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Vision sensors are commonly video cameras with integrated signal processing and imaging 
electronics. They are used in several applications, such as, industrial inspection, quality 
control, and design and manufacturing diagnostic. Inspection applications include edge and 
object detection, image direction, alignment, object measurement, object position, optical 
character recognition, color recognition, etc. 

This book reects this diversity by presenting a selection of recent developments within the 
area of vision sensors and edge detection. There are two sections in this book. The rst section 
presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, 
and automated vision sensor inspection. The second one shows image processing techniques, 
such as, image measurements, image transformations, ltering, and parallel computing. 

We sincerely hope this book with plenty of comprehensive topics of vision sensors and edge 
detection development will benet readers to bring advanced brainstorming to this eld. 
Finally, the editors would like to thank the authors, who have invested so much effort to the 
publication of this book. 

Editor

Francisco J. Gallegos-Funes
National Polytechnic Institute of Mexico 

Mexico
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Panomorph Based Panoramic Vision Sensors  
Simon Thibault  

Laval University & ImmerVision  
Canada 

1. Introduction    
During the last few years, innovative vision strategies to generate and control image 
mapping have been successful in producing high-resolution digital vision system. This 
success has, in turn, increased the interest in the high-resolution camera and absolute 
measurement with high-resolution larger and larger field of view. New generation of 
panoramic vision sensor includes multi-cameras, catadioptric panoramic lenses, panoramic 
annular lenses, fisheye lenses, anamorphic wide-angle attachments, and panomorph lenses. 
The increasing trend to use panoramic vision sensors in various applications is driven by the 
need to have complete information about our surrounding environment.  Seeing of what 
surrounds a vehicle can directly increase our safety, providing hemispheric vision 
endoscopic functionality can provide a higher patient confort and better surgeon procedure. 
Indeed, video and vision processing have become a growing technologies deployed in 
various applications. Increased integration of electronic and optical components and the 
declining prices of electronics in general are the primary enablers of this trend.  This chapter 
presents the most recent advances in the panomorph vision sensor from the sky lens to the 
multi-task cameras. 
A panomorph lens is a hemispheric wide-angle lens with enhanced resolution in a 
predefined zone of interest. Because panomorph lenses feature an optimal pixel-per-degree 
relationship, the resulting vision systems provide ideal area coverage, which in turn reduces 
and maximizes the processing. For example: a single panomorph sensor on the front of a 
vehicle could provide all the information necessary for assistance in crash avoidance, lane 
tracking, early warning alerts, parking aids, road sign and pedestrian detection, as well as 
various video monitoring views for difficult areas such as blind spots. 

2. From the “Sky Lens” to the “Panomorph Lens” 
It is well know that adding a large negative meniscus element mounted on the head of a 
compact positive component will create a system with a long back focal distance and a short 
focal length, which is namely a reversed telephoto (Kingslake, 1985). These lenses were very 
popular, since any lens used with a 35 mm camera had to have a back focal length of at least 
35-40 mm to clear the rocking mirror on the camera. Consequently, any lens with a focal 
length of less than approximately 40 mm is a reversed telephoto type. Fortunately, this type 
is favourable for a wide-angle field of view.  Wide-angle lenses are generally considered to 
be lenses with a field of view greater than 60 degrees.   
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However, for angles larger than 100 degrees, the barrel distortion becomes difficult to 
correct. With an extended field of view, the reversed telephoto lens will cover a 
hemispherical field -- we will call such lens a fisheye lens. This lens is not really an extension 
of a wide-angle lens. The fisheye lens has inherent large distortion, but this distortion 
should not be considered an aberration but rather the result of the projection of a 
hemispheric field on a circle, which is not possible without distortion.   
The classical example of a fisheye lens “type” of image formation is an actual fish eye under 
water (Miyamoto, 1964). Robert W. Wood described in his book, Physical Optics (1911), a 
water-filled pinhole camera that was capable of simulating a fish’s view of the world (Figure 
1A). Bond added a hemispheric lens with a pupil at the centre of the curvature in place of 
the water (Figure 1B).  In 1924, Hill developed his Sky lens by adding a diverging meniscus 
lens (Figure 1C) before the hemispheric lens to improve the field curvature (thereby 
reducing the Peztval sum). This lens was a first prototype of the modern fisheye lenses 
(Figure 1D) which was patented by Schultz (1932) and Merté (1935).  Some 40 years later, the 
now famous afocal wide-angle door viewer was patented (Artonne, 2005). 
 

 
Fig. 1. Development of wide angle views (Miyamoto, 1964) 

At that time a severe drawback was encountered when the fisheye was facing up or down, 
because in these positions the subject of interest might have appeared at the edge (large 
angle) of the field where the barrel distortion is very large. We will see later in this chapter 
how the modern high-resolution lens design can now control this distortion, to improve the 
field coverage of a panoramic lens and solve this historical concern. 
Motivated by the need to record a distortion-free panoramic image, the flat cylinder 
perspective was born (Greguss, 1991). The panoramic feature is different from the fisheye in 
that there is no longer imaging of a hemispheric field onto a circle, but instead a 360o 
cylindrical field of view imaged onto a two-dimensional annular format (Figure 2). This 
kind of image will still suffer from severe image deformation. The annular image produced 
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by such a geometrical transformation will not produce (theoretically) radial distortion 
(cylinder height); however, the horizontal (circle circumference) direction will suffer from 
compression, from the edge to the centre of the image plane (see figure 4). 
 

 
Fig. 2. Flat cylinder image 

There are many known panoramic viewing optical arrangements that use this cylinder 
perspective. In particular, Greguss’ patent was one of the most promising approaches 
(Greguss, 1986). The main disadvantages are the limited dimension of the annular image on 
the sensor and the blind zones above and below the device. 
Another approach to getting a flat cylinder perspective is to rotate a conventional camera 
around the vertical axis. This technique requires several frames with proper synchronization 
for the camera to complete a full rotation. This method is useful and widely used today in 
the production of high-quality panoramic photography. The technique is time consuming 
because it requires a long time for the image acquisition and extensive image processing to 
stitch all the images together. 
Ideally, the goal in panoramic imaging is to be able to capture the entire scene in a single 
image from a single camera. This ideal imaging system would allow more than one 
hemisphere to be visible, similar to some insects’ vision system (Horridge, 1977) as figure 3.  
In reality, this can be achieved by using a multi-lens system with individual consecutive 
fields-of-view, totally covering a hemisphere. One of the major problems with this concept is 
the very complex image processing required, particularly on a moving platform. 
Reflective optics offers an alternative to panoramic imaging.  A standard camera placed 
below a convex mirror will image a large field-of-view, the properties of which will depend 
on the shape of the reflective surface (Chahl and Srinivasan, 1997). This approach has been 
used predominantly for producing panoramic TV displays. The projected images are 
captured by another equivalent optical arrangement (the reversibility property of light).  For 
such an arrangement, the surface shape is not important as long as the projection mirror and 
the acquisition mirror are equivalent.   
Systems with spherical and conical mirrors have been used to capture wide-angle images for 
robotics and machine vision devices (omnidirectional vision system). The mirror shape 
design is important and can provide a global image on the sensor, which presents a polar 
image with elevation and azimuth linearly distributed to radius and angle respectively.  
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Fig. 3. Compound eye allow light to travel through several facts before striking the light 
sensitive surface. 
These systems are called omnidirection camera.  An omnidirectional camera (from omni, 
meaning all) is a camera with a 360-degree field of view in the horizontal plane (flat cylinder 
perspective), or with a visual field that covers (approximately) the entire sphere. 
Omnidirectional cameras are important in areas where large visual field coverage is needed, 
such as in panoramic photography and robotics.  In robotics, omnidirectional cameras are 
frequently used for visual odometry that can be used for navigation.  Visual odometry is the 
process of determining the position and orientation of a robot or a car by analyzing the 
associated camera images. It has been used in a wide variety of robotic applications, such as 
on the Mars Exploration Rovers. 
Modern panoramic lenses are now able to add a distortion control which is considered a 
major enhancement in panoramic vision (Thibault, 2005). The distortion is not anymore a 
consequence of the panoramic vision that we have to manage but it can be used to increase 
the sensor performances. Specifically, the panoramic sensor can be designed to increase the 
number of pixels in the zones of interest (ZOI) using a distortion control approach. By 
controlling the distortion, we change the effective magnification of the sensor in the ZOI.  
Consequently, the sensor can be custom-designed to meet real and very specific needs 
required by a specific application.   
The Panomorph lens uses this distortion control approach and an anamorphic image mapping 
to provide a unique full hemispheric field coverage.  In contrast to other types of panoramic 
imagers that suffer from blind zone (catadioptric cameras), low-image numerical aperture and 
high distortion, the Panomorph lens uses distortion as a design parameter, in order to provide 
a high-resolution coverage where it is needed. It also features an anamorphic image mapping 
of the full hemispheric field, which produces an ellipse image footprint rather than a circle (or 
annular footprint) as do all other types of panoramic imagers. This feature provides an 
immediate 30% gain in pixels used on the sensor (the ellipse footprint matches the 4:3 ratio of a 
standard CCD or CMOS imager). The combination of distortion control and anamorphic 
design provides an important gain in resolution, and an advantage over all other types of 
panoramic imagers.  The figure 4 shows the panoramic lens evolution over the last 30 years. 
Each panoramic image falls on the same sensor size from the same scene. The Panomorph lens 
image (right), clearly covers a larger area on the sensor.   
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Fig. 4. Panoramic Lens Evolution 

3. Panomorph lens theoretical background 
Panomorph (from the Greek word pan meaning all, horama meaning view, and morph 
meaning form) lens is a particular type of panoramic lens. It features two important 
parameters, the amount and location of the resolution within the panoramic field of view.    
The human eye could be the most common panomorph device. Indeed, with its field of view 
close to 180°, we can classify the human eye as a very wide angle imager. Furthermore, the 
visual acuity is not linear across the field of view. 

 
Fig. 5. The relative acuity of the right human eye (horizontal section) in degrees from the 
fovea 
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Natural evolution shaped the human eye to provide a higher visual acuity where needed. 
The fovea located in the center of the macula region of the retina sees only the central two 
degrees of the visual field but takes up over 50% of the visual cortex. The fovea is an 
augmented resolution (Ross 2006) area in the middle of the field of view. 
As opposed to human eyes, in the case of a panomorph lens, the resolution is directly 
related to the lens magnification and not the variable sensor pixel size. The magnification 
variation across the field of view can be described by the distortion function or by the 
relation between the hemispheric field of view projected into the sensor plane. 
The following figure shows different images capture by different panomorph lenses which 
have various resolution distribution within the field of view. In each case, the original scene 
is the same, only the location of the augmented resolution is different ranging from the 
center to the edge of the field of view.   
 

 
Fig. 6. Resolution zone by zone - Examples  

3.1 Hemispheric field of view projected into a plane 
A panoramic lens has inherent distortion, however this distortion should not be considered 
as an aberration but as a result of projection of a hemisphere on a plane. Consider the angle 
of incidence θ (in radian) of a light coming from an object at a long distances, the 
coordinates in the image plane of the image will be (u,v).  The lens will image the objet has a 
function of the angle θ. This function can be linear but not necessarily (u=v= constant X θ for 
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an ideal fisheye). In the case of a panomorph lens, the relation between u and v is 
proportional to the anamorphic ratio but a polynôme within θ. The variation across the field 
of view (θ) is the main advantageous of the panomorph lens. The derivative of u or v with 
respect to θ is the lens resolution.  For a fisheye, the resolution is constant (ideal fisheye) but 
for a panomorph lens, the resolution is also a polynomial function with θ. 
 

  
Fig. 7. Image Formation. 

3.2 Panomorph image projection model 
To be effective, the panoramic video-viewing library corrects image distortion from cameras 
equipped with a panomorph lens for display and control of one or more standard views, 
such as a PTZ (Figure 8) in real time. The viewing library allows simultaneous display of as 
many views as desired from one or more cameras (Figure 9). 
Consequently, the viewing process must unwrap the image in real time in order to provide 
views that reproduce real world proportions and geometrical information.  The algorithms 
can be customized and adapted for each specific application, which is then related to human 
vision (display) or artificial vision (analytic function). 
The viewing process can be decomposed into three main steps: 
- the definition of the panomorph geometrical model (PGM) associated to each custom 

panomorph lens application;   
- the projection of the recorded image onto the PGM to provide a discretized mapping 

based on the recorded pixel position on the sensor; 
- finally, the rendering, which uses well-known standard rendering techniques. 
 

 
Fig. 8. Real-time distortion-free display (left:  original image produced by the panomorph 
lens). 
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Natural evolution shaped the human eye to provide a higher visual acuity where needed. 
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Fig. 6. Resolution zone by zone - Examples  
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an ideal fisheye). In the case of a panomorph lens, the relation between u and v is 
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Fig. 7. Image Formation. 
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Fig. 9. Four PTZ views (left), and two strips to display a 360° total camera surround in one 
single view (right). 

The image produced by each panomorph lens is unique to its application. The image 
mapping can be defined by a unique 3D geometrical model (Panomorph Geometrical 
Model, or PGM), which reproduces the panomorph lens design characteristics.   
The PGM is a geometric representation (surface) of the relative magnification of the lens as a 
function of the angles, expressed in spherical or polar coordinates (R, θ, φ).  In other words, 
if the surface is represented by vector R, the length of the vector is proportional to the lens 
magnification (resolution) in the direction defined by the polar angles.   This model depends 
on lens parameters such as the anamorphic ratio, the field of view, as well as position, size, 
and the magnification in the zones of interest. 
The PGM is a mathematical transformation of the image footprint I(u,v) into a surface  
S(R, θ, φ) representation using spherical coordinates: 

 I(u,v)  S(R,θ,φ),  (1) 

The anamorphic ratio is used only as a scale factor, which is function of the angle φ (Figure 
10) This angle defines the azimuth direction of the recorded image taken by the panomorph 
lens.   
 

 
Fig. 10. Panomorph elliptical footprint I(u,v); scaling defined with φ angle. 

The field of view, or FOV, determines the angular limit (theta) of the PGM.  The FOV of the 
panomorph lens is about 180 degrees and can be more or less, depending on the application.  
Figure 11 shows two schematic PGMs with 180 degree and 250 degree FOVs respectively. 
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Fig. 11. PGM with 180 and 250 degree FOVs respectively. 

The panomorph lens uses distortion or resolution as a design parameter, in order to provide 
high-resolution coverage in a specific zone of interest.  In other words, the FOV can be 
divided into different zones, each with a defined resolution as discussed in the next section.   
To illustrate the impact of the distortion profile on the PGM, we will study two examples.  
In these examples, the FOV is 180 degrees wide, the zone of interest is 30 degrees wide, and 
the resolution is two times greater in the zone of interest than it is in the rest of the FOV 
(2:1).  From one example to another, only the position of the zone of interest changes. 
Example 1: 

The first example is based on the design of a front view camera (Figure 12). In this case, the 
zone of interest is the central part of the image, even though the entire 180-degree FOV is 
still recorded.  A panomorph lens with this feature can be used on a cell phone (for video 
conferencing) or on an ATM surveillance camera. 

     
Fig. 12. Panomorph lens for a front-view camera. 

The panomorph lens resolution in the central zone is twice that of the resolution in the 
periphery.  Figure 13 shows the image footprint with the proper resolution for each zone.  
On the left of Figure 13, we have a Cartesian plot of the resolution as a function of the view 
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angle (defined from the centre). We note that a transition zone exists between the central 
and the periphery areas. Theoretically, this transition can be very small, but as the 
panomorph lens is a real product, this transition can extend over 10 degrees. 

 
Fig. 13. Image footprint (left) and resolution graph (right) for the front-view panomorph 
lens.  

As defined, the PGM in the polar coordinate space represents the resolution of the 
panomorph lens, or a surface in space where the spatial resolution is constant in terms of 
azimuthal (θ) direction.  Mathematically, it means that the Cartesian graph (Figure 13, right 
side) is transposed into the spherical coordinate plane. Figure 14 shows the 3D PGM 
representation. 
 

 
Fig. 14. 3D PGM (left), 2D view in Y-Z plane. 

Example 2: 

The second example demonstrates a panomorph lens optimized for video conferencing, 
where the zone of interest is not in the centre but on the edge of the field of view.   Figures 
15, 16 and 17 show the image footprint, the resolution and the corresponding PGM 
respectively. 
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Fig. 15. Panomorph lens for video conferencing. 
 

 
Fig. 16. Image footprint (left) and resolution graph (right) for the video-conferencing 
panomorph lens.  
 

   
Fig. 17. 3D PGM (left), 2D view in Y-Z plane (right). 
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The panomorph lens can be used with any sensor format (VGA, XGA, etc.) as long as the 
lens performance matches the Nyquist frequency of the sensor.  The number of pixels will 
have an impact on the discretization of the model for the PGM.  Up until now, the PGM has 
been defined by a continuous mathematical surface, however, on sensor we have a finite 
number of pixels. 
The continuous PGM will be sampled by the pixels.  The number of pixels required to map 
the entire surface of the PGM is equal to the number of pixels on the sensor.  Figure 18 
shows a 2D sampling of the PGM using only 22 elements.  You should note that the pixel 
dimension is constant over the entire PGM, and the pixels are always perpendicular to the 
direction of regard (direction of the vector R).   With a higher number of pixels, the discrete 
PGM will be closer to the continuous PGM, as shown in Figure 19. 

 
Fig. 18. Discrete PGM with 22-unit (pixels) sample  

 
Fig. 19. Discrete PGM with 44-unit (pixels) sample  

The image I (u,v) from the panomorph lens is projected onto the PGM, as shown in Figures 
18 and 19. The final result is a discrete surface. The PGM is mapped with the panomorph 
image and can then be viewed using any classical 3D visualization techniques. 
Each pixel of the panomorph image is projected onto a discrete element of the PGM. The 
pixel position in the 3D space (on the surface) represents the real object position in the 
recorded scene. The projection uses the adapted azimuthal projection technique (see 
MathWorld--A Wolfram Web Resource) with anamorphosis and distortion parameters 
added. 
The final goal is to visualize the recorded scene without distortion. The PGM can be used to 
achieve this goal using a standard algorithm (Horaud & Monga, 1995). A virtual camera is 
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placed at the central position (0,0,0). Viewing the scene with this virtual camera requires 
first selecting the angle (θ,φ) of viewing direction.  Figure 20 shows two cameras pointing in 
two different directions.  The camera pointed at the centre of the PGM will show a total of 
four elements (1D, 16 elements in 2D). The camera pointed at the edge of the PGM will show 
only two elements.  This is the distortion effect.  The resolution is twice in the centre than it 
is on the edge. A zoom can also be applied to change the Δθ and provide virtual 
functionalities. 

 
Fig. 20. Virtual camera at the centre of the mapped PGM 

The following Figure 21 shows the final projection on a 2D plane of each virtual view.  This 
2D view can be sent to a display monitor.  

  

Fig. 21. Viewing pixel as a function of the pointing direction of the virtual camera (left = 
centre, right =edge). 

3.3 Panomorph lens resolutions 
As shown in the last section, an efficient panomorph lens, the coverage area is divided into 
different zones. A specific resolution requirement as well as a particular field of view is 
defined for each individual zone. Figure 1 shows a typical surveillance scenario. 
For this particular scenario, the panoramic coverage area is divided into five adjacent and 
continuous zones. Zones B and C are symmetrical with the vertical axis. The five adjacent 
zones, while still providing full hemispheric coverage together, each feature a different 
resolution requirement, as the most significant objects are in Zone B. (Zone B in a 
surveillance application enables facial recognition and identification.)  An object in Zone B is 
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Fig. 22. Specific security zones. 
 

 
Fig. 23. The ideal FOV (α) vs. the position (d) on the sensor for the scenario presented in 
Figure 22. 

also more distant from the camera than an object in Zone A. This means that the relative 
angular resolution (pixels/degree) in Zones A and B should be different. 
For example: A human face in Zone B (located at 60 degrees from the vertical axis) will 
subtend an angle by half the amount that it would in Zone A (above the camera). To get the 
same number of pixels per face in both Zones A and B, the pixels/degree in Zone B must be 
twice the pixels/degree in Zone A. This means that the number of pixels required on the 
sensor to image Zone B is twice the number of pixels required to image Zone A.    
It is difficult to evaluate the exact resolution as a function of the sensor, because this would 
depend on the resolution chosen for the zone of interest.  However, if we define i zones (1 to 
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n) where each zone covers an angle (θI, up to θmax ) with a number of pixels (Ni, #pixels is 
the number of pixel used on the sensor) we can describe the resolution (Ri) for each zone: 
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showing that if you increase the resolution in the i zone, the result is less resolution in the 
other zones.  The figure 24 and 25 show a graphical view of the process.  In real system, a 
transition zone exists to connect but zone A-B and B-C.  Consequently, these zones should 
also be considered within the calculation.   

4. Panomorph based vision sensor - examples 
As a new technologie, the design of a Panomorph based visual sensor requires particular 
attention. The following section shows a number of examples that illustrated how the 
panomorph vision sensor can be used in various applications. These examples can also be 
considered as starting point to design any custom applications. 
 

 
Fig. 24. Zone definition 
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Fig. 25. Resolution graph per zone 

4.1 Surveillance & security applications 
The security application is probably to most important up to now for the panomorph 
technology. To illustrate an application, we can base the panomorph lens resolution 
requirement on the detection range. The detection range is a function of the number of 
pixels on the target used to recognize, identify or detect.  Based on Figure 22, we define the 
range detection vertically (height of the people). Range detection can also be defined as the 
number of horizontal pixels on the target (width). This last definition uses the number of 
pixels on a circumference at a given angle to define, for a given FOV angle, the detection 
range. Because the number of pixels on the perimeter of an ellipse is larger than on the 
circumference of a circle, the detection range for horizontal detection is also always larger 
when using a Panomorph lens. 
In order to understand the detection range we will further develop this example. We want 
to define the distance from which the face of a human body might have at least 30 pixels per 
dimension. Using simple mathematical expressions we can calculate this distance for each 
FOV angle. The distances then define a surface that is illustrated in Figure 26 for a 360 KPx 
CCD sensor (NTSC). 
This example shows how a well designed Panomorph lens can provide a facial recognition 
range as far as 3 meters away from the camera (3 m calculated on the floor for a 30 
pixel/face resolution). This means an extended range for detecting, identifying and 
recognizing a target.  This extended range also provides an extended coverage rate for 
following the target. The red circle marks the detection area, which has a constant pixel to 
angle function similar to a fisheye lens.   
Defining the resolution requirements for surveillance systems is not necessarily a simple 
task. A rough indication of the practical meaning of resolution can be defined from the 
following correlation between the resolution criteria and pixels on the sensor (Johnson’s 
criteria) (Johnson, 1958). 
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Fig. 26. Detection range (30 pixels/dimension). The red curve (constant) corresponds to a 
lens with a constant resolution on this sensor. The blue curves correspond to a Panomorph 
lens axis (two curves for long and short axis). 

The criteria usually used are: 
 
 Detection   2 pixels per target 
 Orientation   3 pixels per target 
 Aim    5 pixels per target 
 Recognition   8 pixels per target 
 Identification   12-16 pixels per target 
 Recognition with 50% accuracy 15 pixels per target 
 Recognition with 90% accuracy 24 pixels per target 

4.2 Automotive 
The increasing trend to use vision sensors in transportation is driven both by legislation and 
consumer demands for higher safety and better driving experiences. Awareness of what 
surrounds an automotive vehicle can directly affect the safe driving and maneuvering of 
that vehicle. Consequently, panoramic 360o imaging is becoming an industry prerequisite. 
However, to obtain a complete view of the area around a vehicle, several sensor systems are 
necessary. This section presents how panomorph based vision sensor can satisfy the needs 
of various vision applications with only one sensor or panomorph lens configuration. 
Consider the simplified situation of a camera flush-mounted on the front of a vehicle. The 
goal of this section is to determine the appropriate parameters of the panomorph lens and 
the projection (un-warping) algorithms which correspond to the application requirements.  
Lens and algorithm parameters to be determined: 
• Field-of-view (FoV) of the application 
• Lens distortion, anamorphosis ratio and resolution 
• Lens mathematical model and calibration 
• Software projection type, treatment and performance 
Applications requirements: 

• Lane departure and lane curvature recognition:  
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Fig. 25. Resolution graph per zone 
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The increasing trend to use vision sensors in transportation is driven both by legislation and 
consumer demands for higher safety and better driving experiences. Awareness of what 
surrounds an automotive vehicle can directly affect the safe driving and maneuvering of 
that vehicle. Consequently, panoramic 360o imaging is becoming an industry prerequisite. 
However, to obtain a complete view of the area around a vehicle, several sensor systems are 
necessary. This section presents how panomorph based vision sensor can satisfy the needs 
of various vision applications with only one sensor or panomorph lens configuration. 
Consider the simplified situation of a camera flush-mounted on the front of a vehicle. The 
goal of this section is to determine the appropriate parameters of the panomorph lens and 
the projection (un-warping) algorithms which correspond to the application requirements.  
Lens and algorithm parameters to be determined: 
• Field-of-view (FoV) of the application 
• Lens distortion, anamorphosis ratio and resolution 
• Lens mathematical model and calibration 
• Software projection type, treatment and performance 
Applications requirements: 

• Lane departure and lane curvature recognition:  
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o Large FoV: Larger than 180° to increase the robustness of line tracking 
o Projection algorithms to rectify the image and provide a straight line for 

recognition 
• Collision warning using vehicle detection: 

o Large FoV to detect oncoming vehicles from all sides of a road intersection 
o 2-meter vehicle width must cover 10 to 40 pixels wide 

• Road sign detection and recognition:  
o Large FoV to detect road signs at different locations 
o 0.5-meter sign width must cover 12 to 24 pixels wide 

• Blind zone avoidance: 
o Large FoV: Larger than 180° to avoid blind zones 
o Projection algorithms to rectify the image and provide a user-friendly view to 

the driver 
A collision warning application needs to have at least 10 pixels to define a two-meter wide 
object (vehicle). As defined by Thibault (Thibault, 2007), a fisheye lens is 5.04 pixels/degree 
on the targeted sensor (1280*960) over the entire FoV. 
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Where Sizep is the object size on the sensor in pixels, and Resp/o is the resolution of the 
system lens-sensor in pixels/degree: A 10-pixel object represents a α=1.98° FoV and a 40-
pixel object represents a α=7.9 FoV.  
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Where Sizem  is the object size in meters:  A 10-pixel object is d=57.8 meters from the car. This 
means that a two-meter wide object will illuminate 10 pixels or more when the objects are 
within 57.8 meters. 
With a panomorph lens, we can customize the distortion mapping to provide better 
resolution where required. Based on Figure 27, we define three zones of interest in the 
horizontal plane.  The first area of interest in which we would like to increase resolution is 
the forward view.   
For a collision warning application, there is a need to see farther on both sides when 
crossing an intersection. One needs also to see farther right in the middle, to detect a vehicle 
in the same lane. Figure 27 shows the resulting areas of interest over the entire FoV. The 
resolution of this type of lens is 8.42 pixels/degree on the targeted sensor within the zone of 
interest (Thibault, 2007). Using formulas (5) and (6), a 10-pixel object would be 97 meters 
from the car, a 70% increase compared to a theoretical fisheye lens within the same area of 
interest. 
The safe distance between two vehicles is based on the driver’s reaction time; some 
governments have determined that this reaction time is at least the distance travelled during 
two seconds. We can deduce the following formula:  

 dsmeter = 0.56 × Vkm/h (7) 
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Fig. 27. Augmented-resolution areas of interest for a panomorph front view lens. 
 

Speed 50 km/h 70 km/h 90 km/h 110 km/h 130 km/h 
Safe 

distance 28 m 39 m 50 m 62 m 73 m 

Table 1. Safe distance between two vehicles at conventional speed limits 

Road sign detection and recognition applications need to have at least 12 pixels to define 
road signs of widths from one meter up to 1.5 meters.   
With a fisheye lens, using formulas (5) and (6):   
• For a one-meter wide road sign, a 12-pixel object is 24 meters from the car and a 24-

pixel object is 12 meters from the car.  
• For a 1.5-meter wide road sign, a 12-pixel object is 36 meters from the car and a 24-pixel 

object is 18 meters from the car. 
With a panomorph lens, using formulas (5) and (6): 
• For a one-meter wide road sign, a 12-pixel object is 40 meters from the car and a 24-

pixel object is 21 meters from the car.  
• For a 1.5-meter wide road sign, a 12-pixel object is 60 meters from the car and a 24-pixel 

object is 30 meters from the car.   
Again, because of the specific panomorph resolution pattern suggested in this case study, 
panomorph optics will increase the distance in its areas of interest (++ areas on Figure 27)  
by a factor of 70% compared to a theoretical fisheye lens. 
For side views (blind spot monitoring), a higher resolution image will significantly enhance 
the viewing for long distance objects and vehicles on the periphery.  
For example, to avoid a blind zone at a garage entrance created by vehicles parked on the 
street side. 
Using the PGM (section 3.2), different software projection types can be created, depending 
on OEM requirements. The two following figures show ways to display a view of the 
intersection to the driver while avoiding the blind zone created by a parked vehicle. This 
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type of projection is simply a pixel displacement that has been computed during the 
calibration phase on a production chain. This can be hard coded in a lookup table in the 
camera module. No special CPU horse power is required. 
Figures 29 and 30 show ways to avoid a blind zone. The driver can see everything in the 
blind zone using his/her on-board display. The panomorph lens design suggested in this 
 

 
Fig. 28. Panomorph coverage of a blind zone created by a parked vehicle 
   

 
Fig. 29. Two views rendering either side of the intersection 
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Fig. 30. 190° strip integrating full intersection   

example increases the resolution of objects along the border and right in the middle. Where 
the resolution is higher, the camera is able to see for a longer distance. The panomorph 
distortion is optimized for this type of application. The driver is able to see far down each 
side of the street. 
The final example for automotive is one could mount four (4) panomorph lenses all around 
the vehicle to provide a complete view with the added benefits of panomorph technology’s 
augmented resolution (figure 31). 

4.3 Endoscopy 
The last example of this section is about  medical imaging. Researchers and physicians are 
always looking for the most effective and least invasive techniques to benefit the patient. For 
example, single-incision laparoscopic surgery - which is a critical advancement in 
minimally-invasive surgery (MIS), may soon become a preferred method. Minimally 
invasive surgical procedures or examinations require increasingly sophisticated devices to 
explore the interior of the patient’s body while limiting the impact on the human body. 
Recently, optic miniaturization and sensor improvements in size and resolution have led to 
the development of new smaller and improved videoscopes for medical imaging in various 
procedures. These modern visual instruments benefit from sensor miniaturization to 
increase their resolution up to 1.3Megapixel (HD). 
Even with such high resolution, the endoscopic vision remains quite different than human 
vision, especially regarding the field of view and the type of viewing projection. The limited 
field of view produces poor visualization for the clinician and increases the scope 
manipulations and procedure time. These drawbacks have driven industry to design  
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Fig. 31. View of area surrounding vehicle using four (4) panomorph lenses. 
endoscopes with a larger field of view. Several optical systems have been developed 
featuring convex mirrors, prisms or wide angle lenses to meet large field of view 
requirements. However most of these optical systems suffer from low resolution or poor 
quality. A particular concern in the optical design of these types of wide angle imager is the 
uniformity of the image quality and the fact that the more the field of view is enlarged, the 
more distortion is created on the viewing display. 
Recently a new approach that can play a significant role in improving endoscopic procedures 
based on the use of the Panomorph technology have been proposed (Roulet, 2010). 
During an open surgery, the surgeon uses the wide field of view of his eyes to analyse the 
situation. He has a bird’s eye view of the surgery and he always has his tool in his field of 
view. However in MIS, using a standard endoscope causes a narrow viewing angle (figure 
32). With its wide field of view, the panomorph lens increases the coverage of the operating 
area. Then, the surgeon observes a hemispheric field of view in the front of the endoscope. 
By increasing the coverage, this device decreases the number of manipulations and 
repositioning of tools and endoscope (figure 33). For example, by placing the endoscope 
near the insertion point, the surgeon has an overview of the whole body cavity. He can well 
appreciate each tool position in the operating area. 
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Fig. 32. Cholecystectomy procedure field of view with a classic laparoscope 

 
Fig. 33. Cholecystectomy procedure field of view with a panomorph laparoscope 

Furthermore, the panomorph endoscope displays more anatomical landmarks which help to 
localise the dissection plan and increases the perception of depth. Being able to keep an eye 
on his/her tools all along the procedure is a major improvement for the surgeon, to avoid 
manipulation mistakes. 
For MIS, we could design a laparoscope panomorph lens with augmented resolution in the 
center. This resolution distribution enhances the operating area (center area) while keeping 
the large field to survey the whole scene.  The following figures (34-35) show the simulated 
panomorph lens images with increased resolution in the center. This augmentation is close 
to human eye behaviour.  Figure 36 shows the normalised resolution ratio of the lens (pixels 
ratio/degrees) across the field of view. The resolution along the center is 3 times higher than 
in the periphery. Consequently the object’s magnification in the center is larger and more 
details can be analysed in this part of the image. 
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Fig. 34. Linear resolution wide angle lens 

 

 
 

Fig. 35. Panomorph lens with an augmented resolution in the center and 4:3 anamorphic 
ratio 

The image display on the screen for the surgeon is an improved representation of the image 
captured by the panomorph lens and the sensor. The associated video-viewing algorithms 
will correct the image distortion to provide a rectilinear view (or a more natural view). 
These unwarping algorithms project pixels from the endoscope sensor to the display and 
produce one or more standard virtual views in real time. The viewing algorithms allow 
simultaneous display of as many views as desired from one endoscope as shown in figure 
37.  
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Fig. 36. Normalized resolution across the field of view 
 

 
Fig. 37. Different views processed from the same endoscope 
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Fig. 36. Normalized resolution across the field of view 
 

 
Fig. 37. Different views processed from the same endoscope 
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Consequently, the viewing process unwarps the image in real time in order to provide 
views that reproduce real world proportions and geometrical information.  These projection 
algorithms can be adapted for each specific surgical procedure, which is then related to 
human vision (display) or artificial vision (analytic function). 
It is possible for the surgeon to easily choose the best view (projection algorithm 
configuration) which best fit his/her psycho-motor skills, his/her position and the 
intervention conditions without having to manipulate the laparoscope. For example, trocar 
positioning could be achieved by moving the view (virtual camera) without moving the 
panomorph laparoscope. 
Surgeons and assistants have to deal with counter-intuitive endoscope manipulations. For 
example, in the case of a laparoscope with a 30 degree view, by rotating the laparoscope the 
assistant changes the viewing angle of the scene. With panomorph technology, views are 
based on image processing, and virtual camera movements can be performed without any 
endoscope movement. 
Moreover, the surgeon could arrange each view on several screens to have a global 
overview of the surgery. For example, the following screen configuration well known in 
flight simulation software respects the aspect ratio, proportion and orientation of each object 
and would increase the surgeon’s perception of depth and surrounding positions. Previous 
work demonstrates that panoramic visualisation increases the surgeon’s accuracy (Naya et 
al, 2008). In this case the panoramic view consists in different videos calculated from only 
one laparoscope which provides a surrounding view of the working area in real time. This 
concept is presented in figure 38. 
 

 
Fig. 38. Immersive screen configuration sample 

5. Conclusion 
Panomorph lens development has led to new types of panoramic imager that can be 
customized to enhance any panoramic imager application. The design features full 
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hemispheric coverage, better use of sensor areas and increased resolution in the zone of 
interest. During the last few years, several research teams have developed custom 
applications using the Panomorph lens differentiator. This chapter has presented state of the 
art example of recent development using this technology. Panomorph lens based sensor 
make application more and more feasible in various application fields. Combines with 
proper viewing process, the Panomorph sensor can play a significant role in the future of 
visual sensor.   
The viewing process is composed of three steps. The first step is the definition of the 
panomorph geometrical model (PGM) associated with each custom panomorph lens 
application. The second step is the projection of the recorded image onto the PGM to 
provide a discretized mapping based on the recorded pixel position on the sensor. The third 
is a final rendering based on an azimuthal projection technique. The algorithms developed 
over the years have been optimized for use on small CPU and memory, enabling embedded 
processing. The algorithms are available thru a SDK running on Linux and Windows 
operating systems, and can be ported to many processors and systems. 
In conclusion, a panoramic imaging sensor contributes most to our perception of the world.  
Several sensor systems are necessary to obtain a complete vision of the environment around 
a vehicle, a robot, an airplane, or a security vehicle; however, a 360o visual sensor using 
panomorph lenses is probably one of the most promising ways to fuse many sensors into 
one, and thus reduce risk and cost. 
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1. Introduction      
As the sensor technology and image processing technology rapidly developped, more and 
more scholars have paid attention to the panoramic imaging technology. Panoramic 
imaging technology can be applied to military, medicine, security, etc. Panoramic imaging 
technology has became an important research topic in the field of computer vision. There 
are four current methods to obtain panoramic images which are rotation imaging, multi-
camera imaging, fish-eye lens imaging and catadioptric imaging. This chapter explores the 
existing panoramic imaging technology, proposes improved ideas and methods to the 
original ODVS, which are average angular resolution and second catadioptric imaging 
technology, and achieves 360°×360° full sphere panoramic image by integrating two images 
acquired by two symmetrical ODVSs. Experiments confirm that this method can obtain a 
sphere view field and has important application value in field of video surveillance. 

2. Related research 
Herman and other scholars, rotated camera around the fixed axis which was perpendicular 
to the optical axis to shoot multiple image by rotation imaging technology, then stitched 
these images together to obtain panoramic image. But this method is time-consuming, and 
dose not meet the real-time requirement. Multi-camera imaging is shown in Fig. 1, the U.S. 
IMC company have developed multi-camera imaging device wihich uesd a number of 
cameras capturing images facing different directions, and stitched these images to get 
panoramic image. Fig. 1(a) is a hemispherical ODVS composed of multi-camera, and this 
device can obtain video images within a half-sphere; Fig. 1(b) is a sphere ODVS composed 
of multi-camera, and this device can obtain video images within the entire sphere. The cost 
of multi-camera device is high, the stitching algorithm is time-consuming, and the 
computational cost of the implemention of video data fusion is high. Another way to obtain 
panoramic image is fish-eye, but this approach requires a very short focus, and the vision of 
the imaging system can be expanded to half sphere or more. However, this imaging 
technology introduces image distortion, whose model does not meet the perspective 
projection requirements and could not get the undistorted perspective projection image by 
the acquired images. In addition, the resolution of the image is uneven and the fish-eye is 
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expensive. Catadioptric ODVS is composed of a CCD camera and a mirror facing the 
camera. In the horizontal direction, the viewing angle range is 360°, while in the vertical 
direction there is a blind angle about 120°. KoyasuH has used a pair of hyperbolic mirrors 
and a projection lens to compose a panoramic vision system, but there was still inherent 
dead angle. Zhu Feng the researcher of China's Shenyang Institute of Automation also has 
carried out pioneering research work in this area, and proposed design method with an 
ordinary camera to achieve omnidirectional stereo vision. This device is low cost, but one of 
the panoramic video is vague due to shooting two panoramic video images of catadioptric 
mirror with different depths only by one video camera, and it is still difficult to obtain full 
sphere panoramic video image without dead angle.  
 

     
                           (a) Hemisphere camera device  (b) Full sphere camera device 

Fig. 1. Multi-camera ODVS device  

Viewing deficiencies in the designed system above, this chapter presents a full sphere ODVS 
structure. It can obtain the sphere panoramic image with the advantages of convenience, 
real-time processing, novelty, low cost. Work to be done first is to design a kind OVDS with 
average angular resolution so as to stitching the two ODVS seamlessly later, followed is to 
analyse the dead angle of the original ODVS in vertical direction to improve the ODVS 
structure, and then is to stitch 360°×360° video image seamlessly by unwrapping algorithm 
to achieve a 360°×360° sphere ODVS. 

3. Design of the sphere 360°×360°ODVS   
3.1 Design of the ODVS structure  
The first work is to design ODVS with no dead angle, which can sense all points on 
hemispherical surface in real-time, and its view scope is the same as the hemisphere device 
in Fig. 1(a). Omnidirectional vision device is shown in Fig. 2. The second is to configure the 
camera behind the hyperbolic mirror. The camera’s lens fixed at the single view point (SVP) 
of the catadioptric mirror. There is a small hole at the center of firstly reflection mirror 
through which camera shoots video information before the firstly reflection mirror; in front 
of firstly reflection mirror equips a secondary reflection mirror, at the center of which there 
is also a small hole with a embedded wide-angle lens; omni-directional video information 
first reflects by firstly reflection mirror, then secondly reflects by secondary reflection 
mirror, and then through the small hole in firstly reflection mirror images in camera device; 
in addition, the projects in front of the firstly reflection mirror through the wide-angle lens 
image between the wide-angle lens and the camera lens, known as the first imaging point, 
the image point through the small hole in firstly reflection mirror images at the focus of the 
lens of camera imaging component. This design of ODVS eliminates the dead angle before 
secondary reflection mirror. 
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Fig. 2. Structure of ODVS without dead angle 

As shown in Fig. 2, we obtain real-time 360°×360° omnidirectional image based on no dead 
angle ODVS. The following two key issues are to be resolved at least: (1)two devices of no 
dead angle omnidirectional vision can be combined together as requested, and meet the 
unshaded requirement in structure design; (2)imaging in the transition zone of the two 
integrated ODVSs is continuous, and can meet certain image laws so as to fusing the video 
information.  

3.2 Design of catadioptric mirror 
In order to make imaging in the transition zone of the two integrated ODVSs continuous, 
this chapter adopts average angular resolution to design ODVS. There is a certain linear 
relationship between the point on the imaging plane and the incidence angle. The average 
angular resolution design method is following.  
 

 
Fig. 3. Average angular resolution for two catadioptric imaging principle 
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The design of average angle resolution can be ascribed to the design of reflection mirror 
curve. As shown in Fig. 3, the incidence V1 of a light source P reflects on the firstly reflection 
mirror P1(t1,F1), the reflected light V2 reflects again on the secondary reflection mirror 
P2(t2,F2), the reflected light V3 enters into the camera lens with the incidence angle of θ1 then 
images on the camera unit (CCD or CMOS).  
According to imaging principle, the angle between the first incidence V1 and the spindle Z is 
φ, the angle between the first reflected light V2 and the spindle Z is θ2, the angle between the 
tangent through P1 and the spindle t is σ, the angle between the normal and the spindle Z is 
ε the angle between the secondary reflected light V3 and the main axis Z is θ1, the angle 
between the tangent through P2 and the spindle t is σ, the angle between the normal 
through P2 and the spindle Z is ε1. For these relations we can get the equation (1): 
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In the equation: F1 is the firstly reflection mirror curve, F2 is the secondary reflection mirror 
curve; s is the intersection of incidence V1 and spindle Z.  
Simplifying the equation by triangular relationship we can get: 
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Solutions of (2), (3) can be: 

 ' 2
1 1F α α= ± +  (4) 

 ' 2
2 1F β β= ± +  (5) 

Among them, '
1F  is the differential of curve F1, '

2F is the differential of curve F2. 
In order to make some certain linear relationship between the point on the imaging plane 
and the incidence angle, we need to build a linear relationship between the distance from 
pixel P to the spindle Z and the incidence angle φ, namely: 

 0 0· a P bφ = +  (6) 
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In the equation: a0, b0 are arbitrary parameters. 
If f is the focus of the camera unit, P is the distance from pixel to spindle Z, P2(t2,F2) is the 
reflex point on the secondary reflection mirror. According to imaging principle, we have: 

 2

2

· tP f
F

=  (7) 

By substituting equation (7) into the equation (6), we can get: 

 2
0 0

2

( )ta f b
F

φ = ⋅ ⋅ +  (8) 

The mirror curve satisfing equation (8) can meet the requirements of average angular 
resolution. According to the catadioptric principle by equation (8) we can get: 
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We can get the numerical solutions F1 and F2 of the equation (2), (3),(9) by the forth-order 
Runge-Kutta algorithm (as shown in Fig. 4), so the firstly reflection mirror and secondary 
reflection mirror are of the average angular resolution. 
 

 
Fig. 4. Reflector curvilinear figure solution 

3.3 Design of lens combination  
From the ODVS viewpoint which is designed above, its view sheltered by the secondary 
reflection mirror that is video information before the secondary reflection mirror is invisible; 
in order to obtain this video information before the secondary reflection mirror. This chapter 
presents that a wide-angle lens is embedded in the center of the secondary reflection mirror. 
The wide-angle lens and the camera lens compose a combination lens device, as shown in 
Fig. 2. Fig. 5 shows the ubiety of the camera lens and the wide-angle lens. The wide-angle 
lens is configured in front of the firstly reflection mirror and in the secondary refection 
mirror. The central axises of camera lens, wide-angle lens, firstly reflection mirror and 
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secondary reflection mirror are configurated on the same axis line. The objects through the 
hole in the firstly reflection mirror image between the wide-angle lens and the camera lens 
(known as the first imaging point). This imaging point through the camera lens images at 
the camera component. 
 

 
Fig. 5. Ubiety between camera lens and wide-angle lens 

The focus of  camera lens is f1, the focus of wide-angle lens is f2, the distance between camera 
lens and the camera lens focus is S1, the distance between camera lens and the first imaging 
point is S2, the distance from wide-angle lens to the first imaging point is S3, and the 
distance from wide-angle lens to the object point is S4, according to the lens imaging 
equation we can get the following relationships: 
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 2 3d S S= +  (12) 

According to equation (12), as shown in Fig. 5 it should configure wide-angle lens with the 
distance d away from the firstly reflection mirror, and then we get the wide-angle imaging 
figure as the middle part of Fig. 5. But the present invention is configurating the wide-angle 
lens in the secondary reflection mirror, so the distance d between camera lens and the wide-
angle lens is a constraint, and only by designing focus f2 of wide-angle lens can we satisfy 
the requirements of equation (12). As shown in Fig. 4 taking the camera lens and the wide-
angle lens into consideration, as a combination lens its focus can be got by  

 ( )1 2

3 1 2

1
·

f f d
f f f

+ −
=  (13) 

In addition, if the synthetic lens diameter is D, the magnification can be expressed by the 
following equation:  

 
3

Dn
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In order to make the view field of synthesized lens matching for the dead angle of ODVS, in 
this design it requires the following equation:  
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The θ1max is the maximum angle between the secondary reflected light V2 and Z axis.  

4. 360 °×360 ° field of view for the world's surface ODVS  
4.1 ODVS with back to back configuration 
According to the design above, each ODVS view scope can reach 240°×360° and have the 
same average angular resolution. So as long as fixing two ODVS back-to-back and making 
sure the two ODVS’ axis lines overlap, the view scope of the two combined ODVSs of no 
dead angle full sphere device can reach 360°×360°. There are about 60° overlap field where 
the two can obtain images of the same spatial object at the same time, as shown in Fig. 6. 
 

 
Fig. 6. Spherical ODVS with back to back and its image disposal flow 

By combination of the camera lens and the wide-angle lens each ODVS captures image 
which locates in the centre of the entire image, as shown in Fig. 7(a), Fig. 7(b). Before 
unwrapping the omni-directional image we need to separate its central part alone; the 
calculation step at horizontal direction in the unwrapping algorithm is Δβ =2π/l; the 
calculation step at vertical direction is Δm = φmax - φmin/m; in the equation, φmax is the scene 
lighting incidence angle corresponding to the biggest effective radius (Rmax), φmin  is the 
scene lighting incidence angle corresponding to the smallest effective radius (Rmin). The 
more details of the implement of the unwrapping are referred to Intelligent Omni-
Directional Vision Sensors and Their Application. 
As to the concrete realization, a connector is used to connect the two ODVSs together which 
are of the same average angular resolution and no dead angle, the camera's video cable and 
power cable are fetched out through the hole in the connector. as shown in Fig. 8. Each 
camera video cable of ODVS connects to video image access unit, because each camera of 
ODVS can get image information with view of 360°×240° and has the same average 
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calculation step at vertical direction is Δm = φmax - φmin/m; in the equation, φmax is the scene 
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             (a) Panoramic image of upside ODVS    (b) Panoramic image of downside ODVS 

Fig. 7. Panoramic images captured by spherical ODVS 
 

 
Fig. 8. Full sphere ODVS with back to back configuration   
 

           
Fig. 9. Video image from combination lens of downside & upside ODVS   

angular resolution in the vertical (incidence angle) direction, it can realize image 
information fusion between the two ODVSs easily. Video access unit reads video 
information of each camera separately and stores in storage space (ODVStmp1, ODVStmp2), 
the two ODVS images are shown in Fig. 7(a), 7(b). Video image unwrapping unit reads the 
original video information in storage space (ODVStmp1, ODVStmp2) constantly, and splits 
the circular video images captured by the combination lens, as shown in Fig. 9. Then the 
obtained image of each ODVS is unwrapped by the unwrapping algorithm. ODVS image 
after unwrapping is shown in Fig. 10. In the unfolding figure the horizontal axis is azimuth, 
vertical axis is incidence angle. The splicing principle is azimuth alignment of the upper and 
the lower ODVS image, so the image point of the same material point in the two stitching 
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images are in a vertical line. In this chapter the spherical panorama after stitching does not 
include the overlapping part of the two ODVS, we only stitch when the incidence angle of 
ODVS is less than 90°. If you want to implement three-dimensional object point matching, 
spatial information calculation, three-dimensional image reconstruction, we need to 
calculate the overlapping part of the two ODVSs. 
 

 
Fig. 10. Video unwrap mosaic image by two ODVS 

 
Fig. 11. Schematic diagram of panoramic vision photo graphed by upper ODVS 

4.2 Match of the image point 
Fig. 11 shows unwarped schematic diagram of upper ODVS. In unfolded image, x-axis 
expresses azimuth angle, y-axis expresses incidence angle. The principle of splicing is to 
match the azimuth angles of ODVS. It makes the same object from two unfolded images on 
the same vertical line in splicing image. If the longitudes of ODVS is justified during the 
design period, the ODVS can realiz the constraint of linear relationship in structure. After 
meeting the linear relationship, the problem search corresponding points in the entire 
unfolding iamge changes into searching in a vertical line. The reduction of search range 
provides foundation for the rapid match between point-to-point. From the viewpoint of 
latitude, if there is certain linear relation between the incidence angle and the pixels on 
image plane, the incidence angle of the ODVS can be calculated conveniently, and the 
problem can be simplified from searching corresponding points in a vertical line to a certain 
area of the vertical line. It should satisfy equation(16): 
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 1 2 max180 2φ φ φ° ≤ + ≤  (16) 

In this equation, φ1 is the incidence angle of lower ODVS’s imaging point, φ2 is the incidence 
angle of upper ODVS’s imaging point, φmax is the maximum incidence angle of ODVS 
imaging point called elevation. 
We mark the upper ODVS as ODVSup and the lower ODVS as ODVSdown. Assume that 
the object point C is in the range of the binocular vision, its relevant point of imaging point 
in the panorama in ODVSdown is Cup (Φ1,β1) (shown in Fig. 11(a)), its coresponding object 
point in the spherical launched plane is Cup(x1,y1) (shown in Fig. 11(b)). Φup-max is the 
elevation when then incidence angle of ODVSup is the biggest, Φup-90 is the value 90° of 
the incidence angle of ODVSup, Φup-min is the depression angle when the incidence angle 
of ODVSup is the smallest. 
 

 
Fig. 12. Schematic diagram of panoramic vision photo graphed by lower ODVS 

We can also know that object point C’s relevant point of imaging point in the panorama in 
ODVSdown is Cdown(Φ2,β2)(shown in Fig. 12(a)), its object point in the spherical launched 
plane is Cdown(x2, y2) (shown in Fig. 12(b)). 
The incidence angle bigger than 90° is called elevation while smaller is depression angle. In 
this chapter, we set the incidence angle of the ODVS as elevation, so it must have some area 
that both two ODVSs can reach which is named binocular vision scope. For the same object 
point in space, if it can be seen in the binocular vision scope, it must have two image 
relevant points (Cup(Φ1,β1) and Cdown(Φ2,β2)of the two panoramas of ODVS )which have 
the same azimuth angle β, that is, β1= β2. 
 

 
Fig. 13. Image point matching for two ODVSs 
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As a result, the X coordinate is the same corresponding to the spherical launched plane, that 
is x1=x2. So according to this principle, the azimuth angle of the two ODVS can be justified 
in the spherical launched plane, as shown in Fig. 13. Actually, the Fig. 13 is combination of 
the Fig. 11(b) and the Fig. 12(b), which can realize the justifying of the azimuth angles in the 
two spherical launched planes conveniently. 

4.3 The coordinate of Gaussian sphere and central eye 
Human-centered stereo omnidirectional vision is three dimension and high fidelity. We call 
the center of binocular vision’s baseline as “central eye” which is used to describe the 
information of object point ( , , , , , , )c C r R G B tφ β=  in space. The meaning of each physical 
parameter is shown in Fig. 14. 
 

 
Fig. 14. Imaging point expression in Gaussian reference 

The coordinate of central eye is used to be the origin o of Gaussian sphere coordinates in this 
design. We use seven parameters to describe the information of object point in space. r  
expresses the distance between origin o and object point; φ expresses the angle between Z  
axes and the line connecting origin o with object point; β expresses azimuth angle; R is the 
average value of central eye’s red component; G is the average value of central eye’s green 
component; B is the average value of central eye’s blue component; t is time information. 
The equation(17) can express any object point in space,  

 ( , , , , , , )c C r R G B tφ β=   (17) 

We adopt a scientific and uniform Gaussian sphere coordinate in binocular stereo vision 
system to express all object points by using seven physical parameters. It can provide a good 
technology foundation for model simplification and fast calculation in future. It also 
provides convenience for the follow-up geometric calculation. 

4.4 Object point’s spatial information and color information acquisition and 
calculation 
The spatial information of object point is expressed by three parameters r, φ, β in Gaussian 
sphere coordinate. Because we use central eye as origin of Gaussian sphere coordinate, 
calculation of spatial information can be concluded to calculate the ubiety of object point 
and central eye. Among them r expresses the distance between origin o and object point. 
Compared with central eye, object point’s longitude value is φ. Compared with central eye, 
object point’s dimensionality value is β. According to the principle of binocular vision we 
can estimate the object point’s depth information, as shown in Figure 15. 
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 1 2 max180 2φ φ φ° ≤ + ≤  (16) 
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of ODVSup is the smallest. 
 

 
Fig. 12. Schematic diagram of panoramic vision photo graphed by lower ODVS 

We can also know that object point C’s relevant point of imaging point in the panorama in 
ODVSdown is Cdown(Φ2,β2)(shown in Fig. 12(a)), its object point in the spherical launched 
plane is Cdown(x2, y2) (shown in Fig. 12(b)). 
The incidence angle bigger than 90° is called elevation while smaller is depression angle. In 
this chapter, we set the incidence angle of the ODVS as elevation, so it must have some area 
that both two ODVSs can reach which is named binocular vision scope. For the same object 
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the same azimuth angle β, that is, β1= β2. 
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As a result, the X coordinate is the same corresponding to the spherical launched plane, that 
is x1=x2. So according to this principle, the azimuth angle of the two ODVS can be justified 
in the spherical launched plane, as shown in Fig. 13. Actually, the Fig. 13 is combination of 
the Fig. 11(b) and the Fig. 12(b), which can realize the justifying of the azimuth angles in the 
two spherical launched planes conveniently. 

4.3 The coordinate of Gaussian sphere and central eye 
Human-centered stereo omnidirectional vision is three dimension and high fidelity. We call 
the center of binocular vision’s baseline as “central eye” which is used to describe the 
information of object point ( , , , , , , )c C r R G B tφ β=  in space. The meaning of each physical 
parameter is shown in Fig. 14. 
 

 
Fig. 14. Imaging point expression in Gaussian reference 

The coordinate of central eye is used to be the origin o of Gaussian sphere coordinates in this 
design. We use seven parameters to describe the information of object point in space. r  
expresses the distance between origin o and object point; φ expresses the angle between Z  
axes and the line connecting origin o with object point; β expresses azimuth angle; R is the 
average value of central eye’s red component; G is the average value of central eye’s green 
component; B is the average value of central eye’s blue component; t is time information. 
The equation(17) can express any object point in space,  
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We adopt a scientific and uniform Gaussian sphere coordinate in binocular stereo vision 
system to express all object points by using seven physical parameters. It can provide a good 
technology foundation for model simplification and fast calculation in future. It also 
provides convenience for the follow-up geometric calculation. 

4.4 Object point’s spatial information and color information acquisition and 
calculation 
The spatial information of object point is expressed by three parameters r, φ, β in Gaussian 
sphere coordinate. Because we use central eye as origin of Gaussian sphere coordinate, 
calculation of spatial information can be concluded to calculate the ubiety of object point 
and central eye. Among them r expresses the distance between origin o and object point. 
Compared with central eye, object point’s longitude value is φ. Compared with central eye, 
object point’s dimensionality value is β. According to the principle of binocular vision we 
can estimate the object point’s depth information, as shown in Figure 15. 
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According to the imaging principle of binocular vision, we can get the distance from object 
point to the central eye that is depth information by only obtaining the incidence angle of 
object point of ODVS Φ1 and Φ2. Because two ODVSs are combined together by back-to-
back manner, Φ1 and Φ2 can be counted by equation (18), (19): 

 1 min max min 1( ) / ( )m m yφ φ φ φ= + − ⋅ −  (18) 

 2 min max min 2( ) /m yφ φ φ φ= + − ⋅   (19) 

In the equation, m is the height of unfolded image; y1, y2 is the match point on y-axis in two 
unfolded images; φmin is the minimum incidence angle; φmax is the maximum incidence 
angle. 
According to the triangular relationship, we can get the distance r between origin o and 
point C, 
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In the equation A=180°-Φ2, B=180°- Φ1, dc is the distance between ODVSup’s viewpoint and 
ODVSdown’s viewpoint.The incidence angle Φ can be counted by the equation (21): 

 °
2 2arcsin( sin ) 180

2
dc

r
φ φ φ= + −   (21) 

Φ is the incidence angle of object point; dc is the distance between point A and point B in 
binocular system; r is the distance between object point and central eye; Φ2 is the incidence 
angle of ODVSup. Another parameter β can choose from one of the two ODVS’s azimuth 
angle. t is the time from computer system. 
The average value of each color components R, G, B of matching points of two unfolded 
image are adopted as central eye’s color coding. First we obtain color components RODVS1, 
RODVS2, GODVS1, GODVS2, BODVS1 and BODVS2 of matching points of unfolded image, then the 
average value of each color component is counted as central eye’s color coding. The 
equation is shown as follows: 
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In the equation, R is the average value of red component; RODVS1  is red component of ODVS 
one; RODVS2 is red component of ODVS two; G is the average value of green component; 
GODVS1 is green component of ODVS one; GODVS2 is green component of ODVS two; B is the 
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average value of blue component; BODVS1 is green component of ODVS one; BODVS2 is blue 
component of ODVS two; the value range is 0~255. 

4.5 Depth accuracy 
The vertically-aligned binocular omnistereo systems have two viewpoints and a fixed 
baseline. For the stereo matching between the two converted panoramic views, any 
conventional algorithms is applicable. Once correspondence between image points has been 
established, depth calculation in both spherical and cylindrical panorama is easily counted 
by simple triangulation in equation (20). And the depth resolution mainly depends on 
camera resolution, the length of baseline. 

 
2

( )rr f
dc

φ∂ = ∂   (23) 

Where, r is the distance between viewing object and Binocular Omnistereo Vision Sensor, dc 
is the length of baseline, ∂φ is similar to the camera resolution. It seems that larger baseline 
and higher camera resolution will get better depth accuracy. And depth estimation error is 
proportional to the 2 power of the distance between viewing object and Binocular 
Omnistereo Vision Sensor. The depth accuracy of the V-binocular omnistereo is isotropic in 
all directions, and the epipolar lines is simply vertical lines in omnidirectional image. 

5. Experimental results 
5.1 Full sphere view and without dead angle 
Full sphere ODVS is shown in Fig. 8, the two ODVSs are fixed together back to back by a 
connector. Its view scope is same as the full sphere camera device as shown in Fig. 1(b). The 
original panoramic images of the upper and the lower ODVS are shown in Fig. 7(a) and Fig. 
7(b). The center part of the image is the imaging of wide-angle lens, that is, the dead angle 
parts of the upper and lower ODVS of the secondary reflection mirror shown in Fig. 9(a) 
and 9(b). In Fig. 7(b) the ship brand is partly sheltered by the secondary reflection mirror of 
the lower ODVS, but the combination lens can also obtain the ship brand video information, 
shown in Fig. 9(b); Similarly, the lattice umbrella is partly sheltered by secondary reflection 
mirror of the upper ODVS, however, the lens combination can also obtain the lattice 
umbrella video information shown in Fig. 9(a).  
By splicing the unwrapping images of the panoramic image Fig. 8(a) and 8(b) the fusion of 
the video images is shown in Fig. 10. From the experimental results of image processing we 
can see the full sphere ODVS in this article can be real-time and capture the entire 360°×360° 
spherical images within the surveillance video. Further improvements in the future are to 
solve the problem of fusion between wide-angle lens and ODVS image, using 360°×360° full 
sphere ODVS to implement three-dimensional reconstruction and ranging.  

5.2 Measuring depth of viewing object 
In order to get better depth accuracy range for special application requirements, we carry 
out experiments to measure depth of viewing object using V-binocular stereo ODVS of back-
to-back configuration. 
The panoramic images obtained by binocular stereo ODVS are transmited to computer 
through two USBs. After it computer will process these images, match the object points, and 
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According to the imaging principle of binocular vision, we can get the distance from object 
point to the central eye that is depth information by only obtaining the incidence angle of 
object point of ODVS Φ1 and Φ2. Because two ODVSs are combined together by back-to-
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In the equation A=180°-Φ2, B=180°- Φ1, dc is the distance between ODVSup’s viewpoint and 
ODVSdown’s viewpoint.The incidence angle Φ can be counted by the equation (21): 
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Φ is the incidence angle of object point; dc is the distance between point A and point B in 
binocular system; r is the distance between object point and central eye; Φ2 is the incidence 
angle of ODVSup. Another parameter β can choose from one of the two ODVS’s azimuth 
angle. t is the time from computer system. 
The average value of each color components R, G, B of matching points of two unfolded 
image are adopted as central eye’s color coding. First we obtain color components RODVS1, 
RODVS2, GODVS1, GODVS2, BODVS1 and BODVS2 of matching points of unfolded image, then the 
average value of each color component is counted as central eye’s color coding. The 
equation is shown as follows: 
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In the equation, R is the average value of red component; RODVS1  is red component of ODVS 
one; RODVS2 is red component of ODVS two; G is the average value of green component; 
GODVS1 is green component of ODVS one; GODVS2 is green component of ODVS two; B is the 
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average value of blue component; BODVS1 is green component of ODVS one; BODVS2 is blue 
component of ODVS two; the value range is 0~255. 

4.5 Depth accuracy 
The vertically-aligned binocular omnistereo systems have two viewpoints and a fixed 
baseline. For the stereo matching between the two converted panoramic views, any 
conventional algorithms is applicable. Once correspondence between image points has been 
established, depth calculation in both spherical and cylindrical panorama is easily counted 
by simple triangulation in equation (20). And the depth resolution mainly depends on 
camera resolution, the length of baseline. 

 
2

( )rr f
dc

φ∂ = ∂   (23) 
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all directions, and the epipolar lines is simply vertical lines in omnidirectional image. 
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5.1 Full sphere view and without dead angle 
Full sphere ODVS is shown in Fig. 8, the two ODVSs are fixed together back to back by a 
connector. Its view scope is same as the full sphere camera device as shown in Fig. 1(b). The 
original panoramic images of the upper and the lower ODVS are shown in Fig. 7(a) and Fig. 
7(b). The center part of the image is the imaging of wide-angle lens, that is, the dead angle 
parts of the upper and lower ODVS of the secondary reflection mirror shown in Fig. 9(a) 
and 9(b). In Fig. 7(b) the ship brand is partly sheltered by the secondary reflection mirror of 
the lower ODVS, but the combination lens can also obtain the ship brand video information, 
shown in Fig. 9(b); Similarly, the lattice umbrella is partly sheltered by secondary reflection 
mirror of the upper ODVS, however, the lens combination can also obtain the lattice 
umbrella video information shown in Fig. 9(a).  
By splicing the unwrapping images of the panoramic image Fig. 8(a) and 8(b) the fusion of 
the video images is shown in Fig. 10. From the experimental results of image processing we 
can see the full sphere ODVS in this article can be real-time and capture the entire 360°×360° 
spherical images within the surveillance video. Further improvements in the future are to 
solve the problem of fusion between wide-angle lens and ODVS image, using 360°×360° full 
sphere ODVS to implement three-dimensional reconstruction and ranging.  

5.2 Measuring depth of viewing object 
In order to get better depth accuracy range for special application requirements, we carry 
out experiments to measure depth of viewing object using V-binocular stereo ODVS of back-
to-back configuration. 
The panoramic images obtained by binocular stereo ODVS are transmited to computer 
through two USBs. After it computer will process these images, match the object points, and 
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measure the depth of object point. Fig. 16 is shown the experimental device and 
environment a panoramic image of both the frames of upper ODVS and lowwer ODVS 
graphed by V-binocular stereo ODVS with back-to-back configuration, its sphere panoramic 
image resolution is 640×480, unwrapped panoramic image resolution is 1280×200. 
Experiments measuring depth between viewing object (in red cross mark) and central 
eye(origin O) are carried out using the binocular stereo ODVS experiment device, from short 
distance to long distance respectively. Fig. 17 shows parts of experiments for matching the 
object point and measuring the depth of object point. The software is developed by Java and 
operating system is Windows XP. 
 

 
Fig. 16. Experiments for measuring depth of object 

 
Fig. 17. Experiments for matching the object point and measuring the depth of object point 
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Actual 
depth 
(cm) 

Up image 
plane 

coordinates 
1 1( , )upC x y  

Angle of 
incidenceΦ1 

(degree) 

Down 
image plane 
coordinates 

2 2( , )downC x y  

Angle of 
incidenceΦ2 

(degree) 

Depth 
estimation 

(cm) 

Error 
ratio 
(%) 

30.00 618,47 98.81 618,151 98.26 33.08 10.28 
40.00 618,52 97.43 618,143 96.02 42.25 5.63 
50.00 616,57 96.02 616,138 94.56 54.05 8.11 
60.00 618,60 95.15 618,136 93.97 62.99 4.98 
70.00 617,62 94.56 617,134 93.37 72.73 3.91 
80.00 616,62 94.56 616,131 92.45 82.54 3.18 
90.00 616,64 93.97 616,130 92.14 95.21 5.79 
100.00 617,66 93.37 617,129 91.83 100.50 0.50 
110.00 617,66 93.37 617,129 91.83 112.64 2.40 
120.00 616,66 93.37 616,128 91.52 120.16 0.14 
130.00 617,67 93.06 617,128 91.52 128.50 -1.15 
140.00 616,67 93.06 616,127 91.21 138.44 -1.12 
150.00 618,67 93.06 618,127 91.21 138.44 -7.71 
160.00 619,68 92.76 619,127 91.21 149.68 -6.45 
170.00 616,69 92.45 616,127 91.21 162.99 -4.12 
180.00 619,69 92.45 619,126 90.89 179.38 -0.35 
190.00 616,69 92.45 616,126 90.89 179.38 -5.59 
200.00 617,70 92.14 617,126 90.89 198.92 -0.54 
210.00 619,70 92.14 619,126 90.89 198.92 -5.28 
220.00 618,71 91.83 618,124 90.25 298.44 35.65 
230.00 617,71 91.83 617,124 90.25 298.44 29.76 
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measure the depth of object point. Fig. 16 is shown the experimental device and 
environment a panoramic image of both the frames of upper ODVS and lowwer ODVS 
graphed by V-binocular stereo ODVS with back-to-back configuration, its sphere panoramic 
image resolution is 640×480, unwrapped panoramic image resolution is 1280×200. 
Experiments measuring depth between viewing object (in red cross mark) and central 
eye(origin O) are carried out using the binocular stereo ODVS experiment device, from short 
distance to long distance respectively. Fig. 17 shows parts of experiments for matching the 
object point and measuring the depth of object point. The software is developed by Java and 
operating system is Windows XP. 
 

 
Fig. 16. Experiments for measuring depth of object 

 
Fig. 17. Experiments for matching the object point and measuring the depth of object point 
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Table 1 are experimental resluts of measuring depth between view point and object with 
distance from 30cm to 250cm, and Table 2 are experimental resluts of measuring depth 
between view point and object from 100cm to 1100cm, both using V-binocular ODVS with 
Back-to-Back configuration, the baseline length of which is 9.80cm, in Fig. 16.  

6. Discussion  
In order to obtain real-time 360°×360° entire full sphere view scope video, this chapter 
presents a secondary catadioptric principle and structure of ODVS, and designs a 
catadioptric mirror, use fourth-order Runge-Kutta algorithm to obtain numerical solution of 
the reflection mirror by the design method of combination lens integrating ODVS with 
wide-angle lens to eliminate the inherent dead angle of the original ODVS, and then fixes 
the two ODVS devices without dead angle back to back, finally stitches the 360°×360°  video 
image seamlessly by unwrapping algorithm. The experimental results show that the design 
of ODVS device can obtain real-time 360°×360° view scope video image. The software which 
we develop for the full sphere ODVS to do experimental studies runs in the operation 
system of Windows XP with CPU of 1.7Celeron and 512M RAM. When the resolution of 
camera is 640×480, the system can handle 15 frames per second, and basically satisfy the 
requirements of real-time video data acquisition.  
Because each ODVS of the composition of full sphere ODVS adopts average angular 
resolution to design, the parameters of the two ODVS fixed back to back are fully consistent 
and the point of imaging plane and the incidence angle has a linear relationship, thus it can 
make sure the imaging of transition zone of the integrated ODVS is continuous. 
For the reflection mirror design, this chapter uses Runge-Kutta algorithm to obtain the 
numerical solution of the reflection mirror of ODVS and validates the catadioptric mirror by 
the simulation experiment. This method can guide design of ODVS mirror, and provide a 
theoretical support to ODVS reflection mirror design. 
Fig. 10 shows the unwrapping stitching image exists stitching error. The reason is that the 
central axis of the upper and the lower ODVS has error in manufacturing and assembly 
processing. It is difficult to ensure the two ODVS fixed back to back on the same axis line, 
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but this problem can be solved by ensuring the same axis angle when assembling in the 
technic schedule. 
Depth error analysis of distance calculation is shown as Fig. 18. According to the principle of 
binocular stereo vision the position of object can be measured exactly. But the image is not 
continuous when it is obtained by imaging unit. The image is discrete data which takes pixel 
as a unit. There is minimum resolution ratio error in measurement due to camera’s 
resolution. This problem can be improved by using high resolution camera.  
According to the measurement results, depth estimation error will increase with the increase 
of distance from target object. Because in the same direction when the measuring distance 
increases, the variable quantity of incidence angle in two ODVS Φ1 and Φ2 is becoming 
smaller, and the incidence angle of upper and lower ODVS both tend to 90°. It makes the 
distance from target object of the equation (20) very sensitive to the change of incidence 
angle. 

7. Conclusion  
A novel dynamic omnistereo approach is presented by which viewpoints of two 
omnidirectional camera can form optimal stereo configuration for localizing moving objects. 
Further extension is made to the concept of omnidirectional imaging from viewer-centered 
to object-centered representation, thus it allows establishing omnidirectional models of large 
objects or even our planet. Numerical analysis is given on omnidirectional representation, 
epipolar geometry and depth error characteristics, which could be very useful for the 
research and applications of omnidirectional stereo vision. 
The beneficial effects of 360°×360° full sphere ODVS designed in this chapter are mainly 
reflected in: 1)It can obtain real-time 360°×360° omni-directional 3D video images, then by 
geometry calculation get the whole panoramic image of the monitoring sphere. The monitor 
tracking objects will never be lost; 2)It uses the average angular resolution for the ODVS 
design. The whole image of monitor sphere is not heteromorphic solving the problem of 
catadioptric ODVS image distortion. It provides a complete theoretical system and model 
for the fast-moving target real-time tracking in large space. 3)Because each ODVS of the 
composition of full sphere ODVS uses the average angle resolution to design, the 
parameters of the two ODVS cameras are fully consistent with good symmetry. In the 
spherical coordinates the real-time video image obtained can rapidly match point and point 
providing more convenience for the subsequent three-dimensional image process. 4)The 
ODVS design uses catadioptric technology, so it exists the problem of fixed focus, the clarity 
is same in any area of the image; 5)It Uses a secondary catadioptric imaging technology and 
easily implement miniaturization. It can be widely used in military reconnaissance, aviation 
and navigation, virtual reality and so on . 
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1. Introduction     
Japan is a land of frequent earthquakes, and developing effective means for preventing and 
mitigating disasters in their aftermath is a matter of deep and widespread concern. The time 
and location of their occurrence is essentially unpredictable, and interest therefore centers 
on preventing and mitigating damage. A key prerequisite for effective mitigation is rapid, 
accurate appraisal of conditions in the stricken region. For this purpose, the development of 
systems for concurrent, parallel information gathering, capable of covering a broad range of 
affected areas and conditions, is critical. In the DDT Project, 'Development of Advanced Robots 
and Information Systems for Disaster Response.' of the Japanese Ministry of Education, Culture, 
Sports, Science and Technology (MEXT), the development effort for rescue robots and other 
next-generation basic technologies for disaster prevention and mitigation has included the 
development of interlinked rescue robots, airborne vehicles, sensors, and other elements of 
disaster area information gathering technologies (Tadokoro, 2009). 
A related recent development has been the trend toward ubiquitous computing (Weiser, 
1991), data carriers (Takeda, 1991), and related technologies, with research and development 
in progress for the creation of intelligent information environments to support and aid in 
daily life and living. In parallel with these advances, the authors have developed an 
intelligent data carrier (IDC) for rescue, designed to support the search for victims 
immediately after an earthquake (Kurabayashi et al., 2003); (Asama et al., 2005); (Kawabata 
et al. 2006); (Hada et al., 2006). The rescue IDC is a small device with wireless radio 
communication capability, for installation in living environments. In the wake of an 
earthquake, this device can send out voice calls to any who might be trapped in the rubble 
and record their responses. With multiple deployments, the IDCs enable parallel searches 
for victims throughout the stricken area. In a separate study, Takizawa et al. (2007) has 
applied RFID (Radio Frequency Identification) technology to the development of an 
information transmission system in which wireless tags are permanently installed along 
streets and other routes to collect information on the stricken area, so that victims trying to 
leave the area and rescue personnel can perform non-contact automated gathering of the 
information. In the wake of a disaster, however, the rescue IDCs may not be available where 
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they are needed. In the information transmission system of Takizawa as well, it is necessary 
to install the electronic tags in the environment in advance. In many cases, the sites in need 
of information gathering cannot be determined until after the disaster. It is therefore 
desirable to develop information terminals which can be readily deployed after a disaster, 
for efficient information gathering at appropriate locations. 
Some sensor systems and devices have already been developed for deployment following 
hazards. Inoue et al.(2005) have developed a ball-shaped probe that can be thrown into 
rubble following a disaster, and evaluated the configuration for mobility in rubble. The 
search ball contains a camera with motor-controlled sensing direction, for information 
acquisition, but it is not effective for use in disaster areas requiring information acquisition 
and collection in parallel with multiple sites. Remington Arms Co. of the United States 
provides a product named the Eye Ball. for on-site information gathering at crime scenes 
such as hostage standoffs and for on-site security. It is a ball-shaped camera that can be 
thrown into a target area and then autonomously adjust its attitude, like a self-righting 
Japanese Dharma doll, on a floor or other level surface. Under control signals from the 
outside, the Eye Ball rotates its internal camera to scan the area, thus enabling acquisition of 
information on the surrounding interior. The information is relayed using a video 
transmitter, however, this would make simultaneous operation of multiple sensors difficult 
because of the number of channels required for such a purpose. 
Interest has grown rapidly in sensor network technology (Ando et al., 2005) for 
environmental information gathering and sharing by organically linked sensor nodes in a 
wireless network within a given area, and various efforts are in progress for developing 
related technologies. Fukatsu and Hirafuji (2005) have developed an environment 
monitoring system which incorporates fixed wireless nodes in a broad agricultural area, 
linked to a web browser. Fixed network systems such as these are effective in cases where 
the measurement sites are determined in advance, but in the case of disasters or other 
events, in which the appropriate sites and circumstances are largely unpredictable, a 
capability for ad hoc network construction is essential. 
Wireless sensor network technology holds great promise for rapid information gathering 
and sharing over a broad disaster area, which requires rapid construction of an information 
infrastructure appropriate to the conditions in the area together with simultaneous parallel 
collection of information acquired at additional sites. In such circumstances, it is essential to 
include identification of the time and place of acquisition together with the information 
acquired by the sensors, to enable presentation of the information in a coherent, organized 
form for browsing and observation. 
In this report, we propose the basic concept of a camera-based sensor node that can be 
readily deployed amidst rubble and irregular land surfaces, with the capability for wireless 
network construction to enable information gathering from a disaster area, and report on 
experimental trials held to verify the function and performance of prototype camera nodes 
based on this concept. 

2. Design concept 
Many studies have focused on sensor nodes for advance mounting on ceilings, streetlights, 
and other structures (Nakata & Kushiro, 2007). In a disaster, however, the position and 
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orientation of pre-installed nodes may change, the nodes themselves may even be damaged 
or inoperable, and, in any event, the sites requiring information gathering and monitoring 
will be largely unknown until after the disaster strikes. A sensor node is therefore needed 
which can be readily deployed in an area following a disaster, in highly irregular 
topography. In such circumstances, moreover, the existing information infrastructure may 
be severely damaged and disrupted. An effective system should therefore be able to operate 
independently of ordinary infrastructure, with a capability for construction of a self-
organizing information network following deployment, to enable reliable transmission of 
information from the sensors on their surroundings and the time and location of the 
acquired information. 
In performing the specification design for a sensor node to meet these needs, we have 
identified the following as essential functions. 
• Power supply self-contained for autonomous drive. 
• Bilateral wireless communication and self-organizing network construction. 
• Acquisition of information on surroundings, position, and time. 
• Maintenance of specified sensor attitude, regardless of topography at placement site. 
The sensor node must also contain its own power source, such as a battery, to enable 
continuous operation of its autonomous drive and other functions for a sufficient period in 
the absence of lifeline utilities and infrastructure, which may be the case in disaster areas. 
For gathering and consolidation of information on the disaster area, an information 
infrastructure must be constructed in the actual area, with connection among the 
information terminals. The sensor must be capable of wireless two-way communication and 
participation in self-organized, on-site construction of the communication network. It must 
therefore also enable temporal and spatial coordination, as the information it acquires will 
otherwise be meaningless when consolidated with information acquired at other sites. For 
this reason, it must be capable of determining “when and where” it acquires the 
information, and attach it to the acquired data. For coherent information gathering in the 
disaster area, in short, the sensor nodes must be able to form a network and provide a 
means for reliable consolidation of the acquired information without information loss. 
Sensor attitude and sensing direction are also essential considerations. Whether the 
information acquisition is directional or omnidirectional, the orientation of the sensor node 
at each site during data acquisition is important. If the sensor is directional and points 
toward the surface on which it has been placed, it may entirely preclude acquisition of 
meaningful information. One solution would be to deploy multiple sensors at a single site in 
accordance with the data acquisition characteristics of the sensor and thereby eliminate 
blind spots, but this tends to increase the difficulty of achieving compact hardware design 
and obtaining low energy consumption. Sensor attitude is, in any case, a key consideration, 
as the site surfaces may be uneven, and it is necessary to ensure attainment of appropriate 
sensor attitude regardless of the surface angle. In summary, for any extended period of use, 
it is desirable to minimize the size, weight, and complexity of the sensor node, its drive and 
control units, and thus its energy consumption, and to provide a means of effective sensor 
attitude control with the smallest possible number of sensor components while providing a 
broad field of information acquisition and sufficient level of information acquisition. 
For effective information acquisition in a disaster area, a sensor node that satisfies all of 
these requirements is necessary. 
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they are needed. In the information transmission system of Takizawa as well, it is necessary 
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In this report, we propose the basic concept of a camera-based sensor node that can be 
readily deployed amidst rubble and irregular land surfaces, with the capability for wireless 
network construction to enable information gathering from a disaster area, and report on 
experimental trials held to verify the function and performance of prototype camera nodes 
based on this concept. 
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broad field of information acquisition and sufficient level of information acquisition. 
For effective information acquisition in a disaster area, a sensor node that satisfies all of 
these requirements is necessary. 



 Vision Sensors and Edge Detection 

 

50 

3. Design and fabrication of camera node 
We designed and fabricated of a sensor node prototype to meet the above requirements. A 
camera is used as the sensor, to enable intuitive visual observation and ascertainment of the 
acquired information by rescue personnel and others, and a fisheye lens was selected to 
provide surroundings information acquisition. To distinguish this sensor node from other 
types and versions, we refer to it below as the “camera node” or simply the “node”. Its key 
design parameters included the ability to visually recognize objects and structures (assumed 
to be approximately 1.7 m in size) located 5 m from the camera node as well as movement at 
close-range distances of 1–2 m. 

3.1 Passive self-righting mechanism 
The external appearance and the internal structure of the fabricated prototype is shown in 
Fig. 1. The acrylic shell is 2.8 mm thick and 250 mm in diameter. The gross weight is 3.5 kg. 
The camera node consists of a core module composed of mounted computer and peripheral 
devices, sensors, battery, and other components, enclosed in the acrylic shell. Six ball rollers 
are mounted on the core module and maintain contact with the shell body. The core module 
is thus supported inside the shell by the ball rollers, yet free to rotate inside the shell under 
the force of gravity. This passive self-righting structure keeps the camera vertical and facing 
upward without the use of actuators or other devices, enabling acquisition of 
omnidirectional images with the same geometrical attitude regardless of the node 
orientation and the environment. 
 
 
 

  
 

 
 

Fig. 1. A Prototype of Wireless Camera Node with Passive Self-righting Mechanism 

The Cyclops (Chemel et al., 1999) and Omniclops (Schempf et al., 1999) are also spherical 
devices containing a camera and designed for uses similar to those envisioned in the present 
study, but the geometrical attitude of the camera is controlled by an electric motor and is 
thus essentially different from the passive control employed in our camera node, which 
enables higher energy efficiency. 
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3.2 Internal system components 
The internal system components of the camera node are shown in Fig. 2 and Table 1. The 
computer module at the heart of the camera node, which performs the data processing and 
also serves as the mount for the sensor, contains an embedded Linux OS-based core from 
the Rescue Communicator (R-Comm, Mitsubishi Electric Information Technology) (Hada et 
al., 2006). Other functional components include a CF memory card, a wireless LAN adaptor, 
a wired LAN adaptor utilized for connecting image capture card, a CMOS camera with 
fisheye lens (OPT, NM-30) as the sensing device, and a GPS locator, mounted in four 
compact flash memory card slots (CF slots). 
 

 
Fig. 2. System Configuration of Wireless Camera Node 
 

CPU SH7751R 
(internal bus 100 MHz, 
system bus 25 MHz) 

OS CELinux1.0  
(Kernel2.4.20 base) 

SDRAM 32[MB] 
Flash ROM 8[MB] 
Peripherals Wireless LAN (IEEE802.11b), 

CMOS camera with fish-eye lens, 
GPS adaptor 

Battery +7.2[V], 3700[mA] (for sensors) 
+6[V], 2500[mA] (for computer) 

Table 1. Specification of Wireless Camera Node 
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An internally mounted battery supplies the electric power necessary for the autonomous 
drive. Time management on the Linux OS and locating by GPS enables attachment of 
temporal and spatial identifiers to the acquired information (i.e., the video information). 
Files are saved with time, position, and other information embedded, for easy, intuitive 
understanding in subsequent browsing. 
For network formation, the AODV-uu ad hoc on-demand distance vector (AODV) protocol 
is also incorporated to enable self-organizing network construction. It was confirmed that 
camera node operation was possible for about 5 h with the AODV in continuous operation. 
The attitude sensor shown in Fig. 2 was installed to measure the attitude of the core module 
of the camera node in the following experiments. 
 (a) The manuscript must be written in English, (b) use common technical terms, (c) avoid 
abbreviations, don't try to create new English words, (d) spelling: Follow Merriam 
Webster´s Collegiate Dictionary, Longman or Oxford Dictionaries. 

4. Experiments 
The camera node was subjected to the following experiments, to verify its capability for 
achieving the basic functions described above. 

4.1 Camera node placement experiment 
We investigated the capability of the passive self-righting mechanism in the camera node to 
self-right of the camera, as illustrated in Fig. 3. 
The camera node was released on a 15 degree incline in the environment shown in Fig. 3 
and allowed to roll down the incline and across the floor until it stopped, as shown in Fig. 4. 
In this experiment, an attitude sensor was installed as illustrated in Fig. 2, to measure the 
roll (rotation about the X-axis), pitch (rotation about the Y-axis), and an absolute value of 
yaw (rotation about the vertical Z-axis) of the core module as shown in Figs. 5. 
 

 
Fig. 3. Setup for Camera Node Setting-up Experiment 
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Fig. 4. Outlook of Setting-Up Experiment 
 

 
Fig. 5. Coordination for Camera Direction 

The final attitude of the core, found from multiple trials, is shown in Fig. 6. The final attitude 
was generally within five degrees of the three axes. Although this depends on imaging 
conditions, given that the divergence is within five degrees, theoretical calculation shows 
that about one-half (2–3 pixels) of a 1.7-m object located 5 m from the lens (thus about 5 
pixels for the whole-object length) will be captured with the orthogonal fisheye lens in the 
camera node, even if the divergence is in a direction involving partial loss of the target 
image. In the experiments, it was found that for an object extending over approximately 9–
10 pixels in the full image, with an attitude divergence of five degrees in the direction of 
image loss, the object image still extended over approximately 6–7 pixels, thus confirming a 
sufficient capability for visual on-screen detection of object movement. These results show 
that the range of attitude error found in the experiment permits attainment of the initial 
performance objective of visual object recognition, and thus verify the effectiveness of the 
passive self-righting mechanism. 
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(a) Measured Sensor Attitude in X-axis and Y-axis 

 
(b) Calculated Sensor attitude in Z-axis 

Fig. 6. Experimental Result of Setting-Up a Camera Node  
Similar results were obtained in an outdoor experiment as well when the camera node was 
rolled by hand, again confirming the vertical orientation of the camera by the passive self-
righting mechanism. 
The basic design concept assumes visual inspection of the acquired images to investigate the 
area around the camera node. As the vertical orientation of the camera with the fisheye lens 
enables information acquisition, the results of this experiment confirm the basic validity of 
this concept. 
A further task remains concerning the shell body, made of acrylic plastic in the prototype. In 
the final version of the sensor node, the use of polycarbonate or some other material of high 
impact resistance is envisioned, to withstand possible impacts by falling objects due to 
aftershocks and falls by the node itself. A related task is the development of a systematic 
program for redundant deployment of the sensor nodes and reserve units for replacement of 
disabled units (Suzuki et al., 2008), to ensure preservation of the network connection and 
information gathering functions. 
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4.2 Basic experiment on video transmission and communication 
We next performed a basic experiment on transmission of the video images via the ad hoc 
connections of the camera node. Two views of the outdoor experimental site are shown in 
Fig. 7. To facilitate investigation of the basic performance, we chose a location providing 
good visibility. In each trial, the camera node was placed at an arbitrary position, 
established an ad hoc network with the host PC, and, on a “shoot” signal from the host PC, 
performed video information acquisition for 5 s. 
 

  

 
Fig. 7. Setup for Video Capturing and File Transferring Experiment 
(In case of distance=15 [m]) 

Video captures of images sampled at 1-s intervals from a 5-s video file display on the PC, 
after shooting video and data transmission (transmission distance, 15 m) by the camera 
node, are shown in Fig. 8. 
For each image, as indicated in the figure, information related to the acquired video is 
included in the video filename, in the form “date+time+GPS position 
information+imaging/image capture length (sec)+name of acquiring device.ASF (file 
format-specifying extension)”. As shown in Fig. 9, the filename consolidates the data on the 
time that the video recording began the position, and the file format. 
The images shown in Fig. 8(a) are video captures of the image obtained by the camera node 
using video streaming. They demonstrate the capability to visualize trees (about 2 m tall) 
and building windows at about a 10-m distance from the device. The images shown in Fig. 
8(b) are from the same position, but include the image of a person walking past the camera 
node. The person passed the camera node at a distance of about 1 m, and this image clearly 
provides sufficient detail for confirming movement. 
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(a) Captured video filename: 2008.02.28.17.20.17.3546.5874,N,13936.6583,E.5.rcomm1.ASF 

   
(b) Captured video filename: 2008.02.28.17.12.22.3546.6918,N,13936.5564,E.5.rcomm1.ASF 

Fig. 8. Examples of Captured View by Developed Wireless Camera Node 
 

 
Fig. 9. A Format of filename for including the conditions 

The experimental results verify that it is possible to transmit on-site information acquired by 
the embedded CMOS camera, together with the acquisition time and position and other 
related information, to a separate terminal via a network formed by ad hoc connection. The 
acquired image is distorted by the fisheye lens, but can be converted to a panorama view by 
lens reverse-modeling computation after acquisition. 
We next investigated the video transmission capability of this system, in the aforementioned 
outdoor environment. The imaging data was acquired as 360-kB-sized video (resolution CIF 
standard 352×288 pixels) file in advanced streaming format (ASF), at distances of 15 and 30 
m from the camera node to the PC, outdoors, using file transfer protocol (FTP). 
At the transmission distance of 15 m, the duration of the experiment was 10 min and 35 sec, in 
which 49 video files were transmitted. The mean time per file was thus 12.96 s (transmission 
rate: 0.23 Mbit/s). Similarly, at the transmission distance of 30 m, the experiment duration was 
10 min and 52 s with transmission of 43 files, and thus an mean time per file of 15.16 s (0.19 
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Mbit/s). These mean times include the entire transmission process based on AODV and FTP, 
as indicated in Fig. 10. As shown, some variation occurred in file transmission time, but the 
results clearly confirm the capability for stable transmission. 
 

 
Fig. 10. Video File Transferring Performance 

The experimental results thus verify the capability of the camera node for effective 
acquisition and transmission of information on the surroundings at the camera node site. 

4.3 Experiment on information gathering in ad hoc network 
The next experiment was performed to verify the basic capability for multihop transmission 
of site information (i.e., video images) acquired by individual camera nodes via the ad hoc 
wireless camera network constructed by two or more camera nodes. As shown in Fig. 11, the 
experiment was performed in the minimal two-hop configuration at outdoor environment, 
using a notebook PC with a wireless LAN adaptor and two camera nodes (Node 1 and 
Node 2; Fig. 12). Direct communication between the PC and Node 2 was blocked by the 
building, necessitating two-hop transmission. The PC served as the host for consolidation of 
the acquired image data, Node 1 as the relay station, and Node 2 as the information 
acquisition node and FTP uploader to the host PC via Node 1. 
A file size of 360 kB was used for the video data (ASF format, 352×288 resolution, video 
playback time 5 sec), uploaded in a hop configuration with data acquisition by Node 2, 
transmittted to Node 1 and then from Node 1 to the PC, followed by a 15-s interval and then 
initiation of the next transmission, in a repeating sequence over a 40-min time period. 
Table 2 is a typical routing table for the output by Node 2 (IP address 192.168.1.249) using 
AODV-UU in the video transmission. As this table shows, the destination was 192.168.1.200, 
which is the IP address of the PC, and the next hop designation was 192.168.1.103, the IP 
address of Node 1, thus confirming that the data transmitted by Node 2 was routed to the 
PC via Node 1. In the experiment, Node 2 transmitted captured videos, all of which were 
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Fig. 8. Examples of Captured View by Developed Wireless Camera Node 
 

 
Fig. 9. A Format of filename for including the conditions 

The experimental results verify that it is possible to transmit on-site information acquired by 
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lens reverse-modeling computation after acquisition. 
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Mbit/s). These mean times include the entire transmission process based on AODV and FTP, 
as indicated in Fig. 10. As shown, some variation occurred in file transmission time, but the 
results clearly confirm the capability for stable transmission. 
 

 
Fig. 10. Video File Transferring Performance 
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which is the IP address of the PC, and the next hop designation was 192.168.1.103, the IP 
address of Node 1, thus confirming that the data transmitted by Node 2 was routed to the 
PC via Node 1. In the experiment, Node 2 transmitted captured videos, all of which were 
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received by the PC. Thus, the remote site information was transmitted over two hops with 
no difference in file size, indicating that the information acquired on-site was transmitted 
effectively via the ad hoc wireless network constructed by the camera nodes. Fig. 14 shows 
network performance for transmitting the video files. Average time of transferring video 
files is 23.1[sec] and average throughput value is 16.2[KByte/sec]. 
Fig. 15 shows the behavior related to actual packet transmission. Retransmitting data and 
route error were happened frequently. Camera node retransferred the video data and 
deliver video data via wireless ad-hoc network. 
Finally, Fig. 16 shows the examples for browsing collected video files that are registered to 
Geographic Information System (GIS), actually ‘Google Earth’, based on GPS information. 
As mentioned above, GPS information is included in each file name and it is utilized to 
register the data to GIS. When the operator click the thumbnail on the interface, it is to play 
specified video file. 

 
Fig. 11. Set up for Two-hop Communication Experiment 
 

   
Fig. 12. Experimental Devices (Laptop PC, Camera Node1 and Camera Node2) 
 

# Time: 17:41:42.244 IP: 192.168.1.105, sequence no: 136 entries/active: 2/2 
Destination Next hop HC St.Sequence 

No. 
Expire Flags Interface 

Precursors 
192.168.1.200 192.168.1.110 2 VAL 183 2940 Eth0 
192.168.1.110 192.168.1.110 1 VAL 34 2934 Eth0 

Table 2. Organized Routing Table 
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Captured video file name: 2008.02.28.17.12.22.3546.6918,N,13936.5564,E.5.rcomm1.ASF 

Fig. 13. Examples of Captured and Transferred View by Camera node 2 

 
Fig. 14. Network performance 
 

 
Fig. 15. Behavior of network packet 
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Fig. 16. Registered video files to GIS 

5. Conclusion 
In this report, we have proposed a sensor node and related wireless network for information 
gathering in disaster areas. We have described a “camera node” prototype developed on 
this basis, containing a camera with a fisheye lens, a passive self-righting mechanism to 
maintain the camera orientation, and the systems capability for construction of an ad hoc 
wireless network, together with a GPS adaptor and an embedded computer timer to identify 
its position and imaging time. The camera node is relatively easy to deploy and enables 
acquisition and consolidation of temporally and spatially coherent information on disaster 
areas. These functions were verified in experiments with this camera sensor prototype. 
Utilizing prototypes data transmission experiment was done and ad-hoc network 
construction and stable video data transmission were also verified. 
We are planning to incorporate modifications to enable more accurate adjustment of the 
embedded camera attitude. In addition, although a transparent acrylic shell was used in the 
prototype for the experiments described in this report, we are considering the use of 
polycarbonate or other impact-resistant material for the shell to increase its durability under 
dropping or impact from falling debris and rubble. We intend to investigate the 
development of systems for deployment, retrieval, and redeployment of the camera-bearing 
nodes and networks by robots or other automated equipment, utilizing the relative ease and 
simplicity of deployment characteristic of these sensor nodes and the consequent freedom 
from a need for complex deployment control equipment or procedures. Investigation is also 
in progress for further reduction of their size and weight, and discussions will be necessary 
to determine their optimum size for use in disaster areas. 
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1. Introduction 
Headlamps on vehicles are primarily responsable for illuminating the traffic space during 
periods of low visibility, such as night or precipitation. In addition, headlamps are also 
considered as a cosmetic part, playing an important role in the car styling. Because of this, 
carmakers request a great precision for surface defect detection in all the headlamp 
components. 
One of these components is the cover lens (Fig. 1). This part used to be made of glass but 
polycarbonate lenses have become today’s standard. In comparison to glass, plastic lenses 
have the advantages of higher resistance to impact, lower weight, small manufacture 
tolerances and much greater freedom of design thanks to the possibility of undercuts 
[Wördenweber et al. (2007)]. But for scratch resistance, policarbonate lenses must be coated. 
Failures during the manufacturing and coating process lead to different kind of defects 
known as aesthetic defects. Although this kind of defects do not entail any functional 
disadvantage, may be considered as aesthetically displeasing. 
 

 
Fig. 1. The Serie 1 BMW headlamp and its cover lens. 

Nowadays, the quality control of the lenses is made by manual means. The results of this 
process depend on human factors as subjectivity and visual tiring, that may lead to a 
dissatisfactory quality control. For this reason, a fully automated inspection system is highly 
desirable. 
This chapter presents a machine vision system capable of revealing, detecting and 
characterizing aesthetic defects on headlamp lenses. Due to its geometry and dimensions, this 
part requires multiple vision sensor poses to completely observe it and, our proposal, 
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Fig. 1. The Serie 1 BMW headlamp and its cover lens. 

Nowadays, the quality control of the lenses is made by manual means. The results of this 
process depend on human factors as subjectivity and visual tiring, that may lead to a 
dissatisfactory quality control. For this reason, a fully automated inspection system is highly 
desirable. 
This chapter presents a machine vision system capable of revealing, detecting and 
characterizing aesthetic defects on headlamp lenses. Due to its geometry and dimensions, this 
part requires multiple vision sensor poses to completely observe it and, our proposal, 
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performs an automatic selection of these poses. For this task, a sensor planning system that 
computes the number and sensor locations has been developed. This system includes useful 
information provided by the human inspector, as the maximum defect size that should be 
located in every lens area, to fix better the sensor poses. In order to code the expert 
information for including it in the sensor planning system, a fuzzy rule based system is also 
developed. To compute the number and distribution of vision sensors, the planning system 
applies a genetic algorithm. 
Furthermore, as some kind of defects and the lens have the same optical properties, special 
lighting conditions are required to enhance defects and to simplify the subsequent 
processing algorithms. To solve this problem, we also introduce in this chapter the special 
lighting conditions required, presenting the lighting techniques capable of revealing defects, 
with different optical properties, on transparent parts. Once the acquisition stage is finished, 
the images should be processed to extract suitable information. So, the computer vision 
algorithms involved in delivering this kind of information should be defined. 
The chapter is organized as follows. In the next section, the task that the machine vision 
system has to accomplish is described; also a former work that offers a global solution to the 
automated inspection of lenses. Section 3 presents the proposed machine vision system 
describing, in detail, all its components. Finally, the machine vision is experimentally tested 
using a commercial lens model and the results are offered in Section 4, whereas Section 5 
outlines the conclusions of this work. 

2. Problem description: the headlamp lens inspection 
To date, the quality control of headlamp lenses is visually made by an expert operator, or 
simply, by an inspector, that checks the absence of aesthetic defects on the lens surface. He 
also decides if it has to be rejected or packaged for further processing. The aesthetic defect 
sizes may vary from tenths of millimeter to centimeters and, according to their shape, can be 
divided into the following groups (Fig. 2): 
• punctual defects (bubbles, blisters and black points); 
• lineal defects (threads, scratches); 
• surface defects (excesses of varnish, orange skin). 
 

 
Fig. 2. Aesthetic defects. From left to right: punctual and opaque defect (a black point), 
punctual and transparent defect (a blister), lineal defect (a scratch) and surface defect 
(excesses of varnish). 

Moreover, to meet the customer requirements, and also to establish a standard in this 
manual process, the inspector must follow the inspection guideline. This guideline is a 
document which presents the acceptance and rejection criterions for the lens. The time 
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invested to inspect the lens and the visual path that the inspector must follow during the 
inspection are also described in this document. Normally, a sketch of the lens divided into 
colored areas is presented to define the rejection criterions. Every color indicates different 
inspection requirements, so the defect dimension that has to be located in each lens area 
differs from one to another (Fig. 3). 
 

Punctual mm

Surface mm Not visible 
P/V

Linear mm
 

Fig. 3. Information presented in the inspection guideline. 

Due to the complexity of the defects to be detected: small size, different optical properties—
transparent, opaque—and geometries, it is desirable to offer a robust solution capable of 
automating the lens inspection process. In this respect, machine vision provides innovative 
solutions for automatic surface inspection systems [Malamas et al. (2003)] and this 
technology had been used in the first attempt to automate the lens inspection. The 
development was a machine vision prototype known as VIGILE (Visual Intelligent Glass 
Imperfections Looking Equipment)[Automation & Robotics (2001)]. It was supposed that by 
successive scanning of the surface of the lens, that was laid down on a specific automatically 
adaptable carrier, VIGILE detected different types of defects using three stations of 
inspection. This machine vision system could be adapted to inspect four model of lenses. 
Finally, this prototype was not commercialized because it did not fit to the lens 
manufacturers expectations. 
Our proposal presents substancial differences respect to the VIGILE system. Firstly, for the 
image acquisition the lens surface is not scanned; instead of this, a set of suitable sensor 
poses is computed through a sensor planning system. Secondly, defects with different 
optical properties are not identified in several stations of inspection. In our machine vision 
system, only one lighting device with flexibility for selecting different lighting techniques is 
utilized. As regards the image processing, the information about the computer vision 
algorithms included in the VIGILE was not available. In our case, and thanks to the lighting 
system, the images are processed utilizing algorithms with a very low computational 
burden, allowing the real time inspection. 

3. The machine vision system 
To accomplish the automated inspection of lenses, a machine vision system has been 
developed and it is presented in figure 4. This system consists of the following components: 
• an anthropomorphic 6-DOF Stäubli RX60 industrial manipulator and a CS8 controller; 
• a firewire monochrome vision sensor GUPPY F-080B; 
• a TFT monitor as lighting system; 
• a host PC to mainly compute the sensor poses, to control the lighting system and to 

process the images. 
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adaptable carrier, VIGILE detected different types of defects using three stations of 
inspection. This machine vision system could be adapted to inspect four model of lenses. 
Finally, this prototype was not commercialized because it did not fit to the lens 
manufacturers expectations. 
Our proposal presents substancial differences respect to the VIGILE system. Firstly, for the 
image acquisition the lens surface is not scanned; instead of this, a set of suitable sensor 
poses is computed through a sensor planning system. Secondly, defects with different 
optical properties are not identified in several stations of inspection. In our machine vision 
system, only one lighting device with flexibility for selecting different lighting techniques is 
utilized. As regards the image processing, the information about the computer vision 
algorithms included in the VIGILE was not available. In our case, and thanks to the lighting 
system, the images are processed utilizing algorithms with a very low computational 
burden, allowing the real time inspection. 

3. The machine vision system 
To accomplish the automated inspection of lenses, a machine vision system has been 
developed and it is presented in figure 4. This system consists of the following components: 
• an anthropomorphic 6-DOF Stäubli RX60 industrial manipulator and a CS8 controller; 
• a firewire monochrome vision sensor GUPPY F-080B; 
• a TFT monitor as lighting system; 
• a host PC to mainly compute the sensor poses, to control the lighting system and to 

process the images. 
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Fig. 4. The machine vision system. 

The attention is first focused in the image acquisition. The monochrome vision sensor is 
mounted, as end-effector, on the industrial manipulator. This enables flexibility and 
accuracy in the vision sensor poses being easily adaptable to different lens models. The 
vision sensor poses are computed off-line using a host PC. Also, the computer vision 
algorithms are executed in it. 
As regards the lighting system, the machine vision includes a TFT monitor. This device 
enables flexibility for selecting different lighting solutions, specially adapted to enhance all 
the types of aesthetic defects [Satorres Martínez et al. (2009c)]. The next subsections are 
dedicated to introduce the steps that had been carried out to finally automate the lens 
inspection process. They are: 
• planning the sensor poses; 
• selecting the lighting system; 
• the image processing. 

3.1 Planning the sensor poses 
In occasions, one single viewpoint is not enough to sample the whole surface of a part. This 
is the case of a headlamp lens, that due to its geometry, size and the dimension of defects 
that have to be located in its surface requires multiple sensor poses to observe it. 
The problem of automating the sensor vision poses in order to select suitable viewpoints for 
the object inspection is know as sensor planning or sensor placement [Sheng, Xi, Tan, 
Song&Chen (2003)]. Several researchers have proposed sensor planning approaches that fall 
into two main categories [Tarabanis, Allen & Tsai (1995)]: generate-and-test and synthesis. The 
generate-and-test approach [Kakikura (1990)], [Yi et al. (1990)] simplifies the sensor planning 
into a search problem in a restricted solution space. Although it is straightforward and easy 
to implement, the computational cost is very high due to the large number of candidate 
viewpoints. 
Contrary to the generate-and-test, the synthesis approach [Cowan & Kovesi (1988)], 
[Tarabanis, Tsai & Allen (1995)] requires a deeper understanding of the relationships 
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between the parameters to be planned—sensor poses and optical parameters—and the goals 
to be achieved. Task constraints are characterized analytically and the sensor parameter 
values, that satisfy these constraints, are directly determined from the analytical 
relationships. However, this approach has two main drawbacks. Firstly, constraint 
equations in high dimensional space that are not easy to solve; and secondly, it is very 
difficult to mathematically express the exact solution regions to these equations. Other 
ongoing work combines the previous methodologies for solving the problem [Sheng, Xi, 
Song & Chen (2003)], or study it under a multi-objective framework [Dunn (2005)]. 
In the proposed machine vision system a sensor planning system, that automatically 
generates a set of vision sensor poses for inspecting the lens, has been developed. This 
system is deeply described in [Satorres Martínez et al. (2009d)] but its main components are 
stated below. 

3.1.1 The sensor planning system 
The Sensor Planning System (SPS) (Fig. 5) requires several inputs to achieve its goal. First, a 
detailed specification about the environment (e.g., the object under observation, the 
available sensors, other useful information for the inspection task) should be provided. 
Then, the SPS automatically determines the vision sensor parameter values (e.g., number of 
sensors and their poses) to take images from the whole headlamp lens. In order to 
determine an optimal set of vision sensor poses the SPS uses a genetic algorithm. Therefore, 
the system inputs and the corresponding output are the following: 
 

 
Fig. 5. The sensor planning system. 

1. System inputs. 
The a priori known information is taken into account in the viewpoint computation: 
a. geometric and physical information of the headlamp lens that is extracted from its 

CAD model; 
b. a vision sensor model that approximates its geometrical properties. The model 

adopted is the pin-hole lens model. This model assumes that light rays travel in 
straight lines and all the rays entering the vision sensor system pass through a 
single point [Forsyth & Ponce (2003)]; 

c. the inspection guideline that provides the acceptance and rejection criterions for 
lenses. As this document is defined by experts in lens inspection to model this 
knowledge, for including it in the SPS, a Fuzzy Rule-Based System (FRBS) has been 
developed. This FRBS was initially presented in [Satorres Martínez et al. (2009a)]. 
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2. System output. 
For each viewpoint the SPS computes four positional parameters (Fig. 6): 
a. three degrees of freedom of viewpoint’s position. These are the vision sensor 

Cartesian coordinates in the world coordinate system; 
b. one degree of freedom of viewpoint’s orientation (θZc ). This angle corresponds to 

the vision sensor rotation around its optical axis. The other degrees of freedom in 
the viewpoint’s orientation, θXc and θYc angles, are not considered, since the optical 
axis of every point of view is set to look inward to the nearer lens area. 
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Fig. 6. A vision sensor pose and the lens CAD model. 

Moreover, an admisible viewpoint should satisfy the following constraints that are 
checked in the following order: 
a. visibility: this constraint ensures that there is no occlusion between the viewpoint 

and the lens surface to be inspected; 
b. field of view: vision sensors have limited field of view by the size of the sensor area 

and the focal length of the lens. The homogeneous transformation matrix is used to 
compute the surface points that will be projected inside the sensor area. This 
mathematical modeling gives a direct relation between the camera and world 
coordinate systems. So, the image coordinates x and y of a point in the world 
coordinate system wP are obtained from: 
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where aij are the elements of the homogeneous transform matrix c
wT  that relates the 

vision sensor and the world coordinate systems through a rotation, translation and 
perspective transform [Satorres Martínez et al. (2009d)]. A point in the world 
coordinate system wP can be referenced in the vision sensor coordinate system cP as: 

   
(3) 

c. viewing angle: implies that the curvature of the field of view can be chosen by 
selecting a limit between the viewing direction and the normal of the surface 
points; 

d. resolution: ensures that the smaller size of defect accepted in every lens area with 
length l is imaged to at least p pixels on the image plane. Considering the lens 
model (Fig. 7), the following can be formulated: 

 s c
hx p x l
f

= ⋅ ⋅ ≤   (4) 

where xs is the scene feature size, h is the distance from the camera lens to the 
surface to be inspected, f is the focal length and xc is the pixel size. 
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Fig. 7. Resolution constraint. 

3.1.2 Optimal sensor placement 
With respect to the genetic algorithm, developed for the optimal vision sensor placement, 
two main aspects are worthy of mention: 
• representation of candidate solutions to the problem in a ”genetic” form (chromosome 

representation); 
• establishment of a fitness function that rates each solution in the population. 
The genetic operators to produce new individuals from the exiting ones are widely used in 
evolutionary computing [Eiben (2003)] and also are deeply described in [Satorres Mart´nez 
(2010)]. 
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Fig. 7. Resolution constraint. 

3.1.2 Optimal sensor placement 
With respect to the genetic algorithm, developed for the optimal vision sensor placement, 
two main aspects are worthy of mention: 
• representation of candidate solutions to the problem in a ”genetic” form (chromosome 

representation); 
• establishment of a fitness function that rates each solution in the population. 
The genetic operators to produce new individuals from the exiting ones are widely used in 
evolutionary computing [Eiben (2003)] and also are deeply described in [Satorres Mart´nez 
(2010)]. 
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Fig. 8. Chromosome structure. 
1.     Chromosome representation. 

The chromosome contains two different type of genes (Fig. 8): control genes and 
parametric genes [Chen & Li (2002)]. Parametric genes (Pi = (x,y, z, θz)) mean the sensor 
poses with x,y, z ∈ R, θz ∈ [–π,π], and control genes (Ci) are a binary variable meaning 
the number of viewpoints. The activation of the parametric genes is governed by the 
value of the control genes. 
When ”1” is assigned to a control gene, the associated parametric gene to that particular 
active control gene is activated. The parametric genes are inactive when the 
corresponding control genes are ”0”. 
To determine the chromosome length, the maximum number of viewpoints must be 
estimated through [Chen & Li (2004)]: 

 2 lens

view

SN
S
⋅

=  (5) 

where Slens is the lens surface area size and Sview is a single view size. So, the length of a 
chromosome is expressed as: N +k ·N, where N is the maximum number of viewpoints 
and k is the number of parameters planned for each point of view. With this 
chromosome representation, all individuals in the population have the same size, but 
the number of active viewpoints may be variable. 

2.     Fitness function. 
Each individual of the population is evaluated by a fitness function (Eq. (6)), that is 
given as a weighted sum of two contradictories objectives, each of which characterizes 
the quality of the solution with respect to an associated requirement. Thus, the fitness 
function is written as 

 1 1 2 2(1 )F w OBJ w OBJ= ⋅ + ⋅ −   (6) 

where wi are the weighting coefficients and OBJi are the objectives that have to be 
satisfied being summarized as follows: 
a. OBJECTIVE 1 (OBJ1): 

Minimizing the number of viewpoints (Ci): 
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where the number of occurrences of ”1” in the control genes is equivalent to the 
number of viewpoints for each chromosome, and nC is the number of control genes. 
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b. OBJECTIVE 2 (OBJ2): 
Maximizing the accuracy of the vision inspection, that is, how the resolution of 
every camera pose fits to the resolution required to inspect its scanned lens area. 
To evaluate this objective a two-dimensional binary array, known as the quality 
matrix (qm), is created by: 

 
1   if  fulfill the constraints for  

( , )
0   otherwise                                    
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qm will be an array of r ×c dimensions, where r is the number of viewpoints and c is 
the number of CAD finite elements. If qm(i, j) = 1 the surface point sj is viewable 
from the viewpoint vi and also fulfills the aforementioned constraints. 
Nevertheless, a column of 0’s in the quality matrix means that there is some surface 
point that cannot be seen by the available sensor poses and therefore it is not 
possible to create a plan that can view the entirely of the lens. Conversely, if there 
are not nonzero-columns, a plan to view the whole lens exists. 

3.2 The lighting system 
In computer vision applications, the provision of a correct and high-quality illumination is 
absolutely decisive [Telljohann (2008)]. Hence, the light needs to be provided in a control 
manner to accentuate the desired features of the surface avoiding disturbances which could 
alter the quality of the acquired image. So, an inadequate lighting system selection involves 
the development of complex computer vision algorithms to extract information from the 
images, or even imply an unfeasible vision task [Jahr (2008)]. Finding the best setup is 
usually a result of experiments with commercial lighting systems. Next subsection shows 
the main experiences obtained evaluating several lighting techniques to enhance aesthetic 
defects on the lens surface. 

3.2.1 Lighting techniques 
There is a rich variety of lighting techniques that may be used in machine vision. From the 
available commercial lighting systems, the most recommended for this application are the 
back-light and the diffuse dark field systems and both of them have been studied. 
The diffuse back-light achieves non-directional uniform illumination resulting in a bright 
image, whereby surface features appear in gray levels. This technique is normally used for 
viewing the silhouette of opaque objects and for inspecting transparent ones. But this light is 
suitable when the contrast between different surface qualities is high so, in the lens, only 
not-transparent surface defects are revealed (Fig. 9 ). 
Concerning the dark field illumination, the angle of the incident light rays to the surface 
normal vector is very large. This results in a dark appearance of the surface, but salient 
features, such as scratches, appear bright in the image. Hence, this type of illumination is 
used to detect small particles in flat parts. In addition, applied this lighting system to the 
less curvature areas in the lens only revealed surface dirt as dust (Fig. 10). 
Another lighting technique, that it is utilized for inspecting reflective surfaces is the 
structured lighting [Seulin et al. (2001)] and [Aluze et al. (2002)]. Adapting this technique for 
inspecting the lens surface, the transparent aesthetic defects can be enhanced. So, the 
lighting principle in which it is based this kind of structured back-light system is the 
following (Fig. 11): the orientation of a surface imperfection is different from the flawless 
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Fig. 9. Diffuse back-light. From left to right: principle of lighting; robotic platform with back-
light illumination; the image acquisition. 

         
Fig. 10. Diffuse darkfield. From left to right: principle of lighting; robotic platform with 
darkfield illumination; the image acquisition. 
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Fig. 11. Structured lighting. From left to right: principle of lighting; robotic platform with 
structured lighting; the image acquisition. 
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ones, so incident ray lights are not scattered in the same direction [Coulot et al. (1997)]. 
Therefore, a defect, because of its orientation, appears in the capture image as a set of 
luminous pixels among a dark zone. It is interesting to point out that the imperfections are 
properly revealed when they are next to the light transitions. So, to ensure the defect 
detection in the whole lens surface, the light stripes have to scan all over the sensor field of 
view. 
As it can be seen, two lighting techniques should be applied for enhancing aesthetic defects: 
the backlight (for opaque defects) and the structured back-light (for transparent ones). This 
flexibility is achieved with our lighting system: a TFT monitor. 

3.2.2 The TFT monitor as lighting system 
In the proposed machine vision system a TFT monitor has been adopted as lighting. 
Previous work have also used this kind of illuminator but for different purposes as surface 
measurement [Guo (2007)], surface reconstruction [Kutulakos (2008)] or subsurface crack 
detection [Chan (2008)]. In our case, the TFT monitor has been included in the vision system 
mainly for: 
• flexibility: one device provides two lighting techniques; 
• easy to generate and to modify: the light pattern—the white and black stripes—can be 

adapted to reveal defects with different sizes; 
• accurate pattern movement: from every sensor pose several images with different stripe 

displacement should be acquired. With this lighting system the stripe movement is 
done by software so, the movement is not subjected to mechanical imprecisions. 

In addition, the set of images acquired from every sensor pose should be processed using 
computer vision algorithms with a very low computational burden. This issue is also 
achieved processing an image composed from this sequence. In previous work, this image 
has been denoted as aspect image [Satorres Martínez et al. (2009b)] and a determined 
procedure has to be applied for obtaining it. 

3.3 The image processing 
The whole inspection process, starting in the image acquisition and finishing in the defect 
characterization, is exposed in the flowchart presented in figure 12. As shown, the 
acquisitions are synchronized with the stripe movements and when the white stripe covers 
the dark stripe width completely, the image sequence is finished. From this set of images, 
the aspect image is obtained and all the subsequent processing algorithms are applied on 
predefined regions of this composition. Once the set of pixels, labeled as possible defects, 
are extracted from the background, the decision of rejecting the lens is based on the 
measurement parameters—such as the defect size—considered in the manual inspection 
process and presented in the inspection guidelines. 

3.3.1 The aspect image 
Let consider a one-dimensional representation of the lighting system being a square waveform 
(P(x)) and the white stripe TB has to scan the whole period of the wave (T)(Fig.13), where: 
• Δ: displacement between stripes in two consecutive images. 
• α: duty cycle. 
To obtain an image where the background appears with medium gray level and defects as 
high gray level, the mean image of the N waveform sequence has to be computed as: 
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Fig. 9. Diffuse back-light. From left to right: principle of lighting; robotic platform with back-
light illumination; the image acquisition. 

         
Fig. 10. Diffuse darkfield. From left to right: principle of lighting; robotic platform with 
darkfield illumination; the image acquisition. 
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Fig. 11. Structured lighting. From left to right: principle of lighting; robotic platform with 
structured lighting; the image acquisition. 
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Fig. 12. The image processing flowchart. 
 

 
Fig. 13. Lighting system geometric information 
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where M(x) is called aspect image and the homogeneity of the background is critical in the 
defect segmentation. So, the imaging conditions have to be chosen in order to provide aspect 
images with a background the more homogeneous as possible. 

3.3.2 Defect segmentation 
Image segmentation can generally be described as separating images into various regions or 
objects in which the pixels have similar characteristics [Russ (2007)]. This is an important 
task, in that the image interpretation relies strongly on its results. In our case of study, and 
previous to the segmentation step, the image regions, where the processing algorithms have 
to be applied, should be defined.  
In computer vision applications, these regions are known as Regions Of Interest (ROI) and if 
they are not defined, false detection could perturb the defect characterization. This 
definition is particularly important on the lens edges or on the lens surfaces that are not 
completely smooth. As we perform the inspection in a robotic platform, repetitive vision 
sensor positioning is achieved. So, for every sensor pose, a binary mask is defined where 
pixels labeled with ”1” are later processed. 
Because of the well contrasted aspect image and the homogeneity of its background, no 
preprocessing algorithms are required. Dealing with this sort of image, the automatic 
thresholding methods are widely used for segmentation [Ng (2006)]. The basic idea of these 
methods is, based on the gray-level distribution derived from the image histogram, to select 
a threshold value for separating objects of interest from the background. 
The aspect image histogram presents an unimodal distribution because most of the pixels 
are included in the background and have a similar medium gray-level. Only aesthetic 
defects present a high gray-level but constitute a disproportionately small number of pixels 
of the whole image. There is a thresholding algorithm suitable for segmenting images that 
present an unimodal histogram distribution. This is the Rosin algorithm [Rosin (2001)] that 
estimates an automatic threshold by computing the following expression: 
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where (xs,ys) correspond to the dominant peak of the histogram and (xf ,yf ) are relative to the 
secondary population that may not produce a discernible peak but it is well separated from 
the large peak. The values g and h(g) are the gray-level and the number of pixels with gray-
level g, respectively. 

3.3.3 Defect characterization 
Once the defects are extracted from the flawless area, they have to be measured to 
determine if the lens could be accepted or, however, has to be rejected. The measurement 
parameters and the acceptance thresholds are extracted from the inspection guidelines and 
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3.3.3 Defect characterization 
Once the defects are extracted from the flawless area, they have to be measured to 
determine if the lens could be accepted or, however, has to be rejected. The measurement 
parameters and the acceptance thresholds are extracted from the inspection guidelines and 
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they correspond to the ones used in the manual inspection process. These parameters are 
normally the following: 

• The size in mm2 of the defect. This measure is to characterize punctual defects. 
• The longitude in mm of the major axis of the defect. Useful for characterizing lineal 

defects. 
• The number of defects. 
Because the vision sensor is posed normal to the lens surface, the number of active pixels 
”1s” corresponding to a defect, is a linear function of the defect occupancy surface. Hence, 
no perspective correction is required to measure the defect that have been extracted in the 
previous step. 

4. Results 
On this section different types of results, that have been obtained during the validation of 
the machine vision system, are presented. Firstly, a set of sensor poses computed with the 
sensor configurations defined in the table 1 is obtained with our planning system. The 
planning results were subsequently utilized to acquire the images from the whole lens 
surface. Later, the effectiveness of the lighting system for enhancing aesthetic defects is 
demonstrated using defective lenses that have been rejected in the manual inspection 
process. The lighting system configuration is also presented in table 1. Finally, related to the 
computer vision algorithms, their performances are assessed by processing a serie of aspect 
images acquired using a commercial model of lens. For this lens model, the minimum defect 
size that has to be detected is a punctual defect of 1mm of diameter. 
 

Vision Sensor 
Parameters Values 
Resolution 1034×778 
Pixel size 0.00465mm 

Focal length 25mm 
Spatial 

resolution 0.1mm/pixel 

Lighting System 
Parameters Values 

TB 6 pixels 
T 18 pixels 
Δ 1 pixel 

Table 1. Sensor and lighting system configuration 

4.1 The sensor planning system 
The set of sensor poses is presented in the figure 14. This set has been obtained adjusting 
higher the weighting coefficient (w2) in the fitness function. In this case, the second objective 
has been prioritized so, from all the sensor poses, the spatial resolution should be enough to 
guarantee the aspect defect detection. As can be seen, with 22 sensor poses the whole lens 
surface is inspected and in all the sensor poses the spatial resolution is enough to ensure the 
defect detection. The table 2 shows the two extreme sensor poses with their distances to the 
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Fig. 14. The planning results. 
lens surface and the defect size that could be detected from them. In fact, in the sensor pose 
with a greater distance to the lens surface the defect size that could be detected is 0.96 mm 
which is lower than the defect size that has to be located for this lens model. 
 

Sensor 
pose 

Distance from the vision sensor to the lens surface 
(mm) 

Defect size 
(mm) 

6 483 0.8 
20 520 0.96 

Table 2. Sensor poses and their distances to the lens surface. 

4.2 Enhancing aesthetic defects 
A TFT monitor as lighting system has been utilized in the machine vision system for 
enhancing the aspect defects. This device offers two lighting techniques that could be 
adapted to reveal opaque and transparent defects. Figure 15 shows two types of punctual 
defects and how they are enhanced with the our lighting system. For the opaque punctual 
defect (Fig. 15a) the TFT monitor projects an homogeneous background performing as a 
conventional back-lighting system. However, the transparent defects are only enhanced 
projecting a stripe pattern (Fig. 15b). Later, and thanks to the image composition this type of 
defects are clearly contrasted from the lens surface (Fig. 15c). 

4.3 Characterizing aesthetic defects 
Once the aspect image is achieved it has to be processed for deciding if the lens has to be 
rejected or accepted. The figures 16 and 17 show the aspect image segmentation and how 
the regions of pixels extracted in each figure have been labeled. In both cases, if the number 
of pixels in a region is higher than 50, the corresponding region, is considered as an aesthetic 
defect. According to the sensor configuration and the distances from the vision sensor to the 
lens surface, this region size coincides with a defect length or diameter of 1mm. In this 
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• The size in mm2 of the defect. This measure is to characterize punctual defects. 
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demonstrated using defective lenses that have been rejected in the manual inspection 
process. The lighting system configuration is also presented in table 1. Finally, related to the 
computer vision algorithms, their performances are assessed by processing a serie of aspect 
images acquired using a commercial model of lens. For this lens model, the minimum defect 
size that has to be detected is a punctual defect of 1mm of diameter. 
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Fig. 14. The planning results. 
lens surface and the defect size that could be detected from them. In fact, in the sensor pose 
with a greater distance to the lens surface the defect size that could be detected is 0.96 mm 
which is lower than the defect size that has to be located for this lens model. 
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Table 2. Sensor poses and their distances to the lens surface. 

4.2 Enhancing aesthetic defects 
A TFT monitor as lighting system has been utilized in the machine vision system for 
enhancing the aspect defects. This device offers two lighting techniques that could be 
adapted to reveal opaque and transparent defects. Figure 15 shows two types of punctual 
defects and how they are enhanced with the our lighting system. For the opaque punctual 
defect (Fig. 15a) the TFT monitor projects an homogeneous background performing as a 
conventional back-lighting system. However, the transparent defects are only enhanced 
projecting a stripe pattern (Fig. 15b). Later, and thanks to the image composition this type of 
defects are clearly contrasted from the lens surface (Fig. 15c). 

4.3 Characterizing aesthetic defects 
Once the aspect image is achieved it has to be processed for deciding if the lens has to be 
rejected or accepted. The figures 16 and 17 show the aspect image segmentation and how 
the regions of pixels extracted in each figure have been labeled. In both cases, if the number 
of pixels in a region is higher than 50, the corresponding region, is considered as an aesthetic 
defect. According to the sensor configuration and the distances from the vision sensor to the 
lens surface, this region size coincides with a defect length or diameter of 1mm. In this 
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respect, all the segmented regions in figure 16b have a dimension lower than 50 pixels and 
because of this are labeled as OK. On contrary, one of the segmented regions in the figure 
17b has a dimension higher than 50 pixels. For this reason, an aesthetic defect has been 
located in this aspect image labeling the region as KO. 
 
 

                            (a)                                                (b)                                               (c) 

 
Fig. 15. Enhancing aesthetic defects: (a) Opaque punctual defect; (b) Transparent punctual 
defect with the stripe pattern; (c) Transparent punctual defect in the aspect image. 

                                      (a)                                                                                 (b) 

 
Fig. 16. Processing results: (a) Aspect image without aesthetic defects; (b) Aspect image 
segmentation and characterization. 

                                      (a)                                                                                 (b) 

 
Fig. 17. Processing results: (a) Aspect image with a transparent punctual defect; (b) Aspect 
image segmentation and characterization. 
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5. Conclusions 
This chapter is dedicated to develop a machine vision system for the automated inspection 
of headlamp lenses. The quality control of this part is a complex task that nowadays is made 
by manual means. Its complexity is due to the fact that, the proportion between the aesthetic 
defect size and the lens dimension is high. Moreover, some defects may be transparent, as 
the lens surface, and revealing them require a particular lighting conditions. 
Both issues are taken into account in the proposed machine vision system. Firstly, to observe 
the whole lens surface several vision sensor poses should be defined. In this work, the 
sensor poses are computed automatically through a sensor planning system. In some lens 
models, the aesthetic defect size is variable depending on the lens zone where it was located. 
This information is utilized in the planning system allowing to fit better the number of 
sensor poses. It is worth noticing that the machine vision system could be easily adapted to 
inspect different lens models. 
Secondly, the lighting system enables the detection of transparent and opaque defects using 
different lighting techniques. It is possible using a TFT monitor and projecting two light 
patterns: an homogeneous white background or white and black stripes. The first pattern 
enhances the opaque defects and the second reveals the transparent ones. On the other 
hand, the image processing has been carefully studied. The computer vision algorithms are 
applied to an image composition named as aspect image. In this image, the aesthetic defects 
appear well contrasted and the image background is totally homogeneous. So, the defect 
segmentation is fast to compute using a global thresholding algorithm. Finally, with our 
system, a set of a commercial model of headlamp lenses have been analyzed demonstrating 
that the automated inspection of this part is a feasible task. 
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because of this are labeled as OK. On contrary, one of the segmented regions in the figure 
17b has a dimension higher than 50 pixels. For this reason, an aesthetic defect has been 
located in this aspect image labeling the region as KO. 
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Fig. 15. Enhancing aesthetic defects: (a) Opaque punctual defect; (b) Transparent punctual 
defect with the stripe pattern; (c) Transparent punctual defect in the aspect image. 
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Fig. 16. Processing results: (a) Aspect image without aesthetic defects; (b) Aspect image 
segmentation and characterization. 
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Fig. 17. Processing results: (a) Aspect image with a transparent punctual defect; (b) Aspect 
image segmentation and characterization. 
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1. Introduction 
Metrology as the science of measurement is omnipresent in today’s society. Many 
applications in a variety of fields ranging from economy to science have a strong demand 
for reliable methods to quantify and compare measurement results. Depending on the 
specific application, this comparison can cover measurements acquired within the same 
minute by the same operator using the same measurement instrument under the same 
environmental conditions, or measurements acquired within a month by different operators 
and measurement instruments on two different continents. In either case, metrology has to 
provide means to ensure the validity of the comparison of those measurement results. Two 
aspects of metrology are of importance to us in the context of this paper: The traceability of 
the measurement result and the evaluation of the quality of the measurement result by 
means of its associated measurement uncertainty. 
Traceability: The measurement process is defined as a quantitative comparison of an 
unknown physical quantity – the measurand – with a known standard (cf. DIN1319 (1995)). 
Measurement results can thus only be compared on an international level provided 
compatible standards are available and used. Consequently, our society requires a world-
wide system of physical standards which is accepted by and accessible to every nation. The 
first attempts to internationally standardise physical quantities date back to 1875, when the 
Bureau International des Poids et Mesures (BIPM) was founded on the basis of the Metre 
Convention (BIPM (2008)). At that time, international prototypes of the metre and the 
kilogram where physically built. The evolution of these references triggered the installation 
of seven base quantities. Since the 11th General Conference on Weights and Measurements in 
1960, this system of base units is referred to as the International System of Units (SI) (BIPM 
(2006)). Today, standards are maintained and made available to the public of participating 
member states and associated economies by means of a hierarchical structure of 
international and national metrological institutes as outlined in Figure 1. The highest quality 
standards are available at BIPM and are used to derive secondary standards operated by 
national metrological institutions. These institutions, in turn, are responsible to pass 
standards on to subordinate laboratories and eventually to instrument manufacturers. This 
concept of traceability ensures that every measurement can be referred back to a physical 
standard by an unbroken chain of comparisons (International vocabulary of basic and 
general terms in metrology, VIM (1993)). An example of such a comparison chain is 
provided in Figure 2. An optical instrument is used to measure the position x of a  
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(2006)). Today, standards are maintained and made available to the public of participating 
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standards are available at BIPM and are used to derive secondary standards operated by 
national metrological institutions. These institutions, in turn, are responsible to pass 
standards on to subordinate laboratories and eventually to instrument manufacturers. This 
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Fig. 1. Hierarchy of metrological institutions responsible to maintain the SI system. The costs 
and the quality of the standards kept at the different layers increase from bottom to top. 
Similarly, the uncertainty of the different standards increase from top to bottom. Any 
measurement taken by an instrument which is properly calibrated can now be traced back 
to the base standard kept at BIPM. 
 

Base Unit
SI

l0cid jx  
Fig. 2. The concept of traceability shown at the example of an optical measurement system. 
The length standard applied within the measurement system can be traced back to the meter 
standard. 

mechanical part in 2D. A chain of comparisons links the measurement results of this 
instrument back to the length standard: The geometry of the instrument is calibrated using a 
calibration target. During this calibration procedure, the positions dj of different geometric 
features such as bores and bolts serve as geometric references. These reference positions are 
determined during the manufacturing process of the target using a measurement device 
such as the shown calliper. By means of these measurements, the components of the vectors 
dj are referred to the metric reference ci of the calliper. Finally, the calliper is calibrated by the 
instrument manufacturer using standards that can likewise be referred to the length 
standard l0 – symbolised in this example by the image of the metal bar representing the 
metre standard. Consequently, the measurement results obtained using the optical 
instrument can be traced back to the metre standard. Only through this specific setting, the 
measurement results are of practical use within a manufacturing process based on the 
current SI. The lack of traceability in such an environment would inevitably lead to false 
tolerances and hence defective parts. 
Measurement Uncertainty (MU): The BIPM defines metrology as ‘the science of measurement, 
embracing both experimental and theoretical determinations at any level of uncertainty in any field of 
science and technology’1, which highlights a second important aspect of metrology: the 
treatment of measurement uncertainty. The term uncertainty of a measurement refers to a 
parameter that is assigned to each measurement and represents the spreading of the 
measurement values ‘. . . that could reasonably be attributed to the measurand’ (VIM (1993)). 
While the measurement of a scalar quantity results in a single best estimate, uncertainties are 
commonly expressed by means of an interval around this best estimate. Figure 3 depicts this 

                                                 
1 see also www.bipm.org. 
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situation. The measurand Y is determined resulting in the best estimate y. Assuming that 
deviations around this best estimate are symmetrically distributed to either side of y, we 
obtain an interval parameterised by the expanded uncertainty Uy. The interval is assigned a 
coverage probability p, such that 

 Prob({  -  <    + }) = ,y yy U Y y U p≤  (1) 

where common probabilities are chosen to lie in the range of p = 95. . .99%. 
A frequent misconception outside the metrology community is the ambiguous use of the 
term measurement error. While the measurement uncertainty does not require the true value 
yTrue of the measurand Y to be known, the measurement error, in contrast, is determined as 

 yError = y –yTrue,  (2) 

which can only be evaluated once yTrue is available. As this is never the case for any physical 
measurement2, the measurement error is only seen as a theoretical concept with little 
practical implications. 
 

yTrue

y +Uyy − Uy

Y
y

 
Fig. 3. The measurement uncertainty of a scalar measurand Y is expressed by an interval 
around the best estimate y which is parameterised by a coverage probability. 

1.1 Vision-based measurement systems 
Optical metrology utilises the interaction of light with an object in order to measure 
unknown quantities. Measurement principles based on the propagation of light are 
inherently non-contacting and mostly non-invasive. Thus, optical metrology is frequently 
used in applications where the measurand can either not be physically connected to a sensor 
(e.g. the measurement of mechanical stress and strain on a rotating blade of an aircraft 
turbine) or feedback of the measurement system to the measurand has to be kept to a 
minimum (e.g. measurements in the nano-scale). Further benefits of optical metrology 
include the potential to operate in large measurement volumes as well as the ability to set 
the focus of the measurement precisely at the point of interest through the line-of-sight 
principle that applies to light rays. While the large field of optical metrology covers the use 
of different light sources, sensors, and measurement principles, a sub-class of optical 
measurement systems uses 2D digital sensors to capture images and to perform signal 
processing on these images in order to deduce geometric properties of scenes or derived 
measurands. This sub-class is referred to as the class of vision-based measurement systems. 
Historically, these systems are also known as digital photogrammetric systems. In the 
context of this paper we refer to vision-based measurement systems with the following 
properties: 
• Digital images are acquired using 2D image sensors (cameras). 
• Greylevel features are used as primary source of information. 

                                                 
2 The situation is different for simulation experiments, where yTrue might be given. 
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2 The situation is different for simulation experiments, where yTrue might be given. 
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Fig. 4. Components of a typical vision-based measurement system. The best estimate of the 
unknown quantity θ̂  is obtained given an 2D intensity profile I acquired by the sensor. 

• These features are used to derive measurands and their uncertainties. 
• The measurement results are traceable to a standard and uncertainty estimates are 

provided. 
The typical processing steps found in such systems are sketched in Figure 4: The camera 
maps the scene onto its image plane and acquires a 2D intensity profile I. A feature detector 
is then used to identify features f (e.g. circular blobs) and to estimate their respective 
parameters (e.g. blob area and centre of gravity). These parameters are then being further 
processed by means of a transformation in order to obtain the best estimate of the unknown 
parameter θ̂ . 
Two examples of vision-based measurement systems are shown in Figure 5. A close-up of the 
inside of a two-camera system used to measure 2D displacements is shown in Figure 5a. 
Traceability and the proper characterisation of measurement uncertainties in this application 
are of importance as the measurement results are used in a research project aiming at the 
investigation of the long-term behaviour of different materials. A proper decision taken on the 
basis of these measurements has a significant economic impact on the customer. 
The Augmented Reality (AR) system shown in Figure 5b augments a user’s view of the real 
world by adding computer generated content that is spatially registered with the real 
content. In this application, a monocular vision-sensor provides position and orientation (i.e. 
pose) data that are fused with data obtained by an inertial measurement unit mounted on 
the same rigid platform. The temporal stream of poses is further used by the AR software to 
render artificial content within the user’s field of view. The successful information fusion in 
this particular setup requires all sensor data to be referred to the same length and time 
standards. As far as vision-based pose estimation is concerned, this prerequisite is achieved 
by a vision-based measurement system. 

1.2 Related work 
Efforts have been undertaken in metrology in order to develop a general frame-work that 
can be used to identify the quantity of the measurand and to provide means to judge on the 
quality of this result. These developments led to the introduction of the Guide to the 
Expression of Uncertainty in Measurement (GUM, most recent document JCGM (2008a)). The 
foremost aim of the GUM developments was to provide a recommendation for the 
treatment of measurement uncertainty that is universal, internally consistent, and transferable 
(JCGM (2008a)). 
The standard GUM extensively uses the concept of degrees of freedom to fuse information 
from different sources. This concept is a constant point of criticism in the literature (cf.  
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                                                     (a)                                                                    (b) 

Fig. 5. Vision-based measurement systems. (a) Measurement application used to measure 
displacement and creep of material samples. (b) Vision-based pose estimation applied to 
Augmented Reality. 

Lira (2001)). In particular, the fusion of quantities derived using statistical methods (e.g. 
averaging over a number of measurements) with quantities denoting an expert opinion (e.g. 
prior knowledge about interval boundaries) are not satisfactorily covered by the GUM 
proposal. Weise & Wöger (1999) and later Kacker & Jones (2003) resort to the consistent use 
of Bayesian statistics in the context of uncertainty computations. Both approaches remove an 
inconsistency in the GUM interpretation of coverage probabilities. Kacker & Jones (2003) 
provide a modified set of rules based on the GUM recommendations that are built upon the 
Taylor approximation of the measurement equation. Their proposed modifications cover the 
propagation of first and second order moments neglecting modifications of the underlying 
distributions. Weise & Wöger (1999) instead propagate distributions providing a frame-
work that is more generally applicable. The recent GUM Supplement 1 document (GUMS1, 
JCGM (2008b)) makes explicit the Bayesian foundations of the GUM. Thus removing 
inconsistencies in the information fusion of the guide. 
Different approaches to the treatment of uncertainty in the domain of computer vision have 
been reported in the literature (e.g. Havelock (1989); Kanungo et al. (1995); Triggs (2001); 
Ochoa & Belongie (2006)). Using the central limit theorem (CLT, Papoulis & Pillai (2002)) as 
a key argument, the use of the Gaussian assumption is suggested – and often validated – by 
many researchers. Heuel (2003) and Criminisi (2001) show that Gaussian densities can be 
applied to represent homogeneous geometric entities. In an earlier work (Brandner (2006)) 
we apply first order propagation of Gaussian quantities to a vision-based tracking 
application. Based on the exclusive use of Gaussian densities to describe both physical 
quantities and prior information, the Bayesian extensions of the GUM document are easily 
implemented in analytic form. 
From a practical point of view, the proper evaluation of measurement uncertainties relies on 
the quality of the underlying process model. In many situations these models are complex 
and not straight-forward to derive. Sommer & Siebert (2006) propose a systematic solution 
to the model building problem in metrology. The authors use three building blocks to 
identify and visualise influencing factors and uncertainty contributions. Based on the cause-
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and not straight-forward to derive. Sommer & Siebert (2006) propose a systematic solution 
to the model building problem in metrology. The authors use three building blocks to 
identify and visualise influencing factors and uncertainty contributions. Based on the cause-
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and-effect approach, Parameter Sources, Transmission Units, and Indicating Units are 
employed to obtain the measurement equation. This equation is then reversed to obtain the 
GUM-compliant model equation. Finally, the measurement uncertainty of the unknown 
quantity can be derived. 

1.3 Contribution 
In this work we fuse the existing Gaussian characterisation of geometric entities within the 
field of uncertain perspective geometry with the uncertainty concepts of the GUM 
document. In order to highlight the quality of the obtained geometric quantities this concept 
is referred to as metrological geometry. 
We present a modelling technique based on the cause-effect diagram which makes explicit 
the statistical dependencies between different geometric entities. Further, we show that for 
many problems in vision-based metrology an analytic frame-work for the propagation of 
Gaussian uncertainties can be applied. All processing steps can be carried out analytically, 
thus avoiding any simulation-based computations with the potential lack of real-time 
performance. The frame-work is consistent with the Bayesian extensions to the standard 
GUM. Using a number of simple building blocks we propose simple modelling steps to 
analytically derive the measurement uncertainty in vision-based applications explicitly 
covering inter-parameter dependencies. 
The remainder of this chapter is structured as follows: based on a brief review of the GUM 
recommendations in the following Section 2 we introduce a common nomenclature and 
derive the requirements for a vision-based metrological application in Section 3. The 
subsequent Section 4 presents our approach to the modelling process and introduces the 
basic building blocks of a vision-based measurement system which are then applied to a 
simple example in Section 5. The paper concludes with a summary in Section 6. 

2. The guide to the expression of uncertainty in measurement 
Given a measurement process, the current GUM represents a general frame-work that can 
be used to evaluate the uncertainty of a physical quantity that results from that 
measurement. However, the GUM does not provide any means to determine appropriate 
models. In the following paragraphs we review the basic concepts of the GUM in order to 
provide the background required to develop the concept of the metrological geometry in 
Section 4. 

2.1 Uncertain quantities 
Assuming a measurand denoted by Y depends on a number of input quantities Xi, the GUM 
frame-work allows us to determine the uncertainty of a measurement result y taking into 
account the uncertainties of the contributing input quantities. Quantities in this context are 
treated as variables and their uncertainty is represented by a state-of-knowledge 
distribution. The best estimate of a quantity Y and its uncertainty are represented by the 
mean value and the standard deviation of the underlying PDF fY(·), respectively. Thus, the 
best estimate of the measurand Y is given by 

 { } ( )Y YE Y f dμ η η η
+∞

−∞

= = ∫  (3) 
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and the associated standard deviation is given by 

 { }2[ ] .Y YE Yσ μ= −   (4) 

Depending on the method used to determine the uncertainty of input quantities the GUM 
distinguishes between two families of uncertainty evaluations: Type A uncertainties are 
determined by statistical methods while uncertainties obtained by other means are classified 
as Type B. 
The determination of a quantity Y by means of N repeated independent observations3 yi 

represents an example of a Type A uncertainty evaluation. The estimated arithmetic mean 
value of the observations is given by 
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and the associated standard deviation of the arithmetic mean y  is given by sy = s/ ,N  
where s denotes the empirical standard deviation of the observations and is given by 
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The GUM recommends to use the arithmetic mean y  as best estimate for the quantity Y and 
to use the standard deviation sy as standard uncertainty4 uy. 
Type B uncertainties are used to treat input quantities whose uncertainty is determined by 
methods other than statistics. An example is the uncertainty associated with the calibration 
of an instrument. In this case best estimate, standard uncertainty, and degrees of freedom 
are given by the calibration laboratory. Other examples are the uncertainty of the 
transformation parameters and the detector used in the above example of a vision-based 
measurement system. In both cases the characterisation of the uncertainty is based on the 
experience of the experimenter and, thus, on non-statistical evaluations. 

2.2 The measurement process 
The evaluation of the uncertainty associated to the measurand is based on a mathematical 
model 

 Y = f (X1,X2, . . . ,XN)  (7) 

of the measurement process, where Y denotes the measurand and the Xi represent input 
quantities. This relation is referred to as the model equation. The best estimate of the 
measurand is given by replacing all input quantities in Equation 7 by their respective best 
estimates such that 

                                                 
3 We will use the terms observation and measurement interchangeably. 
4 Following a suggestion by Sommer & Siebert (2006) we use uy as symbol for the standard uncertainty 
associated to the measurement result y rather than the GUM nomenclature u(y) which suggests that the 
standard uncertainty is a function of the best estimate. 
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and the associated standard deviation is given by 
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determined by statistical methods while uncertainties obtained by other means are classified 
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measurement system. In both cases the characterisation of the uncertainty is based on the 
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 y = f (x1, x2, . . . , xN).  (8) 

Based on the estimates of the input values and their associated standard uncertainties, the 
standard uncertainty uy is derived. Summarising the input quantities and their best estimates 
into a vector X = (X1, X2, . . . ,XN)T

 and a vector x = (x1, x2, . . . , xN)T, respectively, the 
measurement equation is developed into a Taylor series to obtain (cf. Weise & Wöger (1999)) 

 
1

( )( )    ( ) ( )
N

i i
i i

fY f f X x
X=

∂
= ≈ + − +

∂∑ xX x   (9) 

                                    
2

1 1

( ) ( )( ) ....
N N

i i j j
i j i j

f X x X x
X X= =

∂
+ − − +

∂ ∂∑∑ x   (10) 

Assuming small deviations (Xi – xi), the higher order terms of the Taylor expansion are 
neglected leading to the simplified approximation 
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The partial derivatives of the measurement equation are referred to as sensitivity coefficients  
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x . Using Equation 11, the variance of the measurement result y is obtained by 
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with uxi denoting the standard uncertainties of the input values. The correlation coefficients 
ρij =Cov(xi, xj)/uxiuxj account for inner dependencies of the contributing input values. As uy 
results from combining the input parameter uncertainties it is called the combined standard 
uncertainty of the measurement result y. 
The GUM further suggests to report an interval within which a large fraction p of the 
distribution of values attributed to the measurand Y fall. Given a symmetric distribution of 
Y, this interval is obtained through the symmetrical extension of the best estimate y by the 
expanded uncertainty Uy to either side as shown for a scalar quantity in Figure 3. Assuming 
knowledge about the distribution of Y, the expanded uncertainty is obtained by Uy = k · uy 

where k is a coverage factor. The fraction p is denoted the level of confidence associated to the 
coverage interval (y ± Uy). 
The uncertainty estimates are based on realisations of random variables and, therefore, are 
subjected to uncertainty, too. Only for the evaluation of the expanded uncertainty, the 
standard GUM uses the concept of degrees of freedom of the input quantities and suggests 
to estimate an effective number of degrees of freedom of the resultant distribution based on the 
Welch-Satterthwaite (WS) equation (JCGM (2008a)). 

2.3 Bayesian evaluation of measurement uncertainties 
The standard GUM document has often been a target of criticism due to the lack of a clear 
distinction between the use of classical statistics and Bayesian statistics in the evaluation of 
measurement uncertainties. As opposed to the classical statistics approach which treats 
measurands as constants and the observations (e.g. made during Type A evaluations) as 
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realisations of random variables with known distributions, Bayesian statistics is build upon 
the philosophy that the measurand is itself a random variable and the observations are seen 
as constants (Kacker & Jones (2003); Gelman et al. (2003)). The important difference between 
the two approaches is that the state-of-knowledge distribution in the Bayesian theory does 
not represent an approximation but is assumed to be exact. Consequently, there is no 
uncertainty involved in evaluating the coverage intervals. Classical statistics, on the other 
hand, requires the handling of degrees of freedom and their controversial combination by 
means of the WS equation. In the Bayesian theory the state-of-knowledge of every quantity 
is given by distributions which must not be confused with frequency distributions in the 
sense of classical statistics (Weise & Wöger (1999), p.225). Prior knowledge about quantities 
and their associated lack of knowledge is represented by prior distributions (or simply: 
priors). In the case of complete lack of knowledge, these distributions are replaced by non-
informative priors (Iversen (1984); Gelman et al. (2003); Jaynes (1968)). 
Recently, the Supplement 1 document clearly shows that the GUM concept of measurement 
uncertainty evaluation is based on the Bayesian idea. We will subsequently refer to the fully 
Bayesian interpretation of measurement uncertainties as GUM/Bayes. 

2.4 Multidimensional measurands 
The concept of GUM/Bayes as presented above straight forwardly extends to multiple 
dimensions (cf. Lira (2001)). During this extension the best estimate of a vector-valued 
quantity is given by the mean vector comprising the expected values of the individual 
components. Thus, for a vector-valued quantity 

 Q = (Q1, Q2, . . . ,Qn)T  (13) 

the best estimate is given by the mean vector 

 μq = E{Q} = (E{Q1},E{Q2}, . . . ,E{Qn})T
 = (μq1 ,μq2 , . . . ,μqn )2.  (14) 

The standard uncertainty of the scalar quantity is extended towards the uncertainty matrix 

 Uq = ΣQQ + (E{Q} – q) (E{Q} – q)T
 ,  (15) 

where ΣQQ represents the covariance matrix of the measurand. Equation 15 covers the 
general case of arbitrary estimates q. Using unbiased estimators, the uncertainty matrix 
simplifies to 

 Uq = ΣQQ . (16) 

These extensions suffice to determine the combined standard uncertainty of the 
measurement result. Analogous to the scalar case the expanded uncertainty represents a 
multidimensional interval. Based on an n-dimensional measurand Q ∈ S(n), where S(n) 

denotes the n-dimensional space, Iuculano et al. (2003) extend the concept of an coverage 
interval as defined in the GUM to a limited domain C(n) ∈ S(n). Assuming the PDF of the 
measurand is denoted by fQ(·) the coverage probability associated with C(n) is given by 
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with uxi denoting the standard uncertainties of the input values. The correlation coefficients 
ρij =Cov(xi, xj)/uxiuxj account for inner dependencies of the contributing input values. As uy 
results from combining the input parameter uncertainties it is called the combined standard 
uncertainty of the measurement result y. 
The GUM further suggests to report an interval within which a large fraction p of the 
distribution of values attributed to the measurand Y fall. Given a symmetric distribution of 
Y, this interval is obtained through the symmetrical extension of the best estimate y by the 
expanded uncertainty Uy to either side as shown for a scalar quantity in Figure 3. Assuming 
knowledge about the distribution of Y, the expanded uncertainty is obtained by Uy = k · uy 

where k is a coverage factor. The fraction p is denoted the level of confidence associated to the 
coverage interval (y ± Uy). 
The uncertainty estimates are based on realisations of random variables and, therefore, are 
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standard GUM uses the concept of degrees of freedom of the input quantities and suggests 
to estimate an effective number of degrees of freedom of the resultant distribution based on the 
Welch-Satterthwaite (WS) equation (JCGM (2008a)). 
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The standard GUM document has often been a target of criticism due to the lack of a clear 
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measurands as constants and the observations (e.g. made during Type A evaluations) as 
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realisations of random variables with known distributions, Bayesian statistics is build upon 
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It is not a priori defined what the shape of such a region in S(n) looks like. The GUM suggests 
to apply two criteria for the choice of the interval boundaries: the minimum width interval 
or the interval given by equal density values. While the recommendation for Monte Carlo  
(MC) simulation in the Supplement 1 document JCGM (2008b) suggests to revert to the 
minimum width interval for general densities, this can not be straight forwardly applied to 
S(n). Restricting our attention to multidimensional Gaussian distributions we find that 
ellipses (or hyper-ellipsoids in higher dimensions) meet the requirements of coverage 
regions. These regions are delimited by contours of constant density and are consistent with 
the GUM suggestions. This choice is supported by Iuculano et al. (2003) who show for 
square and circular regions C(n) that the analytically derived coverage probabilities for 
Gaussian and uniform distributions are in agreement with ground truth data obtained from 
Monte Carlo simulations. 

3. Requirement analysis for a measurement uncertainty frame-work 
In order to identify the requirements for an uncertainty propagation frame-work we use the 
following measurement example: A vision-based measurement system is used to measure 
the 2D displacement of a mechanical lever. In order to robustly capture the displacement, a 
circular blob marker is attached to the lever. This marker now translates within a known 
plane which is fixed with respect to a perspective sensor. The goal of the measurement 
process is to estimate the position of the marker and, consequently, the displacement of the 
lever in world coordinates based on measurements taken in the sensor image. We restrict 
this example to a measurement based on a single image acquisition. The uncertainty 
associated with this estimate must be identified. Figure 6 shows a sketch of the geometry of 
the measurement system. 
The blob marker is represented by its centre vector p = (x,y)T. The allowed set of positions is 
restricted to lie within the plane ΠWorld by construction of the measurement system. The 
sensor now maps the blob onto the image plane ΠImage. In order to measure the position of 
the lever the following processing steps are performed: a single image is acquired, the blob 
centre a = (u,v)T is estimated, and the corresponding centre p is determined. The points p 
and a are related to each other by means of a parameterised transformation function 

 p = g(a; θ),  (18) 

where θ denotes the parameter vector characterising the measurement setup. For every 
practical realisation of the above example the measurement result is subjected to 
uncertainties. Important sources of uncertainty can be found in every processing step, e.g. 
• Sensor: After the mapping of the marker onto the sensor plane using principles of 

geometric optics the sensor performs both a spatial and an intensity discretisation. The 
effects of this discretisation steps can be modelled by means of additive noise sources. 

• Detector: Although blob detection may seem to be straight forward at a first glance, it 
already exhibits a fundamental problem in optical metrology: it is, in general, not 
possible to accurately model the image acquisition system which is a prerequisite for 
the estimation of parameters such as the blob centre. We assume in this example that 
the uncertainty introduced by the blob detector is characterised by the experimenters 
experience. 
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Fig. 6. Example application: The position of a point p in world coordinates is based on a 
detected point centre a in image coordinates. Both coordinate systems are related to each 
other by means of a transformation function g(·; θ). 

• Transformation: The measurement of p requires that the parameters of the 
transformation g(·; θ) are known in advance. Given that these parameters necessarily 
are obtained by a calibration procedure they are subjected to uncertainties, too. 
Commonly, the parameter vector θ is assumed to be a realisation of a random process 
and the corresponding moment estimates are obtained during the calibration process. 

Using this example we can already identify the requirements on a frame-work for the 
treatment of uncertainties which will later be applied to vision-based metrology 
applications. The following properties are required: 
1. Treatment of multivariate measurands: Many of the measurands in the vision-based 

metrological application are multivariate variables such as point positions or 
parameters of a line.  

2. In particular, many of the geometric entities are represented in a projective space. 
Consequently, the uncertainty frame-work needs to properly cover multivariate 
variables. 

3. General applicability to geometric entities: In order to be of general use in the given context 
the uncertainty frame-work is required to be applicable to geometric entities of any 
type. 

4. Common handling of different types of input uncertainties: As shown in the example there 
are two distinct types of uncertainties to be taken into account when computing the 
uncertainty of the measurement result: input parameter uncertainties such as noise 
effects that are described by means of statistics and uncertainties that are given based 
on experience. An example of the later class of uncertainties are general judgements on 
the quality of the calibration of a measurement setup. 

5. Propagation through different processing blocks: Even this simple example consists of 
several processing blocks covering the sensor transfer function, feature detection, and 
the subsequent application of the transformation. 

6. Processing speed: While in many metrological applications the determination of 
uncertainties can be solved off-line using simulation-based approaches, some 
applications require the real-time determination of parameter uncertainties. Examples 
include measurement systems with a varying number of input parameters. As opposed 
to simulation-based approaches, an analytical method can usually meet the processing 
speed requirements as it has a fixed processing time and is of lower complexity. 
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geometric optics the sensor performs both a spatial and an intensity discretisation. The 
effects of this discretisation steps can be modelled by means of additive noise sources. 

• Detector: Although blob detection may seem to be straight forward at a first glance, it 
already exhibits a fundamental problem in optical metrology: it is, in general, not 
possible to accurately model the image acquisition system which is a prerequisite for 
the estimation of parameters such as the blob centre. We assume in this example that 
the uncertainty introduced by the blob detector is characterised by the experimenters 
experience. 
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Fig. 6. Example application: The position of a point p in world coordinates is based on a 
detected point centre a in image coordinates. Both coordinate systems are related to each 
other by means of a transformation function g(·; θ). 

• Transformation: The measurement of p requires that the parameters of the 
transformation g(·; θ) are known in advance. Given that these parameters necessarily 
are obtained by a calibration procedure they are subjected to uncertainties, too. 
Commonly, the parameter vector θ is assumed to be a realisation of a random process 
and the corresponding moment estimates are obtained during the calibration process. 

Using this example we can already identify the requirements on a frame-work for the 
treatment of uncertainties which will later be applied to vision-based metrology 
applications. The following properties are required: 
1. Treatment of multivariate measurands: Many of the measurands in the vision-based 

metrological application are multivariate variables such as point positions or 
parameters of a line.  

2. In particular, many of the geometric entities are represented in a projective space. 
Consequently, the uncertainty frame-work needs to properly cover multivariate 
variables. 

3. General applicability to geometric entities: In order to be of general use in the given context 
the uncertainty frame-work is required to be applicable to geometric entities of any 
type. 

4. Common handling of different types of input uncertainties: As shown in the example there 
are two distinct types of uncertainties to be taken into account when computing the 
uncertainty of the measurement result: input parameter uncertainties such as noise 
effects that are described by means of statistics and uncertainties that are given based 
on experience. An example of the later class of uncertainties are general judgements on 
the quality of the calibration of a measurement setup. 

5. Propagation through different processing blocks: Even this simple example consists of 
several processing blocks covering the sensor transfer function, feature detection, and 
the subsequent application of the transformation. 

6. Processing speed: While in many metrological applications the determination of 
uncertainties can be solved off-line using simulation-based approaches, some 
applications require the real-time determination of parameter uncertainties. Examples 
include measurement systems with a varying number of input parameters. As opposed 
to simulation-based approaches, an analytical method can usually meet the processing 
speed requirements as it has a fixed processing time and is of lower complexity. 



 Vision Sensors and Edge Detection 

 

92 

7. Single measurements: Repeated measurements are generally used to reduce the 
contribution of random effects. This requires that the measurements can be repeated 
under similar conditions. The relatively large sampling intervals and the amount of 
data being processed within a single image puts a limit on the minimum time interval 
between two consecutive acquisitions in vision-based applications. Thus, single 
measurement situations are frequently encountered in vision-based metrology which 
calls for a specific treatment of measurement uncertainty. 

8. Dealing with correlations: Features extracted from a single image inherently show a 
certain degree of correlation due to the common conditions under which the image has 
been acquired. These correlations can have a significant impact on the uncertainty of the 
measurement result. 

4. Metrological geometry 
Homogeneous coordinates are frequently used in computer vision to represent geometric 
entities (Hartley & Zisserman (2004)). In contrast to the Euclidean representation, entities in 
projective spaces lead themselves to simple formulations and constructions. Given prior 
work by Criminisi (2001), Heuel (2003), and Förstner (2004) we observe that a multivariate 
Gaussian model is applicable to the problem of representing homogeneous entities in 
projective spaces. Using the bilinear transformation to construct new entities, this specific 
representation of parameter uncertainty provides a consistent tool. However, the validity of 
the approach only covers situations where the mean values of the parameters are large 
compared to their standard deviations. Heuel (2003) discusses conditions which suffice to 
obtain bounded parameter biases. By itself, the concept of uncertain projective geometry 
does not represent a frame-work for a proper expression of uncertainties. The missing 
elements cover the proper interpretation of a PDF as well as the metrologically sound 
derivation of standard, combined, and expanded uncertainties based on parameter 
densities. These elements are provided by GUM/Bayes as shown in Section 2 for the general 
case of multivariate quantities. In particular, GUM/Bayes covers the incorporation of prior 
knowledge and the appropriate treatment of correlated quantities. 
Although most of the integrations suggested by GUM/Bayes can only be solved through 
time-consuming numerical algorithms such as Monte Carlo integrations, the restricted 
subset of quantities modelled by multivariate Gaussian densities leads itself to solutions 
which can be obtained analytically. If we further restrict any prior information to be 
represented by Gaussian quantities, we obtain a frame-work for the treatment of uncertain 
quantities based on the propagation of first- and second-order moments. 
Consequently, we propose a fusion of the uncertain projective geometry with the 
GUM/Bayes approach in order to derive the concept of metrological geometry as outlined in 
Figure 7. Combining the ideas of uncertain projective geometry with the GUM/Bayes 
approach to the treatment of measurement uncertainty allows us to simplify and unify the 
modelling process for problems in geometric metrology. In summary our approach covers 
the following situations: 
• Homogeneous entities represented by Gaussian random vectors. For example, a 

homogeneous point in 2D is given by 

 x   ∼  N(x, Σxx).  (19) 
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Fig. 7. Uncertain projective geometry and GUM/Bayes are combined to obtain a consistent 
frame-work for the treatment of uncertainties in vision-based metrological applications. 

• Mapping of homogeneous entities including the propagation of parameter 
uncertainties. Mapping functions include: geometric transformations such as 
translations, rotations, and perspective mappings. Further, geometric construction (e.g. 
point results from intersecting two lines) and Euclidean and spherical normalisation are 
covered. 

• Measurement updates of geometric entities with prior knowledge based on Gaussian 
random vectors. 

• Correlations between geometric entities. 
As opposed to the general recommendations provided by the original GUM document, the 
determination of the measurement uncertainty can be greatly simplified when considering 
only Gaussian uncertainties. Only a small number of building blocks is required to obtain a 
valid metrological model following a simple modelling procedure. 
In the subsequent paragraphs we propose a unified nomenclature and present guidelines 
which cover the basic steps required to identify the model equation for vision-based 
metrological problems. In particular, we introduce components of a graphical model which 
greatly simplifies the setup of the model equation. 

4.1 Nomenclature in metrological geometry 
The nomenclature used in uncertain projective geometry differs from the nomenclature used 
in the GUM document. In particular, the GUM denotes physical quantities by upper case 
letters and their realisations (e.g. measurement results) by the corresponding lower case 
letters. While uncertain projective geometry uses covariance matrices for multivariate 
entities, the GUM document distinguishes between standard, combined, and expanded 
uncertainties in the univariate case and provides an uncertainty matrix in the multivariate 
case. 
In the subsequent modelling process, we will use a unified nomenclature which assigns 
underlined symbols to quantities in a metrological sense. Their corresponding non-
underlined version is used to denote realisations of the quantity. If it is clear from the 
context, we will also use the non-underlined symbols to denote the best estimates of the 
corresponding quantities. Thus, c is a scalar quantity and c is the corresponding realisation 
or best estimate. Following GUM we use uc to denote the standard uncertainty of the best 
estimate and Uc as expanded uncertainty associated to a given coverage factor k. Similarly, a 
vector-valued quantity is referred to as x. The best estimate of x is given by x. The 
uncertainty matrix Ux of x corresponds to the covariance matrix Σxx of the quantity. It is now 
straight forward to make explicit the correlation between two different quantities m and n 
by means of their cross-covariance matrix Σmn. The multivariate equivalent to the expanded 
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7. Single measurements: Repeated measurements are generally used to reduce the 
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Fig. 7. Uncertain projective geometry and GUM/Bayes are combined to obtain a consistent 
frame-work for the treatment of uncertainties in vision-based metrological applications. 

• Mapping of homogeneous entities including the propagation of parameter 
uncertainties. Mapping functions include: geometric transformations such as 
translations, rotations, and perspective mappings. Further, geometric construction (e.g. 
point results from intersecting two lines) and Euclidean and spherical normalisation are 
covered. 

• Measurement updates of geometric entities with prior knowledge based on Gaussian 
random vectors. 

• Correlations between geometric entities. 
As opposed to the general recommendations provided by the original GUM document, the 
determination of the measurement uncertainty can be greatly simplified when considering 
only Gaussian uncertainties. Only a small number of building blocks is required to obtain a 
valid metrological model following a simple modelling procedure. 
In the subsequent paragraphs we propose a unified nomenclature and present guidelines 
which cover the basic steps required to identify the model equation for vision-based 
metrological problems. In particular, we introduce components of a graphical model which 
greatly simplifies the setup of the model equation. 

4.1 Nomenclature in metrological geometry 
The nomenclature used in uncertain projective geometry differs from the nomenclature used 
in the GUM document. In particular, the GUM denotes physical quantities by upper case 
letters and their realisations (e.g. measurement results) by the corresponding lower case 
letters. While uncertain projective geometry uses covariance matrices for multivariate 
entities, the GUM document distinguishes between standard, combined, and expanded 
uncertainties in the univariate case and provides an uncertainty matrix in the multivariate 
case. 
In the subsequent modelling process, we will use a unified nomenclature which assigns 
underlined symbols to quantities in a metrological sense. Their corresponding non-
underlined version is used to denote realisations of the quantity. If it is clear from the 
context, we will also use the non-underlined symbols to denote the best estimates of the 
corresponding quantities. Thus, c is a scalar quantity and c is the corresponding realisation 
or best estimate. Following GUM we use uc to denote the standard uncertainty of the best 
estimate and Uc as expanded uncertainty associated to a given coverage factor k. Similarly, a 
vector-valued quantity is referred to as x. The best estimate of x is given by x. The 
uncertainty matrix Ux of x corresponds to the covariance matrix Σxx of the quantity. It is now 
straight forward to make explicit the correlation between two different quantities m and n 
by means of their cross-covariance matrix Σmn. The multivariate equivalent to the expanded 
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uncertainty is obtained by finding constant density curves of the PDF which corresponds to 
a given coverage probability p. For 2D Gaussian quantities these curves are ellipses of 
general orientation as outlined for different coverage probabilities in Figure 8. 
 

 
Fig. 8. Visualisation of the expanded uncertainty of a 2D Gaussian quantity a. Curves of 
constant probability density are ellipses in general configuration centred around the best 
estimate a. Different regions for varying coverage probabilities are shown. 

4.2 The modelling process 
The model equation as given by Equation 7 expresses the functional relationship between 
the measurand Y and the input quantities X1, . . . ,XN. However, the structure of the model 
equation usually does not directly reflect the processing steps involved in the measurement 
process. If we assume that the measurand Y is determined by reading the result of the 
quantity X3, Equation 7 can be reformulated such that X3 is given by 

 X3 = fM(Y,X1,X2,X4, . . . ,XN),  (20) 

which is referred to as the measurement equation. Sommer & Siebert (2006) suggest to base the 
model building process on this measurement equation as it physically relates the cause, i.e. 
the measurand Y, to an effect, i.e. the reading X3. We propose to perform the following steps 
in order to evaluate the measurement uncertainty of a vision-based metrology system using 
this model equation: 
• Description of the Measurement Task: 

A complete description of the measurement task is the most important step of the 
modeling process. This description includes the input quantities and – most 
importantly – the measurand. 

• Cause-Effect Relations: 
All quantities included in the above description must be brought into a form following 
the idea of the cause-effect approach. It is helpful to visualise these relations using a 
simple graph as shown in Figure 9. 
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Fig. 9. Graphical representation of the cause-effect relationship. 

• Measurement Model: 
In the next step, the measurement model is derived using cause-effect relations 
identified in the previous modelling step. The measurement model now relates 
indications or observations made by the sensor to the measurand. In most cases, it is not 
necessary to develop the measurement model in full detail. Rather, a coarse overview of 
the processing steps involved in the measurement process is sufficient as the next step 
in the modelling procedure aims at a fully qualified uncertainty model. 

• Model Equation: 
The model equation relates all observations and other input quantities to the 
measurand. This core equation of the metrological system includes all quantities and 
their respective uncertainties. This step can be simplified by developing a graphical 
model. Due to the fact that all geometric quantities in our frame-work are represented 
by Gaussian random variables and linear transformations thereof are again Gaussian 
random variables, the graphical model5 is composed of a small number of building 
blocks as outlined in Figure 10. We distinguish between the following blocks: 
- Source: Uncertain quantity characterised by its best estimate and the uncertainty 

matrix. The source block is frequently used to represent prior information. 
- Transformation using constant parameters: Simple transformations such as scaling 

functions are covered by this more general class of transformations. The uncertainty 
of the output quantity is only caused by the uncertainty of the input quantity. 

- Transformation of uncorrelated quantities: Transformations with stochastic parameters 
extend the previous building block by the ability to model uncertainty 
contributions caused by uncertainties of the parameters. Examples for this class of 
transformations are geometric constructions such as the intersection of two lines 
resulting in an uncertain point. The lack of correlation between the input quantities 
is depicted by input quantities that enter the block on different sides or 
equivalently by small rectangles attached to the input quantities denoting the range 
of correlated quantities. 

- Transformation of correlated quantities: As opposed to the previous class of 
transformations, this block explicitly covers correlations between quantities. 
Examples of this class of transformations are geometric constructions using entities 
which are based on a common source of uncertainty such as points commonly 
subjected to uncertain lens distortion. Graphically, correlation is indicated by 
grouping all correlated input quantities onto the same side of the block. 

                                                 
5 We note that the terminology graphical model here refers to a simple and intuitive visualisation 
concept rather than to a model representation as used in the machine learning literature. 
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In summary, the components of the graphical model and their respective laws for the 
propagation of uncertainties are shown in Figure 10. Our set of components is chosen to 
allow for a straight forward derivation of the measurement equation. In contrast to Sommer 
& Siebert (2006), we explicitly differentiate between transformations using deterministic and 
stochastic parameters. We further consider parameter correlations in the graphical model 
and include the Bayesian information update into the modelling process. 
 

Symbol Uncertainty Contribution
Source

x Σxx

Transformation with constant parameters

g(x ; p)x y

p

Σyy = J gΣxxJ T
g

x yg(x )

Transformation of uncorrelated quantities

yx i g(x i, x j )

x j

Σyy = J g,xiΣxi xi J T
g,xi
+ J g,xjΣxj xj J T

g,xj

Transformation of correlated quantities

Σyy = J g
Σxi xi Σxi xj

Σxj xi Σxj xj
J  T

g

 
Fig. 10. Building blocks of the graphical model. Uncertainty contributions are expressed by 
means of their respective uncertainty matrices. The matrices J denote the Jacobians of the 
respective transformation functions. 
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4.3 Limitations of the approach 
The transformation of Gaussian quantities results in another Gaussian quantity only for 
linear transformations. As soon as the transformation exhibits a non-linear contribution, the 
resultant quantity starts to deviate from the Gaussian assumption with the degree of 
deviation depending on the degree of non-linearity introduced by the transformation 
function. From the metrological point of view, these deviations from the Gaussian are of 
concern for the following reasons: 
1. Non-linearities cause the PDF of the output quantity to deviate from the Gaussian 

shape. This might effect reasoning modules which operate based on the Gaussian 
assumption. 

2. The analytic derivations of Bayes’ law are only applicable to Gaussian quantities. Any 
deviation from this Gaussian assumption will lead to approximate solutions and, 
therefore, inaccurate uncertainty estimates. 

3. Non-linearities introduce a bias of the best estimate of the output quantity. The bias 
generally is a function of the best estimates of the input quantities as well as of the input 
uncertainties. 

These effects usually strongly depend on the degree of correlation between the input 
quantities. A detailed discussion of situations where our approach fails due to one of the 
above listed causes is given in Brandner (2009). 

5. Application example 
In the present section we apply the presented modelling procedure to the estimation of 
homography parameters. The resultant processing block is further applied to a vision-based 
creep test sensor. We briefly outline the measurement model of this sensor in order to 
highlight some properties of the proposed modelling approach. 

5.1 2D Homography with uncertainties 
Among the family of perspective transformations, 2D homographies relate coplanar points to 
their respective images under a central projection. In other words, a set of coplanar 
homogeneous points ai = (ax,i, ay,i, ah,i)T

 in Π1 is mapped onto another set of coplanar points  
bi = (bx,i, by,i, bh,i)T

 in Π2 for i = 1. . .N as sketched in Figure 11a. Algebraically, corresponding 
tuples of points in Π1 and Π2 are related to each other by 

 bi = Hai  (21) 

where the 3 ×3 matrix H is a 2D homography and defined up to a scalar factor. Thus, H has 
8 degrees of freedom (cf. Hartley & Zisserman (2004), p. 44). Consequently, the equality in 
Equation 21 is defined up to a non-zero scaling factor. In a metrological context, 
homographies can be used to model geometric constellations where features are bound to 
positions within a know plane (Ma et al. (2005); Stuflesser & Brandner (2008); Brandner et al. 
(2008)). Stacking the elements of the homography matrix H into a column vector h allows us 
to rewrite Equation 21 to obtain 

 Gh = 0,  (22) 

where the matrix G depends on the input points in both planes. In the case of N =4 point 
pairs in non-degenerate configurations (cf. Hartley & Zisserman (2004)) the non-trivial 
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above listed causes is given in Brandner (2009). 
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homography parameters. The resultant processing block is further applied to a vision-based 
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highlight some properties of the proposed modelling approach. 

5.1 2D Homography with uncertainties 
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where the 3 ×3 matrix H is a 2D homography and defined up to a scalar factor. Thus, H has 
8 degrees of freedom (cf. Hartley & Zisserman (2004), p. 44). Consequently, the equality in 
Equation 21 is defined up to a non-zero scaling factor. In a metrological context, 
homographies can be used to model geometric constellations where features are bound to 
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(2008)). Stacking the elements of the homography matrix H into a column vector h allows us 
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where the matrix G depends on the input points in both planes. In the case of N =4 point 
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                                      (a)                                                                               (b) 

Fig. 11. Planar homography as a special case of a perspective transformation. (a) The 
homography H relates coplanar points ai in Π1 to their coplanar image points bi in Π2.  
(b) Given an uncertain point (c,Σcc) and the parameters of the homography including their 
uncertainties (H,Σhh), the resultant point and its associated uncertainty (d,Σdd) can be 
obtained using first order uncertainty propagation (see text). 

solution to the system in Equation 22 is exact. For the case of N > 4 the system is over-
determined. Taking into account uncertainties of the input quantities, the solution in general 
is only approximate. Different optimisation strategies are known to numerically solve 
Equation 22. A representative of linear, direct least-squares estimators is the Direct Linear 
Transform (DLT) estimator. The cost functional minimised by the DLT is an algebraic distance. 
Due to its simplicity and numerical stability the DLT algorithm is widely used for 
homography estimation. The algorithm solves the system Gh = 0 for non-trivial solutions, 
i.e. solutions h ≠ 0, by minimising Gh . In order to avoid trivial solutions the minimization 
procedure is subjected to the constraint h  = c for an arbitrary non-zero constant c. 
Although the exact value of c is irrelevant to the estimation process it is commonly set to c = 
1 which can be realised by a norm constraint within the optimisation target, i.e. 

 G
min .→

h
h

 (23) 

The solution of the minimisation problem in Equation 23 is given by the eigenvector that 
corresponds to the smallest eigenvalue of M = GTG (cf. Hartley & Zisserman (2004)). A 
numerically robust solution is obtained via singular value decomposition (SVD) of M. We 
now cover uncertain input quantities as well as homography parameter uncertainties. 
Consider the example shown in Figure 11b: An input data point c is transformed from plane 
Π1 onto plane Π2 using the homography H. The different sources of uncertainty contributing 
to final point estimate d are summarised in the cause-effect diagram shown in Figure 12. 
Using the processing blocks introduced in the previous section we can sketch the 
measurement model as shown in Figure 13a. This special configuration is characterised by 
the complete absence of any inter-parameter correlation. The resultant uncertainty of the 
output quantity d can be derived using 

 dd cc c hh cΣ =HΣ H +B Σ B ,T T   (24) 

where Bc represents an appropriate Jacobian function. Equation 24 greatly simplifies 
analytical derivations and, therefore, is frequently used by researchers in the field to  
 

Bayesian Uncertainty Evaluation in Vision-Based Metrology   

 

99 

d

ai

bi

Homography H

Input Pointc

 
Fig. 12. Cause-effect diagram of the point measurement application shown in Figure 11b. 
Both uncertainties of the points used to estimate the homography parameters and 
uncertainties of the input point c contribute to the uncertainty of d. 
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Fig. 13. Graphical models of a measurement application based on a 2D/2D homography as 
shown in Figure 11b for different degrees of correlations between the involved parameters. 
Two point sets a = {ai} and b = {bi} are used to estimate H. This homography is in turn used 
to map a point c onto its image d. (a) All contributing parameters are uncorrelated. (b) 
Common situation in planar metrology: The point set a and c are acquired simultaneously 
resulting in parameter correlation. 

propagate uncertainties (cf. Criminisi (2001)). Apart from neglecting correlations between 
transformation parameters and geometric entities that are being mapped, Criminisi (2001) 
also assumes statistical independence within the point sets ai and bi that are used to estimate 
the homography parameters. 
Correlations between parameters are often caused by uncertainties common to two or more 
quantities or by un-modelled systematic effects. A frequent source of systematic effects in 
computer vision are geometry-based biases in feature detectors. Thus, a more appropriate 
model for the homography example is given in Figure 13b. Apart from allowing for intra-
parameter correlations within the set of model points ai, the model also covers correlations 
between the model points and the test point c. This situation occurs during single acquisition 
measurements, i.e. both the points used to estimate the homography parameters and the 
points used to apply the homography are detected within the same image. Under such 
circumstances, correlations need to be considered. It can be shown (cf. Brandner (2009)) that 
the measurement uncertainty of the resultant point c is obtained by 

  cc ca a

a ca hh

K
J J ,

K

T
T

dd T

⎡ ⎤Σ Σ
Σ = ⎢ ⎥

Σ Σ⎢ ⎥⎣ ⎦
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Fig. 11. Planar homography as a special case of a perspective transformation. (a) The 
homography H relates coplanar points ai in Π1 to their coplanar image points bi in Π2.  
(b) Given an uncertain point (c,Σcc) and the parameters of the homography including their 
uncertainties (H,Σhh), the resultant point and its associated uncertainty (d,Σdd) can be 
obtained using first order uncertainty propagation (see text). 
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where J represents a Jacobian matrix and Ka a weigthening matrix, respectively. By 
inspection of Equation 25 we observe that the correlations between the point sets ai and c 
enter the uncertainty calculi via their respective covariance matrix. The correlation 
introduced by the application of the homography is taken into account by means of the 
transformation J. 

5.1.1 A numerical example 
In order to validate the implementation of the previously described method to analytically 
estimate both the homography parameters and their associated uncertainties we compare 
the results with the estimates obtained using a Monte Carlo analysis. Figure 14 depicts a 
sample image where corner features are used to estimate the homography between the 
planar target and the image plane. The corners are detected and their respective positions bi 

are estimated using a morphological detector. In this experiment an isotropic additive 
Gaussian noise source with variance σ2 =1pixel2 is superimposed to the true corner 
positions. Thus, assuming equal noise properties for each corner the covariance of bi is given 
by 

 Σbibi = Σbb = 
1 0

.
0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (26) 

Similarly we assume that the model uncertainty is characterised by an isotropic additive 
Gaussian noise source with variance σ2 = 0.01cm2. The four corners of the rectangle and the 
lower-left corner of the triangle are used to estimate the homography H and the associated 
covariance matrix Σhh. The red ellipses in Figure 14a represent the 95% probability regions 
around each detected corner. Clearly, the point correspondences used to estimate the 
homography show smaller deviations compared to other points which did not contribute to 
the estimation result. The close-up in Figure 14b shows a comparison of the analytic result 
with empirical moments obtained via MC simulation. The red ellipse again represents the 
95% probability region based on the analytic estimate of the homography covariance 
whereas the dashed blue line represent the same probability region based on N = 104 MC 
iterations. Both uncertainty estimates are in good agreement justifying the application of the 
analytic approach. 

5.2 2D displacement measurement 
Using the results of the previous discussion, we can now derive the uncertainty model of a 
2D displacement measurement system which reflects the general structure of a vision-based 
metrological system as shown in Figure 4. The measurement system is part of a creep test 
apparatus used to obtain material parameters of polymer samples under specific conditions. 
The experimental setup and the measurement system are explained in more detail in 
Brandner et al. (2008). Figure 5a shows the practical realisation of this sensor. Care has been 
taken to consider environmental conditions that include the submersion of the material 
samples in tempered oil. Our focus in this section is to justify the particular uncertainty 
model applied for this measurement system. 
Figure 15 depicts the geometric sketch of the displacement measurement system. A single 
camera is used to acquire an image of a scene comprising a planar reference target and a 
planar sample target. These targets each consists of circular blob features manufactured into   
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Fig. 14. Direct linear estimation of the homography parameters that relate the seven corners 
with corresponding point positions in a model database. (a) The four corners of the 
rectangle and the lower-left corner of the triangle are used to estimate the homography 
parameters. The ellipses depict the 95% probability regions of the predicted image corners 
based on model-, feature detection-, and homography parameter uncertainty.  
(b) Comparison of the analytic method with a Monte Carlo simulation. The close-up of the 
lower-right corner of the triangle shows that due to the close agreement the Monte Carlo 
results support our analytical estimates. 
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Fig. 15. Outline of the geometry of a single camera/target pair. This single image acquisition 
setup processes the same image twice: First, features on the reference target are used to 
estimate the transformation parameters Ĥ. Second, these parameters are applied to features 
on the sample target in order to estimate the displacement of this target. 
 

a stainless steel sheet by laser marking. By construction of the setup, the two targets are 
coplanar so that a homography Ĥ can be used to relate the image plane of the sensor ΠImage 

to the (z = 0)-plane which holds both targets. During the measurement process a single 
image is used to simultaneously obtain image points corresponding to the reference target 
and the sample target. Based on these image points, the sensor estimates the parameters of 
the homography which are then used to reconstruct the 2D displacement of the sample 
target with respect to the reference target. 
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Fig. 16. Uncertainty model of the 2D displacement measurement system. The simultaneous 
estimation and application of the homography parameters require the proper handling of 
correlations. 

For this specific measurement application we note that each image point is mapped by the 
same sensor and detected under the same illumination conditions of the scene. The common 
sensor calibration as well as common systematic effects such as ageing of the medium 
introduce a correlation between the points used to estimate the homography and the points 
which are transformed using the estimated homography. 
Figure 16 shows the graphical model relating the input quantities (i.e. the image centres of 
the blobs) to the measurand (i.e. the position t in metric coordinates). This model graphically 
represents the measurement equation. Note that we explicitly visualise parameter 
correlations which is shown by the following two examples: First, the estimation of the 
homography parameters is performed using the direct linear transform algorithm (DLT, 
Hartley & Zisserman (2004)). This algorithm takes as input a sequence of image points, qd 

and their corresponding model points r. While the image points are correlated due to their 
common acquisition conditions, no dependency between the image points and their models 
is considered in this model. This is denoted by the two rectangles within the DLT block 
restricting correlations to appear within the rectangle only. Second, the final homography 
parameters are used to map the image point pd in order to obtain th. The common acquisition 
of pd and qd gives rise to a inter-parameter correlation between the input parameters to the 
homography block. The rectangle corresponding to the range of correlated input quantities 
is now extended to all quantities entering the block on the right – and, consequently, 
omitted for a clear representation. We can straight forwardly nest different layers of the 
model in order to better visualize relevant effects. This is shown with an aggregate model 
block enclosing both the DLT estimator and the homography application indicating the 
relevant parameter correlations at its inputs. 

6. Summary 
This paper addresses the problem of measurement uncertainty evaluation in vision-based 
measurement applications. We contribute to the state of the art by the development of a 
consistent frame-work for the modelling of uncertainties in vision-based applications. By 
combining the Gaussian representation of geometric entities in perspective spaces with the 
current Bayesian extensions of the Guide to the Expression of Uncertainty in Metrology 
(GUM) we introduce the concept of a metrological geometry. We identify a set of simple 
graphical building blocks which serve to characterise and to quantify the measurement 
uncertainty of the metrological application in a step-by-step approach. The presented frame-
work is applicable to Gaussian quantities and transformation functions that are linear or 
that can be locally linearised. Using homogeneous coordinates, many constructions of 
entities are based on bilinear transforms which are well suited for local linearisation. 
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All input quantities contributing to the measurement uncertainty of the final result can be 
covered by the proposed frame-work. These include the calibration parameters of the sensor 
as well as the uncertainty introduced by transformations. 
The presented work enables improvements for applications involving the analysis of 
measurement uncertainties in different ways: First, the presented building blocks provide an 
easy-to-use and intuitive way to visualise all quantities involved in the measurement 
process. They further explicitly highlight parameter correlations which are important to take 
into consideration when evaluating measurement uncertainties. 
Second, the analytical derivation of the measurement uncertainty for most applications is 
computationally far less intensive than comparable alternatives such as Monte Carlo 
simulations. This allows for the construction of algorithms which determine the uncertainty 
of any measurement result in real-time including the incorporation of the best estimate. The 
resultant uncertainty estimates provide tighter interval boundaries which increases the 
usefulness of the result. 
Third, correlations between quantities contributing to the measurement result are fully 
covered by the frame-work. As shown in the application section, the parameters of 
homographies can straight forwardly be estimated based on and applied to correlated 
features. Thus, mis-estimates of the measurement uncertainty based on false independence 
assumptions can be avoided. This paper extends prior work by Criminisi (2001) which 
targets the derivation of parameter uncertainties of 2D/2D homographies. We cover 
correlations within the input entities of the DLT estimator as well as correlations between 
the homography parameters and their respective input parameters. This allows us to tackle 
single image acquisition scenarios as frequently encountered in vision-based metrology. 
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Night vision cameras are widely used for military and law enforcement applications related 
to surveillance, reconnaissance, intelligence gathering, and security. The two most common 
night-time imaging systems are low-light-level (e.g., image-intensified) cameras, which 
amplify the reflected visible to near infrared (VNIR) light, and thermal infrared (IR) 
cameras, which convert thermal energy from the midwave (3 to 5 microns) or the long wave 
(8 to 12 microns) part of the spectrum into a visible image. These systems create images with 
a single (one-dimensional) output per pixel.  As a result their ability to discriminate different 
materials is limited. This can be improved by combining systems that are sensitive to 
different parts of the electromagnetic spectrum, resulting in multiband or hyperspectral 
imagers. The number of different outputs increases dramatically by combining multiple 
sensors (e.g. up to N2 for two sensors, when the number of different outputs for each sensor 
is N), which in turn leads to a significant increase in the number of materials that can be 
discriminated. The combination of multiple bands allows for meaningful color 
representation of the system output. It is therefore not surprising that the increasing 
availability of fused and multiband infrared and visual nightvision systems (e.g. Bandara et 
al., 2003; Breiter et al., 2002; Cho et al., 2003; Cohen et al., 2005; Goldberg et al., 2003) has led 
to a growing interest in the (false) color display of night vision imagery (Li & Wang, 2007; 
Shi et al., 2005a; Shi et al., 2005b; Tsagaris & Anastasopoulos, 2006; Zheng et al., 2005).  
In principle, color imagery has several benefits over monochrome imagery for surveillance, 
reconnaissance, and security applications.  The human eye can only distinguish about 100 
shades of gray at any instant. As a result, grayscale nightvision images are sometimes hard 
to interpret and may give rise to visual illusions and loss of situational awareness. Since 
people can discriminate several thousands of colors defined by varying hue, saturation, and 
brightness, a false color representation may facilitate nightvision image recognition and 
interpretation. For instance, color may improve feature contrast, thus enabling better scene 
segmentation and object detection (Walls, 2006). This may allow an observer to construct a 
more complete mental representation of the perceived scene, resulting in better situational 
awareness. It has indeed been found that scene understanding and recognition, reaction 
time, and object identification are faster and more accurate with color imagery than with 
monochrome imagery (Cavanillas, 1999; Gegenfurtner & Rieger, 2000; Goffaux et al., 2005; 
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people can discriminate several thousands of colors defined by varying hue, saturation, and 
brightness, a false color representation may facilitate nightvision image recognition and 
interpretation. For instance, color may improve feature contrast, thus enabling better scene 
segmentation and object detection (Walls, 2006). This may allow an observer to construct a 
more complete mental representation of the perceived scene, resulting in better situational 
awareness. It has indeed been found that scene understanding and recognition, reaction 
time, and object identification are faster and more accurate with color imagery than with 
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ignore non-targets with a task-irrelevant color (Ansorge et al., 2005; Folk & Remington, 1998; 
Green & Anderson, 1956). As a result, simply producing a false color nightvision image by 
mapping multiple spectral bands into a three dimensional color space already generates an 
immediate benefit, and provides a method to increase the dynamic range of a sensor system 
(Driggers et al., 2001).  However, the color mapping should be chosen with care and should 
be adapted to the task at hand. Although general design rules can be used to assure that the 
information available in the sensor image is optimally conveyed to the observer (Jacobson & 
Gupta, 2005), it is not trivial to derive a mapping from the various sensor bands to the three 
independent color channels, especially when the number of bands exceeds three (e.g. with 
hyperspectral imagers; Jacobson et al., 2007). In practice, many tasks may benefit from a 
representation that renders a nighttime scene in daytime colors. Jacobson & Gupta (Jacobson 
et al., 2007; Jacobson & Gupta, 2005) therefore advise to use a consistent color mapping 
according to a natural palette. The use of natural colors facilitates object recognition by 
allowing access to stored color knowledge (Joseph & Proffitt, 1996). Experimental evidence 
indicates that object recognition depends on stored knowledge of the object’s chromatic 
characteristics (Joseph & Proffitt, 1996). In natural scene recognition paradigms, optimal 
reaction times and accuracy are obtained for normal natural (or diagnostically) colored 
images, followed by their grayscale version, and lastly by their (nondiagnostically) false 
colored version (Goffaux et al., 2005; Oliva, 2005; Oliva & Schyns, 2000; Rousselet et al., 
2005; Wichmann et al., 2002).  When sensors operate outside the visible waveband, artificial 
color mappings generally produce false color images whose chromatic characteristics do not 
correspond in any intuitive or obvious way to those of a scene viewed under natural 
photopic illumination (e.g. (Fredembach & Süsstrunk, 2008)). As a result, this type of false 
color imagery may disrupt the recognition process by denying access to stored knowledge. 
In that case observers need to rely on color contrast to segment a scene and recognize the 
objects therein. This may lead to a performance that is even worse compared to single band 
imagery alone (Sinai et al., 1999a). Experiments have indeed convincingly demonstrated that 
a false color rendering of night-time imagery which resembles natural color imagery 
significantly improves observer performance and reaction times in tasks that involve scene 
segmentation and classification (Essock et al., 1999; Sinai et al., 1999b; Toet & IJspeert, 2001; 
Vargo, 1999; White, 1998), whereas color mappings that produce counterintuitive 
(unnaturally looking) results are detrimental to human performance (Krebs et al., 1998; Toet 
& IJspeert, 2001; Vargo, 1999). One of the reasons often cited for inconsistent color mapping 
is a lack of physical color constancy (Vargo, 1999). Thus, the challenge is to give nightvision 
imagery an intuitively meaningful (“naturalistic”) and stable color appearance, to improve 
the viewer’s scene comprehension and enhance object recognition and discrimination 
(Scribner et al., 1999). Several techniques have been proposed to render night-time imagery 
in color (e.g. (Sun et al., 2005; Toet, 2003; Tsagiris & Anastassopoulos, 2005; Wang et al., 
2002; Zheng et al., 2005)). Simply mapping the signals from different nighttime sensors 
(sensitive in different spectral wavebands) to the individual channels of a standard color 
display or to the individual components of perceptually decorrelated color spaces, 
sometimes preceded by principal component transforms or followed by a linear 
transformation of the color pixels to enhance color contrast, usually results in imagery with 
an unnatural color appearance (e.g. Howard et al., 2000; Krebs et al., 1998; Li et al., 2004; 
Schuler et al., 2000; Scribner et al., 2003). More intuitive color schemes may be obtained 
through opponent processing through feedforward center-surround shunting neural 
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networks similar to those found in vertebrate color vision  (Aguilar et al., 1998; Aguilar et 
al., 1999; Fay et al., 2000a; Fay et al., 2000b; Huang et al., 2007; Warren et al., 1999; Waxman 
et al., 1995a; Waxman et al., 1997). Although this approach produces fused nighttime images 
with appreciable color contrast, the resulting color schemes remain rather arbitrary and are 
usually not strictly related to the actual daytime color scheme of the scene that is registered. 
In the next section we give an overview of some recently developed color mapping schemes 
that can give false color multiband nightvision imagery a natural color appearance. First we 
present a simple false color mapping scheme that is inspired by previous color opponent 
processing schemes. Although this scheme produces fused false color images with large 
color contrast and preserves the identity of the input signals (thus making the images 
perceptually intuitive), the resulting color representation is not strictly natural looking (Toet 
& Walraven, 1996). We therefore developed a statistical extension of this coloring method 
which produces colorized multiband nightvision imagery with a regular daylight color  
appearance (Toet, 2003). This mapping transfers the first order statistics of the color 
distribution of a given color reference image to the multiband nighttime images, thereby 
giving them a similar color appearance as the reference image.  In its original form this 
method is computationally expensive. However, computational simplicity (enabling real-
time implementation) can be achieved by applying the statistical mapping approach in a 
lookup-table framework.  Although the statistical mapping approach yields a natural color 
rendering, it achieves no color constancy, since the mapping depends on the relative 
amounts of the different materials in the scene (and will therefore change when the camera 
pans over or zooms in on a scene). We therefore developed a sample-based color mapping 
scheme that yields both color constancy and computational efficiency (Hogervorst & Toet, 
2008a; Hogervorst & Toet, 2008b; Hogervorst & Toet, 2010). In contrast to the statistical color 
mapping method, the sample based color transfer method (for which a patent application is 
currently pending: Hogevorst et al., 2006) is highly specific for different types of materials in 
the scene and can easily be adapted for the task at hand, such as the detection of 
camouflaged objects. After explaining how the sample based color transformation can be 
derived from the combination of a given multi-band sensor image and a corresponding 
daytime reference image, we will dicuss how it can be deployed at night and implemented 
in real-time. 

2. Color mapping 
2.1 Center-surround opponent-color fusion 
Opponent color image fusion was originally developed at the MIT Lincoln Laboratory 
(Gove et al., 1996; Waxman et al., 1995a; Waxman et al., 1996a; Waxman et al., 1996b; 
Waxman et al., 1997; Waxman et al., 1999) and derives from biological models of color vision 
(Schiller, 1982; Schiller, 1984; Schiller et al., 1986; Schiller, 1992) and fusion of visible light 
and infrared (IR) radiation (Newman & Hartline, 1981; Newman & Hartline, 1982). 
In the case of color vision in monkeys and man, retinal cone sensitivities are broad and 
overlapping, but the images are contrast enhanced within bands by spatial opponent 
processing (via cone-horizontal-bipolar cell interactions) creating both ON and OFF center-
surround response channels (Schiller, 1992). These signals are then contrast enhanced 
between bands via interactions among bipolar, sustained amacrine, and single-opponent-
color ganglion cells (Gouras, 1991; Schiller & Logothetis, 1990), all within the retina. Further 
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color processing in the form of double-\-opponent-color cells is found in the primary visual 
cortex of primates (and the retinas of some fish).  Opponent processing interactions form the 
basis of such percepts as color opponency,  color constancy,  and color contrast,  though the 
exact mechanisms are not fully understood. Double-opponent-color processing has been 
applied to multispectral IR target enhancement (Gove et al., 1996; Waxman et al., 1995b). 
Fusion of visible and thermal imagery has been observed in several classes of neurons in the 
optic tectum (evolutionary progenitor of the superior colliculus) of rattlesnakes (pit vipers), 
and pythons (boid snakes),  as described by (Newman & Hartline, 1981; Newman & 
Hartline, 1982). These neurons display interactions in which one modality (e.g. IR) can 
enhance or depress the response to the other sensing modality (e.g. visible) in a strongly 
nonlinear fashion. Such interactions resemble opponent-processing between bands as 
observed in primate retina. 
For opaque surfaces in thermodynamic equilibrium, spectral reflectivity ρ and emissivity ε 
are linearly related at each wavelength λ: ( ) 1 ( )ρ λ ε λ= − . This provides a rationale for the 
use of both on-center and off-center channels when treating infrared imagery as 
characterized by thermal emissivity (Toet et al., 1997). 
In the opponent-color  image fusion methodology the individual input images are first 
enhanced by filtering them with a feedforward center-surround shunting neural network 
(Grossberg, 1988). This operation serves  
1. to enhance spatial contrast in the individual visible and IR bands, 
2. to create both positive and negative polarity IR contrast images, and  
3. to create two types of single-opponent-color contrast images. 
The resulting single-opponent-color contrast images represent grayscale fused images that 
are analogous to the IR-depressed visual and IR-enhanced visual cells of the rattlesnake 
(Newman & Hartline, 1981; Newman & Hartline, 1982). 

2.2 Pixel based opponent-color fusion 
Inspired by the opponent-color fusion approach (Waxman et al., 1995a; Waxman et al., 
1996a; Waxman et al., 1996b; Waxman et al., 1997; Waxman et al., 1999), we derived a 
simplified (pixel based) version of this method, which fuses visible and thermal images into 
false color images with a relatively natural or intuitive appearance.  
Let I1 and I2 be two input images with the same spatial resolution and dynamic range. The 
common component of both signals is computed as the morphological intersection: 

 { }1 2 1 2Min ,I I I I∩ =  (1)  

The unique or characteristic component I* of each image modality remains after subtraction 
of the common component: 

 1 1 1 2 2 2 1 2;I I I I I I I I∗ ∗= − ∩ = − ∩  (2) 

The characteristic components are emphasized in the fused image by subtracting them from 
the opposite image modalities. The color fused image is then obtained by mapping these 
differences to respectively the red and green bands of a RGB false color image. The 
characteristic components of both image modalities can be further emphasized by mapping 
their difference to the blue band of the fused false color image, so that the final mapping is 
given by (Toet & Walraven, 1996):  

Real-Time Full Color Multiband Night Vision 

 

109 

 
2 1

1 2

2 1

R
G
B

I I

I I

I I

∗⎛ ⎞−⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟∗= −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟∗ ∗⎝ ⎠ −⎜ ⎟

⎝ ⎠

 (3) 

In case of visual and thermal input images, I1 = Vis and I2 = IR. Because the method is 
computationally simple it can implemented in hardware or even be applied in real-time 
using standard processing equipment (Aguilar et al., 1998; Aguilar et al., 1999; Waxman et 
al., 1999). The resulting color rendering enhances the visibility of certain details and 
preserves the specificity of the sensor information. In addition, it has a fairly natural color 
appearance (Fig. 1 and Fig. 2). The resulting images agree with our natural associations of 
warm (red) and cool (blue). To further enhance the appearance of the fused results, the R, G, 
B channels can be input to a color remapping stage in which, following conversion to H, S, V 
(hue, saturation, value) color space, hues can be remapped to alternative “more natural'” 
hues, colors can be desaturated, and then reconverted back to R, G, B signals to drive a color 
display. Because of the enhanced color contrast and its intuitive appearance this color fused 
image representation is expected to improve both visual target detection and recognition 
performance are expected to benefit in terms of both speed and precision. Two observer 
studies were performed to test this hypothesis.  
In the first observer study we used grayscale intensified visual and thermal images, and 
color fused motion sequences, depicting scenes in which a person walked across a rural 
scene with man-made objects (Toet et al., 1997). The reference (terrain) features were 
represented with high contrast in the intensified visual images (Fig. 2a) and low contrast in  
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Fig. 1. Visual (a) and thermal (b) input images. (c) Result of mapping (a) and (b) to 
respectively the green and red channels of an RGB display. (d) Result of the mapping 
defined by equation. 
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color processing in the form of double-\-opponent-color cells is found in the primary visual 
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 { }1 2 1 2Min ,I I I I∩ =  (1)  

The unique or characteristic component I* of each image modality remains after subtraction 
of the common component: 

 1 1 1 2 2 2 1 2;I I I I I I I I∗ ∗= − ∩ = − ∩  (2) 

The characteristic components are emphasized in the fused image by subtracting them from 
the opposite image modalities. The color fused image is then obtained by mapping these 
differences to respectively the red and green bands of a RGB false color image. The 
characteristic components of both image modalities can be further emphasized by mapping 
their difference to the blue band of the fused false color image, so that the final mapping is 
given by (Toet & Walraven, 1996):  
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Fig. 2. Scene representing a person walking along the outside of a fence. Visual (a) and 
thermal (b) input images. (c) Result of mapping (a) and (b) to respectively the green and red 
channels of an RGB display. (d) Result of the mapping defined in equation . (e) Reference 
image used in the spatial localization task. (f) Image used to assess baseline localization 
performance. 
the thermal images (Fig. 2b), while the opposite was the case for the image of the person. All 
details were represented in the color fused images (Fig. 2d). During the localization 
experiments, individual frames from the motion sequences and for each of the three image 
modalities (visual, thermal and color fused) were briefly (1 s) and in random order 
presented to human observers. After the presentation of each frame a schematic grayscale 
image was shown representing only the reference features on a homogeneous background 
(e.g. Fig. 2e). Observers were asked to indicate the perceived position of the person in the 
scene by placing a mouse controlled cursor at the corresponding location in the schematic 
reference image. The position of the reference image on the display screen was given a small 
random variation to prevent participants from using cues from afterimages. Baseline 
performance was assessed using schematic images, similar to the reference image, but with 
a binary image of the person at his actual location in the corresponding frames (e.g. Fig. 2f). 
The results show that observers can localize a person in a scene with a significantly higher 
accuracy and with greater confidence when they perform with color fused images, 
compared to the individual image modalities (visible and thermal; Toet et al., 1997). 
In the second observer study we used grayscale visual and thermal (8-12 μm) motion 
sequences, and color fused motion sequences, depicting a mountain range in the 
background and grasslands in the foreground, with infantry soldiers, vehicles, and a smoke 
screen (Fig. 3). The visual and thermal motion sequences are a subset (images 37--93) of the 
MS01 Test Sequence that consists of 110 corresponding image pairs, registered at CFB 
Valcartier (Sévigny, 1996).  Both a tow truck and a helicopter move across the scene during 
the registration period. The infantry soldiers are not visible in the visual images (Fig. 3a-c), 
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Fig. 3. Left to right: successive frames of a time sequence. Top-down: video (a-c), thermal (d-
f), grayscale fused (g-i), and color fused (j-l) images. (m) Schematic reference image. 
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because they are obscured by the smoke screen. However, they can easily be perceived in 
the thermal images (Fig. 3d-f), where they appear as small hot spots. In the visual images, 
the visibility of the helicopter ranges from barely visible to not visible (when it flies behind 
the smoke screen: Fig. 3f). In the thermal images there is almost no contrast between the 
foreground (grassland) and the background (the mountain range). Also, the mountain range 
and the sky have little contrast in the thermal images (the skyline of the mountain range is 
barely visible). The contrast between the sky and the top of the mountain range is much 
larger in the CCD images. The visual and thermal images were color fused using equation  3 
(see Fig. 3j-l). Fig. 3g-i shows the luminance component of Fig. 3j-l. Both the graylevel fused 
(Fig. 3g-i) and the color fused (Fig. 3j-l) images represent all details of interest. However, in 
the grayfused images, where details are represented by different shades of gray, it is 
sometimes hard to visually segment the scene, because there are no visible boundaries 
(edges) between different physical objects with the same mean luminance. For instance, in 
the visual images the smokescreen has a high luminance (is very bright). In the thermal 
images, the warmer (barren) parts of the grassland and the helicopter are represented as 
bright regions. As a result, there is sometimes very little contrast in the grayfused images 
between the smokescreen and respectively the helicopter and the grassland. In the color 
fused images, the additional color contrast leads to an effortless perceptual segmentation of 
the scene. We measured the accuracy with which observers can determine the position of 
the helicopter in a briefly (600 ms) presented motion sequence, for visual, thermal, and color 
fused image sequences.  Only a limited portion (a restricted field of view) of the entire scene 
was displayed during each test interval. The field of view was randomly positioned on the 
dynamic battlefield scene. This experimental paradigm simulates a field of view search of 
the display of a moving camera scanning over a larger field of regard. For each individual 
frame a corresponding reference image was constructed, representing a segmented version 
of the background of the original scene (mountain range, grassland, and sky; see Fig. 3m). 
After watching each movie fragment, observers were asked to indicate the location where 
the helicopter was last seen, by placing a mouse-controlled cursor over the schematic 
reference image. This task requires observers to quickly determine (a) the location of 
reference contours, and (b) the location of the target at each stimulus presentation. This 
involves rapid visual scene segmentation. The performance in this relative spatial 
localization task depends on the accuracy with which the position of the helicopter can be 
perceived relative to the contours of the mountain range. The results of this experiment 
show that the accuracy with which observers can determine the position of a helicopter in a 
briefly presented and randomly positioned window on a dynamic battlefield scene is 
significantly higher for color fused images than for the individual visual and thermal images 
(Toet et al., 1997). The color fused images probably represent all relevant features at a 
sufficiently large perceptual contrast to allow rapid visual identification of the spatial layout 
of the scene, thereby enabling subjects to perform the task. We also observed that a 
restriction of the field of view results in a significant increase in the localization error for the 
visual and thermal image modalities, but not for the fused image modalities. 
The false color mapping defined by equation 3 has also been successfully applied in other 
domains, like the fusion of retinal images (Kolar et al., 2008; Laliberté et al., 2002; Laliberté et 
al., 2003) and the fusion of infrared and synthetic images (Simard et al., 1999; Simard et al., 
2000).   
In ophthalmology, visual fundus images are often used in combination with fluorescein 
angiogram images. Visual images of the retina clearly represent hard exudates. Fluorescein 
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angiogram images represent the macula, the arteries and veins at high contrast, thus 
allowing the detection of occluded and leaking capillaries, microaneurims, macular edema, 
and neovascularization. Using the mapping defined by equation 3 to fuse visual fundus 
images with fluorescein angiogram images provides better color contrast rendering than 
other opponent-color fusion methods, thus enhancing diagnostic performance and reducing 
visual workload (Laliberté et al., 2002; Laliberté et al., 2003).  It was for instance found that 
this mapping clearly represents neovessels and depicts the macula at high contrast 
(Laliberté & Gagnon, 2006) Fig. 4. shows two examples of the fusion of grayscale visual 
fundus images (Fig. 4a and d) with corresponding fluorescein angiogram images (Fig. 4b 
and e).  The fused images (Fig. 4c and f) represent the interesting details like the vascular 
network (purple veins) and the exudates (yellow lesions) with large color contrast. When 
using equation 3 to fuse thermal and autofluorescent images of the retina (Kolar et al., 2008), 
the resulting false color images provide higher contrast for the hyperfluent areas of the 
autofluorescent images (which are symptoms for glaucoma in its early stages) and clearly 
represent the position of the optic nerve head from the infrared image.  
Simulated flight tests with fused infrared and synthetic imagery showed that the fusion 
technique defined by equation 3 preserves all features relevant for obstacle avoidance, and 
significantly improves detection distances for all simulated visibility conditions (Simard et 
al., 1999; Simard et al., 2000). 
 

   
(a)                                                     (b)                                              (c) 

   
(d)                                                     (e)                                              (f) 

Fig. 4. Photographs (a,d) and fluorescein angiogram images (b,e) and their color fused 
representation (c,f). 

2.3 Statistical color transform 
Although the overall color appearance of images produced with the opponent-color fusion 
scheme is fairly intuitive, some details may still be depicted with unnatural colors. In this 
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section we present a method that gives multiband nighttime images the appearance of 
regular daylight color images by transferring the first order color statistics from full color 
daylight imagery to the false color multiband nightvision imagery. The method is based on 
a technique that was developed to enhance the color representation of synthetic imagery 
(Reinhard et al., 2001). The outline of the method is as follows.  As input the method 
requires a false color RGB image. This can be produced by mapping the 2 or 3 individual 
bands (or the first 2 or 3 principal components when the sensor system delivers more than 3 
bands) of a multiband nightvision system to the respective channels of an RGB image. Next, 
the false color RGB nightvision image and a regular full color daylight reference image are 
both transformed into the perceptually decorrelated lαβ opponent color space (Ruderman et 
al., 1998). Then, the mean and standard deviation of each of the 3 color channels of the 
multiband nightvision image are set equal to those of the reference image: 
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where 〈 〉 denotes the mean, σ  the standard deviation, and the index r refers to the reference 
image. 
Finally, the multiband nightvision image is transformed back to RGB space for display. The 
result is a full color representation of the multiband nightvision image with a color 
appearance that closely resembles the color appearance of the daylight reference image. The 
daylight reference image should display a scene which is similar (but not necessarily 
identical to) the one displayed by the multiband nightvision image. The order of the 
mapping is irrelevant, since the following procedure effectively rotates the color coordinate 
axes of the false color multiband nightvision images such that these will be aligned with the 
axes of the referenced daylight color image in the final result. 
The statistical color transform is computationally expensive and therefore not suitable for 
real-time implementation. Moreover, although it can give multiband nighttime imagery a 
natural daylight color appearance, it can not achieve color constancy for dynamic imagery  
(Zheng & Essock, 2008), because the actual mapping depends on the relative amounts of 
different materials in (i.e. the composition or statistics of) the scene. Large objects in the 
scene will dominate the color mapping. As a result, the color of objects and materials may 
change over time when the sensor system pans over (or zooms in on) a given scene. We 
therefore developed a fixed lookup table based version of this statistical color mapping 
which is (1) computationally efficient, so that it can easily be deployed in real time, and 
which (2) yields constant object colors.  
The new lookup table based statistical color transfer approach is illustrated in Fig. 5. for a 
multi-band image consisting of two channels. First, the two sensor images are mapped on 
two of the three channels of an RGB image. In this particular example (Fig. 5c) the visual 
band is (arbitrarily) mapped to R (red channel) and the near-infrared band is mapped to G 
(green channel). The result is the red-green false-color representation of the multi-band  
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                         (d)                                                     (e)                                               

Fig. 5. Visible (a) and near infrared (b) image. (c) False color image obtained by assigning (a) 
to the green and (b) to the red channel of an RGB false color image (the blue channel is set to 
zero). The inset in this figure represents all possible combinations of signal values that can 
occur in the two sensor bands (upper left: both sensors give zero output; lower right: both 
sensors give maximal output). (d) Arbitrary reference daylight color image.  (e) Result of 
mapping the first order statistics of the reference image (d) to the false color nighttime 
image (c). The inset in this figure represents the result of applying the same transform to the 
inset of (c), and shows all possible colors that can occur in the recolored sensor image (i.e. 
after applying the color mapping).  

image shown in Fig. 5c. The statistical color transform can then be derived from the first 
order statistics of respectively (a) Fig. 5c and (b) a given daylight color reference image, like 
the one shown in square inset in Fig. 5d. The application of this statistical color transform to 
an input table of 2-tuples representing all possible sensor output values yields an output 
table containing all possible color values that can occur in the colorized nighttime image. 
The in- and output table pair defines the statistical color mapping and can therefore be 
deployed in a color lookup table transform procedure. The square inset in Fig. 5c represents 
the table of all possible two-band signal values as different shades of red, green and yellow. 
Application of the statistical color transform to the inset in Fig. 5c yields the inset shown in 
Fig. 5e. In a lookup table paradigm the insets in Fig. 5c and Fig. 5e together define the 
statistical color mapping. For any color in the false-color representation of Fig. 5c the 
corresponding color after application of the statistical color transform can easily be found by 
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Fig. 5. Visible (a) and near infrared (b) image. (c) False color image obtained by assigning (a) 
to the green and (b) to the red channel of an RGB false color image (the blue channel is set to 
zero). The inset in this figure represents all possible combinations of signal values that can 
occur in the two sensor bands (upper left: both sensors give zero output; lower right: both 
sensors give maximal output). (d) Arbitrary reference daylight color image.  (e) Result of 
mapping the first order statistics of the reference image (d) to the false color nighttime 
image (c). The inset in this figure represents the result of applying the same transform to the 
inset of (c), and shows all possible colors that can occur in the recolored sensor image (i.e. 
after applying the color mapping).  

image shown in Fig. 5c. The statistical color transform can then be derived from the first 
order statistics of respectively (a) Fig. 5c and (b) a given daylight color reference image, like 
the one shown in square inset in Fig. 5d. The application of this statistical color transform to 
an input table of 2-tuples representing all possible sensor output values yields an output 
table containing all possible color values that can occur in the colorized nighttime image. 
The in- and output table pair defines the statistical color mapping and can therefore be 
deployed in a color lookup table transform procedure. The square inset in Fig. 5c represents 
the table of all possible two-band signal values as different shades of red, green and yellow. 
Application of the statistical color transform to the inset in Fig. 5c yields the inset shown in 
Fig. 5e. In a lookup table paradigm the insets in Fig. 5c and Fig. 5e together define the 
statistical color mapping. For any color in the false-color representation of Fig. 5c the 
corresponding color after application of the statistical color transform can easily be found by 
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(1) locating the color in the inset of Fig. 5c, and (2) finding the color at the corresponding 
location in the transformed inset in Fig. 5e. For instance, a pixel representing a high 
response in the visual channel and low response in the near infrared channel is represented 
with a red color (high value of red, low value of green) in the inset in Fig. 5c. In the inset of 
Fig. 5e the same pixel appears in a brownish color. The color transformation can thus be 
implemented by using the inset pair of Fig. 5c and Fig. 5e as color lookup tables. Then, the 
false color image Fig. 5c can be transformed into an indexed image using the red-green color 
lookup table (the inset of Fig. 5c). Replacing the color lookup table of the indexed image Fig. 
5c by the transformed color lookup table (the inset of Fig. 5e) then transforms Fig. 5c into 
Fig. 5e.  Note that the color mapping scheme is fully defined by the two color lookup tables. 
When all possible combinations of an 8-bit multi-band system are represented, these color 
lookup tables contain 256x256 entries. When a color lookup table with less entries is used 
(e.g. only 256), the color mapping can be achieved by determining the closest match of the 
table entries to the observed multi-band sensor values.  
Once the color mapping has been derived from a multi-band nighttime image and its 
corresponding reference image, and once it has been defined as a lookup table transform, it 
can be applied to different and dynamic multi-band images. The advantage of this method 
is that the color of objects only depends on the multi-band sensor values and is independent 
of the image content. Therefore, objects keep the same color over time when registered with 
a moving camera. Another advantage of this implementation is that it requires minimal 
computing power. Once the color transformation has been derived and the pair of color 
lookup tables that defines the mapping has been created, the new color lookup table 
transform can be used in a (real-time) application.  

2.4 Sample based color transform 
In spite of all the afore-mentioned advantages of the lookup table based statistical color 
transform, there is still room for improvement. For instance, in this paradigm there is no 
strict relationship between sensor output values and object color, since the statistical 
approach inherently only addresses the global color characteristics of the depicted scene. In 
this section we will describe an alternative lookup table based method for applying natural 
colors to multi-band images, which alleviates this problem since it does not rely on image 
statistics. The color transformation is derived from a corresponding set of samples for which 
both the multi-band sensor values and the corresponding natural color (RGB-value) are 
known (Hogervorst et al., 2006). We will show that this method results in rendered multi-
band images with colors that match the daytime colors more closely than the result of the 
statistical approach. In contrast to the statistical method, the derivation of the color mapping 
requires a registered image pair, consisting of a multi-band image and a daytime reference 
image of the same scene, sine the pixels serve as samples in this approach. Once the color 
mapping has been derived it can be applied to different multi-band nighttime images. 
Again, we will implement the color transformation using a color lookup table 
transformation, thus enabling real-time implementation. 
The method is as follows. Given a set of samples (pixels) for which both the multi-band 
sensor output and the corresponding daytime colors are known, the problem of deriving the 
optimal color transformation is to find a transformation that optimally maps the N-
dimensional (e.g. in our examples N = 2) multi-band sensor output vectors (one for each 
sample) to the 3-D vectors corresponding to the daytime colors (RGB). The mapping should 
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minimize the difference between the modeled colors and the measured colors. Moreover, 
the transformation should predict the mapping of untrained samples. Several methods exist 
to derive a suitable mapping, such as neural networks and support vector machines. What 
constitutes a suitable mapping is determined by the function that is minimized. Also the 
statement that the difference between the modeled colors and the measured colors is 
minimized should be formalized. We will minimize the average perceptual color difference 
between the modeled color and the measured color. More precisely, we will minimize the 
average squared distance between the perceptual color vectors lαβ (see (Ruderman et al., 
1998)). We will describe a (relatively) simple implementation that is not focused towards 
finding the theoretical optimum mapping, but that will lead to robust and good results and 
can be understood intuitively. We will now describe our new method for deriving a natural 
color transformation using the example shown in Fig. 6. Fig. 6a depicts the full color 
daytime reference image, which is in this case a color photograph taken with a standard 
digital camera. Figs. 6b and c respectively show a visible and near-infrared image of the 
same scene. Fig. 6f shows the result of applying daytime colors to the two-band night-time 
sensor image using our new color mapping technique. 
The method works as follows. First, the multi-band sensor image is transformed to a false-
color image by taking the individual bands (Fig. 6b and c) as input to the R and G channels 
(and B when the sensor contains three bands), referred to as the RG-image (Fig. 6e). In 
practice any other combination of 2 channels can also be used (one could just as well use the 
combinations R & B or B & R). Mapping the two bands to a false color RGB-image allows us 
to use standard image conversion techniques, such as indexing. In the next step the resulting 
false color (RG-image) Fig. 6e is converted to an indexed image. Each pixel in such an image 
contains a single index. The index refers to an RGB-value in a color lookup table (the 
number of entries can be chosen by the user). In the present example of a sensor image 
consisting of two bands (R and G; Fig. 6e) the color lookup table contains various 
combinations of R and G values (the B-values are zero when the sensor or sensor pair 
provides only two bands). For each index representing a given R,G combination (a given 
false color) the corresponding natural color equivalent is obtained by locating the pixels in 
the target image with this index and finding the corresponding pixels in the (natural color) 
reference image (Fig. 6a). First, the RGB-values are converted to perceptually de-correlated 
lαβ values (see (Ruderman et al., 1998)). Next, we calculate the average lαβ-vector over this 
ensemble of pixels. This assures that the computed average color reflects the perceptual 
average color. Averaging automatically takes the distribution of the pixels into account: 
colors that appear more frequently are attributed a greater weight. Let us for instance 
assume that we would like to derive the natural color associated with index 1. In that case 
we locate all pixels in the (indexed) false color multi-band target image with index 1. We 
then take all corresponding pixels in the reference daytime color image, convert them to lαβ, 
and calculate the average lαβ-value. Next, we transform the resulting average lαβ-value back 
to RGB. Finally, we assign this RGB-value to index 1 of the new color lookup table. These 
steps are successively carried out for all indices. This process yields a new color lookup table 
containing the natural colors associated with the various multi-band combinations in the 
false color (RG) color lookup table. Replacing the RG-color lookup table (left side of Fig. 6d) 
by the color lookup table with natural colors (right side of Fig. 6d) yields an image with a 
natural color appearance, in which the colors are optimized for this particular sample set 
(Fig. 6d). Note that the red parts in the scene in Fig. 6a do not turn out red again in the 
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(1) locating the color in the inset of Fig. 5c, and (2) finding the color at the corresponding 
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with a red color (high value of red, low value of green) in the inset in Fig. 5c. In the inset of 
Fig. 5e the same pixel appears in a brownish color. The color transformation can thus be 
implemented by using the inset pair of Fig. 5c and Fig. 5e as color lookup tables. Then, the 
false color image Fig. 5c can be transformed into an indexed image using the red-green color 
lookup table (the inset of Fig. 5c). Replacing the color lookup table of the indexed image Fig. 
5c by the transformed color lookup table (the inset of Fig. 5e) then transforms Fig. 5c into 
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When all possible combinations of an 8-bit multi-band system are represented, these color 
lookup tables contain 256x256 entries. When a color lookup table with less entries is used 
(e.g. only 256), the color mapping can be achieved by determining the closest match of the 
table entries to the observed multi-band sensor values.  
Once the color mapping has been derived from a multi-band nighttime image and its 
corresponding reference image, and once it has been defined as a lookup table transform, it 
can be applied to different and dynamic multi-band images. The advantage of this method 
is that the color of objects only depends on the multi-band sensor values and is independent 
of the image content. Therefore, objects keep the same color over time when registered with 
a moving camera. Another advantage of this implementation is that it requires minimal 
computing power. Once the color transformation has been derived and the pair of color 
lookup tables that defines the mapping has been created, the new color lookup table 
transform can be used in a (real-time) application.  

2.4 Sample based color transform 
In spite of all the afore-mentioned advantages of the lookup table based statistical color 
transform, there is still room for improvement. For instance, in this paradigm there is no 
strict relationship between sensor output values and object color, since the statistical 
approach inherently only addresses the global color characteristics of the depicted scene. In 
this section we will describe an alternative lookup table based method for applying natural 
colors to multi-band images, which alleviates this problem since it does not rely on image 
statistics. The color transformation is derived from a corresponding set of samples for which 
both the multi-band sensor values and the corresponding natural color (RGB-value) are 
known (Hogervorst et al., 2006). We will show that this method results in rendered multi-
band images with colors that match the daytime colors more closely than the result of the 
statistical approach. In contrast to the statistical method, the derivation of the color mapping 
requires a registered image pair, consisting of a multi-band image and a daytime reference 
image of the same scene, sine the pixels serve as samples in this approach. Once the color 
mapping has been derived it can be applied to different multi-band nighttime images. 
Again, we will implement the color transformation using a color lookup table 
transformation, thus enabling real-time implementation. 
The method is as follows. Given a set of samples (pixels) for which both the multi-band 
sensor output and the corresponding daytime colors are known, the problem of deriving the 
optimal color transformation is to find a transformation that optimally maps the N-
dimensional (e.g. in our examples N = 2) multi-band sensor output vectors (one for each 
sample) to the 3-D vectors corresponding to the daytime colors (RGB). The mapping should 
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minimize the difference between the modeled colors and the measured colors. Moreover, 
the transformation should predict the mapping of untrained samples. Several methods exist 
to derive a suitable mapping, such as neural networks and support vector machines. What 
constitutes a suitable mapping is determined by the function that is minimized. Also the 
statement that the difference between the modeled colors and the measured colors is 
minimized should be formalized. We will minimize the average perceptual color difference 
between the modeled color and the measured color. More precisely, we will minimize the 
average squared distance between the perceptual color vectors lαβ (see (Ruderman et al., 
1998)). We will describe a (relatively) simple implementation that is not focused towards 
finding the theoretical optimum mapping, but that will lead to robust and good results and 
can be understood intuitively. We will now describe our new method for deriving a natural 
color transformation using the example shown in Fig. 6. Fig. 6a depicts the full color 
daytime reference image, which is in this case a color photograph taken with a standard 
digital camera. Figs. 6b and c respectively show a visible and near-infrared image of the 
same scene. Fig. 6f shows the result of applying daytime colors to the two-band night-time 
sensor image using our new color mapping technique. 
The method works as follows. First, the multi-band sensor image is transformed to a false-
color image by taking the individual bands (Fig. 6b and c) as input to the R and G channels 
(and B when the sensor contains three bands), referred to as the RG-image (Fig. 6e). In 
practice any other combination of 2 channels can also be used (one could just as well use the 
combinations R & B or B & R). Mapping the two bands to a false color RGB-image allows us 
to use standard image conversion techniques, such as indexing. In the next step the resulting 
false color (RG-image) Fig. 6e is converted to an indexed image. Each pixel in such an image 
contains a single index. The index refers to an RGB-value in a color lookup table (the 
number of entries can be chosen by the user). In the present example of a sensor image 
consisting of two bands (R and G; Fig. 6e) the color lookup table contains various 
combinations of R and G values (the B-values are zero when the sensor or sensor pair 
provides only two bands). For each index representing a given R,G combination (a given 
false color) the corresponding natural color equivalent is obtained by locating the pixels in 
the target image with this index and finding the corresponding pixels in the (natural color) 
reference image (Fig. 6a). First, the RGB-values are converted to perceptually de-correlated 
lαβ values (see (Ruderman et al., 1998)). Next, we calculate the average lαβ-vector over this 
ensemble of pixels. This assures that the computed average color reflects the perceptual 
average color. Averaging automatically takes the distribution of the pixels into account: 
colors that appear more frequently are attributed a greater weight. Let us for instance 
assume that we would like to derive the natural color associated with index 1. In that case 
we locate all pixels in the (indexed) false color multi-band target image with index 1. We 
then take all corresponding pixels in the reference daytime color image, convert them to lαβ, 
and calculate the average lαβ-value. Next, we transform the resulting average lαβ-value back 
to RGB. Finally, we assign this RGB-value to index 1 of the new color lookup table. These 
steps are successively carried out for all indices. This process yields a new color lookup table 
containing the natural colors associated with the various multi-band combinations in the 
false color (RG) color lookup table. Replacing the RG-color lookup table (left side of Fig. 6d) 
by the color lookup table with natural colors (right side of Fig. 6d) yields an image with a 
natural color appearance, in which the colors are optimized for this particular sample set 
(Fig. 6d). Note that the red parts in the scene in Fig. 6a do not turn out red again in the 
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rendered night-time image Fig. 6f. This is due to the fact that other materials which occupy a 
larger area of the scene (and which therefore dominate the color mapping) give the same 
sensor output in the two bands. Also, the red flags are not apparent in the visible band (Fig. 
6b). This has only a minor effect on the overall appearance of the scene as long as the parts 
that change between the different band recordings occupy only a relatively small area.   
 

   
(a)                                                     (b)                                              (c) 

    
(d)                                                     (e)                                              (f) 

Fig. 6. (a) Natural daylight color reference image. Visible (b) and near-infrared (c) images of 
the same scene. (d) The color mapping derived from corresponding pixel pairs in a and b-c.  
(e) Combined RG false color representation of (b) and (c), obtained by assigning (b) to the 
green and (c) to the red channel of an RGB color image (the blue channel is set to zero). (f) 
Result of the application of the mapping scheme in (d) to the two band false color image in 
(e). 
Fig. 7 illustrates the difference between the statistical and the sample based color transforms. 
In this example we determined a color mapping lookup table from a pair of images 
consisting of (Fig. 7a) the original version of a full color daylight photograph and (Fig. 7b) 
the same image from which the blue channel has been removed (B=0).  Note that the 
sample-based color remapping (Fig. 7c), using the sample based color lookup table (inset) 
determined from the image pair Fig. 7a and Fig. 7b, nicely restores most of the blue hues in 
the scene, while the statistical color remapping procedure (Fig. 7d) is not capable to restore 
the missing information. This is due to the fact that the sample-based method allows for 
nonlinear transformations while the statistical method is a linear (affine) transformation (in 
CIELAB-color space). 
Fig. 8a and b show respectively visual and near-infrared images of the same scene. Fig. 8c 
shows the red-green false color representation of Fig. 8a and b. Fig. 8d shows the daytime 
reference image corresponding to the multi-band sensor image. Straightforward application 
of the sample-base color transform results in Fig. 8e. Note that the colors of this figure 
closely match the daytime colors as shown in Fig. 8d (e.g. the sky is blue). However, the  
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(a)                                                      (b) 

     
(c)                                                      (d) 

Fig. 7. (a) Full color RGB image.  (b) Image from (a) after removal of the blue band (B=0).  (c) 
Result of sample-based color remapping, using the color lookup table (inset) determined 
from the image pair (a,b). (d) Result of the statistical color remapping procedure. 
image looks noisy and certain objects appear in the wrong color (e.g. the bench and parts of 
the roof). This is due to the fact that the luminance in the colorized image does not increase 
continuously with increasing sensor output (the luminance value in Fig. 8c). This gives an 
undesirable “solarizing” effect. We therefore derived from this color map (inset in Fig. 8e) 
another color map (inset in Fig. 8f) in which the luminance increases linearly with the 
distance to the top-left corner. Fig. 8f shows the result of this new color mapping. The colors 
in Fig. 8f closely match the daytime colors. The sky is dark instead of light-blue. This 
corresponds to the intuition that the sky should look dark at night, and does not affect the 
situational awareness.  Also important is the fact that the color transformation shown in Fig. 
8f is smooth, in contrast to the one shown in Fig. 8e.  Intuitively a small variation in sensor 
output should lead to a small color change, i.e. a smooth color transformation is expected to 
lead to better matching colors when applied to other multi-band sensor images. Also, with 
smooth color transformations noise leads to less clutter. Furthermore, the color fused result 
provides a better impression of the depth in the scene (compare e.g. Fig. 8b and 8f). 
Fig. 9a-c shows the result of applying the same lookup-table transform to multi-band sensor 
images of different scenes, together with the corresponding daytime full color images (Fig. 
9d-f). Although the colors do not always fully match the daytime colors, they are still 
characteristic for the different materials displayed in the scene. Thus, the colorized fused 
image facilitates interpretation of the scene (situational awareness).  
Dedicated color mapping schemes can be derived that are optimally tuned for different 
environments. When deploying the color transfer method at night an appropriate color  
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Fig. 7 illustrates the difference between the statistical and the sample based color transforms. 
In this example we determined a color mapping lookup table from a pair of images 
consisting of (Fig. 7a) the original version of a full color daylight photograph and (Fig. 7b) 
the same image from which the blue channel has been removed (B=0).  Note that the 
sample-based color remapping (Fig. 7c), using the sample based color lookup table (inset) 
determined from the image pair Fig. 7a and Fig. 7b, nicely restores most of the blue hues in 
the scene, while the statistical color remapping procedure (Fig. 7d) is not capable to restore 
the missing information. This is due to the fact that the sample-based method allows for 
nonlinear transformations while the statistical method is a linear (affine) transformation (in 
CIELAB-color space). 
Fig. 8a and b show respectively visual and near-infrared images of the same scene. Fig. 8c 
shows the red-green false color representation of Fig. 8a and b. Fig. 8d shows the daytime 
reference image corresponding to the multi-band sensor image. Straightforward application 
of the sample-base color transform results in Fig. 8e. Note that the colors of this figure 
closely match the daytime colors as shown in Fig. 8d (e.g. the sky is blue). However, the  
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Result of sample-based color remapping, using the color lookup table (inset) determined 
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image looks noisy and certain objects appear in the wrong color (e.g. the bench and parts of 
the roof). This is due to the fact that the luminance in the colorized image does not increase 
continuously with increasing sensor output (the luminance value in Fig. 8c). This gives an 
undesirable “solarizing” effect. We therefore derived from this color map (inset in Fig. 8e) 
another color map (inset in Fig. 8f) in which the luminance increases linearly with the 
distance to the top-left corner. Fig. 8f shows the result of this new color mapping. The colors 
in Fig. 8f closely match the daytime colors. The sky is dark instead of light-blue. This 
corresponds to the intuition that the sky should look dark at night, and does not affect the 
situational awareness.  Also important is the fact that the color transformation shown in Fig. 
8f is smooth, in contrast to the one shown in Fig. 8e.  Intuitively a small variation in sensor 
output should lead to a small color change, i.e. a smooth color transformation is expected to 
lead to better matching colors when applied to other multi-band sensor images. Also, with 
smooth color transformations noise leads to less clutter. Furthermore, the color fused result 
provides a better impression of the depth in the scene (compare e.g. Fig. 8b and 8f). 
Fig. 9a-c shows the result of applying the same lookup-table transform to multi-band sensor 
images of different scenes, together with the corresponding daytime full color images (Fig. 
9d-f). Although the colors do not always fully match the daytime colors, they are still 
characteristic for the different materials displayed in the scene. Thus, the colorized fused 
image facilitates interpretation of the scene (situational awareness).  
Dedicated color mapping schemes can be derived that are optimally tuned for different 
environments. When deploying the color transfer method at night an appropriate color  
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Fig. 8. Visual (a) and near-infrared (b) images of the same scene. (c) Combined red-green 
false color representation of (a) and (b). (d) Daytime reference color image. (e) Result of 
straightforward application of the sample-based transform method. (f) Result after 
smoothing and linearising the color lookup table. 
 

 
 

Fig. 9. (a-c) Results of applying the coloring scheme from Fig. 8f to different multi-band 
sensor images. (d-f) Daylight color images corresponding to (a-c). 

mapping scheme should then be selected to colorize the night-time images. The color 
transformation consists of (1) creating a false-color image (e.g. an RG-image, see Fig. 6e), (2) 
converting this image into an index image using the RG-color table, and (3) replacing the 
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color lookup table with its daytime equivalent (RGB-color table, see Fig. 6d, right). The 
whole transformation is defined by the two color lookup tables (the RG-color table and the 
RGB color table). The software implementation can be very fast. 
Different environments require different color mapping schemes to obtain a correct color 
representation. The sample images used to derive the color mapping scheme should reflect 
the statistics of the environment in which the mapping will be deployed. 
In practice the ratio between the sensor outputs is characteristic for different materials. This 
becomes apparent when one inspects the color map images (e.g. Fig. 6d, right side) 
corresponding to the optimal color mapping of different reference and test images. In those 
images the hue varies little along straight lines through the top-left corner (lines for which 
the ratio between the two sensor outputs has a constant value). This feature can be used 
when deriving a color mapping from a limited number of samples. Also, the color mapping 
(e.g. Fig. 6d, right side) can be expected to be smooth, i.e. from point to point the color 
variations will be smooth. When a smooth color mapping scheme is used more subtle 
differences between sensor outputs will become visible. 
Because the sample-based color mapping is highly specific it can effectively be used to 
highlight interesting image details which may otherwise go unnoticed. Camouflaged targets 
(e.g. persons or vehicles in military colors) are usually indistinguishable from their local 
background in naturally colored images. As a result, they will also have low color contrast 
when a natural color mapping is applied to multi-band nighttime imagery. An example of 
this effect is shown in Fig. 10, which presents an intensified image (Fig. 10a) and a thermal 
infrared (8-12 µm) image (Fig. 10b) of a person wearing a military battle dress with a 
camouflage pattern in a rural background.  Fig. 10c shows the two-band false color image 
that is constructed by mapping the images from Fig. 10 (a) and (b) to respectively the R and 
G channels of an RGB color image (the B channel was set to zero). Fig. 10d shows the full 
color daytime reference image (a standard digital color photograph). Using the sample-
based method we derived the color transformation that results in an optimal match between 
the colors in the reference image (Fig. 10d) and the multi-band sensor values (Fig. 10c). The 
color transformation for all sensor combinations is represented by the insets of Fig. 10c and 
Fig. 10e, while Fig. 10e shows the result of the color mapping. Note that the colors in the 
colorized multi-band image (Fig. 10e) closely match the colors in the reference image (Fig. 
10d). However, since the person wears clothing in camouflage colors, he is also camouflaged 
in the colorized nighttime image. Although the person is clearly visible in the thermal image 
(Fig. 10b) he can hardly be detected in the colorized nighttime image. To make the person 
more salient in the colorized night-time image a color transformation can be used that 
depicts hot items (which usually are potential targets like vehicles or living beings) in red. 
For this purpose we created an alternative color mapping by manipulating the inset of Fig. 
10e. The resulting lookup table is depicted in the inset of Fig. 10f. Fig. 10f shows the result of 
the application of this color transformation to the false color two-band nighttime image in 
Fig. 10c. Hot items now appear in red while the (relatively cold) background is still depicted 
in its natural colors. In this image representation, the naturally colored background provides 
the context and potential targets are highlighted by their color contrast. This color mapping 
may be useful for applications like surveillance and navigation, since these tasks require a 
correct perception of the background (terrain) for situational awareness in combination with 
optimal detection of targets and obstacles. 
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Fig. 8. Visual (a) and near-infrared (b) images of the same scene. (c) Combined red-green 
false color representation of (a) and (b). (d) Daytime reference color image. (e) Result of 
straightforward application of the sample-based transform method. (f) Result after 
smoothing and linearising the color lookup table. 
 

 
 

Fig. 9. (a-c) Results of applying the coloring scheme from Fig. 8f to different multi-band 
sensor images. (d-f) Daylight color images corresponding to (a-c). 

mapping scheme should then be selected to colorize the night-time images. The color 
transformation consists of (1) creating a false-color image (e.g. an RG-image, see Fig. 6e), (2) 
converting this image into an index image using the RG-color table, and (3) replacing the 
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color lookup table with its daytime equivalent (RGB-color table, see Fig. 6d, right). The 
whole transformation is defined by the two color lookup tables (the RG-color table and the 
RGB color table). The software implementation can be very fast. 
Different environments require different color mapping schemes to obtain a correct color 
representation. The sample images used to derive the color mapping scheme should reflect 
the statistics of the environment in which the mapping will be deployed. 
In practice the ratio between the sensor outputs is characteristic for different materials. This 
becomes apparent when one inspects the color map images (e.g. Fig. 6d, right side) 
corresponding to the optimal color mapping of different reference and test images. In those 
images the hue varies little along straight lines through the top-left corner (lines for which 
the ratio between the two sensor outputs has a constant value). This feature can be used 
when deriving a color mapping from a limited number of samples. Also, the color mapping 
(e.g. Fig. 6d, right side) can be expected to be smooth, i.e. from point to point the color 
variations will be smooth. When a smooth color mapping scheme is used more subtle 
differences between sensor outputs will become visible. 
Because the sample-based color mapping is highly specific it can effectively be used to 
highlight interesting image details which may otherwise go unnoticed. Camouflaged targets 
(e.g. persons or vehicles in military colors) are usually indistinguishable from their local 
background in naturally colored images. As a result, they will also have low color contrast 
when a natural color mapping is applied to multi-band nighttime imagery. An example of 
this effect is shown in Fig. 10, which presents an intensified image (Fig. 10a) and a thermal 
infrared (8-12 µm) image (Fig. 10b) of a person wearing a military battle dress with a 
camouflage pattern in a rural background.  Fig. 10c shows the two-band false color image 
that is constructed by mapping the images from Fig. 10 (a) and (b) to respectively the R and 
G channels of an RGB color image (the B channel was set to zero). Fig. 10d shows the full 
color daytime reference image (a standard digital color photograph). Using the sample-
based method we derived the color transformation that results in an optimal match between 
the colors in the reference image (Fig. 10d) and the multi-band sensor values (Fig. 10c). The 
color transformation for all sensor combinations is represented by the insets of Fig. 10c and 
Fig. 10e, while Fig. 10e shows the result of the color mapping. Note that the colors in the 
colorized multi-band image (Fig. 10e) closely match the colors in the reference image (Fig. 
10d). However, since the person wears clothing in camouflage colors, he is also camouflaged 
in the colorized nighttime image. Although the person is clearly visible in the thermal image 
(Fig. 10b) he can hardly be detected in the colorized nighttime image. To make the person 
more salient in the colorized night-time image a color transformation can be used that 
depicts hot items (which usually are potential targets like vehicles or living beings) in red. 
For this purpose we created an alternative color mapping by manipulating the inset of Fig. 
10e. The resulting lookup table is depicted in the inset of Fig. 10f. Fig. 10f shows the result of 
the application of this color transformation to the false color two-band nighttime image in 
Fig. 10c. Hot items now appear in red while the (relatively cold) background is still depicted 
in its natural colors. In this image representation, the naturally colored background provides 
the context and potential targets are highlighted by their color contrast. This color mapping 
may be useful for applications like surveillance and navigation, since these tasks require a 
correct perception of the background (terrain) for situational awareness in combination with 
optimal detection of targets and obstacles. 
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Fig. 10. Result of the application of a natural color mapping to a two-band nighttime image. 
(a)  Intensified visual image and (b) thermal (8-12 µm) image of a rural scene with a person 
standing in the foreground. (c) Two-band false color image obtained by mapping (a) and (b) 
to respectively the G and R channels of an RGB color image (the B channel was set to zero). 
(d) A daylight color picture of the same scene. (e)  Result of the application of the color 
mapping defined by inset to (c). (f) Result of the application of the color mapping defined by 
the inset to (c). 

3. Implementation  
In the next sections we describe three prototype portable dual band real-time hardware 
implementations of nighttime image acquisition systems that deploy the lookup-table color 
transform method. The first system creates a color nightvision image by fusing the visual 
and near-infrared bands of two identical image intensifiers. The second system presents a 
color fused image of the signals of an image intensifier and a longwave infrared thermal 
camera.  The third system produces a three-band nighttime image by combining the visual 
and near-infrared bands of two identical image intensifiers with a longwave infrared image.  

3.1 The Gecko system: combination of visual and near-infrared 
The Gecko sensor module provides co-axially registered visual and NIR images. This system 
is named after nocturnal geckos that still have color vision at very dim light levels (Roth & 
Kelber, 2006). The Gecko system includes 2 image intensifiers, 2 compact EO cameras, a heat 
reflecting (hot) mirror, and a near-infrared reflecting mirror (Fig. 11). The image intensifiers 
are two GEN III type Mini N/SEAS monocular night vision goggles (NVGs) from 
International Technologies Lasers Ltd (ITL). They provide a 1x magnification, and have a 
circular field-of-view (FOV) with a diameter of 40 deg, corresponding to about 2000 pixels.  
They are sensitive in the visual and near infrared part of the spectrum.  Both image 
intensifiers are placed side by side. A distinctive characteristic of the construction of our 
acquisition unit is the hardware registration of both NVG images. A co-aligned view is 
achieved through the use of a hot mirror in combination with a NIR reflecting mirror (Fig. 
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11a). The hot mirror is an Edmund Optics (www.edmundoptics.com) NT43-958 3.3 mm 
thick mirror, intended for an angle of incidence of 45°, with a multi-layer dielectric coating 
that reflects infrared radiation (heat), while allowing visible light to pass through. The NIR 
radiation is reflected by a Melles Griot 01 MFG 011 mirror (www.mellesgriot.com) that is 
covered with a protected aluminum coating, which has an average reflectance greater than 
87%  over the spectral range from 400 to 800 nm (fig. 3b). As shown in Fig. 11a, the hot 
mirror acts as a dichroic beam splitter, transmitting the visual part of the incoming radiation 
to the upper NVG, while reflecting the NIR part via the NIR reflecting mirror into the lower 
NVG.  The image from each NVG is registered by a PixeLINK PL-A741 MV FireWire 1.3 
megapixel monochrome camera with a 2/3" CMOS detector with a resolution of 1280 x 1024 
pixels (www.pixelink.com). Both cameras are equipped with a 16 mm Pentax C1614A C-
mount lens, yielding a horizontal FOV of 30º72'T. They operate either at 33 fps at an image 
size of 1k x 1k, or 105 fps at 640 x 480 pixels. After processing the two-band Gecko signals on 
a notebook computer the resulting colorized imagery is displayed on the screen of the 
notebook computer, or, alternatively, on miniature head-mounted displays  
 

    
(a)                                                               (b) 

    
(c)                                                              (d) 

Fig. 11. The dual band Gecko system. (a) Schematic representation.  (b) 3D view of the 
system design. (c) Front view of the system and its casing. (d) Side view. 

The incoming video stream can also be stored on the hard disk of the notebook computer.  
The system as a whole is portable and can therefore be used to assess the benefits of color 
fusion in realistic surveillance and navigation scenarios. 
Fig. 12d shows the Gecko image of a park scene after the application of our new color 
remapping technique (in this case swapping the color table of Fig. 12c by that of Fig. 12d).  
This multiband nightvision image closely resembles the corresponding daytime photograph 
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Fig. 10. Result of the application of a natural color mapping to a two-band nighttime image. 
(a)  Intensified visual image and (b) thermal (8-12 µm) image of a rural scene with a person 
standing in the foreground. (c) Two-band false color image obtained by mapping (a) and (b) 
to respectively the G and R channels of an RGB color image (the B channel was set to zero). 
(d) A daylight color picture of the same scene. (e)  Result of the application of the color 
mapping defined by inset to (c). (f) Result of the application of the color mapping defined by 
the inset to (c). 

3. Implementation  
In the next sections we describe three prototype portable dual band real-time hardware 
implementations of nighttime image acquisition systems that deploy the lookup-table color 
transform method. The first system creates a color nightvision image by fusing the visual 
and near-infrared bands of two identical image intensifiers. The second system presents a 
color fused image of the signals of an image intensifier and a longwave infrared thermal 
camera.  The third system produces a three-band nighttime image by combining the visual 
and near-infrared bands of two identical image intensifiers with a longwave infrared image.  

3.1 The Gecko system: combination of visual and near-infrared 
The Gecko sensor module provides co-axially registered visual and NIR images. This system 
is named after nocturnal geckos that still have color vision at very dim light levels (Roth & 
Kelber, 2006). The Gecko system includes 2 image intensifiers, 2 compact EO cameras, a heat 
reflecting (hot) mirror, and a near-infrared reflecting mirror (Fig. 11). The image intensifiers 
are two GEN III type Mini N/SEAS monocular night vision goggles (NVGs) from 
International Technologies Lasers Ltd (ITL). They provide a 1x magnification, and have a 
circular field-of-view (FOV) with a diameter of 40 deg, corresponding to about 2000 pixels.  
They are sensitive in the visual and near infrared part of the spectrum.  Both image 
intensifiers are placed side by side. A distinctive characteristic of the construction of our 
acquisition unit is the hardware registration of both NVG images. A co-aligned view is 
achieved through the use of a hot mirror in combination with a NIR reflecting mirror (Fig. 

Real-Time Full Color Multiband Night Vision 

 

123 

11a). The hot mirror is an Edmund Optics (www.edmundoptics.com) NT43-958 3.3 mm 
thick mirror, intended for an angle of incidence of 45°, with a multi-layer dielectric coating 
that reflects infrared radiation (heat), while allowing visible light to pass through. The NIR 
radiation is reflected by a Melles Griot 01 MFG 011 mirror (www.mellesgriot.com) that is 
covered with a protected aluminum coating, which has an average reflectance greater than 
87%  over the spectral range from 400 to 800 nm (fig. 3b). As shown in Fig. 11a, the hot 
mirror acts as a dichroic beam splitter, transmitting the visual part of the incoming radiation 
to the upper NVG, while reflecting the NIR part via the NIR reflecting mirror into the lower 
NVG.  The image from each NVG is registered by a PixeLINK PL-A741 MV FireWire 1.3 
megapixel monochrome camera with a 2/3" CMOS detector with a resolution of 1280 x 1024 
pixels (www.pixelink.com). Both cameras are equipped with a 16 mm Pentax C1614A C-
mount lens, yielding a horizontal FOV of 30º72'T. They operate either at 33 fps at an image 
size of 1k x 1k, or 105 fps at 640 x 480 pixels. After processing the two-band Gecko signals on 
a notebook computer the resulting colorized imagery is displayed on the screen of the 
notebook computer, or, alternatively, on miniature head-mounted displays  
 

    
(a)                                                               (b) 

    
(c)                                                              (d) 

Fig. 11. The dual band Gecko system. (a) Schematic representation.  (b) 3D view of the 
system design. (c) Front view of the system and its casing. (d) Side view. 

The incoming video stream can also be stored on the hard disk of the notebook computer.  
The system as a whole is portable and can therefore be used to assess the benefits of color 
fusion in realistic surveillance and navigation scenarios. 
Fig. 12d shows the Gecko image of a park scene after the application of our new color 
remapping technique (in this case swapping the color table of Fig. 12c by that of Fig. 12d).  
This multiband nightvision image closely resembles the corresponding daytime photograph 
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(Fig. 12e).  Note that it is much easier to distinguish different materials and objects in Fig. 
12d, compared to each of the individual bands (a,b) or an RG false color fused image (c). 
 

   
(a)                                                     (b)                                              (c) 

  
                         (d)                                                     (e)  

Fig. 12. (a) Visual (wavelengths below 700 nm) and (b) NIR (wavelengths above 700 nm) 
images of a park scene. (c) False color combination with the Visual image (a) in the Red and 
the NIR image (b) in the Green channel of an RGB color image. (d) The result of our color 
remapping technique. (e) A daytime color photograph of the same scene.  The square insets 
in images (c) and (d) represent their corresponding color tables. 
Fig. 13d shows the Gecko image of a road scene after the application of our new color 
remapping technique (in this case swapping the color table of Fig. 13c by that of Fig. 13d). 
This multiband nightvision image closely resembles the corresponding daytime photograph 
(Fig. 13f). For comparison we also show the standard intensified (NVG) image in Fig. 13e. 
Note that it is much easier to distinguish the borders of the road in Fig. 13d, compared to a 
standard NVG image Fig. 13e. 

3.2 The Viper system: combination of visual and longwave infrared 
The Viper sensor module provides co-axially registered visual and longwave infrared 
(LWIR) or thermal images. This system is named after a species of snake that fuses in its 
optic tectum the visual images from its eyes with thermal images from infrared sensitive 
organs that function like pinhole cameras (Newman & Hartline, 1982). The Viper sensor 
module includes a compact infrared microbolometer, a digital image intensifier, and 2 hot 
mirrors (Fig. 14). The FLIR Systems ThermoVision A10 infrared microbolometer has a 160 x 
128 pixel focal plane array, and a spectral sensitivity range of 7.5 – 13µm, which is the range 
of most interest for outdoor applications. It is equipped with an 11mm (f/1.6) lens providing 
a 40° x 30° wide angle view. The ThermoVision A10 delivers wide dynamic range (14-bit) 
analog video output at 30 Hz (for RS-170) or at 25 Hz (for CCIR). It has a NETD of <85 mK. 
The Intevac NightVista E1100 digital image intensifier has a 1/2" sensor with a spectral 
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(a)                                                     (b)                                              (c) 

   
(d)                                                     (e)                                              (f) 

Fig. 13. (a) Visual (wavelengths below 700 nm) and (b) NIR (wavelengths above 700 nm) 
images of a road scene. (c) False color combination with the Visual image (a) in the Red and 
the NIR image (b) in the Green channel of an RGB color image. (d) The result of our color 
remapping technique. (e) Standard NVG image (= a+b). (f) A daytime color photograph of 
the same scene.  The square insets in images (c) and (d) represent their corresponding color 
tables. 
response range 400-900 nm, and delivers RS-170 VGA resolution (640x480) video signal 
output at 30 fps. It is equipped with an 8.5 mm C-mount Pentax C815B lens, yielding a view 
of 42.09º horizontally.  The intensified and thermal images are co-aligned through the use of 
a pair of hot mirrors (Fig. 14a). The first mirror is an Edmund Optics 
(www.edmundoptics.com) NT43-958 3.3 mm thick mirror, intended for an angle of 
incidence of 45°, with a multi-layer dielectric coating that reflects infrared radiation (heat), 
while allowing visible light to pass through.  The second mirror is a gold coated borosilicate 
crown optical glass plate (type BK7, CRYSTECH Inc, www.crystech.com), with a reflection 
coefficient larger than 99.8%.  
The analog video signals of the A10 infrared microbolometer and the Intevac digital image 
intensifier are both converted into 8 bits digital signals by means of a DFG/1394-1e 
DFG/1394-1e Video-to-FireWire converter (www.theimagingsource.com) that was inserted 
in a Dell Inspiron 9300 notebook computer. As a result of the co-axial image registration 
parallax problems are eliminated and only minimal spatial alignment and image stretching 
(to correct for the slight difference in FOV size of both cameras) is needed before 
image/video exploitation.  The resulting registered images are combined into an RGB 
format for further processing (the B channel is set to zero). The previously described color 
mapping is implemented as a color lookup table transform. 
After processing the two-band Viper signals on a notebook computer the resulting colorized 
imagery is displayed on the screen of the notebook computer, or, alternatively, on miniature 
head-mounted displays The incoming video stream can also be stored on the hard disk of 
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(Fig. 12e).  Note that it is much easier to distinguish different materials and objects in Fig. 
12d, compared to each of the individual bands (a,b) or an RG false color fused image (c). 
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Fig. 12. (a) Visual (wavelengths below 700 nm) and (b) NIR (wavelengths above 700 nm) 
images of a park scene. (c) False color combination with the Visual image (a) in the Red and 
the NIR image (b) in the Green channel of an RGB color image. (d) The result of our color 
remapping technique. (e) A daytime color photograph of the same scene.  The square insets 
in images (c) and (d) represent their corresponding color tables. 
Fig. 13d shows the Gecko image of a road scene after the application of our new color 
remapping technique (in this case swapping the color table of Fig. 13c by that of Fig. 13d). 
This multiband nightvision image closely resembles the corresponding daytime photograph 
(Fig. 13f). For comparison we also show the standard intensified (NVG) image in Fig. 13e. 
Note that it is much easier to distinguish the borders of the road in Fig. 13d, compared to a 
standard NVG image Fig. 13e. 

3.2 The Viper system: combination of visual and longwave infrared 
The Viper sensor module provides co-axially registered visual and longwave infrared 
(LWIR) or thermal images. This system is named after a species of snake that fuses in its 
optic tectum the visual images from its eyes with thermal images from infrared sensitive 
organs that function like pinhole cameras (Newman & Hartline, 1982). The Viper sensor 
module includes a compact infrared microbolometer, a digital image intensifier, and 2 hot 
mirrors (Fig. 14). The FLIR Systems ThermoVision A10 infrared microbolometer has a 160 x 
128 pixel focal plane array, and a spectral sensitivity range of 7.5 – 13µm, which is the range 
of most interest for outdoor applications. It is equipped with an 11mm (f/1.6) lens providing 
a 40° x 30° wide angle view. The ThermoVision A10 delivers wide dynamic range (14-bit) 
analog video output at 30 Hz (for RS-170) or at 25 Hz (for CCIR). It has a NETD of <85 mK. 
The Intevac NightVista E1100 digital image intensifier has a 1/2" sensor with a spectral 
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Fig. 13. (a) Visual (wavelengths below 700 nm) and (b) NIR (wavelengths above 700 nm) 
images of a road scene. (c) False color combination with the Visual image (a) in the Red and 
the NIR image (b) in the Green channel of an RGB color image. (d) The result of our color 
remapping technique. (e) Standard NVG image (= a+b). (f) A daytime color photograph of 
the same scene.  The square insets in images (c) and (d) represent their corresponding color 
tables. 
response range 400-900 nm, and delivers RS-170 VGA resolution (640x480) video signal 
output at 30 fps. It is equipped with an 8.5 mm C-mount Pentax C815B lens, yielding a view 
of 42.09º horizontally.  The intensified and thermal images are co-aligned through the use of 
a pair of hot mirrors (Fig. 14a). The first mirror is an Edmund Optics 
(www.edmundoptics.com) NT43-958 3.3 mm thick mirror, intended for an angle of 
incidence of 45°, with a multi-layer dielectric coating that reflects infrared radiation (heat), 
while allowing visible light to pass through.  The second mirror is a gold coated borosilicate 
crown optical glass plate (type BK7, CRYSTECH Inc, www.crystech.com), with a reflection 
coefficient larger than 99.8%.  
The analog video signals of the A10 infrared microbolometer and the Intevac digital image 
intensifier are both converted into 8 bits digital signals by means of a DFG/1394-1e 
DFG/1394-1e Video-to-FireWire converter (www.theimagingsource.com) that was inserted 
in a Dell Inspiron 9300 notebook computer. As a result of the co-axial image registration 
parallax problems are eliminated and only minimal spatial alignment and image stretching 
(to correct for the slight difference in FOV size of both cameras) is needed before 
image/video exploitation.  The resulting registered images are combined into an RGB 
format for further processing (the B channel is set to zero). The previously described color 
mapping is implemented as a color lookup table transform. 
After processing the two-band Viper signals on a notebook computer the resulting colorized 
imagery is displayed on the screen of the notebook computer, or, alternatively, on miniature 
head-mounted displays The incoming video stream can also be stored on the hard disk of 
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(a)                                                               (b) 

                
(c)                                                           (d) 

Fig. 14. The dual band Viper system. (a) Schematic representation.  (b) 3D view of the 
system design. (c) Front view of the system and its casing. (d) Side view. 
the notebook computer. The system as a whole is portable and can therefore be used to 
assess the benefits of color fusion in realistic surveillance and navigation scenarios. 
Fig. 15d and e show the Viper image of a park scene after the application of our new color 
remapping technique (in this case swapping the color table of Fig. 15c by that of Fig. 15d 
and Fig. 15e). The results are shown for 2 different mappings. Note that objects in the scene, 
particularly the person, are much easier to distinguish in these color remapped images 
compared to each of the individual bands (Fig. 15a,b) or an RG false color fused image (Fig. 
15c). 
Fig. 16d shows the Viper image of a battle scene after the application of our new color 
remapping technique (in this case swapping the color table of c by that of d). Note that both 
the soldier and the smoke screen are clearly visible and represented in their correct (true) 
colors in the recolored Viper image (d), whereas only one of these can be seen in the 
individual bands (a,b). 

3.3 The TRICLOBS system: combination of visual, near-infrared and longwave 
infrared 
The TRICLOBS (TRI-band Color Low-light OBServation) system combines a three-band 
nightvision sensor suite, consisting of two digital image intensifiers and a thermal (LWIR) 
camera, in combination with a 3D digital position information system. The night vision 
sensor suite is sensitive in the visual (400-700 nm), the near-infrared (700-1000 nm) and the 
longwave infrared (8-14 µm) bands of the electromagnetic spectrum.  The optical axes of all 
cameras are aligned. 
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(a)                                                     (b)                                              (c) 

   
(d)                                                     (e)                                              (f) 

Fig. 15. (a) Visual intensified and (b) LWIR (8-12 µm) images of a park scene. (c) False color 
combination with the Visual image (a) in the Red and the LWIR image (b) in the Green 
channel of an RGB color image. (d-e) The result of our color remapping technique for two 
different lookup tables. (f) A daytime color photograph of the same scene.  The square insets 
in images (c,d,e) represent their corresponding color tables. 

Fig. 17 shows a schematic representation of the layout of the sensor suite and the beam 
splitters that are deployed to direct the appropriate band of the incoming radiation to each 
of the 3 individual sensors. The incoming radiation is first split into a longwave (thermal) 
and a visual+NIR part by a heat reflecting (hot) mirror (a custom made Melles Griot dichroic 
beam splitter consisting of Schott N-BK7 Borosilicate Crown glass with an Indium Tin Oxide 
coating, with a reflection R > 85%). The longwave part of the spectrum is reflected into the 
lens of the thermal camera, while the visual+NIR light is transmitted to a combination of 
two digital image intensifiers that are mounted under an angle of 90 degrees. Next, a near-
infrared reflecting mirror (45 deg angle of incidence, Borofloat glass, type Edmund Optics 
B43-958, 101x127x3.3 mm, see: www.edmundoptics.com) is used to separate the incoming 
light, by transmitting the visual (400–700nm) and reflecting the NIR part (700–900nm), such 
that one image intensifier registers the visual part and the other one only detects the NIR 
part of the incoming radiation. The sensor geometry is such that the optical axes of all 
cameras are aligned. 
The two image intensifiers are high resolution (1280x960) Photonis PP3000U Intensified 
Camera Units (ICUs: www.photonis.com). The ICU is a low light level, intensified CMOS 
camera. It has a 2/3" CMOS sensor with a spectral response range of 400-900 nm, and 
delivers both a PAL or NTSC composite video signal output (ITU-R BT.656-4, 640x480  
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Fig. 14. The dual band Viper system. (a) Schematic representation.  (b) 3D view of the 
system design. (c) Front view of the system and its casing. (d) Side view. 
the notebook computer. The system as a whole is portable and can therefore be used to 
assess the benefits of color fusion in realistic surveillance and navigation scenarios. 
Fig. 15d and e show the Viper image of a park scene after the application of our new color 
remapping technique (in this case swapping the color table of Fig. 15c by that of Fig. 15d 
and Fig. 15e). The results are shown for 2 different mappings. Note that objects in the scene, 
particularly the person, are much easier to distinguish in these color remapped images 
compared to each of the individual bands (Fig. 15a,b) or an RG false color fused image (Fig. 
15c). 
Fig. 16d shows the Viper image of a battle scene after the application of our new color 
remapping technique (in this case swapping the color table of c by that of d). Note that both 
the soldier and the smoke screen are clearly visible and represented in their correct (true) 
colors in the recolored Viper image (d), whereas only one of these can be seen in the 
individual bands (a,b). 

3.3 The TRICLOBS system: combination of visual, near-infrared and longwave 
infrared 
The TRICLOBS (TRI-band Color Low-light OBServation) system combines a three-band 
nightvision sensor suite, consisting of two digital image intensifiers and a thermal (LWIR) 
camera, in combination with a 3D digital position information system. The night vision 
sensor suite is sensitive in the visual (400-700 nm), the near-infrared (700-1000 nm) and the 
longwave infrared (8-14 µm) bands of the electromagnetic spectrum.  The optical axes of all 
cameras are aligned. 
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Fig. 15. (a) Visual intensified and (b) LWIR (8-12 µm) images of a park scene. (c) False color 
combination with the Visual image (a) in the Red and the LWIR image (b) in the Green 
channel of an RGB color image. (d-e) The result of our color remapping technique for two 
different lookup tables. (f) A daytime color photograph of the same scene.  The square insets 
in images (c,d,e) represent their corresponding color tables. 

Fig. 17 shows a schematic representation of the layout of the sensor suite and the beam 
splitters that are deployed to direct the appropriate band of the incoming radiation to each 
of the 3 individual sensors. The incoming radiation is first split into a longwave (thermal) 
and a visual+NIR part by a heat reflecting (hot) mirror (a custom made Melles Griot dichroic 
beam splitter consisting of Schott N-BK7 Borosilicate Crown glass with an Indium Tin Oxide 
coating, with a reflection R > 85%). The longwave part of the spectrum is reflected into the 
lens of the thermal camera, while the visual+NIR light is transmitted to a combination of 
two digital image intensifiers that are mounted under an angle of 90 degrees. Next, a near-
infrared reflecting mirror (45 deg angle of incidence, Borofloat glass, type Edmund Optics 
B43-958, 101x127x3.3 mm, see: www.edmundoptics.com) is used to separate the incoming 
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Fig. 16. (a) Visual intensified and (b) LWIR (8-12 µm) images of a battle scene. (c) False color 
combination with the Visual image (a) in the Red and the LWIR image (b) in the Green 
channel of an RGB color image. (d) The result of our color remapping technique. (e) A 
daytime color photograph of the same scene.  The square insets in images (c,d) represent 
their corresponding color tables.  
 

 
Fig. 17. Layout of the sensors and filters of the TRICLOBS sensor suite. 
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pixels), and an SDI – LVDS 270 Mbits/s signal. Both ICU’s are equipped with Pentax 
C2514M CCTV lenses, with a minimal focal length of 25mm and a lens aperture of F/1.4, 
resulting in a FOV of 30.7º x 24.8º. The thermal camera is a XenICs Gobi 384 uncooled a-Si 
infrared microbolometer (www.xenics.com). It has a 384 x 288 pixel focal plane array, and a 
spectral sensitivity range of 8–14µm, which is the range of most interest for outdoor 
applications. It is equipped with an Ophir supIR18mm F/1 lens (www.ophiropt.com) 
providing a 29.9° x 22.6° wide angle view. The Gobi 384 has a 16-bit Ethernet and 
CameraLink interface. 
The sensors are mounted a common metal frame, which is placed in an enclosed housing. 
All signal processing is done on a standard laptop. The system is mounted on a mobile all-
terrain platform Fig. 18.  
 

(a) 

(b) 

 

 
(c) 

Fig. 18. The TRICLOBS sensor suite. (a) Top view, (b) inside , and (c) the sensor suite 
mounted on a mobile all-terrain platform. 

4. Evaluation study 
As noted before, natural color mapping schemes are not suitable for all purposes. A typical 
example is the task of finding a camouflaged soldier in a field, using a two-band nightvision 
system sensitive to the visual and thermal part of the electromagnetic spectrum. When the 
false color representation of the nightvision image optimally agrees with the daytime 
appearance of the scene, the soldier will be camouflaged, which is obviously not very 
helpful for the task at hand. In such cases a color mapping scheme should be deployed that 
represents the objects of interest with higher color contrast while still providing a color 
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Fig. 19. Nighttime scene showing a house with a person in front, a truck and some trees. (a) 
Visual, (b) NIR and (c) LWIR input signals. (d) False color image obtained by mapping the 
three bands to respectively the R, G, and B channels.  (e) Result of color remapping applied 
to (d). (f) Corresponding daytime image.  
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(d)                                                     (e)                                              (f) 

Fig. 20. Nighttime scene showing some houses, grass and a road. (a) Visual, (b) NIR and (c) 
LWIR input signals. (d) False color image obtained by mapping the three bands to 
respectively the R, G, and B channels.  (e) Result of color remapping applied to (d). (f) 
Corresponding daytime image. 

Real-Time Full Color Multiband Night Vision 

 

131 

setting for the rest of the scene which is intuitively correct. We designed such a color 
scheme, which is targeted at optimizing the detection of (camouflaged) targets that do not 
contain chlorophyll, while still providing reasonably natural colors. 
The dual-band Gecko system was used to register optically aligned visual (wavelengths 
shorter than 700 nm) and near infrared (wavelengths longer than 700 nm) images. For 
comparison we also created a standard intensified image of each scene containing both 
bands, since this is the type of image typically provided by standard night vision goggles. 
The visual band is represented by the Red channel of an RGB-image and the near-infrared 
band by the Green channel, to create a red-green representation of the dual-band sensor 
image (Fig. 21d). Next, for each combination of sensor outputs (represented by a shade of 
red, green, yellow; see inset of Fig. 21d) a color was chosen to display this sensor output. 
This process can be implemented by transforming the red-green image (Fig. 21d) into an 
indexed image in which each pixel value refers to the entry of a color lookup table. When a 
color lookup table is used with different colors, the colors in the indexed image are  
 

     
(a)                                                     (b)                                              (c) 

   
                        (d)                                                     (e) 

Fig. 21. Lookup table based color remapping applied to a dual-band visual (a) and near-
infrared (b) Gecko image.  (c) A regular intensified image representation for comparison 
(e.g. a standard night vision goggle image). (d) A red-green false color representation of the 
dual-band image with the visual band assigned to the Red and near-infrared band assigned 
to the Green channel of an RGB display. The inset in (d) shows all possible dual-band 
outputs as shades of red (large response in band 1, small in band 2), green (small response in 
band 1, large in band 2) and yellow (large responses in both bands). (e) The result of the 
color transformation. The inset shows how the colors in the inset of (d) are transformed.  
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Fig. 21. Lookup table based color remapping applied to a dual-band visual (a) and near-
infrared (b) Gecko image.  (c) A regular intensified image representation for comparison 
(e.g. a standard night vision goggle image). (d) A red-green false color representation of the 
dual-band image with the visual band assigned to the Red and near-infrared band assigned 
to the Green channel of an RGB display. The inset in (d) shows all possible dual-band 
outputs as shades of red (large response in band 1, small in band 2), green (small response in 
band 1, large in band 2) and yellow (large responses in both bands). (e) The result of the 
color transformation. The inset shows how the colors in the inset of (d) are transformed.  
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automatically transformed into other colors, in a way that all pixels with the same index will 
result in the same color. The method is described in detail elsewhere (Hogervorst & Toet, 
2008a; Hogervorst & Toet, 2010). We tried several color transformations in our search for a 
color scheme that results in optimal detection of targets while preserving the natural 
appearance of images. The best color transformation we found for our purposes looks 
similar to the red-green representation, with a few modifications. 
The inset of Fig. 21e shows the colors assigned to all dual-band outputs (represented by the 
inset of Fig. 21d) by the chosen color scheme. This color scheme emphasizes the distinction 
between objects containing chlorophyll (the background plants) and objects containing no 
chlorophyll (e.g. our targets; notable from the sharp transition between green and red at the 
diagonal). The Gecko sensor system separates the incoming light in a part with wavelength 
below 700nm and one with wavelengths above 700 nm. Since chlorophyll shows a steep rise 
around 700nm, this dual-band NVG system is especially suited for discriminating materials 
containing chlorophyll from materials containing no chlorophyll. Elements containing 
chlorophyll (e.g. plants) are displayed in green (i.e. in their natural color), while objects 
without chlorophyll are displayed in the perceptually opposite color red. To further increase 
the naturalness, elements with high output in both channels are displayed in white (bottom 
right corner of the inset of Fig. 21e). The result of our color fusion method is shown in Fig. 
21e. 
We evaluated the abovementioned color mapping in a target detection paradigm. We 
registered both nighttime dual-band (visual and near-infrared) Gecko images and daytime 
full color digital photographs of a scene containing grass and trees, with and without targets 
present. Performance for detecting targets was established for imagery of the dual-band 
fusion system, each of the individual NVG-bands (visual and NIR), standard NVG and 
daytime images (taken with a visual camera). The visual angle and display area of the 
daytime images was matched to that of the nighttime images.  
The targets were green (Fig. 22a) and blue (Fig. 22b) foam insulation tubes. The reflectance 
of the tubes was such the green tubes were mostly undetectable in a standard intensified 
image representation and in the near infrared band (see Fig. 21), but detectable (as a bright 
object) in the visible band (see Fig. 21). In contrast, the blue tubes were often undetectable in 
the visual band while being detectable (as a dark object) in the near infrared band and in 
regular intensified image (see Fig. 23).  
 

    
(a)                                                                      (b) 

Fig. 22. The green target (a) and the blue target (b) situated in a background with grass and 
trees. 
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(a)                                                     (b)                                              (c) 

Fig. 23. Visual (a), near-infrared (b) and the color fused dual-band image (c) for a scene 
including a blue target. The target is visible in the near-infrared band as a dark tube. The 
dual-band image shows the target as a reddish object. 

We recorded whether the subjects detected the targets when present (Hits and Misses) and 
whether they judged there to be a target when no target was present (False Alarms and 
Correct Rejections). We also recorded the response times. Since no False Alarms occurred in 
this experiment (i.e. the False-Alarm rate was zero), observer performance is fully 
characterized by the Hit-rate, i.e. the fraction of targets that was detected (ph = #Hits / 
(#Hits + #Misses)). Observer performance was measured for 5 different image modalities:  
1. Daytime: full color daylight images (taken with a standard digital daytime camera), 
2. II: grayscale intensified images, combining both visual and near-infrared 
3. VIS: grayscale intensified images representing only the visual part of the spectrum, 
4. NIR: grayscale intensified images representing only the near-infrared part of the 

spectrum, 
5. FC: false color images resulting from the natural color remapping method. 
For each image modality we used 56 images without a target, 26 with a green target, and 26 
with a blue target. Seven subjects participated in the experiment. Each subject participated 
in 5 sessions in which the stimuli of each condition were shown separately. Each subject 
started the session with the Daylight condition to get acquainted with the procedure, the 
scene and the targets. The order of the remaining 4 conditions was randomized across 
subjects to compensate for possible training effects. The images were shown on a PC 
monitor with a resolution of 1600x1200 pixels (Fig. 22 gives a realistic representation of the 
display content).  
Each experimental session started by explaining the purpose of the experiment and by 
showing some example stimuli of each condition. Each trial started by presenting an image. 
The subjects were required to decide as quickly as possible whether a target was present or 
not. As soon as this decision was taken the subjects clicked the mouse button. Next, the 
image disappeared and was replaced by a low resolution equivalent of the image, consisting 
of 20x15 uniformly colored squares (to prevent subjects from searching for the target after 
responding). We registered the time between onset of the stimulus and detection (the 
response time). The subject then indicated the target location or clicked on an area outside 
the image labeled “no target found”. When the subject did not respond within 8 seconds the 
trial ended automatically. The indicated target location was used to check whether the 
subject had indeed detected the target or had seen a false target. Responses outside an 
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ellipse with horizontal diameter of 162 and vertical diameter of 386 pixels centered on the 
vertically elongated target were treated as incorrect. 
Fig. 24 shows the fraction of hits (hit-rate) for the various sensor conditions and target 
colors. Shown are the average hit-rates over subjects. Not surprisingly, performance is 
highest in the Daytime condition. As expected (see Fig. 21 and Fig. 23), performance for 
detecting the green targets is high in the visual (VIS) condition and low in the image 
intensified (II) and near-infrared (NIR) sensor conditions. Performance for detecting the blue 
targets is somewhat poorer in the single-band conditions. These targets can be detected in 
the NIR condition (reasonably well) and in the II condition (poorly), while they are hardly 
detected in the VIS condition. Detection performance for both targets is high with the false-
color dual-band sensor. Optimal fusion results in performance that equals maximum 
performance in the individual bands. The hit-rate for the green targets is somewhat lower 
for the dual-band than for the visual condition. But the hit-rate for the blue targets is 
somewhat higher for dual-band than for NIR condition. The average hit-rate of the false 
color dual band sensor (0.75) is not significantly different from the average of the hit-rate for 
green in VIS and the hit-rate for blue in NIR (0.78). This means that this fusion scheme is 
(close to) optimal. The results also show that the performance with the standard intensified 
imagery is clearly much worse than with the false-color dual-band NVG system. 
Fig. 25 shows the response times of the trials containing a target (shown are the geometric 
means over the response times, i.e. the exponent of the average log response times) for all 
conditions for the hits and misses. Note that the hits for the NIR and II modalities 
correspond primarily to the trials containing blue targets; the hits for the Visual modality 
correspond primarily to the trials containing green targets. The response times for the false 
color dual-band condition are comparable, but slightly larger than in the single-band Visual 
 

 
Fig. 24. Average (over all subjects) hit-rate (fraction of hits) for each of the 5 different image 
modalities and the 2 target colors, including the overall hit-rate (“all”). The error bars 
represent standard errors in the mean derived from the variance between subjects. 
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                                                  (a)                                                                            (b) 

Fig. 25. (a) The geometric mean (i.e. averaged in log) response times for the various image 
modalities, separated for hits and misses. (b) Relationship between the hit-rate for each 
image modality and the (geometric) mean response times for hits and misses for the two 
target colors. 

and NIR conditions. This may be due to the fact that in this condition subjects had to attend 
to two types of targets, while in the single band conditions only one of the target colors was 
apparent.  
It turns out that the response times for missed targets are comparable to the response times 
for stimuli in which no target is present. The average response times for missed targets do 
not correlate with the hit-rates (see Fig. 25b). In contrast, the average response times for hits 
is highly correlated with the hit-rate (r = -0.90, p < 0.01, see Fig. 25b). This indicates that 
when targets are more easily detected, the hit-rate goes up and the response time goes 
down. 
Summarizing, the results show that performance of the false color dual-band system is just 
as good as the maximum performance that can be attained using either of its individual 
bands (visual and near-infrared). While the green targets can well be detected with the 
visual band of the system alone, the blue targets are mostly missed when subjects have to 
rely on this band alone. In contrast, the blue targets can well be detected with the near-
infrared band, but the green targets are then largely missed in this modality. With the false 
color dual-band image modality both targets can be detected. The total number of targets 
detected in the dual band image modality is the same as the total number of targets detected 
in the visual and modality plus the number of targets detected in the near-infrared image 
modality. This indicates that the fused color representation of the two bands is (nearly) 
optimal from a perceptual standpoint. 

5. Conclusion 
In this chapter we presented three prototype portable multiband realtime night vision 
systems that deploy lookup table based real-time color remapping to represent nighttime 
imagery with a natural daylight color appearance and to enhance the detection of 
camouflaged targets.  The systems provide respectively registered dynamic visual and near-
infrared (Gecko system), visual and longwave infrared (Viper system), or visual, near-
infrared and thermal images (TRICLOBS system). These co-aligned images can either be 
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Fig. 24. Average (over all subjects) hit-rate (fraction of hits) for each of the 5 different image 
modalities and the 2 target colors, including the overall hit-rate (“all”). The error bars 
represent standard errors in the mean derived from the variance between subjects. 
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as good as the maximum performance that can be attained using either of its individual 
bands (visual and near-infrared). While the green targets can well be detected with the 
visual band of the system alone, the blue targets are mostly missed when subjects have to 
rely on this band alone. In contrast, the blue targets can well be detected with the near-
infrared band, but the green targets are then largely missed in this modality. With the false 
color dual-band image modality both targets can be detected. The total number of targets 
detected in the dual band image modality is the same as the total number of targets detected 
in the visual and modality plus the number of targets detected in the near-infrared image 
modality. This indicates that the fused color representation of the two bands is (nearly) 
optimal from a perceptual standpoint. 

5. Conclusion 
In this chapter we presented three prototype portable multiband realtime night vision 
systems that deploy lookup table based real-time color remapping to represent nighttime 
imagery with a natural daylight color appearance and to enhance the detection of 
camouflaged targets.  The systems provide respectively registered dynamic visual and near-
infrared (Gecko system), visual and longwave infrared (Viper system), or visual, near-
infrared and thermal images (TRICLOBS system). These co-aligned images can either be 
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stored on on-board harddisks, or they can be processed in real-time by a (notebook) 
computer. The real-time color remapping that gives the multiband signals their intuitive 
color appearance is implemented as a lookup table transform. The results of some 
laboratory experiments and preliminary field trials clearly demonstrate the benefits of these 
systems for surveillance, navigation and target detection tasks. The resulting false color 
nightvision images closely resemble daytime images (thus providing situational awareness), 
while thermal targets are clearly distinguishable (thus enabling target detection).  
The practical value of these systems will be further evaluated in extensive field trials using 
realistic surveillance and navigation scenarios. Also, the systems will be used to collect a 
nighttime imagery in a wide range of environmental conditions and various geographical 
locations. This imagery will be used in laboratory observer studies and will serve as input to 
computational and information theoretic measures (Chen et al., 2008; Chen & Blum, 2009; 
Tsagaris, 2009; Tsagaris & Anastassopoulos, 2006) to assess the operational benefits of the 
new color mapping procedures. Further improvements of the color mapping method that 
will  be implemented next are the optimization of color contrast (Yin et al., 2010) and image 
dehazing based in information from the near-infrared channels (Schaul et al., 2009). 
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1. Introduction 
Two-dimensional phase unwrapping is the task of recovering the true phase values, given 
the wrapped phase values in an image. Phase unwrapping arises in several branches of 
applied optics, physics, medicine and engineering, such as homomorphic signal processing, 
solid-state physics, optical interferometry, adaptive or compensated optics, magnetic 
resonance imaging, synthetic aperture radar interferometry, and optical and electron 
holography (Volkov & Zhu, 2003). In these applications, the measured information is 
denoted by a two-dimensional phase distribution called the wrapped phase image. In 
wrapped phase images, the phase is the interval (-π, π] or (0, 2π] due to the use of the 
mathematical arctangent function (Bone, 1991). Since this wrapped phase suffers from 2-π 
phase jumps, it is unusable until the phase discontinuities are removed. In order to 
recovering the true continuous phase values to denote real physical quantity, a phase 
unwrapping process is needed to recovering the true phase values. The procedure of phase 
unwrapping is performed by either adding or subtracting integer multiples of 2π to all 
successive pixels when a phase discontinuity encounters, which are based on some kind of 
threshold mechanism (Ghiglia et al., 1987). 
  However, many factors, such as surface discontinuities, noise, under-sampling, or shadow, 
would produce unreliable phase data, which make the recovery of the wrapped phase 
challenging. To solve the problem, many phase unwrapping algorithms have been 
developed during the last three decades. These phase unwrapping algorithms can be found 
in a very good reference book (Ghigli & Pritt, 1998) and review papers such as (Baldi  et al., 
2002; Jenkinson, 2003; Su & Chen, 2004; Zappa & Busca, 2008). In many phase unwrapping 
algorithms, a quality map, which evaluated the quality or the reliability of the phase data, is 
used for completing the phase unwrapping process. In wrapped phase images, the quality 
of a pixel is low if it is located in areas where the surface discontinuities, noise or under-
sampling exists. On the contrary, the quality of a pixel is high if it is located in areas where 
the variation of phase value is low. From the mathematical point of view, quality map is a 
matrix of the same size of phase image that assign a quality value to each pixel. The quality 
values are usually normalized in the range [0, 1], where a large value means high reliability 
of the corresponding pixel. In most phase unwrapping algorithms, a quality map is 
necessary to guide the phase unwrapping process for achieving desire results. Furthermore, 
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of the corresponding pixel. In most phase unwrapping algorithms, a quality map is 
necessary to guide the phase unwrapping process for achieving desire results. Furthermore, 
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whether the unwrapping result is satisfied, to a large extent, depends on whether the quality 
map can truly reflect the phase data quality. 
Until now there are more than ten quality maps proposed to guide the two-dimensional 
phase unwrapping. As we will see, most quality maps are based on the phase gradients or 
phase derivatives of the wrapped phase images, and thus can be obtained by edge detection 
techniques. It is well known that gradient estimation is the first step in the widely used 
three-step edge detection procedure (Meer & Georgescu, 2001). Therefore, edge detection 
techniques, which aim at identifying points at which the image brightness changes sharply, 
play important roles in two-dimensional phase unwrapping process. By means of edge 
detection techniques, new quality maps based on weighted phase gradients can be 
generated to effectively guide phase unwrapping process. 
This chapter will review the existing literature related to quality map, enlarge the family of 
quality map by using edge detection techniques. In the following Section 2, the existing quality 
maps will be reviewed, and the performance of some widely used quality maps on phase 
unwrapping will be evaluated by unwrapping three typical intractable wrapped phase 
images. Then, in Section 3, some new quality maps, which are based on existing methods, will 
be developed from a perspective of edge detection techniques. Finally, conclusions are drawn 
and directions for further research on quality maps are outlined in Section 4. 

2. Existing quality maps 
In this section we review existing quality maps that are used in phase unwrapping process. 
Some quality maps widely used in phase unwrapping process will be evaluated by 
unwrapping three typical intractable wrapped phase images.  
Most quality maps can be directly derived from wrapped phase image that is generated from 
the original measurement data, but there are some kinds of quality maps that can only be 
derived from the original measurement data, such as intensity of fringe pattern. According to 
their origin, quality maps can be divided into two categories: quality map derived from 
wrapped phase image and quality map derived from original measurement data. 

2.1 Quality map derived from wrapped phase image 
The wrapped phase images can be obtained from most of the phase measurements such as 
magnetic resonance imaging, synthetic aperture radar, adaptive optics, and optical 
interferometry. Fig. 1 shows three examples of the wrapped phase images. The first one is 
obtained by computer simulation and its corresponding real phase image is shown in Fig. 
1(a), which is 256×256 pixels in size. The image is defined by two spiral plane surfaces that 
have been tilted relative to one another (Ghigli & Pritt, 1998). The wrapped phase image of 
the Fig. 1(a) is shown in Fig. 1(b), where the phase of each pixel is wrapped into the interval 
(-π, π]. In the figure, wrapped phase image is scaled between black and white to cover the 
full dynamic range. The real phase discontinuities between the two spiral surfaces make the 
phase unwrapping intractable. Fig. 1(c) shows the wrapped phase image of an optical fiber 
connector endface, which is also 256×256 pixels in size. It is the measurement data by use of 
four step phase shifted optical interferometry (Kwon, 1984). Unlike the phase data obtained 
by computer simulation, the original real phase data cannot be given because it is unknown 
before the wrapped image is unwrapped. As we can see, the wrapped phase image is 
corrupted by salt-and-pepper noise, especially in the center of image. In addition, in this 
area the dense fringe may cause under-sampling problem. The last example shown in Fig. 
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1(d) is a curved surface with a rectangle hole obtained by computer simulation, and the 
wrapped phase image of Fig. 1(d) is shown in Fig. 1(e). The wrapped image is 100×100 
pixels in size. It is suffered from the surface discontinuities and shadow in a closed rectangle 
hole below the center of the image, and the phase along the vertical direction of image 
changes more complicated than that of image shown in Fig. 1(b). These factors make its 
phase unwrapping difficult. 
 

      
                                                   (a)                                                       (b)           

 
(c) 

       
                                                (d)                                                         (e) 

Fig. 1. (a) The spiral shear surface. (b) The wrapped phase image of Fig. 1(a). (c) The 
wrapped phase image of the optical fiber connector endface. (d) The curved surface with a 
rectangle hole. (e) The wrapped phase image of figure 1(d). 
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whether the unwrapping result is satisfied, to a large extent, depends on whether the quality 
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the Fig. 1(a) is shown in Fig. 1(b), where the phase of each pixel is wrapped into the interval 
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by computer simulation, the original real phase data cannot be given because it is unknown 
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1(d) is a curved surface with a rectangle hole obtained by computer simulation, and the 
wrapped phase image of Fig. 1(d) is shown in Fig. 1(e). The wrapped image is 100×100 
pixels in size. It is suffered from the surface discontinuities and shadow in a closed rectangle 
hole below the center of the image, and the phase along the vertical direction of image 
changes more complicated than that of image shown in Fig. 1(b). These factors make its 
phase unwrapping difficult. 
 

      
                                                   (a)                                                       (b)           
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                                                (d)                                                         (e) 

Fig. 1. (a) The spiral shear surface. (b) The wrapped phase image of Fig. 1(a). (c) The 
wrapped phase image of the optical fiber connector endface. (d) The curved surface with a 
rectangle hole. (e) The wrapped phase image of figure 1(d). 
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In this and the following sections, the three wrapped phase images will be unwrapped by a 
quality guide phase unwrapping algorithm (Flynn, 1996) using some quality maps that can 
be derived from the wrapped phase images. 

2.1.1 Pseudo-correlation map  
The pseudo-correlation map (Ghiglia & Pritt, 1998) is designed to measure the correlation of 
the wrapped phase images. The value of the quality map for pixel (m, n) is calculated 
according to 
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where ,i jψ is the wrapped phase value and the sums are evaluated in the k×k neighborhood 
centered at each pixel (m, n). Normally, k is 3 or 5 in practice. 
The pseudo-correlation map is based on the correlation of the wrapped phase image. It is 
sensitive to the noisy phase data, since the noisy regions of wrapped phase image are 
normally the low correlation regions. However, the pseudo-correlation map may mark the 
reliable regions with steep slopes as low quality regions. This is due to the low correlation of 
phase data in these regions. In this sense, a conservative strategy is chosen in this quality 
map. It is unreasonable to presume that all the low correlation areas should be marked as 
low quality. Therefore, the unwrapping results obtained by use of pseudo-correlation map 
are not always correct, especially when the wrapped phase image contains reliable regions 
with steep slopes. 
The pseudo-correlation maps of the three wrapped phase images are shown in Fig. 2(a), 2(c) 
and 2(e), respectively. 3×3 window is chosen to compute the correlation of wrapped phase 
images. The values of quality maps are normalized into [0, 1] and the low quality values are 
shown as dark pixels and the high quality values as light pixels. Fig. 2(b), 2(d) and 2(f), 
respectively, show the unwrapping results by use of quality guide algorithm and the 
pseudo-correlation maps shown respectively in Fig. 2(a), 2(c) and 2(e). The result of the 
optical fiber connector endface, which shown in Fig. 2(d), is satisfactory. The pseudo-
correlation map copes well with the intractable wrapped phase image, producing a correct 
unwrapping result. However, the other two unwrapping results, Fig. 2(b) and 2(f), are 
incorrect. The pseudo-correlation map incorrectly marks the steep surfaces of the spiral 
shear and curved surface, which are shown in Fig. 1(a) and 1(d) respectively, as low quality 
regions. Furthermore, and more importantly, the map fails to isolate the sheared planes 
from one another in spiral shear surface, and fails to isolate the closed area from other areas 
in the curved surface. These factors result in some degree of phase-unwrapping error. So we 
can say that the pseudo-correlation map is not a very good estimator of phase quality. 

2.1.2 Phase derivatives variance map 
The phase derivatives variance map (Ghiglia & Pritt, 1998) measures the statistical variance 
of the phase derivatives. The value of this map for pixel (m, n) is expressed as 
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                                                     (a)                                                     (b) 

       
                                                     (c)                                                     (d) 

       
                                                     (e)                                                     (f) 

Fig. 2. (a) Pseudo-correlation map of Fig. 1(b). (b) Unwrapping result by use of Fig. 2(a). (c) 
Pseudo-correlation map of Fig. 1(c). (d) Unwrapping result by use of Fig. 2(c). (e) Pseudo-
correlation map of Fig. 1(e). (f) Unwrapping result by use of Fig. 2(e). 
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evaluated in the k×k neighborhood centered at the pixel (m, n). 
The phase derivatives variance map can be estimated as the local sample variance of the 
phase derivatives. The map indicates the badness of the phase data. In other words, the 
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In this and the following sections, the three wrapped phase images will be unwrapped by a 
quality guide phase unwrapping algorithm (Flynn, 1996) using some quality maps that can 
be derived from the wrapped phase images. 
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are not always correct, especially when the wrapped phase image contains reliable regions 
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shown as dark pixels and the high quality values as light pixels. Fig. 2(b), 2(d) and 2(f), 
respectively, show the unwrapping results by use of quality guide algorithm and the 
pseudo-correlation maps shown respectively in Fig. 2(a), 2(c) and 2(e). The result of the 
optical fiber connector endface, which shown in Fig. 2(d), is satisfactory. The pseudo-
correlation map copes well with the intractable wrapped phase image, producing a correct 
unwrapping result. However, the other two unwrapping results, Fig. 2(b) and 2(f), are 
incorrect. The pseudo-correlation map incorrectly marks the steep surfaces of the spiral 
shear and curved surface, which are shown in Fig. 1(a) and 1(d) respectively, as low quality 
regions. Furthermore, and more importantly, the map fails to isolate the sheared planes 
from one another in spiral shear surface, and fails to isolate the closed area from other areas 
in the curved surface. These factors result in some degree of phase-unwrapping error. So we 
can say that the pseudo-correlation map is not a very good estimator of phase quality. 

2.1.2 Phase derivatives variance map 
The phase derivatives variance map (Ghiglia & Pritt, 1998) measures the statistical variance 
of the phase derivatives. The value of this map for pixel (m, n) is expressed as 
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                                                     (a)                                                     (b) 
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                                                     (e)                                                     (f) 

Fig. 2. (a) Pseudo-correlation map of Fig. 1(b). (b) Unwrapping result by use of Fig. 2(a). (c) 
Pseudo-correlation map of Fig. 1(c). (d) Unwrapping result by use of Fig. 2(c). (e) Pseudo-
correlation map of Fig. 1(e). (f) Unwrapping result by use of Fig. 2(e). 

where the terms ,
x
i jΔ  and ,

y
i jΔ are the partial derivatives of the phase, the terms ,

x
m nΔ and 

,
y
m nΔ are the averages of these partial derivatives in the k×k windows, and the sums 

evaluated in the k×k neighborhood centered at the pixel (m, n). 
The phase derivatives variance map can be estimated as the local sample variance of the 
phase derivatives. The map indicates the badness of the phase data. In other words, the 



 Vision Sensors and Edge Detection 

 

148 

more unreliable the phase data is, the higher the phase derivatives variance is. So it should 
be negated to represent goodness of the phase data. Unlike the conservative strategy used in 
the pseudo-correlation map, an aggressive strategy is adopted in the phase derivatives 
variance map. For example, in regions where the isolated noise points are located, the phase 
variation is large, but the phase derivatives variance is low. Therefore, the phase derivatives 
variance map may mark the noisy regions as high quality area, especially when the size of 
window k is large. 
The phase derivatives variance map is based on the phase derivatives of the wrapped phase 
image. However, if the phase gradients or derivatives are used directly to the construction 
of quality map, that will result in error quality map. Taking the wrapped spiral shear 
surface for example, its phase derivatives variance map is shown in Fig. 3. As it can be seen, 
the 2π phase jumps lines, i.e. the horizontal lines, in the wrapped phase are detected and 
marked as low quality. Actually, the phase jump lines are not unreliable regions, so the 
quality map shown in Fig. 3 does not reflect the real quality of the wrapped phase, which 
will result in an incorrect unwrapping result.  
 

 
Fig. 3. Phase derivatives variance map of wrapped spiral shear surface without removing 2π 
phase jumps. 

Therefore, before phase derivatives are obtained, a pre-processing is needed to remove the 
2π phase jump lines. When the phase jump lines are detected, 2π is added or subtracted to 
remove the phase jumps. Then the phase derivatives can be extracted, and thus the quality 
map can be obtained. For all quality maps based on the phase derivatives, the pre-
processing is need to avoid the influence of 2π phase jumps  
The phase derivatives variance maps of the three wrapped phase images are shown in Fig. 
4(a), 4(c) and 4(e), respectively. A 3×3 window is chosen to compute the variance of the 
phase derivatives. These quality maps are different from the pseudo-correlation maps 
shown in Fig. 2(a), 2(c), and 2(e). For example, where the phase exhibits a constant variation, 
such as that induced by the spiral shear surface, the phase derivative variance is zero while 
the pseudo-correlation is nonzero. The variance operation to phase gradient makes the 
quality map more reliable. 
Fig. 4(b), 4(d) and 4(f) respectively, show the unwrapping results by means of quality guide 
algorithm and the phase derivatives variance maps shown respectively in Fig. 4(a), 4(c) and 
4(e). The unwrapping result of the spiral shear surface shown in Fig. 4(b) is just the same as 
the phase data shown in Fig. 1(a). The unwrapping result is quite good. The unwrapping 
result of the optical fiber connector endface shown in Fig. 4(d) is defective since there is 
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some mistake in the center of the map. This may result from the salt- and-pepper noise. Fig. 
4(f) shows the unwrapping result of the curved surface wrapped phase. The result is also 
unsatisfactory, since the quality map fails to strictly differentiate the reliable and unreliable 
areas due to the presence of the real phase discontinuities and shadow. 
 

       
                                                     (a)                                                      (b) 

        
                                                     (c)                                                      (d) 

        
                                                     (e)                                                      (f) 

Fig. 4. (a) Phase derivatives variance map of Fig. 1(b). (b) Unwrapping result by use of Fig. 
4(a). (c) Phase derivatives variance map of Fig. 1(c). (d) Unwrapping result by use of Fig. 4(c). 
(e) Phase derivatives variance map of Fig. 1(e). (f). Unwrapping result by use of Fig. 4(e). 
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more unreliable the phase data is, the higher the phase derivatives variance is. So it should 
be negated to represent goodness of the phase data. Unlike the conservative strategy used in 
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Fig. 3. Phase derivatives variance map of wrapped spiral shear surface without removing 2π 
phase jumps. 
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such as that induced by the spiral shear surface, the phase derivative variance is zero while 
the pseudo-correlation is nonzero. The variance operation to phase gradient makes the 
quality map more reliable. 
Fig. 4(b), 4(d) and 4(f) respectively, show the unwrapping results by means of quality guide 
algorithm and the phase derivatives variance maps shown respectively in Fig. 4(a), 4(c) and 
4(e). The unwrapping result of the spiral shear surface shown in Fig. 4(b) is just the same as 
the phase data shown in Fig. 1(a). The unwrapping result is quite good. The unwrapping 
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some mistake in the center of the map. This may result from the salt- and-pepper noise. Fig. 
4(f) shows the unwrapping result of the curved surface wrapped phase. The result is also 
unsatisfactory, since the quality map fails to strictly differentiate the reliable and unreliable 
areas due to the presence of the real phase discontinuities and shadow. 
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                                                     (e)                                                      (f) 

Fig. 4. (a) Phase derivatives variance map of Fig. 1(b). (b) Unwrapping result by use of Fig. 
4(a). (c) Phase derivatives variance map of Fig. 1(c). (d) Unwrapping result by use of Fig. 4(c). 
(e) Phase derivatives variance map of Fig. 1(e). (f). Unwrapping result by use of Fig. 4(e). 
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2.1.3 Maximum phase gradient map 
The maximum phase gradient map (Ghiglia & Pritt, 1998) is defined as the largest phase 
gradient value in the k×k neighborhood of each pixel. The value of the quality map for pixel 
(m, n) is calculated according to 

 , , ,max{max{| |},max{| |}}yx
m n i j i jz = Δ Δ , (3) 

where the terms ,
x
i jΔ  and ,

y
i jΔ are the partial derivatives of the phase and the max are 

evaluated in k×k neighborhoods of the given pixel. 
The maximum phase gradient map takes the largest phase gradient value in the k×k 
neighborhood of each pixel as quality value. Therefore, it also denotes the badness rather than 
the goodness of the phase data, just as the phase derivatives variance map. The disadvantage 
of the maximum phase gradient map is that the reliable regions with steep slopes will be 
masked as low quality, which is similar to that of pseudo-correlation map. However, the map 
has an advantage that it is sensitive to the noisy phase data. In the regions where the noisy 
phase is present, the gradients tend to be large and thus the quality values are low.  
The maximum phase gradient map of the three wrapped phase data are shown respectively 
in Fig. 5(a), 5(c) and 5(e). A 3×3 window is chosen to compute the maximum phase gradient. 
Fig. 5(b), 5(d) and 5(f) respectively show unwrapping results by use of quality guide 
algorithm and the maximum phase gradient maps shown respectively in Fig. 5(a), 5(c) and 
5(e). Because the quality maps fail to mark the quality of reliable regions with steep slopes 
as high values, the unwrapping results of the spiral shear surface and curved phase are 
defective, as that shown in Fig. 5(b) and 5(f). The unwrapping result of the optical fiber 
connector endface shown in Fig. 5(d) is correct, due to the maximum phase gradient map’s 
high sensitivity on the noisy phase area. 

2.1.4 Derivative variance correlation map 
The derivative variance correlation map (Lu et al., 2005; Lu et al., 2006; Lu et al., 2007) is a 
hybrid from two commonly used quality maps, the pseudo-correlation map and the derivative 
variance map. The value of the quality map for pixel (m, n) is calculated according to 
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where ,i jψ is the wrapped phase values，the terms ,
x
i jΔ  and ,

y
i jΔ are the partial derivatives 

of the phase, the term ,
x
m nΔ and ,

y
m nΔ are the averages of these partial derivatives in the k×k 

windows, and the sums evaluated in the k×k neighborhood centered at each pixel (m, n). 
Normally k is 3 or 5 in practice. 
Because the derivative variance correlation map is a hybrid from the pseudo-correlation 
map and the derivative variance map, it has advantages of both of the latter two maps. For 
example, it is sensitive to the noisy phase data like the pseudo-correlation map, and works 
well in steep areas. 
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                                                  (e)                                                        (f) 

Fig. 5. (a) Maximum phase gradient map of Fig. 1(b). (b) Unwrapping result by use of Fig. 
5(a). (c) Maximum phase gradient map of Fig. 1(c). (d) Unwrapping result by use of  
Fig. 5 (c). (e) Maximum phase gradient map of Fig. 1(e). (f) Unwrapping result by use of  
Fig. 5 (e). 
The derivative variance correlation maps of the three wrapped phase data are shown in Fig. 
6(a), 6(c) and 6(e), respectively. A 3×3 window is chosen to compute the value of quality 
map. Fig. 6(b), 6(d) and 6(f) respectively show the unwrapping results by means of quality 
guide algorithm and the derivative variance correlation maps shown respectively in Fig. 
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5(e). Because the quality maps fail to mark the quality of reliable regions with steep slopes 
as high values, the unwrapping results of the spiral shear surface and curved phase are 
defective, as that shown in Fig. 5(b) and 5(f). The unwrapping result of the optical fiber 
connector endface shown in Fig. 5(d) is correct, due to the maximum phase gradient map’s 
high sensitivity on the noisy phase area. 

2.1.4 Derivative variance correlation map 
The derivative variance correlation map (Lu et al., 2005; Lu et al., 2006; Lu et al., 2007) is a 
hybrid from two commonly used quality maps, the pseudo-correlation map and the derivative 
variance map. The value of the quality map for pixel (m, n) is calculated according to 
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where ,i jψ is the wrapped phase values，the terms ,
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y
i jΔ are the partial derivatives 
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x
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m nΔ are the averages of these partial derivatives in the k×k 

windows, and the sums evaluated in the k×k neighborhood centered at each pixel (m, n). 
Normally k is 3 or 5 in practice. 
Because the derivative variance correlation map is a hybrid from the pseudo-correlation 
map and the derivative variance map, it has advantages of both of the latter two maps. For 
example, it is sensitive to the noisy phase data like the pseudo-correlation map, and works 
well in steep areas. 
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Fig. 5. (a) Maximum phase gradient map of Fig. 1(b). (b) Unwrapping result by use of Fig. 
5(a). (c) Maximum phase gradient map of Fig. 1(c). (d) Unwrapping result by use of  
Fig. 5 (c). (e) Maximum phase gradient map of Fig. 1(e). (f) Unwrapping result by use of  
Fig. 5 (e). 
The derivative variance correlation maps of the three wrapped phase data are shown in Fig. 
6(a), 6(c) and 6(e), respectively. A 3×3 window is chosen to compute the value of quality 
map. Fig. 6(b), 6(d) and 6(f) respectively show the unwrapping results by means of quality 
guide algorithm and the derivative variance correlation maps shown respectively in Fig. 
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6(a), 6(c) and 6(e). The unwrapping results are satisfactory. So we can see that the map can 
truly reflect wrapped phase quality, ensuring a more reliable unwrapping result. However, 
it is more complicated than some other maps.  
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Fig. 6. (a) Derivative variance correlation map of Fig. 1(b). (b) Unwrapping result by use of 
Fig. 6(a). (c) Derivative variance correlation map of Fig. 1(c). (d) Unwrapping result by use 
of Fig. 6(c). (e) Derivative variance correlation map of Fig. 1(e). (f). Unwrapping result by 
use of Fig. 6(e). 
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2.1.5 Some other quality maps 
There are also a few quality maps derived from wrapped phase data other than the quality 
maps mentioned above. The residue-vector map (Karout et al., 2007) is a quality map which 
combines both the concept of the quality maps and the knowledge of the residues and their 
branch cuts. The windowed Fourier filtering quality map (Qian et al., 2008) is based on the 
filtered amplitude derived by the windowed Fourier filtering. There are also hybrid quality 
maps which are combination of the existing two maps. For example, the quality map 
combined by pseudo-correlation map and maximum phase gradient map (Lu et al., 2004), 
and the second differences of the phase data can also be used to construct quality maps 
(Bone, 1991). 

2.2 Quality maps derived from original measurement data 
2.2.1 Correlation map 
The correlation map (Ghiglia & Pritt, 1998) is defined by the correlation coefficients of the 
interferometric synthetic aperture radar (IFSAR) data. The value of the quality map for pixel 
(m, n) is calculated according to 
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where ,i jv  is the complex conjugate of ,i jv , ,i ju and ,i jv are the corresponding complex 
values from the two images after interpolation. The sum is performed in the k×k 
neighborhood centered at each pixel (m, n). 
The correlation map is the best estimator of the quality of the phase data extracted from the 
IFSAR. However, it cannot be derived from the wrapped phase data, which is the most 
commonly used phase data in the phase unwrapping algorithms. 

2.2.2 Fringe modulation map 
The fringe modulation map is based on the intensity modulation of the fringe pattern, which 
is the original measurement data in optical interferometry. Therefore, the quality map can 
be extracted from the phase shifted interferogram. The value of the fringe modulation 
quality map for pixel (m, n) is calculated according to 
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where N is the number of phase shifts employed in the measurement processing, and Ii is 
the intensity distribution of the ith phase shifting fringe pattern. 
The fringe modulation map can be derived by the phase shifted interferogram or a single 
fringe pattern from which the wrapped phase can be obtained. In phase-shift interferometry, 
at least 3 fringe patterns are needed to obtain the quality map. That is to say, in equation (6) 
N is required no less than 3. In this case, the corresponding quality map is called as the 
temporal fringe modulation map (Su et al., 1993). However, when the fringe pattern 
projected on an object surface is sinusoidal, a quality map can be derived from a single 
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6(a), 6(c) and 6(e). The unwrapping results are satisfactory. So we can see that the map can 
truly reflect wrapped phase quality, ensuring a more reliable unwrapping result. However, 
it is more complicated than some other maps.  
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Fig. 6. (a) Derivative variance correlation map of Fig. 1(b). (b) Unwrapping result by use of 
Fig. 6(a). (c) Derivative variance correlation map of Fig. 1(c). (d) Unwrapping result by use 
of Fig. 6(c). (e) Derivative variance correlation map of Fig. 1(e). (f). Unwrapping result by 
use of Fig. 6(e). 
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branch cuts. The windowed Fourier filtering quality map (Qian et al., 2008) is based on the 
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maps which are combination of the existing two maps. For example, the quality map 
combined by pseudo-correlation map and maximum phase gradient map (Lu et al., 2004), 
and the second differences of the phase data can also be used to construct quality maps 
(Bone, 1991). 

2.2 Quality maps derived from original measurement data 
2.2.1 Correlation map 
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The correlation map is the best estimator of the quality of the phase data extracted from the 
IFSAR. However, it cannot be derived from the wrapped phase data, which is the most 
commonly used phase data in the phase unwrapping algorithms. 
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is the original measurement data in optical interferometry. Therefore, the quality map can 
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where N is the number of phase shifts employed in the measurement processing, and Ii is 
the intensity distribution of the ith phase shifting fringe pattern. 
The fringe modulation map can be derived by the phase shifted interferogram or a single 
fringe pattern from which the wrapped phase can be obtained. In phase-shift interferometry, 
at least 3 fringe patterns are needed to obtain the quality map. That is to say, in equation (6) 
N is required no less than 3. In this case, the corresponding quality map is called as the 
temporal fringe modulation map (Su et al., 1993). However, when the fringe pattern 
projected on an object surface is sinusoidal, a quality map can be derived from a single 
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fringe pattern. The value of the quality can be obtained by using equation (6) where N 
equals 1. Accordingly, the quality map is named as the spatial fringe modulation map 
(Quan et al., 2003).  
The fringe modulation map is regarded as a kind of reliable and robust map. However, like 
the correlation map, it cannot be directly extracted from the wrapped phase data. Therefore, it 
cannot be used to guide phase unwrapping when the original measurement data are not 
available. 

3. Quality maps derived by the edge detecting techniques 
As we can see, several kinds of quality maps are based on the phase derivatives, such as the 
phase derivative variance map, the maximum phase gradient map and the derivative 
variance correlation map. The phase derivatives reflect the phase qualities to some extent 
and play important roles in the construction of quality maps. As that mentioned in section 1, 
the phase derivatives can be obtained by edge detection techniques. Some new quality maps 
based on weighted phase gradients can be generated by means of edge detection techniques. 
Strictly speaking, the process of obtaining the quality map based on phase derivatives or 
gradients in section 2 also contains the edge detection techniques. The edge detection masks 
are the first order phase derivatives, which are shown in Fig. 7. They are the simplest masks 
in edge detection techniques. In this figure, “X” denotes the horizontal direction and “Y” the 
vertical direction, and the underlined elements indicates the origin of the mask. Beyond that, 
there are some other commonly used edge detection masks(Gonzalez, 2002). Masks of size 
2×2 are shown in Fig. 8(a), which are very simple masks in edge detection named as Roberts  
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Fig. 7.  The masks of first-order differential operator. The underlined elements in the two 
masks indicate the location of origin. 
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Fig. 8. (a) The masks of Roberts operators. (b) The masks of Prewitt operators. (c) The masks 
of modified Prewitt operators. (d) The masks of Sobel operators. (e) The masks of modified 
Sobel operators. The underlined elements in these masks indicate the location of origin. 
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operators. The masks of Prewitt operators and its modified form are shown in Fig. 8(b) and 
Fig. 8(c), respectively. The Prewitt operators have the strongest responses along the Fig. 8(c), 
respectively. The Prewitt operators have the strongest responses along the horizontal and 
vertical direction, but the modified Prewitt operators are more suitable for detecting 
diagonal edges. The masks of Sobel operators and its modified form are shown in Fig. 8(d) 
and Fig. 8(e), respectively. Because the masks shown in Fig. 8 can be seen as the weighted 
forms of the masks shown in Fig. 7, new weighted quality maps can be developed by means 
of these edge detection operators. In this section, two weighted quality maps derived by the 
edge detecting techniques will be presented. 

3.1 Weighted phase derivatives variance maps 
Weighted phase derivatives variance maps can be generated from the equation (2), in which 
the value of ,

x
i jΔ  and ,

y
i jΔ  and is obtained by use of the operators shown in Fig. 8. As that 

mentioned in section 2, a pre-processing is needed to remove the 2π phase jump lines before  
the weighted versions of ,

x
i jΔ  and ,

y
i jΔ  can be obtained. 

The masks of Prewitt operators are chosen to generate the weighted phase derivatives 
variance map. The quality maps of the wrapped phase images shown in Fig. 1(b), 1(c) and 
1(e), are shown in Fig. 9(a), 9(c) and 9(e), respectively. The corresponding unwrapping result 
by use of the quality guide algorithm and the weighted phase derivatives variance map, are 
shown in Fig. 9(b), 9(d) and 9(f) respectively. The unwrapping results of the optical fiber 
connector endface and the curved surface is quite right though there may be a little defective 
in some regions. The unwrapping result of the spiral shear surface is also correct, although it 
looks different from the original phase data shown in Fig. 1(a). This is because that the two 
surfaces of the spiral shear surface, which are tilted relative to one another, are unwrapped 
separately in the process of phase unwrapping. There may be 2kπ phase difference between 
the two unwrapped surfaces, but it can be eliminated by add the known phase difference to 
one of the unwrapped surface. In Fig. 9(b), the two surfaces are both unwrapped correctly, 
so it can be thought as a good unwrapping result. When compare the results with the 
unwrapping results shown in Fig. 4(b), 4(d) and 4(f), we can find that the results of the spiral 
shear surface are correct, while the results of the optical fiber connector endface and the 
curved phase in Fig. 9 are much better than that shown in Fig. 4(d) and 4(f). Therefore, 
suitable masks of edge detection operators can be utilized to improve the quality of the 
unwrapping results.  

3.2 Weighted maximum phase gradient map 
Another new quality map generated by means of edge detection techniques is the weighted 
maximum phase gradient map. Like the phase derivatives variance map, the maximum 
phase gradient map is based on the phase derivatives. Thus the edge detection techniques 
can be utilized to enlarge its family. Weighted maximum phase gradient maps can be 
generated from the equation (3), in which the value of ,

x
i jΔ  and ,

y
i jΔ is obtained by use of the 

operators shown in Fig. 8. A pre-processing is also needed to remove the 2π phase jump 
lines before the weighted versions of ,

x
i jΔ  and ,

y
i jΔ  can be obtained. 
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fringe pattern. The value of the quality can be obtained by using equation (6) where N 
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(Quan et al., 2003).  
The fringe modulation map is regarded as a kind of reliable and robust map. However, like 
the correlation map, it cannot be directly extracted from the wrapped phase data. Therefore, it 
cannot be used to guide phase unwrapping when the original measurement data are not 
available. 
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Strictly speaking, the process of obtaining the quality map based on phase derivatives or 
gradients in section 2 also contains the edge detection techniques. The edge detection masks 
are the first order phase derivatives, which are shown in Fig. 7. They are the simplest masks 
in edge detection techniques. In this figure, “X” denotes the horizontal direction and “Y” the 
vertical direction, and the underlined elements indicates the origin of the mask. Beyond that, 
there are some other commonly used edge detection masks(Gonzalez, 2002). Masks of size 
2×2 are shown in Fig. 8(a), which are very simple masks in edge detection named as Roberts  
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Fig. 8. (a) The masks of Roberts operators. (b) The masks of Prewitt operators. (c) The masks 
of modified Prewitt operators. (d) The masks of Sobel operators. (e) The masks of modified 
Sobel operators. The underlined elements in these masks indicate the location of origin. 
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operators. The masks of Prewitt operators and its modified form are shown in Fig. 8(b) and 
Fig. 8(c), respectively. The Prewitt operators have the strongest responses along the Fig. 8(c), 
respectively. The Prewitt operators have the strongest responses along the horizontal and 
vertical direction, but the modified Prewitt operators are more suitable for detecting 
diagonal edges. The masks of Sobel operators and its modified form are shown in Fig. 8(d) 
and Fig. 8(e), respectively. Because the masks shown in Fig. 8 can be seen as the weighted 
forms of the masks shown in Fig. 7, new weighted quality maps can be developed by means 
of these edge detection operators. In this section, two weighted quality maps derived by the 
edge detecting techniques will be presented. 

3.1 Weighted phase derivatives variance maps 
Weighted phase derivatives variance maps can be generated from the equation (2), in which 
the value of ,

x
i jΔ  and ,

y
i jΔ  and is obtained by use of the operators shown in Fig. 8. As that 

mentioned in section 2, a pre-processing is needed to remove the 2π phase jump lines before  
the weighted versions of ,

x
i jΔ  and ,

y
i jΔ  can be obtained. 

The masks of Prewitt operators are chosen to generate the weighted phase derivatives 
variance map. The quality maps of the wrapped phase images shown in Fig. 1(b), 1(c) and 
1(e), are shown in Fig. 9(a), 9(c) and 9(e), respectively. The corresponding unwrapping result 
by use of the quality guide algorithm and the weighted phase derivatives variance map, are 
shown in Fig. 9(b), 9(d) and 9(f) respectively. The unwrapping results of the optical fiber 
connector endface and the curved surface is quite right though there may be a little defective 
in some regions. The unwrapping result of the spiral shear surface is also correct, although it 
looks different from the original phase data shown in Fig. 1(a). This is because that the two 
surfaces of the spiral shear surface, which are tilted relative to one another, are unwrapped 
separately in the process of phase unwrapping. There may be 2kπ phase difference between 
the two unwrapped surfaces, but it can be eliminated by add the known phase difference to 
one of the unwrapped surface. In Fig. 9(b), the two surfaces are both unwrapped correctly, 
so it can be thought as a good unwrapping result. When compare the results with the 
unwrapping results shown in Fig. 4(b), 4(d) and 4(f), we can find that the results of the spiral 
shear surface are correct, while the results of the optical fiber connector endface and the 
curved phase in Fig. 9 are much better than that shown in Fig. 4(d) and 4(f). Therefore, 
suitable masks of edge detection operators can be utilized to improve the quality of the 
unwrapping results.  

3.2 Weighted maximum phase gradient map 
Another new quality map generated by means of edge detection techniques is the weighted 
maximum phase gradient map. Like the phase derivatives variance map, the maximum 
phase gradient map is based on the phase derivatives. Thus the edge detection techniques 
can be utilized to enlarge its family. Weighted maximum phase gradient maps can be 
generated from the equation (3), in which the value of ,

x
i jΔ  and ,
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i jΔ is obtained by use of the 

operators shown in Fig. 8. A pre-processing is also needed to remove the 2π phase jump 
lines before the weighted versions of ,
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i jΔ  can be obtained. 
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Fig. 9. (a) Weighted phase derivatives variance map of Fig. 1(b) generated by use of Prewitt 
operators. (b) Unwrapping result by use of Fig. 9(a). (c) Weighted phase derivatives variance 
map of Fig. 1(c) generated by use of Prewitt operators. (d) Unwrapping result by use of Fig. 
9 (c). (e) Weighted phase derivatives variance map of Fig. 1(e) generated by use of Prewitt 
operators. (f) Unwrapping result by use of Fig. 9(e). 
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Fig. 10. (a) The weighted maximum phase gradient map of Fig. 1(b) generated by use of 
diagonal versions of Prewitt operators. (b) Unwrapping result by use of Fig. 10(a). (c) The 
weighted maximum phase gradient map of Fig. 1(c) generated by use of diagonal versions 
of Prewitt operators. (d) Unwrapping result by use of Fig. 10(c). (e) The weighted maximum 
phase gradient map of Fig. 1(e) generated by use of diagonal versions of Prewitt operators. 
(f). Unwrapping result by use of Fig. 10(e). 
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Fig. 9. (a) Weighted phase derivatives variance map of Fig. 1(b) generated by use of Prewitt 
operators. (b) Unwrapping result by use of Fig. 9(a). (c) Weighted phase derivatives variance 
map of Fig. 1(c) generated by use of Prewitt operators. (d) Unwrapping result by use of Fig. 
9 (c). (e) Weighted phase derivatives variance map of Fig. 1(e) generated by use of Prewitt 
operators. (f) Unwrapping result by use of Fig. 9(e). 
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Fig. 10. (a) The weighted maximum phase gradient map of Fig. 1(b) generated by use of 
diagonal versions of Prewitt operators. (b) Unwrapping result by use of Fig. 10(a). (c) The 
weighted maximum phase gradient map of Fig. 1(c) generated by use of diagonal versions 
of Prewitt operators. (d) Unwrapping result by use of Fig. 10(c). (e) The weighted maximum 
phase gradient map of Fig. 1(e) generated by use of diagonal versions of Prewitt operators. 
(f). Unwrapping result by use of Fig. 10(e). 
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In this section, the masks in Fig. 8(c), i.e. the diagonal version of Prewitt operators, are 
chosen. The weighted maximum phase gradient map of the three wrapped phase data are 
shown in Fig. 10(a), 10(c) and 10(e), respectively. Fig. 10(b), 10(d) and 10(f) show the 
unwrapping results by use of quality guide algorithm and the weighted maximum phase 
gradient maps shown respectively in Fig. 10(a), 10(c) and 10(e). Compare the unwrapping 
results with that shown in Fig. 5(b), 5(d) and 5(f) respectively. The unwrapping results of the 
optical fiber connector endface and the curved phase are just the same as that shown in Fig. 
5(d) and 5(f), where the result of curved surface is defective. The unwrapping result of the 
spiral shear surface is quite good and much better than the result shown in Fig. 5(b), though 
there exist 2kπ phase difference between the two surfaces, which makes the unwrapping 
result looks different from the original phase data as that shown in Fig. 9(b). Therefore, 
because the diagonal versions of Prewitt operators have strong responses along the diagonal 
directions, the operators are the suitable masks that can be used in the case of the spiral 
shear surface unwrapping. 

4. Conclusion and future work 
Quality maps play very important role in two-dimensional phase unwrapping process. In 
this chapter we have introduced the quality map generation method using the edge 
detection techniques. Existing quality maps which are commonly used in phase unwrapping 
process have been reviewed, and we find that each quality map has its advantages and 
disadvantages. Edge detection techniques are utilized to enlarge the family of quality maps 
due to the fact that most quality maps are based on the phase gradients or phase derivatives 
of the wrapped phase images. Some new quality maps, which are weighted versions of 
existing quality maps, are developed by means of edge detection operators. The 
unwrapping results show that appropriate edge detection operator can make the quality 
map more reliable.  
Although more than ten quality maps have been proposed and we enlarge their family by 
constructing a few of new quality maps in this work, there are still some challenges related 
to the quality maps in future work. For example, although we can use edge detection 
techniques to obtain a new quality map, we still need to evaluate its reliability. Until now, 
there are no recognized standards in this important area. The common evaluation method is 
evaluating the unwrapping results of some kinds of intractable wrapped phase images. 
However, the wrapped phase images are chosen arbitrarily and the visual evaluation of 
unwrapping results may not be accurate. Therefore, the standard wrapped phase images 
should be identified for evaluating the reliability of quality map, and the uniform standard 
should be developed for judging the reliability of quality map. Besides, new quality maps 
based on new features of the wrapped phase image, such as phase correlation or the entropy 
of phase data, should be developed to make up for the deficiencies of the existing quality 
maps. 
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1. Introduction 
Different classes of filters have been proposed for removing noise from gray scale and 
colour images (Astola & Kuosmanen, 1997; Bovik, 2000; Kotropoulos & Pitas, 2001). They 
are classified into several categories depending on specific applications. Linear filters are 
efficient for Gaussian noise removal but often distort edges and have poor performance 
against impulsive noise. Nonlinear filters are designed to suppress noise of different nature, 
they can remove impulsive noise and guarantee detail preservation. Rank order based filters 
have received considerable attention due to their inherent outlier rejection and detail 
preservation properties (Astola & Kuosmanen, 1997; Bovik, 2000; Kotropoulos & Pitas, 2001, 
Plataniotis & Venetsanopoulos, 2000). 
In the last decade, many useful colour processing techniques based on vector processing 
have been investigated due to the inherent correlation that exists between the image 
channels compared to traditional component-wise approaches (Plataniotis & 
Venetsanopoulos, 2000). The fuzzy filters are designed by fuzzy rules to remove noise and 
to provide edge and fine detail preservation (Russo & Ramponi, 1994). The fuzzy filter 
depends on the fuzzy rules and the defuzzification process, which combines the effects of 
applied rules to produce an only output value (Russo & Ramponi, 2004, Schulte et al., 2007). 
The vector directional filters employ the directional processing taking pixels as vectors, and 
obtaining the output vector that shows a less deviation of its angles under ordering criteria 
in respect to the other vectors (Trahanias & Venetsanopoulos, 1996). 
This chapter presents the capability features of Fuzzy Directional (FD) filter to remove 
impulse noise from corrupted colour images (Ponomaryov, et al., 2010). The FD filter uses 
directional processing, where vectorial order statistics are employed, and fuzzy rules that 
are based on gradient values and angle deviations to determine, if the central pixel is noisy 
or present local movement. Simulation results in colour images and video sequences have 
shown that the restoration performance is better in comparison with other known filters. In 
Addition, we present the Median M-Type L- (MML) filter for the removal of impulsive noise 
in gray-scale and colour image processing applications (Gallegos-Funes et al., 2008, Toledo-
Lopez et al., 2008). The proposed scheme is based on modification of L- filter that uses the 
MM (Median M-type) -estimator to calculate the robust point estimate of the pixels within 
the filtering window. The proposed filter uses the value of the central pixel within the 
filtering window to provide the preservation of fine details and the redescending M-
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are based on gradient values and angle deviations to determine, if the central pixel is noisy 
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shown that the restoration performance is better in comparison with other known filters. In 
Addition, we present the Median M-Type L- (MML) filter for the removal of impulsive noise 
in gray-scale and colour image processing applications (Gallegos-Funes et al., 2008, Toledo-
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MM (Median M-type) -estimator to calculate the robust point estimate of the pixels within 
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estimators combined with the calculation of the median estimator to obtain the sufficient 
impulsive noise rejection. Influence functions into the M-estimator can be used to provide 
better impulsive noise suppression. Simulation results in gray-scale and colour images have 
demonstrated that the proposed filters consistently outperform other filters by balancing the 
tradeoff between noise suppression, fine detail preservation, and color retention. 

2. Proposed filters 
2.1 Fuzzy Directional filter 
In the proposed Fuzzy Directional filter, a 3x3 sliding window is used in the centre of a 
bigger one of size 5x5. Last window is employed to calculate values in different directions 
with respect to neighbour pixels in the initial 3x3 window. Each a neighbour of a central 
pixel ( , , )R G B

c c c cx x x xβ =  (in the RGB colour space) corresponds to one of the eight directions, 
as it is illustrated in Figure 1. We introduce the basic gradient values ( )( , ) ,k l x i jβ∇  for central 
pixel and its neighbours as follows (Ponomaryov, et al., 2010),  

 ( , ) ( , ) ( , ), ( , ) ( , ) ( , )C Ck l x i j x i j x i k j l x i j x i k j lβ β β β β⎡ ⎤∇ = ∇ + + = − + +⎣ ⎦   (1) 

where each one of the (k,l) pairs corresponds to each one of eight directions of (i,j) point, 
, ( 1,0, 1)k l∈ − + , and ( , , )R G Bβ = . 

 

 
Fig. 1. Basic and related (r1, r2, r3, r4) gradient values. 

We introduce subindex ( , , , , , , , )N E S W NW NE SE SWγ =  the related gradient values can be 
calculated in relation to the basic gradient direction. According with Figure 1, the basic 
gradient value for SE direction is written as, 

 (1,1) ( , ) SEx i jβ β∇ = ∇  (2) 

and its four related gradients values are given by, 
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(3) 

We propose two fuzzy sets: the fuzzy set SMALL that characterizes the membership level 
for a gradient value when it is sufficiently small, this infers in membership value as a big 
value. So, if a membership level is ≈1 this implies that there is no movement and/or noise 
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presence in a sample to be processed. In opposite case, we use the fuzzy set BIG. We also 
introduce the fuzzy angular deviation for a single component leaving another two out of the 
calculus.  
For example, for R component in SE direction, the basic angular deviation is written as, 

 (1,1) ( , )R R
SEx i jθ θ=  (4) 

and its related angular deviations are given by, 

1(0,2) ( )( 1, 1) ,R R
SE rx i jθ θ− + =

2(0,2) ( )( 1, 1) ,R R
SE rx i jθ θ+ − =

3( 1,1) ( )( 1, 1) ,R R
SE rx i jθ θ− − + =

4(1, 1) ( )( 1, 1)R R
SE rx i jθ θ− + − =  (5) 

To characterize the fuzzy gradients and fuzzy angular deviation values, the following 
Gaussian membership functions are employed (Ponomaryov, et al., 2007) 

 { }2 2
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exp ( ) / 2 , otherwise
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γ σ
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 (7) 

We propose fuzzy rules that are based on gradient values and angle deviations to 
determine: if the central component is noisy or present local movement. Table 1 presents the 
proposed fuzzy rules employ in the FD filter (Ponomaryov, et al., 2010). 
 
Fuzzy Rule 1 defines the fuzzy angular-gradient value FF β

γ
β
γ θ∇ . 

By other words, the membership level of central pixel β
cx  in fuzzy set BIG in γ  direction: 
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Fuzzy rule 2 defines the fuzzy noise factor as βr . 
IF F

N
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Table 1. Fuzzy rules used in the proposed FD filter. 
From Fuzzy rule 1, a central pixel is considered noisy or belongs to fuzzy set BIG if its basic 
values with respect to related values satisfy to: 

( ) ( )3 4
( ) ( ) ( )r rG G Gβ β β

γ γ γ∇ ≈ ∇ ≈ ∇ , ( ) ( )3 4
( ) ( ) ( )r rG G Gβ β β
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γ γ γ∇ ≠ ∇ ≠ ∇ , and ( ) ( )1 2
( ) ( ) ( )r rG G Gβ β β

γ γ γθ θ θ≠ ≠  
(8) 

The value rβ  in Fuzzy rule 2 denotes the noise level of central pixel formed with the 
neighbour components. The big membership levels are given in the fuzzy set BIG, so, this 
rule shows when a noisy or fine detail pixel is present. If 0r Rβ ≥  the filtering is realized 
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estimators combined with the calculation of the median estimator to obtain the sufficient 
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presence in a sample to be processed. In opposite case, we use the fuzzy set BIG. We also 
introduce the fuzzy angular deviation for a single component leaving another two out of the 
calculus.  
For example, for R component in SE direction, the basic angular deviation is written as, 
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proposed fuzzy rules employ in the FD filter (Ponomaryov, et al., 2010). 
 
Fuzzy Rule 1 defines the fuzzy angular-gradient value FF β

γ
β
γ θ∇ . 

By other words, the membership level of central pixel β
cx  in fuzzy set BIG in γ  direction: 
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Fuzzy rule 2 defines the fuzzy noise factor as βr . 
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Table 1. Fuzzy rules used in the proposed FD filter. 
From Fuzzy rule 1, a central pixel is considered noisy or belongs to fuzzy set BIG if its basic 
values with respect to related values satisfy to: 

( ) ( )3 4
( ) ( ) ( )r rG G Gβ β β

γ γ γ∇ ≈ ∇ ≈ ∇ , ( ) ( )3 4
( ) ( ) ( )r rG G Gβ β β

γ γ γθ θ θ≈ ≈ , 

( ) ( )1 2
( ) ( ) ( )r rG G Gβ β β

γ γ γ∇ ≠ ∇ ≠ ∇ , and ( ) ( )1 2
( ) ( ) ( )r rG G Gβ β β

γ γ γθ θ θ≠ ≠  
(8) 

The value rβ  in Fuzzy rule 2 denotes the noise level of central pixel formed with the 
neighbour components. The big membership levels are given in the fuzzy set BIG, so, this 
rule shows when a noisy or fine detail pixel is present. If 0r Rβ ≥  the filtering is realized 
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using fuzzy membership levels obtained for the fuzzy set BIG, otherwise output filtered 
pixel is: o Cy xβ β= . In these Fuzzy rules AND A B A B⊗ = , ( )1 min ,A B A B⊗ = , 

( )max ,A B A B⊕ = , and PB and QS denote that value P is BIG and value Q is SMALL, 
respectively. 
The fuzzy values are the weights for each a neighbour component and should be taken in 
consideration before using fuzzy membership levels. To obtain the fuzzy weights in the 
filtering algorithm, we propose to determine the membership level for the fuzzy set FREE 
(free noise) as: 1F F Fβ β β

γ γ γυ θ= −∇ . The weight value for central component in fuzzy set FREE is 

chosen as: 3 1F rβ β
γυ = − . 

The filtering procedure is performed selecting one of the neighbour components to avoid 
the detail and edge smoothing. Besides, it is proposed the filtering of a sample using their 
fuzzy weights and according to their ordering properties. The component values of the 3x3 
sample are ordered as follows:  

 ( )1 (2) (9)x x xβ β β
γ γ γ≤ ≤ ≤  and ( )1 (2) (9)β β β

γ γ γυ υ υ≤ ≤ ≤  (9) 

Equation (9) permits to withdraw the components that are sufficiently far with respect to a 
central value. For this reason, we define ( )jsum ββ

γυ= , where j decreases from 9 to 1; 

decreasing of j is valid until ( 3 1 ) 2Fsum rβ β β
γγ

υ> + −∑ . When j satisfies this condition, 
the j-th ordered value is selected as the output filtered value, 

 ( )j
ox yβ β

γ =   (10) 

Finally, the values for Gaussian membership functions were found according to optimal 
values of PSNR and MAE criteria, these values are given by: σ12=1000, med1=60 and med2=10 
for fuzzy gradient sets BIG and SMALL, respectively, σ22=0.8, med3=0.1 and med4=0.8 for 
fuzzy angular deviation sets BIG and SMALL, respectively, and R0=0.3.  

2.2 Median M-type L-filter 
To improve the robustness of L-filter, we propose to use the Median M-type (MM) –
estimator (Gallegos-Funes et al., 2008), 

 { }( ){ }medM ,  1, ,i iMED X X MED i Nε ψ= − = …X   (11) 

where Xk is data sample, ψ  is the normalized influence function ψ : ( ) ( )X X Xψ ψ= , and XN 
is the primary data sample. The Median estimator provides good properties of impulsive 
noise suppression and the M-estimator uses different influence functions to provide better 
robustness, for these reasons it can be expected that the properties of combined MM-
estimator could be better in comparison with Median and M- estimators. 

The representation of L-filter is ( )
1

N

L i i
i

F a X
=

= ⋅∑  where X(i) is the ordered data sample, 

i=1,…,N, 
1

1 0
( ) ( )

i N

i i N
a h d h dλ λ λ λ

−
= ∫ ∫  are the weight coefficients, and h(λ) is a probability 

density function (Kotropoulos & Pitas, 2001).  
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To introduce the MM-estimator (11) in the scheme of L-filter, we present the ordered data 
sample of L-filter as function of an influence function (Gallegos-Funes et al., 2008), 

 ( )
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L i i i
i

F a X Xψ
=

= ⋅ ⋅∑   (12) 

where ( )22 1N L= +  is the filtering window size, ( )i iX Xψ ⋅  is the ordered data sample, 

( ) ,
0, otherwise
c u r

u
⎧ ≤⎪= ⎨
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ψ  is the influence function, c is a constant, and r is connected with the 

range of ( )uψ . 
Therefore, the MML filter can be obtained by the combination of L-filter (12) and the MM-
estimator (11) (Gallegos-Funes et al., 2008), 
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where { }( )MED−i iX ψ X X  are the selected pixels in accordance with the influence function 

used in a sliding filter window and aMED is the median of coefficients ai used as a scale 
constant.  
To improve the properties of noise suppression of MML filter we use an impulsive noise 
detector (IND) (Aizenberg et al., 2003), 
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where Xc is the central pixel in the filtering window, s>0 and U≥0 are thresholds, N is the 
length of the data, and D=rank(Xc) is the rank of element Xc.  
The coefficients ai are computed using the Laplacian and Uniform distribution functions in 

h(λ) and the simple cut cut( ) [ , ]
,

( ) 1 ( )
0, otherwiser r r
X X r
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 and Andrew’s sine 
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sin ,
( )
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X r X r

X
π
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⎪⎩

 influence functions are used in the filtering scheme, where 

the parameter r is connected with restrictions on the range of ( )Xψ . 

3. Experimental results 
To compare the performance of noise suppression of various filters the peak signal to noise 
ratio (PSNR) was used, and for the evaluation of fine detail preservation the mean absolute 
error (MAE) was computed (Astola & Kuosmanen, 1997; Bovik 2000), 

 ( )2255
PSNR 10 log dB

MSE

⎡ ⎤
⎢ ⎥= ⋅
⎢ ⎥⎣ ⎦

  (15) 
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where 
1 1 2
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1 ˆMSE ( , ) ( , )
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i j
f i j F i j

MN

− −

= =

⎡ ⎤= −⎣ ⎦∑ ∑  is the mean square error, ( ),f i j  is the original 

image; ( )ˆ ,F i j  is the restored image; and M, N is the size of the image. 
We also compute the mean chromaticity error (MCRE) for evaluation of chromaticity 
retention, and the normalized color difference (NCD) for quantification of color perceptual 
error (Plataniotis & Venetsanopoulos, 2000): 

 
1 2

2

2

, , 1 2
1 1
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p p M M
= =
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M M M M
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i j i j

E i j E i j
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where ,i jp  and ,ˆ i jp  are the intersection points of ( ),f i j  and ( )ˆ ,F i j  with the plane defined 

by the Maxwell triangle, respectively,  ( ) ( ) ( )
2

1 22 2 2* * *( , ) ( , )Luv L
E i j L i j u v⎡ ⎤Δ = Δ + Δ + Δ⎢ ⎥⎣ ⎦

 is the 

norm of color error, ΔL*, Δu*, and Δv* are the difference in the L*, u*, and v* components, 
respectively, between the two color vectors that present the filtered image and uncorrupted 

original one for each a pixel (i,j) of an image, ( ) ( ) ( )
2

1 22 2 2* * * *( , )Luv L
E i j L u v⎡ ⎤= + +⎢ ⎥⎣ ⎦

 is the 

norm or magnitude of the uncorrupted original image pixel vector in the L*u*v* space, and 

2L
⋅  is the L2-vector norm. 

3.1 Noise suppression in colour images using the FD filter 
The FD filter has been evaluated, and its performance has been compared with INR 
(Schulte, et al., 2007), MMKNN (Ponomaryov, et al., 2007), AMNF, WMKNN, and 
ABSTMKNN (Ponomaryov, et al., 2005b), VMF_SAR (Smolka, et al., 2003), WVDF1 (Lukac, 
2003) and AVMF (Lukac, et al., 2004) filters.  
The 320x320 colour images Lena and Mandrill, were corrupted by impulsive noise in wide 
range of intensity, from 5% to 30%. Tables 2 and 3 expose the criteria NCD and MAE, 
respectively. From these tables one can see that FD filter has the best chromaticity and fine 
details preservation performance in low and middle impulsive noise levels.  
Figure 2 presents the processed images for image Mandrill illustrating visual filtering 
performance. Fig. 2b-c exhibit the filtered images produced by the VMF_SAR and INR 
filters, respectively. Fig. 2d shows the proposed FD filtered image, where it appears to have 
a very good subjective quality in comparison with Fig. 2b-c. 

3.2 Noise suppression in video colour sequences using the FD filter 
Proposed 3D-FD filter uses two colour frames of a video sequence (past and present) which 
are processed agree to the movement and noise levels present by central sample pixel in  
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Algorithm 5% 15% 20% 30% 
INR filter 1.66 1.76 1.84 2.14 
MMKNN filter 1.68 1.91 2.06 2.51 
AMNF filter 1.95 2.12 2.22 2.52 
WMKNN filter 0.96 1.66 2.07 3.02 
ABSTMKNN filter 2.03 2.26 2.40 2.83 
VMF_SAR filter 0.44 1.34 1.78 2.78 
LWVDF filter 1.87 2.34 2.65 3.62 
WVDF1 filter 1.56 2.13 2.50 3.67 
AVMF filter 0.96 1.40 1.65 2.35 
Proposed FD filter 0.37 0.84 1.15 2.06 

Table 2. NCDx102 criteria in colour image “Lena” for different impulsive noise intensity. 

 
Algorithm 5% 15% 20% 30% 
INR filter 4.41 4.70 4.98 5.98 
MMKNN filter 4.41 5.06 5.54 6.92 
AMNF filter 5.03 5.45 5.74 6.69 
WMKNN filter 2.55 4.75 6.12 9.23 
ABSTMKNN filter 5.15 5.78 6.22 7.49 
VMF_SAR filter 1.19 3.69 5.00 8.09 
LWVDF filter 5.10 6.36 7.34 10.5 
WVDF1 filter 4.27 5.82 7.03 10.9 
AVMF filter 2.39 3.62 4.40 6.53 
Proposed FD filter 0.91 2.17 3.11 5.96 

Table 3. MAE criteria in colour image “Lena” for different impulsive noise intensity. 

present frame. It is employed a 5x5x2 sliding window processing formed by past and 
present frames. Difference magnitude values between these frames are computed to obtain a 
parameter indicating pixel magnitude differences in central pixel respect to neighbouring 
pixels (Ponomaryov et al., 2009). 
The same procedure developed in Section 2.1 should be repeated to compute the basic and 
four related values in any direction. As in 2D Fuzzy Directional Filter (Sec. 2.1), calculate the 
absolute difference directional values of a central pixel with respect to its neighbours as an 
angle variance value between present and past frames. Using angle variance value, we can 
present the absolute variance directional values to the SE (basic) direction only. 
Let employ the same Gaussian membership functions for fuzzy values as in the equations 6 
and 7, introducing the fuzzy gradient-directional difference values. Numerical experiments 
realized in this case have given the values used for the functions described in equations 6 
and 7: with med3=0.1, med4=0.01 according to the best PSNR and MAE criteria results. 



 Vision Sensors and Edge Detection 

 

166 

 
1 1

0 0

1 ˆMAE ( , ) ( , )
M - N

i j
f i j F i j

MN

−

= =

= −∑∑   (16) 

where 
1 1 2

0 0

1 ˆMSE ( , ) ( , )
M N

i j
f i j F i j

MN

− −

= =

⎡ ⎤= −⎣ ⎦∑ ∑  is the mean square error, ( ),f i j  is the original 

image; ( )ˆ ,F i j  is the restored image; and M, N is the size of the image. 
We also compute the mean chromaticity error (MCRE) for evaluation of chromaticity 
retention, and the normalized color difference (NCD) for quantification of color perceptual 
error (Plataniotis & Venetsanopoulos, 2000): 

 
1 2

2

2

, , 1 2
1 1

ˆMCRE
M M

i j i j
i j L

p p M M
= =

= −∑∑  (17) 

 
1 2 1 2

2 2

*

1 1 1 1
NCD ( , ) ( , )

M M M M

Luv LuvL L
i j i j

E i j E i j
= = = =

= Δ∑∑ ∑∑   (18) 

where ,i jp  and ,ˆ i jp  are the intersection points of ( ),f i j  and ( )ˆ ,F i j  with the plane defined 

by the Maxwell triangle, respectively,  ( ) ( ) ( )
2

1 22 2 2* * *( , ) ( , )Luv L
E i j L i j u v⎡ ⎤Δ = Δ + Δ + Δ⎢ ⎥⎣ ⎦

 is the 

norm of color error, ΔL*, Δu*, and Δv* are the difference in the L*, u*, and v* components, 
respectively, between the two color vectors that present the filtered image and uncorrupted 

original one for each a pixel (i,j) of an image, ( ) ( ) ( )
2

1 22 2 2* * * *( , )Luv L
E i j L u v⎡ ⎤= + +⎢ ⎥⎣ ⎦

 is the 

norm or magnitude of the uncorrupted original image pixel vector in the L*u*v* space, and 

2L
⋅  is the L2-vector norm. 

3.1 Noise suppression in colour images using the FD filter 
The FD filter has been evaluated, and its performance has been compared with INR 
(Schulte, et al., 2007), MMKNN (Ponomaryov, et al., 2007), AMNF, WMKNN, and 
ABSTMKNN (Ponomaryov, et al., 2005b), VMF_SAR (Smolka, et al., 2003), WVDF1 (Lukac, 
2003) and AVMF (Lukac, et al., 2004) filters.  
The 320x320 colour images Lena and Mandrill, were corrupted by impulsive noise in wide 
range of intensity, from 5% to 30%. Tables 2 and 3 expose the criteria NCD and MAE, 
respectively. From these tables one can see that FD filter has the best chromaticity and fine 
details preservation performance in low and middle impulsive noise levels.  
Figure 2 presents the processed images for image Mandrill illustrating visual filtering 
performance. Fig. 2b-c exhibit the filtered images produced by the VMF_SAR and INR 
filters, respectively. Fig. 2d shows the proposed FD filtered image, where it appears to have 
a very good subjective quality in comparison with Fig. 2b-c. 

3.2 Noise suppression in video colour sequences using the FD filter 
Proposed 3D-FD filter uses two colour frames of a video sequence (past and present) which 
are processed agree to the movement and noise levels present by central sample pixel in  
 

Video Colour Denoising using Fuzzy and Directional Techniques   

 

167 

Algorithm 5% 15% 20% 30% 
INR filter 1.66 1.76 1.84 2.14 
MMKNN filter 1.68 1.91 2.06 2.51 
AMNF filter 1.95 2.12 2.22 2.52 
WMKNN filter 0.96 1.66 2.07 3.02 
ABSTMKNN filter 2.03 2.26 2.40 2.83 
VMF_SAR filter 0.44 1.34 1.78 2.78 
LWVDF filter 1.87 2.34 2.65 3.62 
WVDF1 filter 1.56 2.13 2.50 3.67 
AVMF filter 0.96 1.40 1.65 2.35 
Proposed FD filter 0.37 0.84 1.15 2.06 

Table 2. NCDx102 criteria in colour image “Lena” for different impulsive noise intensity. 

 
Algorithm 5% 15% 20% 30% 
INR filter 4.41 4.70 4.98 5.98 
MMKNN filter 4.41 5.06 5.54 6.92 
AMNF filter 5.03 5.45 5.74 6.69 
WMKNN filter 2.55 4.75 6.12 9.23 
ABSTMKNN filter 5.15 5.78 6.22 7.49 
VMF_SAR filter 1.19 3.69 5.00 8.09 
LWVDF filter 5.10 6.36 7.34 10.5 
WVDF1 filter 4.27 5.82 7.03 10.9 
AVMF filter 2.39 3.62 4.40 6.53 
Proposed FD filter 0.91 2.17 3.11 5.96 

Table 3. MAE criteria in colour image “Lena” for different impulsive noise intensity. 

present frame. It is employed a 5x5x2 sliding window processing formed by past and 
present frames. Difference magnitude values between these frames are computed to obtain a 
parameter indicating pixel magnitude differences in central pixel respect to neighbouring 
pixels (Ponomaryov et al., 2009). 
The same procedure developed in Section 2.1 should be repeated to compute the basic and 
four related values in any direction. As in 2D Fuzzy Directional Filter (Sec. 2.1), calculate the 
absolute difference directional values of a central pixel with respect to its neighbours as an 
angle variance value between present and past frames. Using angle variance value, we can 
present the absolute variance directional values to the SE (basic) direction only. 
Let employ the same Gaussian membership functions for fuzzy values as in the equations 6 
and 7, introducing the fuzzy gradient-directional difference values. Numerical experiments 
realized in this case have given the values used for the functions described in equations 6 
and 7: with med3=0.1, med4=0.01 according to the best PSNR and MAE criteria results. 
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Fig. 2. Filtered images with 15% of impulsive noise: a) Degraded image, b) VMF_SAR, c) 
INR, d) FD. 

Designed fuzzy rules in processing video sequences are oriented to detect the movement 
and noise levels presence in central component pixel. First fuzzy rule characterizes the 
confidence in the movement and noise in a central component pixel due to neighbouring 
fuzzy values in any γ direction. Second fuzzy rule characterizes the confidence in the no 
movement and no noise in a central pixel in any γ direction. So, the distinctness of the 
different area (uniform region, edge or fine detail), where a current central pixel component 
belongs, can be realized using this rule. Third fuzzy rule characterizes the movement-noisy 
factor and estimate the movement and noise levels presence in a central pixel component 
using fuzzy values determined for all directions. Finally the fourth fuzzy rule is designed to 
characterize no movement-no noisy factor, allowing the estimation of no movement and no 
noise levels presence in a central component pixel using fuzzy values determined for all 
directions (Ponomaryov et al., 2009). 
The parameters obtained using fuzzy rules can be applied efficiently in a decision scheme 
(Ponomaryov et al., 2009), where decisions if a central component pixel is noisy, or is in 
movement, or is a free one of both mentioned events, are treated in the denoising scheme. 
Fuzzy Rules from the first to the fourth determine the novel algorithm based on the fuzzy 
parameters. Filtering output of the scheme proposed consists of the j-th component pixel, 
which satisfies to the proposed conditions, guaranteeing that edges and fine details should 
be preserved according to the sort ordering criterion sketched in the scheme by the past and 
present frames. 
Non-stationary noise left by this algorithm, should be processed with the application of the 
Proposed FD filter developed in Section 2.1. This application permits decreasing the 
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influence of the non-stationary noise left by the video processing scheme. As we are 
processing a video frame that is free from noise, the Proposed FD filter parameters changes 
slightly (Ponomaryov et al., 2009). 
Algorithms used as comparative are robust and were obtained in literature presenting good 
results; the 3D-MF is an adaptation to process video sequences of the Median Filter, 3D-
VMF is an adaptation of the Vector Median Filter (Astola et al., 1990). 3D-GVDF is a 
directional algorithm designed to process colour images; we present an adaptation of this 
filter in 3D environment (Trahanias et al., 1996). Finally the 3D-ATM is an adaptation of the 
Alpha-trimmed-mean algorithm in video colour sequence processing (Zlokolica et al., 2002). 
In Table 4 is shown the results of the proposed 3D filter, the best results are given for our 
design in MAE criterion for all noise level percentages, and in PSNR criterion the best 
results are present until 30% of impulsive noise. Video sequence used is the well known 
Flowers, and results are the averaging for 100 video frames forming Flowers video colour 
sequence. In Table 5, for Flowers video colour sequence in the averaging results, the best 
performance was obtained for our methodology. This criterion characterizes colour 
chromaticity properties preservation. For all noise levels is achieved the best results. 
 

3D-FD filter 3D-MF 3D-VMF 3D-GVDF 3D-ATM (%) 
noise MAE PSNR MAE PSNR MAE PSNR MAE PSNR MAE PSNR 

5 2,13 29,52 6,65 26,83 6,63 26,78 7,44 25,56 6,80 26,85 
15 3,37 27,76 7,19 26,22 7,14 26,20 7,71 25,29 7,35 26,27 
30 6,08 25,04 8,59 24,77 8,49 24,69 9,74 23,24 8,88 24,79 
40 9,15 22,82 10,8 22,82 10,6 22,70 11,4 22,08 11,5 22,85 

Table 4. Averaging Criteria Results for Flowers sequence 
 

(%)Noise 3D-FD filter 3D-MF 3D-VMF 3D-GVDF 3D-ATM 
5 0,004 0,014 0,014 0,016 0,014 

15 0,007 0,015 0,015 0,016 0,015 
25 0,010 0,017 0,017 0,018 0,017 
30 0,012 0,018 0,018 0,020 0,018 

Table 5. Averaging NCD Criterion Results for Flowers sequence 

In Figure 3, for 10th Miss America video frame, the best subjective results are perceived for 
our proposal, showing better chromaticity properties preservation as well as edge and fine 
details, against the other ones as can be perceived in zoomed face regions of the Miss 
America colour frame. 

3.3 Noise suppression in gray scale images using the MML filter 
The described MML filter was implemented with Simple cut (S) and Andrew’s sine (A) 
influence functions, Laplacian (L) and Uniform (U) distribution functions, and with (D) and 
without (ND) impulsive noise detector and its performance has been compared with 
adaptive center weighted median (ACWM) (Chen & Wu, 2001), rank order mean (ROM) (Abreu 
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Fig. 2. Filtered images with 15% of impulsive noise: a) Degraded image, b) VMF_SAR, c) 
INR, d) FD. 
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In Figure 3, for 10th Miss America video frame, the best subjective results are perceived for 
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details, against the other ones as can be perceived in zoomed face regions of the Miss 
America colour frame. 
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The described MML filter was implemented with Simple cut (S) and Andrew’s sine (A) 
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Fig. 3. a) 10th Miss America original image, b) Zoomed region analyzed, c) 15% of impulsive 
noise, d) Proposal 3D-FD filter, e) 3D-MF; f) 3D-VMF, g) 3D-GVDF, h) 3D-VATM. 
 

Impulsive noise = 20% Speckle noise = 0.1 
Filters 

PSNR MAE PSNR MAE 
ACWM 25.56 8.75 17.73 26.42 
ROM 25.20 9.11 21.67 15.78 
MFrost 21.62 15.80 22.52 12.82 
NLMS-L 22.03 12.83 20.45 14.68 
SFWO 23.01 10.24 22.07 14.20 
MML (S,L,ND) 24.79 9.11 21.14 17.19 
MML (S,U,ND) 25.59 7.38 22.84 13.48 
MML (A,L,ND) 24.68 9.33 21.05 17.46 
MML (A,U,ND) 25.59 7.40 22.82 13.49 
MML (SA,L,D) 24.97 8.05 21.16 17.04 
MML (S,U,D) 25.47 7.02 22.68 13.71 
MML (A,L,D) 24.40 7.85 21.57 16.21 
MML (A,U,D) 25.94 6.96 22.70 13.87 

Table 6. Performance results in image “Lena” obtained by different filters. 

et al., 1996), Normalized Least Mean Squares L (NLMS-L) (Kotropoulos & Pitas, 1996), Sampled-
Function Weighted Order (SFWO) (Öten & De Figueiredo, 2002), and Modified Frost (MFrost) 
(Lukin et al., 1998) filters.  
Table 6 shows the performance results for “Lena” image degraded with 20% of impulsive 
noise and σ2=0.1 of speckle noise. From Table 6, the proposed MML filter provides better 
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noise suppression and detail preservation than other filters in the most of cases. Figure 4 
exhibits the filtered images in the case of 20% of impulsive noise. The restored image by 
proposed MML filter appears to have better subjective quality in comparison with other 
filters. 
 

 
Fig. 4. Filtered images with 20% of impulsive noise: a) Degraded image, b) ROM, c) ACWM, 
d) MML (A,L,ND). 

3.4 Noise suppression in colour images using the MML filter 
The described MML filter was adapted to work in colour imaging (Toledo-Lopez et al., 
2008). The proposed filter is called as Vector Median M-type L (VMML) -filter and its 
performance has been compared with vector median (VM), basic vector directional (BVD), 
generalized vector directional (GVD), adaptive GVD (AGVD), double window GVD (GVD_DW), 
multiple non-parametric (MAMNFE) (Plataniotis et al., 1997) (Trahanias et al., 1996), vector 
median M-type K-nearest neighbor (VMMKNN) (Ponomaryov, et al., 2005), and fast adaptive 
similarity VM (FASVM) (Smolka et al., 2003) filters. 
The 320x320 “Lena” color image was corrupted by 20% of impulsive noise. Table 7 shows 
that the performance criteria are often better for the proposed VMML filter in comparison 
when other filters in the most of cases. The visual results are given in Figure 5. 

3.5 Noise suppression in colour SAR images using the MML filter 
To demonstrate the performance of the proposed filtering scheme we applied it for filtering 
of SAR images, which naturally have speckle noise. The filtering results are presented in 
Figure 6 for “Rio Grande” SAR image. It is possible to see analyzing the filtering images that 
speckle noise can be efficiently suppressed, while the sharpness and fine feature are 
preserved using the proposed filter with and without noise detector. 

a) b)

c) d) 
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exhibits the filtered images in the case of 20% of impulsive noise. The restored image by 
proposed MML filter appears to have better subjective quality in comparison with other 
filters. 
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The described MML filter was adapted to work in colour imaging (Toledo-Lopez et al., 
2008). The proposed filter is called as Vector Median M-type L (VMML) -filter and its 
performance has been compared with vector median (VM), basic vector directional (BVD), 
generalized vector directional (GVD), adaptive GVD (AGVD), double window GVD (GVD_DW), 
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median M-type K-nearest neighbor (VMMKNN) (Ponomaryov, et al., 2005), and fast adaptive 
similarity VM (FASVM) (Smolka et al., 2003) filters. 
The 320x320 “Lena” color image was corrupted by 20% of impulsive noise. Table 7 shows 
that the performance criteria are often better for the proposed VMML filter in comparison 
when other filters in the most of cases. The visual results are given in Figure 5. 

3.5 Noise suppression in colour SAR images using the MML filter 
To demonstrate the performance of the proposed filtering scheme we applied it for filtering 
of SAR images, which naturally have speckle noise. The filtering results are presented in 
Figure 6 for “Rio Grande” SAR image. It is possible to see analyzing the filtering images that 
speckle noise can be efficiently suppressed, while the sharpness and fine feature are 
preserved using the proposed filter with and without noise detector. 
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Algorithm PSNR MAE MCRE NCD 
VM 21.15 10.73 0.035 0.038 
BVD 20.41 12.72 0.043 0.045 
GVD 20.67 11.18 0.038 0.040 
AGVD 22.01 11.18 0.028 0.036 
GVDF_DW 22.59 10.09 0.028 0.039 
MAMNFE 22.67 9.64 0.027 0.035 
VMMKNN (S) 23.15 10.00 0.033 0.034 
VMMKNN (A) 23.07 10.01 0.033 0.035 
FASVM 24.80 5.00 0.025 0.017 
VMML (S,L,ND) 25.81 6.49 0.026 0.016 
VMML (S,U,ND) 25.88 5.53 0.026 0.026 
VMML (A,L,ND) 25.88 7.00 0.026 0.015 
VMML (A,U,ND) 26.52 5.36 0.022 0.015 
VMML (S,L,D) 26.46 2.90 0.023 0.027 
VMML (S,U,D) 26.47 2.79 0.023 0.025 
VMML (A,L,D) 26.59 3.00 0.022 0.029 
VMML (A,U,D) 26.73 2.74 0.021 0.025 

Table 7. Comparative restoration results for 20% impulsive noise for colour image “Lena” 
 

 
Fig. 5. Subjective visual qualities of restored colour image “Lena”, (a) Original test image 
“Lena”, (b) Input noisy image (with 20% of impulsive noise), (c) FASVM filtering image, (d) 
VMMKNN filtered image, (e) Proposed VMML filtering image (S,E,ND), and (f) Proposed 
VMML filtering image (S,E,D). 
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Fig. 6. Visual results of despeckled SAR image. a) Original image “Manzano”, 2m 
resolution, Ku Band SAR, 15GHz, vertical polarization, source Sandia National Lab., b) 
Despeckled image from (a) with the proposed VMML filter (S,U,D). 
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4. Conclusions 
The proposed FD filter connects two commonly used in colour imaging techniques: 
directional processing where vector order statistics are employed, and fuzzy logic 
procedures that applied membership values found for pixels to be processed. FD filter has 
presented good performance in terms of noise suppression, edge and fine detail 
preservation, and chromaticity preservation properties, as well in visual subjective analysis. 
The proposed MML filter is able to remove impulsive noise and preserve the edges and 
details in gray scale and colour imaging. The proposed MML filter uses the robust MM-
estimator and utilizes an impulsive noise detector to provide better noise suppression, detail 
preservation, and in the case of colour imaging, provides better color retention. The VMML 
filter has demonstrated better quality of image processing, both in visual and analytical 
sense in comparison with different known colour image processing algorithms. 
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1. Introduction    
We have developed a 3D ultrasound imaging system involving computations for use in 
medical diagnostic applications [1,2]. This system enables us to observe 3D images of 
moving objects for each transmission. Therefore, we can acquire a 3D image sequence at a 
high frame rate. Fig. 1 shows a 3D image reconstructed by our 3D ultrasound imaging 
system. In the pork block, a needle is inserted as a marker.  
In the present system, a 3D image reconstruction algorithm is implemented by using the C 
language software (SW). When processing is performed by a personal computer (PC) with 
Pentium 4 2.53 [GHz] CPU and DDR512 [MB] memory, the latency for generating a 3D 
image is approximately 40 s. As apparent from the above latency value, it would be difficult 
to realize high-speed image reconstruction by employing a SW implementation approach.  
Reduction in the processing time is one of the most important issues in practical applications. 
As a solution to this issue, we have investigated the HW implementation of the algorithm. 
 

 
                                      (a) Pork block                             (b) Reconstructed 3D image 

(Image size: a cube of dimensions 70 × 70 × 70 mm) 
Fig. 1. Three-dimensional image reconstructed by our system. 
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Presently, FPGA is mainly utilized to implement algorithms in various applications such as 
radio telescopes [3], streaming computations [4], and neurocomputing [5]. The reason for 
using FPGA is that it enables us to design flexible HW at a low cost by using a 
reconfiguration function. Thus, we decided to employ the HW implementation approach 
and used FPGA as the target device.   
In this paper, we first present the 3D image reconstruction algorithm and then describe the 
processing system and HW architecture. Next, we search critical path delay in the HW and 
the modify the path to accelerate raising the maximum frequency. Finally, we evaluate the 
performance (latency required for a 3D image output) and the scale of the synthesized HW. 

2. Principle of ultrasound transmission and reception 
Ultrasound waves are simultaneously transmitted from NT (must be in powers of 2) 
transmitters and the reflected echo waveforms are detected by NR receivers from two-
dimensional (2D) transducer arrays. We use sinusoidal waves of frequency f0 modulated by 
a system of Walsh functions synchronized by a clock signal. 
The period of the clock signal Δt is equal to an integral multiple of the sine wave period 1/f0. 
The transmitting and receiving processes are repeated at a constant period. The 
transmission codes corresponding to the transmitters are changed in every transmission and 
reception cycle. At the p-th transmission and reception cycle, the transmission signal 
corresponding to the i-th (i = 0, 1, 2, ... , NT-1) transmitter at  xT j and the waveform detected 
by the j-th (j = 0, 1, 2, ... , NR-1) receiver at xRi are denoted by ( )( )p

ju t  and ( )( )p
ir t , 

respectively. In order to simplify the discussion, the origins (t = 0) of these functions are 
fixed at the starting positions of each transmitting pulse.  
The pulse transmitted from the i-th transmitter in the p-th cycle is given as 

                          ( ) ( )
T 1

( ) T
0

T

 ( ) 0

   0                                 t 0,  

N
p i p k

i k
w f t k t t N t

u t
t N t

−

⊕
=

⎧
⎪ ⋅ − ⋅ Δ ≤ ≤ Δ

= ⎨
⎪ < > Δ⎩

∑   (1) 

where 

                                  0sin(2 )             0
( )

0                         0
f t t t

f t
t , t t

π ≤ ≤ Δ⎧⎪= ⎨ < > Δ⎪⎩
  (2) 

is a single sinusoidal pulse of frequency f0, wnm denotes the (n, m) component of the  
NT × NT  Hadamard matrix (to simplify the equation, the column and row numbers are 
indexed from 0 to N–1), and ⊕ denotes the dyadic sum, i.e., the modulo 2 addition for every 
corresponding bit of binary numbers. Fig. 2 shows a schematic diagram of ultrasound 
transmission and reception in which the coded wavefront generated by Walsh functions is 
employed. 

3. Principle of image reconstruction 
The equations given below represent a mathematical model that can be used for image 
reconstruction. A sequence of complex pixel values, s(p)( x ), corresponding to the position 
vector x  is given by 
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Fig. 2. Schematic drawing of the coded wavefront generated by Walsh functions. 
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where τ i and τ j denote the sound propagation delays between the position x  and the 
transducers, the symbol * indicates complex conjugate, xi and xj represent the position 
vectors of the i-th transmitter and j-th receiver, respectively, and c  is the speed of sound. 
Fig. 3 shows the concept of image reconstruction. 
The delay between positions x  and ix  is given by 
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−
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and is computed according to the following approximation: 
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 1 2 2sin ( / )x y Rθ −= + ,  (8) 

and 

                              1tan ( / )y xϕ −=   (9) 

represent the polar coordinate of a position in 3D space, 2 2
i i ir x y= + and iϕ gives the polar 

coordinate of the i-th element in the array plane. Fig. 4 shows the geometry of the transducer 
array and the image space. 
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Fig. 4. Geometry of the array and imaged region. 
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When it is known that the object is stationary, a single image can be obtained as an 
accumulation of the complex image sequence: 

                                                          ( ) ( )
2

( )p

p
I s= ∑x x .  (10)  

4. Image reconstruction algorithm 
The image reconstruction algorithm [6] involves the use of matched filter banks; it is 
generally composed of the following operations: a beamforming operation by delay and 
sum (D&S) and a matching operation by cross-correlation. The operations are performed in 
the frequency domain. Cross-correlation is performed by FFT, complex multiplications, and 
IFFT [7]. Frequency domain beamforming is computationally efficient [8,9]. Additionally, it 
is advantageous for HW implementation [9]. First, beamforming and cross-correlation in the 
frequency domain are performed by simple multiplications. Consequently, these 
computations can be performed with lesser computational complexity than that in the time 
domain. Second, the implementation of the frequency domain beamformer requires lesser 
hardware resource than that required in the time domain. The frequency domain 
beamformer requires few complex multipliers, while the time domain beamformer requires 
FIR filters by MACs (Multiply and ACcumulation). The time domain beamformer requires 
more HW resources because the FIR filter must contain more taps to achieve high 
throughput. Further, for HW implementation on an FPGA it is difficult to obtain a large 
number of taps with the limited FPGA resources. On the other hand, the frequency domain 
beamformer requires few complex multipliers for high throughput. Thus, the resource 
utilization is lesser than that in the time domain. Consequently, the HW architecture can 
provide high cost performance. Fortunately, the FPGA selected as the target device provides 
many high-performance dedicated multipliers; it is suitable for the HW implementation on 
the FPGA to utilize the multipliers for frequency domain image reconstruction. 
From the above discussion, it is efficient for the HW to perform the operation in the 
frequency domain.  
A schematic diagram of the operation is shown in Fig. 5. The filters compute the cross-
correlations between the outputs of the received beamformer and the reference waveforms. 
Each signal is obtained by performing the D&S operation on the reference and received 
beamformer waveforms.  
We have introduced a paraxial approximation [6] to compute the delays for the D&S 
operation in order to reduce the computational complexity. The procedure of the algorithm 
is as follows:  
i. The reference and received waveforms are transformed by using FFT into those in the 

frequency domain. The components within a given frequency band are processed. 
Consequently, the computational complexity is reduced. Let ( )( )p

iH f  (i = 0,…, 1TN − ) 
and ( )( )p

jR f (j = 0,…, 1RN − ) denote the frequency-domain description of the 
transmitted waveform related to the i-th transmitter and the received waveform related 
to the j-th receiver for a frequency f in the p-th transmission, respectively. 

ii. The reference waveform ( )( ) , ,p
HB fθ ϕ  corresponding to the direction ( , )θ ϕ  is 

computed  by  the  D&S  operation using ( )( )p
iH f  and phase rotations ( , ,2 ij fe θ ϕπ τ− ) that 
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Fig. 5. Schematic representation of image reconstruction algorithm. 

are obtained from the delay for the transmitters, which are stored as filter coefficients. 
Next, the waveforms received by the receivers are transformed by the FFT to the 
frequency domain, and ( )( )p

jR f  for each receiver is input to the beamformer 
containing phase rotations ( , ,2 jj fe θ ϕπ τ ) of the receivers; subsequently, the received 
beamform ( )( ) , ,p

RB fθ ϕ  focused in the direction ( , )θ ϕ  in the frequency domain is 
computed. Each beamform is represented as follows. 
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iii. Cross-correlation is performed using the matched filters, and IFFT is carried out for 
( )( ) , ,p

RB fθ ϕ  and ( )( ) , ,p
HB fθ ϕ . First, the matched filters perform the operation, 

which is expressed as follows.  

 ( ) ( )*( ) ( ) ( )( , , ) , , , ,p p p
R Hs f B f B fθ ϕ θ ϕ θ ϕ= ⋅   (13) 

                                            , , , ,2 2( ) ( ) *( ) ( )j ij f j fp p
j i

j i
R f e H f eθ ϕ θ ϕπ τ π τ= ⋅∑ ∑   (14) 

This operation is referred to as complex multiplication; ( )( , , )ps fθ ϕ  denotes the output 
result from the matched filter to form a beamform in the direction ( , )θ ϕ  for the p-th 
ultrasound transmission and reception cycle.  
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iv. The IFFT of ( )( , , )ps fθ ϕ  is performed and the cross-correlation is completed. 
Consequently, complex voxel series is reconstructed in the direction ( , )θ ϕ . The data 
samples output from the HW is 2048 [samples/line] × 2 (real/imaginary). The series is 
in the time domain, and it is scaled to the spatial domain.  

 { }( ) ( )1( , , ) ( , , )p ps t s fθ ϕ θ ϕ−= ℑ   (15) 

v. The abovementioned sequence of operations is repeated for all the directions 
( 64 64)N Nθ ϕ× = ×  in the reconstruction space. 

vi. Finally, the output voxels form a 3D image. The abovementioned operation is repeated 
for every shot of ultrasound.  

5. Computational complexity for the algorithm 
We estimate the computational complexity of the algorithm on the basis of the parameters 
shown in Table 1. The obtained result is shown in Fig. 6. Here, “op” is a unit of 
computational complexity that denotes the number of multiplications or additions. As 
shown in Fig. 6, the D&S operation accounts for approximately 80% of the overall operation. 
This is because this operation involves complex multiplication, as shown in equations (11) 
and (12); the operation must be performed  for all the directions in the imaging space. 
Therefore, the parallel implementation of the D&S operation should be effective for high-
speed operation. 
 

Parameters Values
Number of receivers       　[ch] 32
Number of transmitters　　 [ch] 32
Observed data length for a channel (time domain)         [samples/ch] 2048
Observed data length for a channel (frequency domain) [samples/ch] 512
Number of focus directions in the image reconstruction space [line] 64 × 64  

 

Table 1. Parameters for estimating the number of operations. 
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are obtained from the delay for the transmitters, which are stored as filter coefficients. 
Next, the waveforms received by the receivers are transformed by the FFT to the 
frequency domain, and ( )( )p

jR f  for each receiver is input to the beamformer 
containing phase rotations ( , ,2 jj fe θ ϕπ τ ) of the receivers; subsequently, the received 
beamform ( )( ) , ,p

RB fθ ϕ  focused in the direction ( , )θ ϕ  in the frequency domain is 
computed. Each beamform is represented as follows. 
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iii. Cross-correlation is performed using the matched filters, and IFFT is carried out for 
( )( ) , ,p

RB fθ ϕ  and ( )( ) , ,p
HB fθ ϕ . First, the matched filters perform the operation, 

which is expressed as follows.  

 ( ) ( )*( ) ( ) ( )( , , ) , , , ,p p p
R Hs f B f B fθ ϕ θ ϕ θ ϕ= ⋅   (13) 

                                            , , , ,2 2( ) ( ) *( ) ( )j ij f j fp p
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j i
R f e H f eθ ϕ θ ϕπ τ π τ= ⋅∑ ∑   (14) 

This operation is referred to as complex multiplication; ( )( , , )ps fθ ϕ  denotes the output 
result from the matched filter to form a beamform in the direction ( , )θ ϕ  for the p-th 
ultrasound transmission and reception cycle.  
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iv. The IFFT of ( )( , , )ps fθ ϕ  is performed and the cross-correlation is completed. 
Consequently, complex voxel series is reconstructed in the direction ( , )θ ϕ . The data 
samples output from the HW is 2048 [samples/line] × 2 (real/imaginary). The series is 
in the time domain, and it is scaled to the spatial domain.  
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v. The abovementioned sequence of operations is repeated for all the directions 
( 64 64)N Nθ ϕ× = ×  in the reconstruction space. 

vi. Finally, the output voxels form a 3D image. The abovementioned operation is repeated 
for every shot of ultrasound.  

5. Computational complexity for the algorithm 
We estimate the computational complexity of the algorithm on the basis of the parameters 
shown in Table 1. The obtained result is shown in Fig. 6. Here, “op” is a unit of 
computational complexity that denotes the number of multiplications or additions. As 
shown in Fig. 6, the D&S operation accounts for approximately 80% of the overall operation. 
This is because this operation involves complex multiplication, as shown in equations (11) 
and (12); the operation must be performed  for all the directions in the imaging space. 
Therefore, the parallel implementation of the D&S operation should be effective for high-
speed operation. 
 

Parameters Values
Number of receivers       　[ch] 32
Number of transmitters　　 [ch] 32
Observed data length for a channel (time domain)         [samples/ch] 2048
Observed data length for a channel (frequency domain) [samples/ch] 512
Number of focus directions in the image reconstruction space [line] 64 × 64  

 

Table 1. Parameters for estimating the number of operations. 
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6. Processing system 
An outline of the processing system is described in this section. A schematic diagram of the 
system is shown in Fig. 7. The system consists of a host PC, the FPGA, an external RAM, 
ADCs, I/O boards, and a 2D transducer array. The function of each unit is as follows.  
Host PC 
Preprocessing and postprocessing operations are performed. In the former, the parameters 
required for the operation—reference waveforms and delay data—are determined. 
Subsequently, the obtained data are transferred to the FPGA board. In postprocessing, the 
host PC accepts the output of the FPGA and forms a 3D image, which is then displayed. The 
processing is repeated for every output of the FPGA. 
FPGA 
The use of FPGAs enables us to reconfigure the HW architecture when the specifications of 
the imaging system change. The FPGA consists of an embedded processor and user-defined 
logic (USER LOGIC). MicroBlaze (soft-core processor) is used as the embedded processor 
[10], and it performs I/F control of the PCI, fast simplex link (FSL) [10], and on-chip 
peripheral bus (OPB) [10]. In addition, it controls the data transfer between the host PC and 
USER LOGIC and between the external RAM and USER LOGIC. The delay data are stored 
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in the internal RAM of the FPGA since the data size is a few hundred kilobytes. USER 
LOGIC is a dedicated operational unit that performs the D&S operation and cross-
correlation. After USER LOGIC accepts the reference and delay data through the embedded 
processor, it performs the D&S operation and cross-correlation by using the echo data 
obtained from the I/O board. Further, the operated results are output to the host PC 
through the PCI. 
External RAM 
The reference waveforms for ultrasound transmissions are stored in the external RAM 
because the total size of the data for the operation is a few megabytes. 
ADC (A/D Converter) 
The echo data observed by the 2D transducer array are converted to 16 [bit/sample] digital 
data. 
I/O Board 
It temporarily stores the echo data obtained from the ADC. When USER LOGIC requests 
echo data for starting an operation, the I/O board transfers the required data. 
2D Transducer Array 
The 2D transducer array comprises 32 transmitters and 32 receivers.  

7. HW design 
The functional block diagram of USER LOGIC shown in Fig. 8 is developed in a manner 
similar to that shown in Fig. 9. H-data, T-data, and R-data in Fig. 9 denote the reference 
waveform data in the frequency domain, echo data in the frequency domain, and delay 
corresponding to each transmitter and receiver needed to perform D&S operation, 
respectively. The functions of the components included in USER LOGIC are as follows:  

FFT 
The echo data are transformed into the frequency domain. 
H-data and T-data Look-up Table (LUT) 
The H-data LUT contains H-data for one-shot image reconstruction [11], while the T-data 
LUT contains the T-data corresponding to the distance between the focuses in the image 
reconstruction space and the devices in the 2D transducer array. 

D&S Beamformer 
The D&S operation is performed with the H- and R-data for each channel. The T-data are 
read from the T-data LUT and the phase rotations are computed. Subsequently, the product 
of the phase rotation element and the waveform data is computed, and the products are 
then summed. Finally, the outputs of the reference and the received beamforms are 
generated.   

Matching Operator 
( )( , , )ps fθ ϕ  is obtained as the product of the outputs of the reference and the received 

beamform; this product is considered as a matching operation. 
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6. Processing system 
An outline of the processing system is described in this section. A schematic diagram of the 
system is shown in Fig. 7. The system consists of a host PC, the FPGA, an external RAM, 
ADCs, I/O boards, and a 2D transducer array. The function of each unit is as follows.  
Host PC 
Preprocessing and postprocessing operations are performed. In the former, the parameters 
required for the operation—reference waveforms and delay data—are determined. 
Subsequently, the obtained data are transferred to the FPGA board. In postprocessing, the 
host PC accepts the output of the FPGA and forms a 3D image, which is then displayed. The 
processing is repeated for every output of the FPGA. 
FPGA 
The use of FPGAs enables us to reconfigure the HW architecture when the specifications of 
the imaging system change. The FPGA consists of an embedded processor and user-defined 
logic (USER LOGIC). MicroBlaze (soft-core processor) is used as the embedded processor 
[10], and it performs I/F control of the PCI, fast simplex link (FSL) [10], and on-chip 
peripheral bus (OPB) [10]. In addition, it controls the data transfer between the host PC and 
USER LOGIC and between the external RAM and USER LOGIC. The delay data are stored 
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in the internal RAM of the FPGA since the data size is a few hundred kilobytes. USER 
LOGIC is a dedicated operational unit that performs the D&S operation and cross-
correlation. After USER LOGIC accepts the reference and delay data through the embedded 
processor, it performs the D&S operation and cross-correlation by using the echo data 
obtained from the I/O board. Further, the operated results are output to the host PC 
through the PCI. 
External RAM 
The reference waveforms for ultrasound transmissions are stored in the external RAM 
because the total size of the data for the operation is a few megabytes. 
ADC (A/D Converter) 
The echo data observed by the 2D transducer array are converted to 16 [bit/sample] digital 
data. 
I/O Board 
It temporarily stores the echo data obtained from the ADC. When USER LOGIC requests 
echo data for starting an operation, the I/O board transfers the required data. 
2D Transducer Array 
The 2D transducer array comprises 32 transmitters and 32 receivers.  

7. HW design 
The functional block diagram of USER LOGIC shown in Fig. 8 is developed in a manner 
similar to that shown in Fig. 9. H-data, T-data, and R-data in Fig. 9 denote the reference 
waveform data in the frequency domain, echo data in the frequency domain, and delay 
corresponding to each transmitter and receiver needed to perform D&S operation, 
respectively. The functions of the components included in USER LOGIC are as follows:  

FFT 
The echo data are transformed into the frequency domain. 
H-data and T-data Look-up Table (LUT) 
The H-data LUT contains H-data for one-shot image reconstruction [11], while the T-data 
LUT contains the T-data corresponding to the distance between the focuses in the image 
reconstruction space and the devices in the 2D transducer array. 

D&S Beamformer 
The D&S operation is performed with the H- and R-data for each channel. The T-data are 
read from the T-data LUT and the phase rotations are computed. Subsequently, the product 
of the phase rotation element and the waveform data is computed, and the products are 
then summed. Finally, the outputs of the reference and the received beamforms are 
generated.   

Matching Operator 
( )( , , )ps fθ ϕ  is obtained as the product of the outputs of the reference and the received 

beamform; this product is considered as a matching operation. 
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IFFT 

IFFT is performed for ( )( , , )ps fθ ϕ  to complete the cross-correlation, and the complex voxel 
data ( )( , , )ps tθ ϕ  are output. 
Architecture mapping is presented in Fig. 9 for the HW design; the mapping is based on 
functional block diagram shown in Fig. 8. TT- and TR-data denote the delay corresponding to 
each transmitter and receiver, respectively. In addition, the figure includes the above 
equations to associate with the operational flow in the HW. We describe the function of each 
HW unit in detail. 
The FFT and IFFT operators are realized by using Xilinx IP (Architecture type is Radix-2, 
pipelined, streaming I/O); the operations are performed for every one-channel data series 
and R-data (received data series in the frequency domain) are output as complex numbers. 
The phase rotation unit (Fig. 10) [11] performs phase rotation using the T-data. The frequency f 
and delay τ are treated as discrete data. When the D&S operation begins, T-data from the RAM 
are input into the unit and an enable signal is asserted. This signal drives a counter that counts 
the number of frequencies. Sampled fk and τ l are input to the multiplier, and phase data fk ⋅τ l 
are output. The effective phase rotation angles are determined by the fractions of the phase 
data fk ⋅τ l. Thus, fractional bits are used as effective data. The bits are then input to the sin/cos 
table ROM (Xilinx IP) to generate phase rotation. The table ROM outputs the sin and cos data 
corresponding to the ROM address; finally, the unit generates phase rotations. 
CMP (Fig. 11) [11] and CAD (Fig. 12) [11] are the 18-bit multiplier and adder for the complex 
data, respectively. The units are composed of four multipliers and two adders; embedded 
multipliers are utilized to generate the multipliers. The CMPs in the D&S beamformer 
obtain the product of the waveform data and the phase rotation element. In fact, the CMP 
performs phase adjustment of the waveform data and the CMP used in the matching 
operator is utilized for the matching operation between the H-beam and the R-beam data in 
the frequency domain cross-correlation.  
ACC (Fig. 13) [11] is the accumulator used to operate the beam data; it comprises an adder, 
two registers, a DMUX, and dual port RAM (Xilinx IP). The unit simultaneously performs 
addition and data write/read from the RAM for every clock cycle with a sample data output 
from the CMP in the D&S beamformer. The ACC repeats the operation for all the channel 
waveform data output from the CMP for the D&S operation and accumulates the results. 
Further, each beam data series is output by the switching of the DMUX when accumulation 
for all the channels is completed. 
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Fig. 10. Phase rotation unit.    
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IFFT is performed for ( )( , , )ps fθ ϕ  to complete the cross-correlation, and the complex voxel 
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Architecture mapping is presented in Fig. 9 for the HW design; the mapping is based on 
functional block diagram shown in Fig. 8. TT- and TR-data denote the delay corresponding to 
each transmitter and receiver, respectively. In addition, the figure includes the above 
equations to associate with the operational flow in the HW. We describe the function of each 
HW unit in detail. 
The FFT and IFFT operators are realized by using Xilinx IP (Architecture type is Radix-2, 
pipelined, streaming I/O); the operations are performed for every one-channel data series 
and R-data (received data series in the frequency domain) are output as complex numbers. 
The phase rotation unit (Fig. 10) [11] performs phase rotation using the T-data. The frequency f 
and delay τ are treated as discrete data. When the D&S operation begins, T-data from the RAM 
are input into the unit and an enable signal is asserted. This signal drives a counter that counts 
the number of frequencies. Sampled fk and τ l are input to the multiplier, and phase data fk ⋅τ l 
are output. The effective phase rotation angles are determined by the fractions of the phase 
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Fig. 13. Accumulator (ACC). 
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The architecture based on Fig. 6 corresponds to the use of the minimum number of functional 
units. In fact, the optimization placing multioperational units is not applied for the architecture 
to realize an efficient parallel operation. Here, we consider where the parallel operation is 
possible. Consequently, the parallel operation of the D&S operation is possible for optimization 
because the complex multiplication and accumulation can be performed for the waveform 
data of every channel. Fig. 14 shows refined architecture of the system shown in Fig. 9. The 
MicroBlaze MPU transfers the one-shot H-data series to the internal RAM whenever the HW 
completes a one-shot operation. The HW architecture is designed and simulated by using the 
design tools mentioned below. Further, VHDL is utilized for the HW design. 
• Xilinx-ISE9.1i 
• MathWorks—MATLAB/Simulink 2006a 
• Xilinx—System Generator for DSP 9.1 
• Mentor Graphics—ModelSimXEⅢ 6.0a 
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Fig. 14. Schematic diagram of HW. 

8. Two operational modes 
The HW operates in the following two modes. 
External Mode 
The HW begins the operation in this mode. A schematic diagram of this mode is shown in 
Fig. 15. The operation is performed in this mode when the echo data that are transferred 
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Fig. 14. Schematic diagram of HW. 

8. Two operational modes 
The HW operates in the following two modes. 
External Mode 
The HW begins the operation in this mode. A schematic diagram of this mode is shown in 
Fig. 15. The operation is performed in this mode when the echo data that are transferred 
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from the I/O board are accepted by the FFT operator. This operator processes every 2048-
point data (one-channel data length in the time domain), and the output is 512-point data in 
the frequency domain. RAM_Es are utilized when the HW operates in this mode only; the 
RAMs keep T-data (data size is 1 [line] × 32 [ch] words) to perform image reconstruction in 
a direction. The H-data is read from the RAM following the operational output of the FFT 
operator; the D&S operation and cross-correlation are performed.  
The abovementioned operations are performed for every single channel’s waveform data. If 
the operation in a particular direction is completed, then the operational mode is switched 
to the internal mode. 
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Fig. 15. Schematic diagram for the HW operation in external Mode. 
Internal Mode 
In the internal mode (Fig. 16), four-channel R- and H-data series are simultaneously read 
from each RAM; these data are performed in parallel. To perform the operation in parallel, 
all the functional units, except the front FFT operator and RAM_Es, become active and 
drive. A schematic diagram of this mode is shown in Fig. 12. The CADs are utilized to sum 
the waveform data output from the eight CMPs in the D&S beamformer; the summed data 
series is sent to the ACC as a partial beamform generated by delayed wave data from four 
channels. The operation of this mode is repeated for all the remaining directions ((64 × 64) – 
1 [line]) in the image reconstruction space. When the HW is in this mode, the front FFT 
operator is in the inactive mode because the data acquisition is completed. However, if the 
operation in this mode is completed, MicroBlaze transfers the H-data from the external 
RAM to the internal RAM for the next shot operation. After that, the HW restarts the 
operation in the external mode. 
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Fig. 16. Schematic diagram for the HW operation in internal mode 

The state diagram for the operational flow in the HW is shown in Fig. 17. The HW performs 
the operation following this state transition and as the state transition is repeated. 
 

External mode

Internal mode

Reset

N = 64 × 64 - 1 N = 1

N < 1

N < 64 × 64 - 1

N : Number of focus direction in the image reconstruction space [line]

Data acquisition
&

Operation

Operation only

 
Fig. 17. State diagram for operational flow in the HW. 

9. Synthesis result and performance evaluation 
We synthesize the HW operation to implement it on an FPGA, and the scale and 
performance of the HW are evaluated. The target device is XCVFX100 of the Virtex-4 family. 
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Table 2 lists the device utilization summary for the resources required to implement the HW 
on the FPGA. Memory resources (FIFO16/RAMB16) are utilized more in comparison to 
other resources because a number of data with 64 × 64 [line] × 2 × 32 [ch] = 218 words are 
required as the T-data for the D&S operation. Further, a number of data with 512 [word/ch] 
× 32 [ch] × 2 (real/imaginary part) = 215 words are required to store the H- and R-data. 
DSP48s are utilized to construct FFT operators and CMPs; 60 DSP48s are utilized for FFT 
and IFFT operators; and 36 DSPs are utilized for CMPs.  
 

60.096/160DSP48s

3.11/32GCLKs

93.0350/376FIFO16/RAMB16s

14.1122/860bonded IOBs

32.127098/84352Four input LUTs

24.820928/84352Slice Flip Flops

43.918541/42176Slices

Utilization[%]Used/AvailableResource name
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Table 2. Device utilization summary for the HW on the FPGA. 
With regard to the performance of the HW, the maximum frequency is approximately 
137[MHz] (cycle time  7.3 [ns]).  
Next, we evaluate the latency to reconstruct a 3D image. For this, we obtain the number of 
the operational clock cycles required for a 3D image; the latency is obtained from the 
number of clock cycles and the maximum frequency. Consequently, the latency for 3D 
images with a resolution of 64 × 64 × 256 voxels is approximately 170 [ms/frame], and the 
throughput is approximately 5.9 [frame/s]. When this result is compared with the latency of 
SW processing (approximately 40 [sec/frame]), the processing speed of HW is 
approximately 236 times faster than that of SW.  

10. Critical path analysis and improvement 
Next, we search critical (longest) path and then improve the path by modifying the 
architecture to the designed HW to raise clock frequency and processing performance. First, 
the HW is divided into some rough functional units. Then we search each path delay by 
synthesizing every the divided units. Consequently, there is the critical path on D&S 
beamformers from the synthesis report. 
We search the path in detail again, we specify that the critical path exists on sin/cos table in 
phase rotation unit (Fig. 19).  There is the path delay between input port for multiplier and 
output for sin/cos table. 
So, we modify the implementation type of the table. As the table was implemented utilizing 
FPGA logic blocks in previous architecture, we change the implementation type utilizing 
Block RAM which is memory resources in FPGA (Fig. 20). Because FPGA logic block is 
treated as a combinational block, output signals from the table must be generated passing 
through plural stage’s the logic block passes. Thus, the pass delay becomes longer in 
proportion to the stages. On the other hand, a table utilizing Block RAM generates by 
memory access only. Consequently, the pass delay becomes shorter than case of FPGA logic 
type, the critical path of the HW can be improved. 
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Subsequently, the next critical path exists on Dual port RAM in ACC of left hand in Fig. 21. In 
the same way, we modify the implementation type. The Dual port RAM was implanted by 
Block RAM. As alternative architecture, we implement the ACC utilizing shift register 
containing enable signal because ACC performs the operation by directly utilizing input data 
while abovementioned phase rotation unit’s operation indirectly is performed by table access.  
Subsequently, some registers are inserted between CMP in cross-correlation and IFFT core, 
critical path on the data path is improved. 
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Subsequently, the next critical path exists on Dual port RAM in ACC of left hand in Fig. 21. In 
the same way, we modify the implementation type. The Dual port RAM was implanted by 
Block RAM. As alternative architecture, we implement the ACC utilizing shift register 
containing enable signal because ACC performs the operation by directly utilizing input data 
while abovementioned phase rotation unit’s operation indirectly is performed by table access.  
Subsequently, some registers are inserted between CMP in cross-correlation and IFFT core, 
critical path on the data path is improved. 



 Vision Sensors and Edge Detection 

 

194 

Counter

×

en

lτ lτ

kfkf

n
Sin

Cos

Sin(n)

Cos(n)

lkf τ⋅

Cast

9

16

18 10
16

Shifter
Cn

22

Before After

Block RAM

n Sin(n)

Cos(n)
Block RAM

16

16

10

LUT
LUT
LUT
LUT

LUT

n

LUT
LUT
LUT
LUT

LUT

LUT
LUT
LUT
LUT

LUT

Sin(n)

Cos(n)

Sin/Cos Sin/Cos

 
Fig. 20. Modifying sin/cos table based on FPGA structure. 
  

+

addr0

addr1

RAM

Beam

Din0

Dual Port

Dout1
W_add
R_add

18

18

9

We0en
Dout0

Din1

We10

0 R
EN

D
Q

M
U

X

+
0

RST

DMUXMODE

EN

Controller

R
EN

D
Q

R
EN

D
Q

R
EN

D
Q

R
EN

D
Q

R
EN

D
Q

AND

EN

MODE

DIN

OUT_EN

Beam

Nb
18

18

R
EN

D
QR

EN

D
Q

M
U

X

+
0

RST

DMUXMODE

EN

Controller

RST

DMUXMODE

EN

Controller

R
EN

D
QR

EN

D
Q

R
EN

D
QR

EN

D
Q

R
EN

D
Q

R
EN

D
Q

R
EN

D
Q

AND

EN

MODE

DIN

OUT_EN

Beam

Nb
18

18

Before After

DIN

 
Fig. 21. Modification of architecture based on FPGA resources for ACC. 

11. Synthesis result and performance evaluation after architecture 
improvement 
Next, we synthesize the modified HW. Synthesis results are shown into TABLE 3. 
Consequently, FPGA logic blocks (Slices and Slice Flip Flops) are utilized in great quantities, 
HW scale became larger. Because architecture of ACC is improved from Dual port RAM to 
FPGA logic blocks, a large amount of the logic blocks are comsumed. 
Next, we evaluate performance after architecture improvement. Performance comparison is 
shown in Fig. 22. 
Consequently, the maximum frequency is approximately 200 [MHz] (path delay  5[ns]), 
the path delay is approximately 32% shorter than previous version. In performance 
(processing speed) evaluation, the latency is approximately 116 [ms/frame], and the 
throughput is approximately 8.6 [frame/s].    
The modified HW processing is approximately 1.5 times faster than the previous HW, and 
the processing speed is approximately 350 times faster than above the SW processing. 
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12. Conclusion 
In this study, we examined HW implementation on FPGA to realize efficient high-speed 
computation and lower cost with 3D ultrasound imaging. 
 Image reconstruction is performed in frequency domain to reduce computational 
complexity of cross-correlation, designed HW contains tens of complex multipliers and 
FFT/IFFT units. Also we implemented some operational pipelines to realize parallel D&S 
which includes the most computational complexity in the operation.  By performing the 
operation in frequency domain, the HW can be obtain high parallelism for HW 
implementation on FPGA including limited resources. 
Moreover the HW drives switching two operational modes according to action of the 
imaging system to allow efficient operation.  
Consequently, the HW’s processing speed is approximately 240 times faster than the SW 
processing. Also, we tried critical path analysis and improvement of the HW, the 
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12. Conclusion 
In this study, we examined HW implementation on FPGA to realize efficient high-speed 
computation and lower cost with 3D ultrasound imaging. 
 Image reconstruction is performed in frequency domain to reduce computational 
complexity of cross-correlation, designed HW contains tens of complex multipliers and 
FFT/IFFT units. Also we implemented some operational pipelines to realize parallel D&S 
which includes the most computational complexity in the operation.  By performing the 
operation in frequency domain, the HW can be obtain high parallelism for HW 
implementation on FPGA including limited resources. 
Moreover the HW drives switching two operational modes according to action of the 
imaging system to allow efficient operation.  
Consequently, the HW’s processing speed is approximately 240 times faster than the SW 
processing. Also, we tried critical path analysis and improvement of the HW, the 



 Vision Sensors and Edge Detection 

 

196 

architecture modification based on FPGA resources was tried. Consequently. The modified 
HW’s processing speed was approximately 1.5 times faster than previous version and 350 
times faster than SW processing, respectively.  
From the results in this study, we showed an effectiveness  to design higher performance 
HW for FPGA utilizing  cleverly its structure.  
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