 4. Plots of (a) the minimum cost ($M) found in each iteration fmin(t), (b) the mean 
colony distance dΣ(t), and (c) run-time statistics for AS, ASelite, ASrank, and MMAS applied to 
the  New York Tunnels Problem. Plots (a) and (b) are averaged from 20 runs. Plot (c) depicts 
the three convergence phases: phase-I (dark grey); phase-II (light grey); phase-III (remaining 
white space). The line graphs overlaying the bar charts in (c) indicate the search-time 
statistics (based on 20 runs) with the dot indicating the mean search-time, and the left and 
right arrows indicating the mean minus and plus a standard deviation, respectively 
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the high quality region of the solution space, as indicated by the near optimal fmin. In 
contrast, by the end of the run-time, AS has converged to a smaller region than MMAS, but 
the higher value of fmin indicates that the search is not in a near optimal region. This 
behaviour is also exhibited in the performance statistics of Table 3. 
Figure 4(c) gives a plot of the search-time statistics (the distribution of iteration times taken 
by the algorithms to find their global best run-time cost Sgb) for the NYTP.  In contrast to the 
TRP, the algorithms tended to find their Sgb relatively later in the searching phases. ASelite 
and ASrank tended to find their best cost just after the descent in phase-II, whereas AS and 
MMAS found their best cost well into phase-III. This observation is interesting, as even 
though ASelite and ASrank had clearly not converged (as dΣ > 0), and their search was 
intensified within a near optimal region of the solution space, they were both unable to find 
higher quality solutions in phase-III of their search. The implications of this are that the 
phase-III search for ASelite and ASrank is not an effective phase in their searching behaviour. 

6.3 Case Study 3: Hanoi Problem 

6.3.1 Preliminaries 
The Hanoi Problem (HP), first published by Fujiwara and Khang (1990), has been 
considered by numerous authors in its discrete problem formulation (Savic & Walters 
1997; Cunha & Sousa 1999; Wu et al. 2001). This case study is for a new design that 
consists of 34 pipes and 32 nodes organised in three loops (Figure 5).  The system is 
gravity fed by a single reservoir and has only a single demand case. For each link, there 
are six different new pipe options where a minimum diameter constraint is enforced. For 
case study details, the reader is referred to Cunha & Sousa (1999). This case study is the 
second largest considered in this chapter, having a problem size of approximately 
2.87 x 1026 combinations. 
Based on the heuristics given in Table 1 {τ0, m} = {26, 80} and Imax = 1,500 were found to be 
sufficient, implying that a single run for the HP consisted of 120,000 function evaluations. 
The range of parameters tested was: σ ∈ [2, 70] for ASelite; σ ∈ [2, 70] for ASrank,; for MMAS, 
{Pbest, δ}∈ [1 x 10-5, 0.99]x [0, 0.005]. In general, the performances of ASelite, ASrank, and 
MMAS were much more sensitive to their respective parameter settings for this case study, 
such that only moderate variations from the parameters selected resulted in the inability to 
find feasible solutions for some runs. For ASelite, no feasible solutions were found for σ ≤ 10, 
with the best performance occurring with σ = 40. For values of σ > 20, no feasible solutions 
were found within a greater number of runs for ASrank. For MMAS, no feasible solutions 
were found for Pbest ≤ 0.1 and δ ≥ 0.001, however, there was a less than 1% variation in 
solution quality for 0.5 ≤ Pbest ≤ 0.65. The selected parameter values were as follows: for 
ASelite, σ = 40; for ASrank, σ = 20; for MMAS, {Pbest, δ} = {0.5, 0}. An important point to note is 
that the best parameter settings for this case study vary greatly from those of all the other 
case studies. A common thread is that the optimal parameter settings for this case study 
increased each of the algorithms’ emphasis on exploitation. For example: for ASelite, and to a 
lesser degree ASrank, the number of elitist ants for this case study was far greater than for the 
other case studies; for MMAS, Pbest was higher (indicating looser pheromone bounds) and δ 
was set to a low value, both of these indicating a reduction in exploration potential. Despite 
this notable sensitivity, the parameter heuristics proposed by Zecchin et al. (2005) resulted in 
extremely good performance for MMAS and ASrank. 
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Figure 4. Plots of (a) the minimum cost ($M) found in each iteration fmin(t), (b) the mean 
colony distance dΣ(t), and (c) run-time statistics for AS, ASelite, ASrank, and MMAS applied to 
the  New York Tunnels Problem. Plots (a) and (b) are averaged from 20 runs. Plot (c) depicts 
the three convergence phases: phase-I (dark grey); phase-II (light grey); phase-III (remaining 
white space). The line graphs overlaying the bar charts in (c) indicate the search-time 
statistics (based on 20 runs) with the dot indicating the mean search-time, and the left and 
right arrows indicating the mean minus and plus a standard deviation, respectively 
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6.3.2 Results 
Table 4 shows a comparison of the performance of the ACO algorithms with the other best 
performing algorithms in the literature. A detailed statistical analysis of the algorithms was 
given in Zecchin et al. (2007), but as a summary, MMAS, and to a lesser extent ASrank, were 
the only algorithms that performed well on the HP. ASelite was unable to find high quality 
solutions, and AS was not able to find any feasible solutions. Other authors have also noted 
that the HP has a small feasible region (Eusuff & Lansey 2003). 
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Figure 5. Network layout for the Hanoi Problem 
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Best-cost ($M) (% deviation from optimum) 
Algorithm 

Minimum Mean Maximum 

Mean search-time 
(evaluation no.) 

AS NFS NFS NFS - 

ASelite 6.827 (11.30) 7.295 (18.93) 8.187 (33.48)    59,917 

ASrank 6.206  (1.17) 6.506  (6.07) 6.788 (10.66)    75,328 

MMAS 6.134  (0.00) 6.394  (4.24) 6.635  (8.17)    85,571 

GAa 6.195  (1.00) NA NA ~1,000,000      

SAb 6.053g - NA NA ~53,000 

GAfmc 6.182  (0.78) NA NA 113,626 

TSd 6.053g - NA NA ~10,000  

ASi-beste 6.367  (3.80) 6.842 (11.54) 7.474 (21.95)   67,136 

ACSf 7.754 (26.41) 8.109 (32.20) 8.462 (37.96)   61,324 

a Genetic algorithm (Savic & Walters, 1997). b Simulated annealing (Cunha & Sousa, 1999). c The fast 
messy genetic algorithm (Wu et al., 2001). d Tabu search (Cunha & Ribeiro, 2004). e An iteration-best 
pheromone updating version of AS (Zecchin et al. 2005);  f Ant colony system (Zecchin et al. 2007). 
g Infeasible by EPANET2 (Zecchin et al., 2005). 

Table 4. Comparison of performance of AS, ACS, ASelite, ASrank, MMAS, and other 
algorithms from the literature applied to the Hanoi Problem. Results for AS, ASelite, ASrank, 
and MMAS are based on 20 runs. NFS means no feasible solution was found, NA means 
that the information was not available 

Plots of the iteration best-costs fmin(t), the mean-colony-distance dΣ(t), and the searching 
phases and search-time statistics for the algorithms applied to the HP are given in Figure 
6(a)-(c). Vastly different behaviours were observed for the HP in comparison to the other 
case studies, but the three phases of searching are still distinct. A marked difference though 
is the relative lengths of the phase-I searching, (AS, ASelite, and ASrank all have a far longer 
phase-I search than MMAS) and the distinct hump in the phase-II convergence of MMAS.  
The differences in the trends of fmin and dΣ for this case study can be explained by the small 
feasible  region.  The  maximum  cost  of  a  feasible  solution  for  the HP, which is also the 
maximum network cost (for which the penalty cost PC from (15) is zero), is 
C(Ωmax) = $M 10.96. Therefore, any solutions with costs higher than this are infeasible. With 
this in mind, the appearance of the data points of fmin in Figure 6(a) can be interpreted as the 
iteration times at which each algorithm first found feasible solutions. This is why no plot of 
fmin for AS is seen in Figure 6(a), as AS found no feasible solutions for the HP. 
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pheromone updating version of AS (Zecchin et al. 2005);  f Ant colony system (Zecchin et al. 2007). 
g Infeasible by EPANET2 (Zecchin et al., 2005). 

Table 4. Comparison of performance of AS, ACS, ASelite, ASrank, MMAS, and other 
algorithms from the literature applied to the Hanoi Problem. Results for AS, ASelite, ASrank, 
and MMAS are based on 20 runs. NFS means no feasible solution was found, NA means 
that the information was not available 

Plots of the iteration best-costs fmin(t), the mean-colony-distance dΣ(t), and the searching 
phases and search-time statistics for the algorithms applied to the HP are given in Figure 
6(a)-(c). Vastly different behaviours were observed for the HP in comparison to the other 
case studies, but the three phases of searching are still distinct. A marked difference though 
is the relative lengths of the phase-I searching, (AS, ASelite, and ASrank all have a far longer 
phase-I search than MMAS) and the distinct hump in the phase-II convergence of MMAS.  
The differences in the trends of fmin and dΣ for this case study can be explained by the small 
feasible  region.  The  maximum  cost  of  a  feasible  solution  for  the HP, which is also the 
maximum network cost (for which the penalty cost PC from (15) is zero), is 
C(Ωmax) = $M 10.96. Therefore, any solutions with costs higher than this are infeasible. With 
this in mind, the appearance of the data points of fmin in Figure 6(a) can be interpreted as the 
iteration times at which each algorithm first found feasible solutions. This is why no plot of 
fmin for AS is seen in Figure 6(a), as AS found no feasible solutions for the HP. 
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Figure 6.  Plots of (a) the minimum cost ($M) found in each iteration fmin(t), (b) the mean 
colony distance dΣ(t), and (c) run-time statistics for AS, ASelite, ASrank, and MMAS applied to 
the  Hanoi Problem. Plots (a) and (b) are averaged from 20 runs. Plot (c) depicts the three 
convergence phases: phase-I (dark grey); phase-II (light grey); phase-III (remaining white 
space). The line graphs overlaying the bar charts in (c) indicate the search-time statistics 
(based on 20 runs) with the dot indicating the mean search-time, and the left and right 
arrows indicating the mean minus and plus a standard deviation, respectively 

This entry into the feasible region for ASelite, ASrank and MMAS occurred well into the 
phase-II search (for MMAS, it is seen to coincide with the hump in the phase-II 
convergence). This means that the phase-I search was entirely within the infeasible region, 
and furthermore, it took the algorithms some time to effectively use the information in the 
infeasible region before they could begin the phase-II convergence to guide the search into 
the feasible region. Interestingly, only the algorithms that contain exploitive mechanisms 
were able to find the feasible region. 
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Considering the search-time statistics in Figure 6(c), it is seen that ASelite and ASrank found their 
best-costs towards the end of the phase-II search, with ASrank consistently finding higher 
quality solutions than ASelite. For MMAS however, the best-cost was found well into the phase-
III search, again illustrating the effectiveness of MMAS’s confined phase-III searching. 

Best-cost ($M) (% deviation from optimum) 
Algorithm 

Minimum Mean Maximum 

Mean search-time 
(evaluation no.) 

AS 80.855 (4.63) 83.572 (8.15) 85.267 (10.34) 131,769 

ASelite 77.922 (0.84) 79.806 (3.28) 81.986  (6.10)   90,404 

ASrank 77.434 (0.21) 78.492 (1.58) 79.863  (3.35)   72,276 

MMAS 77.275 (0.00) 78.213 (1.21) 79.353  (2.69) 238,264 

ASi-besta 77.275 (0.00) 78.302 (1.33) 79.922  (3.43)    75,760 

ACSb 77.275 (0.00) 80.586 (4.28) 86.682 (12.17) 471,977 
a An iteration-best pheromone updating version of AS (Zecchin et al. 2005);  b The ACO algorithm ant 
colony system (Zecchin et al. 2007). 

Table 5. Comparison of performance of AS, ASelite, ASrank, MMAS, and other algorithms 
from the literature applied to the Doubled New York Tunnels Problem. Results for AS, 
ASelite, ASrank, and MMAS are based on 20 runs 

6.4 Case Study 4: Doubled New York Tunnels Problem 

6.4.1 Preliminaries 
The Doubled New York Tunnels Problem (2-NYTP), first studied in Zecchin et al. (2005), 
consists of two NYTP networks connected via the single reservoir at node 1 in Figure 3. The 
link and node details are as for the NYTP. This problem has a search space size of 3.741 x 
1050 and is the largest case study considered in this chapter.  

6.4.2 Results 
Based on the heuristics given in Table 1, {τ0, m} = {200, 170}, and from a preliminary analysis, 
Imax = 3,000, therefore, a single run for the 2-NYTP consisted of 510,000 function evaluations. 
The range of parameters tested was: σ ∈ [1, 160] for ASelite; σ ∈ [2, 160] for ASrank; for 
MMAS, {Pbest, δ}∈ [1 x 10-6, 0.99] x [0, 0.99].  
ASelite achieved a less than 1% variation in the performance for 1 ≤ σ ≤ 5, with the solution 
quality deteriorating for higher values of σ. ASrank’s performance varied less than 5% for the 
entire parameter range of σ, with the best values occurring for 6 ≤ σ ≤ 10. For MMAS, the 
performance varied less than 1% for 0.0005 ≤ Pbest ≤ 0.5 and δ  ≤ 0.0001, with the solution 
quality degrading for parameter values outside these ranges. The selected parameter values 
were: σ = 3 for ASelite; σ = 8 for ASrank; {Pbest, δ} = {0.001, 0} for MMAS. 
Table 5 shows a comparison of the performance of the ACO algorithms considered for the 
2-NYTP with that obtained using other algorithms from the literature. A detailed statistical 
analysis of these algorithms was given in Zecchin et al. (2007), but as a summary, ASrank and 
MMAS performed consistently well (the former with extremely computationally efficient 
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Figure 6.  Plots of (a) the minimum cost ($M) found in each iteration fmin(t), (b) the mean 
colony distance dΣ(t), and (c) run-time statistics for AS, ASelite, ASrank, and MMAS applied to 
the  Hanoi Problem. Plots (a) and (b) are averaged from 20 runs. Plot (c) depicts the three 
convergence phases: phase-I (dark grey); phase-II (light grey); phase-III (remaining white 
space). The line graphs overlaying the bar charts in (c) indicate the search-time statistics 
(based on 20 runs) with the dot indicating the mean search-time, and the left and right 
arrows indicating the mean minus and plus a standard deviation, respectively 

This entry into the feasible region for ASelite, ASrank and MMAS occurred well into the 
phase-II search (for MMAS, it is seen to coincide with the hump in the phase-II 
convergence). This means that the phase-I search was entirely within the infeasible region, 
and furthermore, it took the algorithms some time to effectively use the information in the 
infeasible region before they could begin the phase-II convergence to guide the search into 
the feasible region. Interestingly, only the algorithms that contain exploitive mechanisms 
were able to find the feasible region. 
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Considering the search-time statistics in Figure 6(c), it is seen that ASelite and ASrank found their 
best-costs towards the end of the phase-II search, with ASrank consistently finding higher 
quality solutions than ASelite. For MMAS however, the best-cost was found well into the phase-
III search, again illustrating the effectiveness of MMAS’s confined phase-III searching. 

Best-cost ($M) (% deviation from optimum) 
Algorithm 

Minimum Mean Maximum 

Mean search-time 
(evaluation no.) 

AS 80.855 (4.63) 83.572 (8.15) 85.267 (10.34) 131,769 

ASelite 77.922 (0.84) 79.806 (3.28) 81.986  (6.10)   90,404 

ASrank 77.434 (0.21) 78.492 (1.58) 79.863  (3.35)   72,276 

MMAS 77.275 (0.00) 78.213 (1.21) 79.353  (2.69) 238,264 

ASi-besta 77.275 (0.00) 78.302 (1.33) 79.922  (3.43)    75,760 

ACSb 77.275 (0.00) 80.586 (4.28) 86.682 (12.17) 471,977 
a An iteration-best pheromone updating version of AS (Zecchin et al. 2005);  b The ACO algorithm ant 
colony system (Zecchin et al. 2007). 

Table 5. Comparison of performance of AS, ASelite, ASrank, MMAS, and other algorithms 
from the literature applied to the Doubled New York Tunnels Problem. Results for AS, 
ASelite, ASrank, and MMAS are based on 20 runs 

6.4 Case Study 4: Doubled New York Tunnels Problem 

6.4.1 Preliminaries 
The Doubled New York Tunnels Problem (2-NYTP), first studied in Zecchin et al. (2005), 
consists of two NYTP networks connected via the single reservoir at node 1 in Figure 3. The 
link and node details are as for the NYTP. This problem has a search space size of 3.741 x 
1050 and is the largest case study considered in this chapter.  

6.4.2 Results 
Based on the heuristics given in Table 1, {τ0, m} = {200, 170}, and from a preliminary analysis, 
Imax = 3,000, therefore, a single run for the 2-NYTP consisted of 510,000 function evaluations. 
The range of parameters tested was: σ ∈ [1, 160] for ASelite; σ ∈ [2, 160] for ASrank; for 
MMAS, {Pbest, δ}∈ [1 x 10-6, 0.99] x [0, 0.99].  
ASelite achieved a less than 1% variation in the performance for 1 ≤ σ ≤ 5, with the solution 
quality deteriorating for higher values of σ. ASrank’s performance varied less than 5% for the 
entire parameter range of σ, with the best values occurring for 6 ≤ σ ≤ 10. For MMAS, the 
performance varied less than 1% for 0.0005 ≤ Pbest ≤ 0.5 and δ  ≤ 0.0001, with the solution 
quality degrading for parameter values outside these ranges. The selected parameter values 
were: σ = 3 for ASelite; σ = 8 for ASrank; {Pbest, δ} = {0.001, 0} for MMAS. 
Table 5 shows a comparison of the performance of the ACO algorithms considered for the 
2-NYTP with that obtained using other algorithms from the literature. A detailed statistical 
analysis of these algorithms was given in Zecchin et al. (2007), but as a summary, ASrank and 
MMAS performed consistently well (the former with extremely computationally efficient 
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Figure 7.  Plots of (a) the minimum cost ($M) found in each iteration fmin(t), (b) the mean 
colony distance dΣ(t), and (c) run-time statistics for AS, ASelite, ASrank, and MMAS applied to 
the Doubled  New York Tunnels Problem. Plots (a) and (b) are averaged from 20 runs. Plot 
(c) depicts the three convergence phases: phase-I (dark grey); phase-II (light grey); phase-III 
(remaining white space). The line graphs overlaying the bar charts in (c) indicate the search-
time statistics (based on 20 runs) with the dot indicating the mean search-time, and the left 
and right arrows indicating the mean minus and plus a standard deviation, respectively 

Plots of the iteration best-costs fmin(t), the mean-colony-distance dΣ(t), and the searching phases 
and search-time statistics for the algorithms applied to the 2-NYTP are given in Figure 7(a)-(c). 
These figures show behaviour quite similar to that for the NYTP, just on a larger time scale. 
The main difference between the two is the relative size of dΣ in MMAS’s phase-III search with 
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respect to the other algorithms. In other words, MMAS still seems to be searching a relatively 
broad area of the solution space in phase-III. This explorative behaviour is seen as being 
effective, as the distribution of search-times in Figure 7(c) shows that, as with the other case 
studies, MMAS finds many of its best-cost solutions in this phase of the search. 

6.5 Discussion 
As in a previous study (Zecchin et al. 2007), the additional pheromone adjustment 
mechanisms in ASelite, ASrank and MMAS were shown to improve the performance of ACO, 
in comparison to AS, when applied to the WDSP. ASelite and ASrank were seen to be relatively 
fast algorithms, finding high quality solutions for all case studies except the difficult HP. 
MMAS was observed as a slower algorithm, but able to consistently find high quality 
solutions for all the case studies considered. Below is a discussion of the convergence 
behaviour of each algorithm as observed in the case studies considered. 
AS was observed to converge quickly initially (i.e. typically a short phase-I search), with an 
accompanied increase in solution quality. However, by the end of its (also relatively short) 
phase-II, AS’s search was still typically broad, and it did not seem to be able to focus the 
colony to find solutions that were as good as those found by the other algorithms. AS was 
also not able to find the feasible region at all for the HP. 
Despite ASelite’s emphasis on exploitation, its phase-II convergence was not consistently faster 
than that of AS, implying an initially more explorative phase-I. The exploitative nature of 
ASelite was seen at the end of phase-II, at which point ASelite converged to a comparatively 
small region of high quality solutions. ASelite tended to find its best-cost solutions towards the 
end of phase-II and at the beginning of phase-III. ASelite’s ability to find the feasible region for 
the HP can be directly attributed to the exploitive nature of its elitist ants, which effectively 
used the information in the infeasible region to guide the search into the feasible region. 
However, once in the feasible region, ASelite was not able to find high quality solutions. 
ASrank consistently converged faster than ASelite, and to a tighter searching region (lower dΣ), 
by the end of phase-II. ASrank had a typically lower, and less variable, search-time than the 
other algorithms, with best-cost solutions generally found towards the end of phase-II. 
Given its speed of convergence, and the high quality of the solutions found, ASrank’s 
pheromone updating scheme, although highly exploitative, is considered to be very 
effective. However, in situations, such as the small feasible region of the HP or the relatively 
large solution space of the 2-NYTP, ASrank’s inability to conduct an explorative phase-III 
search, means that it does not perform as well as MMAS for these case studies. 
MMAS typically had the longest phase-I search, which can be attributed to its exploration 
encouraging pheromone bounding and pheromone smoothing mechanisms. MMAS 
maintained a relatively broad search after its phase-II convergence, but unlike AS, it was still 
able to find high quality solutions. This aspect of relatively broad phase-III searching, coupled 
with high solution quality, can be attributed to MMAS’s effective management of exploitation, 
by updating only the iteration best path, and exploration, by lower bounding all paths’ 
pheromone values. As such, MMAS tended to find its best cost solutions well into phase-III.  
This lower bounding of the pheromone values also explains MMAS’s ability to effectively 
explore the feasible region of the HP. As the discovery of the higher quality solutions in the 
feasible region raised the lower pheromone bound once MMAS entered the feasible region, 
the pheromone values were all partially replenished, with the information concerning the 
feasible region being retained. From this perspective, the hump observed in Figure 6(b) can 
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Figure 7.  Plots of (a) the minimum cost ($M) found in each iteration fmin(t), (b) the mean 
colony distance dΣ(t), and (c) run-time statistics for AS, ASelite, ASrank, and MMAS applied to 
the Doubled  New York Tunnels Problem. Plots (a) and (b) are averaged from 20 runs. Plot 
(c) depicts the three convergence phases: phase-I (dark grey); phase-II (light grey); phase-III 
(remaining white space). The line graphs overlaying the bar charts in (c) indicate the search-
time statistics (based on 20 runs) with the dot indicating the mean search-time, and the left 
and right arrows indicating the mean minus and plus a standard deviation, respectively 

Plots of the iteration best-costs fmin(t), the mean-colony-distance dΣ(t), and the searching phases 
and search-time statistics for the algorithms applied to the 2-NYTP are given in Figure 7(a)-(c). 
These figures show behaviour quite similar to that for the NYTP, just on a larger time scale. 
The main difference between the two is the relative size of dΣ in MMAS’s phase-III search with 
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respect to the other algorithms. In other words, MMAS still seems to be searching a relatively 
broad area of the solution space in phase-III. This explorative behaviour is seen as being 
effective, as the distribution of search-times in Figure 7(c) shows that, as with the other case 
studies, MMAS finds many of its best-cost solutions in this phase of the search. 

6.5 Discussion 
As in a previous study (Zecchin et al. 2007), the additional pheromone adjustment 
mechanisms in ASelite, ASrank and MMAS were shown to improve the performance of ACO, 
in comparison to AS, when applied to the WDSP. ASelite and ASrank were seen to be relatively 
fast algorithms, finding high quality solutions for all case studies except the difficult HP. 
MMAS was observed as a slower algorithm, but able to consistently find high quality 
solutions for all the case studies considered. Below is a discussion of the convergence 
behaviour of each algorithm as observed in the case studies considered. 
AS was observed to converge quickly initially (i.e. typically a short phase-I search), with an 
accompanied increase in solution quality. However, by the end of its (also relatively short) 
phase-II, AS’s search was still typically broad, and it did not seem to be able to focus the 
colony to find solutions that were as good as those found by the other algorithms. AS was 
also not able to find the feasible region at all for the HP. 
Despite ASelite’s emphasis on exploitation, its phase-II convergence was not consistently faster 
than that of AS, implying an initially more explorative phase-I. The exploitative nature of 
ASelite was seen at the end of phase-II, at which point ASelite converged to a comparatively 
small region of high quality solutions. ASelite tended to find its best-cost solutions towards the 
end of phase-II and at the beginning of phase-III. ASelite’s ability to find the feasible region for 
the HP can be directly attributed to the exploitive nature of its elitist ants, which effectively 
used the information in the infeasible region to guide the search into the feasible region. 
However, once in the feasible region, ASelite was not able to find high quality solutions. 
ASrank consistently converged faster than ASelite, and to a tighter searching region (lower dΣ), 
by the end of phase-II. ASrank had a typically lower, and less variable, search-time than the 
other algorithms, with best-cost solutions generally found towards the end of phase-II. 
Given its speed of convergence, and the high quality of the solutions found, ASrank’s 
pheromone updating scheme, although highly exploitative, is considered to be very 
effective. However, in situations, such as the small feasible region of the HP or the relatively 
large solution space of the 2-NYTP, ASrank’s inability to conduct an explorative phase-III 
search, means that it does not perform as well as MMAS for these case studies. 
MMAS typically had the longest phase-I search, which can be attributed to its exploration 
encouraging pheromone bounding and pheromone smoothing mechanisms. MMAS 
maintained a relatively broad search after its phase-II convergence, but unlike AS, it was still 
able to find high quality solutions. This aspect of relatively broad phase-III searching, coupled 
with high solution quality, can be attributed to MMAS’s effective management of exploitation, 
by updating only the iteration best path, and exploration, by lower bounding all paths’ 
pheromone values. As such, MMAS tended to find its best cost solutions well into phase-III.  
This lower bounding of the pheromone values also explains MMAS’s ability to effectively 
explore the feasible region of the HP. As the discovery of the higher quality solutions in the 
feasible region raised the lower pheromone bound once MMAS entered the feasible region, 
the pheromone values were all partially replenished, with the information concerning the 
feasible region being retained. From this perspective, the hump observed in Figure 6(b) can 
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be considered as another phase-I period for the MMAS search as it entered the feasible 
region. That is, due to the replenishing nature of the lower pheromone bound, the searching 
phases seemed to start again once the feasible region was found. 

7. Conclusions 
To gain a more complete understanding of ACO algorithms, it is important to not only 
consider their performance with respect to their solution quality and computational 
efficiency, but also the algorithms’ searching behaviour. In this chapter, two statistics of 
searching behaviour have been considered, (i) the minimum cost found within an iteration, 
which is an indication of search quality, and (ii) the mean colony distance, a topological 
measure that describes the spread of solutions through the solution space and thus provides 
an indication of the degree of convergence of an algorithm. 
Four ACO algorithms were considered in this chapter, namely, Ant System (AS), Elitist Ant 
System (ASelite), Elitist-Rank Ant System (ASrank), and Max-Min Ant System (MMAS).  The 
focus of this chapter was a case study based computational analysis of the convergence 
behaviour of these four algorithms. The problem type considered was the water distribution 
system problem, a classical combinatorial optimisation problem in the field of civil 
engineering.  The case studies considered were the Two-Reservoir Problem (TRP), the New 
York Tunnels Problem (NYTP), the Hanoi Problem (HP), and the Doubled New York 
Tunnels Problem (2-NYTP). 
From studying the convergence behaviour as exhibited by the mean colony distance, three 
distinct searching phases were observed for all algorithms. Phase-I was observed to be a 
broad searching phase in which only low quality solutions were found. In phase-II, a rapid 
convergence was observed, where increasingly good solutions were found and the colonies 
search was guided into smaller and higher quality regions of the solution space. Phase-III 
consisted of compact and dense searching in the high quality regions discovered in phase-II, 
where the convergence rate was much reduced. 
Each algorithm exhibited different behaviour in each phase. These differences were 
interpreted from the perspective of the algorithms’ formulations. For example, the 
exploitative algorithms, ASelite and ASrank experienced an extremely short phase-I, followed 
by a rapid convergence in phase-II. In contrast, the exploration encouraging MMAS had a 
significantly longer phase-I search and tended to converge to a much broader region than 
the other algorithms at the end of phase-II. AS tended to converge quickly initially, but its 
lack of exploitative mechanisms meant that, even by the end of phase-II, it was not able to 
focus its search in the high quality regions of the search space. 
Combining this qualitative three phase description with the search-time statistics (the time 
in the search at which the algorithms found their best-cost) leads to a deeper understanding  
of the productive stages in the algorithms’ search. In almost all instances, ASrank’s 
search-time occurred near the end of phase-II. What this means is that the phase-III 
searching for ASrank was seen to be unproductive. ASelite performed similarly to ASrank, but 
with slightly longer search-times. The search-times for the explorative MMAS were typically 
much longer than those of the others algorithms, and the best-cost solutions tended to occur 
in the phase-III searching stage. The implications of this are that, even though MMAS 
maintained a relatively broad phase-III search, this longer term exploration was fruitful as 
solutions of higher quality were found. 
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This chapter illustrates how relatively simple run-time statistics can yield significant insight 
into the convergence behaviour of ACO algorithms. The type of analysis presented in this 
chapter shows potential to be useful for the purpose of both research and application. In terms 
of research (and algorithmic development), considering run-time behavioural statistics could 
aid in understanding the behavioural impacts of algorithmic mechanisms, and also provide a 
more informative comparison of different algorithms. In terms of application, run-time 
statistics could aid in understanding the influence of parameter variations, and facilitate the 
determination of appropriate parameter values, both online and offline.  
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be considered as another phase-I period for the MMAS search as it entered the feasible 
region. That is, due to the replenishing nature of the lower pheromone bound, the searching 
phases seemed to start again once the feasible region was found. 

7. Conclusions 
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behaviour of these four algorithms. The problem type considered was the water distribution 
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This chapter illustrates how relatively simple run-time statistics can yield significant insight 
into the convergence behaviour of ACO algorithms. The type of analysis presented in this 
chapter shows potential to be useful for the purpose of both research and application. In terms 
of research (and algorithmic development), considering run-time behavioural statistics could 
aid in understanding the behavioural impacts of algorithmic mechanisms, and also provide a 
more informative comparison of different algorithms. In terms of application, run-time 
statistics could aid in understanding the influence of parameter variations, and facilitate the 
determination of appropriate parameter values, both online and offline.  
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1. Introduction  
In the era globalisation the emerging technologies are governing the manufacturing 
industries to a multifaceted state. The escalating complexity has demanded researchers to 
find the possible ways of easing the solution of the problems. This has motivated the 
researchers to grasp ideas from the nature and implant it in the engineering sciences. This 
way of thinking led to emergence of many biologically inspired algorithms that have proven 
to be efficient in handling the computationally complex problems with great ease and 
competence such as Genetic Algorithm (GA), Ant Colony Optimization (ACO), Particle 
Swarm Optimization (PSO), etc. Motivated by the capability of the biologically inspired 
algorithms the present research proposes a new Cooperative Multiple Particle Swarm 
Optimization (CMPSO) algorithm. The idea behind this proposed CMPSO algorithm came 
from the limitations associated with the existing PSO algorithm under the discussed 
problem scenario. The proposed CMPSO algorithm has been applied in multi-plant supply 
chain environment which has proven to be NP hard problem. To prove the efficacy and 
robustness of the proposed CMPSO algorithm it has been compared with the existing 
evolutionary algorithms (EAs). Furthermore the authors have also shown the statistical 
validation of CMPSO algorithm. 
The changing scenario of the global business urges efficient ways of performing various 
tasks to sustain the impact of market uncertainty. Especially manufacturing industries are 
looking for the competent ways of managing their processes. Supply chain being the 
backbone of any industrial organization demands its efficient management for the shake of 
profitability, and customer satisfaction point of view. Meeting delivery dates is an 
increasingly important objective in today’s competitive market, because delivery delays 
often result in a considerable loss of goodwill and eventually market share. Realizing this 
important contribution of the effective supply chain management, this research aims to 
optimize the efficiency of the supply chain by handling the complex task of planning and 
scheduling. In the context of supply chain management the integrated process planning and 
scheduling has a key role to play. In order to satisfy timeliness and cost criteria imposed by 
market competition, generally manufacturing industries are opting for Multi-Plant Supply 
Chain (MPSC). MPSC can be seen as a part of supply chain in which coordination, 
cooperation, and synchronization actions are deliberately strong and binding, so as to 
guarantee the accomplishment of the predefined objectives. More specifically, the MPSC 
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represents an extended integration ahead of a single manufacturing site by means of strong 
distribution management capability; electronic data interchange, and adequately 
coordinated multiple plant management to ensure the real motives of Computer Integrated 
Manufacturing (CIM). The intricacy of the problem under such conditions increases 
exponentially with the increase in number of operations, plants, and customers. The 
increasing applicability and popularity of the biologically inspired tools, in particular, the 
growing interest among the researchers in PSO techniques motivated us to use it in our 
present problem scenario. However, PSO in the original form could not be applied under 
multiple dimensions problem scenario. This limitation prompted us to propose a new 
artificial intelligence tool known as Cooperative Multiple Particle Swarm Optimization 
(CMPSO) algorithm which can solve such computationally intricate problem efficiently. 
CMPSO algorithm takes its governing traits from the PSO. The proposed algorithm is 
marked by the cooperation among ‘sister swarms’ that makes it compatible to the problems 
pertaining to multiple dimensions. The limitation of restricted applicability to the multi-
dimensional problems has been the prime reason of thinking behind the cooperative PSO. 
The objective of the proposed research aims to generate an efficient operating sequence 
which would explore maximum utilization of the manufacturing resources simultaneously 
meeting the customer’s due date. To ease the solution strategy the underlying problem has 
been modelled as a travelling salesman problem (TSP). The traditional PSO uses a random 
number to determine the position and velocity of the particle during fitness evaluation. In 
the proposed research the random number has been replaced by the chaotic function 
because of the ergodic and stochastic properties of the chaotic systems. The idea behind 
this approach was to overcome the demerits associated with the random number 
generators such as requirement of more number of generations to converge towards an 
optimal/near optimal solution, tendency to generate the higher-order part more 
randomly than their lower-order counterpart etc. The chaotic sequences have been 
successfully applied in the area of natural phenomena modelling, neural network, DNA 
computing procedures etc. Different researchers use four chaotic sequences (Logistic Map, 
Tent Map, Sinusoidal Iterator, and Gauss Map) to generate optimal/near optimal solution 
preventing the premature convergence. Each of these functions are also associated with 
some merits and demerits, hence in this present research a hybrid chaotic sequence has 
also been proposed to overcome these demerits. The proposed research aims towards 
exploring the applicability of PSO technique under diverse situations by inheriting some 
new concepts. These hybrid PSO techniques (such as CMPSO) could be applied to 
efficiently solve number of computationally complex problems prevailing in 
manufacturing environment. 
The chapter is organized as follows. Section 2 of the chapter discusses the literature review 
and attempts to find the gap in the research work in the proposed filed. Section 3 along with 
some sub-sections gives a brief idea of the problem scenario, and its mathematical 
formulation. Section 4 gives a background of the PSO algorithm further discussing the 
proposed CMPSO in detailed i.e. explaining the steps of the algorithm as well as about the 
chaotic functions. Section 5 explains a case study. Section 6 discusses the outcomes of the 
proposed CMPSO algorithm and shows a comparative performance measurement with 
other existing evolutionary algorithms. And finally, section 7 concludes the chapter with 
some future research directions.  
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2. Literature Review 
In recent years, the changing business scenarios and escalating complexity especially in 
manufacturing plants have shifted the inclination of the researchers towards issues that 
have great impact on overall performance of the plants. The supply chain being one of the 
important aspects of profitability and performance of any plant have gained considerable 
attention these days.  In the past the attention on the operational issues and the supply chain 
issues were dealt separately. Even process planning and the scheduling part were 
independent entities to be handled. However, increased competence & complexity 
prompted to integrate them together which led to the rigorous researches carried out to 
integrate the process planning and scheduling problems.  Scheduling issues have been 
discussed by many researchers. Hankins et al. (1984) emphasized the advantages of 
alternative machines to increase the productivity of a machine shop, it also shows how 
mathematical programming techniques tends to become unaffordable when jobs have to be 
assigned and scheduled on a large set of alternative machines. To deal with such 
complexity, Khoshnevis and Chen (1991) suggested the use of various dispatching rules, 
which however suffers from context-dependence and performance unpredictability issues. 
Similar strategies are also suggested by Brandimarte and Calderini (1995) and Lin (2001). 
The challenges associated to the computational complexity of integrated optimization 
problems in various types of manufacturing systems have stimulated many researchers to 
apply advanced approaches based on evolutionary computation (Dimopoulos and  Zalzala, 
2000) and related forms of meta-heuristics. Palmer (1996) applied Simulated Annealing 
based random search optimization technique to produce an integrated process plan and 
schedule for a manufacturing unit. Tiwari and Vidyarthi (2000) recognized the machine 
loading problem as one of the important planning problem in FMS. They utilized Genetic 
Algorithm based random search heuristic to determine the part type sequence and 
operation machine allocations to maximize the throughput and minimize the system 
unbalance. Swarnkar and Tiwari (2004) applied a hybrid Tabu Simulated Annealing based 
approach to model the machine loading in flexible manufacturing system (FMS). Similarly 
Tabu and constructive heuristic-based approaches have been proposed by Kolisch, and Hess 
(2000), Tan and Khoshnevis (2004), and Kolisch (2000). Hybrid approaches combining 
evolutionary computation with other tools have also gained increasing attention. Rai et al. 
(2002) solved a machine-tool selection and operation allocation problem in FMS based on a 
fuzzy goal programming model using a GA-based approach. Chiu and Lin (2004) 
introduced an approach based on Artificial Neural Networks (ANN) to achieve complete 
order fulfillment and increased resource utilization in a collaborative supply chain planning 
problem. Naso et al. (2007) have proposed a hybrid meta-heuristic in which Genetic 
Algorithm has been used as master search algorithm that guides and modifies the 
operations of subordinate algorithm (a set of very fast constructive heuristics) to achieve 
efficient solutions in acceptable search time for an integrated production and distribution 
problem with strict time delivery constraints. Chang and Lee (2004) provided a detailed 
discussion of a two-stage (production and distribution) case in which the case of one 
production center and one vehicle with makespan minimization is shown to be a NP-hard 
problem. Additionally, the authors have proposed number of heuristics with guaranteed 
worst case performances. Garcia et al. (2002) proposes GA based approach for the 
coordination between production and transportation operations in multi- plant supply chain 
environment.  
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The literature review gives a clear indication of the ever growing interest in problems 
related to distributed production planning and scheduling. It may be worth mentioning that 
while the broad umbrella of distributed scheduling also covers research studies on 
distributed optimization e.g. Nishi & Konishi (2005), this paper is focused on multi-plant 
(hence distributed) environments governed by a centralized decision system. This problem 
is also referred to as distributed scheduling (Chan et al., 2005) with reference to the fact that 
the assignment of jobs to alternative suitable factories must be solved before (or jointly with) 
the overall production scheduling. Integrated process planning and scheduling problem is a 
NP hard problem. In order to solve such problems in past various types of evolutionary 
algorithms (EAs), heuristics and Meta heuristics have been proposed. However, all those 
heuristics were not able to completely solve the problem efficiently in real time. In the 
present research integrated process planning and scheduling problem under MPSC 
environment has been considered which is more complex than previous scenarios. Recently 
Particle Swarm Optimization (PSO) algorithm has appeared to be one of the powerful tools 
to solve such complex problems, which could be envisaged by its implementation in health 
sectors, manufacturing sectors, etc.  
PSO being one of the emerging computational techniques for optimality has received a lot of 
attention in recent years. This could be visualized both in terms of number of research 
output produced, as well as conferences organized on this topic in past few years, such as 
Congress on Evolutionary Computation (CEC) and Genetic and Evolutionary Computation 
Conference (GECCO), (Hu et al. 2004). The successful applicability of PSO ranges in a broad 
domain of research areas such as in artificial neural network training (Eberhart and Shi 
1998b, Messerschmidt and Engelbrecht 2004), the optimal power flow (OPF) problem 
(Abido 2002), the task assignment problem (Salman et al. 2002), the unit commitment (UC) 
problem (Ting et al. 2003), quantitative structure–activity relationship (QSAR) model 
construction (Cedeno and Agrafiotis 2003), multiple sequence alignment (MSA) (Rasmussen 
and Krink 2004), multi-modal biomedical image registration (Wachowiak et al. 2004), multi-
objective optimization (Coello et al 2004), electromagnetic optimizations (Robinson and 
Rahmat-Samii 2003, Boeringer and Werner 2004), blind source separation (BBS) (Gao and 
Xie 2004), protein motif discovery (Chang et al. 2004), etc.  
The accomplishment of the PSO technique lies in its ability to produce competitive or even 
better results in a faster way, compared to other heuristic methods such as GA. The general 
applicable areas where the other evolutionary computation techniques are practiced are the 
good application areas for PSO (Eberhart and Shi 2004).  PSO and GA have many 
similarities, such as both the algorithm starts with the random population generation and 
both of them have fitness values to evaluate the population. Also in both cases the updation 
process and optimality search procedure is based on the random techniques. The difference 
lies in the fact that PSO does not have genetic operators such as crossover and mutation. In 
PSO particles update themselves with the internal velocity and have memory of the 
previous best solution which is an important aspect of the algorithm. Several key issues 
related to PSO and GA has been pointed out by Rahmat-Samii (2003). The prime advantage 
of the PSO over the GA is its algorithmic simplicity. Both GA and PSO have several 
numerical parameters that need to be carefully selected. However, the robustness to control 
parameters makes their selection even easier for PSO (Trelea 2003). Another advantage of 
PSO over GA is the ability to control convergence. It has been shown that the decrease of 
inertial weight dramatically increases the swarm’s convergence. Stagnation may occur in 
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GA however, in case of PSO this effect can be controlled or prevented easily, for example, by 
decreasing the inertial weight during the evolution process (Eberhart and Shi 1998a, Clerc 
and Kennedy 2002). The capability of PSO to converge towards optimality or near 
optimality faster makes it a preferable option as compared to GA. 
However, certain limitations are as applicable to PSO, as in case of other evolutionary 
algorithms. To overcome these limitations many researchers have proposed numerous 
variants of PSO. Angeline (1998) in his study showed that though PSO converges to 
reasonable quality solutions much faster than other evolutionary algorithms, the quality of 
the solutions does not improves with the increased number of generations. Xie et al. (2002) 
proposed an opening Dissipative System (DPSO) to prevent the stagnation in PSO by 
introducing negative entropy through additional chaos for particles. Overshooting in PSO is 
an important situation that is often used to occur, which causes premature convergence and 
is essential for the performance of PSO. The overshooting problem affects the velocity 
update mechanism leading the particles to the wrong or opposite directions against the 
direction of the global optimum. As a consequence, the pace of convergence of the whole 
swarm to the global optimum slows down. In order to overcome the this Liu et al. (2005) 
proposed a novel Memetic-Particle Swarm Optimization that integrates the standard PSO 
with the Solis and Wets local search strategy to avoid the overshooting problem, and that is 
based on the recent probability of success to efficiently generate a new candidate solution 
around the current particle.  
The present work considers the MPSC environment where it is very difficult to apply 
normal PSO because of its inability to handle multi-dimensional problems. The shifting 
trend of the industries towards the new supply chain environment prompts to develop an 
evolutionary algorithm that could be efficiently employed to solve the complex problems. 
Realizing the applicability and efficacy of PSO in solving the complex operational 
sequencing problems prompted us to use as a powerful tool in the present research. Hence, 
to overcome the difficulty/limitation of applicability of normal PSO in multi-supply chain 
scenario the present research attempts to propose a new type of PSO termed as Cooperative 
Multi plant particle Swarm Optimization (CMPSO) algorithm that could be successfully 
applied in case of Multi-plant supply chain problem. In order to solve Multi-dimensional 
problem scenario in the proposed CMPSO algorithm the sister swarms explores the search 
space to reach towards optimality/sub-optimal by cooperating each other. 

3. Problem Formulation 
Globalization, increased competence, and continuously changing business environment 
have driven the manufacturing industries to a new era of enhanced complexity and 
uncertainty.  These changes have great impact on the performance of the manufacturing 
industries. The manufacturing entities are suffering from operational difficulties, such as 
due to economies of scale of production and long operational time preparation; it has been 
quite difficult for them to prepare the production schedule in accordance with their due 
dates. A schematic representation of integrated process planning and scheduling model 
describing its various components in a multi plant supply chain environment has been 
shown in Figure 1. The process planning module is responsible for the generation of an 
effective process plan, incorporating the features of part design specification, available 
machine characteristics and their mutual relationship. The scheduling module is responsible 
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for allocating the available resources in the shop floor as well as overall management of the 
flow of production order and their attendant information flows (Huang et al., 1995). 

 
Figure 1. General architecture of integrated process planning   and scheduling model 

This model consists of four layers: (a) Supply (b) Fabrication (c) Assembly and (d) 
Customers, respectively. Out of these four layers, fabrication layer and assembly layers can 
be treated as directly linked to the production process which needs to be optimized. Hence, 
these two layers play a crucial role in the MPSC optimization. In general, MPSC industries 
posses the property of having multiple orders with different due dates. Under such scenario 
each order may have several parts with dissimilar array of operations. Some of these 
operations may have precedence constraints relation, whilst some others might be iterative 
in nature. These variations typically make the nature of Integrated Process Planning and 
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Scheduling a NP hard problem. The proper representation of such types of problems were 
proposed by, Finke et al.(1984) who modeled such problem state as a Traveling Salesman 
Problem (TSP) model with precedence relationships [Weiqi et al. (2002), Pepper et al. (2002)].  
The travel distance between the two nodes corresponds to the transition costs between the 
operations. The selection of machine for each operation is not uncomplicated, because there 
may be numerous alternative machines for each operation. A classic selection criterion 
considers operational time, set up time and transportation time as decision attributes. 
Moreover, each TSP determines the process planning and scheduling for each part type. 
Accordingly, for multiple part type problems, multiple TSP has been considered. The 
fundamental characteristic for these types of systems are constituted by lot sizes (Nasr and 
Elsayed, 1990). The TSP model is based on some rules which involve transferring of the 
parts. In TSP environment if the transfer batch is equal to the process batch, then the part is 
transferred to subsequent stage after the completion of the entire batch processing, whereas 
if transferred batch differs from the process batch, then the part is immediately moved to the 
subsequent operation after the completion of current operation. 

 
Figure 2.  Schematic structure of flexible manufacturing processes 

Two-commodity network flow model can be used to generate a feasible operation sequence 
with precedence constraints criteria in TSP problems (Kusiak and Finke, 1987). The edges of 
the flow network symbolize the precedence constraints. Let q and r be two distinct 
commodities in the network with k nodes. The selected starting node q provides k-1 units to 
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the commodity q whereas, on the rest of the nodes, q is used by one unit each. On the other 
hand, r represents the commodity that utilizes k-1 units at the starting node and is supplied 
by one unit at the other nodes. Such network flows of the commodities are characterized by 
two properties, first the sum of the commodities q and r in any feasible tour should be equal 
to k-1 (Moon et al., 2002). Also, as the tour proceeds, the quantity of commodity q or r out 
bonded from a node decreases. Precedence relationships of constrained TSP are modeled 
using these characteristics. 

3.1 Operation Sequence  
In this research, we develop a CMPSO algorithm with amalgamated features of directed 
graph and Topological Sort (TS) techniques to generate an optimal/nearly-optimal feasible 
solution. In a directed graph, vertices represent operations and edges represent precedence 
relations between different operations. The directed edge of the directed graph can be 
represented by  emi , emj; where vertex emi must be completed before the vertex emj. The 
search algorithm is executed first to assign a fixed priority number corresponding to each 
vertex of the directed graph. Thereafter, TS technique is applied to generate a unique 
feasible operation sequence according to the assigned priority numbers. Directed graph of a 
manufacturing process carried out in the two plants is illustrated in the Figure 3. 

 
Figure 3. Directed graph of a manufacturing process with precedence relationship 

The vertex e11 is selected as first operation because it has no precedence edge and has 
higher priority number as compared to vertex e12 and e13. Select vertex e11 as the first 
operation and remove the edges connecting to the vertex e11-e13. This procedure is repeated 
until all the vertices are selected. Finally, a feasible path {e11, e13, e21, e23, e22, e12,,e14, e15, 
e24, ,e26, e25 } is uniquely obtained. Therefore, operation sequence for each part types may 
be written as follows.  
Part1 = { e11,e13,e12,e14,e15}, Part2 = { e21,e23,e22,e24,e26 , e25}. 

3.2 Objective Function 
The main objective considered in the proposed research involves the generation of a feasible 
optimal/near optimal operational sequence with minimum tardiness. The solution 
generated by the proposed CMPSO algorithm is also subjected to satisfy all the constraints 
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and decision variables imposed by the considered manufacturing scenario. The 
mathematical formulations of the objective function including the various constraints, and 
decision variables have been explained below. The notations used in the equations have 
been explained in the Appendix A attached at the end of the chapter. 
Decision Variables: 
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and decision variables imposed by the considered manufacturing scenario. The 
mathematical formulations of the objective function including the various constraints, and 
decision variables have been explained below. The notations used in the equations have 
been explained in the Appendix A attached at the end of the chapter. 
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C2 Precedence constraints: 
Precedence relations between operations are feasible if the difference between sum of the 
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type p is greater then or equal to 1.  
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C3:  Sum of commodity constraints:  
For a feasible operation sequence sum of commodities q and r between the operation   
wpi and wpj   is equal to Jp-1.. 
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C4: Machine Constraints:  
This constraint implies that machine will start a new operation only after completing the 
previous operation. This constraint can be express as:   

 ( ) pjmijmpimhjm µγθξξ ≥−+− 1   (7) 
Where θ  is a very large positive number 
C5: Operational time constraints: 
The completion time of each operation should always be positive or zero.          

 0≥pimξ   (8) 

C6: Feasibility of tour constraints: 
 Operation sequence of the part type p is feasible if sum of commodities q and r is equal  to 
Jp-1.  
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Symbol  [ ]   represents the greatest integer function.   
The transition time from operation i performed on the machine m to operation j performed 
on the machine n of the part type p can be expressed as follows  

 { }pijpijpjnpimmnpijpimpimppij rt φδϕϕυϕµ ++= h   (11) 

 Total transition time for all the part types in 0-1 integer programming model is given by 
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For part type p tardiness of an order pΩ  is the amount of time by which the completion 
time of it exceeds from its due date. It can be express as  
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Total tardiness of all the part type of an order Ω  is 
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The overall objective of integrated process planning and scheduling is to minimize the total 
tardiness of all the part type of an order.  
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It is possible only if total transition time T for all the part type is minimum that is 

 
( )

ji

t
J

Minimize
P

p

J

j

I

i

M

m

N

n

r
pij

q
pijpij

p

p p

≠

+
−

∑ ∑ ∑ ∑ ∑
= = = = =1 1 1 1 1 1

1 ϕϕ
 (18) 

Where,   { }pijpijpjnpimmnpijpimpimppij rt φδϕϕυϕµ ++= h   (19) 

The next section gives an insight on the PSO algorithm further expalining the necessity to 
propose the CMPSO algorithm to find the optimal/sub-optimal solution of the 
abovementioned objective funtion.  The section also breifly explains the steps of the 
proposed algorithm, a hybrid chaotic sequencing, and a  case study.  

4. Particle Swarm Optimization (PSO) 
The inclination of the researchers towards the implementation of the biologically inspired 
algorithms in solving the engineering problems have led to the invention of many 
algorithms such as Genetic Algorithm, Ant colony optimization, Artificial Immune System 
based algorithms etc. Particle swarm optimization (PSO) is one of the biologically inspired 
evolutionary algorithms which drive the idea from the flocking of birds. Abundant 
examples could be extracted from the nature that demonstrates that social sharing of 
information among the individuals of a population may provide an evolutionary advantage. 
PSO was first proposed by Kennedy and Eberhart (1995) and it has been deserved 
considerable attention in recent years in the global optimization areas. PSO originally 
intends to graphically mimic the elegant way in which swarms find their food sources and 
save themselves from predators (Eberhart and Kennedy 1995). It is a population-based 
stochastic optimization paradigm, in which each individual termed as particle from the 
population of swarm changes their position with time and represent a potential solution. 
PSO in some ways resembles with the other existing Evolutionary Algorithms, such as 
Genetic Algorithm, but the difference lies in its definition in a social context rather than 
biological context. According to Eberhart and Shi (2001) PSO is based on simple concepts 
with the ease of implementation and computational efficacy.  
Particle Swarm Optimization (PSO) algorithm motivated by the flocking of the birds works 
on the social behavioral interaction among the particles in the swarm. It begins with the 
random initialization of a population of particles in the search space. These particles are 
considered to be in multidimensional space (D-dimensional) where each particle has a 
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intends to graphically mimic the elegant way in which swarms find their food sources and 
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stochastic optimization paradigm, in which each individual termed as particle from the 
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considered to be in multidimensional space (D-dimensional) where each particle has a 
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position and velocity. These two factors i.e. the position and velocity demonstrates the 
particles status in the search space. Hence in a PSO system, particles fly/move around in 
multi directions in the search space, and the position of each particle is guided accordingly 
by the memory of their own best position, as well as of a neighbouring particle. These 
particles communicate the best positions to each other and adjust their own position and 
velocity accordingly. Parsopoulos and Vrahatis (2002) proposed basically two main variants 
of the PSO algorithm: 
• Global neighhborhood, where best global position is communicated to all partilces and 

updated immeditely in the swarm 
• Local neighborhood, where each particle moves towards its best previous position and 

towards the best particle in its restricted neighborhood. 
In the proposed work the global variant has been adapted. The reason behind opting for the 
global neighborhood is due to the fact that local neighborhood even though allows better 
exploration of the search space and reduces the susceptibility of PSO to falling into local 
minima; it slows down the convergence speed. The position and velocity vectors of the ith 
particle can be represented as 

 xi = (xi1, xi2, . . . , xiD)  (20) 

 pi = (pi1, pi2, . . . , piD)  (21) 

The fittest particle among all the particles in the population is represented by  

 F = (f1, f2, fD)  (22) 

The velocity vector for the ith particle can be represented as 

 Vi = (vi1, vi2, …viD)  ( 23) 

 The updated velocity and position for the next fitness evaluation of each particle could be 
determined according to the following equations: 
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Here k is the iteration number, d = 1, 2. . . D; i = 1, 2. . . N, and N is the size of the population 
(swarm). c1 and c2 are two positive values called acceleration constants, R1( ) and R2( ) are 
two independent random numbers that uniformly distribute between 0 and 1 and are used 
to stochastically vary the relative pull of pi and f (Clerc andKennedy 2002). The introduction 
of such random elements into the optimization is intended to simulate the slightly 
unpredictable component of natural swarm behavior. ‘ω’ is the inertial weight introduced by 
Shi and Eberhart (1998b) in order to improve the performance of the particle swarm 
optimizer. 
The equation (24) contains the three terms on the right hand side in which the inertial effects 
of the movement is represented by the first term. The memory of the individual and whole 
is referred by second and third terms respectively. Basically, equation (24) is used to 
calculate the particle’s new velocity which depends on its preceding velocity and the 
distances of its present position from both its own best past position and the group’s best 
past position. All the other particles follow the best position found and moves closer to it, 
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exploring the region more thoroughly in the process.  According to Robinson and Rahmat-
Samii (2004) equation (24) is the central constituent of the entire optimization. The stochastic 
tendency to return towards particle’s preceding best position is represented by the second 
term of the equation (24). The third term in equation (24) is referred as social influence term. 
The variable F keeps moving towards the best solution i.e. optimal solution found by the 
neighbor particles in the search space. Particle farther from the global best is more strongly 
pulled from its location, and moves rapidly than a closer particle. The particles velocity 
comes to halt after it reaches the locations of best fitness. This is the point from where the 
particles are pulled back in the opposite direction. The performances of the individual 
particles are evaluated by a predefined fitness function dependent on the problem during 
the evolution of the swarm. In case of maximization of the fitness function Fitness (xi), the 
individual best position of each particle pi and the global best position f are updated after 
each iteration using the following two equations, respectively: 

 






≤

>
=

++

+++
+

)()(:

)()(:
11

111
1

k
i

k
i

k
i

k
i

k
i

k
ik

i
pFitxFitp

pFitxFitx
p  (26) 

 )(maxarg 11 ++ = k
i

k pFitF   (27) 

Where ‘Fit’ refers to the fitness value for the respective iteration. 

4.1 CMPSO Algorithm & its implementation  
This section describes the formulations of the CMPSO algorithm for the process planning 
and scheduling in multi plant supply chain scenario. The prime objective of the problem 
considered is to generate an operation sequence and simultaneously select an appropriate 
machine corresponding to each operation from existing alternatives. It is a multiple 
dimensional problem as shown in the Figure 4. In the figure, first row represents an 
operation sequence while the second row represents the machine corresponding to each 
operation.  In order to resolve the complexity of the problem in this piece of research 
CMPSO algorithm has been proposed. One of the key issues in successful implementation of 
PSO to a specified engineering problem is the representation scheme, i.e. finding a suitable 
mapping between the problem solution and the PSO particle. In the proposed methodology 
during the exploration of the search space the sister swarms cooperate with each other.  

4 7 9 2 1 5 3 6 8 1 

2 3 1 2 2 4 3 2 1 2 

Figure 4. Systematic representation of solution 

In this paper each bit of solution are positive integers and comprises a non-continuous 
integer search space. Since the original PSO works on a real-valued search space, especially 
on the particle positions (i.e., the operation sequence and corresponding machine in this 
paper) is calculated using equation (25) which are real numbers. Hence, a conversion is 
needed between the real-valued positions and the positive-integer-valued indices. In order 
to meet the criteria the sign is ignored and value is changed to the closest integer. After 
calcualting the 1+k

idx  term in equation (25) the changes mentioned earlier are applied leaving 
the rest part of the equations (24) and (25) same as in the original PSO. These changes does 
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position and velocity. These two factors i.e. the position and velocity demonstrates the 
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by the memory of their own best position, as well as of a neighbouring particle. These 
particles communicate the best positions to each other and adjust their own position and 
velocity accordingly. Parsopoulos and Vrahatis (2002) proposed basically two main variants 
of the PSO algorithm: 
• Global neighhborhood, where best global position is communicated to all partilces and 

updated immeditely in the swarm 
• Local neighborhood, where each particle moves towards its best previous position and 

towards the best particle in its restricted neighborhood. 
In the proposed work the global variant has been adapted. The reason behind opting for the 
global neighborhood is due to the fact that local neighborhood even though allows better 
exploration of the search space and reduces the susceptibility of PSO to falling into local 
minima; it slows down the convergence speed. The position and velocity vectors of the ith 
particle can be represented as 

 xi = (xi1, xi2, . . . , xiD)  (20) 

 pi = (pi1, pi2, . . . , piD)  (21) 

The fittest particle among all the particles in the population is represented by  

 F = (f1, f2, fD)  (22) 

The velocity vector for the ith particle can be represented as 

 Vi = (vi1, vi2, …viD)  ( 23) 

 The updated velocity and position for the next fitness evaluation of each particle could be 
determined according to the following equations: 

 ( ) ( )k
id

k
d

k
id

k
id

k
id

k
id xfRcxpRc −••+−••+•=+ )()( 2211

1 υωυ  (24) 

 11 ++ += k
id

k
id

k
id xx υ   (25) 
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(swarm). c1 and c2 are two positive values called acceleration constants, R1( ) and R2( ) are 
two independent random numbers that uniformly distribute between 0 and 1 and are used 
to stochastically vary the relative pull of pi and f (Clerc andKennedy 2002). The introduction 
of such random elements into the optimization is intended to simulate the slightly 
unpredictable component of natural swarm behavior. ‘ω’ is the inertial weight introduced by 
Shi and Eberhart (1998b) in order to improve the performance of the particle swarm 
optimizer. 
The equation (24) contains the three terms on the right hand side in which the inertial effects 
of the movement is represented by the first term. The memory of the individual and whole 
is referred by second and third terms respectively. Basically, equation (24) is used to 
calculate the particle’s new velocity which depends on its preceding velocity and the 
distances of its present position from both its own best past position and the group’s best 
past position. All the other particles follow the best position found and moves closer to it, 
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exploring the region more thoroughly in the process.  According to Robinson and Rahmat-
Samii (2004) equation (24) is the central constituent of the entire optimization. The stochastic 
tendency to return towards particle’s preceding best position is represented by the second 
term of the equation (24). The third term in equation (24) is referred as social influence term. 
The variable F keeps moving towards the best solution i.e. optimal solution found by the 
neighbor particles in the search space. Particle farther from the global best is more strongly 
pulled from its location, and moves rapidly than a closer particle. The particles velocity 
comes to halt after it reaches the locations of best fitness. This is the point from where the 
particles are pulled back in the opposite direction. The performances of the individual 
particles are evaluated by a predefined fitness function dependent on the problem during 
the evolution of the swarm. In case of maximization of the fitness function Fitness (xi), the 
individual best position of each particle pi and the global best position f are updated after 
each iteration using the following two equations, respectively: 
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Where ‘Fit’ refers to the fitness value for the respective iteration. 

4.1 CMPSO Algorithm & its implementation  
This section describes the formulations of the CMPSO algorithm for the process planning 
and scheduling in multi plant supply chain scenario. The prime objective of the problem 
considered is to generate an operation sequence and simultaneously select an appropriate 
machine corresponding to each operation from existing alternatives. It is a multiple 
dimensional problem as shown in the Figure 4. In the figure, first row represents an 
operation sequence while the second row represents the machine corresponding to each 
operation.  In order to resolve the complexity of the problem in this piece of research 
CMPSO algorithm has been proposed. One of the key issues in successful implementation of 
PSO to a specified engineering problem is the representation scheme, i.e. finding a suitable 
mapping between the problem solution and the PSO particle. In the proposed methodology 
during the exploration of the search space the sister swarms cooperate with each other.  
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integer search space. Since the original PSO works on a real-valued search space, especially 
on the particle positions (i.e., the operation sequence and corresponding machine in this 
paper) is calculated using equation (25) which are real numbers. Hence, a conversion is 
needed between the real-valued positions and the positive-integer-valued indices. In order 
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calcualting the 1+k

idx  term in equation (25) the changes mentioned earlier are applied leaving 
the rest part of the equations (24) and (25) same as in the original PSO. These changes does 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

460 

not have any affect on the performance of the algorithm and has been proven to be feasible 
(Salman et al. 2002, Laskari et al. 2002, Parsopoulos and Vrahatis 2002). 
The individuals in the swarm are initialized by randomly setting their positions and 
velocities using operation sequence or machine depending on the nature of the swarm. 
During the iteration, reset is performed only when the value of a new position component 
calculated from equation (25) is greater than the upper limitation of the search space. It 
should be noted that, in the first row at any time of the operation process two bits cannot 
have the same values. Hence, if a new component value is calculated using equation (25) 
(for first row) that already exists, a random small integer will be added to this value till no 
collision exists. This combination pfacilitates fast convergence and ensures near-optimal 
solutions by establishing a proper balance between exploration and exploitation. In case of 
simple PSO in equation (24) random numbers were genrated using the Randon function. 
Howver, during experimentation it has been found that random function are associated 
with some demerits. Hence, in order to overcome the demerits of the random number in this 
research not only it is being replaced by chaotic sequences, but also a new hybrid chaotic 
sequence has been proposed.  
This paragraph explains the significance of applying a chaotic sequence generator to update 
the velocity instead of the random number generator. The random function used in equation 
(24) has been replaced with a chaotic function because of the ergodic and stochastic properties 
of the chaotic systems. One of the limitations coupled with the random number generators is 
that the solution becomes conserved by sequential correlation of successive cells; hence 
requiring more number of generations to converge towards an optimal or near-optimal 
solution. Also the commonly used random number generators have a tendency to generate the 
higher-order part more randomly than their lower-order counterpart (Caponetto et al., 2003). 
Therefore, it requires a consistent random number generator which can explore search space 
without being biased. Recently, various chaotic sequences have been applied in areas related 
to secure transmission, neural networks, natural phenomena modelling, deoxyribonucleic acid 
computing procedures, and non-linear circuits (Arena et al., (2000), Determan and Foster 
(1999), Manganaro and Pineda (1997), Sugantahn (1999), Nozawa (1992), and Wang and Smith 
(1998)) and encouraging results have been obtained with random number generators. The 
unpredictability characteristics, i.e. spread spectrum characteristics, justify theoretically the use 
of a chaotic sequence. Thus, the recent research drift towards the implementation of chaotic 
sequence generators in various AI tools motivated us to use in the present problem scenario. 
The commonly used chaotic equations by researchers are Logistic map-based chaos equation 
(LM), Tent map-based chaos equation (TM), Sinusoidal integrator-based chaos equation (SI), 
and Gauss map-based chaos equation (GM). As usual each equation has some advantage and 
some disadvantage and in order to overcome the demerit of each chaotic equation in this 
present research a hybrid chaotic equation termed as Chaotic Sequence-based Hybrid chaos 
equation (HC) has been proposed. The proposed chaotic equation incorporates the advantages 
of each chaotic equations mentioned below; 
(A) Logistic map-based chaos equation  (LM): In this method logistic map-based chaotic 
sequence is used to generate random numbers. It is one of the simplest dynamic systems 
evidencing chaotic behavior. The logistic map chaotic equation is delineated as follows. 

 )1(1 kkk YYY −=+ ω  (28) 

Where ω is tuning parameter 
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(B) Tent map-based chaos equation (TM): In this method, random numbers are generated 
using Tent map-based chaotic sequence. It resemble as the logistic map which follows the 
following equations. 
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(C) Sinusoidal integrator-based chaos equation (SI): In this chaotic equation, random 
numbers are generated using the following Sinusoidal Integrator relation: 

 )sin(1 kk YY π=+   (31) 

(D) Gauss map-based chaotic equation(GM): In this chaotic equation, Gauss Map function is 
used to generate the random numbers and it transfers from one stage to another stage in a 
quadratic manner. Gauss Map function can be expressed as follows: 
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(F) Chaotic sequence-based hybrid chaotic equation (HC):  Randomly select a chaotic 
sequence strategy among aforementioned four strategies and generate random number 
using selected chaotic equation.  
As mentioned earlier first row of each solution represents the operation sequence and 
second row represents the corresponding machine. For each individual row the proposed 
CMPSO algorithm runs separately. After updating the position and velocity for each row 
the sister swarm will cooperate with each other to evaluate the fitness function. On the basis 
of the computed fitness value the global and local best positions are decided. And after 
certain number of iterations the solution will tend to converge towards the optimality or 
sub-optimality. The stpes of the proposed CMPSO algorithm are shown below: 
Step 1:  Generate discrete search space for first and second row of solution i.e. maximum 

numbers of operation and number of possible machine corresponding to each option.  
Step 2: Generate random initial solution, and assign random position X and velocity V 

vectors corresponding to each particle swarm (For both sister swarms) and assign 
number of generation (num_gen=1)  

Step 3: Calculate the fitness value by the help of sister swarm and update the personal best 
position and global best position of each of sister swarm using equation (26) and (27) 
respectively.    

Step 4:  Update the velocity and position of the each swarm using the chaotic sequence 
mentioned above.  

Step 5: num_gen=num_gen+1;  
Step 6: If num_gen=max num_gen; go to step 7 otherwise go to step 3 
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not have any affect on the performance of the algorithm and has been proven to be feasible 
(Salman et al. 2002, Laskari et al. 2002, Parsopoulos and Vrahatis 2002). 
The individuals in the swarm are initialized by randomly setting their positions and 
velocities using operation sequence or machine depending on the nature of the swarm. 
During the iteration, reset is performed only when the value of a new position component 
calculated from equation (25) is greater than the upper limitation of the search space. It 
should be noted that, in the first row at any time of the operation process two bits cannot 
have the same values. Hence, if a new component value is calculated using equation (25) 
(for first row) that already exists, a random small integer will be added to this value till no 
collision exists. This combination pfacilitates fast convergence and ensures near-optimal 
solutions by establishing a proper balance between exploration and exploitation. In case of 
simple PSO in equation (24) random numbers were genrated using the Randon function. 
Howver, during experimentation it has been found that random function are associated 
with some demerits. Hence, in order to overcome the demerits of the random number in this 
research not only it is being replaced by chaotic sequences, but also a new hybrid chaotic 
sequence has been proposed.  
This paragraph explains the significance of applying a chaotic sequence generator to update 
the velocity instead of the random number generator. The random function used in equation 
(24) has been replaced with a chaotic function because of the ergodic and stochastic properties 
of the chaotic systems. One of the limitations coupled with the random number generators is 
that the solution becomes conserved by sequential correlation of successive cells; hence 
requiring more number of generations to converge towards an optimal or near-optimal 
solution. Also the commonly used random number generators have a tendency to generate the 
higher-order part more randomly than their lower-order counterpart (Caponetto et al., 2003). 
Therefore, it requires a consistent random number generator which can explore search space 
without being biased. Recently, various chaotic sequences have been applied in areas related 
to secure transmission, neural networks, natural phenomena modelling, deoxyribonucleic acid 
computing procedures, and non-linear circuits (Arena et al., (2000), Determan and Foster 
(1999), Manganaro and Pineda (1997), Sugantahn (1999), Nozawa (1992), and Wang and Smith 
(1998)) and encouraging results have been obtained with random number generators. The 
unpredictability characteristics, i.e. spread spectrum characteristics, justify theoretically the use 
of a chaotic sequence. Thus, the recent research drift towards the implementation of chaotic 
sequence generators in various AI tools motivated us to use in the present problem scenario. 
The commonly used chaotic equations by researchers are Logistic map-based chaos equation 
(LM), Tent map-based chaos equation (TM), Sinusoidal integrator-based chaos equation (SI), 
and Gauss map-based chaos equation (GM). As usual each equation has some advantage and 
some disadvantage and in order to overcome the demerit of each chaotic equation in this 
present research a hybrid chaotic equation termed as Chaotic Sequence-based Hybrid chaos 
equation (HC) has been proposed. The proposed chaotic equation incorporates the advantages 
of each chaotic equations mentioned below; 
(A) Logistic map-based chaos equation  (LM): In this method logistic map-based chaotic 
sequence is used to generate random numbers. It is one of the simplest dynamic systems 
evidencing chaotic behavior. The logistic map chaotic equation is delineated as follows. 

 )1(1 kkk YYY −=+ ω  (28) 

Where ω is tuning parameter 
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(B) Tent map-based chaos equation (TM): In this method, random numbers are generated 
using Tent map-based chaotic sequence. It resemble as the logistic map which follows the 
following equations. 
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(C) Sinusoidal integrator-based chaos equation (SI): In this chaotic equation, random 
numbers are generated using the following Sinusoidal Integrator relation: 

 )sin(1 kk YY π=+   (31) 

(D) Gauss map-based chaotic equation(GM): In this chaotic equation, Gauss Map function is 
used to generate the random numbers and it transfers from one stage to another stage in a 
quadratic manner. Gauss Map function can be expressed as follows: 
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(F) Chaotic sequence-based hybrid chaotic equation (HC):  Randomly select a chaotic 
sequence strategy among aforementioned four strategies and generate random number 
using selected chaotic equation.  
As mentioned earlier first row of each solution represents the operation sequence and 
second row represents the corresponding machine. For each individual row the proposed 
CMPSO algorithm runs separately. After updating the position and velocity for each row 
the sister swarm will cooperate with each other to evaluate the fitness function. On the basis 
of the computed fitness value the global and local best positions are decided. And after 
certain number of iterations the solution will tend to converge towards the optimality or 
sub-optimality. The stpes of the proposed CMPSO algorithm are shown below: 
Step 1:  Generate discrete search space for first and second row of solution i.e. maximum 

numbers of operation and number of possible machine corresponding to each option.  
Step 2: Generate random initial solution, and assign random position X and velocity V 

vectors corresponding to each particle swarm (For both sister swarms) and assign 
number of generation (num_gen=1)  

Step 3: Calculate the fitness value by the help of sister swarm and update the personal best 
position and global best position of each of sister swarm using equation (26) and (27) 
respectively.    

Step 4:  Update the velocity and position of the each swarm using the chaotic sequence 
mentioned above.  

Step 5: num_gen=num_gen+1;  
Step 6: If num_gen=max num_gen; go to step 7 otherwise go to step 3 
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Step7: Terminate the algorithm and global position is the optimal solution obtained by the 
algorithm.        

Corresponding to the global best solution the optimal sequence and the corresponding 
machines are decided. A case study has been discussed in the next section.  

5. Case Study  
A case study has been taken from Moon et al. (2002) in this present work to reveal the 
efficacy and robustness of the proposed model, and to disclose the quality of the solutions 
found with the CMPSO. The case study involves an illustrative example which has been 
derived considering a constrained integrated process planning and scheduling problem. The 
case study involves three coupled decision problems i.e. selection of parts, priority of 
operation sequences and selection of appropriate machine for each operation to minimize 
the total tardiness in context of Advanced Integrated Process Planning and Scheduling 
(AIPPS) model. To make the case study more realistic additionally, various system 
constraints (precedence, commodity feasibility, sum of commodity, machine, operational 
time, and feasibility of tour constraints) have been considered. In the present case study the 
process planning and scheduling has been carried out simultaneously. The study also 
involves consideration of set up times between the operations, and transportation times 
between machines, thus closely resembling to the typical characteristics of industrial 
contexts. The case study consists of 5 different parts with different due dates {d1=1000, 
d2=1300, d3=2000, d4=1600, d5=1400}. These parts are manufactured in two plants (plant 1 
and plant 2) having six different machine. Plant 1 consists of machines {M1, M2, M3} and 
plant 2 consists of machines {M4, M5, M6}. The production lot size for the each part type is 
considered {40, 70, 60, 30, 60} respectively. Also, the transportation time between plants is 
assumed to be 50, and unit size is considered equal to the lot size of each part. The 
remaining data needed in the problem such as initial load, transportation time, and set up 
time between alternative machines etc., are shown in Table 1-3, whereas the operation and 
there precedence constraints relation are shown in Figure 5.  

 
Figure 5. Precedence Relationship between different Operations 
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Operation performed in different plants 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
01 00 35 46 39 28 32 20 16 12 39 40 23 49 08 26 20 47 14 03 36 40 
02 39 00 36 23 47 33 46 36 06 08 34 02 48 15 12 04 12 24 30 44 34 
03 15 08 00 27 21 34 33 25 33 13 49 08 35 40 26 32 46 28 14 41 26 
04 13 38 19 00 01 44 14 27 48 36 38 35 37 39 14 32 22 10 26 25 29 
05 34 48 24 10 00 36 12 48 09 24 28 19 08 36 17 06 28 06 22 22 45 
06 05 18 30 12 01 00 12 32 00 39 12 18 19 19 05 27 42 37 16 24 31 
07 28 37 48 15 17 13 00 44 38 15 09 01 05 36 02 20 17 15 06 10 34 
08 17 15 00 42 41 13 17 00 30 22 33 25 02 33 26 35 41 35 04 09 22 
09 37 10 41 27 35 46 30 16 00 35 33 15 28 06 08 30 22 25 39 10 36 
10 06 05 49 47 00 01 18 37 06 00 44 30 23 07 04 02 04 30 03 16 19 
11 44 30 21 11 46 15 30 17 46 14 00 44 06 04 06 14 48 29 27 29 15 
12 34 25 34 04 10 14 27 07 26 49 13 00 40 20 15 15 49 07 28 43 47 
13 09 09 04 42 01 36 21 15 36 27 20 11 00 33 41 46 02 33 44 02 07 
14 29 29 29 24 47 28 28 30 46 23 26 20 49 00 39 24 33 26 06 29 36 
15 07 19 10 14 17 44 27 13 10 14 09 17 48 15 00 28 17 46 45 21 36 
16 31 01 37 03 21 09 23 46 13 41 21 47 15 16 43 00 18 03 24 27 11 
17 29 39 03 30 48 39 02 45 03 39 36 26 28 23 40 29 00 32 17 38 23 
18 02 13 10 09 32 14 45 11 24 43 15 02 16 06 32 15 30 00 15 37 38 
19 09 20 35 08 18 48 27 12 41 30 47 16 02 41 13 29 23 07 00 08 08 
20 27 49 40 29 09 36 29 12 24 45 30 10 16 34 05 06 08 33 38 00 31 

              O
perations perform

ed in different plants  

21 27 04 34 31 29 03 32 47 12 09 44 30 42 21 25 02 40 26 26 25 00 

Table 1. Set up time between different operations 

To further prove the efficacy of the proposed CMPSO algorithm, it has been tested on 
several randomly generated data set problems with increasing complexity as shown in the 
Table 4. 

6. Result & Discussion 
It has been concluded after comprehensive survey of research contributions in the broad 
domain of PSO application that number of iterations required to achieve optimal/near 
optimal solution is relatively high. Therefore, it is not only desirable but also inevitable to 
develop a meta-heuristic, which can overcome the drawbacks associated with simple PSO, 
and can solve large size combinatorial problems in lesser number of iterations and CPU 
time. The incapability associated with simple PSO algorithm in solving multidimensional 
problem prompted to develop an evolutionary meta-heuristic termed as CMPSO algorithm. 
The CMPSO algorithm has been proposed to solve Multi plant supply chain problem in the 
distributed manufacturing environments.  
CMPSO algorithm achieves the optimal/near optimal solutions for the objective considered 
(Tardiness minimization) and emphasizes it as a powerful meta-heuristic algorithm. Use of 
hybrid chaotic sequence function empowers the algorithm to obtain optimal/near optimal 
results in significantly less number of generations. These features of the algorithm make it 
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Step7: Terminate the algorithm and global position is the optimal solution obtained by the 
algorithm.        

Corresponding to the global best solution the optimal sequence and the corresponding 
machines are decided. A case study has been discussed in the next section.  

5. Case Study  
A case study has been taken from Moon et al. (2002) in this present work to reveal the 
efficacy and robustness of the proposed model, and to disclose the quality of the solutions 
found with the CMPSO. The case study involves an illustrative example which has been 
derived considering a constrained integrated process planning and scheduling problem. The 
case study involves three coupled decision problems i.e. selection of parts, priority of 
operation sequences and selection of appropriate machine for each operation to minimize 
the total tardiness in context of Advanced Integrated Process Planning and Scheduling 
(AIPPS) model. To make the case study more realistic additionally, various system 
constraints (precedence, commodity feasibility, sum of commodity, machine, operational 
time, and feasibility of tour constraints) have been considered. In the present case study the 
process planning and scheduling has been carried out simultaneously. The study also 
involves consideration of set up times between the operations, and transportation times 
between machines, thus closely resembling to the typical characteristics of industrial 
contexts. The case study consists of 5 different parts with different due dates {d1=1000, 
d2=1300, d3=2000, d4=1600, d5=1400}. These parts are manufactured in two plants (plant 1 
and plant 2) having six different machine. Plant 1 consists of machines {M1, M2, M3} and 
plant 2 consists of machines {M4, M5, M6}. The production lot size for the each part type is 
considered {40, 70, 60, 30, 60} respectively. Also, the transportation time between plants is 
assumed to be 50, and unit size is considered equal to the lot size of each part. The 
remaining data needed in the problem such as initial load, transportation time, and set up 
time between alternative machines etc., are shown in Table 1-3, whereas the operation and 
there precedence constraints relation are shown in Figure 5.  
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Operation performed in different plants 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
01 00 35 46 39 28 32 20 16 12 39 40 23 49 08 26 20 47 14 03 36 40 
02 39 00 36 23 47 33 46 36 06 08 34 02 48 15 12 04 12 24 30 44 34 
03 15 08 00 27 21 34 33 25 33 13 49 08 35 40 26 32 46 28 14 41 26 
04 13 38 19 00 01 44 14 27 48 36 38 35 37 39 14 32 22 10 26 25 29 
05 34 48 24 10 00 36 12 48 09 24 28 19 08 36 17 06 28 06 22 22 45 
06 05 18 30 12 01 00 12 32 00 39 12 18 19 19 05 27 42 37 16 24 31 
07 28 37 48 15 17 13 00 44 38 15 09 01 05 36 02 20 17 15 06 10 34 
08 17 15 00 42 41 13 17 00 30 22 33 25 02 33 26 35 41 35 04 09 22 
09 37 10 41 27 35 46 30 16 00 35 33 15 28 06 08 30 22 25 39 10 36 
10 06 05 49 47 00 01 18 37 06 00 44 30 23 07 04 02 04 30 03 16 19 
11 44 30 21 11 46 15 30 17 46 14 00 44 06 04 06 14 48 29 27 29 15 
12 34 25 34 04 10 14 27 07 26 49 13 00 40 20 15 15 49 07 28 43 47 
13 09 09 04 42 01 36 21 15 36 27 20 11 00 33 41 46 02 33 44 02 07 
14 29 29 29 24 47 28 28 30 46 23 26 20 49 00 39 24 33 26 06 29 36 
15 07 19 10 14 17 44 27 13 10 14 09 17 48 15 00 28 17 46 45 21 36 
16 31 01 37 03 21 09 23 46 13 41 21 47 15 16 43 00 18 03 24 27 11 
17 29 39 03 30 48 39 02 45 03 39 36 26 28 23 40 29 00 32 17 38 23 
18 02 13 10 09 32 14 45 11 24 43 15 02 16 06 32 15 30 00 15 37 38 
19 09 20 35 08 18 48 27 12 41 30 47 16 02 41 13 29 23 07 00 08 08 
20 27 49 40 29 09 36 29 12 24 45 30 10 16 34 05 06 08 33 38 00 31 

              O
perations perform

ed in different plants  

21 27 04 34 31 29 03 32 47 12 09 44 30 42 21 25 02 40 26 26 25 00 

Table 1. Set up time between different operations 

To further prove the efficacy of the proposed CMPSO algorithm, it has been tested on 
several randomly generated data set problems with increasing complexity as shown in the 
Table 4. 

6. Result & Discussion 
It has been concluded after comprehensive survey of research contributions in the broad 
domain of PSO application that number of iterations required to achieve optimal/near 
optimal solution is relatively high. Therefore, it is not only desirable but also inevitable to 
develop a meta-heuristic, which can overcome the drawbacks associated with simple PSO, 
and can solve large size combinatorial problems in lesser number of iterations and CPU 
time. The incapability associated with simple PSO algorithm in solving multidimensional 
problem prompted to develop an evolutionary meta-heuristic termed as CMPSO algorithm. 
The CMPSO algorithm has been proposed to solve Multi plant supply chain problem in the 
distributed manufacturing environments.  
CMPSO algorithm achieves the optimal/near optimal solutions for the objective considered 
(Tardiness minimization) and emphasizes it as a powerful meta-heuristic algorithm. Use of 
hybrid chaotic sequence function empowers the algorithm to obtain optimal/near optimal 
results in significantly less number of generations. These features of the algorithm make it 
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more effective as compared to simple PSO algorithm. Performance of the proposed CMPSO 
algorithm is found superior, when compared with GA and Tabu Search, on a set of 
problems adopted from the literature. For the case study mentioned in section 5, total 
tardiness obtained in 35 iterations is 32. The optimal operation sequence obtained by 
CMPSO algorithm is shown in Table 5. Table 6 presents a comparative analysis of proposed 
approach with others. Figure 6, shows a convergence trend of CMPSO algorithm along with 
number of generations. It is evident from the Table 6 that proposed approach outperformed 
the results obtained using existing methodologies. The operation sequence generated by 
Genetic Algorithm (Li et al., 2005) shows total tardiness to be 39 in 42 generations.  
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Figure 6. Convergence trend of CMPSO with number of  generations 

Various chaotic sequence operators that are used in literature were tested on sample 
problem and found that hybrid chaotic sequence based particle swarm optimization 
outperforms other PSOs. Their comparative results are shown in Figure 7.  To have a better 
appraisal of the algorithm performance, a new parameter ‘percentage Heuristic Gap (PHG)’ 
(Huang et al. (2002)) has been utilized. Percentage heuristic gap can be mathematically 
defined as:  

 100×
−

=
boundlowerBest

boundlowerBestbounduppperBest
PHG   (34) 

Here, lower bound is defined as the objective value obtained by relaxing some of the bounds 
or constraints pertaining to the problem environment, whereas upper bound is the objective 
function value of the feasible solution that fulfils all the constraints. In our case, one of the 
precedence constraints has been relaxed to obtain the lower bound. From the definition of 
PHG, it can be envisaged that the near optimal solution of the problem is guaranteed if its 
value is very small (Huang et al. (2002)) as shown in Figure 8. PHG for the test problems 
defined in the table 4 are shown in table 7-10. While average value of PHG for different size 
of data sets are shown in Table 11 which are less than 3%. Thus, from the definition of 
heuristic gap, it is inferred that solution obtained by CMPSO algorithm is near optimal one. 
A two way ANOVA without replication was also performed to assess the significance of the 
problem parameters. The results of the ANOVA test are in listed the Table 12-13. The results 
obtained by ANOVA test, performed at 99.5 % confidence level, validates the robustness of 
the CMPSO algorithm pertaining to MPSC problems.  
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The CMPSO algorithm has been coded in C++ programming language and experiments 
have been carried out on an Intel Pentium IV 2.4 GHz processor. In the nutshell, 
aforementioned computational results not only authenticate the efficacy and supremacy of 
the proposed algorithm, but also provide new dimensions to the solution of complex 
combinatorial problems like integrated process planning and scheduling problem in MPSC 
environment.  

Plant - 1 1 1 2 2 2 
part Operation M1 M2 M3 M4 M5 M6 

1 1 7 - - 5 - - 
1 2 7 - - 6 - - 
1 3 - 6 5 - 8 - 
1 4 6 - - - - 5 
2 5 - 9 - 8 - - 
2 6 3 5 - - 6 - 
2 7 8 - 12 9 - 8 
3 8 - - 5 - 8 - 
3 9 10 - - 10 - 7 
3 10 6 5 - - 6 - 
3 11 15 - - 6 - 5 
3 12 - 6 - - 5 - 
4 13 - - 6 6 - 8 
4 14 - 5 - - 9 - 
4 15 - - 6 4 - - 
5 18 - 8 - 6 - 8 
5 19 - 7 10 - 8 - 
5 20 13 - - - 8 9 
5 21 - - 7 6 - - 

Where M1, M2, M3, M4, M5, M6 are different machines in plant 1 and 2. 

Table 2. Machining time for different operation and alternative available  

7. Conclusions 
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Figure 7. Comparative plot of CMPSO based on different chaotic equations 
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more effective as compared to simple PSO algorithm. Performance of the proposed CMPSO 
algorithm is found superior, when compared with GA and Tabu Search, on a set of 
problems adopted from the literature. For the case study mentioned in section 5, total 
tardiness obtained in 35 iterations is 32. The optimal operation sequence obtained by 
CMPSO algorithm is shown in Table 5. Table 6 presents a comparative analysis of proposed 
approach with others. Figure 6, shows a convergence trend of CMPSO algorithm along with 
number of generations. It is evident from the Table 6 that proposed approach outperformed 
the results obtained using existing methodologies. The operation sequence generated by 
Genetic Algorithm (Li et al., 2005) shows total tardiness to be 39 in 42 generations.  
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Various chaotic sequence operators that are used in literature were tested on sample 
problem and found that hybrid chaotic sequence based particle swarm optimization 
outperforms other PSOs. Their comparative results are shown in Figure 7.  To have a better 
appraisal of the algorithm performance, a new parameter ‘percentage Heuristic Gap (PHG)’ 
(Huang et al. (2002)) has been utilized. Percentage heuristic gap can be mathematically 
defined as:  
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Here, lower bound is defined as the objective value obtained by relaxing some of the bounds 
or constraints pertaining to the problem environment, whereas upper bound is the objective 
function value of the feasible solution that fulfils all the constraints. In our case, one of the 
precedence constraints has been relaxed to obtain the lower bound. From the definition of 
PHG, it can be envisaged that the near optimal solution of the problem is guaranteed if its 
value is very small (Huang et al. (2002)) as shown in Figure 8. PHG for the test problems 
defined in the table 4 are shown in table 7-10. While average value of PHG for different size 
of data sets are shown in Table 11 which are less than 3%. Thus, from the definition of 
heuristic gap, it is inferred that solution obtained by CMPSO algorithm is near optimal one. 
A two way ANOVA without replication was also performed to assess the significance of the 
problem parameters. The results of the ANOVA test are in listed the Table 12-13. The results 
obtained by ANOVA test, performed at 99.5 % confidence level, validates the robustness of 
the CMPSO algorithm pertaining to MPSC problems.  

A CMPSO algorithm based approach to solve the multi-plant supply chain problem 

 

465 

The CMPSO algorithm has been coded in C++ programming language and experiments 
have been carried out on an Intel Pentium IV 2.4 GHz processor. In the nutshell, 
aforementioned computational results not only authenticate the efficacy and supremacy of 
the proposed algorithm, but also provide new dimensions to the solution of complex 
combinatorial problems like integrated process planning and scheduling problem in MPSC 
environment.  
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The efficient process planning and scheduling in multi-plant supply chain environment is 
gaining prime importance these days. Especially the manufacturing units are keen on 
finding efficient ways of handling such problems. This popularity and interest motivated 
our present research to build a realistic MPSC model and emphasize on its proper 
scheduling aiming to reduce the overall tardiness. Recognizing the fact that MPSC problem 
is a NP hard problem and quite complex to be solved by most of the existing evolutionary 
algorithms (EAs), this paper also proposes a new Cooperative Multiple Particle Swarm 
Optimization (CMPSO) algorithm to overcome the drawbacks of existing EAs. The prime 
objective considered in this paper was to reduce the overall tardiness considering several 
constraints, selection criteria’s, decision variables and operational sequences. To build the 
model more close to realistic situation the setup time and transportation time has also been 
considered during problem formulation. The limitations associated with normal PSO while 
its application in multi plant situation was overcome by the newly proposed CMPSO 
algorithm. The comparative analysis of the CMPSO algorithm with other existing EAs 
shows its superiority over others.  The CMPSO algorithm has also been statistically 
validated by performing ANOVA and Percentage heuristic gap analysis.  The comparative 
analysis reveals that CMPSO algorithm not only does performs well to converge towards 
optimality/sub-optimality, the computational time required is also relatively less as 
compared to others. The paper also attempts to overcome the demerit of the normal PSO 
regarding the random number generators by using the newly proposed chaotic function 
instead.  

 
Figure 8. Heuristic gaps as a function of number of iterations  

   Plant 1  Plant2   
 Machine M1 M2 M3 M4 M5 M6 
 M1 0 5 6 - - - 
Plant 1 M2 5 0 7 - - - 
 M3 6 7 0 - - - 
 M4 - - - 0 5 6 
Plant 2 M5 - - - 5 0 7 
 M6 - - - 6 7 0 

Table 3. Transportation times between machines 

Objective value

Optimal value 
(perhaps known) 

Upper Bound

Lower Bound

Heuristic Gap

Number of Iterations
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Though, CMPSO algorithm possesses many advantages over the traditional PSO and other 
existing evolutionary algorithms it has plenty of scope for its future extension. Future research 
can be directed towards its implementation in diverse areas of manufacturing fields. CMPSO 
algorithm also needs to be tested on multi-objective problems under various constraints, 
decision variables etc. to disclose its capability of handling diverse complex problems. The 
proposed algorithm has promising aspects that deserve further investigations; therefore work 
also needs to be focussed on further improving its efficacy and robustness.  

Classification Number of jobs Number of operations 

3 10-20 Very Small problem (VSP) 
12 20-30 
15 30-40 Small Problem (SP) 
20 40-50 
22 50-60 Large Problem (LP) 
25 60-70 
28 70-80 Very Large Problem (VLP) 
35 80-90 

Table 4.  Detailed randomly generated data sets 

  Operation Operation Operation Operation 
Plant Machine start 

time 
end 
time 

start 
time 

end time start 
time 

end time start 
time 

end 
time 

 10  7  17    
1 

M1 
 709 727 1287 1413 1563   

 6  3  14  16  
 

M2 
100 450 775 1015 1062 1212 1243 1393 

 8  13  21   15 
 

M3 
250 550 552 732 782 1202 1227 1407 

  1 2  5    
2 

M4 
250 450 485 725 772 1332   

  19 20   12   
 

M5 
187 667 675 1155 1357 1657   

 18  4  9  11  
 

M6 
100 580 589 789 839 1257 1290 1590 

Table 5. Final operations schedules of the Case Study using CMPSO 

Table 6. Comparative Result of the proposed CMPSO algorithm 

Total Tardiness Using GA (Moon 
et al. 2002) 

Using Tabu Search 
(Moon et al. 2002) CMPSO Algorithm 

Total Tardiness 39 39 32 
Number of 
generations 42 >>GA 35 

CPU Time 7 sec 48 sec 4 sec 
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The efficient process planning and scheduling in multi-plant supply chain environment is 
gaining prime importance these days. Especially the manufacturing units are keen on 
finding efficient ways of handling such problems. This popularity and interest motivated 
our present research to build a realistic MPSC model and emphasize on its proper 
scheduling aiming to reduce the overall tardiness. Recognizing the fact that MPSC problem 
is a NP hard problem and quite complex to be solved by most of the existing evolutionary 
algorithms (EAs), this paper also proposes a new Cooperative Multiple Particle Swarm 
Optimization (CMPSO) algorithm to overcome the drawbacks of existing EAs. The prime 
objective considered in this paper was to reduce the overall tardiness considering several 
constraints, selection criteria’s, decision variables and operational sequences. To build the 
model more close to realistic situation the setup time and transportation time has also been 
considered during problem formulation. The limitations associated with normal PSO while 
its application in multi plant situation was overcome by the newly proposed CMPSO 
algorithm. The comparative analysis of the CMPSO algorithm with other existing EAs 
shows its superiority over others.  The CMPSO algorithm has also been statistically 
validated by performing ANOVA and Percentage heuristic gap analysis.  The comparative 
analysis reveals that CMPSO algorithm not only does performs well to converge towards 
optimality/sub-optimality, the computational time required is also relatively less as 
compared to others. The paper also attempts to overcome the demerit of the normal PSO 
regarding the random number generators by using the newly proposed chaotic function 
instead.  

 
Figure 8. Heuristic gaps as a function of number of iterations  

   Plant 1  Plant2   
 Machine M1 M2 M3 M4 M5 M6 
 M1 0 5 6 - - - 
Plant 1 M2 5 0 7 - - - 
 M3 6 7 0 - - - 
 M4 - - - 0 5 6 
Plant 2 M5 - - - 5 0 7 
 M6 - - - 6 7 0 

Table 3. Transportation times between machines 

Objective value

Optimal value 
(perhaps known) 

Upper Bound

Lower Bound

Heuristic Gap

Number of Iterations
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Though, CMPSO algorithm possesses many advantages over the traditional PSO and other 
existing evolutionary algorithms it has plenty of scope for its future extension. Future research 
can be directed towards its implementation in diverse areas of manufacturing fields. CMPSO 
algorithm also needs to be tested on multi-objective problems under various constraints, 
decision variables etc. to disclose its capability of handling diverse complex problems. The 
proposed algorithm has promising aspects that deserve further investigations; therefore work 
also needs to be focussed on further improving its efficacy and robustness.  

Classification Number of jobs Number of operations 

3 10-20 Very Small problem (VSP) 
12 20-30 
15 30-40 Small Problem (SP) 
20 40-50 
22 50-60 Large Problem (LP) 
25 60-70 
28 70-80 Very Large Problem (VLP) 
35 80-90 

Table 4.  Detailed randomly generated data sets 

  Operation Operation Operation Operation 
Plant Machine start 

time 
end 
time 

start 
time 

end time start 
time 

end time start 
time 

end 
time 

 10  7  17    
1 

M1 
 709 727 1287 1413 1563   

 6  3  14  16  
 

M2 
100 450 775 1015 1062 1212 1243 1393 

 8  13  21   15 
 

M3 
250 550 552 732 782 1202 1227 1407 

  1 2  5    
2 

M4 
250 450 485 725 772 1332   

  19 20   12   
 

M5 
187 667 675 1155 1357 1657   

 18  4  9  11  
 

M6 
100 580 589 789 839 1257 1290 1590 

Table 5. Final operations schedules of the Case Study using CMPSO 

Table 6. Comparative Result of the proposed CMPSO algorithm 

Total Tardiness Using GA (Moon 
et al. 2002) 

Using Tabu Search 
(Moon et al. 2002) CMPSO Algorithm 

Total Tardiness 39 39 32 
Number of 
generations 42 >>GA 35 

CPU Time 7 sec 48 sec 4 sec 
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Number of Jobs Number of operations % Heuristic gap (HG) 
3 10 1.382 
3 15 2.052 
12 20 1.678 
12 25 2.236 

Table 7. Computational results for very small sized problem 

Number of Jobs Number of operations % Heuristic gap (HG) 
15 30 1.302 
15 35 1.524 
20 40 2.134 
20 45 1.182 

Table 8. Computational results for  small sized problem 

Number of Jobs Number of operations % Heuristic gap (HG) 
22 50 2.167 
22 55 2.005 
25 60 2.761 
25 65 1.755 

Table 9. Computational results for  largel sized problem 

Number of Jobs Number of operations % Heuristic gap (HG) 
28 70 1.854 
28 75 2.530 
35 80 2.345 
35 85 2.449 

Table 10. Computational results for  very large sized problem 

 L H Average 
VSP 1.717 1.957 1.837 
SP 1.413 1.658 1.6005 
LP 2.087 2.258 2.1675 
VLP 2.192 2.397 2.2943 

L : Average PHP values for the smaller number of customers in the respective categories. 
H : Average PHP values for the larger number of customers in the respective categories. 
Table 11. Average heuristic gap for different problem sizes 

SUMMARY Row 1 Row 2 Row 3 Row 4 Column 1 Column 2 

Count 2 2 2 2 4 4 
Sum 3.674 3.071 4.345 4.589 7.409 8.27 

Average 1.837 1.5355 2.1725 2.2945 1.85225 2.0675 
Variance 0.0288 0.030013 0.01462 0.021012 0.127257 0.108254 

Table 12. Intermediate values of the two way ANOVA test without replication 
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Source of Variation Rows Columns Error Total 
SS 0.704751 0.092665 0.00178 0.799197 
Df 3 1 3 7 
MS 0.234917 0.092665 0.000593  
F 395.8443 156.1443   

P-value 0.000215 0.001105   
F crit* 47.46835 55.55194   

* α =0.005 

Table 13. Results of ANOVA test 
Appendix A: List of notations used in the Mathematical Formulation 

PC        : Completion time of the part type p. 
dup : Due date of the part type p. 

pijh  : Number of transportation from the operation wpi to wpj  of the part type p. 
IMLm : Initial mean load on the machines m 
JP : Total number of operations of part type p. 
M : Set of different machines, M= { 1,2,…,…,m,…M} 

MTK,J : Machining time for k th operation corresponding to the machine assign in 
the i th male chromosome.  

MTk, j : Machining time for k th operation corresponding to the machine assign in 
the j th female chromosome.  

n  :  Number of male or female population.   
P :  Set of different part types, P= {1, 2, 3, 4,    ..., P} 

R       : Lot size of production of different part type, R={ r1,r2,r3,     …,rp} where rp is 
lot size of the part type p.  

tpij        : Transition time from operation i to j for the part type p. 
wpi : i th  operation of the part type p. 

wp : Set of operations for part type p, Wp={ wpi | ∀  i =1,2,3,4,    …,jp}, where wpi 
is i th operation of the part type p.  

Zi,k : kth  bit of i th chromosome.   

pijα  : Lot size of transportation between the operation wpi to wpj. 

mβ  : Set of operations on the machine m. 

pijδ  : Setup time of machine between the operation wpi to wpj of the part type p. 

εi  : Number of alternative machine available for the operation i. 

pη  : First selected operation for the part type p. 

θ  : An arbitrarily large positive number. 

pimµ  : Processing time of i th operation of the part type p on the machine m. 

pimξ  : Completion time of operation i for part type p on the machine m. 
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hjmξ  : Completion time of operation j for part type h on the machine m. 

mnυ  : Transportation time from machines m to n. 

φq

pji
 : Quantity of commodity q transferred from operation wpj to wpi for the part 

type P 

φ r

pij
 : Quantity of commodity r transferred from operation wpi to wpj for the part 

type P. 

φr

pji
 : Quantity of commodity r transferred from operation wpj to wpi for the part 

type P 

φ α

q

jp
 : 

Quantity of commodity q transferred from operation αpw  to wpj for the 

part type   P. 

φ β

q

jp
 : 

Quantity of commodity q transfer from operation βpw  to wpj for the part 

type P. 

pΩ      : Total tardiness of part type p.     

Ω        : Total tardiness of all jobs. 

8. References 
Abido, M A., (2002). Optimal power flow using particle swarm optimization, Electric Power 

Energy Systems, Vol.26, Pages  563–571 
Angeline, P.J. (1998). Using selection to improve particle swarm optimization, The 1998 IEEE 

International Conference and IEEE World Congress on Computational Intelligence, 
Evolutionary Computation Proceedings, Anchorage, AK, USA, Pages 84-89, ISBN: 
0-7803-4869-9  

Boeringer, D., and WandWerner, D. H (2004). Particle swarm optimization versus genetic 
algorithms for phased array synthesis, IEEE Trans. Antennas Propag., Vol. 52, Pages 
771–779 

Brandimarte, P., and Calderini, M., (1995). A heuristic bi-criterion approach to integrated 
process plan selection and job shop scheduling. International Journal of Production 
Research, Vol.33, Pages 161-181 

Carlisle, A., and Dozier, G. (2001). An off-the-shelf PSO, Proceedings of the Particle Swarm 
Optimization Workshop, Pages 1–6 

Caponetto, R., Fortuna, L., Fazzino, S., and Xibilia, M. G. (2003).Chaotic sequences to 
improve the performance of evolutionary algorithm. IEEE Trans., Vol.7, No.3, Pages 
289–304. 

Cedeño Walter , and Agrafiotis, Dimitris K. (2003). Using particle swarms for the 
development of QSAR models based on K-nearest neighbor and kernel regression, 
Journal of Computer-Aided Molecular Design, Vol.17, No.2-4, Pages 255-263, ISSN0920-
654X (Print) 1573-4951 (Online)  

CedenoWand, Agrafiotis, D K., (2003) Using particle swarms for the development of QSAR 
models based on K-nearest neighbor and kernel regression, Journal of  Computer 
Aided Mol. Des., Vol.17, Pages 255–263 

A CMPSO algorithm based approach to solve the multi-plant supply chain problem 

 

471 

Chan, F.T.S., Chung, S.H., and Chan, P.L.Y. (2005). An adaptive genetic algorithm 
with dominated genes for distributed scheduling problems, Expert Systems with 
Applications, Vol. 29, Pages 364–371. 

Chang, H., Ratnaweera. A., Halgamuge, S. K., and Watson, H. C. (2004). Particle swarm 
optimization for protein motif discovery Genet. Program., Evol. Mach., Vol. 5, Pages 
203–214 

Chang, Y. C., Lee, C. Y. (2004).  Machine scheduling with job delivery coordination, European 
Journal of Operational Research, Vol. 158, Pages 470487 

Chiu, M. and Lin, G. (2004). Collaborative supply chain planning using the artificial neural 
network approach, Journal of Manufacturing Technology Management, Vol.15, No.8, 
Pages 787-796 

Dimopoulos, C. and Zalzala, A.M.S. (2000). Recent developments in Evolutionary 
computation for manufacturing optimisation: problems, solutions, and 
comparisons, IEEE Trans. Evolutionary Computation, Vol.4, No.2, Pages 93-113, ISSN: 
1089-778X 

Eberhart, R. C., and Shi, Y. (1998a) Comparison between genetic algorithms and particle 
swarm optimization, Proc. 7th Ann. Conf. on Evolutionary Programming, Berlin, 
Springer, Pages 611–15 

Eberhart, R C., and Shi,Y., (1998b). Evolving artificial neural networks Proc. Int. Congress on 
Neural Networks and Brain, Beijing, China, Pages 5–13 

Eberhart, R. C., and Kennedy, J. (1995) A new optimizer using particle swarm theory,  Proc. 
6th Int. Symp. on Micro Machine and Human Science, Nagoya, Japan, (Piscataway, NJ: 
IEEE) Pages 39–43 

Eberhart, R. C., and Shi, Y. (2001). Particle swarm optimization: developments, applications 
and resources, Proc. Congress on Evolutionary Computation, Hawaii, Pages 81–6 

Eberhart, R. C., and Shi, Y (2004). Guest Editorial special issue on particle swarm 
optimization. IEEE Trans. Evolutionary Computation, Pages 201–203 

Finke, G., Claus, A., and Gunn, E. (1984). A two- commodity network flow approach to 
traveling salesman problem. Congressus Numerantium, Vol.41, Pages167-178  

Gao, Y., and Xie, S. (2004). A blind source separation algorithm using particle swarm 
optimization, Proceedings of the IEEE 6th Circuits and Systems Symposium, Shanghai, 
China, Pages 297–300 

Garcia, J. M., Lozano, S., Smith, K., Kwok, T., Villa, G. (2002). Coordinated scheduling of 
production and delivery from multiple plants and with time windows using 
genetic algorithms. Proceedings of the 9th International Conference on Neural 
Information Processing, ICONIP '02, Vol. 3, Pages 1153 1158.  

Hankins, S.L., Wysk, R.A., and Fox, K.R. (1984). Using a CATS database for alternative 
machine loading, Journal of Manufacturing Systems, Vol. 3, Pages 115-120,  

Hu X, Shi Y and Eberhart, R C., ( 2004). Recent advances in particle swarm Proc. IEEE Int. 
Conf. on Evolutionary Computation, Pages  90–97 

Huang, F., Zhang H., Li, Xiaodong, and Li Heng. (2006). Particle swarm optimization-based 
schemes for resource-constrained project scheduling, Automation in 
Construction, Vol. 15, No. 2,  Page 252  

Huang, S.H., Zhang, H.C., and Smith, M.L. (1995). A Progressive Approach for the 
Integration of Process Planning and Scheduling. IIE Transaction, Vol.27, No.4, Pages 
456-464, ISSN: 0740-817X 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

470 

hjmξ  : Completion time of operation j for part type h on the machine m. 

mnυ  : Transportation time from machines m to n. 

φq

pji
 : Quantity of commodity q transferred from operation wpj to wpi for the part 

type P 

φ r

pij
 : Quantity of commodity r transferred from operation wpi to wpj for the part 

type P. 

φr

pji
 : Quantity of commodity r transferred from operation wpj to wpi for the part 

type P 

φ α

q

jp
 : 

Quantity of commodity q transferred from operation αpw  to wpj for the 

part type   P. 

φ β

q

jp
 : 

Quantity of commodity q transfer from operation βpw  to wpj for the part 

type P. 

pΩ      : Total tardiness of part type p.     

Ω        : Total tardiness of all jobs. 

8. References 
Abido, M A., (2002). Optimal power flow using particle swarm optimization, Electric Power 

Energy Systems, Vol.26, Pages  563–571 
Angeline, P.J. (1998). Using selection to improve particle swarm optimization, The 1998 IEEE 

International Conference and IEEE World Congress on Computational Intelligence, 
Evolutionary Computation Proceedings, Anchorage, AK, USA, Pages 84-89, ISBN: 
0-7803-4869-9  

Boeringer, D., and WandWerner, D. H (2004). Particle swarm optimization versus genetic 
algorithms for phased array synthesis, IEEE Trans. Antennas Propag., Vol. 52, Pages 
771–779 

Brandimarte, P., and Calderini, M., (1995). A heuristic bi-criterion approach to integrated 
process plan selection and job shop scheduling. International Journal of Production 
Research, Vol.33, Pages 161-181 

Carlisle, A., and Dozier, G. (2001). An off-the-shelf PSO, Proceedings of the Particle Swarm 
Optimization Workshop, Pages 1–6 

Caponetto, R., Fortuna, L., Fazzino, S., and Xibilia, M. G. (2003).Chaotic sequences to 
improve the performance of evolutionary algorithm. IEEE Trans., Vol.7, No.3, Pages 
289–304. 

Cedeño Walter , and Agrafiotis, Dimitris K. (2003). Using particle swarms for the 
development of QSAR models based on K-nearest neighbor and kernel regression, 
Journal of Computer-Aided Molecular Design, Vol.17, No.2-4, Pages 255-263, ISSN0920-
654X (Print) 1573-4951 (Online)  

CedenoWand, Agrafiotis, D K., (2003) Using particle swarms for the development of QSAR 
models based on K-nearest neighbor and kernel regression, Journal of  Computer 
Aided Mol. Des., Vol.17, Pages 255–263 

A CMPSO algorithm based approach to solve the multi-plant supply chain problem 

 

471 

Chan, F.T.S., Chung, S.H., and Chan, P.L.Y. (2005). An adaptive genetic algorithm 
with dominated genes for distributed scheduling problems, Expert Systems with 
Applications, Vol. 29, Pages 364–371. 

Chang, H., Ratnaweera. A., Halgamuge, S. K., and Watson, H. C. (2004). Particle swarm 
optimization for protein motif discovery Genet. Program., Evol. Mach., Vol. 5, Pages 
203–214 

Chang, Y. C., Lee, C. Y. (2004).  Machine scheduling with job delivery coordination, European 
Journal of Operational Research, Vol. 158, Pages 470487 

Chiu, M. and Lin, G. (2004). Collaborative supply chain planning using the artificial neural 
network approach, Journal of Manufacturing Technology Management, Vol.15, No.8, 
Pages 787-796 

Dimopoulos, C. and Zalzala, A.M.S. (2000). Recent developments in Evolutionary 
computation for manufacturing optimisation: problems, solutions, and 
comparisons, IEEE Trans. Evolutionary Computation, Vol.4, No.2, Pages 93-113, ISSN: 
1089-778X 

Eberhart, R. C., and Shi, Y. (1998a) Comparison between genetic algorithms and particle 
swarm optimization, Proc. 7th Ann. Conf. on Evolutionary Programming, Berlin, 
Springer, Pages 611–15 

Eberhart, R C., and Shi,Y., (1998b). Evolving artificial neural networks Proc. Int. Congress on 
Neural Networks and Brain, Beijing, China, Pages 5–13 

Eberhart, R. C., and Kennedy, J. (1995) A new optimizer using particle swarm theory,  Proc. 
6th Int. Symp. on Micro Machine and Human Science, Nagoya, Japan, (Piscataway, NJ: 
IEEE) Pages 39–43 

Eberhart, R. C., and Shi, Y. (2001). Particle swarm optimization: developments, applications 
and resources, Proc. Congress on Evolutionary Computation, Hawaii, Pages 81–6 

Eberhart, R. C., and Shi, Y (2004). Guest Editorial special issue on particle swarm 
optimization. IEEE Trans. Evolutionary Computation, Pages 201–203 

Finke, G., Claus, A., and Gunn, E. (1984). A two- commodity network flow approach to 
traveling salesman problem. Congressus Numerantium, Vol.41, Pages167-178  

Gao, Y., and Xie, S. (2004). A blind source separation algorithm using particle swarm 
optimization, Proceedings of the IEEE 6th Circuits and Systems Symposium, Shanghai, 
China, Pages 297–300 

Garcia, J. M., Lozano, S., Smith, K., Kwok, T., Villa, G. (2002). Coordinated scheduling of 
production and delivery from multiple plants and with time windows using 
genetic algorithms. Proceedings of the 9th International Conference on Neural 
Information Processing, ICONIP '02, Vol. 3, Pages 1153 1158.  

Hankins, S.L., Wysk, R.A., and Fox, K.R. (1984). Using a CATS database for alternative 
machine loading, Journal of Manufacturing Systems, Vol. 3, Pages 115-120,  

Hu X, Shi Y and Eberhart, R C., ( 2004). Recent advances in particle swarm Proc. IEEE Int. 
Conf. on Evolutionary Computation, Pages  90–97 

Huang, F., Zhang H., Li, Xiaodong, and Li Heng. (2006). Particle swarm optimization-based 
schemes for resource-constrained project scheduling, Automation in 
Construction, Vol. 15, No. 2,  Page 252  

Huang, S.H., Zhang, H.C., and Smith, M.L. (1995). A Progressive Approach for the 
Integration of Process Planning and Scheduling. IIE Transaction, Vol.27, No.4, Pages 
456-464, ISSN: 0740-817X 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

472 

Kennedy. J., and Eberhart, R. C 1995 Particle swarm optimization Proc. IEE 1110 se kab takE 
Int. Conf. on Neural Networks (Piscataway,NJ: IEEE), Pages 1942–48 

Khoshnevis, B., and Chen, Q. (1991). Integration of Process Planning and Scheduling 
Functions. Journal of Intelligent Manufacturing, Vol.2, No.3, Pages 165-176, 1990, 
ISSN0956-5515 (Print) 1572-8145 (Online) 

 Kolisch, R. (2000). Integrated assemble and fabrication for make-to-order production, 
International Journal of Production Economy, Vol.65, Pages 189-306 

Kolisch, R., and Hess, K. (2000). Efficient methods for scheduling make-to-order assemblies 
under resource assembly area and part availability constraints, International Journal 
of Production Research, Vol.38, No.1, Pages 207-228 

Kusiak, A., and Finke, G., (1987). Modeling and solving the flexible forging module 
scheduling problem. Engineering Optimization, Vol. 12, No. 1, Pages 1-12  

Laskari, E. C, Parsopoulos, K. E., and Vrahatis, M. N. (2002). Particle swarm optimization for 
integer programming, Proc. IEEE Congress on Evolutionary Computation, Pages 1582–
7 

Li ,Y., Yao, J., and Yao, D., (2004) Automatic beam angle selection in IMRT planning using 
genetic algorithm,  Phys. Med. Biol., Vol. 49, Pages 1915–32 

Lin, B.M.T. (2001). Scheduling in the two- machine flow shop with due date constraints, 
International Journal of Production Economy, Vol.70, No.2, Pages 117-123 

Liu, Bo-Fu, Chen,  Hung-Ming, Chen, Jian-Hung, Hwang, Shiow-Fen, and Ho, Shinn-Ying, 
(2005). MeSwarm: Memetic Particle Swarm Optimization, Proceedings of the 2005 
conference on Genetic and evolutionary computation  Washington DC, USA, Poster 
Session: Ant colony optimization and swarm intelligence, Pages: 267 – 268 

Messerschmidt, L., and Engelbrecht, A P., (2004). Learning to play games using a PSO-based 
competitive learning approach, IEEE Trans. Evolutionary Computing, Vol. 8, Pages 
280–288 

Moon, C., Kim, J., and Hur, S., (2002). Integrated Process Planning and Scheduling with 
minimizing total tardiness in multi-plants supply chain. Computers and Industrial 
Engineering, Vol. 43, No. 1-2, Pages 331-349, ISSN:0360-8352 

Naso D., Surico, M., Turchiano, B., Kaymak, U. (2007), Genetic algorithms for supply chain 
scheduling:a case study on ready mixed concrete, Erasmus Research Institute of 
Management – Report ERS-2004-096-LIS,  European Journal of Operation Research. 
Vol.177, No. 3, Pages 2069-2099 

Nasr, N. and Elsayed, A. (1990). Job shop scheduling with alternative machines, International 
Journal of Production Research. Vol. 28, No. 9, Pages 1595-1609. 1990 

Nishi, Tatsushi, Konishi, Masami. (2005). An autonomous decentralized supply 
chain planning system for multi-stage production processes, Journal of Intelligent 
Manufacturing, Vol.16, Pages 259-275 

Palmer, G.J. (1996), A simulated annealing approach to integrated production scheduling, 
Journal of Intelligent Manufacturing, Vol.7 No.3, Pages 163-176, ISSN0956-5515 (Print) 
1572-8145 (Online) 

Parsopoulos, K. E., and Vrahatis, M. N. (2002). Recent approaches to global optimization 
problems through particle swarm optimization, Nat. Comput. Vol.1, Pages 235–306 

Pepper, J.W.   Golden, B.L.   Wasil, E.A.  (2002). Solving the traveling salesman problem with 
annealing-basedheuristics: a computational study, IEEE Transactions on man, 

A CMPSO algorithm based approach to solve the multi-plant supply chain problem 

 

473 

machine, and cybernetics- part A: Systems, Man and Cybernetics, Vol.32, No.1, Pages 72-
77, ISSN: 1083-4427 

Pugachev, A., and Xing, L., (2002) Incorporating prior knowledge into beam orientation 
optimization in IMRT,  Int. J. Radiat. Oncol. Biol. Phys., Vol. 54, Pages 1565–74 

Rahmat-Samii, Y., (2003) Genetic Algorithm (GA) and particle swarm optimization (PSO) in 
engineering electromagnetics 17th Int. Conf. on Applied Electromagnetics and 
Communications, Pages 1–5 

Rai, R., Kameshwaran, S. and Tiwari, M.K. (2002). Machine-tool selection and operation 
allocation in FMS: solving a fuzzy goal programming model using a genetic 
algorithm. International Journal of Production Research, Vol.40, No.3, Pages 641-665 

Robinson, J., and Rahmat-Samii,Y (2004). Particle swarm optimization in electromagnetics,  
IEEE Trans. Antennas Propag. Vol. 52, Pages 397–407 

Robinson, J., and Rahmat-SamiiY. (2004) Particle swarm optimization in electromagnetics 
IEEE Trans. Antennas Propag. Vol. 52, Pages 397–407 

Salman A, Ahmad I and Al-Madani, S., (2002) Particle swarm optimization for task 
assignment problem, Microprocess. Microsyst. 26 363–71 

Salman, A., Ahmad, I., and Al-Madani, S. (2002). Particle swarm optimization for task 
assignment problem, Microprocess. Microsyst. Vol. 26, Pages 363–71 

Shi, Y., and Eberhart, R. C., (1998b) A modified particle swarm optimizer, Proc. the IEEE Int. 
Conf. on Evolutionary Computation (Piscataway, NJ: IEEE), Pages 69–73 

Swarnkar R. and Tiwari M.K. (2004). Modeling machine loading problem of FMSs and its 
solution methodology using hybrid Tabu search and simulated annealing based 
heuristic approach, Robotics and Computer Integrated Manufacturing, Vol. 20, No.3, 
Pages 199-209 

 Tan, W.  and Khoshnevis, B. (2004). A linearized polynomial mixed integer programming 
model for the integration of process planning and scheduling. Journal of Intelligent 
Manufacturing, Vol. 15, Pages 539-605 

Ting, Tiew-On, Rao, M.V.C., Loo, C. K. and Ngu, S.S. (2003). Solving Unit Commitment 
Problem Using Hybrid Particle Swarm Optimization, Journal of Heuristics,Vol.9, 
No.6, Pages 507-520, ISSN1381-1231 (Print) 1572-9397 (Online)  

Tiwari, M.K., and Vidyarthi, N.K. (2000). Solving machine loading problem in a flexible 
manufacturing system using a genetic algorithm based heuristic approach. 
International Journal of Production Research, Vol.38, No.14, Pages 3357-3384 

Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis and 
parameter selection,  Inf. Process. Lett. Vol. 85, Pages 317–25 

Weiqi, L.I., and Alidaee, B. (2002). Dynamics of Local Search Heuristics for the Traveling 
Salesman Problem, IEEE Transactions on man, machine, and cybernetics- part A: 
Systems, Man and Cybernetics, Vol. 32, No. 2, Pages 173- 184, ISSN: 1083-4427  

Xie, Xiao-Feng, Zhang, Wen-Jun, Yang, Zhi-Lian.(2002). A Dissipative Particle Swarm 
Optimization, Congress on evolutionary computing (CEC),Hawaii, USA, Pages 1456- 
1461 

Xing, L. (1999) A medical knowledge based system for the selection of beam orientations in 
intensity modulated radiation therapy (IMRT), Int. J. Radiat. Oncol. Biol. Phys. Vol. 
45, Pages 246–247 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

472 

Kennedy. J., and Eberhart, R. C 1995 Particle swarm optimization Proc. IEE 1110 se kab takE 
Int. Conf. on Neural Networks (Piscataway,NJ: IEEE), Pages 1942–48 

Khoshnevis, B., and Chen, Q. (1991). Integration of Process Planning and Scheduling 
Functions. Journal of Intelligent Manufacturing, Vol.2, No.3, Pages 165-176, 1990, 
ISSN0956-5515 (Print) 1572-8145 (Online) 

 Kolisch, R. (2000). Integrated assemble and fabrication for make-to-order production, 
International Journal of Production Economy, Vol.65, Pages 189-306 

Kolisch, R., and Hess, K. (2000). Efficient methods for scheduling make-to-order assemblies 
under resource assembly area and part availability constraints, International Journal 
of Production Research, Vol.38, No.1, Pages 207-228 

Kusiak, A., and Finke, G., (1987). Modeling and solving the flexible forging module 
scheduling problem. Engineering Optimization, Vol. 12, No. 1, Pages 1-12  

Laskari, E. C, Parsopoulos, K. E., and Vrahatis, M. N. (2002). Particle swarm optimization for 
integer programming, Proc. IEEE Congress on Evolutionary Computation, Pages 1582–
7 

Li ,Y., Yao, J., and Yao, D., (2004) Automatic beam angle selection in IMRT planning using 
genetic algorithm,  Phys. Med. Biol., Vol. 49, Pages 1915–32 

Lin, B.M.T. (2001). Scheduling in the two- machine flow shop with due date constraints, 
International Journal of Production Economy, Vol.70, No.2, Pages 117-123 

Liu, Bo-Fu, Chen,  Hung-Ming, Chen, Jian-Hung, Hwang, Shiow-Fen, and Ho, Shinn-Ying, 
(2005). MeSwarm: Memetic Particle Swarm Optimization, Proceedings of the 2005 
conference on Genetic and evolutionary computation  Washington DC, USA, Poster 
Session: Ant colony optimization and swarm intelligence, Pages: 267 – 268 

Messerschmidt, L., and Engelbrecht, A P., (2004). Learning to play games using a PSO-based 
competitive learning approach, IEEE Trans. Evolutionary Computing, Vol. 8, Pages 
280–288 

Moon, C., Kim, J., and Hur, S., (2002). Integrated Process Planning and Scheduling with 
minimizing total tardiness in multi-plants supply chain. Computers and Industrial 
Engineering, Vol. 43, No. 1-2, Pages 331-349, ISSN:0360-8352 

Naso D., Surico, M., Turchiano, B., Kaymak, U. (2007), Genetic algorithms for supply chain 
scheduling:a case study on ready mixed concrete, Erasmus Research Institute of 
Management – Report ERS-2004-096-LIS,  European Journal of Operation Research. 
Vol.177, No. 3, Pages 2069-2099 

Nasr, N. and Elsayed, A. (1990). Job shop scheduling with alternative machines, International 
Journal of Production Research. Vol. 28, No. 9, Pages 1595-1609. 1990 

Nishi, Tatsushi, Konishi, Masami. (2005). An autonomous decentralized supply 
chain planning system for multi-stage production processes, Journal of Intelligent 
Manufacturing, Vol.16, Pages 259-275 

Palmer, G.J. (1996), A simulated annealing approach to integrated production scheduling, 
Journal of Intelligent Manufacturing, Vol.7 No.3, Pages 163-176, ISSN0956-5515 (Print) 
1572-8145 (Online) 

Parsopoulos, K. E., and Vrahatis, M. N. (2002). Recent approaches to global optimization 
problems through particle swarm optimization, Nat. Comput. Vol.1, Pages 235–306 

Pepper, J.W.   Golden, B.L.   Wasil, E.A.  (2002). Solving the traveling salesman problem with 
annealing-basedheuristics: a computational study, IEEE Transactions on man, 

A CMPSO algorithm based approach to solve the multi-plant supply chain problem 

 

473 

machine, and cybernetics- part A: Systems, Man and Cybernetics, Vol.32, No.1, Pages 72-
77, ISSN: 1083-4427 

Pugachev, A., and Xing, L., (2002) Incorporating prior knowledge into beam orientation 
optimization in IMRT,  Int. J. Radiat. Oncol. Biol. Phys., Vol. 54, Pages 1565–74 

Rahmat-Samii, Y., (2003) Genetic Algorithm (GA) and particle swarm optimization (PSO) in 
engineering electromagnetics 17th Int. Conf. on Applied Electromagnetics and 
Communications, Pages 1–5 

Rai, R., Kameshwaran, S. and Tiwari, M.K. (2002). Machine-tool selection and operation 
allocation in FMS: solving a fuzzy goal programming model using a genetic 
algorithm. International Journal of Production Research, Vol.40, No.3, Pages 641-665 

Robinson, J., and Rahmat-Samii,Y (2004). Particle swarm optimization in electromagnetics,  
IEEE Trans. Antennas Propag. Vol. 52, Pages 397–407 

Robinson, J., and Rahmat-SamiiY. (2004) Particle swarm optimization in electromagnetics 
IEEE Trans. Antennas Propag. Vol. 52, Pages 397–407 

Salman A, Ahmad I and Al-Madani, S., (2002) Particle swarm optimization for task 
assignment problem, Microprocess. Microsyst. 26 363–71 

Salman, A., Ahmad, I., and Al-Madani, S. (2002). Particle swarm optimization for task 
assignment problem, Microprocess. Microsyst. Vol. 26, Pages 363–71 

Shi, Y., and Eberhart, R. C., (1998b) A modified particle swarm optimizer, Proc. the IEEE Int. 
Conf. on Evolutionary Computation (Piscataway, NJ: IEEE), Pages 69–73 

Swarnkar R. and Tiwari M.K. (2004). Modeling machine loading problem of FMSs and its 
solution methodology using hybrid Tabu search and simulated annealing based 
heuristic approach, Robotics and Computer Integrated Manufacturing, Vol. 20, No.3, 
Pages 199-209 

 Tan, W.  and Khoshnevis, B. (2004). A linearized polynomial mixed integer programming 
model for the integration of process planning and scheduling. Journal of Intelligent 
Manufacturing, Vol. 15, Pages 539-605 

Ting, Tiew-On, Rao, M.V.C., Loo, C. K. and Ngu, S.S. (2003). Solving Unit Commitment 
Problem Using Hybrid Particle Swarm Optimization, Journal of Heuristics,Vol.9, 
No.6, Pages 507-520, ISSN1381-1231 (Print) 1572-9397 (Online)  

Tiwari, M.K., and Vidyarthi, N.K. (2000). Solving machine loading problem in a flexible 
manufacturing system using a genetic algorithm based heuristic approach. 
International Journal of Production Research, Vol.38, No.14, Pages 3357-3384 

Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis and 
parameter selection,  Inf. Process. Lett. Vol. 85, Pages 317–25 

Weiqi, L.I., and Alidaee, B. (2002). Dynamics of Local Search Heuristics for the Traveling 
Salesman Problem, IEEE Transactions on man, machine, and cybernetics- part A: 
Systems, Man and Cybernetics, Vol. 32, No. 2, Pages 173- 184, ISSN: 1083-4427  

Xie, Xiao-Feng, Zhang, Wen-Jun, Yang, Zhi-Lian.(2002). A Dissipative Particle Swarm 
Optimization, Congress on evolutionary computing (CEC),Hawaii, USA, Pages 1456- 
1461 

Xing, L. (1999) A medical knowledge based system for the selection of beam orientations in 
intensity modulated radiation therapy (IMRT), Int. J. Radiat. Oncol. Biol. Phys. Vol. 
45, Pages 246–247 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

474 

Arena, P., Caponetto, R., Fortuna, L., Rizzo, A., and La Rosa, M. (2000), Self organization in 
non recurrent complex system. Int. J. Bifurcation Chaos, Vol.10, No.5, Pages1115–
1125. 

Determan, J. and Foster, A. (1999). Using chaos in genetic algorithm. In Proceedings of the 
IEEE Conference on Evolutionary computation, IEEE, Piscataway, New Jersey, Vol.3, 
Pages 2094–2101 

Manganaro, G. and Pineda, D. G. J. (1997). DNA computing based on chaos. In Proceedings of 
the IEEE International Conference on Evolutionary Computation, Piscataway, New 
Jersey, IEEE, Pages. 255–260  

Suganthan, N. (1999). Particle swarm optimizer with neighbourhood operator. In Proceedings 
of the IEEE International Conference on Evolutionary computation, IEEE, Piscataway, 
New Jersey, Vol. 3, Pages 1958–1962  

Nozawa, H. A (1992). A neural network model as globally coupled map and application 
based on chaos, Chaos, Pages 377–386. 

Wang, L. and Smith, K. (1998). On chaotic simulated annealing. IEEE Trans. Neural Networks, 
Vol.9, Pages 716–718. 

26 

Ant colonies for performance optimization of 
multi-components systems subject to random 

failures 
Nabil Nahas, Mustapha Nourelfath and Daoud Ait-Kadi 

Universite Laval, Mechanical Engineering Department CIRRELT 
Canada 

1. Introduction 
Reliability has been considered as an important design measure in industry. The design of a 
system involves in general numerous discrete choices among available component types 
based on reliability, cost, performance, weight, etc. If the design objective is to maximize 
reliability for a certain cost requirement, then a strategy is required to identify the optimal 
combination of components and/or design configuration. This leads to combinatorial 
optimization problems which are NP-hard. For large industrial problems, exact methods are 
lacking since they require a very large amount of computation time to obtain the solution of 
the problem. This chapter will focus on the use of ant colonies to solve three optimal design 
problems which are among the most important in practice: 
1. The reliability optimization  of series  systems  with multiple-choice  constraints 

incorporated at each subsystem, to maximize the system reliability subject to the system 
budget.  This  is  a nonlinear binary integer programming problem and characterized as 
an NP-hard problem. 

2. The redundancy allocation problem (RAP) of binary series-parallel systems. This is a 
well  known  NP-hard  problem  which  involves  the  selection  of elements   and 
redundancy  levels  to  maximize  system reliability  given  various   system-level 
constraints. As telecommunications and internet protocol networks, manufacturing and 
power systems are becoming more and more complex, while requiring short 
developments  schedules  and very high reliability,  it is becoming increasingly 
important to develop efficient solutions to the RAP. 

3. Buffers and machines selections in unreliable series-parallel production lines: we 
consider a series-parallel manufacturing production line, where redundant machines 
and in-process buffers are included to achieve a greater production rate. The objective is 
to maximize production rate subject to a total cost constraint. Machines and buffers are 
chosen from a list of products available in the market. The buffers are characterized by 
their cost and size. The machines are characterized by their cost, failure rate, repair rate 
and processing time. To estimate series-parallel production line performance, an 
analytical decomposition-type approximation is proposed. Simulation results show that 
this approximate technique is very accurate. The optimal design problem is formulated 
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as a combinatorial optimization one where the decision variables are buffers and types 
of machines, as well as the number of redundant machines. 

For each problem, a literature review will be presented. This review will focus on meta-
heuristics in general, and on ant colonies in particular. Recent advances on efficient solution 
approaches based on Hybrid Ant Colony Optimization (HACO) will be detailed. 

2. Reliability optimization of a series system 
2.1. Literature review 
As it is often desired to consider the practical design issue of handling a variety of different 
component types, this paper considers a reliability optimization problem with multiple-
choice constraints incorporated. To deal with such reliability optimization problems with 
multiple-choice constraints incorporated, Sung and Cho [9] have used an efficient branch-
and-bound method. Nourelfath and Nahas [6] have solved the reliability optimization 
problem by using quantized neural networks. [11] deals with a reliability optimization 
problem for a series system with multiple choice constraints incorporated to maximize the 
system reliability subject to the system budget. The problem is formulated as a binary 
integer programming problem with a non linear objective function [1], which is equivalent 
to a knapsack problem with multiple-choice constraints, so that it is NP-hard [3]. Some 
branch-and-bound methods for such knapsack problems with multiple-choice constraints 
have been suggested in the literature [5,7,8]. However, for large industrial problems, these 
methods are lacking since they require a very large amount of computation time to obtain 
the solution of the problem. This section describes the use of an ant system to obtain optimal 
or nearly optimal solutions very quickly. 

2.2. Optimal design problem 
Let us consider a series system of n components. For each component, there are different 
technologies available with varying costs, reliabilities, weights and other characteristics. The 
design problem we propose to study is to select the best combination of technologies to 
maximize reliability given cost. Only one technology will be adopted for each component. In 
order to formulate the problem in mathematical expression, the following notations are 
introduced first: 
n the number of components 
Mi the number of technologies available for the component i 

 the cost of a component i using the technology j (  is assumed to be known) 
 the reliability of the component i when the technology j is used 

B the available budget 
TC the total cost. 
We specify the decision variable  (with j = 1, 2, . . ., M; and i = 1, 2, . . ., n) as:  

 
Considering these notations, the proposed series-system reliability optimization problem is 
expressed in the following binary nonlinear integer programming problem: 
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Maximize  

Subject to  (1) 

  
(2)

 

  (3) 
Constraint (1) represents the budget constraint; without loss of generality, we consider that 
B is an integer. Constraint (2) represents the multiple-choice constraint, and constraint (3) 
defines the decision variables. 
When a solution satisfies all the constraints, it is called a feasible solution; otherwise, the 
solution is said to be infeasible. Our goal is to find an optimal solution or sometimes a 
nearly optimal solution. This is motivated by the fact that in real size industrial systems, the 
search space of the reliability optimization problem formulated in this paper is very large, 
taking the use on non heuristic approaches infeasible. Ant system is a recent kind of meta-
heuristic which has been shown to be suitable (especially when combined with local search) 
for combinatorial optimization problems with a good neighborhood structure (see e.g. 
[6,10]), as in the case of the reliability optimization problem formulated in this paper. 

2.3. Solution approach of the reliability optimization problem 
To apply the ant system (AS) algorithm to a combinatorial optimization problem, it is 
convenient to represent the problem by a graph , where  are the nodes and  is 
the set of edges. To represent our problem as such a graph, the set of nodes g is given by 
components and technologies, and edges connect each component to its available 
technologies. Ants cooperate by using indirect form of communication mediated by 
pheromone they deposit on the edges of the graph  while building solutions. 
Informally, our algorithm works as follows: m ants are initially positioned on the node 
representing the first component. Each ant will construct one possible structure of the entire 
system. In fact, each ant builds a feasible solution (called a tour) by repeatedly applying a 
stochastic greedy rule, called, the state transition rule. Once all ants have terminated their 
tour, the following steps are performed: 
• An improvement procedure is applied. This procedure, which will be detailed later, is 

composed of a specific improvement algorithm (called algorithm 1) and a local search. 
• The amount of pheromone is modified by applying the global updating rule. 
Ants are guided, in building their tours, by both heuristic information and by pheromone 
information. Naturally, an edge with a high amount of pheromone is a very desirable 
choice. The pheromone updating rules are designed so that they tend to give more 
pheromone to edges which should be visited by ants. 
The state transition rule used by the ant system is given in equation (4). This represents the 
probability with which ant k selects a technology j for component i: 

  
(4)
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(4)
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where  and  are respectively the pheromone intensity and the heuristic information 
between component i and technology j .  is the relative importance of the trail and  is the 
relative importance of the heuristic information . The problem specific heuristic j 

information used is  where  and  represent the associated reliability and cost. 

That is, technologies with higher reliability and smaller cost have greater probability to be 
chosen. 
During the construction process, no guarantee is given that an ant will construct a feasible 

solution  which  obeys the budget  constraint (i.e. ). The unfeasibility of 

solutions is treated in the pheromone update: the amount of pheromone deposited by an ant 
is set to a high value if the generated solution is feasible and to a low value if it is infeasible. 
These values are dependent of the solution quality. Infeasibilities can then be handled by 
assigning penalties proportional to the amount of budget violations. In the case of feasible 
solutions, an additional penalty proportional to the obtained solution is introduced to 
improve its quality. 
Following the above remarks, the trail intensity is updated as follows: 

  
(5)

 
 is a coefficient such that (1 - ) represents the evaporation of trail and  is : 

  (6) 
where m is the number of ants and  is given by: 

  
(7)

 
where Q is a positive number, and penaltyk is defined as follows: 

  

(8)

 
B is the available budget, TCk is the total cost obtained by ant k, Rk is the reliability obtained 
by ant k and R* is the best obtained solution. Parameters a and b represent the relative 
importance of penalties. It can be easily seen from the above equations that by introducing a 
penalty function, we aim at encouraging the AS algorithm to explore the feasible region and 
infeasible region that is near the border of feasible area and discouraging, but allowing, 
search further into infeasible region. 
It is well known that the performance of AS algorithms can be greatly enhanced when 
coupled to local improvement procedures [2]. Following this, two local improvement 
algorithms are included in our AS approach (called local search algorithm and algorithm 1). 
Algorithm 1 uses the remaining budget (the amount not used by the ant) to improve the 
solution. In fact, some generated feasible solutions do not use the entire available budget. 
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This algorithm improves the initial solution by using this remaining budget to exchange 
some actual technologies by more reliable other technologies. A similar idea can be found in 
[10] where a neural network is presented to solve the job-shop scheduling problem, and 
where a similar procedure is used to improve the obtained solutions by eliminating the time 
segments during which all machines are idle. 
The local search algorithm proceeds to change in turn each pair of chosen technologies by 
another pair. For each component, technologies are indexed in ascending order in 
accordance with their reliability. A solution S = {u, v, ...} indicates that component 1 uses 
technology with index u, component 2 uses technology with index v, etc. Let consider for 
example a series system with 3 components and 6 available technologies for each 
component. Suppose that the obtained solution at a given cycle is S = {3, 2, 5}. The local 
search will evaluate the following solutions: 

S={4, 1,5}, S = {4, 2, 4}, S = {2, 3, 5}, S = {2, 2, 6}, S = {3, 3, 4}, S = {3, 1,6}. 

Among all these evaluated solutions, whenever an improvement feasible solution is 
detected, the new solution replaces the old one. It has been shown in [11] that the 
experimental results showed that the optimal or nearly optimal solutions could be obtained 
quickly. In the next section, Hybrid Ant Colony Optimization (HACO) will be used to solve 
the redundancy allocation problem. This HACO uses rather the extended great deluge 
algorithm as a local search within the proposed ant colony algorithm. 

3. Redundancy allocation problem 
3.1. Problem description 
The redundancy allocation problem (RAP) is a well known combinatorial optimization 
problem where the design goal is achieved by discrete choices made from elements 
available on the market. The system consists of n components in series. For each component 
i (i = 1, 2, ..., n) there are various versions of elements, which are proposed by the suppliers 
on the market. Elements are characterized by their cost and weight according to their 
version. Each component i contains a number of elements connected in parallel. Different 
elements can be placed in parallel. A component i is functioning properly if at least ki of its pi 
elements are operational (k-out-of-n: G). 
The series-parallel system is a logic-diagram representation for many design problems 
encountered in industrial systems. As it is pointed out in [18] and [31], electronics industry 
is an example where the RAP is very important. In fact, in this industry most systems 
require very high reliability and the products are usually assembled and designed using off-
the-shelf elements (capacitors, transistors, microcontrollers, etc.) with known characteristics. 
Other examples where the above type of structure is becoming increasingly important 
include telecommunications systems and power systems. In all these systems, redundancy is 
indeed a necessity to reach the required levels of reliability and the RAP studied in this 
paper is therefore one of the major problems inherent to optimal design of reliable systems. 
Assumptions 
1. Elements and the system may experience only two possible states: good and failed. 
2. The system weight and cost are linear combinations of element weight and cost. 
3. The element attributes (reliability, cost and weight) are known and deterministic. 
4. Failed elements do not damage the system, and are not repaired. 
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information used is  where  and  represent the associated reliability and cost. 

That is, technologies with higher reliability and smaller cost have greater probability to be 
chosen. 
During the construction process, no guarantee is given that an ant will construct a feasible 

solution  which  obeys the budget  constraint (i.e. ). The unfeasibility of 

solutions is treated in the pheromone update: the amount of pheromone deposited by an ant 
is set to a high value if the generated solution is feasible and to a low value if it is infeasible. 
These values are dependent of the solution quality. Infeasibilities can then be handled by 
assigning penalties proportional to the amount of budget violations. In the case of feasible 
solutions, an additional penalty proportional to the obtained solution is introduced to 
improve its quality. 
Following the above remarks, the trail intensity is updated as follows: 

  
(5)
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  (6) 
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(7)
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(8)
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require very high reliability and the products are usually assembled and designed using off-
the-shelf elements (capacitors, transistors, microcontrollers, etc.) with known characteristics. 
Other examples where the above type of structure is becoming increasingly important 
include telecommunications systems and power systems. In all these systems, redundancy is 
indeed a necessity to reach the required levels of reliability and the RAP studied in this 
paper is therefore one of the major problems inherent to optimal design of reliable systems. 
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Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

480 

5. All redundancy is active: failure rates of elements when not in use are the same as when 
in use. 

6. The supply of elements is unlimited. 
7. Failures of individual elements are s-independent. 
Notation 
Rsys overall reliability of the series-parallel system 
R* optimal solution 
C cost constraint 
W weight constraint 
n number of components 
i index for components 
ai number of available elements choices (i.e., versions) for component i 
rij reliability of element j available for component i 
wij weight of element j available for component i 
cij cost of element j available for component i 
xij number of element j used in component i 
xi  
pi total number of elements used in component i 
pmax maximum number of elements in parallel 
ki minimum number of elements in parallel required for component i 
k (k1, k2, ..., kn) 

 reliability of component i, given ki 
Ci (xi) total cost of component i 
Wi (xi) total cost of component i 
The RAP is formulated to maximize system reliability given restrictions on system cost and 
weight. That is, 

Maximize  (9) 

Subject to   (10) 

  
(11)

 
Constraints (10) and (11) represent respectively the budget and the weight constraints. If 
there is a pre-selected maximum number of elements which are allowed in parallel, the 
following constraint (12) is added: 

  (12) 

3.2. Literature review 
The RAP is NP-hard [17] and has previously been solved using many different optimization 
approaches and for different formulations as summarized in [39], and more recently in [32]. 
Optimization approaches to determine optimal or very good solutions for the RAP include 
dynamic programming, e.g. [12,25,35,41], mixed-integer and nonlinear programming, e.g. 
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[32], and integer programming, e.g. [14,27,28,34]. Nevertheless, these methods are limited to 
series-parallel structures where the elements used in parallel are identical. This constitutes a 
drawback since in practice many systems designs use different elements performing the 
same function, to reach high reliability level [31]. For example, as explained in [18], 
(airplanes use a primary electronic gyroscope and a secondary mechanical gyroscope 
working in parallel, and most new automobiles have a redundant (spare) tire with different 
size and weight characteristics forming a 4-out-of-5: G standby redundant system). Because 
of the above-mentioned drawback and of the exponential increase in search space with 
problem size, heuristics have become a popular alternative to exact methods. Meta-
heuristics, in particular, offer flexibility and a practical way to solve large instances of the 
relaxed RAP where different elements can be placed in parallel. 
Genetic algorithm (GA) is a well-known meta-heuristic used to solve combinatorial 
reliability optimization problems [18,33,37,42,43]. In addition to genetic algorithms, other 
heuristic or meta-heuristic approaches have also been efficiently used to deal with system 
reliability problems. A tabu search (TS) meta-heuristic [30] has been developed in [31] to 
efficiently solving the RAP, while the ant colony optimization meta-heuristic [20] is used in 
[4] to solve the problem. 
In light of the aforementioned approaches, the method presented here gives a heuristic 
approach to solve the RAP. This method combines an ant colony optimization approach and 
a degraded ceiling local search technique. This approach is said to be hybrid and will be called 
ACO/DC (for Ant Colony Optimization and Degraded Ceiling). 
The idea of employing a colony of cooperating agents to solve combinatorial optimization 
problems was recently proposed in [21]. The ant colony approach has been successfully 
applied to the classical traveling salesman problem [22,23], to the quadratic assignment 
problem [26], and to scheduling [13]. Ant colony shows very good results in each applied 
area. The ant colony has also been adapted with success to other combinatorial optimization 
problems such as the vehicle routing problem [15], telecommunication networks 
management [24], graph coloring [19], constraint satisfaction [38] and Hamiltonian graphs 
[44]. In [11], the authors used ant system to solve the optimal design problem of series 
system under budget constraints. The ant colony approach has also been applied for the 
RAP of multi-state systems in [36]. For the RAP in the binary state case, which is the focus of 
the present paper, the only existing work is that of [4]. 

3. 3. Hybrid solution approach: ACO/DC 
As for the problem studied in section 2, to apply the AGO meta-heuristic to this problem, it 
is convenient to represent the problem by a graph , where  are the nodes and  is 
the set of edges. To represent our problem as such a graph, we introduce the following sets 
of nodes and edges [55]:  
• Three sets of nodes: 

1. The first set of nodes (N1) represents the components. 
2. The second set of nodes (N2) represents, for each component, the numbers of 

elements which can be used in parallel. For example, if the maximum number of 
elements in parallel is three (pmax = 3), the set N2 will be given by three nodes 
corresponding to one element, two parallel elements and three parallel elements. 

3. The third set (N3) represents the versions of elements available for each 
component. 
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elements which can be used in parallel. For example, if the maximum number of 
elements in parallel is three (pmax = 3), the set N2 will be given by three nodes 
corresponding to one element, two parallel elements and three parallel elements. 

3. The third set (N3) represents the versions of elements available for each 
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• Two sets of edges: 
1. The first set of edges is used to connect each component node in the set N1 to the 

corresponding nodes in N2. 
2. The second set of edges is used to connect the nodes in N2 to the nodes in N3 of 

their available versions. 
Informally, our algorithm works as follows: m ants are initially positioned on a node 
representing a component. Each ant represents one possible structure of the entire system. 
This entire structure is defined by the vectors xi (i = 1, ..., n). Each ant builds a feasible 
solution (called a tour) to our problem by repeatedly applying stochastic greedy rules (i.e., 
the state transition rules). Once all ants have terminated their tour, the amount of pheromone 
on edges is modified by applying the global updating rule. Ants are guided, in building their 
tours, by both heuristic information (they prefer to choose "less expansive" edges), and by 
pheromone information. Once an ant has built a structure, the obtained solution is improved 
by using a local search algorithm. This step is performed only in the following cases: 
• the obtained solution by the ant is feasible and, 
• the quality of the solution is "good". The term "good" means here that the reliability Rsys 

of the structure should be either better than the best solution R*, i.e., Rsys  R*,or close to 

this best solution R*, i.e.,  where l represents the solution quality level. 

Ants can be guided, in building their tours, by pheromone information and heuristic 
information. Naturally, an edge with a high amount of pheromone is a very desirable 
choice. The pheromone updating rules are designed so that they tend to give more 
pheromone to edges which should be visited by ants. 
In the following we discuss the state transition rules and the global updating rules. 
State transition rules 
In the AGO algorithm, each ant builds a solution (called a tour) to our problem by 
repeatedly applying two different state transition rules. At each step of the construction 
process, ants use: (1) pheromone trails (denoted by ) to select the number of elements 
connected in parallel and the versions of elements; (2) and a problem- specific heuristic 
information (denoted by  ) related to the versions of elements. 
An ant positioned on node i (i.e. component i) chooses the total number pi of elements to be 
connected in parallel. This choice is done by applying the rule given by: 

  

(13)

 

where 1 is a parameter that controls the relative weight of the pheromone ( ). We favour 
the choice of edges which are weighted with greater amount of pheromone. 
When an ant is positioned on node pi representing the selected number of elements 
connected in parallel in component i, it has to choose these pi versions of elements. This 
choice is done by applying the rule given by: 
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(14)

 
where 2 and  are respectively parameters that control the relative weight of the 
pheromone ( ) and the local heuristic ( ). 
We tested different heuristic information and the most efficient was  where rij 
and ij represent respectively the associated reliability and weight of version j for 
component i. In equation (14) we multiply the pheromone on edges by the corresponding 
heuristic information. In this way we favour the choice of edges which are weighted with 
smaller weight and greater reliability and which have a greater amount of pheromone. 
Global updating rule 
During the construction process, no guarantee is given that an ant will construct a feasible 
solution which obeys the constraints (11) and (12). The unfeasibility of solutions is treated in 
the pheromone update: the amount of pheromone deposited by an ant is set to a high value 
if the generated solution is feasible and to a low value if it is infeasible. These values are 
dependent of the solution quality. Infeasibilities can then be handled by assigning penalties 
proportional to the amount of cost and weight violations. Thus, the trail intensity is updated 
as follows: 

  (15) 
 is a coefficient such that (1 - ) represents the evaporation of trail and  is : 

  (16) 

where m is the number of ants. Furthermore,  is given by: 

  (17) 

where Q is a positive number,  is the system reliability for ant k, and penaltyk is defined as 
follows: 

  

(18)
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and TWk are respectively the total cost and the total weight obtained by ant k. Parameters  
and  represent the relative importance of penalties. 
The degraded ceiling local search meta-heuristic 
The principle of the degraded ceiling meta-heuristic 
The performance of algorithms based on the AGO meta-heuristic can be greatly enhanced 
when coupled to local improvement procedures. A degraded ceiling (DC) based algorithm 
is included in our AGO approach to improve the solutions obtained by the ants. 
The degraded ceiling is a local search meta-heuristic recently introduced in [6a] and [6b]. 
Like other local search methods, the degraded ceiling iteratively repeats the replacement of 
a current solution s by a new one s*, until some stopping condition has been satisfied. The 
new solution is selected from a neighbourhood N(s). The mechanism of accepting or 
rejecting the candidate solution from the neighbourhood is different of other methods. In 
degraded ceiling approach, the algorithm accepts every solution whose objective function is 
more or equal (for the maximization problems) to the upper limit L, which is monotonically 
increased during the search by L. 
The initial value of ceiling (L) is equal to the initial cost function f(s) and only one input 
parameter L has to be specified. In [16], the authors applied successfully the degraded 
ceiling on exam timetabling problem and demonstrated that it outperformed well-known 
best results found by others meta-heuristics, such as simulated annealing and tabu search. 
They showed two main properties of the degraded ceiling algorithm: 
• The search follows the degrading of the ceiling. Fluctuations are visible only at the 

beginning, but later, all intermediate solutions lie close to a linear line. 
• When  a  current  solution  reaches  the  value  where  any  further  improvement  is 

impossible, the search rapidly converges. The search procedure can then be terminated 
at this moment. 

The degraded ceiling algorithm is an extension of the "great deluge" method which was 
introduced as an alternative to simulated annealing. Degraded ceiling, simulated annealing 
and "great deluge" algorithms share the characteristic that they may both accept worse 
candidate solutions than the current one. The difference is in the acceptance criterion of 
worse solutions. The simulated annealing method accepts configurations which deteriorate 
the objective function only with a certain probability. The degraded ceiling algorithm 
incorporates both the worse solution acceptance (of the "great deluge" algorithm) if the 
solution fitness is less than or equal to some given upper limit L, i.e. (f(s*)  L), and the well-
known hill climbing rule (f(s*)  f(s)). 
Like simulated annealing, the degraded ceiling algorithm may accept worse candidate 
solutions during its run. The introduction of the dynamic parameter has an important effect 
on the search. As explained in [16], the decreasing of L may be seen as a control process, 
which drives the search towards a desirable solution. Note finally that degraded ceiling 
algorithm has the advantage to require only one parameter ( L) to be tuned. 

3.4. Test problems and results 
The test problems, used to evaluate the performance of the ACO/DC methodology for the 
RAP, were originally proposed by Fyffe et al. in [25] and modified by Nakagawa and 
Miyazaki in [35]. Fyffe et al. [25] specified constraint limits of 130 units of system cost, 170 
units of system weight and ki = 1 (i.e., l-out-of-n:G). Nakagawa and Miyazaki [35] developed 
33 variations of the original problem, where the cost constraint C is set to 130 units and the 
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weight constraint W varies from 159 units to 191 units. The system is designed with 14 
components. For each component, there are three or four element choices [55]. 
Earlier optimization approaches to the problem (e.g., [25] and [35]), required that only 
identical elements be placed in redundancy. Such approaches determined optimal solutions 
through dynamic programming and IP models, but only a restricted set of solutions was 
considered due to computational or formulation limitations of exact solution methods. 
Nevertheless, for the ACO/DC approach, as in [81], [31] and [4], different types are allowed 
to reside in parallel. In [18], Coit and Smith first solved the RAP with a genetic algorithm 
without restricting the search space. More recently, Kulturel-Konak et al. solved this 
problem in [31] with a tabu search algorithm, while Liang and Smith [31] used an ant colony 
optimization approach improved by a local search. Because the heuristic benchmarks for the 
RAP where elements mixing is allowed are the methods in [18], [31] and [4], there are 
chosen for comparison. Our approach will be compared also with [35] and [29]. By 
comparing the proposed ACO/DC methodology to all the above-mentioned papers (e.g., 
[18], [31], [4], [35] and [29]), we compare it to the best-known solutions found in literature at 
the best of our knowledge.  
In meta-heuristics such as AGO, simulated annealing and degraded ceiling, it is necessary to 
tune a number of parameters to have good performance. The user-specified parameters of 
the ACO/DC algorithm were varied to establish the values most beneficial to the 
optimization process. Following the tuning procedure used in [21-23], we tested various 
values for each parameter, while keeping the others constant. Based on these initial 
experiments the values found to be most appropriate are: 

1 = 0.1, 2 = 0.5, =1, Q = 0.01,  = 0.9, a = 1, b = 10, 0 = 1, L = 0.0001 and l = 0.01. 

These parameters values are used for all test problems. 50 ants are used in each iteration. 
When combined to the degraded ceiling algorithm, AGO converges quickly to optimal or 
near optimal solutions. Note that the degraded ceiling is called only if the obtained solutions 
are very good. For the considered problem instances, the maximum number of iterations 
needed does not exceed 300 iterations. 
Comparing the results obtained by our approach with those of previous works 
[18,29,31,4,35], it has been shown in [55] that: 
1. The solutions found by our algorithm are all better than those of Hsieh [19]. 
2. In 31 of the 33 test cases, the solutions found by our algorithm are better than those of 

Nakagawa and Miyazaki [27] while the rest (i.e., 2 cases) are as good as those they 
found. 

3. Cases 22 to 29 and 31 to 32 are as good as those found by the genetic algorithm of Coit 
and Smith [8] while the rest (i.e., 24 instances) are all better than those they found. 

4. In 6 of the 33 test cases, the ACO/DC outperformed the tabu search algorithm of 
Kulturel-Konak et al. [21] while it was very close but at a lower reliability in only 2 
instances.  

5. In 9 of the 33 test cases, the solutions found by our algorithm are better than those of 
Liang and Smith [24] while the rest are as good as those they found. 

Both the degraded ceiling and the ant colony algorithms are meta-heuristics. Our 
contribution is based on the ACO/DC hybridization and very good results are obtained. 
The RAP is one of the most difficult combinatorial optimization problems inherent to 
optimal design of reliable systems. We believe and we show that two efficient meta-
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heuristics have to cooperate in order to solve efficiently this problem, namely the AGO and 
the DC meta-heuristics. 
The study conducted in this section shows again that hybridization of meta-heuristics is a 
very promising methodology for NP-hard reliability design problems. 

4. Selecting machines and buffers in series-parallel production lines 
4.1. Optimal design problem 
Consider the series-parallel production line. Buffers are inserted to limit the propagation of 
disruptions, and this increases the average production rate of the line. This line consists of n 
components and n-l buffers. Each component of type i (i = 1,2,..., n) can contain several 
identical machines connected in parallel. For each component i, there are a number of 
machine versions available in the market. 
In  order to  formulate  the  problem in  mathematical  expression,  the  following notations 
are introduced first:  
hi version number of machine i 
Hi maximum hi available 
h { hi }, hi  {1,2,.., Hi } 
ri  number of elements connected in parallel in i  
Ri  maximum ri allowed 
C(hi) cost of each machine of version hi 
P(hi) isolated production rate of machine with version hi 
T(hi) processing time of machine with version hi 

(hi) failure rate of each machine with version hi 
(hi) repair rate of each machine with version hi 

u(hi) speed of the machine's version hi 
We assume that a buffer is also chosen from a list of available buffers. The buffers of 
different versions f differ by their size Nbf and cost Cbf. The total number of different buffer 
versions available for mth component is denoted by Fm. The vector f = {fm}, where 0  fm  Fm, 
defines versions of buffers chosen for each component. The entire production line structure 
is defined by the vectors h, r and f = {fm}. 
For the given h, r and f, the total cost of the production line can be calculated as: 

  (19) 

The optimal design problem of production system can be formulated as follows: find the 
system configuration f, h and r that maximizes the total production rate PT such that the 
total cost CT is less or equal to a specified value C*. That is, 

Maximize PT (f, h, r) (20) 

Subject  CT (f, h, r)  C* (21) 

The input of this problem is C* and the outputs are the optimal production rate PTMax and 
the corresponding configuration determined by the vectors f, h, r. The resulting maximum 
value of PT is written PTMax (C*). 
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4.2. Literature review 
There is a substantial literature on the analysis of production lines with buffers [45]. This 
literature is mainly concerned with the prediction of performance. Much of it is aimed at 
evaluating the average production rate (throughput) of a system with specified machines 
and buffers. In [46], the authors present a set of algorithms that select the minimal buffer 
space in a flow line to achieve a specified production rate. The algorithms are based on 
analytical approximations of the Buzacott model of a production line [47,48]. For a recent 
review of the literature on production line optimization, the reader is referred to [46]. The 
goal of the existing works is to choose buffers sizes for a production line. They all assume 
that the number of machines is specified, and the only parameters to find are buffers sizes. 
The proposed approach to optimal design aims at selecting both buffers and machines; it gives 
also the number of redundant machines used in parallel. 
To deal with the optimal design problem considered in this work, it is mandatory to 
develop a method for throughput evaluation of series-parallel manufacturing production 
lines. This method has to take into account two characteristics: 
(i)  Components may consist of banks of parallel machines. Concerning this first 

characteristic, we attempt to represent each stage by an equivalent single component.  
(ii) The processing rate may differ from component to component. To deal with this second 

characteristic, we use a continuous (or fluid) material model type which produces very 
good results. This consists of two main steps. First, the non homogeneous line is 
transformed into an approximately equivalent homogeneous one. In a second step, the 
resulting homogeneous line is analysed by using the well-known decomposition 
method for homogeneous lines [49]. 

The effect of the used simplifications for estimating throughput is examined by comparing 
the results provided by our approximate technique to simulation results on many examples. 
This comparison shows that the proposed approximate technique is very accurate. 
As the formulated problem is a complicated combinatorial optimization one, an exhaustive 
examination of all possible solutions is not realistic, considering reasonable time limitations. 
Because of this, we develop two heuristics to solve the problem. The first heuristic is inspired 
from the ant colony system meta-heuristic: a recent kind of biologically inspired algorithms 
[48,49]. The second proposed heuristic is based on the simulated annealing meta-heuristic [50]. 

4.3. Throughput evaluation of series-parallel production lines 

4.3.1. Summary of the method 
The proposed method approximates each component (i.e. each set of parallel machines) of 
the original production line as a single unreliable machine. The system is then reduced to a 
single machine per component production line of the type represented in figure 2. The 
equivalent machines may have different processing rates. To determine the steady state 
behaviour of this non-homogeneous production line, it is first transformed into an 
approximately equivalent homogeneous line. Then, the well-known Dallery-David-Xie 
algorithm (DDX) is used to solve the decomposition equations of the resulting 
(homogenous) line [51]. 

4.3.2. Replacing each component by an equivalent machine 
The decomposition techniques developed in the literature are efficient in estimating 
performance characteristics of series production lines. In these techniques it is necessary for 
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heuristics have to cooperate in order to solve efficiently this problem, namely the AGO and 
the DC meta-heuristics. 
The study conducted in this section shows again that hybridization of meta-heuristics is a 
very promising methodology for NP-hard reliability design problems. 
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identical machines connected in parallel. For each component i, there are a number of 
machine versions available in the market. 
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We assume that a buffer is also chosen from a list of available buffers. The buffers of 
different versions f differ by their size Nbf and cost Cbf. The total number of different buffer 
versions available for mth component is denoted by Fm. The vector f = {fm}, where 0  fm  Fm, 
defines versions of buffers chosen for each component. The entire production line structure 
is defined by the vectors h, r and f = {fm}. 
For the given h, r and f, the total cost of the production line can be calculated as: 
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The optimal design problem of production system can be formulated as follows: find the 
system configuration f, h and r that maximizes the total production rate PT such that the 
total cost CT is less or equal to a specified value C*. That is, 

Maximize PT (f, h, r) (20) 

Subject  CT (f, h, r)  C* (21) 

The input of this problem is C* and the outputs are the optimal production rate PTMax and 
the corresponding configuration determined by the vectors f, h, r. The resulting maximum 
value of PT is written PTMax (C*). 
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4.2. Literature review 
There is a substantial literature on the analysis of production lines with buffers [45]. This 
literature is mainly concerned with the prediction of performance. Much of it is aimed at 
evaluating the average production rate (throughput) of a system with specified machines 
and buffers. In [46], the authors present a set of algorithms that select the minimal buffer 
space in a flow line to achieve a specified production rate. The algorithms are based on 
analytical approximations of the Buzacott model of a production line [47,48]. For a recent 
review of the literature on production line optimization, the reader is referred to [46]. The 
goal of the existing works is to choose buffers sizes for a production line. They all assume 
that the number of machines is specified, and the only parameters to find are buffers sizes. 
The proposed approach to optimal design aims at selecting both buffers and machines; it gives 
also the number of redundant machines used in parallel. 
To deal with the optimal design problem considered in this work, it is mandatory to 
develop a method for throughput evaluation of series-parallel manufacturing production 
lines. This method has to take into account two characteristics: 
(i)  Components may consist of banks of parallel machines. Concerning this first 

characteristic, we attempt to represent each stage by an equivalent single component.  
(ii) The processing rate may differ from component to component. To deal with this second 

characteristic, we use a continuous (or fluid) material model type which produces very 
good results. This consists of two main steps. First, the non homogeneous line is 
transformed into an approximately equivalent homogeneous one. In a second step, the 
resulting homogeneous line is analysed by using the well-known decomposition 
method for homogeneous lines [49]. 

The effect of the used simplifications for estimating throughput is examined by comparing 
the results provided by our approximate technique to simulation results on many examples. 
This comparison shows that the proposed approximate technique is very accurate. 
As the formulated problem is a complicated combinatorial optimization one, an exhaustive 
examination of all possible solutions is not realistic, considering reasonable time limitations. 
Because of this, we develop two heuristics to solve the problem. The first heuristic is inspired 
from the ant colony system meta-heuristic: a recent kind of biologically inspired algorithms 
[48,49]. The second proposed heuristic is based on the simulated annealing meta-heuristic [50]. 

4.3. Throughput evaluation of series-parallel production lines 

4.3.1. Summary of the method 
The proposed method approximates each component (i.e. each set of parallel machines) of 
the original production line as a single unreliable machine. The system is then reduced to a 
single machine per component production line of the type represented in figure 2. The 
equivalent machines may have different processing rates. To determine the steady state 
behaviour of this non-homogeneous production line, it is first transformed into an 
approximately equivalent homogeneous line. Then, the well-known Dallery-David-Xie 
algorithm (DDX) is used to solve the decomposition equations of the resulting 
(homogenous) line [51]. 

4.3.2. Replacing each component by an equivalent machine 
The decomposition techniques developed in the literature are efficient in estimating 
performance characteristics of series production lines. In these techniques it is necessary for 
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each component to be described by three parameters: failure rate, repair rate and processing 
rate. By limiting the description of the equivalent machine to these three parameters, our 
analysis of the new system is reduced in complexity to that of the existing decomposition 
techniques. Furthermore, the state space of a series-parallel line grows large with the 
number of parallel machines in the components. Replacing each set of parallel machines by 
one equivalent machine leads advantageously to a reduction of the state space. 
Let denote by ij, ij and Pij, respectively, the failure rate, the repair rate and the processing 
rate of a machine Mij, and by i, i and Pi, respectively, the failure rate, the repair rate and 
the processing rate of a machine Mi. To calculate the three unknown quantities i, i and Pi, 
we have to formulate three equations. Assuming that machines within the set of parallel 
machines are fairly similar, the following approximation is proposed in [52] : 

  
(22)

 

  
(23) 

  
(24)

 
It is shown in [52] that it is a good approximation. However, when buffers are small, this 
heuristic is inaccurate. In the present work, we assume that the available buffers are large 
enough. Thus, each set of parallel machines is approximated as an equivalent single 
machine by using equations (22), (23) and (24). This leads to a non-homogenous line. 
Therefore, a homogenisation technique is required, as explained in the next subsection. 

4.3.3. Homogenisation technique 
It is known that in the case of non-homogenous lines (i.e. production lines in which the 
machines do not have the same processing time), two approaches can be used. The first 
approach is based on an extension to the case of homogenous lines of the decomposition 
technique developed in [49]. The second approach relies on the modification of the non-
homogeneous line into an approximately equivalent homogeneous line by means of 
homogenisation techniques [53]. The analysis of the obtained homogeneous line is therefore 
based on the use of the decomposition method for homogeneous line. In this way, it is 
possible to rely on the DDX algorithm which has been proven to be very fast and reliable. In 
[53], the authors showed that the homogenization method of [54], referred to as the 
completion time approximation, provides fairly accurate results. In this method, each 
machine Mi of the original non-homogeneous line is replaced by an approximately 
equivalent machine , such that its completion time distribution is close to that of the 
original machine. The processing time of machine  is set to the processing time of the 
fastest machine in the original line: Te = min (T1, T2, ..., Tk). Since the processing time of  is 
given (equal to Te) there are two parameters per machine that must be determined, namely 
the failure and repair rates. Let  and  be the failure and repair rates of machine . The 
principle of the method developed in [53] is to determine  and  in such a way that the 
distribution of completion times of machine  has the same first and second moments as 
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those of the distribution of completion times of machine Mi. The values of  and  are 
given in [53] by: 

 

4.3.4. Decomposition equations and DDX algorithm 
As said before, we denote by ,  and  respectively, the failure rate, the repair rate and 
the processing time of the machine  in the equivalent homogenous line. In [51], the 
authors developed decomposition equations for homogenous lines and propose an efficient 
algorithm (DDX) to solve these equations. 
Production line decomposition methods typically work as follows. An original line is 
divided into k-1 lines with only two machines. The method requires the derivation of a set of 
equations that link the decomposed systems together. Such methods are efficient because 
systems with two machines can be rapidly analyzed. In general, systems may be represented 
by discrete or continuous flow models. In both, the processing time is deterministic. The 
discrete material model has the advantage of better representing the discrete nature of 
typical factories, but it is limited to systems with equal processing times. The continuous (or 
fluid) model is better suited in our case because it can be used for systems where the 
machines have different processing rates. The fluid modelling approach is an approximation 
which consists in using continuous variables to characterize the flow of parts. Therefore, the 
quantity of material in each buffer Bi at any time t is a real number taking its value in the 
interval [0, Ni]. 
The DDX algorithm [51] is the quickest and most reliably convergent algorithm for solving 
decomposition-type equations. In our optimal design problem, the DDX algorithm can be 
used to solve the decomposition equations for each configuration. Let recall that in our 
analytical method the DDX algorithm is applied after approximating each set of parallel 
machines as a single machine and transforming the resulting non-homogenous production 
line into an approximate equivalent homogenous line. For more details about DDX 
algorithm, the reader is referred to [51]. 

4.4. The hybrid ant colony optimization (HACO) and the simulated annealing 

4.4.1. Applying ACS to select machines and buffers: the general algorithm 
Following [21], with respect to the problem of selecting machines and buffers in a series-
parallel line, each ant is an agent that leaves a pheromone trail, called a trace, on the edges 
of a graph representing the problem. To represent our problem as such a graph, we 
introduce the following sets of nodes and edges [56] :  
• Three sets of nodes: 
1. The first set of nodes (N1) represents the components and the buffers. 
2. The second set (N2) represents the versions of elements available for each component 

and buffer. 
3. The third set of nodes (N3) represents, for each component, the numbers of elements 

which can be used in parallel. For example, if the maximum number of elements in 
parallel is two, the set N3 will be given by two nodes corresponding to one element and 
two parallel elements. 
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line into an approximate equivalent homogenous line. For more details about DDX 
algorithm, the reader is referred to [51]. 

4.4. The hybrid ant colony optimization (HACO) and the simulated annealing 

4.4.1. Applying ACS to select machines and buffers: the general algorithm 
Following [21], with respect to the problem of selecting machines and buffers in a series-
parallel line, each ant is an agent that leaves a pheromone trail, called a trace, on the edges 
of a graph representing the problem. To represent our problem as such a graph, we 
introduce the following sets of nodes and edges [56] :  
• Three sets of nodes: 
1. The first set of nodes (N1) represents the components and the buffers. 
2. The second set (N2) represents the versions of elements available for each component 

and buffer. 
3. The third set of nodes (N3) represents, for each component, the numbers of elements 

which can be used in parallel. For example, if the maximum number of elements in 
parallel is two, the set N3 will be given by two nodes corresponding to one element and 
two parallel elements. 
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• Two sets of edges: 
1. The first set of edges is used to connect each node in the set N1 to the corresponding 

nodes in N2. 
2. The second set of edges is used to connect some nodes in N2 to the nodes in N3. 
Informally, our algorithm works as follows: m ants are initially positioned on a node 
representing a component. Each ant represents one possible structure of the entire system. 
This entire production line structure is defined by the vectors f, h and r. Each ant builds a 
feasible solution (called a tour) to our problem by repeatedly applying three different 
stochastic greedy rules (i.e., the state transition rules). While constructing its solution, an ant 
also modifies the amount of pheromone on the visited edges by applying the local updating 
rule. Once all ants have terminated their tour, the amount of pheromone on edges is 
modified again (by applying the global updating rule). Ants are guided, in building their 
tours, by both heuristic information (they prefer to choose "less expensive and more efficient 
edges"), and by pheromone information. 
Note that when an ant builds a solution, it can be feasible or unfeasible. When the obtained 
solution is unfeasible, it is automatically rejected and it is not taken into account in the 
comparison with the other feasible solutions obtained by the other ants. It should be noted 
also that the global update of the pheromone is done only for the best obtained feasible 
solution. 
In the following we discuss the state transition rules, the global updating rule, and the local 
updating rule. 
State transition rules 
In the above algorithm, at each step of the construction process, ants use: (1) pheromone 
trails (denoted by ) to select the versions of machines and buffers and the number of 
machines connected in parallel; (2) a problem-specific heuristic information (denoted by ). 
The value of  depends of the nature of the node (i.e. machine's version or buffer's version). 
Note that the choice of the number of machines to be connected in parallel is not function of 
the heuristic information . 
An ant positioned on node i (representing a machine or a buffer) chooses the version j (j= hi 
if i is a machine and j =fi if i is a buffer) according to following: 

  
(25)

 
where  is the set of nodes representing the available versions for node i ( ={ 1,...,Hi} if i is a 
machine or ={1,... ,Fi} if i is a buffer). 
And J is a random variable selected according to the probability distribution given by: 

  

(26)

 
In the above equations (25) and (26),  and  are parameters that control the relative weight 
of the pheromone ( ) and the local heuristic ( ), respectively. The value of  depends on 
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the type of a given node. The variable q is a random number uniformly distributed in [0, 1]; 
and q0 is a parameter (0  q0  1) which determines the relative importance of exploitation 

versus exploration    if i represents a machine and  represents a buffer.  

Similarly, when an ant is positioned on node i representing a version of a machine, it has to 
select a number j of machines to be connected in parallel. In this case, the used rule is similar 
to (7) and (8) except for the heuristic information which is set to 1 and  = {1,..., Ri}. 
Global updating rule 
Once all ants have built a complete solution, pheromone trails are updated. Only the 
globally best ant (i.e., the ant which constructed the best design solution from the beginning 
of the trial) is allowed to deposit pheromone. A quantity of pheromone  is deposited on 
each edge that the best ant has used, where the indices i and j refer to the edges visited by 
the best ant. The quantity  is given by the total production rate PTbest of the design 
feasible solution constructed by the best ant. Therefore, the global updating rule is: 

  (27) 
where 0 < < 1 is the pheromone decay parameter representing the evaporation of trail. 
Global updating is intended to allocate a greater amount of pheromone to greater design 
solution. Equation (27) dictates that only those edges belonging to the globally best solution 
will receive reinforcement. 
Local updating rule 
While building a solution of the problem, ants visit edges on the graph G, and change their 
pheromone level by applying the following local updating rule: 

  (28) 
where  is the initial value of trail intensities. 
The application of the local updating rule, while edges are visited by ants, has the effect of 
lowering the pheromone on visited edges. This favours the exploration of edges not yet 
visited, since the visited edges will be chosen with a lower probability by the other ants in 
the remaining steps of an iteration of the algorithm. 
Improving constructed solutions 
As said before, it is well known that the performance of ACS algorithms can be greatly 
improved when coupled to local search algorithms [2]. Following this idea again, an 
improvement procedure is included in our ACS  algorithm, once all ants have terminated 
their tour and before applying the global updating rule.  
This procedure consists of two steps: 
1. The remaining budget (the amount not used by the ant) of the obtained structure is first 

used to improve the solution. In fact, some generated feasible solutions do not use the 
entire available budget. The procedure improves the initial solution by using this 
remaining budget to increase the number of machines connected in parallel. 

2. In this step, two types of evaluation are performed depending of the nature of the 
component (i.e. machine or buffer). For each pair of components representing the 
machines, the number of machines is changed by adding one for the first component 
and subtracting one for the second component. In the case of buffers, the algorithm 
proceeds to change in turn each pair of chosen versions by another pair. 
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used to improve the solution. In fact, some generated feasible solutions do not use the 
entire available budget. The procedure improves the initial solution by using this 
remaining budget to increase the number of machines connected in parallel. 

2. In this step, two types of evaluation are performed depending of the nature of the 
component (i.e. machine or buffer). For each pair of components representing the 
machines, the number of machines is changed by adding one for the first component 
and subtracting one for the second component. In the case of buffers, the algorithm 
proceeds to change in turn each pair of chosen versions by another pair. 
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The above steps are illustrated in the following example. Let us consider a series-parallel 
line with 3 machines (5 available versions for each machine) and 2 buffers (6 available 
versions for each buffer). Suppose that the solution at a given cycle is f = {3, 2}, h = {2, 1, 1} 
and r = {2, 3, 3}. The improvement procedure will evaluate the structures with the following 
numbers of parallel machines: 

r ={1,4,3}, r ={1,3,4}, r ={2,2,4}, r ={3,2,3}, r ={3,3,2} and r ={2,4,2}, 
and the following versions of buffers: 

f = {2,3} and f = {4,1}. 
Note finally that when this improvement procedure is used, only the neighbouring feasible 
solutions are evaluated and compared with the current solution. 

4.4.2. Simulated annealing for the optimal design of series-parallel lines 
The simulated annealing (SA) exploits the analogy between the way in which a metal cools 
and freezes into a minimum crystalline energy and the search for a minimum in a more 
general energy. The connection between this algorithm and mathematical minimization was 
first noted by [57], but it was Kirckpatrick et al. in 1983 [50] who proposed that it forms the 
basis of optimization technique for combinatorial problems. 
The simulated annealing technique is an optimization method suitable for combinatorial 
minimization problems. A new solution is generated and compared against the current 
solution. The new solution is accepted as the current solution if the difference in quality 
does not exceed a dynamically selected threshold. The solutions corresponding to larger 
increases in cost have a small probability of being accepted. A parameter that regulates the 
threshold is called the temperature and the function that determines the values for the 
temperature over time is called the cooling scheduling. The temperature decreases over time 
to decrease the probability of non improving moves. 
Initial feasible solution 
The initial feasible solution can be generated in many ways. We tried two generation 
methods. The first one generates a feasible initial solution by taking the least expensive 
solution (i.e. only one machine in each component and version 1 for all buffers and 
machines). The second way starts with the least expensive solution and tries to improve it 
by an iterative improvement procedure. The experimental tests show that the first method is 
better. 
Neighbouring solution 
There are many ways to define neighbourhood for this problem. On the one hand, two types 
of neighbourhood structures have been tested. Regarding the number of machines in 
parallel for example, the first type was adding or subtracting one machine. The second one 
consisted in choosing a random number of machines in parallel. This kind of 
neighbourhood move has been proposed also in [58] when solving the buffer allocation 
problem. The carried out experiments showed that the second way is slightly more effective. 
On the other hand, the versions of the machines are indexed in ascending order of the 
production rate P(hi). 
Our adopted neighbouring structure can be summarized by the following steps:  
Step 1. 
Randomly select a component COMP representing either a machine or a buffer.  
Step 2. 
If COMP = Machine, randomly select one of these two actions: 
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Action 1: Change the number of machines in parallel by choosing a random number 
less than kmax (kmax is the maximum number of machines allowed to be 
connected in parallel). 

Action 2: Change      the      version      of      machine      VERSION(Machine)      by 
VERSION(Machine)+l or VERSION(Machine)-1. 

If COMP = Buffer, change its version VERSION(Buffer) by VERSION(Buffer)+l or 
VERSION(Buffer)-1. 
When a neighbour solution is randomly selected, it can be either feasible or unfeasible. If the 
solution is unfeasible, it is automatically rejected without using the criterion of acceptance 
and the algorithm passes to the next iteration. 
Before introducing the numerical results, it should be noted that it would be straightforward 
to iterate the improvement procedure until no further improvements are found, i.e. to turn it 
into a local hill-climber. The coupling of a local search procedure such as the hill-climbing 
with the ACES may give a good idea on the quality of the obtained solutions. However, this 
will increase considerably the total computation time. Because the calculation of the 
objective function depends greatly on the convergence of the DDX algorithm whose time is 
not negligible, we proposed a local search procedure which does not require much 
evaluations of the objective function as the hill-climbing. 
Numerical results 
To prove the efficiency of our algorithm when combined with the local search, we proposed 
four examples of production line with respectively 4, 10, 15 and 20 components. Tables A.1-
A.7 (in Appendix) show the corresponding data. The versions are indexed in ascending 
order of the production rate P(hi). The available budgets are respectively 160$, 300$, 450$ 
and 750$ and the maximum number of machines allowed to be connected in parallel is 3 for 
the first example and 4 for the other examples. The search space size is respectively larger 
than 5.5xl05, 2.684xl018, 8.796xl027 and 2.88 x 1037. All the algorithms were implemented 
using MATLAB on a PC with 1.8 GHz processor. 

 
Table 1. Parameters data for three typical examples taken from [52] 
(*) = 1 when the node i of equations (25) and (26) is a machine and (*) = 2 otherwise 

We implemented the simulated annealing and ACS algorithm, and we ran simulations to set 
the parameters. For the ACS algorithm, the parameters considered are those that effect 
directly or indirectly the computation of the probability in formulas (25) and (26) (i.e. , , 

,  and q0). We tested several values for each parameter, while all the others were held 
constant (over ten simulations for each setting in order to achieve some statistical 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

492 

The above steps are illustrated in the following example. Let us consider a series-parallel 
line with 3 machines (5 available versions for each machine) and 2 buffers (6 available 
versions for each buffer). Suppose that the solution at a given cycle is f = {3, 2}, h = {2, 1, 1} 
and r = {2, 3, 3}. The improvement procedure will evaluate the structures with the following 
numbers of parallel machines: 

r ={1,4,3}, r ={1,3,4}, r ={2,2,4}, r ={3,2,3}, r ={3,3,2} and r ={2,4,2}, 
and the following versions of buffers: 

f = {2,3} and f = {4,1}. 
Note finally that when this improvement procedure is used, only the neighbouring feasible 
solutions are evaluated and compared with the current solution. 

4.4.2. Simulated annealing for the optimal design of series-parallel lines 
The simulated annealing (SA) exploits the analogy between the way in which a metal cools 
and freezes into a minimum crystalline energy and the search for a minimum in a more 
general energy. The connection between this algorithm and mathematical minimization was 
first noted by [57], but it was Kirckpatrick et al. in 1983 [50] who proposed that it forms the 
basis of optimization technique for combinatorial problems. 
The simulated annealing technique is an optimization method suitable for combinatorial 
minimization problems. A new solution is generated and compared against the current 
solution. The new solution is accepted as the current solution if the difference in quality 
does not exceed a dynamically selected threshold. The solutions corresponding to larger 
increases in cost have a small probability of being accepted. A parameter that regulates the 
threshold is called the temperature and the function that determines the values for the 
temperature over time is called the cooling scheduling. The temperature decreases over time 
to decrease the probability of non improving moves. 
Initial feasible solution 
The initial feasible solution can be generated in many ways. We tried two generation 
methods. The first one generates a feasible initial solution by taking the least expensive 
solution (i.e. only one machine in each component and version 1 for all buffers and 
machines). The second way starts with the least expensive solution and tries to improve it 
by an iterative improvement procedure. The experimental tests show that the first method is 
better. 
Neighbouring solution 
There are many ways to define neighbourhood for this problem. On the one hand, two types 
of neighbourhood structures have been tested. Regarding the number of machines in 
parallel for example, the first type was adding or subtracting one machine. The second one 
consisted in choosing a random number of machines in parallel. This kind of 
neighbourhood move has been proposed also in [58] when solving the buffer allocation 
problem. The carried out experiments showed that the second way is slightly more effective. 
On the other hand, the versions of the machines are indexed in ascending order of the 
production rate P(hi). 
Our adopted neighbouring structure can be summarized by the following steps:  
Step 1. 
Randomly select a component COMP representing either a machine or a buffer.  
Step 2. 
If COMP = Machine, randomly select one of these two actions: 

Ant colonies for performance optimization 
of multi-components systems subject to random failures 

 

493 

Action 1: Change the number of machines in parallel by choosing a random number 
less than kmax (kmax is the maximum number of machines allowed to be 
connected in parallel). 

Action 2: Change      the      version      of      machine      VERSION(Machine)      by 
VERSION(Machine)+l or VERSION(Machine)-1. 

If COMP = Buffer, change its version VERSION(Buffer) by VERSION(Buffer)+l or 
VERSION(Buffer)-1. 
When a neighbour solution is randomly selected, it can be either feasible or unfeasible. If the 
solution is unfeasible, it is automatically rejected without using the criterion of acceptance 
and the algorithm passes to the next iteration. 
Before introducing the numerical results, it should be noted that it would be straightforward 
to iterate the improvement procedure until no further improvements are found, i.e. to turn it 
into a local hill-climber. The coupling of a local search procedure such as the hill-climbing 
with the ACES may give a good idea on the quality of the obtained solutions. However, this 
will increase considerably the total computation time. Because the calculation of the 
objective function depends greatly on the convergence of the DDX algorithm whose time is 
not negligible, we proposed a local search procedure which does not require much 
evaluations of the objective function as the hill-climbing. 
Numerical results 
To prove the efficiency of our algorithm when combined with the local search, we proposed 
four examples of production line with respectively 4, 10, 15 and 20 components. Tables A.1-
A.7 (in Appendix) show the corresponding data. The versions are indexed in ascending 
order of the production rate P(hi). The available budgets are respectively 160$, 300$, 450$ 
and 750$ and the maximum number of machines allowed to be connected in parallel is 3 for 
the first example and 4 for the other examples. The search space size is respectively larger 
than 5.5xl05, 2.684xl018, 8.796xl027 and 2.88 x 1037. All the algorithms were implemented 
using MATLAB on a PC with 1.8 GHz processor. 

 
Table 1. Parameters data for three typical examples taken from [52] 
(*) = 1 when the node i of equations (25) and (26) is a machine and (*) = 2 otherwise 

We implemented the simulated annealing and ACS algorithm, and we ran simulations to set 
the parameters. For the ACS algorithm, the parameters considered are those that effect 
directly or indirectly the computation of the probability in formulas (25) and (26) (i.e. , , 

,  and q0). We tested several values for each parameter, while all the others were held 
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information about the average evolution). Based on these initial experiments the values 
found to be most appropriate are determined. Furthermore, in all our experiments, the 
number of ants is set to 5. Note that the ACS is not very sensitive to changes in these values, 
and tested well for quite a range of them. The parameters considered for the simulated 
annealing are the initial temperature T, length of the inner loop, the final temperature Tmin, 
the maximum of success solution Vmax and the cooling rate c. Initially, the temperature T is 
set to a sufficiently high value to accept all solutions during the initial phase of the 
simulated annealing. The cooling rate c should be generally greater than 0.7. Table 1 shows 
the values of all the parameters considered in the three algorithms. 
Each algorithm was tested by performing ten trials. Figures 2 to 5 show the highest 
throughput versus the number of evaluations. By 6000, 200.000, 250.000 and 400.000 
evaluations of throughput, respectively, for example 1, 2, 3 and 4, the highest throughput 
has been leveled out. These numbers of evaluations are used to assess the performance of 
the algorithms. 
 

 
Figure 2. Convergence results for example 1 

 
Figure 3. Convergence results for example 2 
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Figure 4. Convergence results for example 3 

 
Figure 5. Convergence results for example 4 

The convergence curves in figures 2 to 5 show that the ACS algorithm performs better when 
coupled with the improvement procedure. Generally, the convergence is faster and the 
quality is better than the other algorithms. The ACS algorithm when coupled with the local 
improvement procedure starts with a good solution, because the initial solutions built by the 
ants are improved by the procedure at the first iteration and before being reported in the 
graph. It is important to note that all the evaluated solutions are taken into account 
including those generated by the local improvement procedure. The results obtained by 
simulated annealing and ACS without the improvement procedure are fairly similar in the 4 
examples. 
The results obtained after 10 trials are given in tables 2 and 3. The solutions obtained by the 
ACS when coupled with the improvement procedure are the best obtained solutions. The 
application of the improvement procedure with the ACS improves the quality of solutions 
and the time required to produce near optimal solutions. Table 6 shows that the best results 
obtained by the simulated annealing and ACS (without the improvement procedure) are 
almost similar. However, we remark that: 
(i)  The mean values of the results obtained by the simulated annealing are clearly better 

than those obtained by the ACS algorithm. 
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(ii)  The execution times of simulated annealing and ACS when coupled with the 
improvement procedure are lower than the execution time of ACS alone. For instance, 
in example 4 the mean execution time is 3960 seconds for ACS alone and it is about 1172 
and 2030 seconds for SA and ACS coupled with the improvement procedure, 
respectively. 

 
PTmax CT($) H r f 

Example 1  4.7074 160  (1,3,1,1) (3,3,3,3) (2,1,2) 

Example 2  3.2467 250  (1,1,1,1,5,5,1,2,1,2) (2,2,2,3,1,1,2,1,1,1) (1,1,1,1,3,1,1,1,1) 

Example 3  4.4406 450 (1,1,1,1,1,1,1,1,1,1,1,1,2,1,1) (3,2,2,4,2,2,2,2,2,2,2,2,4,2,2) (1,1,2,1,1,1,1,1,1,1,1,2,1,1) 

Example 4  3.8991 750 (2,4,3,1,5,4,2,4,1,2,1,2,1,2,1,1,2,3,4,2) (3,2,2,4,2,2,2,2,4,2,3,2,3,2,4,3,2,2,2,2) (1,2,2,1,1,3,1,2,2,1,1,1,1,1,1,2,1,1,1) 

Table 2. Results for examples 1, 2, 3 and 4 

Simulated annealing ACS ACS with improving procedure 
 Min Mean STD Max tmea Min Mean STD Max tmea Min Mean STD Max tmea 

Example 1 4.7074 4.7074 0 4.7074 <1 4.7074 4.7074 0 4.7074 <1 4.7074 4.7074 0 4.7074 <1 

Example 2 3.1162 3.1694 0.0478 3.2467 352s 3.1162 3.1291 0.0522 3.2282 1130s 3.2452 3.2463 0.0005 3.2467 186s 

Example 3 3.5855 3.7107 0.1243 3.8282 933s 3.5855 3.6649 0.1411 3.9738 1644s 3.8282 4.0746 0.1274 4.4406 788 s 

Example 4 2.9096 3.0663 0.1252 3.2206 1172s 2.4375 2.9607 0.3082 3.2325 3960s 3.2169 3.4577 0.2154 3.8991 2030s 

Table 3. Results for examples 1, 2, 3 and 4 

In order to compare the performance of the three algorithms, the stopping criterion is the 
number of evaluated solutions. The computation time of the ACS algorithm, for the same 
number of evaluated solutions, is higher than that of the other algorithms. This is because 
the ACS algorithm constructs an entire solution (i.e., selects versions and number of machines 
for each sub-system), at each iteration and for each ant. It implies that a complete loop is 
used. Thus, each solution construction requires considerable computation time. On the other 
hand, when the ACS is coupled with the improvement procedure, each generated solution 
by an ant can be improved by evaluating the neighbour solutions while carrying out minor 
changes in the current solution. Consequently, since it does not require a complete construction of 
the solution, the computation time is decreased. On the other hand, the simulated annealing 
algorithm constructs the solutions by making minor changes in the current solutions, 
requiring less computation time than the ACS algorithm when coupled or not with the 
improvement procedure. 
Additional tests 
A set of 10 test instances are also randomly generated for n = 20 and used to evaluate the 
performance of the proposed algorithms. Note that the parameters used for these 10 test 
instances are those set by using example 4 as a typical problem (see Table 3, for n = 20). By 
running the algorithms without further tuning on the 10 test instances, we avoid any 
parameters over-fitting. 
The proposed algorithms are evaluated in terms of solutions quality. For each instance, five 
trials are performed. It has been observed again for these randomly generated instances that 
the ACS coupled with the Improvement procedure (ACS-I) out-performs ACS and SA 
algorithms. 
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5. Conclusion 
Three optimal design problems were studied in this chapter. The first problem is related to 
the reliability optimization of series systems with multiple-choice and budget constraints. 
The second problem concerns the redundancy allocation problem of series-parallel systems, 
while the third deals with the selection of machines and buffers in unreliable series-parallel 
production lines. As the formulated problems are complicated combinatorial optimization 
ones, an exhaustive examination of all possible solutions is not realistic, considering 
reasonable time limitations. Because of this, we developed efficient heuristics to solve the 
formulated problems. This heuristic was inspired by the ant system meta-heuristic. The 
experimental results showed that the optimal or nearly optimal solutions are obtained very 
quickly. Through several numerical examples, the effectiveness of HACO with respect to the 
quality of solutions and the computing time will be discussed by performing comparisons 
with others approaches based on mate-heuristics. 
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(ii)  The execution times of simulated annealing and ACS when coupled with the 
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in example 4 the mean execution time is 3960 seconds for ACS alone and it is about 1172 
and 2030 seconds for SA and ACS coupled with the improvement procedure, 
respectively. 

 
PTmax CT($) H r f 
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Table 3. Results for examples 1, 2, 3 and 4 

In order to compare the performance of the three algorithms, the stopping criterion is the 
number of evaluated solutions. The computation time of the ACS algorithm, for the same 
number of evaluated solutions, is higher than that of the other algorithms. This is because 
the ACS algorithm constructs an entire solution (i.e., selects versions and number of machines 
for each sub-system), at each iteration and for each ant. It implies that a complete loop is 
used. Thus, each solution construction requires considerable computation time. On the other 
hand, when the ACS is coupled with the improvement procedure, each generated solution 
by an ant can be improved by evaluating the neighbour solutions while carrying out minor 
changes in the current solution. Consequently, since it does not require a complete construction of 
the solution, the computation time is decreased. On the other hand, the simulated annealing 
algorithm constructs the solutions by making minor changes in the current solutions, 
requiring less computation time than the ACS algorithm when coupled or not with the 
improvement procedure. 
Additional tests 
A set of 10 test instances are also randomly generated for n = 20 and used to evaluate the 
performance of the proposed algorithms. Note that the parameters used for these 10 test 
instances are those set by using example 4 as a typical problem (see Table 3, for n = 20). By 
running the algorithms without further tuning on the 10 test instances, we avoid any 
parameters over-fitting. 
The proposed algorithms are evaluated in terms of solutions quality. For each instance, five 
trials are performed. It has been observed again for these randomly generated instances that 
the ACS coupled with the Improvement procedure (ACS-I) out-performs ACS and SA 
algorithms. 
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5. Conclusion 
Three optimal design problems were studied in this chapter. The first problem is related to 
the reliability optimization of series systems with multiple-choice and budget constraints. 
The second problem concerns the redundancy allocation problem of series-parallel systems, 
while the third deals with the selection of machines and buffers in unreliable series-parallel 
production lines. As the formulated problems are complicated combinatorial optimization 
ones, an exhaustive examination of all possible solutions is not realistic, considering 
reasonable time limitations. Because of this, we developed efficient heuristics to solve the 
formulated problems. This heuristic was inspired by the ant system meta-heuristic. The 
experimental results showed that the optimal or nearly optimal solutions are obtained very 
quickly. Through several numerical examples, the effectiveness of HACO with respect to the 
quality of solutions and the computing time will be discussed by performing comparisons 
with others approaches based on mate-heuristics. 
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1. Introduction 
Particle Swarm Optimization (PSO) was first introduced as a concept for a non-linear 
optimizer by Kennedy and Eberhart in 1995. Their seminal work articulates a technique of 
evolutionary computation, which has its origin in artificial intelligence and simplified social 
models such as bird flocking and fish schooling (Kennedy & Eberhart, Nov. 1995; Kennedy 
& Eberhart, Oct. 1995). Its early appeal lay in its use of only primitive mathematical 
operators and computational economy with regard to both memory and speed. The authors 
were influenced by the work of Reynolds, Heppner and Grenander in modeling bird 
flocking and recognized that the fundamental hypothesis to the development of PSO is that 
an evolutionary advantage is obtained by the social sharing of information among members 
of the same species. They stated that the simulation of the graceful but unpredictable 
choreography of a bird flock by collision-proof agents could be used as an effective 
optimizer for a wide range of functions.  

1.1 PSO concept 
The PSO technique involves casting a population of co-operative agents, randomly in the 
multidimensional search space. Each agent has an associated fitness value, which is 
evaluated by the fitness function to be optimized, and a velocity that directs its motion. Each 
agent can keep track of its solution that resulted in the best fitness as well as the solutions of 
the best performing agents in its neighborhood. The trajectory of each agent is dynamically 
governed by its own and its companions’ historical behavior. Kennedy and Eberhart view 
this adjustment as conceptually similar to the crossover operation utilized by genetic 
algorithms (Kennedy & Eberhart, Nov. 1995). Such an adjustment maximizes the probability 
that the agents are moving toward a region of space that will result in a better fitness. At 
each step of the optimization, the agent is allowed to update its position by evaluating its 
own fitness and the fitness of the neighboring agents. The PSO algorithm is terminated 
when the specified maximum number of generations is reached or when the best particle 
position of the entire population cannot be improved further after a sufficiently large 
number of generations. 
 
A simple pseudo code describing the functioning of the optimizer taken from (Taşgetiren & 
Liang, 2003) is shown below. 
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Initialize parameters  
Initialize population  
Evaluate  
Do{  

Find particlebest  
Find globalbest  
Update velocity  
Update position  
Evaluate  

}While (Termination)  
 
Kennedy and Eberhart realized that the behavior of the population of agents was more 
comparable to a swarm rather than a flock.  This swarm behavior or swarm intelligence rests 
on five basic principles put forth by Millonas. These have been obtained from (Kennedy & 
Eberhart, Nov. 1995) and (Kennedy & Eberhart, Oct. 1995) and are listed as follows: 
1. Proximity principle: The population should be able to carry out simple space and time 

computations. 
2. Quality principle: The population should be able to respond to quality factors in the 

environment. 
3. Principle of diverse response: The population should not commit its activities along 

excessively narrow channels. 
4. Principle of stability: The population should not change its mode of behavior every time 

the environment changes 
5. Principle of adaptability: The population must be able to change its behavior when its 

worth the computational price. 
 
They found that the PSO concept seemed to be consistent with the checklist above. It could 
inherently carry out multidimensional space calculations over a series of time steps thus 
following the proximity principle. The agents could respond to quality factors such as their 
own best fitness values as well as the neighborhood best, in accordance with the quality 
principle. The algorithm could allocate responses between the individual best fitness value 
and the neighborhood best thus ensuring the fulfillment of the principle of diverse response. 
The population could change its mode of behavior only with a change in global best thereby 
suggesting stability. And finally, the change of state with a change in neighborhood best 
was in itself an indication of adaptability.  The population was hence branded as a swarm. 
The authors called each agent of the swarm, a particle and hence the label particle swarm.  

1.2 Mathematical formulation 
The dynamic behavior of the swarm can be quantified as given in equation (1). 

 ( ) ( ) ( )np xxxxtt −+−+=+ 
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Here, v  is the particle velocity and x is the particle position which represents a test solution. 
In addition, 1φ  and 2φ  are uniform random variables which introduce an element of 
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uncertainty. The inclusion of such a stochastic factor facilitates an exhaustive search of the 
hyperspace under consideration thereby preventing the swarm from converging on to a 
local solution. Historically 1φ  and 2φ  are a combination of a positive constant and a random 
function. Thus (1a) becomes, 

 ( ) ( ) ( )np xxrandcxxrandctt −××+−××+=+ 




 ()()1 2211νν    (2) 

Here c1 and c2 are acceleration constants called cognition and social constants respectively, 
the functions rand1() and rand2() are random functions usually uniformly distributed 
between [0, 1]. The values of the constants determine the tension in the system (Shi & 
Eberhart, 2001). Low values allow the particles to roam far from the target regions before 
being pulled back, while high values result in abrupt movement toward or past target 
regions. Kennedy and Eberhart chose the both the acceleration constants to have a value of 
“2“ in order to give the random factor a mean of “1“ thereby causing the particles to overfly 
local optima and enable search in the region between local solutions. Variables 1φ  and 2φ  
are clamped by an upper limit which is a parameter of the system.   
 
The introduction of stochastic factors may cause the system to enter a state of explosion 
because of increased global exploration resulting in the particle velocities and positional co-
ordinates tending to infinity. In order to prevent such a scenario, a maximum value of 
velocity maxv  is usually defined. The second term in equation (1a) is the cognition part of 
the particle with the variable px  representing the (previous) position of the particle that 
resulted in the best fitness so far. Kennedy and Eberhart referred to this as simple nostalgia 
(Kennedy & Eberhart, Nov. 1995). The last term of (1a) is the communal part which involves 
exchange of public knowledge. Here the variable nx  is the neighborhood position that 
resulted in the best fitness so far. Equation (1b) directs the new position of the particle based 
upon its current position and its new velocity.  

1.3 Neighborhood size 
In PSO, a neighborhood is defined for an individual particle as the subset of particles it is 
able to communicate with (Kennedy & Eberhart, April 2007). According to Bratton and 
Kennedy, since the earliest PSO model was a simulation of the social milieu, the 
neighborhood of choice was largely Euclidian. However it proved to be unwieldy and 
cumbersome in mathematical computations and hence was dispensed with to be replaced 
by topological neighborhoods. A number of neighborhood configurations have been 
discussed in literature. Some significant ones listed below are taken from (Kennedy, 1999; 
Guo et. al., July 2006) as shown in Fig. 1: 
 
1. Stars: Every individual is connected to every other individual making the best 

performing individual the social source of influence.  
2. Circles: Every individual is connected to only K of its immediate neighbors. This results 

in slower information propagation as compared to the stars topology. In this type of 
neighborhood, clusters are created that may converge onto different local optima. But 
due to neighbor to neighbor interaction, once the global solution is found, all the 
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clusters are pulled in towards it. For a K = 2 neighborhood (called a ring), it would take 
swarmsize/K number of steps for information about a new global best to be transmitted 
to the other side of the ring.  

3. Wheels: One individual called the focal individual is connected to all the others and they 
are connected to only that one. The performance of the population is supervised by this 
central individual so as to determine the best and adjust its course according to it. If the 
adjustment results in improvement in the focal individual’s performance then that 
improvement is communicated out to the rest of the population. This topology is faster 
than the ring topology. 

4. Random edges: For N individuals, there are N random symmetrical connections between 
pairs of individuals.  

5. Von Neumann: This topology is in the form of a 2-D lattice that wraps around itself as 
can be seen in Fig. 1(d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Neighborhood Topologies found in (Guo et. al, July 2006, Venayagamoorthy et. al, 
2007): (a) Star, (b) Wheel, (c) Ring, (d) Von Neumann 

1.3.1 Global neighborhood 
A global neighborhood (also referred to as the GBEST model) has a star topology. The 
GBEST PSO algorithm as proposed in (Kennedy & Eberhart, Oct. 1995) is shown in Fig. 2. 
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Figure 2. Flowchart of the GBEST PSO Algorithm 

All the particles in the GBEST model try to reach the global solution. Hence even when a 
local solution is reached, all particles feel a tug in that direction. This may reduce the 
chances of the particles exploring the entire search space and may even cause the swarm to 
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converge at the local solution. However since every particle keeps track of every other 
particle in the swarm convergence rate is fast, which makes the GBEST approach an ideal 
candidate for uni-modal problems. 

1.3.2 Neighborhood of K 
This refers to the Circle topology. It is called the LBEST or local version of the PSO. The 
number of nearest neighbors is decided by the size of the neighborhood. As discussed 
previously, for a neighborhood of size K, each particle can communicate directly with only K 
other particles. Hence instead of moving toward the stochastic average of particle best and 
global best, the particles move toward the points defined by particle best and local best, 
which is the position of the particle with the best evaluation in the neighborhood (Kennedy 
& Eberhart, Oct. 1995).  Kennedy and Eberhart found this local approach to be more flexible 
than the GBEST approach while trying to solve a three layer feed forward neural network 
designed to solve the XOR problem (Kennedy & Eberhart, Oct. 1995). They have attributed 
the insensitivity of this version to local solution to the fact that a number of groups of 
particles spontaneously separate and explore different regions. The LBEST ring model has 
been found to be suited for multi-model problems on account of its immunity to local 
optima convergence. The flipside to this limited interaction between swarm particles is the 
slower convergence rate in comparison to the GBEST model. 

1.4 Other particle swarm parameters 
In 2002, El Gallad et al have studied the various inputs required for working the particle 
swarm optimizer. Some of their findings are described below. 
 
1) Population of the swarm: This factor depends upon the problem being optimized. Smaller 

swarms may be more successful for some problems while larger ones may be useful for 
others. However if the swarm size is too small it may result in convergence upon a local 
optimum while on the other hand very large swarms may increase computational time. 
Hence as suggested in (El Gallad et al, 2002) a balance has to be struck between the 
complexity of the algorithm and the risk of getting trapped in local optima by selecting 
a proper swarm size specific to the application at hand. 

2) Number of iterations: The uncertainty in the velocity update equation introduced by the 
stochastic factors results in a global exploration of the search space that makes arriving 
at the global optimum extremely likely if the algorithm is run for a sufficiently long 
period of time. The use of the word sufficient is in itself indicative of the problem 
specific nature of this parameter. Indeed the permissible error margin, which strongly 
dictates the computational time, varies with the problem at hand. In cases where the 
time required to converge onto the global solution appears to be very long, it is more 
advantageous to run the algorithm for multiple short replications rather than running 
one very long replication. This is indeed a sound suggestion since it is possible that the 
time required for getting the particles out of local optima could be greater than the time 
required to reinitialize a new replication in (El Gallad et al, 2002). The stopping criterion 
for such multiple replications can be evaluated by observing if successive generations 
show any significant improvement or not. 

3) Velocity of particles: This factor determines the fineness with which the hyperspace 
under consideration is searched. If the value of this parameter is too high, then the 
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particles may fly past the optimal solution and may even oscillate about a certain 
position. On the other hand if this value is too low, then the particles could get stuck at 
a local optimum. In order to circumvent this issue, an adaptive velocity technique can 
be applied. According to this approach, in the event that the solution found is 
oscillatory, the value of velocity is allowed to gradually decrease in a random fashion 
thereby helping the particles to get out of the oscillation and at the same time allowing 
the swarm to explore new areas. 

1.5 Evolution of PSO through the ages 
This section elucidates the development of PSO and details the various adjustments and 
modifications made to the original algorithm in order to maximize it performance. 

1.5.1 Addition of inertia weight 
Shi and Eberhart modified the PSO algorithm by introducing the concept of inertia weight. 
They argued that such a factor was necessary in order to bring a balance between global search 
and local search (Shi and Eberhart, 1998). Consider equation (1a). In the absence of the term 
representing the current velocity of the particle, the velocity would be memory less. If initially 
a particle, i, is at the best global position then it would be stationary at that position. The other 
particles would move toward the weighted centroid of their own best position and the global 
best causing the swarm to statistically contract toward the global best. This continues till 
another particle reaches a better global solution causing the particles to now statistically 
contract toward the new global best. The described scenario represents a search space that 
statistically shrinks over generations thus resembling a local search. Shi and Eberhart pointed 
out that in this case the global solution could be found only if it existed within the initial search 
space. Thus the search ability (i.e. global or local) could be varied by the presence or absence of 
the current velocity term in equation (1a). In order to fine tune the search ability, the inertia 
weight,w , was introduced which modified (1a) as follows. 

  ( ) ( ) ( )np xxxxtwt −+−+=+ 
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Shi and Eberhart used the problem of Schaffer’s f6 function to test this algorithm using w  
values ranging from 0 to 1.4. They found that the inertia weight in the range of [0.9, 1.2] 
resulted in a higher success rate of finding the global solution within a reasonable number of 
iterations as compared w  values outside this range. They also experimented with time 
decreasing inertia weights and found that as w  was linearly decreased from 1.4 to 0 from 
the first to the last iteration, the PSO showed significantly improved performance as regards 
success rate of finding the global optimum and number of iterations required to reach this 
optimum when compared to the case of using a fixed value of w . Further investigations 
were carried out in (Shi & Eberhart, 2000) using a linearly decreasing inertia weight starting 
at 0.9 and terminating at 0.4 on four benchmark functions viz. spherical, Rosenbrock, 
Rastrigrin, and Griewank.  The mathematical expression for these functions can be found in 
Table 1.  It was observed that the PSO algorithm converged quickly for all the four cases but 
reduced its convergence speed when reaching the optimum. Shi and Eberhart attributed this 
to the inability of the linearly decreasing inertia weighted PSO to perform a global search at 
the end of a run. If intw  and finw  represent the initial and final values of w respectively, 
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time required for getting the particles out of local optima could be greater than the time 
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for such multiple replications can be evaluated by observing if successive generations 
show any significant improvement or not. 
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particles may fly past the optimal solution and may even oscillate about a certain 
position. On the other hand if this value is too low, then the particles could get stuck at 
a local optimum. In order to circumvent this issue, an adaptive velocity technique can 
be applied. According to this approach, in the event that the solution found is 
oscillatory, the value of velocity is allowed to gradually decrease in a random fashion 
thereby helping the particles to get out of the oscillation and at the same time allowing 
the swarm to explore new areas. 

1.5 Evolution of PSO through the ages 
This section elucidates the development of PSO and details the various adjustments and 
modifications made to the original algorithm in order to maximize it performance. 

1.5.1 Addition of inertia weight 
Shi and Eberhart modified the PSO algorithm by introducing the concept of inertia weight. 
They argued that such a factor was necessary in order to bring a balance between global search 
and local search (Shi and Eberhart, 1998). Consider equation (1a). In the absence of the term 
representing the current velocity of the particle, the velocity would be memory less. If initially 
a particle, i, is at the best global position then it would be stationary at that position. The other 
particles would move toward the weighted centroid of their own best position and the global 
best causing the swarm to statistically contract toward the global best. This continues till 
another particle reaches a better global solution causing the particles to now statistically 
contract toward the new global best. The described scenario represents a search space that 
statistically shrinks over generations thus resembling a local search. Shi and Eberhart pointed 
out that in this case the global solution could be found only if it existed within the initial search 
space. Thus the search ability (i.e. global or local) could be varied by the presence or absence of 
the current velocity term in equation (1a). In order to fine tune the search ability, the inertia 
weight,w , was introduced which modified (1a) as follows. 
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Shi and Eberhart used the problem of Schaffer’s f6 function to test this algorithm using w  
values ranging from 0 to 1.4. They found that the inertia weight in the range of [0.9, 1.2] 
resulted in a higher success rate of finding the global solution within a reasonable number of 
iterations as compared w  values outside this range. They also experimented with time 
decreasing inertia weights and found that as w  was linearly decreased from 1.4 to 0 from 
the first to the last iteration, the PSO showed significantly improved performance as regards 
success rate of finding the global optimum and number of iterations required to reach this 
optimum when compared to the case of using a fixed value of w . Further investigations 
were carried out in (Shi & Eberhart, 2000) using a linearly decreasing inertia weight starting 
at 0.9 and terminating at 0.4 on four benchmark functions viz. spherical, Rosenbrock, 
Rastrigrin, and Griewank.  The mathematical expression for these functions can be found in 
Table 1.  It was observed that the PSO algorithm converged quickly for all the four cases but 
reduced its convergence speed when reaching the optimum. Shi and Eberhart attributed this 
to the inability of the linearly decreasing inertia weighted PSO to perform a global search at 
the end of a run. If intw  and finw  represent the initial and final values of w respectively, 
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MAX is the maximum number of optimization steps and iter  represents the current 
iteration number, then a linearly decreasing w  is defined in equation (4)  (Iwamatsu, 2006), 
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Table 1. Benchmark functions used to test PSO in literature (Taşgetiren & Liang, 2003; Shi & 
Eberhart, 1998; Clerc & Kennedy, 2002) 

1.5.2 Introduction of constriction coefficient 
Clerc and Kennedy demonstrated that constriction coefficients could be used to prevent 
system explosion, which hitherto had been contained using maxv  (Clerc & Kennedy, 2002).  
A constriction factor is defined as follows: 
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Here 21 φφφ += .  The mathematical development leading to (5) is beyond the scope of this 
work but can be obtained from [13]. The constriction factor when inserted into the velocity 
update equation modifies equation (2) as follows, 
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They also showed that for values of 4>φ , the particles would quickly converge onto the 
global solution while for 4<φ  the swarm would most likely get stuck at a local optimum. 
Such a behavior is similar to that exhibited by the inclusion of inertia weight, w , into the 
system response. This similarity spawned a study comparing the performance of a PSO 
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using a constriction factor with that using an inertia weight by (Eberhart & Shi, 2006). Five 
benchmark functions viz. spherical, Rosenbrock, Rastrigrin, Griewank and Schaffer’s f6 function 
were investigated during this performance analysis. It was found that even though it is not 
essential to specify the value of maxv  in the constriction factor approach, limiting it to the 
dynamic range of each variable in each dimension (i.e. maxx ) of the system under 
consideration resulted in the fastest and most consistent way to obtain good results. The 
authors have shown that by setting χ=w and 21 cc +=φ , the PSO algorithm using 
constriction factor can be considered as a special case of the PSO using inertia weight.     

1.5.3 Use of adaptive scaling term 
Sometimes situations are encountered wherein the evaluation of the objective function may 
not be feasible within a restricted time frame. In such cases the algorithm is limited to 
operate within an acceptable time resulting in a solution that is sub-optimal. The ideal 
choice here would be to accelerate the PSO in order to reduce convergence time and also 
increase the probability of finding the global optimum. This is the motivation for 
considering speed-up strategies for PSO. One such strategy proposed in (Fan, 2002) 
involved the use of an adaptive scaling term into the algorithm. As discussed previously the 
behavior of the swarm is modeled as shown in equation (1) and the necessary velocity 
limitations are applied as shown below, 
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Fan explains that at the beginning of a search it is desirable that the particles be spread all 
over the search space in order to explore all possible regions to maximize the chances of 
finding the global solution. However as the search progresses, the searching scale should be 
reduced in order to allow the found solution to be refined. For this purpose he introduced a 

scaling term ( )( )hTt−1  that revises (7) as, 
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Here, t  is the number of the current generation (i.e. optimization step), T  is the maximum 
number of iterations and h  is a positive constant chosen by trial and error. The velocity 
update and position update equations remain the same as shown in equation (1).  Changes 
are effected only in setting the limits of velocity. Benchmark experiments revealed that this 
modified PSO performed better as compared to the original PSO on test functions such as 
spherical, Rosenbrock and Griewank’s function. The modified PSO had a higher 
convergence rate than the original when used to solve these three function minimization 
problems. Fan found that the original PSO rapidly stagnated when no improvement was 
exhibited by its searched solution. However the modified PSO could still search 
progressively till the global solution was found indicating a higher reliability rate. Even 
with a fixed number of generations, the modified PSO exhibited better convergence 
reliability. It was also found that in case of the original PSO the parameter maxv  strongly 
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MAX is the maximum number of optimization steps and iter  represents the current 
iteration number, then a linearly decreasing w  is defined in equation (4)  (Iwamatsu, 2006), 
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They also showed that for values of 4>φ , the particles would quickly converge onto the 
global solution while for 4<φ  the swarm would most likely get stuck at a local optimum. 
Such a behavior is similar to that exhibited by the inclusion of inertia weight, w , into the 
system response. This similarity spawned a study comparing the performance of a PSO 
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using a constriction factor with that using an inertia weight by (Eberhart & Shi, 2006). Five 
benchmark functions viz. spherical, Rosenbrock, Rastrigrin, Griewank and Schaffer’s f6 function 
were investigated during this performance analysis. It was found that even though it is not 
essential to specify the value of maxv  in the constriction factor approach, limiting it to the 
dynamic range of each variable in each dimension (i.e. maxx ) of the system under 
consideration resulted in the fastest and most consistent way to obtain good results. The 
authors have shown that by setting χ=w and 21 cc +=φ , the PSO algorithm using 
constriction factor can be considered as a special case of the PSO using inertia weight.     

1.5.3 Use of adaptive scaling term 
Sometimes situations are encountered wherein the evaluation of the objective function may 
not be feasible within a restricted time frame. In such cases the algorithm is limited to 
operate within an acceptable time resulting in a solution that is sub-optimal. The ideal 
choice here would be to accelerate the PSO in order to reduce convergence time and also 
increase the probability of finding the global optimum. This is the motivation for 
considering speed-up strategies for PSO. One such strategy proposed in (Fan, 2002) 
involved the use of an adaptive scaling term into the algorithm. As discussed previously the 
behavior of the swarm is modeled as shown in equation (1) and the necessary velocity 
limitations are applied as shown below, 
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Fan explains that at the beginning of a search it is desirable that the particles be spread all 
over the search space in order to explore all possible regions to maximize the chances of 
finding the global solution. However as the search progresses, the searching scale should be 
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Here, t  is the number of the current generation (i.e. optimization step), T  is the maximum 
number of iterations and h  is a positive constant chosen by trial and error. The velocity 
update and position update equations remain the same as shown in equation (1).  Changes 
are effected only in setting the limits of velocity. Benchmark experiments revealed that this 
modified PSO performed better as compared to the original PSO on test functions such as 
spherical, Rosenbrock and Griewank’s function. The modified PSO had a higher 
convergence rate than the original when used to solve these three function minimization 
problems. Fan found that the original PSO rapidly stagnated when no improvement was 
exhibited by its searched solution. However the modified PSO could still search 
progressively till the global solution was found indicating a higher reliability rate. Even 
with a fixed number of generations, the modified PSO exhibited better convergence 
reliability. It was also found that in case of the original PSO the parameter maxv  strongly 
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influences the best function value, making the selection of maxv  crucial.  However in the 
case of the modified PSO, this parameter can be selected quite arbitrarily within a relatively 
large range. A preliminary study was also performed to examine the effect of the exponent 
h  that controls the reducing speed of the searching scale on the algorithm.  It was found 
that similar to maxv ; this parameter can also be arbitrarily selected over a wide range. 

1.5.4 Inclusion of Boundary Conditions 
In order to prevent the swarm searching outside the solution space, boundary conditions 
can be specified. These conditions are highly dependent upon factors such as problem 
dimensionality and the location of global optimum. The following list of boundary 
conditions has been taken from (Xu & Rahmat-Samii, 2007) who have also proposed two 
hybrids.  
1. Absorbing: This is a type of restricted boundary condition in the sense that if a particle of 

the swarm flies outside the solution space in a particular dimension then it is tugged 
back to the boundary of the space of that dimension and its velocity is assigned a zero 
value. In 2007, Xu and Rahmat-Samii liken this situation to the energy of the errant 
particle being absorbed by a soft wall so that the particle is stuck on it, and eventually 
gets pulled back by its memory of best locations only. 

2. Reflecting: This is another type of restricted boundary condition in which the deviant 
particle is pulled back to the boundary of the solution space of the dimension it 
overshot and the direction of its velocity in that dimension is altered. This is equivalent 
to the particle being reflected by a hard wall, and the energy driving it outside the 
boundary being totally reversed in order to accelerate it back toward the solution space. 

3. Damping: This is the third type of restricted boundary condition and bears a 
resemblance to the reflecting boundary condition. In this case also the errant particle is 
drawn back into the solution space and is relocated at the boundary of the dimension 
under consideration where its velocity component is reversed and assigned a random 
number between 0 and 1. The only difference between a damping and a reflecting 
boundary condition is the introduction of this uncertainty factor, which makes the 
reflection imperfect.    

4. Invisible: This is an unrestricted boundary condition in which the particle that leaves the 
solution space is not brought back but allowed to stay there. The fitness of that particle’s 
position is not assessed and instead it is assigned a bad fitness value. In due course, the 
particle comes back into the solution space because of its inherent characteristic of 
setting its trajectory towards the weighted sum of global and individual best. 

5. Invisible/Reflecting: This is the first of the two new unrestricted boundary conditions 
proposed in (Xu & Rahmat-Samii, 2007) and is a hybrid of the invisible and reflecting 
boundary conditions. In this case the errant particle is not pulled back to the solution 
space boundary and instead gets assigned a bad fitness score. Also, the direction of the 
velocity of the particle in the dimension under consideration is reversed because of 
which it accelerates back toward the solution space.   

6. Invisible/Damping: This is the other new boundary condition proposed in (Xu & Rahmat-
Samii, 2007) and is a combination of the invisible and reflecting boundary conditions. 
Again, the deviant particle is allowed to stay outside the solution space and gets assigned 
a bad fitness value while the direction of the velocity of the particle in that dimension is 
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reversed with a random factor between 0 and 1. As a result the particle comes back into 
the solution space.  

1.6 Recent applications of PSO 
Since its inception in 1995, the PSO algorithm has been used extensively; in some cases being 
tailored to suit the problem at hand and in other cases to solve issues that have not been 
attempted so far. In this section a brief description of some of the recent applications of the 
PSO algorithm have been described.  
1. Micro-PSO (µPSO): Recently a microparticle swarm optimizer (µPSO) is proposed for 

reconstructing the dielectric properties of normal and malignant breast tissues (Huang 
& Mohan, 2007). This is a type of high-dimensional microwave imaging which requires 
a large population of co-operative agents in order to find the global optimum for 
accurate image reconstruction. The population size adversely affects the computational 
effort required. Huang and Mohan have proposed an algorithm that utilizes a smaller 
population and implements a set of restart operations after the population has 
converged. If the population converges to a solution that is inferior or equal to the 
available best solution, the solution is blacklisted for future searches and all particles are 
prevented from converging onto the same solution again. They utilized the concept of 
the guaranteed convergence PSO and introduced a force of repulsion modeled on the 
lines of Coulomb’s law of electrostatics between particles and blacklisted solutions. This 
repulsive force is inversely proportional to some power of the distance between the 
particle under consideration and a given blacklisted solution. The authors suggested the 
value of this power should be chosen in such a way that it cause enough force to repel 
the particles away from blacklisted solutions while at the same time allowing them to 
search spaces surrounding the blacklisted solutions. While selecting the value of the 
inertia parameter, the authors have employed an adaptive technique that sets the value 
of w depending on the quality of solutions found. As regards the type of neighborhood, 
since a µPSO typically consists of only 3-5 agents, the authors have suggested the use 
the GBEST topology.  

2. Application to Electromagnetic Devices: The PSO is successfully applied for the 
purpose of optimizing the design of electromagnetic devices, particularly the problem 
of a super conducting magnetic energy storage (SMES) configuration with eight free 
parameters (Ho et al, 2006). In their attempt they have suggested certain enhancements 
in order to balance the exploration and exploitation capabilities of PSO. Stagnation may 
be introduced into the PSO algorithm due to sharing of information between the 
particles of the swarm. In order to boost up the diversity of the algorithm, the authors 
have proposed the introduction of an age variable, which is representative of the age of 
a global best, or an individual particle’s best. If this age exceeds a certain threshold 
value then that particular solution is disposed and replaced by a new randomly 
generated solution thus improving global search ability. The authors also recommend 
that in order to further ensure the solution diversity of the particles, a Roulette wheel 
scheme should be adopted for selecting the individual and global bests from their 
respective sets. For the purpose of balancing personal and social experience as well as 
exploration and exploitation two new random factors are introduced by the authors. 
The former in this case is actually a combination of rand1() and rand2() (defined in 
equation (2)) set in such a way that the sum of rand1() and rand2() equals 1. Ho et al 
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influences the best function value, making the selection of maxv  crucial.  However in the 
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reversed with a random factor between 0 and 1. As a result the particle comes back into 
the solution space.  

1.6 Recent applications of PSO 
Since its inception in 1995, the PSO algorithm has been used extensively; in some cases being 
tailored to suit the problem at hand and in other cases to solve issues that have not been 
attempted so far. In this section a brief description of some of the recent applications of the 
PSO algorithm have been described.  
1. Micro-PSO (µPSO): Recently a microparticle swarm optimizer (µPSO) is proposed for 

reconstructing the dielectric properties of normal and malignant breast tissues (Huang 
& Mohan, 2007). This is a type of high-dimensional microwave imaging which requires 
a large population of co-operative agents in order to find the global optimum for 
accurate image reconstruction. The population size adversely affects the computational 
effort required. Huang and Mohan have proposed an algorithm that utilizes a smaller 
population and implements a set of restart operations after the population has 
converged. If the population converges to a solution that is inferior or equal to the 
available best solution, the solution is blacklisted for future searches and all particles are 
prevented from converging onto the same solution again. They utilized the concept of 
the guaranteed convergence PSO and introduced a force of repulsion modeled on the 
lines of Coulomb’s law of electrostatics between particles and blacklisted solutions. This 
repulsive force is inversely proportional to some power of the distance between the 
particle under consideration and a given blacklisted solution. The authors suggested the 
value of this power should be chosen in such a way that it cause enough force to repel 
the particles away from blacklisted solutions while at the same time allowing them to 
search spaces surrounding the blacklisted solutions. While selecting the value of the 
inertia parameter, the authors have employed an adaptive technique that sets the value 
of w depending on the quality of solutions found. As regards the type of neighborhood, 
since a µPSO typically consists of only 3-5 agents, the authors have suggested the use 
the GBEST topology.  

2. Application to Electromagnetic Devices: The PSO is successfully applied for the 
purpose of optimizing the design of electromagnetic devices, particularly the problem 
of a super conducting magnetic energy storage (SMES) configuration with eight free 
parameters (Ho et al, 2006). In their attempt they have suggested certain enhancements 
in order to balance the exploration and exploitation capabilities of PSO. Stagnation may 
be introduced into the PSO algorithm due to sharing of information between the 
particles of the swarm. In order to boost up the diversity of the algorithm, the authors 
have proposed the introduction of an age variable, which is representative of the age of 
a global best, or an individual particle’s best. If this age exceeds a certain threshold 
value then that particular solution is disposed and replaced by a new randomly 
generated solution thus improving global search ability. The authors also recommend 
that in order to further ensure the solution diversity of the particles, a Roulette wheel 
scheme should be adopted for selecting the individual and global bests from their 
respective sets. For the purpose of balancing personal and social experience as well as 
exploration and exploitation two new random factors are introduced by the authors. 
The former in this case is actually a combination of rand1() and rand2() (defined in 
equation (2)) set in such a way that the sum of rand1() and rand2() equals 1. Ho et al 
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also proposed the inclusion of an intensified search into the algorithm for accurately 
identifying the global optimum. They have explained this method as follows. When a 
global best is found, an intensification search is activated in the neighborhood around 
this point using only its speed vector with the cognitive and social influences being 
deliberately excluded in the velocity updating formula. In this iterative process, if a 
search is successful, the algorithm will keep the velocity vector unchanged while 
continuing its exploitation using this speed vector; otherwise, the algorithm will 
generate randomly a new speed vector to begin the next refinement search. The 
intensification search process will be repeated until the number of consecutive 
unsuccessful explorations around a new reaches a previously decided number.  

3. Application to Circuit Partitioning: The PSO is applied to a circuit partitioning problem 
(Venayagamoorthy et al. 2007). Such a partitioning is essential in order to reduce the 
number of test vectors required to detect faults in VLSI circuits. The authors have 
compared the performance of a standard I-PIFAN (improved primary input and fanout 
based partitioning approach) algorithm in partitioning combinational CMOS circuits 
into a number of sub-circuits with that of a modified version employing PSO (called 
PSO-PIFAN). In the I-PIFAN, the circuit can be partitioned depending upon the 
combinations of the maximum node fan in size N and the minimum partitioning fanout 
value F. Venayagamoorthy et al showed that I-PIFAN’s search is exhaustive and hence 
slow and is constrained within a pre-specified range of N and F combinations. The best 
result has to be selected from this range. Thus, if the optimal solution is outside the 
specified range of N and F values then it will not be found.  In the case of the PSO-
PIFAN, all combinations of N and F are searched simultaneously without necessitating 
a specified range.  The authors have concluded that the PSO-PIFAN performs a directed 
search of the solution space and uses its memory to accelerate the PSO particles towards 
the global solution in a shorter time and will always converge to the optimal solution. 

4. Application in Power Systems: Recently, there has been an attempt to demonstrate the 
feasibility and robustness of PSO in solving a transient stability constrained optimal 
power flow problem (TSCOPF) (Mo et al, 2007). They tested the algorithm on two test 
systems viz. the IEEE 30-bus system and the New England 39-bus systems with 
promising results. Comparison with GA revealed PSO to be better equipped for solving 
multi-contingency TSCOPF. In order to accelerate the process of computation, the 
authors have proposed the use of a parallel computing environment. 

1.7 Binary PSO 
In order to easily solve combinatorial problems such as scheduling and routing issues that 
involve ordering or arranging of discrete elements, Kennedy and Eberhart proposed a 
binary version of the PSO optimizer, which could operate on two valued functions 
(Kennedy & Eberhart, 1997). In this adaptation of the original PSO, the position of each 
particle is described either by a 0 or a 1 in each dimension. In this case, the velocity of the 
particle in a particular dimension represents the probability of the position of the particle in 
that dimension being 0 or 1. A sigmoid limiting transformation ( ))1( +tvσ  is used to update 
the position of the particle under consideration by comparing it to a random number ρ . 
This is expressed in the equation (9). 

 If ( )( ) ρσ >+1tv  then ( ) 11 =+tx otherwise ( ) 01 =+tx  (9) 
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The random number, ρ , is considered to be uniformly distributed in the range [0, 1].  
The pseudo code for the discrete PSO developed by Kennedy, Eberhart and Shi and taken 
from (Guo et al, 2006) is described as follows: 
 
Loop 
 For i = 1 to Np // Np is the number of  

particles 
If G(Xti ) > G(Pti ) then // G( ) evaluates the 

objective function, Xti is a 
potential solution i.e. Xti = 
(xti1, xti2,… xtiD), xtid  �{1,0}, D 
is the number of dimensions, 
t is the iteration number and  
Pti = (pti1, pti2,… ptiD) is the 
best solution that particle i 
has obtained until iteration t
  

For d = 1 to D bits 
ptid = xtid    //ptid is best so far 

Next d 
End if 
g = i      //arbitrary 
For j = indices of neighbors (or population) 

If G(Ptj )>G(Ptg) then g = j  // Ptg = (ptg1, ptg2,… ptgD) is 
the best solution in the 
population or neighborhood 
at iteration t and g is index of 
best performer in neighbor-
hood (or population) 

Next j 
For d = 1 to D 

vtid  = vt−1id + c1r1(ptid − xtid ) + c2r2(ptgd − xtid ) 
vtid � [−Vmax , + Vmax] 
If  random number  < ρ(vtid ) then  

xt+1id = 1 
else 

 xt+1id = 0 
Next d 

Next i 
Until criterion 

1.7.1 Recent Applications of Binary PSO 
Recently, the binary PSO approach is applied to the problem of polygonal approximation of 
digital curves (Yin, 2004). This problem is of significance since it is used in a number of 
image analysis tasks such as object recognition, image matching and target tracking. A 
polygon can be used to represent a shape in an image since the information of a shape is 
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mainly preserved at the corners that have the maximal measure of significance. The problem 
at hand is to approximate the curve along the corners as closely as possible while at the 
same time keeping the number of vertices at the corners of the polygon (called degree of the 
polygon) as small as possible. Yin employed the binary PSO technique developed in 
(Kennedy & Eberhart, 1007) with a slight modification. He introduced a local search 
heuristic in between successive generations of the discrete PSO so that once the algorithm 
found a good region within a given iteration, it could exploit that region thoroughly before 
moving onto another region. This hybrid PSO showed significantly improved performance 
in terms of the number of polygon vertices necessary for the same error and variations in 
results between different runs as compared to the original binary PSO.  
 
Another work has showed the use of binary PSO in optimizing flowshop scheduling 
problems (Liao et al, 2007).  They used a variant of the GBEST model to search for the best 
global solution. Instead of determining the global best for a given iteration from the 
individual bests of the individual particles up to that iteration, the global best was 
determined from the positions of the particles at the current iteration. Liao et al showed this 
technique to perform better than the conventional GBEST model. Even though it spent more 
time on converging, it increased the probability of not getting stuck at a local solution. In an 
attempt to further improve the PSO performance, Liao et al introduced a local search scheme 
to be carried out once, every fixed number of iterations within the PSO loop. The main idea 
was that given a current solution, the PSO mechanism would lead the solution to an 
intermediate solution. The local search would be applied to this intermediate solution in 
order to reach the global solution. The binary PSO method has been applied to define a 
preliminary short/medium range aircraft configuration, fully compliant with given 
requirements, that allows a minimum direct operating cost (Blasi & Del Core, 2007). In this 
work they tested two different boundary conditions viz. absorbing wall technique and 
reflecting wall. The authors found the latter technique to provide a slightly improved 
performance over the former. They also compared the PSO method with that of a previously 
studied genetic optimizer and found the PSO method to be quite promising. 

2. Application of PSO to fault diagnosis of airplane engines 
The work discussed in this work involves using PSO in conjunction with Bayesian Networks 
(BN) for diagnosing and predicting faults in airplane engines. A distributed Particle Swarm 
Optimization approach is explored in order to construct the best BN from a large dataset 
comprising of raw data taken from the sensors of airplane engines during actual flights. The 
inherent parallelism of the PSO technique has been exploited with the algorithm being 
implemented on a cluster of 48 processors using Message Passing Interface (MPI) in Linux.  
The seamless blend of graph theory and probability theory that makes uncertainty 
representation both instinctive and spontaneous is an inherent characteristic of Bayesian 
Networks and this makes it a highly appealing option for fault diagnosis. This work 
attempts to employ Bayesian Networks for the purpose of creating a fault diagnosis system. 
Initially no expert information is available as regards the relationship between the variables 
forming the network and it is discovered solely from the available engine data. After the 
network is conceptualized, expert information is incorporated for a more accurate modeling 
of the dependencies associated between fault and other system variables. The task of 
determining the Bayesian Network that best fits the data is accomplished by means of PSO. 
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As mentioned previously, the parallel behavior exhibited by the PSO technique is employed 
in fitness evaluation of the processed data on a cluster of 48 CPUs running parallel, using 
MPI in Linux. Such an arrangement serves to substantially reduce computational time.  

2.1 Overview of Bayesian Networks 
A Bayesian Network (BN) is a probabilistic network that provides a cogent and coherent 
depiction of the dependencies and independencies between the variables of interest. Such a 
network is a graphical model in the form of a directed acyclic graph (DAG), which has a 
causal semantics thereby enabling an effortless incorporation of causal prior knowledge. 
The strength of these causal relationships is encoded in the form of conditional 
independence assertions between the variables (Heckerman, 1995). Consider a domain of 
random variables given by ( )nXXXU ,,, 21 K= .  These signify the nodes of a network. 
Conditional dependencies are represented in the form of directed links between variables. 
An arrow from node X1 to node X2 indicates X1 to be the parent of X2.  In order to quantify 
the effect of the parents on the node, a conditional probability distribution is associated with 
it defining its local semantics, e.g. each node Xi, has a conditional probability distribution 

( )( )ii XParentsXP | .  The product of these local conditional distributions evolves into 
global semantics of the problem at hand with the Chain rule being its mathematical 
manifestation. The Chain rule expresses the relationship between the unconditional 
probabilities ( )iXP , the conditional probabilities ( )eXP i | , where e is the evidence and the 
joint probability ( )UP  as shown in equation (10).  Here ( ) ( )nXXXPUP ,,, 21 K= . An 
exponential enhancement in ( )UP  is observed as the number of variables escalates.  

 ( ) ( )( )∏
=

=
n

i
XParentsXPUP ii

1
|  (10) 

2.2 Bayesian Learning 
Incomplete knowledge spawns learning. It is a means of obtaining information through 
experience. Bayesian Learning uses hypotheses as intermediaries between data and 
predictions (Russell & Norvig, 1995). The main steps are: 

• Estimating the probability of each hypothesis given the data 
• Making predictions from the hypotheses, using the posterior probabilities of the 

hypotheses to weight the predictions 
Four classes of Bayesian Network Learning arise based on whether the structure of the 
network is known or unknown and the variables are observable or hidden. These include 
the following: 
1. Known structure complete data: This is the case where the network is specified and the 

data does not contain any missing values. It involves evaluation of the conditional 
probability tables for each node of the network from the complete data. 

2. Known structure incomplete data: For this case the network is specified but the data is by 
no means complete and consists of missing values or hidden variables. The missing 
data can be estimated on the basis of the available data and the information about the 
missing data – an approach that is adopted by the Expectation-Maximization (EM) 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

518 

mainly preserved at the corners that have the maximal measure of significance. The problem 
at hand is to approximate the curve along the corners as closely as possible while at the 
same time keeping the number of vertices at the corners of the polygon (called degree of the 
polygon) as small as possible. Yin employed the binary PSO technique developed in 
(Kennedy & Eberhart, 1007) with a slight modification. He introduced a local search 
heuristic in between successive generations of the discrete PSO so that once the algorithm 
found a good region within a given iteration, it could exploit that region thoroughly before 
moving onto another region. This hybrid PSO showed significantly improved performance 
in terms of the number of polygon vertices necessary for the same error and variations in 
results between different runs as compared to the original binary PSO.  
 
Another work has showed the use of binary PSO in optimizing flowshop scheduling 
problems (Liao et al, 2007).  They used a variant of the GBEST model to search for the best 
global solution. Instead of determining the global best for a given iteration from the 
individual bests of the individual particles up to that iteration, the global best was 
determined from the positions of the particles at the current iteration. Liao et al showed this 
technique to perform better than the conventional GBEST model. Even though it spent more 
time on converging, it increased the probability of not getting stuck at a local solution. In an 
attempt to further improve the PSO performance, Liao et al introduced a local search scheme 
to be carried out once, every fixed number of iterations within the PSO loop. The main idea 
was that given a current solution, the PSO mechanism would lead the solution to an 
intermediate solution. The local search would be applied to this intermediate solution in 
order to reach the global solution. The binary PSO method has been applied to define a 
preliminary short/medium range aircraft configuration, fully compliant with given 
requirements, that allows a minimum direct operating cost (Blasi & Del Core, 2007). In this 
work they tested two different boundary conditions viz. absorbing wall technique and 
reflecting wall. The authors found the latter technique to provide a slightly improved 
performance over the former. They also compared the PSO method with that of a previously 
studied genetic optimizer and found the PSO method to be quite promising. 

2. Application of PSO to fault diagnosis of airplane engines 
The work discussed in this work involves using PSO in conjunction with Bayesian Networks 
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comprising of raw data taken from the sensors of airplane engines during actual flights. The 
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data does not contain any missing values. It involves evaluation of the conditional 
probability tables for each node of the network from the complete data. 

2. Known structure incomplete data: For this case the network is specified but the data is by 
no means complete and consists of missing values or hidden variables. The missing 
data can be estimated on the basis of the available data and the information about the 
missing data – an approach that is adopted by the Expectation-Maximization (EM) 
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algorithm (Friedman, 1995) and by Gibbs’ Sampling. Bound and Collapse (BC)  (Sebastiani 
& Ramoni, 2000) is another technique which can be explored given such a scenario. 

3. Unknown structure incomplete data: Such a problem involves an unspecified network 
structure coupled with data having missing vales. Exact solutions are not viable and 
hence such problems call for sub optimal networks which can be determined using 
gradient based algorithms using structural EM and BC (Sebastiani & Ramoni, 2000). 

4. Unknown structure complete data:  The problem dealt with in this chapter belongs to this 
category. It attempts to learn the structure of the BN using the complete sensor data and 
on the basis of the developed structure endeavors to diagnose presence/absence of 
faults in airplane engines. Here the network topology has to be generated such that it 
fits the data the best. The number of structures grows super-exponentially as the 
number of variables multiplies, making such a problem computationally expensive.  
Thus applying distributed PSO could help greatly. 

2.3 Structural Learning 
In order to demonstrate the suitability of Bayesian Networks as an inference tool for 
predictive maintenance of airplane engines, the network has to be built first and this 
requires learning its topology using the available sensor data. This is structural BN learning. 
Given a training set D, the problem of learning a BN involves finding a network B that best 
matches D (Friedman, 1995). Structural BN learning can be addressed using either constraint 
based or score based learning. The former deals with conducting statistical tests on the given 
data and then determining a unique DAG that is consistent with the observed 
(in)dependencies. The latter approach focuses on optimization. It involves finding a network 
structure that maximizes a defined scoring function that represents how well each network 
structure fits the data. Less vulnerability to errors in individual tests gives score based 
methods an edge over constraint-based techniques.  The approach in this work is score 
based. Literature provides an assortment of scoring functions which include log-likelihood 
(Heckerman, 1995) , the minimal description length (MDL) score (Lam & Bacchus, 2000), 
Bayesian score (Heckerman, 1995) etc. Of these, the K2 scoring metric (based on a Bayesian 
approach) provided in (Cooper & Herskovits, 1992) has been found to be the most 
successful. The technique applied in the presented work is Bayesian score, which can be 
described as having the following form: 

 ( ) ( ) ( ) ( )
( )DP

BPBDPDBPDBScore ||: ==    (11) 

 ( ) ( ) ( ) BBB BPBDPBDP θθθ d|,|| ∫=    (12) 

Here, D represents the data and B represents a network candidate. The network structure 
that maximizes ( ) ( )BPBDP | , maximizes the score as well. The probability ( )BDP |  is 
evaluated in the equation (12), where Bθ  is a parameter of the network B. 
As discussed previously, the goal of score based methods is to find the highest scoring 
network structure. This is accomplished by means of a search algorithm. This score + search 
approach is NP-hard (Chickering et al, 2004) justifying a heuristic approach (Djan-Sampson 
& Sahin, 2004). The most commonly used algorithm is a simple greedy hill-climbing 
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algorithm. However it suffers from the ills of local maxima and plateaus that have adverse 
effects on the score.  Heuristic searches generally assume that ordering of variables is known 
and many do not scale well with networks having a large number (more than five) of 
variables. Additional scaling difficulties arise while dealing with large datasets such as gene 
and census data (Sahin et al, 2007; Yavuz et al, 2006). In order to avoid the pitfalls of 
heuristic searches we use a PSO based approach, as it is highly compatible with large 
datasets and large networks. 

2.4 Applying Binary PSO 
In this problem each particle of the swarm represents a BN. The position of each particle is 
made up of a string of 0s and 1s where each bit represents whether an edge exists between 
the nodes indexed by the bit. Assuming no node can be its own parent, the binary string will 
contain ( )1−nn  bits. The fitness is calculated using the scoring function given below 
(Herskovits, 1992): 
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Here ir  is the number of states for node i , the first product is over the nodes in the 
network, the second product is over the set of permutations of the parents of node i , and 
the third product is over the states of node.  Also ijN  is defined as  
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Here, ijkN  is an entry in the conditional probability table for node i . The conditional 

probability table elements contain occurrences of joint instantiations of the parents, (each 
permutation is indexed with j) of node i for which node i is in state k.  Hence, the sum ijN  

is a total of a column of the conditional probability table, where each column enumerates 
occurrences of node i  in each state for a specific instantiation set of parents.  At each step of 
the optimization, equations (1a) and (9) are used to update the particle velocities and 
positions respectively. 

3. Fault Diagnosis 
Fault diagnosis using PSO based Bayesian Network learning is accomplished in two steps: 
preprocessing and network discovery. Preprocessing generates the input dataset.  Network 
discovery is accomplished by the PSO algorithm that is run in a computer cluster. The 
output is a network that correctly models the system dependencies and serves as a tool for 
system diagnosis and monitoring as well as fault prediction.  
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network, the second product is over the set of permutations of the parents of node i , and 
the third product is over the states of node.  Also ijN  is defined as  

 ∑
=

=
i

ijkij

r

k
NN

1
 (14) 

Here, ijkN  is an entry in the conditional probability table for node i . The conditional 

probability table elements contain occurrences of joint instantiations of the parents, (each 
permutation is indexed with j) of node i for which node i is in state k.  Hence, the sum ijN  

is a total of a column of the conditional probability table, where each column enumerates 
occurrences of node i  in each state for a specific instantiation set of parents.  At each step of 
the optimization, equations (1a) and (9) are used to update the particle velocities and 
positions respectively. 

3. Fault Diagnosis 
Fault diagnosis using PSO based Bayesian Network learning is accomplished in two steps: 
preprocessing and network discovery. Preprocessing generates the input dataset.  Network 
discovery is accomplished by the PSO algorithm that is run in a computer cluster. The 
output is a network that correctly models the system dependencies and serves as a tool for 
system diagnosis and monitoring as well as fault prediction.  
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3.1 Preprocessing 
Extensive information pertaining to an assortment of airplane engine parameters viz. 
temperature, altitude, pressure, flight phase etc. is furnished by sensors connected to the 
airplane engines. MATLAB is used for the purpose of storing this raw data as structure files. 
Each structure file comprises of sensor information pertaining to a single flight. The raw 
data has to be suitably condensed in order to optimize computational efforts. The fact that 
oil related variables account for most number of airplane engine faults forms the basis of 
such a condensation. Hence, from each raw data file the features corresponding to only oil 
related variables are extracted. Another aspect necessitating preprocessing of raw data is 
data sampling. In order to allow all the oil related variables in a given file to have equal 
lengths, a sampling interval adjustment is vital. The necessity of sampling uniformity stems 
from the fact the sampling rate of different sensors is different.  
 
In an effort to further reduce computational expense, focus is restricted to information 
obtained during the approach phase of the flight. The rationale behind the choice of flight 
phase is the fact that the sensors relevant for lube diagnosis record a broad range of values 
during the approach phase thereby allowing us to delineate distinct states for the BN nodes 
(Sahin et al, 2007). Such a choice also helps extend the coverage of flight data analysis since 
unlike take-off and cruise, the approach phase has not been studied as well (Sahin et al, 
2007) . The adjusted data pertaining to a particular flight now constitutes equal sized arrays 
of sensor readings corresponding to only engine oil failure related variables, further 
narrowed down to include only approach phase readings.  In a Bayesian Network, the 
maximum number of states corresponding to each node directly influences the total run 
time of the network structure learning algorithm. Hence it is crucial to reduce the variation 
of the values in the adjusted dataset. This is accomplished by means of an equal frequency 
data binning algorithm. Similar data are grouped together into bins while at the same time 
ensuring that that each bin contains a fairly equal number of elements. The data is tagged 
based on the bin numbers, which represent the probable states a given variable would be at 
a particular point in time. Thus a reduction in the maximum number of states associated 
with each node is brought about. In the presented work, each node is chosen to have four 
states (four bins).  The equal frequency binning algorithm works as follows: 

1. Initially a minimum number of elements (say n) are considered to be clustered 
together in one bin. 

2. The first bin is filled up with the first n number of elements, the second bin by the 
next n number of elements and so on. This may cause the last bin to contain more 
or less than n number of elements. 

3. To ensure that similar elements are in the same bin some elements are transferred 
to or from adjacent bins 

4. Any resulting empty bins are discarded. 
5. The bins are checked to see if similar elements are grouped together in the same 

bin. If not the control goes back to step (3) 
6. The original data is represented by the bin number. 

3.1.1 Addition of Fault 
The binned data is classified as faulty or non faulty by introducing an additional column 
named Fault in the data. Information regarding the presence or absence of Fault is 
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determined from the maintenance records of the airplane engines. For example, a flight 
before an oil related repair on an engine is categorized as faulty while the very first flight 
after that maintenance is considered to have non faulty flight data. The entries of the Fault 
column are set to 1 or 0 respectively depending on whether the raw data file is faulty or not.  

3.1.2 Packing data and compression 
In order to reduce the size of the data, we have packed the data by combining data elements 
in bytes and applied compression techniques.  The size reduction in the data file improved 
the performance of the distributed PSO algorithm since smaller data can be sent to the 
slaves faster in the cluster.  Thus, less time was required to complete the algorithm. After 
packing and compression, it was possible to condense the original file by about 40-75 times. 
Details of this approach can be found in (Sahin et al, 2007). 

3.2 Using Particle Swarm Optimization for Searching the best Bayesian Network 
Parallelism is the hallmark of the PSO algorithm and this feature can be efficiently exploited 
for fitness calculation, as it is the most computationally demanding aspect of a BN search, 
especially when the problem at hand involves a large number of variables or large datasets. 
The following sections explore the characteristics of the implemented PSO.  Fig. 3 shows the 
distributed PSO in master-slave framework.  

3.2.1 Parallel Computing for Particle Swarm Optimization 
The PSO algorithm was run on a cluster of 48 CPUs operating in parallel. An MPI (Message 
Passing Interface) having a master slave framework was implemented. The particle swarm 
was managed and initialized by the master. Each slave process received a particle from the 
master and was required to calculate its fitness and send it back. After all the fitness results 
for the swarm were received by the master, the algorithm was advanced by one step i.e. one 
iteration. The master again sent out the newly evolved particles to the slaves and the 
procedure was repeated.  
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Figure 3. Parallel implementation of PSO algorithm 
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For dynamic evolution of the swarm, all the processes must wait for each other to complete 
their current fitness calculation. Such implementation architecture is termed as synchronous 
PSO. Efficient parallel implementation of the PSO algorithm was accomplished by keeping 
the number of slave processes equal to or greater than the number of particles. This is 
because with an adequate number of processes there is a high probability that all the 
processes up to the number of particles will compute fitness and return the values at 
approximately the same time resulting in a small idle process time. 

3.2.2 Particle and Velocity Initialization 
The particles in the swarm were heuristically initialized. If there were N nodes in the 
network, each particle was initialized to contain a randomly selected set of N/2 edges. If this 
resulted in a cyclic particle then it had to be axed and recreated. This was critical since the 
chosen fitness function was designed to handle only acyclic graphs. The maximum number 
of arcs was restricted to 2N. Such a restriction did not impact the particle initialization. 
There was a possibility of encountering the problem of cyclic particles yet again when the 
particles were allowed to ‘fly’. At such instances the cyclic particles were identified and 
rendered acyclic by repeated removal of edges. For velocity initialization, each component 
of each particle’s velocity was randomly initialized on the interval 

 maxmax ννν ≤≤− o  (15) 

This initialization lead to particles having approximately ( ) 21−NN  arcs after they were 
moved for the first time. This ensured adequate initial exploration of the BN bit string 
particle swarm. Effectual exploration of the search space demanded intelligent selection of 
maximum velocity in order to prevent greediness from creeping in. 

3.3 Training and testing 
For the purpose of network generation and fault prediction, the PSO based structural BN 
learning code is developed in two modes:  simulation and inference. The simulation mode is 
also referred to as training. This mode involved using a set of preprocessed data files (called 
training files) for exploring the optimal representation of the system dependencies by 
execution of the PSO algorithm. Other input parameters of significance included the number 
of PSO particles, type of neighborhood, and the number of optimization steps. This resulted 
in a BN that was representative of the input preprocessed (training) data. Inference mode is 
also called the testing mode. In this mode the accuracy of the generated BN in diagnosing 
faults in known and unknown datasets was investigated. A collection of preprocessed files 
different from those used for training was tested by using the BN.  For this purpose a 
preprocessed training sample set, its corresponding BN realization and the set of files to be 
tested were fed into the inference engine. Correct diagnosis of known files served to validate 
the use of the BN for fault prediction in unknown datasets.  Table 2 shows the list of engine 
oil failure variables under investigation that directly or indirectly influences Fault. The 
problem of coming up with the best BN that models the dependencies between the listed 
variables has been attempted in our previous work (Sahin et al, 2007; Yavuz et al, 2006). 
Here we incorporate expert information in order to make our model more accurate. This 
expert input is of two types. Firstly we tag certain variables to be independent of others as a 
result of which they show absence of parents in the resulting DAG. Secondly, we determine 
and discard those variables that have no influence on the system. 
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4. Experimental Tests and Results 
Oil related variable Symbol Remarks 
Pressure Altitude ALT - 

Engine Cycle ECYC Independent variable 

Engine Hours EHRS Independent variable 
Exhaust Gas Temperature EGT - 

Fuel Flow FF - 
Mach MACH - 

Fan Speed N1 - 
Core Speed N2 - 
Oil Pressure OIP - 

Oil Temperature OIT - 
Power Lever Angle PLA - 

Total Pressure PT - 
Total Air Temperature TAT Independent variable 

Thrust Mode TMODE - 
Engine Vibration VIB - 

Table 2. List of oil related variables 

4.1 Incorporation of independent variables  
Based on experts at Honeywell Inc., three oil related variables viz. Engine Cycle (ECYC), 
Engine Hours (EHRS) and Total Air Temperature (TAT) are considered to be unaffected by 
others and hence are marked as independent variables.  Initially a set of 10 files comprising 
of an equal number of faulty and non-faulty files are selected. After preprocessing, this data 
is fed into the simulation mode of the software that utilizes PSO to generate the required 
best BN. An accurate BN entails an appropriate PSO, the efficacy of which depends upon 
judicious selection of its parameters. To come up with the most efficient optimizer, four 
parameters viz. number of optimization steps, swarm size, maximum velocity of particles 
and type of neighborhood were investigated. These are enumerated in Table 3.  The training 
data was subjected to an exhaustive series of simulations in order to study the inter-
dependencies between the various PSO parameters and construct the best BN. As perceived 
from the Table 3, a total of 450 simulations were carried out.  
 

PSO parameters Values Remarks 

Number of 
optimization steps 

1000, 2000, 3000, 
4000, 5000 

Type of 
neighborhood 

Global, 
neighborhood of 2 

Number of 
particles 8, 16, 24 

Maximum velocity 
of particles 6, 8, 10 

In a single run the PSO parameters take 
up specified values from column 2. Each 
run is repeated five times and the 
quality of the network generated by 
using those values for the parameters is 
assessed by considering the average 
fitness score of the five runs 

Table 3. List of PSO Parameters 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

524 

For dynamic evolution of the swarm, all the processes must wait for each other to complete 
their current fitness calculation. Such implementation architecture is termed as synchronous 
PSO. Efficient parallel implementation of the PSO algorithm was accomplished by keeping 
the number of slave processes equal to or greater than the number of particles. This is 
because with an adequate number of processes there is a high probability that all the 
processes up to the number of particles will compute fitness and return the values at 
approximately the same time resulting in a small idle process time. 

3.2.2 Particle and Velocity Initialization 
The particles in the swarm were heuristically initialized. If there were N nodes in the 
network, each particle was initialized to contain a randomly selected set of N/2 edges. If this 
resulted in a cyclic particle then it had to be axed and recreated. This was critical since the 
chosen fitness function was designed to handle only acyclic graphs. The maximum number 
of arcs was restricted to 2N. Such a restriction did not impact the particle initialization. 
There was a possibility of encountering the problem of cyclic particles yet again when the 
particles were allowed to ‘fly’. At such instances the cyclic particles were identified and 
rendered acyclic by repeated removal of edges. For velocity initialization, each component 
of each particle’s velocity was randomly initialized on the interval 

 maxmax ννν ≤≤− o  (15) 

This initialization lead to particles having approximately ( ) 21−NN  arcs after they were 
moved for the first time. This ensured adequate initial exploration of the BN bit string 
particle swarm. Effectual exploration of the search space demanded intelligent selection of 
maximum velocity in order to prevent greediness from creeping in. 

3.3 Training and testing 
For the purpose of network generation and fault prediction, the PSO based structural BN 
learning code is developed in two modes:  simulation and inference. The simulation mode is 
also referred to as training. This mode involved using a set of preprocessed data files (called 
training files) for exploring the optimal representation of the system dependencies by 
execution of the PSO algorithm. Other input parameters of significance included the number 
of PSO particles, type of neighborhood, and the number of optimization steps. This resulted 
in a BN that was representative of the input preprocessed (training) data. Inference mode is 
also called the testing mode. In this mode the accuracy of the generated BN in diagnosing 
faults in known and unknown datasets was investigated. A collection of preprocessed files 
different from those used for training was tested by using the BN.  For this purpose a 
preprocessed training sample set, its corresponding BN realization and the set of files to be 
tested were fed into the inference engine. Correct diagnosis of known files served to validate 
the use of the BN for fault prediction in unknown datasets.  Table 2 shows the list of engine 
oil failure variables under investigation that directly or indirectly influences Fault. The 
problem of coming up with the best BN that models the dependencies between the listed 
variables has been attempted in our previous work (Sahin et al, 2007; Yavuz et al, 2006). 
Here we incorporate expert information in order to make our model more accurate. This 
expert input is of two types. Firstly we tag certain variables to be independent of others as a 
result of which they show absence of parents in the resulting DAG. Secondly, we determine 
and discard those variables that have no influence on the system. 

Distributed Particle Swarm Optimization for Structural Bayesian Network Learning 

 

525 

4. Experimental Tests and Results 
Oil related variable Symbol Remarks 
Pressure Altitude ALT - 

Engine Cycle ECYC Independent variable 

Engine Hours EHRS Independent variable 
Exhaust Gas Temperature EGT - 

Fuel Flow FF - 
Mach MACH - 

Fan Speed N1 - 
Core Speed N2 - 
Oil Pressure OIP - 

Oil Temperature OIT - 
Power Lever Angle PLA - 

Total Pressure PT - 
Total Air Temperature TAT Independent variable 

Thrust Mode TMODE - 
Engine Vibration VIB - 

Table 2. List of oil related variables 

4.1 Incorporation of independent variables  
Based on experts at Honeywell Inc., three oil related variables viz. Engine Cycle (ECYC), 
Engine Hours (EHRS) and Total Air Temperature (TAT) are considered to be unaffected by 
others and hence are marked as independent variables.  Initially a set of 10 files comprising 
of an equal number of faulty and non-faulty files are selected. After preprocessing, this data 
is fed into the simulation mode of the software that utilizes PSO to generate the required 
best BN. An accurate BN entails an appropriate PSO, the efficacy of which depends upon 
judicious selection of its parameters. To come up with the most efficient optimizer, four 
parameters viz. number of optimization steps, swarm size, maximum velocity of particles 
and type of neighborhood were investigated. These are enumerated in Table 3.  The training 
data was subjected to an exhaustive series of simulations in order to study the inter-
dependencies between the various PSO parameters and construct the best BN. As perceived 
from the Table 3, a total of 450 simulations were carried out.  
 

PSO parameters Values Remarks 

Number of 
optimization steps 

1000, 2000, 3000, 
4000, 5000 

Type of 
neighborhood 

Global, 
neighborhood of 2 

Number of 
particles 8, 16, 24 

Maximum velocity 
of particles 6, 8, 10 

In a single run the PSO parameters take 
up specified values from column 2. Each 
run is repeated five times and the 
quality of the network generated by 
using those values for the parameters is 
assessed by considering the average 
fitness score of the five runs 

Table 3. List of PSO Parameters 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 

 

526 

Based on these 450 runs with different PSO parameter, we see that the behavior of a 
network generated using PSO is highly dependent upon the inter-relationship between the 
PSO parameters. Hence the choice of parameter values is always problem specific. 

The quality of the generated BNs was evaluated on the basis of the fitness score and the 
number of parents to the Fault node. Networks with higher number (three or more) of 
parents to Fault were desirable since these provided better inference results (Sahin et al, 
2007). Also networks with smaller fitness scores tended to differentiate faulty and non faulty 
files better (Sahin et al, 2007). As a result of the 450 different simulations carried, 23 
networks having four or more parents to Fault were obtained. They are as listed in Table 4. 

Percentage Fault 

Network Steps No. of 
particles 

Neigh- 
borhood Velocity No. of 

parents 
Fitness 
Score 

Faulty 
Test 
File 

Non-
Faulty 
Test 
file 

Network1 3000 24 0 10 5 -3.6058E-06 92.61% 50.03% 
Network2 5000 24 2 6 5 -3.4560E-06 96.65% 45.57% 
Network3 5000 16 2 6 4 -3.4486E-06 49.99% 80.00% 
Network4 3000 24 2 10 4 -3.4283E-06 99.90% 38.17% 
Network5 5000 24 2 10 4 -3.4095E-06 58.50% 79.01% 
Network6 5000 24 2 8 4 -3.3882E-06 88.26% 69.40% 
Network7 5000 24 0 6 4 -3.3345E-06 60.28% 80.92% 
Network8 5000 24 2 10 4 -3.3232E-06 58.54% 60.62% 
Network9 4000 16 0 6 4 -3.2829E-06 98.00% 55.01% 
Network10 2000 24 2 10 5 -3.2558E-06 67.59% 47.20% 
Network11 4000 16 0 6 5 -3.2409E-06 52.43% 59.44% 
Network12 2000 8 2 8 5 -3.2369E-06 49.99% 81.41% 
Network13 2000 24 2 8 4 -3.2255E-06 78.73% 80.66% 
Network14 3000 24 0 10 4 -3.2123E-06 33.60% 71.63% 
Network15 3000 8 0 6 4 -3.1994E-06 87.59% 79.55% 
Network16 4000 16 0 8 5 -3.1810E-06 63.27% 79.90% 
Network17 5000 24 2 10 5 -3.1687E-06 81.30% 77.34% 
Network18 2000 16 0 8 4 -3.1684E-06 96.13% 45.82% 
Network19 2000 16 2 6 4 -3.1497E-06 50.08% 69.40% 
Network20 4000 24 2 10 4 -3.1247E-06 99.50% 53.97% 
Network21 3000 16 0 6 5 -3.1185E-06 77.55% 47.44% 
Network22 3000 8 2 6 4 -3.0115E-06 98.53% 46.34% 
Network23 1000 16 0 6 4 -3.0060E-06 67.87% 50.03% 

Table 4. Simulation and inference results 

Each network was tested on a set of seven known files in order to determine its diagnostic 
capability. The results are indicated in the final two columns of Table 4. Let us examine 
Network 2. It has five parents to Fault and a very good fitness score. It indicated a fault 
probability of about 97% and above for faulty files and a fault probability of about 46% and 
below for non-faulty files, thus exhibiting acceptable proficiency in fault diagnosis. Now 
consider Network 1. It also has five parents to Fault and in fact the best (i.e. lowest) fitness 
score as compared to the other networks. It was able to successfully diagnose faulty files as 
seen by the high value of fault probability for faulty files. However it demonstrated some 
ambiguity while diagnosing non-faulty files. This irregularity can be attributed to data over 
fitting. Increase in the number of parents to the Fault node does not always ensure 
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successful diagnosis. In fact overfitting may introduce excessive variance thereby reducing 
the prediction quality of the model. More than the number, it is which variables are parents 
to the Fault node is what is significant. Network 10 may also be the victim of such an 
overfitting as is indicated by the diminished capability of the network in diagnosing faulty 
files. The inferior diagnostic capability of Networks 11, 12, 16 and 17 can be attributed to 
poor fitness score in addition to overfitting. On the other hand, Network 4 with 4 parents to 
Fault exhibited excellent diagnostic capability even surpassing Network 2.  Networks 5 
through Network 8 have low (i.e. good) fitness scores but are weak representations of the 
system as observed by the excessively high fault probabilities predicted by these networks 
for non-faulty data. On the other hand, Networks 21 and 22 with relatively high (i.e. poor) 
fitness scores function as effective diagnostic tools. This may be considered as an indication 
towards the significance of the variables that affect Fault directly (i.e. are parents to Fault) as 
opposed to their number. Table 5 lists the parent variables to Fault for the networks 
discussed in Table 4.  

Fault Percentage Network 
Faulty Test File Non-faulty Test File

Parents to Fault 

Network1 92.614632% 50.034897% EHRS, MACH, PT, TMODE, VIB 
Network2 96.649025% 45.570953% ECYC, EGT, MACH, N2, TMODE 
Network3 49.987072% 80.001564% ALT, EGT, EHRS, OIP 
Network4 99.900787% 38.174068% ALT, EGT, EHRS, OIT 
Network5 58.498676% 79.011688% ECYC, EHRS, OIP, PLA 
Network6 88.262665% 69.401489% EGT, EHRS, OIP, PLA 
Network7 60.278790% 80.917755% OIP, PLA, PT, TAT 
Network8 58.544533% 60.622322% ALT, MACH, N1, TAT 
Network9 98.004845% 55.009872% EHRS, N2, PT, TMODE 

Network10 67.592590% 47.199936% ECYC, EGT, N1, OIT, TMODE 
Network11 52.425045% 59.435143% ALT, ECYC, EHRS, N1, VIB 
Network12 49.987072% 81.405655% ALT, ECYC, OIP, PLA, TAT 
Network13 78.727547% 80.657501% PT, TAT, TMODE, VIB 
Network14 33.595486% 71.633659% OIP, PLA, PT, TMODE 
Network15 87.590485% 79.550301% ECYC, OIP, PT, VIB 
Network16 63.271446% 79.898872% EGT, MACH, OIP, PT, TAT 
Network17 81.295242% 77.337982% ECYC, MACH, N1, OIP, TMODE 
Network18 96.130951% 45.815529% ALT, EGT, EHRS, PLA 
Network19 50.079407% 69.395515% FF, PLA, PT, TMODE 
Network20 99.503967% 53.965019% ECYC, PLA, TMODE, VIB 
Network21 77.546539% 47.442135% EHRS, N1, N2, OIT, TMODE 
Network22 98.533943% 46.341629% ECYC, N2, TAT, TMODE 
Network23 67.869797% 50.034897% EGT, N2, FF, PT 

Table 5. Parents to Fault node 

From Table 5 it is observed that all the networks with acceptable diagnostic capability viz. 
Networks 2, 4, 18, 21 and 22, include the variables ALT and/or N2 and/or TMODE as 
parents to Fault. Since the amount of data is limited for such a study no generalizations will 
be made. However it must be pointed out that the presence of these variables as well as that 
of others not identified here but which may very well appear repeatedly as parents to Fault 
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2007). Also networks with smaller fitness scores tended to differentiate faulty and non faulty 
files better (Sahin et al, 2007). As a result of the 450 different simulations carried, 23 
networks having four or more parents to Fault were obtained. They are as listed in Table 4. 

Percentage Fault 

Network Steps No. of 
particles 

Neigh- 
borhood Velocity No. of 

parents 
Fitness 
Score 

Faulty 
Test 
File 

Non-
Faulty 
Test 
file 
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Network4 3000 24 2 10 4 -3.4283E-06 99.90% 38.17% 
Network5 5000 24 2 10 4 -3.4095E-06 58.50% 79.01% 
Network6 5000 24 2 8 4 -3.3882E-06 88.26% 69.40% 
Network7 5000 24 0 6 4 -3.3345E-06 60.28% 80.92% 
Network8 5000 24 2 10 4 -3.3232E-06 58.54% 60.62% 
Network9 4000 16 0 6 4 -3.2829E-06 98.00% 55.01% 
Network10 2000 24 2 10 5 -3.2558E-06 67.59% 47.20% 
Network11 4000 16 0 6 5 -3.2409E-06 52.43% 59.44% 
Network12 2000 8 2 8 5 -3.2369E-06 49.99% 81.41% 
Network13 2000 24 2 8 4 -3.2255E-06 78.73% 80.66% 
Network14 3000 24 0 10 4 -3.2123E-06 33.60% 71.63% 
Network15 3000 8 0 6 4 -3.1994E-06 87.59% 79.55% 
Network16 4000 16 0 8 5 -3.1810E-06 63.27% 79.90% 
Network17 5000 24 2 10 5 -3.1687E-06 81.30% 77.34% 
Network18 2000 16 0 8 4 -3.1684E-06 96.13% 45.82% 
Network19 2000 16 2 6 4 -3.1497E-06 50.08% 69.40% 
Network20 4000 24 2 10 4 -3.1247E-06 99.50% 53.97% 
Network21 3000 16 0 6 5 -3.1185E-06 77.55% 47.44% 
Network22 3000 8 2 6 4 -3.0115E-06 98.53% 46.34% 
Network23 1000 16 0 6 4 -3.0060E-06 67.87% 50.03% 

Table 4. Simulation and inference results 

Each network was tested on a set of seven known files in order to determine its diagnostic 
capability. The results are indicated in the final two columns of Table 4. Let us examine 
Network 2. It has five parents to Fault and a very good fitness score. It indicated a fault 
probability of about 97% and above for faulty files and a fault probability of about 46% and 
below for non-faulty files, thus exhibiting acceptable proficiency in fault diagnosis. Now 
consider Network 1. It also has five parents to Fault and in fact the best (i.e. lowest) fitness 
score as compared to the other networks. It was able to successfully diagnose faulty files as 
seen by the high value of fault probability for faulty files. However it demonstrated some 
ambiguity while diagnosing non-faulty files. This irregularity can be attributed to data over 
fitting. Increase in the number of parents to the Fault node does not always ensure 
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successful diagnosis. In fact overfitting may introduce excessive variance thereby reducing 
the prediction quality of the model. More than the number, it is which variables are parents 
to the Fault node is what is significant. Network 10 may also be the victim of such an 
overfitting as is indicated by the diminished capability of the network in diagnosing faulty 
files. The inferior diagnostic capability of Networks 11, 12, 16 and 17 can be attributed to 
poor fitness score in addition to overfitting. On the other hand, Network 4 with 4 parents to 
Fault exhibited excellent diagnostic capability even surpassing Network 2.  Networks 5 
through Network 8 have low (i.e. good) fitness scores but are weak representations of the 
system as observed by the excessively high fault probabilities predicted by these networks 
for non-faulty data. On the other hand, Networks 21 and 22 with relatively high (i.e. poor) 
fitness scores function as effective diagnostic tools. This may be considered as an indication 
towards the significance of the variables that affect Fault directly (i.e. are parents to Fault) as 
opposed to their number. Table 5 lists the parent variables to Fault for the networks 
discussed in Table 4.  

Fault Percentage Network 
Faulty Test File Non-faulty Test File

Parents to Fault 

Network1 92.614632% 50.034897% EHRS, MACH, PT, TMODE, VIB 
Network2 96.649025% 45.570953% ECYC, EGT, MACH, N2, TMODE 
Network3 49.987072% 80.001564% ALT, EGT, EHRS, OIP 
Network4 99.900787% 38.174068% ALT, EGT, EHRS, OIT 
Network5 58.498676% 79.011688% ECYC, EHRS, OIP, PLA 
Network6 88.262665% 69.401489% EGT, EHRS, OIP, PLA 
Network7 60.278790% 80.917755% OIP, PLA, PT, TAT 
Network8 58.544533% 60.622322% ALT, MACH, N1, TAT 
Network9 98.004845% 55.009872% EHRS, N2, PT, TMODE 

Network10 67.592590% 47.199936% ECYC, EGT, N1, OIT, TMODE 
Network11 52.425045% 59.435143% ALT, ECYC, EHRS, N1, VIB 
Network12 49.987072% 81.405655% ALT, ECYC, OIP, PLA, TAT 
Network13 78.727547% 80.657501% PT, TAT, TMODE, VIB 
Network14 33.595486% 71.633659% OIP, PLA, PT, TMODE 
Network15 87.590485% 79.550301% ECYC, OIP, PT, VIB 
Network16 63.271446% 79.898872% EGT, MACH, OIP, PT, TAT 
Network17 81.295242% 77.337982% ECYC, MACH, N1, OIP, TMODE 
Network18 96.130951% 45.815529% ALT, EGT, EHRS, PLA 
Network19 50.079407% 69.395515% FF, PLA, PT, TMODE 
Network20 99.503967% 53.965019% ECYC, PLA, TMODE, VIB 
Network21 77.546539% 47.442135% EHRS, N1, N2, OIT, TMODE 
Network22 98.533943% 46.341629% ECYC, N2, TAT, TMODE 
Network23 67.869797% 50.034897% EGT, N2, FF, PT 

Table 5. Parents to Fault node 

From Table 5 it is observed that all the networks with acceptable diagnostic capability viz. 
Networks 2, 4, 18, 21 and 22, include the variables ALT and/or N2 and/or TMODE as 
parents to Fault. Since the amount of data is limited for such a study no generalizations will 
be made. However it must be pointed out that the presence of these variables as well as that 
of others not identified here but which may very well appear repeatedly as parents to Fault 
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in further studies can be considered of certain consequence while deciding the suitability of 
a network for diagnosing or testing new data. In summary, while evaluating the quality of 
the BN for inference purposes, it is essential to consider the fitness score and, not only the 
number of parents but also the variables that act as parents to Fault. 

4.2 Removal of irrelavent variables 
Another effective way to enhance the accuracy of modeling and accelerate the algorithm is 
to determine and discard those variables that have no influence on the network. Such 
variables appear in the form of leaf nodes or islands. In order to obtain a visual 
representation of the networks generated from the simulations, a program called GraphViz 
was employed (GraphViz software). These graphical depictions were examined in order to 
ascertain the unnecessary variables. Three variables viz. EGT, MACH and VIB consistently 
appeared as leaf nodes in a number of networks. Fig. 4 (a) and (b) illustrate networks having 
these variables as leaf nodes.  

 
Figure 4(a). BN generated exhibiting variable EGT as a leaf node 
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Once the variables were identified, they were not included while pre-processing the raw 
data. An appropriate training set consisting of five faulty and five non-faulty files was 
selected and fed into the simulation mode of the software. The PSO parameters were chosen 
corresponding to those that resulted in the best diagnostic capability. The diagnostic 
proficiency of the resulting BNs was tested on a group of seven known files. The results are 
as presented in Table 6. 

 
Figure 4 (b). BN generated using the proposed software exhibiting variable VIB as a leaf 
node 

Five good networks were obtained by following the procedure indicated in Section 4.1. The 
values of the PSO parameters of these networks were selected while training the data with 
variables EGT, MACH and VIB removed. For each set of PSO parameters, four different 
runs were executed with an aim to obtain at least one network having three or more parents 
to Fault.  As seen in Table 6, only one run out of 20 runs resulted in Fault having four 
parents. Three parents to Fault were found in nine runs. These 10 networks were then used 
to diagnose fault in a set of files consisting of two faulty and five non-faulty files. The results 
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are indicated in the last two columns of Table 6. Networks 2, 10 and 17 are able to 
successfully diagnose faulty files. Though there seems to be some uncertainty in diagnosing 
non-faulty files this approach looks promising. Further study is on to better the predictive 
capability for non-faulty files by performing extensive number of simulations and assessing 
the influence of the remaining variables on the network. 

Fault Percentage 

Network 
Optimi-
zation 
steps 

No. of 
particles

Neighbor-
hood Velocity Parents 

to Fault
Fitness 
Score 

Faulty 
Test 
Files 

Non 
Faulty 
Test 
Files 

Network 1 5000 24 2 6 3 - 58.50% 53.10% 
Network 2 5000 24 2 6 3 -4.0015E-06 99.97% 55.24% 
Network 3 5000 24 2 6 1 - - - 
Network 4 5000 24 2 6 2 - - - 
Network 5 3000 24 2 10 1 - -  
Network 6 3000 24 2 10 2 - - - 
Network 7 3000 24 2 10 2 - - - 
Network 8 3000 24 2 10 0 - - - 
Network 9 2000 16 0 8 3 -4.2130E+06 58.50% 49.70% 
Network 10 2000 16 0 8 3 -4.1461E-06 99.97% 51.96% 
Network 11 2000 16 0 8 1 - - - 
Network 12 2000 16 0 8 1 - - - 
Network 13 3000 16 0 6 4 -4.4827E-06 62.37% 56.54% 
Network 14 3000 16 0 6 3 -4.0790E-02 45.63% 60.02% 
Network 15 3000 16 0 6 1 - - - 
Network 16 3000 16 0 6 3 -4.0195E-06 0.00% 48.76% 
Network 17 3000 8 2 6 3 -3.7565E-06 98.57% 52.61% 
Network 18 3000 8 2 6 3 -3.8662E+06 47.86% 72.62% 
Network 19 3000 8 2 6 3 -3.6141E-06 89.88% 76.83% 
Network 20 3000 8 2 6 2 - - - 

Table 6. Simulation and inference results with variable removal 

5. Conclusion 
This work involved the implementation of a highly successful technique for fault diagnosis 
and predictive maintenance of airplane engines. Some of the highlights of the discussed 
Bayesian Network approach include creation of the network without prior information and 
later incorporating expert information for better modeling, monitoring, and diagnosing 
faults in known systems, predicting faults in unknown systems, ability to handle large 
systems and the possibility of modifying the technique for diagnosing and distinguishing 
different types of faults. The presented Particle Swarm Optimization technique was effectual 
in reducing the computational complexity of the problem at hand by capitalizing on its 
innately parallel behavior thereby enabling the application of a cluster of 48 CPUs for faster 
network creation. Thus the developed software had several advantages of being generic, 
robust, scalable and modifiable.   
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	4. Robust PSO-Based Constrained Optimization by Perturbing the Particle’s Memory
	5. Using Crowding Distance to Improve Multi-Objective PSO with Local Search
	6. Simulation Optimization Using Swarm Intelligence as Tool for Cooperation Strategy Design in 3D Predator-Prey Game
	7. ifferential Meta-model and Particle Swarm Optimization
	8. Artificial Bee Colony Algorithm and Its Application to Generalized Assignment Problem
	9. Finite Element Mesh Decomposition UsingEvolving Ant Colony Optimization
	10. Swarm Intelligence and Image Segmentation
	11. Particle Swarm Optimization – StochasticTrajectory Analysis and Parameter Selection
	12. Stochastic Metaheuristics as SamplingTechniques using Swarm Intelligence
	13. Artificial Ants in the Real World: Solving On-lineProblems Using Ant Colony Optimization
	14. Application of PSO to design UPFC-based stabilizers
	15. CSV-PSO and Its Applicationin Geotechnical Engineering
	16. Power Plant Maintenance Scheduling Using Ant Colony Optimization
	17. Particle Swarm Optimization for Simultaneous Optimization of Design and MachiningTolerances
	18. Hybrid optimisation method for the facilitylayout problem
	19. Selection of Best Alternative Process Plan in Automated Manufacturing Environment: An Approach Based on Particle Swarm Optimization
	20. Job-shop scheduling and visibility studies witha hybrid ACO algorithm
	21. Particle Swarm Optimization in Structural Design
	22. Reserve-Constrained Multiarea Environmental/Economic Dispatch UsingEnhanced Particle Swarm Optimization
	23. Hybrid Ant Colony Optimization for the ChannelAssignment Problem in WirelessCommunication
	24. Case Study Based Convergence BehaviourAnalysis of ACO Applied to Optimal Design ofWater Distribution Systems
	25. A CMPSO algorithm based approach to solvethe multi-plant supply chain problem
	26. Ant colonies for performance optimization ofmulti-components systems subject to randomfailures
	27. Distributed Particle Swarm Optimization for Structural Bayesian Network Learning



