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Preface

Bayesian networks are graphical models that represent the probabilistic relationships among
a large number of variables and perform probabilistic inference with those variables. They
constitute a formal framework for the representation and communication of decisions
resulting from reasoning under uncertainty. Bayesian networks, which were named after
Thomas Bayes (1702-1761), one of the founders of the probability theory, have emerged from
several mathematical researches made in the 1980s, and particularly from works on belief
networks, causal networks and influence diagrams.

Bayesian networks were first known in the 1990s as Probabilistic Expert Systems, inspired by
the seminal book of Judea Pearl (1988), who was a pioneer of the probabilistic approach to
artificial intelligence and is referred to as the founder of Bayesian networks. Bayesian networks
are thus at least 22 years old and during the last two decades a lot of work has beendone on
learning and inference with Bayesian networks. The last ten years particularly saw a massive
increase in the application of BN to real-world problems, including diagnosis, forecasting,
manufacturing control, information retrieval, prediction and even planning. Almost all
scientific and technical fields have seen the successful use of BN as a tool for modelling the
complex relationships among a large number of variables and for doing inference. The most
recent applications have been in information and communications technologies, biomedicine,
genomics and bioinformatics.

The first decade of this new millennium saw the emergence of excellent algorithms for learning
Bayesian networks from data and for doing inference in Bayesian networks and influence
diagrams. According to Google Scholar, the number of research papers and technical reports
on Bayesian networks is over fifty thousand and at least seven specific books on Bayesian
networks were published in 2009.

Despite this abundance of literature, there is still a need for specialized books that present
original contributions both in methodology and applications of Bayesian networks. This book
emphasizes these two aspects and is intended for users (current or potential) of Bayesian
networks in both academic institutions (researchers, teachers, students) and industry
(engineers, analysts, etc.) who want to stay up to date with Bayesian network algorithms and
technologies and their use in building probabilistic expert systems and modelling complex
systems.

The book is organized in two major parts. The first part, extending from chapter 1 to 10, mainly
deals with theory and algorithms for learning and inference in Bayesian networks. The second
part, composed of all subsequent chapters, gives selected applications of Bayesian networks
in several fields, including fault diagnosis, information technology, telecommunication
networks, traffic flow, building design and biology.
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The book chapters are original manuscripts written by experienced researchers that have
made significant contributions to the field of Bayesian networks. Although all chapters are
self- contained, the reader should be familiar with texts written in mathematical and statistical
language to gain full benefit from the book. I am convinced that this book will be a very
useful tool for everyone who is concerned with modelling systems containing causality with
inherent uncertainty and I hope that readers will find not only technical aspects for using and
implementing Bayesian networks to solve their problem, but also new ideas on how their
current research and work can benefit from one of the major tools of the 21st century.

Editor
Dr. Ahmed Rebai

Unit of Bioinformatics and Biostatistics,
Centre of Biotechnology of Sfax



Learning parameters and structure of Bayesian
networks using an Implicit framework

Hanen Ben Hassen*, Lobna Bouchaala*,
Afif Masmoudi** and Ahmed Rebai*

*Unit of Bioinformatics and Biostatistics, Centre of Biotechnology of Sfax, Tunisia
** Laboratory of Probability and Statistics, Faculty of Science of Sfax, Tunisia

1. Introduction

A large amount of work has been done in the last ten years on learning parameters and struc-
ture in Bayesian networks (BNs) (see for example Neapolitan, 2005). Within the classical
Bayesian framework, learning parameters in BNs is based on priors; a prior distribution of
the parameters (prior conditional probabilities) is chosen and a posterior distribution is then
derived given the data and priors, using different estimations procedures (for example Maxi-
mum a posteriori (MAP) or Maximum likelihood (ML),...). The Achille’s heal of the Bayesian
framework resides in the choice of priors. Defenders of the Bayesian approach argue that us-
ing priors is, in contrary, the strength of this approach because it is an intuitive way to take
into account the available or experts knowledge on the problem. On the other side, contra-
dictors of the Bayesian paradigm have claimed that the choice of a prior is meaningless and
unjustified in the absence of prior knowledge and that different choices of priors may not lead
to the same estimators. In this context, the choice of priors for learning parameters in BNs has
remained problematic and a controversial issue, although some studies have claimed that the
sensitivity to priors is weak when the learning database is large.

Another important issue in parameter learning in BN is that the learning datasets are seldom
complete and one have to deal with missing observations. Inference with missing data is an
old problem in statistics and several solutions have been proposed in the last three decades
starting from the pioneering work of (Dempster et al., 1977). These authors proposed a fa-
mous algorithm that iterates, until convergence towards stationary point, between two steps,
one called Expectation or E-step in which the expected values of the missing data are inferred
from the current model parameter configuration and the other, called Maximization or M-
step, in which we look for and find the parameter values that maximize a probability function
(e.g. likelihood). This algorithm, known as the Expectation-Maximization (or EM) algorithm
has become a routine technique for parameters estimation in statistical models with missing
data in a wide range of applications. Lauritzen, (1995) described how to apply the EM algo-
rithm to learn parameters for known structure BNs using either Maximum-Likelihood (ML)
or maximum a posteriori (MAP) estimates (so called EM-MAP) (McLachlan et al., 1997).
Learning structure (graphical structure of conditional dependencies) in BNs is a much more
complicated problem that can be formally presented in classical statistics as a model selec-
tion problem. In fact, it was shown that learning structure from data is an NP-hard problem
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(Chickering et al., 2004) and that the number of structures for a given number of nodes is
super-exponential (Robinson, 1977), making the exploration of the space of all possible struc-
tures practically infeasible. Structure learning in BNs has been the subject of active research in
the last five years, boosted by the application to high-throughput data in biology, and differ-
ent heuristics have been proposed. Two major classes of methods can be distinguished; those
based on optimizing a score function (finding the structure that maximizes the joint probabil-
ities of the network or some function of it) and those based on correlations (see Leray, (2006)
for a review).

Hassairi et al., (2005) have proposed a new inference framework in statistical models that they
named "Implicit inference". Implicit inference can be shortly defined as "Bayesian inference
without priors" which seems like a nonsense at first sight. In fact, Implicit inference derives
a special kind of posterior distribution (called Implicit distribution) that corresponds to an
improper choice of the prior distribution (see details below). We recently applied this new
Implicit inference framework to learning parameters in BNs with complete (Ben Hassen et
al., 2008) and incomplete data (Ben Hassen et al., 2009). In this last work, a novel algorithm,
similar to EM (that was called I-EM) was proposed and was shown to have better conver-
gence properties compared to it. For structure learning in BNs, we also proposed a new score
function (Implicit score) and implemented it within well known algorithms (Bouchaala et al.,
2010).

In this chapter, we give a thorough presentation of the Implicit method applied to parameters
and structure learning in BNs and discuss its advantages and caveats. An example application
is given to illustrate the use of our method.

2. Inference with the Implicit Method

2.1 A quick tour in the Implicit world

The basic idea of the Bayesian theory is to consider any unknown parameter 6 as a random
variable and to determine its posterior (conditional) distribution given data and an assumed
prior distribution (see for example Robert, 1994). The choice of a prior is generally based on
the preliminary knowledge of the problem.

Recently, Hassairi et al., (2005) introduced the concept of Implicit distribution which can be de-
scribed as a kind of posterior distribution of a parameter given data. To explain the principle
of Implicit distribution let us consider a family of probability distributions {p(x/6), 6 € ®}
parameterized by an unknown parameter 6 in a set ®, where x is the observed data.

The Implicit distribution p(0/x) is calculated by multiplying the likelihood function p(x/6)
by a counting measure ¢ if @ is a countable set and by a Lebesgue measure ¢ if ® is an open set
(o depends only on the topological structure of ®) and then dividing by a norming constant
c(x) = g p(x/0)c(d6). Therefore the Implicit distribution is given by the following formula
p(8/x) = (c(x))"'p(x/0)c(0) and plays the role of a posterior distribution of  given x in
the Bayesian method, corresponding to a particular improper prior which depends only on
the topology of © (without any statistical assumption). The Implicit distribution, which exists
for most (but not all) statistical models, can be used for the estimation of the parameter 6 fol-
lowing a Bayesian methodology. In fact, the Implicit estimator 8 of 6 corresponds to the mean
(first moment) of the Implicit distribution.
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2.2 A simple example: Implicit estimation in binomial distribution case

To illustrate how the Implicit method proceeds let us consider a simple example. Let X =
(N1, N;) be a random variable following a binomial distribution with unknown parameters
N = N; + N, and 6 = (6;,6,). We first estimate N by the Implicit method after that we use
the estimate N to estimate 0. After some calculations, we obtain

P(X/N)

\ \ V
— NigN=-Ni 1 _ Ni+1

P(N/X) =
vV r
where Ny =N —-N; = ) N;.
i=2
So, the Implicit distribution of N given X = (Nj, ..., N;) is a Pascal distribution with parame-

v ~
ters 1 — 6; and Nj + 1. Suppose that 6; is known, the Implicit estimator N of N is the mean of
the Pascal distribution:

\ \ v
N=E(N/X)= Y NCy oY M (1—g)NH.
N>0

Let N, be the number of observations and take

Ne. Ne

d1<k<r}
No' Ny =7—1 2 1sksr)

6, = max{

After some calculations, we have

\
N:(Nk0+1): ob+%
1-6 A
o Ni,

v
where Ny, = Ny, — Ny,
Consequently, the probability of the next observation to be in state x* given a dataset D is
obtained by
N +1

6, = P(X —xk/D) =
k = P(XN,y+1 ) np

, 1 <k<rand k #kp (2.1)

and ), =1- Y 6

i%ko
other examples and selected applications of Implicit distributions can be found in the original
paper (Hassairi et al., 2005).

2.3 Implicit inference with Bayesian Networks

Formally, a Bayesian network is defined as a set of variables X = {Xj, ..., X;;} with :(1) a
network structure S that encodes a set of conditional dependencies between variables in X,
and (2) a set P of local probability distributions associated with each variable. Together, these
components define the joint probability distribution of X.

The network structure S is a directed acyclic graph (DAG). The nodes in S correspond to the
variables in X;. Each X; denotes both the variable and its corresponding node, and Pa(X;) the
parents of node X; in S as well as the variables corresponding to those parents. The lack of
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possible arcs in S encode conditional independencies. In particular, given structure S, the joint
probability distribution for X is given by the product of all specified conditional probabilities:

P(X1, o Xn) = [ [ P(Xi/ Pa(X;) (3.1)
i=1

a factorization that is known as the local Markov property and states that each node is indepen-
dent of its non descendant given the parent nodes. For a given BN the probabilities will thus
depend only on the structure of the parameters set.

3. Learning parameters from complete data

In this section we consider the learning of parameters in BNs with discrete variable, that is for
every node 7 the associated random variable X; takes r; states :

node 1 — Xq € {x{, ... x}'}

node 2 — X5 € {x%,...,xgz

node i — X; € {x},...,x1"}

node n — X, € {x}, ..., x}.

Let D be a dataset and let Njj; be a number of observations in D for which the node i is in

state k and its parents are in state j thatis X; = xf-‘ and Pa(X;) = x?. Note that, since each node
might have two or more parents, state j corresponds to a combination of states of the parents.
For example if a node has three parents, each having three states, then there are 27 states of
the parents and j takes values from 1 to 27.

The distribution of X; is multinomial with parameters N;; and 6;; = (9ij2, s O, ), where Nj; =

Ti . i
2 Nijk and Hi]-k = P(Xi = x;‘/Pa(Xi) = x]); k=1,.., ri and 2 eijk =1
k=1 k=1

P(Xi = (Nijlr"'r Nijri)/Pa(Xi) = x]) = Nl]' H

Then Nj; and 6;; are unknown parameters that will be estimated by the Implicit method. Given
anetwork S, consider for node i, Njjyp is the observed number of occurrences of the node i and
its parents are in the state j.

_ Niro _ Nij ., Nig 1
Let Gi]-k(o) = Njw max{ Niov”  Niob < i1 and 1 <k < 1"1'}.

The application of the Implicit method gives the following estimation of Nj; and 6;;:

N;

Nik(o
i = Nijop + - o, (32)

Nijk(0)
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Vv
where Nijk(O) = Nijob - Ni/k(()) and

and

4. Learning parameters from incomplete data

Consider a dataset D with missing data, we compute the Implicit distribution P(6/D) and use
the distributions in turn to compute expectation of parameters of interest. Let X be a random
variable that follows a multinomial distribution with parameters N and 6 = (s, ...,6;) such
that Y = (Ny,...,N;) € Xand Z = (Nf,...,N;) C X denote the observed and unobserved
variables, respectively. So, X = (Ny + Nj, ..., Ny + Nj)

and P(8/Y) = ZP (Z/Y)P(8/Y,Z)

To estimate the parameters 0;j; of the network, with incomplete dataset, we propose a new
iterative algorithm named Implicit EM (or in short I-EM) algorithm. Consider a node i with

parents in the state j and a dataset D which contains N; () observed and unobserved values in

such state. Let N © )b the observed values in D, so N 0) > N (] o)b and N ( ) —N (] 02} represents the

number of unobserved states.

So, the initial conditions for a node i are:
0)

N]

0! k) is the observed frequency of the node i in the state k given its parents in the state j. Then,
0) _ N©p0)

N; ijk Nj; ij z]k

parents in the state j.

1]ob Z z]k

The I- EM algorlthm is iterative and involves three steps; the first step consists in getting the
maximum of the conditional frequencies, the second step estimates the number of observa-
tions from the first step and the third computes the other conditional probabilities. Formally,
the algorithm iterates through the following steps, until convergence:

(1) Choose the maximum frequency k(0)

is the number of observed and unobserved states.

is the number of observed occurrences of the node i in the state k and its

(2) Estimate the number of observations N i(jl)

(8) Compute the conditional probabilities 61.(]%()

with the
stop condition being;:

Compute the sum of estimated occurrences Z ; ]k
k=1

if Z Ni(].tk) > Nl-(jo) then stop, otherwise continue steps (1) to (3).
k=1
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The philosophy of our algorithm is to virtually fill the missing data for all nodes until all
missing cells in the database are completed. A detailed description and a formal proof of
convergence of the I-EM algorithm is given in (Ben Hassen et al., 2009).

5. Learning Bayesian Network Structure

Learning Bayesian Network structure from database is an NP-hard problem and several algo-
rithms have been developed to obtain a sub-optimal structure from a database. Most of the
widely used methods are score metric-based methods. By these methods a scoring metric is
defined and computed for each candidate structure and a search strategy (algorithm) is used
to explore the space of possible, alternative structures and identify the one (or those) having
the highest score.

5.1 Score metrics

A scoring criteria for a DAG is a function that assigns a value to each DAG based on the data.
Cooper and Hersovits (1992) proposed a score based on a Bayesian approach with Dirichlet
priors(known as BD: Bayesian Dirichlet). Starting from a prior distribution on the possible
structure P(B), the objective is to express the posterior probability of all possible structures
(P(B|D) or simply P(B, D)) conditional on a dataset D:

Sgn(B,D) = P(B, D) :/@P(D|®,B)P(®|B)P(B)d®:P(B)/@P(D|®,B)P(®|B)d®

The BD score is analitycally expressed as:

n 4qi _1
Spp(B,D) ]‘[]‘[ w r; —1 ]—[Nl]k (5.2)
i=1j=

The BIC (Bayesian Information Criteria) score metric was proposed by Schwartz (1978) and is
defined as:

Sgic = logL(D|6MY, B) — %Dim(B)logN (5.3)

where #MV is the maximum likelihood estimate of the parameters, B is the BN structure
and Dim(B) is the dimension of the network defined by : Dim(B) = Y' ; Dim(X;, B) and
Dim(B) = (r; = 1)qi
Another common score in structure learning is the Mutual Information (MI). The Mutual In-
formation between two random variables X and Y, denoted by I(X,Y) is defined by Chow
and Liu (1968):

I(X,Y) = H(X) — H(X]Y) (54)

Where H(X) is the entropy of random variables X defined as:

H(X) = = ity P(X = x;)log(P(X = x;))

and

H(X]Y) = =X, Z;yzl P(X = x;/Y = yj)log(P(X = x;|Y = y;)) where rx and ry are the
number of discrete states for variables X and Y, respectively.
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5.2 Algorithms for structure learning

One of the most used algorithms is the K2 algorithm (Cooper and Herskovits (1992). This
algorithm proceeds as follows: we assume an initial ordering of the nodes to reduce computa-
tional complexity and assume that the potential parent set of node X; can include only those
nodes that precede it in the input ordering.

Chow et al., (1968) proposed a method derived from the Maximum Weight Spaning Tree
(MWST). This method associates a weight to each potential edges X; — X; of the tree. This
weight may be the MI(equation 5.4), or the local variation of the score proposed by (Hecker-
man et al., 1994). Given the weight matrix, we can use the Kruskal algorithm (Kruskal 1956)
to obtain a directed tree by choosing a root and then browsing the tree by an in-depth search.
The GS (Greedy Search) algorithm takes an initial graph, then associates a score for each neigh-
borhood. The graph with the highest score in this neighborhood is then chosen as the starting
graph for the next iteration.

5.3 The Implicit Score (IS)

The Implicit Score(IS) have the same derivation as the the BD score in which the Implicit esti-
mators of the paremeters (see equations 3.2 and 3.3) are used rather than Bayesian estimators
(Bouchaala et al., 2010). The expression of the Implicit score (IS) is thus obtained by substitut-
ing in equation 5.2 Njj by ijkgijk and Nj; by Nz’ji

Sis(B,D) HH H P! (5:5)

i=1j=1 Nl]+71_1

We implemented this score within K2, MWST and GS algorithms for network structure learn-
ing. Performance of IS was evaluated on a benchmark database (ASIA network (lauritzen and
Spiegelhater, 1988) in comparison to other score metrics, namely BIC, BD and ML

The experiments were carried out on different datasets randomly selected from the ASIA
database (20,000 data points). The dataset size was varied from 100 to 1000 (in order to test
robusteness to small databases)and 20 replicates were performed for each database size. The
performance of each score was evaluated by four criteria : the average (over the replicates)
numbers of missings edges, additional edges, reversed edges and correct edges (relative to
the true structure inferred from the whole database).

Table 1 below shows that the Implicit score yields improved performance over other scores
when used with the MWST and GS algorithm, and have similar performance when imple-
mented within K2 algorithm.

6. Application to real data: thyroid cancer prognosis

To illustrate how the Implicit method proceed, we consider an example on thyroid cancer. The
dataset comprises data on 92 thyroid cancer patients described in Rebai et al., (2009a,b). We
considered only five nodes with two states each:

Therapeutic response (TR): no response (1)/complete remission (2)

Metastasis (MET) yes (1)/no (2).

Thyroglobulin level (TG) low: < 30 ng/mL (1); high: > 30 ng/mL (2)).

The genotype of a single nucleotide polymorphism within the HER2 gene (HER2): genotype
AA(1); genotype AG (2)(here genotype GG was totally absent).

The genotype of a single nucleotide polymorphism within the estrogen receptor gene (ER):
genotype AA and AG(1); genotype GG (2) (note here that genotypes AA and AG were merged
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MWST Algorithm IS | BIC | MI | Best Result
Correct Arc 439 | 2,62 | 2,71 8
Reversed Arc 1,93 | 3,08 | 3,08 0 (A)
Missing Arc 1,68 | 23 | 2,21 0
Extra Arc 068 | 1,32 | 1,22 0
K2 Algorithm | IS | BIC | BD | Best Result
Correct Arc 466 | 4,7 | 4,88 8
Reversed Arc | 1,59 | 1,69 | 1,71 0 (B)
Missing Arc 1,75 | 1,61 | 1,41 0
Extra Arc 151 | 1,34 | 1,85 0
GS Algorithm | BIC-BIC | MI-BD | IS-BIC | IS-BD | Best Result
Correct Arc 4,18 4,08 5,28 5,42 8
Reversed Arc 1,92 2,34 0,82 0,92 0 (@)
Missing Arc 1,9 1,58 1,9 1,66 0
Extra Arc 0,88 1,82 0,62 1,26 0

Table 1. Comparative Analysis of the Implicit score (IS) with BD, BIC and MI scores imple-
mented within (A) MWST algorithm, (B)K2 algorithm and (C) GS algorithm.

together because A is a risk allele). These two polymorphisms were included due to their
highly significant association, inferred by bivariate and multivariate statistical tests, with the
three other variables (see Rebai et al., 2009b for more details on the data).

The structure obtained by the K2 algorithm with the Implicit score is given in figure 1. Note
that the same structure was obtained by the BD score.

/ ER

MET

Fig. 1. The structure obtained by the K2 algorithm with the Implicit score

Using this structure we estimated the parameters by the Implicit approach. For parameter
notations, nodes are denoted as: (1)ER, (2)HER2, (3)TG, (4)TR and (5)MET. Parameter tijk
corresponds to the node i in state k and its parents in state j. According to the structure in
figurel, one node (HER2) has no parents, three nodes have one parent and one node has two
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parents (TG). Consequently we have two parameters for HER2, four for ER, TR and MET and
eight for TG.

parameter | estimated value | parameter | estimated value
t111 0.20608440 t112 0.79391560
t121 0.50137741 t122 0.49862259
t211 0.72054405 212 0.27945595
t311 0.47058824 t312 0.52941176
t321 0.53736875 322 0.46263125
t331 0.43298969 t332 0.56701031
t341 0.85161290 342 0.14838710
t411 0.21479714 t412 0.78520286
421 0.94267026 422 0.05732974
t511 0.07434944 t512 0.92565056
t521 0.92560895 t522 0.07439105

Table 2. Parameters Estimates from a complete dataset of 94 thyroid cancer patients based on
structure in Figl.

If we look at the TR node and particularly the probability of the occurrence of a positive
response to therapy (t412) we see that it is high (almost 80 %) when the parent (TG) is at
state 1, that is for patients with low TG levels while it is small (about 6 %) for patients with
high TG levels (t422). This confirm the high prognostic value of TG level, well recognized by
clinicians. Another expected result is that the probability of having metastasis is very high (92
%) when the patient does not respond to therapy (t512). However, an original result is that
the probability of having a high TG levels is small (about 15 %) when the patient carries non-
risk genotypes at the two single nucleotide polymoprhisms (t342)compared to corresponding
probabilities to carriers of a risk genotype for at least one SNP (50 % on average). This means
that the two SNP can be used as early prognostic factors that predict the increase in TG levels,
which might be of help for therapeutic adjustment (preventive treatment,..).

In order to test the robustness of the Implicit method in parameter learning, we introduced 5 %
missing data by randomly deleting 5 % of the data for each node. Table 3 gives the parameters
estimates and shows that the change in parameters estimates is slight except for the node
without parents (HER2). This property of Implicit estimators has already been reported in
Ben Hassen et al., (2009) and is expected because nodes without parents are expected to be
more sensitive to missing data.

7. Conclusion

In this chapter, we described the Implicit method, a new framework for learning structure and
probabilities in Bayesian networks. We showed how our method proceeds with complete and
incomplete data. The use of the Implicit method was illustrated on a real and original dataset
of thyroid cancer.

The Implicit method is a new approach that can be seen as a prior-free Bayesian approach. It
has the advantages of Bayesian methods without their drawbacks. In fact, the choice of prior
information in Bayesian approaches has always been problematic and has been advanced by
many critics to be the major weakness of such methods. Implicit method avoids the problem
of priors and leads to estimators and algorithms that are easier to derive and to implement.
We showed here and in our previous work that the Implicit score when implemented within
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parameter | estimated value | parameter | estimated value
t111 0.2173913 t112 0.7826087
t121 0.3333333 122 0.6666667
t211 0.7437071 212 0.2562929
t311 0.4615385 312 0.5384615
t321 0.5381062 322 0.4618938
t331 0.4545455 t332 0.5454545
t341 0.9166667 342 0.08333333
t411 0.2005571 t412 0.7994429
421 0.9589041 422 0.04109589
t511 0.0787401 t512 0.9212598
t521 0.948718 t522 0.05128205

Table 3. Table of estimated parameters for a 5 % rate of missing data for thyroid cancer patients

traditional algorithms for structure learning (and particularly the MWST algorithm) leads to
better results and seems to be more robust when the database is of relatively small size. This
might be a very useful property for applications in medical prognosis or diagnosis of rare dis-
eases, where the number of patients has been a limiting factor to the use of Bayseian networks
for modeling the complex relationship between several predicting factors, such as clinical,
molecular, biochemical and genetical factors.

The easy implementation of the Implicit algorithm for parameters learning in Bayseian net-
works with missing data and its performance compared to the EM algorithm and particularly
its faster convergence, is one of the reasons that can lead to its adoption for many applications
in computational biology and genomics (see Needham et al., 2007).

In its current version, the Implicit method can only handle Bayesian networks with discrete
variables. This of course encloses a wide range of applications, but the generalization to net-
works with continuous or mixed variables is our next challenge and will be addressed in the
near future.
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1. Introduction

Bayesian networks (BN) are a family of probabilistic graphical models representing a joint
distribution for a set of random variables. Conditional dependencies between these variables
are symbolized by a Directed Acyclic Graph (DAG). Two classical approaches are often
encountered when automatically determining an appropriate graphical structure from a
database of cases. The first one consists in the detection of (in)dependencies between the
variables (Cheng et al.,, 2002; Spirtes et al., 2001). The second one uses a scoring metric
(Chickering, 2002a). But neither the first nor the second are really satisfactory. The first
one uses statistical tests which are not reliable enough when in presence of small datasets.
If numerous variables are required, it is the computing time that highly increases. Even if
score-based methods require relatively less computation, their disadvantage lies in that the
searcher is often confronted with the presence of many local optima within the search space
of candidate DAGs. Finally, in the case of the automatic determination of the appropriate
graphical structure of a BN, it was shown that the search space is huge (Robinson, 1976) and
that is a NP-hard problem (Chickering et al., 1994) for a scoring approach.

In this field of research, evolutionary methods such as Genetic Algorithms (GA) (De Jong,
2006) have already been used in various forms (Acid & de Campos, 2003; Larrafiaga et al.,
1996; Muruzdabal & Cotta, 2004; Van Dijk, Thierens & Van Der Gaag, 2003; Wong et al., 1999;
2002). Among these works, two lines of research are interesting. The first idea is to effectively
reduce the search space using the notion of equivalence class (Pearl, 1988). In (Van Dijk,
Thierens & Van Der Gaag, 2003) for example the authors have tried to implement a genetic
algorithm over the partial directed acyclic graph space in hope to benefit from the resulting
non-redundancy, without noticeable effect. Our idea is to take advantage both from the
(relative) simplicity of the DAG space in terms of manipulation and fitness calculation and
the unicity of the equivalence classes’ representations.

One major difficulty when tackling the problem of structure learning with scoring methods —
evolutionary methods included - is to avoid the premature convergence of the population to
a local optimum. When using a genetic algorithm, local optima avoidance is often ensured by
preserving some genetic diversity. However, the latter often leads to slow convergence and
difficulties in tuning the GA parameters.
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To overcome these problems, we designed a general genetic algorithm based upon dedicated
operators: mutation, crossover but also a mutual information-driven repair operator which
ensures the closeness of the previous. Various strategies were then tested in order to find a
balance between speed of convergence and avoidance of local optima. We focus particularly
onto two of these: a new adaptive scheme to the mutation rate on one hand and sequential
niching techniques on the other.

The remaining of the chapter is structured as follows: in the second section we will define
the problem, ended by a brief state of the art. In the third section, we will show how an
evolutionary approach is well suited to this kind of problem. After briefly recalling the theory
of genetic algorithms, we will describe the representation of a Bayesian network adapted to
genetic algorithms and all the needed operators necessary to take in account the inherent
constraints to Bayesian networks. In the fourth section the various strategies will then be
developed: adaptive scheme to the mutation rate on one hand and niching techniques on the
other hand. The fifth section will describe the test protocol and the results obtained compared
to other classical algorithms. A study of the behavior of the used strategies will also be given.
And finally, the sixth section will present an application of these algorithms in the field of
graphic symbol recognition.

2. Problem settings and related work

2.1 Settings

A probabilistic graphical model can represent a whole of conditional relations within a field
X = {X1,Xp,...,Xn} of random variables having each one their own field of definition.
Bayesian networks belong to a specific branch of the family of the probabilistic graphical
models and appear as a directed acryclic graph (DAG) symbolizing the various dependences
existing between the variables represented. An example of such a model is given Fig. 1.

A Bayesian network is denoted B = {G,0}. Here, G = {X,E} is a directed acyclic graph
whose set of vertices X represents a set of random variables and its set of arcs E represents the
dependencies between these variables. The set of parameters § holds the conditional proba-
bilities for each vertices, depending on the values taken by its parents in G. The probability
k = {P(Xy|Pa(Xy))}, where Pa(Xy) are the parents of variable X in G. If X has no parents,
then Pa(Xy) = @.

The main convenience of Bayesian networks is that, given the representation of conditional
independences by its structure and the set 6 of local conditional distributions, we can write
the global joint probability distribution as:

n
P(Xl,..., H Xk|Pa Xk (1)

2.2 Field of applications of Bayesian networks

Bayesian networks are encountered in various applications like filtering junk e-mail (Sahami
et al., 1998), assistance for blind people (Lacey & MacNamara, 2000), meteorology (Cano et al.,
2004), traffic accident reconstruction (Davis, 2003), image analysis for tactical computer-aided
decision (Fennell & Wishner, 1998), market research (Jaronski et al., 2001), user assistance in
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Fig. 1. Example of a Bayesian network.

software use (Horvitz et al., 1998), fraud detection (Ezawa & Schuermann, 1995), human-
machine interaction enhancement (Allanach et al., 2004).

The growing interest, since the mid-nineties, that has been shown by the industry for Bayesian
models is growing particularly through the widespread process of interaction between man
and machine to accelerate decisions. Moreover, it should be emphasized their ability, in
combination with Bayesian statistical methods (i.e. taking into account prior probability
distribution model) to combine the knowledge derived from the observed domain with a
prior knowledge of that domain. This knowledge, subjective, is frequently the product of
the advice of a human expert on the subject. This property is valuable when it is known that
in the practical application, data acquisition is not only costly in resources and in time, but,
unfortunately, often leads to a small knowledge database.

2.3 Training the structure of a Bayesian network

Learning Bayesian network can be broken up into two phases. As a first step, the network
structure is determined, either by an expert, either automatically from observations made
over the studied domain (most often). Finally, the set of parameters 0 is defined here too by
an expert or by means of an algorithm.

The problem of learning structure can be compared to the exploration of the data, i.e. the
extraction of knowledge (in our case, network topology) from a database (Krause, 1999). It
is not always possible for experts to determine the structure of a Bayesian network. In some
cases, the determination of the model can therefore be a problem to resolve. Thus, in (Yuetal,,
2002) learning the structure of a Bayesian network can be used to identify the most obvious
relationships between different genetic regulators in order to guide subsequent experiments.
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The structure is then only a part of the solution to the problem but itself a solution.

Learning the structure of a Bayesian network may need to take into account the nature of the
data provided for learning (or just the nature of the modeled domain): continuous variables
— variables can take their values in a continuous space (Cobb & Shenoy, 2006; Lauritzen &
Wermuth, 1989; Lerner et al., 2001) —, incomplete databases (Heckerman, 1995; Lauritzen,
1995). We assume in this work that the variables modeled take their values in a discrete
set, they are fully observed, there is no latent variable i.e. there is no model in the field of
non-observable variable that is the parent of two or more observed variables.

The methods used for learning the structure of a Bayesian network can be divided into two
main groups:

1. Discovery of independence relationships: these methods consist in the testing proce-
dures on allowing conditional independence to find a structure;

2. Exploration and evaluation: these methods use a score to evaluate the ability of the
graph to recreate conditional independence within the model. A search algorithm will
build a solution based on the value of the score and will make it evolve iteratively.

Without being exhaustive, belonging to the statistical test-based methods it should be noted
first the algorithm PC, changing the algorithm SGS (Spirtes et al., 2001). In this approach,
considering a graph G = {X,E,0}), two vertices X; and X; from X and a subset of vertices
S X, X; € X/{X;, Xj}, the vertices X; and Xj are connected by an arc in G if there isno S X, X;
such as (Xil Xj|S X,-,X,-) where L denotes the relation of conditional independence. Based
on an undirected and fully connected graph, the detection of independence allows us to
remove the corresponding arcs until the obtention the skeleton of the expected DAG. Then
follow two distinct phases: i) detection and determination of the V-structures! of the graph
and ii) orientation of the remaining arcs. The algorithm returns a directed graph belonging
to the Markov’s equivalence class of the sought model. The orientation of the arcs, except
those of V-structures detected, does not necessarily correspond to the real causality of this
model. In parallel to the algorithm PC, another algorithm, called IC (Inductive Causation)
has been developed by the team of Judea Pearl (Pearl & Verma, 1991). This algorithm is
similar to the algorithm PC, but starts with an empty structure and links couples of variables
as soon as a conditional dependency is detected (in the sense that there is no identified
subset conditioning Sy, x; such as (XilXj|S Xier))' The common disadvantage to the two
algorithms is the numerous tests required to detect conditional independences. Finally, the
algorithm BNPC - Bayes Net Power Constructor — (Cheng et al., 2002) uses a quantitative
analysis of mutual information between the variables in the studied field to build a structure
G. Tests of conditional independence are equivalent to determine a threshold for mutual
information (conditional or not) between couples of involved variables. In the latter case, a
work (Chickering & Meek, 2003) comes to question the reliability of BNPC.

Many algorithms, by conducting casual research, are quite similar. These algorithms propose
a gradual construction of the structure returned. However, we noticed some remaining
shortcomings. In the presence of an insufficient number of cases describing the observed
domain, the statistical tests of independence are not reliable enough. The number of tests
to be independently carried out to cover all the variables is huge. An alternative is the

! We call V-structure, or convergence, a triplet (x,,z) such as y depends on x and z(x — y + z).
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use of a measure for evaluating the quality of a structure knowing the training database in
combination with a heuristic exploring a space of options.

Scoring methods use a score to evaluate the consistency of the current structure with the
probability distribution that generated the data. Thus, in (Cooper & Herskovits, 1992)
a formulation was proposed, under certain conditions, to compute the Bayesian score,
(denoted BD and corresponds in fact to the marginal likelihood we are trying to maximize
through the determination of a structure G). In (Heckerman, 1995) a variant of Bayesian
score based on an assumption of equivalency of likelihood is presented. BDe, the resulting
score, has the advantage of preventing a particular configuration of a variable X; and of its
parents Pa(X;) from being regarded as impossible. A variant, BDeu, initializes the prior
probability distributions of parameters according to a uniform law. In (Kayaalp & Cooper,
2002) authors have shown that under certain conditions, this algorithm was able to detect
arcs corresponding to low-weighted conditional dependencies. AIC, the Akaike Information
Criterion (Akaike, 1970) tries to avoid the learning problems related to likelihood alone.
When penalizing the complexity of the structures evaluated, the AIC criterion focuses the
simplest model being the most expressive of extracted knowledge from the base D. AIC is
not consistent with the dimension of the model, with the result that other alternatives have
emerged, for example CAIC — Consistent AIC — (Bozdogan, 1987). If the size of the database
is very small, it is generally preferable to use AICC — Akaike Information Corrected Criterion
— (Hurvich & Tsai, 1989). The MDL criterion (Rissanen, 1978; Suzuki, 1996) incorporates
a penalizing scheme for the structures which are too complex. It takes into account the
complexity of the model and the complexity of encoding data related to this model. Finally,
the BIC criterion (Bayesian Information Criterion), proposed in (Schwartz, 1978), is similar
to the AIC criterion. Properties such as equivalence, breakdown-ability of the score and
consistency are introduced. Due to its tendency to return the simplest models (Bouckaert,
1994), BIC is a metric evaluation as widely used as the BDeu score.

To efficiently go through the huge space of solutions, algorithms use heuristics. We can found
in the literature deterministic ones like K2 (Cooper & Herskovits, 1992), GES (Chickering,
2002b), KES (Nielsen et al., 2003) or stochastic ones like an application of Monte Carlo Markov
Chains methods (Madigan & York, 1995) for example. We particularly notice evolutionary
methods applied to the training of a Bayesian network structure. Initial work is presented
in (Etxeberria et al., 1997; Larrafiaga et al., 1996). In this work, the structure is build using
a genetic algorithm and with or without the knowledge of a topologically correct order on
the variables of the network. In (Larrafiaga et al., 1996) an evolutionary algorithm is used
to conduct research over all topologic orders and then the K2 algorithm is used to train the
model. Cotta and Muruzabal (Cotta & Muruzabal, 2002) emphasize the use of phenotypic
operators instead of genotypic ones. The first one takes into account the expression of the
individual’s allele while the latter uses a purely random selection. In (Wong et al., 1999),
structures are learned using the MDL criterion. Their algorithm, named MDLEP, does not
require a crossover operator but is based on a succession of mutation operators. An advanced
version of MDLEP named HEP (Hybrid Evolutionary Programming) was proposed (Wong
et al., 2002). Based on a hybrid technique, it limits the search space by determining in advance
a network skeleton by conducting a series of low-order tests of independence: if X and Y
are independent variables, the arcs X — Y and X < Y can not be added by the mutation
operator. The algorithm forbids the creation of a cycle during and after the mutation. In
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(Van Dijk & Thierens, 2004; Van Dijk, Thierens & Van Der Gaag, 2003; Van Dijk, Van Der
Gaag & Thierens, 2003) a similar method was proposed. The chromosome contains all the
arcs of the network, and three alleles are defined: none, X — Y and X — Y. The algorithm
acts as Wong’s one (Wong et al., 2002) but only recombination and repair are used to make
the individuals evolve. The results presented in (Van Dijk & Thierens, 2004) are slightly
better than these obtained by HEP. A search, directly done in the equivalence graph space,
is presented in (Muruzdbal & Cotta, 2004; 2007). Another approach, where the algorithm
works in the limited partially directed acyclic graph is reported in (Acid & de Campos,
2003). These are a special form of PDAG where many of these could fit the same equivalence
class. Finally, approaches such as Estimation of Distribution Algorithms (EDA) are applied
in (Miihlenbein & PaaB, 1996). In (Blanco et al., 2003), the authors have implemented two
approaches (UMDA and PBIL) to search structures over the PDAG space. These algorithms
were applied to the distribution of arcs in the adjacency matrix of the expected structure.
The results appear to support the approach PBIL. In (Romero et al., 2004), two approaches
(UMDA and MIMIC) have been applied to the topological orders space. Individuals (i.e.
topological orders candidates) are themselves evaluated with the Bayesian scoring.

3. Genetic algorithm design

Genetic algorithms are a family of computational models inspired by Darwin’s theory of Evo-
lution. Genetic algorithms encode potential solutions to a problem in a chromosome-like data
structure, exploring and exploiting the search space using dedicated operators. Their actual
form is mainly issued from the work of J.Holland (Holland, 1992) in which we can find the
general scheme of a genetic algorithm (see Algorithm. 1) called canonical GA. Throughout the
years, different strategies and operators have been developed in order to perform an efficient
search over the considered space of individuals: selection, mutation and crossing operators,
etc.

Algorithm 1 Holland’s canonical genetic algorithm (Holland, 1992)
/* Initialization */
t«0
Randomly and uniformly generate an initial population Py of A individuals and evaluate
them using a fitness function f
/* Evolution */
repeat
Select P; for the reproduction
Build new individuals by application of the crossing operator on the beforehand selected
individuals
Apply a mutation operator to the new individuals: individuals obtained are affected to
the new population P; 4
/* Evaluation */
Evaluate the individuals of Py, using f
t—t+1;
/* Stop ¥/
until a definite criterion is met
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Applied to the search for Bayesian networks structures, genetic algorithm pose two problems:

1. The constraint on the absence of circuits in the structures creates a strong link between
the different genes and alleles of a person, regardless of the chosen representation. Ide-
ally, operators should reflect this property.

2. Often, a heuristic searching over the space of solutions (genetic algorithm, greedy algo-
rithm and so on.) finds itself trapped in a local optimum. This makes it difficult to find
a balance between a technique able to avoid this problem, with the risk of overlooking
many quality solutions, and a more careful exploration with a good chance to compute
only a locally-optimal solution.

If the first item involves essentially the design of a thoughtful and evolutionary approach to
the problem, the second point characterizes an issue relating to the multimodal optimization.
For this kind of problem, there is a particular methodology: the niching.

We now proceed to a description of a genetic algorithm adapted to find a good structure for a
Bayesian network.

3.1 Representation

As our search is performed over the space of directed acyclic graphs, each invidual is
represented by an adjacency matrix. Denoting with N the number of variables in the domain,
an individual is thus described by an N x N binary matrix Adj;; where one of its coefficients
a;j is equal to 1 if an oriented arc going from X; to X; in G exists.

Whereas the traditional genetic algorithm considers chromosomes defined by a binary alpha-
bet, we chose to model the Bayesian network structure by a chain of N genes (where N is
the number of variables in the network). Each gene represents one row of the adjacency ma-
trix, that’s to say each gene corresponds to the set of parents of one variable. Although this
non-binary encoding is unusual in the domain of structure learning, it is not an uncommon
practice among genetic algorithms. In fact, this approach turns out to be especially practical
for the manipulation and evaluation of candidate solutions.

3.2 Fitness Function
We chose to use the Bayesian Information Criterion (BIC) score as the fitness function for our
algorithm:

Sgic(B,D) = log (L(D|B, eMAP)) - % x dim(B) x log(N) 2)

gMAP

where D represents the training data, the MAP-estimated parameters, and dim() is the

dimension function defined by Eq. 3:

M-

dim(B) =) (r;—1) x H Tk 3)

1 XkGPa(Xk)

where r; is the number of possible values for X;. The fitness function f(individual) can be
written as in Eq. 4:

f (individual) = ifk(Xk, Pa(Xy)) 4)
k=1
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where f}. is the local BIC score computed over the family of variable Xj.

The genetic algorithm takes advantage of the breakdown of the evaluation function and eval-
uates new individuals from their inception, through crossing, mutation or repair. The impact
of any change — on local — an individual’s genome shall be immediately passed on to the phe-
notype of it through the computing of the local score. The direct consequence is that the eval-
uation phase of the generated population took actually place for each individual — depending
on the changes made — as a result of changes endured by him.

3.3 Setting up the population

We choose to initialize the population of structures by the various trees (depending on the
chosen root vertex) returned by the MWST algorithm. Although these n trees are Markov-
equivalent, the initialization can generate individuals with relevant characteristics. Moreover,
since early generations, the combined action of the crossover and the mutation operators pro-
vides various and good quality individuals in order to significantly improve the convergence
time. We use the undirected tree returned by the algorithm: each individual of the popula-
tion is initialized by a tree directed from a randomly-chosen root. This mechanism introduces
some diversity in the population.

3.4 Selection of the individuals
We use a rank selection where each one of the A individuals in the population is selected with
a probability equal to:

A+ 1 — rank(individual) 5)
Ax(A+1)

This strategy allows promote individuals which best suit the problem while leaving the weak-
est one the opportunity to participate to the evolution process. If the major drawback of this
method is to require a systematic classification of individuals in advance, the cost is neg-
ligible. Other common strategies have been evaluated without success: the roulette wheel
(prematured convergence), the tournament (the selection pressure remained too strong) and
the fitness scaling (Forrest, 1985; Kreinovich et al., 1993). The latter aims to allow in the first
instance to prevent the phenomenon of predominance of "super individuals" in the early gen-
erations while ensuring when the population converges, that the mid-quality individuals did
not hamper the reproduction of the best ones.

Pyeoject (individual) = 2 X

3.5 Repair operator

In order to preserve the closeness of our operators over the space of directed acyclic graphs,
we need to design a repair operator to convert those invalid graphs (typically, cyclic directed
graphs) into valid directed acyclic graphs. When one cycle is detected within a graph, the
operator suppresses the one arc in the cycle bearing the weakest mutual information. The
mutual information between two variables is defined as in (Chow & Liu, 1968):

N, b N, p X N
W(Xa, Xg) = Y, =2 xlog (”> (6)

X% N N; X Ny
Where the mutual information W (X4, Xp) between two variables X4 and Xp is calculated
according to the number of times N, that X4 = a and Xp = b, N, the number of times
X4 = a and so on. The mutual information is computed once for a given database. It may
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happen that an individual has several circuits, as a result of a mutation that generated and/or
inverted several arcs. In this case, the repair is iteratively performed, starting with deleting
the shortest circuit until the entire circuit has been deleted.

3.6 Crossover Operator

A first attempt was to create a one-point crossover operator. At least, the operator used has
been developed from the model of (Vekaria & Clack, 1998). This operator is used to generate
two individuals with the particularity of defining the crossing point as a function of the quality
of the individual. The form taken by the criterion (BIC and, in general, by any decomposable
score) makes it possible to assign a local score to the set { X;, Pa(X;)}. Using these different lo-
cal scores we can therefore choose to generate an individual which received the best elements
of his ancestors. This operation is shown Fig. 2. This generation can be performed only if a
DAG is produced (the operator is closed). In our experiments, Pgss, the probability that an
individual is crossed with another is set to 0.8.
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Fig. 2. The crossover operator and the transformation it performs over two DAGs

3.7 Mutation operator
Each node of one individual has a Pyt probability of losing or gaining one parent or to see
one of its incoming arcs reverted (ie. reversing the relationship with one parent).

3.8 Other Parameters

The five best individuals from the previous population are automatically transferred to the
next one. The rest of the population at t + 1 is composed of the S — 5 best children where S is
the size of the population.
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4. Strategies

Now, after describing our basic GA, we will present how it can be improved by i) a specific
adaptive mutation scheme and ii) an exploration strategy: the niching.

The many parameters of a GA are usually fixed by the user and, unfortunately, usually lead
to sub-optimal choices. As the amount of tests required to evaluate all the conceivable sets of
parameters will be eventually exponential, a natural approach consists in letting the different
parameters evolve along with the algorithm. (Eiben et al., 1999) defines a terminology for
self-adaptiveness which can be resumed as follows:

* Deterministic Parameter Control: the parameters are modified by a deterministic rule.

¢ Adaptive Parameter Control: consists in modifying the parameters using feedback from
the search.

¢ Self-adaptive Parameter Control: parameters are encoded in the individuals and evolve
along.

We now present three techniques. The first one, an adaptive parameter control, aims at man-
aging the mutation rate. The second one, an evolutionary method tries to avoid local optima
using a penalizing scheme. Finaly, the third one, another evolutionary method, makes many
populations evolve granting sometimes a few individuals to go from one population to an-
other.

4.1 Self-adaptive scheme of the mutation rate

As for the mutation rate, the usual approach consists in starting with a high mutation rate
and reducing it as the population converges. Indeed, as the population clusters near one
optimum, high mutation rates tend to be degrading. In this case, a self-adaptive strategy
would naturally decrease the mutation rate of individuals so that they would be more likely
to undergo the minor changes required to reach the optimum.

Other strategies have been proposed which allow the individual mutation rates to either in-
crease or decrease, such as in (Thierens, 2002). There, the mutation step of one individual
induces three differently rated mutations: greater, equal and smaller than the individual’s ac-
tual rate. The issued individual and its mutation rate are chosen accordingly to the qualitative
results of the three mutations. Unfortunately, as the mutation process is the most costly oper-
ation in our algorithm, we obviously cannot choose such a strategy. Therefore, we designed
the following adaptive policy.

We propose to conduct the search over the space of solutions by taking into account infor-
mation on the quality of later search. Our goal is to define a probability distribution which
drives the choice of the mutation operation. This distribution should reflect the performance
of the mutation operations being applied over the individuals during the previous iterations
of the search.

Let us define P(i,j,0pmute) the probability that the coefficient a;; of the adjacency matrix is
modified by the mutation operation opy.. The mutation decays according to the choice of 7,
and opyute. We can simplify the density of probability by conditioning a subset of {1, j, 0pmute }
by its complementary. This latter being activated according to a static distribution of probabil-
ity. After studying all the possible combination, we have chosen to design a process to control
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P(i|opmute, j)- This one influences the choice of the source vertex knowing the destination ver-
tex and for a given mutation operation. So the mutation operator can be rewritten such as
shown by Algorithm 2.

Algorithm 2 The mutation operator scheme

forj=1tondo
if Pa(Xj) mute with a probability Py, then
choose a mutation operation among these allowed on Pa(X;)
apply opmute (i, j) with the probability P(i|opmute, J)
end if
end for

Assuming that the selection probability of Pa(X;) is uniformly distributed and equals a given
Pyute, Eq. 7 must be verified:

Zopmute é‘glf;{tzutep(ﬂopm”tg/j) = 1
5(:‘,]') [ lifopmute(i,j) is allowed (7)
OPmute = () else

The diversity of the individuals lay down to compute P(i|opmute, j) for each allowed opyute
and for each individual X;. We introduce a set of coefficients denoted { (i, j, 0pmute (i, j)) where
1<i,j<mandi# jto control P(i|opmute, j). So we define:
P(i‘opmute/]') — (?gl’]’OPMMte(ll])) (8)
Zéaé{nwg(i/]'/ 0Pmute(i,))
During the initialization and without any prior knowledge, {(i, j, 0pmute(i, j)) follows an uni-
form distribution:

.. L. 1 vl < -,.<
0, j, opmute(i,j)) = { SiLjsn

9
n—1 v OPmute ©)
Finally, to avoid the predominance of a given op¢. (probability set to 1) and a total lack of a
given opyt. (probability set to 0) we add a constraint given by Eq. 10:

V1<ij<n
vOpmute

Now, to modify {(i, j, 0pmute(i,j)) we must take in account the quality of the mutations and
either their frequencies. After each evolution phase, the {(i,, 0pmute(i,j)) associated to the
0Pmute applied at least one time are reestimated. This compute is made according to a param-
eter v which quantifies the modification range of {(i, j, 0pmute (i, j)) and depends on w which
is computed as the number of successful applications of ops;ys minus the number of detri-
mental ones in the current population. Eq. 11 gives the computation. In this relation, if we set
v =0 the algorithm acts as the basic genetic algorithm previoulsy defined.

0.01 < £, j, 0pmute(iv ) < 0.9{ (10)

.. coy | min (L3, ], 0pmute(i,7)) x (1 —7)“,09) ifw >0
C(i,j, 0pmute(i,j)) = { max (Z(i, j, 0pmute(i, 1)) x (1= 7)¥,0.01) else (11)
The regular update {(i, j, 0pmute (i, j)) leads to standardize the P(i|opmute, j) values and avoids
a prematured convergence of the algorithm as seen in (Glickman & Sycara, 2000) in which
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the mutation probability is strictly decreasing. Our approach is different from an EDA one:
we drive the evolution by influencing the mutation operator when an EDA makes the best
individuals features probability distribution evolve until then generated.

4.2 Niching

Niching methods appear to be a valuable choice for learning the structure of a Bayesian net-
work because they are well-adapted to multi-modal optimization problem. Two kind of nich-
ing techniques could be encountered: spatial ones and temporal ones. They all have in com-
mon the definition of a distance which is used to define the niches. In (Mahfoud, 1995), it
seemed to be expressed a global consensus about performance: spatial approach gives bet-
ter results than temporal one. But the latter is easier to implement because it consists in the
addition of a penalizing scheme to a given evolutionary method.

4.2.1 Sequential Niching

So we propose two algorithms. The first one is apparented to a sequential niching. It makes
a similar trend to that of a classic genetic algorithm (iterated cycles evaluation, selection,
crossover, mutation and replacement of individuals) except for the fact that a list of optima is
maintained. Individuals matching these optima see their fitness deteriorated to discourage
any inspection and maintenance of these individuals in the future.

The local optima, in the context of our method, correspond to the equivalence classes in the
meaning of Markov. When at least one equivalence class has been labelled as corresponding
to an optimum value of the fitness, the various individuals in the population belonging to
this optimum saw the value of their fitness deteriorated to discourage any further use of these
parts of the space of solutions. The determination of whether or not an individual belongs
to a class of equivalence of the list occurs during the evaluation phase, after generation by
crossover and mutation of the new population. The graph equivalent of each new individual
is then calculated and compared with those contained in the list of optima. If a match is
determined, then the individual sees his fitness penalized and set to at an arbitrary value
(very low, lower than the score of the empty structure).

The equivalence classes identified by the list are determined during the course of the algo-
rithm: if, after a predetermined number of iterations Ite,, there is no improvement of the
fitness of the best individual, the algorithm retrieves the graph equivalent of the equivalence
class of it and adds it to the list.

It is important to note here that the local optima are not formally banned in the population.
The registered optima may well reappear in our population due to a crossover. The eval-
uation of these equivalence classes began, in fact until the end of a period of change. An
optimum previously memorized may well reappear at the end of the crossover operation
and the individual concerned undergo mutation allowing to explore the neighborhood of the
optimum.

The authors of (Beasley et al., 1993) carry out an evolutionary process reset after each deter-
mination of an optimum. Our algorithm continues the evolution considering the updated
list of these optima. However, by allowing the people to move in the neighborhood of the
detected optima, we seek to preserve the various building blocks hitherto found, as well as
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reducing the number of evaluations required by multiple launches of the algorithm.

At the meeting of a stopping criterion, the genetic algorithm completes its execution thus
returning the list of previously determined optima. The stopping criterion of the algorithm
can also be viewed in different ways, for example:

* After a fixed number of local optima detected.
* After a fixed number of iterations (generations).

We opt for the second option. Choosing a fixed number of local optima may, in fact,
appear to be a much more arbitrary choice as the number of iterations. Depending on the
problem under consideration and/or data learning, the number of local optima in which the
evolutionary process may vary. The algorithm returns a directed acyclic graph corresponding
to the instantiation of the graph equivalent attached to the highest score in the list of optima.

An important parameter of the algorithm is, at first glance, the threshold beyond which an
individual is identified as an optimum of the evaluation function. It is necessary to define a
value of this parameter, which we call Ite,p; that is:

¢ Neither too small: too quickly consider an equivalence class as a local optimum slows
exploring the search space by the genetic algorithm, which focuses on many local op-
tima.

¢ Nor too high: loss of the benefit of the method staying too long in the same point in
space research: the local optima actually impede the progress of the research.

Experience has taught us that Ite,, value of between 15 and 25 iterations can get good results.
The value of the required parameter Ite,,s seems to be fairly stable as it allows both to stay
a short time around the same optimum while allowing solutions to converge around it. The
value of the penalty imposed on equivalence classes is arbitrary. The only constraint is that
the value is lowered when assessing the optimum detected is lower than the worst possible
structure, for example: —10%5,

4.2.2 Sequential and spatial niching combined

The second algorithm uses the same approach as for the sequential niching combined with
a technique used in parallels GAs to split the population. We use an island model approach
for our distributed algorithm. This model is inspired from a model used in genetic of
populations (Wright, 1964). In this model, the population is distributed to k islands. Each
island can exchange individuals with others avoiding the uniformization of the genome of
the individuals. The goals of all of this is to preserve (or to introduce) genetic diversity.

Some additional parameters are required to control this second algorithm. First, we denote
Liyjg the migration interval, i.e. the number of iteration of the GA between two migration
phases. Then, we use R, the migration rate: the rate of individuals selected for a migration.
Njg is the number of islands and finally I, represents the number of individuals in each
island.

In order to remember the local optima encountered by the populations, we follow the next
process:

* The population of each island evolves during I, iterations and then transfer R;;; X
Iize individuals.
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¢ Local optima detected in a given island are registered in a shared list. Then they can be
known by all the islands.

5. Evaluation and discussion

From an experimental point of view, the training of the structure of a Bayesian network con-
sists in:

* To have an input database containing examples of instantiation of the variables.

* To determine the conditional relationship between the variables of the model :

— Either from statistical tests performed on several subsets of variables.

- Either from measurements of a match between a given solution and the training
database.

¢ To compare the learned structures to determine the respective qualities of the different
algorithms used.

5.1 Tested methods

So that we can compare with existing methods, we used some of the most-used learning meth-
ods: the K2 algorithm, the greedy algorithm applied to the structures space, noted GS; the
greedy algorithm applied to the graph equivalent space, noted GES; the MWST algorithm,
the PC algorithm. These methods are compared to our four evolutionary algorithms learning:
the simple genetic algorithm (GA); genetic algorithm combined with a strategy of sequential
niching (GA-SN); the hybrid sequential-spatial genetic approach (GA-HN); the genetic algo-
rithm with the dynamic adaptive mutation scheme GA-AM.

5.2 The Bayesian networks used

We apply the various algorithms in search of some common structures like: Insurance (Binder
et al., 1997) consisting of 27 variables and 52 arcs; ALARM (Beinlich et al., 1989) consisting of
37 variables and 46 arcs. We use each of these networks to summarize:

¢ Four training data sets for each network, each one containing a number of databases of
the same size (250, 500, 1000 & 2000 samples).

* A ssingle and large database (20000 or 30000 samples) for each network. This one is sup-
posed to be sufficiently representative of the conditional dependencies of the network
it comes from.

All these data sets are obtained by logic probabilistic sampling (Henrion, 1988): the value of
vertices with no predecessors is randomly set, according to the probability distributions of the
guenine network, and then the remaining variables are sampled following the same principle,
taking into account the values of the parent vertices. We use several training databases for a
given network and for a given number of cases, in order to reduce any bias due to sampling
error. Indeed, in the case of small databases, it is possible (and it is common) that the extracted
statistics are not exactly the conditional dependencies in the guenine network. After training
with small databases, the BIC score of the returned structures by the different methods are
computed from the large database mentioned earlier, in order to assess qualitative measures.
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5.3 Experiments

GAs: The parameters of the evolutionary algorithms are given in Table 1.

GS: This algorithm is initialized with a tree returned by the MWST method, where the root
vertex is randomly chosen.

GES: This algorithm is initialized with the empty structure.

MWST: it is initialized with a root node randomly selected (it had no effect on the score of the
structure obtained).

K2: This algorithm requires a topological order on the vertices of the graph. We used for this
purpose two types of initialization:

* The topological order of a tree returned by the MWST algorithm (method K2-T)
* A topological order random (method K2-R)

Parameter Value Remarks
Population size 150

Mutation probability 1/n

Crossover probability 0.8

Recombination scheme elitist The best solution is never lost
Stop criterion 1000 iter.

Initialisation See footnote?
Iteopt 20 For GA-SN only
0% 0.5 For GA-AM only
Liig 20 For GA-HN only
Runig 0.1 For GA-HN only
Nig1 30 For GA-HN only
Lize 30 For GA-HN only

Table 1. Parameters used for the evolutionary algorithms.

For each instance of K2-R —i.e. for each training database considered — we are proceeding
with 5 x n random initialization for choosing only those returning the best BIC score.

Some of these values (crossover, mutation probability) are coming from some habits of the
domain (Back, 1993) but especially from experiments too. The choice of the iteration number
is therefore sufficient to monitor and interpret the performance of the method considered
while avoiding a number of assessments distorting the comparison of results with greedy
methods.

We evaluate the quality of the solutions with two criteria: the BIC score from one hand, and
a graphic distance measuring the number of differences between two graphs on the other
hand. The latter is defined from 4 terms: (D) the total number of different arcs between two
graphs G; and Gy, (®) the number of arcs existing in G; but not in Gy, (©) the number of
arcs existing in G, but not in G; and (inv) the number of arcs inverted in G; comparing to G,.
These terms are important because, when considering two graphs of the same equivalence
class, some arcs could be inverted. This implies that the corresponding arcs are not oriented
in the corresponding PDAG. The consequence is that G; and G, have the same BIC score but
not the same graphic distance. To compare the results with we also give the score of the empty
structure Gy and the score of the reference network Gg.
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5.4 Results for the INSURANCE network

Results are given Table 2 & Table 3. The evaluation is averaged over 30 databases. Table 2
shows the means and the standard deviations of the BIC scores. For a better seeing, values
are all divided by 10. Values labelled by t are significantly different from the best mean score
(Mann-Whitney’s test).

The results in Table 2 give an advantage to evolutionary methods. While it is impossible to
distinguish clearly the performance of the different evolutionary methods, it is interesting to
note that these latter generally outperform algorithms like GES and GS. Only the algorithm
GS has such good results as the evolutionary methods on small databases (250 and 500). We
can notice too, according to a Mann-Whitney’s test that, for large datasets, GA-SN & GA-AM
returns a structure close to the original one. Standard deviations are not very large for the
GAs, showing a relative stability of the algorithms and so, a good avoidance of local optima.

Table 3 shows the mean structural differences between the original network and these deliv-
ered by some learning algorithms. There, we can see that evolutionary methods, particularly
GA-SN, return the structures which are the closest to the original one. This network was cho-
sen because it contains numerous low-valued conditional probabilities. These are difficult to
find using small databases. So even if the BIC score is rather close to the original one, graph-
ical distances reveals some differences. First, we can see that D is rather high (the original
network Gp is made with only 52 arcs, compared to D which minimum is 24.4) even if the BIC
score is very close (resp. -28353 compared to -28681). Second, as expected, D decreases when
the size of the learning database grows, mainly because of the (-) term. Third, GAs obtains the
closest models to the original in 11 cases over 16; the 5 others are provided by GES.

5.5 Results for the ALARM network

This network contains more vertices than the INSURANCE one, but less low-valued arcs. The
evaluation is averaged over 30 databases. Evolutionary algorithms obtain the best scores. But
while GES provides less qualitative solutions accordingly to the BIC score, these solutions are
closest to the original one if we consider the graphical distance. Here, a strategy consisting in
gradually building a solution seems to produce better structures than an evolutionary search.
In this case, a GA has a huge space (3 x 1027 when applying the Robinson’s formula) into
which one it enumerates solutions. If we increases the size of the population the results are
better than these provided by GES.

5.6 Behavior of the GAs
Now look at some measures in order to evaluate the behavior of our genetic algorithms.

A repair operator was designed to avoid individuals having a cycle. Statistics computed
during the tests show that the rate of individuals repaired does not seem to depend neither
on the algorithm used nor on the size of the training set. It seems to be directly related to the
complexity of the network. Thus, this rate is about 15% for the INSURANCE network and
about 7% for the ALARM network.

The mean number of iterations before the GA found the best solution returned for the
INSURANCE network is given Table 4. The data obtained for the ALARM network are the
same order of magnitude. We note here that GA-HN quickly gets the best solution. This
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Insurance
250 500 1000 2000
GA —32135 +290 —31200 + 333 —29584 + 359 —28841 £+ 89t
GA-SN —31917 +286 —31099 + 282 —29766 1+ 492 -28681+156
GA-AM -31826+270 —31076 + 151 —29635 + 261 —28688 + 165
GA-HN —31958 + 246 -31075+255 -29428-+290 —28715 + 164
GS —32227 + 397 —31217 + 314 —29789 £ 225t | —28865 £+ 151t
GES —33572 4247t | —31952 £273t | —30448 £ 8361 | —29255 + 634t
K2-T —32334 489t | —31772 £339t | —30322 +337t+ | —29248 + 163t
K2-R —33002 4489t | —31858 +395t | —29866 + 2811 | —29320 + 245t
MWST —34045 + 141t | —33791 £519t | —33744 £2961 | —33717 254+
Original —28353
Go — 45614
Table 2. Means and standard deviations of the BIC scores INSURANCE).
Insurance
250 500
D ® Inv © D b Inv S]
GA 39,6 | 44| 7,2 28 34 3,1 7,6 23,3
GA-SN 37 3,51 711 26,4 35,1 | 3,7 7,4 24
GA-AM | 37,5 | 4,3 | 6,6 | 26,6 33,9 | 3,2 7,7 23
GA-HN | 38,1 | 3,5 | 7,5 | 27,1 33,3 3 7,3 23
GS 42,1 | 46 | 9,4 | 28,1 37,7 | 4,5 9,4 23,8
GES 39,5 137 | 71| 28,7 35,1 3 7,1 25
K2-T | 42,7 | 51 | 8,4 | 29,2 || 40,8 | 5,4 | 8,8 | 26,6
K2-R 42,4 | 48 | 7,2 | 30,4 41,8 | 6,5 8,8 26,6
MWST 41,7 4 7,7 30 41,3 | 3,5 8,3 29,5
1000 2000
D @ Inv © D 2] Inv S]
GA 39,6 | 44| 7,2 28 27,8 | 4,7 8 15,1
GA-SN | 30,8 | 3,8 | 7,4 | 19,6 244 | 3,4 6,7 14,3
GA-AM | 31,4 | 4 8 | 194 | 27 [ 43| 84 | 14,3
GA-HN | 29,3 | 3,6 | 6,5 | 19,2 26,6 | 3,6 8,6 14,4
GS 35,9 | 51 10 20,8 31,9 | 52 | 11,4 | 15,3
GES 32,4 | 41| 81 | 20,2 27,5 4 8,4 15,1
K2T | 38,7 | 59 | 11 | 21,8 || 346 | 7,3 | 10,9 | 16,4
K2-R 39,6 | 8,3 | 8,3 23 36,1 | 8,5 8,5 9,1
MWST 37,7 | 1,7 | 83 | 27,7 36,3 | 1,2 7,9 27,2

29

Table 3. Mean structural differences between the original INSURANCE network and the best
solutions founded by some algorithms.



30 Bayesian Network

makes it competitive in terms of computing time if we could detect this event.

Insurance Net.
250 500 1000 2000
GA 364 +319 | 454 +£295 | 4254249 | 555+ 278
GA-SN 704 +295 | 6054321 | 694+ 258 | 723 +234
GA-AM | 398 +326 | 4144+277 | 526 +£320 | 501 £ 281
GA-HN 82+59 106 £77 166 + 84 116 £27

Table 4. Mean of the necessary number of iterations to find the best structure (INSURANCE).

The averaged computing time of each algorithm is given Table 5 (for the ALARM network).
We note here that GA-HN is only three times slower than GES. We note too that these
computing times are rather stable when the size of the database increases.

ALARM Net.
250 500 1000 2000

GA 3593 £+ 47 3659 £ 41 3871 £53 4088 + 180
GA-SN 3843 £ 58 3877 - 44 4051 £59 4332 £78
GA-AM 3875+ 32 4005 +43 4481 £ 46 4834 £ 52
GA-HN | 9118 +269 9179 £ 285 9026 £ 236 9214 £ 244

GS 9040 £1866 | 9503 £1555 | 12283 £1403 | 16216 +2192

GES 3112 £321 2762 £ 166 4055 £ 3,4 5759 £ 420

K2-T 733+9 855+ 25 1011 + 14 1184 +8

K2-R 3734 £ 61 4368 £ 152 5019 £ 67 5982 +43
MWST 10+1 10+2 11+1 12+1

Table 5. Averaged computing times (in seconds) and standard deviations (ALARM).

6. Application

Graphics recognition deals with graphic entities in document images and is a subfield of
document image analysis. These graphic entities could correspond to symbols, mathematical
formulas, musical scores, silhouettes, logos etc., depending on the application domain.
Documents from electronics, engineering, music, architecture and various other fields use
domain-dependent graphic notations which are based on particular alphabets of symbols.
These industries have a rich heritage of hand-drawn documents and because of high
demands of application domains, overtime symbol recognition is becoming core goal of
automatic image analysis and understanding systems. The method proposed in (Lugman
et al., 2009) is a hybrid of structural and statistical pattern recognition approaches where the
representational power of structural approaches is exploited and the computational efficiency
of statistical classifiers is employed.

In our knowledge there are only a few methods which use Bayesian networks for graphic
symbol recognition. Recently Barrat et al. (Barrat et al.,, 2007) have used the naive Bayes
classifier in a pure statistical manner for graphic symbol recognition. Their system uses three
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shape descriptors: Generic Fourier Descriptor, Zernike descriptor & R-Signature 1D, and
applies dimensionality reduction for extracting the most relevant and discriminating features
to formulate a feature vector. This reduces the length of their feature vector and eventually
the number of variables (nodes) in Bayesian network. The naive Bayes classifier is a powerful
Bayesian classifier but it assumes a strong independence relationship among attributes given
the class variable. We believe that the power of Bayesian networks is not fully explored;
as instead of using predefined dependency relationships, if we find dependencies between
all variable pairs from underlying data we can obtain a more powerful Bayesian network
classifier. This will also help to ignore irrelevant variables and exploit the variables that are
interesting for discriminating symbols in underlying symbol set.

Our method is an original adaptation of Bayesian network learning for the problem of
graphic symbol recognition. For symbol representation, we use a structural signature. The
signature is computed from the attributed relational graph (ARG) of symbol and is composed
of geometric & topologic characteristics of the structure of symbol. We use (overlapping)
fuzzy intervals for computing noise sensitive features in signature. This increases the ability
of our signature to resist against irregularities (Mitra & Pal, 2005) that may be introduced in
the shape of symbol by deformations & degradations. For symbol recognition, we employ
a Bayesian network. This network is learned from underlying training data by using the
GA-HN algorithm. A query symbol is classified by using Bayesian probabilistic inference
(on encoded joint probability distribution). We have selected the features in signature very
carefully to best suit them to linear graphic symbols and to restrict their number to minimum,;
as Bayesian network algorithms are known to perform better for a smaller number of nodes.
Our structural signature makes the proposed system robust & independent of application
domains and it could be used for all types of 2D linear graphic symbols.

After representing the symbols in learning set by ARG and describing them by structural
signatures, we proceed to learning of a Bayesian network. The signatures are first dis-
cretized. We discretize each feature variable (of signature) separately and independently
of others. The class labels are chosen intelligently in order to avoid the need of any dis-
cretization for them. The discretization of number of nodes and number of arcs achieves a
comparison of similarity of symbols (instead of strict comparison of exact feature values).
This discretization step also ensures that the features in signature of query symbol will look
for symbols whose number of nodes and arcs lie in same intervals as that of the query symbol.

The Bayesian network is learned in two steps. First we learn the structure of the network.
Despite the training algorithms are evolutionary one, they have provided stable results (for
a given dataset multiple invocations always returned identical network structures). Each
feature in signature becomes a node of network. The goal of structure learning stage is to
find the best network structure from underlying data which contains all possible dependency
relationships between all variable pairs. The structure of the learned network depicts the
dependency relationships between different features in signature. Fig.3 shows one of the
learned structures from our experiments. The second step is learning of parameters of
network; which are conditional probability distributions Pr(node;|parents;) associated to
nodes of the network and which quantify the dependency relationships between nodes.
The network parameters are obtained by maximum likelihood estimation (MLE); which is a
robust parameter estimation technique and assigns the most likely parameter values to best
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describe a given distribution of data. We avoid null probabilities by using Dirichlet priors
with MLE. The learned Bayesian network encodes joint probability distribution of the symbol
signatures.
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Fig. 3. Example of a Bayesian network : C = class, N = number of nodes, Al = number of
connections, A2 = number of Ljunctions, A3 = number of Tjunctions, A4 = number of in-
tersections, A5 = number of parallel connections, A6 = number of successive connections, Bl
(resp. B2 and B3) = number of nodes with low (resp. medium and high) density of connec-
tions, C1 (resp. C2 and C3) = number of small-length (resp. medium-length and full-length)
primitives, D1 = number of small-angle (resp. medium-angle and full-angle) connections.

The conditional independence property of Bayesian networks helps us to ignore irrelevant
features in structural signature for an underlying symbol set. This property states that
a node is conditionally independent of its non-descendants given its immediate parents
(Charniak, 1991). Conditional independence of a node in Bayesian network is fully ex-
ploited during probabilistic inference and thus helps us to ignore irrelevant features for
an underlying symbol set while computing posterior probabilities for different symbol classes.

For recognizing a query symbol we use Bayesian probabilistic inference on the encoded joint
probability distribution. This is achieved by using junction tree inference engine which is
the most popular exact inference engine for Bayesian probabilistic inference. The inference
engine propagates the evidence (signature of query symbol) in network and computes poste-
rior probability for each symbol class. Equation 12 gives Bayes rule for our system. It states
that posterior probability or probability of a symbol class c; given a query signature evidence
e is computed from likelihood (probability of e given ¢;), prior probability of ¢; and marginal
likelihood (prior probability of ¢). The marginal likelihood Pr(e) is to normalize the posterior
probability; it ensures that the probabilities fall between 0 and 1.

Pr(e,c;)  Pr(e|c;) x Pr(c;)

Pr(cile) = Pr(e) - Pr(e) (12)
where,
{ e = f1,f2, f3, f16 (13)
Pr(e) = Pr(e,c;) = Z;‘:l Pr(e|c;) x Pr(c;)

The posterior probabilities are computed for all k symbol classes and the query symbol is then
assigned to class which maximizes the posterior probability i.e. which has highest posterior
probability for the given query symbol.
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6.1 Symbols with vectorial and binary noise

The organization of four international symbol recognition contests over last decade (Aksoy
et al., 2000; Dosch & Valveny, 2005; Valveny & Dosch, 2003; Valveny et al., 2007), has provided
our community an important test bed for evaluation of methods over a standard dataset.
These contests were organized to evaluate and test the symbol recognition methods for
their scalability and robustness against binary degradation and vectorial deformations.
The contests were run on pre-segmented linear symbols from architectural and electronic
drawings, as these symbols are representative of a wide range of shapes (Valveny & Dosch,
2003). GREC2005 (Dosch & Valveny, 2005) & GREC2007 (Valveny et al., 2007) databases are
composed of the same set of models, whereas GREC2003 (Valveny & Dosch, 2003) database
is a subset of GREC2005.
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Fig. 4. Model symbols from electronic drawings and from floor plans.

We experimented with synthetically generated 2D symbols of models collected from database
of GREC2005. In order to get a true picture of the performance of our proposed method
on this database, we have experimented with 20, 50, 75, 100, 125 & 150 symbol classes. We
generated our own learning & test sets (based on deformations & degradations of GREC2005)
for our experiments. For each class the perfect symbol (the model) along with its 36 rotated
and 12 scaled examples was used for learning; as the features have already been shown
invariant to scaling & rotation and because of the fact that generally Bayesian network
learning algorithms perform better on datasets with large number of examples. The system
has been tested for its scalability on clean symbols (rotated & scaled), various levels of
vectorial deformations and for binary degradations of GREC symbol recognition contest.
Each test dataset was composed of 10 query symbols for each class.

Number of classes (models) 20 50 75 100 125 150

Clean symbols (rotated & scaled) 100% | 100% | 100% | 100% | 100% | 99%
Hand-drawn deform. Level-1 9% | 96% | 93% | 92% | 90% | 89%
Hand-drawn deform. Level-2 98% | 95% | 92% | 90% | 89% | 87%
Hand-drawn deform. Level-3 95% | 77% | 73% | 70% | 69% | 67%
Binary degrade 98% | 96% | 93% | 92% | 89% | 89%

Table 6. Results of symbol recognition experiments.
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Table 6 summarizes the experimental results. A 100% recognition rate for clean symbols illus-
trates the invariance of our method to rotation & scaling. Our method outperforms all GREC
participants (available results from GREC2003 and GREC2005 competitions) in scalability
tests and is comparable to contest participants for low levels of deformation & degradations.
The recognition rates decrease with level of deformation and drop drastically for high binary
degradations. This is an expected behavior and is a result of the irregularities produced in
symbol signature; which is a direct outcome of the noise sensitivity of vectorization step,
as also pointed out by (Llados et al., 2002). We used only clean symbols for learning and
(thus) the recognition rates truely illustrate the robustness of our system against vectorial and
binary noise.

6.2 Symbols with contextual noise

A second set of experimentation was performed on a synthetically generated corpus, of
symbols cropped from complete documents (Delalandre et al., 2007). These experiments
focused on evaluating the robustness of the proposed system against context noise i.e. the
structural noise introduced in symbols when they are cropped from documents. We believe
that this type of noise gets very important when we are dealing with symbols in context in
complete documents and to the best of our knowledge; no results have yet been published
for this type of noise. We have performed these experiments on two subsets of symbols:
consisting of 16 models from floor plans and 21 models from electronic diagrams. The models
are derived from GREC2005 database and are given in Fig.4. For each class the perfect
symbol (model), along with its 36 rotated and 12 scaled examples was used for learning. The
examples of models, for learning, were generated using ImageMagick and the test sets were
generated synthetically (Delalandre et al., 2007) with different levels of context-noise in order
to simulate the cropping of symbols from documents. Test symbols were randomly rotated
& scaled and multiple query symbols were included for each class. The test datasets are
available at (Delalandre, 2009).

| Dataset | Noise | 1-TOP | 3-TOP |
Floor plans Level1 | 84% 95%
Floor plans Level2 | 79% 90%
Floor plans Level 3 | 76% 87%
Electronic diagrams Levell | 69% 89%
Electronic diagrams Level2 | 66% 88%
Electronic diagrams Level3 | 61% 85%

Table 7. Results of symbol recognition experiments for context noise.1-TOP stands for the
right class in given in first position and 3-TOP stands for the right class in belonging to the
first 3 answers.

Table 7 summarizes the results of experiments for context noise. We have not used any sophis-
ticated de-noising or pretreatment and our method derives its ability to resist against context
noise, directly from underlying vectorization technique, the fuzzy approach used for comput-
ing structural signature and the capabilities of Bayesian networks to cope with uncertainties.
The models for electronic diagrams contain symbols consisting of complex arrangement of
lines & arcs, which affects the features in structural signature as the employed vectorization
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technique is not able to cope with arcs & circles; as is depicted by the recognition rates for
these symbols. But keeping in view the fact that we have used only clean symbols for learn-
ing and noisy symbols for testing, we believe that the results show the ability of our signature
to exploit the sufficient structural details of symbols and it could be used to discriminate and
recognize symbols with context noise.

7. Conclusion

We have presented three methods for learning the structure of a Bayesian network. The first
one consists in the control of the probability distribution of mutation in the genetic algorithm.
The second one is to incorporate a scheme penalty in the genetic algorithm so that it avoids
certain areas of space research. The third method is to search through several competing
populations and to allow timely exchange among these populations. We have shown experi-
mentally that different algorithms behaved satisfactorily, in particular that they were proving
to be successful on large databases. We also examined the behavior of proposed algorithms.
Niching strategies are interesting, especially using the spatial one, which focuses quickly on
the best solutions.
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1. Introduction

Because a Bayesian network is a complete model for the variables and their relationships, it
can be used to answer probabilistic queries about them. For example, the network can be
used to find out updated knowledge of the state of a subset of variables when other variables
(the evidence variables) are observed. This process of computing the posterior distribution
of variables given evidence is called probabilistic inference. A Bayesian network can thus be
considered a mechanism for automatically applying Bayes’ theorem to complex problems.

In the application of Bayesian networks, most of the work is related to probabilistic inferences.
Any variable updating in any node of Bayesian networks might result in the evidence prop-
agation across the Bayesian networks. How to examine and execute various inferences is the
important task in the application of Bayesian networks.

This chapter will sum up various inference techniques in Bayesian networks and provide
guidance for the algorithm calculation in probabilistic inference in Bayesian networks. Infor-
mation systems are of discrete event characteristics, this chapter mainly concerns the infer-
ences in discrete events of Bayesian networks.

2. The Semantics of Bayesian Networks

The key feature of Bayesian networks is the fact that they provide a method for decomposing
a probability distribution into a set of local distributions. The independence semantics asso-
ciated with the network topology specifies how to combine these local distributions to obtain
the complete joint probability distribution over all the random variables represented by the
nodes in the network. This has three important consequences.

Firstly, naively specifying a joint probability distribution with a table requires a number of
values exponential in the number of variables. For systems in which interactions among the
random variables are sparse, Bayesian networks drastically reduce the number of required
values.

Secondly, efficient inference algorithms are formed in that work by transmitting information
between the local distributions rather than working with the full joint distribution.

Thirdly, the separation of the qualitative representation of the influences between variables
from the numeric quantification of the strength of the influences has a significant advantage
for knowledge engineering. When building a Bayesian network model, one can focus first
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on specifying the qualitative structure of the domain and then on quantifying the influences.
When the model is built, one is guaranteed to have a complete specification of the joint prob-
ability distribution.

The most common computation performed on Bayesian networks is the determination of the
posterior probability of some random variables, given the values of other variables in the net-
work. Because of the symmetric nature of conditional probability, this computation can be
used to perform both diagnosis and prediction. Other common computations are: the com-
putation of the probability of the conjunction of a set of random variables, the computation of
the most likely combination of values of the random variables in the network and the compu-
tation of the piece of evidence that has or will have the most influence on a given hypothesis.
A detailed discussion of inference techniques in Bayesian networks can be found in the book
by Pearl (Pearl, 2000).

* Probabilistic semantics. Any complete probabilistic model of a domain must, either ex-
plicitly or implicitly, represent the joint distribution which the probability of every pos-
sible event as defined by the values of all the variables. There are exponentially many
such events, yet Bayesian networks achieve compactness by factoring the joint distribu-
tion into local, conditional distributions for each variable given its parents. If x; denotes
some value of the variable X; and 77(x;) denotes some set of values for X;’s parents
7(x;), then P(x;|7t(x;)) denotes this conditional distribution. For example, P(x4]x2, x3)
is the probability of wetness given the values of sprinkler and rain. Here P(x4|x,, x3) is
the brief of P(x4|{xp, x3}). The set parentheses are omitted for the sake of readability.
We use the same expression in this thesis. The global semantics of Bayesian networks
specifies that the full joint distribution is given by the product

P(xlr"~/xﬂ) = HP(XAT[(JQ)) )]

Equation 1 is also called the chain rule for Bayesian networks.
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Fig. 1. Causal Influences in A Bayesian Network

In the example Bayesian network in Figure 1, we have

P(x1,x2,x3,X4,X5) = P(x1)P(x2|x1)P(x3|x1) P(x4]x2, x3) P(x5]x4) 2
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Provided the number of parents of each node is bounded, it is easy to see that the num-
ber of parameters required grows only linearly with the size of the network, whereas
the joint distribution itself grows exponentially. Further savings can be achieved using
compact parametric representations, such as noisy-OR models, decision tress, or neural
networks, for the conditional distributions (Pearl, 2000).

There are also entirely equivalent local semantics, which assert that each variable is
independent of its non-descendants in the network given its parents. For example,
the parents of X, in Figure 1 are X, and X3 and they render X, independent of the
remaining non-descendant, X;. That is,

P(x4]x1,x2,x3) = P(x4]x2,x3) 3)

The collection of independence assertions formed in this way suffices to derive the
global assertion in Equation 2, and vice versa. The local semantics are most useful
in constructing Bayesian networks, because selecting as parents the direct causes of
a given variable automatically satisfies the local conditional independence conditions.
The global semantics lead directly to a variety of algorithms for reasoning.

* Evidential reasoning. From the product specification in Equation 2, one can express the
probability of any desired proposition in terms of the conditional probabilities specified
in the network. For example, the probability that the sprinkler was on, given that the
pavement is slippery, is

P(X3 = on|Xs5 = true) 4)
_ P(X3 = on, X5 = true)
P(X5 = true)

Yo P(x1,x, X3 = on, x4, X5 = true)

Lo P(X1,%2, X3, x4, X5 = true)

Y P(x1)P(x2|x1) P(X3 = on|x1) P(xy|x2, X3 = on)P(X5 = true|xy)
B Yooy P(X1) P2 x1) P(x3|x7) P(x4 |22, x3) P(X5 = true|xy)

These expressions can often be simplified in the ways that reflect the structure of the
network itself.

It is easy to show that reasoning in Bayesian networks subsumes the satisfiability prob-
lem in propositional logic and hence reasoning is NP-hard (Cooper, 1990). Monte Carlo
simulation methods can be used for approximate inference (Pearl, 1987), given that es-
timates are gradually improved as the sampling proceeds. (Unlike join-tree methods,
these methods use local message propagation on the original network structure.) Alter-
natively, variational methods (Jordan et al., 1998) provide bounds on the true probabil-
ity.

¢ Functional Bayesian networks. The networks discussed so far are capable of support-
ing reasoning about evidence and about actions. Additional refinement is necessary
in order to process counterfactual information. For example, the probability that "the
pavement would not have been slippery had the sprinkler been OFF, given that the
sprinkler is in fact ON and that the pavement is in fact slippery" cannot be computed
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from the information provided in Figure 1 and Equation 2. Such counterfactual prob-
abilities require a specification in the form of functional networks, where each condi-
tional probability P(x;|7(i)) is replaced by a functional relationship x; = f;(7t(i),€;),
where ¢; is a stochastic (unobserved) error term. When the functions f; and the distri-
butions of €; are known, all counterfactual statements can be assigned unique proba-
bilities, using evidence propagation in a structure called a "twin network". When only
partial knowledge about the functional form of f; is available, bounds can be computed
on the probabilities of counterfactual sentences (Balke & Pearl, 1995) (Pearl, 2000).

Causal discovery. One of the most exciting prospects in recent years has been the pos-
sibility of using Bayesian networks to discover causal structures in raw statistical data
(Pearl & Verma, 1991) (Spirtes et al., 1993) (Pearl, 2000), which is a task previously con-
sidered impossible without controlled experiments. Consider, for example, the follow-
ing pattern of dependencies among three events: A and B are dependent, B and C are
dependent, yet A and C are independent. If you ask a person to supply an example of
three such events, the example would invariably portray A and C as two independent
causes and B as their common effect, namely, A — B < C. Fitting this dependence
pattern with a scenario in which B is the cause and A and C are the effects is mathemat-
ically feasible but very unnatural, because it must entail fine tuning of the probabilities
involved; the desired dependence pattern will be destroyed as soon as the probabilities
undergo a slight change.

Such thought experiments tell us that certain patterns of dependency, which are totally
void of temporal information, are conceptually characteristic of certain causal direction-
alities and not others. When put together systematically, such patterns can be used to
infer causal structures from raw data and to guarantee that any alternative structure
compatible with the data must be less stable than the one(s) inferred; namely, slight
fluctuations in parameters will render that structure incompatible with the data.

Plain beliefs. In mundane decision making, beliefs are revised not by adjusting numer-
ical probabilities but by tentatively accepting some sentences as "true for all practical
purposes”. Such sentences, called plain beliefs, exhibit both logical and probabilis-
tic characters. As in classical logic, they are propositional and deductively closed; as
in probability, they are subject to retraction and to varying degrees of entrenchment.
Bayesian networks can be adopted to model the dynamics of plain beliefs by replac-
ing ordinary probabilities with non-standard probabilities, that is, probabilities that are
infinitesimally close to either zero or one (Goldszmidt & Pearl, 1996).

Models of cognition. Bayesian networks may be viewed as normative cognitive models
of propositional reasoning under uncertainty (Pearl, 2000). They handle noise and par-
tial information by using local, distributed algorithm for inference and learning. Unlike
feed forward neural networks, they facilitate local representations in which nodes cor-
respond to propositions of interest. Recent experiments (Tenenbaum & Griffiths, 2001)
suggest that they capture accurately the causal inferences made by both children and
adults. Moreover, they capture patterns of reasoning that are not easily handled by any
competing computational model. They appear to have many of the advantages of both
the "symbolic" and the "subsymbolic" approaches to cognitive modelling.

Two major questions arise when we postulate Bayesian networks as potential models
of actual human cognition.
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Firstly, does an architecture resembling that of Bayesian networks exist anywhere in the
human brain? No specific work had been done to design neural plausible models that
implement the required functionality, although no obvious obstacles exist.

Secondly, how could Bayesian networks, which are purely propositional in their ex-
pressive power, handle the kinds of reasoning about individuals, relations, properties,
and universals that pervades human thought? One plausible answer is that Bayesian
networks containing propositions relevant to the current context are constantly being
assembled as needed to form a more permanent store of knowledge. For example, the
network in Figure 1 may be assembled to help explain why this particular pavement
is slippery right now, and to decide whether this can be prevented. The background
store of knowledge includes general models of pavements, sprinklers, slipping, rain,
and so on; these must be accessed and supplied with instance data to construct the
specific Bayesian network structure. The store of background knowledge must utilize
some representation that combines the expressive power of first-order logical languages
(such as semantic networks) with the ability to handle uncertain information.

3. Reasoning Structures in Bayesian Networks

3.1 Basic reasoning structures

3.1.1 d-Separation in Bayesian Networks

d-Separation is one important property of Bayesian networks for inference. Before we define
d-separation, we first look at the way that evidence is transmitted in Bayesian Networks.
There are two types of evidence:

¢ Hard Evidence (instantiation) for a node A is evidence that the state of A is definitely a
particular value.

* Soft Evidence for a node A is any evidence that enables us to update the prior proba-
bility values for the states of A.

d-Separation (Definition):
Two distinct variables X and Z in a causal network are d-separated if, for all paths between X
and Z, there is an intermediate variable V (distinct from X and Z) such that either

¢ the connection is serial or diverging and V is instantiated or

¢ the connection is converging, and neither V nor any of V’s descendants have received
evidence.

If X and Z are not d-separated, we call them d-connected.

3.1.2 Basic structures of Bayesian Networks
Based on the definition of d-seperation, three basic structures in Bayesian networks are as
follows:

1. Serial connections
Consider the situation in Figure 2. X has an influence on Y, which in turn has an in-
fluence on Z. Obviously, evidence on Z will influence the certainty of Y, which then
influences the certainty of Z. Similarly, evidence on Z will influence the certainty on X
through Y. On the other hand, if the state of Y is known, then the channel is blocked,
and X and Z become independent. We say that X and Z are d-separated given Y, and
when the state of a variable is known, we say that it is instantiated (hard evidence).



44 Bayesian Network

We conclude that evidence may be transmitted through a serial connection unless the
state of the variable in the connection is known.

(X —l ¥ — 2

Fig. 2. Serial Connection. When Y is Instantiated, it blocks the communication between X and
Z.

2. Diverging connections

The situation in Figure 3 is called a diverging connection. Influence can pass between
all the children of X unless the state of X is known. We say that Y3,Y>,...,Y;, are d-
separated given X.

Evidence may be transmitted through a diverging connection unless it is instantiated.

\,

Fig. 3. Diverging Connection. If X is instantiated, it blocks the communication between its
children.

3. Converging connections

X
v

Fig. 4. Converging Connection. If Y changes certainty, it opens for the communication be-
tween its parents.

A description of the situation in Figure 4 requires a little more care. If nothing is known
about Y except what may be inferred from knowledge of its parents Xj,..., X, then
the parents are independent: evidence on one of the possible causes of an event does
not tell us anything about other possible causes. However, if anything is known about
the consequences, then information on one possible cause may tell us something about
the other causes.

This is the explaining away effect illustrated in Figure 1. X4 (pavement is wet) has
occurred, and X3 (the sprinkler is on) as well as X, (it's raining) may cause Xy. If
we then get the information that X, has occurred, the certainty of X3 will decrease.
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Likewise, if we get the information that X, has not occurred, then the certainty of X3
will increase.

The three preceding cases cover all ways in which evidence may be transmitted through a
variable.

4. Classification of Inferences in Bayesian Networks
In Bayesian networks, 4 popular inferences are identified as:

1. Forward Inference

Forward inferences is also called predictive inference (from causes to effects). The infer-
ence reasons from new information about causes to new beliefs about effects, following
the directions of the network arcs. For example, in Figure 2, X — Y — Z is a forward
inference.

2. Backward Inference

Backward inferences is also called diagnostic inference (from effects to causes). The in-
ference reasons from symptoms to cause, Note that this reasoning occurs in the opposite
direction to the network arcs. In Figure 2, Z — Y is a backward inference. In Figure 3,
Y; — X(i € [1,n]) is a backward inference.

3. Intercausal Inference

Intercausal inferences is also called explaining away (between parallel variables). The
inference reasons about the mutual causes (effects) of a common effect (cause). For
example, in Figure 4, if the Y is instantiated, X; and X;(i,j € [1,n]) are dependent.
The reasoning X; <> X;(i,j € [1,n]) is an intercausal inference. In Figure 3, if X is not
instantiated, Y; and Y;(i,j € [1,n]) are dependent. The reasoning Y; <> Y;(i,j € [1,n]) is
an intercausal inference.

4. Mixed inference

Mixed inferences is also called combined inference. In complex Bayesian networks, the
reasoning does not fit neatly into one of the types described above. Some inferences are
a combination of several types of reasoning.

4.1 Inference in Bayesian Networks
4.1.1 inference in basic models
¢ in Serial Connections

- the forward inference executes with the evidence forward propagation. For ex-
ample, in Figure 5, consider the inference X — Y — Z. 1

If Y is instantiated, X and Z are independent, then we have following example:
P(Z|XY) = P(Z|Y);

P(ZT|Y*T) =095

P(Z~|YT) = 0.05;

P(ZT|Y™) =0.01;

! Note: In this chapter, P(X*) is the abbreviation of P(X = true), P(X™) is the abbreviation of P(|X =
false). For simple expression, we use P(Y|X) to denote P(Y = true|X = true) by default. But in express
P(Y*|X), X denotes both situations X = true and X = false.
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P(Y-X*)=0.85 P(Z-Y")=0.95

P(Y-X)=0.03  P(Z*[Y-=0.01

P(X*)=0.9

Fig. 5. Inference in Serial Connection

P(Z7|Y™) =0.99;

if Y is not instantiated, X and Z are dependent, then
P(ZTIXTY) =P(ZT|Y)P(YT|XT)+P(ZT|Y")P(Y|XT)
= 0.95%0.85 4 0.01 x 0.15 = 0.8075 + 0.0015 = 0.809;
P(Z7IX7Y)=P(Z |Y")P(YT|X™)+P(Z7|Y")P(Y"|X")
= 0.050.03 + 0.99 % 0.97 = 0.0015 + 0.9603 = 0.9618.

- the backward inference executes the evidence backward propagation. For exam-
ple, in Figure 5, consider the inference Z — Y — X.

1. If Y is instantiated (P(Y") = 1 or P(Y~) = 1), X and Z are independent,
then

P(X|YZ) = P(X]Y) = IW ®)

P(X*H|Y*Z) = P(XH|Y*) = POX)P(YTXT) _ 09:085 _ () 765,

PY") 1
P(X*|Y~2) = P(X+|y~) = EEEIX) — 00015 — 0135,

2. If Yisnot instantiated, X and Z are dependent (See the dashed lines in Figure
5). Suppose P(Z ") = 1 then

COP(X*YZY)  P(XTYZY) |
P(XTIYZY) = 5757 = vy

P(XTYZT) = P(XTYTZF) + P(XTY~ZT) = 0.9 % 0.85% 0.95 4 0.9 % 0.15
0.05 = 0.72675 + 0.00675 = 0.7335;

Yx P(XYZ') = P(XTYTZH) + P(XTY " ZH) + P(X" Yt ZH)+ P(X~Y~Z+)
= 0.9%0.85%0.95 + 0.9 % 0.15 % 0.99 + 0.1 % 0.03 % 0.95 + 0.1 % 0.97 % 0.01
= 0.72675 + 0.13365 + 0.00285 + 0.00097 = 0.86422;

_ PX*YZY) 07335 _
P(X*|YZ¥) = SO = 32855 — 08487,

In serial connections, there is no intercausal inference.
¢ in Diverging Connections
- the forward inference executes with the evidence forward propagation. For ex-

ample, in Figure 6, consider the inference Y — X and Y — Z, the goals are easy
to obtain by nature.
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P(Y*)=0.98

P(X*[Y")=0.95 N

_ P(Z*[Y*)=0.90
P(XY)=0.01

. P(Z7]Y9)=0.03

Fig. 6. Inference in Diverging Connection

- the backward inference executes with the evidence backward propagation, see
the dashed line in Figure 6, consider the inference (XZ) — Y, X and Z are instan-
tiated by assumption, suppose P(X* = 1), P(Z* =1). Then,

P(Y+|X+Z+) _ P(Y+X+Z+) — P(Y+)P(X+‘Y+)P(Z+|Y+>
P(XtZt) P(X*Z+)
_0.98%0.95%0.90

1

= 0.8379 6)

- the intercausal inference executes between effects with a common cause. In Figure
6, if Y is not instantiated, there exists intercausal inference in diverging connec-
tions. Consider the inference X — Z,

+y 7+ +y+7+ +y—7+
P(X*H|YZ*) = P(XTYZ*) _ P(X*Y+ZH)+P(XTY~ZF).

P(YZT) —  P(Y*ZT)+P(Y-Z¥) '
_ 0.9840.95+0.90+0.02:0.0150.03 _
= 098090 10.02:003  — 0-94936.

¢ in Converging Connections,

- the forward inference executes with the evidence forward propagation. For ex-
ample, in Figure 7, consider the inference (XZ) — Y, P(Y|XZ) is easy to obtain
by the definition of Bayesian Network in by nature.

- the backward inference executes with the evidence backward propagation. For
example, in Figure 7, consider the inference Y — (XZ).

P(Y) = Xxz P(XYZ) = Exz(P(Y|XZ)P(XZ)),

P(Y|XZ)P(XZ P(Y|XZ)P(X)P(Z
P(XZ|Y) = PR =

Finally,
P(X|Y) = £z P(XZ|Y),
P(Z|Y) =Y x P(XZ]Y).
— the intercausal inference executes between causes with a common effect, and the

intermediate node is instantiated, then P(Y") = 1 or P(Y™) = 1. In Figure 7,
consider the inference X — Z, suppose P(Y*1) =1,
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P(X_)=O 9 P(Z_)=0 75

" P(YHXZ)=0.95
P(Y+X*Z)=0.3

P(Y*X-Z")=0.15
P(Y+[X-Z)=0.01

Fig. 7. Inference in Converging Connection

Flyty+) _ P2 XY PEZEXYY') |
PZTIX™YT) = ooy = o rxvez)

P(ZTX*TYT) = P(XT)P(ZT)P(YT|XTZT);
Y, P(XTYZ) = P(XTYTZT) + P(XTYTZ7);

P(Z+X*Y+ P(X+)P(ZH)P(Y+|X*+Z*
P(ZT|XFYY) = E(P(X+Y+Z)) = P((XH)H(Z*))H(’(X‘*Y*Z*))'

4.1.2 inference in complex model

For complex models in Bayesian networks, there are single-connected networks, multiple-
connected, or event looped networks. It is possible to use some methods, such as Triangu-
lated Graphs, Clustering and Join Trees (Bertele & Brioschi, 1972) (Finn & Thomas, 2007 )
(Golumbic, 1980), etc., to simplify them into a polytree. Once a polytree is obtained, the infer-
ence can be executed by the following approaches.

Polytrees have at most one path between any pair of nodes; hence they are also referred to as
singly-connected networks.

Suppose X is the query node, and there is some set of evident nodes E, X ¢ E. The posterior
probability (belief) is denoted as B(X) = P(X|E), see Figure 8.

E can be splitted into 2 parts: E™ and E~. E~ is the part consisting of assignments to variables
in the subtree rooted at X, E* is the rest of it.

nx (E*) = P(X|EY)

Ax(E7) = P(E”[X)

P(E-|XE")P(X|EY)  P(E"|X)P(X|ET)

B(X) = P(X|E) = P(X|ETE™) = P(E-|EY) = BEE)

= amx(EV)Ax (E7)

@)
« is a constant independent of X.
where
— if evidence is X = x; 8
x( ~ Y 0 if evidence is for another x; )
nx(EY) =Y P(X|uy,..,u Hﬂx )

UpyeeesUim
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Fig. 8. Evidence Propagation in Polytree

1. Forward inference in Polytree
Node X sends 7 messages to its children.

1 if x; € Xis entered
x(U) = { 0 if evidentce is for another value x;
Yo, P(X|uy, .t TT; 7ox (1) otherwise
(10)
2. Backward inference in Polytree Node X sends new A messages to its parents.
Ax(Y) = TTIL Py X)Ax(y))] (11)

yiEeYy j

4.2 Related Algorithms for Probabilistic Inference

Various types of inference algorithms exist for Bayesian networks (Lauritzen & Spiegelhalter,
1988) (Pearl, 1988) (Pearl, 2000) (Neal, 1993). Each class offers different properties and works
better on different classes of problems, but it is very unlikely that a single algorithm can solve
all possible problem instances effectively. Every resolution is always based on a particular
requirement. It is true that almost all computational problems and probabilistic inference
using general Bayesian networks have been shown to be NP-hard by Cooper (Cooper, 1990).
In the early 1980’s, Pearl published an efficient message propagation inference algorithm for
polytrees (Kim & Pearl, 1983) (Peal, 1986). The algorithm is exact, and has polynomial com-
plexity in the number of nodes, but works only for singly connected networks. Pearl also
presented an exact inference algorithm for multiple connected networks called loop cutset
conditioning algorithm (Peal, 1986). The loop cutset conditioning algorithm changes the con-
nectivity of a network and renders it singly connected by instantiating a selected subset of
nodes referred to as a loop cutset. The resulting single connected network is solved by the
polytree algorithm, and then the results of each instantiation are weighted by their prior prob-
abilities. The complexity of this algorithm results from the number of different instantiations
that must be considered. This implies that the complexity grows exponentially with the size
of the loop cutest being O(d°), where d is the number of values that the random variables
can take, and c is the size of the loop cutset. It is thus important to minimize the size of the
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loop cutset for a multiple connected network. Unfortunately, the loop cutset minimization
problem is NP-hard. A straightforward application of Pearl’s algorithm to an acyclic digraph
comprising one or more loops invariably leads to insuperable problems ( Koch & Westphall,
2001) (Neal, 1993).

Another popular exact Bayesian network inference algorithm is Lauritzen and Spiegelhalter’s
clique-tree propagation algorithm (Lauritzen & Spiegelhalter, 1988). It is also called a "clus-
tering" algorithm. It first transforms a multiple connected network into a clique tree by clus-
tering the triangulated moral graph of the underlying undirected graph and then performs
message propagation over the clique tree. The clique propagation algorithm works efficiently
for sparse networks, but still can be extremely slow for dense networks. Its complexity is
exponential in the size of the largest clique of the transformed undirected graph.

In general, the existent exact Bayesian network inference algorithms share the property of run
time exponentiality in the size of the largest clique of the triangulated moral graph, which is
also called the induced width of the graph (Lauritzen & Spiegelhalter, 1988).

5. Conclusion

This chapter summarizes the popular inferences methods in Bayesian networks. The results
demonstrates that the evidence can propagated across the Bayesian networks by any links,
whatever it is forward or backward or intercausal style. The belief updating of Bayesian net-
works can be obtained by various available inference techniques. Theoretically, exact infer-
ences in Bayesian networks is feasible and manageable. However, the computing and in-
ference is NP-hard. That means, in applications, in complex huge Bayesian networks, the
computing and inferences should be dealt with strategically and make them tractable. Simpli-
fying the Bayesian networks in structures, pruning unrelated nodes, merging computing, and
approximate approaches might be helpful in the inferences of large scale Bayeisan networks.
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Advanced algorithms of bayesian network
learning and inference from inconsistent prior
knowledge and sparse data with applications in
computational biology and computer vision
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1. Introduction

Bayesian networks are a popular class of graphical probabilistic models for researches and
applications in the field of Artificial Intelligence. Bayesian network are built on Bayes’
theorem (16) and allow to represent a joint probability distribution over a set of variables in
the network. In Bayesian probabilistic inference, the joint distribution over the set of variables
in a Bayesian network can be used to calculate the probabilities of any configuration of these
variables given fixed values of another set of variables, called observations or evidence.
Bayesian networks have been widely used for efficient probabilistic inference and data
mining in many fields, such as computational biology and computer vision (17; 18).

Before we can generate useful prediction and reasoning by Bayesian networks, it is re-
quired to construct these network models from any resources. Over decades, enormous
algorithms have been proposed to construct (we use construct and model interchangeably
in this chapter) these Bayesian networks. These methods can be roughly classified into two
categories: i) top-down modeling methods and ii) reverse-engineering methods. Top-down
modeling methods seek for direct solutions to Bayesian network structure and parameter
assignments from any prior knowledge resources and domain experts. Currently, this class
of methods usually recruits both probability elicitation procedures from domain experts (23)
and quantitative knowledge engineering process to disclose the Bayesian network structure
and parameters. The advantages of this type of methods are the direct assignment of the
parameters and structures from domain knowledge and experts without computational com-
plications. However, in most domains, these methods encounter practical obstacles due to the
actual availability of quantitative information and to the limitation of an expert knowledge.
In contrast, reverse-engineering approaches utilize machine learning algorithms to train
(learn) Bayesian network structure and parameters from a collection of past observations.
This process belongs to unsupervised learning in machine learning theory. The advantage
of this class approaches is that, a training machine can automatically determine a best
Bayesian network model with structure and parameters which optimally fits to the training
data under the judgments of an object function or scoring function. (in stead of manually
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evaluation in top-down methods). This score function is often the posterior probability
function of a Bayesian network structure and parameters given the training data. The learned
single best model is called Maximum-a-Posterior (MAP) estimation which is computed from
data likelihood and prior distribution. In the last twenty to ten years, reverse-engineering
approaches have become mainstream researches in the field of Bayesian network modeling.
Fruitful results have been achieved, especially in the efficient learning of Bayesian network
structure and parameters with (in-) complete data (4; 19-21).

However, a major problem of Bayesian network learning in most existing algorithms is
the demands on a large amount of training samples to achieve good generalization perfor-
mance. The generalization performance of a learned Bayesian network largely depends on
the amount of training dataset and the quality of the prior provided to the learning process.
Specially, if training data is scarce, it becomes crucial to use various forms of prior knowledge
to improve the accuracy of learned models and avoid overfitting. Moreover, although the
maximum a posteriori estimation, i.e., the selection of a single best Bayesian network model
from the data by learning, is useful for the case of large data sets, independence assumptions
among the network variables often make this single model vulnerable to overfitting. In
realistic problems, the data basis is often very sparse and hardly sufficient to select one
adequate model, i.e., there is considerable model uncertainty. In fact, selecting one single
Bayesian model can then lead to strongly biased inference results. Therefore, it is preferable
to adopt full Bayesian approaches, such as model averaging, to incorporate these model
uncertainties.

2. Overview

2.1 Advanced Bayesian Network Modeling and Inference from Consistent and Inconsistent
Prior Knowledge

As the first part of our methodology, we propose novel methods to make use of prior
qualitative knowledge in a domain to construct Bayesian networks and generate quantitative
probability predictions from these models. These algorithms stem from the observations
that in many domains, enormous amounts of priori qualitative knowledge have been
accumulated by original studies. This type of knowledge is often represented in terms of
qualitative relational statements between two or more entities. For example, in biomedical
domain, such a statement can be smoking increases the risk of lung cancer. In this statement,
two entities are smoking and lung cancer and these two entities are connected to each other
through a directed and functional relation: increase. The semantics encoded in this statement
is: smoking positively influences lung cancer so that the probability and risk of lung cancer
is increased under the condition of smoking. In genomics research, a common knowledge
about biological molecular interactions would be a transcript factor binds to a gene and
up-regulate this gene’s expression level in a cell. In computer vision, qualitative statement
can be among action units. For instance, "cheek raiser” tends to happen with "lip corner
puller", when smiling. In this statement, cheek raiser increases the occurrence probability of
lip corner puller. Similar qualitative statements can be found in many other domains, such as
economy, politics, science and engineering indicating that our proposed methods have great
promises in these fields. In fact, these inequality constraints have been proposed and used
in qualitative probabilistic inference process, such as qualitative probabilistic network (25).
However, due to the lacks of quantitative measurements in these qualitative knowledge and
constraints, they have been ignored in the quantitative modeling of Bayesian networks.
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In our top-down Bayesian inference method, we designed a knowledge model which
captures the entities and their relationships in the statement. Various qualitative relations
are mapped into mathematically meaningful constraints and inequalities over the Bayesian
network structure and parameter space. Due to their qualitativeness, these constraints even-
tually define a prior distribution in the model space, i.e. model uncertainty. These constraints
reduce the set of all possible Bayesian models to those which are consistent with the set
of statements considered. This class of consistent models is used to perform full Bayesian
inference which can be approximated by Monte Carlo methods, i.e. the quantitative inference
and reasoning can be calculated in each of the Bayesian model and these quantitative results
are averaged and weighted by the model posterior probability. This is even analytically
tractable for smaller networks and statement sets.

Notably, qualitative knowledge are often inconsistent, i.e. there may exist contradict-
ing qualitative statements on entities and/or their relations which eventually affect the model
uncertainty in the constructed Bayesian network model space. Therefore, it is imperative
to develop methods for reconciling inconsistent qualitative knowledge and for modeling
Bayesian networks and performing quantitative prediction. To this end, we further propose
a novel framework for performing quantitative Bayesian inference with model averaging
based on the inconsistent qualitative statements as a coherent extension of framework of
quantitative Bayesian inference based on a set of consistent hypotheses introduced above (33).
Our method interprets the qualitative statements by a vector of knowledge features whose
structure can be represented by a hierarchical Bayesian network. The prior probability for
each qualitative knowledge component is calculated as the joint probability distribution over
the features and can be decomposed into the production of the conditional probabilities of the
knowledge features. These knowledge components define multiple Bayesian model classes
in the hyperspace. Within each class, a set of constraints on the ground Bayesian model space
can be generated. Therefore, the distribution of the ground model space can be decomposed
into a set of weighted distributions determined by each model class. This framework is used
to perform full Bayesian inference which can be approximated by Monte Carlo methods, but
is analytically tractable for smaller networks and statement sets.

2.2 Related Works

In discrete model, qualitative causal knowledge have been utilized for abstract probabilistic
graphical models, i.e. qualitative probabilistic network (QPN) (6) and reasoning algorithms
in QPN have been proposed (5; 9). These algorithms perform qualitative inference with sign
propagation in stead of quantitative predictions and neither inconsistent hypotheses could be
dealt with.

2.3 Advanced Bayesian Network Learning with Integration of Prior Knowledge and Sparse
data
As the second part of the methodology section, we introduce our latest algorithm develop-
ments in learning Bayesian network models. In this method, Bayesian network learning accu-
racy is drastically improved by integrating generic qualitative domain knowledge with train-
ing data. We use the knowledge model designed in section 3.1 to translate the causality in
qualitative domain knowledge into a set of constraints over structural and parameter space.
For parameter learning, we recruit a sampling approach to recover the prior belief distribu-
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tion in parameter space out of the constraints. We then propose a novel Bayesian parameter
score function which integrates this informative prior as soft regulation with the quantitative
data statistics. In this way, the parameter posterior distribution is combinatorial regulated by
both quantitative data and prior knowledge. In the conventional Bayesian network learning
algorithm, MAP estimation usually employs Dirichlet priori to further regulate the statisti-
cal counts from the data. However, as discussed above, it is often impossible to determine
the correct hyperparameters of this prior distribution which may result bias in the MAP esti-
mation. Our algorithm resolves this issue by establishing an informative prior from domain
qualitative knowledge. This informative prior provides the learning machine a correctly de-
fined model subspace to seek for global maximum. By combining each possible prior pseudo
counts in this subspace with data statistical counts, we can explore multiple local maximum
estimates and determine the global maximum by model selection scheme. Thus, we avoid
trapping in the local maximum. This method is particular useful in accurate learning of a
Bayesian network under sparse training data. These algorithms can be naturally extended to
BN structural learning which is under active developments.

2.4 Related Works

Researches have proposed a number of algorithms to learn Bayesian network parameters by
utilizing various forms of prior knowledge, such as dirichlet function (28; 29). In (30-32),
parameter learning schemes for various graphical models incorporating parameter sharing
constraints are proposed. These algorithms provide efficient solutions for parameter learning
with parameter sharing constraints, i.e. parameter equality in one multinomial conditional
distribution. If a parameter satisfy the constraints, it obeys the dirichlet distribution with
certain normalizer. Otherwise, the prior distribution is zero. A closed form normalization
solution is derived in case of parameter sharing constraints. Moreover, some simple forms of
inequalities within one conditional distribution are proposed (32). In this case, no closed-form
solution is possible. Though, in (30-32), constrained parameter learning problem is treated
as a constraint optimization problem and efficient algorithms are developed, the forms of
the constraints are limited to either parameter sharing or inequality constraints within one
conditional distribution, such as P(A|B)>P(A|B). More generic and important inequality
constraints, such as P(A|B)>P(A|B) is not addressed by their methods.

In (35) and (37), methods are proposed to deals with the inequality constraints in pa-
rameter learning. A penalty term is designed to regulate the likelihood which is derived from
the monotonic influence with form of P(A|B)>P(A|B). The violation term can only penalize
the likelihood when the learned local maximum violates the constraints in the sign, but it can
not distinguish a set of all possible local maximums obeying the constraints. So, final solution
is not necessary a global maximum. (Eq.8 in (35) and Eq.9 in (37)). This is a serious problem
in case of learning with very sparse data. In this case, although ML estimation may output an
estimate obeying the sign of the constraints, this ML estimation is highly probable incorrect
due to the amount of data. In this case, neither (35) nor (37) could use prior statistics to
correct the estimation. As stated in (37), a soft Bayesian prior which regulates the ML term
is desired. A similar iterative approach with penalty function was introduced in (36). The
method in (42), however, includes constraints beyond the monotonicity constraints.

In (38), an averaging scheme is proposed. This method is only feasible up to 5/6 par-
ents. (39) proposed a similar idea to ours independently. A method which uses a soft
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Bayesian prior to regulate the ML score and introduce the concept of model uncertainty in
the MAP estimation. The empirical Bayes and maximum posterior estimate in (39) and
QMAPrp 4, QMAPEp 4 in my paper are comparable. However, (39) indirectly translates the
prior knowledge into an intractable integration which has to be approximated. The dirichlet
hyperparameters is replaced by another hyperparameter (Eq.14 in (39)). Their initial idea is
to assign some confidence to constraints. (Eq.7 in (39)). But it may be easier and more efficient
to handle this issue in the knowledge level than score level (34). Comparatively, we work
directly on the parameter space through sampling and obtain the dirichlet hyperparameters
directly. Thus, we believe our method can be more efficient and feasible than their method.

3. Methods

In this section, we formally propose our top-down Bayesian network modeling algorithm,
i.e. Bayesian inference with only consistent and inconsistent qualitative prior knowledge.
Next, we introduce our advanced Bayesian network learning algorithm by integrating both
qualitative prior knowledge and data.

3.1 Probabilistic Representation of a Qualitative Knowledge Model

Several qualitative models have been proposed in the context of Qualitative Probabilistic Net-
works (QPN). Qualitative knowledge models describe the process of transforming the qualita-
tive statements into a set of probability constraints. The proposed Bayesian inference method
outlined above is independent of the qualitative knowledge model, i.e. the model posterior
probability is independent of the set of qualitative statements used, once the set of proba-
bilistic inequality constraints which are translated from qualitative statements is given. Three
existing qualitative models are the Wellman approach (25), the Neufeld approach (22) and the
orders of magnitude approach (27). Here we follow the Wellman approach, where qualitative
knowledge involves influential effects from parent nodes to child nodes which are classified
according to the number of inputs from parents to child and their synergy. For the sake of
simplicity, we restrict our discussion to binary-valued nodes. Logic "1" and "0" values of a
node are defined as "present” and "absent" or "active" and "inactive", as synonyms, A and A.
For multinomial nodes, similar definitions can be applied.

3.1.1 Structural Qualitative Knowledge Model

The qualitative knowledge contained in the statements are describing two aspects of a belief
network, i.e. structure and parameter. The structural knowledge of a simple network consist-
ing node B and node A can be described with two first-order logic predicates:

Depend(A,B) = 0/1
Influence(A,B) = 0/1 (1)

which describe whether A and B are dependent and whether the influence direction is from A
to B; Depend and Influence are denoted by Dp and I as well as, the set of structural knowledge
features is denoted by I1={Dp,I}.

3.1.2 Parameter Qualitative Knowledge Model

Under each structure feature, we extend the QPN model with two sets of dependent features,
i.e. baseline qualitative knowledge features, ¥ and extended qualitative knowledge features,
Y. These two feature sets are used to describe the qualitative parameter knowledge.
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3.1.2.1 Baseline Qualitative Knowledge Model
In QPN, a set of features define the basic properties of qualitative causal influences and their
synergy classified by the number of inputs from parents to child which are refined in this
paper and are referred to as Baseline Qualitative Knowledge Model. Baseline features transform
qualitative statements into a primitive set of constraints on model parameter space. We dis-
cuss three cases of influences, namely single influence, joint influence and mixed joint in-
fluence. In addition, we discussed the qualitative influence derived from recurrent and/or
conflicting statements. The definitions of the influences in our work are originated and re-
fined based on the qualitative probabilistic network in (25) which enables us to translate the
qualitative statements into a set of constraints in the parameter space which can be used to
model the parameter distribution given the structure.
I. Single Influence
Definition 3.1 If a child node B has a parent node A and the parent imposes a isolated influ-
ence on the child, then qualitative influence between parent and child is referred to as single
influence. Single influence can be further classified into single positive influence and single
negative influence.
Definition 3.2 If presence of parent node A renders presence of child node B more likely,
then the parent node is said to have a single positive influence on the child node. This can be
represented by the inequality

Pr(B|A) > Pr(B|A) ()

Definition 3.3 If presence of parent node A renders presence of child node B less likely, then
parent node is said to have a single negative influence on child node. This can be represented
by the inequality

Pr(B|A) < Pr(B|A) (3)

IL. Joint Influence

Definition 3.4 If a child node B has more than one parent node and all parents influence
the child in a joint way, then these influences between parents and child are referred to as joint
influence. This joint influence can be either synergic (cooperative) or antagonistic (competitive)
and the individual influences from the parents to the child can be either positive or negative.
Definition 3.5 If a joint influence from two or more parent nodes generates a combined influ-
ential effect larger than the single effect from each individual parent, then the joint influence
is referred to as plain synergic joint influence or plain synergy.

Assume that parent nodes A and B impose positive individual influences on child node C,
then the knowledge model can be defined as

mmmﬁpz{”“M3)}>mmm3)

Pr(CIA,B) | = @

Definition 3.6 If joint influences from two or more parent nodes generate an combined influ-
ential effect larger than the sum of each single effect from an individual parent, then the joint
influence is referred to as additive synergic joint influence or additive synergy.(24)

Assume in case that parent nodes A and B impose a positive individual influence on child
node C, then we define

MMA&EM@A&+MMA&2{Z$I?}ZM@M@ 5)
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Similar rules can be applied to the case where A and B impose a negative individual influence
on child node C. Comparing Eq. 5 with Eq. 4, we can conclude that additive synergy is a sulffi-
cient condition for plain synergy and plain synergy is a necessary but not sufficient condition for
additive synergy. Therefore, if multiple parents demonstrate additive synergy, it is sufficient to
judge that this influence is also plain synergy, but not vice-versa.

It is important to distinguish between plain synergy and additive synergy since they represent
distinct semantic scenarios in a domain. For example, A is a protein and B is a kinase which
phosphorylates protein A and produces the phosphorylated protein C. Because of the nature
of this protein-protein interaction, neither B nor A alone can significantly increase the presence
of C, but both together can drastically increase the presence of C which is greater than the sum
of C in case of either A or B present. In this example A and B exhibit additive synergy and it
is sufficiently to conclude that A and B has plain synergy as well.

Definition 3.7 If the joint influences from two or more parent nodes generate a combined
influential effect less than the single effect from individual parent, then the joint influence is
referred to as antagonistic joint influence or antagonism.

Assume that parent nodes A and B have independent positive single influences on child node
C, the antagonistic influence of A and B can be represented by

(6)

Pr(C[A,B) < Pr(C|A, B) g{ Pr(C|A, B) }

Pr(C|A, B)

Similar rules can be applied to the case where A and B imposes a negative individual influence
on child node C.

III. Mixed Joint Influence

In case that the joint effect on a child is formed by a mixture of positive and negative indi-
vidual influences from its parents, the extraction of a probability model is not well-defined in
general. Hence, we adopt the following scheme: If there are mixed influences from several
parent nodes to a child node, and no additional information is given, then they are treated as
independent and with equal influential strength. Assume that parent node A imposes positive
single influence on child node C and parent node B imposes negative single influence on child
node C, then the joint influence can be represented by

Pr(C|A, B) > Pr(C|A, B); Pr(C|A,B) > Pr(C|A,B);

Pr(C|A, B) > Pr(C|A, B); Pr(C|A,B) > Pr(C|A,B) )

Any additional structure can be brought into the CPT of the corresponding collider structure
as soon as dependencies between influences are made explicit by further qualitative state-
ments.

3.1.3 Extended Qualitative Knowledge Model

The extended qualitative knowledge model defines relative and absolute properties of proba-
bility configurations in qualitative causal influences and synergy from the baseline model. It
includes the probabilistic ratio and relative difference between any number of configurations
in a qualitative causal influence and the absolute probabilistic bound of any configuration in
a causal influence. These extended features impose further restriction on the set of constraints
generated by baseline model, therefore, restrain the uncertainty in Bayesian model space so
that more accurate generalization can be achieved.
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The extended qualitative knowledge features can be consistently represented by a linear in-
equality. In the case that node B impose single influence on node A, there are two probabilistic
configurations. The linear constraints can then be written as

Pr(B|A) >,< R x Pr(B|A) + A; Pr(B|A) € [Bdyin, Bdmax); Pr(B|A) € [Bd,,;,, Bdjar]  (8)
which R is Influence Ratio, A is Influence Difference and Bd, Bd’ denote bound. In some cases,
baseline and extended qualitative knowledge information are provided by the qualitative
statements simultaneously. However, in most cases, extended knowledge features are not
fully provided in the qualitative statements. In these cases, only baseline knowledge model
will be used to generate constraints in model space to perform inference by model averaging.
Once the qualitative knowledge is translated by the feature set {II(Dp, I), A(X,¥(R, A, Bd))}
according to Eq. 1 to Eq. 8, the distribution of ground models is defined by this knowledge.
Once formulated, the Monte Carlo sampling procedure will make sure that all inequalities are
satisfied for valid models.

3.1.4 Hierarchical Knowledge Model for Inconsistent Statements

The dependent qualitative knowledge feature set can be represented by a hierarchical
Bayesian network (HBN) (3). Within a knowledge HBN, the structural feature IT and pa-
rameter feature A are two first-level composite nodes. IT can be further decomposed into
two leaf nodes Dp and I. The parameter feature A contains two second-level composite
nodes, i.e. the baseline knowledge features X and extended knowledge features ¥ which
consists of three leaf nodes R, A and Bd. Thus qualitative knowledge () can be described as
Q = {II(Dp,I), A(X,¥(R,A,Bd))}, where ¥ = (SP,SN, PISyn, AdSyn, Ant, MxSyn). The
hierarchical knowledge model is shown in Figure 1(a) and a tree hierarchy in Figure 1(b). The
equivalent Bayesian network is shown in Figure 1(c).

Hierarchical Bayesian Networks encode conditional probability dependencies in the same
way as standard Bayesian Networks. The prior probability of a qualitative knowledge
can be written as a joint probability of {I], A} and can be decomposed according to the de-
pendency between each component features as follows.

Pr(Q) = Pr(I)Pr(Z|IT)Pr(¥|XZ) 9)

where Pr(¥Y|X) = Pr(R|Z)Pr(A|X)Pr(Bd|X), Pr(I1) = Pr(Dp)Pr(I|Dp) and Pr(XZ|II) =
Pr(X|I). The conditional probabilities of qualitative knowledge features can be calculated
by counting the weighted occurrences given a set of inconsistent statements. The weight of
knowledge features equals to the credibility of their knowledge sources which may be evalu-
ated by a domain expert or determined by the source impact factor. If no further information on
the weights is available, they are set to 1. In this case, the conditional probability of features is
computed only by occurrence count. For example, we assume a set of qualitative statements,
S = {51,,, 53}, about smoking and lung cancer are observed: 1) The risk is more than 10 times
greater for smokers to get lung cancer than no-smokers. 2) Men who smoke two packs a day increase
their risk more than 25 times compared with non-smokers. 3) There is not significant evidence to prove
that smoking directly cause lung cancer, however, clinical data suggest that lung cancer is related to
smoking. The statements can be represented by a vector of features which is shown in Figure 2.
The conditional probability of the features can be calculated straightforwardly by

Pr(I|Dp) = (wy +wy) /w, Pr(I|Dp) = (w3)/w,
Pr(r|E =SP) =wy/w, Pr(r|X =SP) = (wi +wy)/wy
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where w, = wy + wy + w3, wy, = 2wy + wy, Pr(Dp) = 1, Pr(SP|I) = 1, r; = [10,25] and
rp = [25,00]. One notion is that the knowledge features ¥ = {R, A, Bd} in Figure 1(a) are
continuous-valued and therefore, can be transformed to discrete attributes by dynamically
defining new discrete attributes that partition the continuous feature value into a discrete set
of intervals. In the above example, the continuous feature R in S; has value range [10, 0]
and a continuous value range [25,c0] in Sp. The continuous ranges can be partitioned into
two discrete intervals: ;1 = [10,25] and r, = [25, 0], therefore, the qualitative knowledge
Q = {Q, 0, 3} can be transformed from S = {S;,S,, S3} with discrete-valued features.

3.1.4.1 Qualitative Knowledge Integration

Once we have calculated the conditional probabilities of knowledge features, the prior prob-
ability of qualitative knowledge can be computed according to Eq. 9. Thus the inconsistent
knowledge components are ready to be reconciled. The qualitative knowledge transformed
from the feature vector of statements in Figure 2 can be described by Q):

01 ={1,1,SP,[10,25],0,@} p ={1,1,SP,[25,],0,0} Q3={1,0,0,0,0,0}
(10)
where Oy ={Dpy, It, X, Ry, Ay, Bdy }. If the weights of statements are set to 1, the knowledge
prior probability is calculated, then we have Pr(Q)=2/9, Pr(Q;)=4/9 and Pr(Q3)=1/3.

Pr(Qy) = Pr(Dp)Pr(I|Dp)Pr(SP|I)Pr(r1|SP) =2/9
Pr(Q) = Pr(Dp)Pr(I|Dp)Pr(SP|I)Pr(ra|SP) = 4/9
Pr(Q3) = Pr(Dp)Pr(I|Dp) =1/3 (11)

The integrated qualitative knowledge thus preserved the uncertainty from each knowledge
component. Each qualitative knowledge component (), defines a model class with a set of
constraints on the ground model space which is generated by its features. The model class
and its constraints are used for modeling Bayesian networks and performing quantitative
inference.
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3.2 Bayesian Inference with Consistent Qualitative Knowledge

3.2.1 Bayesian Modeling and Inference

A Bayesian model m represents the joint probability distribution of a set of variables X =
X1, X2, ..., Xp (19). The model is defined by a graph structure s, which defines the structures
of the conditional probabilities between variables, and a parameter vector 6, the components
of which define the entries of the corresponding conditional probability tables (CPTs). Hence,
a Bayesian network can be written as m = {s,0}. If we believe that one single model m
reflects the true underlying distribution, we can perform inference based on this model. Given
some observations or "evidence" E, reflected by fixed measured values of a subset of variables,
X; = E, we wish to derive the distribution of the remaining variables X € X\X. Itis provided
by their conditional probability given the evidence in light of the model, Pr(X|E, m), which
can be efficiently evaluated by known methods.(26)

In contrast, the full Bayesian framework does not attempt to approximate one true underlying
distribution. Instead, all available information is used in an optimal way to perform inference,
without taking one single model for granted. To formalize this statement for our purposes,
let us classify the set of available information into an available set of data, D, and a body of
non-numeric knowledge, (). The a posteriori distribution of models m is then given by

Pr(D|m) Pr(m|Q)

Pr(m|D,Q) = Pr(D, Q)

12)

The first term in the numerator of eq. (12) is the likelihood of the data given the model, which
is not directly affected by non-numeric knowledge (2, the second term denotes the model
prior, whose task is to reflect the background knowledge. We obtain

Pr(m|D, Q) = %Pr(D|m) Pr(m|0), (13)

where Z is a normalization factor which will be omitted from the equations for simplicity.
The first term contains the constraints of the model space by the data, and the second term
the constraints imposed by the background knowledge. In the full Bayesian approach, we
can perform inference by model averaging. Now, given some observation or evidence E, the
(averaged) conditional distribution of the remaining variable X is performed by integrating
over the models:

Pr(X|E, D, Q) :/Pr(X|E,m)Pr(m|D,Q)dm:/Pr(X\E,m)Pr(D|m)Pr(m|Q)dm (14)

3.2.2 Bayesian Network Inference with Qualitative Knowledge
In this paper we consider the extreme case of no available quantitative data, D = @. Even in
this case, it is still possible to perform proper Bayesian inference,

Pr(X|E,Q) = / Pr(X|E, m)Pr(m|Q)dm. (15)

Now the inference is based on the general background information contained in (2 alone, and
the specific information provided by the measurements E. This is reflected by the fact that
inference results are conditioned on both quantities in eq. (15).

In order to determine Pr(m|Q)), we need a formalism to translate a body of qualitative knowl-
edge into an a priori distribution over Bayesian models. For this we adopt the following no-
tation for a Bayesian model class. A Bayesian model is determined by a graph structure s and
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by the parameter vector § needed to specify the conditional probability distributions given
that structure. We refer to 6 as one specific CPT configuration. A Bayesian model class M is
then given by (i) a discrete set of model structures S = {sy,sy,...,sx}, and (ii) for each struc-
ture s; a (eventually continuous) set of CPT configurations ®y. The set of member Bayesian
models m € M of that class is then given by m = {(s,8)|k € {1,...,K},0 € ©}. The model
distribution now reads

Pr(6|sr, Q) Pr(s|Q))
Y&, Jo, Pr(lsa, 0)dbPr(s,|Q)

Pr(m|Q) = Pr(s, 0|Q) = (16)

In eq. (16), first the set of allowed structures is determined by means of (2, followed by the
distributions of the corresponding CPT configurations. Then, we calculate the model’s poste-
rior probability Pr(m|Q) in eq. 16. Inference is carried out by integrating over the structure
space and the structure-dependent parameter space:

K
Pr(X|E,Q) = Z/@ Pr(X|E, s, 0) Pr (s, 0]Q)d6. (17)
k=1""k

It is very common to express non-numeric knowledge in terms of qualitative statements about
a relationship between entities. Here we assume () to be represented as a list of such qualita-
tive statements. In this form, the information can be used in a convenient way to determine
the model prior, eq. (16): (i) Each entity which is referenced in at least one statement through-
out the list is assigned to one variable X;. (ii) Each relationship between a pair of variables
constrains the likelihood of an edge between these variables being present. (iii) The quality of
that statement (e.g., "activates”, "inactivates") affects the distribution over CPT entries 6 given
the structures. In the most general case, the statement can be used to shape the joint distri-
bution over the class of all possible Bayesian models over the set of variables obtained from
Q.

Here we propose a simplified but easy-to-handle way for constructing the prior model distri-
bution. We use each statement to constrain the model space to that subspace which is consis-
tent with that statement. In other words, if a statement describes a relationship between two
variables, only structures s, which contain the corresponding edge are assigned a nonzero
probability Pr(s;|Q2). Likewise, only parameter values on that structure, which are consis-
tent with the contents of that statement, are assigned a nonzero probability Pr(6|sg, (2). If no
further information is available, the distribution is constant in the space of consistent models.

3.3 Bayesian Inference with Inconsistent Qualitative Knowledge

In this section, we propose a novel approach to make use of a set of inconsistent qualitative
statements and their prior belief distribution as background knowledge for Bayesian model-
ing and quantitative inference.

A Bayesian model m represents the joint probability distribution of a set of variables X =
{x1,x2,.., x5} (1). The model is defined by a graph structure s and a parameter vector 6,
ie. m = {s,0}. In full Bayesian framework, all available information is used in an optimal
way to perform inference by taking model uncertainty into account. Let us classify the set of
available information into an available set of training data D and a set of inconsistent qualita-

tive background knowledge Q = {Q,...,Qk} on a constant set of variables. The posterior
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distribution of models m is then given by

Pr(D|m,Q )Pr(m|Q)Pr(Q)
Pr(D,Q)

Pr(m|D,Q) = (18)

The first term in the numerator of Eq. 18 is the likelihood of the data given the model. The
second term denotes the model prior which reflects the inconsistent set of background knowl-
edge and the last term is the prior belief of the knowledge set. Now, inference in the presence
of evidence is performed by building the expectation across models:

Pr(X|D,E,Q) = /der(X\E,m)Pr(D|m,(N))Pr(m|(~))Pr((~)) (19)

In this paper we consider the extreme case of no available quantitative data, D = @.
Pr(X|E, Q) = / dmPr(X|E, m)Pr(m|Q)Pr(€) (20)

In this case, model prior distribution Pr(m|Q)) is determined soly by the inconsistent back-
ground knowledge set Q). Each independent qualitative knowledge component, O, € Q,
uniquely defines a model class, M, with a vector of features, i.e. M = {My,...,Mg}. The
features are translated into a set of constraints which determine the distribution of the ground
models within each model class.

First of all, the probability of a model class given the inconsistent knowledge set is written as

K
Pr(Mi|Q) = Z (Mg |Q) Pr(Q4]Q) = Pr(Qy) (21)

where {Pr(My|Q;) = 1,i = k} and {Pr(My|Q;) = 0,i # k} since the k-th model class is
uniquely defined by () and is independent to the other knowledge component. Secondly, the
probability of a ground Bayesian model sample m in the k-th model class given the inconsistent
knowledge set is

Pr(m € Mg|Q) = Pr(m|My)Pr(M|Q) (22)

Thus, the inference on X given evidence E and inconsistent knowledge set Q) in Eq. 20 can be
written as

Pr(X|E, Q) / dmPr(X|m, E) Pr(m|My)Pr(Q)

where Pr(m|Q)) = Y Pr(m € Mk\Q) and we assume the inconsistent knowledge set to be
true, i.e. Pr(f)) = 1. Therefore, the inference is calculated by firstly integrating over the
structure space and the structure-dependent parameter space of a ground Bayesian model
from a model class according to the constraints and performing such integration iteratively
over all possible model classes with the prior distribution. The integration in Eq. 23 is non-
trivial to compute, however, Monte Carlo methods can be used to approximate the inference.

3.3.1 ASIA Benchmark Model

The ASIA network (10) is a popular toy belief model for testing Bayesian algorithms. The
structure and parameter of actual ASIA network is shown in Figure 3.

For demonstration, we consider the inconsistent qualitative statements with regarding to sin-
gle edge between Smoking and Lung Cancer, as well as the collider structure of Lung Cancer,
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Bronchitis and Dyspnea. The method applies to all of the entities and their relations in the
ASIA network. 1. Although nonsmokers can get lung cancer, the risk is about 10 times greater
for smokers. (http://www.netdoctor.co.uk);2. The lifetime risk of developing lung cancer in smokers
is approximately 10%.(http:/fwww.chestx-ray.com/Smoke/Smoke.html);3. Men who smoke two packs
a day increase their risk more than 25 times compared with non-smokers.(http://www.quit-smoking-
stop.com/lung-cancer.html)4. Lifetime smoker has a lung cancer risk 20 to 30 times that of a non-
smoker(http:/fwww.cdc.gov/genomics/hugenet/ejournal/OGGSmoke.htm)5. Only 15% of smokers ul-
timately develop lung cancer(http://www.cdc.gov/genomics/hugenet/ejournal/OGGSmoke.htm);6. The
mechanisms of cancer are not known. It is NOT possible to conclusively attribute a cause to effects
whose mechanisms are not fully understood.(http:/fwwuw.forces.org/evidence/evid/lung.htm);7. It is es-
timated that 60% of lung cancer patients have some dyspnea at the time of diagnosis rising to 90%
prior to death.(http://www.lungcancer.org/health_care/focus_on_ic/ symptom/dyspnea.htm)8. Muers
et al. noted that breathlessness was a complaint at presentation in 60% of 289 patients with non-
small-cell lung cancer. Just prior to death nearly 90% of these patients experienced dyspnea. (2);9.
At least 60% of stage 4 lung cancer victims report dyspnea.(http://www.lungdiseasefocus.com/lung-
cancer/palliative-care.php);10. Significantly more patients with CLD than LC experienced breathless-
ness in the final year (94% CLD vs 78% LC, P < 0.001) and final week (91% CLD vs 69% LC, P <
0.001) of life. (7);11. 95% of patients with chronic bronchitis and emphysema reported Dyspnea. (8)
Each statement is analyzed by the hierarchical knowledge model in Figure 1(a) and the ex-
tracted features are summarized in Figure 3(c). In this statement set, the first six statements
represent the relation between (tobacco)smoking and lung cancer. {Sy, ..., S5} describe a sin-
gle positive (SP) influence from smoking to lung cancer with inconsistent knowledge features
of the ratio (R) and bound (Bd). However, statement S¢ declares a contradicting knowledge
suggesting that smoking is not the cause of lung cancer. {S7,...,S11} describe the syner-
gic influence from lung cancer and bronchitis to dyspnea. Without further information, it
can be represented by plain synergy with positive individual influence. The knowledge on the
extended features in Eq. 7 of the conditional probability distribution of this collider struc-
ture is not available, however, the knowledge on the extended features of the marginalized
conditional probability space are provided in these statements. For simplicity, we assume
the weight of every qualitative statement equals to 1, ie. {w; = 1,i = 1,...,11}. Due
to the parameter independency (1), we can compute the conditional probability of each lo-
cal structure independently. For each local structure, we calculate the conditional probabil-
ity of knowledge features by counting its occurrence frequency. For the local structure of
smoking and lung cancer in the ASIA network, the prior probability of the knowledge fea-
tures can be calculated as Pr(Dp)=5/6, Pr(I|Dp)=1, Pr(I|Dp)=1, Pr(SP|I)=1, Pr(r1|SP)=1/5,
Pr(ry|SP)=1/5, Pr(r3|SP)=2/5, Pr(r4|SP)=1/5, Pr(b1|SP)=1/2 and Pr(bp|SP)=1/2 where
r1 = [9,11], rp = [20,25], r3 = [25,30] and r4 = [30,0]; by = [9%, 11%] and by = [14%,16%)].
The continuous-valued feature R and Bd are discretized into |R| = 4 and |Bd| = 2 discrete-
value intervals respectively. Based on the features and their prior belief, a set of qualitative
knowledge O = {Qy, ..., 04} is formed in Figure 3(d).

3.3.1.1 ASIA Model Monte Carlo Sampling _

Given the integrated qualitative knowledge set () with prior probabilities, we now construct
the Bayesian model class and the distribution on ground model space within each class. For
demonstration purposes, we assume the partial structure and its parameters, i.e. {«,7,A, f},
to be known as in Figure 3(b). Therefore the uncertainty of ASIA model space is restricted
to the uncertainty of the local structure and parameter space on Smoking and Lung Can-
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cer which can be described by Pr(m|M) and Pr(My) defined by {4k = 1,...,9}, ie.
{M(Qp)lk = 1,...,9}, as well as the uncertainty of the local space on Lung Cancer, Bron-
chitis and Dyspnea which can be jointly determined by three types of model class, i.e. the root-
dimension model class defined by ()1, the marginal-dimension model classes of lung cancer
and dyspnea defined by {Q);|i = 11,...,14} and the marginal-dimension model classes of
bronchitis and dyspnea defined by {Q);]j = 15,16}. Thus, there are total eight possible com-
bination of these model classes, i.e. { M (Q19,Q;, Q]-) lk=10,...,17;i=11,...,14;j = 15,16}
and each combination virtually forms a complete model class which defines the set of con-
straints on the structure and parameter space of ground Bayesian model for the local collider
structure of lung cancer, bronchitis and dyspnea. The prior probability of each combination,
Pr(My) is the product of the prior probability of its independent components, i.e.

Pr(My) = Pr(QlO)Pr(Qi)Pr(Qj) (23)

For each local structure, we perform 10,000 sampling iterations. In each iteration, we select
a model class My randomly based on the prior probability of the model class, i.e Pr(My). In
each selected model class, we randomly choose 3 samples of ground Bayesian model 1, whose
structure and parameter space is consistent with the class constraints Pr(m|My) as shown in
Figure 1(a). In this way, for the local structure of smoking and lung cancer, the prior babil-
ity of the model class is equivalent to its knowledge component, i.e. Pr(My)=Pr(Q). We
generate total N=30,000 ground model samples from model classes {M(Q)lk = 1,...,9}
defined by Q) in Figure 3(d). The ground model samples are shown in Figure 4(a). For
the local collider structure of lung cancer, bronchitis and dyspnea, we generate N=30,000
ground model samples from the combination of model classes defined in Eq. 23 based on
{Qlk = 10,...,16} in Figure 3(d). The marginal conditional probability samples are shown
in Figure 4(b) and 4(c). Without further information on lung cancer, bronchitis and dysp-
nea, we can set their prior probabilities to be 1/2. By taking average over the models in Fig-
ure 4(a) to 4(c), we can calculate the mean value for the conditional probability of lung cancer
given smoking, i.e. f1=0.1255, Bp=0.006, and of Dyspnea given lung cancer and Bronchitis,
i.e. £0=0.2725, &=0.9053, &=0.5495 and ¢3=0.968. Note that since the 9th model class defined
by Qg for the structure of lung cancer and smoking, i.e. Mg({Q)g), contains no edge between
the nodes, the parameter of this model class is null.

3.3.1.2 ASIA Model Inference

For each of the model sample, according to Eq. 23, we perform inferences in silico on the
likelihood of a patient having lung cancer (Lc) given information about the patient’s smok-
ing status and clinical evidences including observation of X-ray, Dyspnea, and Bronchitis,
ie. Xops = {Sm,Xr,Dy,Br}. The convergence of these prediction under a set of evidences
E = {Ey, Ey, E3, Ey4, Es, E¢} are shown in Figure 4(d). The true prediction values with param-
eters in Figure 3(b) under the evidence set E are listed below in Figure 5. The presence of
bronchitis could explain away the probability of lung cancer and the presence of smoking
increases the risk of getting lung cancer.

3.3.2 Breast Cancer Bone Metastasis Prediction

We apply our framework to integrate a set of inconsistent qualitative hypotheses about the
molecular interactions between Smad proteins of the TGFf signaling pathway in breast can-
cer bone metastasis network. From recent studies (11-15), a set of qualitative statements on
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molecular interactions in the breast cancer bone metastasis network can be extracted. A Dy-
namic Bayesian model can be constructed based on this set of statements as shown in Fig. 6(a)
and the quantitative prediction with forward belief propagation based on a set of consistent
qualitative hypotheses has been introduced in (33).

In this section, we consider the inconsistent qualitative statements with regard to the mech-
anism of Smad? in blockade of the TGFp signals. In (14), the qualitative statements can be
extracted as S1: Smad7 directly binds to the activated type I TGF-p receptor and inhibits phosphoryla-
tion of the R-Smads.;Sy: Smad6 acts in a different way as Smad7. It competes with the activated Smad1
for binding to Smad4.; In (15), the qualitative statements can be extracted as S3: The inhibitory
activity of Smad6 and Smad7 is thought to result from an ability to interfere with receptor interaction
and phosphorylation of the receptor-requlated Smads.;S,: However, their inhibitory activity might also
result from their ability to form a complex with receptor-activated Smads.;Similar statements can be
extracted from (13) as Ss: I-Smads (Smad6,7) interact with type I receptors activated by type II recep-
tors.;Se: I-Smads have also been reported to compete with Co-Smad (Smad4) for formation of complexes
with R-Smads (Smad2/3).

This set of statements represent the molecular interactions between I-Smad (Smad?7), R-Smad
(Smad2/3) and Co-Smad (Smad4). {Si,S3, S5} report the interaction between Smad?, type
I TGFB-receptor (TBRI) and Smad2/3. {Sy4, Sg} describe the interaction between Smad7 and
Smad4 to form a complex whereas S, provides contradicting information. Each statement is
analyzed by the hierarchical knowledge model in Figure 1(a) and the extracted features are



68 Bayesian Network

Fispa. £y o Ey Ea Er Foy
T 17 0.=57 0. =4 .21 (TN (R
Sirnnvilaatiosn Ny (RN [N E ] [FN = RN LR TE

Fig. 5. Inference Results on ASIA Network

summarized in Figure 7(a). For simplicity, we assume the weight of every qualitative state-
ment equals to 1, ie. {w; = 1,i = 1,...,6}. Due to the parameter independency (1), we
can compute the conditional probability of each local structure by counting the occurrence
frequency of the knowledge features independently. For the local structure of Smad?7, TBRI
and Smad?2/3, the prior probability of the knowledge features can be calculated as Pr(Dp)=1,
Pr(I|Dp)=1, Pr(I|Dp)=1. For the local structure of Smad7, Smad4 and phosphorylated-
Smad2/3 (Smad2/3-p), Pr(Dp)=2/3, Pr(Dp)=1/3, Pr(I|Dp)=1, Pr(I|Dp)=1. Based on the
features and their prior belief, a set of qualitative knowledge () is formed in Figure 7(b). In
this experiment, the extended features of the inconsistent knowledge are not available.

We now construct the Bayesian model class and the distribution on ground model space
within each class. The uncertainty of the TGFB-Smad BCBM model space is restricted to the
uncertainty of the local structure and parameter space on Smad?, TBRI and Smad4 which is
defined by {€)1,0),} in Figure 7(b). The model classes can be expressed as {M (€})|k=1,2} and
the prior probability of each model class equals to the prior probability of the knowledge, i.e.
Pr(Mj)=Pr(Q)). We perform 10,000 sampling interactions. In each iteration, we select a model
class My randomly based on the prior probability Pr(My). In each model class, we randomly
generate 3 samples of the ground Bayesian model m by Monte Carlo method, whose structure
and parameter space is consistent with the class constraints Pr(m|My) as defined by Eq. 1 to
Eq. 7. Therefore, we obtain N=30,000 ground models from the model classes. By taking aver-
age over the ground models, we can calculate the mean value for the conditional probability
of the complex Smad4-Smad2/3-p given Smad7, Smad4 and Smad2/3-p. Note that since M;
contains no edges between Smad7 and Smad4-Smad2/3-p, the parameter of this model class
is null.

Each ground model is a Dynamic Bayesian network (DBN) which can be unrolled over time
to form a series of 2TBNs (4). The prediction on the probability of bone metastasis given a set
of evidences E; € {Ey, Ep, E3} in each model class, i.e. the integral in Eq. 23, can be calculated
by integrating the predictions over all DBN models which is equivalent to compute firstly the
mean DBN model with averaged parameters and then perform prediction on this mean DBN
model (33). The simulation results and the observed bone metastasis probability in (11) are
shown in Fig. 6(b) and Fig. 6(c).

3.3.3 Conclusion

In this paper, we proposed a hierarchical Bayesian model for modeling the semantics of the
qualitative knowledge with a vector of features. The inconsistent knowledge components are
integrated by calculating a prior distribution. The integrated qualitative knowledge set is used
as prior background knowledge in modeling Bayesian networks and performing quantitative
inference. We benchmarked our method with the ASIA network and applied our method
to a real-world problem and simulation results suggest that our methods can reconcile the
inconsistent qualitative uncertainty and produce reasonable quantitative prediction based on
the inconsistent knowledge set.



Advanced algorithms of bayesian network learning and inference from inconsistent prior
knowledge and sparse data with applications in computational biology and computer vision 69

g

£100

2

[}

3

LI =

E o 1833 ‘
T e ¥ # 0 20 40 60 &0

(a) Signaling Pathway (b) Simulation Results (c) Observation

Fig. 6. Integrated TGFp-Smad BCBM Network and Prediction

=Ll Ly I M H e B Atk

] i 1 Tall = Fevran il 11l LRl ars

3 [ i [RLRLL 1l il Tl #r
D i 1 Dol iFwan aeulld acaldl sanslL el
=y A 1 J e R xuull ol 2ans Ll ey
= 1 1 Tl Sas xulT aoudl 22 I sy,
T il il L e il [EEENL Ll I

(a) Feature-vector of Statements

i 1y 1 a3 1t Y 151 178 E,
ae =] aanll annall carill AL
£ %y 1 1 1l | awaal |l 1l RS
i 1 1

(b) Integrated Qualitative Knowledge with Prior Probability

rivall Tenall ritall 1

Fig. 7. Qualitative Statements and Knowledge in TGFS-Smad BCBM Network

3.4 Bayesian Network Learning with Informative Prior Qualitative Knowledge

We propose a framework for Bayes net parameter learning with generic prior knowledge.
In this study, we use the knowledge model in section 3.1 to translate the qualitative domain
knowledge into a set of inequality parameter constraints. We reconstruct the parameter pri-
ori distribution ( i.e. priori pseudo counts) from these constraints. We then propose a novel
Bayesian parameter score function which integrates this prior distribution with the quantita-
tive data statistics. In this way, the parameter posterior distribution is combinatorially regu-
lated by both quantitative data and prior knowledge.

3.4.1 Qualitative Constraints and Sampling

In general, qualitative domain knowledge can define various constraints over conditional
probabilities in a BN. As described in last section, most of these constraints can be represented
by a linear regression function f(6;jx) < ¢, Vi, j,k (c is a scaler), where 0;j is the conditional
probability of the state of i-th node being k, given its j-th parent configuration. In particular,
one type of constraints can be derived from this function. Cross-distribution Constraints defines
the relative relation between a pair of parameters over different conditions. If two parameters
in a constraint share the same node index i and value k, but different parent configuration j,
the constraint is called cross-distribution constraint. This constraints can be usually derived
from causality in the qualitative knowledge.

Oijk <, > 0;j¥j # ' (24)

Given the constraints defined by f, we can withdraw samples of parameter which are consis-
tent with the constraints, e.g. in Eq. 24, by accept-reject sampling. Since sampling can be done
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at each node, it is relatively reasonable for demonstration. But node with more parent nodes,
Gibbs sampling and simulated annealing can be used.

3.4.2 Qualitative Bayesian Parameter Score (QBPS)
In this study, we assume the data distribution is multinomial and prior is Dirichlet. The pos-
terior probability of the parameter given the data in standard MAP estimation can be written
as
e NN 1
logPr(8|G, D) = log Pr(D|6, G) +log Pr(6|G) — ¢ = log{ar{l—{kl—[ 0,k } (25
i=1j=1k=1

where 6 denotes the parameters in a Bayes net and G is the network’s structure. i, j, k is defined
as section 3.4.1. The first term in Eq. 25 represent the data statistics which is followed by the
Dirichlet prior distribution with hyperparameter N ik (1). « is a normalizer. In standard MAP
method, N/ i 19 usually set to a very small and equal number which results in non-informative
prior.

We propose a posterior probability which employs the informative prior constraints (f) in
the last section. In previous methods (35-37), f is imposed into the posterior probability
as an penalty term. The MAP estimation is transformed to constrained optimization prob-
lem. However, the violation term f in these cases can only penalize the likelihood when the
learned local maximum violates the constraints in the sign, but it can not distinguish a set
of all possible local maximums obeying the constraints. So, final solution is not necessary a
global maximum (37). Therefore, it is desired to use prior constraints (such as Eq. 24) as soft
regulations to the posterior probability in Eq. 25. We name this MAP-like score function as
Qualitative Bayesian Parameter Score (QBPS).

log Pr(0|G, D, Q) = log Pr(D|6,G) + log Pr(6|G,Q}) — ¢ (26)

The difference between Eq. 26 and Eq. 25 is the addition of (2 to the posterior probability in
Eq. 25. The first term in Eq. 26 is the data statistics as in the standard MAP estimation. The
second term Pr(6|G,Q)) represent the parameter’s prior distribution given prior knowledge
Q. Q) can represent any forms of generic prior constraints over the parameter space, such as
Eq. 24. In conventional approaches, Pr(6|G) can be any probability function, such as Gaussian
or Dirichlet distribution function with pre-defined hyperparameters. In case of multinomial
data, Pr(0|G) oftenly take the form of beta distribution due to the conjugate distribution prop-
erty. Thus, the problem is to fuse the prior knowledge () and its associated constraints (f) over
parameter space with the beta distribution Pr(6|G) which results in the constrained beta dis-
tribution Pr(6|G, Q).

In general, we can either i) fit the beta distribution into the constrained parameter space by
estimating the hyperparameters of Dirichlet distribution given a vector of constrained param-
eter samples Gll- ik (43). These samples can be obtained based on the accept-reject sampling. In
this case, we only select one local maximum prior model (one instance of hyperparameter) to
substitute the uncertainty in the (priori) parameter space (all possible instances of hyperpa-
rameter) or ii) admit the model uncertainty and utilize conjugate property of beta distribution
to reconstruct the (priori) parameter space distribution based on all constrained parameter
samples. In this case, we have

n 4qi r;
Pr(6]0,G) = aJ [T TT6hM* vi=1,.,L 27)
i=1j=1k=1
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where 911. ik is an instance of constrained prior parameter sample and Mf ik denotes the num-

ber of ‘success’ cases of this instance (X;=k, Hi:jwzl'jk) exists in the past A (A is an arbitrary
number) samples. It is equal to

Mjy = A x Pr(X; = k,T1; = j|0) (28)
Together, the QBPS score can be written as
n 4qi r Noot M
Pr(0|G,D, Q) = a [T T[T 6 "™ vi=1,..,L (29)
i=1j=1k=1

where Njj is the number of occurrence in the training date for the ith node to have a value of
k and for its parent to have a value of j and L is the total number of priori parameter samples
from accept-reject sampling. (L is a large number) Thus, the local maximum estimation of a

o

(b) O,MAP (c) 0,QMAP(=0.1) (d) 0,QMAP(y=1.0)
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Fig. 8. Parameter Learning in Toy Network: The network contains two binary nodes. A is
an activator parent of B. X,Y-axles represent conditional probability P(B|A) and P(B|A) re-
spectively; Z-axis is equal to the negative value of posterior statistical counts [—(Nijk+M§ jk)] in
Eq. 29.

QBPS score equals to

& Nig+NoPr (X = k11 = j|O)
ik Yy Nije + yNoPr! (X = k,T1; = j|Q)

(30)

where Nj is equal to the number of total data samples. Now, we further assume that A and
Np has a ratio 7, i.e. A = ¢ x Np. From Eq. 30, we can see that ratio v actually specified
the belief-ratio between data statistics and prior knowledge statistics. If y=0, we neglect the
statistics from the prior knowledge and only trust the statistics in the data, thus, our estimation
in Eq. 30 converges to ML results; If y=+00, we neglect the statistics in the data and only
trust the prior knowledge, the results converge to the previously mentioned constraint-based
probabilistic inference in (Dynamic) Bayesian inference [9,10]. If 0<7y<+co, the QBPS score is
softly regulated by both data statistics and the prior knowledge and constraints in the domain.



72 Bayesian Network

Since the estimation in Eq.8 is a joint effect from both inequality constraints in qualitative prior
knowledge and data observation, we name it as Qualitative Maximum a Posterior (QMAP)
estimation.

3.4.3 QMAP Estimation

1. QMAP Estimation with Full Bayesian Approach

As we have shown, we can reconstruct the priori parameter distribution from prior con-
straints. Each priori parameter sample 65 i together with the given structure (G) define a prior

network m'. Each priori m! can be mapped to a posteriori. Thus, the final posterior probability
of all Bayesian network models is defined over this class of prior networks ' in terms of a
set QBPS scores (Eq. 29). Our final goal is to predict future observations on variable X from
the training data (D) and priori constraints (2. Given BN structure (G), this prediction can be
calculated as integration over the parameter space weighted by its posterior probability.

Pr(X|G,D,Q) = /epr(xw, G)Pr(6|G, 0, D)d6 (31)

The posterior probability of the parameter given data and qualitative prior knowledge, i.e.
Pr(8]G,Q), D), is in-turn an integration over all possible prior models (m) in the class defined
by (), thus, we can extend Eq. 31 as

Pr(D|6, G)Pr(6|G, m)Pr(m|Q)
Pr(D)

Pr(X|G,D,Q) = /9 Pr(X|6,G) / dmde (32)
B m

Pr(m|Q)) in Eq 32 is equal to 1 since all the valid prior models (m) are consistent with the prior
constraints ().

The outer integration can be approximated by its local maximum if we assume the QBPS curve
for each model is peaky, then we can write the inference as Pr(X 6, G). With full Bayesian
approach, final QMAP estimation of the parameter can be optimized by integrating the set
of local QBPS maximums over the prior network space, i.e. selecting the QMAP estimation
which maximize the integrated QBPS score.

~ Pr(D|6,G)Pr(8|G, m)Pr(m|Q) 1 L Nij+ML
0 = argmaxy {/m (D16, G) P(r(|D) )Pr(m] )dm} = argmaxy Z;;“I;Ieifkjk ik

(33)
Note that each prior network m! uniquely associate with a pseudo prior statistical count Mf ik
The prior network space is discrete. By taking the derivative of Eq. 33 wrt 6;j;, we obtain the
constrained QMAP estimation with full Bayesian approach as

1

~ 1 L Nijk + M,’jk

0 MAP,FBA — 7 = ~r . A (34)
© L z; Lk Nijk + ijk

2. QMAP with Frequentist Maximization Approach

On the other hand, the final QMAP estimation can be obtained by frequentist maximum ap-
proach to select one single best estimate from the parameter posteriori space. In this way, we
could pick up the maximum from a set of local maximums.

Nijk + ijk }

— (35)
Yk Nijk + ijk

/G\QMAP,FMA = argmaxy {
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An example plot of posterior statistical counts in Eq. 29 is shown in Fig. 8. In case of ML
learning, the Mll. i 18 equal to zero for all ij,k. In case of MAP learning, we simulated a typical

scenario, where the dirichlet parameters are set equally to a scalar. In this case, the dirchlet pa-
rameters tends to smooth the posterior score by adding equal amount of pseudo counts for all
i,j, k. The smoothed posterior favors to the uniformly distribution in this case. By setting these
prior pseudo counts to 1, conventional MAP methods try to minimize this biased smooth ef-
fect. However, the bias remains significant when the training data is relative small. In Fig. 8(g)
and 8(h), we show that our proposed QMAP methods augment the posterior distribution by
reconstructing the prior from the qualitative knowledge and each prior distribution sample
Mf ik is combined with the data statistics to regulates posterior counts on equal opportunities.

In this way, we can explore the multiple local maximums sit in the posterior space so that we
ensure to select the global maximum.

3.5 Experiments

3.5.1 Experiment Design

We evaluate our proposed parameter learning methods using a realistic AU recognition data.
We test our algorithm in following learning conditions: a) In extreme case, we assume there
are no available training data and we use only generic qualitative domain knowledge which
are derived from causality in a BN to estimate the parameter. b) In standard case, we do not
employ any domain knowledge which is eventually equivalent to ML estimation. c) In an
fusion case, we use both training data and generic qualitative domain knowledge to learn the
parameter. We compare our results to standard ML and MAP estimation results.

3.5.2 Facial Action Unit Recognition

In this section, we apply our method to facial action unit (AU) recognition. The Facial Action
Coding System (FACS) (40) is the most commonly used system for facial behavior analysis.
Based on FACS, facial behaviors can be decomposed into a set of AUs, each of which is related
to the contraction of a specific set of facial muscles. An automatic AU recognition system
has many applications. Current AU recognition methods tend to perform AU recognition
individually, ignoring their relationships with other AUs. Due to the underlying physiology
and the facial anatomy, AUs often move in a coordinated and synchronized manner in order to
produce a meaningful expression. To represent the dependencies among AUs, Tong et al (41)
proposed to use Bayesian Network to capture the relationships among AUs. Following their
work, we propose to use the same BN model to capture the relationships among the 14 most
common AUs as shown in Figure 9(a), where the larger circular nodes in the model represent
AUs while the smaller nodes represent their image measurements. They have demonstrated
that the BN model is superior to the state of the arts AU recognition method. But to use
the model, they need a large amount of training data, which is often hard to acquire. We
will show that we can achieve comparable results using only a fraction of their training data.
Using the model, we extract constraints based on the following rules provided by domain
experts: 1. Marginal Constraint: In spontaneous cases, some AUs rarely occur. One example
for this case is AU27, and the rule is P(AU27 = 1)<P(AU27 = 0), where 1 means presence
and 0 means absence. 2. Causality-derived Cross-distribution Constraint: As shown in Figure
4, every link between two AU nodes has a sign provided by the domain expert. The + sign
denotes positive influence,which means two AU nodes have co-occurrence relationship, while
a negative sign denotes negative influence, which means the two AU nodes have mutual
exclusive relationship. Considering an AU node AU; has only one parent node AUj, if the
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sign of the link is positive, we have P(AU; = 1|AU; = 0)<P(AU; = 1|AU; = 1), e.g. P(AUL =
1]AU2 = 0)<P(AU1 = 1|AU2 = 1); if the sign of the link is negative, then we can get P(AU; =
1|AU; = )<P(AU; = 1|AU; = 0), e.g. P(AU6 = 1|AU27 = 1)<P(AU6 = 1|AU27 = 0). If an AU
node AU; has more than one AU parent nodes, AU denote all the parent nodes with positive
links, and AUN denote all the parent nodes with negative links. Then we get P(AU; = 1|AU"
=0,AUN = 1)<P(AU; = 1|AU" = 1,AUN =0), e.g. P(AU15 = 1|]AU24 = 0,AU25 = 1)<P(AU15
= 1|AU24 = 1,AU25 = 0). 3. Range Constraint: If an AU node AU; has more than one parent
nodes AUP, and all of them with positive influence, then P(AU; =1 |AU? = 1)>0.8. Ifan AU
node AU; has more than one parent nodes AUYN, and all of them with negative influence, then
P(AU; = 1|AUN = 1)<0.2.

Please note the above constraints are due to either facial anatomy or due to certain facial
patterns. They are generic enough to be applied to different databases and to different indi-
viduals.

3.5.3 Integrative Learning with domain knowledge and data

The 8000 images used in experiments are collected from Cohn and Kanades DFAT-504. In each
simulation run, we randomly select 0 to 5000 samples out of 8000 samples for training and we
repeat learning task for 20 times. Training data are used for learning the parameters in the AU
BN (Figure 9(a)). After the learning, we select 1000 untouched samples for testing. Testing
data are used to perform AU recognition through inference given learned BN. We assume the
training data is complete. In the first part, we show the learning results in K-L divergence on
the AU subnetwork in Figure 9(a). In the second part, we show the real classification results.
We apply ML and QMAP estimation with qualitative domain knowledge defined above to
learning the parameters in the AU subnetwork. The K-L divergence is shown in Figure 9(b).
The x-axis and the y-axis denote training sample size and K-L divergence respectively. The
K-L result is actually the mean K-L divergence which is calculated by averaging the param-
eter learning results over all randomly selected training samples under each specific sample
size. We can see that: i) QMAP with =1 performs significantly better than ML estimation
under every training data size. More specifically, the K-L divergence for ML estimation with
3 training sample is decreased from 2.21 to 0.24 for QMAP with y=1. Even at 5000 train-
ing samples, the K-L divergence for ML estimation is decreased from 0.04 to close to 0 for
QMAP estimation; On the other hand, we can evaluate the results by counting how many
training samples are required to achieve specific desired K-L divergence level for ML, MAP
and QMAP method respectively. At 3 training sample, K-L divergence for QMAP estimation
is 0.24. In order to obtain equivalent or better K-L divergence level, ML estimation needs 200
samples. At 5000 training sample, K-L divergence for ML estimation is 0.04 which can be
achieved by QMAP with 10 samples. These results are extremely encouraging, as using our
methods with domain-specific yet generic qualitative constraints, and with a small number
of manually labeled data (10), we can achieve similar learning accuracy to the ML estimation
with full training dataset (5000).

The encouraging learning results of our QMAP method shed light over the usage of generic
qualitative domain knowledge in learning task. Therefore, in this section, we explore an ex-
treme case of parameter learning by ignoring all training data sample but only employing
the set of qualitative constraints (same set of constraints defined above) to learn the AU sub-
network parameters. In this case, the data statistics counts in Eq. 30 is zero due to lack of
training data. The parameter estimation is only determined by priori pseudo counts given
the qualitative knowledge. The K-L divergence in this case is 0.0308 which is lower than K-L
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Fig. 9. Comparison of AU recognition network parameter learning results from ML and
QMAP respectively. a) AU Recognition Network with AU nodes and measurement nodes; b)
K-L divergence measurement of parameter learning in AU network based on training dataset
with various sample size. Comparison of AU recognition skill using the BN learned from
ML and QMAP respectively. We compare QMAP to standard ML skills. ¢) AU Recognition
Network; d) AU Recognition skill score at 200 training samples on AU nodes;

divergence of ML learning with full training data (5000 training samples). Meanwhile, this
K-L divergence level corresponds to that of QMAP learning with y=1 at 25 data samples.

3.5.4 Classification

In this section, we want to study the performance of the proposed learning methods by us-
ing such learned BN model for AU classification. For AU classification, we need feed the
BN model with AU measurements computed from Gabor Wavelet jets. Given the AU mea-
surements, we want to infer the true states of each AU using the model parameters learnt
with our method. Specifically, we want to study the AU recognition performance under dif-
ferent amount of training data including the extreme case of using no training data at all,
and compare the classification results with those in (36). We perform classification based
on the learned AU network from ML and our proposed QMAP approach in section 3.5.3).
For demonstration, we select the learned AU network parameter under training dataset with
representative sample size: 0, 20, 100, 200, 300 and 500. After learning, we randomly select
1000 untouched data samples for classification test. Figure 9(c) shows the AU recognition
results. The x-axis represent the training data size for learning AU network parameters (in
case of 0 training size, no training data but only qualitative prior knowledge is used for AU
network parameter estimation) and y-axis denotes the true skill score (the difference between
true positive rate and false positive) respectively. The true skill is calculated by averaging all
AU nodes’ skill score. We can see from Figure 9(c), the true skill score for QMAP with various
belief-ratio () is significantly better than the skill score for ML estimation under nearly all
training data sample size except for QMAP with =0.01. In particular, even at sparse train-
ing data (20 samples), the average true skill score for all AU nodes increases from 0.6229 for
ML estimation to 0.6866 for QMAP with =1, to 0.6655 for QMAP with v=0.1, to 0.6512 for
QMAP with ¢=0.01 and to 0.6322 for QMAP with ¢=0.001; At 100 training samples, true skill
score further enhances from 0.6644 for ML estimation to 0.6940 for QMAP with =1, to 0.6928
for QMAP with y=0.1, to 0.6668 for QMAP with ¥=0.01 and 0.6677 for QMAP with =0.001.
While training sample size grows to 200, 300, and 500 samples, the true skill score from QMAP
with 4=1.0 is equal to 0.6916, 0.6957 and 0.6942 respectively and tends to converge. In the
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same case, ML estimation shows consistently lower classification ability than QMAP. Please
note that, using full training dataset (7000 samples for training and 1000 samples for testing),
true skill score for ML estimation converge at 0.6883 (shown as the black dashed line in Fig-
ure. 9(c)). From the above results, we can conclude that i) our proposed QMAP estimation
by integrating domain-specific yet very generic qualitative prior constraints with quantitative
training data significantly improves the AU recognition results comparing to ML estimation
at all sample size spanning from sparse data to rich data. This observation is particularly true
with =1; ii) Our proposed QMAP estimations (with different ) needs much fewer training
samples for AU network to achieve equivalent and even better AU recognition results than
ML estimation. iii) Comparing the true skill score of QMAP estimation to the score of ML es-
timation with full training dataset, we can see that, with a much smaller number of manually
labeled data (around 35 samples) ,QMAP with =1 can already achieve much better AU recog-
nition results than ML estimation with full training dataset (7000 samples). While decreasing
the weight on prior knowledge to 1=0.1, QMAP requires from 80 to 250 training samples to
achieve better AU classification results than ML estimation with full training dataset. When
7 reduces to 0.01, QMAP needs around 300 samples to outperform ML estimation with full
training dataset. This number keeps increasing while y reduces. When =0.001, the true skill
score of QMAP tends to converge with ML estimation. Therefore, in practice, we shall put
a larger weight on qualitative prior knowledge as long as our knowledge are valid in a do-
main. The above observation is also consistent with our K-L measurements in Figure 9(b).
In summary, we demonstrate that by our approach, qualitative prior constraints can be in-
tegrated into standard BN parameter learning to achieve significantly improved prediction
results. Next, we want to compare our results with a well developed method in AU recogni-
tion (36). To this end, we compare the true skill score of our QMAP at 200 training samples to
the skill score of Constrained-ML (CML) estimation (Figure4(b) in (36)) at 300 training sam-
ples. The true skill of each AU node of our QMAP is plot with optimized v is shown in 9(d).
Firstly, we can see that our QMAP approach significantly improves the true skill on AU node
number 5, 9, 15, 23 and 24. Slightly improve the skill on AU node 1, 7, 17. The rest skill is
equivalent to ML estimation. Comparatively, our method boost the skills on those AU nodes
(6,23,12,25,17,24, 9, 4) whose skill score is worse than ML estimation in (36).
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1. Introduction

In group decision making, different experts often think about the same problem in quite
different ways. They frequently have different opinions for decision making about the same
situation. Using a Bayesian network structure for optimizing problems, different experts
who work as a group for projects may have different solutions for indentifying the causal
relationships among variables in the BN model and quantifying graphical models with
numerical probabilities. For example, expert-1 may state that “making a decision in situation
A causes situation B and making a decision in situation B causes situation C”. But expert-2
may state that “making a decision in situation B causes situation A and making a decision in
situation A causes situation C”. Even in a simple case of decision making, the expert
knowledge obtained from different experts is quite different. It is typically not possible to
avoid contradictions among different expert’s solutions in group decision making,.

In this article, we propose a practical framework and a methodology for transforming expert
knowledge or final group decision making statements into a set of qualitative statements
and probability inequality constraints for inference in a Bayesian Network. First, we need to
identify a set of alternatives on which the experts have opinions and then consider the
problem of constructing a group preference ranking. If such a group preference ranking can
be created, then one could utilize the alternative at the top of the ranked list the alternative
preferred by the group. Second, after we obtain the most preferred alternative or statement
such as “A causes B and then B causes C” from the group decision making, we propose a
formal method to transform knowledge, represented by a set of qualitative statements, into
an a priori distribution for Bayesian probabilistic models. The mathematical equation for
Bayesian inference is derived based on knowledge obtained from the final group decision
statements. The set of model parameters, consistent with the statements, and the
distribution of models in the structure-dependent parameter space are presented. We also
propose a simplified method for constructing the “a priori” model distribution. Each
statement obtained from the experts is used to constrain the model space to the subspace
which is consistent with the statement provided. Finally, we present qualitative knowledge
models and then show a complete formalism of how to translate a set of qualitative
statements into probability inequality constraints. Several cases of Bayesian influence are
classified and the probability inequality constraints presented in each case are described.
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This article is organized as follows: Section 2 presents more detail about the background of
Bayesian networks and some perspectives of qualitative causal relationships in the Bayesian
approach. Section 3 addresses the method of constructing a group preference ranking and
group decision making from the individual preferences obtained from the experts
performing group work. Section 4 addresses the methods to transform a final solution or
expert knowledge into an “a priori” distribution for Bayesian probabilistic models in more
detail. Section 5 describes the method used to translate a set of qualitative statements into
probability inequality constraints and presents different cases of influences in BN model.
Section 6 presents a conclusion and discusses some perspectives and ideas for future work.

2. Background

This section is intended to describe the background of Bayesian networks and some
perspectives of qualitative causal relationships in the Bayesian approach. Bayesian networks
(also called belief networks, Bayesian belief networks, causal probabilistic networks, or
causal networks) are acyclic directed graphs in which nodes represent random variables and
arcs represent direct probabilistic dependencies among the nodes (Pearl, 1988). Bayesian
networks are a popular class of graphical probabilistic models for research and application
in the field of artificial intelligence. They are motivated by Bayes” theorem (Bayes, 1763) and
are used to represent a joint probability distribution over a set of variables. This joint
probability distribution can be used to calculate the probabilities for any configuration of the
variables. In Bayesian inference, the conditional probabilities for the values of a set of
unconstrained variables are calculated given fixed values of another set of variables, which
are called observations or evidence. Bayesian models have been widely used for efficient
probabilistic inference and reasoning (Pearl, 1988: Lauritzen & Spiegelhalter, 1988) and
numerous algorithms for learning the Bayesian network structure and parameters from data
have been proposed (Heckerman, 1994: Heckerman, 1996: Friedman & Goldszmidt, 1999).
The causal structure and the numerical parameters of a Bayesian network can be obtained
using two distinct approaches (Cheng, et al., 2001: Nipat & Wichian, 2009). First, they can be
obtained from an expert. Second, they can also be learned from a dataset or data residing in
a database. The structure of a Bayesian network is simply a representation of
independencies in the data and the numerical values are a representation of the joint
probability distributions that can be inferred from the data (Singh & Valtorta, 1995: Spirtes
& Meek, 1995). In practice, some combination of these two approaches is typically used. For
example, the causal structure of a model is acquired from an expert, while the numerical
parameters of the model are learned from the data in a database.

For realistic problems, the database is often very sparse and hardly sufficient to select one
adequate model. This is considered as model uncertainty. Selecting one single model can
lead to strongly biased inference results. On the other hand, in science and industry, there is
an enormous amount of qualitative knowledge available. This knowledge is often
represented in terms of qualitative causal relationships between two or more entities. For
example, in the statement: “smoking increases the risk of lung cancer,” the two entities:
smoking and lung cancer are related to each other. Moreover, the smoking entity positively
influences the lung cancer entity since lung cancer risk is increased in the case of smoking. It
is therefore desirable to make use of this body of evidence in probability inference
modeling.
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3. Group Preference Ranking and Group Decision

In this section, we present the first step which is identifying the group solution for a BN
model of the proposed framework (see Fig. 1). We describe several methods for experts to
make decisions for identifying the relationship between variables in a Bayesian network
model and arriving at a final BN solution representing the group.

The general case is one in which we have a group of experts and a set of alternatives, for
example “A activates B and B activates C”, “B activates A and A activates C”, and “C
activates A and A activates B”, on which the experts have opinions. We assume that each
expert has a preference ranking on the set of alternatives. That is, using these preferences,
each expert can order the alternatives in a list such that if alternative A activates B, and B
activates C are in the list, then the experts have an agreement with that alternative. A set of
individual preference rankings, one for each expert in the group, is called a group
preference schedule. One goal of the first portion of our proposed practical framework is to
consider the problem of constructing a group preference ranking from the individual
preferences (that is, from the group preference schedule). If such a group preference ranking
can be created, then one could call the alternative at the top of the group list the alternative
selected by the group of experts. However, such a group ranking may not be possible, and
moreover, even if it is possible, the alternative at the top of the list may not be one that
would win the majority selection in an election among all options. Thus the second goal of
our work in the first step is to consider other possible ways of picking the most preferred
choice, especially if none of the alternatives would receive a majority selection in an election
among all alternatives. We will identify the properties of the decision process that
corresponds to our ideas about the characteristics such decision processes should have.
Example 1. Suppose that we have a group of three experts, labeled expert-1, expert-2, and
expert-3, and a set of three variables, labeled A, B, and C. For this example, assume the
individual preference rankings are as follows:

Expert-1: A>B->C; Expert-2: B>C>A ; Expert-3: C>A>B

Using pairwise comparisons and a simple-majority rule, we see that both expert-1 and
expert-3 agree that “A causes B”, and therefore, because the vote is 2 to 1, the group should
agree with “A causes B”. Therefore, on the basis of this information, we would propose that
the group preference ranking should be “A causes B and then B causes C; (A>B->C)".
However, both expert-2 and expert-3 agree with “C causes A”, and therefore the group
should agree with “C causes A”. We conclude that the proposed group preference ranking
in this example is not transitive: The experts agree with A>B->C->A. This cyclic, or
intransitive, behavior is normally considered unacceptable for a preference ranking. We
conclude that even in this simple situation, the majority rule decision process can lead to
unacceptable preference rankings. The intransitive phenomena do occur when the number
of variables and alternatives increase. That is for many groups and sets of preferences, the
group preferences determined by the pairwise majority rule voting are intransitive. What
are some ways to cope with the results of this example?

Let’s consider again the simple situation of three experts and three alternatives. Then each
expert has 6 different preference rankings-that is, 6 ways in which the 3 alternatives can be
listed: 3 choices for the alternative listed first, 2 choices for the alternative listed second, and
1 choice for the alternative listed last. Because there are 6 experts, there are 6 x 6 x 6 = 216
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different preference schedules for the group. The likelihood of intransitive group
preferences depends on how the experts select their individual preference rankings. For
instance, if we know that two of the experts have the same preference ranking, then that
preference ranking will be the preference ranking for the group, and intransitivity will not
occur. As another example, if two experts have alternative Z as the top choice, then
intransitive group preferences will never occur. However, intransitive group preferences
can still occur if experts select their individual preferences at random. This situation is more
complicated but it is not considered in this article because we assume that the experts use
their own experience to make their own decisions. They will not make a decision at random.
In light of this discussion about the difficulties encountered with simple-majority voting, we
look for other ways to achieve our primary goal of finding ways for groups to make decisions.
We introduce the concept of sequential voting or selection: a sequence of votes where at each
vote, a choice is to be made between two alternatives. In any situation with an odd number of
experts, this process always yields a result, and this result can be taken as a most preferred
alternative. However, as we show in an example below, this method also has problems.
Example 2. Suppose that the relationship between variables is to be identified by first
considering, for example, A and B and then considering the impact on the last variable.
Expert-1 considers A and B first and states that B causes A and then A causes C: B>A->C.
Expert-2 considers A and C first and state that A causes C and then C causes B: A>C-B.
Expert-3 considers B and C first and state that C causes B and then B causes A: C>B->A.
The results in this example show that we are in the unfortunate situation of having a group
preference that depends on the sequence in which the selections were taken.

We have illustrated some of the problems with simple-majority rule and sequential selecting
decision processes. We turn next to another approach to the problem: assigning points to a
pair of variables of each order on the basis of their relative rankings and defining a group
preference ranking by adding the points assigned to each alternative by all experts.

Example 3. We will illustrate the technique by considering five experts and four variables
(See Table 1). Each expert makes a series of decisions at each order-level. For example,
expert-1 makes a decision that “making a decision in situation A causes situation C” in a
first order level, C causes B in a second order level, and B causes D in a third order level.
Each expert assigns 3 point to the first order level, 2 point to the second order level, and so
on. For a specific alternative, add the points assigned by all experts. The alternative with the
most points is the most preferred, the alternative with the second largest number of points is
the second most preferred, and so on. This method is known as the Borda count group
decision process (Maria & Jose, 2007). We observe that this decision process has an implicit
relative strength of preferences. The relative strengths of all preferences are the same.

Order | Expert-1 | Expert-2 | Expert-3 | Expert-4 | Expert-5 | Points
1 A->C D>A B>A C->B A->C 3
2 C->B A->C A->C B->D C->D 2
3 B->D C->B C->D D>A D->B 1

Table 1. A group of five experts and four alternatives

The group preference ranking is obtained by adding the points assigned to each alternative
(A>C: 10 points, C>B: 6 points, D> A: 4 points, B>D: 3 points, B> A: 3 points, C>D: 3
points, D->B: 1 points).
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We conclude that the group preference ranking is A causes C, C causes B, and B causes D.
The alternative D> A has 4 points but it is not included because A is a parent node in the
first order level so that D cannot cause A.

By considering a few examples, we have identified shortcomings of some common decision
processes in group decision making. With the last technique, problems are still possible to
occur when two alternatives at the same level have the same score. However, this section
proposes several techniques in the decision process to produce a group preference ranking
and a final group solution.

I Group Preference Flmklné.n’ﬁ'rt:up Decision Making I

Transform knowledge into
a set of qualitative mterlmforinferemelna BN
iF
Translate a set of qualitative statementsinto
probabilityinequality constraints for inference in a BN

Fig. 1. A practical framework

4. Methods

In this section, we describe a methodology to use qualitative expert knowledge obtained
from the previous step for inferencing in a Bayesian network. We proceed from the decision-
making assumptions and the general equation for Bayesian inference based on final group
decision making statements obtained from the experts to a detailed method to transform
knowledge, represented by a set of qualitative statements, into an a priori distribution for
Bayesian probabilistic models.

For simplicity, let's consider a simple case of decision making in which the body of expert
knowledge w consists of a single statement ® = “making a decision in situation A causes
situation B”. We know that there are 2 random events or variables A and B, which we
assume are binary, and we need to consider the set of all possible Bayesian models on A and
B. The set of possible model structures are described in the following categories: 1) S1: A and
B have no causal relationship between them, 2) S;: A and B have some causal relationship
between them but the direction of influence cannot be identified, 3) S3: A causes B, and 4) Su:
B causes A. “making a decision in situation A causes situation B” directly states a causal
influence of A on B. We use the statement “A activates B” to constrain the space of
structures: P(Sz| @) = 1; P(Sn| ®)=0, n=1,2,4). The @ is represented as a qualitative statement
described by the expert, A causes B. The graph structure (Ss) encodes the probability
distribution
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P(A,B) = P(B| A)P(A) ©)

No further information on P(A) is available; however, P(B|A) can be further constrained.
The corresponding Conditional Probability Table (CPT) is shown in Table 2.

P(B=1)|A
0 60
1 61

Table 2. Conditional probability table

The values of the conditional probabilities from the components of the parameter vector 6 =
(B0, 01) of the model class with structure Ss. 0y is the probability of B is active when A is not
active. 0; is the probability of B is active when A is active. From the statement, we now can
infer that the probability of B is active when A is active is higher than the same probability
with A inactive. The P(B | A) when P(A) is available is higher than the P(B| A) when P(A) is
not available. The inequality relationship is obtained as follows:

P(B=1|A=1) 2 P(B=1| A=0), 6; 20 2
Hence, the set of model parameters consistent with that statement is given by
©3=1{(00, 01)| 0<00<1A0<0:,<1} (3)

and the distribution of models in the structure-dependent parameter space becomes

1.BE B,
P(B|Ss. )= 4)

0, else

A Bayesian model m represents the joint probability distribution of a set of variables X = Xy,
X2, X3,..., Xp. The model is defined by a graph structure, which determines the structures of
the conditional probabilities between variables, and a parameter vector 8, the components of
which define the entries of the corresponding conditional probability tables (CPTs). Hence, a
Bayesian network can be written as m = {s, 0}. Given some observations or evidence E,
reflected by fixed measured values of a subset of variables, the conditional probability given
the evidence in light of the model is described as P(X | E, m).
The full Bayesian network model does not attempt to approximate the true underlying
distribution. Instead, all available information is used in an optimal way to perform
inference, without taking one single model for granted. To formalize this statement for our
purposes, let us classify the set of available information into an available set of data D and a
body of nonnumeric expert knowledge w. The probability distribution of model m is given
by
P(mD, @) =P(Dm)P(m|m)
P(D, o) ©®)
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The first parameter value D of P(D, o) is the likelihood of the data given the model, which is
not directly affected by nonnumeric expert knowledge o, the second parameter value o
denotes the model a priori, whose task is to reflect the background knowledge. For
simplicity, the numerator P(D, @) of P(m|D, ®) will be omitted from the equation (5). The
term P(D | m) contains the constraints of the model space by the data, and the term P(m | )
contains the constraints imposed by the expert knowledge. Hence, given some observation
or evidence E, the conditional distribution of the remaining variable X is performed by
integrating over the models.

P(X|E, D, ®) =[ P(X|E, m)P(m | D, ®)dm (6)
= P(X|E, m)P(D | m)P(m | ®)dm 7)

In this article, we consider the case of no available quantitative data; D is assigned a null
value. The term D and P(D | m) will be omitted from equation (6) and (7). Even in this case, it
is still possible to perform a proper Bayesian inference.

P(X|E, ®) = | P(X|E, m) P(m | ®)dm ®)

Now, the inference is based on the general information (contained in ®) obtained from
experts, and the specific information provided by the measurement E. In order to determine
P(m | ®), we need a formalism to translate the qualitative expert knowledge into an a priori
distribution over Bayesian models. The following notations are adopted for a Bayesian
model class. A Bayesian model is determined by a graph structures and by the parameter
vector 0 needed to specify the conditional probability distributions given that structure. The
parameter vector 0 is referred to by one specific CPT configuration. A Bayesian model class
is then given by 1) a discrete set of model structures S = {s1, sy, s3, ..., sk} and for each
structure sy, a set of CPT configurations ©x. The set of member Bayesian models m € M of
that class is then given by m = {(sx, 0) |k € {1, ..., K}, 0 € ©«}. The model distribution is
shown in (9).

P(ml®) = P(sy. 6|w)

= P(6/sk ©)P(si/o) )
K
Y J_eaP(B S, ©)d8 P(s./o)

a=1

In (9), the set of allowed structures is determined by means of ®, followed by the

distributions of the corresponding CPT configurations. The model’s a posterior probability

P(m|®) is calculated as shown in (9). Inference is carried out by integrating over the
structure space and the structure-dependent parameter space.

K

P(XE. o)=Y

lJG)BP(X E. sg. 6)P(sg, 6|w)do (10)

e

It is common to express nonnumeric expert knowledge in terms of qualitative statements
about a relationship between entities. The @ is represented as a list of such qualitative
statements. The following information is essential to determine the model a priori (10): First,
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each entity which is referenced in at least one statement throughout the listed is assigned to
one variable Xi. Second, each relationship between a pair of variables constrains the
likelihood of an edge between these variables being presented. Last, the quality of the
statement such as activates or inactivates affects the distribution over CPT entries 0 given
the structure. The statement can be used to shape the joint distribution over the class of all
possible Bayesian models over the set of variables obtained from @ in the general case.

We propose a simplified method for constructing the a priori model distribution. Each
statement is used to constrain the model space to that subspace which is consistent with that
statement. In other words, if a statement describes a relationship between two variables,
only structures sk which contain the corresponding edge are assigned a nonzero probability
P(sk| »). Likewise, only parameter values on that structure, which are consistent with the
contents of that statement, are assigned a nonzero probability P(0 sy, ®). If no further
information is available, the distribution remains constant in the space of consistent models.
Having derived the Bayesian model class (s3, ®3) consistent with the statement, we can now
perform inference by using an equation (10). Under the condition of A is set to active (E = {A
= 1}), let us ask what is the probability of having B active. We can determine this by
integrating over all models with nonzero probability and averaging their respective
inferences, which can be done analytically in this simple case.

K
PB=1E, ©)=7 P(s. ®) Jos P(BA, sy, 8)P(8] s, @)dé
k=1

=o]_ PB=1A=1, 8)d (11)
‘1 ‘1
=ml] EIdEI dEh; =213
where @ = 2 is the normalizing factor in the parameter space of 6 = (89, 01) such that
Ll
() J J dE'dE'. =1 (12)

08
It is worth noting that, as long as simple inequalities are considered as statements, the
problem remains analytically tractable even in higher dimensions. In general, integration
during Bayesian inference can become intractable using analytical methods.

5. Probabilistic Representation of a Qualitative Expert Knowledge Model

The model from the previous section is derived to provide a full formalism of how to
translate a set of qualitative statements into probability inequality constraints. Several
qualitative models have been proposed in the context of qualitative probabilistic networks.
Qualitative knowledge models describe the process of transforming qualitative statements
into a set of probability constraints. The proposed Bayesian inference method outlined
above is independent of the qualitative knowledge model. The model’s a posterior
probability is independent of the set of qualitative statements used, once the set of
probabilistic inequality constraints which are translated from qualitative statements is
determined. Three existing qualitative models are the Wellman approach (Wellman, 1990)
the Neufeld approach (Neufeld, 1990), and the orders of magnitude approach (Cerquides &
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Lopez, 1998). In this article, we utilize the Wellman approach, where qualitative expert
knowledge involves influential effects from parent variables to child variables which are
classified according to the number of inputs from parent to child and their interaction. For
reasons of simplicity, binary-valued variables are used in our examples. The values of a
variable or node defined as “present” and “absent” or “active” and “inactive” are
represented as logical values “1” and “0” (as synonyms A and A). For multinomial
variables, similar definitions can be applied.

Qualitative influences with directions can be defined based on the number of influences
imposed from parent to child. There are three cases of influences, namely, single influence,
joint influence, and mixed joint influence. In addition, there are recurrent statements and
conflicting statements. The first issue can be solved by using a Dynamic Bayesian Network
(DBN) (Murphy, 2002: Premchaiswadi & Jongsawat, 2010) and the second issue can be
solved by adopting a voting scheme. The definitions of influence presented in this article are
refined based on the QPN in (Wellman, 1990). They are used to translate the qualitative
expert statements into a set of constraints in the parameter space which can be used to
model the parameter distribution given the structure. For a more general understanding of
the explanation in this section, we assume that we obtained a set of final group decision
making statements, transformed them into a set of qualitative statements, and explained
those using different case studies in each criterion of probability inequality constraints for
inference in a Bayesian Network. The BN model of each case study in each criterion is
shown in Fig. 2.
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Fig. 2A. Example of Fig. 2B. Example of plain synergy Fig. 2C. Example of mixed

single positive and influence. Reliability, future income, and joint influence. Debt and

negative influence. age synergically influence credit future income influence on
worthiness. credit worthiness.

Fig. 2. The BN of each case study in each criterion

5.1 Single Influence

In the statement, “investing in project A increases the profit of the entire project in such
good economic situations,” investing in project A is the parent node which has a single
positive influence on child node the profit of the entire project.

P(Entire Project ProfitInvest A) = P(Entire Project ProfitInvest A)
In another statement, “investing in project A reduces the profit of the entire project in such a

severe economic crisis,” investing in project A is the parent node which imposes a single
negative influence on child node the profit of the entire project.
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P(Entire Project ProfitInvest A) = P(Entire Project Profit[Invest A)
The graphical representation of the above qualitative statements from an expert is shown in
Fig. 2A.

5.2 Joint Influence

Let us consider credit worthiness of individual causes. Several risk factors have been
identified for credit worthiness. According to the Thai credit bureau report, the three most
prominent risk factors are reliability, future income, and age. The chance of getting credit
worthiness increases as an individual gets higher future income, age, and reliability. This
knowledge about credit worthiness factors can be encoded by a qualitative causality model.
According to the statements, the main risk factors that influence credit worthiness by
positive synergy as shown in Fig. 2B.

The joint influence of these three factors together is more significant than individual
influences from any of these factors alone. We can represent this synergy by the inequalities

(B{CWER. FL A P(CWR, FL A)
PICWR.TL A) » ¢ PCWR.TLA) ¥ P(CWR. FL A) =« P(CWR. FL A)
| PCWR FL A, P(CWRR, FL A)

and
P(CWR.FL A) = P(CWR, FL A)

If we assume these risk factors pair wise symmetric, we can further derive the following
inequalities:

P(CWIR, FI, A) P(CWR, FL, A)
P(CWR,.FL A) = ¢ P(CWR. FL A)
P(CWR, FI, A) P(CWR, FL, A)

where CW, R, Fl, and A stands for Credit Worthiness, Reliability, Future Income, and Age.
Note that often but not always, the combined influence refers to the sum of independent
influences from each parent node to each child node. Assume that parent nodes R and FI
impose negative individual influence on child node CW, then the knowledge model can be
defined as

P(CWR. FI)
P(CWR.FI) =

P(CWR. FI)

5.2 Mixed Joint Influence
Generally, the extraction of a probability model is not well defined if the joint affect on a
child is formed by a mixture of positive and negative individual influences from its parents.
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Therefore, we adopted the following scheme: If there are mixed influences from several
parent nodes on a child node, and no additional information is given, then these are treated
as independent and with equal influential strength.

For example, future income imposes a positive single influence on credit worthiness and
debt imposes a negative single influence on credit worthiness, then the joint influence can be

represented by
P(CW[FL D) P{_CWEI___D}__

PICWIFL D)

A credit worthiness case study for a mixed joint influence is shown in Fig. 2C.

Once formulated, we can use a Monte Carlo sampling procedure to make sure that all
inequalities are satisfied for valid models. Any additional structure can be brought into the
CPT of the corresponding structure as soon as the dependencies between influences are
made explicit by further qualitative statements.

6. Conclusion and Future Work

In this paper, we presented several techniques in the decision process to produce a group
preference ranking and a final group solution. After that we established mathematical
equations for Bayesian inference based on a final group solution obtained from experts. We
also described in detail a method to transform knowledge, represented by a set of
qualitative statements, into an “a priori” distribution for Bayesian probabilistic models. The
set of model parameters consistent with the statements and the distribution of models in the
structure-dependent parameter space were presented. A simplified method for constructing
the “a priori” model distribution was proposed. Each statement was used to constrain the
model space to a subspace which is consistent with the statements. Next, we provided a full
formalism of how to translate a set of qualitative statements into probability inequality
constraints. Several cases of Bayesian influence were classified and the probability
inequality constraints presented in each case are described.

For future research, we intend to construct multiple objective decision-making methods and
its applications based on the concepts proposed in this article. We will apply the concepts to
a specific case study using a set of group decision making statements and report the
simulation results.
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Forming object concept using Bayesian network
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1. Introduction

As the recent developments in humanoid robotics, there is growing interest in object recogni-
tion and learning, since they are essential tasks for robots to work in our surrounding envi-
ronments. Most frameworks for recognition and learning are based only on visual features. It
seems that those are insufficient for ‘understanding’ of objects, since each object has its own
intended use leading to the function, which is the key to object concept (Landau et al., 1998;
Stark et al., 1996). Of course, appearance is deeply related with functions, since many objects
have certain forms resulting from their functions. This fact is especially-pronounced in hand
tools. Thus the visual learning and recognition of hand tools may succeed to some extent.
However, such classification does not give any information on their functions. The important
point is not classification in its own right but rather inference of the function through the clas-
sification. We believe that must be the basis of ‘understanding’, which we call object concept.
Therefore objects must be learned, i.e. categorized, and recognized through their functions.
In this chapter objects (hand tools) are modeled as the relationship between appearance and
functions. The proposed approach uses the model, which relates appearance and functions,
for learning and recognizing objects.

The appearance is defined as a visual feature of the object, while the function is defined as
certain changes in work objects caused by a tool. Each function is represented by a feature
vector which quantifies the changes in the work object. Then the function is abstracted from
these feature vectors using the Bayesian learning approach (Attias, 1999). All information
can be obtained by observing the scene, in which a man uses the hand tool. For the model
of object concept, Bayesian Network is utilized. The conditional probability tables, which
are parameters of the model, are estimated by applying EM algorithm to the observed visual
features and function information. This process can be seen as the learning of objects based on
their functions. Since the function and appearance are stochastically connected in the model,
inference of unseen object’s function is possible as well as recognizing its category.

Related works are roughly classified into three categories. One of these is an attempt to recog-
nize objects through their functions (Rivlin et al., 1995; Stark et al., 1996; Woods et al., 1995).
Although those works share the same idea with us, the authors do not consider the learning
process of object function. Thus the function of each object must be defined and programmed
manually. Secondly, unsupervised visual categorization of objects has been studied exten-
sively (Fergus et al., 2003; Sivic et al., 2005). However, function is not taken into consideration.
Thirdly, there has been research on object recognition through human action (Kojima et al.,
2004). The authors relate object recognition with human action, which represents how to use
it, rather than the object function itself. In (Ogura et al., 2005), authors have reported the
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model for robot tool use. However, they do not consider categorization and the robot can not
cope with unknown objects. The proposed framework differs from those works in important
ways. The key point of the proposed approach is learning of the relationship between ap-
pearance and function. This approach may lead to a computational model for the affordance
(Gibbson, 1979).

This chaper is organized as follows: the following section discusses an object concept model
based on the Bayesian Network. Then, the details of the model such as object appearance and
the function model are described in section 3. Section 4 shows some experimental results to
validate the proposed framework and this chapter is conclued in section 5.

2. Forming Object Concept

2.1 Bayesian Network for Object Concept

To "understand” objects a novel framework, which differs from conventional matching-based
‘recognition” approach, is required. Here we define ‘understanding’ of an object as inference
of its function. For example, to understand ’scissors’ is to infer their function, that is, cut-
ting the work objects. Here is the problem to be considered, that is, what is the definition of
the function? Especially by almost all hand tools, the work object undergoes some physical
change. For example, scissors change shape and number of the work object, and pens can
change surface brightness. These various changes in a scene can be observed as a feature vec-
tor, which results in our definition of function. A detail description of the function will be
given in the following section.

The schematic diagram of the above discussion is shown in Fig.1 (a). Then Fig.1(a) can be
rewritten using graphical model as in Fig.1(b). It should be noted that the following relation-
ship is used to rewrite Fig.1(a) to Fig.1(b).

P(I)P(O|I)P(Xy|O)P(F|O) = P(O)P(I|0)P(Xy|O)P(F|O). 1)

Thus the problem considered in this chapter results in the parameter estimation and inference
using the graphical model in Fig.1(b). Of course the model is too simple to explain all aspects
of object understanding. In fact, more complex factors such as usage of the tool etc. are
important and should be taken into account. This is an issue in the future and now we focus
our discussion on the implementation of the system based on the model in Fig.1(b).

The Bayesian Network in Fig.1(b) has four nodes; one of these is unobservable object concept
O and the other nodes are observable object(scene) ID I, visual feature Xy and function F. To
be precise F is not observable. In Fig.1(c), details of the node F is illustrated. In the figure Xr
and Zr represent observable feature vector and “abstract function’, which is abstracted from
feature vectors using Bayesian learning approach, respectively.

2.2 Learning Algorithm
From Fig.1(c), the joint probability of I, Xy, Xr O and Zf can be written as

P(1, Xy, XF,0,Zf) = P(O)P(I|O)P(Xy|O)P(Zp|O)P(XF|ZF). 2)

The parameters in the above equation P(O), P(I|O) P(Xy|O) and P(Zp|O) are estimated us-
ing the EM algorithm, as the model contains unobserved latent variable. It should be noted
that P(Xp|ZF) is given by the abstract function model(Gaussian Mixture Model) as we de-
scribe later. Let the parameters be 8, the problem is a maximization of the following equation:

L(D) =log)_Y P(I,Xy,Xp,O,Zr|6). 3)
ZF O
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Fig. 1. A model of object concept. (a)Schematic diagram. (b)Graphical model representation
of (a). (c)Details of the node F in (b).

By applying Jensen’s inequality, we obtain

~ P(I, Xy, Xrp,O,Zr|0
L(D) = 1og Y Y"4(0, Ze|1, Xy, X, ) L L Xv: X, 0. Z£|6)
70 q(0, Zg|I, Xy, XF, 0)

. P(I,Xy, X5, 0,Z|0
> F(q,0) =YY "q(0, Ze|I, Xy, Xp, 0) log (L Xv, Xr, O, Zf|0)
Zr O 9(0, Z¢|1, Xy, XF, 6)

)

Then the lower limit F(g,0) is maximized iteratively with respect to g4 and @ one after the
other. The maximization with respect to g is to compute

P(O)P(I|O)P(Xy|O)P(Zf|O) P(XF| ZF)
Yz Yo P(O)P(I|O)P(Xy |O)P(Zp|O)P(Xp|ZF)

(O ZF‘I XV/ XF/ 0) (5)



94 Bayesian Network

On the other hand the maximization with respect to € is equivalent to maximize the Q-
function;

Q(0) = (P(I, Xy, XFIZF/O|0)>q(o,zF|1,XV,XF,é)- (6)

The parameter 0 can be updated by solving 0Q(6)/06 = 0. The EM algorithm alternates the
following two steps starting from initial values and converges to a local minimum.
