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Preface

In 1978, for a period of three months, the Seasat Synthetic Aperture Radar (SAR)
system provided the first spaceborne data. This limited amount of scenes, together
with airborne data (primarily AIRSAR, E-SAR, and Convair-580 SAR) acquired
during sporadic campaigns, constituted, in the eighties, the main source of data for
the development of focusing, calibration, despeckling, and radargrammetry algo‐
rithms, but also for the understanding of information (tonal, textural, bio-, geo-
physical) contained in intensity and polarimetric phase data. Thirteen years later,
with the launch of the ERS-1 SAR system, followed four years later by ERS-2 SAR,
the attention shifted to the interferometric phase with the development of inter‐
ferometric processors for the derivation of elevation and displacement maps. At
the same time, first analyses performed on intensity and coherence time-series re‐
vealed the broad information – the interpretation of which represents a challenge -
contained in multi-temporal data, opening new frontiers particularly for all those
applications where the spatial-temporal component is dominant. Given the availa‐
bility of large temporal data stacks (unfortunately acquired over limited regions)
and new spaceborne SAR sensors and constellations (unfortunately acquiring in a
non-systematic mode), the most recent and appreciable progresses are in the devel‐
opment of advanced methods in differential interferometry, including the exploita‐
tion of geophysical modeling. Concomitantly, for countrywide applications, the
core of the data fusion research moves towards semi-automated classification algo‐
rithms and the inference of key biophysical parameters (particularly for forest and
agricultural purposes) including the incorporation of microwave semi-empirical
scattering and ecophysiological modeling. Finally, experiments based on polari‐
metric SAR interferometry provided in the last decades first attempts to gain 3-D
structure information from semi-transparent volume scatterers in single-pass.
Looking at the past four decades regarding the evolution of algorithm develop‐
ments and applications, it is worth noting a symptomatic divergence: while algo‐
rithm developments have reached a consensus and, to some extent, a maturity,
large scale land applications are still struggling to take off. Omitting the political
and institutional aspects (which beyond doubt play a crucial role), three are the
identified reasons:
Remote sensing user – In the past two decades the divide between algorithm de‐
velopments and remote sensing users has considerably amplified., Today, the
available software solutions are still not perfect, however, compared to twenty
years ago, they are more robust, sophisticated, user-friendly and the SAR data are
of higher quality. A contradiction. Unfortunately, the misuse of prepackaged solu‐



tions, which are still for specialized users only, is not rare, and this is mainly due to
the limited knowledge of SAR basics of the user. Academies, research institutes
and space agencies can play a key role by introducing appropriate basic SAR
courses, in order to educate adequately remote sensing users.
End-user requirements – The information requirements are more stringent com‐
pared to twenty years ago. It is not uncommon that the requested products are not
feasible, due either to the lack of suitable data or to the fact that they are still at an
experimental stage or not at all possible by using SAR systems. Moreover, despite
the type of information, nowadays there is a clear trend that maps must cover the
whole country at large scale. SAR systems are predestined, because, due to their
characteristics, they can assure the mapping and monitoring over large coverage at
a resolution of twenty metres and higher, which is essential to meet end-user re‐
quirements.
SAR data – So far, a key challenge is that systematic acquisitions are still non-exis‐
tent, despite the availability of a few consolidated products. This hampers applica‐
tions. Positive attempts to obtain application-oriented SAR data archive have been
carried out by ESA (ERS-Tandem), NASA/JPL (SRTM), JAXA (ALOS PALSAR-1
and to be continued with ALOS-2), and DLR/EADS Astrium (TanDEM-X). The
positive impact with respect to topographic and forest applications is unquestiona‐
ble. Our hope is that space agencies in primis will follow this model for a wider
spectrum of land applications and, that, in the medium term, common strategies
will be pursued.
The aim of this book is to demonstrate the use of SAR data in three application
domains, i.e. land cover (Part II), topography (Part III), and land motion (Part IV).
These are preceded by Part I, where an extensive and complete review on speckle
and adaptive filtering is provided, essential for the understanding of SAR images.
We have deliberately omitted other fundamental arguments such as focusing and
calibration (in geometric, radiometric, interferometric and polarimetric terms), be‐
cause existing methods are consolidated and they have been already extensively
covered in other publications. Part II is dedicated to land cover mapping. Here, the
focus is set on the large scale mapping (requested from end-users), on the multi-
temporal aspect (fundamental when using SAR data) and, finally on the use of
complementary data sources (crucial for the provision of accurate and detailed in‐
formation). In synthesis, it is shown that data synergy based on a multi-temporal
approach is a pre-requisite for the provision of land cover/change maps with high
level of detail (in terms of spatial resolution, information content, and temporal
variations), particularly where the spatial-temporal component or the biophysical
aspect is dominant. Part III is devoted to the generation of Digital Elevation Mod‐
els based on radargrammetry and on a wise fusion (by considering sensor charac‐
teristic and acquisition geometry) of interferometric and photogrammetric
elevation data. Even if the elevation accuracy derived from radargrammetry is not
comparable to the interferometric and photogrammetric one, this technique be‐
came appealing after the launch of very high resolution SAR sensors overcoming
some key limitations of interferometry and photogrammetry. Part IV provides a
contribution to three applications related to land motion. Here, particular emphasis
has been set on the combination of interferometric SAR data acquired at different
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frequencies using complementary techniques and their impact regarding deforma‐
tion information and accuracy. Finally, the exploitation of geophysical modeling
based on differential interferometry displacement maps evidences its usefulness
for risk management purposes in the seismic domain.
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A Review on Speckle





Chapter 1

Adaptive Speckle Filtering in Radar Imagery

Edmond  Nezry

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/58593

1. Introduction

Historically, foundations in the domain of radar speckle properties have been laid down from
the 1940’s to the 1980’s. Decisive theoretical advances were made by teams led by Professor
Fawwaz Ulaby at the University of the Michigan (USA), by Professor Christopher Oliver at
the Defence Research Agency in Great Malvern (UK), and by Professor Keith Raney at the
Canadian Centre of Remote Sensing (Canada) since the 1970’s. Then, the domain of speckle
filtering in SAR images matured in the period 1976-2000, mostly under the impulsion of Dr.
Jong Sen Lee of the Naval Research Center, Washington D.C. (USA). Since 1986, the team led
by Dr. Armand Lopès at the Centre d'Etude Spatiale des Rayonnements in Toulouse (France),
has carried out and then inspired the development of the most efficient speckle filters existing
today. Since 2000, with speckle filters having reached a satisfactory level of performance, no
significant advances have been made. Nevertheless, in this period, the use of speckle filters in
a wide range of applications using SAR imagery has become generalized.

A radar wave can be considered, with a good approximation, as plane, coherent and mono‐
chromatic. It is emitted by an antenna towards a target. The target backscatters partially the
radar wave in the direction of a receiving antenna. In the vast majority of spaceborne Synthetic
Aperture Radars (SAR), a single antenna assumes the two functions of emission and reception
(monostatic radar).

The complete radar measurement is the combination of the horizontally (H) and vertically (V)
linearly polarised radar waves, at emission and at reception after backscattering by the
observed target. After signal calibration, this measurement, affected by noise, enables to
restitute for each resolution cell a polarimetric backscattering matrix S:

S  =  S pq  =  (SHH SHV

SVH SVV
) (1)

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



whose coefficients Spq=|Spq|.exp(j.ϕpq) are the complex backscattered field amplitudes for p-
transmit and q-received wave polarisations. They relate the backscattered wave vector Ed

→
 to

the incident wave vector E i
→

: Ed
→

 =  exp(j.k .r).S . E i
→

. This complete radar measurement is said
"fully polarimetric", often abbreviated in "polarimetric".

Let consider the interaction of the radar wave with an extended random surface, i.e. a surface
containing a sufficiently great number of scatterers per resolution cell, with no preponderant
scatterer with respect to the others. For whatever configuration pq of polarisation, the signal
Spq received from such a surface by the antenna becomes, after quadratic detection in intensity
Ipq:

I pq  =  |S pq|2  =  S pq.S pq* (where*denotes complex conjugation) (2)

This detected signal intensity I is proportional in average to the radar "backscattering coeffi‐
cient" σ°. The backscattering coefficient σ°=4.π.|Spq|2 is the average radar cross-section per
surface unit [1]. σ°, expressed in m2/m2, is a dimensionless physical quantity. It is a physical
property of the sensed surface, which depends principally on its roughness, its dielectric
properties, its geometry, and the arrangement of its individual scatterers.

Carrying the radiometric information with regard to the sensed target, σ° is a function of the
frequency of the radar wave, of its angle of incidence upon the target, and of the configuration
of polarisation. In terms of physical meaning, the radar backscattering coefficient is analogous
to the bidirectional reflectance in the domain of optical wavelengths: σ° # 4 cos 2θ, where is the
incidence angle of illumination on the sensed target.

Nevertheless, detected radar images look visually very noisy, exhibiting a very characteristic
salt-and-pepper appearance with strong tonal variations from a pixel to the next. Indeed, since
radar imaging systems are time-coherent, radar measurements over random rough surfaces
are corrupted by "speckle" noise due to the random modulation of waves reflected by the
elementary scatterers randomly located in the resolution cell. Then, coherent summation of
the phases of elementary scatterers within the resolution cell results in a random phase of the
complex pixel value.

This speckle "noise" makes both photo-interpretation and the estimation of σ° extremely
difficult. Actually, speckle is a physical phenomenon, which is inherent to all coherent imaging
systems (radar, lidar, sonar, echography). In most remote sensing applications using
radar/SAR imagery, speckle is generally considered a very strong noise that must be energi‐
cally filtered to obtain an image on which classic and proven information extraction techniques
could be further applied, in particular the techniques used for optical imagery acquired in the
visible and near-infrared part of the electromagnetic spectrum.

Therefore, speckle filtering and radar reflectivity restoration are among the main fields of
interest in radar images processing for remote sensing. Speckle filtering is a pre-processing
aiming at the restoration of σ° value in the first place. This pre-processing must account for
both the particular properties of the speckle, and those of extended imaged targets (often called
"clutter"). It must also account for the radar imaging system that has sensed the target and for
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the processor that has generated the images. For stationary targets of infinite size, speckle
filtering is equivalent to a simple smoothing using a moving processing (averaging) window.
An ideal filter must nevertheless avoid image degradation through excessive smoothing of the
signal. To this end, it must respect structural image information (road and water networks,
etc.), and the contours of radiometric entities. In addition, it must also respect the particular
texture of the clutter, in forested or urban environments for example. Last, it must also identify
the strong local radiometric variations due to the presence of strong scatterers (often artificial
in nature) from those due to spatially rapid speckle fluctuations.

Therefore, an ideal speckle filter must satisfy to the following specifications:

1. Preserve accurately the local mean value of the radar reflectivity (i.e. the quantity actually
measured by the radar, which is proportional to σ°) to enable, for example, the comparison
of radar reflectivities in the framework of a multitemporal analysis of radar acquisition
series.

2. Smooth as much as possible homogeneous image areas and therefore reduce the speckle
to increase the Equivalent Number of Looks (ENL) of the radar image (cf. § 2.1.4). The
minimum ENL depends on the desired radiometric accuracy. For example, a 1 dB accuracy
with 90% confidence level (i.e. less than 25% variation of the radar intensity) requires an
ENL value around 230, and a 2 dB accuracy with 90% confidence level (i.e. less than 60%
variation of the radar intensity) needs an ENL value around 40.

3. Preserve texture as much as possible where it exists in the image (forests, non-homoge‐
neous fields, etc.) to avoid confusions among radiometrically similar areas exhibiting
different texture. Therefore, a speckle filter must be able to discriminate heterogeneity
effects due to texture from those due to speckle.

4. Both preserve and denoise image structures (contours, lines) as well as the quasi-
deterministic responses due to corner reflector effects within strongly textured areas such
as urban environments. Indeed, the energy of artificial radar reflectors responses must be
preserved to enable radiometric calibration, in particular when calibration targets are
dispersed in the radar image.

5. Minimise, and whenever possible prevent loss in useful spatial resolution during the
speckle filtering process.

2. Statistical properties of speckle and texture in radar images

In this section, the statistical properties of speckle in images produced by coherent imaging
systems such as imaging radars, lidars or sonars, are exposed. Since a good speckle filter must
restore the texture of the scene imaged by the radar, the statistical properties of texture in radar
images are examined as well. This analysis intentionally restrains to the first order statistical
properties, since only these are generally used by the estimation techniques involved in speckle
reduction methods. Explicit use of second order statistical properties of both the speckle and
the imaged scene in the filtering process is adressed in Section 4.

Adaptive Speckle Filtering in Radar Imagery
http://dx.doi.org/10.5772/58593
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2.1. Speckle in SAR images

First, let consider a natural target with radar backscattering coefficient σ° which remains
constant from a resolution cell to the next. Such a target, said stationary, "homogeneous", or
"textureless", may be found in a medium-resolution radar image within cultivated fields or
forest cut areas for example. Spatial variations of the radar signal backscattered by such a target
are therefore only due to speckle and the statistical properties of the radar signal are those of
the speckle, which depends only on the radar system and the image production system.

2.1.1. First order statistics for "1-look" complex radar images

The radar imaging system is linear, spatially invariant, and can be characterised at each image
pixel (x,r), where x is the azimuth and r is the radial distance with respect to the flight path of
the sensor’s carrier, by a complex impulse response h(x,r), which defines the resolution cells.
The 3dB widths of the impulse response, often used to quantify the spatial resolutions δ(x) in
arimuth and δ(r) in radial distance.

If the number of individual scatterers within a resolution cell is large enough and none of them
has absolute predominance in scattering the radar wave [2] [3], speckle can be modelled in
output of the radar processor by a circular complex gaussian random process uc(x,r) at the
corresponding image pixel of coordinates (x,r). The complex amplitude (complex radar signal,
in a complex radar image) in output of the radar processor can be expressed as Ac(x,r)=a(x,r)
+j.b(x,r), where a(x,r) is proportional to the field backscattered by the surface element located
in (x,r). In the literature, the terms a(x,r) and b(x,r) are generally called i(x,r) ("in-phase" term)
and q(x,r) ("in-quadrature" or "out-of-phase" term), respectively.

These complex data in output of the radar processor are called a "1-look complex" image or
equivalently, a "Single-Look-Complex" (SLC) image.

For a homogeneous area where A(x,r)=A0 (constant), i.e. in the presence of speckle only, the
complex amplitude has the form [4]:

Ac(x, r)  =  A(x, r).u c(x, r) * h (x, r)  =  A0. u
c(x, r) * h (x, r)  =  A0. V (x, r) (3)

where A=A0 is the amplitude of the backscattered wave and * is the convolution operator. The
random process uc(x,r) represents the circular white gaussian (by application of the central
limit theorem over a large number of individual scatterers within the resolution cell) complex
process responsible for the speckle. Then, V(x,r) is a correlated complex gaussian process
characterising the "gaussian fully developed speckle", which behaves as multiplicative "noise"
with a very high spatial frequency dependent on h(x,r).

Owing to the particular character of the speckle phenomenon in coherent imagery, which is
the case of radar imagery, information extraction from a radar image results in a statistical
estimation problem. It is therefore mandatory to have an as complete as possible statistical
speckle model. The statistical model of the fully developed speckle has proven perfectly
adapted to SAR images, at the spatial resolutions / wavelength frequencies combinations
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actually used in radar remote sensing. Note that this speckle model emphasises the importance
of wave phase information under the condition that the phase has not been lost during signal
detection.

Goodman hypotheses [2] [5] enable to calculate speckle statistics before (i.e. in a complex radar
image) and after radar signal quadratic detection in amplitude A or in intensity I. Taking this
hypotheses into account, one obtains:

E[i =E[q =0            and            Var i =Var q =σi
2  =σq

2  =σ 2 (4)

where E[.] denotes the mean expectation and Var .  denotes the variance. Therefore, the mean
backscattered intensity R is expressed as:

R =E I =E A 2 =E i 2 + q 2 =2σ 2 (5)

R=E[I] is proportional to the radar backscattering coefficient σ°. R can be estimated by R≈<I>,
where <.> denotes the averaging operator applied in a neighbourhood of the pixel under
consideration. Then, from R, it is possible to retrieve the σ° value through the calibration
parameters of the radar image. Problems related to radar image calibration are discussed in
detail in [6] [7] [8]. R=E[I] can be estimated locally in a radar image through the spatial
averaging <I> of the intensities of a number N of image pixels in a spatial neighbourhood of
the image pixel of interest [9]. This estimate is the unbiased Maximum Likelihood estimate
with minimal variance [6].

Besides, the in-phase and the out-of-phase components i and q of the complex radar signal are
decorrelated, E[i.q]=0, and therefore independent of each other. It results of the above consid‐
erations that the probability density functions (pdf) of i and q are Gaussian distributions:

P(i)  =1 / 2π.σ 2. exp(i 2 / 2σ 2)      and     P(q)  =1 / 2π.σ 2. exp(q 2 / 2σ 2) (6)

with a phase of the complex radar signal ϕ=Arctg(q/i), which is uniformly distributed in the
interval [0, 2π].

2.1.2. First order statistics for "1-look" detected radar images

Since i and q are independent variables, their joint pdf is P(i,q)=P(i).P(q). The pdf Pu(I ) of the
speckle in intensity is obtained by a simple change of variable I=a2+b2 in Equation (6). Then,
Pu(I ) results being an exponential pdf:

Pu(I )  =  (1 / E I ) . exp(− I / E I ) for I >0 (7)
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It is important to note that, since E[I] is proportional to the radar reflectivity R, Pu(I ) is the pdf
of I conditional to the value of R, therefore Pu(I )=Pu(I / R).

The two first first-order moments of this pdf can be expressed as a function of its standard-
deviation as follows:

mean E I  =  2σ 2 and standard-deviation σI  =  2σ 2 (8)

To characterise the strength of speckle in radar images, it is convenient to consider the
normalised coefficient of variation of the intensity, CI , i.e. the standard-deviation of the radar
signal intensity I over its mean value:

E CI   =   σI / E I  =   1 (9)

The value of the coefficient of variation of speckle only, sometimes called "contrast index", is
a constant for every type of radar image product. Equation (9) means that, in a radar image,
the dispersion (variance) of radiometry increases as the mean signal backscattered by the target
increases. This justifies in part the qualification of "multiplicative noise" given to the speckle.

Clearly, with a signal-to-noise ratio of 1, the radiometric degradation due to speckle makes
very difficult the discrimination of two homogeneous targets with very different radar
backscattering coefficients. As an example, a theoretical computation [10] demonstrates that
two textureless target classes of homogeneous radar reflectivities (i.e. exhibiting only speckle)
radiometrically separated by 2.5 dB present a probability of confusion of 40% in a 1-look SAR
image.

Therefore, a first radiometric enhancement is needed to achieve a reduction of the coefficient
of variation of the speckle over homogeneous areas. It corresponds to an enhancement of the
signal-to-noise ratio and to a preliminary speckle "noise" reduction.

2.1.3. First order statistics in "multilook" images

A first method of speckle reduction consists in averaging incoherently M independent samples
of the intensity I (or "looks") obtained from the same target:

I  = (1 / M ).∑
k=1

M
Ik  with each of the Ik  distributed according to Equation (7) (10)

The goal of this method is to reduce speckle enough to make radar image photo-interpretation
possible. Indeed, experience has shown that M values of the order of 3 or 4 enable a photo-
interpreter to use a SAR image [1]. Such values have been adopted for most spaceborne SARs
(ERS, Almaz, JERS-1, Radarsat, Envisat, ALOS: 3-looks, Seasat, SIR-B: 4-looks), including
recent ones (TerraSAR-X, Cosmo-Skymed, Sentinel-1, etc.).
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This operation is realised by splitting the Doppler bandwidth of the backscattered signal into
M sections. This is equivalent to divide the length of the synthetic antenna into M sub-antennas.
Independent processing of each section results in an independent image called a "look".
Nevertheless, this operation results in a degradation by a factor M of the spatial resolution in
azimuth of each look [1].

Over the same target, the mean intensity resulting from this operation remains the same mean
intensity of each of the individual looks. If the M individual looks were independent, the
standard-deviation is divided by M . Thus, the coefficient of variation of the speckle measured
over a homogeneous area of the intensity multilook image becomes:

CI  (homogeneous area)  =   Cu  =   1 / M (11)

It is important to note that multilook radar image formation is at the expense of the spatial
resolution in azimuth. In practice, the value of M does never exceed a few units (less than 16
for airborne SARs, and in general only 3 or 4 for spaceborne SARs). This remains insufficient
to improve satisfactorily the signal-to-noise ratio of a radar image. Indeed, in our example of
two target classes with homogeneous radar reflectivities radiometrically separated by 2.5 dB,
the probability of confusion of 40% in a 1-look SAR image reduces only to 33% in a 4-look
image.

If the individual looks are uncorrelated with each other, the pdf of the speckle, which is the
sum of M independent exponential distributions, becomes a χ2 distribution with 2M degrees
of freedom:

Pu(I )  =  Pu(I / R)  =  (M / E I )M  /  (M −1) !  . exp(−M .I / E I ) . I (M −1) (12)

2.1.4. "Equivalent Number of Looks" of a SAR image

If the M sections of Doppler bandwidth used to produce the individual looks overlap, the
averaged samples, and therefore the individual looks, are correlated. The coefficient of
variation of the speckle Cu, measured over a perfectly homogeneous image area will therefore
be always superior to what could have been expected from Equation (11). In this situation,
speckle strength results as if the number of independent looks were equal to:

L  =  1 / Cu2    <   M (13)

The L value, which is generally a non-integer value, is called the "Equivalent Number of Looks",
or "ENL", of the multilook radar image.

Hence, the pdf of the speckle in intensity can be approximated, by extension of Equation
(12), for whatever value of L, by a Gamma distribution with parameters E[I] and L:

Pu(I )  = Pu(I / R)  = (L / E I ) L / Γ(L ) . exp(− L .I / E I ) . I (L −1) (14)
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which is rigorously equivalent to Equation (12) when L=M (L integer) for M independent looks.

All speckle models for multilook images (M correlated or uncorrelated averaged looks, i.e. L
equivalent looks, with M ≥ L) use this approximated distribution. Note that the pdf of the
speckle as formulated in Equation (14) is slightly inexact if the M looks are correlated, as it is
the case in general. Therefore, the pdf of the speckle for the average of M correlated looks is
close to, but is not exactly, a Gamma pdf [11].

Let us consider that the M looks (I1, I2, ..., IM ) are correlated to each other with correlation
coefficients ρij, and that the Ii are distributed according to the same exponential marginal pdf
(1-look, cf. Equation (7)) with same parameter R=E[I]=E[Ii], for whatever i. This last condition
can be actually fulfilled by re-weighting the individual looks to make them contain an identical
mean energy E[I].

For the intensity image resulting of the averaging of the M looks, I=(∑Ii)/M, the set of looks
correlations ρij is taken into account to compute the ENL value L (L<M), which is related to the
coefficient of variation of the speckle in intensity, Cu, by:

Cu2  =   1 / L  =   1 + (1 / M ) .   ∑
i=1

M
∑
j=1

i−1
σij

2  /  M (15)

The exact pdf of the average intensity I of M correlated looks, is extremely difficult to establish
mathematically in a closed-form (for 2-looks, cf. [11]), and, when established, to manipulate.
Nevertheless, Equation (14) is a very close and therefore satisfactory approximation when
using the appropriate ENL value L calculated using Equation (15).

2.1.5. The logarithmic (homomorphic) transformation

Since the radar backscattering coefficient σ° is generally expressed in dB in physics, and with
the goal to make speckle an additive noise that would be independent on the level of the radar
signal, some authors [12] [13] [14] chose to use a neperian logarithmic (homomorphic)
transformation:

D =  −  Log  (I ) (16)

Arsenault and April [15] [17] [19] demonstrated that, after this transformation, the pdf of the
speckle for a multilook radar image, Equation (14), becomes a Fisher-Tippett distribution:

Pu(D)  =   L L /  Γ(L )  .   exp − L .(D −D0)  . exp{− L  . exp − (D −D0) } (17)

with D0 = − Log(E I )

The first order statistical moments of this distribution are as follows [15]:

1) Mean <D>:

Land Applications of Radar Remote Sensing10



which is rigorously equivalent to Equation (12) when L=M (L integer) for M independent looks.

All speckle models for multilook images (M correlated or uncorrelated averaged looks, i.e. L
equivalent looks, with M ≥ L) use this approximated distribution. Note that the pdf of the
speckle as formulated in Equation (14) is slightly inexact if the M looks are correlated, as it is
the case in general. Therefore, the pdf of the speckle for the average of M correlated looks is
close to, but is not exactly, a Gamma pdf [11].

Let us consider that the M looks (I1, I2, ..., IM ) are correlated to each other with correlation
coefficients ρij, and that the Ii are distributed according to the same exponential marginal pdf
(1-look, cf. Equation (7)) with same parameter R=E[I]=E[Ii], for whatever i. This last condition
can be actually fulfilled by re-weighting the individual looks to make them contain an identical
mean energy E[I].

For the intensity image resulting of the averaging of the M looks, I=(∑Ii)/M, the set of looks
correlations ρij is taken into account to compute the ENL value L (L<M), which is related to the
coefficient of variation of the speckle in intensity, Cu, by:

Cu2  =   1 / L  =   1 + (1 / M ) .   ∑
i=1

M
∑
j=1

i−1
σij

2  /  M (15)

The exact pdf of the average intensity I of M correlated looks, is extremely difficult to establish
mathematically in a closed-form (for 2-looks, cf. [11]), and, when established, to manipulate.
Nevertheless, Equation (14) is a very close and therefore satisfactory approximation when
using the appropriate ENL value L calculated using Equation (15).

2.1.5. The logarithmic (homomorphic) transformation

Since the radar backscattering coefficient σ° is generally expressed in dB in physics, and with
the goal to make speckle an additive noise that would be independent on the level of the radar
signal, some authors [12] [13] [14] chose to use a neperian logarithmic (homomorphic)
transformation:

D =  −  Log  (I ) (16)

Arsenault and April [15] [17] [19] demonstrated that, after this transformation, the pdf of the
speckle for a multilook radar image, Equation (14), becomes a Fisher-Tippett distribution:

Pu(D)  =   L L /  Γ(L )  .   exp − L .(D −D0)  . exp{− L  . exp − (D −D0) } (17)

with D0 = − Log(E I )

The first order statistical moments of this distribution are as follows [15]:

1) Mean <D>:

Land Applications of Radar Remote Sensing10

< D >  =  D0  −  Γ '(L ) / Γ(L ) +  Log(L ) (18)

Equation (18) shows that the logarithmic transformation causes a signal distortion, increasing
with decreasing number L of independent speckle samples taken into account, and with
decreasing R (therefore, σ°) values. There is therefore a tendency to systematically underesti‐
mate the value of σ° [15] [16] [18].

2) Variance σD2 :

σD2  =  (  π2 / 6) .  γ +  Γ '(L ) / Γ(L ) 2   +   2   ∑
k=1

L −2
 (1 / (L −k )) .  ∑

j=1

L −k−1
(1 / j)   (19)

Lopès [20] has shown that for N independent L-look radar data samples (NL independent
speckle samples), the standard-deviation of the samples averaged after logarithmic transfor‐
mation, and then retransformed into intensity, is always significantly larger than the standard-
deviation σI  of the same samples averaged in intensity. Thus, the logarithmic transformation
degrades both the measurement accuracy of the backscattering coefficient σ° and its local range
of fluctuations due to local scene texture.

2.2. Texture in SAR images

Texture concerns the spatial distribution of grey levels. It is important in the analysis of SAR
images for a wide range of applications (e.g. [21] [22] [23] [24] etc.). In most of these applications,
not only the radiometric, but also the textural information must be retrievable after adaptive
speckle filtering of the SAR images.

2.2.1. Texture of the imaged scene

As seen above, within a homogeneous area image of a detected radar image, one can consider
the observed speckle I as originating from a real non-gaussian random process u(x,r), with
unit-mean <u>=1, and proportional to the radar signal I (multiplicative noise). A simplification
of Equation (3) enables to write, for every pixel (x,r) located within a homogeneous image area
(i.e.R(x, y)=E R = R,  ∀ (x, y)):

I (x, r)  =  u(x, r) . E I (x, r) =  u(x, r) . R (20)

In most remote sensing applications, it is reasonable to consider the imaged scene as an
arrangement of discrete objects superimposed to a background with mean reflectivity E[R].
The imaged scene is composed of classes of non-homogeneous (R(x, y)≠E R ) objects
characterised by the statistical properties and parameters of the variable R [25]:

If Tj is the random variable which represents the spatial fluctuations of the reflectance (let
consider in the following its analog in radar images, the denoised/speckle-filtered radar
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reflectivity) R(x,r) around its mean expectation E[R(x,r)], in the terrain class j to which the pixel
at coordinates (x,r) belongs, the following results are obtained:

1. R(x,r) is proportional to the σ° value of the resolution cell containing pixel (x,r);

2. E[R(x,r)] is proportional to σ° in a neighbourhood of pixel (x,r) belonging to class j;

3. E[Tj]=1 for every class j;

R(x, r) =  E R(x, r)  . Tj (21)

The spatial structure of actual imaged scenes, called "texture", induces a mesurable spatial
structure (after the properties of  Tj) in the images of these scenes. This is the case, for both
optical and radar images. Indeed, a simple visual interpretation of a radar image reveals
radiometric spatial variations at a longer scale than those due to speckle only. These variations
originate from the spatial fluctuations of the radar backscattering coefficient σ° within a given
terrain class, and are affected by the presence of speckle.

To characterise a given class j, one must be able to restore  Tj, that means to separate the
respective effects of speckle and texture in the spatial variations of the radar intensity signal.
To this end, the multiplicative fully-developed speckle model exposed above will be used. It
has been shown [26] [3] that, even when the scene is not stationary, speckle still remains
multiplicative, eventually correlated, and independent on the imaged scene as long as
Goodman’s conditions [2] [5] are realised.

2.2.2. First order statistics of texture in SAR images

2.2.2.1. Spatially uncorrelated speckle

Considering the scene texture model of [25] in Equation (21), it is possible [27] [28] to model
the radar image intensity at pixel of coordinates (x,r) by generalising the multiplicative speckle
model for a wide-sense stationary scene (Equation (20)) as follows:

I (x, r)  =  R(x, r) . u(x, r)  =  (E R(x, r) .Tj) . u(x, r) (22)

This relationship is valid as long as the spatial variations of R(x,r) happen at length scales
longer than the size of the resolution cell of the radar imaging system.

The variance of the intensity I within a given target class is computed using:

σI 2  =  E I 2 −E2 I  =  E2 R .(E T 2.u 2 −E2 T .u ) (23)

Since the fluctuations of σ°, and therefore those of R, are independent on the speckle, one gets
[27] [28]:
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(σI / E I )2  =  (σR / E R )2  .(σu / E u )2  +  (σR / E R )2  +  (σu / E u ) (24)

and:

E I  =  E R.u  =  E R .E u  =  E R (25)

Therefore, E[R] is locally estimated in the radar image by averaging pixel intensities in a
neighbourhood of pixel (x,r):

^
E[R < I >

(26)

Introducing the coefficients of variation (CI =σI / < I >  for the radar intensity, CR =σR / < R >  for
the imaged scene, Cu =σu / <u >  for the speckle), Equations (24) and (25) lead to the important
result [27] [28]:

CR2   =   (CI 2  −  Cu2)  /  (1 +  Cu2) (27)

which characterises scene texture in terms of heterogeneity, with Cu
2  =  CuI

2  =  1 / L  for a
homogeneous/textureless area of a L-look intensity radar image. Indeed, Equation (27) shows
that the more heterogeneous is the scene, the easier its texture can be restored.

For a better description of the scene, one must use the pdfs of its diverse classes (distribution
of the random variable R or σ°). Their knowledge may result, either from a priori knowledge,
or from direct estimation in the image. If the general form of the pdf is known, its parameters
can be estimated from the image data. In all cases, if one can establish the pdf of R, PR(R), for
a given terrain class in the scene, the unconditional pdf of the corresponding radar image
intensity I is:

PI (I )  =    ∫
0

∞

Pu(I ) . PR(R) . dR    (28)

where Pu(I ) is the pdf of the speckle for multilook images (cf. Equation (14)). Equation (28)
shows, as does also Equation (27), that the respective contributions of scene texture and speckle
micro-texture can be separated in the radar image.

2.2.2.2. Spatially correlated speckle

To produce a SAR image, speckle samples at the output of the SAR processor are correlated
through the SAR impulse response to obtain a sampling rate (pixel size) of about half the spatial
resolution of the radar sensor, thus avoiding aliasing effects. Using the multiplicative noise
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model and Equations (24) and (25) [27] [28], the correlation coefficient ρI (Δx, Δy) between two
pixels of intensities I1 and I2 separated by (Δx,Δy) in the SAR image:

ρI (Δx, Δy) =  (< I1(x, y)− < I1 > >  . < I2(x, y)− < I2 > > ) /  (σI 1  .σI 2) (29)

can be related to the scene correlation coefficient ρR(Δx, Δy) and to the speckle correlation
coefficient ρu(Δx, Δy) by [10]:

<CI >2 .  ρI (Δx, Δy) =  <CR>2 .<Cu>2 .ρR(Δx, Δy).ρu(Δx, Δy)  

+ <Cu>2 .ρu(Δx, Δy) +  <CR>2 .ρR(Δx, Δy)
(30)

Therefore, if ρu(Δx, Δy) >0 for Δx>0 and/or Δy>0, which is the case in correctly sampled SAR
images, the local statistics estimated in the neighbourhood of a given pixel will have to be
corrected of the effect of speckle spatial correlation properties (cf. Section 4).

2.2.3. Local statistics computation and consequences of the speckle model

Using the simplified multiplicative noise model for the speckle u (cf. Equation (22)), the first-
order non-stationary statistics of the scene, <R> and σR

2, can be deduced locally (cf. Equations

(26) and (27)) from those of the radar image intensity, <I> et σI
2.

In practice, CI  is estimated in the radar image, and its locally estimated value can be inferior

to Cu. Since σR
2 and CR

2 are positive quantities, finding cases where CI
2 <Cu

2 must be attributed

to the limited size of the neighbourhood of the pixel under processing over which <I> and σI
2

are estimated [29]. Independently of the scene model PR(R), the multiplicative speckle model
fixes therefore an inferior threshold CI min=Cu to the possible values of the coefficient of
variation CI .

Below the CI min value, speckle filters based on the use of local statistics, it means all adaptive
speckle filters, are no longer valid. In this case, the image area under processing must be
considered homogeneous and textureless.

2.2.4. The coefficient of variation as a heterogeneity indicator

The coefficient of variation CI  is a heterogeneity measure particularly well appropriate to the
case of radar images and for isotropic textures. Nevertheless, if the source of heterogeneity
presents a particuliar orientation (contour, line...), additional detectors able to identify or
retrieve this orientation are needed.

CI  increases with scene heterogeneity. Depending on the heterogeneity of the area under
processing, it enables to discriminate among the following situations:

Land Applications of Radar Remote Sensing14
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1. homogeneous areas with neither texture, nor structures.

2. areas with low or moderate heterogeneity where the presence of structures is improbable.

3. strongly heterogeneous areas where one must search for the possible presence of struc‐
tures (contour, line, strong scatterers).

3. Adaptive speckle filters for single-channel detected radar images

This section is dedicated to a theoretical analysis of the most common and more efficient
speckle filtering techniques developed for Synthetic Aperture Radar (SAR) images, and of their
corresponding estimation techniques. These filters use variants of the statistical speckle model
exposed in the preceding Section 1. They also use diverse statistical estimators to restore the
radar reflectivity (in the sense of the CEOS’s (Committee for Earth Observation Satellites)
"radar brightness"). These statistical estimators are, either Minimum Mean Square Error
estimators (e.g. Lee et al. filter, Kuan et al. filter, etc...), or autoregressive estimators (e.g. Frost
et al. filter), or Bayesian estimators (e.g. Gamma-Gamma and DE-Gamma MAP filters). These
estimators are discussed, and their behaviours are analysed.

3.1. Wiener Method: the Frost et al. filter (1982) [30]

3.1.1. Theoretical development

The SAR image model considered by [30] is as follows:

I (t)  =  R(t) . u(t)  *  h (t) (31)

where R(x,y) is a wide-sense stationary random process decribing the radar reflectivity of the
observed scene at pixel of coordinates t=(x,y) located in a homogeneous area of the radar image.
u(t) is the multiplicative noise due to speckle, modelled by a real white stationary random
process with a Gamma pdf (cf. Equation (14)). h(t) is the impulse response function of the
system. This model is a simplification of the fully developed speckle model exposed above
(cf. Equation (3); [31] [32].

To estimate the radar reflectivity R(t) of the noise-free image, Frost et al. apply a linear filter
whose impulse response m(t) minimises the mean quadratic error (MMSE estimator):

 ε =  E { R(t)−  I (t) * h (t) }2 (32)

The MMSE least-squares solution is valid for homogeneous areas for which R(t) can be
represented by a stationary random process. To deduce m(t), [30] assume that the transfer
function H(f) is constant over a certain bandwidth. This leads to an uncorrelated multiplicative
speckle model:
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I (t)  =  R(t) . u(t) (33)

where u(t) is a pseudo-white noise, independent of the signal, also used by other authors [33]
[34]. The multiplicative speckle model is deduced from Equation (3) assuming that the
bandwidth of the signal R(t) is much narrower that that of the linear filter h(t).

The impulse response of the filter is calculated adopting an autoregressive process model for
R(t) with an exponential autocorrelation function, a classic hypothesis for this family of models
[35] [36]. Later studies showed that the choice of an exponential autocorrelation function is
appropriate to SAR scenes [37].

These hypotheses enable to define an optimal MMSE filter (Wiener filter) with impulse
response m(t) :

R̂ =   ∑
∀t  ∈ neighborhood  of  N  pixels

t=(x,y)
m(t) . I (t) (34)

with:

m(t)   =   K1  . exp  −K  . CI 2  . d (t) (35)

where K is the filter parameter, and d(t) is the distance between the pixel located in t and the
pixel under processing. K1 is a normalisation constant granting the preservation of the mean
value of the radar reflectivity:

K1  =   (1 / N ).   ∑
∀t  ∈neighborhood  of  N  pixels

t=(x,y)
m(t) (36)

The final Frost et al. filter (Equation (36)) is not exactly a Wiener filter. It is designed using
Yaglom’s method [38]. In this method, contrarily to that of Wiener, one searches for the
frequential characteristic, not for the impulse transfer function susceptible not to exist. This
function is chosen empirically taking into account the hypotheses it must fit.

3.1.2. Behaviour of the Frost et al. filter

The behaviour of the filter depends on the values of the locally observed coefficient of variation,
i.e. on the local heterogeneity:

• Extremely homogeneous areas, for which CI  =  0,      then:     R̂  =  < I >

• Very strong scatterers (extreme heterogeneity), where CI  →∞,  then:       R̂  =  I

• Between these two situations, in textured natural areas, when CI  value increases, neighbour
pixels located far away from the pixel under processing are given less weight and the
neighbourhood on which the weighted mean value is actually estimated narrows.

Land Applications of Radar Remote Sensing16
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Considering the requirements for an ideal speckle filter, the filter should:

• Restore the mean intensity value over homogeneous areas, where CI ≤Cu. A consequence is
that K might be close to 0, unless the value of Cu tends towards 0, which is obviously not
possible for usual radar images.

• Preserve the observed intensity when the value of CI  is very high but obviously always
finite. For high CI  values, the only pixel to weigh might be the pixel under processing, and
K might therefore tend towards infinity since CI  has always a finite value.

Since it is impossible to fulfil simultaneously these two conditions (cf. [39] [40], one must make
a difficult choice between, either an efficient speckle reduction, or the preservation of image
structures and texture.

3.2. Locally adaptive linear MMSE estimators: Lee and Kuan filters

3.2.1. Kuan et al. filter (1985) [41] [32]

The radar image I(t) is modelled as a function of the radar reflectivity image R(t) to be restored
and of a white uncorrelated noise n(t) with 0 mean and dependent on R(t). This is an additive
noise model different of the multiplicative speckle model used in Equation (33):

I (t)  =  R(t)  +  n(t) (37)

Kuan et al. [41] introduce a scene model R(t) with non-stationary mean and non-stationary
variance (NMNV model), where the non-stationary mean describes the general structure of
the image, whereas the non-stationary variance characterises texture and the presence of local
structures. With this model, the linear filter minimising the quadratic mean error (LMMSE)
has the general form [32]:

R̂ LMMSE  =   E R   +   CRI . CI −1. ( I  − < I >) (38)

where CRI  and CI  are the non-stationary spatial covariance matrices of the image. These
matrices are diagonal if, as it is assumed in the model, n(t) is a white noise and the image model
is NMNV. Then, Equation (38) takes a scalar form [31]:

R̂  =     E R  +  ( I  – < I >) . σR2  /  (σR2  + σn2  ) (39)

The local statistics of the scene R are deduced from those of the intensity I. The Kuan et al. filter
is obtained by replacing locally:

E R    by   < I >       and       σR2   by   σR2  − < I 2 > .σn2   /  1 + σn2   (40)
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Since the variance of the additive noise σn2 is numerically equal to the coefficient of variation
of the speckle Cu in the multiplicative model, Equation (40) is, in practice, exactly equivalent
to Equations (26) and (27) established for the multiplicative speckle model.

It is noteworthy that, since the image model does not assume independence of the noise n and
the signal R, the filter is theoretically able to take into account the effects of an eventual
dependence between speckle and the radar reflectivity, when speckle is no longer fully
developed as in the case of strong scatterers.

3.2.2. Lee filter (1980) [33] [42] [43] [44] [45]

Lee uses the unit-mean uncorrelated multiplicative speckle modele (cf. Equation (33)). A linear
approximation is done by developing Equation (33) (I as a function of u for pixel located in t)
in a first-order Taylor series with respect to u(t):

I (t)  =  R(t). E u(t)  +  E R(t)  . u(t)−E u(t)          with     E u(t)  =  1 (41)

This approximation enables to transform Equation (33) into a weighted sum of the signal and
of a noise independant on the signal. The linear MMSE estimator, and Equations (26) and (27)
that are consequences of the multiplicative speckle model, enable to establish the Lee filter [33],
historically the first speckle filter designed to be adaptive to local radar image statistics:

R̂  =  < I >  +  ( I  − < I >). (σI 2  −σu2) / σI 2 (42)

It is noteworthy that, assuming the independence of noise and signal in the model used by the
Kuan et al. filter, this filter become identical to the Lee filter [41].

3.2.3. Behaviour of the Kuan et al. and Lee filters

The linear MMSE speckle filters of Lee and of Kuan et al., based on the use of the local statistics
of the observed intensity can be written under the same general form:

R̂(t)  =   I (t). W (t)  +  < I (t)> . 1−W (t) (43)

with:

W (t)  =  (1− Cu2 / CI 2(t) ) / (1 + Cu2)          for the Kuan filter (44)

and

W (t)  =  1  −  Cu2  /  CI 2(t)     for the Lee filter (45)

Land Applications of Radar Remote Sensing18
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Both methods perform a linearly weighted average of the local mean of the intensity and of
the observed pixel intensity. In both cases, weights depend on the ratio of the coefficients of
variation of the observed intensity and of the noise [7] [40]. As for the Frost et al. filter, the
locally observed heterogeneity governs the behaviour of these filters:

• Homogeneous areas where CI =Cu, therefore R̂=<I>

• Very stong scatterers (extreme heterogeneity) where CI  →∞, therefore R̂=I

• Between these two extreme situations, the weight of the observed value of the pixel intensity
increases with the heterogeneity of its neighbourhood.

Nevertheless, note that the weight on the estimated mean intensity remains significant for high
values of the coefficient of variation. Thus, responses of small impulse targets are cut-off by
these filters and image structures suffer some amount of smoothing. To correct this drawback,
Lopès et al. [40] have proposed a very efficient enhancement to the Lee and Kuan et al. filters.

Inversely, when CI  <Cu, some weighting on the observed intensity reappears, resulting in an
amplification of the noise [13]. In this case, the local mean of its neighbour pixels must be
assigned to the pixel under processing as filtered value.

The linear MMSE filters differ from the Wiener filters by the fact that the A Priori mean and
variance, <R> and σR

2, are estimated using the local statistics of the original image I, and not
implicitly estimated from an assumed autocorrelation model (cf. [30], Equation (35)). The goal
of this approach is to obtain a better adaptivity to the local properties of the scene R, which
verifies in pratice.

It is remarkable that the often used MMSE estimation ([33] [43] [44] [45] and [41] [32], among
others) is nothing else than the mean of the conditional A Posteriori pdf P(R/I) [46]. Note that
the complete evaluation of the terms enabling to obtain the A Posteriori pdf P(R/I) requires a
description of PI(I). This last pdf, which depends on the non-linear transformation leading
from R to I is, in general a K-distribution. The solution adopted by Lee and Kuan et al. consists
in a forced linearization of the problem assuming a Gaussian PI(I) [33] [42] [44], which is
unjustified for low (< 3) ENL values.

As an effect, this linearization restrains the validity of the linear MMSE estimator to situations
where the noise level is not too high (multilook images with high values of L), or where the
local heterogeneity CI  is not too high. These considerations justify one of the modifications
proposed to the Lee and Kuan et al. filters par Lopès et al. [40]: an upper heterogeneity threshold
CI max, above which the observed intensity of the pixel under processing is preserved.

3.3. Bayesian Maximum A Posteriori (MAP) speckle filters

3.3.1. Originality of the MAP approach in the case of SAR images

The Bayesian MAP approach [47] [48] consists in characterising the imaged scene and the
speckle "noise" by their statistical description, using their associated pdfs.
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In the Bayesian perspective, the theory of probabilities is extended to the logics of probabilistic
inference. Probabilities are seen as a relationship between a formal hypothesis and a possible
conclusion. This relationship corresponds to a certain degree of rational credibility and is
limited only by the extreme relationships of certitude and impossibility [49]. The classic
deductive logics considering only these extreme relationships (à la Sherlock Holmes: "When
all impossible hypotheses have been excluded, what remains, even if unlikely, corresponds to
reality") is nothing but a particular case of this general development [50].

As a general consequence, the theory of probabilities cannot base on the sole concepts of classic
logics (frequentist as in the MMSE or in Wiener’s approaches). In particular, the relationship
of probability cannot be defined in terms of certitude, since certitude is viewed as a particular
case of probability. The frequentist definition of probabilities based on relations of certitude
related to the knowledge of a number of parameters (<R> for example, cf. § 3.3.5 below) is
therefore no longer sufficient [50].

In this context, probabilities are used to describe stochastically an incomplete information on
a global phenomenon (here, the radar reflectivity and the superimposed speckle), rather than
to describe only the noise randomness that corrupts its comprehension. Probability relation‐
ships are viewed as being conditional to the context. This way, the pdf of the speckle Pu(I ) (cf.
§ 2.1.4, Equation (14)) is therefore formulated under the form P(I/R). Taking into account a
reasonable A Priori statistical model for the radar reflectivity P(R), one must also take into
account – which is new, with respect to the methods precedently exposed – the probability of
R, given the information obtained through observation (the intensites I measured by the radar),
formulated under the form of an A Posteriori pdf P(R/I). This approach has the great advantage
to enable the characterisation of speckled radar image formation while easing the description
of non-linear effects.

The least error-cost inference mechanism leading from the observed intensity I to the A
Posteriori deduced radar reflectivity R through Bayes’s theorem [47] [48], allows a rigorous
combination of the A Priori knowledge P(R) and of the new knowledge provided by the
observation I:

P(R / I )   =    P(I / R) . P(R) / P(I ) (46)

P(R/I) depends on the pdf of R introduced as A Priori information about the scene to restore.
Thus, the estimate is influenced by the A Priori statistical knowledge about R or, by default,
the hypotheses made about R. The noisiest are the radar data, the less the A Priori information
would contribute to estimate R [46].

In theory, the MAP method enables to avoid direct estimation of the mean of the conditional
A Posteriori pdf, which is necessary to the MMSE estimation. This feature is of great interest
in the resolution of non-linear problems where the evaluation of the conditional mean is, either
difficult, or impossible [51].

Land Applications of Radar Remote Sensing20
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The Maximum A Posteriori (MAP) estimation of R corresponds to the maximum value of P(R/
I), i.e. to the mode of the A Posteriori pdf P(R/I). The mode and the mean of P(R/I) coincide if
P(R/I) is symmetrical, in particular in the Gaussian case. Since the available knowledge is:

• P(I/R), the conditional pdf of speckle, which is a Gamma distribution (cf. Equation (14)),

• P(R), the A Priori unconditional pdf of the imaged scene, which is an assumed statistical
distribution (not necessarily Gaussian),

there is no particular justification to prefer the MMSE estimation by minimisation of the mean
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available knowledge through the Bayesian estimation technique, which is less subject to
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Once the first-order statistical speckle model P(I/R) is either known, or reasonably approxi‐
mated, (cf. Equation (14)), the form of the MAP estimate depends principally on the form of
P(R).

The NMNV scene model [32] enables to solve locally, in an analytic manner, the estimation of
R. The parameters of the pdf P(R) are locally estimated in a neighbourhood of the pixel under
processing. This way, the complicated recursive forms of mathematical resolution as exposed
by Hunt [52], Kuan et al. [53] and Geman & Geman [54] are avoided. This approach is partic‐
ularly adapted to the high spatial resolution of airborne and modern spaceborne SARs. Indeed,
it allows a good preservation of scene texture in an adaptive way by taking into account the
local fluctuations of σ° in the A Priori model, while being at the same time computationally
efficient.

3.3.2. Computation of the MAP estimate

Since the logarithm function is a monotonically increasing function, Bayes’s formula ([47] [48];
Equation (46)) can be rewritten as:

Log P(R / I )  =  Log P(I / R)  −  Log P(I )  +  Log P(R) (47)

which gives the local MAP estimation of R when Log P(R / I )   is maximum, i.e. when its first-
order derivative with respect to R is locally equal to 0:

∂ / ∂ R Log P(I / R) + ∂ / ∂ R Log P(R) =∂ / ∂ R Log P(R / I ) + ∂ / ∂ R Log P(I )   (48)

with:
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∂ / ∂RLog[P(I)]=0 because P(I) does not depend on the local fluctuations of R.

P(R/I) reaches its maximum when:

∂ / ∂ R Log P(R / I ) =  0   for  R = R̂MAP ,   where R̂MAPis the MAP estimation of R (49)

Then, the general equation of the MAP speckle filter becomes, locally:

∂ / ∂ R Log P(I / R) + ∂ / ∂ R Log P(R) =  0  for R =   R̂MAP (50)

The first term of Equation (50), the Maximum Likelihood term, accounts for the effects of the
whole imaging system on the radar image and describes the detected radar intensity once the
speckle statistical model is known. The second term, the Maximum A Priori term, represents
the prior statistical knowledge with regard to the imaged scene.

In the Bayesian approach, probabilities are used to describe incomplete information rather
than randomness. As Equation (50) shows, in the Bayesian inference process, induction is
influenced by the prior expectations allowed by the prior knowledge of P(R) [46]. In addition,
the non-linear system and scene effects are implicitly taken into account by the restoration
process. Therefore, MAP speckle filtering can be considered as a controlled restoration of R,
where A Priori knowledge controls the inference restoration process and allows an accurate
estimation of the radar backscattering coefficient σ°.

The pdf of the speckle in intensity for a L-looks radar image, P(I/R), is a Gamma distribution
with parameters R and L (cf. Equation (14)). The Maximum Likelihood term for a L-looks radar
image is then equal to:

∂ / ∂ R Log P(I / R)   =   L  . ( I / R 2  −  1 / R ) (51)

The Maximum A Priori term must be calculated according to the scene model chosen as A
Priori knowledge, hypothesis, or belief.

3.3.3. Gaussian distributed imaged scene: The Gaussian-Gamma MAP filter (1987)

The hypothesis of Gaussian-distributed scene has been adopted as a natural hypothesis by a
large number of authors who had worked, either on images from optical sensors, or on images
from passive/active microwave sensors. These authors are comforted in this hypothesis by
both the force of habit and by the mathematical ease in manipulating a Gaussian distribution.

Kuan et al. [32] have developed a MAP filter (Gaussian-Gamma MAP filter, with a Gaussian-
distributed scene and Gamma-distributed speckle) for radar images under this hypothesis.
Though, the hypothesis of a Gaussian-distributed scene, although widely spread in the
literature, is inappropriate. Indeed, this hypothesis assumes implicitly the theoretical possi‐
bility of negative σ° values-which has no physical sense-in the extreme case of a large variance
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with a low mean value, therefore needing a regularisation of the filter behaviour in such a
situation.

Therefore, one must preferably take into account a positive pdf as a realistic scene model. For
reasons that are both experimental and theoretical, in the case of natural extended targets as
it is most often the case dealt with in remote sensing, a Gamma distributed scene model is
better appropriate.

3.3.4. Gamma distributed imaged scene: The Gamma-Gamma MAP filter (1990)

Natural textures observed, either by coherent radar imagery, or by incoherent optical imagery
are due to a common contribution corresponding to the variability in spatial distribution of
the objects within the scene. Even if the interaction mechanisms between the electromagnetic
wave and the observed medium are very different in either case, the natural arrangement of
the scene makes the second-order statistics very similar in either kind of imagery [55] [56]. At
the scale of a large number of resolution cells, the pdfs of the cross-section variables corre‐
sponding to either mechanism belong to the same family of distributions, at least for the high
radar frequencies in bands Ku, X, and C for which wave penetration into natural media is
limited. This point is more arguable for radar bands L and P.

In a wide range of radar backscattering situations, the Gamma distribution is experimentally
the one that best fits, not only the distribution of the radar backscattering coefficient [21] [57],
but also the distribution of radiometries observed in incoherent optical images [55]. This scene
model has been successfully used also for radar images of the sea [58] [59] [60].

The local pdf of a scene statistically described by a Gamma distribution, has the form:

P(R)  =   (α / E R )α / Γ(α) . exp(−α.R / E R ) . R α−1 (52)

with α =  1 / CR2. The parameter is called the "heterogeneity coefficient".

Note that assuming a Gamma-distributed R, and by performing the integration in Equation
(28), the pdf P(I)=P(I/R) of the intensity is a K-distribution [57]. Introduced in 1976 [58] by
British researchers of the RSRE (later DRA) to describe the non-Gaussian properties of waves
backscattered by objects within a radar resolution cell, the K-distribution has been theoretically
recognised as the pdf of the intensity I backscattered by a rough non-stationary surface [61]
such as most natural scenes observed by a radar.

Nevertheless, in an illustration of the so-called "Cromwell’s rule" [62], even hard A Priori
conviction that the scene presents a Gamma-distributed texture must not be insensitive to
counter-evidence. Therefore, the complete MAP filter is a set of three filters adapted to diverse
situations locally encountered in a radar image: the application of this or that filter is decided
depending on the degree of heterogeneity of the image part under processing, that is on the
locally estimated value of the coefficient of variation CI . This may eventually imply the
determination of thresholds on CI  calculated as a function of a user-defined probability of false
alarm with respect to the local presence of texture or of strong scatterers (cf. [63] [64] [10]). Note
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that these considerations apply to all MAP speckle filters, and can be extended to all other
adaptive speckle filters.

3.3.4.1. Textured areas

Assuming that the pdf of the scene is a Gamma distribution, the Maximum A Priori term is
locally equal to: ∂ / ∂  R Log[P(R)]=(α-1)/R-α/<R>. Once E[R] is estimated locally by <I> in an
ergodic stationary neighbourhood of the pixel under processing in the radar image, the
equation of the Gamma-Gamma MAP filter ([65] [10] [63] [64]) is:

α.R 2  +  (1 + L −α). < I > .R −  L .I . < I >   =   0 (53)

This second-degree equation admits only one real positive solution R in the interval ranging
between the mean intensity <I>=<R> and its observed value I. Therefore, the Gamma-Gamma
MAP estimate of the radar reflectivity of the pixel under processing, is:

R̂ =
< I > .(α − L −1) +   < I >2 .(α − L −1)2  +  4α.L .I . < I >  

2α
(54)

The integration of a heterogeneity/texture detector based on the coefficient de variation and
of specific detectors (ratio-of-amplitudes – RoA; [66] [7]) for contours, linear structures and
strong scatterers in the filtering process is described by the general algorithm presented in [63]
[64] [10]. The integration of texture and structure detectors using second-order statistics
(autocorrelation functions) of both the speckle and the radar reflectivity of the scene [67] is
presented in Section 4. In all cases, mage areas identified as textured are filtered using Equation
(54).

3.3.4.2. Homogeneous areas

In the particular case of a perfectly homogeneous (textureless) scene, with CI ≤Cu, the radar

reflectivity R is a constant (R=E[R]), and can be statistically represented by a Dirac distribution:

P(R)   =   δ(R) (55)

This distribution is the limit of Gamma distributions when tends towards+∞. In such a case,
the MAP estimate is equal to the local mean intensity:

R̂  =  < I > (56)

This case is taken into account when the local statistics calculated in the neighbourhood of the
processed pixel show a nearly perfect homogeneity of the scene.
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3.3.4.3. Strong scatterers and impulsional targets

The other extreme case regards strong scatterers, when speckle is no longer fully developed.
The considerations that led to consider the Gamma pdf as an A Priori model for a textured
natural scene are no longer valid: we no longer have any A Priori information about the scene.
In this situation, the information content of every grey level of the image being A Priori the
same, the pdf of the imaged scene can be represented by an uniform distribution:

P(R)  =   1 / (Rmax  −  Rmin) (57)

with undetermined extreme values Rmin and Rmax, which we may consider equal to respectively
0 and+∞. Thus, the Maximum A Priori term of the MAP equation becomes ∂  / ∂  R[Log(P(R))]=0,
and the MAP estimate is:

R̂ = I (58)

If the resolution cell contains only one isolated strong scatterer, the response (value I of the
pixel) of this scatterer is deterministic and must therefore be preserved. This situation leads to
the same conclusion and is therefore treated similarly.

3.3.5. Scene pdf estimated from the data: The Gamma/Distribution-Entropy MAP filter (1998)

SAR images of dense tropical forest, urban areas, or very strong and rapidly varying topog‐
raphy often show very strong or mixed textures. This is also the case of high-and very-high
spatial resolution SAR images. In these situations, it may be hazardous to make an assumption
about the probability density function of the radar reflectivity.

Indeed, the MAP technique does not account for any uncertainty in the value of the parameters
of the A Priori pdf chosen as a Gamma distribution once it has been locally estimated on a
given image area. Hence, in the presence of mixed (forests with underlying structures, for
example) or rapidly varying (strongly textured area located on strong slopes, or very-high
spatial resolution radar images, for example) texture, the MAP estimator will underestimate
the variance of the predictive distribution. Indeed, this predictive distribution can hardly take
into account the fact that it results of a compound of a mix of different distributions.

In this context, the A Priori knowledge with regard to the observed scene can hardly be an
analytical first order statistical model, chosen on the base of prior scene knowledge. However,
to retrieve local statistical scene knowledge directly from SAR image data, Datcu & Walessa
[68] [69] proposed to introduce the local entropy of the radar reflectivity, S(R), as a measure
of local textural disorder. This concept originates from the theory of information. S(R) is
estimated on a neighbourhood (Npix pixels) of the pixel under processing:

S (R)  =  − ∑
k=1

Npix
Rk . log(Rk )    (59)
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Because the radar reflectivities Rk are non-negative and exp[S(R)]/Z is normalised, and since
S(R) is a measure of the spread/dispersion of the radar reflectivities of the scene, characterising
its heterogeneity, Equation (59) can be treated as a pdf whose entropy is S(R) [70]:

P(R)  =  (1 / Z ) . exp S (R)  =   (1 / Z ). exp(− ∑
k=1

Npix
Rk . log(Rk )  ) (60)

For a single detected SAR image, the conditional pdf of the speckle can be, as long as speckle
is fully developed, modelled as a Gamma distribution:

P(I / R)  =  (L / R)L / Γ(L ) . exp(− L .I / R) . I L −1 (61)

Incorporating these scene and speckle models, the Gamma/Distribution-Entropy MAP
(Gamma-DE MAP) speckle filter for single-channel detected SAR images is the solution of the
following equation [71]:

L .I  −  L .R −  R 2. ∑
k=1

Npix
log(Rk )−1 / Ln(10)   =  0  (62)

The radar reflectivites Rk in the neighbourhood of the pixel under processing are pre-estimated
by a first speckle filtering pass.

Note that the local DE MAP estimation of R is contrained by the value of the entropy S(R)
retrieved from image data. Since this fixes upper/lower bounds to the local entropy S(R), the
DE MAP speckle filter combines both the Bayesian MAP and the Maximum/Minimum Entropy
estimation techniques.

The DE-MAP filters adapt to a much larger range of textures than the other MAP filters ([10]
[11] [72] [73]) developed under the assumption of K-distributed SAR intensity (i.e. Gamma-
distributed scene). In particular, these filters are of particular interest in the case of very high-
resolution SAR images and strongly textured scenes.

Compared to those of the other MAP filters, performances in terms of speckle reduction are
identical. However, texture restoration and structures or point targets preservation, identical
for moderate textures, are superior in strongly textured areas. These filters have proven a
remarkable efficiency in operational remote sensing (cf. [74]).

3.3.6. Behaviour of the MAP filters

The local MAP estimate is the mode of the local A Posteriori pdf of the radar reflectivity R,
under the hypothesis made for P(R). The MAP estimation is therefore probabilistic: it corre‐
sponds to the most probable value of radar reflectivity. This justifies to chose the local mean
observed intensity as filtered value within areas identified as perfectly homogeneous (cf. §
2.4.4; [64] [10). Excellent speckle reduction and preservation of the mean value of the radar
reflectivity are therefore granted over such areas.
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In the presence of texture, the estimator takes into account the non-linear effects in getting
from R to I via the imaging system. As for the Lee and Kuan et al. filters, the local A Priori mean
and variance, <R> et σR

2, are estimated using the first-order non-stationary local statistics of the
original image I (cf. Equations (26) and (27)), thus allowing adaptivity to the local isotropic
properties of the scene R. At the scale of a terrain parcel, the MAP filter must theoretically
restore the whole pdf of the radar reflectivity. This includes its mean E[R] and its variance
(equivalent to parameter α), as well as the spatial relationships between pixels if one introduces
speckle and scene second-order statistics in the filtering process (cf. [10] [75] [67]).

Nevertheless, in the presence of structures, the NMNV model may be used abusively on an
inappropriate neighbourhood of the pixel under processing and therefore the local statistics
<R> and σR are no longer those of an ergodic process. Thus, in order to use the filter in the
conditions required by the NMNV model, i.e. in the statistical situation it has been designed
for, one must introduce, as one might also do for the Lee and Kuan et al. filters, structure
detectors. These detectors contribute to select a neighbourhood of the pixel under processing
composed of pixels pertaining to the same thematic class. They may be, either geometrical
improvements based on the use of ratio (RoA) detectors ([7] [66] [63] [64] [10]), or detectors
based on the use of the second-order statistics of both the speckle and the scene ([67]; cf. Section
4). The desired result is a better preservation of image texture, structures, and responses of
strong scatterers in the speckle filtered radar image.

4. Using speckle and scene spatial correlation to preserve structural
information in SAR images

The assumptions usually made by adaptive speckle filters ([76] [30] [32] [10]) with regard to
the first order statistics of the speckle are:

• the multiplicative speckle model;

• the pdf of the speckle which reflects only incompletely the spatial correlation of the speckle
through the ENL.

• The assumptions regarding the imaged scene are:

• Local wide-sense stationarity and ergodicity;

• A formal Non-stationary Mean Non-stationary Variance (NMNV) model accounting for the
spatial variation of the first order statistical properties [32];

• For the Maximum A Posteriori (MAP) filter, the general form of the pdf of the scene radar
cross-section [10].

The main consequences of these assumptions are that:

• The formal NMNV model justifies local treatment (processing window) using the local
statistics;
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• Assuming spatially uncorrelated speckle leads to the design of scalar (single-point) filters;

• Local adaptivity to tonal properties (mean intensity <I> and scene radar reflectivity R) is
achieved by controlling the filtering process through the local coefficient of variation CR of
the radar reflectivity R of the scene, through the local coefficient of variation CI  of the original
SAR image intensity I [27] [28].

The major drawbacks of these assumptions are that:

• The coefficients of variation are statistically [10] sensitive to texture and speckle strength
[40], but do not provide direct information on spatial correlation properties and texture
directionality. Locally estimated, they can also be biased if speckle samples are not inde‐
pendent (cf. § 2.2.2), as it is often the case in SAR images. Indeed, speckle can have strong
spatial correlation properties, a situation the filters are not designed to deal with;

• Compliance with the ergodicity and stationarity hypothesis requires a preliminary identi‐
fication of the structural elements of the scene to fully exploit the NMNV model and to
correctly estimate the local mean reflectivity around the pixel under processing;

In this Section, local second order properties, describing spatial relationships between pixels
are introduced into single-point speckle adaptive filtering processes, in order to account for
the effects of speckle and scene spatial correlations. To this end, texture measures originating
from the local autocorrelation functions (ACF) are used to refine the evaluation of the non-
stationary first order local statistics as well as to detect the structural elements of the scene [75].

4.1. Effects of the spatial correlation on the speckle

In practice, the usual single-point filters do preserve texture, only due to the spatial variation
of the local first order statistics, using the NMNV formal model [32]. Fairly good preservation
of textural properties and structural elements (edges, lines, strong scatterers) can be achieved
by associating constant false alarm rate structure detectors such as the directional Ratio-Of-
Amplitudes (RoA) detectors; ([7] [66] [10] [63] [64]) to the speckle filtering process. The
combination of detection and speckle filtering allows to preserve scene structures, and to
enhance scene texture estimation on a shape adaptive neighborhood of the pixel under
consideration. When the conditions for which they have been developed (especially spatially
uncorrelated or low-correlated speckle) are fulfilled, the best single-point adaptive speckle
filters and their structure retaining associated processes based on RoA detectors retain enough
scene texture to allow its use as an additional discriminator ([23] [24] [63] [64]).

However, the performances of the usual single-point filters, even when refined with associated
RoA structure detectors, degrade when the actual spatial correlation of speckle samples
becomes significant [77], i.e. generally when SAR images are far too much oversampled [31].
In fact, the uncorrelated speckle model approximation is seldom justified, according to
sampling requirements of the radar signal and to the SAR system and processor which have
produced the image. In multilook SAR images, spatial correlations are introduced by a series
of weighting functions: complex coherent weighting related to data acquisition (antenna
pattern, pre-sum filter and Doppler modulation in azimuth), coding of transmitted pulses in
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uncorrelated or low-correlated speckle) are fulfilled, the best single-point adaptive speckle
filters and their structure retaining associated processes based on RoA detectors retain enough
scene texture to allow its use as an additional discriminator ([23] [24] [63] [64]).

However, the performances of the usual single-point filters, even when refined with associated
RoA structure detectors, degrade when the actual spatial correlation of speckle samples
becomes significant [77], i.e. generally when SAR images are far too much oversampled [31].
In fact, the uncorrelated speckle model approximation is seldom justified, according to
sampling requirements of the radar signal and to the SAR system and processor which have
produced the image. In multilook SAR images, spatial correlations are introduced by a series
of weighting functions: complex coherent weighting related to data acquisition (antenna
pattern, pre-sum filter and Doppler modulation in azimuth), coding of transmitted pulses in
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range, and looks formation (useful Doppler bandwidth selection, extraction window in
azimuth). In practice, they are related to sampling and scale requirements in the design of SAR
image products, up to the extreme case of signal oversampling [31].

As an example of the effects of speckle spatial correlation, the case of structure detection using
the RoA detectors [10] implemented in the Gamma-Gamma MAP filter is illustrated in [67].
Detection is successfully performed when the correlation of speckle is low between pixels.
However, the performance of RoA detectors substantially degrades when the spatial correla‐
tion of speckle samples becomes significant. It has been shown theoretically in [67] that spatial
speckle correlation results in an increasing detection of non-existing structures, i.e. in the
increase of the probability of false alarm (Pfa). The expected 1% Pfa for uncorrelated speckle
raises to about 25% if the correlation of adjacent pixels is 0.7 in both range and azimuth (cf.
ERS: about 0.55 in range and 0.65 in azimuth). In addition, the spatial speckle correlation also
decreases the probability of detection. The combination of these two effects causes artefacts in
the filtered image (visual “crumbled paper” effect), making photo-interpretation uneasy and
reducing substantially the performance of further automatic image processing like segmen‐
tation [78] and classification [23] [24].

Therefore, second order statistical properties must also be considered, including both scene
texture and resolution/sampling related properties, to achieve a more complete restoration of
the radar reflectivity.

4.2. A possible solution: Spatial vector filtering

A possible solution is the implementation of vector (multiple-points) filters ([32] [79]) where
the spatial covariance matrices of the speckle and of the scene are taken into account. The
development of a filtering method using second order statistics, i.e. an estimation of the
complete ACF of the scene through the speckled image ACF, results in a vectorial equation
giving rise to a multiple-points filter, such as the LMMSE vector filter developed theoretically
by Kuan et al. [32]. A practical implementation of multiple-point filters has been first suggested
by Lopès et al. [10], and then detailed by Lopès & Séry [79]. Such filters have good spatial
memory, but they result in a complicated implementation and very heavy computations.

4.3. Single-point speckle filtering using spatial second order statistics

To avoid the mathematical complexity and the heavy computational burden of multiple-point
filters, an alternative solution is to introduce an appropriate description of both speckle
correlation properties and spatial relations between resolution cells into a single-point filter.

Second order statistics have explicitly been used in the past, following the scheme proposed
by Woods & Biemond [80] implemented later by Quelle & Boucher [81] in the adaptive Frost
speckle (single-point) filter [30]. The filter, which belongs to the family of Wiener filters, is
established using Yaglom's method [38], where a frequency characteristic is determined,
instead of an impulse transfer function, which actually exists only within wide-sense stationary
areas. This frequency characteristic is determined in the speckled image at a distance of one
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pixel only in range and azimuth, thus mainly limiting the description of correlation properties
to those of the speckle.

Considering the NMNV model [32], a much better solution is to introduce locally estimated
second order statistics to refine the computation of the local NMNV first order statistics. In
this way, speckle correlation properties can be taken into account for filtering. In addition, the
local mean radar reflectivity E[R] would be estimated, taking better account of the textural
properties of the imaged scene (natural variability of the radar reflectivity, including spatial
relations between resolution cells). On a given textured class of the scene, when scene corre‐
lation length is smaller than the processing window size, the mean radar reflectivity E[R] will
then be modulated by the scene ACF, i.e. by a function of the correlation coefficients of the
radar reflectivity in all possible directions. When the correlation length of the imaged scene is
longer than the processing window size, the estimate for the non-stationary mean radar
reflectivity tends towards to the classical Maximum Likelihood estimate E[R]=<I>.

4.4. Local ACF’s and texture fields

Spatial relations between pixels are well described by the intensity ACF, defined by a set of
correlation coefficients (Δz), where Δz=(Δa, Δr), the normalised ACF of an intensity SAR image,
{ρI (Δz)}, is a composition of the underlying scene ACF, {ρR(Δz)}, convoluted with an overlap
function depending on the point spread function (PSF).

The local estimates for the normalised intensity ACF, {ρI (Δz)}, are, either deduced from the
spatial autocovariance, which is computed on the domain of interest D (N pairs of pixels
separated from each other by Δz) as follows:

CôvI (Δz) =  (1 / N ) .∑
D

I (z + Δz)− < I >  . I (z)− < I > (63)

or, equivalently, directly computed within the domain of interest D as follows:

ρ̂ I (Δz) =
∑
D

( I (z + Δz)− < I > . I (z)− < I > )

∑
D

I (z)− < I >  2 (64)

These estimates have the attractive property that their mean square error is generally smaller
than that of other estimators; considerations on the estimation accuracy can be found in Rignot
& Kwok [82].

The contribution of scene texture must be separated from that of the speckle for all displace‐
ments Δz: the scene ACF is deduced from the intensity image ACF, using the following
transformation [28]:
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ρ̂R(Δz) =  
 1 +  ρ̂ I (Δz).CI 2

 1 +  |Gc(Δz)|2 / L
 (65)

where L is the equivalent number of independent looks, CI  is the local coefficient of variation
of the image intensity, and Gc(Δz) is the normalised ACF of the individual 1-look complex
amplitudes (i.e. the ACF of the SAR imaging system).

Gc(Δz) depends only on the SAR complex PSF [83]. It is realistic to adopt an exponential
form for the ACF of the speckle for the separated looks detected in intensity:

|Gc(Δz)|  =  exp − (Δa.dx / rx + Δr .dy / ry) (66)

where dx, dy are the pixel dimensions, and rx, ry are the spatial resolutions in azimuth and
range directions. However, it is preferable to use directly the true ACF of the speckle in the
actual multilook SAR image, if it is available, or if its estimation is possible.

The computation of a local non-stationary estimate of E(R) is performed by a simple convo‐
lution in the domain of interest around the pixel under consideration of the normalised ACF
of the textured scene {ρR(Δz)} with the intensity:

Ê (R) =  
∑
D
ρ̂R(Δz).I (z + Δz)

∑
D
ρ̂R(Δz)

  (67)

for all ρR(Δz) within D, and as long as the following condition applies:

ρ̂R(z) / ρ̂R(z =(0, 0))    >   1 / e (68)

This means that, along a direction z, the pixels whose correlation ρ̂R(z + Δz) to the pixel under
process is less than 1/e are ignored for the computation of the first order NMNV local statistics
through Equation (67). This way, the algorithm achieves powerful speckle reduction in
homogeneous areas, preservation of the textural properties (heterogeneity and directionality)
wherever they exist, and correct structure detection.

The implementation of this operator, which estimates the local non-stationary E[R] is inspired
from the notion of "texture fields" introduced by Faugeras & Pratt [84]. It is important to notice
the following properties of the operator:

1. in homogeneous areas, Equation (67) acts as a smoothing operator: E R → < I > , which is
the Maximum Likelihood estimate of E[R] for a perfectly homogeneous neighbourhood.
(The local energy scaling factor in the denominator of Equation (67) ensures the preser‐
vation of the absolute level of the radar reflectivity).

2. for a strong scatterer, it acts as a Laplacian: E R → I (z).
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3. if a perfect step edge between two homogeneous areas is present in the neighbourhood
(correlations=1,0,-1), it acts as a gradient and automatically stops weighting further pixels.
This indicates structure detection capability;

4. in all other cases, i.e. for a textured scene, the E[R] estimate is a weighted average of the
neighbourhood, modulated by the scene ACF in all possible directions.

This concept of "texture fields", based on the analysis of second order statistical properties,
generalises image processing concepts such as filtering and detection, which are usually
considered as distinct. It provides the possibility to perform simultaneously structure detection
and image pre-filtering. Structural elements such as edges are detected (value of the estimate
of the correlation coefficient becoming less than 1/e) when the distance from the pixel under
processing (central pixel of the processing window) to the edge is reached, going in the
direction of the edge. Therefore, the position of the edge is known as soon as the edge enters
the “field of view” of the processing window.

The local mean radar reflectivity estimation takes now into account the textural properties of
the imaged scene (spatial variability of R between resolution cells, directionality) as well as
the spatial correlation properties of the speckle. Introduction of the non-stationary estimates
of E[R] and CR into the scalar equation of a single-point speckle filter improves the restoration
of R fluctuations in the filtered radar image [75]. As speckle and scene correlations are explicitly
accounted for, this method can be considered as being complete.

The whole process acts as an adaptive focusing process in addition to the filtering process,
since emphasis is put on the restoration and the enhancement of the small-spatial-scale
fluctuations of the radar reflectivity. Full profit is taken of the useful resolution offered by the
compound sensor and processing systems. Thus, speckle related features and thin scene
elements (scene short-scale texture and thin structures) are automatically differentiated. The
latter are restored with enhanced spatial accuracy, according to the local statistical context.

There is no geometrisation of the scene structural elements, as when using templates-based
detectors used in structure retaining speckle filters ([76] [63] [64] [10]). The neighbourhood on
which the NMNV local statistics are estimated is delimited by the estimates of ρR(Δz) for all
possible Δz orientations. The only limitation to the potential extension of the domain D is the
spatial extent of the available ACF of the speckle.

5. MAP speckle filters for series of detected SAR images

Since the launch of ERS-1 satellite in 1991 temporal series of calibrated SAR images have been
made available. This has stimulated the development of multichannel ("vector") filters
especially dedicated to filter the speckle in a series of images, taking into account the correlation
of the SAR signal between image acquisitions, thus opening the way to furher developments
of change detection techniques specific to SAR series of images.

Interest in multichannel adaptive speckle filtering arises from their ability to combine both
multi-image diversity through the exploitation of correlation between speckle and scene
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between images, and spatial diversity through the locally adaptive averaging of pixel values
in the spatial domain. The objectives of this combination are the simultaneously achievement
of both, a better restoration of existing texture, and a stronger speckle smoothing in textureless
areas.

Although numerous work with regard to multi-channel speckle filtering in SAR images had
already being done in a remote past, the introduction of A Priori knowledge or A Priori guess
which implies the use of Bayesian methods in the processing of multi-SAR’s images, multi-
date SAR images or SAR and optical images began only in 1992. Bayesian MAP vector speckle
filters developed for multi-channel SAR images incorporate statistical descriptions of the scene
and of the speckle in multi-channel SAR images. These models are able to account for the scene
and system effects, which result in a certain amount of correlation between the different
channels.

To account for the effects due to the spatial correlation of both the speckle and the scene in
SAR images, estimators originating from the local ACF’s (cf. Section 4) are incorporated to
these filters to refine the evaluation of the non-stationary first order local statistics on an ergodic
wide-sense neighbourhood of the pixel under processing. The goal is to improve the restora‐
tion of scene textural and structural properties and the preservation of the useful spatial
resolution in the filtered SAR image.

5.1. Multichannel vector MAP speckle filtering

In the case of multi-channel detected SAR images, let define the vector quantities of interest:
I is the speckled intensity vector available in the actual SAR data; R is the radar reflectivity
vector, which is the quantity to restore. The MAP filtering method bases on Bayes’s theorem
[47] [48] in its matricial form:

P(R / I )= P(I / R) . P(R) / P(I ) (69)

where P(I/R) is the joint conditional pdf of the speckle.

For each individual detected SAR image i, P(Ii/Ri) is known to be well approximated by a
Gamma distribution for multilook intensity images (cf. § 2.1.4; Equation (14)).

P(R) is the joint pdf of the radar reflectivity, introduced as statistical A Priori information
in the restoration process. To describe the first order statistical properties of natural scenes,
it has already been shown that, in most situations, for each individual image i, a Gamma
distribution (cf. § 3.3.4) is an appropriate choice for P(Ri). Nevertheless, when in doubt about
the  reliability  of  such  a  choice,  P(Ri)  can  be  estimated  directly  from  the  data  in  the
corresponding radar image i.

For multi-channel detected SAR images, MAP filtering is a vector filtering method. For every
channel i, the posterior probability is maximum if the following condition is verified:

∂ Ln(P(I / R)) / ∂ Ri + ∂ Ln(P(R)) / ∂ Ri   =  0 for Ri =  R̂i  MAP (70)
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The MAP speckle filtering process acts as a data fusion process, since the information content
of the whole image series is exploited to restore the radar reflectivity in each individual image.
Among other advantages, this allows a better detection and restoration of thin scene details.

5.2. Multichannel scene models

To describe the first order statistical properties of a natural scene viewed at the spatial
resolution and at the wavelength frequency of a radar remote sensing sensor, it has been shown
that a Gamma pdf would be a suitable representation (cf. § 3.3.4).

However, to describe the first order statistical properties of a natural scene as viewed by
diverse radar sensors (different physical scene features), or at different dates (scene evolution
over time), there is no analytic multivariate Gamma pdf available under closed-form. There‐
fore, for the sake of mathematical tractability, a multivariate Gaussian pdf is used as analytic
"ersatz" of a multi-channel scene statistical model:

P(R) = (2π)N |CovR | −1/2. exp − (R − < R >)t .CovR−1.(R − < R >)   (71)

CovR is the local covariance matrix of the imaged scene in all image channels. For each pixel
location, CovR is estimated from the local covariance matrix of the intensities observed in all
image channels CovI, using the multiplicative speckle model (cf. § 2.2.2; [27] [28]).

This statistical scene model is convenient to preserve the mathematical tractability of the
problem. In addition, the Gaussian model, commonly used to describe the statistical properties
of natural scenes in processing of optical imagery, is appropriate as a first-order statistical
description of moderate, not too heterogeneous, textures.

However, when scene texture becomes very heterogeneous, this multivariate Gaussian scene
model is not any longer reliable, and in the absence of specific prior knowledge about the
distribution of scene texture, its model has to be directly estimated from the SAR image.

5.3. Speckle uncorrelated between SAR images: The Gamma-Gaussian MAP filter

Let consider the case of a series of N images originating from different SAR systems (different
frequencies, incidence angles, or spatial resolution for example, but same spatial sampling).
In such a case, it is justified to consider that speckle is independent between the N image
channels.

Under this assumption, since each one of the SARs senses slightly different physical properties
of the same scene, the joint conditional pdf of the fully developed speckle, P(I/R), can reason‐
ably be modelled as a set of N independent Gamma distributions P(Ii /Ri):

P(Ii / Ri) = (L i  / Ri)L i  / Γ(L i). exp(− L iIi  / Ri) .Ii
(L i−1) (72)

where the Li parameters are the ENLs of the individual SAR images.
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The first MAP filtering algorithm for multi-channel detected SAR images results in a set of N
scalar equations, with N independent speckle models and a coupled scene model (Equation
(71)). The coupled scene model is justified by the fact that the physical properties of the scene
do contribute, but not in an identical way, to the formation of the images provided by the
different sensors. The set of equations describing the Gamma-Gaussian MAP filter for multi-
channel detected SAR images is as follows ([73] [85]):

L i(Ii / Ri2−1 / Ri) − (1i)t .CovR−1.(R − < R >)

− (R − < R >)t .CovR−1.(1i) −  1 / 2 Tr CovR−1.∂CovR / ∂Ri

+ (R − < R >)t .CovR−1.∂CovR / ∂Ri.CovR−1.(R − < R >) =  0
(73)

where (1i) is a vector where all components, but the ith, are equal to zero. The set of Equations
(73) is solved numerically.

The introduction of coupling between the scene statistical representations leads to a data fusion
process taking profit of the correlation between texture as it is observed in all the images in
the series. Indeed, replacing speckle noise model by optical noise (or film grain noise, or any
other appropriate noise model) in some of the N image channels, this filter adapts also easily
to the case of multi-channel optical and SAR images.

5.4. Speckle correlated between SAR images: The Gaussian-Gaussian MAP filter

To filter series of images originating, either from the same SAR system operating in repeat-
pass mode, or from different SAR systems with relatively close properties, a second speckle
filtering algorithm has been developed. The different SARs may be close in terms of frequency,
angle of incidence, spatial resolution and sampling, geometry of images, with difference in
polarisation configuration only, or small differences in incidence angle, for example. In such
cases, speckle correlation between individual SAR images must be taken into account to deal
optimally with system effects on the SAR images series.

Taking into consideration speckle correlation between image channels, the joint conditional
pdf of the fully developed speckle P(I/R) should theoretically be a multivariate Gamma pdf.
Nevertheless, since there is no analytic multivariate Gamma pdf available in closed-form,
another reasonable choice for P(I/R) should be done for the sake of mathematical tractability.

To solve this problem, Lee’s assumption [33] is adopted: for multilook SAR images (more than
3 looks), the joint conditional pdf of the speckle can be reasonably approximated by a Gaussian
distribution. Therefore, for convenience, P(I/R) is approximated by a Gaussian multivariate
distribution in the case of multilook SAR images:

P(I / R) =  (2π)N |CovS | −1/2. exp − (I −R)t .CovS −1.(I −R) (74)

where CovS is the covariance matrix of the speckle between images of the series. In practice,
CovS is estimated within the most homogeneous area one can identify in the series of detected
SAR images.
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It is noteworthy that CovS takes into account possible different Li values of the respective ENLs
of the SAR images in the series as well as energy unbalance between images. This enables to
compose the series combining images from different SARs operating at the same wavelength,
or acquired by the same SAR at different times or in different configurations of polarization.

At this point, the second MAP filtering algorithm for multi-channel detected multilook SAR
images results in a set of N scalar equations. The set of equations describing the Gaussian-
Gaussian MAP filter for multi-channel detected multilook SAR images is ([73] [85]):

t(1i).CovS −1.(I −R) + (I −R)t .CovS −1.(1i) −  1 / 2 Tr CovR−1.∂CovR / ∂Ri

+ (R − < R >)t .CovR−1.∂CovR / ∂Ri.CovR−1.(R − < R >)

− (1i)t .CovR−1.(R − < R >) −t (R − < R >).CovR−1.(1i)  =  0

(75)

where (1i) is a vector where all components, but the ith, are equal to zero. Again, this set of
equations is solved numerically.

Including a coupled speckle model (Equation (71)) and a coupled scene model (Equation
(74)), this speckle filter takes profit of both speckle and scene texture correlations, thus restoring
the radar reflectivity through a complete data fusion process.

5.5. Prior knowledge gathered from SAR image series: DE-MAP filters

In the presence of very strong or mixed textures, eventually combined with the presence of
strong topographic relief, it may be hazardous to make an A Priori assumption about the pdf
of the radar reflectivity. This situation is often the case in SAR images of dense tropical forest
or of urban environments located in slanted terrain with rapidly varying slopes and counter-
slopes.

This is also often the case in high-and very-high spatial resolution SAR images, where strong
texture is omnipresent. In addition, at such very fine scale, the textural properties of the scene
vary strongly within the timeframe elapsed between successive image acquisitions by the same
SAR, and exhibit strong differences when imaged by different SARs or using different SAR
configurations in terms of wavelength, polarisation, or angle of incidence, for example.

5.5.1. Speckle correlated between SAR images: The Gaussian-DE MAP filter

As mentioned precedently (cf. § 5.4), for a series of N multilook (Li>3 for each image i) detected
SAR images, the joint conditional pdf of the speckle, P(I/R), can be modelled as a multivariate
Gaussian distribution [33] when speckle is correlated between image channels with covariance
matrix CovS:

P(I / R)= (2π)N . |CovS | −1/2. exp −t (I −R).CovS −1.(I −R) (76)
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t(1i).CovS −1.(I −R) + (I −R)t .CovS −1.(1i) −  1 / 2 Tr CovR−1.∂CovR / ∂Ri

+ (R − < R >)t .CovR−1.∂CovR / ∂Ri.CovR−1.(R − < R >)

− (1i)t .CovR−1.(R − < R >) −t (R − < R >).CovR−1.(1i)  =  0

(75)

where (1i) is a vector where all components, but the ith, are equal to zero. Again, this set of
equations is solved numerically.

Including a coupled speckle model (Equation (71)) and a coupled scene model (Equation
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SAR images, the joint conditional pdf of the speckle, P(I/R), can be modelled as a multivariate
Gaussian distribution [33] when speckle is correlated between image channels with covariance
matrix CovS:

P(I / R)= (2π)N . |CovS | −1/2. exp −t (I −R).CovS −1.(I −R) (76)
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The entropy of the scene texture [68] [69] [70] is introduced (on a sample of Npix pixels of an
ergodic neighbourhood of the pixel under processing) as follows:

S (Ri) =  − ∑
k

Npix
Rik . log(Rik )  for the i thchannel (77)

Because the radar reflectivities Rk are non-negative and exp(S(Ri))/Z is normalized, and since
S(Ri) is a measure of the spread/dispersion of radar reflectivities in image channel i, Equation
(77) can be treated as a pdf whose entropy is S(Ri) [70]:

P(Ri) = (1 / Z ) . exp(S (Ri)) = (1 / Z ) . exp(− ∑
k

Npix
Rik .log(Rik )  ) (78)

Under this assumption, the Gaussian/Distribution-Entropy MAP (Gaussian-DE MAP) filter
for multi-channel multilook detected SAR images (N image channels) results in a set of N
coupled scalar equations of the form [71]:

(1i)t .CovS −1.(I −R) + (I −R)t .CovS −1.(1i)−  Ri2.∑
k

Npix
log(Rik )−1 / Ln(10) =  0 (79)

where (li) is a vector where all components, but the ith, are equal to zero.

To estimate P(Ri), the radar reflectivities Rik in a neighbourhood of the pixel under processing
in the ith SAR image are pre-estimated in a first speckle filtering pass; indeed, the iterative
estimation process does already converge after a first application of Equation (79).

Note that this filter does not need to introduce implicitly scene texture correlation. Indeed, the
restoration of the radar reflectivity in each image channel bases only on the A Priori knowledge
retrieved from the speckled image channel. Nevertheless, the filter takes profit of speckle
correlation between image channels. An application of this filter is illustrated in Figure 1.

(a) (b) 

(a) color composition of the unfiltered HH (red) and VV (green and blue) amplitudes. (b) color composition of the
speckle filtered HH and VV amplitudes obtained using the Gaussian-DE MAP filter for series of multilook detected SAR
images (cf. § 5.5.1).

Figure 1. TerraSAR-X 4-looks SAR images (HH and VV polarisations) acquired on August 10, 2007, over Oberpfaffen‐
hofen, Germany (Credits: Astrium and InfoTerra; filtered images: Privateers NV, using ®SARScape).
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5.5.2. Speckle correlated between SAR images: The Gamma-DE MAP filter

Note that if speckle is not correlated between the N image channels, the Gamma/Distribution-
Entropy MAP (Gamma-DE MAP) filter for multi-channel detected SAR images (N channels)
results in the resolution of a set of N independent (uncoupled) scalar equations similar to
Equation (62) (cf. § 3.3.5).

5.6. Vector MAP filtering and control systems

A number of advantages and improvements these filters offer is listed in this section. Most of
these advantages arise from the use of the covariance matrices of the speckle and of the imaged
scene (i.e. from the use of coupled models) in a Bayesian reconstruction of the radar reflectivity.

5.6.1. Imaging system’s effects and preservation of high-resolution

In a series of SAR (but not only...) images, the resolution cells never overlap perfectly between
the different individual images. The covariance matrix of the speckle CovS contains the
information about these overlaps, and the filtering process accounts for these overlaps in order
to preserve, and even improve the spatial resolution in the filtered SAR images, thus allowing
us to restore the thinnest scene structures.

In addition, the simultaneous attempt to detect images structures and targets in all radar image
channels improves the probability to detect such structures. As shown in Figure 1, such an
improvement is already very substantial using only two SAR images.

5.6.2. Potential for change detection

In series of radar images acquired over time, the covariance matrix of the scene CovR contains
the information about the temporal evolution of the imaged area and enables the detection of
changes in scene physical properties (scene temporal evolution).

In a series of SAR images acquired by (not too...) different SAR’s, the covariance matrix of the
scene enables the detection of more aspects of the scene, as it is viewed by more SAR sensors.

5.6.3. MAP speckle filters and control systems

Let consider the mathematical form of the set of Equations (73), (75) and (79). Indeed, their
formulation is that of a control system, since both equations can be rewritten under the form
of Riccati’s [86] continuous time algebraic matricial equations:

−  A . X  –  X  .t A −  Q +  X  .tC  . P −1.C  . X  =  0 (80)

Equation (10) represents the optimal state controlled reconstruction at constant gain of linear
invariant processes (R and the textures of the channels) perturbed by white noises (speckle,
pixel spatial mismatch between channels), from observed evolving state variables (I and CovI)
[87]. The scene A Priori model acts as a command, and the covariance matrices act as controls.
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It is also noticeable that the MAP elaboration of information generates automatically the
feedback process, which enables to control the filtering process.

In addition, it is highly remarkable that Riccati’s theorem [86] stipulates the existence of a
unique positive definite solution for Equation (10). Therefore, this property holds also for the
MAP Equations (73), (75) and (79).

The extension of this noise filtering technique to the case of SAR and optical images set is
straightforward, as mentioned in § 5.3. It is also noticeable that, extending this method to the
case of complex SAR images, this technique presents a very interesting potential for super-
resolution. Such methodologies can be found in the literature (cf. [46], for example).

A major interest of control systems is that they offer wide possibilities for the choice and design
of additional commands (statistical and physical models) for further data exploitation. In this
view, speckle filtering should be regarded as a first step of integrated application oriented
control systems.

6. MAP speckle filters for complex SAR data

SLC images are complex valued images. Hence, every image pixel is assigned a complex value,
its complex amplitude Ac = i + j.q = I .exp(j.ϕ), which corresponds to an intensity I=i2+q2 and a
phase ϕ=Arctg(q/i).

Whereas the intensity I carries information related to the radar reflectivity R and the back‐
scattering coefficient σ° of the imaged scene, the phase of a complex pixel of a single SLC image
is totally random and does not carry any information about the scene when speckle is fully
developed. (It is noteworthy that only, phase differences between SLCs acquired in interfero‐
metric conditions, or phase differences between configurations of polarisation in SAR polari‐
metric data, carry information about the imaged scene).

Therefore, the quantity of interest to restore in SLC images through speckle filtering is the
radar reflectivity R. Thus, whereas the input of the speckle filters consists in complex radar
data, their output consists in radar reflectivity images, i.e. speckle filtered intensity images.

6.1. Single-look complex (SLC) SAR image: The CGs-DE MAP filter

In SLC radar data the spatial correlation of the speckle can be dealt with by taking into account
the spatial covariance matrix of the speckle in the filtering process. Indeed, the joint pdf of a
local sample X (Npix-dimention vector) of 1-look spatially correlated speckle is given by
Equation (7) (cf. § 2.1.2), can be written as [88] [89] [90] [91]:

Pu(X )  =  P(X / R)  =  1 / (πNpix. |CS |)  .exp − Xt *.CS −1.X (81)

where CS is the spatial covariance matrix of the complex speckle, estimated within the most
homogeneous part of the SLC radar image.
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In high and very-high spatial resolution SLC SAR images, which often exhibit strong textural
properties, it becomes difficult to consider any theoretical statistical model as a reliable A Priori
knowledge about scene texture. In such a situation, it seems reasonable to retrieve statistical
scene knowledge directly from the SAR image data [68] [69]Introducing the local entropy of
the radar reflectivity as A Priori scene knowledge [70] (cf. § 3.3.5), the Complex-Gaussian/
Distribution-Entropy MAP (CGs-DE MAP) filter for an SLC radar image is the solution of the
following equation [71]:

(1 / Npix) . t X *.CS −1.X −  R −  R 2.∑
k=1

Npix

log(Rk )−1 / Ln(10)  =  0  (82)

where Npix is the effective number of neighbour pixels taken into account in the computation
of local statistics. The radar reflectivites Rk are pre-estimated in this neighbourhood of the pixel
under processing by a first pass of speckle filtering in intensity.

An example of application of this filter is shown in Figure 2.

(a) (b) 

(a) unfiltered 1-look SAR image amplitude. (b) filtered SAR image amplitude obtained using the Complex-Gaussian-DE
MAP filter for SLC SAR image (cf. § 6.1).

Figure 2. RADARSAT-2 1-look SAR image (HH polarisation) acquired on April 30, 2009, over Capetown, South Africa
(Credits: Canadian Space Agency and MDA; filtered images: Privateers NV, using ®SARScape).

6.2. Separate complex looks, or series of SLC SAR images

Interest in adaptive speckle filtering of SLC image series arises from their ability to combine
both temporal or spectral diversity, and spatial diversity. The objective is to obtain a multilook
radar reflectivity image, where additional speckle reduction is obtained in the spatial domain
by averaging pixel values through locally adaptive filtering.

The final objective is to obtain very strong speckle smoothing in textureless areas and to reach
an ENL high enough (i.e. ENL>>30, and preferably ENL>150) to enable information extraction
using classic techniques, or combined use with optical imagery, while better restoring existing
or characteristic scene texture.
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6.2.1. Compount statistical speckle model for series of SLC SAR images

A SAR sensor can produce series of SLC SAR images in three different situations:

1. L separate complex looks are usually extracted from the useful Doppler band of the radar
signal, usually to produce a L-looks multilook image, but the individual looks may be
conserved at this stage of SAR image production. Let remind that this operation is done
at the cost of a loss in azimuth spatial resolution (cf. § 2.1.3). These looks generally overlap,
in the sense that they have in common a part of the Doppler spectrum of the original full-
resolution 1-look signal, in order to preserve as completely as possible the total amount
of backscattered radar signal. This overlap introduces a certain amount of speckle
correlation between looks extracted from adjacent portions of the Doppler spectrum.

2. In the case of a non-interferometric 1-look complex SAR data set, the individual SAR SLC
images acquired independently of each other show low or inexistent speckle correlation
between images.

3. However, in the case of interferometric 1-look complex SAR data, speckle correlation is
close to 1 (corresponding to perfect correlation) or very high, since speckle correlation
between SAR data acquisitions is exactly the fundamental requirement for interferometry.

As a consequence of these three possible configurations of a series of SLC images, a speckle
filter dealing with the whole series must be able to take into account the complex correlation
of speckle between the different images. The local complex covariance matrix CovS describes
completely both, the radar intensities in each SLC image, and the correlation between images.

Considering the whole set of SLC images, the measurement vector for each pixel is X={yn},
where yn=in+j.qn. When speckle is fully developed, the (in, qn) are statistically independent
random processes. However, the yn are correlated complex Gaussian random processes with
a joint conditional pdf given by [88]:

P(X / CovS ) =  exp(t X *.CovS −1.X ) /  (πL . |CovS |) (83)

where CovS=E[tX. X*] is the complex covariance matrix of the speckle between SLC images, |
CovS| is the determinant of CovS, and (CovS

-1/|CovS|) is the inverse complex correlation matrix
of the speckle. Theoretically, it is possible to compute the correlation matrix of the speckle from
the sensor’s and SAR processor’s parameters. But, since these parameters are in general not
easily available to SAR images users, CovS is estimated in practice over the most homogeneous
area identified in the images.

6.2.2. Gamma distributed scene model: The Complex-Gaussian–Gamma MAP filter

In the case of separate complex looks corresponding to the same SAR data acquisition, or of
series of SLC images acquired over time by the same SAR over a time-invariant scene, it is
quite reasonable to assume that the textural properties of the scene are similar in all the SLC’s.
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Therefore, scene texture may be locally modelled for all SLCs in the series, as well as in the
detected multilook image formed by incoherent pixel-per-pixel averaging, by the same
Gamma pdf with parameters E[R] and α (cf. § 3.3.4, Equation (52)). Locally, E[R] is estimated,
either by <I> or using Equation (67), and α is estimated by 1/CR

2 (cf. § 2.2.2, Equations (26) and
(27)), in an ergodic wide-sense stationary neighbourhood of the pixel under processing in the
(less noisy) multilook radar image.

In this situation, the Complex-Gaussian/Gamma MAP (CGs-Gamma MAP) filter for separate
complex looks (L 1-look SAR images) has the following expression [11]

R̂ =
< I > .(α − L −1) +  < I >2 .(α − L −1)2 +  4α. < I > .(t X *.(CovS

−1 / |CovS |).X )  
2α

(84)

Note that when the SLC images or the separate looks are independent, i.e. when the non-
diagonal terms of CovS are equal to zero, then tX*.(CovS

-1/|CovS|).X=L.<I>, and the filter is
equivalent to the Gamma-Gamma MAP filter for single detected SAR image (cf. § 3.3.4).
Therefore, independent SLC images can be incoherently summed to produce an L-looks
intensity image that is filtered using the Gamma-Gamma MAP filter (Equation (54)) with the
same α and R local parameters, for the same final result.

Finally, it is noteworthy that the ENL L’ of the multilook radar image can be computed from
the complex correlation coefficients ρmn between images m and n, computed from the cova‐
riance matrix of the speckle, i.e. CovS estimated over the most homogeneous area identified in
the images [11]:

L ’  =  L  . (1 + (2 / L ) .∑
n=1

L −1
∑

m=n+1

L
|ρmn|2 )

−1
(85)

This relationship may prove useful if SLC images are incoherently summed to produce a L’-
looks intensity image.

6.2.3. Prior knowledge gathered from the data: The Complex-Gaussian-DE MAP filter

High and very-high spatial resolution SLC SAR images often exhibit strong textural properties.
As exposed above, in such a situation, statistical scene knowledge is estimated from the radar
data [68] [69]Introducing the local entropy of the radar reflectivity as A Priori scene knowledge
[70] (cf. § 3.3.5), the Complex-Gaussian/Distribution-Entropy MAP (CGs-DE MAP) filter for
an SLC image series (L images) is the solution of the following equation [71]:

t X *.CovS
−1.X –  L .Ri −  Ri

2. ∑
k=1

Npix
log(Rik )−1/Ln(10)  =  0 (86)

where CovS is the covariance matrix of the speckle between the different SLC images [11] and
Npix is the effective number of neighbour pixels taken into account in the computation of local
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statistics. The radar reflectivites Rk are pre-estimated in this neighbourhood of the pixel under
processing by a first pass of multichannel speckle filtering of the L images in intensity (using
Equation (84) for example).

An application of this filter to a series of 18 (3x6) SLC SAR images is shown in Figure 3.

(a) (b) 

(a) color composition of three unfiltered 6-looks SAR images, each one obtained by pixel-per-pixel averaging of 6 indi‐
vidual 1-look images. (b) color composition of three speckle filtered images, each one obtained using the Complex-
Gaussian-DE MAP filter for series (6 images) of SLC SAR images (cf. § 6.2.3).

Figure 3. Series of 18 (3x6) COSMO-SkyMed 1-look spotlight SAR images (HH and VV polarisations) acquired between
February 2 and September 30, 2009, over Perito Moreno in Patagonia, Argentina (Credits: original images: Italian
Space Agency; filtered images: Privateers NV, using ®SARScape).

7. MAP speckle filters for polarimetric radar data

7.1. Polarimetric radar data representation, and polarimetric speckle model

A polarimetric radar system produces, for each pixel location, a scattering measurement
matrix, which is the scattering matrix S of the corresponding surface (cf. Section 1, Equation
(1)) corrupted by speckle noise.

The first polarimetric speckle filter ever developed [92] resulted in an optimal summation of
the intensities IHH, IHV, IVV of the polarisation channels. The resulting image is called the
"improved span" image:

ISpan =  IHH + (1 + |ρHHVV |2 ) .IHV . E (IHH ) / E (IHV ) +  IVV .E (IHH ) / E (IVV ) (87)

where ρHHVV is the complex correlation coefficient between SHH and SVV.

However, Equation (87) clearly shows that the ENL achieved in the span image will barely
reach 3, which remains largely insufficient to meet the noise reduction requirements of remote
sensing applications. Besides, the physical interpretation of ISpan, which is a mixture of HH, VV,
HV radar reflectivities is questionable. In addition, scene information contained in the
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polarimetric diversity of the radar measurement as well as in the complex correlations between
polarimetric channels is lost in the process.

Lee et al. [93] developed a polarimetric optimally combining the polarisation channels to
restore the radiometric information in the HH, VV, and HV channels. This polarimetric speckle
filter has been shown to preserve polarimetric signatures [94].

Nevertheless, the ultimate aim of polarimetric speckle filtering is to restore the full polarimetric
scattering matrix S, or at least the radar reflectivities in the HH, HV, VV configurations of
polarisation, while achieving a very high ENL value (>100) in the filtered data. To achieve these
objectives, fully polarimetric adaptive speckle filters take profit of both the entire polarimetric
diversity (i.e. the full scattering matrix) and the spatial diversity (i.e. local statistics around the
location under processing) [95].

7.1.1. Polarimetric covariance matrix

Under the assumption of reciprocity, SHV=SVH, the speckle-free (denoised) scattering matrix S
can be transformed into its covariance matrix CS, as follows:

CS =( |SHH |2 SHH .SHV * SHH .SVV *

SHH *.SHV |SHV |2  SHV .SVV *  

SHH *.SVV SHV *.SVV |SVV |2
) (88)

This representation puts emphasis on the radar reflectivities RHH=|SHH|2, RHV=|SHV|2 and RVV=|
SVV|2, as well as the covariances between HH, HV and VV configurations of polarisation.

If the polarimetric measurement is made by a monostatic radar system, the covariance matrix
ΣS of the actual polarimetric radar measurement is the speckle-corrupted version of CS.

It is noteworthy that it is possible to produce multilook polarimetric data (L-looks) from the
original 1-look data. For L-looks polarimetric data obtained by either spatial averaging
(generally in azimuth) or spectral multilooking (cf. § 1.1.4), ΣS multilook is defined by:

ΣS  multilook  =   (1 / L ).∑
1

L
(S pq.S pqt*)  for all combinations p,q of H,V (89)

7.1.2. Polarimetric vector, degrees of coherence, phase differences

For convenience, the polarimetric covariance matrix is often expressed, without changing its
overall information content, under the form of a real valued vector, called the "polarimetric
feature vector", or "polarimetric vector" X:

t X  =  (  |SHH |2 ,  |SHV |2 ,  |SVV |2 ,  Re(SHH .SVV *),  Im(SHH .SVV *),
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(90)
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SHH *.SHV |SHV |2  SHV .SVV *  

SHH *.SVV SHV *.SVV |SVV |2
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Two quantities of great interest in polarimetric SAR applications can be obtained from the
polarimetric vector:

1) The Phase Differences ΔφKL-MN between radar returns in configurations of polarisation KL
and MN (where K,L,M,N ∈ {H,V} are preferably considered in most applications), which are
computed as follows:

ΔφKL-MN =  Arg(SKL.SMN * )=  Arctan Im(SKL) / Re(SKL) − Arctan Im(SMN) / Re(SMN)  (91)

2) The (complex) Degrees of Coherences γKL-MN, which measure wave coherence between radar
returns in two configurations of polarisation KL and MN, and express textural properties of
an extended wide-sense stationary scene, are defined as follows:

γKL-MN =  
E Re(SKL.SMN * ) + j. E[Im(SKL.SMN * )

(E |SKL|2 .E |SMN|2  (92)

However, in the actual polarimetric radar measurement, the observations ΔφKL-MN of the
phases differences, and the observations ρKL-MN of the complex degrees of coherence are the
speckle-corrupted versions of Arg(SKL.SMN * ) and γKL-MN, respectivly. Therefore, these quan‐
tities, which represent important contributions of radar polarimetry must also be speckle
filtered, justifying the development of fully-polarimetric speckle filters that do not limit
themselves to the restoration of radar reflectivities.

7.1.3. Polarimetric speckle model

In the case of polarimetric radar data, ΣS is the actually observed polarimetric covariance
matrix, and CS is the unspeckled polarimetric covariance matrix, i.e. the quantity to restore
through speckle filtering. In the reciprocal case, and for low look correlation, the conditional
pdf of ΣS is a complex Wishart distribution of the form [72]:

P(ΣS / CS)=
(det  ΣS)L −3.L L −3

π3.Γ(L ).Γ(L −1).Γ(L −2).(det CS )L  . exp −Tr(L .CS −1.ΣS )   (93)

where L is the ENL of the "improved span" image defined by Equation (87) [92].

7.2. Restoration of the whole polarimetric vector / covariance matrix

7.2.1. Gamma distributed scene model: The Wishart-Gamma MAP filter

Using physical backscattering models, assuming (as a rough approximation) that texture is
identical in all polarizations, we get the following approximation [72]:
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CS =μ . E CS (94)

where μ is the scalar texture parameter equal to the normalized number of scatterers within
the resolution cell, and E(CS) is the mean covariance matrix [92].

P(μ) =  α α / Γ(α) . exp(−α.μ) . μ α−1      and      E μ =  1 (95)

The characterisation of scene heterogeneity by only one textural random variable μ bases on
the assumption that textural properties are identical in all configurations of polarisation.
However, this has been shown to be inexact, both experimentally [96] and theoretically [97].
Therefore, μ should be regarded as an average textural characterisation of the scene observed
in all possible configurations of polarisation. Besides the advantage of estimating α=1/ CR

2

(using Equation (27)) in a less noisy multilook image is an additional justification to do it in
the "improved span" image defined by Equation (87) [92].

Introducing the first-order statistical models for fully-polarimetric speckle (Equation (93)) and
the polarimetric texture parameter μ in the MAP equation (Equation (50), cf. § 3.3.2), the fully-
polarimetric Wishart-Gamma MAP filter restores the value of μ as:

μ̂ =
(α − L −1)  +  (α − L −1)2 +  4.α.L .Tr(E CS

−1.ΣS )  
2α

(96)

where Tr(.) denotes the trace of a matrix.

Finally, the restored (speckle filtered) version of the covariance matrix CS is obtained using the
maximum likelihood estimator described in [72]:

ĈS =  μ̂ .E CS (97)

7.2.2. Prior knowledge gathered from polarimetric SAR data: The Wishart-DE MAP filter

In high and very-high spatial resolution polarimetric SAR data, strong and/or mixed textural
properties justify to estimate statistical scene knowledge from the data themselves, rather than
assuming a A Priori theoretical model. Assuming that textural properties are identical in all
configurations of polarisation, the entropy constraint on scene texture ([68] [69] [70]) becomes:

P(μ) = (1 / μ). exp(−∑
k

μk .log(μk )  and E μ  =  1 (98)

In this case, the complex Wishart/Distribution-Entropy MAP (CW-DE MAP) filter for polari‐
metric multilook SAR data is expressed as [71]:
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L .Tr(E CS
−1.ΣS ) –  L .μ −μ 2.∑

k
log(μk )−1 / Ln(10)  =  0 (99)

E[CS] is obtained using the maximum likelihood estimator (Equation (97)) described in Lopès

et al. [72].

(a) (b) 

(c) (d) 

(e) (f) 

(a) color composition of the unfiltered HH (red), HV (green), and VV (blue) amplitudes. (b) color composition of the
speckle filtered HH, HV, and VV amplitudes obatained using the fully polarimetric Wishart-DE MAP filter (cf. § 7.2.2).
(c) color composition of the unfiltered HH-VV (red), HH-HV (green) and HV-VV (blue) degrees of coherence. (d) color
composition of the HH-VV, HH-HV, and HV-VV degrees of coherence obtained from the Wishart-DE MAP speckle fil‐
tered polarimetric vector (cf.cf. § 7.2.2). (e) Unfiltered HH-VV phase difference. (f) HH-VV phase difference obtained
from the Wishart-DE MAP speckle filtered polarimetric vector (cf.cf. § 7.2.2).

Figure 4. ALOS-PALSAR 6-looks polarimetric SAR imagery acquired on June 30, 2006 over Bavaria, Germany (Credits:
JAXA and MITI; filtered images: Privateers NV, using ®SARScape).
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The texture parameters μ k in the neighbourhood of the pixel under processing are pre-
estimated over an ergodic neighbourhood of the pixel under processing by a first speckle
filtering pass using the Wishart-Gamma MAP filter (cf. § 7.2.1).

Although these fully polarimetric MAP filters assume identical texture properties in the HH,
HV, and VV channels, which has been shown both experimentally [96] and theoretically [97]
inexact, they have nevertheless been shown to preserve polarimetric signatures [98]. Fully
polarimetric speckle filtering is illustrated in Figure 4.
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1. Introduction

1.1. A short review on SAR for forest mapping

Forests are a key natural resource providing a range of ecosystem services like carbon
sequestration, natural habitats for biodiverse fauna and flora, and providing food and fiber
for human consumption. To obtain sound information for management, protection, and
restoration of forests, some core information needs are: 1) mapping of forest extent, 2)
identification of areas of disturbance, 3) estimation of above ground biomass or growing stock
volume, and 4) estimation of stand canopy height. While the first two categories are of thematic
character, hence directly detectable from remote sensing data, the latter two variables need
inference from models driven with remote sensing data.

Severe storms and fire are examples of major disturbance events and remote sensing has been
used operationally to identify them with low spatial resolution (> 500 m) optical imagery from
sensors such as NOAA AVHRR, MODIS, ERS ATSR-1/2 and SPOT-Vegetation. While identi‐
fication and rapid monitoring of disturbance events is invaluable, higher resolution sensors
are needed to map areal extent of the events for resource management purposes. Typical
optical remote sensors used to date for responding to such needs are carried on the Land‐
sat-5/-8, SPOT, RapidEye, IKONOS, QuickBird, GeoEye, and WorldView satellites. With a
spatial resolution ranging from 30 m to better than 0.5 m, accurate information on forest area
and disturbances can be retrieved. Nonetheless, optical remote sensing is limited in areas
which have significant cloud cover for long periods of the year (e.g. tropical), and in those
regions where sun light is an additional limiting factor (e.g. boreal). Spaceborne Synthetic
Aperture Radar (SAR) data with their cloud-penetrating and day-night measurements
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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capability provide a key data resource, complementing optical instruments for forest moni‐
toring.

For the purposes of estimating forest biomass and growing stock volumes at stand scale, SAR
systems have been shown as a valuable mapping technique due to their sensitivity to the
vertical structure of forests. First results were achieved at the beginning of the ‘90s using the
three frequency polarimetric airborne AIRSAR NASA/JPL SAR system. A well-established
approach for generating forest biomass maps is to relate the observed backscattering coefficient
to ground measurements. Using parametric exponential regressions functions or non-
parametric ensemble regression tree models, forest biomass is then estimated from the SAR
intensity data. Improvements in the estimation can be achieved by combining different
polarizations and/or by rationing several frequencies. In general, the radar backscatter was
shown to be positively correlated with some biophysical parameters such as the aboveground
biomass (AGB), tree height, tree age, diameter at breast height, and basal area. Comparison of
radar data acquired at C-, L-, and P-band frequencies showed that correlation of the radar
backscatter with the AGB increases with increasing radar wavelength. At these frequencies,
HH- and HV-polarization provide a greater sensitivity to AGB than VV-polarization [1]. Based
on hundreds of studies in different ecological regions, it has been recognized that backscatter-
only approaches reach a saturation level, i.e. an increase of the radar backscatter do not
correspond to an increase of the AGB. The typical saturation level observed is around 300 Mg/
ha, for P-Band at 100 Mg/ha for L-Band with observations of HH and HV polarizations. To
overcome the saturation problem five approaches have been pursued in the past decades:

1. Ferrazzoli et al. [3] proposes to make use of bistatic radar at L-band in a specular config‐
uration. In order to demonstrate its feasibility, a simulation analysis has been carried out
by using a microwave model of vegetated terrain. The results demonstrated that woody
volume up to 900 tons/ha could be inferred, hence enabling to completely solve the
saturation problem. However, this approach still remains at theoretical level, since up to
date no bistatic L-band SAR systems are available.

2. By using low frequency the attenuation is significantly reduced, and the large scale
structures (of the order of the wavelength) dominate the backscatter. The response from
non-forested areas is therefore drastically reduced, normally much below the system noise
floor. The response from forested areas, on the other hand, is dominated by the large trunk
and branch structures together with coherence ground reflection interactions. Since these
are generally where most of the AGB is stored, the correlation of the backscatter to AGB
usually increases with decreasing frequency. CARABAS – an ultra-wideband airborne
SAR system operating at VHF band (20-90 MHz) – has shown that the dynamic range of
the scattering is significantly larger than at P-band (440 MHz), suggesting a greater
sensitivity of the lower frequency [4].

3. Another approach takes advantage of the fact that tree height can be inferred using
airborne single-pass Interferometric SAR (InSAR) dual frequency (X-and P-band) data,
or alternatively, LIght Detection And Ranging (LIDAR) systems. AGB is subsequent‐
ly retrieved by species using allometric equations. Moreover, by integrating into the
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inference function the interferometric  height and the P-band backscatter  at  different
polarizations, it has been demonstrated that the well-known saturation level could be
overcome [5]. On a still experimental basis, it has been shown that canopy height (CH)
can  be  also  retrieved  by  using  airborne  single-pass  L-band  polarimetric  InSAR
technique including a forest model involving a random volume of scatterers situated
over a ground scattering model [6].

4. C-band backscatter is generally deemed as useless due to the weak sensitivity with respect
to biophysical properties. Moreover, the strong sensitivity to the dielectric properties of
the scattering objects makes C-band backscatter unreliable for monitoring forest. For this
reason, low frequencies have been preferred. Santoro et al. [7] demonstrate that accurate
estimates of forest GSV can be retrieved from C-band backscatter data under the require‐
ment that a large stack of observations is available. The estimation of the GSV is carried
out by means of an algorithm, which combines hyper-temporal C-band data stacks, the
inversion of a water-cloud model relating the GSV to the forest backscatter, and a multi-
temporal combination of GSV estimates from each image. Traditionally, model training
is based on in situ measurements for unvegetated and dense forest areas and correspond‐
ing forest backscatter measurements. The novel aspect is that these are identified by means
of the MODIS Vegetation Continuous Fields (VCF) product, where the corresponding
measures are computed. The hyper-temporal combination exploits the different sensitiv‐
ities of the forest backscatter to GSV, which can be retrieved from the estimates of the a
priori unknown model parameters. Results show that the inferred RMSE is generally
below 40% for full resolution data and below 20% for aggregated versions at reduced
spatial resolution. The key outcome is that the retrieved GSV is never affected by satura‐
tion, with estimates in line with in situ data up to 300 m3/ha.

5. Estimate forest biomass through regressions based on exponential function exclusively
derived from single frequency single/dual polarizations, ensemble regression models at
eco-regions level are developed by considering multi-sensor data and bio-and geo-
physical gradient data (elevation, slope, aspect, canopy density, and land cover). Works
performed in the United States and Chile have shown that ensemble regression models
based on multi-temporal ALOS PALSAR-1 intensities and repeat-pass coherences at HH
and HV polarization as well as Landsat data yield AGB and vegetation height accuracies
with R2 in the range of 0.7 to 0.85 [8].

In summary, looking at the thematic (area and disturbances) and bio-physical (AGB and CH
in primis) information which can be extracted or inferred from remote sensing data, it can be
stated that:

• Depending upon the eco-region, environmental conditions, and forest practices, remote
sensing data should be accordingly selected – in particular considering the seasonality, i.e.
vegetation phenology – and algorithms consequently adapted. For instance, due to the
different practices, forest clear cuts in Amazon have a completely different response at L-
band than in the tropical forest in Africa, where, typically, trunks are left on the ground for
months, hence engendering a much stronger backscatter, compared to a cleared area.
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• The availability of multi-/hyper-temporal SAR data considerably contributes, firstly, to
enhance the data quality by significantly reducing the speckle. In this respect, it is worth
mentioning that future hyper-temporal data stacks acquired from Sentinel-1A/B will play,
in terms of signal processing, a relevant role for the provision of high quality data (i.e. high
Equivalent Number of Looks) at highest level of detail. This will allow, at analysis level, the
exploitation of a pixel based approach, simpler and less time consuming than a region based
one. Secondly, the temporal component provides an additional source of information for
the identification of land cover classes and the appropriate treatment of moisture related
phonological influence on the backscatter variations not detectable in a single-date image.
Thirdly, temporal data stacks, in particular at low wavelengths, allow the estimation of the
interferometric SAR coherence, proven useful for thematic and bio-physical purposes. Also,
multi-/hyper-temporal SAR data sets can additionally be used in fusion with optical data,
as well as bio- and geo-physical gradient data, in order to develop specific ensemble
regression models at eco-regions level for the retrieval of key biophysical parameters.

• Planned new SAR missions like ESA’s Sentinel-1 C-Band SAR and BIOMASS P-band SAR,
JAXA’s ALOS-2 PALSAR, Argentina’s SAOCOM L-Band SAR, and NASA/India’s L-and S-
Band NISAR will doubtlessly play a relevant role for the estimation of forest bio-physical
parameters.

2. The ALOS PALSAR-1 mission

Between its launch in January 2006 and the end of the mission in April 2011, the ALOS
PALSAR-1 system has acquired wall-to-wall global coverage on an annual basis, which has
resulted in up to five acquisitions per year at a particular location [9]. The first-of-its-kind global
observation strategy for the ALOS mission provided thus an unprecedented opportunity to
take global snapshots of Earth’s natural resources at very narrow time-steps and high resolu‐
tion. Figure 1 shows a pan-tropical ALOS PALSAR-1 HH/HV mosaic: around 17, 000 ALOS
PALSAR-1 single-look complex data frames (coverage 70x70 km per frame) were multi-look
processed to a 4-look image corresponding to 15 m pixel spacing. Subsequently, the multi-
looked images were speckle filtered, radiometric calibrated, normalized and terrain geocoded
using the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM).
Geocoded frames where finally assembled to image mosaic tiles in resolutions of 15 m, 50 m,
and 100 m. A similar procedure, but in this case starting from the K&C ALOS PALSAR-1 slant
range amplitude data (16 looks in azimuth and 4 looks in range, corresponding to a pixel
spacing of 37.5 m in range and 50.7 m in azimuth), has been exploited by De Grandi et al. [10],
where the first African ALOS PALSAR-1 HH/HV mosaic has been generated. In the image
mosaic illustrated in Figure 1, the HH information channel was assigned to red, HV was
assigned to green, and the ratio between the two (HH/HV) was assigned to blue. With the
applied color assignment, green and yellow tones correspond to instances where both HH and
HV information channels have high energy returns e.g., over forested and urban areas. Blue
and magenta colors are generally found in non-forested areas, where the HH polarized energy
often exhibits a higher return from the surface than the HV polarized energy.
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Figure 1. ALOS PALSAR-1 pan-tropical mosaic. Image Data © by JAXA/METI, Image Processing by WHRC/ASF/sarmap.
Background image from MODIS by NASA/JPL.

L-band backscatter is correlated to increasing AGB or GSV, as, with increasing canopy density
and height, the backscatter contribution from the forest floor declines and the volume scatter‐
ing contribution from the canopy increases. The contribution of stem-ground interactions to
the total backscatter is generally weak due to diffuse scattering at the rough forest floor and
substantial attenuation of the signals in the vegetation layer unless the forest floor is flooded
or the canopies are frozen. In order to capture the contribution of the environmental conditions
to the measured forest backscatter, the retrieval of GSV or AGB with radar backscatter
observations postulates a set of in situ measurements to tune models that relate the measured
backscatter to the biophysical forest parameters to the prevailing conditions. However,
extensive in situ data are often not available, either because of the vastness or remoteness of
forests or because of restrictions on the use of existing measurements. Even if available,
uncertainties connected to in situ measurements can be substantial. Two different approaches
for model calibration that do require no or only very limited field data have been developed
in recent years:

1. A number of investigators have assessed the possibility to calibrate models, relating radar
observations to forest biophysical attributes, using LIDAR derived attribute estimates,
which require only a limited set of in situ data for model calibration. The mapping of forest
resources by means of fusion of LIDAR and SAR was tested, for instance, by Englhart et
al. [11], Kellndorfer et al., [12], and Atwood et al. [14]. In [11], AGB estimates from a
number of airborne LIDAR transects acquired over Kalimantan, Indonesia, were used to
calibrate models, relating multi-temporal TerraSAR-X and ALOS PALSAR L-band data
to AGB, and extrapolated to a 280, 000 ha area (RMSE of 79 t/ha, R2 of 0.53). Kellndorfer
et al. extrapolated airborne LIDAR derived estimates of CH for a 1,200 km2 area in
Maryland, USA, to an area of 110, 000 km2 using SRTM, National Elevation Dataset (NED)
and Landsat data as spatial predictor layers in an ensemble regression tree model. An
RMSE of 4.4 m (Pearson correlation of 0.71) when independently validating against plot-
level forest inventory data has been reported. Finally, in [14] for boreal forest, the RMSE
of the AGB estimate was found to be 34.9 Mg/ha over a biomass range of 250 Mg/ha; only
marginally less accurate than the 33.5 Mg/ha accuracy of the LIDAR technique.
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2. Others have investigated the possibility of a fully automated algorithm that makes the
retrieval based on radar backscatter data (mostly) independent of the availability of in
situ data. Santoro et al. [7] presented a novel approach for the mapping of boreal GSV
using multi-temporal ENVISAT ASAR ScanSAR C-band. A similar approach was
presented in Cartus et al. [8] for ERS-1/2 Tandem coherence to map GSV classes in
Northeast China. In both studies, the automation of the retrieval was accomplished with
the aid of the MODIS VCF [13], which was used to calibrate semi-empirical models,
relating the SAR/InSAR data to GSV.

In the following three sections, three case studies are presented. Particular emphasis in all these
works is set 1) on the use of multi-temporal ALOS PALSAR-1 data; 2) on the data acquisition
period; 3) on the wise integration with other data sets; 4) on the limitations of the ALOS
PALSAR-1 data.

3. Fusion of ALOS PALSAR-1, Landsat ETM+ and ALS

Currently, small-footprint Airborne Laser Scanners (ALS) represent the most deployed type
of LIDAR sensors. Numerous studies have illustrated the high performance of ALS for the
estimation of forest biophysical attributes. Because of the scanning capability, ALS provide for
the spatially explicit mapping of forests covered by transects of several hundred meters in
width. However, wall-to-wall coverage of large forest areas with ALS is in most cases prohib‐
itively expensive, which is why fusion with image data is required to generate wall-to-wall
maps of forest attributes for larger areas. The goal of this study is to investigate robust methods
for estimating CH and GSV by spatially extending ALS data using ALOS PALSAR-1 and
Landsat ETM+ data, i.e. by calibrating models, relating the spaceborne data to CH and GSV,
with the aid of ALS derived CH and GSV estimates. Landsat TM/ETM+ data have been
considered as in several studies it was shown that a retrieval of forest biophysical parameters
based on the fusion of SAR and optical data yielded higher retrieval accuracies [16, 17, 18].

The study area extended over three administrative regions: Maule, Biobio, and Araucania and
covered parts of the coastal Cordillera and the Chilean Central Valley (Figure 2). The forest is
dominated by even-aged plantations of Pinus radiata and to a lesser extent (<20% by area)
Eucalyptus globulus. Stand-level forest inventory data for 437 stands that were collected in the
timeframe of the LIDAR campaigns were provided by the ARAUCO timber company. The
geospatial information company Digimapas Chile provided small-footprint airborne LIDAR
data for an area of ~2.5 million ha. The data were acquired between 2006 and 2008. The used
airborne platform consisted of a laser scanning system (Riegl LMS-Q560), two digital cameras
(Applanix DSS 322) and navigation equipment (Applanix POS AV 401). The LIDAR data have
a nominal range resolution of 2 cm and delivers an absolute vertical and horizontal accuracy
of better than 15 and 25 cm, respectively. During the operation, the height and intensity of
multiple discrete laser returns for each laser pulse were recorded. The laser point density on
the ground varied between 1 and 3 hits/m2 and the scan angles ranged up to 22.5°. Digimapas
produced and delivered fully geocoded Digital Terrain Models (DTM) and Surface Models
(DSM) with 1 × 1 m2 pixel spacing.
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Under a NASA/JAXA data agreement, the Alaska Satellite Facility (ASF) provided a multi-
temporal ALOS PALSAR-1 dataset. In total, 189 Fine Beam Dual (FBD) polarization and 181
Fine Beam Single (FBS) polarization Single Look Complex images were available. The FBD
data were acquired between June and December 2007 and the FBS data between January and
June and November and December 2007. Ten FBD and 14 FBS images (from three different
ALOS paths) covering the same area as the ALS data were used. The multi-annual ALOS
PALSAR-1 acquisitions also allowed for the computation of the interferometric repeat-pass
coherence, which describes the temporal stability of scattering between two images and
generally decreases with increasing forest density and height. Despite the long repeat interval
of 46 days – hence the increased risk of temporal decorrelation - spaceborne L-band repeat-
pass coherence has shown some potential for the retrieval of forest biophysical parameters, in
particular in combination with intensity measurements, when the imaging conditions were
suitable. The interferometric coherence was computed for image pairs with temporal baselines
of 46 or 92 days and all possible combinations of image modes (FBD-FBD, FBS-FBS, FBS-FBD).
In total, coherence images for 11 acquisition date combinations were produced. The perpen‐
dicular baselines were between 40 and 900 m (Table 1). In addition, three Landsat 7 ETM+
images were obtained from the Global Land Cover Facility. Two images were acquired in
December 2005 and one in January 2007 under cloud-free conditions over the study area. The
L1T surface reflectance data were already calibrated and corrected for terrain as well as
atmospheric effects [19].

Figure 2. ALOS PALSAR-1 mosaic for Central Chile. RGB=HH, HV and HH/HV ratio. The white rectangles denote the
areas with wall-to-wall ALS coverage and the red rectangles denote the areas used for testing the fusion of LIDAR,
ALOS PALSAR-1 and Landsat ETM+.
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A Canopy Height Model (CHM) with 1×1 m2 pixel spacing was produced by subtracting the
ALS DTM from the DSM. A suite of ALS canopy structure indices characterizing different
aspects of the forests canopy structure were computed from the CHM for each stand in the
inventory data. The indices comprised the percentiles of the height distribution of first returns
in steps of 10%, the coefficient of variation, mean, kurtosis, skewness and several canopy
density indices (i.e, the proportion of first returns from heights above different height thresh‐
olds). A Gaussian fit to the profile of first return heights was computed as an additional means
of characterizing canopy vertical structure (i.e. with the number of Gaussians used to describe
the profile). From the ALOS PALSAR-1 data, the average intensity and coherence were
computed within each stand. From the Landsat ETM+ imagery, the average reflectance
observed in bands 1 to 5 and 7 were computed.

3.1. Segmentation

Image segmentation was conducted on the ALS CHM using the multi-resolution segmentation
algorithm implemented in the eCognition. Segmentation was used to delineate “stand-like”
image object polygons across the entire study area (Figure 3). For the segmentation, the CHM
was aggregated by means of simple block averaging from 1 to 4 m pixels as a tradeoff between
preserving spatial detail and reducing the amount of data to a level that could be handled by
the software in an acceptable amount of time. The segmentation parameters (i.e. scale,
compactness, smoothness) were chosen so that segments had sizes comparable to the polygons
in the inventory dataset (on average 8 ha) and smoothly followed stand boundaries visible in
the CHM. For the segments, the same set of ALS, ALOS PALSAR-1 and Landsat ETM+ canopy
structure indices were extracted as were for the inventory stands.

Figure 3. Segmented canopy height model (left) and height profile of ALS first returns for a radiata pine stand with a
GSV of 96 m3/ha and a CH of 17 m (right).

Land Applications of Radar Remote Sensing66



A Canopy Height Model (CHM) with 1×1 m2 pixel spacing was produced by subtracting the
ALS DTM from the DSM. A suite of ALS canopy structure indices characterizing different
aspects of the forests canopy structure were computed from the CHM for each stand in the
inventory data. The indices comprised the percentiles of the height distribution of first returns
in steps of 10%, the coefficient of variation, mean, kurtosis, skewness and several canopy
density indices (i.e, the proportion of first returns from heights above different height thresh‐
olds). A Gaussian fit to the profile of first return heights was computed as an additional means
of characterizing canopy vertical structure (i.e. with the number of Gaussians used to describe
the profile). From the ALOS PALSAR-1 data, the average intensity and coherence were
computed within each stand. From the Landsat ETM+ imagery, the average reflectance
observed in bands 1 to 5 and 7 were computed.

3.1. Segmentation

Image segmentation was conducted on the ALS CHM using the multi-resolution segmentation
algorithm implemented in the eCognition. Segmentation was used to delineate “stand-like”
image object polygons across the entire study area (Figure 3). For the segmentation, the CHM
was aggregated by means of simple block averaging from 1 to 4 m pixels as a tradeoff between
preserving spatial detail and reducing the amount of data to a level that could be handled by
the software in an acceptable amount of time. The segmentation parameters (i.e. scale,
compactness, smoothness) were chosen so that segments had sizes comparable to the polygons
in the inventory dataset (on average 8 ha) and smoothly followed stand boundaries visible in
the CHM. For the segments, the same set of ALS, ALOS PALSAR-1 and Landsat ETM+ canopy
structure indices were extracted as were for the inventory stands.

Figure 3. Segmented canopy height model (left) and height profile of ALS first returns for a radiata pine stand with a
GSV of 96 m3/ha and a CH of 17 m (right).

Land Applications of Radar Remote Sensing66

3.2. Modeling

For modeling the relationship between the suite of space- and airborne remote sensing data
and the in situ measurements of CH and GSV we used randomForest [20], a data mining
algorithm that has proven robust and computationally efficient and that has successfully been
applied in several large-scale forest mapping efforts [17, 18]. In randomForest, a large number
of regression trees are grown, each recursively partitioning the training data, considering at
every node a random selection of predictors. The predictions from all regression trees are then
averaged to obtain a single estimate. Each regression tree is grown using a random selection
of samples. The rest of the samples, the so-called ‘out-of-bag’ cases (OOB), are estimated via
the respective regression trees after training and the obtained OOB predictions for all trees are
then averaged to obtain an unbiased estimate for the retrieval error.

3.3. Fusion experiments

In a  two stage up-scaling approach,  randomForest  was used for  the modeling of  1)  the
relationship between the ALS canopy structure indices and the in situ measurements of CH
and GSV and 2) the relationship between the ALS-based estimates of GSV and CH and the
ALOS PALSAR-1 / Landsat ETM+ datasets. The development of fusion models incorporat‐
ing these data was performed within three 100 km2 test sites. The test sites, as shown in
Table 1, were selected so that 1) a wide range of stand growth stages were covered; 2) no
management activities (e.g. thinning, logging, etc.) had occurred during the image acquisi‐
tion timeframe; and 3) a cluster of inventory polygons (i.e. stands) was located within each
site. Two of the selected test sites were located in the Cordillera along the Pacific coast and
one in the Chilean Central Valley (Figure 2).  In total,  105 inventory stands were located
within the area of the three test sites. These 105 stands were used for validation purposes
only  (i.e.  they  were  not  used  for  the  development  of  models,  relating  the  ALS canopy
structure indices to CH and GSV). At each of the test sites, ALS-derived estimates of CH
and GSV for the segments in the ALS CHM were used as response variables in randomFor‐
est  to  develop new models,  relating all  available  per-segment  ALOS PALSAR-1 intensi‐
ties and coherences as well as Landsat ETM+ reflectances to CH and GSV, respectively. The
retrieval accuracy was assessed 1) by comparing the OOB estimates for CH and GSV to the
per-segment ALS predictions of CH and GSV; and 2) by applying the developed models
to the ALOS PALSAR-1 and Landsat ETM+ data extracted for the inventory polygons that
were located within the area of the test sites and comparing the obtained estimates for CH
and GSV to the respective in situ measurements.

3.4. Stand-level retrieval of canopy height and growing stock volume with ALS

Figure 4 illustrates the stand-level OOB estimates for GSV and CH when using all stand-level
ALS canopy structure indices as predictors and the in situ measurements of CH and GSV
obtained from 319 stands as response variables.
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Figure 4. RandomForest out-of-bag GSV and CH estimates based on stand-level ALS canopy structure indices versus in
situ GSV and CH.

The retrieval accuracy is given with the coefficient of determination (R2), the root mean square
error (RMSE), the relative RMSE (RMSEr) and the bias. The RMSEr represented the RMSE
divided by the average GSV and CH in the in situ dataset and the bias was calculated from the

Test

Site

Slope

(Mean/SD)

CH and GSV

(mean/SD)
PALSAR-1 Data Coherence (Bn)

Date Mode

1 16/9°

CHFID: 29/11 m

CHALS: 25/9 m

GSVFID: 386/198 m3/ha

GSVALS: 316/152 m3/ha

10 Jul.

10 Oct.

7 Jan.

25 Nov.

11 Dec.

FBD

FBD

FBS

FBS

FBS

10 Jul. & 10 Oct. (503 m)

10 Oct. & 25 Nov. (304 m)

2 2.6/5°

CHFID: 19/4 m

CHALS: 17/6 m

GSVFID: 172/70 m3/ha

GSVALS: 154/98 m3/ha

5 Jul.

5 Oct.

17 Feb.

4 Apr.

20 Nov.

FBD

FBD

FBS

FBS

FBS

5 Jul. & 5 Oct. (597 m)

5 Oct. & 20 Nov. (214 m)

17 Feb. & 4 Apr. (567 m)

4 Apr. & 5 Jul. (320 m)

3 6.5/4°

CHFID: 21/3 m

CHALS: 16/6 m

GSVFID: 172/53 m3/ha

GSVALS: 144/102 m3/ha

17 Jul.

1 Sep.

1 Mar.

2 Dec.

FBD

FBD

FBS

FBS

17 Jul. & 1 Sep. (42 m)

1 Sep. & 2 Dec. (887 m)

Table 1. Properties of forest in inventory stands and segments derived from the ALS CHM (CH and GSV estimates from
ALS) and the ALOS PALSAR-1 SAR/InSAR imagery available at three 100 km2 test sites.
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difference between the average GSV and CH in the in situ dataset and the ALS predictions,
respectively. In the case of the GSV retrieval, the R2 was 0.81, the RMSE was 62 m3/ha and the
relative RMSE was 22 % when comparing the randomForest OOB predictions to the inventory
data. In the case of CH, the R2 was 0.93, the RMSE was 1.7 m and the RMSEr was 7.1 %. The
bias was negligible in both cases. When using independent sets of training (67 %) and testing
samples (33 %), the retrieval accuracies did not differ significantly (in the range of 1 %) from
the OOB results.

3.5. CH and GSV retrieval through synergy of ALS, ALOS PALSAR-1 and Landsat ETM+

Figure 5 illustrates the performance of the stand-level CH and GSV at the three 100 km2

test sites when using all available spaceborne predictor layers (i.e. up to 18 layers includ‐
ing  multi-temporal  ALOS  PALSAR-1  HH/HV  intensities,  repeat-pass  coherences  and
Landsat ETM+reflectances) and the ALS-based per-segment estimates for CH and GSV as
response variables.

When comparing the OOB estimates of CH and GSV with the per-segment estimates from
ALS, similar accuracies in terms of the R2 and RMSEr were obtained at the three test sites. In
the case of GSV, the R2 was ~0.8 and the RMSEr was below 30% for all three test sites. In the
case of CH, the R2 was ~0.82–0.86 and the RMSEr was in the range of 15 to 17%. The RMSEs at
test sites 2 and 3 were about 43 m3/ha (GSV) and 2.5 m (CH), respectively. At test site 1, the
RMSEs were higher but since the average GSV and CH values were also higher (Table 1), the
RMSEr was comparable to that obtained at the other two sites. The bias was always close to
zero. The result of the independent validation using 105 inventory stands was consistent with
those obtained when comparing the ALOS PALSAR-1 / Landsat ETM+ OOB estimates for CH
and GSV to the respective ALS derived estimates. In the case of GSV, the R2 was between 0.72
and 0.87 and the RMSEr between 15 and 25%. In the case of CH, the R2 was between 0.76 and
0.86 and the RMSEr between 8 and 13%. The GSV and CH estimates for the inventory polygons
generally presented a somewhat larger bias of up to 20 m3/ha and 1 m, respectively.

In order to evaluate the benefit of integrating multi-temporal ALOS PALSAR-1 FBD and FBS
intensity images, repeat-pass coherence and Landsat ETM+ data, the CH retrieval has been
repeated using different combinations of the spaceborne datasets. Eight different combinations
of predictors were considered: (1) the best FBS intensity image (1×HH), (2) the best FBD
intensity image (1×HH, 1×HV), (3) all FBD intensity images (2×HH, 2×HV), (4) all FBS/FBD
intensity images (4–5×HH, 2×HV), (5) all FBD intensity (2×HH, 2×HV) and coherence images
(1×HH, 1×HV), (6) all FBS/FBD intensity (4–5×HH, 2×HV) and coherence images (2–4×HH,
1×HV), (7) Landsat only, (8) Landsat and all FBS/FBD intensity (4–5×HH, 2×HV) and coherence
images (2–4×HH, 1×HV). The retrieval accuracies that were achieved when using intensities
from only one FBS or FBD acquisition were low with less than 50% of CH variance being
explained and RMS errors in the range of 4 to 6 m at test sites 2 and 3 and 8 to 10 m at test site
1 (i.e. the test site with the highest average and maximum CH) when comparing the random‐
Forest OOB against the ALS estimates (Figure 6).
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As was to be expected, the retrieval with the FBD images performed somewhat better than
the retrieval with FBS since the FBD images included the HV intensity. The integration of
multi-temporal  intensity  observations  allowed substantial  improvements  of  the  retrieval
performance. When combining all  available FBD intensities,  the R2 and RMSE improved

Figure 5. Estimates of GSV and CH obtained through fusion of multi-temporal dual polarization ALOS PALSAR-1 in‐
tensities and coherence and Landsat ETM+ data versus 1) LIDAR estimates of GSV and CH for segments derived from
the CHM (grey dots); 2) in situ measurements of CH and GSV (black dots).
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for about 5 to 12% and 0.25 to 0.8 m, respectively.  The R2 and RMSE improved further
when adding the stack of FBS intensity images for 6.5 to 12% (R2) and 0.3 to 0.7 m (RMSE).
The integration of the coherence images resulted as well in higher retrieval accuracies. When
using all available FBS/FBD intensities and coherences, the R2 and RMSE were in the range
of 0.75 to 0.8 and 3 m at test sites 2 and 3 and 0.60 and 6 m at test site 1,  respectively.
Finally, the R2 and RMSE improved significantly for 6 to 22% and 0.4 to 2 m, respective‐
ly,  when adding  the  Landsat  ETM+ data  to  the  stack  of  multi-temporal  intensities  and
coherences.  When  testing  the  retrieval  with  only  the  Landsat  ETM+  data,  the  retrieval
accuracy was roughly comparable to that achieved with the multi-temporal ALOS PAL‐
SAR-1 intensities at test sites 2 and 3. At test site 1 (the test site with the highest average
and maximum CH),  the Landsat  ETM+ image even outperformed the ALOS PALSAR-1
imagery  with  only  minor  improvements  being  achieved  when  combining  the  ALOS
PALSAR-1 and Landsat ETM+ imagery. The improvement of the retrieval accuracy with
the successive integration of multi-temporal intensities, coherences and Landsat ETM+ was
generally  confirmed  when  comparing  the  randomForest  predictions  for  the  inventory
polygons to the corresponding in situ measurements.

Figure 6. CH retrieval accuracy when using different combinations of the ALOS PALSAR-1 and Landsat ETM+ data as
predictors. FBS, FBD and ETM stand for FBS/FBD intensity and the Landsat ETM+ data, respectively. FBDi and FBSi/FBDi
denote the cases where intensities and coherences were used jointly. The white bars show the retrieval error when
comparing the ALOS PALSAR-1 / Landsat ETM+ OOB against the ALS predictions. The grey bars refer to the compari‐
son of the ALOS PALSAR-1/Landsat ETM+ predictions for the inventory polygons and the corresponding in situ meas‐
urements.
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4. Mapping AGB across the Northeastern US using multi-temporal ALOS
PALSAR-1 data

Based on a multi-temporal ALOS PALSAR-1 dataset comprising 655 FBD dual polarization
data for the Northeastern US (Figure 7), following two topics have investigated:

• the feasibility of an automated model training and inversion approach, similar to those
presented in [7, 21] for ENVISAT ASAR intensity and ERS-1/2 InSAR data in the L-band
case;

• the retrieval performance at different spatial scales, considering the influence of the imaging
conditions and the benefit of having multi-temporal data stacks.

Figure 7. RGB mosaic of ALOS PALSAR-1 FBD data for the Northeastern US. The red channel shows the HH intensity,
the green channel the HV intensity and the blue channel the HH/HV ratio. The black lines denote different mapping
zones. The image on the right-hand side illustrates for one mapping zone the number of available FBD acquisitions.

4.1. Retrieval algorithm

Complex physically-based approaches for the modeling of backscatter as function of forest
biophysical attributes have been developed that consider various aspects of the forest structure
(e.g., the size and orientation of stem, branches and leaves) as well as scattering mechanisms.
However, when aiming at retrieval the model formulation needs to be simple enough so that
it can be inverted. A relatively simple physically-based Water-Cloud type of model [22] that
has been tested extensively for retrieval with C- and L-band backscatter data models the
backscatter from forest, σ0

for, as a sum of three contributions [23]:

( ) ( )0 0 0 01 1h h
for gr gr vege ea as h s hs hs- -= - + + - (1)
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The first term describes the direct backscatter from the forest floor, σ0
gr, through gaps in the

canopy. The parameter η represents the percentage to which the ground is covered by the
canopy. The second term describes the backscatter from the ground that was attenuated in the
canopy. Herein, the exponential represents the two-way tree transmissivity, which is a function
of the tree height, h, and the two-way signal attenuation, α. The last term describes the volume
backscatter, σ0

veg, from an opaque canopy without gaps. The model can be re-written in the
following form:

( )0 0 0 1for gr for veg forT Ts s s= + - (2)

where Tfor represents the forest transmissivity:

( )1 h
forT e ah h -= - + (3)

The model in Eq. (1) expresses the forest backscatter as a function of height and gap fraction.
According to scatterometer experiments at X- and C-bands [24], Tfor can also be expressed as
function of growing stock volume, GSV [m3/ha]:

GSV
forT e b-= (4)

with β being an empirical parameter. Since, in this study, AGB was the observable and GSV is
commonly considered a proxy for AGB (i.e. AGB can be estimated from GSV using age-
dependent expansion factors, e.g., IPCC, 2006), we replaced the volume with biomass, B [t/ha]:

( )0 0 0 1B B
for gr vege ed ds s s- -= + - (5)

In Eq. (5), β has been replaced with δ to underline that the forest transmissivity is now expressed
as function of biomass.

Two of the three unknowns in the model in Eq. (5) are related to the backscatter from open
ground not covered by vegetation (σ0

gr) and to what is considered the backscatter from opaque
forest canopies with infinite biomass (σ0

veg). In [7, 21], it was shown for C-band that the
backscatter properties of open ground and dense forest canopies, and their temporal and
spatial variations, could be identified with the aid of MODIS VCF by masking the intensity
images for areas with low and high VCF canopy cover and taking the mean or median of the
measured intensities in the masked areas, respectively. In the case of open ground with low
canopy cover, ancillary datasets have to be used to exclude land cover classes (settlements,
industrial areas, water surfaces, etc.) for which the backscatter can differ substantially from
that of open ground. In the case of the intensity observed over dense forests, denoted as σ0

df,
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an additional compensation for residual backscatter contributions from the ground has to be
carried out. The compensation of σ0

df for residual ground contributions can be accomplished
with:

( )
0 0

0

1

df

df

B
df gr

veg df B

e
B

e

d

d

s s
s

-

-

-
=

-
(6)

where Bdf represents the AGB of dense forest. The estimation of σ0
veg requires knowledge of δ

and Bdf.

Once the parameters have been estimated, the model can be inverted to estimate the biomass
from the SAR data. When inverting the model, some intensity measurements might in fact
exceed the range of modeled intensities between σ0

gr and σ0
veg. Inversion for intensities lower

than σ0
gr would result in negative biomass estimates, which is why a biomass of 0 t/ha has to

be assigned. In the case of high intensity values exceeding σ0
veg, an inversion is not possible

and for intensities slightly lower than σ0
veg, the inversion could result in biomass estimates far

exceeding the range of realistic biomass values, which is why a maximum biomass level, Bmax,
has to be defined up to which inversion is carried out. In case of multi-temporal datasets, a
weighted combination of the biomass estimates from each image covering a particular pixel
location, Bi, can be computed to obtain new multi-temporal estimates, Bmt. Weights can be
calculated using the difference between σ0

veg and σ0
gr, referred to hereafter as the dynamic

range. The larger the dynamic range, the more weight is given to the particular biomass
estimate.

4.2. AGB retrieval

Model training and inversion were carried out for each of the 1310 intensity images (655 HH
and 655 HV PALSAR FBD scenes, off-nadir angle of 34.3°) available for the Northeastern
United States. The Landsat-based canopy density maps and land cover maps from the National
Land Cover Database [25] were used to identify sparse and dense forests in each backscatter
image and to mask settlements, industrial areas, agricultural land and water surfaces, respec‐
tively. The forest transmissivity parameter δ, which describes the backscatter trend with
increasing biomass, could be expected to depend on 1) the imaging conditions, and 2) the forest
structural characteristics [26]. Model simulations indicated, however, that in the case of the
ALOS PALSAR-1 data available for the Northeastern United States, the potential variations in
the forest transmissivity parameter as function of the forest type and imaging conditions could
be expected to be minor and that the use of a fixed value for δ (0.008 ha/t) for the biomass
retrieval represented a justifiable compromise. For a detailed discussion of the forest trans‐
missivity as function of AGB refer to [15]. The AGB of dense forests, Bdf (Eq. 6), was determined
via the plot data from the Forest Inventory and Analysis (FIA) plot network of the US Forest
Service [27] with the 90th percentile of the regional plot biomass distribution [7]. A fixed
biomass offset, ΔB, was then used with respect to Bdf to define the maximum retrievable
biomass, Bmax (Bmax=Bdf+ΔB), when inverting the models to estimate the biomass for all pixels
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in the intensity images for which the NLCD land cover map reported forest. Bmax affects the
retrieval results in the higher biomass ranges and therefore (primarily) derived population
statistics such as county totals. That is why ΔB was adjusted so that the differences between
the total biomass estimates per county and FIA county-level estimates were minimized; this
was the case when setting ΔB to 30 t/ha (see below). The multi-temporal combination and
mosaicing of the single image biomass maps were carried out in a single step for each of six
mapping zones in the Northeastern United States. Both, HH- as well as HV-intensity based
biomass estimates were considered for the multi-temporal combination. The resulting AGB
map is shown in Figure 8.

Figure 8. Forest AGB map for the Northeastern United States produced from 655 ALOS PALSAR-1 dual polarization
intensity images acquired in 2007/08.

Since the ALOS PALSAR-1 data could not be compared directly to the plot data of the FIA
database (note that the exact FIA plot locations are not publicly available), we compared the
ALOS PALSAR-1 biomass maps to the biomass maps from the National Biomass and Carbon
Dataset 2000 (NBCD) that were produced through the fusion of SRTM and NED elevation,
Landsat TM and the FIA forest inventory data [17, 28]. The algorithm performance was
assessed with the root mean square difference (RMSD) between the ALOS PALSAR-1 and
NBCD maps calculated separately for different mapping zones (see Figure 7), which were
adapted from the National Land Cover Database (NLCD) [25].
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At full resolution, the RMSDs were large (>80 t/ha). This might on one side have been a
consequence of noise in the ALOS PALSAR-1 data (residual speckle, small scale environmental
effects) but it also has to be considered that at the level of 30 m pixels, the NBCD map contains
considerable uncertainty as well; note that the NBCD map was validated at segment (i.e.
hectare) level. The comparison of the maps at 30 m pixel size was therefore of limited explan‐
atory value. Hence, the comparison at different pixel aggregation scales between 150 m and 6
km have been repeated. When aggregating the maps by means of simple block-averaging, the
agreement increased substantially (Figure 9, right). The largest improvement could be
observed when aggregating up to ~1 km pixel size, for which the RMSD was in a range of 20
to 25 t/ha. In Figure 9 (left), the ALOS PALSAR-1 biomass estimates for two mapping zones
have been plotted against the NBCD biomass estimates for pixel sizes of 150 and 600 m. The
comparison of the ALOS PALSAR-1 and NBCD biomass maps revealed a good agreement
along the 1:1 line. The spread along the 1:1 line reduced substantially with increasing pixel
size, which can be seen in Figure 9 (left) from the decreasing length of the vertical bars. The
ALOS PALSAR-1 biomass estimates, however, tended to be lower than the NBCD estimates
when approaching a biomass of 200 t/ha, indicating saturation effects in the L-band data.

Figure 9. Left: Average (circles) and standard deviation (vertical bars) of the multi-temporal ALOS PALSAR-1 biomass
estimates for intervals of NBCD biomass at zones 61 and 64. Right: Root Mean Square Difference (RMSD) between the
ALOS PALSAR-1 and NBCD biomass maps as a function of the pixel aggregation scale.

4.3. Importance of multi-temporal acquisitions

To evaluate the importance of having multi-temporal stacks of L-band intensity, the retrieval
performance for single images is discussed first. Figure 10 shows for the L-band intensity
images covering one of the mapping zones the RMSD between the biomass estimates from
single intensity images and NBCD as function of the dynamic range (at 150 m pixel size).
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Figure 10. RMSD between the biomass estimates from single HH (+) and HV (o) intensity images and NBCD as func‐
tion of the dynamic range (zone 64, 150 m pixel size).

The figure clearly shows that the dynamic range can be considered one of the main factors
influencing  the  retrieval  performance.  The  figure  also  shows  that  the  RMSDs  for  HV
intensity images tended to be lower (40-80 t/ha) than for HH intensity images (50-100 t/
ha).  For a given FBD HH and HV image pair,  the RMSD was always lower for the HV
image  (5  to  10  t/ha).  The  differences  in  the  dynamic  ranges  were  most  likely  a  conse‐
quence  of  differing  imaging  conditions.  For  the  images  covering  New  York  State,  we
compared  the  dynamic  ranges  with  the  weather  conditions  at  the  time  of  the  sensor
overpasses. The comparison with the weather data revealed no correlation with tempera‐
ture; note that the temperature was consistently above the freezing point for all images so
that no major temperature related fluctuations of the dielectric properties of the trees were
to be expected. Weak negative correlations were observed when relating the dynamic range
to the total  amount of rain in the days prior to the sensor overpasses.  In both polariza‐
tions,  there  was  a  trend  towards  lower  dynamic  ranges  with  increasing  amounts  of
precipitation  (i.e.  with  increasing  wetness  of  the  soils  and  vegetation).  The  Pearson
correlation coefficients were between -0.3 and -0.5 depending on which timeframe prior to
the sensor overpasses was considered. This result is consistent with previous finding [29].

Figure 11 demonstrates the benefit of having multi-temporal data for an area where five FBD
images were available. The dashed line shows the RMSD for each intensity image (HV: 55-59
t/ha, HH: 58-71 t/ha, 150 m pixel size), the solid line shows the change in RMSD when
successively integrating the particular images into the multi-temporal retrieval.

The multi-temporal combination resulted in a clear improvement of the RMSD when com‐
bining the available 5 HV images for about 10 t/ha (compared to the best HV image). When,
in addition, integrating the corresponding HH images, only slight additional improvements
of the RMSD for about 3 t/ha were achieved. These results confirmed that the multi-temporal
combination allowed for significant improvements of the biomass estimates. However, it has
to be noted that the multi-temporal coverage acquired by ALOS PALSAR-1 was not consistent
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across larger areas as regionally between one and five images were acquired per year. As a
result of the varying multi-temporal coverage (see Figure 7), the accuracy of the map in Figure
8 was not consistent across the entire study area. The comparison with NBCD confirmed that
locally, the performance of the retrieval depended strongly on the multi-temporal coverage
(i.e. the number of images) as well as the weather conditions under which the particular set of
images have been acquired. The results therefore stress the need for consistent multi-temporal
acquisition strategies for upcoming spaceborne L-band missions.

4.4. Accuracy at county scale

The comparison of the ALOS PALSAR-1 biomass maps with NBCD indicated that, at least at
aggregated scales, the spatial distribution of biomass could be depicted with the retrieval
approach presented. To further assess the performance of the retrieval algorithm, ALOS

Figure 11. Effect of the multi-temporal combination on the agreement of the ALOS and NBCD biomass maps (at 150
m pixel size). The circles connected by the dashed line denote the RMSD for each image and those connected by the
solid line show how the RMSD changed when successively integrating the single image estimates into the multi-tem‐
poral retrieval.
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PALSAR-1 biomass maps have been compared to FIA county-level total AGB statistics for 143
counties in Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New
York and New Jersey. The county statistics were obtained via the EVALIDator online inventory
tool of the US Forest Service. For the comparison of the ALOS PALSAR-1 and FIA estimates,
the ALOS PALSAR-1 per-pixel (30x30 m2) biomass estimates were summed per county. The
comparison of the ALOS PALSAR-1 and FIA county-level estimates of total AGB resulted in
a coefficient of determination (R2) of 0.98 and a root mean square error (RMSE) of 2.75 106 t.
When calculating the average biomass per county (i.e. the total biomass divided by the county
size in hectares), the RMSE was 12.9 t/ha and the R2 was 0.86 (Figure 12).

Figure 12. Average AGB according to the ALOS PALSAR-1 biomass map and FIA biomass statistics for 143 counties in
the Northeastern United States.

The FIA county statistics included information about the sampling error, which could be used
to approximate the confidence intervals of the FIA estimates [27]. The sampling error was
between 2 % and 110 % for the largest counties (with the largest number of sample plots) and
for the smallest counties, respectively; the size of the counties ranged from 64 to 17, 686 km2.
The ALOS PALSAR-1 total AGB estimates were within the 95 % confidence intervals of the
FIA estimates for most (92 %) of the 143 counties.

5. Synergetic use of multi-temporal ALOS PALSAR-1 and ENVISAT ASAR
data for forest and agricultural mapping at national scale in Africa

The forest cover in Malawi is approximately 32, 000 sqkm corresponding to 34% of country
surface [30]. Natural forests represent the remainder of the Miombo (Swahili word for
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Brachystegia) forests that once covered almost the whole country. The area of natural forests
(primary forest 29%, other naturally regenerated forest 60%) over the years has remained
unchanged – annual change rate between 2005 and 2010 is less than 1% – with the exception
of forest reserves that have continued to grow in number. Characteristically, the trees shed
their leaves for a short period in the dry season (June to October) to reduce water loss, and
produce a flush of new leaves just before the onset of the rainy season (November-December
to March-April). Planted forests consist of softwood (mainly Pinus patula) and hardwood
species (mainly Eucalyptus).

Thanks to the availability of a multi-year ALOS PALSAR-1 FBD data set acquired in a
systematic way between 2006 and 2011 [9] and a seasonal ENVISAT ASAR Alternating
Polarization (AP) data stack planned and regularly acquired during the wet season, the
possibility is explored to generate countrywide a forest map and a cultivated area map during
the crop wet season. In synthesis, the method is based on the synergetic use of multi-temporal
data by considering the different data characteristics and given acquisition modes, the
acquisition periods, and the vegetation phenology during the acquisitions. Moreover, since
the ultimate goal is to provide this type of information over large areas, i.e. at least national
scale, and to upscale the proposed method to other regions [31], the processing chain has been
developed in such a way that the products are generated automatically. Finally, it is worth
mentioning (cf. Fusion of interferometric SAR and photogrammetric Elevation Data) that using the
same ALOS PALSAR-1 repeat-pass InSAR data, a DEM with higher quality than the SRTM
one can be provided in those nearly equatorial regions characterizes by non-dense forest
condition.

5.1. Method

The data processing flow can be divided into two distinct steps. The first one converts the
multi-temporal SLC data into terrain geocoded backscattering coefficient (σ°). In addition, for
the 46-days ALOS-PALSAR-1 and 1-day Cosmo-SkyMed Stripmap interferometric data,
coherence (γ) is computed and terrain geocoded. Noteworthy, but not discussed here, are the
ionospheric effects in the equatorial region observed in the L-band data [35]. In this case, less
than 10% of the ALOS PALSAR-1 images have been omitted from the processing due to severe
(several dB) and non-systematic striping along the azimuth. However, in other cases [31]
around one fourth of the ALOS PALSAR-1 data could not be used. In the second step, the forest
and the cultivated area map are generated.

1. Sigma nought (σ°) is derived as follows:

• Co-registration – Images acquired with the same observation geometry and mode are
co-registered in slant range geometry. This step is mandatory to allow time-series
speckle filtering.

• Time-series speckle filtering – Within the multi-temporal filtering an optimum weight‐
ing filter is introduced to balance differences in reflectivity between images at different
times [32]: this allows enhancing significantly the radiometric resolution and preserve
the spatial one. Multi-temporal filtering is based on the assumption that the same

Land Applications of Radar Remote Sensing80



Brachystegia) forests that once covered almost the whole country. The area of natural forests
(primary forest 29%, other naturally regenerated forest 60%) over the years has remained
unchanged – annual change rate between 2005 and 2010 is less than 1% – with the exception
of forest reserves that have continued to grow in number. Characteristically, the trees shed
their leaves for a short period in the dry season (June to October) to reduce water loss, and
produce a flush of new leaves just before the onset of the rainy season (November-December
to March-April). Planted forests consist of softwood (mainly Pinus patula) and hardwood
species (mainly Eucalyptus).

Thanks to the availability of a multi-year ALOS PALSAR-1 FBD data set acquired in a
systematic way between 2006 and 2011 [9] and a seasonal ENVISAT ASAR Alternating
Polarization (AP) data stack planned and regularly acquired during the wet season, the
possibility is explored to generate countrywide a forest map and a cultivated area map during
the crop wet season. In synthesis, the method is based on the synergetic use of multi-temporal
data by considering the different data characteristics and given acquisition modes, the
acquisition periods, and the vegetation phenology during the acquisitions. Moreover, since
the ultimate goal is to provide this type of information over large areas, i.e. at least national
scale, and to upscale the proposed method to other regions [31], the processing chain has been
developed in such a way that the products are generated automatically. Finally, it is worth
mentioning (cf. Fusion of interferometric SAR and photogrammetric Elevation Data) that using the
same ALOS PALSAR-1 repeat-pass InSAR data, a DEM with higher quality than the SRTM
one can be provided in those nearly equatorial regions characterizes by non-dense forest
condition.

5.1. Method

The data processing flow can be divided into two distinct steps. The first one converts the
multi-temporal SLC data into terrain geocoded backscattering coefficient (σ°). In addition, for
the 46-days ALOS-PALSAR-1 and 1-day Cosmo-SkyMed Stripmap interferometric data,
coherence (γ) is computed and terrain geocoded. Noteworthy, but not discussed here, are the
ionospheric effects in the equatorial region observed in the L-band data [35]. In this case, less
than 10% of the ALOS PALSAR-1 images have been omitted from the processing due to severe
(several dB) and non-systematic striping along the azimuth. However, in other cases [31]
around one fourth of the ALOS PALSAR-1 data could not be used. In the second step, the forest
and the cultivated area map are generated.

1. Sigma nought (σ°) is derived as follows:

• Co-registration – Images acquired with the same observation geometry and mode are
co-registered in slant range geometry. This step is mandatory to allow time-series
speckle filtering.

• Time-series speckle filtering – Within the multi-temporal filtering an optimum weight‐
ing filter is introduced to balance differences in reflectivity between images at different
times [32]: this allows enhancing significantly the radiometric resolution and preserve
the spatial one. Multi-temporal filtering is based on the assumption that the same

Land Applications of Radar Remote Sensing80

resolution element on the ground is illuminated by the radar beam in the same way,
and corresponds to the same slant range coordinates in all images of the time series.
The reflectivity can change from one time to the next due to a change in the dielectric
and geometrical properties of the elementary scatters, but should not change due to a
different position of the resolution element with respect to the radar.

• Terrain geocoding, radiometric calibration – A backward solution by considering a
DEM is used to convert the positions of the backscatter elements into slant range image
coordinates. The three dimensional object coordinates given in a cartographic reference
system into the two-dimensional row and column coordinates of the slant range image
are transformed using a range-Doppler approach. Radiometric calibration is performed
at the same time by means of the radar equation, where scattering area [33], antenna
gain patterns and range spread loss are considered.

• Radiometric normalization – In order to compensate for the range dependency and
topographic effects, the backscattering coefficient is normalized according to a modi‐
fied cosine law by considering the relationship between the local incidence angle and
the backscattering coefficient of forest [14] and agriculture, respectively.

• Anisotropic Non-Linear Diffusion Filtering – This filter significantly smoothes homo‐
geneous targets, whilst also enhancing the difference between neighbouring areas. The
filter uses the diffusion equation, where the diffusion coefficient, instead of being a
constant scalar, is a function of image position and assumes a tensor value [34]. In this
way, it is locally adapted to be anisotropic close to linear structures such as edges or
lines.

• Removal of atmospheric attenuation – Although microwave signals have the ability to
penetrate through the clouds, in case of severe storms, as it often occurs in Africa during
the raining season period, it may occur at C-band that locally the backscattering
coefficient is attenuated by water vapor in the range of several dB. The temporal
signature of the backscatter coefficient can be affected in two ways: i) the thick layer of
water vapor generates a strong decrease of backscattering coefficient, followed by a
strong increase; ii) the strong rainfall generates a strong increase of the backscattering
coefficient, followed by a strong decrease. These effects are corrected in the processing
chain by analyzing the temporal signature: anomalous peaks are identified and the
backscattering coefficient values are corrected by means of an interpolator. The correct
application of this process relies strongly on a priori knowledge of the land cover type
and the weather conditions when the image was acquired.

2. Forest area – Given the regular country-wide ALOS PALSAR-1 FBD acquisitions between
2006 and 2011, the high acquisition rate between June and October (dry season), and that
forest extent in Malawi is relatively constant (annual change rate between 2005 and 2010
is less than 1%), a pseudo-seasonal time-series with a relatively high temporal occurrence
by combining all years of ALOS PALSAR-1 FBD observations into one year has been
developed. The seasonal HH-HV forest signatures – except some rare outliers represent‐
ing clear cuts – are typically characterized by a constant high σ°, while other cover types
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show noticeable lower (bare soil, water, dry or low vegetation) or higher (settlements)
values. It has to be pointed out that this net discrimination between the different land
covers is given by the combination of two factors. First, the selected dry season period,
which, due to the very limited vegetation development, considerably reduces the
confusion between low forest biomass and others vegetation types, agriculture (i.e. maize)
in particular. Second, the long wavelength, on one hand tends to smooth out the radar
backscatter from land covers characterized by limited surface roughness, on the other
hand it guarantees a relatively high backscatter of those land covers, like forest, where
double bounce and volume scattering prevail. Note that this separability is not obtainable
at shorter wavelengths, due to similarities in the volume scattering contributions.

3. Cultivated area – Pre-requisite for the generation of this product is to obtain a seasonal
data set as far as possible regularly acquired along the whole crop season and according
to the crop practices. This allows i) to reduce the confusion between cropped areas and
the surrounding vegetated (non crop) areas; and ii) to monitor the crop development [36,
37]. The specific sensitivity of active microwave short wavelength sensors (C- and X-band)
to soil properties, such as roughness and moisture content, enables the possibility to detect
these changes already at the earliest stage during the field preparation, i.e. ploughing (high
backscatter) and harrowing (low backscatter). During the second phase (namely from
flowering to plant drying stage), the dielectric and structure properties of the plant are
the key factors determining the high reflectivity at C-band HH polarization. Finally, the
lower reflectivity during the plant drying is caused by the loss of plant moisture. As
proposed in [36, 37], an efficient way to quantitatively describe the σo temporal crop
signature is to derive appropriate temporal features, i.e. the relative minimum and
maximum including corresponding dates; their difference; the minimum and maximum
ratio between two subsequent acquisitions. These features are used to generate the
product according to:

a. The crop start of season, which is identified when there is a relative minimum
followed by a maximum increment between two subsequent acquisitions;

b. The crop peak of season, which is identified when there is a relative maximum
followed by a minimum increment between two subsequent acquisitions;

c. The pixel, which is classified as crop if:

• conditions 1 and 2 are satisfied;

• the range between relative minimum and maximum attains a minimum value;

• the temporal duration between 1 and 2 is within a given duration.

5.2. Forest and cultivated area products

To cover the entire country, 65 ALOS PALSAR-1 FBD/FBS frames distributed over 5 adjacent
tracks are necessary. Three to four coverages per dry season per year during four years have
been used, resulting in the around 900 SLC scenes. A coherence-intensity mosaic using 46-days
interferometric ALOS PALSAR-1 FBS data acquired during the wet season (January-February
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2008) has been additionally generated. A total of 225 ENVISAT ASAR AP images acquired five
times from October 2007 to April 2008 are used to monitor the crop growth along the whole
wet season. The step to transform the SLC data into geo-referenced σ° and γ products is
doubtless the most time consuming one. For this reason, the data processing is performed by
means of a PC based cluster solution. Noteworthy, the algorithms have been written in a such
way to fully exploit the characteristics of the processors. This setting allows to carry out the
processing without any intervention of the operator and to process the data sets within few
days.

Figure 13 and 14 illustrate four multi-temporal mosaics: the multi-year ALOS PALSAR-1 FBD
mosaic acquired during the dry season (Figure 13, left); the seasonal (October to April)
ENVISAT ASAR HH mosaic (Figure 13 right); an ENVISAT ASAR HH mosaic (October and
January, the months showing the most significant radiometric changes) combined with the
ALOS PALSAR-1 HV July one (Figure 14 left); the ALOS PALSAR-1 HH coherence-intensity
mosaic (Figure 14 centre).

Figure 13. (left) Multi-year ALOS PALSAR-1 FBD mosaic, 15m acquired during the dry season (mean HH=red, mean
HV=green, mean HH / mean HV=blue); (right) Seasonal ENVISAT ASAR HH mosaic, 15m (ASAR HH October=red, ASAR
HH December=green, ASAR HH January=blue).
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Figure 14. (left) ENVISAT ASAR HH-ALOS PALSAR-1 HV mosaic, 15m (ASAR HH December=red, PALSAR-1 HV Ju‐
ly=green, ASAR HH January=blue); (centre) ALOS PALSAR-1 HH (FBS) coherence-intensity mosaic, 10m (coherence Jan‐
uary-February=red, mean intensity=green, intensity difference=blue); (top right) detail of figure left; (bottom right)
detail of figure centre.

These examples clearly show that depending upon the selected sensor, the acquisition mode
and time, and a smart data integration, different types of information (i.e. products) can be
derived. It is worth mentioning that the purpose of data synergy is not exclusively to obtain
higher accuracies or more information, but it is also intended to simplify and automatize the
products generation. Conditio sine qua non is, on one hand, to recognize the sensor capabilities
and limitations – including the processing techniques – on the other hand, to understand the
object, its characteristics, and the environmental surrounding conditions.

The multi-year ALOS PALSAR-1 FBD mosaic (Figure 13 left) acquired during the dry season
undoubtedly shows a clear distinction between forest (green colour) and other cover types (blue
tonalities). Note that this net separation is the outcome of i) the excellent quality of the multi-
temporal speckle filtering, and ii)  the averaging (omitting some rare outliers) of the HH
intensities, and the HV respectively over the dry season period and years (total of 14 images).
Both operations contribute to considerably improve the signal-to-noise ratio and to enhance the
level of detail. Concerning the temporal averaging, it has to be pointed out that this proce‐
dure is more than reasonable, because the SAR data have been exclusively selected in the dry
period, where the vegetation phenology is stable, in terms of roughness and dielectric proper‐
ties, and, the forest extent variations are negligible. In order to demonstrate the usefulness of
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this approach, for a selected area, a 1-day interferometric Cosmo-SkyMed Stripmap image pair
(3m resolution) acquired in September has been acquired and processed. Figure 15 shows, for
comparison purposes, the single-date and multi-year ALOS PALSAR-1 products, and the 1-
day interferometric Cosmo-Skymed Stripmap pair (3m resolution). The high level of detail of
the multi-year ALOS PALSAR-1 product (bottom left) is particularly appreciable by compar‐
ing the speckle effect in the forest in the two ALOS-PALSAR-1 products, and the better feature
delineations (for instance in the riparian forest) in the multi-year one. Furthermore, by visually
inspecting the single trees in the multi-year ALOS PALSAR-1 product and in the Cosmo-
SkyMed one, it is noticeable that almost all single trees identifiable in the 3m image are easily
recognisable in the 15m multi-year scene, hardly in 15m single-date one. With respect to the use
of X-band data for forest applications, it should be shortly remarked that, in general, the 1-
day Cosmo-SkyMed coherence or the bistatic TerraSAR-X-Tandem one are essential, because
the  limited  σo  dynamic  range  at  this  frequency  significantly  reduces  the  discrimination
capabilities in vegetated areas, if exclusively intensity is used. For details refer to Holecz et al. [38].

Figure 15. (top left) Single-date ALOS PALSAR-1 FBD mosaic, 15m (mean HH=red, mean HV=green, mean HH / mean
HV=blue); (bottom left) Multi-year ALOS PALSAR-1 FBD mosaic, 15m; (bottom right) Cosmo-SkyMed Stripmap coher‐
ence-intensity, 3m (1 day coherence=red, mean intensity=green, intensity difference=blue).
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As expected, due to the shorter wavelength, forest is quite less distinguishable in the seasonal
ENVISAT ASAR mosaic (Figure 13 right) confirming the conclusions presented in the
comparative study carried out by Mitchell et al. [39]. The predominant colours in this image
are the cyan (southward) and blue-violet (northward), corresponding to the crop growth after
the start of the rain (around November). This is reflected in the December (green) and January
(blue) acquisition, where the C-band backscattering coefficient almost attains its highest values
due to the rapid crop growth (i.e. increase in the surface and volume scattering) and the high
crop moisture content (increase in the dielectric constant). It is interesting to note the corre‐
spondence between the blue areas in the ALOS PALSAR-1 FBD mosaic (bare soil during the
dry season) becoming brightly coloured in the ENVISAT ASAR mosaic (cultivated area during
the wet season). This is becoming obvious in Figure 14 left (and detail, top right), where the
ALOS PALSAR-1 HV July mosaic (green) has been merged with the ENVISAT ASAR HH
mosaic of December (red) and January (blue). This colour composite demonstrates, in a
qualitative but evident way, that data synergy is undoubtedly beneficial, if exploited in a wise
manner.

Coherence is unquestionably a complementary and valuable source of information. However,
in practice, useful interferometric correlation is often not easy to obtain due to unfavourable
baseline conditions and unsystematic atmospheric effects. Moreover, the temporal decorrela‐
tion sometimes causes interpretation uncertainties. Figure 14 centre (and detail, bottom right)
shows a 46-days repeat-pass ALOS PALSAR-1 HH coherence-intensity mosaic generated from
an FBS image pair acquired in January and February 2008. As expected, forest has a low
correlation and an average high intensity (green), meaning that the forest didn’t vary in this
gap of time; blue (large intensity difference), particularly visible in the detail bottom right,
represents the growing fields; the red tonalities correspond to those areas where the cover
changes were minimal, i.e. meaning primarily rough bare soil areas. Nonetheless, it should be
considered that tiny crops at L-band are almost transparent, hence resulting into a relatively
medium coherence, as the rough bare soil. It turns out that the cultivated area is underesti‐
mated in favour of bare soil. In synthesis, a forest map could be generated even if, due to the
long repeat-pass and the different baselines, the uncertainties can be relevant; these ambigu‐
ities are significantly higher for the cultivated area also considering that for this product long
acquisition time intervals are unsuitable [37]. A final example on coherence is illustrated in
Figure 16, which it has been obtained from a July-August FBD image pair.

Observing the coherence, the Miombo forest is not distinguishable in the HH polarization
(average γ is 0.6), hardly detectable in the HV (average γ is 0.5). In the multi-year ALOS
PALSAR-1 FBD intensity colour composite, as extensively presented and discussed above,
forest is clearly separable from the surrounding land covers. It is anticipated that the perpen‐
dicular baseline of the interferometric pair is 280m, which for this frequency, is thereby
appropriate for thematic analysis. The Miombo forest – bare in the dry season – on average
has a tree height significantly less than 10m and a diameter breast height ranging from 10 to
20 cm corresponding to a relatively low biomass (often considerably less than 100 tons/ha).
This means that the main scattering contribution is the volume, primarily induced by the tree
branches; hence the HH radar backscatter is markedly attenuated. This is reflected in both, HH
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coherence (Figure 16 left) and HH intensity (Figure 16 right). At HV intensity, forest is well
recognizable in green (Figure 16 right). This distinction is mainly given by the temporal
averaging over the dry seasons and four years, which strongly enhances the separability of the
various land types. On the opposite, for the HV coherence (Figure 16 centre), the discrimination
between forest and the surrounding area (both having a relatively high coherence) is very
limited: this is due, on one hand, to 46-days temporal decorrelation, on the other hand, to the
impossibility to perform a temporal averaging. In summary, coherence is doubtless a valuable
source of information, however, it should be used with care.

Based on the above considerations and evaluations, the most suitable solution is to use the
multi-year ALOS PALSAR FBD data set for the forest area product, and the seasonal ENVISAT
ASAR one for the cultivated area. Furthermore, in order to understand the contribution of the
seasonal ENVISAT ASAR for the forest area (Figure 17 left), the obtained cultivated area
(Figure 17 right) is merged in IF condition with the forest area one.

The two maps are performed using a hierarchical prior knowledge-based classifier. For the
forest area the input data were the mean HH intensity and the corresponding mean HV
intensity of the multi-year ALOS PALSAR FBD data set. Concerning the cultivated area, the
temporal features of the seasonal ENVISAT ASAR data set have been used.

5.3. Accuracy at national scale

Validation involves the collection of ground reference data for the validation of remote sensing
based products. Usually it is carried out by sampling units, i.e. points unambiguously
identified by co-ordinates. As shown in Figure 18, systematic grids are used with randomly
selected starting corner co-ordinates in order to ensure a representative and spatially well-
distributed sample.

Figure 16. (left) ALOS PALSAR-1 46-days HH July-August coherence; (centre) HV July-August coherence; (right) multi-
year ALOS PALSAR-1 FBD image, 15m resolution (mean HH=red, mean HV=green, mean HH / mean HV=blue).
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Figure 17. (left) Forest area generated from multi-year ALOS PALSAR-1 FBD data; (right) Cultivated area generated
from seasonal ENVISAT ASAR data.

From an operational perspective, the grouping of sample points in clusters is encouraged.
Although this approach may introduce some degree of statistical bias, by significantly
reducing travelling time between sample locations, it leaves more resources available for data
collection in the field. The relevant parameters of this systematic cluster approach are: 1)
distance between clusters; 2) number of points per cluster; 3) distance of points within cluster.
The values can be fixed considering several criteria and constraints: 1) available budget; 2) size
and shape of the area of interest; 3) resolution of the remote sensing images; 4) logistics; 5)
average dimension of the area to be classified. In this case, it has been opted for 1km distance
between the clusters, 16 points per cluster, and 250m distance between the points within the
cluster. A total of 868 valid points have been collected.

Table 2 shows the obtained confusion matrices for the forest product exclusively based on the
multi-year ALOS PALSAR-1 FBD (top) and for the forest product generated by combining the
forest and cultivated area product (bottom). In general, the obtained accuracies are high. The
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main difference between the two tables is in the reduction of the omission errors of the classes
sugar cane and crop, and urban. Sugar cane is a tall crop with a long crop season (typically
one year). This fully explains the large omission error. By merging the cultivated area map,
this error could be reduced by 30% only, because the cultivated area product, as defined here,
exclusively considers the crop planted at the start of the rainy season. The same explanation
is valid for the class crop. In essence, in order to almost completely remove this omission error,
an annual (and not just seasonal) ENVISAT ASAR monitoring should be carried out. Con‐
cerning the class urban (mainly small cabins in the rural areas), the omission error has been
reduced by 40%, leading to a 10% error. In this specific case, the radar backscatter is often
random, therefore the combination of the two frequencies strongly contributes to better detect
this land cover type.

Figure 18. Validation scheme.

With respect to the cultivated area, the obtained overall accuracy is 80%. For details refer to
Holecz et al. [36, 40]. In summary, in that work, it was recognized that the limiting factor for
cultivated area estimation in small plot agriculture in Africa is the spatial resolution. A possible
way to overcome this limitation is on the synergetic use of sensors with different spatial
resolutions and characteristics, therefore by optimizing the spatial and temporal resolution in
a way that both dynamics are taken into account (Cf. Estimation of cultivated areas using multi-
temporal SAR data).
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Table 2. Confusion matrices forest area product – (top) Multi-year ALOS PALSAR-1 FBD; (bottom) Multi-year ALOS
PALSAR-1 FBD and seasonal ENVISAT ASAR.
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Using Multi-Temporal SAR Data
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1. Introduction

Estimation of cultivated areas in small plot agriculture is an important issue for food security
purposes in Africa. One way to obtain this information is through classical field surveys and
aerial photography, which are both time and resource consuming. Multi-temporal high
resolution Synthetic Aperture Radar (SAR) systems, as sources of reliable and overall infor‐
mation [1], [2], [3], [4], are an alternative solution, satisfying also the demand of continuous
monitoring. Namely, for food security purposes, large scale agricultural products are request‐
ed at different times throughout the rain-fed crop season. Concerning the cultivated area,
typically, a first product is required after the fields preparation; a second one prior to the
harvesting time. In this respect, it is worth mentioning that i) the cultivated area product at
start of crop season – today not available in food security services – is an excellent indicator to
quantify the overall situation of the upcoming rain-fed crop season; ii) SAR systems – on the
contrary to optical sensors – are suitable to map these areas due to their sensitivity to the soil
roughness, a typical characteristic of the fields at this stage.

Based on these considerations, a three-step approach for estimation of cultivated area in small
plot agriculture in Malawi is envisaged and presented in this chapter. The first step of this
approach is the estimation of crop extent prior to the crop season. The estimation of the
potential area at start of the crop season is the second step, while the third step consists in
determining the crop growth extent during the rain-fed crop season. Taking into account that
various vegetation types grow during the rainy season, the key issue is to know what is really
cultivated and not simply vegetated. The final result is crucial when dealing with food security
and agriculture in developing countries, where available land-cover map is either inaccurate,

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



out of date or it does not even exist. Once derived, this global information, which should give
a basis for deciding where to perform more detailed analysis, should be relevant for a longer
period of time in normal situations, so it should not need to be updated annually.

As shown in [5], [6], [7], [8], radar-only approaches possess an important operational advant‐
age w.r.t. optical-only or optical-radar approaches, especially in cloud-prone regions, due to
their all-weather working ability, high spatial resolution and sensitivity to biomass and
moisture. In addition, the penetration depth into crop canopy depends on SAR frequency (the
longer the wavelength, the longer the penetration depth) so using multi-frequency data (L-,
X- and C-bands) in function of the phenological stages of crops should bring improvements
in the estimation of cultivated areas [9], [10]. Finally, since the growth periods of different crops
are not equal, in order to differentiate cultivated areas in small-plot agriculture from other
areas with different plants and crops that are out of our interest, multi-temporal data are
needed.

The main goal of the work presented here on deriving the potential crop extent prior to the
start of the rain-fed season is to provide a first information layer regarding the extent of the
bare soil area where crop will potentially grow. Multi-temporal L-band SAR data having
resolution in the order of 15 m should be sufficient to extract this type of information. In a next
step, where potential cultivated area at start of season should be looked for, a very high
resolution sensor is needed. The acquisition coverage of this very high resolution sensor (such
as X-band Cosmo-SkyMed with the resolution of 3 m) can be limited thanks to the output of
the first step. In the final step, monitoring of the crop growth, multi-temporal ASAR (C-band,
15 m resolution) are used, starting from the period before December (in order to have the
reference bare soil) as well as covering the period from December to April (the completion of
crop season). Finally, several voting strategies are tested for the combination of the outputs of
each of the three sensors.

The key aspect of the proposed approach is the generation of three independent and comple‐
mentary products – each one with a clear meaning within agriculture and food security –
derived from different spaceborne SAR sensors, which in turn are fused, by yielding the
cultivated area product. Moreover, it is also intended to demonstrate the usefulness of SAR
data for the targeted application. Note that in this context, the meaning of cultivated area is
the effective cropped land (i.e., cultivated and not fellow land) during the rain-fed season.
Commercial and irrigated fields, typically cultivated during the dry season, are out of our
interest.

The chapter is organized as follows. In the following section, we briefly describe the food
security situation in Malawi. Then we present the three steps of our method, one by one. For
each of them, we describe the data used, the procedure, we show the obtained results and their
validation using ground-truth information. After that, we present the final combination by
describing our fusion methods, obtained results and their validation. Finally, we derive some
conclusions.
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2. Food security situation in Malawi

According to [11], [12], [13], [14], [15], Malawi is one of the poorest and least developed
countries in Sub-Saharan Africa and a huge challenge facing Malawian agriculture is produc‐
ing more food for a growing population. Many rain-fed smallholder farmers in the country
have been shifting to farming systems that are increasing food crop yields and household food
security. Urban poverty is increasing in Malawi as well and a pragmatic solution is seen in
urban agriculture (i.e., “food production conducted in or around urban regions” [16]).
Nevertheless, it is important that the amount available to small plot agriculture, especially in
urban conditions, is extended with an understanding of local environmental conditions and
that a careful assessment of cultivated areas in small plot agriculture is performed. As a result,
the real extent of the food insecurity conditions can be estimated in order to facilitate an
adequate humanitarian response if necessary and diminish the country’s vulnerability to
hunger.

Figure 1. Seasonal calendar and critical events timeline in Malawi [17]

In Figure 1, the seasonal calendar for a typical year and critical events timeline in Malawi are
shown. This country consists in three agro-ecological zones: 1) high altitude areas (more than
1300 m above sea level, cool temperatures, agricultural areas are rain-fed, with wheat and
beans as main crops), 2) low altitude areas (less than 600 m above sea level, irrigated, rice,
maize and beans are main crops) and 3) medium altitude areas (600-1300 m above sea level).
In this chapter, the region around Lilongwe is analyzed. It belongs to medium altitude areas
of Malawi that comprise about 60% of the total cultivated surface of the country. These areas
are characterized by moderate temperature and a fairly long rainy season (December to
February/March) and their major agriculture practice is maize. The crop calendar for maize in
these areas is given in Figure 2.
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Figure 2. Generic maize crop calendar for medium altitude areas of Malawi [18]

3. First step

3.1. Multi-year L-band data

The aim of this step is to define the potential cultivable extent of the region prior to the start
of the rain-fed season, in order to: 1) provide a first layer of information with the potential crop
extent in bare soil conditions, i.e. the bare soil area where crop will potentially grow; 2) limit
the acquisition coverage of the very high resolution sensor. The generation of this product is
relevant when the available land cover map does not exist, is not updated, is inaccurate or the
spatial scale is not appropriate (i.e. small scale), which are typical problems when dealing with
food security and agriculture in developing countries.

Multi-temporal L-band SAR data having resolution in the order of 15 m should be sufficient
to extract this type of information. Namely, in dry conditions, L-band HH/HV data have a
potential of distinguishing between bare soil and other land cover classes (sparse to strong
vegetation, forest, settlement, bush, wetlands, water).

Therefore, in order to estimate crop extent, multi-annual ALOS PALSAR-1 [19] acquired
during the dry season are chosen, since we are interested in an average bare soil area, and not
in small changes. The archive of these data, acquired by the Japanese Space Agency (JAXA),
is consistent and can be processed in a multi-temporal way, which enables the speckle
reduction and allows the generation of a more accurate map (based on a multi-temporal
classifier) than the one obtained using a single date, because not relevant temporal variations
are filtered out. Optionally, ENVISAT ASAR AP, Landsat TM-5 or SPOT-4/5 data can be used;
however, in general, the latter options are not suitable, since less performing for the targeted
product during the selected period. Concerning the failure of ALOS PALSAR-1 system in
March 2011, it should be noticed that it does not represent a major problem, because i) the
available archived data is sufficient for the generation of this intermediate product; ii) these
archived data can be used even in the years to come, since the crop pattern are usually not
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rapidly changing; and iii) the launch of several L-band sensors is planned in the next 1-2 years
(PALSAR-2, SAOCOM-1/2).

Taking into account that the dry season prior to the start of the rainy season in Malawi is from
April/May to October (Figure 2), the multi-annual PALSAR data that cover that period of the
year are selected.

3.2. Procedure

As proposed in [20], preprocessed multi-temporal PALSAR data in HH and HV polarization
are the input data for estimating the crop extent. The preprocessing phase consists in: multi-
looking, orbital correction, co-registration, multi-temporal speckle filtering, terrain geo-
coding, radiometric calibration and normalization, and anisotropic non-linear diffusion
filtering. Such a preprocessing allows us to work at pixel level.

It is possible to classify these preprocessed multi-temporal SAR data using various approaches.
Taking into account that our goal is to develop an approach that could be reused in other
regions, where we might not have any reliable information about the existing land-cover
classes, we opt for an unsupervised classification method. This means that we can either
perform classification on each image separately and then combine the classification results or
analyze the multi-temporal signatures of pixels or regions and perform classification based on
the similarity of signatures. We choose the former in order to cover situations where we have
only a few multi-temporal images or where the data are not radiometrically calibrated. The
key issue at this step is to determine which pixels change in time (as a potential bare soil) and
which pixels remains the same (so they can be used as a mask that covers the regions that are
not interesting for further steps of our three-step method). Therefore, to each image of the
multi-temporal data set, we need to apply such an unsupervised classification algorithm that
preserves the grayscale information so that the classes from one image can be compared with
the classes of another image and that the decision whether the class changed or not is mean‐
ingful. Based on this, our final choice is an algorithm using the Principal Components Trans‐
form (PCT) and median cut [21]. This algorithm looks for the most discriminative information
based on which it divides the image into a preset number of classes, taking into account the
colour (or grayscale) values.

At this step of the global approach, we have to make sure that none of the pixels that might
change in time is excluded from further steps (i.e., masked as stable), while misclassifying
stable pixels as changing ones is not critical here and will be further corrected in the two
following steps. Due to that, we proceed in the following way. Once all the pixels of each image
are classified into n classes, labeled 1, 2, …, n, they are compared and as soon as a pixel changes
its label, it is marked as 0, i.e., a potential bare soil. Only if the pixel preserves its class label in
all images, that is its final label too.

Taking into account that we have both HH and HV data sets, the above procedure is applied
to each of the sets and the two outputs are analyzed using ground-truth information. In a final
phase of the first step, these two outputs are combined and the result is compared with the
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ground-truth as well, in order to verify the usefulness of fusing the HH/HV information at this
level.

3.3. Results and validation

The test site is a relatively flat region of Malawi, around its capital, Lilongwe. We have ten
ALOS PALSAR FBD (Fine Beam Double Polarisation) intensity data (so, HH and HV image
pairs from ten different dates) acquired from 2007 to 2010 (from April to October each year,
Figure 2). Based on the information from field, we classify each image in eight classes. (Note
that we have repeated the whole procedure for ten and for twelve classes, and there was no
significant change in the final result.) An example of the classified image is shown in Figure
3. The result of comparing the classification results for the HV data set is given in Figure 4, and
for the HH data set, it is presented in Figure 5. Label 0 is in gray in all the images.

Figure 3. An example of the PALSAR HV image classification result
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Finally, a combination of the results of the HV and HH data sets is shown in Figure 6. This
combination is based on the idea that if the HH and HV results label differently the pixel, its
neighborhood is analyzed in HH and HV results and of the two labels, the one that is more
present is chosen. If HH and HV results label equally the pixel, that label is preserved in the
combined result.

As a validation, we use the ground-truth information consisting of 422 points that correspond
to regions that do not change in time (buildings, water …) and 330 points that belong to arable
land. For HV result (Figure 4), 202 points that do not change in time are correctly classified
(having label other than 0), while 330 points that change in time are correctly labeled as 0. In
the HH case (Figure 5), 91 points that belong to regions that do not change in time are well
classified, and 320 points are correctly classified in case of arable land. Finally, the combination

Figure 4. Comparison of the PALSAR HV classification results
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result (Figure 6) classified well 242 points that do not change in time and all 330 points of arable
land.

The final output of this step, i.e. the resulting PALSAR mask, used in further steps, is given in
Figure 7. It is obtained simply by changing the color of the gray pixels from Figure 6 into white
(representing potential bare soil) and assigning black colour to all other classes/colours of
Figure 6 (since they are out of interest, thus masked).

Figure 5. Comparison of the HH classification results
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Figure 6. Combination of the HH and HV results

4. Second step

4.1. One-day interferometric X-band data

The aim of this step is to define the potential cultivated area, in particular to delineate the
ensemble of fields, where crops will later grow.
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X-band radars have the least penetration depth of the three bands used in this work, which
also makes them more vulnerable to atmospheric effects. The COSMO-SkyMed (CSK) X-band
SAR system is capable of acquiring data twice a day, at a high spatial resolution, which allows
for very short-term analysis such as one-day correlation. Taking into account its high sensi‐
tivity and poor penetration capabilities, this system provides excellent means for analyzing
short-term (lack of) changes at the very start of the crop season, when the crops are only being
planted. Thus, potential cultivated area at start of season is derived from one-day interfero‐
metric CSK pair (3 m) acquired during the field preparation period.

In this respect, it is worth mentioning that this step does not have to be performed on a yearly
base, if the area and the pattern of the fields remain stable: it should be exclusively updated
when changes occur.

Figure 7. PALSAR mask: white – potential bare soil, black – masked.
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4.2. Procedure

Potential cultivated area at start of season is derived from one-day interferometric CSK pair
acquired during the field preparation period (December, Figure 2). Very high resolution optical
data would not be useful at this stage since fields are not yet covered by vegetation, so it would
be very difficult to discriminate them from the surrounding bare soil area using optical sensors.
On the contrary, because of the rough nature and dry conditions of the fields, short wavelength
SAR data acquired in an interferometric mode (1-day interval) provide useful information at
this second step.

This step should provide information on the status of the fields at the beginning of the crop
season in terms of vegetated or bare soil condition. Since the purpose of the overall cultivated
area product here is to map the effective crop growth from the start to the end of the crop
season, only those fields with bare soil conditions are considered. This means, in terms of
interferometric X-band data, that these areas are defined by a medium to high coherence
(absence of human activities) and a medium to high backscattering coefficient (rough bare
soil).

Image 1

Image 2

L M H

L L ML C

M ML M MH

H C MH H

Table 1 Combination of two CSK amplitude images taken with one-day interval.

Taking into account that we have one one-day interferometric data set and two corresponding
amplitude images, we should first combine the two amplitude images into one. Using the PCT
and median cut algorithm mentioned in Subsection 3.2, we split each of the two amplitude
images into three classes (L - low, M - medium and H - high amplitude). We combine them as
given in Table 1, where: L – low, M – medium, H – high, C – (significant) change, ML - medium
low, MH – medium high.

Amplitude

Coherence

L C ML M MH H

L O O O O O O

M O O M1 M3 M4 H1

H O O M2 M4 H1 H2

Table 2 Combination of the combined CSK amplitude image and the corresponding coherence image.
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Note that the situations in which there is a strong change in the backscattering coefficient in
such a short time most possibly refer to on-going works (therefore, they are most possibly not
among the areas of interest).

Figure 8. CSK amplitude image taken on December 9, 2010

Once the combined amplitude image is obtained, we combine this information with the
corresponding coherence image, split in three classes (L, M and H) using the PCT and median
cut algorithm (Subsection 3.2). The combination is based on the idea that, at this period of the
year that we consider, neither low coherence nor low amplitude correspond to potential
cultivated area. Thus, we combine these two data sets as indicated in Table 2, where: O – out
of interest, M1 – medium 1 (one amplitude image has a low value, the other and the coherence
have medium values), M2 – medium 2 (one amplitude value is low, the other is medium,
coherence value is high), M3 – medium 3 (all images have medium values), M4 – medium 4
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(two out of these three values are medium and one is high), H1 – high 1 (two out of these three
values are high and one is medium), H2 – high 2 (all images have high values).

Figure 9. Result of combining the classification results of the two amplitude images from Figure 8 according to Table
1, where: L – black, C – blue, ML – green, M – yellow, MH – red, H – white.

In such a way, the order O-M1-M2-M3-M4-H1-H2 corresponds to the increasing probability
that the pixel belongs to a cultivated area (bare soil).

4.3. Results and validation

Two CSK amplitude images of Lilongwe, taken on December 9 and 10, 2010 are used (the one
of December 9 is shown in Figure 8, as an illustration). After splitting each of the two images
in three classes (L, M and H) and combining them as indicated in Table 1, we obtain the result
presented in Figure 9. Once the coherence image is split in three classes (L, M and H) and
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combined with the combination of the two amplitude images following the rules of Table 2,
we get the image in Figure 10.

Figure 10. Result of combining the combined amplitude images from Figure 9 with the coherence image according to
Table 2, where: O – black, M1 – blue, M2 – green, M3 – yellow, M4 - orange, H1 – red, H2 – white.

As far as validation is concerned, we use the same ground-truth information as described
in Subsection 3.3. However, the question here is how to treat different degrees of possibil‐
ity of belonging to cultivated areas, taking into account the variety of output values (O-
M1-M2-M3-M4-H1-H2),  i.e.  where to put the threshold level between not cultivated and
cultivated. If we decide to assign everything that is not O to cultivated areas, we obtain
293 (out of 330) correct classifications of bare soil  and 184 (out of 422) correct classifica‐
tions of the rest. If we assign O and M1 to not-cultivated areas, then we get 289 (out of
330) correct classifications of bare soil and 212 (out of 422) correct classifications for not-
cultivated areas. Finally, if we assign O, M1, M2 and M3 to not-cultivated areas, we obtain
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280 (out of 330) correct classifications of bare soil  and 294 (out of 422) correct classifica‐
tions for not-cultivated areas.  In other words, as we move the threshold, the number of
correct  classifications  for  cultivated  areas  slowly  decreases  while  the  number  of  correct
classifications for not-cultivated areas significantly increases.

Figure 11. CSK mask: white – potentially cultivated, black – masked

The final output of our approach is the combination of PALSAR (that performs very good for
bare soil and moderately good for the rest, as shown in Subsection 3.3), CSK and ASAR. Thus,
we should keep the threshold level for CSK in such a way that the classification of not-
cultivated areas is the best possible (thus, between M3 and M4) and pay attention during the
final combination so that complementarities of the three sensors are exploited in a best possible
way. Figure 11 contains the image from Figure 10 where LO, M1, M2 and M3 are labeled as
black (masked) and M4, H1 and H2 as white (potentially cultivated).
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5. Third step

5.1. Seasonal C-band data

At this step, crop growth extent is derived from multi-temporal ENVISAT Advanced Synthetic
Aperture Radar (ASAR) data [22] acquired during the crop season. Optionally, Radarsat-1/2
FB can be used at this step. Optical data such as Landsat TM-5, SPOT-4/5, Ikonos, and
QuickBird, can also provide information of the crop growth. But, due to the persistent cloud
coverage during this period, their use is very difficult, even more if large areas, such as national
coverage, are targeted.

Multi-temporal ENVISAT ASAR (15 m) are C-band data proven to be useful in monitoring
agricultural activities on a regular basis, i.e. seasonal land cover changes [1], [23], [24], [25].
Generally speaking, C-band SAR data are not hindered by atmospheric effects; their penetra‐
tion capability with respect to vegetation canopies is restricted to the top layers.

5.2. Procedure

The goal of the third step is to monitor the crop growth during the crop season, which explains
the necessity of having multi-temporal data acquired regularly all along the crop season. In
such a way, the confusion between cropped and the surrounding vegetated, non-crop, areas
should be reduced, and at the same time, the crop development could be monitored.

Ikonos, and QuickBird, can also provide information of the crop growth. But, due to the 
persistent cloud coverage during this period, their use is very difficult, even more if large 
areas, such as national coverage, are targeted. 

Multi-temporal ENVISAT ASAR (15 m) are C-band data proven to be useful in monitoring 
agricultural activities on a regular basis, i.e. seasonal land cover changes [1], [23], [24], [25]. 
Generally speaking, C-band SAR data are not hindered by atmospheric effects; their 
penetration capability with respect to vegetation canopies is restricted to the top layers. 

5.2. Procedure 

 

Figure 12.An illustration of the typical behavior of the C-band maize signature (intensity in function of 
time) from the beginning to the end of the season. 
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Figure 12. An illustration of the typical behavior of the C-band maize signature (intensity in function of time) from the
beginning to the end of the season.

Our procedure for analyzing the ASAR data is as follows. Firstly, we perform an unsupervised
classification based on multi-temporal signatures (so, grouping together the pixels having a
similar multi-temporal behavior) in a preset number of classes. As a result, we have an output
image where the pixels with similar signature have the same label. As this is an unsupervised
classification, we are unable to determine which of these signatures is similar to the one of
maize. Thus, in the following level of our analysis, we introduce our knowledge regarding the
maize signature at C-band (note that, depending on the area, season and the type of the crop
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Our procedure for analyzing the ASAR data is as follows. Firstly, we perform an unsupervised
classification based on multi-temporal signatures (so, grouping together the pixels having a
similar multi-temporal behavior) in a preset number of classes. As a result, we have an output
image where the pixels with similar signature have the same label. As this is an unsupervised
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we want to distinguish, this step can be easily modified for other applications): at the very
beginning of the season, the intensity of the signature is low, and then it grows, reaching
rapidly its maximum value (which corresponds to ploughing), and then dropping to its first
minimum (sowing). Then the second phase begins, i.e. from flowering to plant drying stage,
where the intensity of the signature raises, reaches another maximum, possibly drops a bit and
raises again, in function of the plant moisture and the surface scattering at the top of the plant.
This behavior is similar to the one illustrated in Figure 12. Since the later stages can vary from
season to season, the key indicators we use to select which of the signatures from the unsu‐
pervised classification output resemble to the one of maize are the starting raise of the
signature, its sudden drop followed by its next raise. Thus, we analyze the moments when the
first maximum, the first minimum and the second maximum occur and label the class(es) with
the corresponding tendencies as the one(s) of maize.

Figure 13. Result of an unsupervised classification based on multi-temporal pixel behavior in eleven ASAR images
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Figure 14. Grouping of the classes from Figure 13: white – crop growing extent, black – the rest (masked)

5.3. Results and validation

Once a multi-temporal unsupervised classification of multi-temporal pixel signatures in
twelve classes is performed, using eleven ASAR intensity images covering the period from
September 2010 to March 2011, we obtain the result given in Figure 13. After analyzing the
multi-temporal signatures of each of twelve classes, we select the classes having tendencies
similar to the ones of maize (Figure 12), and we mask the rest. The obtained result is given in
Figure 14. Note that the classification has been also performed in eight and ten classes and that
there was no significant change in the final result.

The validation results are as follows: 303 (out of 330) pixels from cultivated areas are well
classified, as well as 235 (out of 422) pixels from non-cultivated areas.
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6. Final combination

6.1. Procedure

There are various methods of combining the results obtained from each of the three sensors,
depending on the quality of each of the sensors, requested computation speed, application,
etc. In our case, looking for a simple, fast yet reliable method, we test several voting combi‐
nation rules:

• ANDc (a pixel is declared as cultivated if all sensors labeled it as such; it is masked other‐
wise);

• ANDm (for the masked class: a pixel is declared as masked if all sensors labeled it as such;
otherwise, it is declared as potentially cultivated);

• MAJ (for class labeled as potentially cultivated: if at least two out of three sensors labeled it
as potentially cultivated, the pixel is labeled at the combination output as cultivated;
otherwise, it is masked), and

• OR (for class labeled as potentially cultivated: a pixel is declared as masked only if all sensors
labeled it as such; otherwise, i.e., if at least one of the sensors labeled a pixel as potentially
cultivated, it will keep that label at the combination output).

Note that the difference between ANDc and ANDm is that in the former case, AND voting is
applied to the cultivated class while in the latter case, AND voting is applied to the masked
class. This makes the two AND voting approaches complementary and it depends on the
application which one is more useful than the other. Finally, the difference between MAJ and
OR is that the former labels a pixel as potentially cultivated if at least two of the three sensors
have given it that label and it is masked otherwise, while the latter labels a pixel as potentially
cultivated if any of the three sensors labeled it as such.

6.2. Results and validation

The four voting strategies are applied to the outputs of the three sensors given in Figures 7, 11
and 14. As an illustration, Figure 15 contains the result of ANDc voting, while the result of
MAJ voting is shown in Figure 16.

We validate these results using the same validation set as in the previous steps and obtain the
following results:

• ANDc voting: 225 out of 330 pixels from cultivated fields well classified; 377 out of 422 pixels
belonging to non-cultivated fields well classified;

• ANDm voting: all 330 pixels belonging to cultivated fields well classified, as well as 78 out
of 422 pixels from non-cultivated fields;

• MAJ voting: all 330 pixels from cultivated fields well classified, as well as 323 out of 422
pixels from non-cultivated fields;
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• OR voting: all 330 pixels from cultivated fields well classified, as well as 59 out of 422 non-
cultivated field pixels.

Figure 15. Result of ANDc voting: white – crop growing extent, black – masked.

These validation results are in accordance with our expectations. Namely, if  we keep as
cultivated only those pixels where all three sensors claim that it is cultivated indeed, and
label all the rest as masked (non-cultivated), we can expect to have a high detection of non-
cultivated  fields  and only  modest  results  for  cultivated  fields  (ANDc voting).  With  the
inverse logic, we preserve all cultivated fields, but also label many non-cultivated as being
cultivated (ANDm voting, as well as OR). Finally, with the majority voting (MAJ), it can
be  expected  to  obtain  results  that  optimize  the  two  extremes,  and  benefit  from  the
complementarities of the sensors.
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Figure 16. Result of MAJ voting: white – crop growing extent, black – masked.

The same conclusion can be derived from Table 3, which represents the summary of the
validation results, for each of the steps and each of the combination approaches tested. From
the three steps, step 1 has the best correct classification of pixels belonging to cultivated fields,
but 42.64% of pixels belonging to non-cultivated fields are also classified as cultivated. On the
other hand, step 2 has the best correct classification of pixels from non-cultivated fields, but
15.15% of cultivated field pixels are also classified as non-cultivated. Regarding the four fusion
strategies used, we can conclude that with the MAJ voting, we preserve the maximum number
of correct classifications as the one of PALSAR in step 1, while we increase the correct classi‐
fication of non-cultivated fields as well, thanks to the output of CSK and ASAR. Although the
priority is not to miss cultivated fields, an improvement in correct classification of non-
cultivated fields is also an important issue since it leads to a better estimation of the extent of
the problem.
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cultivated fields well classified

(out of 330)

non-cropped fields well classified

(out of 422)

step 1 100% 57.35%

step 2 84.85% 69.67%

step 3 91.82% 55.69%

final ANDc 68.18% 89.34%

final ANDm 100% 18.48%

final MAJ 100% 76.54%

final OR 100% 13.98%

Table 3 Correct classifications: summary of the validation results (in percents)

Note that the validation is performed on the pixel level. If done on the region level, the
validation results would certainly have been even better since a region would have been
declared as correctly classified if majority of its pixels (and not all of them, as here) were
correctly classified.

The achieved accuracy confirms the validity of the methodology, in particular that: 1) the use
of very high resolution data is an indispensable condition for the identification of small
agricultural plots; 2) the differentiation between cultivated areas (i.e. growing vegetation
during the crop season) and other land cover classes is first and foremost possible if multi-
temporal data are used; 3) the combination of various SAR sensors (bands) improves the final
results.

7. Conclusion

Agriculture is the land cover type showing the largest spatial and temporal dynamics during
a relatively short period. Therefore, pre-requisite for the generation of an accurate cultivated
area product is to combine very high resolution data with multi-temporal high resolution data
acquired throughout the whole crop season. This approach has been tested through a three-
step procedure for estimation of cultivated area in small plot agriculture in Malawi and the
obtained results have proven its validity.

The first step of this procedure is the estimation of crop extent prior to the crop season using
multi-temporal L-band PALSAR data. The estimation of the potential area at start of the crop
season using X-band COSMO-SkyMed is the second step, while the third step consists in
determining the crop growth extent during the rain-fed crop season, with the help of multi-
temporal C-band ASAR data. The final result is crucial when dealing with food security and
agriculture in developing countries, where available land-cover map is either inaccurate, out
of date or it does not even exist. Once derived, this global information, which should give a
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basis for deciding where to perform more detailed analysis, should be relevant for a longer
period of time in normal situations, so it should not need to be updated annually.

At each step, the obtained results are validated using ground-truth information.

Four voting combination strategies are tested in the final combination of the three sensors,
based on “majority”, “or” and “and” logic (two versions of it - one prioritizing cultivated, and
the other non-cultivated fields). For our application, the majority voting gives the most
interesting results of the four, while for some other applications (such as mined area reduction,
for example), one of the other strategies might be useful.

As demonstrated here, the spatial resolution of existing space-borne remote sensing systems
and the wise integration of different remote sensing sources enable the achievement of a high
level of detail and accuracy, as long as the data are understood, processed and used in the right
way. The proposed solution is attractive, less time consuming and less expensive compared
to area regression estimators exclusively based on field survey. Furthermore, the remote
sensing solution intrinsically provides a monitoring component (as agricultural area can vary
during a season): this is often (or fully) not taken into account in the area regression estimator
approach, simply because it is too time consuming to frequently repeat the field survey.

In our future work, other combination approaches will be tested, in order to optimize the
exploitation of the complementarities of the three SAR sensors.
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1. Introduction

Operational monitoring of agricultural extent and production is part of several national and
international efforts to provide transparent, rapid and accurate information related to food
security and food markets. Initiatives such as the G20 Agricultural Market Information System
(AMIS), the European Commission’s Monitoring Agricultural Resources mission (MARS), the
Global Agricultural Monitoring (GEOGLAM) component of GEO, and the United States
Department of Agriculture’s Global Agricultural Monitoring Foreign Agricultural Service
(GLAMFAS), are just some examples of operational services that do, or will require remote-
sensing–based information on crop status in almost any part of the world.

Of the thousands of edible plants, just three—rice, wheat, and maize —provide 60% of the
global population’s food energy intake, and the top 15 crops amount to 90% [1]. Seasonal or
monthly estimates of production and availability of these staples form a part of many agri‐
cultural bulletins and agricultural outlook reports. These reports are used for decision-making
and policies on imports, exports, subsidies, and investments, which, in turn, affect prices. Food
security is fundamentally about availability and price; such reports, and the responses to these
reports, affect both. International events, such as the food price crisis of 2008, are the unin‐
tended outcome of national and international policy decisions that can detrimentally affect

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



millions of people. More accurate and timely information to better inform policymakers is one
way to reduce the likelihood of similar events in the future.

Crop bulletins and other regular assessments of crop area and production are a combination
of statistics, surveys, reports from agricultural offices, Met Office forecasts, expert opinion,
and remote-sensing information on vegetation, soil moisture, and rainfall. However, there is
scope to increase the role of remote sensing in these reports if the information can be provided
at the appropriate time, scale, and, wherever possible, with a focus on specific crops. Highly
anticipated programmes such as the European Space Agency's (ESA) Sentinel constellation
can provide exactly this type of information, although the demands for sustainably acquiring,
processing, validating, and delivering the information are considerable.

This chapter provides a proof of concept for how a key staple crop can be monitored on a
national scale using existing remote-sensing (RS) products that will soon be complemented
and superseded by forthcoming sensors. Our exemplar crop is rice and our test country is
Bangladesh (Figure 1). This region is highly suitable for a demonstration because of the triple
remote-sensing challenge of pervasive cloud cover, small field size, and complex cropping
patterns, which are typical of the vast and important agricultural areas of Asia, Africa, and
Latin America. It is these areas where future gains in productivity must and will be made, not
the agricultural areas of Europe, the US, and other developed regions where crop monitoring
is substantially easier.

We first briefly describe the rice environments of Bangladesh, and then demonstrate how a
combination of hypertemporal synthetic-aperture radar (SAR) and optical RS data can be
combined to generate both baseline map information and near–real-time monitoring infor‐
mation on crop extent and crop seasonality.

2. Rice in Bangladesh

Agriculture is one of the most important sectors in Bangladesh’s economy, accounting for
approximately 20% of the gross domestic product (GDP) in 2010. It also accounts for the
employment of over 60% of the country’s population [2]. Rice is far and away the most
important crop in the agricultural sector. Almost 60% of the land area is planted to rice and it
provides food, employment, and income for much of the rural population. Bangladesh is one
of the most populous countries in Asia, with almost 150 million people, according to the 2011
census. With over 1,000 people per square kilometre, it is one of the most densely populated
countries in the world [2]. The country’s milled rice consumption per capita is the highest in
the world at 173 kg per year or almost 500 g of uncooked rice per day [1].

Rice can be cultivated in any of three seasons in Bangladesh in a myriad of cropping systems
such as rice/pulse, rice/maize, rice/wheat, rice/vegetables, rice/shrimp and double-or triple-
rice monoculture. The dry boro season, which runs from November to April, is largely
dependent on irrigation and is of growing importance to Bangladesh’s rice output. This is
followed by the aus season (sometimes referred to as early kharif), which runs from March to
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August and relies on irrigation to establish the crop and early monsoon rains during the rest
of the season. The aman season from June to December relies almost entirely on monsoon rains
and is another major source of rice production. Deepwater aman rice grown in flooded
conditions using tall varieties or floating rice starts in April or May, but is harvested in
November/December. Figure 2 shows how these seasons overlap due to the large variation in
(trans)planting and harvesting windows across the country. In general, the boro season starts
in the east and south and moves northward; whereas, the rainfed aman season starts in the
northernmost reaches of the delta and moves from north to south, although, local conditions,
cropping patterns, and other management decisions can affect this trend.

Figure 3 shows the trends in rice cropped area per season for 1999-2012 and Figure 4 shows
the reported area for each of the 64 districts in 2011 based on BBS annual reports [2-3]. Figure
3 shows the general stability in total rice area with extremes of 10.4 (2004) and 11.5 (2011)
million hectares; the recent increases are mainly due to the expansion of the area in the boro
season. Figure 4 shows the general spatial distribution of rice per season where the boro crop
is mainly in the north and east, the much smaller aus crop area is in various clusters across the
country, and the aman crop is dominant in both north and southern coastal regions.

Figure 1. Location of Bangladesh in Asia.
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Whilst production has increased steadily over the past 10 years, this trend faces multiple
challenges. Flooding from excessive rainfall and the massive inflow from the Ganges (called
Padma in Bangladesh), Brahmaputra (called Jamuna in Bangladesh), and Meghna rivers is
estimated to severely affect 1.32 million ha and moderately affect a further 5.05 million ha.
Crop losses from such massive inundation can be enormous. At the same time, drought
brought on by a shortage of rainfall affects both the rainfed aman crop and the dry season
crops, with a total drought-affected area estimated at 3.52 million ha. Salinity and tidal surges
from cyclones affect a further 1 million ha of cultivated land, and any given area can suffer
from one or more of these stresses during the year [4]. Severe yield losses are also attributed
to pests, diseases, weeds, and other biotic yield reducers.

The possible impacts, both positive and negative, of changes in climate, society, economy and
technology are hard to quantify, but the fundamental message is that Bangladesh faces
multiple challenges to food production which are the focus of ongoing research and develop‐
ment across the country, such as stress tolerant varieties, innovative cropping systems,
investments in infrastructure, extension and training. Bangladesh has been identified as one
the countries with the highest vulnerability to anticipated climate change and there is contin‐
ued need to deliver the best possible crop status information to policy makers as a contribution
to sustainable and resilient agricultural production.

In summary, rice can be cultivated during any month and it faces different pressures in each
of the three seasons. Rice is cultivated in varying amounts in every district with differing spatial
patterns each season. Thus any RS-based monitoring requires frequent observations through‐
out the year across the entire country. For this reason, hypertemporal imagery with a large
footprint, such as MODIS and ENVISAT WS products, are good choices for baseline rice extent
mapping and rice seasonality monitoring. They also serve as a proof of concept of what can
be achieved at higher spatial and temporal resolutions with future satellite programmes in an
operational monitoring context.

3. Methods and data

3.1. Multi-temporal SAR and optical data for rice mapping and monitoring

Field conditions and crop evolution follow well understood seasonal changes, which can be
observed by multi-temporal remote-sensing data. Combined with a priori knowledge of the
crop calendar and land practices, this multi-temporal remote-sensing data can be correctly
interpreted to deliver valuable information. For rice, at the start of the season, remote-sensing
time-series can determine when and where fields are prepared and irrigated. The same time-
series information can also capture the various crop stages, starting from seeding or trans‐
planting and then through the vegetative, reproductive, and ripening stages until harvest. In
synthesis, assuming that images are regularly acquired, the key source of information about
crop presence and status is the temporal signature [5-9]. Systematic acquisitions are essential;
one image or randomly acquired scenes, even with very high resolution, are of limited use for
crop monitoring.
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SAR systems have a proven ability to detect irrigated and lowland rice through the unique
backscatter temporal signature. In the past three decades, a significant number of publications
have been dedicated to the rice signature and to its detection and monitoring [10-17]. In
summary, these studies have shown that:

• Lower frequencies (L-and C-band) penetrate deeper into the rice plant than higher frequen‐
cies, whereas higher frequencies (X-band) interact better with rice grains.

• Double bounce dominates at L-band, whereas volume scattering prevails at X-band.

• The correlation between the backscattering coefficient and rice bio-physical parameters
shows that, lower frequencies are more related to the total fresh weight, leaf area index, and
plant height; whereas higher frequencies better correlate with grain weight and grain water
content.

• The date of the maximum backscattering coefficient at X-band precedes those of C-and L-
band.

• The VV backscattering coefficient increases only during the vegetative stage; it is quite stable
at the reproductive stage, and it decreases at the ripening stage due to the canopy attenua‐
tion.

• The HH backscattering coefficient increases at the reproductive stage, and it is quite stable
at the ripening stage. The temporal trend of the HV backscattering coefficient is similar to
the HH one.

• The VV/HH polarization ratio, at C-and L-band, significantly decreases throughout the
course of the crop season, hence proving its sensitivity to rice plant age.

• The frequency ratios for HH and VV (C-VV/L-VV and C-HH/L-HH) are significantly lower
in the latter part of the rice season, when thick vegetation canopy hampers wave penetration.

High-resolution optical images in the tropics are strongly limited for crop monitoring pur‐
poses, especially rice. Most rice is grown in the rainy or monsoon season and images often
suffer from persistent and widespread cloud contamination. High-resolution images are rarely
available with high temporal frequency, so gap-filling and smoothing options are limited. On
the contrary, moderate-resolution systems with daily revisiting cycles, such as MODIS, have
the appropriate spectral bands and temporal resolution needed for crop identification and
phenological monitoring at regional scales.

Although sometimes neglected and rarely the subject of discussion in remote-sensing litera‐
ture, the impact of meteorological conditions and crop practices on rice plant growth is often
significant. Some prior knowledge of the rice variety, the crop calendar, varietal maturity, crop
management practices for water and inputs, and meteorological conditions is prerequisite for
the correct interpretation of the temporal signature and for the generation of an accurate ‘rice
map’, whatever the specific information (i.e., rice area, start of season date, etc.) in the map.
This agronomic and meteorological information must be considered in the development of a
rice detection algorithm.
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Thus, there is an opportunity to use both SAR and optical time-series information for rice crop
detection and monitoring, provided that there is sufficient a priori knowledge of the rice
system under observation. The following approach is based on specific peculiarities and
complementarities of high temporal resolution and moderate spatial resolution SAR and
optical data; however, the approach can also use higher resolution imagery if available.

Given the higher spatial resolution but limited revisiting time (ranging from 16 to 24 days),
SAR data are primarily used to estimate the spatial extent (resolution 100 m) of the rice crop.
Medium-resolution optical data with a quasi-daily revisiting cycle are used to derive the land
surface phenology as a means to identify key stages of the rice crop season. There are two
distinct processing chains to develop rice monitoring products on an operational basis: one for
the rice extent/area estimation from SAR, another for rice seasonal monitoring within that
extent/area from MODIS. The main advantages of this approach are:

• It overcomes the spatial-temporal problem, hence, assuring an appropriate temporal
repetition at an adequate scale (i.e., spatial resolution) even over large areas;

• It provides an operational monitoring system, which is based on multi-sensor data redun‐
dancy.

Figure 5 illustrates the overall approach. Depending upon data availability, rice products
based on archive and actual remote-sensing data at different spatial scales can be generated.
Here, we will discuss the use of archive ENVISAT ASAR Wide Swath data (100 m) and MODIS
(500 m), leading to a multi-year rice extent and phenological monitoring product.

Figure 5. Products and supported sensors (past, current, near future) including acquisition modes.
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3.2. Multi-year rice extent from archive ENVISAT ASAR Wide Swath data

The C-band Advanced Synthetic Aperture Radar (ASAR) on board of the ENVISAT satellite
ensured continuity of the ERS-1/2 SAR systems between 2002 and 2012. It featured enhanced
capability in terms of coverage, range of incidence angles, polarisation, and modes of opera‐
tion. There were three ASAR acquisition modes with a 35-day repeat cycle:

• Wide Swath mode-WS (400 by 400 km, 100 m resolution, HH or VV),

• Image mode – IM (100 by 100 km, 15-25 m resolution, HH or VV), and,

• Alternating Polarization – AP (100 by 100 km, 15-25 m resolution, HH/VV or HH/HV or VV/
VH).

The 10-year ENVISAT ASAR WS data archive is mainly based on background mission
acquisitions, hence, it was not specifically planned and not optimised for agricultural appli‐
cations. Nevertheless, the large archive can be exploited for rice mapping with appropriate
processing and interpretation. A fully automated processing chain has been developed to
convert the images into terrain geocoded backscattering coefficient (σ°).

1. Co-registration – Images acquired with the same observation geometry and mode are co-
registered in slant range geometry. This step is mandatory to allow time-series speckle
filtering.

2. Time-series speckle filtering – An optimum multi-temporal filtering is used to balance
differences in reflectivity between images at different times [18]. Multi-temporal filtering
is based on the assumption that the same resolution element on the ground is illuminated
by the radar beam in the same way, and corresponds to the same slant range coordinates
in all images of the time series. The reflectivity can change from one time to the next due
to a change in the dielectric and geometrical properties of the elementary scatters, but
should not change due to a different position of the resolution element with respect to the
radar.

3. Terrain geocoding, radiometric calibration, and normalization – A backward solution by
considering a Digital Elevation Model is used to convert the positions of the backscatter
elements into slant range image coordinates. A range-Doppler approach is used to
tranform the three-dimensional object coordinates in a cartographic reference system into
the two-dimensional row and column coordinates of the slant range image. During this
step, the radiometric calibration is performed by means of the radar equation, where
scattering area, antenna gain patterns, and range spread loss are considered. Finally, the
backscattering coefficient is normalized according to the cosine law of the incidence angle
in order to compensate for the range dependency.

4. Anisotropic Non-Linear Diffusion Filtering – This filter significantly smoothes homoge‐
neous targets, whilst also enhancing the difference between neighbouring areas. The filter
uses the diffusion equation, where the diffusion coefficient, instead of being a constant
scalar, is a function of image position and assumes a tensor value [19]. In this way, it is
locally adapted to be anisotropic close to linear structures such as edges or lines.
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5. Removal of atmospheric attenuation – Although microwave signals have the ability to
penetrate through the clouds, it is possible, particularly at short (X-and C-band) wave‐
lengths, that severe localised storms can affect the backscattering coefficient in the range
of several dB. The temporal signature of the backscatter coefficient can be affected in two
ways: (1) the thick layer of water vapor generates a strong decrease of backscattering
coefficient, followed by a strong increase; (2) the strong rainfall generates a strong increase
of the backscattering coefficient, followed by a strong decrease. These effects are corrected
in the processing chain by analyzing the temporal signature—anomalous peaks or troughs
are identified and the backscattering coefficient values are corrected by means of an
interpolator. This correct application of this process relies strongly on a priori knowledge
of the rice system and the weather conditions when the image was acquired.

Once the WS archive has been processed, it is ready for interpretation. Rice detection relies on
interpretation of the temporal signature from regular acquisitions within a given year or
season. The 2002-2012 WS archive does not have regular acquisitions over any one area and
so, we made the following assumption. Given that rice extent in Asia is relatively constant (see
Figure 3 for evidence of this in Bangladesh) and cropping calendars are relatively stable, we
can then develop a pseudo-annual time-series with a relatively high temporal occurrence by
combining all years of WS observations into one year. This is illustrated in Figure 6 where the
multi-year SAR data for a selected time frame (e.g., weekly, bi-monthly) is temporally averaged
leading to an annual signature.

Figure 6. Example of the pseudo-annual time series for a single pixel based on multi-year ASAR Wide Swath data
(2002-2010).

This temporal signature can be interpreted in two ways:
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1. The temporal evolution of the backscattering coefficient is analyzed from an agronomic
perspective. This assumes that the data have been regularly acquired in temporal terms,
and that a priori knowledge of rice type, calendar and duration, crop practice, and
meteorological conditions during the whole season is available. This is not the case for the
WS archive, so we move to option two.

2. From the backscattering coefficient time series, representative temporal features (or
descriptors) can be derived. Even if this approach cannot derive specific information on
the rice phenology [9], it can provide valuable information on the rice location and,
depending upon the temporal frequency of the SAR acquisitions, the various rice seasons.
We use this approach for interpreting the signature from the WS archive.

The most representative temporal features for rice have been found to be the relative minimum
and maximum, their difference, and minimum and maximum increment between two
subsequent acquisitions. The selected five temporal features are used to generate rice extent
and rice seasons according to:

1. The start of the rice season is identified when there is a relative minimum followed by a
maximum increment between two subsequent acquisitions;

2. The peak of the rice season is identified when there is a relative maximum followed by a
minimum increment between two subsequent acquisitions;

3. The pixel is classified as rice if:

• conditions 1 and 2 are satisfied;

• the range between relative minimum and maximum attains a minimum value;

• the temporal duration between 1 and 2 is within a given duration;

4. Rice is further distinguished in single, double, triple, etc., according the number of valid
minima and maxima (condition 3).

3.3. Phenological monitoring with MODIS data

3.3.1. MODIS data for land surface monitoring

With the launch of the Moderate Resolution Imaging Spectroradiometer (MODIS), onboard
the NASA TERRA (EOS AM-1) satellite, a new era in multi-spectral satellite remote sensing
began. MODIS sensors permit continuous monitoring of the environment by measuring
spectral bands from the blue to the thermal infrared. The 36-band MODIS spectrometer
provides a global data set every 1-2 days. The swath dimensions of MODIS are 2,330 x 2,330
km and the spatial resolution (pixel size at nadir) is 250 m for channels 1 and 2 (0.6 µm-0.9
µm), 500 m for channels 3 to 7 (0.4 µm-2.1 µm) and 1,000 m for channels 8 to 36 (0.4 µm-14.4
µm).

There are many standard MODIS data products that are provided to users in near–real-time
and easy-to-use formats for no cost. The MOD09A1 product (a full technical description is
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available online at https://lpdaac.usgs.gov/products/modis_products_table/mod09a1) pro‐
vides 8-day composite reflectance data across seven spectral bands (red-0.6 µm, NIR-0.9 µm,
blue-0.4 µm, green-0.5µm, NIR-1.2 µm, SWIR-1.6 µm, SWIR-2.1 µm) at 500 m spatial resolu‐
tion, as well as pixel-specific quality control flags and observation dates. This product type is
derived from a multi-step process that considers atmospheric, cloud, and aerosol corrections,
and records the best reflectance data registered during the time composite window for each
pixel. MODIS product data are provided in Hierarchical Data Format (HDF) on a tile system
with the Sinusoidal projection grid. Each tile of the grid covers an area of 1,200 × 1,200 km,
more or less 10° of latitude and longitude (Figure 7A). Despite drawbacks related to spatial
and spectral resolution, it is the zero cost, ease of access, clarity of product description, and
ready-to-use nature of MODIS products that have contributed to their widespread use as a
source of remote-sensing information for monitoring.

Figure 7. The study area: The location of MODIS tile H26V06 in the Global Sinusoidal projection map (A), tile H26V06
which covers most of Bangladesh (B), and, Bangladesh in geographic coordinates showing the extent of H26V06,
which covers all the country except the far the north west (C).

3.3.2. PhenoRice algorithm

MOD09A1 data for 2011 from the tile H26V06 (Figure 7B) were used to demonstrate seasonal
rice monitoring in Bangladesh (Figure 7C) using a rule-based automatic algorithm called
“PhenoRice.” The aim of the PhenoRice approach is to detect paddy rice by analysing multi-
spectral data with quasi-daily revisiting cycles (e.g., TERRA/AQUA-MODIS, SPOT-VGT, etc.)
in a consistent and flexible way that minimises dependency on local threshold adaptation.

The basis for this approach is described in previous publications by CNR-IREA [7,20,21]. Before
any seasonal phenological monitoring can be performed, PhenoRice needs an estimate of the
rice-growing area. If there is no rice extent map available, then the PhenoRice process relies
on the work of [6,22-23] which identifies irrigated or lowland rainfed rice when a clear and
unambiguous agronomic flood is detected and is shortly followed by a rapid increase in
vegetation growth. However, the process can also use available land cover maps that show
rice extent, or use multi-year rice extent maps such as in this case study. The seasonal pheno‐
logical monitoring part of PhenoRice is performed by analysing the temporal signatures of
various vegetation indices [20].
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Figure 8 shows a schematic diagram illustrating the concept and steps of PhenoRice algorithm.

The algorithm involves three fundamental processing steps.

Figure 8. PhenoRice flow chart.

1. Pre-processing of MODIS composite data
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a. The identification of noise in the data by analysing the MODIS Science Data Set (SDS)
cloud and snow quality flags and blue band reflectance values. Quality flag values
are extracted from HDF layer 11 (500 m State Flag): bits 0-1, 3-5, and 15 are analysed
to identify cloud, land, and snow noises, respectively. This information, together with
a threshold on the blue band, is then combined to evaluate noise in the spectral data
and error in the computed spectral indices.

b. The computation of time series of spectral indices (SI) to perform (1) flood detection,
using moisture [Land Water Surface Index, LWSI [22]] and water [Normalized
Difference Water Index, NDWI [24]] indices, and (2) vegetation growth monitoring
using the Enhanced Vegetation Index, EVI [25]. The red (layer 1), NIR (layer 2), blue
(layer 3), and SWIR (layer 7) bands are extracted from each HDF file to compute the
EVI, LSWI, and NDWI indices.

2. Smoothing and temporal signal analysis

a. The EVI time-series is smoothed in order to reduce contamination that still affects the
MODIS data after the temporal compositing procedure. In the smoothing process,
the raw EVI profile is analysed to detect and clean outlier values, i.e., anomalous
peaks and irregular small drops. Finally, a temporal smoothing on the EVI data is
applied using a local polynomial function that weighs observation in relation to cloud
contamination (output of step 1a), which is based on a Savitzky-Golay filter [26]. This
filter is specifically recommended for the interpolation of vegetation index time-
series.

b. Derivative analysis: The smoothed signal is then analysed in order to calculate the
first derivative. These derivatives are used to automatically identify all points of local
(relative) minima (where the first derivative changes from negative to positive) and
local (relative) maxima (where the first derivative changes from positive to negative).

3. Rice and phenological detection

a. Rice transplanting/seeding (MIN point) is identified when a local EVI minima occurs
at the same time as a flood (NDWI, LSWI), and a series of positive EVI derivative
values (indicating plant growth) occur shortly after.

b. Rice heading/flowering (MAX point) is detected when there is a local absolute
maxima in the EVI time-series.

c. Finally, following [7], the smoothed EVI signal is analysed to extract rice emergence
[start of season (SoS)] and maturity [end of season (EoS)]. These metrics are identified
for each rice pixel, when EVI values match pixel-specific relative thresholds.

All the PhenoRice outputs refer to a temporal window of 12 months from 1 January to 31
December with a temporal step of 8 days corresponding to a MODIS composite granularity.
For the year under analysis, referred to as Current Year (CY), the method is able to provide
information on the different rice crop seasons (up to three) that occur in the period. It is
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assumed that a rice season belongs to the given CY, if at least the maximum (i.e., heading) of
the crop occurs in this period (from January to December).

In order to provide a flexible method able to detect rice seasons in different environmental and
climatic conditions with a specific crop calendar, we assume that the start of the season
(flooding and seeding/transplanting) can occur in the previous calendar year (PY) up to six
months before the start of CY. This results in an 18-month analysis period, which corresponds
to 24 8-day MOD09A1 composites (192 days) in the PY and 46 8-day composites in the CY
under analysis.

Finally, phenological metrics maps are produced for each quarter of the year. A rice detection
is therefore attributed to the quarter, in which heading occurs. Consequently, the associated
MIN, SoS, and EoS detection are referred to the same quarter, but as separate maps. In the case
study of Bangladesh, output maps have been post-processed and synthesized for the specific
cropping seasons of the country. Following the knowledge of the local crop calendar, all the
detection that occurs between February and late April are attributed to boro, the ones between
May and late July to aus, and others in the period from August to late November to aman.

4. Results

4.1. Multi-year rice extent from the ENVISAT WS archive

The 2002-2010 ASAR Wide Swath data stack consists of around 340 frames. Four scenes (in
two different orbits) were needed to completely cover the country. Hence, on average, there
are 85 frames across the 8-year period, corresponding to around 10 images per month in the
pseudo-annual time-series approach (Figure 6). In practice, the amount of images per month
in the pseudo-annual stack varies between 3 and 16, meaning that the archive data is not
suitable for annual or regular monitoring purposes. Figure 9A illustrates the country coverage
mosaic of three temporal features: the relative minimum, the relative maximum, and the
maximum variation.

The three temporal features, illustrated as a mosaic in Figure 9A, are exclusively carried out
for visualization purposes. Indeed, the applied gradient algorithm, which is used to produce
a seamless image, may significantly change the radiometric content in the overlapping areas;
hence, it is not suitable for data analysis purposes. Looking at the temporal features at country
level (Figure 9A), three main colours can be identified: blue, yellow, and light and dark orange
to brown. The blue colour represents the minimum, i.e., a constant low radar backscatter
during the whole year. Yellow, identified as rice and primarily located in the northeast of
Bangladesh, is the combination of a strong temporal variation (red) and a high maximum
(green). Light and dark orange to brown, distributed over the whole country, classified as rice,
is essentially a combination of a strong temporal variation (red) with a medium maximum
(green).
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Figure 9. (A) Mosaic (100 m) of temporal features based on ENVISAT ASAR Wide Swath data acquired from 2002 to
2010. Red is the maximum variation, green is the relative maximum, and blue is the relative minimum. (B) Rice extent
based on temporal features of archive ENVISAT ASAR Wide Swath data. Light green is single rice, dark green is double
rice, aquamarine is rice grown after a long flooding duration (up to six months), and orange is rice mixed with other
crops. (C) Enlargement of A (red box). (D) Temporal features (15 m) based on ENVISAT ASAR Alternating Polarization
data acquired from June 2011 to March 2012 on the same area shown in C. Red is the maximum variation, green is
the relative maximum, and blue is the relative minimum.

Due to the different acquisition times and geometry between the two orbits, the five temporal
features – derived from the monthly averaged backscattering coefficient – are computed for
each orbit separately. The rice extent is generated according to the rules described in section
3.1 and, subsequently, products belonging to the two orbits are shown as a mosaic at semantic
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level (Figure 9B). In this specific case, rice extent additionally includes the various rice crop
seasons, which could be identified with this data set because of the good temporal frequency.
Further distinction between single rice, double rice, and rice cultivated after prolonged
flooding is provided by the time component—the single rice crop has a short to medium
(90-120 days) duration; double rice usually means two short duration crops; and boro rice,
after prolonged flooding in the northeast, is usually medium duration. This is a coarse
characterisation of rice seasons, due to the fact that temporal features, derived from monthly
averaged backscattering coefficient acquired irregularly, are not sufficient to follow the rapid
spatial-temporal changes of agriculture. Nevertheless, this pseudo-annual data set enables the
generation of a detailed rice–non-rice extent at a one-hectare scale.

With regard to the consistency of the proposed approach and to the impact of spatial resolution,
temporal features derived from ASAR Wide Swath (Figure 9C) are compared to those derived
from ASAR Alternating Polarization data (Figure 9D). This 15-m resolution data set has been
acquired from June 2011 to March 2012 every 35 days, according to the repeat cycle of ENVISAT
ASAR. The visual comparison shows that the land cover patterns, particularly of rice, are
similar. It means that the multi-year (or pseudo-annual) approach is conceptually correct and
viable in this case.

Another interesting observation can be made by comparing the two colour composites—
spatial resolution plays an important role. Large and homogeneous regions are clearly
identifiable in both acquisition modes, while small features tend to be smoothed out and to
disappear. Rice covers a substantial part of the country, and although plots are small, the rice
areas in much of the country are large and connected, especially in the rainy season, where
rice is often the only viable crop. From analysis of SAR data at a range of resolutions (3 to 100
m), we estimate that an accurate area estimation using this approach would need a pixel size
at least five times smaller than the field size. Medium and lower spatial resolution systems
should be therefore exclusively used for the provision either of extent information — a proxy
of area — or, in case of agricultural applications, of phenological crop monitoring.

The ASAR Alternating Polarization HH/HV data were used to further compare the pseudo-
annual ASAR Wide Swath data to the quasi-annual HH/HV data, particularly with respect to
the contribution of the cross-polarization for rice detection. Figure 10 (left) illustrates the
temporal signatures of the ASAR WS Swath monthly averaged HH backscattering coefficient
from January to December and those at HH and HV acquired in Alternating Polarization mode.
First, this reaffirms that the use of multi-temporal data is essential, particularly at HH polari‐
zation. Second, the correspondence between the two HH radar backscatter signatures is
evident, confirming the validity of the proposed approach. Third, and confirming the studies
of [12,16], the HV polarization contributes in the discrimination of rice from other land covers.
Typically, the HH/VV ratio is preferred because it shows a variation up to 7 dB from the
beginning of the season to the plant maturity phase [11].

Finally, the quasi-annual HH/HV time-series is used to determine two key moments of the rice
growth — start of season and peak of season (Figure 10, right). The first happens when the
relative minimum is detected (September, blue colour), whereas the second is detected when
the relative maximum is reached (November, green colour). A comparison with the generic
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crop calendar of Figure 6 shows a good correspondence with the identified dates. However,
it should be noted that a 35-day repeat cycle is not sufficient to obtain an accurate estimate of
these two key moments. For this reason, the use of remote-sensing data acquired with higher
temporal frequency is of advantage.

4.2. 2011 seasonal rice monitoring with MODIS

4.2.1. Rice season map

The number of rice seasons detected is reported in Figure 11A. For the year 2011, the analysis
of optical data time-series revealed that most areas have one rice season. Two seasons were

Figure 10. Top left: Temporal signatures derived from ENVISAT ASAR Wide Swath HH data acquired from 2002 to
2010. Middle left: Temporal signatures derived from ENVISAT ASAR Alternating Polarization HH data acquired from
June 2011 to March 2012. Bottom left: Temporal signatures derived from ENVISAT ASAR Alternating Polarization HV
data acquired from June 2011 to March 2012. Right: Detected start of season and peak of season based on ENVISAT
ASAR Alternating Polarization HH data acquired from June 2011 to March 2012.
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identified in the northern regions, while up to three seasons (red area in Figure 11A) were
found in the northwest part of the country in Rajshahi Division. Areas with one or two rice
seasons per year may cultivate a second or third non-rice crop, but those non-rice cropping
seasons are not captured in the PhenoRice algorithm, nor is it represented in the map.

The same analysis also produces rice extent maps for the boro, aus, and aman seasons. The
main rice cultivation (~% 49) occurs in the boro period (Figure 11B), followed by aman (Figure
11D) during the wet season (~% 45). The aus crop is very small (6%) in comparison to the other
two, and occurs mainly in the central and western part of the country (Figure 11C).

Figure 11. Total detected rice seasons (A) and cultivated area for boro (B), aus (C) and aman (D) seasons.

Figure 12 reports some examples, extracted from single pixels, of temporal analysis performed
by PhenoRice. The panels provide examples for single rice in boro and aman (A, B), double
rice on both boro and aman (C), and triple rice in all three seasons (D). As previously described,
the algorithm analyses the temporal signature of three spectral indices — EVI (in green), LSWI
(blue), and NDWI (light blue)—for vegetation and moisture/water. The figures also report the
noise level for each composite data, mainly because of cloud contamination and are repre‐
sented with grey dots, and the occurrence of the detected phenological stages. The symbols in
red (square, triangle, diamond, and circle) represent agronomic flooding (MIN – crop trans‐
planting/seeding),; the plants’ emergence (SoS-start of the vegetative period of rapid growth);
the crop heading/flowering (MAX – start of the reproductive period); and finally, the estimated
crop maturity after senescence (EoS).

Figure 12A (pixel, 24°17’54.00”N – 90°59’48.46’’E in the Sylhet basin in northeastern Bangla‐
desh) shows the presence of a single rice crop in the boro season; the peculiarity of this location
is (1) the strong presence of surface water for nearly six months and (2) a medium crop
vegetative phase of about 120 days (period between EoS and SoS occurrence). The identifica‐
tion of these characteristics leads to the assumption that cultivation occurs after prolonged
flooding. This observation perfectly matches the ones from the ASAR map and represents an
area of low cropping intensity because of excess surface water.

In particular, Figure 12B (pixel, 22°1’30.00”N – 90°6’50.37’’E in Barisal Division in coastal
Bangladesh) reveals a single long-duration (150 days) rice crop in the rainfed aman season
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with (1) crop heading (MAX) occurring in November in the fourth quarter of the analysed
season, (2) a transplanting period (MIN) in June, (3) a green-up (SoS) in July, and (4) a crop
maturity (EoS) in December. This area is highly saline in the dry boro season and no cultivation
is possible so the land is left fallow for much of the year, until freshwater availability from
rivers or canals increase after the monsoon rains. Thus, this is another example of environ‐
mental conditions limiting cropping intensity. The agronomic flooding from May to August
that precedes the crop greening is particularly clear from the interpretation of LWSI and NDWI
indices trends. The former, as described by Xiao et al. (2005), shows values far greater than
EVI, whereas the latter presents values greater than zero.

Figure 12C (pixel, 25°10’60.00”N – 89°14’42.64’’E in Ranjpur Division, northwestern Bangla‐
desh) shows the detection of two rice crops in 2011. The first boro crop occurs during the first
and second quarters, from February to June, with crop heading in late March; whereas, the
second one, aman rice, takes place in the third and fourth quarters, starting in July and finishing
in late October. The boro crop is a short-duration one, 90 to 100 days, whereas the aman rainfed
crop is much longer, 130-150 days.

Finally, Figure 12D (pixel 24°36’45.00”N – 89°24’6.25’’E, Rajshahi Division in central Bangla‐
desh) illustrates the case of three rice seasons, heading occurrences are in February (boro), July
(aus), and October (aman), respectively. In this case, it is possible to appreciate that the crop
durations are much shorter than the ones in the previous examples — they are all 90 to 110
days — and could represent short-duration, high-yielding varieties that have done much to
increase rice productivity in Bangladesh since the Green Revolution.

Figure 12. Example of the temporal dynamics of the vegetation indices — EVI (green line), LSWI+0.05 (blue line), and
NDWI (light-blue line), and phenological detection for MIN, SoS, MAX, and EoS. Panels A, B, C, and D show a single
season for boro rice, a single season for aman rice, a double season (boro-aman), and a triple season (boro-aus-aman),
respectively.
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4.2.2. Phenological detection maps

Figure 13 shows the phenological detection results for the year 2011. The data represent a
spatial analysis conducted at sub-district or thana level, taking into account the median value
of the different phenological data occurring within each sub-district. Pixel-level interpretation
and visualisation is challenging because of the inability of the algorithm to detect every
occurrence, the well-known low-resolution bias of MODIS data when observing fields, and
the heterogeneity of the cropping systems [27]. Thus, given that PhenoRice is a very conser‐
vative approach to detection (in order to minimize false positive error) and, if we accept that
PhenoRice can only capture a proportion of the phenomena understudy, this aggregation of
data around a median value gives a more robust interpretation of the phenology data for a
selected unit of analysis. Furthermore, we excluded sub-districts if there were fewer than 30
pixels detected for a given season.

The boro maps confirm the well-known patterns of agronomic practices. Fields start to be
flooded (MIN boro map) in the southeast, red (Jan 2011), and then the season progresses
northwest, orange (Feb 2011). The SoS boro map highlights this trend more clearly. On the
other hand, the aman season starts in the north and heads south due to the north-south
progression of freshwater in the river systems as depicted by the light green (Jun 2011) and
green (Jul-Aug 2011) colours in the MIN map, respectively.

During the boro season, no rice crop is detected in the southwest since that corresponds to the
dry season, where there is insufficient freshwater for irrigation and the region is exposed to
high water salinity. Freshwater availability increases in the aman season in the southwest
during that time. The correct detection of these two seasons in this part of the country suggests
that this approach is well suited to the detection of seasonality.

The analysis of the aus map is more difficult because of the smaller and more fragmented area
of the rice crop in this season. Aus rice detection is concentrated mainly in the central part of
Bangladesh, along the Ganges River, and on the eastern region of Chittagong. The aus crop
relies on both early-season irrigation and late-season rainfall, and this partially explains the
limited extent. Two cropping patterns could appear: the first one, much earlier in the middle
of the country, and the second, a later pattern for the rest of the country.

5. Discussion

5.1. Observations on the SAR analysis and results

Temporal analysis of moderate-resolution SAR, especially using the backscattering coeffi‐
cient (σ°) from C-band time-series, is ideally suited for irrigated and lowland rice detection. It
is particularly advantageous in monsoon Asia where much of the world’s rice is produced over
huge areas and under cloudy conditions.

The use of the 10-year ENVISAT ASAR Wide Swath data archive, even if not optimal for the
targeted application – since it is irregularly acquired in temporal terms – provides a valuable
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Figure 13. From top to bottom: Min, SoS, Max, and EoS phenological metrics for the boro, aus, and aman rice seasons
in Bangladesh, in the analysed time window: June 2010-December 2011.
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data source, enabling the generation of a consistent rice extent product, with 1-hectare
resolution, nationally. In this respect, it is well-known that SAR data availability is currently
problematic, mainly because of the recent failure of the ENVISAT ASAR and ALOS PALSAR-1
systems. Nevertheless, today, there are tens of thousands of archived unexploited SAR images
that could be leveraged for baseline mapping to generate rice extent and area. This multi-year
approach is applicable to Asia because most rice systems are generally not subject to seasonal
rotations (upland rice is one exception, but it accounts for a small portion of the total rice area)
and there is little scope for rice area expansion in Asia. This is obviously not feasible for all
crops, where rotation mandatory and significant land-use change can occur.

The availability of systematic SAR acquisitions at an appropriate time interval — for instance,
bi-monthly or weekly, as planned for in the Sentinel-1A/B mission — would allow the
generation of annual and seasonal rice area data nationally. Moreover, high-resolution SAR
time-series acquired along the whole season could complement the phenological monitoring
provided by optical moderate resolution, particularly with respect to the detection of key
phenological stages such as the start and peak of season. This would be facilitated if space
agencies, with mandates for future SAR missions, could incorporate systematic background
missions according to the geographical areas and applications, instead of building data
archives based on sporadic/irregular acquisitions.

Concerning the SAR data processing aspect, it is essential that a multi-temporal data process‐
ing approach is performed, in primis, to enhance the data quality — hence, the level of detail
— by significantly reducing the speckle. Future hyper-temporal data stacks acquired from
Sentinel-1A/B will have an important role for the provision of high-quality data (i.e., high
Equivalent Number of Looks) at the highest level of detail. This will permit a pixel-based
approach, which is simpler and less time-consuming than a regional based one.

Due to the nature of the multi-year ENVISAT ASAR Wide Swath data (irregularly acquired
in temporal terms), the resulting rice temporal signature is occasionally not optimal or not
representative enough for rigorous date-by-date analysis. For this reason, we used a pixel-wise
temporal signature analysis using selected representative temporal features (relative mini‐
mum and maximum, and the corresponding difference, minimum and maximum gradient
between two subsequent acquisitions). Although this approach discriminated between rice
and non-rice areas, the features are not sufficient to properly determine the country-wide
extent of various rice seasons (single, double, etc.) and, even less, the rice phenology. There
are some exceptional cases with sufficient coverage, where various rice seasons can be
identified by detecting the amount of minimum and maximum gradients and related dates.
In summary, assuming the availability of dense multi-year, regularly acquired SAR images,
an average rice crop calendar could be generated together with the rice extent.

5.2. Observations on the MODIS analysis and results

Temporal analysis of moderate-resolution optical data time-series for detection of rice
phenology is possible where there is a good rice extent base map from SAR or other sources,
and good prior knowledge of the general cropping systems. Phenological occurrence maps
show an agreement with local knowledge on rice cultivation, highlighting different gradients
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and there is little scope for rice area expansion in Asia. This is obviously not feasible for all
crops, where rotation mandatory and significant land-use change can occur.

The availability of systematic SAR acquisitions at an appropriate time interval — for instance,
bi-monthly or weekly, as planned for in the Sentinel-1A/B mission — would allow the
generation of annual and seasonal rice area data nationally. Moreover, high-resolution SAR
time-series acquired along the whole season could complement the phenological monitoring
provided by optical moderate resolution, particularly with respect to the detection of key
phenological stages such as the start and peak of season. This would be facilitated if space
agencies, with mandates for future SAR missions, could incorporate systematic background
missions according to the geographical areas and applications, instead of building data
archives based on sporadic/irregular acquisitions.

Concerning the SAR data processing aspect, it is essential that a multi-temporal data process‐
ing approach is performed, in primis, to enhance the data quality — hence, the level of detail
— by significantly reducing the speckle. Future hyper-temporal data stacks acquired from
Sentinel-1A/B will have an important role for the provision of high-quality data (i.e., high
Equivalent Number of Looks) at the highest level of detail. This will permit a pixel-based
approach, which is simpler and less time-consuming than a regional based one.

Due to the nature of the multi-year ENVISAT ASAR Wide Swath data (irregularly acquired
in temporal terms), the resulting rice temporal signature is occasionally not optimal or not
representative enough for rigorous date-by-date analysis. For this reason, we used a pixel-wise
temporal signature analysis using selected representative temporal features (relative mini‐
mum and maximum, and the corresponding difference, minimum and maximum gradient
between two subsequent acquisitions). Although this approach discriminated between rice
and non-rice areas, the features are not sufficient to properly determine the country-wide
extent of various rice seasons (single, double, etc.) and, even less, the rice phenology. There
are some exceptional cases with sufficient coverage, where various rice seasons can be
identified by detecting the amount of minimum and maximum gradients and related dates.
In summary, assuming the availability of dense multi-year, regularly acquired SAR images,
an average rice crop calendar could be generated together with the rice extent.

5.2. Observations on the MODIS analysis and results

Temporal analysis of moderate-resolution optical data time-series for detection of rice
phenology is possible where there is a good rice extent base map from SAR or other sources,
and good prior knowledge of the general cropping systems. Phenological occurrence maps
show an agreement with local knowledge on rice cultivation, highlighting different gradients
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of transplanting dates in the country. Analysis and interpretation of Vegetation Index time-
series without prior knowledge or understanding of the crops, cropping patterns, and crop
management is extremely challenging and difficult to interpret in terms of an operational crop
monitoring system.

The proposed method is able to identify particular crop management systems such as single-,
double-, and triple-cropping patterns. Moreover, a range of seasonalities and of crop durations
from 90-to 150-day varieties could be detected. Further experiments in rice/wheat, rice/pulse,
rice/shrimp and drought-prone areas should be conducted to assess the capability of detection
in other commonly occurring rice cropping systems and environments.

The optical time-series data described the temporal pattern of rice systems across Bangladesh.
The SAR data describes where rice is cultivated and the optical data describes when rice is
cultivated. This is encouraging considering the aforementioned triple challenges of using
moderate-resolution data in a region characterised by pervasive cloud cover, small fields, and
complex cropping systems. The conservative nature of the phenological detection with
moderate-resolution data suggests that pixel-level interpretation and pixel counting for area
estimation should be avoided as they are likely to be unreliable estimates of crop system
characteristics. Such estimates can always be improved through fine-tuning, expert classifica‐
tion, and other manual interventions, but these do not lend themselves to operational methods
that require rapid and robust estimates that are free of user-bias.

Summarising the crop phenology at high levels of aggregation that match existing data or
management units could provide one solution to this underestimation effect. PhenoRice is
conservative in its detection criteria and, if we can assume that the detected pixels are repre‐
sentative of the cropping systems, then some statistical representation of the seasonality by
sub-district, irrigation scheme, or other management unit would provide useful information.
Most cropping calendars (e.g. Figure 2) provide ranges for the start and end of season, and
remotely sensed phenolology metrics could be used in the same way to provide robust, year-
and season-specific information to assess the onset of a late or early season. The same infor‐
mation is vital for yield modelling, since the phenology data can be used to drive/force crop
growth simulation models in order to produce more reliable yield estimates.

5.3. Final comments

The current structure of the algorithm does not allow a near–real-time analysis since it needs
to obtain all remote-sensing data through to the end of the year to provide complete pheno‐
logical information. This can be overcome by interpreting the vegetation indexes or σ° trends
at the end of the time-series, which would be refined as new information is added in near–
real-time. Thus, for each phenological parameter, there would be a ‘possible detection’
counterpart that could be provided rapidly and which would be confirmed as a ‘real detection’
after several more images are acquired. This approach to crop and crop phenology detection
is an analogy to what can be achieved with the advent of the Landsat continuity mission and
GMES-ESA Sentinel mission, which will, for the first time, provide the possibility of high-
resolution SAR and multi-spectral time-series analysis with weekly revisit periods. Moderate-
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resolution analysis will still play a role with Proba V, representing an alternative or a
complement, to MODIS data.

In this processing chain, we have demonstrated the joint use of active and passive data as a
smart method, based on the strengths of both sensors, to produce rice extent information (from
multi-year ASAR analysis) and seasonal monitoring (from MODIS analysis). Crop monitoring
systems should rely on a range of remote-sensing information sources in order to obtain the
best possible information and smart combinations. The ever-increasing range of information
from remote sensing is essential if such systems are to become operational, reliable, and
accurate.
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1. Introduction

Change detection with Synthetic Aperture Radar (SAR) images involves often a pair of
co-registered images acquired over the same area at different times [1]. To identify
changes, different methods are commonly applied. These methods differ with respect to
the parameters that are used to indicate changes. Since SAR data contain amplitude and
phase information, both parameters can be used as change indicators [2, 3].

Incoherent change detection identifies changes by comparing sample estimates of the mean
backscatter power taken from the repeat pass image pair [4, 5]. The Coherent Change
Detection (CCD) technique uses the coherence of a SAR image pair to quantify changes in
the observed amplitude and phase of the image pixels. As the Interferometric SAR (InSAR)
phase is sensitive to changes in the spatial distribution of scatterers within a resolution cell,
the CCD technique that generally detects the low-coherence areas as ground changes [6, 7]
has the potential to detect centimeter changes that may remain undetected using only SAR
intensity images (incoherent detection) [4, 8].

With the recent incoming of satellite constellations, delivering high-resolution SAR images,
it becomes possible to detect surface changes with fine spatial details and with a short
revisiting time. This aspect makes the CCD technique ideal for use in military and scientific
applications such as border security and environmental monitoring. All these reasons lead
to the development of new methods that enhance the change detection performance [4, 8, 9].
However, two main difficulties must be overcome in order to improve the analysis of CCD
results.

The first difficulty concerns the InSAR coherence misestimation. Indeed, the sample
coherence estimator is biased, especially for low-coherence values [7, 10]. In addition to
the presence of speckle in SAR data [11], the consequence of this bias is the appearance of
highly coherent pixels inside the changed areas. Within this context, the change detection
performance degrades considerably which complicates more the CCD map interpretation
particularly when using high resolution SAR data. Medium resolution SAR images obtained
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from satellites such as ERS, Envisat and Alos involve the complex multilooking operation
to square the pixels. This operation leads to the improvement of the coherence estimation
but at the expense of the spatial resolution. Multilooking is not necessary when using high
resolution SAR data such as Cosmo-SkyMed (CSK) and TerraSAR-X since the image pixels
are already nearly square. Nevertheless, the speckle is more noticeable in high resolution
data and the coherence bias is more important.

In [7] a method is proposed to reduce the bias, based on space-averaging of coherence
samples over a local area. This method allows for the enhancement of the probability of
detecting changes, but a large window size is still needed to detect the entire changes. The
Local Fringe Frequencies (LFF), which is a measure of the interferometric phase variability, is
successfully applied in [8] as an additional change indicator to clean the aberrant highly
coherent pixels inside changed areas. The use of the LFF to enhance the coherence
map permits an important improvement in change detection performance and offers the
advantage of preserving the spatial resolution.

The second difficulty of the CCD technique concerns the change identification. As
the coherence is affected by several factors (such as baseline decorrelation and volume
decorrelation), the coherence map can reveal changes that are not only due to man-made
activities [1]. An area of low-backscatter strength (e.g., water surface, smooth surface,
shadows) leads to decorrelation in the coherence image which is not truly the change of
interest. The identification of the changes remains difficult and further investigation is
needed.

In this chapter, a classification scheme is proposed with eight classes and the significance of
these classes. The change classification is based on the improved coherence map combined
with the pair of SAR intensity images to identify the types of change (man-made activity,
natural surface decorrelation,...etc.). The two SAR intensity images are not used to detect
changes as in [5], but only to support the coherence map analysis and interpretation. A
set of three high resolution CSK SAR images is used, which concerns Goma airport in
the Democratic Republic of Congo (DRC). High-resolution visible images are also used in
the visual qualitative validation process. The results show that the proposed classification
scheme is simple and effective for the change detection and identification, and that it
contributes significantly to the overall scene analysis and understanding.

2. Methods

2.1. SAR Interferometry

InSAR is a technique that exploits the phase differences of at least two SAR images acquired
from different orbit positions and/or at different times [3]. In Repeat-pass interferometry
the SAR system flies on (ideally) parallel tracks and views the terrain from slightly different
directions at different times. Fig. 1 shows a typical spaceborne InSAR configuration. SAR 1
and SAR 2 denote the satellite positions when the first and second SAR images were taken.
The distance between them is called the (geometric) baseline and is denoted as B in this
figure. The perpendicular baseline, B⊥, is the component of B in the direction perpendicular
to the SAR 2 look direction. R1 and R2 denote the ranges to the target T from satellite
positions SAR 1 and SAR 2 respectively. The principle of the SAR Interferometry technique
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Figure 1. Interferometric configuration. Satellite positions SAR 1 and SAR 2 have ranges, to target T, R1 and R2 respectively.

The separation B between the satellites is called the spatial baseline.

is the use of the phase information of every pixel which is directly related to the parallaxe
∆R = R2 − R1. Let

f (R, x) = | f (R, x)| exp{jφ1(R, x)} and g(R, x) = |g(R, x)| exp{jφ2(R, x)} (1)

be the two co-registered SAR images forming the interferogram

I(·) = f (·)g∗(·) (2)

the phase of which

φ(·) = φ1(·)− φ2(·) (3)

is the interferometric phase.

The phase of the SAR image response φ of a point scatterer is proportional to range (where
k is the factor of proportionality) plus a possible shift φscat due to the scatterer itself [10], i.e.

φ1 = −2kR1 + φscat, 1 (4)

φ2 = −2kR2 + φscat, 2 (5)

Assuming that there is no possible ground displacement of the scatterers between the
observations, the interferometric phase contains the following terms [3]:

φ = φtopo + ∆φscat (6)

where:

• φtopo
∼= 4π

λ
B⊥

R sin θ z is the topographic term;
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• ∆φscat represents the influence of any change in scattering behavior. It may be a
deterministic phase offset (i.e. change in dielectric constant) or a random phase (i.e.
temporal decorrelation).

For Digital Terrain Model extraction, the first term φtopo is improved when the other is
minimized. In CCD applications, the term ∆φscat is of interest and its variability is measured
by the coherence defined in the next section.

2.2. InSAR coherence

2.2.1. Coherence estimation

In order to provide some measure of discrimination in the SAR image pair and to
accommodate the random noise fluctuations, the InSAR coherence is commonly used. The
sample coherence, which is defined as the magnitude of the estimated sample complex
cross-correlation coefficient between the SAR image pair, encodes the degree of scene
similarity as a value in the range [0, 1][6, 7]:

γNejφ′

=
∑

N
i=1 fig

∗

i
√

∑
N
i=1 | fi|

2
∑

N
i=1 |gi|

2
(7)

where γN is the sample coherence obtained by N measurements, and φ′ is the filtered
interferometric phase.

As shown in [1], the coherence is affected by different contributions which are mainly related
to:

1. the relative backscatter signal to radar receiver noise ratio (SNR) in the interferometric
image pair,

2. the baseline decorrelation that is related to the satellite tracks separation, and

3. the temporal decorrelation caused by changes in the land surface, e.g., man-made objects,
vegetation change, ploughing or wind action in desert areas, ... etc. It is the dominant
factor in the repeat pass SAR interferometry [4].

In order to assess the suitability of using the InSAR coherence to detect man-made changes,
some important results of interferometric SAR processing are presented in the following.
Fig. 2 shows CSK intensity images and their coherence image in two different environment
types. The white pixels of the intensity images indicate objects that reflect strong energy
toward the satellite antenna, whereas the dark pixels indicate surfaces that do not reflect
energy toward the satellite. In the coherence image, white pixels represent values of
coherence near 1, while dark pixels represent values near 0.

In the port area, one can clearly distinguish the sea that is indicated by Fig. 2(a)-1, the dock
(quay) in Fig. 2(a)-2, and the vehicles terminal in Fig. 2(a)-3. In the coherence image of
Fig. 2(c), the sea area is characterized by low coherence values as it concerns incoherent
medium. The coherence of the quay is preserved, as indicated in Fig. 2(c)-2, because of the
absence of disturbance in the surface roughness. For the vehicles terminal, the coherence is
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Figure 2. SAR intensity image pairs and the corresponding coherences. (a) CSK intensity image of June 15, 2011 acquired over

a port area. (b) CSK intensity image of June 19, 2011. (c) Coherence image of June 15 and 19, 2011. (d) CSK intensity image of

January 1, 2010 acquired over an agricultural area. (e) CSK intensity image of January 9, 2010. (f) Coherence image of January

1 and 9, 2010. Imaged scene size of 300×300 m2.

low in Fig. 2(c)-3, as a result of moved vehicles between the two acquisition dates. The
changes related to the man-made objects, such as vehicles and containers, may also be
detected via incoherent techniques, which only use SAR intensity images [12]. However,
in this situation the coherence can offer the advantage of being able to detect changes even if
a vehicle are moved and replaced by another one, which is very similar. This is not possible
with incoherent methods.

The use of coherence to measure surface changes is even more interesting for the analysis
of examples in agricultural environment. The two intensity images of Fig. 2(d) and
Fig. 2(e) are nearly identical showing the limited capability of incoherent methods. With an
interferometric SAR processing, the cultivated parcels are clearly indicated by low coherence
values (Fig. 2(f)-2), while the uncultivated parcels are characterized by high coherence values
(Fig. 2(f)-1). In terms of the interferometric phase, which mainly measures the terrain
topography, the obtained values are quite steady in the undisturbed areas, while the values
are randomly distributed in the changed areas causing a loss of coherence. In military
applications, most of the interesting man-made changes, such as vehicle tracks in a no-man’s
land, are not indicated by the intensity images but rather by the interferometric phase. This
is true in particular for X-band SAR data that are highly sensitive to centimeter changes in
the scatterers distribution within resolution cell [4].
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(a) (b)

Figure 3. InSAR coherence histograms of the cultivated and uncultivated areas using different number N of samples. (a)

Coherence evaluated without complex multilooking. (b) Coherence evaluated with complex multilooking of 4 pixels.

The results in Fig. 2 demonstrate the appropriateness of the SAR coherence, which uses both
intensity images and interferometric phase to detect all man-made changes. However, there
are two difficulties to overcome. On the one hand, the coherence can indicate some changes
as in Fig. 2(f)-3, which are not of interest but only due to low backscattering (SNR) in the
two SAR images (Fig. 2(d)-3 and Fig. 2(e)-3). This situation, that mainly occurs in presence
of smooth surfaces (roofs, roads, shadows,...etc.) constitutes the main raison for what we
propose in the present work: to develop a classification scheme that permits identification
of man-made changes. On the other hand, there is a problem of coherence misestimation,
causing highly coherent pixels inside changed areas which complicates the coherence image
interpretation.

2.2.2. Coherence bias

As demonstrated in [7], the InSAR coherence estimator is biased especially for low coherence
values. The bias is due to the limited sample size (N measurements) in the numerical
computation of the Estimate (7). Fig. 3 depicts histograms of coherence images evaluated for
different number of samples N. It can be seen that the coherence bias induces the presence
of highly coherent pixels inside changed areas (light-colored pixels in Fig. 2(f)-2).

The coherence bias decreases when the number of samples used to estimate the coherence
increase. For example, the coherence evaluated using N = 5 × 5 represents more faithfully
the coherence of the changed area than the coherence evaluated by N = 3 × 3, as there
are less samples of high coherence inside the changed area. According to Fig. 3-(a), the
coherence mean value of the cultivated parcel is 0.24 with N = 5 × 5 against 0.43 for N =
3 × 3. Note that the coherence histograms correspond to the same area of Fig. 2(f)-2, and
that the discrepancy in the results is only due to the increasing number N of samples. On
the contrary, in case of an undisturbed area as in Fig. 2(f)-1, the coherence mean value is
practically not affected by the increase of N. According to Fig. 3-(a), the coherence mean
value of the unchanged area is 0.82 for both N = 3 × 3 and 5 × 5, which may be explained
by the fact that the coherence estimate is particularly biased for the low coherence values.
Fig. 3-(b) shows that the use of the complex multilooking of the SAR images leads to a better
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Figure 4. Scheme of the LFF-based CCD method.

Figure 5. LFF histograms of the cultivated and uncultivated parcels of Figure 2(f).

separation between the changed and unchanged areas, but at the expense of the spatial
resolution.

The results of Fig. 3, similar to those in [7], show the necessity to increase the number
of samples to obtain a good separation between coherence values of the changed and
unchanged areas. In CCD applications, the challenge consists in separating as much as
possible the changed and the unchanged pixels, using small window-size N and without
multilooking, to preserve subtle changes in the coherence image as much as possible.

In this work, the SAR interferometric processing is done in full resolution with a small
window-size of N = 3 × 3 pixels, corresponding approximately to an area of 2.4×2.4 m2.
According to Fig. 3, this corresponds to the most unfavorable situation of bad separation
between the changed and unchanged classes, thus an additional processing step of coherence
bias removal is necessary to improve the coherence map.

2.2.3. Coherence map improvement using LFF

The basic space averaging operation over M-pixel local area is commonly performed for
further coherence bias removal [7]:

z =
1

M

M

∑
i=1

γNi

H0

≷
H1
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where H0 is a realization of the null hypothesis (scene changes of interest absent) and H1

is the alternative hypothesis (scene changes of interest present). To make the decision, the
statistic z is compared to a detection threshold Tc [8].

As shown in [8], a large number of samples N and a large window-size M are needed to
detect the entire set of changes, which is obviously at the expense of the preservation of
small changes. For that reason, another information source must be used to better analyze
the coherence image. In the following paragraphs, we describe a method for the coherence
map improvement, which is based on the exploitation of the LFF information.

Using a 2-D notation, the complex InSAR phase can be modeled by a first-order
approximation (for simplicity, noise is neglected) [13]:

ejφ(k,l) = ej2π(k fx+l fy) (9)

where fx and fy are the LFF components in range and azimuth directions respectively.

According to Equation (6) and by assuming that the neighboring pixels have the almost
identical terrain height, which is valid only using high resolution images, the change
components may also be obtained by directly differentiating the interferometric phase,

{

∆φscat−x = φ(k + 1, l)− φ(k, l)
∆φscat−y = φ(k, l + 1)− φ(k, l)

(10)

According to (9) and (10), the LFF estimates may correspond to the change components that
can be obtained by differentiating the interferometric phase directly, a process which is not
restricted to the first-order model that is due to the fact that φ(k, l) in (7) includes all the
frequencies components ( fxi, fyi) that exist inside the N-pixel local area [13]. Therefore,
the measured interferometric phase is highly influenced by noise. In this context, the LFF
estimation can be obtained via either the Maximum Likelihood (ML) method [14] or the
MUltiple SIgnal Classification (MUSIC) method [15].

An analysis of Fig. 5 indicates that the two LFF histograms corresponding to the cultivated
and uncultivated parcels of Fig. 2(f) are far apart. This confirms that the LFF components
represent an additional indicator of changes. Here, the MUSIC method is used since it
provides better LFF histograms separation as shown in Fig. 5. Various SAR image pairs have
been used to evaluate LFF histograms for both changed (cultivated parcels, sea area) and
unchanged areas. It was observed that the location of the histograms’ intersection does not
change significantly. As a results, it is possible to set the LFF threshold to Tl = 0.1 as shown
in Fig. 5, an important aspect for window-size adaptation.

Here, the coherence improvement is achieved using the LFF information as an additional
change indicator, to clean the highly coherent pixels inside the changed areas that are also
characterized by high LFF values [8].

Fig. 6 depicts InSAR coherence maps obtained with and without the LFF information. The
area of interest concerns fields with a dense agricultural activity. The result of a simple
thresholding method (without space-averaging, i.e. M = 1) of the coherence, see Fig. 6(a), is
not usable due to the presence of a large number of highly coherent pixels inside the changed
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Figure 6. InSAR coherence result using N = 3 × 3 samples. (a) Coherence map without space-averaging (M = 1). (b)
Coherence map with space-averaging (M = 3× 3). (c) Change map using the LFF information. (d) Zoom on a cultivated parcel.
White pixels indicate unchanged areas, while dark pixels indicate changed areas.

area. In this case, a probability of detection Pd = 0.64 is only achieved, leading to an unusable
coherence map. An enhancement of the result is obtained by space-averaging coherence,
see Fig. 6(b), using a 3 × 3 window. In this case, the detection probability improves to
Pd = 0.94 but remains insufficient. The best result is obtained by using the LFF information,
as presented in Fig. 6(c), with a detection probability Pd = 0.99. In this case, the highly
coherent pixels inside changed areas are mostly reduced (detection of almost all changes).
The zoom of the changed area, as presented in Fig. 6(d), clearly indicates that the method
using the LFF information outperforms the existing coherence space-averaging method.

2.3. Proposed classification scheme

After the InSAR coherence improvement step, the detected changes must be identified as the
coherence is affected by several decorrelation sources. To identify the man-made activities in
a CCD map, the improved coherence map was combined with the two corresponding SAR
intensity images. Fig. 7 presents a schematic overview of the processing chain used for the
change classification.
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Figure 7. Schematic overview of the change detection and classification.
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C1 L L L Specular surfaces: water, roads,
roofs, shadows

C2 L L H Man-made objects present in SAR-2, not in SAR-1
C3 L H L Man-made objects present in SAR-1, not in SAR-2
C4 L H H Man-made object present in both images but

it changed from SAR-1 to SAR-2
C5 H L L Bare soil or low vegetation
C6 H L H Invalid class (problem of intensity thresholding

caused by speckle)
C7 H H L Invalid class ( problem of intensity thresholding

caused by speckle)
C8 H H H Scatterers present in both scenes: fixed structures

(e.g. parts of buildings, railways), undisturbed areas

Table 1. Overview of the eight classes resulting from the change detection and classification.

Human activity is thus characterized by a low coherence and a high intensity in at least one
of the two SAR images. However, any decision based on SAR intensity is hampered by the
presence of speckle which leads to an increase in the number of false alarms. Therefore, a
speckle reduction is performed prior to the change classification: a 3 × 3 Lee filter [16] is
applied to SAR intensity images in this work. The developed classification scheme is quite
simple and is based on a combination of thresholds on the three features, i.e. the enhanced
coherence and the two corresponding Lee-filtered intensity images. The coherence map
threshold corresponds to the intersection of coherence histograms of the changed (cultivated
field) and unchanged areas of Fig. 3 [8].

The intensity threshold is determined from the histograms intersection of the learning sets to
sub-divide each of the two SAR images into a low (L) and a high (H) value area. The learning
set consists in two classes: low backscattered area (smooth surface or water surface) and
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Figure 8. Geographical location of the test site in Goma (DRC) that is characterized by a flat topography. The grey rectangle

indicates the borders of the imaged scene corresponding to the used CSK SAR images of 14568 × 14376 pixels.

high backscattered area (rough surface). For each of the two classes an area of approximately
200 × 200 pixels is identified in the scene. The actual change detection and characterization
is a rule-based set of decisions applied to the thresholded SAR images and to the coherence
map.

Dividing each of the three feature sets into two value regions leads to eight possible
combinations, thus eight possible classes. Table 1 presents an overview of the properties
of these classes. Classes of interest for change detection and activity monitoring are C2, C3
and C4. Classes C1, C5 and C8 contribute to the overall scene understanding. C6 and C7
represent classes in which the coherence is high but the intensity changes between the two
images. If this situation occurs, it is most probably due to the fact that the intensity value
exceeds the threshold in a region where it should not (the tails of the histograms).

It is also possible to divide the coherence into 3 regions; low (L), medium (M) and high (H).
This situation would lead to 12 classes that complicate further the CCD map analysis and
interpretation. For this reason a binary thresholding of the coherence had been chosen first,
which proves to be sufficient for identification of all man-made changes. In future work,
the influence of the intermediate (medium) level on the quality of the final result will be
analyzed.

3. Experimental results

3.1. Data and study areas

The results presented in this work are obtained using the X-band CSK SAR images,
horizontally polarized in spot-light mode. The CSK images are acquired on 24 March, 28
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March and 1 April 2011, with an incident angle of 26◦. The pixel resolution is 0.73 m in
the ground range direction and 0.7 m in the azimuth direction. The test site, shown in
Fig. 8, concerns the Goma airport in DRC. For the validation of the classification scheme,
high-resolution visible images are used with the SAR intensity images to serve as ground
truth. The co-registration of the SAR images was performed with Sarscape software (Sarmap
2012). Programs and algorithms were developed in Interactive Data Language (IDL).

The area of interest, shown in Fig. 9(a), concerns a part of the Goma airport that is a busy
and flat test site. The airport was under extension, and an important earth moving activity
was recorded during the acquisition period of 24 March to 1 April 2011. The scene concerns
a wide open field surrounded by buildings and an urban area. Four zones are identified in
the test site of Fig. 9(a). Firstly, the area occupied by the company in charge of the airport
extension, as indicated by Fig. 9(a)-1, is surrounded by roads where excavators are clearly
visible. The anthropic activities are mainly concentrated in the dike that is indicated by
Fig. 9(a)-2 and in an area pointed by Fig. 9(a)-3. The dike causes a distortion (shadow) in
the SAR image as indicated in Fig. 9(b)-2. The fourth zone concerns the airport runway that
is indicated by Fig. 9(a)-4. It is characterized by a low backscattering power as shown in
Fig. 9(b)-4. In the urban area, left side of Fig. 9(b), most of the roofs are characterized by a
low backscattering power.

3.2. Results and analysis

Fig. 9(c) shows the InSAR coherence map of the imaged area obtained using the CSK
acquisitions of March 24 and 28, 2011. Light-colored pixels represent values of coherence
near 1, while dark pixels represent values near 0. Areas with high coherence indicate the
absence of surface perturbation. Places with low coherence, corresponding to the areas
disturbed between the two acquisitions dates, are located e.g. in Fig. 9(c)-1, 2 and 3. All
roads leading to the holding area of Fig. 9(c)-1 have lost the coherence, due to the movements
of the excavators.

The analysis and interpretation of the InSAR coherence map become complicated in the
presence of man-made structures. Indeed, for example, the big building in Fig. 9(c)-1 is
characterized by a low coherence in Fig. 9(c)-1, which is not truly the change that is of
interest. The change classification results (or CCD map) corresponding to the period of 24
and 28 March 2011 are depicted in Fig. 9(d). Only the changes C2, C3 and C4 are of interest,
and the other classes help to analyze the scene. Note that the incoherent change detection
methods can detect the C2 and C3 changes, but fail to detect the C4 changes (type of change
that is revealed by the interferometric phase). Besides the advantages of the CCD technique,
the classification contributes to the scene analysis. The large building in Fig. 9(d)-1, and most
of the urban area on the left side of Fig.9(d), is now classified as C1 instead of change in the
coherence map.

The analysis of the results of Fig. 9(c) and Fig. 9(d) shows that in a simple environment
without obstacles (i.e., open field in the middle of the scene shown in Fig. 9(a)), the
classification method identifies the man-made changes as belonging to classes C2, C3 or
C4 while the coherence map confuses the changes in a single category. In a complex
environment, e. g. of the urban area in the left part of the scene presented in Fig. 9(a) and the
airport runway in Fig. 9(c)-4, the InSAR coherence map becomes hard to interpret and the
proposed change classification scheme identifies well the man-made changes and contributes
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roads leading to the holding area of Fig. 9(c)-1 have lost the coherence, due to the movements
of the excavators.
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characterized by a low coherence in Fig. 9(c)-1, which is not truly the change that is of
interest. The change classification results (or CCD map) corresponding to the period of 24
and 28 March 2011 are depicted in Fig. 9(d). Only the changes C2, C3 and C4 are of interest,
and the other classes help to analyze the scene. Note that the incoherent change detection
methods can detect the C2 and C3 changes, but fail to detect the C4 changes (type of change
that is revealed by the interferometric phase). Besides the advantages of the CCD technique,
the classification contributes to the scene analysis. The large building in Fig. 9(d)-1, and most
of the urban area on the left side of Fig.9(d), is now classified as C1 instead of change in the
coherence map.

The analysis of the results of Fig. 9(c) and Fig. 9(d) shows that in a simple environment
without obstacles (i.e., open field in the middle of the scene shown in Fig. 9(a)), the
classification method identifies the man-made changes as belonging to classes C2, C3 or
C4 while the coherence map confuses the changes in a single category. In a complex
environment, e. g. of the urban area in the left part of the scene presented in Fig. 9(a) and the
airport runway in Fig. 9(c)-4, the InSAR coherence map becomes hard to interpret and the
proposed change classification scheme identifies well the man-made changes and contributes
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Figure 9. Change classification results. (a) Visible image of the test site. (b) CSK SAR image intensity of March 24, 2011. (c)

Coherence map of March 24 and 28, 2011, normal baseline = 307 m. (d) Change classification results (CCD map) between

March 24 and 28, 2011. (e) Coherence map of March 28 and April 1, 2011, normal baseline = 65 m. (f) Change classification

results (CCD map) between March 28 and April 1, 2011. COSMO-SkyMed TM Product - ASI [2011] processed under license

from ASI - Agenzia Spaziale Italiana. All rights reserved.
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significantly to the overall scene understanding. The results of Fig. 9(e) and Fig. 9(f), obtained
using an other image pair (28 March and 1 April 2011) confirm the validity of the classes
proposed in Table 1. All areas of the scene are classified in the same way in Fig. 9(d) and
Fig. 9(f), except in the presence of man-made changes, as in Fig. 9(d)-3. In addition, the
results show that class C5 is encountered only in the specular surface and shadowed areas;
it can be also assimilated to class C1. Despite the complexity of the environment, the invalid
classes C6 and C7 are rarely present in the analyzed scene. In general, if classes C6 and C7
are significantly present in the classification result, it is an indication that the value of the
intensity threshold should be revised.

4. Conclusion

This work deals with the development and the validation of a new method of coherent
change detection and classification. The InSAR coherence map is enhanced and combined
with the two corresponding SAR intensity images to build a CCD map using a simple change
classification scheme. The proposed method is tested successfully using high resolution
COSMO-SkyMed images. The test area of interest concerns the Goma airport, which is a flat
and busy test site.

In a complex environment, the obtained results show that the InSAR coherence map reveals
changes but remains hard to interpret. The proposed change classification scheme identifies
well the man-made changes, and contributes significantly to the overall scene analysis and
understanding. The results obtained using other image pairs confirm the validity of the
proposed changed-unchanged classes. The proposed method is an improvement for the
analysts in charge of the exploitation of information derived from radar imagery.

In future work, we will analyze the influence of the intermediate thresholding of the
coherence on the quality of the final CCD map.
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1. Introduction

Radargrammetry is a methodology to extract 3D geometric information from Synthetic
Aperture Radar (SAR) imagery. Similarly to photogrammetry, radargrammetry forms a
stereo model. The continuous observations of the Earth’s surface by satellite SAR sensors
with short revisit times enable a near real-time 3D Earth surface mapping through Digital
Surface Models (DSMs). Such products have a large relevance in territorial applications,
such as topographic mapping, spatial and temporal change detection, morphological feature
extraction, geographic data management, and visualization. SAR satellite systems provide
information independently from logistic constraints on the ground (as for airborne data
collection), illumination (daylight) and weather (clouds) conditions. Starting from the SAR
data, two different approaches can be considered: the phase-based interferometric techniques
and the intensity-based radargrammetric ones. Being aware that radar interferometry may
suffer for lack of coherence, the two methods are thus complementary to achieve the most
accurate and complete results. Radargrammetry was first used in the 1950s and then less
and less exploited. The low resolution in amplitude supplied by the first spaceborne radar
sensors (around 20 m) didn’t raise more attractiveness. From 2007, the availability of very
high resolution SAR data (up to 1 m Ground Sample Distance (GSD)) from COSMO-SkyMed,
TerraSAR-X and RADARSAT-2 data allowed new developments. For instance Raggam et al.
[1] studied the potentialities of TerraSAR-X, while Toutin [2] studied the RADARSAT-2 ones.

In this chapter, we focus on the radargrammetric approach and propose a complete
procedure for generating DSMs starting from zero Doppler focused high resolution SAR
imagery. A tool for radargrammetric processing of high resolution satellite SAR stereo pairs
was implemented in the scientific software SISAR (Software per le Immagini Satellitari ad
Alta Risoluzione), developed at the Geodesy and Geomatic Division of the University of
Rome "La Sapienza" [3].

©2012 Capaldo et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2 Land Applications of Radar Remote Sensing

Two steps are necessary for radargrammetric DSM extraction: the image orientation and the
image matching (automatic detection of homologous points).

As regards the orientation model (discussed in paragraph 2), it was established, starting

from the rigorous model proposed in Leberl [4], in paying attention to the orbital model

represented with Lagrange polynomials to exploit the potential of the novel high resolution

(both in azimuth and in range). The Rational Polynomial Functions (RPFs) model based on

Rational Polynomial Coefficients (RPCs) was also considered. The RPCs can be an useful tool

in place of the rigorous model in the processes of image orthorectification/geocoding or as

the DSMs generation. This generalized method is standard and unique for all sensors. The

performances of the RPFs model using the RPCs can reach the level of the rigorous model. A

terrain independent procedure to generate RPCs starting from radargrammetric model was

defined. The possibility to generate RPCs sounds of particular interest since, at present, most

part of SAR imagery is not supplied with RPCs (only in RADARSAT-2 metadata the RPCs

are available), although the RPFs model is available in several commercial software.

The matching process (discussed in paragraph 3) is the automatic identification of pixels

representing the same object in two or more images. If corresponding pixels are recognized,

then a simple geometric intersection is needed to compute the position of their corresponding

object in space. The development of a fully automatic, precise and reliable image matching

method that adapts to different images and scene contents is a challenging problem.

Dissimilarities between SAR images due to occlusion, illumination differences, radiometric

differences and speckle noise must be taken into account. Many different image matching

approaches have been developed in recent years, both within the photogrammetry and

computer vision research fields. In all matching algorithms, there are two fundamental

aspects that must be taken into account: the definition of a primitive model, and consequently

of an identification criterion, and the choice of a strategy for the search of corresponding pixel

(also named homologous points in photogrammetry) on a couple (or more) images.

An additional problem for SAR imagery is the speckle, which significantly impedes the

image matching. Speckle filtering strategies were investigated, to be applied before matching.

The images geometric configuration also impacts image matching. The optimum stereo

imagery configuration for the radargrammetric application is when the target is observed in

opposite-side view. However it causes large geometric and radiometric disparities, hindering

the image matching. A good compromise is in the use of a same-side configuration stereo

pair with a convenient base to heigh ratio, to increase the efficiency in the correlation image

process [5].

As regards image matching, an original strategy was defined and implemented. The

algorithm is based on an hierarchical solution with a geometrical constrain and the

correspondences are looked using an area based matching criterion and analysing the Signal

to Noise Ratio (SNR).

To demonstrate the radargrammetric mapping potential of high resolution SAR satellite
imagery, several tests were carried out using data acquired in SpotLight mode and coming
from COSMO-SkyMed, TerraSAR-X. They are presented in paragraph 4. Finally, conclusion
and ideas for future work are outlined in paragraph 5.
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2. Stereo SAR geometry

Radargrammetry is based on stereogrammetry, a classic method for relief reconstruction
using optical remote sensing images. Stereo viewing reproduces the natural process of
stereovision. Figure 1 represents the radargrammetric SAR geometry, S1, S2 are the satellites,
Bx, Bz the horizontal and vertical baseline respectively; R1, R2 the distances between the
sensors and the ground target P. Target P is seen as P1 and P2 in both SAR images from S1

and S2.

Figure 1. The different observation positions and geometry for radargrammetry

The differences between images is measured to establish a disparity map. It is used to
compute the terrain elevation from the measured parallaxes between the two images [6].

In the 1960s, stereoscopic methods were applied to radar images to derive ground elevation
leading to the development of radargrammetry [7]. It was shown that some specific SAR
stereo configurations would produce the same elevation parallaxes as those produced by
aerial photos.

To orientate the SAR imagery, several models were developed, based on classical radar [4]
equations and physical constrains [8].

2.1. SAR imagery rigorous orientation model

2.1.1. Observation equation

The radargrammetric rigorous model implemented in SISAR is based on the equation of
radar target acquisition and zero Doppler focalization. Radargrammetry performs a 3D
reconstruction based on the determination of the sensor-object stereo model, in which the
position of each point on the object is computed as the intersection of two radar rays coming
from different positions and therefore with two different look angles (Figure 2).

These radar rays are modeled as two segments centered along two different satellite orbits.
The intersection generating each object point is one of the two possible intersections between
two circumferences centered in the two different positions and laying into two planes

High Resolution Radargrammetry – 3D Terrain Modeling
http://dx.doi.org/10.5772/57483
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Figure 2. SAR acquisition system in zero Doppler geometry

orthogonal to the two satellite orbits whose radii are equal to the segment measured lengths
[9]. The first equation of (1) is the slant range constrain. The second equation of (1) represents
the orthogonality condition between each radar ray heading and the flying direction of the
satellite. The couple of equations in a ECEF (Earth Centered Earth Fixed) system (for example
WGS84) reads:











�

(XP − XS)
2 + (YP − YS)

2 + (ZP − ZS)
2
− (Ds + ∆r · I) = 0

uSX
· (XP − XS) + uSY

· (YP − YS) + uSZ
· (ZP − ZS) = 0

(1)

where:

• XP, YP, ZP are the coordinates of the generic ground point P in the ECEF coordinate
system

• XS, YS, ZS are the coordinates of the satellite in the ECEF coordinate system

• uXS
, uYS

, uZS
are the Cartesian components of the satellite velocity in the ECEF coordinate

system

• Ds is the so-called "near range"

• ∆r is the slant range resolution or column spacing

• I is the column position of point P on the image

The acquisition time of each line t can be related to line number J through a linear function
(2), since the satellite angular velocity can be considered constant along the short orbital arc
related to the image acquisition:
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t = start time +
1

PRF
· J (2)

Start time is the time of start of acquisition PRF-Pulse Repetition Frequency, J the line
number. Start time, PRF and near range are available in the metadata file of COSMO-SkyMed,
TerraSAR-X and RADARSAT-2 products, for TerraSAR-X products, start time and near range
corrections are supplied [10].

2.1.2. Orbit computation

The first step for the image orientation is the orbit computation. The goal is to estimate the
satellite position for each line according to zero Doppler geometry. In the metadata file, with
SAR imagery, the ECEF position and velocity of the satellite related to the time are supplied
through state vectors at regular intervals (orbital segment), whose number N depends on
SAR sensor.

The orbit is then interpolated using Lagrange polynomials (3):

Lk(x) = ∏
N
i=0,i �=k

x−xi
xk−xi

k = 0, ..., N

pn(x) = y0 · L0(x) + y1 · L1(x) + ... + yN · LN(x) = ∑
N
k=1 yk · Lk(x)

(3)

Polynomials parameters are computed by Newton formula (4) to reduce the computational
cost using all orbital state vectors available in the metadata:

pn(x) = f [x0] + f [x0, x1] · (x − x0) + f [x0, x1, x2] · (x − x0) · (x − x1)+

... + f [x0, x1, ..., xn] · (x − x0) · (x − x1) · ... · (x − xn−1)
(4)

where f [x0, ..., xk] is, for k = 0, ..., n, the element (k, k) of matrix A diagonal (5):

A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f (x0)

f (x1)
f (x1)− f (x0)
(x1−x0)

f (x2)
f (x2)− f (x1)
(x2−x1)

A[2,1]− f [x0,x1]
(x2−x0)

... ... ... ...

f (xn) ... ...
(A[n−1,n−2]−A[n,n−2]

(xn−xn−1)
A[n,n−1]− f [x0,...,xn ]

(xn−x0)

∣
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∣
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∣

∣

∣

∣

∣

(5)

The interpolation polynomial on the ties x0, x1,...,xn can be written in recursive form (6):
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pk+1(x) = pk(x) + f [x0, x1, ..., xk+1] · (x − x0) · (x − x1) · (x − xk+1) (6)

where pk(x) is the interpolation polynomial of degree k on ties x0, x1,...,xk. The ties x0,
x1,...,xk are the state vector time and the f (x0), f (x1),.. f (xk) represent either the position
state vector to define satellite flight path or the velocity state vector to calculate the satellite
velocity [10]. Lagrange polynomial interpolation is enough accurate to model the short
orbital segment and its well-known problems at the edges do not affect the modeling since
the images are acquired in the central part of the orbital segment. Additionally, using a
standard divide and conquer algorithm, it is possible to find in a rapid and accurate way the
epoch when satellite orbit is perpendicular to the line of sight between the sensor and the
generic ground point.

2.1.3. Metadata Tie Points: a tool for orientation model check

TerraSAR-X and RADARSAT-2 products have in the metadata a number of Tie Points(TPs)
distributed on a regular grid. These points were calculated directly by the image providers,
using the intrinsic radar geometry acquisition model. These points have image and ground
coordinates, so the object coordinates of each point were used to determinate the image
coordinates with the model implemented in SISAR. The image coordinates residuals shown
that the defined and implemented model is quite compliant with the intrinsic SAR acquisition
geometry at sub-pixel level (Table 1).

SAR image BIAS TPs ST. DEV. TPs RMSE TPs

I J I J I J

Hannover 05/12/2007 0.25 0.32 0.28 0.26 0.38 0.41
Hannover 10/12/2007 0.31 0.39 0.29 0.29 0.43 0.49
Hannover 29/12/2007 0.47 0.40 0.30 0.28 0.55 0.48

Trento 19/01/2011 0.30 0.41 0.30 0.31 0.42 0.52
Trento 14/01/2011 -0.50 0.27 0.30 0.58 0.58 0.39

Table 1. Accuracy result on metadata Tie Points (example for TerraSAR-X) [pix]

2.1.4. Impact of GCPs errors on stereo orientation accuracy

The Ground Control Points (GCPs) selection on radar imagery is much more difficult than
on the optical one, and it is possible to misregister their positions (Figure 3). To evaluate
the impact of GCPs collimation errors on the accuracy of stereo orientation, a Monte Carlo
simulation was used. Starting from a no errors configuration, a Gaussian error was applied,
with 1 to 6 pixel standard deviation (common values are around 1 to 4 pixels) to GCPs
image coordinates, to simulate collimation errors of different magnitude. The stereo pair
was oriented using a different number of GCPs (3, 6, 9); for each orientation (3, 6, 9 GCPs)
100 orientations affected by random errors were computed, at last the orientation accuracy
was evaluated computing the RMSE calculated on Check Points (CPs) ground coordinates
residuals. The results shown that the RMSE error due to the collimation on radar image is
at level of 1 - 2 m in horizontal coordinates and 1 m in vertical ones even if the number of
GCPs increases, the accuracy does not significantly.
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Figure 3. Visual comparison between radar and optical collimation of the same detail

Therefore, the collimation errors have a great impact on the finally accuracy of stereo
orientation, so that the possibility to orientate the images directly, on the bases of the refined
orbital model and the metadata parameters represent an opportunity to remove the effect of
collimation errors and increase the orientation accuracy.

The accuracy results of orientation model performed without GCPs are closer to the results
computed with a model based on GCPs refinement [11].

2.2. SAR imagery orientation with RPCs re-parametrization

The Rational Polynomial Functions model is a method to orientate optical satellite imagery.
Currently all optical images supply, together imagery, the RPCs file generated starting from
the own rigorous model. On the contrary, regarding SAR images only RADARSAT-2 have a
RPCs file whereas COSMO-SkyMed and TerraSAR-X images are devoid. On the other hand
the use of the RPFs model is common in several commercial software for two reasons: the
implementation of the RPFs model is standard, unique for all sensors, and much simpler that
the one of a rigorous model, which has to be customized for each sensor, and the performance
of the RPFs model can be at the level of the ones from rigorous models. The RPCs generation
on the basis of rigorous orientation sensor models is an important tool.

RPFs model relates the object point coordinates (latitude φ , longitude λ and height h) to the
pixel coordinates (I, J) in the form of ratios of polynomial expressions (7) whose coefficients
(RPCs) are often supplied together with imagery:

I =
P1(φ, λ, h)

P2(φ, λ, h)
J =

P3(φ, λ, h)

P4(φ, λ, h)
(7)

The number of the RPCs depends on the polynomial order (usually limited to the third one),
so that each of them takes the generic form (8):
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Pn =
m1

∑
i=0

m2

∑
j=0

m3

∑
k=0

tijk · φi
· λj

· hk (8)

with 0 ≤ m1 ≤ 3; 0 ≤ m2 ≤ 3; 0 ≤ m3 ≤ 3 and m1 + m2 + m3 ≤ 3 where tijk are the RPCs.
In case of third order polynomials, the maximum number of coefficients is 80 (20 for each
polynomial); actually, it is reduced to 78, since the two equations (7) can be divided for the
zero order term of their denominators. The image and ground coordinates in equation are
usually normalized to (-1, +1) range to improve the numerical accuracy, using the formula
(9):

Tn =
T − To f f set

Tscale
(9)

where Tn are the normalized coordinates; To f f set, Tscale are the normalization parameters
available in the metadata file; and T is the generic original ground or image coordinate
(T = I, J; φ, λ, h).

In principle, RPCs can be generated by a terrain-depended scenario without using the
physical sensor model or by a terrain independent scenario.

Figure 4. RPCs-terrain independent approach generation

Nevertheless, the first approach is not recommended for two relevant reasons. At first,
it is likely to cause large deformations in areas far from the GCPs and it is very weak
and vulnerable in presence of outliers. Further, it is not convenient, since the number of
required GCPs could be very high. For example, at least 39 GCPs are necessary if RPCs up
to the third order are looked for. On the contrary, following the second approach, RPCs
can be generated using a known physical sensor model. This is the standard for some
sensor managing companies, which supply through imagery metadata a re-parametrized
form of the radargrammetric sensor model in term of RPCs, generated from their own secret
physical sensor models [12, 13]. The developed and implemented procedure to generate
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RPCs within SISAR includes three main steps: 1) at first the image is orientated through
the already established radargrammetric rigorous orientation model; 2) further, 3D object
grid with several layers slicing the entire terrain elevation range is generated; the horizontal
coordinates of a point of the 3D object grid are calculated from the image corner coordinates
with a regular posting, the corresponding (I, J) of the image grid are calculated using the
computed orientation model; 3) finally, the RPCs are estimated in a least squares solution,
having as input the coordinates of the 2D image grid points and of the 3D object grid points
(Figure 4).

Investigations with optical imagery clearly underlined that many RPCs are highly correlated,
so that the least squares problem is basically overparametrized. To avoid instability due
to high correlations, leading to a pseudo-singular design matrix, usually a Tickhonov
regularization is adopted, adding a damping factor to the diagonal of the normal matrix.
On the contrary, in SISAR procedure, just the actually estimable RPCs are selected to avoid
overparametrization (parsimony principle) [14, 15]). The Singular Value Decomposition
(SVD) and QR decomposition are employed to evaluate the actual rank of the design matrix.
To perform this selection, the remaining RPCs need to be constrained to zero [16]. Moreover,
the statistical significance of each estimable RPC is checked by a Student T-test and the
estimation process is repeated until only RPCs are selected.

3. SAR image matching

In general, the term image matching means automatic correspondence establishment,
between primitives (homologous points) extracted from two or more digital images,
depicting at least partly the same physical objects in space (Figure 5).

Figure 5. Example of homologous points in optical imagery

The fact that humans solve the correspondence problem, especially with optical imagery,
so effortlessly should not lead us to think that this problem is trivial. On the contrary,
humans exploit a remarkable amount of information to arrive at successfully declaring
correspondence, including analysing context and neighbouring structures in the image and
a prior information of the content of the scene. An image matching algorithm is a procedure
able to solve the correspondence problem to obtain automatically a great number of homologous
points [17].
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3.1. An original matching strategy

The development of a fully automatic, accurate, and reliable image matching approach that
adapts to different imagery (both optical and SAR) and scene contents is a challenging
problem. Many different approaches to image matching have been developed within the
photogrammetry and computer vision research fields [17–19]. Dissimilarities between SAR
images due to occlusion, geometric distortions, radiometric differences and speckle noise
must be taken into account leading to various approaches. Hereafter the basic features of
an original matching strategy, presently under patenting by the University of Rome "La
Sapienza", are outlined [20].

3.1.1. Area selection and filtering

At the beginning of the image matching procedure, it is mandatory to select an area of

interest and a coarse height range (approximate maximum and minimum terrain ellipsoidal

heights), to reduce the object space and to remarkably decrease the processing time.

SAR imagery are affected by speckle hindering target recognition and correct matching

(Figure 6). To reduce speckle, three different adaptive spatial filters (Lee, Kuan, GammaMap)

have been considered for a preprocessing enhancement. Thanks to a number of tests, it was

highlighted that these spatial filters significantly increase the number of points at the expense

of vertical accuracy, since they mitigate the speckle but smooth the image features.

Starting from this experimental awareness, an original filtering procedure dynamic filtering

has been developed, to maximize not only the number of points, but also their quality.

Unlike the traditional preprocessing techniques, the image filtering is done directly during

the matching procedure; the leading idea is to find out all possible matched point using the

raw imagery and, only after, to apply filters to search points in areas where the previous

search failed. This allows to operate at several pyramidal levels (with different resolution)

independently and in different ways, e.g. making one or more filtering cycles.

Figure 6. Example of homologous points in SAR imagery
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3.1.2. Image matching strategy

The image matching strategy is based on an hierarchical solution with a geometrical
constrain, and the corresponding points (actually, so-called primitives) are searched using
an area based matching criterion and analysing the signal-to-noise ratio (SNR) [17]. In this
sense, the peculiarity of the proposed algorithm is to use the image orientation model to
limit the search area of the corresponding primitives, allowing a fast and robust matching.
Primitives are searched directly in the object space re-projecting and re-sampling the stereo
images on a regular grid in the ground reference system. Starting from a ground point with
a selected height, the orientation model provides point image coordinates. It is thus possible
to back-transfer the SAR radiometric information from slant-range to ground geometry.

From the practical point of view, after images preprocessing and area selection, a 3D grid is
generated in ground geometry, with several layers slicing the entire height range. Starting
from this 3D grid, by means of the orientation model, the two images are re-projected on
each layer creating two voxel sets (one for left and one for right image). Through this process
(Figure 7), the two generated voxel sets contain the geometrically corrected radiometric
information in the same ground reference system.

Figure 7. Geometrical constrain and voxel generation

At this point, for each horizontal position (X,Y) of the 3D grid, the main objective is to identify
the correct height comparing the two voxel sets. This correct height corresponds to the best
matching of the two voxels (for left and right image) at the same height; therefore, to this
aim, the search can be conveniently carried out along vertical paths. During the algorithm
development, different primitive models have been considered (i.e. Area Based Matching
or Feature Based Matching [21, 22]), and the experimental results have highlighted that a
normalized cross-correlation (NCC) linked with a signal-to-noise ratio analysis is the more
efficient and accurate method. Overall, for each horizontal position (X,Y), the search of the
corresponding primitives consists of the following steps:

• compute the NCC values along the vertical search path

• find out the maximum NCC value along the vertical search path (Figure 8)
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• analyse the NCC profile and compute the vertical SNR according to the formula (10):

SNRv =
1 + ρmax

1 + ρ
(10)

where ρmax and ρ are respectively the maximum and mean value of NCC along the
vertical search path; note that this search mainly examines the correspondence of
primitives in West-East direction for each horizontal layer, that is orthogonally to the
direction of the orbits of the considered SAR satellite

• to strength the matching, a second search is performed moving the correlation windows in
North-South direction in the selected horizontal layer (Figure 8), starting from the height
corresponding to the found NCC maximum value; accordingly to the same formulation
(10) a second value SNRp is computed

• if ρmax and both SNRv and SNRp are higher than the respectively chosen thresholds, the
primitives are considered matched and the height value for the horizontal position (X,Y)
is finally determined

At the end of this process, after investigating and finding all the corresponding primitives
for each (X,Y) position, an irregular DSM (point cloud) in (X,Y,Z) coordinates is obtained.

Figure 8. Search paths

3.1.3. Pyramidal approach

The described matching strategy is used in a coarse-to-fine hierarchical solution, following a
standard pyramidal scheme based on a multi-resolution imagery approach. The advantage
of this technique is that, at lower resolution, it is possible to detect larger structures whereas,
at higher resolutions, small details are progressively added to the already obtained coarser
DSM. The procedure starts choosing a suitable image multi-looking considering the original
image resolution.

In this way, at each pyramid step, an intermediate DSM is extracted and it is modeled by
the triangular irregular network (TIN) using a 2D Delauney triangulation method. Further,
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DSM is interpolated on a regular grid in the ground reference system, becoming the input
for the next pyramid level. Correspondingly, for each horizontal position (X,Y), the height
coming from the DSM obtained in the previous pyramid step is selected as starting point
for the vertical search path, whereas at the first iteration just a plane with a mean elevation
is set as reference DSM. In this respect, it is worth to underline that, differently from other
approaches [1], no external DSMs (for example SRTM DEM or ASTER DEM) are needed to
guide matching.

As long as the resolution and pyramid level increase, and the DSM approaches the final
solution, the mentioned discretization of the entire height range is correspondingly refined,
so that the height step between the layers of the 3D grid, and also the number of the
considered layers, decreases (Figure 9).

Figure 9. Coarse-to-Fine approach

Finally, in the algorithm flowchart (Figure 10), the complete radargrammetric approach is
summarized and schematically illustrated.

4. Applications

Several tests were carried out to evaluated the effectiveness of the proposed radargrammetric
tool. At first, the accuracy of the radargrammetric rigorous model and RPCs model were
evaluated. Then, the accuracy of the extracted DSMs was computed comparing the DSMs
extracted with a more accurate reference DSM (ground truth) obtained with the airborne
LiDAR technology, to assess the potential and the reliability of the overall radargrammetric
DSMs generation strategy. Three test sites, Merano, Trento, Como (Northern Italy) have been
selected considering their main features, and different analyses were developed as outlined
hereafter:

• Merano test site: analysis of foreshortening and layover effect on DSM accuracy and
comparison between Spotlight imagery;

• Trento and Como test sites: analysis of radargrammetric potentiality over forested areas
and study of advantages using ascending and descending stereo pairs.
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Figure 10. Radargrammetric workflow

4.1. Orientation and DSM assessment strategy

As regards orientation, both the rigorous radargrammetric and the RPFs model with RPCs
obtained through the implemented generation tool were considered. The accuracy was
evaluated as RMSE of the residual between estimated and known coordinates of the Check
Points (CPs).

The RPCs were generated on the basis of the rigorous orientation model, without the
use of GCPs. In all these cases, the RPCs generation tool estimated about 20 coefficients
only, instead of the 78 coefficients generally employed in the third order RPFs, avoiding
the overparametrization, and selecting only the estimable and significant parameters as
mentioned before.
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A homogeneous DSM assessment procedure has been considered in the different tests. It
is based on a comparison with a reference (ground truth minus assessed DSM) using the
scientific software DEMANAL (developed by K. Jacobsen - Leibniz University of Hannover,
Germany) and the accuracy statistics are computed at the 95% probability level.

4.2. Merano test site

Merano is situated in the Autonomous Province of Bolzano, in Trentino Alto Adige Italian
region. The area is characterized by a great cultivated plain area (the Adige river valley),
where the city of Merano is located, at a mean altitude of 300 m, surrounded by mountains up
to 2000 m. The available data for the experiment is a COSMO-SkyMed Spotlight stereo-pair;
the imagery belongs to the Level 1A (SCS) category products, that is focused data in complex
format, in slant range and zero-Doppler projection. The imagery main features are listed in
Table 2.

Area Acquisition date Coverage [km2 ] Incidence Angle [deg] Orbit B/H

Merano
30/11/2009 10 x 10 25.90 Desc

0.60
02/11/2009 10 x 10 42.30 Desc

Table 2. CSK Merano: features of test site imagery

As concerned the ground truth, a LiDAR DTM (mean elevation accuracy of 0.25 m and
horizontal posting 2.50 m), has been used as reference for the DSMs assessment. These
data are available on the Provincia Autonoma di Bolzano website. Unfortunately, it has
not been possible to get a DSM, and not a DTM (vegetation and buildings filtered out),
for performing the comparison. Two different tiles with extension of 2-3 Km2 were
considered, which were selected to test the potentialities of the radargrammetric approach
with different morphologies and in some difficult cases, where SAR imagery distortions (i.e.
foreshortening, layover) inherit the image matching.

Twenty Ground Control Points were used to evaluated the stereo pair orientation. The
horizontal coordinates of which were derived from cartography (scale 1:5000), whereas the
heights come from the LiDAR DTM.

BIAS CPs ST. DEV. CPs RMSE CPs

East North Up East North Up East North Up
0.69 -1.96 -0.15 3.43 2.31 1.94 3.50 3.03 1.95

Table 3. CSK Merano: radargrammetric model accuracy [m]

The horizontal accuracy is at level of 3.0 - 4.0 m, and the vertical one is around 2.0 m (Table
3).

BIAS CPs ST. DEV. CPs RMSE CPs

East North Up East North Up East North Up
0.03 -1.64 1.35 3.42 2.31 2.22 3.42 2.84 2.60

Table 4. CSK Merano: RPFs model accuracy [m]

High Resolution Radargrammetry – 3D Terrain Modeling
http://dx.doi.org/10.5772/57483

181



16 Land Applications of Radar Remote Sensing

The generated RPCs were used to orientate the stereo pairs. The accuracy level was close to
the one achieved by the rigorous orientation model. Proving the effectiveness of the RPCs
generation tool implemented in SISAR (Table 4).

Starting from the point clouds, two DSMs were generated and assessed on a 2 m posting. As
regards the DSMs accuracy, results of Tile 1 (Figure 11 (a)) highlight that over a flat area the
RMSE is better than 3 m (Table 5). Thanks to a quite dense point cloud generated even over
forested areas, the DSM standard deviation raises to 4 m. A large negative bias is present,
due to to the forest (mean height canopy about 15 m); on the contrary, the details of urban
areas were not correctly reconstructed (Figure 11 (b)).

Tile 1

Land Cover BIAS ST.DEV. RMSE LE95
Flat -2.03 1.94 2.80 4.54

Forested -14.40 4.28 15.02 9.89

Tile 2

Land Cover BIAS ST.DEV. RMSE LE95
Urban 1 -4.34 3.59 5.63 8.63
Urban 2 -4.92 3.40 5.98 9.11

Table 5. CSK Merano: DSMs accuracy [m]

In this case, it should be taken into account that the generated DSMs were compared with
the reference DTM, which does not include vegetation and buildings. This is the reason
of a part of the differences between the compared surfaces and this turns of particular
interest over forested areas, where the radargrammetric approach was able to generate a
dense points cloud despite the quite low coherence between images, in comparison to the
InSAR technique. In these areas the differences are mainly due to the forest and the bias
values are representative of the canopy height (apart from the already known effect of radar
penetration into the canopy, causing a height underestimation around 25-30%) [23].

The urban area represented in Tile 2 (Figure 12 (a)) has been chosen because it also contains
some of the most common geometric distortions that characterize SAR imagery. The relief is
affected by foreshortening and layover. Foreshortening compresses features which are tilted
toward the radar. Two urban areas not affected by distortions have been selected to evaluate
the accuracy of the extracted DSM. The accuracy was about 6 m for both areas. In these
cases, unlike the forest canopy in Tile 1, the buildings are not correctly reconstructed. The
bias is only 5 m and it is not representative of the average building heights.

To see the effect of radar distortions, an image of Tile 2 has been orthorectified using the
extracted DSM. During orthorectification process, layover and foreshortening situations are
stretched back to their correct positions and pixels are stretched or smeared, creating areas
where the matching algorithm cannot find homologous points due to of lack of radiometric
information. These areas are easily recognizable in the error map (Figure 12 (b) below, red
zone) because they are characterized by the highest values of height discrepancies (about 30
m) between the extracted DSM and the reference.
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Figure 11. CSK Merano Tile 01: image screeshot (a) and extracted DSM (b)

Figure 12. CSK Merano Tile 02: orthorectified image (a) and error map (b)
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4.3. Trento test site

Trento city area is characterized by a dense urban morphology located inside typical hills of
mountainous alpine territory.

Twelve TerraSAR-X SpotLight images have been acquired, six in descending and six in
ascending mode (Table 6). A LiDAR airborne DSM supplied for free by the Provincia
Autonoma di Trento was available as reference.

Area Acquisition date Coverage km2 Incidence Angle (deg) Orbit B/H

Trento

19/01/2011 5 x 10 24.10 Desc

0.35

01/01/2012 5 x 10 24.13 Desc
27/03/2013 5 x 10 24.15 Desc
14/01/2011 5 x 10 38.95 Desc

07/01/2012 5 x 10 38.89 Desc
10/03/2013 5 x 10 38.91 Desc
22/01/2011 5 x 10 31.10 Asc

0.35

09/01/2012 5 x 10 31.14 Asc
04/04/2013 5 x 10 31.15 Asc
16/01/2011 5 x 10 44.19 Asc

31/03/2012 5 x 10 44.22 Asc
24/02/2013 5 x 10 44.19 Asc

Table 6. TSX Trento: features of SpotLight imagery

13 GPs were used to evaluate the orientation accuracy coming from GPS survey. The accuracy
is similar to COSMO-SkyMed, around 3 m (Table 7).

BIAS CPs ST. DEV. CPs RMSE CPs

East North Up East North Up East North Up
-1.17 -1.07 0.06 5.78 3.12 3.24 5.89 3.29 3.24

Table 7. TSX Trento: radargrammetric model accuracy [m]

The generated RPCs were used to orientate the stereo pairs and the results of RPCs
applications are presented in Table 8 for TerraSAR-X data. The accuracy level is close to
the one achieved by the rigorous orientation model, showing the effectiveness of the RPCs
generation tool implemented in SISAR.

As regards the pre-processing step for the DSM extraction, a multi-temporal filter has been
used to reduce speckle and enhance images features. The three images with the same
incidence angle have been co-registered (stack generation).

BIAS CPs ST. DEV. CPs RMSE CPs

East North Up East North Up East North Up
-1.35 -0.93 0.90 6.13 3.23 3.55 6.28 3.36 3.66

Table 8. TSX Trento: RPFs model accuracy [m]
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In Table 6, the master images of each stack are highlighted in bold. Multi-temporal averaging
filtering technique has been performed using a kernel (11x11 pixels) available in the ESA
Next SAR toolbox v. 5.05. Starting from twelve speckled images, two same-side filtered
stereo-pairs (one ascending, one descending) were formed and used for the DSMs generation
after separate processing.

The two stereo pairs were processed separately and the corresponding point clouds were
assessed. The height differences were computed by interpolating with a bilinear method the
analysed DSM over the reference LiDAR DSM. A tile featured by a mixed morphology was
selected for the analysis. The results of the accuracy assessment are presented in Table 9. The
point clouds derived from the ascending and descending stereo pairs, directly produced by
matching procedure without any further post-processing, have been analyzed.

Point cloud assessment

Ascending

BIAS ST.DEV. RMSE Points
1.90 6.59 6.86 603420

Descending

BIAS ST.DEV. RMSE Points
0.60 6.79 6.82 702990

SRTM filtered point cloud assessment

Ascending (about 6 % points removed)

BIAS ST.DEV. RMSE Points
1.86 6.36 6.63 563598

Descending (about 7 % points removed)

BIAS ST.DEV. RMSE Points
0.61 6.29 6.32 650019

Table 9. TSX Trento: point cloud assessment results [m]

The accuracy was around 7 m. Some outliers were detected in the point clouds, probably
due to mismatching, causing incorrect morphological reconstruction in small areas.

Ascending

Filter BIAS ST.DEV. RMSE Points

No 1.54 6.55 6.73 259351
Yes 1.57 6.43 6.62 252628

Descending

Filter BIAS ST.DEV. RMSE Points

No 0.27 7.93 7.93 268552
Yes 0.33 6.67 6.68 254468

Final DSM

BIAS ST.DEV. RMSE Points
1.05 6.37 6.45 275827

Table 10. TSX Trento: DSMs assessment results (4x4 meters posting) [m]

To remove these outliers, a free available low resolution DSM (SRTM DEM, 3’ grid posting)
was used as reference. The point clouds were compared with SRTM, and the height
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differences computed. When the difference was greater than a fixed threshold (25 meters), the
corresponding point was rejected. As shown in Table 9, no significant improvement in term
of RMSE were detected; on the other hand, about 6-7% of points were removed. Three DSMs
were generated and assessed on a 4 m posting. In Table 10, the results of the interpolated
DSMs are shown. The ascending and descending DSMs were generated using the points
clouds (both filtered and no filtered). A merged DSM was generated using a combination of
the filtered point clouds to achieve the best result. The accuracy was around 7 m and 8 m
for the ascending and the descending no filtered DSMs respectively. An improvement of 1 m
in term of RMSE only for the descending filtered DSM was detected. Overall, the merging
slightly improved the results in term of RMSE (about 0.5 meters), though more details were
observed through a visual inspection.

4.4. Como test site

Como city area is characterized by a dense urban morphology.

Area Acquisition date Coverage km2 Incidence Angle (deg) Orbit B/H

Como

07/08/2011 10 x 10 28.90 Asc
0.60

17/06/2011 10 x 10 50.80 Asc
24/06/2011 10 x 10 27.80 Desc

0.80
28/06/2011 10 x 10 55.40 Desc

Table 11. CSK Como: features of SpotLight test site imagery

Imagery suitable for radargrammetric application, were acquired on Como test fields.
Two same-side stereo pair were available, acquired on ascending and descending orbits
respectively. Images features are listed in Table 11.

As a ground truth, a LiDAR DSM provided by the "Regione Lombardia" was used. The
reference DSM has an horizontal spacing of 1 m and its vertical accuracy is about 0.25 m.

Considering that a descending and an ascending stereo pairs were available, the DSM could
be reconstructed using two different points of acquisition. Starting from the ascending and
descending points clouds, three DSMs were generated and assessed, estimating the heights
on a 5 m x 5 m grid by a linear interpolation, after a Delaunay triangulation. The merged
DSM was generated using a combination of the point clouds that were previously filtered,
removing the matched points with lower correlation. Table 12 shows the assessment results.
The accuracy ranges from 8 to 10 meters, for the ascending and the descending DSMs, and
decrease to 7 m in the merged product. This test highlights that, the use of at least two stereo
pairs acquired under different look side seems to be an effective strategy to overcome the
limitations arising from SAR imaging system such as, layover, foreshortening and shadow.

5. Conclusions and future prospects

5.1. Conclusions

This chapter discussed on high resolution satellite SAR imagery for DSMs generation with
a radargrammetric stereo-mapping approach. The main features of the radargrammetric

Land Applications of Radar Remote Sensing186



20 Land Applications of Radar Remote Sensing

differences computed. When the difference was greater than a fixed threshold (25 meters), the
corresponding point was rejected. As shown in Table 9, no significant improvement in term
of RMSE were detected; on the other hand, about 6-7% of points were removed. Three DSMs
were generated and assessed on a 4 m posting. In Table 10, the results of the interpolated
DSMs are shown. The ascending and descending DSMs were generated using the points
clouds (both filtered and no filtered). A merged DSM was generated using a combination of
the filtered point clouds to achieve the best result. The accuracy was around 7 m and 8 m
for the ascending and the descending no filtered DSMs respectively. An improvement of 1 m
in term of RMSE only for the descending filtered DSM was detected. Overall, the merging
slightly improved the results in term of RMSE (about 0.5 meters), though more details were
observed through a visual inspection.

4.4. Como test site

Como city area is characterized by a dense urban morphology.

Area Acquisition date Coverage km2 Incidence Angle (deg) Orbit B/H

Como

07/08/2011 10 x 10 28.90 Asc
0.60

17/06/2011 10 x 10 50.80 Asc
24/06/2011 10 x 10 27.80 Desc

0.80
28/06/2011 10 x 10 55.40 Desc

Table 11. CSK Como: features of SpotLight test site imagery

Imagery suitable for radargrammetric application, were acquired on Como test fields.
Two same-side stereo pair were available, acquired on ascending and descending orbits
respectively. Images features are listed in Table 11.

As a ground truth, a LiDAR DSM provided by the "Regione Lombardia" was used. The
reference DSM has an horizontal spacing of 1 m and its vertical accuracy is about 0.25 m.

Considering that a descending and an ascending stereo pairs were available, the DSM could
be reconstructed using two different points of acquisition. Starting from the ascending and
descending points clouds, three DSMs were generated and assessed, estimating the heights
on a 5 m x 5 m grid by a linear interpolation, after a Delaunay triangulation. The merged
DSM was generated using a combination of the point clouds that were previously filtered,
removing the matched points with lower correlation. Table 12 shows the assessment results.
The accuracy ranges from 8 to 10 meters, for the ascending and the descending DSMs, and
decrease to 7 m in the merged product. This test highlights that, the use of at least two stereo
pairs acquired under different look side seems to be an effective strategy to overcome the
limitations arising from SAR imaging system such as, layover, foreshortening and shadow.

5. Conclusions and future prospects

5.1. Conclusions

This chapter discussed on high resolution satellite SAR imagery for DSMs generation with
a radargrammetric stereo-mapping approach. The main features of the radargrammetric

Land Applications of Radar Remote Sensing186
High Resolution Radargrammetry — 3D Terrain Modeling 21

10.5772/57483

Total

DSM BIAS ST.DEV. RMSE LE95
Ascending -1.07 7.79 7.86 21.87
Descending 1.53 10.24 10.35 33.14

Merged -1.10 6.94 7.02 18.14

Wooded

DSM BIAS ST.DEV. RMSE LE95
Ascending -0.69 7.10 7.14 18.10
Descending 1.32 8.53 8.63 27.06

Merged -0.88 6.07 6.14 15.55

Urban

DSM BIAS ST.DEV. RMSE LE95
Ascending -1.45 8.32 8.45 22.01
Descending 1.73 11.86 11.98 38.10

Merged -1.40 7.59 7.72 20.18

Table 12. CSK Como: DSM Absolute Error [m]

procedure implemented in SISAR package were defined. It outlined the orientation model
and it focused on the original matching strategy, presently patent pending by the University
of Rome "La Sapienza". It is established on area based primitive model and on an hierarchical
solution with geometrical constrain. The leading idea was to search the corresponding
primitives directly in the object space, re-projecting and re-sampling the stereo images
into a 3D ground grid. The correspondences are looked analysing the signal-to-noise ratio
(SNR) along two perpendicular search paths. A specific speckle dynamic filtering technique
was designed and embedded into the radargrammetric procedure, based on three standard
speckle filters (Lee, Kuan, GammaMap).

The complete radargrammetric processing chain was developed and implemented using
the IDL development environment. To demonstrate its mapping capabilities, several tests
were carried out using high resolution SAR satellite imagery acquired in Spotlight mode
and coming from different platforms (COSMO-SkyMed, TerraSAR-X). A homogeneous
DSM assessment procedure was considered in different tests, based on the comparison
with a reference ground truth using the scientific software DEMANAL. Summarizing the
main results of other tests, the DSMs vertical accuracy was strictly related to the terrain
morphology and land cover. In case of limited SAR distortions (layover and foreshortening)
the observed RMSE values ranged from 3-4 meters over bare soil and forest to 6-7 meters
in more complex urban areas. Regarding the area of Como, the accuracy became worse.The
terrain morphology might be conveniently reconstructed using at least two same-side stereo
pairs in ascending and descending modes.

Finally, radargrammetric stereo-mapping approach appears a valuable tool to supply
topographic information. It is likely to become an effective complement/alternative to InSAR
technique, since it may work using a couple of images with a good performance even over
areas (forested or vegetated areas) characterized by low coherence values.

5.2. Some suggestions for the future

Although the experimental results have demonstrated that StereoSAR approach has the
capability to give good and encouraging results, there are still a lot of challenging issues
which need to be considered for further improvements. Hereafter are listed some ideas for
the future:
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• orientation model customization and possible refinement: additional tests should be
performed on data acquired by the expected Sentinel-1 SAR satellite sensor;

• self-tuning matching parameters: the automatic determination of the matching
parameters is necessary to improve success rate and decrease mismatches. These
parameters: size of the correlation window and search distance and the threshold values,
should be evaluated in analysing the radiometric information of the higher-level image
pyramid matching and in using them at the current pyramid level;

• efficient quality control measures: a quality control procedure of matched points should
be developed by well-defined precision measures that are derived from the primitive
model and from the parameter estimation;

• efficiency improvement in urban areas: to model the complicated urban morphology,
specific algorithms must be developed, accounting for remarkable features as double
bounces or building shadows. Some preliminary investigations applying semiglobal
matching [24] to quasi-epipolar image previously generated gave promising results;

• algorithm optimization: a speed-up of the matching process could be achieved exploiting
the high computational performance of Graphic Processing Units (GPUs). Reliability and
accuracy could be improved, allowing concurrent processing of multiple stereo-pairs (i.e.
ascending and descending ones);

• accounting for polarimetric information: studying algorithms and techniques
for optimizing DSMs generation from full SAR polarimetric data [25] through
radargrammetry. In particular, the potential of polarimetric imagery and their derived
products (i.e. span, entropy, H-A-α classification maps) should be investigated to enhance
the image matching;

• interferometry and radargrammetry tight integration: the two techniques should be
considered to exploit the 3D mapping potential of high resolution satellite SAR data:
radargrammetric DSMs can be used within the InSAR processing chain to simplify the
unwrapping process to avoid areas affected by phase jumps.
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Fusion of Interferometric SAR and Photogrammetric
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1. Introduction

Digital Elevation Models (DEM) are digital representations of the topographic information of
a geographic area and are based on a high number of points defined by the X-, Y- and Z
coordinates describing the Earth’s three dimensional shape. The term DEM is generic and
includes two distinct products: Digital Terrain Models (DTM), describing the ground of the
imaged area, and Digital Surface Models (DSM) describing the surface including the above
ground objects elevation. DEMs may either be arranged regularly in a raster or in a random
point cloud. These products have become a major component for an extensive number of
remote sensing and environmental applications, such as mapping, orthoimage generation,
virtual terrain reconstruction and visualization, simulations, civil engineering, land monitor‐
ing, forestry, flood planning, erosion control, agriculture, environmental planning, archaeol‐
ogy and others. Different techniques based on Earth imaging products belonging to different
families are commonly used in order to obtain the elevation information. The most common
techniques are based on Optical imagery, LiDAR (Light Radar) and Synthetic Aperture Radar
(SAR). In this chapter the main focus will be on techniques exploiting Optical and SAR sensors:
InSAR (Interferometric SAR) and Photogrammetry. The generic term DEM will be used, even
if usually the data recorded with optical sensors refers to above ground objects (DSM), while
the one obtained with SAR usually is a DSM/DTM composite. An overview and some results
will be shown, outlining the main strengths and weaknesses of the approaches, thus leading
to the fusion hypothesis in order to exploit the inter-platform complementarity and the
intrinsic advantages of both techniques. Two different product levels (raster and point cloud)
– on which the fusion approaches have to be built – are also proposed, as well as examples of
such approaches.

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. DEM generation from Synthetic Aperture Radar sensors

The generation of digital elevation models has been among the first techniques exploiting the
phase information of SAR data. Being an active sensing technology, SAR offers day and night
operability. However, one of the major drawbacks of this technology is posed by the temporal
decorrelation between passes of SAR data. This drawback has been addressed mainly in two
different ways. The first one is the minimization or suppression of the temporal separation
between two or more acquisitions exploited in the DEM generation process. The second way
relies on the selection of different frequencies/polarizations.

The different approaches available for the spaceborne platform as well as the basic interfero‐
metric framework will be introduced in the following Sections.

2.1. SAR interferometry

Interferometry is among the main techniques applied to derive elevation data from SAR
images exploiting their phase information, while radargrammetry [1], which has been
developed in the eighties, exploits their intensity information (see the radargrammetry chapter
for further information). In this section, a brief description of the InSAR technique, as well as
an example of processing chain to generate InSAR DEMs, are given. A more in-depth overview
of SAR interferometry can be found in [2].

SAR sensors belong to the so-called “active” family of instruments, in that they emit a wave
which rebounds on the target and returns to the satellite where it is recorded. The wavelength
of the outgoing signal is known as it is consequently its corresponding phase. This implies the
possibility to compare the return phase with the reference one, thus allowing their coherence
estimate. Ideally, the return phase should be a function of the satellite-target and back distance
plus a phase difference which can be measured. In reality, however, several other factors affect
the phase value, i.e. systematic effects which have to be considered in order to obtain useful
information.

In interferometry, two images covering the same area acquired from the same or slightly
different position are used in order to obtain the topographic information. The phase difference
between the two acquisitions is used to produce the interferogram. The difference is measured
in radians and is recorded in fringes each one representing a 2 π cycle. The signal path length
to the ground and back consists of a number of whole wavelengths plus some fraction of a
wavelength, this means that the return wave phase is function of the distance between the
target and the emitter/receiver. Said fraction can be seen as a phase shift in the returning wave.
The total number of whole wavelengths is unknown, as it is the total distance to the satellite,
but the phase shift defined by the extra fraction of a wavelength can be measured by the
receiver with a high accuracy.

The measured phase is influenced by different factors throughout the sensor-target-sensor
path. One of the most important among them coming into play is the interaction with the
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ground surface. Reflection, depending on the physical properties of the target material, may
cause phase changes. As a consequence, the return signal for every pixel is the result of the
summation of the sub-pixel interactions between the signal and a multitude of smaller targets
included in the imaged ground area. These targets may show different physical and topo‐
graphic properties between one another, e.g. different dielectric properties, a different satellite-
target distance or varying surface roughness. This leads to a signal which can be uncorrelated
with the ones from the surrounding pixels and which is defined as “speckle”. Orbital effects,
which are other important signal noise contributors, should be considered as well. The
importance of these factors derives from geometrical constraints, since images from satellite
platforms with different orbits cannot be compared. The spatial position from which the
images are acquired should be as close as possible and the data comparable, hence they must
come from the same orbital track of a single satellite platform. Their baseline difference, i.e.
their perpendicular distance difference, is known within a few centimeters and causes a regular
phase difference in the interferogram, which is modelled and removed. The position offset
also implies a difference in the topographic effects on phase between the images. The topo‐
graphic height needed to produce a phase change fringe, known as altitude of ambiguity,
becomes smaller when the baseline becomes longer. The latter aspect can be exploited in order
to obtain the topographic height of the target, allowing the generation of a DEM. The topo‐
graphic phase contribution can be quantified and subtracted from the interferogram by means
of a previously available coarser DEM in conjunction with the orbital information.

Once these contributions have been identified and removed, the final interferogram contains
the residual signal, despite the presence of remaining phase noise. The residual signal
represents the phase change caused by the varying distance of the ground pixel from the
satellite. In the interferogram, one phase difference fringe is recorded when the ground motion
corresponds to half the radar wavelength. In the two-way travel distance this tallies with an
increase of a whole wavelength. The absolute movement of a point can either be obtained by
means of Ground Control Points (GCPs) recorded from GPS or similar instruments or by
assuming that an area in the interferogram did not experience any deformation.

In the following paragraphs, an example of processing chain used to produce interferograms
and subsequently DEMs is outlined. First, the two-pass SAR images have to be focused,
exploiting a phase preserving SAR focusing. Subsequently, the images have to be coregistered,
to quantify their offset and geometric difference, thus ensuring their inter-comparability. A
coarse and fine coregistration procedure exploiting a coarser DEM is used to define the
parameters for the inter-image point alignment. The parameters are iteratively refined,
resampling the slave image to match the ground area of the master image. A common Doppler
bandwidth filtering is an additional step to apply before the interferogram generation in order
to minimize the decorrelation which can be caused by the presence of an offset in the Doppler
centroids.

The Interferogram is then generated, a spectral shift filtering is performed and the Hermitian
product is computed. The interferometric phase due to the curvature of the Earth is also
removed by DEM flattening. In this process synthetic fringes are generated either from the
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ellipsoidal height or from a coarser DEM exploiting a backward geocoding approach. These
fringes are cross-multiplied by the SAR interferogram, allowing the removal of the wrapped
phase low frequency components. After the phase flattening, the complex interferogram is put
through a filtering process to improve its signal to noise ratio, which in turn will result in a
higher height accuracy of the final product. The interferogram must be unwrapped, interpo‐
lating it over the whole 0 to 2π phase values to obtain a continuous deformation field. This has
to be carried out in order to solve the 2π ambiguity induced by the cyclicity of the phase values
in the interferogram. A common approach is to apply a region growing based approach where
a coherence threshold is applied in the growing process. If the images are characterized by
large areas of low coherence, limiting the growing ability, a Minimum Cost Flow approach
can be applied. This approach considers a regular square grid over the whole image. All the
pixels whose coherence is lower than a user defined threshold are masked out. A third
approach is derived from the latter, here the Delaunay polygons are used only on those areas
exceeding the aforementioned coherence threshold. As a result only the points showing good
coherence are unwrapped, avoiding any influence from the less coherent ones. The use of the
Delaunay triangular polygons also allows the exclusion of eventual irregular areas of small
size showing poor coherence, thus avoiding the representation of phase jumps in the inter‐
ferogram. Eventual unwrapping errors can then be corrected in a following phase editing step,
which can be both a semi-automatic or a fully manual procedure.

The following step aims at optimizing the geometric characteristics of the orbits, in order to
improve the phase to height conversion and to ensure a precise geo-location. With this purpose,
ground control points (GCPs) have to be provided, introducing absolute location information.
Several ways to collect GCPs are possible. The most precise one being the “in-situ” collection
through GPS, although it is the most time consuming as well. Another option is to manually
collect the GCPs on the image itself, obtaining the height from a reference DEM. This process
can also be accomplished in an automatic fashion, with the software providing the user with
a series of candidate pixels – ideally the best suited for the process. The synthetic phase, which
has been subtracted in the flattening process, is then added back to the unwrapped phase. This
ensures that the final DEM is obtained only from the SAR data. Ultimately, the DEM is obtained
in the phase-to-map conversion, in which the relation between the phase and the topographic
distance is exploited in order to obtain the elevation data composing the DEM. The final
product is projected onto the desired cartographic reference system, taking into account all the
geodetic and cartographic parameters needed. During this process the DEM precision can also
be extrapolated keeping in mind that phase and topography are proportional, the theoretical
elevation standard deviation can be derived from the interferometric phase dispersion. The
latter can be obtained from a relation based on the signal wavelength, and represents the
dispersion of the estimates around an expected value. This last aspect is of main importance
to quantify the quality of a DEM, as well as providing useful information for further processing
steps such as mosaicing or, as it will be explained in the following sections, in DEM fusion. An
example of a DEM along with its respective precision map is shown in Figure 1.
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Figure 1. Example of a TanDEM-X DEM (left) and the respective Precision map (right) over 
a region of Australia. 
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The ERS-1/2 (European Remote Sensing satellite 1 and 2) Tandem mission (1995, [3][2]) has 
been the first to give the ability to cover the same area with two instruments over 1 day. The 
two satellites shared the same orbital plane, satisfying the orbital requirements imposed by 
an interferometric process. Moreover, the 1 day coverage interval is a very valuable 
characteristic to generate DEMs, since it lessens the temporal decorrelation issue. A nation-
wide operational example of a DEM produced using SARscape® is given in Figure 2, see [4] 
for a technical description. The DEM covers the whole surface of Switzerland, 
approximately 42’000 km², with a 25 m horizontal resolution and height accuracies ranging 
from 7 to 15 metres, going from moderate to steep topography respectively. 

Figure 1. Example of a TanDEM-X DEM (left) and the respective Precision map (right) over a region of Australia.

2.2. Spaceborne InSAR DEM generation

The ERS-1/2 (European Remote Sensing satellite 1 and 2) Tandem mission (1995, [3][2]) has
been the first to give the ability to cover the same area with two instruments over 1 day. The
two satellites shared the same orbital plane, satisfying the orbital requirements imposed by an
interferometric process. Moreover, the 1 day coverage interval is a very valuable characteristic
to generate DEMs, since it lessens the temporal decorrelation issue. A nation-wide operational
example of a DEM produced using SARscape® is given in Figure 2, see [4] for a technical
description. The DEM covers the whole surface of Switzerland, approximately 42’000 km²,
with a 25 m horizontal resolution and height accuracies ranging from 7 to 15 metres, going
from moderate to steep topography respectively.

Figure 2. Example of a nation-wide ERS-1/2 DEM over Switzerland.
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The decorellation issue of spaceborne SAR data has then been the main object of the Shuttle
Radar Topography Mission [5]-[7]. The design of the instrument allowed the acquisition of
space-based single-pass interferometric data, which is the best suited for InSAR DEM gener‐
ation. The mission was flown on board of the Space Shuttle in February 2000 and was designed
to obtain elevation radar data on a near-global scale. The main objective was to generate the
most complete high-resolution digital topographic database of planet Earth. The instrument's
C-Band and X-Band radar sensors were used to cover most of Earth's (land) surface lying
between latitude 60 degrees North and 56 degrees South, providing a coverage of some 80 per
cent of Earth's land.

The second version (V2) of the SRTM-C digital topographic data, also known as the finished
version, has been released in recent years. This version resulted from an extensive editing effort
led by the National Geospatial Intelligence Agency (NGA). Some of the most valuable features
of this version are represented by the well-defined water bodies and coastlines, as well as the
absence of single pixel errors such as spikes and wells. Note however that some areas of missing
data (voids) can still be found. Moreover, in Version 2 directory one can also find a vector mask
defining the coastline. The vector layer has been defined by NGA and is commonly known as
the SRTM Water Body Data. The data is available at reproduction cost or as free download,
and offers a 3 arc-seconds (about 90 m) spatial resolution.

After the availability to the public of the first SRTM data, an important effort has been invested
in its accuracy validation. The accuracy assessment methodologies and tests have at first been
applied to limited areas, some examples can be found in [8]-[11]. Finally, the accuracy
assessment of the whole dataset has been accomplished as well [12]-[15]. The complementarity
between C and X has also been studied [16][17].

An important and peculiar issue related to the generation of the SRTM-C final DEM has been
the filling of the voids plaguing the processed SAR data. The main areas in which this issue
was present were characterized by severe topography or very low backscatter, characteristics
renowned for their effect on SAR signal acquisitions. The filling subject has been covered in a
number of publications, for example in [18]-[23], in which the authors proposed approaches
either based on pure spatial interpolation or also incorporating the height information derived
from other datasets. A first example of a completely filled SRTM dataset is the SRTM DEM
Version 3, generated by CGIAR. A later version (Version 4), has also been released. In the latter,
the voids have been further filled by including more auxiliary DEMs and SRTM30 data where
available. Moreover, improved interpolation techniques [24] have been applied to enhance the
product. These datasets are freely available online [25].

The SRTM dataset is definitely suitable as input layer in a vast number of applications for
different topics and disciplines. The major contribution offered by SRTM can be resumed in
the availability of a dataset with very good height accuracy, even considering its spatial
resolution. Moreover, a good consistency of its characteristics over a very large area is
available, allowing studies focussing on very large regions, where DEMs at higher resolution /
height accuracy might also be obtained afterwards (in a preliminary study) or at the same time.
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The application fields in which SRTM data can be used are disparate. Applications to geo‐
morphology [26][27], volcanology [28], hydrological studies [22],[29]-[31], forestry research
[32]-[34], archaeology [35], glaciers volume monitoring [36], and many others have been
proposed.

As discussed, SRTM data offers a large coverage, but at the expense of spatial resolution. In
order to improve the results obtained from the SRTM mission and to exploit the existing high-
or very-high resolution SAR missions, the research has currently focused on the identification
of satellite SAR missions to complement the existing ones with the main purpose of very high
resolution DSMs. The main concept, introduced among others by [37][38], is the definition and
assembly of satellite constellations composed by either passive or active SAR satellites orbiting
around a master sensor. Single-pass capabilities are another main requirement that should be
fulfilled. The concept has been studied in [39]-[43], finally resulting in the TanDEM-X (Terra‐
SAR-X add-on for Digital Elevation Measurement, [44]) mission, launched in 2010. The latter
will work in conjunction with the TerraSAR-X mission, providing a second satellite orbiting
around the first one. This type of pairing provides a continuous combination of along-and
across-track baseline, suitable respectively for currents monitoring and for DEM generation.
This satellite constellation will be used to produce the WorldDEM™, a DTED (Digital Terrain
Elevation Data) level 3 DSM [46], which will be available in 2014. Some initial examples of such
very-high resolution DEMs, have been shown by [47] and [48]. One example of TanDEM-X
product is shown in Figure 3.
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A similar concept has been developed for the COSMO-SkyMed mission (see [45]), also
completed in 2010 with the launch of the fourth satellite of the constellation. The missions
considered in these studies take into account high frequency (X-Band) sensors. A more in-
depth example of a COSMO-SkyMed DEM compared to the SRTM-V4 equivalent is given in
Figure 4.

In Figure 4, the substraction of the two DEMs is given, showing the residuals in meters (mid-
left image). This map and the corresponding normal distribution (mid-right image), show that
on average the relative positioning between the two products is quite similar, with the majority
of the observations being between the -12/12 meters range. However, the COSMO-SkyMed
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DEM has a much higher spatial resolution and altimetric precision than the SRTM data,
allowing for a better slope definition as shown by the profiles at the bottom of Figure 4. In the
SRTM data one can clearly see that the altimetric and geometric detail is lost. The better slope
representation of COSMO-SkyMed also allows a better absolute radiometric correction of
intensity data, while, having such a higher three dimensional spatial definition, the data is
particularly suited in geo-information processing.

Figure 4. Comparison between an SRTM-V4 DEM (top-left) and a COSMO-SkyMed DEM (top-right). Height residual in
meters between the DEMs (mid-left) and corresponding residual distribution (mid-right). Elevation profile over a test
zone of SRTM-V4 (bottom-left) versus COSMO-SkyMed (bottom-right), the test profiles were collected over the input
DEMs as shown by the red line in the top images. Image collected over the Malawi region. Image courtesy of A.S.I.
Agenzia Spaziale Italiana.
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An alternative to these solutions is the exploitation of ALOS PALSAR L-Band data, if one looks
at stable scattering mechanisms at lower frequencies. The lower frequency of the PALSAR
system offers higher penetration in vegetated areas, resulting in a higher temporal correlation.
This results in a lower phase noise compared to C-Band and X-Band systems [50]. In Figure
5, an example of PALSAR DEM is given in comparison with the respective SRTM counterpart.
A better slope definition is appreciable with ALOS-PALSAR as well, as shown by the profiles
at the bottom of Figure 5.

Figure 5. Comparison between SRTM-V4 DEM (top-left) and ALOS-PALSAR DEM (top-right) over the Malawi region.
Elevation profile over a test zone of SRTM-V4 (bottom-left) versus ALOS-PALSAR (bottom-right), the test profiles were
collected over the input DEMs as shown by the red line in the top images

3. DEM generation from spaceborne optical sensors

3.1. VHR optical sensors

Today an increasing number of Earth-observation platforms are equipped with Very High-
Resolution (VHR) optical sensors characterized by a ground resolution of less than 1m [51],
enabling the discrimination of fine details, like buildings and individual trees. The radiometric
and geometric quality of the satellite images can be compared with original digital aerial
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images. The image orientation has been simplified by using rational polynomial functions [52]
and the direct sensor orientation has been improved, allowing, in some cases, the image
processing and DEM generation without ground control information [53]-[54]. Complement‐
ing the high spatial resolution, VHR sensors are mounted on highly agile platforms, which
enable rapid targeting, a revisit time up to 1 day and the stereoscopic coverage within the orbit
for 3D information recovery and DEM generation. The cost of the stereo acquisition (two stereo
images) is in general equal to the double of a single acquisition. The availability of stereo
acquisitions in the archives of image distributors is much lower than the single acquisition
mode, but stereo acquisition can be planned on demand.

3.2. Image acquisition

Earth observation optical sensors mounted on satellites acquire mainly in pushbroom mode.
The imaging system of a pushbroom sensor consists of an optical instrument (usually a lens
or a telescope) and Charge Coupled Devices (CCD) lines assembled in the focal plane. While
the platform moves along its trajectory, successive lines are acquired perpendicular to the
satellite track and stored in sequence to form a strip. In case of multispectral sensors, a strip is
generated for each channel. In most cases the sensors are placed along a single line or in two
or more segments staggered along the flight direction (i.e. EROS-B) or butted with some
overlap (i.e. Quickbird) to increase the image ground resolution through a specific geometric
and radiometric post-processing.

In order to produce DEMs, stereoscopic coverage is mandatory. Amongst satellites using a
stereo acquisition mode, the following can be distinguished: (1) standard across-track systems,
(2) standard simultaneous multi-view along-track systems, and (3) agile single-lens systems.

In the standard across-track configuration, the CCD lines and one optical system are generally
combined with a mirror that rotates from one side of the sensor to the other across the flight
direction, up to 30°, with the overlapping area across the flight direction. According to this
configuration, stereo images are collected from different orbits at different dates, with temporal
variation between the images. Examples are very popular high resolution (HR) satellite
sensors, like SPOT-1-4 HRV and SPOT-5 HRG by CNES, IRS-1C/1D PAN by ISRO, Beijing-1
CMT by the People Republic of China and Kompsat-1 EOC by Korea Aerospace Research
Institute (KARI). In the standard along-track configuration, two or more strips are taken
simultaneously from the same orbit at different angles along the flight direction. For each
viewing direction there are one lens and one set of CCD lines placed on the focal plane. The
along-track angles are generally fixed and the base-over-height (B/H) ratio constant for each
satellite. This same-date along-track configuration thus minimizes the temporal variation
between the images. Examples of HR sensors with this configuration are SPOT-5 HRS by
CNES, ALOS-PRISM by JAXA, Cartosat-1 by ISRO and ZY-3 by the People Republic of China.

The last generation VHR sensors use an agile configuration that was first introduced on
IKONOS-2 in 1999. These sensors are carried on small and flexible satellites flying along sun-
synchronous and quasi-polar orbits and use a single-lens optical system [59]. For stereo
viewing or frequent temporal coverage, they have the ability to rotate on command around
their cameras axes and view the target from different directions, in forward mode (from North
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to South) or reverse mode (from South to North). Therefore, along-track and across-track stereo
pairs of a particular area of interest are planned in advance and acquired on almost any part
of the Earth’s surface. The general limit for off-nadir angles is 45º, but larger values are used
in some specific situations. Some agile sensors have a synchronous acquisition mode, thus the
satellite speed and the scanning speed are equal, and the viewing angle is constant during one
image acquisition. Examples are IKONOS-2, Kompsat-2 and Formosat-2 RSI by National Space
Program Office of China (NSPO). On the other hand more agile sensors, including Quickbird,
WorldView 1 and WorldView-2 (DigitalGlobe), GeoEye-1 (GeoEye), EROS-A and –B (Image‐
Sat International), Orbview-3 (Orbimage) and TopSat (QinetiQ), Pléiades 1A and 1B (Astrium)
scan the Earth in asynchronous mode: the platform velocity is higher than the scanning one,
therefore the satellite rotates continuously during the acquisition and a CCD line scans longer
a line on the ground. The limitation of this scheme is that the geometry is less stable. The success
of agile single-lens systems for the acquisition of VHR stereo imagery is confirmed by its
planned use in future missions too. GeoEye-2, planned for launch in 2013, and Worldview-3,
planned for 2014, will have the stereo capability of their processors GeoEye-1 and WorldView-2
respectively.

Images acquired by VHR sensors are distributed with a certain level of processing; unfortu‐
nately, the range of terminology used to denominate the same type of image data is different
at each data provider. In general, three main processing levels can be distinguished: a) raw
images with only normalization and calibration of the detectors without any geometric
correction (this level is preferred by photogrammetrists working with 3D physical models); b)
geo-referenced images corrected for systematic distortions due to the sensor, the platform and
the Earth rotation and curvature; c) map-oriented images, also called geocoded images,
corrected for the same distortions as geo-referenced images and North oriented. Generally,
very few metadata related to sensor and satellites are provided; most of metadata are related
to the geometric processing and the ellipsoid/map characteristics.

3.3. Image processing

The standard photogrammetric workflow for digital surface modeling and 3D information
extraction from stereo optical images is summarized in Figure 6. Two major steps, the image
orientation and image matching for DEM generation, are discussed in the following sections.

Figure 6. Photogrammetric workflow for DEM and 3D information extraction from stereo imagery.
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4. Image orientation

For DEM generation, the orientation of the images is a fundamental step and its accuracy is a
crucial issue during the evaluation of the entire production pipeline. Over the last three
decades various models based on different approaches have been developed [57]. Rigorous
models try to describe the physical properties of the image acquisition through the relationship
between the image and the ground coordinate system [58]. In case of images acquired by
pushbroom sensors, each image line is the result of a perspective projection. The mathematical
model is based on the collinearity equations, which relate the camera system (right-hand 3D
system centered on the instantaneous perspective center, with the y axis parallel to the image
line and the x axis perpendicular to the y axis, closely aligned with the flight direction) to a 3D
local coordinate system. The collinearity equations are extended to include exterior and
interior orientation modeling of pushbroom sensors. Usually ephemeris information is not
precise enough for accurate mapping, and the exterior orientation has to be further improved
with suitable time-dependent functions and estimated in a bundle adjustment. Simple third-
order Lagrange polynomials [60][61], quadratic functions [62] and piecewise quadratic
polynomials [56] have been proposed for this purpose. In [63] a study of a number of trajectory
models is given. For initial approximation of the modeling parameters, the physical properties
of the satellite orbit and the ephemeris are used. With respect to the interior orientation,
suitable parameters are added to model the optical design (number of lenses, viewing angles),
the lens distortions and the CCD line distortions. A detailed description of the errors can be
found in [64].

In recent years, 3D rational functions (RFs) have become the standard form to approximate
rigorous physical models of VHR sensors. They describe the relation between normalized
image and object coordinates through ratios of polynomials, usually of the third order. The
corresponding polynomial coefficients, together with scale and offset coefficients for coordi‐
nate normalisation, form the so-called rational polynomial coefficients (RPCs) and are
distributed by image vendors as metadata information. Anyway to obtain a sensor orientation
with sub-pixel accuracy, the RPCs need to be refined with linear equations requesting more
accurate GCPs or, more commonly, with 2D polynomial functions ([65], [66] and others). For
the latter solution, one or two GCPs are used for zero-order 2D polynomial functions (bi-
directional shift) and six to ten GCPs for first and second-order 2D polynomial functions to
compute their parameters with a least squares adjustment process. In the case of stereo-images,
a block adjustment with RPC is applied [66] for the image orientation. RPCs are widely adopted
by image vendors and government agencies, and by almost all commercial photogrammetric
workstation suppliers.

4.1. Image matching

Image matching is referred to the establishment of correspondences between primitives
extracted from two (stereo) or more (multi-view) images. Once the image coordinates of the
correspondent points are known in two or more images, the object 3D coordinates are
estimated via collinearity or projective model. In image space this process produce a depth
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map (that assigns relative depths to each pixel of an image) while in object space we normally
call it point cloud. For more than 50 years, image matching has been an issue of research,
development and practical implementation in software systems. Gruen [67] reports the
development of image matching techniques over the past 50 years while in [68] more critical
analyses and examples are reported.

Today many approaches for image matching exist. One first classification is based on the used
primitives, which are then transformed into 3D information. According to these primitives,
the matching algorithms can be area-based matching (ABM) or feature-based matching (FBM) [69].
ABM, especially the LSM method with its sub-pixel capability, has a very high accuracy
potential (up to 1/50 pixel) if well textured image patches are used. Disadvantages of ABM are
the need for small searching range for successful matching, the large data volume which must
be handled and, normally, the requirement of good initial values for the unknown. Problems
occur in areas with occlusions, lack of or repetitive texture and if the surface does not corre‐
spond to the assumed model (e.g. planarity of the matched local surface patch). FBM is often
used as alternative or combined with ABM. FBM techniques are more flexible with respect to
surface discontinuities, less sensitive to image noise and require less approximate values.
Because of the sparse and irregularly distributed nature of the extracted features, the matching
results are in general sparse point clouds which are then used as seeds to grow additional
matches.

Another possible way to distinguish image matching algorithms is based on the created point
clouds, i.e. sparse or dense reconstructions. Sparse correspondences were the initial stages of
the matching developments due to computational resource limitations but also for a desire to
reconstruct scenes using only few sparse 3D points (e.g. corners). Nowadays all the algorithms
focus on dense reconstructions-using stereo or multi-view approaches. A dense matching
algorithm should be able to extract 3D points with a sufficient resolution to describe the object’s
surface and its discontinuities. Two critical issues should be considered for an optimal
approach: (i) the point resolution must be adaptively tuned to preserve edges and to avoid too
many points in flat areas; (ii) the reconstruction must be guaranteed also in regions with poor
textures or illumination and scale changes.

A rough surface model of the terrain is often required in order to initialize the matching
procedure. Such models can be derived in different ways, e.g. by using a point cloud interpo‐
lated from the tie points measured at the orientation stage, from already existing terrain
models, or from a global surface model generated with 3-second DEM by Shuttle Radar
Topography Mission (SRTM). The matching procedures for terrain modelling are generally
pyramid-based, that is, they start from a high image pyramid level, and at each pyramid level
matching is performed; the results at one level are used to update the terrain range at the next
lower pyramid level. In this way, the ambiguity of terrain variation is reduced at each pyramid
level and search range are reduced as well. The algorithm convergence is a function of terrain
slope, accuracy, and pixel size.

As dense matching is a task involving a large computing effort, the use of advanced techniques
like parallel computing and implementation at GPU / FPGA level can reduce this effort and
allow real-time depth map production.
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The accuracy and reliability of the derived 3D coordinates rely on the accuracy of the sensor
calibration and image orientation, the accuracy and number of the image observations and the
imaging geometry (i.e. the effects of camera optics, image overlap and the distance camera-
object). A successful image matcher should also employ strategies to monitor the matching
results and quality with statistic parameters. The weaknesses of the image matching technique
for DEM generation is the requirement of good texture in the images, the absence of dark and
shadowed areas and the relative small baseline over flying height (B/D) ratio in order to have
very small perspective distortion in the images.

5. DEM Quality assessment

The following evaluation is the result of two studies conducted on DEM estimation from VHR
optical sensors from spaceborne platforms, and deeply described in [55], [70] and [71]. In these
studies stereo scenes from three latest VHR resolution sensors were taken into account:
GeoEye-1 (GE1, launched in 2011, WorldView-2 (WV2, launched in 2012) and Pleiades-1A
(PL1, launched in 2012).

In the first study DEMs were generated from stereo images acquired by GE1 on Dakar (Senegal)
and Guatemala City (Guatemala) and by WV2 on Panama City, Constitucion (Chile), Kabul
(Afghanistan), Teheran (Iran), Kathmandu (Nepal) and San Salvador (El Salvador). The aim
of this work was to evaluate the potential of VHR satellite images for the modeling of very
large urban areas for the extraction of value-added products for hazard, risk and damage
assessment.

The main characteristics of the images and areas are briefly reported. Due to the large extent
of the cities (up to 1’500 km2), the datasets generally consist of multiple pairs (or couples) of
stereo images acquired by the same sensor and cut in tiles. If the stereo pairs are acquired in
the same day, the time difference between their acquisitions is less than 1 hour. In case of
multiple dates, differences are up to 3 months (i.e. Dakar). The viewing angles and conse‐
quently the convergence angle and B/H ratio are not the same for all stereo pairs. Different
situations occur: a) one quasi-nadir image (acquisition angle close to the vertical) and one off-
nadir image (backward or forward viewing); b) one backward and one forward image with
symmetric angles, and c) one backward and one forward image with asymmetric angles and
large convergence angle. Large viewing angles determine the presence of occlusions, mainly
in urban areas, larger shadows, and larger GSD, with respect to quasi-nadir acquisitions. Areas
like San Salvador and Kabul, smaller than 15-17 km in width, were scanned in one path. In
case of larger areas the images were acquired in the same day from two (Panama City,
Guatemala City, Constitucion) or three (Teheran or Kathmandu) different paths, or in different
days (Dakar). In each path the acquisition angles are almost constant, but different between
paths. This might cause differences in the DEM on the overlapping areas between paths, as
the sensor performance for DEM generation depends on the B/H ratio, and consequently on
the incidence angles of the stereo images.
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GE1 stereo images were provided at geo-referenced processing level, while the WV2 ones were
provided in raw level. In all cases, the rational polynomial coefficients (RPC or RPB formats)
available for each image or tile were used as geo-location information for the geometric
processing.

In general the geo-location accuracy of the RPC depends on the image processing level, the
terrain slope and the acquisition viewing angles ([57],[58]). In flat areas like in Panama City
(level 2A,-16º and 16º viewing angles) the relative accuracy of the RPC between two images
composing a stereo pair is approximately 30m, while in the mountain area around Kathmandu
(level 1B,-31º and 15º viewing angles) the relative accuracy between the stereo images reaches
300m.

The datasets mainly cover inhomogeneous urban areas with different layout: dense areas with
small buildings, downtown areas with skyscrapers, residential areas, industrial areas, forests,
open areas and water (sea, lakes, and rivers). In addition images include rural hilly and
mountain areas surrounding the cities, with important height ranges: 2’400m in case of
Kathmandu, almost 2’300m in case of Teheran, 1’100m in case of Guatemala City, 1’000m in
case of Kabul. Some regions were not visible in the images because occluded by clouds or very
dark cloud shadows, as in Panama City and Kathmandu cities.

The processing for DEM generation was applied separately to each dataset. On the orientation
point of view, the geometric model for spaceborne pushbroom sensors based on RPC was used.

Ground points were not available, so at least the relative orientation of the images was
guaranteed. Common tie points in two or more images were measured homogeneously in the
images in order to ensure the relative orientation between the two images of the same stereo
pair and between different stereo pairs that overlaps along or across the flight direction, and
get a stable block. A minimum of 5 tie points for each pair were measured manually by an
operator on well-defined and fixed/stable features on the terrain (i.e. crossing lines, road signs).
Taking into account the ground spatial resolution of the input images, the DEMs were
generated with 2m grid spacing (about 4 times the pixel size of the panchromatic channels).
In case of projects with overlapping stereo pairs (i.e. Teheran, Kathmandu, Dakar, etc.), the
DEM was computed separately for each stereo pair and then the single DEMs were merged
using linear interpolation.

The second work on DEM quality assessment was carried out on a testfield with accurate
ground reference data [70]. The testfield is located in Trento, in the Northeast of Italy, and
varies from urban areas with residential, industrial and commercial buildings at different sizes
and heights, to agricultural or forested areas, and rocky steep surfaces, offering therefore a
heterogeneous landscape in term of geometrical complexity, land use and cover. The height
ranges from 200m to 2100m. The testfield includes several heterogeneous datasets at varying
spatial resolution, ranging from satellite imagery to aerial imagery, LiDAR data, GNSS
surveyed points, GIS data, etc. For the scope of this Chapter, the stereo images from VHR
satellite sensors used for DEM quality assessment are:

a. A WorldView-2 (WV2) stereo-pair, acquired on August 22, 2010. The first image was
recorded in forward scanning mode with an average in-track viewing angle of 15.9°, while
the second one was acquired in reverse scanning mode with an average in-track viewing
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angle of-14.0°. The processing level is Stereo 1B, i.e. the images are radiometrically and
sensor corrected, but not projected to a plane using a map projection or datum, thus
keeping the original acquisition geometry. The available channels are the panchromatic
one and eight multispectral ones. The images cover an area of 17.64×17.64 km. The images
were provided with Rational Polynomial Coefficients (RPCs).

b. A GeoEye-1 (GE1) stereo-pair, acquired on September 28, 2011. Both images were
recorded in reverse scanning position, with a nominal in-track viewing angle of about 15°
in forward direction and-20° in backward direction. The stereo images are provided as
GeoStereo product, that is, they are projected to a constant base elevation. The available
bands are the panchromatic one and four multispectral bands (blue, green, red, and near
infrared). The images cover an area of 10×10 km. For each image the RPCs were provided.

c. A triplet from Pléiades-1A (PL1) sensor, acquired on August 28, 2012. The average viewing
angles of the three images are, respectively, 18°,-13° and 13° in along-track direction with
respect to the nadir and close to zero in across-track direction, while their mean GSD varies
between 0.72m and 0.78m, depending on the viewing direction. The Pleiades images were
provided at raw processing level called “Primary”, that is, with basic radiometric and
geometric processing. This product is indicated for investigations and production of 3D
value-added products [72]. The three images cover an area of about 392km2.

For the geometric processing of the stereo scenes, the commercial software SAT-PP (SATellite
image Precision Processing) by 4DiXplorer AG [73] was used. Information about the software
functionalities and the approaches for image orientation and DEM generation is given in [74].
The images were oriented based on the RPC-based model, by estimating the parameters
modelling an affine transformation to remove systematic errors in the given RPCs. For this
operation, a selection of available ground points visible in both images was used. A sub-pixel
accuracy was reached in the orientation both for WV2 and GE1 stereo-pairs and PL1 triplet.
The DEMs were generated with a multi-image least-square matching, as described in [74],
using a grid space equal to 2 times the GSD, which leads to 1 m geometric resolution surface
models. Few seed points were manually measured in the stereo images in correspondence of
height discontinuities to approximate the surface. The DEMs were neither manually edited
nor filtered after their generation. Table 1 shows the DEM analysis in three test areas: 1. Trento
city center, characterized by small and buildings closed to each other, 2. Trento train station,
with large flat buildings and open areas and 3. Fersina residential area, with separated
buildings and open areas. The reference LiDAR DEM are shown together with the error maps
of GE1, WV2 and PL1 DSMs. In the error maps the height differences in the range [-1 m, 1 m]
were plotted in white, as they are within the intrinsic precision of the sensors, while large
positive and negative errors were highlighted in red (LiDAR above the DEM) and blue (DEM
above LiDAR), respectively.

By visual analysis of the DEMs, it was observed that in all datasets the surface shape was well
modelled with both sensors (GE1 with processing level 2A and WV2 with processing levels
1B and 2A). In mountain areas with large elevation difference, like Trento, Teheran, Kabul and
Guatemala City, the shape of valleys and mountain sides and ridges is well modeled in the
DEM (Figure 7). In comparison to SRTM, using VHR images it is possible to extract finer DSM
and to filter the Digital Terrain Model (DTM) at higher grid space. This is confirmed by the
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comparison of the height profiles of the WV2 DTM and the SRTM in Teheran (Figure 8). In
rural areas, cultivated parcels can be distinguished, together with paths and lines of bushes
and trees along their sides. In case of forest, the DEM clearly shows a different height with
respect to adjacent cultivated areas or grass. It is even possible to distinguish roads and rivers
crossing forests (Figure 9). In general rural areas are well modelled both in mountain, hilly
and flat terrain.

In urban areas building agglomerations, blocks with different heights, the road network, some
infrastructures (i.e. stadium, bridges, etc.) and rivers are generally well outlined both in flat
and hilly terrains (Figure 10, Table 1). In residential and industrial areas it is possible to
distinguish single buildings and lines of trees (Figure 11, Table 1). In some cases the roof
structures of large and complex buildings are modeled (Figure 12). Errors are encountered
between buildings, as narrow streets are not visible in the stereo-pairs due to shadows or
occlusions. In these cases the DEMs overestimates the height of the terrain, as they do not
model the street level (Table 1). In case of Trento dataset (Table 1), the two large red spots
(highlighted in red and blue in the LiDAR DEM) occur on churches, in all three DEMs. The
matching failure is likely due to the homogeneous material used for the roof cover, the
shadowing, and, eventually, the structure geometry. The manual measurements of seed points
on the two buildings would certainly help the matching procedure. In the train station test
area, some differences are due to the presence of trees (blue circle, LiDAR is below the DEMs)
and to a change in the area (red circle, LiDAR is above the DEMs), that is, a building was
demolished between LiDAR and WV2/GE1/PL1 acquisitions. Regarding the third test area
(Trento Fersina), significant height differences occur in correspondence of trees (blue areas)
and between tall buildings.

By comparing the statistics of the error maps, in general there is a good agreement between
the three surface models generated by PL1, WV2 and GE1 and the values in the statistics
confirm the above analysis. The three surface models give similar results in terms of minimum
and maximum values, mean value and RMSE, being Pleiades slightly better than the other
two.

From the analyses above reported, it can be concluded that failures in surface modelling from
VHR optical sensors can be caused by a number of factors, which are summarized in Table 2.

The image absolute geolocation accuracy, which depends on the viewing angle, on the
processing level and on terrain morphology, influence the estimation of the height in object
space, and therefore the quality of the absolute geolocation of the final DEM and related
products (DTM, orthophotos, 3D objects). The measurement of accurate and well distributed
ground control points (GCPs) in the images would solve the problem, but this information is
often not available. The accuracy of the relative orientation between two images forming a pair
is crucial for the epipolar geometry and image matching, while the relative accuracy between
overlapping stereo pairs is responsible of height steps in the final DEM (Figure 13). The size
of the height steps depends on the accuracy of the geometric orientation of each stereopair,
and generally shows a systematic behavior. In both cases the relative orientation can be
improved by manually measuring a sufficient number of common tie points between the
images.
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Figure 7. Trento. DEM from the GE1 stereo-pair; visualization in colour-shaded mode in SAT-PP software.

Figure 8. Teheran. Height profile in WV2 DTM (blue) and SRTM (red) and zoom in the corresponding surface models
(above: SRTM, below: WV2 DTM).
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Figure 9. Left: DEM of Rural area in Constitucion. Right: Original image (panchromatic)

Figure 10. DEM of dense urban area on flat and hilly terrain in Dakar.
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Figure 11. DEM of residential and rural area on flat terrain in Panama City. The black oval highlights a line of tree.

Figure 12. Left: DEM of Panama City Airport. Right: original image (pan sharpened).
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Figure 12. Left: DEM of Panama City Airport. Right: original image (pan sharpened).
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Trento Centre Trento Train Station Trento Fersina
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σ: 0.06 RMSE: 6.12 σ: 0.22 RMSE: 6.52 σ: 0.25 RMSE: 6.73

Table 1. DEM analysis on Trento testfield. Quality evaluation of WV2, GE1 and PL1 DEMs with respect to the LiDAR
DEM: orthophoto with test areas contour (light blue) and profile transect (yellow), error planimetric distribution,
statistics (minimum m, maximum M, mean μ, standard deviation σ, RMSE) and height profiles. Measures are in meters.

Low-textured and homogenous areas origin blunders in the DEM, as the automatic matching
of the homologous points fails. This is typical in homogeneous land cover (i.e. bare soil, parking
lots) and shadow areas and is caused by a combination of sun and satellite elevations and
surface morphology (i.e. mountain faces). In Figure 14 building shadows, highlighted in the
yellow ellipse, bring inaccuracies in the DSM. The use of a better initial DEM as initial
approximation can help the matching procedures in these critical areas. If a DEM is not
available, so-called seed points can be measured in stereo mode in the pairs and imported in
the matching procedure as mass points. In addition, an ad-hoc radiometric processing can
enhance details in low-textured regions and help the matching procedure.
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Occlusions are generally present in urban areas and are due to tall buildings or trees, in
combination with the acquisition viewing angles. In case of occlusions, corridors between
buildings are not modeled correctly (Figure 15). To overcome this drawback, multi-angular
acquisitions, like in Pleiades constellation, could reduce occlusions in the images.

Objects moving during the acquisitions of the stereo images, like vehicles, lead to small
blunders, as highlighted in the blue circles in Figure 14. They can be removed with manual
editing or filtering. Local blunders in correspondence of special radiometric effects, like
spilling and saturation on roof faces due to the acquisition geometry and the surface type and
inclination (i.e. roof faces in grass), may also occur.

Figure 13. Height step (mean value: 3.5m, black rectangle) between the DEMs obtained from two different stereo
pairs (Dakar).

Figure 14. Example of effects of shadows and moving objects in the DEM (Panama City). Above: pansharpened nadir
scene; below: DEM
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Figure 15. Example of corridor occlusion due to tall buildings; (a) and (b): stereo images; (c) resulting DEM (Dakar).

Factor Cause/Dependency Effect in DEM Possible solution

Poor initial absolute geo-location

accuracy

Viewing angles

Processing level

Terrain shape

Height steps

Poor final absolute

geolocation quality

GCPs

Time interval between

overlapping acquisitions

Large extent

Swath width of VHR sensors

Height steps in

overlapping areas

Tie points

measurements

Differences in the images Moving objects (vehicles) Local blunders DEM editing

Filtering

Shadows Large viewing angle

Sun inclination

Surface morphology

Mismatches Radiometric

preprocessing

Low texture areas Land covers (parking lots, bare

soil, etc.)

Mismatches Radiometric

preprocessing

Seed points

Spilling/saturation of roof Radiometry

Sun and satellite elevation

Surface inclination

Surface material

Local blunders Masking

Occlusions in urban areas Convergence angle

Tall buildings

Local blunders

Wrong heights on streets

Seed points

Multi-angular

acquisitions

Height range Steep mountain

Vertical steps

Low details Seed points

Cloud cover Whether conditions Mismatches Masking

Water (lakes, sea) Bad quality DEM Masking

Table 2. Summary of factors influencing the DEM quality.
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6. DEM Fusion

DEMs of large areas are usually generated either by SAR interferometry, laser scanning
(mainly from airborne platforms) or photogrammetric processing of aerial and satellite images.
As demonstrated in the previous sections, each sensing technology and processing algorithm
(interferometry, image matching) shows its own strengths and weaknesses (see Table 3). Even
within a single technology a highly varying DEM quality may be found.

DEMs can be generated at different coverage levels, ranging from very local areas to near-
global coverage. Especially taking into account digital models offering a vast land coverage,
one can see that the accuracy, error characteristics, completeness and spatial resolution offered
by these products can vary wildly. These products and the possibility of their joint exploitation,
with their respective issues, are the object of the techniques introduced in this Section.

6.1. The motivation: Complementarity

As mentioned, each different DEM generation approach and platform of origin have their
advantages and drawbacks. Such characteristics seem to point into an interesting direction.
Especially if one directs its attention on a cross-platform comparison. In Table 3 some charac‐
teristics between optical and SAR DEM generation are resumed. It can be observed that the
two technologies almost perfectly complement each other.

Characteristic SAR Optical

Influenced by clouds No Yes

Influenced by atmospheric water vapour Yes No

Influenced by sun illumination No Yes

Performing on poorly textured areas Yes No

Performing on edge features No Yes

Influenced by layover effect Yes No

Surface height estimate Yes Yes

Table 3. Comparison between SAR and Optical sensing technologies: advantages and drawbacks.

The complementarity between these platforms is also visible if one takes into account the
respective DEM quality maps shown in Figure 1 for the SAR example and in Figure 16 for the
Optical one. Note that the quality scales are the opposite between the two, since the optical
one describes matching cross-correlation combined with other factors (the higher the better),
while the other defines the precision in meters (the lower the better). By analysing these
examples, one can see that where the SAR result does not excel, i.e. on edges, the optical one
shows better performance. And vice-versa where the optical result is not as strong, i.e. poorly
textured areas, the SAR one shows consistently better results.
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Figure 16. Example of a matching Pléiades-1A cross-correlation map over Trento, Italy.

As a consequence, a joint exploitation of the elevation products deriving from these platforms
can potentially be highly profitable, since the information on which one is weak can be
replaced/completed by the one supplied by the other.

The second typology of data that seems a legitimate candidate for the fusion can be defined
as intra-platform, in the sense that two products coming from the same platform may as well
be complementary to one another. In SAR, for instance, one may have both a DEM generated
with ascending data and one with descending data, as shown in Figure 17, evidently comple‐
menting each other.

Figure 17. Example of intra-platform complementarity. Point cloud representation of an ascending ERS-1/2 DEM
(left), a descending ERS-1/2 DEM (right) and the combination of the two (center).

In Figure 17 the digital terrain models are reproduced as point clouds (i.e. not interpolated).
This is a less biased way to represent elevation data, even if at the expense of the ease of
visualization and manipulation.

There are, however, constraints that directly arise in order to be able to compare and combine
the fusion candidates. The first one, easier to solve, is dictated by the different pixel spacing.
This issue is simply solved by oversampling the coarser DEM and its corresponding quality
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map. The resampling does not imply that the data has acquired the same precision as the finer
one, and, that the oversampling procedure implies a re-estimation of the data values. In the
intra-platform case this can be avoided, as in the given example, since the products already
possess comparable characteristics non requiring a re-estimate.

The second constraint is to have a comparable quality index. As shown, the quality maps
proposed in Figure 1 and Figure 16 imply different types of measures, which must be re-
interpreted in order to acquire a cross-significance. The way these indexes can be obtained is
given in Table 4.

Quality Map Factors

SAR DEM Precision Map

- baseline

- wavelength

- interferometric coherence

- local incidence angle

- spatial ground resolution

Optical DEM Accuracy Map
- matching parameters

- slope, roughness and aspect (geomorphological criteria)

Table 4. Quality map estimation by technique.

In the following sections two different data representation levels, on which the fusion ap‐
proaches are based, will be defined. Example approaches will be outlined as well.

6.2. Raster level fusion

The primary level which is directly available for fusion is the raster level. In fact, when
represented in raster format, DEMs define a height value (when available) for each cell location
on a regularly spaced grid covering the whole study area, and are a suitable input for raster-
based fusion approaches.

By exploiting the quality estimates from the previous section, the easiest and sometimes more
appropriate method to fuse two raster data is the weighted combination of the two observa‐
tions, namely, a weighted average. This process is executed between DEMs covering the same
surface and having the same pixel spacing, resulting in a very fast cell-to-cell calculation. The
simplicity of the approach, however, may badly influence the results. The most important
aspect to keep in mind when fusing two different datasets is their accuracy with respect to
their spatial resolution. When the latter greatly differs between the two, their combination may
result in an over-smoothing effect as well as single pixel aberrations and abrupt discontinuities
(which in turn represent over-fitting). This results in a major degradation of the information
contained in the datasets. When over-smoothing, the quality of the product with higher spatial
resolution will be degraded, while when over-fitting the spatial characteristics will be ex‐
tremely exaggerated/accentuated. As such, this kind of processing better suits products having
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the same pixel spacing from the start, rather than oversampled, and shall be avoided if the
original pixel spacing difference is too large.

More advanced methods have been proposed to overcome the issues due to an over simplistic
approach. These techniques keep into account the values and statistics not only in the single
pixels but also in their neighbours, by exploiting statistics windows, extending the process to
a less local estimate and thus ensuring a spatial consistency of the results. This type of
approaches are conceptually less sensitive to the over-smoothing and over-fitting effects, since
the spatial characteristics of both input data are taken into account. In general, during the
fusion process, a higher priority is given to the input with finer spatial resolution. These
approaches are more desirable than the first one based on weighted average, since they are
less prone to produce outputs greatly inferior to the inputs and, moreover, they are less
influenced in case of oversampling, since the window on the finer input will have a higher
weight. The difference in pixel spacing should ideally be kept quite small even in this case.

One example of approach following these assumptions can be found in [75], where also
additional information is used as input. The latter is constituted of a database (dictionary) of
small DEM patches collected over existing DEMs showing similar characteristics to the ones
to be fused. Sparse representations are used to solve the fusion problem. In this approach
Orthogonal Matching Pursuit is used to identify the most suitable input patches to be used in
weighted linear combination defining the output. An example of raster level fusion product
is given in Figure 18.

Figure 18. Example of raster based DEM fusion (center) between a SPOT-5 product (right) an ALOS-PALSAR-1 product
(left).

6.3. Point cloud level fusion

The second product level available for data fusion is the Point Cloud level. Fusing point clouds,
instead of rasterized surfaces, comes natural if one takes into account how Interferometry and
Image Matching work, i.e. in a point-wise fashion. This allows to lessen an effect that occurs
during the rasterization step of the outputs, i.e. error propagation. By avoiding rasterization,
the error value computed in the height estimation process is preserved as is, and corresponds
to the input data alone, thus preserving the quality of each observation.
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original pixel spacing difference is too large.

More advanced methods have been proposed to overcome the issues due to an over simplistic
approach. These techniques keep into account the values and statistics not only in the single
pixels but also in their neighbours, by exploiting statistics windows, extending the process to
a less local estimate and thus ensuring a spatial consistency of the results. This type of
approaches are conceptually less sensitive to the over-smoothing and over-fitting effects, since
the spatial characteristics of both input data are taken into account. In general, during the
fusion process, a higher priority is given to the input with finer spatial resolution. These
approaches are more desirable than the first one based on weighted average, since they are
less prone to produce outputs greatly inferior to the inputs and, moreover, they are less
influenced in case of oversampling, since the window on the finer input will have a higher
weight. The difference in pixel spacing should ideally be kept quite small even in this case.

One example of approach following these assumptions can be found in [75], where also
additional information is used as input. The latter is constituted of a database (dictionary) of
small DEM patches collected over existing DEMs showing similar characteristics to the ones
to be fused. Sparse representations are used to solve the fusion problem. In this approach
Orthogonal Matching Pursuit is used to identify the most suitable input patches to be used in
weighted linear combination defining the output. An example of raster level fusion product
is given in Figure 18.

Figure 18. Example of raster based DEM fusion (center) between a SPOT-5 product (right) an ALOS-PALSAR-1 product
(left).

6.3. Point cloud level fusion

The second product level available for data fusion is the Point Cloud level. Fusing point clouds,
instead of rasterized surfaces, comes natural if one takes into account how Interferometry and
Image Matching work, i.e. in a point-wise fashion. This allows to lessen an effect that occurs
during the rasterization step of the outputs, i.e. error propagation. By avoiding rasterization,
the error value computed in the height estimation process is preserved as is, and corresponds
to the input data alone, thus preserving the quality of each observation.
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The approaches based on point cloud level, however, show a greater complexity. Firstly, it is
a kind of data which is conceptually more abstract to handle than the raster one. While the
latter can easily be associated to matrices, the former are vectorial point objects in three
dimensions (see Figure 19). This also implies a conceptual complexity of the approach to design
for their fusion. The second aspect to take into account is the data size and point density. In
case of SAR DEMs covering very large areas, for example, the study area may show very high
coherence over the whole scene, implying a large amount of points with very large height
variability over a restrained two dimensional (coordinates) space. Finally, with respect to
raster-based approaches, more complex procedures must be designed for the inclusion of the
information provided by the quality measures into the process.

Figure 19. Example of image matching results, shown as point cloud, obtained from Pléiades-1A imagery over the city
of Trento.

A possible solution to the overabundance of data is a preliminary sample selection/substitution
phase, in which the information about the data can be exploited. In SAR-SAR fusion, precision
can be used to drive the choice between redundant points. In SAR-Optical fusion, the instru‐
ment behaviour resumed in Table 3 can be exploited as well. An ideal approach would for
instance prefer measurements coming from Optical edge matching rather than its interfero‐
metric counterpart, vice-versa points produced by matching a regular grid over poorly
textured areas should be substituted by the interferometric ones. Note however that slope also
remains a key factor to keep into account (see Table 3).

During the image matching process it is possible to identify which one is which, and this
information should be taken into account and stored, as shown in Figure 20. The selection
phase can also be used as an initial combination phase, computing local statistics such as the
slope between points, in order to eliminate outliers and substitute the observations according
to their quality measure and characteristics.
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Figure 20. Breakdown of a subset of Figure 19 between: grid-based matching points (left), feature-based matching
points (center), edge-and area-based matching points (right).

The second step to accomplish is the generation of the fused DEM itself, hence the definition
of an algorithm capable to handle such data and produce the final model. Interpolators can be
applied to estimate the final model from the newly defined point cloud. In this perspective,
two main types of interpolators can be considered. The first one are the so-called exact
interpolators [76], according to which the output estimating function must pass by fixed points
(input observations). The second interpolators are the confidence-interval aware interpolators,
for which the output function should pass between an “envelope” from the points at which
the interpolant is fitted. This concept is shown in Figure 21. In the left image the output function
is fitted to well selected samples. In the centre image, some samples showing a high error and
outlying the correct estimate were not filtered, resulting in an estimate function (solid line) not
reproducing the correct function (dashed line). In the right image, the outliers are still present,
but thanks to the error aware interpolator, the function would ideally be better or correctly
estimated. Note that ideally this error envelope should be user defined, exploiting the a priori
quality knowledge offered by SAR Precision, Optical cross-correlation, slope and feature type,
for each input point.

Figure 21. Example of a function estimated from an exact interpolator (left), from an exact interpolator with outliers
(center) and from an error aware interpolator (right). The solid line is the estimate function, the dashed line the correct
function. Green dots are good selected samples, red dots bad selected samples, vertical lines define the error enve‐
lope.

The first family of interpolators include, for instance, the Radial Basis Function [77], which is
widely recognized as reliable estimator. This kind of interpolators, however, does not take into
account the quality index of each point, but, after a well-executed sample selection step, the
fusion can be performed. Ideally, interpolators taking into account the confidence interval are
better suited, especially if they offer the possibility to specify the confidence range at each data
point while computing the interpolant.
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The first family of interpolators include, for instance, the Radial Basis Function [77], which is
widely recognized as reliable estimator. This kind of interpolators, however, does not take into
account the quality index of each point, but, after a well-executed sample selection step, the
fusion can be performed. Ideally, interpolators taking into account the confidence interval are
better suited, especially if they offer the possibility to specify the confidence range at each data
point while computing the interpolant.
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The size problem, however, still remains. By using advanced interpolators, the results improve
greatly in accuracy, but increase in computational cost, memory cost and complexity. A way
to avoid these problems is to implement the RBF following a structure similar to the one of the
Shepard Interpolator, as proposed in [78]. The process is resumed in Figure 22.

Figure 22. Diagram summarizing the steps of the proposed fusion approach.

This approach also leaves the possibility to decide the regionality and distance influence of the
interpolator, allowing for a fine tuning and a good trade-off between over-smoothing and over-
fitting. Being very dense datasets, the possibility to control how local the interpolant should
be is very important. An example of DEMs fused with this approach is shown in Figure 23.

Figure 23. Examples of an ascending ERS-1/2 DEM (bottom-left), descending ERS-1/2 DEM (bottom-right), DEM fu‐
sion results (bottom-center) and the full DEM resulting from the fusion (top), over a region in Turkey.
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The second family of interpolators is composed by more advanced techniques, which are
currently used in a wide variety of study fields, as well as environmental studies. See [76] to
have an extensive collection of such approaches. When taking into consideration these
approaches, however, the very large size of the datasets becomes even more an issue. The
computational and memory costs may well become prohibitive. A possible solution could be
to apply a concept similar to the one introduced for Radial Basis Functions, reducing consid‐
erably the issues.

7. Conclusions

In this chapter, the SAR and Optical techniques applied to produce DEMs were introduced,
leading to the topic of elevation data fusion. The main reasons strengthening the desirability
of such an approach, especially at an inter-platform level, have been outlined. The fusion topic
is still, however, an ongoing issue which has to be further investigated. The interest in
developing this topic may even grow in the future. Especially considering the pace at which
new instruments capable to extract elevation information are introduced, bringing with them
new issues and shortcomings which may well be overcome by exploiting their complemen‐
tarities. The production of worldwide “absolute” single-date single-sensor elevation models
still remains utopic, even for new missions such as TanDEM-X, Sentinel or Pléiades. The
shortcomings of the instruments will be lessened, their spatial resolution improved, but their
intrinsic characteristics will remain, along with their complementarity and therefore the
interest in their fusion. Temporal resolution is also an important aspect, since throughout the
year the ground’s physical characteristics can induce highly varying height estimates. The
fusion of multi-date elevation models would allow to obtain products with a much more
reliable terrain reproduction ability. Each fusion processing level has its advantages, the raster
level surely is easier to handle than the point cloud one, while the latter offers a less biased
data reproduction. For the sake of accuracy and reliability, the point cloud level is undoubtedly
the better option on which to base future approaches. The dataset size-related issues opposing
these approaches can be overcome by improving sample selection or by improving the
interpolant computation step, greatly increasing the speed and manageability of the ap‐
proaches. Finally, approaches giving the ability to finely exploit the data intrinsic information
to guide the fusion should be investigated.

Acknowledgements

The authors would like to acknowledge Dr Giorgio Agugiaro (Bruno Kessler Foundation,
Trento, Italy), Dr Emanuele Angiuli and Ivano Caravaggi (Joint Research Center, Ispra, Italy)
for their support in satellite image processing, DEM extraction and quality assessment.

The work on Trento testfield was partly supported by the 3M project (co-founded Marie-Curie
Actions FP7 – PCOFOUND – GA-2008-226070, acronym “Trentino Project”). The GeoEye-1

Land Applications of Radar Remote Sensing222



The second family of interpolators is composed by more advanced techniques, which are
currently used in a wide variety of study fields, as well as environmental studies. See [76] to
have an extensive collection of such approaches. When taking into consideration these
approaches, however, the very large size of the datasets becomes even more an issue. The
computational and memory costs may well become prohibitive. A possible solution could be
to apply a concept similar to the one introduced for Radial Basis Functions, reducing consid‐
erably the issues.

7. Conclusions

In this chapter, the SAR and Optical techniques applied to produce DEMs were introduced,
leading to the topic of elevation data fusion. The main reasons strengthening the desirability
of such an approach, especially at an inter-platform level, have been outlined. The fusion topic
is still, however, an ongoing issue which has to be further investigated. The interest in
developing this topic may even grow in the future. Especially considering the pace at which
new instruments capable to extract elevation information are introduced, bringing with them
new issues and shortcomings which may well be overcome by exploiting their complemen‐
tarities. The production of worldwide “absolute” single-date single-sensor elevation models
still remains utopic, even for new missions such as TanDEM-X, Sentinel or Pléiades. The
shortcomings of the instruments will be lessened, their spatial resolution improved, but their
intrinsic characteristics will remain, along with their complementarity and therefore the
interest in their fusion. Temporal resolution is also an important aspect, since throughout the
year the ground’s physical characteristics can induce highly varying height estimates. The
fusion of multi-date elevation models would allow to obtain products with a much more
reliable terrain reproduction ability. Each fusion processing level has its advantages, the raster
level surely is easier to handle than the point cloud one, while the latter offers a less biased
data reproduction. For the sake of accuracy and reliability, the point cloud level is undoubtedly
the better option on which to base future approaches. The dataset size-related issues opposing
these approaches can be overcome by improving sample selection or by improving the
interpolant computation step, greatly increasing the speed and manageability of the ap‐
proaches. Finally, approaches giving the ability to finely exploit the data intrinsic information
to guide the fusion should be investigated.

Acknowledgements

The authors would like to acknowledge Dr Giorgio Agugiaro (Bruno Kessler Foundation,
Trento, Italy), Dr Emanuele Angiuli and Ivano Caravaggi (Joint Research Center, Ispra, Italy)
for their support in satellite image processing, DEM extraction and quality assessment.

The work on Trento testfield was partly supported by the 3M project (co-founded Marie-Curie
Actions FP7 – PCOFOUND – GA-2008-226070, acronym “Trentino Project”). The GeoEye-1

Land Applications of Radar Remote Sensing222

images acquired over Panama City (Panama) and San Salvador (El Salvador) belong to
WorldBank. The authors would like to thank WorldBank for giving JRC the opportunity to
use the data for research purposes, the Autonomous Province of Trento (PAT) and the
Municipality of Trento, for providing spatial data for the Trento testfield, and Astrium GEO-
Information Services for providing the Pleiades triplet for research and investigation purposes.

Author details

Loris  Copa1*, Daniela  Poli2 and Fabio Remondino3

*Address all correspondence to: lcopa@sarmap.ch

1 Sarmap, Cascine di Barico, Purasca, Switzerland

2 Terra Messflug GmbH, Imst, Austria

3 Bruno Kessler Foundation, Povo-Trento, Italy

References

[1] Leberl F.. Radargrammetric Image Processing. London, Artech House, 1990.

[2] Rocca F., Prati C., Ferretti A.. An Overview of SAR Interferometry. In: Proceedings of
the 3rd ERS Symposium, 1997. September 01. Florence, Italy. ESTEC Publishing Divi‐
sion.

[3] European Space Agency: European Remote Sensing satellites: ERS. https://
earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers (accessed 12 Au‐
gust 2013).

[4] C. Poidomani, D. Costantini, and P. Pasquali, National-scale DEM generation using
ERS-Tandem data in alpine regions, In Proceedings of the ERS-ENVISAT Symposi‐
um "Looking down to Earth in the New Millennium", 2000. October 16-20. Gothen‐
burg, Sweden.

[5] National Aeronautics and Space Administration. NASA: Jet Propulsion Laboratory
(JPL): SRTM. http://www2.jpl.nasa.gov/srtm/ (accessed 13 August 2013).

[6] Farr, T. 2001. The shuttle radar topography mission. Proceedings of IGARSS 2001.

[7] Rabus, B., Eineder, M., Roth, A. & Bamler, R.. The shuttle radar topography mission-
a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal
of Photogrammetry and Remote Sensing 57, 2003, 4: 241–262

Fusion of Interferometric SAR and Photogrammetric Elevation Data
http://dx.doi.org/10.5772/57584

223



[8] Heipke, C., Koch, A. & Lohmann, P.. Analysis of SRTM DTM-Methodology and
practical results. In: Armenakis C., Lee Y.C.. (eds.) Geospatial Theory, Processing and
Applications: ISPRS Commission IV, Symposium 2002, July 9-12, 2002. Ottawa, Can‐
ada. ISPRS.

[9] Audenino, P., Rognant, L. & Chassery, J.. Qualification of SRTM DEM. A first ap‐
proach toward an application dependant qualification framework. In: Geoscience
and Remote Sensing Symposium, 2003. IGARSS '03. July 21-25 2003. Toulouse,
France. Vol.5: 3082–3084. IEEE International.

[10] Bourgine, B. & Baghdadi, N.. Assessment of C-band SRTM DEM in a dense equatori‐
al forest zone. Comptes Rendus Geosciences, Journal 2005. Vol.337, 14: 1225–1234.

[11] Carabajal, C.C. & Harding, D.J. 2006. SRTM C-band and ICESat Laser Altimetry Ele‐
vation Comparisons as a Function of Tree Cover and Relief. Photogrammetric Engi‐
neering & Remote Sensing, Journal 2006. Vol.72, 3: 287–298.

[12] Salamonowicz, P.. Comprehensive Assessment of the Shuttle Radar Topography
Mission Elevation Data Accuracy. In: Gesh D., Muller J.-P., Farr T.G.. (eds.) The Shut‐
tle Radar Topography Mission – Data Validation and Applications, Workshop, June
14–16 2005, Reston, Virginia, USA. ASPRS.

[13] Gorokhovich, Y. & Voustianiouk, A.. Accuracy assessment of the processed SRTM-
based elevation data by CGIAR using field data from USA and Thailand and its rela‐
tion to the terrain characteristics. Remote Sensing of Environment, An
Interdisciplinary Journal 2006. Vol.104, 4: 409–415.

[14] Rodríguez, E., Morris, C.S. & Belz, J.E. 2006. A Global Assessment of the SRTM Per‐
formance. Photogrammetric Engineering & Remote Sensing, Journal 2006. Vol.72, 3:
249–260.

[15] Berry, P.A.M., Garlick, J.D. & Smith, R.G.. Near-global validation of the SRTM DEM
using satellite radar altimetry. Environment, An Interdisciplinary Journal 2007. Vol.
106, 1: 17–27.

[16] Marschalk, U., Roth, A., Eineder, M. & Suchandt, S.. Comparison of DEMs derived
from SRTM/X-and C-band. In: Geoscience and Remote Sensing Symposium, 2004.
IGARSS '04. September 20-24, 2004. Anchorage, Alaska, USA. vol.7: 4531–4534. IEEE
International.

[17] Hoffmann, J. & Walter, D.. How Complementary are SRTM-X and-C Band Digital El‐
evation Models? Photogrammetric Engineering & Remote Sensing, Journal 2006. Vol.
72, 3: 261–268.

[18] Ham, A., Rupe, C., Kuuskivi, T. & Dowding, S.. A Standardized Approach to Phase
Unwrap Detection/Removal and Void Fill of the Shuttle Radar Topography Mission
(SRTM) Data. In: Gesh D., Muller J.-P., Farr T.G.. (eds.) The Shuttle Radar Topogra‐

Land Applications of Radar Remote Sensing224



[8] Heipke, C., Koch, A. & Lohmann, P.. Analysis of SRTM DTM-Methodology and
practical results. In: Armenakis C., Lee Y.C.. (eds.) Geospatial Theory, Processing and
Applications: ISPRS Commission IV, Symposium 2002, July 9-12, 2002. Ottawa, Can‐
ada. ISPRS.

[9] Audenino, P., Rognant, L. & Chassery, J.. Qualification of SRTM DEM. A first ap‐
proach toward an application dependant qualification framework. In: Geoscience
and Remote Sensing Symposium, 2003. IGARSS '03. July 21-25 2003. Toulouse,
France. Vol.5: 3082–3084. IEEE International.

[10] Bourgine, B. & Baghdadi, N.. Assessment of C-band SRTM DEM in a dense equatori‐
al forest zone. Comptes Rendus Geosciences, Journal 2005. Vol.337, 14: 1225–1234.

[11] Carabajal, C.C. & Harding, D.J. 2006. SRTM C-band and ICESat Laser Altimetry Ele‐
vation Comparisons as a Function of Tree Cover and Relief. Photogrammetric Engi‐
neering & Remote Sensing, Journal 2006. Vol.72, 3: 287–298.

[12] Salamonowicz, P.. Comprehensive Assessment of the Shuttle Radar Topography
Mission Elevation Data Accuracy. In: Gesh D., Muller J.-P., Farr T.G.. (eds.) The Shut‐
tle Radar Topography Mission – Data Validation and Applications, Workshop, June
14–16 2005, Reston, Virginia, USA. ASPRS.

[13] Gorokhovich, Y. & Voustianiouk, A.. Accuracy assessment of the processed SRTM-
based elevation data by CGIAR using field data from USA and Thailand and its rela‐
tion to the terrain characteristics. Remote Sensing of Environment, An
Interdisciplinary Journal 2006. Vol.104, 4: 409–415.

[14] Rodríguez, E., Morris, C.S. & Belz, J.E. 2006. A Global Assessment of the SRTM Per‐
formance. Photogrammetric Engineering & Remote Sensing, Journal 2006. Vol.72, 3:
249–260.

[15] Berry, P.A.M., Garlick, J.D. & Smith, R.G.. Near-global validation of the SRTM DEM
using satellite radar altimetry. Environment, An Interdisciplinary Journal 2007. Vol.
106, 1: 17–27.

[16] Marschalk, U., Roth, A., Eineder, M. & Suchandt, S.. Comparison of DEMs derived
from SRTM/X-and C-band. In: Geoscience and Remote Sensing Symposium, 2004.
IGARSS '04. September 20-24, 2004. Anchorage, Alaska, USA. vol.7: 4531–4534. IEEE
International.

[17] Hoffmann, J. & Walter, D.. How Complementary are SRTM-X and-C Band Digital El‐
evation Models? Photogrammetric Engineering & Remote Sensing, Journal 2006. Vol.
72, 3: 261–268.

[18] Ham, A., Rupe, C., Kuuskivi, T. & Dowding, S.. A Standardized Approach to Phase
Unwrap Detection/Removal and Void Fill of the Shuttle Radar Topography Mission
(SRTM) Data. In: Gesh D., Muller J.-P., Farr T.G.. (eds.) The Shuttle Radar Topogra‐

Land Applications of Radar Remote Sensing224

phy Mission – Data Validation and Applications, Workshop, June 14–16 2005, Re‐
ston, Virginia, USA. ASPRS.

[19] Kuuskivi T., Lock, J., Li X., Dowding, S. & Mercer, B. 2005. Void Fill of SRTM Eleva‐
tion Data: Performance Evaluations. In: ASPRS Annual Conference Proceedings,
“Geospatial Goes Global: From Your Neighborhood to the Whole Planet”, 2005.
March 7-11. Baltimore, Maryland, USA.

[20] Hofton, M., Dubayah, R., Bryan Blair, J. & Rabine, D.. Validation of SRTM Elevations
Over Vegetated and Non-vegetated Terrain Using Medium-Footprint Lidar. Photo‐
grammetric Engineering & Remote Sensing, Journal 2006. Vol.72, 3: 279–286.

[21] Grohman, G., Kroenung., G. & Strebeck, J. 2006. Filling SRTM voids: The delta sur‐
face fill model. Photogrammetric Engineering & Remote Sensing, Journal 2006. Vol.
72, 3: 213–216.

[22] Ling, F., Zhang, Q.-W. & Wang, C.. Comparison of SRTM Data with other DEM sour‐
ces in Hydrological Researches. In: Proceedings of the 31st ISPRS International Sym‐
posium on Remote Sensing of Environment, 2005. May 20–24. Saint Petersburg,
Russian Federation. ISPRS.

[23] Luedeling, E., Siebert, S. & Buerkert, A.. Filling the voids in the SRTM elevation mod‐
el — A TIN-based delta surface approach. ISPRS Journal of Photogrammetry and Re‐
mote Sensing 2007. Vol.62, 4: 283–294.

[24] Reuter H.I, A. Nelson, A. Jarvis, An evaluation of void filling interpolation methods
for SRTM data, International Journal of Geographic Information Science, 2007. 21:9,
983-1008.

[25] CGIAR: Consortium for Spatial Information (CSI): SRTMV3/V4. http://
srtm.csi.cgiar.org/ (accessed 24 August 2013).

[26] Guth, P.. Geomorphometry from SRTM: Comparison to NED. Photogrammetric En‐
gineering & Remote Sensing, journal 2006. Vol.72, 3: 269–278.

[27] Yastikli, N., Kocak, G. & Buyuksalih, G.. Accuracy And Morphological Analyses of
GTOPO30 and SRTM X-C Band DEMs in the Test Area Istanbul. In: Proceedings of
the ISPRS Ankara Workshop on Topographic Mapping from Space, 2006. February
14–16. Ankara, Turkey. ISPRS.

[28] Wright, R., Garbeil, H., Baloga, S.M. & Mouginis-Mark, P.J.. An assessment of shuttle
radar topography mission digital elevation data for studies of volcano morphology.
Remote Sensing of Environment, An Interdisciplinary Journal 2006. Vol.105, 1: 41–53.

[29] Kiel, B., Alsdorf, D. & LeFavour, G.. Capability of SRTM C and X Band DEM Data to
Measure Water Elevations in Ohio and the Amazon. Photogrammetric Engineering
& Remote Sensing, Journal 2006. Vol.72, 3: 313–320.

Fusion of Interferometric SAR and Photogrammetric Elevation Data
http://dx.doi.org/10.5772/57584

225



[30] Ludwig, R. & Schneider, P.. Validation of digital elevation models from SRTM X-
SAR for applications in hydrologic modelling. ISPRS Journal of Photogrammetry and
Remote Sensing 2006. 60, 5: 339–358.

[31] Valeriano, M.M., Kuplich, T.M., Storino, M., Amaral, B.D., Mendes, J.N. & Lima, D.J..
Modeling small watersheds in Brazilian Amazonia with shuttle radar topographic
mission-90 m data. Computers & Geosciences 2006. 32, 8: 1169–1181.

[32] Kellndorfer, J., Walker, W., Pierce, L., Dobson, C., Fites, J.A, Hunsaker, C., Vona, J. &
Clutter, M. 2004. Vegetation height estimation from Shuttle Radar Topography Mis‐
sion and National Elevation Datasets. Remote Sensing of Environment, An Interdis‐
ciplinary Journal 2004. 93, 3: 339–358.

[33] Simard, M., Zhang, K., Rivera-Monroy, V.H., Ross, M.S., Ruiz, P.L., Castañeda-Moya,
E., Twilley, R.R. & Rodriguez, E.. Mapping Height and Biomass of Mangrove Forests
in the Everglades National Park with SRTM Elevation Data. Photogrammetric Engi‐
neering & Remote Sensing, Journal 2006. 72, 3: 299–312.

[34] Walker, W.S., Kellndorfer, J.M. & Pierce, L.E.. Quality assessment of SRTM C-and X-
band interferometric data: Implications for the retrieval of vegetation canopy height.
Remote Sensing of Environment, An Interdisciplinary Journal 2007. 106, 4: 428–448.

[35] Menze, B.H., Ur, J.A. & Sherratt, A.G.. Detection of Ancient Settlement Mounds – Ar‐
chaeological Survey Based on the SRTM Terrain Model. Photogrammetric Engineer‐
ing & Remote Sensing, Journal 2006. 72, 3: 321–330.

[36] Surazakov, A. & Aizen, V.. Estimating Volume Change of Mountain Glaciers Using
SRTM and Map-Based Topographic Data. IEEE Transactions on Geoscience and Re‐
mote Sensing 2006. 44, 10, Part 2: 2991–2995.

[37] Moccia, A., Chiacchio, N. & Capone, A.. Spaceborne bistatic synthetic aperture radar
for remote sensing applications. International Journal of Remote Sensing 2000. 21, 18:
3395–3414.

[38] Massonnet, D.. The interferometric cartwheel: a constellation of passive satellites to
produce radar images to be coherently combined. International Journal of Remote
Sensing 2001. 22, 12: 2413–2430.

[39] Krieger, G., Fiedler, H., Mittermayer, J., Papathanassiou, K. & Moreira, A. 2003. Anal‐
ysis of multistatic configurations for spaceborne SAR interferometry. In: IEE Pro‐
ceedings-Radar, Sonar and Navigation 2003. June. 150, 3: 87–96.

[40] Moccia, A. & Fasano, G.. Analysis of Spaceborne Tandem Configurations for Com‐
plementing COSMO with SAR Interferometry, EURASIP. Journal on Applied Signal
Processing 2005. 20: 3304–3315.

[41] Krieger, G., Moreira, A., Hajnsek, I., Werner, M., Fiedler, H. & Settelmeyer, E.. The
TanDEM-X Mission Proposal. In: Heipke C., Jacobsen K. Gerke M. (eds.). Proceed‐

Land Applications of Radar Remote Sensing226



[30] Ludwig, R. & Schneider, P.. Validation of digital elevation models from SRTM X-
SAR for applications in hydrologic modelling. ISPRS Journal of Photogrammetry and
Remote Sensing 2006. 60, 5: 339–358.

[31] Valeriano, M.M., Kuplich, T.M., Storino, M., Amaral, B.D., Mendes, J.N. & Lima, D.J..
Modeling small watersheds in Brazilian Amazonia with shuttle radar topographic
mission-90 m data. Computers & Geosciences 2006. 32, 8: 1169–1181.

[32] Kellndorfer, J., Walker, W., Pierce, L., Dobson, C., Fites, J.A, Hunsaker, C., Vona, J. &
Clutter, M. 2004. Vegetation height estimation from Shuttle Radar Topography Mis‐
sion and National Elevation Datasets. Remote Sensing of Environment, An Interdis‐
ciplinary Journal 2004. 93, 3: 339–358.

[33] Simard, M., Zhang, K., Rivera-Monroy, V.H., Ross, M.S., Ruiz, P.L., Castañeda-Moya,
E., Twilley, R.R. & Rodriguez, E.. Mapping Height and Biomass of Mangrove Forests
in the Everglades National Park with SRTM Elevation Data. Photogrammetric Engi‐
neering & Remote Sensing, Journal 2006. 72, 3: 299–312.

[34] Walker, W.S., Kellndorfer, J.M. & Pierce, L.E.. Quality assessment of SRTM C-and X-
band interferometric data: Implications for the retrieval of vegetation canopy height.
Remote Sensing of Environment, An Interdisciplinary Journal 2007. 106, 4: 428–448.

[35] Menze, B.H., Ur, J.A. & Sherratt, A.G.. Detection of Ancient Settlement Mounds – Ar‐
chaeological Survey Based on the SRTM Terrain Model. Photogrammetric Engineer‐
ing & Remote Sensing, Journal 2006. 72, 3: 321–330.

[36] Surazakov, A. & Aizen, V.. Estimating Volume Change of Mountain Glaciers Using
SRTM and Map-Based Topographic Data. IEEE Transactions on Geoscience and Re‐
mote Sensing 2006. 44, 10, Part 2: 2991–2995.

[37] Moccia, A., Chiacchio, N. & Capone, A.. Spaceborne bistatic synthetic aperture radar
for remote sensing applications. International Journal of Remote Sensing 2000. 21, 18:
3395–3414.

[38] Massonnet, D.. The interferometric cartwheel: a constellation of passive satellites to
produce radar images to be coherently combined. International Journal of Remote
Sensing 2001. 22, 12: 2413–2430.

[39] Krieger, G., Fiedler, H., Mittermayer, J., Papathanassiou, K. & Moreira, A. 2003. Anal‐
ysis of multistatic configurations for spaceborne SAR interferometry. In: IEE Pro‐
ceedings-Radar, Sonar and Navigation 2003. June. 150, 3: 87–96.

[40] Moccia, A. & Fasano, G.. Analysis of Spaceborne Tandem Configurations for Com‐
plementing COSMO with SAR Interferometry, EURASIP. Journal on Applied Signal
Processing 2005. 20: 3304–3315.

[41] Krieger, G., Moreira, A., Hajnsek, I., Werner, M., Fiedler, H. & Settelmeyer, E.. The
TanDEM-X Mission Proposal. In: Heipke C., Jacobsen K. Gerke M. (eds.). Proceed‐

Land Applications of Radar Remote Sensing226

ings of the ISPRS Hannover Workshop 2005: High-Resolution Earth Imaging for Ge‐
ospatial Information, 2005. May 17-20. Hannover, Germany. ISPRS.

[42] Eineder, M., Krieger, G. & Roth, A. 2006. First Data Acquisition and Processing Con‐
cepts for the TanDEM-X Mission. In: Baudoin A., Paparoditis N.. (eds.). Proceedings
of: From Sensors to Imagery, ISPRS Commission I Symposium 2006. July 3-6. Paris,
France. ISPRS.

[43] Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M. & Zink, M..
TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry. IEEE
Transactions on Geoscience and Remote Sensing 2007. 45(11, Part 1): 3317–3341.

[44] Zink, M., Fiedler, H., Krieger, G. & Moreira, A. 2007. The TanDEM-X Mission. In: La‐
coste H., Ouwehand L.. (eds.). Proceedings of Fringe 2007, November 26–30. Frascati,
Italy. ESA Communication Production Office, ESTEC, Noordwijk, The Netherlands.

[45] Coletta, A., Galeazzi, C., Caltagirone, F., Scorzafava, E., Amorosi, L., Caliò, E., Nota‐
rantonio, A. & Moccia, A.. Interferometric Missions: Applications within ASI Space
Programs. Proceedings of SpaceOps 2006. June 2006. Rome, Italy.

[46] ASTRIUM Geoinformation Services. ASTRIUM: WorldDEM™. http://www.astrium-
geo.com/worlddem/ (accessed 3 September 2013).

[47] Eineder, M., Adam, N. & Yague-Martinez, N. 2007. First TerraSAR-X Interferometry
Evaluation. In: Lacoste H., Ouwehand L.. (eds.). Proceedings of Fringe 2007, Novem‐
ber 26–30. Frascati, Italy. ESA Communication Production Office, ESTEC, Noord‐
wijk, The Netherlands.

[48] Meta, A., Prats, P., Steinbrecher, U., Scheiber, R. & Mittermayer, J. 2007. First TOP‐
SAR image and interferometry results with TerraSAR-X. In: Lacoste H., Ouwehand
L.. (eds.). Proceedings of Fringe 2007, November 26–30. Frascati, Italy. ESA Commu‐
nication Production Office, ESTEC, Noordwijk, The Netherlands.

[49] Pasquali, P., Monti Guarnieri, A., D'Aria, D., Costa, L., Small, D., Jehle, M. & Rosich,
B.. ALOS PALSAR Verification Processor. In: Lacoste H.,Ouwehand L.. (eds.) Pro‐
ceedings of the Envisat Symposium 2007. April 23–27. Montreux, Switzerland. ESA
Communication Production Office ESTEC, Noordwijk, The Netherlands.

[50] Shimada, M. 2007. Coherence dependency of the PALSAR POLinSAR on forest in Ja‐
pan and Amazon. In: Proceedings of Geoscience and Remote Sensing Symposium
2007, IGARSS ’07. July 23-28. 2636–2639. Barcelona, Spain. IEEE International.

[51] Deilami K, Hashim M. Very high resolution optical satellites for DEM generation: A
review. European Journal of Scientific Research 2011, 49(4), 542-554.

[52] Grodecki J, Dial, G. Block adjustment of high-resolution satellite images described by
Rational Polynomials. Photogrammetric Engineering and Remote Sensing 2003, 69
(1), 59-68.

Fusion of Interferometric SAR and Photogrammetric Elevation Data
http://dx.doi.org/10.5772/57584

227



[53] Cheng Ph, Chaapel C. Using WorldView-1 Stereo Data with or without Ground Con‐
trol Points. GEOinformatics 2008, 11 (7), 34-39.

[54] Jacobsen K. Characteristics of very high resolution optical satellites for topographic
mapping. International Archives of the Photogrammetry, Remote Sensing and Spa‐
tial Information Sciences 2011, XXXVIII-4/W19, on CDROM.

[55] Poli D, Caravaggi I. 3D information extraction from stereo VHR imagery on large ur‐
ban areas: lessons learned. Natural Hazards 2012, Volume 68, Issue 1 (2013), page
53-78.

[56] Poli, D. A Rigorous Model for Spaceborne Linear Array Sensors. Photogrammetric
Engineering & Remote Sensing 2007, 73(2), 187-196.

[57] Toutin, T. Review article: Geometric processing of remote sensing images: models,
algorithms and methods. International Journal of Remote Sensing 2004, 25(10),
1893-1924.

[58] Poli D, Toutin T. Developments in geometric modelling for HR satellite push-broom
sensors. The Photogrammetric Record 2012, 27: 58–73.

[59] Toutin T. Fine spatial resolution optical sensors. Chapter 8 in SAGE Handbook of Re‐
mote Sensing (Eds. T. A. Warner, M. D. Nellis & G. M. Foody) 2009. SAGE, London,
UK. 568 pages: 108–122.

[60] Ebner H, Kornus W., Ohlhof, T. A simulation study on point determination for the
MOMS-02/D2 space project using an extended functional model. International Ar‐
chives of Photogrammetry and Remote Sensing 1992, 29(B4): 458–464.

[61] Kornus W. MOMS-2P Geometric Calibration Report. Results of laboratory calibration
(version 1.1). DLR, Institute of Optoelectronics, Wessling, Germany. 16 pages, 1996.

[62] Kratky V. On-line aspects of stereophotogrammetric processing of SPOT images.
Photogrammetric Engineering & Remote Sensing 1989, 55(3): 311–316.

[63] Jeong I.S. and Bethel J. Trajectory modeling for satellite image triangulation. Interna‐
tional Archives of Photogrammetry, Remote Sensing and Spatial Information Scien‐
ces, 2001. Vol.37(1), pp. 901-907

[64] Poli D. Modelling of spaceborne linear array sensors. Doctoral thesis, IGP Mitteilun‐
gen Nr. 85, ETH Zurich, Switzerland. 204 pages, 2005.

[65] Fraser C. S., Baltsavias E, Gruen A. Processing of Ikonos imagery for submetre 3D
positioning and building extraction. ISPRS Journal of Photogrammetry and Remote
Sensing 2002, 56(3): 177–194.

[66] Grodecki J, Dial G. Block adjustment of high-resolution satellite images described by
rational polynomials. Photogrammetric Engineering & Remote Sensing 2003, 69(1):
59–68.

Land Applications of Radar Remote Sensing228



[53] Cheng Ph, Chaapel C. Using WorldView-1 Stereo Data with or without Ground Con‐
trol Points. GEOinformatics 2008, 11 (7), 34-39.

[54] Jacobsen K. Characteristics of very high resolution optical satellites for topographic
mapping. International Archives of the Photogrammetry, Remote Sensing and Spa‐
tial Information Sciences 2011, XXXVIII-4/W19, on CDROM.

[55] Poli D, Caravaggi I. 3D information extraction from stereo VHR imagery on large ur‐
ban areas: lessons learned. Natural Hazards 2012, Volume 68, Issue 1 (2013), page
53-78.

[56] Poli, D. A Rigorous Model for Spaceborne Linear Array Sensors. Photogrammetric
Engineering & Remote Sensing 2007, 73(2), 187-196.

[57] Toutin, T. Review article: Geometric processing of remote sensing images: models,
algorithms and methods. International Journal of Remote Sensing 2004, 25(10),
1893-1924.

[58] Poli D, Toutin T. Developments in geometric modelling for HR satellite push-broom
sensors. The Photogrammetric Record 2012, 27: 58–73.

[59] Toutin T. Fine spatial resolution optical sensors. Chapter 8 in SAGE Handbook of Re‐
mote Sensing (Eds. T. A. Warner, M. D. Nellis & G. M. Foody) 2009. SAGE, London,
UK. 568 pages: 108–122.

[60] Ebner H, Kornus W., Ohlhof, T. A simulation study on point determination for the
MOMS-02/D2 space project using an extended functional model. International Ar‐
chives of Photogrammetry and Remote Sensing 1992, 29(B4): 458–464.

[61] Kornus W. MOMS-2P Geometric Calibration Report. Results of laboratory calibration
(version 1.1). DLR, Institute of Optoelectronics, Wessling, Germany. 16 pages, 1996.

[62] Kratky V. On-line aspects of stereophotogrammetric processing of SPOT images.
Photogrammetric Engineering & Remote Sensing 1989, 55(3): 311–316.

[63] Jeong I.S. and Bethel J. Trajectory modeling for satellite image triangulation. Interna‐
tional Archives of Photogrammetry, Remote Sensing and Spatial Information Scien‐
ces, 2001. Vol.37(1), pp. 901-907

[64] Poli D. Modelling of spaceborne linear array sensors. Doctoral thesis, IGP Mitteilun‐
gen Nr. 85, ETH Zurich, Switzerland. 204 pages, 2005.

[65] Fraser C. S., Baltsavias E, Gruen A. Processing of Ikonos imagery for submetre 3D
positioning and building extraction. ISPRS Journal of Photogrammetry and Remote
Sensing 2002, 56(3): 177–194.

[66] Grodecki J, Dial G. Block adjustment of high-resolution satellite images described by
rational polynomials. Photogrammetric Engineering & Remote Sensing 2003, 69(1):
59–68.

Land Applications of Radar Remote Sensing228

[67] Gruen A. Development and Status of Image Matching in Photogrammetry. The Pho‐
togrammetric Record 2012, Special Issue: IAN DOWMAN RETIREMENT SYMPOSI‐
UM, Volume 27, Issue 137, pages 36–57, March 2012.

[68] Remondino F., Spera M.G., Nocerino E., Menna F., Nex F., Gonizzi S. Dense Image
Matching: comparisons and analyses. IEEE Proc. Digital Heritage Conference, Mar‐
seille, France, 2013

[69] Remondino F, El-Hakim S, Gruen A, Zhang L. Turning images into 3D models-De‐
velopment and performance analysis of image matching for detailed surface recon‐
struction of heritage objects. IEEE Signal Processing Magazine 2008, Vol. 25(4), pp.
55-65.

[70] Agugiaro G., Poli D., Remondino F. Testfield Trento: geometric evaluation of very
high resolution satellite imagery. Int. Archives of Photogrammetry, Remote Sensing
and Spatial Information Sciences 2012, Vol. 39(1), pp. 191-196.

[71] Poli D. Remondino F, Angiuli E, Agugiaro G., 2013. Evaluation of Pleiades-1a triplet
on Trento testfield. Int. Archives of Photogrammetry, Remote Sensing and Spatial In‐
formation Sciences, Vol. XL-1/W1, pp. 287-292.

[72] Gleyzes M A, Perret L, Philippe Kubik P. Pleiades system architecture and main per‐
formances. Int. Archives of Photogrammetry, Remote Sensing and Spatial Informa‐
tion Sciences 2012, Vol. 39(1), pp. 537-542.

[73] 4DiXplorer A.G.. SAT-PP: Satellite Precision Processing. http://www.4dixplorer.com/
(accessed 24 October 2013).

[74] Poli D, Wolff K, Gruen A. Evaluation of Worldview-1 stereo scenes and related 3D
products. ISPRS Hannover Workshop 2007, Int. Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences 2009, Vol. 38(1-4-7/W5).

[75] H. Papasaika, E. Kokiopoulou, E. Baltsavias, K. Schindler, D. Kressner, Fusion of
Digital ElevationModels Using Sparse Representations. In: Stilla U., Rottensteiner F.,
Mayer H., Jutzi B, Butenuth M.. (eds.). Proceedings of Photogrammetric Image Anal‐
ysis 2011 October 5-7. Munich, Germany.

[76] Kanevski M. (eds.) Advanced Mapping of Environmental Data. Geostatistics, Machine
Learning and Bayesian Maximum Entropy. ISTE, Wiley, London, 2008.

[77] William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P.. Numerical
Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University
Press. 2007.

[78] Lazzaro D., Montefusco L.B.. Radial Basis Functions for the multivariate interpola‐
tion of large scattered data sets, Journal of Computational and Applied Mathematics,
140, pages 521-536, 2002.

Fusion of Interferometric SAR and Photogrammetric Elevation Data
http://dx.doi.org/10.5772/57584

229





Section 4

Land Motion Applications





Chapter 8

Mapping of Ground Deformations with Interferometric
Stacking Techniques

Paolo Pasquali, Alessio Cantone, Paolo Riccardi,
Marco Defilippi, Fumitaka Ogushi,
Stefano Gagliano and Masayuki Tamura

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/58225

1. Introduction

Interferometric stacking techniques emerged in the last decade as methods to obtain very
precise measurements of terrain displacements, and especially of subsidence phenomena. In
particular, the so-called Persistent Scatterers [1] and Small BASeline [2] methods can be
considered as the two most representative stacking approaches.

In both cases, the exploitation of 20 or more satellite Synthetic Aperture Radar (SAR) acquis‐
itions obtained from the same satellite sensor with similar geometries on the interest area
allows to measure displacements with an accuracy in the order of a few mm / year, and to
derive the full location history of “good” pixels with an accuracy of 1cm or better for every
available date.

This chapter is presenting an extensive analysis of the two methods, a validation of the results
obtained in same geographical areas with the different techniques and an evaluation of the
suitability of these techniques for different applications.

All results shown in this chapter have been generated with the SARscape® software package.

2. Interferometric stacking techniques

While trying to provide an answer to the same problem, i.e. how to measure small land
displacements out of a series of SAR images acquired on a same geographical area under a

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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same geometry, the PS and SBAS approaches designed two algorithms that focus each on a
different type of objects and land cover to favour in the analysis: the PS technique focuses on
so-called Point Targets, i.e. objects possibly of small size and with a very well characterized
geometry like corner reflectors (e.g. buildings, rocks) and with a high temporal stability of the
backscattered signal; the SBAS technique vice-versa is concentrating the analysis on so-called
distributed targets, like open fields and not very geometrically characterized objects. Both
approaches, exploiting a reference Digital Elevation Model in input of the workflow, also
estimate its errors as residual height component together with the displacement series.

As shown in Figure 1 on the left, the original PS approach is selecting one of the images of the
input stack as reference and generating all differential interferograms between this and the
other acquisitions. Focusing on Point Targets, no limits of critical baseline shall be considered,
and no spectral shift or other filtering are performed [3]; the algorithm is then operating on
the phase time series of each of the pixels separately, without performing any phase unwrap‐
ping. Both these features allow to obtain the maximum spatial resolution of the final results
i.e. total independency of the measures for adjacent pixels, as well as eliminate the possibility
of unwrapping errors propagation.

The estimation of the average linear displacement rate and of the residual height correction
factor is performed through a kind of frequency analysis: a range of linear displacement rates
and of residual heights is explored and, for each of the explored values, the phase trend
corresponding to the tested values is subtracted from the measured phase time series, and a
so-called temporal coherence is estimated by normalising the summation of the de-trended
complex time series.

This analysis is in the original algorithm performed on selected pixels (PS candidates) that show
no significant variations of the backscatter amplitude over the time; in any case, only pixels
showing high values of the temporal coherence are finally considered as true PSs.

It shall be noticed that the temporal coherence should more appropriately be considered as a
measure of linearity of the phase time series; points characterised by stable radar backscatter
and very low phase noise and temporal decorrelation, but characterised by significantly non-
linear displacement regimes will not be recognised as PSs by such analysis.

Being the PS estimation performed independently on each pixel, large variations of phase from
one date to the next in the time series due to large displacements or irregular temporal sampling
will also make the analysis difficult, resulting in such cases in wrong estimations of the
displacement rates and / or difficulties in the identification of the corresponding PSs.

The SBAS approach, as shown in Figure 1 on the right, is generating all differential interfero‐
grams from the input images stack that fulfil criteria of temporal and geometric baseline within
a given interval in time or respectively normal baseline respect to the critical one. The second
condition is trying to limit the impacts of volume decorrelation over natural distributed targets;
to re-enforce this, spectral shift and adaptive filtering steps (typical of standard SAR interfer‐
ometry) are included in the workflow.

The interferograms (coregistered on a common geometry) are then unwrapped, either with a
conventional 2D (interferogram-by-interferogram) or with a combined 3D approach [4]. This
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step, surely the most challenging in SAR interferometry, relies on some spatial continuity of
the interferometric phase, and hence is expecting some form of spatial correlation of the
displacement phenomena happening in the region of interest, and it is a potential source of
errors propagation. On the other side, this step makes the approach more robust toward
irregular series and fast displacements.

The average displacement rate and the residual height correction factor are then estimated by
inverting a linear system, possibly with a robust SVD approach, that includes all measures
(one for each interferogram) together with their proportionality coefficients depending on the
temporal and geometric baseline of each pair.

The final identification of reliable results is derived for example from the average (spatial)
coherence of each pixel; no assumption is made in particular on the linearity of the true
underlying displacement, and average displacement rates can also be estimated for pixels
characterised by strongly non-linear behaviours, given that they remain coherent in most of
the interferograms of the network.

Different models (e.g. quadratic or cubic) can be exploited during the inversion phase, and the
reconstruction of the LMS time series of the displacements is also possible with this approach
without the need of assuming any type of model for the true temporal deformation.

Both algorithms, after a first estimate of the average displacement rates and height correction
factors, perform an estimated of the so-called “Atmospheric Phase Screen”. The impact of
atmospheric heterogeneities on the propagation of the SAR signal is considered as a spatially
low frequency signal, with very short temporal correlation. Appropriate space – time filtering
is performed on the phase time series after removing the results of the first estimate to evaluate
the pixel-by-pixel and date-by-date impact of the APS and remove it from the original phase
time series. A second and final iteration is then performed of the APS-corrected data with either
of the PS or SBAS approaches to obtain a refined final estimate of the displacement rate and
height correction.

Figure 1. Typical processing schemes for the PS (on the left) and SBAS (on the right) techniques each circle corre‐
sponds to one acquisition, each connecting segment one interferogram.
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As final step, the time series of the displacement for each pixel and date is obtained in both
approaches.

A synthetic comparison of the characteristics of the two approaches is given in the following
Table.

PS SBAS

Analyse independent, uncorrelated motions Monitor at best spatially correlated motions

Expect pixel-wise continuous time series Capable of handling time series with temporal holes

Time interval between two acquisitions limited by

displacement rate

Time interval between two acquisitions limited by

temporal decorrelation

Very accurate on PSs Slightly less accurate

Linear displacements favoured
Larger variety of parametric models possible.

Non-parametric modelling possible

Table 1. Main characteristics from the exploitation point of view of the PS and SBAS approaches.

3. Factors affecting the final expected precision

As for standard interferometry, temporal decorrelation can be considered as the most impor‐
tant factor affecting the precision obtainable from the processing of an interferometric stack of
SAR images.

An estimation of the expected precision of the measured displacements can be derived from
the interferometric coherence. Known its value for a certain pixel, well known relationships
[6] allow to obtain an estimate of the interferometric phase standard deviation, then scaled by
the system wavelength to obtain a correspondent estimation of the expected displacement
precision. By exploiting this approach, it is possible to evaluate for example which is the level
of coherence necessary to obtain the same precision with a certain system wavelength as with
another wavelength at a given coherence level, as shown in Figure 2.

Here a C-band system (as ERS-1/2, ENVISAT ASAR, Radarsat-1/2 and the forthcoming
Sentinel-1) has been selected as reference: the red curve provides an estimate of the coherence
level that is necessary, for every C-band coherence value, to obtain the same displacement
precision with a L-band system (as PALSAR-1 and the forthcoming PALSAR-2), while the blue
curve presents a similar comparison between a C-Band and a X-band (as COSMO-Skymed and
TerraSAR-X / TanDEM-X) system.

It can here be seen how, assuming a minimum acceptable value of 0.2 for the C-Band coherence,
comparable accuracies can be obtained from L-band measurements only for coherence levels
of 0.6 or more. This corresponds to the L-band longer wavelength (if compared to C-band) and
hence poorer displacement sensitivity.
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On the other hand, as expected due to the shorter wavelength and hence better displacement
sensitivity, X-band systems provide, with coherence 0.2, displacement precisions that are
comparable with what can be obtained from a C-band system with coherence 0.4 or more.

Figure 2. Interferometric coherence necessary to obtain the same measurement precision in mm as depending from
the different system frequency. Red: L-band; Blue: C-band (reference); Green: X-band.

The amount of temporal decorrelation and hence of phase noise depends itself of the charac‐
teristics of the observed areas in relationship with the system wavelength. It is well known
that repeat-pass SAR acquisitions are showing complete decorrelation over water bodies, and
very high correlation over point targets and man-made features, independently from the
system wavelength. On the other hand natural, distributed objects show temporal correlation
that depend on the observation frequency: in general the higher the system frequency (and
hence the shorter the wavelength), the shorter the penetration of the transmitted signal into
vegetation layers, and hence the stronger the effects of temporal decorrelation.

Summarising, it can be expected that lower frequency (e.g. L-band) systems show more
extensive coverage over natural areas than systems with higher (e.g. C-and X-band) frequency;
on the other hand, where measurements can be obtained with systems with different wave‐
length on a same area, better precisions can be expected from the systems with shorter
wavelength.

One example of these effects is shown in Figure 3, where average displacement rates obtained
from stacks of PALSAR-1 (on the left) and of ENVISAT ASAR data (on the right) spanning a
period between 2006 and 2010 are presented for a region in Japan between the cities of Tokyo
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and Chiba. It is evident here how many black (no value) areas are visible in the ASAR data,
while the same regions show reliable measurements obtained with PALSAR data. On the other
hand, areas that are covered by both systems show higher variability and hence most likely
poorer precision in the PALSAR dataset.

Figure 3. Comparison of average displacement rates (color scale between-15 mm/year in blue and+5mm/year in red)
as derived with SBAS from ALOS PALSAR (left) and ENVISAT ASAR (right) data over the Tokyo – Chiba area (Japan).

It shall be noticed that models have been proposed to help quantifying the expected temporal
evolution of the interferometric coherence (as for example in [7]); a limitation of these ap‐
proaches is that they focus more on a general, statistical point of view, without considering
phenomenological aspects like spatial variability of the land cover [8] and seasonal and long-
term effects [9] [10]. It has been seen how these last aspects have finally effects that can be
foreseen only in a qualitative way, but of such importance on the decorrelation to significantly
decrease the applicability of the theoretical models.

One example is the temporal coherence obtained with very-high resolution X-band systems
like TerraSAR-X and COSMO-Skymed: the values measured from real data are often surpris‐
ingly higher than that forecasted by models. This is not actually due to the system frequency
but more by their very-high spatial resolution: if the backscatter signal measured by coarser
resolution system (e.g. ~25m for ERS-1/2 and ASAR) is a mixture of returns from different land
cover types (vegetation, bare soil, rocks etc.), and the contribution of stable scatterers is often
hidden by the other components, the very-high resolution data (e.g. ~3m for TerraSAR-X and
COSMO-Skymed) have higher likelihood of keeping the different contributions separate in
different pixels, hence stable scatterers can be better identified as highly coherent pixels.

Some phenomenology may also have an effect on the temporal variability of decorrelation: on
one hand, it is commonly assumed that interferometric coherence decreases with time; on the
other hand, long time, such as winter-winter interferograms (hence computed for seasons
where vegetation changes are typically negligible), often show coherence higher than short-
time interferograms computed within periods of strong vegetation changes (e.g. spring).
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3.1. Validation

Two main approaches may be identified for the validation of the measurements obtained with
interferometric stacking techniques: absolute methods for evaluating the accuracy of the
measures based on external, reference measurements obtained for example with GNSS,
levelling or other systems (e.g. [11] [12] [13]), and more relative methods, evaluating the
precision of the SAR-based measurements by comparing results obtained from different
sensors (e.g. [13]) and / or different processing approaches (e.g. PS and SBAS).

This Section presents results obtained with both approaches about the validation of interefro‐
metric stacking PS and SBAS measurements from ASAR and PALSAR data over the area in
Japan shown in Figure 3, to highlight the different issues relative to validation and typical
results in terms of accuracy and precision obtainable with these techniques.

Figure 4. Vertical displacement of one of the permanent GPS stations of the GEONET network. Black: original GPS
measure; red: fitted values. Data courtesy of GSI.

Permanent GPS station measurements from the GSI GEONET nation-wide network [14] have
been exploited to perform an absolute validation of the SBAS data. A first investigation of the
GPS data highlighted two main effects, easily detectable from Figure 4: GPS data have
themselves a certain dispersion, as expected, and systematic trends (most likely due to
uncompensated tidal effects [15] [16]) are present, in form of yearly periodical cycles. A
straightforward date-by-date difference between the SAR and GPS (projected along the Line
Of Sight direction) measurements is therefore not feasible, and a different strategy shall be
adopted. A simple model, composed by a linear displacement combined with a half-cycle
sinusoidal oscillation with yearly period, has been selected to describe the GEONET data, and
the corresponding parameters have been estimated independently for each of the stations
present in the area of study.

Finally, the station-by-station difference between the GENOET fitted linear displacement (re-
projected along LOS) and the SBAS average linear displacement has been computed, as shown
in Figure 5.
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Figure 5. Difference between GPS and SBAS PALSAR (on the left) or ASAR (on the right) linear displacement rates.

A summary of the statistics of the differences between the average displacement rates as
measured from SAR and GPS is shown in Table 2, confirming the very high accuracy that can
be obtained with the interferometric stacking techniques.

GPS - PALSAR GPS - ASAR

Mean difference [mm/year] -0.28 -1.1

Difference Standard Deviation [mm/year] 1.9 1.8

Table 2. Difference between GPS and SBAS average displacement rates.

The validation has then been continued by comparing the results obtained from SAR data only,
by exploiting independent processing applied either to different input time series, derived
from different sensors, or to the same time series but exploiting different (PS and SBAS)
approaches.

Figure 6 shows the difference between the average displacement rates presented in Figure 3,
showing in general a very good agreement between the measures derived from L-band and
C-Band data.

Figure 7 shows the differences between average displacement rates obtained with the same
sensors but with different (PS and SBAS) methodologies. It can be seen here how in both cases
the two approaches provide very similar results but, as expected, the PALSAR (L-band) data
show higher variability, due to the longer wavelength and hence smaller sensitivity to
displacements.

The statistics summarising the results shown in these figures are presented in Table 3,
confirming the comments made on the single plots.

As a final, qualitative cross-validation, displacement time series are shown in Figure 8 for a
same pixel as obtained from different data and with different algorithms. Here again, as for
the average displacement rates, it can be seen how longer wavelength data provide higher
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variability of the measures; on the other hand, SBAS time series show consistently less
dispersions when compared with PS time series, mainly due to the filtering performed during
the SBAS interferometric processing.

Figure 6. Difference between SBAS PALSAR and ASAR linear displacement rates.

Figure 7. Difference between SBAS and PS displacement rates as derived from PALSAR (on the left) and ASAR (on the
right) data.

SBAS ASAR -PALSAR PALSAR SBAS – PS
ASAR

SBAS – PS

Mean difference [mm/year] -0.33 0.7 0.1

Difference Standard Deviation [mm/year] 2.1 4.1 1.2

Table 3. Difference between average displacement rates obtained from PS and SBAS from ASAR and PALSAR data.
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Figure 8. Comparison of displacement time series as derived from ALOS PALSAR (on the left) and ENVISAT ASAR (on
the right) data exploiting the SBAS (green diamonds) and PS (red crosses) techniques.

3.2. Application examples

Some examples are shown in this Section to discuss the applicability of the major interfero‐
metric stacking techniques in areas characterised by different land cover, different types of
displacements and in view of various land applications.

Figure 9 shows first the average displacement rates as obtained from very-high resolution
TerraSAR-X data through PS processing for an area of the city of Budapest, where a new Metro
line was under construction, and generally a high PS density could be obtained. A trace of the
line is drawn over the area, and the average displacement rate shows in general measurable
displacements of subsidence around this trace. The red square indicates the area where the
new Metro station of Szent Gellért had been built: a poor PS density is unfortunately achievable
here. The middle image in this Figure shows a close-up of the average displacement rate as
obtained for the same small area through SBAS processing; the spatial density of measures is
much higher in this case, in particular in the area of more severe subsidence.

As the time series shows in the lower image, the displacement is strongly non-linear in this
area, characterized in particular by a sudden descent, in the order of magnitude of half of the
system wavelength, in a period of about 3 months. This kind of step cannot be resolved well
by the PS approach, that tends to fit a linear velocity to the other parts of the time series, but
obtaining large residuals, and hence low temporal coherence, discarding the pixels as no PSs.
The SBAS approach is on the other hand, also thanks to the very-high resolution of the imagery,
capable of obtaining reliable results, and well reconstructing the temporal behaviours of the
displacement, that shows good spatial correlation.

Figure 10 shows the historical evolution of the landfills close to Urayasu (Japan). The average
displacement rate in the period 2006 – 2010 in the same region, as obtained through PS and
SBAS processing of ASAR and PALSAR data is shown in Figure 11. It shall be noticed that
these data are a portion of the data shown in Figure 3.

The coverage obtained with the two methods from different data is in this urban area very
similar. As expected, the SBAS data show smoother results, while the spatial resolution
obtained in the PS case is better and many spatial details are more accurately preserved;
PALSAR data show higher spatial variability, while ASAR data provide higher accuracy.
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Nevertheless, all 4 approaches provide very consistent results, able to well delineate for
example areas of terrain compaction at the borders of different land-fills. It is furthermore
interesting to notice how the areas undergoing large subsidence correspond to those having
thick layers of soft soil over stiff basement, as shown in Figure 12.

Figure 9. Average displacement rate as obtained through PS (above) and SBAS (middle) processing; SBAS displace‐
ment time series (below) for an area in Budapest (Hungary). ©Airbus Defence and Space

Figure 10. Landfill area around Urayasu (Japan) in years 1950, 1975, 1980 from left to right [17].
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Figure 11. Average displacement rate in the 2006-2010 period in the area of Urayasu, as obtained from PALSAR
(above) and ASAR (below) data through SBAS (on the left) and PS (on the right) processing.
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Figure 11. Average displacement rate in the 2006-2010 period in the area of Urayasu, as obtained from PALSAR
(above) and ASAR (below) data through SBAS (on the left) and PS (on the right) processing.
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Figure 12. Depth of the upper surface of the solid geological stratum (Pleistocene sand stratum with the standard
penetration test N value > 50) in Urayasu city [18].
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Figure 13. Southern Kanto gas field, Kanto Natural Gas Development Co Ltd. [19] (on the left); known 5-years dis‐
placement in the region of Togane, eastern part of the same area [20] (on the right).

The whole region of Figure 3 is located over the Southern Kanto gas field [19], shown in Figure
13. Various phenomena of subsidence are known in this region [20], in particular on its eastern
side, as shown in the same Figure. This information provide an additional clear indication,
although in this case from a qualitative point of view since too coarse respect to the SAR data,
about the reliability of the results obtained with the SBAS approach, both in terms of order of
magnitude of the average displacement rate and of its spatial distribution.

A closer look at the region on the east coast is shown in Figure 14 as obtained through PS and
SBAS processing of ASAR and PALSAR data. An area of uplift is present here, resulting from
strong water injection as compensation of the gas extraction. Appropriate coverage can be
obtained here only with the SBAS approach, or exploiting PALSAR data and PS processing,
while ASAR data and PS processing are providing no reliable results and loosing most of the
spatial variation of the displacement. As expected, lower frequency data show rougher spatial
distribution; nevertheless, the three applicable approaches show very consistent results both
in terms of value and spatial distribution of the obtained results.

Finally, Figure 15 shows the average displacement rate obtained from ASAR imagery over the
Lisan peninsula, an area in the Dead Sea characterised by diapirism and severe subsidence
phenomena related to the lake level lowering (1m/year), with the PS and the SBAS approaches.

Although the area is very dry and stable from the radar backscattering point of view, the
complex land cover and the very complex displacement regimes result in a significantly
different spatial coverage obtained with the PS and SBAS methods, making only the second
one suitable for reliable investigations in such cases.
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More in-depth analysis of SBAS results for ground deformation monitoring over the Dead Sea
region are presented in the Chapter „Dikes stability monitoring versus sinkholes and subsidence,
Dead Sea region, Jordan“ of this book.

4. Analysis of time series non-linearity

The exploration performed in the previous Section concerning the exploitability of Interfero‐
metric Stacking techniques mainly focused on the analysis of the average displacement rate as
measured on a stack of SAR imagery. On the other hand, as already mentioned in the previous

Figure 14. Average displacement rate in the 2006-2010 period in the area of Chosei (Japan) obtained from PALSAR
(above) and ASAR (below) data through SBAS (on the left) and PS (on the right) processing.
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Sections, the information that can in principle be extracted from such input data is far more,
not only limited to a simple average value, but potentially describing the full temporal
evolution of phenomena that vary with the time.

One evident advantage of exploiting the average displacement rate is that it can be easily
displayed, and regions showing different average behaviours can be easily identified with a
simple visual analysis. These observations start to show their limitation as soon as more
complex, non-linear behaviours are to be expected (as natural) in a certain region, and different
parameters shall be sought to provide a synthetic way to visualise and identify areas with
similar, non-linear characteristics.

Figure 16 in the upper left part shows an excerpts of a South-Eastern region of Figure 3 right,
for which the average displacement rate is displayed, as estimated through the SBAS algo‐
rithm. As previously described, the SBAS algorithm obtains this information through a Lest
Mean Square fit / inversion, whose statistical significance is often estimated by measuring the
corresponding χ2 value. When a simple linear model is assumed during the SBAS fit / inversion
for this area, the corresponding χ2 resembles what is shown in Figure 16 upper right; two
regions can be easily identified in this image, showing systematically high values of χ2, hence
good candidates for a further investigation, focused on the identification of non-linear
displacement behaviours. Figure 16 shows in the lower row temporal plots for the two regions
highlighted in the χ2 image; the plot on the left in particular shows in red the displacement
time series of the point in region 1 showing highest χ2 values, while in blue (as comparison)
the time series of a neighbouring pixel that shows low values of χ2. The same Figure shows in
the lower right part in red the displacement time series of the point in region 2 showing highest
χ2 values, while in blue (as comparison) the time series of the neighbouring pixel that shows
largest average displacement rate, as in the upper lower image of the same Figure, but linear
variation.

Figure 15. Comparison of average displacement rates in the period 2003 – 2010 as derived with PS (left) and SBAS
(right) processing from ENVISAT ASAR data over the Lisan peninsula, Dead Sea, Jordan.
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Figure 16. ENVISAT ASAR SBAS results over the Togane region (Japan). Left to right and top to bottom: average dis‐
placement rate, χ2 from linear model, location time series in [mm] from areas 1 and 2 in the χ2 image.

The plots in this Figure show very clearly two different non-linear behaviours: area 1 is
characterised by a parabolic (first increasing an then decreasing) trend, while area 2 is
characterised by a periodical trend, with a yearly cycle. As it can easily be seen, these two
regions could not at all be identified from the average displacement rate image, while their
temporal behaviours significantly deviate from a linear one, that characterizes most neigh‐
bouring regions.

The χ2 value seems hence a good candidate for a simple yet efficient identification of areas
showing non-linear but consistent temporal displacement behaviours, as identified by the
SBAS processing.

As a further trail, the χ2 value has been evaluated again after performing a new SBAS proc‐
essing that considers a 3rd order polynomial model during the inversion steps; the correspond‐
ing result is shown in Figure 17. Here it can be easily seen how the χ2 value is significantly
reduced in region 1, that originally showed parabolic trends, hence easily fitted with a third
order model; the same cannot be said for region 2, where the periodical trend cannot be easily
described by a polynomial function.

Another non-linearity analysis example is presented in Figures 18-24 for a region in Jordan
close to Madaba city, where land subsidence relates with water extraction for agricultural
practices.

Figure 18 shows the average displacement rate estimated with a liner model and the corre‐
sponding χ2. It is interesting to notice that, although the two measures show large values
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generally in the same geographic area, their spatial distribution is quite different; most of large
displacements are characterised by strongly non-linear motions, but not all and not in the same
way, hence the average displacement rate layer is not showing all the information.

Figure 19 is presenting results obtained on the same area by exploiting a cubic deformation
model. As to be expected, the accuracy of the fit of the SAR time series increased (and hence
the χ2 values decreased), and most of the displacements can be statistically well described by
a 3rd order polynomial.

Figure 20 shows the difference between the χ2 values as resulting from the linear and respec‐
tively cubic polynomial fit. As expected, most of the image shows no significant change, i.e.
the linear model is good enough to describe the displacement behaviour. On the other hand,
a few areas show significant decrease of the χ2 values when increasing the model complexity.
Some of them have been highlighted in the same Figure, and their displacement time series is
shown in Figure 21, together with that of an area with large displacement rate but already low
χ2 values, highlighted in Figure 18.

Here it can be seen how the non-linear displacement in area 1 is characterised by a first almost
linear regime, followed by a significant acceleration and finally a possible little deceleration.
Areas 2 and 3 show similar behaviours, where the initial linear trend is almost constant (no
displacement) and the final deceleration is possibly less pronounced. All three cases seems
nevertheless well suitable for a cubic polynomial representation; a further information that
could be of interest for the exploitation is the date of change between the linear (or constant)
and the accelerated regime.

Area 4 shows a quite clear quadratic behaviour, that could have equally well fitted with a
second order model.

Figure 17. ENVISAT ASAR SBAS results over the Togane region (Japan), χ2 from cubic model.
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Area 5 presents, on the contrary, a simple linear regime that, even if the average displacement
rate is quite large, could be well fitted with a first order model, showing no significant
improvement (reduction) in the χ2 values when increasing the model complexity.

It might be of interest at this point to comment the average acceleration and acceleration
variation images shown in Figure 22, as estimated with the third order model.

Figure 18. ENVISAT ASAR SBAS results over the Madaba region (Jordan). Average displacement rate from linear mod‐
el (on the left) and corresponding χ2 (on the right).

Figure 19. ENVISAT ASAR SBAS results over the Madaba region (Jordan). Average displacement rate from cubic model
(left) and corresponding χ2 (right).
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Figure 20. ENVISAT ASAR SBAS results over the Madaba region (Jordan). Difference of χ2 between linear and cubic
model.

Figure 21. Displacement time series in [mm] from areas 1 to 5 of Figure 20 and Figure 18.

The average acceleration provides a measure of the main curvature of the time series: a big
part of the area shows very small curvature (green – yellow areas, hence characterised by
mostly linear displacements, as for curve 5); areas in red correspond to positive curvatures,
with mainly a decrease of the displacement rate with the time, as in curve 4 of Figure 20-21,
while blue areas show negative curvature, hence corresponding to an increase of the displace‐
ment rate (in absolute value), as in curves 1 to 3 in the same Figures.
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It shall be noticed again how these images have again a different although overall similar
spatial distribution with respect to the average displacement rate one, showing the amount of
additional information on the discrimination of different displacement regimes that they can
bring.

Figure 22. ENVISAT ASAR SBAS results over the Madaba region (Jordan). Average displacement acceleration from cu‐
bic model (left) and corresponding acceleration variation (right).

Figure 23. ENVISAT ASAR SBAS scatter plots over the Madaba region (Jordan). On the left: χ2 from linear model (x
axes) against χ2 from cubic model (y axes). On the right: scatter plots of expected displacement rate precision (x axes)
against χ2 decrease from linear to cubic model (y axes).

Figure 23 presents two scatter plots for the same case, where the χ2 values obtained with the
two model types are plotted together (on the left), and their difference is plotted against the
value of expected displacement accuracy, as estimated from the original pixels coherence.
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The first plot shows, as expected, mainly two groups of pixels, one for which the increase of
model order is not making a real difference (mostly linear motions, and some non-linear non-
polynomial motions, or noise), and the other for which a higher order model is more appro‐
priate. Mainly no pixel shows significant decrease of the fit accuracy at the increase of the
model order.

The scatter plot on the right is on the other hand showing how the increase of the fit accuracy
can be obtained only for pixels that, a priori, can be assumed as reliable and for which any
analysis or fit of the displacement time series can provide meaningful results.

Figure 24. ENVISAT ASAR PS results over the Madaba region (Jordan).

Figure 24 shows the results of the PS processing over the same area. It is well visible that reliable
results can, with this approach, be obtained only for areas characterised by a well linear
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displacement behaviours; area showing large χ2 values in case of linear model do not provide
any result when processed with the PS technique.

The following Table summarises the findings obtained in the analysis of the χ2 layers of the
two previous cases and the information about discriminating different temporal behaviours
of the displacements.

Small linear χ2 Large linear χ2

Small cubic χ2 Linear motion Non-linear polynomial motion

Large cubic χ2 Noisy pixel
Non-linear non-polynomial motion

(e.g. periodical – seasonal)

Table 4. Discrimination of different displacement temporal regimes based on χ2 analysis.

5. Conclusions and outlook

The previous Sections presented a number of validated examples, showing how interferomet‐
ric stacking techniques can provide accurate and reliable information concerning ground
deformations that can be very valuable for different applications. The PS and SBAS approaches
can be considered as complementary, each with specific unique features.

The huge amount of measures, both in terms of spatial and temporal density, that these
techniques can provide, when for example compared with other systems like GNSS or
levelling, can be on one hand considered as a wealth of information. On the other hand, such
detail can often make the interpretation very complex.

As for example discussed in the previous Section, the average displacement rate is often just
one of the synthetic descriptors that can be used to represent in a compressed way the
complexity of the whole displacement time series. When the displacement regimes are more
complex, robust algorithms as the SBAS one shall be exploited, or adaptations of the original
PS approach shall be considered that could extend (even if not completely) its applicability
toward more non-linear [21] and / or non-continuously coherent displacements [22]. Other
indicators and analysis approaches shall also be developed to help the identification and
extraction of the different regimes.

Different physical factors start to play a role in the interpretation of the obtained measure‐
ments, as soon as their accuracy start to be very high. It is for example well known that the
temperature variations start to be clearly recognisable in interferometric stacking measure‐
ments, in particular when performed over large metallic structures (bridges, buildings with
big metallic components etc.). One example of such an effect is shown in Figure 25 for an area
of the city of Beijing as obtained through PS processing of very-high resolution COSMO-
Skymed data. Piles of PSs are visible, corresponding to the reflections of the different floors of
single buildings. One of them, in the lower left part of the image is showing average displace‐
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ment rates that well correlate with its height: higher locations have larger thermal expansion,
as to be expected for this tall metallic building.

This component cannot be neglected, and should for example be included within the inversion
steps by opportunely modifying the corresponding algorithms [23].

Figure 25. Average displacement rate estimated with the PS approach over an area of Beijing from COSMO-Skymed
data. Each circle correspond to one identified PS.

As recalled in the previous Sections, all interferometric stacking algorithms include a step of
estimation and subtraction of the APS, based on some statistical assumptions on the spatial
and temporal distribution of the atmospheric artefacts. These assumptions may be often in
contrast with the spatial distribution of the displacement, also considering sometime a similar
dependency of the displacement and of the atmosphere parameters with the terrain topogra‐
phy, as for volcanoes and for other specific cases and morphologies. It is hence very interesting
to explore alternative approaches, based on additional independent measurements, to estimate
and mitigate the impact of atmospheric heterogeneities, as for example as suggested in [24]-
[30] with different approaches.

Last but not least, it has been shown how both PS and SBAS provide very interesting and
complementary information; approaches that somehow merge the best of the two worlds can
hence only considered with big interest [31] [32].
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Chapter 9

SAR Data Analysis in Solid Earth Geophysics: From
Science to Risk Management

S. Atzori and S.  Salvi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/57479

1. Introduction

One of the scientific disciplines in which SAR data have generated a real breakthrough is Solid
Earth Geophysics. As soon as the first differential SAR interferograms appeared on scientific
journals, describing the surface crustal changes due to earthquakes or inflation of volcanic
edifices, geophysicists realized that their science was to greatly benefit from these new data.

The reasons were clear: before the InSAR era crustal deformation was measured using very
time-consuming, ground based methods, as leveling, triangulation, trilateration; all requiring
costly networks and measurement campaigns. The same was true for the GPS technique,
appeared only few years before. SAR interferometry made things simpler and cheaper,
although with some limitations; probably the most appealing features of InSAR deformation
measurements were their spatial imaging capacities and the high ground resolution. These
allowed an unprecedented way to look at all the natural phenomena causing, or derived from,
surface deformation.

In this chapter we start describing technical aspects related to the way InSAR data are exploited
to derive the parameters of the sources of an observed phenomenon, focusing the attention on
the seismic and volcanic activity. We present the state-of-the-art techniques to this inference
problem, describing the most common inversion algorithms and analytical models, especially
those implemented for the description of the seismic and volcanic cycles. Other technical
aspects, as the role played by the data uncertainty, the existing strategies to reduce the data
redundancy and the way sources of different nature interact with each other, are also presented
to provide useful basics for the reader interested InSAR data modeling.

The second part of this chapter focuses on the practical use of InSAR data and derived models,
describing their assimilation in the seismic risk assessment and prevention or during the

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



disaster response. Examples of already existing operational procedures, research and devel‐
opment pilot projects, current and future SAR missions, including Sentinel-1, are also pre‐
sented to complete this detailed overview on the role played by SAR and SAR-derived
information in Solid Earth Geophysics.

2. Analytical source modeling

InSAR modeling is an inference process used to define the properties of a realistic geophysical
source, or combination of sources, from a set of geodetic measurements. First aspect to clarify
is the definition of “realistic”, strongly related to how resulting models are exploited. Few hours
after an earthquake, the availability of an approximated fault model can be more useful to a
decision maker than a complex finite element solution obtained in a week. Conversely, the
study of a tectonic setting in a seismogenic area might need a detailed source description,
including mechanical discontinuities, the effects of topography, non-elastic rheology and a
stratified crust, characteristics not considered by analytical models.

Accepting a simple approximations, as a free surface without topography overlying an
homogeneous and isotropic half-space, ordinary geophysical models can be expressed as a set
of equations in explicit form, where the modeled surface displacement dmod for a given point
located in (x,y) is obtained as a function

( ) ( )1 2, , , , ,nx y m m m= ¼ ¼ func   modd (1)

being m1, m2,… mn the model parameters.

Though the above approximations might appear excessive, in most cases they provide very
good description of the sources, a fact that is indeed reflected in their massive use in Geophy‐
sics. Commonly used sources in the literature are:

elastic dislocation in a finite rectangular source [1]: it is definitely the most used model to
predict the surface displacement due to an earthquake, represented as a shear dislocation over
a finite rectangular fault. The Okada model, however, can be also used to describe magma
intrusion like sills or dykes [2],[3],[4], interseismic and post-seismic deformations (see Section
4), landslides [5] and ground subsidence induced by fluid extraction [6]. Source parameters
are: East and North position, depth, length, width, strike angle, dip angle, dislocation (or slip),
dislocation angle (rake), opening (Figure 1);

point pressure source [7]: it is one of the simplest and effective source used in volcanology, as
its description requires only 4 parameters: depth, east and north position, volume variation or
pressure variation1 (Figure 2)

1 The Mogi equations can be indifferently written in terms of pressure change or volume change; however, the volume/
pressure conversion requires the definition of a virtual source radius.
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Figure 2. Parameters required by the Mogi model

Several other sources have been proposed in the literature, with the aim of providing more
realistic solutions to describe geophysical phenomena: dislocation over a finite triangular
source [8]; volume variation of a dipping finite prolate spheroid [9]; inflation of an arbitrarily
oriented triaxial ellipsoidal cavity [10]; pressure change in a penny-crack source [11]; closed
vertical pipe [12]; stress induced by a finite spherical source [13]. A description of the differ‐
ences among all these sources is beyond the scope of this article, and we refer the reader to the
cited literature.

Lastly, we remark the existence of semi-analytical solutions for a layered crust [14] [15], even
with a visco-elastic rheology [16]; however they often require a considerable computational
time, preventing their use in non-linear inversion schemes, where thousands of forward
calculations are often needed. The same limitation affects finite-element models, unless used
to build the Green’s function matrix as explained in the next section.

For almost all the listed models, the geometric parameters (position, depth, dimension,
orientation, etc…) are non-linearly related to the surface displacement. On the contrary,
“intensity” parameters, as the dislocation for the Okada model or the pressure change for a
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Figure 1. Parameters required by the Okada model.
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linear and linear parameters from geodetic data follows different inversion strategies, ex‐
plained in the next section.

A further Okada-derived model, widely used to model earthquakes, consists of an array of
single Okada sources, or patches, for which all the non-linear parameters are already con‐
strained (Figure 3). This compound source is used to reproduce a fault rupture with a variable
shear dislocation (or tensile opening), thus improving the modeling performances compared
with the uniform slip Okada source.

Figure 3. Okada-based, compound source for slip or opening distributed models

InSAR measurements are relative, therefore the displacement maps are often related to a
reference point considered stable or with a known deformation. This point sometimes turns
out to be inappropriate: it could fall in an area affected by atmospheric artifacts; the non-zero
displacement field could be larger than the image frame; the GPS value used to tie the reference
point might contain a very long wavelength tectonic signal. Furthermore, orbital inaccuracies
might introduce artificial linear ramps or even quadratic surfaces. Thus a further non-
geophysical source must be often considered, to account for possible improper reference points
and/or possible orbital artifacts.

This model can be implemented as a second order surface of the type

( ) 2 2x,y A B·x C·y D·x E·y F·xy= + + + + +  modd (2)

so that the apparent displacement dmod for a given point (x,y) is a linear combination of the
coefficients A, B… F. Second order terms can be neglected when orbital artifacts are well
reproduced only with a linear ramp.

We remark that all the geophysical and orbital sources2 must always be solved simultaneously
in the inversion, otherwise the first source used to model the data will tend to improperly
reproduce the signal we might fit with other sources.

2 We adopt the misleading definition “orbital source” only because it is mathematically handled just like the Okada or
Mogi equations.
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3. Non-linear and linear inversions

Current approaches to the modeling of geodetic data are the evolution of pioneer studies where
the amount of geodetic measurements where certainly lower than nowadays [17][18][19] and
the availability of geophysical models were still limited: solutions for dislocation in an elastic
medium were available only for some simple fault configurations and for point sources [20]
[21]. However, non-linear and linear inversion strategies were essentially the same presently
adopted. What deeply changed through the decades is the amount of observed data, with
InSAR playing a lead role.

An inversion algorithm is a procedure to infer some source parameters so that the modeled,
or predicted, surface displacement best reproduces the observed one. We must firstly provide
a definition for “best fit”; almost every model shown in literature assumes that the best
parameter estimate (mest) occurs when the square of the residuals between observed (dobs) and
modeled (dmod) data, i.e. a cost function based on the L2 norm, is minimized:

( )( ) ( )2
2 2: min L , where L = - funcest obs modm d d (3)

This choice implies that dobs data obey to a Gaussian statistics, so that the presence of large
outliers is strongly unlikely [22]. However, uncertainties in InSAR data may arise at different
stages until the unwrapped and geocoded displacement map is generated, and large spurious
artifacts are not so unlikely (see [23] and references therein). Thus the assumption of an L2

norm criterion should be taken with care, since it may not be the best choice to build the cost
function to minimize.

The inversion strategy must be chosen according to the source parameters m linearity with
respect to the surface displacement dmod. In this section, we assume that the surface displace‐
ment is a non-linear combination of the source parameters we want to infer from InSAR data.

Any non-linear inversion scheme is based on the realization of a sequence of forward calcu‐
lations as in (1) until the condition (3) is satisfied or, in other terms, a set of rules to iteratively
change the m parameters until the best estimate mest is obtained. A peculiar aspect of InSAR
data is that displacement measurements are provided in the line-of-sight direction, while every
modeled dataset dmod is calculated in a Cartesian reference system; therefore the calculation of
the L2 norm must be preceded by projection of modeled data into the line-of-sight.

A typical issue to face in a non-linear inversion is the presence of an unpredictable number of
local minima, corresponding to unsatisfactory solutions; a robust algorithm should be able to
take a cost function out from local minima. Unfortunately, only few strategies guarantee the
achievement of this goal, for instance Simulated Annealing [24]; however, they are incompat‐
ible with a reasonable processing time3. We also remark that the level of non-linearity depends

3 Simulated Annealing is largely used in non-linear inversions due to the ease of its implementation, but never with the
cooling schedule that guarantees to find the global minimum, that would require a nearly endless computation time.
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on the parameters to invert: for instance, when periodic parameters like rake or strike angles
in the Okada model are fixed or forced to vary in a narrow range, the impact of local minima
decreases.

In our experience, the Gauss-Newton or gradient descent methods, as the Levemberg-
Marquardt algorithm which is a mix of both [25], provide excellent results with a short
processing time; although this algorithm does not consider any stratagem to escape from local
minima, its implementation with multiple restarts provides an efficient strategy to identify the
global minimum.

We incidentally remark that the repeated calculation of forward models makes unfeasible the
use of finite element models in any inversion scheme, because of the long time needed to setup
and calculate even a single forward model.

A different approach is adopted when all the parameters to invert are linearly related to the
surface displacement, as occurs with the strike-slip, dip-slip and opening components for an
Okada model, with the volume variation in a Mogi source or with the coefficients of equation
(2). In this case, the inversion can be set up in a matrix form of the type:

·=obsd G m (4)

where the vector collecting all the parameters m is related to the known displacement values
dobs through the Green’s function matrix G.

It is worth noting that the number of unknowns m is almost always lower than the number of
equations in the linear system (4), given the abundance of InSAR measurements dobs. Therefore
the problem is generally over-determined and the solution, in the simplest case, is calculated
in the least square sense on the data, as follows

1g g T T where 
-- -= = é ù

ë ûest obsm G d G G G G (5)

being G-g the generalized inverse of G [22].

However, if we consider the practical problem of finding the coseismic slip distribution as in
Figure 6e, solutions found via (4) and (5) are generally not acceptable because of the weak
control that InSAR surface measurements have on deep parameters, leading to highly scattered
mest values. This problem can therefore be treated as partially underdetermined, adding
constraints on the model parameters to get a more reliable result. In this case, since the problem
is not mathematically underdetermined, the model reliability is obtained at the expense of the
data fit. The system of (4) can be arbitrarily extended to introduce almost any type of a priori
constraint; in earthquake modeling, for instance, we can force the slip to gently vary across the
fault and this can be achieved introducing a damping parameter in the form:

(dobs

0
)= ( G
ε ∙∇2 )∙m (6)

where the Green’s functions G are extended with a Laplacian operator ∇2 of the model
parameters, opportunely weighted with an empirical parameter ε [19][26]. In this damped least
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square solution, the ε coefficient is problem dependent and must be chosen via trial and error
or through the construction of an empirical fit vs. smoothness curve, to find the desired
compromise.

Other inequality constraints, such as the positivity (Non-Negative Least Square), can be
introduced as well, to further increase the solution reliability; in the modeling of a coseismic
displacement field, the constraint m>0 is used to avoid unrealistic “back-slip” conditions. For
a complete review of the strategies used to add conditions to the linear system (4), refer to [22].

Unlike non-linear inversion, in linear inversions the use of finite elements models (FEM) is not
prohibitive in terms of computational time. In this stage, the heavy forward calculation must
be done only once to build the kernel matrix G [27]. After the Green’s function matrix is
available, the problem is reduced to the solution of equations (4), (6) or equivalent.

4. Seismic cycle imaging and modeling

Based on the elastic rebound theory formulated by Harry Fielding Reid in 1910, after the 1906
San Francisco earthquake, a seismic cycle is formed by a slow accumulation of stress and
deformation, as consequence of the forces acting from the underlying Earth mantle, followed
by an impulsive release of stress and energy when the internal strength is exceeded such that
the brittle crust breaks (Figure 4). These two phases, which we refer to as inter- and co-seismic,
are completed by a post-seismic phase, where different phenomena may induce further
deformations during a short- to mid-term period after the earthquake (Figure 5).

Figure 4. Simplified description of the elastic rebound theory: black arrows describe the steady interseismic forces act‐
ing on a locked fault until its sudden failure.

The co-, post- and inter-seismic phases have completely different characteristics in terms of
duration and crust behavior. During the inter-seismic phase, faults are locked on the upper
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crust and the underlying forces act to deform the surface with relatively constant rates of few
millimeters per year over large areas. As soon as the accumulated stress exceeds the locking
frictional forces, the crust cracks and part of the deformation around the faulted area is
elastically and permanently recovered in few seconds. Soon after the earthquake, for a period
lasting from few minutes to some years, a further deformation occurs as a consequence of the
sudden co-seismic stress release. Deformation rates roughly follow a decreasing exponential
law (Figure 5) and can be explained in terms of one or a combination of the following factors:
residual dislocation on the ruptured fault (after-slip models), viscoelastic relaxation of the
lower crust driven by the coseismic stress change, poro-elastic rebound due to the migration
of fluids in the crust ([28] and references therein).

Figure 5. CGPS data related to the 2009 L’Aquila earthquake, showing the steady tectonic drift, the sudden coseismic
displacement and the exponential post-seismic relaxation (by courtesy of Roberto Devoti, INGV)

This basic description allows to state how SAR derived data can play a crucial role in the
understanding of a seismic cycle. In the co-seismic phase, the expected surface displacement,
from tens of centimeters to several meters, and the nearly perfect elastic behavior due to the
instantaneous deformation are perfect conditions to model the standard two-pass interferom‐
etry with the Okada solutions. [30][31][32] showed that since the 1992 Landers earthquake, the
onshore deformation for all the significant earthquakes worldwide (M > 5.5) have been imaged
with the standard InSAR interferometry and most of them have been modeled with the Okada
model. A common problem found in this approach is that, in general, coseismic interferograms
contain a contribution from the post-seismic deformation that can affect some fault parameters
[31]. Isolating the co-seismic signal may not be straightforward, but the introduction of
continuous measurements, such as CGPS, may be helpful in the post-seismic contribution
removal.

During the inter-seismic phase, steady deformation rates are often assumed; however,
expected values are of the order of some millimeters per year, so they can be hardly detected
with two-pass interferometry: the time needed to accumulate a signal above ordinary InSAR
artifacts would be too long to preserve the phase coherence; for this reason, time-series
techniques like PS [33], SBAS [34], or image stacking are indicated to get mean velocity maps
with millimetric accuracy [35], provided that a consistent number of images is available [36]
[37]. Elastic models have also been used to fit inter-seismic data [38][39][40], however its use
must be carefully considered because the assumption of elasticity can lack of realism.
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Another  important  aspect  is  the  apparent  similarity  between  long-wavelength  tectonic
signals spreading through a whole SAR image frame and the orbital artifacts [41]. In this
context, the use of GPS, unaffected by such artifacts, to constrain the velocity maps can be
very effective [36][41].

Post-seismic relaxation has intensity and duration strongly dependent on the earthquake
magnitude; short intervals can be easily encompassed between two SAR acquisition [42][43],
often cumulated with the co-seismic effects. In this case the two contributions cannot be
distinguished unless external continuous observations, as GPS, are introduced [44]. For large
earthquakes, the post-seismic effects can last from months to years, and the InSAR time-series
approach can be effectively used to describe the crustal displacement time evolution [28].
While the observed displacement is interpreted in terms of after-slip over the seismogenic
fault, the Okada solutions can be used to model the signal [45]. However, for long-term
deformation, visco-elastic models should be used [42].

Regardless from the seismic cycle phase, deformation modeling with the Okada solution is
generally subdivided into two steps: a first non-linear inversion to retrieve all the uncon‐
strained source parameters, followed by a linear inversion to get the distribution of the
dislocation over the fault(s). The only measure to adopt before running the linear inversion is
the widening of the fault plane obtained via non-linear inversion: the latter represents only a
mean source with a mean dislocation value, therefore the fault plane must be enlarged to let
the slip vanish to zero.

While most of the signal is already reproduced with uniform slip sources, high frequency
spatial fluctuations are recovered adopting the Okada-derived distributed slip sources (Figure
6), solved with the linear system (4).

Figure 6. Coseismic displacement field, for the 2003 Bam (Iran) earthquake, retrieved with InSAR (a), modeled with a
uniform slip Okada source (b) and with a distributed slip, Okada source (c). Models for (b) and (c) are shown in (d) and
(e), respectively.
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A last remark is about the possibility of obtaining a more realistic source by relaxing the
condition of a flat half-space. The possibility of accounting for the topography in the overall
system setup will be described in the next section, where this aspect plays an important role.

5. Volcanic modeling

The volcanic activity monitoring is conditioned by our ability to describe and understand the
eruption cycle. Several steps can be identified in this cycle: magma generation, melting, storage
and ascent, crustal assimilation, degassing, crystallization and surface eruption, not all of
which can necessarily occur. In any case, evidences of the incoming eruption can be noticed
only late in the cycle and InSAR data are crucial to provide information for the hazard
mitigation, even for not erupting stages [46].

In the case of volcanic phenomena, several factors contribute to make the assumption of
elasticity less reliable than the co-seismic case; magma intrusion starts below the seismogenic
crust, thus involving ductile, high temperature layers able to deform aseismically. Further‐
more, inflating and deflating phenomena involve times long enough to activate a visco-elastic
behavior. Lastly, the half-space approximation is debatable as well, because of the inevitable
significant topography of the investigated areas. Despite this limitations, the aforementioned
elastic models have been largely applied in volcanology, with the aim of reproducing almost
all surface deformations detected with InSAR [47][3][48][4][49][50].

Magma chamber inflation or deflation is generally modeled with the simple Mogi source, due
to the ease of its implementation compared with its effectiveness [47][51]. For magma intrusion
in vertical (dykes) or horizontal (sills) cracks, distributed opening sources based on the Okada
model are instead adopted [48][50].

Sometimes, complex patterns revealed by InSAR suggest the implementation of a multiple-
source system, where also seismic sources can have a role, as shown by the 2005 Afar dyking
phase described in [52] (Figure 7). In such contexts, the double step non-linear/linear inversions
is adopted to first constrain the source geometries, then to retrieve the slip and opening
distributions.

For the long-term crustal deformation, time-series techniques have shown their effectiveness
to describe the surface change, even when repeated inflation-deflation cycles are present [53].
In this case, modeling can be carried out by fixing the non-linear source parameters and then
fitting the time dependent signal by only varying the linear parameter, i.e. the volume or
pressure change.

A further remark, in this context, is about the important role played by topography, since
strong elevation variations are expected in the investigated areas; for Mt. Etna, for instance,
total relief difference is over 3000 m. To mitigate the assumption of flat half-space, topographic
corrections can be applied to the analytical models. This correction consists in the calculation
of the source depth not from the zero level of the free surface, but adding the real elevation of
the point for which the predicted displacement is being calculated. Such compensation has
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been compared with finite element models, providing a satisfactory improvement on the
modeled data [54][55], as shown in Figure 8.

Figure 8. Comparison between displacement profiles from analytical and numerical models, with and without topo‐
graphic corrections (from [54])

Finally, the frequent presence of stratified atmosphere, altering the interferogram with fringes
due to topography-related radar delays, can be discriminated by comparing independent
interferograms, assuming weather conditions uncorrelated in time.

6. Data downsampling

Since displacement maps derived from InSAR processing may contain millions of valid pixels,
with an high degree of spatial correlation, a way to reduce the data must be adopted in any

Figure 7. The complex system of sources (magma chambers, dykes and faults) used to model the Afar dyking phase
(from [52])
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inversion strategy. Several criteria have been proposed in literature, among which we recall
here three different approaches: Quadtree decomposition [56][57], resolution-based [69] and
regular mesh [58][59].

A  general  rule  to  state  which  is  the  best  method  does  not  exist,  though  the  Quadtree
algorithm is the most used. It is a decomposition algorithm aimed at preserving the “amount
of information” in the image, and is in general based on the spatial gradient of the signal;
it  follows  that  areas  with  higher  displacement  values  are  sampled  at  higher  spatial
frequencies (Figure 9b).

The resolution-based algorithm proposed by [69] is driven by an already known source; this
allows to calculate the data resolution matrix [22] used to define where surface data must be
sampled to constrain the linear source parameters.

Finally, regular sampling is also widely adopted, since its ease of implementation and its
effectiveness in imposing a sampling density independent from displacement values. In fact,
the InSAR data resolving power, i.e. the maximum detail level achievable on a source, strongly
depends on the location of the observed points, as shown in [60] and not on the displacement
field itself. The sampling can be manually customized by defining areas with different
sampling density; this also allows to have a good control on the number of observed data to
handle in the inversion (Figure 9b).

Figure 9. The 2003 Bam (Iran) earthquake displacement field (a), downsampled with the Quadtree algorithm (b) and
a regular mesh with variable posting areas (c).

7. Uncertainty and trade-offs

InSAR measurements are always affected by different sources of uncertainty, as shown by the
ample literature on this topic (see [23] and references therein). Here we discuss the strategies
generally adopted to propagate the data uncertainty to the source parameters in the non-linear
and linear inversions.

For convenience, linear inversion is firstly analyzed, where ordinary rules for the error
propagation can be applied, as:
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where the full variance/covariance matrix Σd of the observed data is used as input to find the
full variance/covariance matrix Σm of the model parameters. To build Σd, the power spectra
analysis of a displacement map containing only noise and artefacts is used. From this analysis,
the covariance vs. distance scatter plot, fitted by means of some simple ad hoc function (Figure
10), as described in [23], is retrieved. One of the simplest way to express an InSAR covariogram
is the exponential function of the type

C(r)= { σ 2for r =0
C0e

-αrfor r >0
(8)

where C0 is the covariance at zero distance, generally lower than the overall σ2 variance,
and α controls the distance at which data can be considered uncorrelated. More sophisticat‐
ed functions can be found in literature, accounting also for a possible spatial anti-correla‐
tion [61].

Figure 10. Empirical covariance function (from [61])

The full variance/covariance matrix Σd can be obtained by setting every off-diagonal posi‐
tion σi,j to the covariance value obtained with (8), setting ri,j, as distance between the i-th and
the j-th point; diagonal values are set equal to σ2. After that, equation (7) can be applied.

In the non-linear case, a formal expression of the uncertainty propagation is difficult to obtain
and an empirical approach is commonly used: for tens or hundreds of times synthetic noise
datasets dnoise are generated, added to the observed data dobs, then the inversion is performed
and the results collected. To construct the dnoise dataset, a Cholesky decomposition of Σd must
be preliminary carried out, such that
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The L matrix is then multiplied by a vector dGauss of uncorrelated Gaussian noise

=noise Gaussd Ld (10)

to get the synthetic noise dataset dnoise characterized by the same InSAR covariogram, as
explained in detail in [62]. After the inversions have been carried out, the results can be
efficiently visualized as a grid of scatter plots and histograms, describing trade-offs between
coupled parameters and single parameter uncertainty (Figure 11).

Figure 11. Uncertainty (red histograms) and trade-offs between parameters (from [59])

8. Interactions between sources

Models derived from InSAR data give important hints for the hazard assessment, as discussed
later in this chapter, and in this respect an increasingly considered aspect is the way sources
interact with each other. An earthquake occurs when the internal strength is exceeded by the
surrounding stress, loaded during the interseismic phase. We generally do not know the
absolute stress value for a given crust volume, primarily because the loading phase spans
through centuries or millennia. On the contrary, we can quantitatively calculate the stress
variation induced by a fault dislocation.
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The stress released during a seismic event perturbs an area extending far from the source itself,
where surrounding locked faults are likely to be present. The rearranged stress conditions
following an earthquake may increase or decrease the current (unknown) shear stress level
acting on a fault surface: we can therefore calculate if such a variation moved the receiver
source closer to its failure.

The analytical solutions proposed in [63] allow to calculate the internal deformations induced
by a dislocation over a fault plane; internal deformation can be then easily converted into stress
variations, using the Coulomb Failure Function variation (ΔCFF), described in [64], and
defined as

n( )CFF · pt m sD = D + D + D (11)

where Δτ is the shear stress change over the fault, calculated for a given slip direction, μ is the
friction coefficient, Δσn is the normal stress variation and Δp the pore pressure change [65].
The latter is usually unknown and thus neglected in stress transfer calculation.

Despite its apparent simplicity, the application of the stress change analysis must be considered
with care, because of the intrinsic unknown of the already existing background stress, the
mislocation of possible receiver sources, the uncertainty of the triggering source parameters
(derived from inversion) and the presence of spatial inhomogeneities. They all introduce a
high level of uncertainty, as discussed in [66] and references therein.

The stress variation analysis has been successfully adopted also in a volcanic context, to study
the interaction among sources of different nature: magma chambers, dykes, faults [67][68][50].
Though these analyses are always conducted a posteriori, after the event occurrence, they
contribute to support the stress-transfer reliability.

However the warning issued by [64] is still holding: “much work remains before we can
understand the complete story of how earthquakes work”. The CFF analysis is a powerful tool
to describe the interaction between sources, but it is still not adequate to deterministically state
how close to the failure a receiver source has been pushed by any triggering event.

9. From science to operational risk management

The use of SAR data and techniques has greatly stimulated the progress of the Solid Earth
science. Globally, over three hundreds deformation fields related to the earthquake cycle
(including inter-, co-, and post-seismic deformation), and over a thousand volcanic edifices,
have been studied using SAR data since the beginning of the “InSAR era” [30] [31] [32][70][71].
Important new knowledge has been acquired on processes such as fault dislocation, fault
segmentation, magma and gas migration, volcanic spreading, stress transfer, strain accumu‐
lation and release, poro-elastic diffusion, and visco-elastic relaxation. Better descriptions of the
seismic and volcanic cycles are today available thanks to these studies.
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Soon after InSAR started to demonstrate its potential to sustain new scientific developments
in crustal deformation studies, practitioners started to investigate the possible use of this new
information in the risk management activities [72][73]. It was rapidly realized that the new
geodetic "imaging" capabilities provided by satellite SAR sensors could strongly support two
main components of the disaster risk management, namely the assessment/prevention and the
response components.

However, the space and ground segments of the first satellite SAR systems (i.e. ERS, ENVISAT,
JERS, ALOS) were targeted mainly to scientific use and, while they could provide delayed data
to carry out pre- or post-disaster scientific analyses eventually supporting the hazard assess‐
ment component [74], they lacked the near real time capabilities needed for use in the response
phase. Even after the launch of the first commercial SAR satellite in 1995 (Radarsat-1) the use
of SAR data in disaster risk management did not flourish, due to the lack of a constant repeat
pass, global coverage, and to the high costs required to maintain updated archives.

This situation will change radically in 2014, when the European Space Agency Sentinel-1
operational satellite (and its companion Sentinel-1 B in 2015) will start to provide a full InSAR
coverage of nearly all land areas with pre-defined, constant repeat pass [75]. The Sentinel-1
data will be delivered in near real time to selected service providers to generate support
products during natural disasters or emergencies. Sentinel-1 minimum revisit time will be 12
days, improving to 6 days after the launch of the second satellite, and the mission continuity
will be guaranteed for many years [76].

While the "flat" data flow rate and the "full and open data access" policy of the Sentinels will
certainly represent a breakthrough for the use of remote sensing data for operational risk
management, other SAR satellite constellations have already started to demonstrate the
potential for operational emergency response. The Italian Space Agency COSMO-SkyMed
four-satellite constellation was in fact expressly developed to support the monitoring and
assessment of natural and anthropogenic disasters [77], although it is a dual-use mission, also
employed for defense purposes. This constellation presently allows much shorter revisit times
than possible with Sentinel-1, down to 1 day depending on satellite.

In the following sections, with reference to Table 1, we will show examples and examine the
operational capabilities of InSAR data, and of geophysical models they can constrain, to
support activities in the two main components of seismic risk management: the risk assess‐
ment/prevention, and the response to a seismic crisis.

9.1. SAR-derived products to support seismic hazard assessment

Seismic Hazard Assessment (SHA) is the process of calculating, for a given area, the probability
of the occurrence of a certain ground shaking level within a defined period of time. The typical
SHA synthetic result for a region is a map showing the spatial variations of the horizontal Peak
Ground Acceleration which have a probability of exceedance of 10% within a 50 or 75 year
time frame. These maps (complemented by more detailed, site-specific seismic hazard curves)
are generated using information on the existing seismic sources, their activity rates and
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maximum earthquake magnitude, and by estimating the relations between epicentral distance
and ground motion for a given earthquake magnitude and fault type (attenuation relations).

InSAR data can provide important information regarding the earthquake source (Table 1). One
field of analysis deals with the actual detection of faults by means of their geomorphological
signature (e.g. linear scarps, triangular facets on mountain fronts, displaced terraces, drainage
network offsets, etc.). This is a classical application of photo-interpretation techniques
(structural and geomorphic), in which B&W SAR intensity images give a contribution
comparable to optical images. The satellite image analysis can provide especially valuable
support to the mapping of active faults and earthquake sources, in areas which are of difficult
access and for which detailed geological data do not exist.

While intensity image analysis reveals the fault presence by investigating peculiar landforms
created by surface deformation cumulated during geological times, multitemporal InSAR
processing can provide a quantitative measurement of the ongoing deformation rates (and
their spatial patterns) used to characterize the fault behavior. Many scientific results obtained
in the last ten years [32] have contributed precious information for the parameterization of the
seismic sources [79][80][81][82][83][84], but also for the definition of the present deformation
rates in areas where multiple sources are present [37][85] [86][87][88][89], for the partitioning
of strain among different faults [90][91], for the improvement of tectonic models in seismogenic
areas [92][93][94].

Among the most important SAR-derived inter-seismic source parameters directly contributing
to hazard estimates is the long-term slip rate. This is the yearly rate of slip which is modeled
as occurring on the deep part of an active fault plane, below a given “locking depth”. The latter
is defined as the depth separating the upper brittle crust, where the fault plane is locked, from
the lower visco-elastic crust where the fault is instead slowly creeping, as explained in Section
4. If the region tectonics is dominated by a single large fault, as often is the case in plate margin
contexts, the inversion of InSAR ground velocity measurements can be used to estimate the
inter-seismic slip rate at depth.

The fault creep below the locking depth is in turn related to the stress build up in the upper
crust, stress which will be eventually released during the seismic dislocation. Considering
an ideal earthquake cycle,  and assuming that the friction along the fault plane does not
vary much through time, each successive fault rupture should occur when the accumulat‐
ed shear stress overcomes a similar level of fault strength. Thus, the knowledge of the inter-
seismic slip rate and of the seismic history of the fault should allow to estimate a recurrence
time for  moderate  to  large earthquakes on a  given fault.  These recurrence interval  esti‐
mates have in some cases large uncertainties (fault strength and slip rates are indeed not
constant through time), nonetheless the inter-seismic slip rates obtained by geodetic data
(mainly InSAR and GPS), integrated with paleoseismological and seismological data, are
considered important  parameters  to  support  seismic  hazard calculations  [95][96][97][98].
However, while GNSS data have been more extensively used (see for instance the SHARE
EC project, the Working Group on California Earthquake Probabilities, 2011; [97]; [99]) to

SAR Data Analysis in Solid Earth Geophysics: From Science to Risk Management
http://dx.doi.org/10.5772/57479

277



User needs
SAR-derived supporting

information
SAR data analysis techniques

RI
SK

 A
SS

ES
SM

EN
T 

A
N

D
 P

RE
V

EN
TI

O
N

Se
is

m
ic

 h
az

ar
d

Identification of active faults. Structural maps. Amplitude image analysis.

Parameterization of activity
rates.

Long-term ground displacement
rates maps (inter-seismic ground
velocity) at low spatial resolution.
Fault models and long-term slip
rates.

Time-series InSAR techniques as
Persistent scatterers and Small
Baseline. Non-linear inversion
modeling.

Definition of maximum
magnitude earthquake.

Fault model geometry and
kinematics. long-term slip rates.

Non-linear inversion modeling of
deformation data.

In
du

ce
d 

ha
za

rd Pre-event identification of
gravitational slope
deformations.

Geomorphological analysis. Long-
term ground displacement rates at
high spatial resolution.

Amplitude image interpretation
and soil moisture analysis.
Time-series InSAR techniques as
Persistent scatterers and Small
Baseline. Geomechanical modeling

Se
is

m
ic

 v
ul

ne
ra

bi
lit

y Identification of structural
weaknesses in man-made
structures.

Long-term ground displacement
rates at very high spatial
resolution.

Time-series InSAR techniques as
Persistent scatterers.

D
IS

A
ST

ER
 R

ES
PO

N
SE

Lo
ss

 e
st

im
at

io
n Rapid (1-2 days) spatial

assessment of damage to
man-made structures

Maps of damage classes at the
district scale. Maps of collapsed
structures at the single building
scale. Very high resolution co-
seismic ground displacements.

Intensity-based change detection
and classification.
Coherence-based change detection.

En
vi

ro
nm

en
ta

l d
am

ag
e 

es
tim

at
io

n Rapid spatial assessment of
environmental effects of
earthquake: fault scarps,
diffuse ground displacement,
reactivated landslides,
drainage reversal or
interruption, soil liquefaction,
sinkhole collapse, etc.

Co-seismic ground displacement
maps at high spatial resolution.
Geomorphological and structural
analysis.

SAR Interferometry, pixel offset
tracking, Multiple Aperture
Interferometry, intensity image
interpretation, coherence analysis.

Ev
en

t s
ce

na
rio

Rapid assessment of
earthquake sources and
possible evolution of the
aftershock sequence.

Co-seismic ground displacement
maps at medium-high spatial
resolution. Geometrical and
kinematic parameters of the
earthquake sources.
Stress increase on nearby faults.
Post-seismic ground displacement
for the next few months after the
mainshock.

SAR Interferometry, pixel offset
tracking, Multiple Aperture
Interferometry.
Time-series InSAR techniques. Non-
linear and linear inversion modeling
of deformation data. Coulomb
stress analysis.

Table 1. Uses of SAR-derived information to support various components and actions of seismic risk management

Land Applications of Radar Remote Sensing278



User needs
SAR-derived supporting

information
SAR data analysis techniques

RI
SK

 A
SS

ES
SM

EN
T 

A
N

D
 P

RE
V

EN
TI

O
N

Se
is

m
ic

 h
az

ar
d

Identification of active faults. Structural maps. Amplitude image analysis.

Parameterization of activity
rates.

Long-term ground displacement
rates maps (inter-seismic ground
velocity) at low spatial resolution.
Fault models and long-term slip
rates.

Time-series InSAR techniques as
Persistent scatterers and Small
Baseline. Non-linear inversion
modeling.

Definition of maximum
magnitude earthquake.

Fault model geometry and
kinematics. long-term slip rates.

Non-linear inversion modeling of
deformation data.

In
du

ce
d 

ha
za

rd Pre-event identification of
gravitational slope
deformations.

Geomorphological analysis. Long-
term ground displacement rates at
high spatial resolution.

Amplitude image interpretation
and soil moisture analysis.
Time-series InSAR techniques as
Persistent scatterers and Small
Baseline. Geomechanical modeling

Se
is

m
ic

 v
ul

ne
ra

bi
lit

y Identification of structural
weaknesses in man-made
structures.

Long-term ground displacement
rates at very high spatial
resolution.

Time-series InSAR techniques as
Persistent scatterers.

D
IS

A
ST

ER
 R

ES
PO

N
SE

Lo
ss

 e
st

im
at

io
n Rapid (1-2 days) spatial

assessment of damage to
man-made structures

Maps of damage classes at the
district scale. Maps of collapsed
structures at the single building
scale. Very high resolution co-
seismic ground displacements.

Intensity-based change detection
and classification.
Coherence-based change detection.

En
vi

ro
nm

en
ta

l d
am

ag
e 

es
tim

at
io

n Rapid spatial assessment of
environmental effects of
earthquake: fault scarps,
diffuse ground displacement,
reactivated landslides,
drainage reversal or
interruption, soil liquefaction,
sinkhole collapse, etc.

Co-seismic ground displacement
maps at high spatial resolution.
Geomorphological and structural
analysis.

SAR Interferometry, pixel offset
tracking, Multiple Aperture
Interferometry, intensity image
interpretation, coherence analysis.

Ev
en

t s
ce

na
rio

Rapid assessment of
earthquake sources and
possible evolution of the
aftershock sequence.

Co-seismic ground displacement
maps at medium-high spatial
resolution. Geometrical and
kinematic parameters of the
earthquake sources.
Stress increase on nearby faults.
Post-seismic ground displacement
for the next few months after the
mainshock.

SAR Interferometry, pixel offset
tracking, Multiple Aperture
Interferometry.
Time-series InSAR techniques. Non-
linear and linear inversion modeling
of deformation data. Coulomb
stress analysis.

Table 1. Uses of SAR-derived information to support various components and actions of seismic risk management

Land Applications of Radar Remote Sensing278

constrain the occurrence models for operational hazard assessment, InSAR data have so far
been employed only marginally.

The reason why the inversion modeling of InSAR ground velocities is still not operational‐
ly used for the estimation of inter-seismic slip rates and other important fault parameters
(as maximum magnitude earthquake), has to do with deficiencies in the data and with gaps
in the underlying science. The inadequacy of present SAR system to provide useful data
to  measure  small  ground  velocities  over  large  spatial  wavelengths  has  been  addressed
above, and it is expected to be partially resolved by the Sentinel-1 satellites. The scientific
issues  concern  instead  the  incomplete  knowledge  of  the  processes  driving  the  stress
accumulation and release in the crust, which imply that the results of the models used to
estimate active fault parameters through the inversion of inter-seismic ground velocities are
are dependent on scientific judgment.  In SHA, the uncertainties arising from the incom‐
plete knowledge of the earthquake processes are addressed by ensuring that the genera‐
tion of seismic hazard maps is based on discussions within the scientific community, aiming
at developing the widest possible consensus on input data, methods, and practices [100].
We expect that in less than a decade the continuous InSAR data flow from the Sentinel-1
operational  mission  will  have  promoted  the  development  of  new  inter-seismic  source
models, and better procedures for their significance and uncertainty assessment, effective‐
ly spreading the InSAR data use in SHA.

Two further important activities in seismic risk assessment/prevention in which SAR data can
give a valuable contribution are (Table 1): 1) the identification of gravitational slope deforma‐
tions which can undergo reactivation or catastrophic collapse during seismic shaking, and 2)
the evaluation of the vulnerability level of buildings or infrastructures.

In the first case SAR imagery is used for two different purposes. The classical geomorphic
photo-interpretation carried out also on optical images to detect the landforms indicating
gravitational slope deformations, can be enhanced by the capacity of SAR intensity images to
provide estimates of soil moisture [101]. In general these techniques are used to provide a
spatial mapping of the landslide, with little information on its activity [102]. Another use relies
instead on high resolution multi-temporal InSAR data to investigate the ongoing rates of
gravitational mass movements in high seismic risk areas, which may be used to evaluate more
specific hazard levels due to seismically-triggered landslide collapse [103]. The additional
hazards induced by landslides reactivated by seismic shaking is very important especially in
areas with high topographic relief: in the Wenchuan, 2008 earthquake over 20,000 casualties
were attributed to landslide collapse [104].

Finally, a new field of use for InSAR-derived, high resolution ground deformation maps in the
practice of seismic risk prevention, is to support a detailed vulnerability analysis in areas
affected also by other deformation phenomena with high spatial frequencies (i.e. subsidence,
sinkholes). If these phenomena occur in high seismic risk areas, the classification of the severity
of the static deformation of man-made structures can allow a more accurate assessment of their
resilience to future dynamic actions caused by seismic shaking.

9.2. SAR-derived products to support earthquake emergency response

The response phase of seismic risk management concerns all activities needed to promptly
respond to the effects of a damaging earthquake. It can be divided in two main, temporally
linked sub-phases, the Immediate response and the Sustained response [105].

During the Immediate Response phase, which usually lasts from few to several days, depend‐
ing on the dimensions of the disaster, the main priorities are search and rescue actions and the
emplacement of immediate preliminary measures to save lives and protect the population
(evacuate insecure buildings and districts, provide emergency health services and food, install
temporary shelters, etc.). A critical element for the management of this phase is the situational
awareness, including all information on the extent of the phenomena (the event scenario), of
its consequences (the loss scenario), and possibly future developments of both. Satellite SAR
data can provide very important information in this phase, although, as we will see, the
temporal requirements are difficult to fulfill.

After this initial phase the response actions are directed towards the return to an acceptable
state of operation of human activities (repair or reinstall utility networks and infrastructures,
provide more comfortable housing structures and working environments, provide temporary
social services, etc.). This Sustained Response sub-phase may last from few to many months,
and continuous information to monitor this lengthy process is required.

In the Response phase SAR data can be employed to generate two different families of
products: those concerning the observation and quantitative measurement of the disaster
effects on the human environment, and those providing information on the geophysical
processes related to the phenomena (i.e. the earthquake and the triggered effects).

One of the main products of the first family is the damage assessment map, either provided
at the district scale or at the single building scale [106]. While damage maps are also generated
using data from optical satellites, which can provide higher resolution than SAR systems, the
all-weather capability of the active microwave sensors provides an important advantage for
rapid mapping in some regions [107]. Both types of data would require pre-and post-event
imagery for an accurate change detection (post-event data only have been used, but with
degraded accuracy), with SAR data having the additional constraint of the same looking
geometry for the two acquisitions (mandatory for coherence-based detection techniques).
Unfortunately, for very high resolution SAR and optical data, global coverage is neither
continuous nor constant, and high resolution damage maps cannot be routinely generated.
However, if ad hoc monitoring actions are started soon after the mainshock, the post-event
images can be effectively used to incrementally map the further damage which may be caused
by large aftershocks during the next weeks or months.

Where pre- and post-event, same-geometry SAR data do exist, InSAR techniques can provide
accurate maps of co-seismic ground displacements. If very high resolution data are available
(<3 m) these maps could be used to detect very localized damage to infrastructures (especially
large, linear ones). The most common usage however is for the large scale mapping of ground
movements directly related to the seismic dislocation (continuous ground displacement field
and surface fault scarp), and for the mapping of local phenomena triggered by the seismic
shaking (typically gravitational movements). During the Immediate response phase this
information is extremely important to develop the situational awareness, for instance to direct
rescue teams or implement safety measures; its value is however inversely related to the its
delivery time after the mainshock. Depending on disaster size and location, a synoptic satellite
map of a fault scarp or of the reactivated landslides may be outdated by more precise aerial
or field surveys in 1-4 days. The co-seismic ground displacement map maintains instead its
unique capacity to provide a high resolution image of the ground movement patterns which
could not be provided by other means, critical for instance for the accurate mapping of
gravitational movements, especially when earthquake-triggered accelerated motions are small
and do not result in an immediate catastrophic collapse [5].

An additional important element of the situational awareness is the event scenario, which
contains an analysis based on detailed information on the various geophysical variables
(historical and instrumental seismicity, inter-seismic deformation, co-seismic deformation,
local amplification effects, ground acceleration levels, stress transfer levels, etc.) and objects
(earthquake source, nearby active faults, geological units prone to landsliding or liquefaction,
etc.) which have an impact on the response actions [108].

As we have seen in section 3, the SAR-derived static co-seismic ground displacements are one
of the most important datasets to constrain accurate models of the earthquake source [30]. The
standard modeling techniques described previously can be implemented to operationally
generate source models supporting event scenario development. Several source models (and
event scenarios) may then be progressively generated during a seismic crisis, their quality
improving as new seismological, geological, and InSAR observations become available and
are jointly used to constrain the inversions.

As clearly shown by some recent cases (Emilia - Italy, 2012; Canterbury -New Zealand,
2010-2011, Balochistan - Pakistan, 2008; Umbria Marche - Italy, 1997; Southern California-USA,
1992), aftershocks can sometimes reach higher magnitude levels and cause stronger damage
than the mainshocks [80][109][110][111]. As mentioned in Section 8 the triggering of large
aftershocks can often be correlated to an increase of stress on nearby faults due the stress
released by the mainshock dislocation and redistributed in the crustal volume. The co-seismic
fault slip distribution generated by the linear inversion of InSAR data is used to calculate the
variations of the Coulomb failure stress induced on the nearby active faults by each large
earthquake occurring in a seismic crisis [80][109]. Even if the level of positive stress transfer
cannot be used to deterministically quantify the clock-advance of failure on these faults, the
knowledge of stress variations can be used to generate quantitative forecasts of aftershock
productivity [66], providing important information for risk management during the response
phase.

Another information product of interest for the Sustained response phase is provided by the
InSAR monitoring of the post-seismic deformation, in particular that generated by poro-elastic
diffusion and fault after-slip (Section 4). These ground movements may amount to few tens of
percent of the co-seismic ones, and are expressed either as gradual slip increments occurring
along the fault plane (at depth or at the surface), and as slow diffuse variations of the co-seismic
ground displacement. They could increase the damage levels on man-made structures (e.g.
linear rigid structures as viaducts or utility infrastructures), and should be monitored until
they become negligible, usually within 7-12 months.

Given the rapid decay of this type of deformation, a dense InSAR temporal sampling is critical
for its effective monitoring. For instance, using the full temporal sampling capacity of the
COSMO-SkyMed constellation (~7 images per month) after 1.3 months the first time-series can
be generated using multitemporal InSAR techniques (minimum dataset: 10 images), while the
initial period can be monitored by classical two–pass InSAR. For lower sampling frequencies,
the time-series analysis could begin too late, when much of the ground movements have
already occurred: using Radarsat-2 for instance (1.25 image/month) 8 months are needed to
accumulate a 10-image dataset, but even using a single Sentinel-1 satellite (2.5 image/month)
the first deformation time series could be generated only after 4 months.

9.3. Provision of risk management services through the SIGRIS system

During the last 15 years, the importance of satellite Earth observation in disaster risk man‐
agement has been acknowledged also through specific large scale technological programs, as
the European Copernicus program (formerly Global Monitoring for Environment and Security
- GMES), of which the new operational Sentinel satellites are the pillars. In this framework, an
emergency management service has been developed since 2012 to provide mapping products
for global-scale natural or man-made emergencies (GIO-EMS, http://emergency.coperni‐
cus.eu/). For earthquake emergencies GIO-EMS can be activated to provide rapid information
products, as reference maps and damage assessment maps generated using optical and SAR
data, to institutional users and national Civil Protection bodies.

A wider range of products, including all those described above, was demonstrated by the
Italian SIGRIS system [108]. This is an Earth Observation monitoring system developed to
generate information products based on various types of satellite imagery, to support the
management of the seismic risk. The system development was promoted by the Italian Space
Agency to exploit the potential of the Italian COSMO-SkyMed SAR satellite constellation,
although other SAR and optical data are also used. The system requirements were provided
by the Italian Civil Protection, which is presently the main user of the SIGRIS services. The
system is now maintained and operated by INGV, a leading Italian geophysical research
institute, which manages all the national ground-based networks for the monitoring of
earthquake and volcanic phenomena and is also responsible for the production of the national
hazard maps.

The SIGRIS system was conceived to provide both Assessment/Prevention and Crisis Re‐
sponse services, in support of various activities of the National Civil Protection Service, of
which INGV is an integral part. It uses state-of-the-art InSAR and optical data processing and
geophysical modeling algorithms, as well as validation/verification, reporting, and dissemi‐
nation procedures, most of which are executed through a GIS-based interface.

The SIGRIS Assessment/Prevention service implemented the processing chain to generate
most of the SAR-derived information products described in section 9.1, and the products were
demonstrated in several test cases. Examples of the results derived from these products are
shown in Figures 12 and 13.

Figure 12. Parameterization of a large blind active fault based on inversion modelling of inter-seismic, InSAR-derived
deformation rates. The exact location, geometry and kinematics of the fault responsible for the M=7, 1908 Messina
earthquake and tsunami is unknown. By modelling co-seismic levelling data, and inter-seismic GPS and InSAR defor‐
mation time-series, it has been possible to estimate some of the fault parameters. In green is indicated the freely slip‐
ping part, red shows the upper, locked part of the modelled fault. The final products for SHA are the slip rate=5
mm/yr, and the slip direction on fault plane (rake)=-125° (right normal kinematics).

Figure 13. Earthquake source model generated for the 2009, M=6.3 L'Aquila earthquake, Central Italy, 12 days after
the event.

The demonstration of the SIGRIS products for Assessment/Prevention confirmed that further
improvements in the SAR data and in the geophysical modeling capacities (as mentioned in
section 9.1) are needed before robust results can be generated on a routine basis. The new data
provided by Sentinel-1, as well as by the ALOS-2, L-band SAR system, will be an important
step towards both directions.

For the Response phase, SIGRIS contains processing chains and procedures to generate,
validate and deliver the information products described in section 9.2. During the develop‐
ment phase, SIGRIS products were demonstrated for different areas of the world (www.si‐
gris.it), but since 2011 the system is mainly activated for national earthquake emergencies.

Very positive has been the user evaluation of the quantitative, InSAR-based assessment of the
co-seismic and post-seismic SIGRIS products, and especially for the earthquake source models.
The system was used to obtain timely information products for the response phase of the
L'Aquila, 2009, Emilia, 2012, Pollino, 2012, and Lunigiana 2013, Italian earthquakes. The
response products were delivered in successive versions with increasing information content.
Usually the initial source models are based on fast, standard procedures for inversion and
uncertainty assessment [59], while later models are constrained by a larger number of datasets
and may involve the use of non-standard modeling techniques [27].

For all the mentioned events the SAR data were instrumental to the definition of the earthquake
source, as GPS data were limited (L'Aquila) or almost completely missing (Emilia, Pollino,
Lunigiana), and provided minimum constraints for the modeling. Acknowledging the
usefulness of COSMO-SkyMed InSAR data for Italian emergencies, in 2010 a routine acquisi‐
tion plan was devised by the Italian Space Agency. The MapItaly plan is now operative to
cover all of the Italian territory with a new acquisition every 16 days, providing the necessary,
continuously updated archive, for all InSAR applications.

10. Conclusions

The use of SAR data has now become common practice among geophysicists involved in the
monitoring and understanding of Solid Earth phenomena. By far the most important use of
SAR data is for the measurement of surface ground displacements and for constraining models
of crustal deformation.

Various scientific and commercial software packages are available for the data processing and
for the modeling of the ground displacements, and in the last years a particular attention has
been given to the integration of displacement data from InSAR and GPS, to cope with some of
the inherent limitations of SAR systems, and augment the number of applications.

After the termination of ENVISAT-Asar, and ALOS-Palsar, in 2011, geophysical applications
have suffered the lack of continuously updated archives, which the other national missions
(Radarsat-2, TerraSAR X, COSMO-SkyMed) do not provide routinely over large areas. Great
expectations are placed in the Sentinel-1 operational mission, which will provide at least two
decades of high quality SAR data with constant and improved repeat pass over most of the
emerged lands.

The enhanced characteristics of the Sentinel-1 system, as the larger swath, more precise orbit
control, shorter repeat pass, improved resolution, open data access, will provide better and
free data for all, increasing the diffusion of SAR data use in Solid Earth Geophysics. Thus the
next decades are bound to see new science, better interpretation methods, and more effective
operational applications based on Synthetic Aperture Radar.
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1. Introduction

This chapter features how radar remote sensing can improve an embankment dam security
project, from the planning level, to the feasibility study, the building phase, and the operational
stage. The Dead Sea region provides a meaningful test bed owing to dozens kilometers of
earthen dikes built over soft and very soft sediments affected by strong subsidence and
sinkholes. The first section describes the context in which the collapses and subsidence
proliferation have taken place. The attention is drawn over the Lisan Peninsula, Jordan, where
two salt evaporation ponds encompassed by embankment dams have been built over its
western margin. Then, the geological framework and the chronology of the most important
damages are presented. Representative results obtained from radar differential interferometry
techniques applied to ERS, Envisat, ALOS and Cosmo-SkyMed images are shown and
described. Interferograms and ground displacement maps complement the work of the
security engineers in providing the spatial extension and the dynamics of the geo-hazards they
are dealing with.

2. The Dead Sea, the sinkholes and subsidence

The Dead Sea is sitting in a pull-apart basin of the Jordan-Dead Sea Transform fault zone. It is
the lowest emerged place on Earth. Early January 2014, the water level was-427.82 m (Hydro‐
logical Service of Israel). But fifty years ago, it was around-395 m. The difference of 32 m results
in the over pumping of the main tributaries, such as the Jordan river, and in the siphoning of
the brine itself by the Dead Sea Works, in Israel, and the Arab Potash Company, in Jordan. The
decline is constantly accelerating. It exceeds one meter per year in 2014. In the 1960s, the
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terminal lake was about 80 by 15 km. Since then, one third of its original surface disappeared,
leading to major changes in the hydrogeological setting and in the landscape. Before the 1980s,
the Dead Sea was made up of two sub-basins (depth:-730 m and-402 m respectively) connected
by the Lynch Strait and separated by the Lisan Peninsula (Fig. 1). Ever since, the deepest basin
remains.

The salinity of the Dead Sea is ten times higher than the ocean water one. This characteristic
makes it an attractive place for tourism and industrial activities. Two profitable mineral
companies developed their plants over the shallow southern sub-basin from the mid-1960s to
the early 1980s. Their production and benefits depend on the evaporation ponds' area. Fig. 1
shows the landscape of the southern Dead Sea in February 2000, when the expansion of the
solar evaporation systems was at the maximum. One month later, SP-0B (Fig. 1; 7) was
destroyed and one year later SP-0A (Fig. 1; 8) was emptied for dike repair.

Salty minerals soak the environment. For millennia, arid climatic conditions allowed salt
crystals to grow up in the open air. Holocene sediments of the coastal zone are thus prone to
dissolution when in contact with unsaturated water with respect to salt. Concomitantly to the
Dead Sea level decline, an hydraulic gradient appeared with the surrounding water tables. In
consequence, an increasing amount of groundwater has been drained into the shrinking lake
to compensate for the lowering [1]. Gradually, the interface configuration and the equilibrium
state between the hyper-saline surface body and the adjacent fresh groundwater body
receiving recharge modified. The areas underlying the coastal aquifers formerly occupied by
the Dead Sea water became flushed and occupied by fresh water. The latter became salinized
due to the residuals of Dead Sea water in the aquifer matrix. Dissolution of covered salty
deposits (Lisan formation) caused subsidence and collapses along the shorelines in the form
of sinkholes, tens of meters in diameter and depth [2]. Each year, this process is causing more
damages.

In 2014, the cumulated number of sinkholes recorded since the 1980s ranges between 3000 and
4000. They are found from some meters below the lake level up to several kilometers landward.
At least since the 1960s, sinkholes appeared around the former southern basin, maximum 32
km away from the present-day Dead Sea shoreline (Fig. 1, 10). They underline the great fragility
of the past and present coastal zones. The precise moment and location of the very first ground
collapses are unknown. Eli Raz (personal communication) mentioned that, since the late 1970’s,
sinkholes have been known from Ein Gedi southward (Fig. 1, 1). Between 1978 and 1981, the
southern basin and the Lynch Strait emerged gradually. Itamar and Reizmann [3] identified
sinkholes over aerial photographs dating back to 1982 along the eastern and western margins
of the just-emerged Lynch Strait (Fig. 1, 6). Abelson et al. [4] computed the first graph of the
cumulated number of sinkholes over time for the western coast. The curve shows a gradual
increase from the 1980s, a first inflexion occurred between 1997 and 2000, and then a drastic
increase from 2004.

Retrospectively, the oldest and most damaged places are located inside an area about 15 by 25
km, bounded by the resorts of Ein Gedi, Ein Boqeq, Al Mazra'a and the Wadi Shuqeiq delta [5]
(Fig. 1, 1-4). At regional scale, from a tectonic point of view, this zone is characterized by a
coalescence of faults [6], and is centered over the Lisan diapir, which is the largest salt dome
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in the Dead Sea pull-apart basin [7]. Inside this polygon, two prominent sinkholes lineaments
located at Ghor Al Haditha and the Lynch Strait, about 6 and 2 km long respectively, highlight
the relationship between tectonics and ground collapses distribution. In [8], an agreement was
found between their azimuths, and the one of the Jordan-Dead Sea fault system as illustrated
by the focal mechanism of the April 23rd 1979 (mb=5.1) earthquake: N (20 ± 5)° E. Besides, both
lineaments gather a significant part of the southern Dead Sea collapses and they are also the
closest clusters to the April 23rd 1979 epicenter. The 6 km-long alignment is the longest in the
whole Dead Sea area. On the western side, a similar geometrical agreement had been found
between the sinkholes distribution and the main structural directions [9]. Besides, geophysical
studies [e.g. 10] have shown that sinkholes appear when a particular layer of halite, deposited
10000 years ago [11], is present several decameters below the ground level. In 2013, Ezersky

Figure 1. Dead Sea southern basin covered by salt evaporation ponds of the Arab Potash Company (East, Jordan) and
Dead Sea Works (West, Israel). 1) Ein Gedi; 2) Wadi Shuqeiq delta; 3) Ein Boqeq; 4) Al Mazra'a; 5) Lisan Peninsula; 6)
Lynch Strait (dried up); 7) $38 M SP-0B; 8) $32 M SP-0A; 9) SP-01; 10) southernmost sinkhole site; 11) Wadi Araba
(braided river) flowing toward the northern Dead Sea basin; 12) Arab Potash Company brine intake station; 13) Truce
line flood channel (borderline). Background: picture STS099-751-26 (Feb. 2000), Image Science and Analysis Laborato‐
ry, NASA-Johnson Space Center. "The Gateway to Astronaut Photography of Earth."
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and Frumkin [12] synthesized most of the available sub-surface and surface observations. They
have shown that a large number of sinkholes sites occurred where both the edge of this layer
of halite and underground discontinuities (faults or fractures acting as preferential channel-
ways) are simultaneously present.

The 135 km long coastline is variously affected by sinkholes clusters. Most of them are located
along the western part. In terms of damages, the eastern part-especially the industrial zone
built over the Lisan Peninsula-is the most concerned. The Arab Potash Company lost a $38 M
production unit (“SP-0B”) in 2000 [13] (Fig. 1, 7). Another saltpan “SP-0A” (Fig. 1, 8) is
constantly threatened, necessitating lots of costly repairs. Hence, to illustrate how radar remote
sensing can improve an embankment dam project, the western margin of the Lisan Peninsula
where SP-0A had been built is investigated with radar/optical/thermal remote sensing
techniques applied before, during, and after the construction.

3. Geological setting of the Lisan Peninsula

The Lisan Peninsula (Fig. 1, 5) is a massive stack of late Pleistocene uplifted salt and marls
layers. The Lisan Formation is characterized by laminated, biogenic carbonates, and siliciclastic
sediments. Investigations revealed several transgressive depositional cycles, all terminating
with massive gypsum precipitation [14].

About 120 m of these deposits cap the Lisan salt diapir probably formed from an anticline of
an en-echelon fold train [15]. The main structure is a 9 by 6 km dome, N-S elongated. Two
faults, striking N-S and SW-NE, bound the Lisan Peninsula in the E and NW respectively. Two
secondary domes exist in the southern part [16]. Numerous lineaments related to faults
directions are observed. They are represented by straight or gently curved wadies. Their
direction and length vary considerably [17]. For centuries, an original salt karst developed [18]
owing to the meteoric water percolation and to the base level fluctuations resulting either from
the rise of the salt diapir, or the strike-slip and vertical movements related to the pull-apart
basin, or the variations of the Dead Sea water level.

3.1. Lisan Peninsula foreshore

From the early 1970s, a wave-cut platform surrounding the Lisan Peninsula appeared pro‐
gressively. Nowadays, it extends over more than three kilometers and dips very gently with
a typical slope of 1: 250. Prior to the building of SP-0A and SP-0B, the surface was covered with
a thin salt crust forming rigid polygonal plates typically 0.3 m thick and 1-2 m across. Small
pressure ridges were apparent between many of the plates [19, 20]. These pop-up structures
resulted of the hydration of anhydrite (CaSO4) to gypsum (CaSO4:2H2O) due to under-
saturated groundwater circulation in the upper horizons.

Boreholes drilled close to the brine intake station (Fig. 1, 12) of the Arab Potash Company
indicated that the platform consisted of disturbed clayey silts with bands of carbonate sand
and some gravel at depth [21]. Down to 13 m, the strata were very soft. Then, they became soft,
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and firm from 16.5 m. In general, zones of unlaminated calcareous clayey silt were interbedded
with zones of gray clayey silt (calcite) thinly laminated with white silt (aragonite), typical of
the Lisan formation. Laminations were mostly disturbed and discontinuous with orientations
varying from horizontal, sub-horizontal to sub-vertical in places, or presented as isolated
pockets within the unlaminated clayey silt and sand strata. This disturbed nature of the soil
might indicate previous liquefaction of the soil layers, possibly caused by earthquake loading.

Between 17.5 m and 18.0 m, a 4 mm vertical displacement in the horizontal laminations was
observed, resulting from a shear discontinuity. Around various depths, zones of thin cemented
aragonite sheets were encountered. It was presume that these zones might have higher
horizontal permeabilities than the soil above and below.

Calcareous sand and gravel strata were detected at 6.5 m, 19.5 m and 21.5 m. Although very
silty in places, they were suspected to serve as higher permeability drainage horizons for the
formation aiding consolidation. A massive halite layer was found at 17-19 m and 25-50 m depth
[19, 20]. This layer was supposed to be at the origin of the sinkholes that appeared in the early
1990s some height kilometers south of the intake station. Similar observations have been done
all along the Dead Sea coast [12].

3.2. Hydrogeological conditions before SP-0A construction

Classification of Landsat 4 and 5 satellite images (1984-1992) collected before the setting up of
SP-0A (1996-1997) allowed the delineation of local areas characterized by a specific reflectance
(Fig. 2). Taking into account the context of the rapid emergence of the wave cut platform, the
difference between classes is mainly related to the moisture variations in the superficial
horizons. Two extreme classes (100% water=Dead Sea, river; 0% water=former Lisan Penin‐
sula) allow a pertinent classification of the moisture content over the platform and in the Lynch
Strait.

Fig. 2 describes the Lisan foreshore as a seepage (discharge) zone. The water that circulate
below the platform comes from the lowering of the Gijben-Herzberg water lens located below
the Lisan Peninsula [18], and from the percolation of the confined brine in saltpan SP-01, south
of the future SP-0A (Fig. 2: see remarkable seepages). A thin lens of brackish water exists below
the Peninsula (Elia Salameh, personal communication). It is fed from the Mazra’a graben (Fig
1, 4) with water coming from the Dhira basin, in connection with the Moab plateau, where
annual precipitations range from 250 to 350 mm. For centuries, the thin lens was in hydrostatic
equilibrium with the Dead Sea water body which extended below the Peninsula. This setting
is similar to that of islands’ freshwater lens in equilibrium with the ocean water [1, 2]. Two
main differences exist. The first is the angle of the fresh/saline interface. Because of the Dead
Sea salinity, the angle is about ten times less than the one existing with the ocean water. The
second is the physical connection with a remote recharge area (less than 6 km). The temporal
stability of the fresh/saline interface is attested by the development of sub-parallel caves (Fig.
3) whose floors are at the elevation of-390/-395 m. Caves are visible all along the Lisan cliff in
contact with SP-0A. They extend over dozens of meters following lineaments ESE-WNW
oriented.
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From the 1960s, the thin water lens moved down to accommodate the lowering of the base
level. As a consequence, the wave-cut platform turned progressively into a discharge area.
When the Lynch Strait dried up, the elevation of the lens was controlled by the level of the
Dead Sea in the northern Lisan, by the elevation of Wadi Araba crossing the former Strait in
the southwestern part, and by the brine level occupying the former shallow sub-basin.

Figure 3. Picture taken from dike 18 (SP-0A) toward the east (Lisan Peninsula) and showing SP-0A filled (May 10th

2007) and cave entrances at the place where the level of the Dead Sea was in the 1960s (around-390 m). In the back‐
ground are the sub-horizontal salty marls of the Lisan Formation uplifted by a massive salt diapir more than 120 m
below the surface (Fig. 2; grey colors).

Figure 2. Isodata classification of a Landsat image acquired prior (1992-09-03) to the setting up of SP-0A (1997-1998).
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below the surface (Fig. 2; grey colors).

Figure 2. Isodata classification of a Landsat image acquired prior (1992-09-03) to the setting up of SP-0A (1997-1998).
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The easily erodible sediments of the Lynch Strait allowed a rapid entrenchment of Wadi Araba,
and, consequently, a rapid drop down of the surrounding brackish water table. In 1982, the
Arab Potash Company completed its solar evaporation pond system in the southern part of
the Dead Sea (Fig 1; 9). The peripheral dike was about 29 km long with its crest at-395.0 m and
an average height of 5 m. Reservoir SP-01-bounding the southern part of the Lisan Peninsula-
was filled with Dead Sea brine in 1983. The operating brine level was-398.75 m, similar to the
Dead Sea level in the early 1970s. Hence, the hydrological context was “reset” along the
southern margin but not along the western and northern sides. The concentration of remark‐
able seepages zones (Fig. 2) in the southern part of SP-0A can be explained by the fact that the
brine in SP-01 seep out through the dike and owing to numerous underground discontinuities
caused by the rise of the Lisan diapir [17].

4. Method used: DInSAR with short perpendicular baseline and SBAS

4.1. DInSAR

In differential interferometry based on Synthetic Aperture Radar (SAR) imagery, the aim is to
measure the differential fringe component to detect local displacements along the line of sight.
After the introduction of the concept at the end of the 1980s [22] and the first demonstrations
based on satellite data [23], the first dramatic examples [24] showed in the early 1990s the
potential of this technique for large area measurement of small terrain deformations. Exploit‐
ing images acquired from about 700 km, with a resolution of about 20 meters, the coherent
comparison of the radar backscattered signal phase allowed the measurements of displace‐
ments in the order of some fractions of the system wavelength (some cm in case of the satellite
SAR systems of ALOS, Envisat and ERS).

With a precise and accurate knowledge of the orbital parameters-mainly the baseline compo‐
nents-orbital fringes can be adequately removed. Then, topographic and differential fringe
components can only be separated if one of these components is known. Hence, a topographic
phase reference is needed to be subtracted from the interferogram and to generate the
differential one. This topographic phase reference may be obtained either from an external
DEM or from another SAR pair known as free from any differential phase component.

For the selected pairs, differential interferometric processing was applied to derive unwrapped
deformation phases using the following steps (Fig. 4 [25]): raw data processing and/or direct
reading of Single Look Complex (SLC) data; co-registration of SLCs to common geometry;
two-pass differential interferometry processing using an oversampled ASTER GDEM as
height reference, slope adaptive common band filtering, and baseline refinement; finally,
phase unwrapping and geocoded displacement map.

The evolution of the research in ground motions based on DInSAR and the larger availability
of data and tools allowed in the 2000s to identify the strengths and the weaknesses of this
approach, its potential accuracy and the path to follow to get into an operational exploitation
phase. It was clear that, to improve the reliability and accuracy of the results, to distinguish
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between real displacements and effects due to other factors like atmospheric turbulences and
temporal changes of the observed objects, and to add a temporal evolution component of the
observed displacement, the approach should be extended to the analysis of several images
acquired over a long time period over the same area (stacking techniques).

Figure 4. DInSAR flowchart [from 25]

4.2. SBAS

In the Dead Sea region, better results are obtained with large datasets of short baseline
interferograms (see chapter “Mapping of Ground Deformations with Interferometric Stacking
Techniques”). Hence, the basic idea for dikes stability monitoring is to derive deformation time
series from a set of differential interferograms with “short” perpendicular baselines and time
intervals keeping the level of phase gradients sufficiently low to be able to resolve the phase
unwrapping stage. Using short spatial baselines optimizes the coherence and minimizes the
topographic phase resulting from errors in the SRTM or ASTER GDEM height used as
topographic references.

Stacking techniques have been used to get knowledge of the ground deformations from 1992
to 2010. ERS and Envisat images were stacked and processed to provide a single time series
gathering all available information.

4.3. Radar image datasets

Several datasets have been processed to cover the period 1992-2012. The main one consisted
of Envisat and ERS radar images (1992-2010): 40 Envisat ASAR images for the period 2003-2010,
and 50 ERS AMI-SAR images acquired from 1992. Another set gathered 9 ALOS images
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(2007-2010). The fourth set was made up of 11 Cosmo-SkyMed images acquired from Decem‐
ber 2011 to June 2012. Table 1 summarizes the characteristics of the pairs used to show some
relevant results of the investigations.

Fig. # Sat. Interferometric pairs T.B. P.B. A.H. DS level
Dike 18 of SP-0A living

phases

5 ERS 1992-06-11 1993-08-05 420 126 76 -407.4 Planned … -1992

6 ERS 1995-07-29 1996-07-14 351 20 485 -409.6 Feasibility study 1993-1995

7 ERS

1995-12-17 1997-10-12 665 6 1485 -410.8 Building 1996-1997

1997-12-21 1999-03-21 455 18 531 -412.0
Impounding and

operation
1998-2002

8 Envisat
2004-06-27 2004-11-14 140 37 249 -417.2 Emptying and

repairs
2003-2006

2005-08-21 2006-03-19 210 16 571 -418.5

9 ALOS 2008-04-01 2008-05-17 46 41 1551 -421.2
Impounding and

operation
2007- …

10
Cosmo-

SkyMed
2011-12-14 2012-05-06 144 231 36 -426.0

Table 1. Selection of interferometric pairs in the study of dike 18 living phases. T.B.=temporal baseline;
P.B.=perpendicular baseline; A.H.=ambiguity height; DS level=level of the Dead Sea at the moment of the latest radar
acquisition (e.g. 1993-08-05). During the period of observation, the lake level decreased by about 20 m, or one meter
per year. The slope of the Lisan foreshore where SP-0A is located is 1:250.

Figures 5 to 10 are a selection of unwrapped and wrapped interferograms having in common
the small perpendicular baseline leading to high ambiguity heights. It is noteworthy to
mention that the area of interest is flat, without vegetation, and human activities confined to
the top of the dike.

5. Results

To evaluate the usefulness of radar interferometry in dike projects, it is necessary to review
and to synthesize the chronology of the hazardous events that have occurred since the 1990s
until present over the Lisan foreshore. Data shown in Fig. 6 to 11 have been selected to highlight
specific periods of time before the construction of dike 18, during the setting up, and during
operation.

5.1. Chronology of the main events at the Arab Potash Company solar evaporation ponds
system: SP-OA and SP-OB units

Figure 5 summarized the record of hazardous events for the different living stages of SP-0A
and dike 18. Elements cited below come from direct observations, satellite images analysis,
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discussions with Arab Potash engineers, and bibliography (mainly Arab Potash Company
unpublished reports, proceedings, and few articles).

1. In 1982, the Arab Potash Company completed its solar evaporation system in the dried-
up southern Dead Sea basin. At the same period, the very first sinkholes appeared in three
different places: on the eastern and western margins of the former Lynch Strait, and in
Ghor Al Haditha [8].

2. During the 1980s, the yearly decline in the lake level discovered an abrasion platform
around the Lisan Peninsula. Early 1990s, Arab Potash set up an expansion project
consisting in the setting up of two major production units over the western and northern
flanks of the Lisan: saltpans SP-0A and SP-0B, both encompassed by embankment dams
over 10 meters high and numbered 18 for SP-0A, and 19-20 for SP-0B (Fig. 1; 7, 8).

3. On March 22nd 1991, a major flood occurred over a 24-hour period. It was caused by a
short period of intense rainfall. The Dead Sea rose from-407.701 m on February 27
to-407.512 m, contrary to the long term trend of a steady decline. The dried-up Lynch Strait
topography was markedly influenced by this flood. Some abandoned channels were
suddenly reactivated either due to the rapid entrenchment of Wadi Araba or created
during the emergence of the Lynch Strait. Subsurface water circulation was affected too.

4. In June 1991, the eruptions of Mount Pinatubo, Philippines, affected the climate of the
whole planet for several years. Between 1992 and 1995, winters were particularly rainy,
leading to a rise in the Dead Sea level. Winter 1991-92 was particularly remarkable; cold-
air temperature in the Middle East was 3 to 4°C below average. The volume of rain
provoked an addition of about 1.5 109 m³ freshwater to the Dead Sea and an increase of
two meters in the lake level [19, 20].

5. In October 1992, a wide sinkhole suddenly appeared in an access road along the elevation
contour-404 m to the west of the Lisan Peninsula. This road was routed along the intended
alignment of the future SP-0A dike 18 for the extension scheme, and was to be used as
access for the site investigations. Further sinkholes were discovered close to the road, and
inspection of aerial photographs revealed about 70 of similar holes following what
appeared to be a 1.6 km channel reactivated in 1991. A second sinkholes cluster was
detected two kilometers south, and 400 m north of SP-01 dike 1 (Fig 1; 9). Other collapses
were also identified in the flood channel, along dike 1 (Fig 1; 13) [19, 20]. Investigations
revealed that the cavities most probably developed from a massive halite layer some 15-20
m below the ground. At the same period, sinkholes sites spread over the western coast,
between Ein Gedi and Ein Boqeq, and in cropped areas of Ghor Al Haditha. These
sinkholes have modified the original shape of SP-0A. The new scheme avoided the
collapsed area, thus reducing the volume of the basin.

6. Feasibility study started in 1993. At chainage 1+000, boreholes revealed artesian condi‐
tions.

7. SP-0A was built up from January 1996 to December 1997 [26]. $32 M dike 18 (13 km by 14
m) was designed to encompass a 95 M m³ pond over a reactivated salt karst characterized
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by soft to very soft silty clay and massive salt rock. Several incidents happened. They were
related either to large vertical settlements (2-3m) of very soft clays, or artesian conditions
where sand and salt layers were present, or to the development of sinkholes.

8. In 1997, when SP-0A was still empty, a leak in dike 18 was discovered [27]. Technical
studies were conducted in collaboration with local and international experts, including
Sir Alexander Gibb & Partners that designed the dike. They indicated that the problem
could be either due to the formation of an artesian water basin whose high water level
affected the dam or due to a sinkhole that formed back in 1996. From chainage 0+000 to
3+200, a 110 m wide berm was built inside SP-0A to protect the dike.

9. Early 1998, SP-0A impounding operation started. One Landsat image acquired in
February 17th 1998 showed SP-0A nearly filled. At chainage 10+600, dike 18 showed an
obvious curvilinear appendix corresponding to a landfill jetty 240 m long, 30 to 60 m wide,
from dike 18 toward the basin center. It was maintained throughout 1998 following the
appearance of new sinkholes.

10. All Landsat images acquired in 1998 revealed important seepage zones from chainage
0+000 to around 2+000.

Figure 5. Hazards affecting SP-0A from planning to operation phase, distributed along dike 18 from chainage 0+000
to 12+000.

11. In February-March 1999, the jetty (chainage 10+600) was extended over 70 m to fill again
a sinkhole site affecting the bottom of SP-OA.

Remarks:

• In 2004, closer inspections revealed that this structure had been made in haste. It suggested
a problem caused by flow through a large channel in the vicinity of the dike. When such a
problem happens, a whirlpool can appears at the surface of the pond. Once a whirlpool is
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observed, complete failure can follow rapidly (hence the need to act very quickly). It is the
most serious condition that can be observed because it can enlarge until the dike is breached.

• Discussions with Arab Potash engineers confirmed that the jetty was an attempt to plug the
entrance of a sinkhole site with riprap first, and then, when the plug attempt decreased the
flow, with smaller materials. Since that time, this zone remained active [18]. It is the only
place along the 12 km dike 18 where a dedicated road sign warns on the possible presence
of sinkholes. Collapses are frequently observed and filled as soon as they appear.

• In May 2009, the remaining tracks of a former wide sinkhole were observed at the entrance
of the jetty. No indication of seepage flow was apparent.

• Seepage is a normal phenomenon in dikes. However, it must be controlled in both velocity
and quantity. If uncontrolled, it can progressively erode soil from the embankment dam or
its foundation, resulting in rapid failure of the dike. Soil erosion begins at the downstream
side, either in the dike proper or the foundation, and progressively works toward the
reservoir. Eventually it develops a direct connection to the pond. This phenomenon of
regressive erosion is known as “piping”.

• Piping action can be recognized by an increased seepage flow rate, discharge of muddy or
discolored water, and sinkholes on or near the dike. The above mentioned collapses are
evidence of active piping in that zone from at least 1996, before the first filling of the
reservoir.

12. These problems didn’t stop the expansion of Arab Potash over the recently emerged wave-
cut platform surrounding the Lisan Peninsula. Between March 16th 1998 and December
8th 1999, a $38 M SP-0B (11 km²) production unit was established and came into service
early 2000. This project required the building of two dikes (n°19 and 20; 11.6 km) with a
height of 14 m. Sir Alexander Gibb & Partners designed the dikes and the construction
contract of dike 19 was awarded to the Turkish firm ATA. Pumping brine began January
4th 2000. The pond had a capacity of 76 M m³.

13. On March 22nd 2000, 4:30 PM, when the quantity of brine reached 56 M m³, a breach
occurred in dike 19 which caused about 2.3 km to collapse. The brine flowed back to the
Dead Sea in 30 minutes [13].

Remarks:

• In 2003, Dar Al-Handasah Harza JV, was appointed to assess the damages sustained on Dike
19. They indicated that the repair costs of the dike exceeded its net book value of an amount
of $24.4 M.

• Legal proceedings ensued between the Arab Potash Company and all parties involved in
the construction. On May 12th 2010, the International Centre for Settlement of Investment
Disputes ordered “that the ongoing Jordanian court proceedings in relation to the Dike 19
dispute be immediately and unconditionally terminated, with no possibility to engage
further judicial proceedings in Jordan or elsewhere on the substance of the dispute” [28].
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• Between 2004-2009, in parallel to those legal proceedings, the ruins of the abandoned dike
19 and 20 exhibited an increasing number of cracks, sinkholes and decameters to hectome‐
ters landslides. In a few places bushes of Tamarix were growing, underlying the fact that
unsaturated water was flowing below the pond owing to major faults playing the role of
conduits [18]. Some fractures became impassable by car without using a footbridge. These
damages showed an increasing instability that was consistent with observations performed
elsewhere around the Dead Sea, e.g. [11]. Despite its costly setback, in 2010-2011, Arab
Potash requested a “Comparative Risk Analysis for Reconstruction of a Partially Failed Dike
System” [29] in which the authors propose two alternatives for the reconstruction of the
failed facility.

• Cracking, settlement, and slides are the more common signs of structural failure of em‐
bankments. Seepage and structural failure are often interrelated in a complex manner. For
example, uncontrolled seepage may weaken the soil and lead to a structural failure. A
structural failure may shorten the seepage path and lead to a piping failure.

14. In 2000, dike 18 was seriously damaged by sinkholes [30]. It was obvious that there were
subversive holes in the dike floor, since it has been filled with seawater in the year 1998.
In May 2001, an increase of the artesian pressure at the bottom of the dike was noted, a
fact which was considered as an indicator of the safety factor decline. This necessitated
the lowering of the water level in the pond by around two meters, to raise the safety
coefficient and put the pond temporarily out of operation [30].

15. A 10 m resolution SPOT image acquired on April 11th 2003 indicated important seepage
zones coming from SP-01 toward SP-0A and affecting the bottom from chainage 0+000 to
around 1+000. Seepage extended outside SP-0A by passing below dike 18 and emerged
between stations 1+000 and 2+000.

16. One high resolution satellite image acquired on October 20th 2004-when SP-0A was nearly
emptied-showed that a berm had been built at chainage 10+600 (jetty) over a length of
about 400 m and a distance of 150 m. Several sinkholes affected the bottom about 300 m
basin-ward. The same image clearly showed several other circular depressions at chainage
0+700, about 800 m basin-ward. An artesian spring of very salty water was identified at
chainage 1+200, about 200 m from the dike, basin-ward. One sinkhole perforated the berm
inside SP-0A at chainage 1+500.

17. November 9th 2004 an agreement was signed with Sinohydro Corporation to rehabilitate
Dike 18 for an amount approximating $19.5 M [31]. The most conspicuous work consisted
in the setting up of a wide seepage berm outside dike 18. Its width varied from 90 m in
the southern part to 150 m in the northern part, in front of the jetty area (10+600). The
project was supervised by the Dutch consultant Royal Haskoning.

18. A satellite image acquired on November 30th 2004 confirmed the observations done 40
days before. An artesian salty spring was clearly identified at chainage 1+700. Outside
dike 18, from around chainage 1+000 to 1+700, important seepages of very salty brine were
visible.
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19. Impounding of saltpan SP-0A started on March 14th 2006 and successfully completed its
operation level on October 1st 2006. More than 87M m³ of brine was pumped to reach the
operation level of-393.6 m [31]. This elevation corresponded to the Dead Sea level in the
mid-1930s. A Taking-Over-Certificate was issued by Royal Haskoning on December 6,
2006 and the project was considered substantially completed on November 23, 2006. The
Defects Liability Period commenced on November 23rd 2006 and expired on November
22nd 2007 [32].

20. Field surveys carried out during and after repairs-in 2004, 2005, 2007, 2008, and 2009-have
shown that if the rehabilitation works had actually increased the safety coefficient, so far,
they failed to stop the cause of the problems. Many cracks and backfilled sinkholes were
located [5, 18]. Indeed, dike 18 is constantly threatened by cracks and sinkholes. For
example, end of July 2008, from chainage 1+600 to 2+000, a 400 m long dike segment was
enlarged to increase its safety factor. Since 1997, its width tripled.

21. Early 2011, the company launched a bid to fill underground cavities between station 6+100
and 6+250 (i.e. 150 m dike segment) with cement and thus protect a fragile part of dike 18.
The works included drilling of around 40 boreholes to an average depth of 40 m through
the dike body and foundation soil. Thereafter, the subsurface cavities and boreholes were
grouted.

22. During the 24th AFA International Technical Fertilizers Conference and Exhibition at
Amman, Jordan (22-24 November 2011), Zaid Halasah, Senior Chemist at Arab Potash
Company, presented two maps of sinkholes affecting SP-0A with an emphasis of the
situation at station 10+600 (jetty dating back to 1998) [33]. Other sinkholes having
perforated dike 18 were pointed out at chainage 5+800, 7+400, 8+000. In the vicinity of the
dike, sinkholes sites were found from 5+500 to 8+800, and at 10+600.

23. In September 2012, during a visit taking place during the first EAGE workshop on
sinkholes held in Amman, a collapse in development was located at chainage 11+500.

24. End of December 2012, a single elliptical structure having 250 by 300 m in diameter was
identified within SP-0A from a Worldview-2 image acquired on April 2nd 2011 (chainage
1+000 to 1+600). The feature was unknown to the most aware security consultant (Royal
Haskoning). Some other circular elements having a size compatible with the biggest
sinkholes in the Dead Sea were also found. This “finding” raised lots of questions
regarding the origin of the underlying cavity, regarding the capabilities of prediction of
all models developed up to now in Jordan and in Israel about the Dead Sea sinkholes, as
well as the strategies, approaches, and methods used by engineers/geophysicists the deal
with such features.

25. In April 2013, a new tender announcement was launched to raise dike 18 between station
5+300 to 11+750 (i.e. 6450 m of dike segment) and risk control works.

5.2. Detection of ground displacements during planning stage

Line of sight (LOS) motions displayed in Fig. 6 derive from a pair of ERS images acquired in
June 11th 1992 and August 5th 1993, i.e. more than two years before the building of dike 18
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Amman, Jordan (22-24 November 2011), Zaid Halasah, Senior Chemist at Arab Potash
Company, presented two maps of sinkholes affecting SP-0A with an emphasis of the
situation at station 10+600 (jetty dating back to 1998) [33]. Other sinkholes having
perforated dike 18 were pointed out at chainage 5+800, 7+400, 8+000. In the vicinity of the
dike, sinkholes sites were found from 5+500 to 8+800, and at 10+600.

23. In September 2012, during a visit taking place during the first EAGE workshop on
sinkholes held in Amman, a collapse in development was located at chainage 11+500.

24. End of December 2012, a single elliptical structure having 250 by 300 m in diameter was
identified within SP-0A from a Worldview-2 image acquired on April 2nd 2011 (chainage
1+000 to 1+600). The feature was unknown to the most aware security consultant (Royal
Haskoning). Some other circular elements having a size compatible with the biggest
sinkholes in the Dead Sea were also found. This “finding” raised lots of questions
regarding the origin of the underlying cavity, regarding the capabilities of prediction of
all models developed up to now in Jordan and in Israel about the Dead Sea sinkholes, as
well as the strategies, approaches, and methods used by engineers/geophysicists the deal
with such features.

25. In April 2013, a new tender announcement was launched to raise dike 18 between station
5+300 to 11+750 (i.e. 6450 m of dike segment) and risk control works.

5.2. Detection of ground displacements during planning stage

Line of sight (LOS) motions displayed in Fig. 6 derive from a pair of ERS images acquired in
June 11th 1992 and August 5th 1993, i.e. more than two years before the building of dike 18
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(1996-1997). The subsidence rate ranges from 1 to 12 cm/year. Wide areas are found at chainage
6+000 to 7+000; 7+500 to 8+500; 10+000; and especially 11+000 to 11+500. Sills appear at chainage
9+000 and 7+500. Linear subsidence outside dike 18 from chainage 3+000 to 4+000 correspond
the 70 sinkholes that appeared in 1992, cutting an access road that should have turned into a
dike segment.

The southern part of the future SP-0A is affected by seepages coming from SP-01 or to artesian
pressure in relation with the water lens below the Lisan Peninsula in hydrostatic desequili‐
brium with the Dead Sea level. Two hectometre-long sags are found inside Sp-0A at around
chainage 0+700, several hundreds of meters basin-ward.

In term of structural influences, the wide shallow subsidence area at chainage 9+500 to 11+500
(green colors) is a sag basin bounded by sub-parallel lineaments oriented N-S and SW-NE.
These directions are also found in the Lisan Peninsula (dotted lines). The area located beyong
chainage 11+000 is a very active zone of subsidence. During the 1990s its activity is attested in
all interferograms computed with ERS-1/2 pairs [e.g. 34]. SSE-NNW directions are also found
at chainage 5+000. They are evidenced by the limits between brown and yellow colors. In all
the distribution of lineaments inside SP-0A is in agreement with the known strike-slip derived
features evidenced by geophysical prospecting in that area [35].

Figure 6. Line of sight motion expressed in meter/year. The period extends from June 11th 1992 to August 5th 1993
(420 days). The ERS-1 pair is characterized by a perpendicular baseline=126 m. Interferometric coherence (not shown)
is well preserve exept along the cliff separating the Lisan Peninsula to the foreshore zone where SP-0A is located (Fig.
3). Lineaments and faults are represented as well as ephemeral streams and the cave entrances along SP-0A. The
topographic phase was removed with data from ASTER GDEM. Projection UTM 36N, WGS84.
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5.3. Detection of ground displacements during feasibility study

Comparison between Fig. 7 and Fig. 6 indicates that the dike segments around chainage 10+000
and 11+500 are still active. The same pattern than in 1992-1993 can be found. However, the
most important subsidence extends from 6+000 to 8+5000. This area also existed in 1992-1993
but its perimeter enlarged basin-ward. The main difference is the wide uplifted areas all along
the Lisan Peninsula. This zone does not affect dike 18.

The southern part of SP-0A is affected by uplift and subsidence in a way different than in the
central and northern parts. This is most probably due to seepages coming from SP-01.

Figure 7. Motion map (left) and filtered interferogram (right) for the period 1995-07-29 to 1996-07-14 (351 days).
Both images show the same information but through a classification, on the one hand, and through continuous fring‐
es, on the other hand. Comparison between the two images allows the readers to appreciate the added value of the
two sources of information. Like DEMs, motion data can be presented by mixing an hillshade representation that em‐
phasises particular directions and slopes with a particular classification color palette. It allows an intuitive understand‐
ing of the uplift (dark brown-white) and subsidence (green) areas. On the right side, fringes reveal the continuity of
the deformation fields and their interconnections. Both are usefull to catch the various dynamics.

5.4. Detection of ground displacements before and after impoundment (starting operation
stage)

Fig. 8, left side, shows the ground motions from 1995-12-17 to 1997-10-12, i.e. during the
building phase. The dike area is strongly affected by the lack of coherence leading to incom‐
plete fringe pattern and the impossibility to generate a realistic displacement map like in Fig.
7, left. Inside SP-0A, coherence was well preserved and allowed the detection of uplift and
subsidence areas. The patterns are consistent with the ones visible in Fig. 6 and 8. The most
conspicuous extended from 11+000 to 12+000 and from 6+000 to 8+000.
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Once in operation (Fig. 8, right side), no information can be retrieved from the bottom anymore
(white patch). The deformation fields around saltpan are the only available information to
deduce the phenomena occurring below the pond and the dike. Interferogram corresponding
to the period 1997-12-21 to 1999-03-21 indicates a strong subsidence in the Lynch Strait. Three
fringes representing 3 x 0.028 m of displacement along the line of sight can be easily delineated.
This subsidence is caused by the continuous supply of sediments. Decorrelation occurs over
the delta because the rate of subsidence is too important to be detected in C-band while it can
be done in L-band (see Fig. 10). This external deformation field affect dike 18 from chainage
6+000 to 7+500.

Complex fringes are also visible between 9+500 and 11+500. They are localized in one of the
most active zone detected in 1992-1993 (Fig. 6). They attest that underground water circulation
is still active in that zone. This element is in agreement with the setting up of a jetty at 10+600
to seal sinkholes at the bottom of SP-0A.

Figure 8. Left, filtered interferogram showing ground deformations recorded from 1995-12-17 to 1997-10-12 (665
days). The very short baseline of only 6 m allowed a clear delineation of the deformations where interferometric co‐
herence was preserved. Obviously, during building stage, human activities modify the original distribution of the scat‐
ters on the ground. On the right, once filled, the deformations affecting the bottom become inacessible. The pair
1997-12-21 to 1999-03-21 (455 days) provided the deformation fields with a great precision and accuracy owing to
the 18 m perpendicular baseline.

5.5. Detection of ground displacements during repairs

In 2001, sinkholes strongly affected the stability of dike 18. Saltpan Sp-0A was progressively
emptied to raise the safety factor. As a result, a wide part of the bottom became again accessible
to study the ground deformations with radar interferometry. Fig. 9 shows two informative
inferograms. Comparison with Fig. 7-9 indicates many similarities. For example, both inter‐
ferograms show an important subsidence between chainage 11+000 and 12+000.
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In the southern part, from chainage 0+000 to 2+000, the deformations of the bottom in relation
with seepage coming from SP-01 are always present. Subsidence and uplifted zones are in
geographical agreement with the sinkholes and artesian springs observed over contemporary
visible images.

In terms of displacement fringes, a clear contrast exists between the Lisan foreshore (now the
bottom of SP-0A) and the Lynch Strait. This can be the result of water circulation below the
platform caused by Wadi Araba supply. These complex deformation fields are affecting dike
18 over most of its length. Lynch Strait is a no-man's land between Israel and Jordan. There is
no vegetation or activity and the area is flat. Therefore, the interferograms are showing with
lots of details the ground movements. The recorded losses of coherence correspond to the
presence of surface water (Wadi Araba, artesian water basins), or to areas where the speed of
subsidence is too high to maintain coherence in C band. For example, this is the case of the
Wadi Araba delta.

Figure 9. Left, filtered interferogram showing the deformation fields from 2004-06-27 to 2004-11-14 (140 days) with
a perpendicular baseline of 37 m leading to an altitude of ambiguity of 249 m. On the right, ground movements re‐
corded between 2005-08-21 and 2006-03-19 (210 days) with a perpendicular baseline of 16 m and an altitude of am‐
biguity of 571 m. Deformations inside SP-0A are quite similar and in agreement with the deformations recorded more
than 10 years before.

5.6. Detection of ground displacements after repairs

Interferogram displayed in Fig. 10 seems essentially devoid of major displacements by
comparison to the previous examples showing intricated fringe patterns. Two factors contrib‐
ute to this appreciation. The very short period of observation (46 days) does not allow the
necessary time to contrast uplift and subsidence. Secondly, L-band systems are four times less
sensitive than C-band (2.8 cm versus 11.8 cm). This apparent weakness can be an advantage.
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For example, L-band allows detection in place affected by movements too rapid to preserve
coherence in C-band. Comparison with Fig. 9 shows how noisy areas in the Envisat data (e.g.
delta) are correctly imaged with ALOS information.

At a closer inspection, all along dike 18, some tiny deformation fields are visible. Their
geographical extensions fit with ground motions previously recorded with ERS and Envisat.
From Fig. 10, dike 18 can be divided into different zones based on the relative displacement
between each sections: 0+000 to 1+000 : uplift; 1+000 to 2+200 : important subsidence caused
by the underground water flux coming from SP-01; 2+200 to 4+000 : uplift; 4+000 to 6+600 :
subsidence; 6+600 to 8+500 : strong subsidence; 8+500 to 9500 : subsidence; 9+500 to 11+00 :
important uplift; 11+000 to 11+700 : subsidence.

The color cycle represents 11.8 cm of displacement along the line of sight recorded in 46 days.
Two places have recorded a full cycle: UTM coord. 730-3468 and 728-3460. The zone located
at 728-3460, outside SP-0A, is in the extension of the sinkholes lineament that appeared in 1992.
Its zigzagging shape displays directions similar the the ones of the sinkholes lineament too.
One as to note that in these two places, the mean velocity is about 90 cm per year. About 15
years before, the rates ranged from 10 to 15 cm per year. The difference in intensity could be
explained by the always increasing head difference between the Dead Sea level and the
surrounding water tables leading to a growth in the underground water discharge.

Figure 10. ALOS palsar filtered interferogram showing ground deformations recorded from 2008-04-01 to
2008-05-17 (46 days). The short baseline of 41 m leads to an altitude of ambiguity of 1551 m. The image image is
therefore a “true” differential interferogram. Because of L-band, some deformation fields appear clearer than with C-
band in the most active zones such as the delta of wadi Araba.
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5.7. Detection of ground displacements during operation

Since 2007, the new high-resolution radar sensors allow a much more detailed analysis of
surface displacements. Cosmo-SkyMed images, in standard mode, have a resolution between
2-3 meters, i.e. about 10 times better compared to ERS and Envisat images.

As an illustration, Fig. 11 shows the situation prevailling in the southern part of the SP-0A
basin during the first half of 2012. On the right side, owing to its “coastal” (400-450 nm) spectral
band, very high resolution Worldview-2 image enable the visualization of the Lisan foreshore
through some meters of brine. Color changes correspond to subtle variations in the bathyme‐
try.“Topographic anomalies” such as dark circles can be detected. They are either sinkholes
or artesian springs already detected at least five years earlier, when that part of SP-0A was
dried up for dike repairs. In particular, a circle 300 m in diameter appears close to dike 18.
Other circular structures occupy the bottom of an ESE-WNW oriented “valley”.

Landsat images dating back to 1984 clearly show this longitudinal “corridor”as a dark polygon
surrounded by bright sediments like those of the Lisan Peninsula. The context indicates that
the difference in color results from a variation of moisture. Landsat data acquired from 1984
to 1992 also revealed that dike SP-01 was affected by seepage phenomena.

Based on these observations, this structure could be a former backfilled valley reactivated after
the setting-up of evaporation ponds in the former southern shallow sub-basin. The number
and size of the circular structures are indicators of the importance of subsurface water flow.

Beyond the dike, Worldview 2 image does not provide any relevant indications at the exeption
of the sinkholes and of the most apparent cracks. These elements, although important in hazard
mapping, provide a rough idea of the deformation fields threatening the integrity of dike18.

The unwrapped phase computed from a pair of Cosmo-SkyMed images reveals the staggering
blow generated by the groundwater entering the Lynch Strait by passing under dike 18. The
deformation field is made of ripples (anticlinal and synclinal) centered on the main impact
zone (chainage 1+200). The affected dike section is more than one kilometer long. The threat
is extremely diffuse so that the established security measures oriented towards stabilization
of cracks and sinkholes (“point-like” events) can not be efficient in this case. Fig. 11 provides
an overall picture of the situation and this one could not be described as accurately with
traditional techniques even with a dam over-equipped with sensors.

5.8. Ground motions with SBAS technique

The previous examples illustrated the richness of the filtered interferograms and the usefulness
of the unwrapped phase data in the quantitative evaluation of the deformations.

Interferogram Stacking Technique had been designed for monitoring scenes characterized by
a distributed scattering at a low resolution scale. SBAS consists in an analysis of multilook
interferograms. The multilooking is a spatial averaging which is carried out by exploiting the
hypothesis that the scattering is distributed. It allows increasing the phase signal quality and
thus reliability of measurements. The SBAS technique uses only interferograms generated by
choosing thresholds on the spatial and temporal baselines, and on Doppler centroid difference.
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After the unwrapping, the interferograms are inverted to retrieve the phase signal over the
stack of acquisitions.

Fig. 12 shows the total displacements expressed in cm computed from a stack of 31 Envisat
images (2003-07-13 to 2010-06-06). The reference is 2003-07-13. During the period of observa‐
tion, SP-0A was emptied for dike repairs (2003-2006). The bottom was almost accessible to
measurements with radar interferometry. About 30% remained inaccessible, from chainage
4+000 to 12+000 (masked area).

Regarding ground displacements, SP-0A can be divided, from chainage 6+000, into a northern
and southern compartment. The northern part is affected by strong subsidence from chainage
6+500 to 9+000. The maximum is reach at 8+500 (white pixels or no data). Another maximum
is found at 10+600. The two maxima are identified in C-band from the absence of detection
(white pixels) taking into account the context: no vegetation, no human activities, rapid
subsidence detected in L-band (Fig. 10).

The southern compartment is characterized by three wide uplifted zones. A remarkable
subsidence area is found from chainage 1+000 to 3+000. In this place, a wide berm (cross
hatched) was build to reinforce the dike. Circular features observed in Figure 10 are also located
in that zone. The results of SBAS are in agreement with the previous observations done with
DInSAR approach.

Figure 11. On the left, motion data computed from a pair of Cosmo-SkyMed images spanning from 2011-12-14 to
2012-05-06 (141 days). The deformations affecting dike 18 are related to the ongoing groundwater circulation below
SP-0A. Sinkholes distribution affecting the bottom of SP-0A (right side) indicate the position of the underground
stream. Worldview 2 image acquired the April 2nd 2011. Both data sets are in high resolution (about 2 m).
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6. Discussion

Interferograms show the spatial extent of subsidence and uplift phenomena. At the field level
or dam instruments, they seem localized, punctual, while in reality there is an important areal
component, generally invisible to the eyes. It is this spatial extension that gives interest to the
interferograms.

SBAS data operate a large number of interferograms. This technique allows a comparison
between them and delivers a time series of ground motions that can be used to represent the
dynamics of potential or actual hazards for dike 18. As an illustration, SBAS results allow a
comparison with the hazards recorded during the two previous decades. Figure 13, right side
column, summarizes the SBAS information in a qualitative way.

The circular features located between 1+000 and 2+000 are in relation with subsidence phe‐
nomena. They were identified in the early 2000s owing to SPOT images and VHR acquisitions.
They probably result from water ingress along a former flood channel (Fig. 11).

Those recorded from 5+500 to 12+000 are also in connection with subsidence. The dike
segments located on the limits between uplift and subsidence are exposed to fractures where
sinkholes can eventually appear. Such fractures are common in the remaining dikes 19 and 20
of SP-0B.

Figure 12. Total displacement in cm from 2003-01-19 to 2010-06-06 computed with SBAS technique. Blue zone cor‐
responds to the part of the basin that remained covered by water during dike repair between 2003-2006. Cross hatch‐
ed ribbon is the berm built in 1997 and designed to reinforce dike 18.
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7. Conclusions

Sound interpretation of data from radar interferometry can provide the engineers in charge of
dike safety with the areal component and the dynamic of hazardous phenomena, elements
that are so essential to the setting up of a successful and optimally economic strategy to mitigate
the damage.

The case study of dike 18 shows that an approach based on sensor densely located all along
the dike provide satisfactory results when dealing with well delimited problems. The situation
in the south of SP-0A, however, is different. When the hazardous events become too large, it
is essential either to correlate the specific measures carried out on the dike, or use techniques
such as DInSAR and SBAS which were designed for this kind of issue.
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