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Preface

Navigation of mobile platform is a broad topic, covering a large spectrum of different
technologies and applications. As one of the important technology highlighting the 21st
century, autonomous navigation technology is currently used in broader spectra, ranging
from basic mobile platform operating in land such as wheeled robots, legged robots,
automated guided vehicles (AGV) and unmanned ground vehicle (UGV), to new application
in underwater and airborne such as underwater robots, autonomous underwater vehicles
(AUV), unmanned maritime vehicle (UMYV), flying robots and unmanned aerial vehicle
(UAV).

Localization and mapping are the essence of successful navigation in mobile platform
technology. Localization is a fundamental task in order to achieve high levels of autonomy
in robot navigation and robustness in vehicle positioning. Robot localization and mapping is
commonly related to cartography, combining science, technique and computation to build
a trajectory map that reality can be modelled in ways that communicate spatial information
effectively. The goal is for an autonomous robot to be able to construct (or use) a map or floor
plan and to localize itself in it. This technology enables robot platform to analyze its motion
and build some kind of map so that the robot locomotion is traceable for humans and to ease
future motion trajectory generation in the robot control system. At present, we have robust
methods for self-localization and mapping within environments that are static, structured,
and of limited size. Localization and mapping within unstructured, dynamic, or large-scale
environments remain largely an open research problem.

Localization and mapping in outdoor and indoor environments are challenging tasks in
autonomous navigation technology. The famous Global Positioning System (GPS) based
on satellite technology may be the best choice for localization and mapping at outdoor
environment. Since this technology is not applicable for indoor environment, the problem
of indoor navigation is rather complex. Nevertheless, the introduction of Simultaneous
Localization and Mapping (SLAM) technique has become the key enabling technology for
mobile robot navigation at indoor environment. SLAM addresses the problem of acquiring a
spatial map of a mobile robot environment while simultaneously localizing the robot relative
to this model. The solution method for SLAM problem, which are mainly introduced in
this book, is consists of three basic SLAM methods. The first is known as extended Kalman
filters (EKF) SLAM. The second is using sparse nonlinear optimization methods that based
on graphical representation. The final method is using nonparametric statistical filtering
techniques known as particle filters. Nowadays, the application of SLAM has been expended
to outdoor environment, for use in outdoor’s robots and autonomous vehicles and aircrafts.
Several interesting works related to this issue are presented in this book. The recent rapid
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progress in sensors and fusion technology has also benefits the mobile platforms performing
navigation in term of improving environment recognition quality and mapping accuracy. As
one of important element in robot localization and map building, this book presents interesting
reports related to sensing fusion and network for optimizing environment recognition in
autonomous navigation.

This book describes comprehensive introduction, theories and applications related to
localization, positioning and map building in mobile robot and autonomous vehicle platforms.
It is organized in twenty seven chapters. Each chapter is rich with different degrees of details
and approaches, supported by unique and actual resources that make it possible for readers
to explore and learn the up to date knowledge in robot navigation technology. Understanding
the theory and principles described in this book requires a multidisciplinary background of
robotics, nonlinear system, sensor network, network engineering, computer science, physics,
etc.

The book at first explores SLAM problems through extended Kalman filters, sparse nonlinear
graphical representation and particle filters methods. Next, fundamental theory of motion
planning and map building are presented to provide useful platform for applying SLAM
methods in real mobile systems. It is then followed by the application of high-end sensor
network and fusion technology that gives useful inputs for realizing autonomous navigation
in both indoor and outdoor environments. Finally, some interesting results of map building
and tracking can be found in 2D, 2.5D and 3D models. The actual motion of robots and
vehicles when the proposed localization and positioning methods are deployed to the system
can also be observed together with tracking maps and trajectory analysis. Since SLAM
techniques mostly deal with static environments, this book provides good reference for future
understanding the interaction of moving and non-moving objects in SLAM that still remain as
open research issue in autonomous navigation technology.

Hanafiah Yussof
Nagoya University, Japan
Universiti Teknologi MARA, Malaysia
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Visual Localisation of quadruped walking robots

Renato Samperio and Huosheng Hu
School of Computer Science and Electronic Engineering, University of Essex
United Kingdom

1. Introduction

Recently, several solutions to the robot localisation problem have been proposed in the sci-
entific community. In this chapter we present a localisation of a visual guided quadruped
walking robot in a dynamic environment. We investigate the quality of robot localisation and
landmark detection, in which robots perform the RoboCup competition (Kitano et al., 1997).
The first part presents an algorithm to determine any entity of interest in a global reference
frame, where the robot needs to locate landmarks within its surroundings. In the second part,
a fast and hybrid localisation method is deployed to explore the characteristics of the proposed
localisation method such as processing time, convergence and accuracy.

In general, visual localisation of legged robots can be achieved by using artificial and natural
landmarks. The landmark modelling problem has been already investigated by using prede-
fined landmark matching and real-time landmark learning strategies as in (Samperio & Hu,
2010). Also, by following the pre-attentive and attentive stages of previously presented work
of (Quoc et al., 2004), we propose a landmark model for describing the environment with "in-
teresting” features as in (Luke et al., 2005), and to measure the quality of landmark description
and selection over time as shown in (Watman et al., 2004). Specifically, we implement visual
detection and matching phases of a pre-defined landmark model as in (Hayet et al., 2002) and
(Sung et al., 1999), and for real-time recognised landmarks in the frequency domain (Maosen
et al., 2005) where they are addressed by a similarity evaluation process presented in (Yoon
& Kweon, 2001). Furthermore, we have evaluated the performance of proposed localisation
methods, Fuzzy-Markov (FM), Extended Kalman Filters (EKF) and an combined solution of
Fuzzy-Markov-Kalman (FM-EKF),as in (Samperio et al., 2007)(Hatice et al., 2006).

The proposed hybrid method integrates a probabilistic multi-hypothesis and grid-based maps
with EKF-based techniques. As it is presented in (Kristensen & Jensfelt, 2003) and (Gutmann
et al., 1998), some methodologies require an extensive computation but offer a reliable posi-
tioning system. By cooperating a Markov-based method into the localisation process (Gut-
mann, 2002), EKF positioning can converge faster with an inaccurate grid observation. Also.
Markov-based techniques and grid-based maps (Fox et al., 1998) are classic approaches to
robot localisation but their computational cost is huge when the grid size in a map is small
(Duckett & Nehmzow, 2000) and (Jensfelt et al., 2000) for a high resolution solution. Even
the problem has been partially solved by the Monte Carlo (MCL) technique (Fox et al., 1999),
(Thrun et al., 2000) and (Thrun et al., 2001), it still has difficulties handling environmental
changes (Tanaka et al., 2004). In general, EKF maintains a continuous estimation of robot po-
sition, but can not manage multi-hypothesis estimations as in (Baltzakis & Trahanias, 2002).
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Moreover, traditional EKF localisation techniques are computationally efficient, but they may
also fail with quadruped walking robots present poor odometry, in situations such as leg slip-
page and loss of balance. Furthermore, we propose a hybrid localisation method to eliminate
inconsistencies and fuse inaccurate odometry data with costless visual data. The proposed
FM-EKEF localisation algorithm makes use of a fuzzy cell to speed up convergence and to
maintain an efficient localisation. Subsequently, the performance of the proposed method was
tested in three experimental comparisons: (i) simple movements along the pitch, (ii) localising
and playing combined behaviours and c) kidnapping the robot.

The rest of the chapter is organised as follows. Following the brief introduction of Section 1,
Section 2 describes the proposed observer module as an updating process of a Bayesian lo-
calisation method. Also, robot motion and measurement models are presented in this section
for real-time landmark detection. Section 3 investigates the proposed localisation methods.
Section 4 presents the system architecture. Some experimental results on landmark modelling
and localisation are presented in Section 5 to show the feasibility and performance of the pro-
posed localisation methods. Finally, a brief conclusion is given in Section 6.

2. Observer design

This section describes a robot observer model for processing motion and measurement phases.
These phases, also known as Predict and Update, involve a state estimation in a time sequence
for robot localisation. Additionally, at each phase the state is updated by sensing information
and modelling noise for each projected state.

2.1 Motion Model

The state-space process requires a state vector as processing and positioning units in an ob-
server design problem. The state vector contains three variables for robot localisation, i.e., 2D
position (x, y) and orientation (). Additionally, the prediction phase incorporates noise from
robot odometry, as it is presented below:

x; X1 (ug’:” + w%’i”)cos@t_l - (uli"t + wjt"t)sinét_l
v | =1 v |+ @+ wi™)sing; 1 + (uf + wi)cosd; 4 4.9)
O 01 uf®t + wiet

where 1!, 4" and u"* are the lateral, linear and rotational components of odometry, and

wl“t, w'™ and w™ are the lateral, linear and rotational components in errors of odometry.
Also, t — 1 refers to the time of the previous time step and ¢ to the time of the current step.

In general, state estimation is a weighted combination of noisy states using both priori and
posterior estimations. Likewise, assuming that v is the measurement noise and w is the pro-
cess noise, the expected value of the measurement R and process noise Q covariance matrixes
are expressed separately as in the following equations:

rot

R = E[v?'] (4.10)
Q = E[ww'] (4.11)

The measurement noise in matrix R represents sensor errors and the Q matrix is also a con-
fidence indicator for current prediction which increases or decreases state uncertainty. An
odometry motion model, u;_; is adopted as shown in Figure 1. Moreover, Table 1 describes
all variables for three dimensional (linear, lateral and rotational) odometry information where
(X,7) is the estimated values and (x, y) the actual states.
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X, X

(2F)

Fig. 1. The proposed motion model for Aibo walking robot

According to the empirical experimental data, the odometry system presents a deviation of
30% on average as shown in Equation (4.12). Therefore, by applying a transformation matrix
W; from Equation (4.13), noise can be addressed as robot uncertainty where 6 points the robot
heading.

(0.3ukim)2 0 0
O = 0 (0.3ulet)2 0 (4.12)
lin lat
0 0 (0'31401? + (o géa‘(”t )? )2
cosfy_1 —senb;_q O
W= fw= | senfy_1 costy_1 0 (4.13)
0 0 1

2.2 Measurement Model

In order to relate the robot to its surroundings, we make use of a landmark representation. The
landmarks in the robot environment require notational representation of a measured vector f/
for each i-th feature as it is described in the following equation:

t 0
fl) ={fl. ff, .} =A{ bil . bg - (4.14)
5 5

where landmarks are detected by an onboard active camera in terms of range r, bearing b}
and a signature s; for identifying each landmark. A landmark measurement model is defined
by a feature-based map m, which consists of a list of signatures and coordinate locations as
follows:

m = {my,my, ..} = {(my,myy), (Mo, May), ...} (4.15)
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Variable | Description

Xa x axis of world coordinate system
Va y axis of world coordinate system

X1 previous robot x position in world coordinate system

Vi1 previous robot y position in world coordinate system

(o previous robot heading in world coordinate system

X1 previous state x axis in robot coordinate system

Vi-1 previous state y axis in robot coordinate system

uim’l”t lineal and lateral odometry displacement in robot coordinate system

ulot rotational odometry displacement in robot coordinate system
X current robot x position in world coordinate system
Yt current robot y position in world coordinate system
0; current robot heading in world coordinate system
Xt current state x axis in robot coordinate system
i current state y axis in robot coordinate system

Table 1. Description of variables for obtaining linear, lateral and rotational odometry informa-
tion.

where the i-th feature at time ¢ corresponds to the j-th landmark detected by a robot whose
poseisx; = (x y 0) T the implemented model is:

ri(x,y,0) VO = )2+ (= y)?
bi(x,y,6) | =\ atan2(m;y, —y,mj—x)) — 0 (4.16)
5 (5,3,0) ;

The proposed landmark model requires an already known environment with defined land-
marks and constantly observed visual features. Therefore, robot perception uses mainly de-
fined landmarks if they are qualified as reliable landmarks.

2.2.1 Defined Landmark Recognition

The landmarks are coloured beacons located in a fixed position and are recognised by image
operators. Figure 2 presents the quality of the visual detection by a comparison of distance
errors in the observations of beacons and goals. As can be seen, the beacons are better recog-
nised than goals when they are far away from the robot. Any visible landmark in a range from
2m to 3m has a comparatively less error than a near object. Figure 2.b shows the angle errors
for beacons and goals respectively, where angle errors of beacons are bigger than the ones for
goals. The beacon errors slightly reduces when object becomes distant. Contrastingly, the goal
errors increases as soon the robot has a wider angle of perception.

These graphs also illustrates errors for observations with distance and angle variations. In
both graphs, error measurements are presented in constant light conditions and without oc-
clusion or any external noise that can affect the landmark perception.

2.2.2 Undefined Landmark Recognition

A landmark modelling is used for detecting undefined environment and frequently appearing
features. The procedure is accomplished by characterising and evaluating familiarised shapes
from detected objects which are characterised by sets of properties or entities. Such process is
described in the following stages:
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Distance errors for beacons and Angle errors beacons and goals
Goals (mm) (degrees)
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Fig. 2. Distance and angle errors in landmarks observations for beacons and goals of proposed
landmark model.

Errar i)

* Entity Recognition The first stage of dynamic landmark modelling relies on feature
identification from constantly observed occurrences. The information is obtained from
colour surface descriptors by a landmark entity structure. An entity is integrated by
pairs or triplets of blobs with unique characteristics constructed from merging and com-
paring linear blobs operators. The procedure interprets surface characteristics for ob-
taining range frequency by using the following operations:

1. Obtain and validate entity’s position from the robot’s perspective.
2. Getblobs’ overlapping values with respect to their size.

3. Evaluate compactness value from blobs situated in a bounding box.

4. Validate eccentricity for blobs assimilated in current the entity.

¢ Model Evaluation

The model evaluation phase describes a procedure for achieving landmark entities for a
real time recognition. The process makes use of previously defined models and merges
them for each sensing step. The process is described in Algorithm 1:

From the main loop algorithm is obtained a list of candidate entities {E} to obtain a col-

lection of landmark models {L}. This selection requires three operations for comparing
an entity with a landmark model:

— Colour combination is used for checking entities with same type of colours as a
landmark model.

— Descriptive operators, are implemented for matching features with a similar char-

acteristics. The matching process merges entities with a £0.3 range ratio from
defined models.

— Time stamp and Frequency are recogised every minute for filtering long lasting
models using a removing and merging process of non leading landmark models.

The merging process is achieved using a bubble sort comparison with a swapping stage
modified for evaluating similarity values and it also eliminates 10% of the landmark
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Algorithm 1 Process for creating a landmark model from a list of observed features.

Require: Map of observed features {E}
Require: A collection of landmark models {L}

{The following operations generate the landmark model information.}

1: forall {E}; C {E} do

2:  Evaluate ColourCombination( {E ) {C}i
3:  Evaluate BlobDistances({E};) d
4:  Obtain TimeStamp({E};i) ¢;
5. Create Entity({C};, d;, t;) j
6:  for {L})MATCHON{L} do {If information is similar to an achicved model }
7: if je{L}; then
8: Update {L}(j) {Update modelled values and)
9: Increase {L}; frequency {Increase modelled frequency}
10: else {If modelled information does not exist }
11: Create {L}.1(j) {Create model and)
12: Increase {L}j1 frequency {Increase modelled frequency}
13: end if
14: if time > 1 min then {After one minute }
15: MergeList({L}) {Select best models}
16: end if
17:  end for
18: end for

candidates. The similarity values are evaluated using Equation 3.4 and the probability
of perception using Equation 3.5:

p(i,j) = 7NM(Z’] ) (34)
L M(k,j)
k=1
P
=Y E(i,j,1) (3.5)
=1

where N indicates the achieved candidate models, i is the sampled entity, j is the
compared landmark model, M(i, ) is the landmark similarity measure obtained from
matching an entity’s descriptors and assigning a probability of perception as described
in Equation 3.6, P is the total descriptors, [ is a landmark descriptor and E(, j, 1) is the
Euclidian distance of each landmark model compared, estimated using Equation 3.7:

N
Y M(kj) =1 (3.6)
k=1
o (i — In)?
E(ij) =, Y Unn) 4)
m=1 Uin
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where L; refers to all possible operators from the current landmark model, o, is the
standard deviation for each sampled entity i, in a sample set and [ is a landmark de-
scriptor value.

3. Localisation Methods

Robot localisation is an environment analysis task determined by an internal state obtained
from robot-environment interaction combined with any sensed observations. The traditional
state assumption relies on the robot’s influence over its world and on the robot’s perception
of its environment.

Both steps are logically divided into independent processes which use a state transition for
integrating data into a predictive and updating state. Therefore, the implemented localisation
methods contain measurement and control phases as part of state integration and a robot
pose conformed through a Bayesian approach. On the one hand, the control phase is assigned
to robot odometry which translates its motion into lateral, linear and rotational velocities. On
the other hand, the measurement phase integrates robot sensed information by visual features.
The following sections describe particular phase characteristics for each localisation approach.

3.1 Fuzzy Markov Method

As it is shown in the FM grid-based method of (Buschka et al., 2000) and (Herrero-Pérez et al.,
2004), a grid G¢ contains a number of cells for each grid element G;(x, y) for holding a proba-
bility value for a possible robot position in a range of [0, 1]. The fuzzy cell (fcell) is represented
as a fuzzy trapezoid (Figure 3) defined by a tuple < 6, A, &, h, b >, where 6 is robot orientation
at the trapezoid centre with values in a range of [0, 27]; A is uncertainty in a robot orientation
0; h corresponds to fuzzy cell (feell) with a range of [0, 1]; « is a slope in the trapezoid, and b is
a correcting bias.

Fig. 3. Graphic representation of robot pose in an fuzzy cell

Since a Bayesian filtering technique is implemented, localisation process works in predict-
observe-update phases for estimating robot state. In particular, the Predict step adjusts to
motion information from robot movements. Then, the Observe step gathers sensed infor-
mation. Finally, the Update step incorporates results from the Predict and Observe steps for
obtaining a new estimation of a fuzzy grid-map. The process sequence is described as follows:

1. Predict step. During this step, robot movements along grid-cells are represented by a
distribution which is continuously blurred. As described in previous work in (Herrero-
Pérez et al., 2004), the blurring is based on odometry information reducing grid occu-
pancy for robot movements as shown in Figure 4(c)). Thus, the grid state G; is obtained
by performing a translation and rotation of G;_; state distribution according to motion
il. Subsequently, this odometry-based blurring, By, is uniformly calculated for including
uncertainty in a motion state.
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Thus, state transition probability includes as part of robot control, the blurring from
odometry values as it is described in the following equation:

Gi = f(Gt | Gy_1, 1) ® By (4.30)

2. Observe step. In this step, each observed landmark i is represented as a vector Z;, which
includes both range and bearing information obtained from visual perception. For each
observed landmark Z;, a grid-map S, ; is built such that S;;(x,y,0|Z;) is matched to a
robot position at (x,y,6) given an observation 7 at time ¢.

3. Update step. At this step, grid state G} obtained from the prediction step is merged with
each observation step S; ;. Afterwards, a fuzzy intersection is obtained using a product
operator as follows:

Gr = f(zt| G) (4.31)

Gt = Gj X St1 X Sga X ==+ X Spp (4.32)

™
ERR

Fig. 4. In this figure is shown a 51mu1ated localisation process of FM grid starting from ab-
solute uncertainty of robot pose (a) and some initial uncertainty (b) and (c). Through to an
approximated (d) and finally to an acceptable robot pose estimation obtained from simulated
environment explained in (Samperio & Hu, 2008).

A simulated example of this process is shown in Figure 4. In this set of Figures, Figure 4(a)
illustrates how the system is initialised with absolute uncertainty of robot pose as the white
areas. Thereafter, the robot incorporates landmark and goal information where each grid state
Gt is updated whenever an observation can be successfully matched to a robot position, as
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illustrated in Figure 4(b). Subsequently, movements and observations of various landmarks
enable the robot to localise itself, as shown from Figure 4(c) to Figure 4(f).

This method’s performance is evaluated in terms of accuracy and computational cost during a
real time robot execution. Thus, a reasonable fcell size of 20 cm? is addressed for less accuracy
and computing cost in a pitch space of 500cmx400cm.

This localisation method offers the following advantages, according to (Herrero-Pérez et al.,
2004):

¢ Fast recovery from previous errors in the robot pose estimation and kidnappings.
e Multi-hypotheses for robot pose (x,y) .

¢ It is much faster than classical Markovian approaches.
However, its disadvantages are:

¢ Mono-hypothesis for orientation estimation.
¢ Itis very sensitive to sensor errors.
¢ The presence of false positives makes the method unstable in noisy conditions.

¢ Computational time can increase dramatically.

3.2 Extended Kalman Filter method

Techniques related to EKF have become one of the most popular tools for state estimation in
robotics. This approach makes use of a state vector for robot positioning which is related to
environment perception and robot odometry. For instance, robot position is adapted using a
vector s; which contains (x, y) as robot position and 6 as orientation.

Xrobot
5= Yrobot (4.17)
6robot

As a Bayesian filtering method, EKF is implemented Predict and Update steps, described in
detail below:

1. Prediction step. This phase requires of an initial state or previous states and robot odometry
information as control data for predicting a state vector. Therefore, the current robot state
s, is affected by odometry measures, including a noise approximation for error and control
estimations P;” . Initially, robot control probability is represented by using:

S, = f(Sp—1,u—1,W4) (4.18)

where the nonlinear function f relates the previous state s;_1, control input u;_; and the pro-
cess noise wy.

Afterwards, a covariance matrix P;” is used for representing errors in state estimation obtained
from the previous step’s covariance matrix P;_; and defined process noise. For that reason,
the covariance matrix is related to the robot’s previous state and the transformed control data,
as described in the next equation:

Py = AP AT + WiQr W (4.19)
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where AtPt,lAtT is a progression of P;_; along a new movement and A; is defined as follows:

0 —ulcosh; — uli"senf; 4
1 ulmcosf — ul™senf; 4 (4.19)
0 1

AthS:

S O =

and W;Q;_1 WtT represents odometry noise, W; is Jacobian motion state approximation and Q;
is a covariance matrix as follows:
Qi = E[wiw]] (4.20)

The Sony AIBO robot may not be able to obtain a landmark observation at each localisation
step but it is constantly executing a motion movement. Therefore, it is assumed that frequency
of odometry calculation is higher than visually sensed measurements. For this reason, con-
trol steps are executed independently from measurement states (Kiriy & Buehler, 2002) and
covariance matrix actualisation is presented as follows:

st =5, (4.21)
b =P (4.22)

2. Updating step. During this phase, sensed data and noise covariance P; are used for obtain-

ing a new state vector. The sensor model is also updated using measured landmarks 11, . (. )

as environmental descriptive data. Thus, each z’; of the i landmarks is measured as distance
and angle with a vector (7}, ¢;). In order to obtain an updated state, the next equation is used:

st =si1+Ki(zh —2) = si1 + Ki(z} = (s51-1)) (4.23)
where 1 (s;_1 ) is a predicted measurement calculated from the following non-linear functions:
. . i 2 i
2 =h(si1) = %(m?/* St10)" + Oy = Si1y) (4.24)
atan®(m} , — i1, m’t/y —Si1y) —St-10

Then, the Kalman gain, K!, is obtained from the next equation:

K =P (H)T(S)) ™ (4.25)

where S! is the uncertainty for each predicted measurement 2! and is calculated as follows:

St = HiP_1(H)T + R} (4.26)

Then H! describes changes in the robot position as follows:

Hi = hi(s;_1)st

_ M —Si_1x B "}, —St-1y 0
s Hmy s )2 s P (] —sioy)? 427)
= , i, Sty . mi,fst—l,x 1
(] =S, P (=511 (] =S, P (=511
0 0 0

where Ri represents the measurement noise which was empirically obtained and P; is calcu-
lated using the following equation:
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P = (I-KH)P, 4 (4.28)
Finally, as not all 2’t values are obtained at every observation, zi values are evaluated for each
observation and 4} is a confidence measurement obtained from Equation (4.29). The confi-

dence observation measurement has a threshold value between 5 and 100, which varies ac-
cording to localisation quality.

& = (z—2)T(SH (= — %)) (4.29)

3.3 FM-EKF method

Merging the FM and EKF algorithms is proposed in order to achieve computational efficiency,
robustness and reliability for a novel robot localisation method. In particular, the FM-EKF
method deals with inaccurate perception and odometry data for combining method hypothe-
ses in order to obtain the most reliable position from both approaches.

The hybrid procedure is fully described in Algorithm 2, in which the fcell grid size is (50-100
cm) which is considerably wider than FM’s. Also the fcell is initialised in the space map centre.
Subsequently, a variable is iterated for controlling FM results and it is used for comparing
robot EKF positioning quality. The localisation quality indicates if EKF needs to be reset in the
case where the robot is lost or the EKF position is out of FM range.

Algorithm 2 Description of the FM-EKF algorithm.

Require: positionpys over all pitch
Require: positionggr over all pitch
1: while robotLocalise do
2:  {Execute” Predict” phases forF Mand EKF}

3:  Predict positionpy; using motion model
4:  Predict positionggr using motion model
5. {Execute”Correct” phases forF MandEKF}
6:  Correct positionry using perception model
7. Correct positiongxr using perception model
8. {Checkqualityo flocalisation forEKFusingF M}
9:  if (quality(positionpy) > quality(positionpxr) then
10: Initialise positionggr to positiongp,
11:  else
12: robot position < positiongxr
13:  endif

14: end while

The FM-EKEF algorithm follows the predict-observe-update scheme as part of a Bayesian ap-
proach. The input data for the algorithm requires similar motion and perception data. Thus,
the hybrid characteristics maintain a combined hypothesis of robot pose estimation using data
that is independently obtained. Conversely, this can adapt identical measurement and control
information for generating two different pose estimations where, under controlled circum-
stances one depends on the other.

From one viewpoint, FM localisation is a robust solution for noisy conditions. However, it
is also computationally expensive and cannot operate efficiently in real-time environments
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with a high resolution map. Therefore, its computational accuracy is inversely proportional
to the fcell size. From a different perspective, EKF is an efficient and accurate positioning
system which can converge computationally faster than FM. The main drawback of EKF is a
misrepresentation in the multimodal positioning information and method initialisation.

= e —
o
- gKE |
Sl N
EHF ons FM«;:":”/;;-B,M;.:H
gatrmiffe EHE.
[ P T ol
1
Robot Pose

Fig. 5. Flux diagram of hybrid localisation process.

The hybrid method combines FM grid accuracy with EKF tracking efficiency. As it is shown
in Figure 5, both methods use the same control and measurement information for obtaining
a robot pose and positioning quality indicators. The EKF quality value is originated from the
eigenvalues of the error covariance matrix and from noise in the grid- map.

As a result, EKF localisation is compared with FM quality value for obtaining a robot pose
estimation. The EKF position is updated whenever the robot position is lost or it needs to be
initialised. The FM method runs considerably faster though it is less accurate.

This method implements a Bayesian approach for robot-environment interaction in a locali-
sation algorithm for obtaining robot position and orientation information. In this method a
wider feell size is used for the FM grid-map implementation and EKF tracking capabilities are
developed to reduce computational time.

4. System Overview

The configuration of the proposed HRI is presented in Figure 6. The user-robot interface man-
ages robot localisation information, user commands from a GUI and the overhead tracking,
known as the VICON tracking system for tracking robot pose and position. This overhead
tracking system transmits robot heading and position data in real time to a GUI where the
information is formatted and presented to the user.

The system also includes a robot localisation as a subsystem composed of visual perception,
motion and behaviour planning modules which continuously emits robot positioning infor-
mation. In this particular case, localisation output is obtained independently of robot be-
haviour moreover they share same processing resources. Additionally, robot-visual informa-
tion can be generated online from GUI from characterising environmental landmarks into
robot configuration.

Thus, the user can manage and control the experimental execution using online GUI tasks.
The GUI tasks are for designing and controlling robot behaviour and localisation methods,
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Fig. 6. Complete configuration of used human-robot interface.

and for managing simulated and experimental results. Moreover, tracking results are the ex-
periments’ input and output of a grand truth that is evaluating robot self-localisation results.

5. Experimental Results

The presented experimental results contain the analysis of the undefined landmark models
and a comparison of implemented localisation methods. The undefined landmark modelling
is designed for detecting environment features that could support the quality of the locali-
sation methods. All localisation methods make use of defined landmarks as main source of
information.

The first set of experiments describe the feasibility for employing a not defined landmark as a
source for localisation. These experiments measure the robot ability to define a new landmark
in an indoor but dynamic environment. The second set of experiments compare the quality
of localisation for the FM, EKF and FM-EKF independently from a random robot behaviour
and environment interaction. Such experiments characterise particular situations when each
of the methods exhibits an acceptable performance in the proposed system.

5.1 Dynamic landmark acquisition

The performance for angle and distance is evaluated in three experiments. For the first and
second experiments, the robot is placed in a fixed position on the football pitch where it con-
tinuously pans its head. Thus, the robot maintains simultaneously a perception process and
a dynamic landmark creation. Figure 7 show the positions of 1683 and 1173 dynamic models
created for the first and second experiments over a duration of five minutes.

Initially, newly acquired landmarks are located at 500 mm and with an angle of 311/4rad from
the robot’s centre. Results are presented in Table ??. The tables for Experiments 1 and 2,
illustrate the mean (X) and standard deviation () of each entity’s distance, angle and errors
from the robot’s perspective.

In the third experiment, landmark models are tested during a continuous robot movement.
This experiment consists of obtaining results at the time the robot is moving along a circular
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Fig. 7. Landmark model recognition for Experiments 1, 2 and 3
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Experpiment 1 | Distance | Angle | Errorin Distance | Errorin Angle

Mean 489.02 146.89 256.46 2.37
StdDev 293.14 9.33 133.44 8.91
Experpiment 2 | Distance | Angle | Errorin Distance | Errorin Angle
Mean 394.02 48.63 86.91 2.35
StdDev 117.32 2.91 73.58 1.71
Experpiment 3 | Distance | Angle | Errorin Distance | Errorin Angle
Mean 305.67 12.67 90.30 3.61
StdDev 105.79 4.53 54.37 2.73

Table 2. Mean and standard deviation for experiment 1, 2 and 3.

trajectory with 20 cm of bandwidth radio, and whilst the robot’s head is continuously panning.
The robot is initially positioned 500 mm away from a coloured beacon situated at 0 degrees
from the robot’s mass centre. The robot is also located in between three defined and one
undefined landmarks. Results obtained from dynamic landmark modelling are illustrated in
Figure 7. All images illustrate the generated landmark models during experimental execution.
Also it is shown darker marks on all graphs represent an accumulated average of an observed
landmark model.

This experiment required 903 successful landmark models detected over five minute duration
of continuous robot movement and the results are presented in the last part of the table for
Experiment 3. The results show magnitudes for mean (¥) and standard deviation (¢), distance,
angle and errors from the robot perspective.

Each of the images illustrates landmark models generated during experimental execution,
represented as the accumulated average of all observed models. In particular for the first
two experiments, the robot is able to offer an acceptable angular error estimation in spite of
a variable proximity range. The results for angular and distance errors are similar for each
experiment. However, landmark modelling performance is susceptible to perception errors
and obvious proximity difference from the perceived to the sensed object.

The average entity of all models presents a minimal angular error in a real-time visual pro-
cess. An evaluation of the experiments is presented in Box and Whisker graphs for error on
position, distance and angle in Figure 8.

Therefore, the angle error is the only acceptable value in comparison with distance or po-
sitioning performance. Also, the third experiment shows a more comprehensive real-time
measuring with a lower amount of defined landmark models and a more controllable error
performance.

5.2 Comparison of localisation methods

The experiments were carried out in three stages of work: (i) simple movements; (ii) com-
bined behaviours; and (iii) kidnapped robot. Each experiment set is to show robot positioning
abilities in a RoboCup environment. The total set of experiment updates are of 15, with 14123
updates in total. In each experimental set, the robot poses estimated by EKF, FM and FM-EKF
localisation methods are compared with the ground truth generated by the overhead vision
system. In addition, each experiment set is compared respectively within its processing time.
Experimental sets are described below:
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Fig. 8. Error in angle for Experiments 1, 2 and 3.

1. Simple Movements. This stage includes straight and circular robot trajectories in for-
ward and backward directions within the pitch.

2. Combined Behaviour. This stage is composed by a pair of high level behaviours. Our
first experiment consists of reaching a predefined group of coordinated points along
the pitch. Then, the second experiment is about playing alone and with another dog to
obtain localisation results during a long period.

3. Kidnapped Robot. This stage is realised randomly in sequences of kidnap time and
pose. For each kidnap session the objective is to obtain information about where the
robot is and how fast it can localise again.

All experiments in a playing session with an active localisation are measured by showing the
type of environment in which each experiment is conducted and how they directly affect robot
behaviour and localisation results. In particular, the robot is affected by robot displacement,
experimental time of execution and quantity of localisation cycles. These characteristics are
described as follows and it is shown in Table 3:

1. Robot Displacement is the accumulated distance measured from each simulated
method step from the perspective of the grand truth mobility.
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2. Localisation Cycles include any completed iteration from update-observe-predict

stages for any localisation method.

3. Time of execution refers to total amount of time taken for each experiment with a time

of 1341.38 s for all the experiments.

[ [[ Exp.1 [ Exp.2 [ Exp.3 ]
Displacement (mm) 15142.26 5655.82 11228.42
Time of Execution (s) 210.90 29.14 85.01
Localisation Cycles (iterations) || 248 67 103

Table 3. Experimental conditions for a simulated environment.

The experimental output depends on robot behaviour and environment conditions for obtain-
ing parameters of performance. On the one side, robot behaviour is embodied by the specific
robot tasks executed such as localise, kick the ball, search for the ball, search for landmarks, search for
players, move to a point in the pitch, start, stop, finish, and so on. On the other side, robot control
characteristics describe robot performance on the basis of values such as: robot displacement,
time of execution, localisation cycles and landmark visibility. Specifically, robot performance crite-
ria are described for the following environment conditions:

1. Robot Displacement is the distance covered by the robot for a complete experiment,
obtained from grand truth movement tracking. The total displacement from all experi-
ments is 146647.75 mm.

2. Landmark Visibility is the frequency of the detected true positives for each landmark
model among all perceived models. Moreover, the visibility ranges are related per each
localisation cycle for all natural and artificial landmarks models. The average landmark
visibility obtained from all the experiments is in the order of 26.10 % landmarks per total
of localisation cycles.

3. Time of Execution is the time required to perform each experiment. The total time of
execution for all the experiments is 902.70 s.

4. Localisation Cycles is a complete execution of a correct and update steps through the
localisation module. The amount of tries for these experiments are 7813 cycles.

The internal robot conditions is shown in Table ??:

[ [ Exp1 [ Exp2 [ Exp3 ]
Displacement (mm) 5770.72 62055.79 78821.23
Landmark Visibility (true positives/total obs) 0.2265 0.3628 0.2937
Time of Execution (s) 38.67 270.36 593.66
Localisation Cycles (iterations) 371 2565 4877

Table 4. Experimental conditions for a real-time environment.

In Experiment 1, the robot follows a trajectory in order to localise and generate a set of visi-
ble ground truth points along the pitch. In Figures 9 and 10 are presented the error in X and
Y axis by comparing the EKF, FM, FM-EKF methods with a grand truth. In this graphs it is
shown a similar performance between the methods EKF and FM-EKEF for the error in X and Y
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Grand Truth Trajectories for Exp. 1
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Fig. 13. Robot trajectories for EKF, FM, FM-EKF and the overhead camera in Exp. 1.

axis but a poor performance of the FM. However for the orientation error displayed in Figure
11 is shown that whenever the robot walks along the pitch without any lack of information,
FM-EKF improves comparatively from the others. Figure 12 shows the processing time for all
methods, in which the proposed FM-EKF method is faster than the FM method, but slower
than the EKF method. Finally, in Figure 13 is presented the estimated trajectories and the over-
head trajectory. As can be seen, during this experiment is not possible to converge accurately
for FM but it is for EKF and FM-EKF methods where the last one presents a more accurate
robot heading.

For Experiment 2, is tested a combined behaviour performance by evaluating a playing ses-
sion for a single and multiple robots. Figures 14 and 15 present as the best methods the EKF
and FM-EKF with a slightly improvement of errors in the FM-EKF calculations. In Figure 16
is shown the heading error during a playing session where the robot visibility is affected by a
constantly use of the head but still FM-EKF, maintains an more likely performance compared
to the grand truth. Figure 17 shows the processing time per algorithm iteration during the
robot performance with a faster EKF method. Finally, Figure 18 shows the difference of robot
trajectories estimated by FM-EKF and overhead tracking system.

In the last experiment, the robot was randomly kidnapped in terms of time, position and
orientation. After the robot is manually deposited in a different pitch zone, its localisation
performance is evaluated and shown in the figures for Experiment 3. Figures 19 and 20 show
positioning errors for X and Y axis during a kidnapping sequence. Also, FM-EKF has a similar
development for orientation error as it is shown in Figure 21. Figure 22 shows the processing
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Grand Truth Trajectories for Exp. 2
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Fig. 18. Robot trajectories for EKF, FM, FM-EKF and the overhead camera in Exp. 2.

time per iteration for all algorithms a kidnap session. Finally, in Figure 23 and for clarity rea-
sons is presented the trajectories estimated only by FM-EKF, EKF and overhead vision system.
Results from kidnapped experiments show the resetting transition from a local minimum to
fast convergence in 3.23 seconds. Even EKF has the most efficient computation time, FM-EKF
offers the most stable performance and is a most suitable method for robot localisation in a
dynamic indoor environment.

6. Conclusions

This chapter presents an implementation of real-time visual landmark perception for a
quadruped walking robot in the RoboCup domain. The proposed approach interprets an
object by using symbolic representation of environmental features such as natural, artificial or
undefined. Also, a novel hybrid localisation approach is proposed for fast and accurate robot
localisation of an active vision platform. The proposed FM-EKF method integrates FM and
EKF algorithms using both visual and odometry information.

The experimental results show that undefined landmarks can be recognised accurately during
static and moving robot recognition sessions. On the other hand, it is clear that the hybrid
method offers a more stable performance and better localisation accuracy for a legged robot
which has noisy odometry information. The distance error is reduced to +20 mm and the
orientation error is 0.2 degrees.

Further work will focus on adapting for invariant scale description during real time image
processing and of optimising the filtering of recognized models. Also, research will focus on
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Grand Truth Trajectories for Exp. 3
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Fig. 23. Robot trajectories for EKF, FM, FM-EKF and the overhead camera in Exp. 3., where
the thick line indicates kidnapped period.

the reinforcement of the quality in observer mechanisms for odometry and visual perception,
as well as the improvement of landmark recognition performance.
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1. Introduction

Generally speaking, positioning and localization give somehow the same comprehension in
terminology. They can be defined as a mechanism for realizing the spatial relationship
between desired features. Independent from the mechanisms themselves, they all have
certain requirements to fulfil. Scale of measurements and granularity is one important
aspect to be investigated. There are limitations, and on the other hand expectations,
depending on each particular application. Accuracy gives the closeness of the estimated
solution with respect to the associated real position of a feature in the work space (ak.a
ground truth position). Consistency of the realized solution and the ground truth, is
represented by precision. Other parameters are still existing which leave more space for
investigation depending on the technique used for localization, parameters such as refresh
rate, cost (power consumption, computation, price, infrastructure installation burden, ...),
mobility and adaptively to the environment (indoor, outdoor, space robotics, underwater
vehicles, ...) and so on.

From the mobile robotics perspective, localization and mapping are deeply correlated.
There is the whole field of Simultaneous Localization and Mapping (SLAM), which deals
with the employment of local robot sensors to generate good position estimates and maps;
see (Thrun, 2002) for an overview. SLAM is also intensively studied from the multi robot
perspective. This is while SLAM requires high end obstacle detection sensors such as laser
range finders and it is computationally quite expensive.

Aside from SLAM, there are state of the art positioning techniques which can be anyhow
fused in order to provide higher accuracy, faster speed and to be capable of dealing with
systems with higher degrees of complexity. Here, the aim is to first of all survey an
introductory overview on the common robot localization techniques, and particularly then
focus on those which employ a rather different approach, i.e ranging by means of specially
radio wireless technology. It will be shortly seen that mathematical tools and geometrical
representation of a graph model containing multiple robots as the network nodes, can be
considered a feature providing higher positioning accuracy compared to the traditional
methods. Generally speaking, such improvements are scalable and also provide robustness
against variant inevitable disturbing environmental features and measurement noise.
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2. State of the Art Robot Localization

Localization in the field of mobile robotics is vast enough to fall into unique judgements and
indeed categorization. There are plenty of approaches tackling the problem from different
perspectives. In order to provide a concrete understanding of grouping, we start facing the
localization mechanisms with a form of categorization as follows.

* Passive Localization: where already present signals are observed and processed by the
system in order to deduce location of desired features. Clearly, depending on the
signal’s specifications, special sensory system as well as available computation
power, certain flexibility is required due to passiveness.

* Active Localization: in which, the localization mechanism itself generates and uses its own
signals for the localization purpose.

Preference is up to the particular application where it may choose a solution which falls in
either of the above classes. However, a surface comparison says the second approach would
be more environmental independent and therefore, more reliable for a wider variety of
applications. This again will be a tradeoff for some overhead requirements such as
processing power, computation resources and possibly extra auxiliary hardware subunits.
From another side of assessment, being utilized hardware point of view, we can introduce the
techniques below, which each itself is either passive or active:

1. Dead reckoning: uses encoders, principally to realize translational movements from
rotational measurements based on integration. Depending on the application, there
are different resolutions defined. This class is the most basic but at the same time
the most common one, applied in mobile robotics. Due to its inherit characteristics,
this method is considered noisy and less robust. On the other hand, due to its
popularity, there has been enough research investment to bring about sufficient
improvements for the execution and results quality of this technique (e.g. (Lee) and
(Heller) can be referred to).

2. INS methods: which are based on inertial sensors, accelerometers and detectors for
electromagnetic field and gravity. They are also based on integration on movement
elements, therefore, may eventually lead to error accumulation especially if drift
prune sensors are used. Due to vast field of applications, these methods also
enjoyed quite enough completeness, thanks to the developed powerful
mathematical tools. (Roos, 2002) is for example offering one of these
complementary enhancements.

3. Vision and visual odometery: utilizing a single camera, stereo vision or even omni directional
imaging, this solution can potentially be useful in giving more information than
only working as the localization routine. This solution can considerably become
more computationally expensive, especially if employed in a dynamic environment
or expected to deal with relatively-non-stationary features. It is however,
considered a popular and effective research theme lately, and is enhanced
significantly by getting backup support from signal processing techniques, genetic
algorithms, as well as evolutionary and learning algorithms.
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4. Ranging: employing a distance measurement media that can be either laser, infrared,
acoustic or radio signals. Ranging can be done using different techniques;
recording signal’s Time of Flight, Time Difference of Arrival or Round Trip Time of
Flight of the beamed signal, as well as its Angle of Arrival. This class is under main
interest to be fused properly for increasing efficiency and accuracy of the
traditional methods.

There are some less common approaches which indirectly can still be categorized in the
classes above. Itemized reference to them is as the following.

Doppler sensors can measure velocity of the moving objects. Principally speaking, a
sinusoidal signal is emitted from a moving platform and the echo is sensed at a
receiver. These sensors can use ultra sound signal as carrier or radio waves, either.
Related to the wavelength, resolution and accuracy may differ; a more resolution is
achieved if smaller wavelength (in other words higher frequency) is operational.
Here again, this technique works based on integrating velocity vectors over time.

Electromagnetic trackers can determine objects’ locations and orientations with a high
accuracy and resolution (typically around 1mm in coordinates and 0.2° in
orientation). Not only they are expensive methods, but also electromagnetic
trackers have a short range (a few meters) and are very sensitive to presence of
metallic objects. These limitations only make them proper for some fancy
applications such as body tracking computer games, animation studios and so on.

Optical trackers are very robust and typically can achieve high levels of accuracy and
resolution. However, they are most useful in well-constrained environments, and
tend to be expensive and mechanically complex. Example of this class of
positioning devices are head tracker system (Wang et. al, 1990).

Proper fusion of any of the introduced techniques above, can give higher precision in
localization but at the same time makes the positioning routine computationally more
expensive. For example (Choi & Oh, 2005) combines sonar and vision, (Carpin & Birk, 2004)
fuses odometery, INS and ranging, (Fox et. al, 2001) mixes dead reckoning with vision, and
there can be found plenty of other practical cases. Besides, each particular method can not be
generalized for all applications and might fail under some special circumstances. For
instance, using vision or laser rangefinders, should be planned based on having a rough
perception about the working environment beforehand (specially if system is working in a
dynamic work space. If placed out and not moving, the strategy will differ, eg. in (Bastani et.
al, 2005)). Solutions like SLAM which overcome the last weakness, need to detect some
reliable features from the work space in order to build the positioning structure (i.e. an
evolving representation called as the map) based on them. This category has a high
complexity and price of calculation. In this vain, recent technique such as pose-graph put
significant effort on improvements (Pfingsthhorn & Birk, 2008). Concerning again about the
environmental perception; INS solutions and accelerometers, may fail if the work space is
electromagnetically noisy. Integrating acceleration and using gravity specifications in
addition to the dynamics of the system, will cause a potentially large accumulative error in
positioning within a long term use, if applied alone.
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3. Ranging Technologies and Wireless Media

The aim here is to refer to ranging techniques based on wireless technology in order to provide
some network modelling and indeed realization of the positions of each node in the network.
These nodes being mobile robots, form a dynamic (or in short time windows static) topology.
Different network topologies require different positioning system solutions. Their differences
come from physical layer specifications, their media access control layer characteristics, some
capabilities that their particular network infrastructure provides, or on the other hand,
limitations that are imposed by the network structure. We first very roughly categorizes an
overview of the positioning solutions including variety of the global positioning systems, those
applied on cellular and GSM networks, wireless LANs, and eventually ad hoc sensor
networks.

3.1 Wireless Media

Two communicating nodes compose the simplest network where there is only one established
link available. Network size can grow by increasing the number of nodes. Based on the
completeness of the topology, each node may participate in establishing various number of
links. This property is used to define degree of a node in the network. Link properties are
relatively dependent on the media providing the communication. Bandwidth, signal to noise
ratio (SNR), environmental propagation model, transmission power, are some of such various
properties. Figure 1 summarizes most commonly available wireless communication media
which currently are utilized for network positioning, commercially or in the research fields.
With respect to the platform, each solution may provide global or local coordinates which are
eventually bidirectionally transformable. Various wireless platforms - based on their inherent
specifications and capabilities, may be used such that they fit the environmental conditions
and satisfy the localization requirements concerning their accessibility, reliability, maximum
achievable resolution and the desired accuracy.
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Fig. 1. Sweeping the environment from outdoor to indoor, this figure shows how different
wireless solutions use their respective platforms in order to provide positioning. They all
indeed use some ranging technique for the positioning purpose, no matter time of flight or
received signal strength. Depending on the physical size of the cluster, they provide local or
global positions. Anyhow these two are bidirectional transformable.
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Obviously, effectiveness and efficiency of a large scale outdoor positioning system is rather
different than a small scale isolated indoor one. What basically differs is the environment
which they may fit better for, as well as accuracy requirements which they afford to fulfil.
On the x-axis of the diagram in figure 1, moving from outdoor towards indoor environment,
introduced platforms become less suitable specially due to the attenuation that indoor
environmental conditions apply to the signal. This is while from right to left of the x-axis in
the same diagram, platforms and solutions have the potential to be customized for outdoor
area as well. The only concern is to cover a large enough area outdoor, by pre-installing the
infrastructure.

The challenge is dealing with accurate indoor positioning where maximum attenuation is
distorting the signal and most of the daily, surveillance and robotics applications are
utilized. In this vein, we refer to the WLAN class and then for providing enhancement and
more competitive accuracy, will turn to wireless sensor networks.

3.2 Wireless Local Area Networks

Very low price and their common accessibility have motivated development of wireless
LAN-based indoor positioning systems such as Bluetooth and Wi-Fi. (Salazar, 2004)
comprehensively compares typical WLAN systems in terms of markets, architectures, usage,
mobility, capacities, and industrial concerns. WLAN-based indoor positioning solutions
mostly depend on signal strength utilization. Anyhow they have either a client-based or
client-assisted design.

Client-based system design: Location estimation is usually performed by RF signal strength
characteristics, which works much like pattern matching in cellular location systems.
Because signal strength measurement is part of the normal operating mode of wireless
equipment, as in Wi-Fi systems, no other hardware infrastructure is required. A basic design
utilizes two phases. First, in the offline phase, the system is calibrated and a model is
constructed based on received signal strength (RSS) at a finite number of locations within
the targeted area. Second, during an online operation in the target area, mobile units report
the signal strengths received from each access point (AP) and the system determines the best
match between online observations and the offline model. The best matching point is then
reported as the estimated position.

Client-assisted system design: To ease burden of system management (provisioning, security,
deployment, and maintenance), many enterprises prefer client-assisted and infrastructure-
based deployments in which simple sniffers monitor client’s activity and measure the signal
strength of transmissions received from them (Krishnan, 2004). In client-assisted location
system design, client terminals, access points, and sniffers, collaborate to locate a client in
the WLAN. Sniffers operate in passive scanning mode and sense transmissions on all
channels or on predetermined ones. They listen to communication from mobile terminals
and record time-stamped information. The sniffers then put together estimations based on a
priory model. A client’s received signal strength at each sniffer is compared to this model
using nearest neighbour searching to estimate the clients location (Ganu, 2004). In terms of
system deployment, sniffers can either be co-located with APs, or, be located at other
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positions and function just like the Location Management Unit in a cellular-based location
system.

3.3 Ad hoc Wireless Sensor Networks

Sensor networks vary significantly from traditional cellular networks or similars. Here,
nodes are assumed to be small, inexpensive, homogeneous, cooperative, and autonomous.
Autonomous nodes in a wireless sensor network (WSN) are equipped with sensing
(optional), computation, and communication capabilities. The key idea is to construct an ad
hoc network using such wireless nodes whereas nodes’ locations can be realized. Even in a
pure networking perspective, location-tagged information can be extremely useful for
achieving some certain optimization purposes. For example (Kritzler, 2006) can be referred
to which proposes a number of location-aware protocols for ad hoc routing and networking.
It is especially difficult to estimate nodes’ positions in ad hoc networks without a common
clock as well as in absolutely unsynchronized networks. Most of the localization methods in
the sensor networks are based on RF signals’ properties. However, there are other
approaches utilizing Ultra Sound or Infra Red light instead. These last two, have certain
disadvantages. They are not omnidirectional in broadcasting and their reception, and
occlusion if does not completely block the communication, at least distorts the signal
significantly. Due to price flexibilities, US methods are still popular for research applications
while providing a high accuracy for in virtu small scale models.

Not completely inclusive in the same category however there are partially similar
techniques which use RFID tags and readers, as well as those WSNs that work based on RF
UWB communication, all have proven higher potentials for indoor positioning. An UWB
signal is a series of very short baseband pulses with time durations of only a few
nanoseconds that exist on all frequencies simultaneously, resembling a blast of electrical
noise (Fontanaand, 2002). The fine time resolution of UWB signals makes them promising
for use in high-resolution ranging. In this category, time of flight is considered rather than
the received signal strength. It provides much less unambiguity but in contrast can be
distorted by multipath fading. A generalized maximum-likelihood detector for multipaths
in UWB propagation measurement is described in (Lee, 2002). What all these techniques are
suffering from is needing a centralized processing scheme as well as a highly accurate and
synchronized common clock base. Some approaches are however tackling the problem and
do not concern time variant functions. Instead, using for example RFID tags and short-range
readers, enables them to provide some proximity information and gives a rough position of
the tag within a block accuracy/resolution (e.g. the work by (Fontanaand, 2002) with very
short range readers for a laboratory environment localization). The key feature which has to
be still highlighted in this category is the overall cost of implementation.

4. Infra Structure Principles

In the field of positioning by means of radio signals, there are various measurement
techniques that are used to determine position of a node. In a short re-notation they are
divided into three groups:

¢ Distance Measurements: ToF, TDoA, RSS

* Angle Measurements: AoA

* Fingerprinting: RSS patterns (radio maps)
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Distance and angle measurement methods are the mostly used metrics for outdoor location
systems. Distance measurements use the path loss model and ToF measurements to
determine a location. Angle Measurements are based on knowing the angle of incidence of
the received signal. However, this class requires directional antennas and antenna arrays to
measure the angle of incidence. That makes this option not very viable for a node with high-
mobility. For smaller scale applications, this method can be utilized by means of ESPAR
(Electronically Steerable Parasitic Array Radiator) antennas. Such an antenna steers
autonomously its beam toward the arrival direction of desired radio waves and steers the
nulls of the beam toward the undesired interfering waves (Ging, 2005). The versatile beam
forming capabilities of the ESPAR antenna allows to reduce multipath fading and makes
accurate reading for direction of arrival. There are not too much of applicable experiences
for indoor mobile robotics, (Shimizu, 2005) for example, applies it on search and rescue
robotics for urban indoor environment.

Distance and Angle measurements work only with direct line-of-sight signals from the
transmitter to the receiver, indeed being widely practical for outdoor environments. For
indoors, channel consists of multipath components, and the mobile station is probably
surrounded by scattering objects. For these techniques to work, a mobile node has to see at
least three signal sources, necessarily required for triangulation.

Distance measurement techniques in the simplest case, will end up to multilateration in
order to locate position of a desired point, no matter being a transmitter or a receiver.
Collaborative multilateration (also referred to as N-hop multilateration) consists of a set of
mechanisms that enables nodes to find several hops away from beacon nodes to collaborate
with each other and potentially estimate their locations within desired accuracy limits.
Collaborative multilateration is presented in two edges of computation models, centralized
and distributed. These can be used in a wide variety of network setups from fully centralized
where all the computation takes place at a base station, locally centralized (i.e., computation
takes place at a set of cluster heads) to fully distributed where computation takes place at
every node.

5. RSS Techniques

A popular set of approaches tries to employ the received signal strength (RSS) as distance
estimate between a wireless sender and a receiver. If the physical signal itself can not be
measured, packet loss can be used to estimate RSS (Royer, 1999). But the relation between
the RF signal strength and spatial distances is very complex as real world environments do
not only consist of free space. They also include various objects that cause absorption,
reflection, diffraction, and scattering of the RF signals (Rappaport, 1996). The transmitted
signal therefore most often reaches the receiver by more than one path, resulting in a
phenomenon known as multi path fading (Neskovic et. al, 2000). The quality of these
techniques is hence very limited; the spatial resolution is restricted to about a meter and
there are tremendous error rates (Xang et. al. 2005). They are hence mainly suited for
Context-Awareness with room or block resolution (Yin et. al, 2005). Due to the principle
problems with RSS, there are attempts to develop dedicated hardware for localizing objects
over medium range.
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5.1 Properties

The indoor environment poses additional challenges compared to the outdoor environment.
The channel is complex; having various multipath, scattering and diffraction effects that
make estimating the signal strength highly probabilistic. Traditional methods working
based on AoA and ToF principles can not be used with this technology, additionally special
hardware is required to get a time synchronized network out of the available standard
access points. Therefore the only applicable method is the received signal strength
technique. RSS is the simplest RF measurement technique as its values are easily accessible
through a WLAN interface. It is more preferred than the Signal to Noise ratio (SNR) to be
used for the radio signature, because it is more location dependant (Bahl & Padmanabhan,
2000). Noise can vary considerably from location to location and may heavily depend on the
external factors, while this is not the case for the received signal strength. Since the RSS
values still significantly fluctuate over time for a given location, they can be considered as a
random variable, and hence, are described in a statistical fashion in order to estimate the
distribution parameters. The fundamentals of the RSS techniques come from the Frii’s
Transmission Equation. The reason that Friis’ formula does not work satisfactorily for
indoor propagation is that communicating points may suffer from nonl Line of Sight
condition (nLoS). Strength decay of the received signal not only comes from path loss, but
also shadowing and fading distort the received signal quality. They both depend on the
environmental features, barriers and occlusion. Short scale fading due to multipath, adds
random high frequency terms with large amplitude (Rappaport, 1996). This issue is more
effective indoors. Still because of less complexity that the hardware design and
implementation phases need, the RSS solution has been in the field of interest amongst most
of the localization researches.

5.2 Techniques

Apart from the statistical or probabilistic representation of signals, there are essentially two
categories of RSS based techniques for positioning using WLAN: Trilateration and Location
Fingerprinting. The prerequisite of the trilateration method is using a signal propagation
model to convert RSS measurement to a transmitter-receiver (T-R) separate distance
estimate. Utilizing the general empirical model can only obtain a very inaccurate distance of
T-R, therefore a more accurate and correction-enforced model is required. Before a
positioning system can estimate the location, a fingerprint database (also referred to as a
radio map) constructed. In other words, a “"Location Fingerprinting” localization system
consists of two phases, the offline (training) and the online (localization) phase. During the
online phase a site survey is performed by measuring the RSS values from multiple APs.
The floor is divided into predefined grid points. The RSS values are measured at desired
locations on the grid. Multiple measurements are taken and the average values are stored in
a database. The location fingerprint refers to the vector of RSS values from each access point
and their corresponding location on the grid. A reference carpet refers to the collection of
fingerprints and their associated locations for a given area. The drawback here is the
extensive training values that have to be predetermined, separately for each particular
indoor environment.

Understanding the statistical properties of the location fingerprint (aka. RSS vector) is
important for the design of a positioning system due to several reasons. It can provide
insights into how many APs are needed to uniquely identify a location (Kaemarungsi &



Ranging fusion for accurating state of the art robot localization 35

Krishnamurthy, 2004) with a given accuracy and precision, and, whether preprocessing of
the RSS measurements can improve such accuracy. Within the same perspective, (Li et. al,
2005) has proposed a hybrid method compose of two stages.

Area localization has been seen as a more viable alternative compared to point based
localization mainly due to the fact that they can better describe localization uncertainty
(Elnahraway et. al, 2004). They can easily trade accuracy for precision. Accuracy is the
likelihood of the object being within the returned area, while precision is the size of the
returned area. Point based algorithms on the other hand have difficulty in describing this
behaviour. It was found that although area based approaches better described the
localization uncertainty, their absolute performance is similar to point based approaches
(Elnahraway et. al, 2004).

6. Physical and Logical Topology of WSN

Field of networked robotics is envisioned to be one of the key research areas in robotics
recently (Bekey et. al, -). This research field, flourishing in the last decade or so, is gaining
additional momentum thanks to the advent of cheap, easy to deploy and low power nodes
to build sensor networks. Richness of different sensors, and their prompt availability open
new scenarios to solve some long standing problems.

In this scenario, plenty of wireless sensors are deployed to the environment, in order to
build up a network. This network first of all aims for holding a full connectivity which in
most of applications can be represented by a graph. Plenty of theories and properties of
graphs can merge to the scenario and open new doors for improvements (Gotsman & Koren,
2005). However full network connectivity has its own advantages, local connectivities in
order to extract connected clusters also are shown to be sufficient under some circumstances
(Chan et. al, 2005).

Assume a scenario that builds a mobile wireless (-sensor) network with possibly physical
dynamic topology. If there are enough relative distances information available, it is not quite
complicated to use some multilateration technique for finding a position, but it is
conditioned on the availability of enough anchors to be used as references (Khan et. al,
2006). In this class, many solutions assume the availability of detectable landmarks at known
positions in order to implement, for example, Kalman based localization methods (Leonard
& Durrant, 1991) and (Pillonetto & Carpin, 2007), while some other approaches are
developed based on anchor-free combinations (Pryantha et. al, 2003). Here, we explicitly
solve the following layout problem: Given a set of mobile robots (simply named nodes)
which are equipped with wireless transceivers and a mechanism by which each node can
estimate its distance to a few nearby ones (or even through the whole network), the goal is
to determine coordinates of every node via local or global communication.

In general, radio communication constraints are a set of geometry rules to bound position
estimates. Such constraints are a combination of radial and angular limitations. Latter
aspects are out of the interests of this research. Ranging information is adequately sufficient
in for these achievements. It goes to the fact that if all internode wireless links are
established and their associative lengths are known, their graph representation is indeed
uniquely realized. When only one subset of distances is known, more sophisticated
techniques must be used. In contrast, when multiple solutions exist, the main phenomenon
observed is that of foldovers, where entire pieces of the graph fold over on top of others,
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without violating any of the partial distance constraints. A main challenge is to generate a
solution which is fold-free. Occasionally, final result may suffer from translation, rotation
and reflection degrees of freedom, but either of these are not important, because can be
resolved by assigning some known coordinates to any three arbitrary nodes.

Problem of reconstructing a geometric graph given its edges' lengths, has received some
attention in discrete as well as computational geometry communities, whereas it is also
relevant for molecule construction and protein folding applications, psychology, networking
and also mobile robotics. Our main aim here is to roughly show how to extend graph
realization analogy with noisy edges, for localizing the nodes with higher likelihood of
unambiguous realization.

In an interconnected network of n nodes, if all distances are known exactly, it is only
possible to determine the relative coordinates of the points, i.e., to calculate the point
coordinates in some arbitrary system. To place the points in an absolute coordinate system,
it is necessary to know the positions of at least D+1 points, where D indicates the dimension
of the space. Consider that a set of k anchor points are having a known position in the 2D
space. A set of n-k nodes with unknown positions can possibly be spatially localized based
on the known positions of those anchors. If k=0, the positioning scenario is called relative or
anchor-less localization.

On the other hand, an incremental approach can deal with a large size network where nodes
are having a limited range of communication and indeed ranging. This solution, assigns
coordinates to a small core of nodes, and repeatedly, updates coordinates to more neighbors
based on local calculations and then proceeds until the whole network is covered. This
solution is totally error prone in the early stages, unless being reinforced by proper filtering
methods and statistical approaches, is very likely to break the error upper supremum.

7. Conclusions

In this chapter, after surveying traditional methods for robot localization, we more
emphasized on the radio networks and their ranging capabilities including RSS in WLAN
networks as well as ToF measurements of WSN topologies. Their positioning accuracy is
comparable in practice where the latter provides quite better positioning results. Practical
results indicate that the last approach, enforced with some more mathematical
representation can be reliably used for variety of mobile robotics positioning applications
both indoor and outdoors, relatively independent from size of the mobile robotics network,
explicitly explained in (Bastani & Birk, 2009). In other words, having ranging capabilities
and specially by radio signals enables the robots to overcome localization problems, less
dependently from error accumulation and environmental features.
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1. Introduction

Most real systems are non-linear. Extended Kalman Filter (EKF) uses non-linear models of
both the process and observation models while the Kalman Filter (KF) uses linear models.
EKEF is a good way to learn about Simultaneous Localisation and Mapping (SLAM). Much of
the literature concentrates on advanced SLAM methods which stems from EKF or uses
probabilistic techniques. This makes it difficult for new researchers to understand the basics
of this exciting area of research.

SLAM asks if it is possible for a robot, starting with no prior information, to move through
its environment and build a consistent map of the entire environment. Additionally, the
vehicle must be able to use the map to navigate and hence plan and control its trajectory
during the mapping process. The applications of a robot capable of navigating, with no
prior map, are diverse indeed. Domains in which 'man in the loop' systems are impractical
or difficult such as sub-sea surveys and disaster zones are obvious candidates. Beyond
these, the sheer increase in autonomy that would result from reliable, robust navigation in
large dynamic environments is simply enormous (Newman 2006). SLAM has been
implemented in a number of different domains from indoor robots to outdoor, underwater,
and airborne systems. In many applications the environment is unknown. A priori maps are
usually costly to obtain, inaccurate, incomplete, and become outdated. It also means that the
robot’s operation is limited to a particular environment (Neira 2008).

This goal of the chapter is to provide an opportunity for researchers who are new to, or
interested in, this exciting area with the basics, background information, major issues, and
the state-of-the-art as well as future challenges in SLAM with a bent towards EKF-SLAM. It
will also be helpful in realizing what methods are being employed and what sensors are
being used. It presents the 2 - Dimensional (2D) feature based EKF-SLAM technique used
for generating robot pose estimates together with positions of features in the robot’s
operating environment, it also highlights some of the basics for successful EKF - SLAM
implementation: (1) Process and observation models, these are the underlying models
required, (2) EKF-SLAM Steps, the three-stage recursive EKF-SLAM process comprising
prediction, observation and update, (3) Feature Extraction and Environment modelling, a
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process of extracting well defined entities or landmarks (features) which are recognisable
and can be repeatedly detected to aid navigation, (4) Data Association, this consists of
determining the origin of each measurement, in terms of map features, (5) Multi - Robot -
EKF - SLAM, the two types of multi robot systems are described: Collaborative and
Cooperative multi robot systems with more emphasis on the Cooperative SLAM Scheme.

2. Basic Structure of EKF - SLAM

The EKF-SLAM process consists of a recursive, three-stage procedure comprising
prediction, observation and update steps. The EKF estimates the pose of the robot made up

of the position (x,, , yr) and orientation y,., together with the estimates of the positions of

the N environmental features X Iz wherei=1...N, using observations from a sensor

onboard the robot (Williams et al. 2001). We will constrain ourselves to using the simplest

feature model possible; a point feature such that the coordinates of the i " feature in the
global reference frame are given by:

X,

1

Xei= @
! Vi

SLAM considers that all landmarks are stationary, hence the state transition model for the

i"™ feature is given by:
Xy (k)= xf,i(k -D= Xy 2

It is important to note that the evolution model for features does have any uncertainty since
the features are considered static.

2.1 Process Model
Implementation of EKF - SLAM requires that the underlying state and measurement models
be developed. This section describes the process models necessary for this purpose.

2.1.1 Kinematic Model

Modeling of the kinematic states involves the study of the geometrical aspects of motion.
The motion of a robot through the environment can be modeled through the following
discrete time non-linear model:

X, (k)= f(X,(k=1),u(k), k) ()
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Thus, X, (k) is the state of the robot at time &k, #(k) is the robot control input at time & .

f(,,) is a function that relates the robot state at time k-1, known control inputs to the

robot state at time £ .

U,

u(k)=| 4)

Uy

Equation (4) above is a little unrealistic, we need to model uncertainty. One popular way to

model uncertainty is to insert noise terms into the control input #(k) such that:

u(k)=u,(k)+y,(k) (5)

Thus u, (k) is a nominal control input and Y. (k) is a vector of control noise which is

assumed to be temporally uncorrelated, zero mean and Gaussian with standard deviation
o.

0,

AGEIN 6)

The strength (covariance) of the control noise is denoted Qu , and is given by:

Qu:diag(af . Gﬁ,) )

The complete discrete time non-linear kinematic model can now be expressed in general
form as:

X, (k)= (X, (k=1),u,(k)+7,(K)) ®)

2.1.2 Using Dead-Reckoned Odometry Measurements

Sometimes a navigation system will be given a dead reckoned odometry position as input
without recourse to the control signals that were involved. The dead reckoned positions can
be converted into a control input for use in the core navigation system. It would be a bad
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idea to simply use a dead-reckoned odometry estimate as a direct measurement of state in a
Kalman Filter (Newman 2006).

Given a sequence X, 1),x R 2),x R 3)..x R (k) of dead reckoned positions, we need to

figure out a way in which these positions could be used to form a control input into a
navigation system. This is given by:

u, (k) = ©x, (k1) ®x, (k) )

This is equivalent to going back along X, (k—1) and forward along X . (k) . This gives a

small control vector U, (k) derived from two successive dead reckoned poses. Equation (9)

substracts out the common dead-reckoned gross error (Newman 2006). The plant model for
a robot using a dead reckoned position as a control input is thus given by:

X, (k)= f(X,.(k=1),u(k)) (10)
X (k)=X (k-1)®u, (k) (1)

©® and @ are composition transformations which allows us to express robot pose described
in one coordinate frame, in another alternative coordinate frame. These composition
transformations are given below:

[ x, +x,cos6, - y,sin6,
x,®x,=| y +x,sn6, +y,cosb, (12)
6 +0,

[—x, cos 6, — y, sin 6,
Ox, =| x,sinb, —y, cosb, (13)
)

2.2 Measurement Model

This section describes a sensor model used together with the above process models for the
implementation of EKF - SLAM. Assume that the robot is equipped with an external sensor
capable of measuring the range and bearing to static features in the environment. The
measurement model is thus given by:
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B | r(k)
z(k)_h(Xr(k)axi’yi)+7h(k)_ H(k) (14)
= J(x=x ) +(n-»,) (15)
6; =tan_l{g}—% (16)

th

(x;,y;) are the coordinates of the i” feature in the environment. X . (k) is the (x,y)

position of the robot at time k. }, (k) is the sensor noise assumed to be temporally

uncorrelated, zero mean and Gaussian with standard deviation o . 7;(k) and 6;(k) are the

range and bearing respectively to the i” feature in the environment relative to the vehicle
pose.

o
7, (k) { } (17)
(o)

4

The strength (covariance) of the observation noise is denoted R .

R =diag (af 0'62,) (18)

2.3 EKF SLAM Steps

This section presents the three-stage recursive EKF-SLAM process comprising prediction,
observation and update steps. Figure 1 below summarises the EKF - SLAM process
described here.

2.3.1 Map Initialisation

The selection of a base reference B to initialise the stochastic map at time step 0 is
important. One way is to select as base reference the robot’s position at step 0. The
advantage in choosing this base reference is that it permits initialising the map with perfect
knowledge of the base location (Castellanos et al. 2006).

X/ =X"=0 (19)

P’ =P =0 (20)
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This avoids future states of the vehicle’s uncertainty reaching values below its initial
settings, since negative values make no sense. If at any time there is a need to compute the
vehicle location or the map feature with respect to any other reference, the appropriate
transformations can be applied. At any time, the map can also be transformed to use a
feature as base reference, again using the appropriate transformations (Castellanos et al.

2006).

Prediction = Last
Estimate

u(k)

Predict: Vehicle State &
Error Covariance

NO YES
A 4 v
x(k\k-1) = x(k-1\k-1) x(k\k-1)
PREDICTION STEFP
P(k\k-1) = P(k-1\k-1) P(k\k-1)

Range & Bearing

Measurement
Extract
k) YES—H  Features
- - Data New
OBSERVATION STEP Associate ™  Features
NO Observed State Vector
Features Augmentation
Updated State = Last
Estimate
Update: State Vector &
Error Covariance
Y ¥
UPDATE STEP
x(kyk) = x(k\k-1) x(kyk)
Pk\k) = P(k\k-1) P(k\k)

Fig. 1. Basic EKF-SLAM Flow chart
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2.3.2 Prediction
(a) Prediction based on kinematic model
The prediction stage is achieved by passing the last estimate through the non-linear model

of motion of the robot to compute the pose at instant k& based on a control input #(k)and

using the information up to instantx —1 (Williams et al. 2001). The predicted robot state X,
is thus given by:

X, (k| k=1)= f(X,(k=1][k~1),u(k)) (21)
Now we need to propagate the state error covariance. The covariance of the robot state,
P (k\k —1) is computed using the gradient, F’ . (k) of the state propagation equation (8)

with respect to the robot pose, the control noise covariance, Qu and, the Jacobian, J " of

the state propagation equation (8) with respect to the control input #(k) .

P(k|k-1)=F (k)P(k-1|k-1)F (k)+J,(k)Q,(k)J! (k) (22)
of

F (k)=—— 23

(k) X (23)

Ju(k)zg (24)
ou

(b) Prediction using Dead-Reckoned Odometry Measurements as inputs
The prediction stage is achieved by a composition transformation of the last estimate with a
small control vector calculated from two successive dead reckoned poses.

X (klk-1)=X (k-1]k-1)®u, (k) 25)
The state error covariance of the robot state, P, (k\k —1) is computed as follows:
P(k|k=1)=J(X,,u,)P.(k=1k=1D)J,(X,.u,)" +T,(X,.u)Uy(k)J(X,,u,) (26)

J, (Xr,u 0) is the Jacobian of equation (11) with respect to the robot pose, X, and

J, (X /) O) is the Jacobian of equation (11) with respect to the control input, %, .

Based on equations (12), the above Jacobians are calculated as follows:
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o(x, ®x
Jl(xl,xz)z(le) (27)
1 0 —x,siné —y,cos6
J (x,x,)=|0 1 —x,cos6 —y,sinf, (28)
0 0 1
JA%%FM 29)

ox,

cos§ —sinf 0
J,(x,x,)=|sing,  cosf 0 (30)
0 0 1

2.3.3 Observation
Assume that at a certain time 4 an onboard sensor makes measurements (range and
bearing) to m features in the environment. This can be represented as:

z,(K)=[z, . . z,] (31)

2.3.4 Update
The update step need not happen at every iteration of the filter. If at a given time step no
observations are available then the best estimate at time & is simply the

prediction X (k | K —1). If an observation is made of an existing feature in the map, the

state estimate can now be updated using the optimal gain matrix W (k). This gain matrix
provides a weighted sum of the prediction and observation. It is computed using the
innovation covariance $ (k) , the state error covariance P(k | kK —1) and the gradient of the

observation model (equation 14), H (k).

W (k)= Pk | k-D)H()S k), (32)
where §'(k) is given by:

S(k)=HK)P(k|k-1)H" (k)+ R(k) (33)
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R(k) is the observation covariance.

This information is then used to compute the state update X (k| k) as well as the updated

state error covariance P (k | k ) .

X(k|k)=X(k|k-1)+WK)Ww(k) (34)
P(k|k) =Pk | k-1)—W (k)S(kW (k)" (35)

The innovation, V(k) is the discrepancy between the actual observation, Z(k) and the
predicted observation, Z(k |k —1).

v(k)=z(k)—z(k|k-1), (36)
where Z(k |k —1) is given as:
2k | k=D =h(X, (k| k-1),x,5,) @7

X,.(k|k—1) is the predicted pose of the robot and (x;,y;) is the position of the observed

map feature.

2.4 Incorporating new features

Under SLAM the system detects new features at the beginning of the mission and when
exploring new areas. Once these features become reliable and stable they are incorporated
into the map becoming part of the state vector. A feature initialisation function y is used

for this purpose. It takes the old state vector, X (k| k) and the observation to the new

feature, 7 (k ) as arguments and returns a new, longer state vector with the new feature at
its end (Newman 2006).

X(k|k) =y[X(k|k), z(k)] (38)
X(k|k)
X(k|k) =|x +rcos(@+y,) (39)
Yy, +rsin(@+y,)

Where the coordinates of the new feature are given by the function g :
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X, +rcos(0+y,) g
8= ) = (40)
vy, +rsin(@+y,) g,

r and @ are the range and bearing to the new feature respectively. (x,,y,) and y, are the

estimated position and orientation of the robot at time % .
The augmented state vector containing both the state of the vehicle and the state of all
feature locations is denoted:

X(klky =[X] (k) xp, . . xp,] (1)

We also need to transform the covariance matrix P when adding a new feature. The
gradient for the new feature transformation is used for this purpose:

x, +rcos(0+y,) g
8= . = (42)
v +rsin@+y,) | | g

The complete augmented state covariance matrix is then given by:

Pk|k) =Y (43)
> 0 R >
where ¥__ is given by:
Y Inxn 0nx2
= 44
|G, zeros(nstates—n)] G, &)
where nstates and 7 are the lengths of the state and robot state vectors respectively.
g
G, =— 45
* = ax, (45)
(g, g, Og |
G - ox, Oy, Oy, _ {1 0 —rsin(@ +(//,,)} 6)
X @gz 8g2 8g2 0 1 rcos(@+vy,)
| Ox, 0y, Oy,

G.= 8g/az @7)
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% 9%
Gz _ or 00 _ c?s(é? +y,) -rsin(@+vy,) )
% &ﬁ sin(@+wy,) rcos(d+y,)
or 00

2.5 Structure of state covariance matrix

The covariance matrix has some structure to it. It can be partitioned into map Pm ., and the

robot Prr covariance blocks.

L
P= (49)
Pmr Pmm

Off diagonals P, and P, blocks are the correlations between map and robot since they

are interrelated. From the moment of initialisation, the feature position is a function of the
robot position hence errors in the robot position will also appear as errors in the feature
position. Every observation of a feature affects the estimate of every other feature in the map
(Newman 2006).

3. Consistency of EKF SLAM

SLAM is a non-linear problem hence it is necessary to check if it is consistent or not. This
can be done by analysing the errors. The filter is said to be unbiased if the Expectation of the

actual state estimation error, X (k) satisfies the following equation:

E {)N( (k)} =0 (50)

~ ~ T
E[(X(k))(X(k)) } <P(k|k-1) (51)
, where the actual state estimation error is given by:

X(k)=X(k)-X(k|k-1) (52)
P(k | k—1) is the state error covariance. Equation (51) means that the actual mean square

error matches the state covariances. When the ground truth solution for the state variables is
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available, a chi-squared test can be applied on the normalised estimation error squared to
check for filter consistency.

(X)) (PG 1k=D) (X(0) < 73, &

d =dim(x(k)) and 1-a is the desired confidence level. In most cases ground truth is not

available, and consistency of the estimation is checked using only measurements that satisfy
the innovation test:

v, (k)S;'v, (k) < 2710 (54)

Since the innovation term depends on the data association hypothesis, this process becomes
critical in maintaining a consistent estimation of the environment map (Castellanos et al

2006).

4. Feature Extraction and Environment modelling

This is a process by which sensor data is processed to obtain well defined entities (features)
which are recognisable and can be repeatedly detected. In feature based navigation
methods, features must be different from the rest of the environment representation
(discrimination). To be able to re-observe features, they must be invariant in scale,
dimension or orientation, and they must also have a well defined uncertainty model. In
structured domains such as indoor, features are usually modelled as geometric primitives
such as points, lines and surfaces. Contrary to indoor domains, natural environments cannot
be simply modelled as geometric primitives since they do not conform to any simple
geometric model. A more general feature description is necessary in this regard. To aid
feature recognition in these environments, more general shapes or blobs can be used and
characteristics such as size, centre of mass, area, perimeter, aspects such as colour, texture,
intensity and other pertinent information descriptors like mean, and variance can be
extracted (Ribas 2005).

5. Data Association

In practice, features have similar properties which make them good landmarks but often
make them difficult to distinguish one from the other. When this happen the problem of
data association has to be addressed. Assume that at time & , an onboard sensor obtains a set

of measurements Z; (k) of m environment features E ; (i=1,...,m). Data Association

consists of determining the origin of each measurement, in terms of map features
F;,j=1,..,n. The results is a hypothesis:

J
Hk:[jl Ja j3 """ ]m] (55)
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, matching each measurement zl.(k) with its corresponding map feature. F;(j; =0)

indicates that the measurement Z, (k) does not come from any feature in the map

(Castellanos et al. 2006). Figure 2 below summarises the data association process described
here. Several techniques have been proposed to address this issue and more information on
some these techniques can be found in (Castellanos et al 2006) and (Cooper 2005).

Of interest in this chapter is the simple data association problem of finding the
correspondence of each measurement to a map feature. Hence the Individual Compatibility
Nearest Neighbour Method will be described.

5.1 Individual Compatibility (IC)

The IC considers individual compatibility between a measurement and map feature
(Castellanos et al. 2006). This idea is based on a prediction of the measurement that we
would expect each map feature to generate, and a measure of the discrepancy between a
predicted measurement and an actual measurement made by the sensor. The predicted
measurement is then given by:

g2, (klk=1)=h(X, (k|k=1),x;,y,) (56)

The discrepancy between the observation Z, (k) and the predicted measurement
Z; (k| k—1) is given by the innovation term v i (k):

Vg;(k):zi(k)_zj(k|k_1) (57)
The covariance of the innovation term is then given as:

S, (k)= H(k)P(k| k—~1)H" (k) + R(k) (58)

H (k) is made up of H ,» which is the Jacobian of the observation model with respect to

the robot states and H rj» the gradient Jacobian of the observation model with respect to the

observed map feature.
H(k)=|H, 00 00 H, 00] (59)

Zeros in equation (59) above represents un-observed map features.
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Fig. 2. Data Association Flow chart

To deduce a correspondence between a measurement and a map feature, Mahalanobis
distance is used to determine compatibility, and it is given by:

D; (k) =} (k)8 (k)w, (k) )

The measurement and a map feature can be considered compatible if the Mahalanobis
distance satisfies:

Di(k) < %d1-4 (61)

Where d =dim(v;) and 1-a is the desired level of confidence usually taken to be 95%.

The result of this exercise is a subset of map features that are compatible with a particular
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measurement. This is the basis of a popular data association algorithm termed Individual
Compatibility Nearest Neighbour. Of the map features that satisfies IC, ICNN chooses one
with the smallest Mahalanobis distance (Castellanos et al 2006).

6. Commonly used SLAM Sensors

The most popular sensor choice in indoor and outdoor applications is a laser scanner even
though it is costly. Its popularity stems from the fact that it provides high quality dense data
with a good angular precision. Cameras are also commonly used to obtain visual
information (e.g colour, shape or texture) from the environment. Acoustic sensors are
considered to be the cheapest choice but less reliable to perform SLAM even in highly
structured environments. This is because sonars produce measurements with poor angular
resolution and the problem of specular reflections. If used, then one must somehow deal
with these limitations. The situation is different in underwater domains. Due to the
attenuation and dispersion of light in water, laser based sensors and cameras become
impractical, though cameras can still be used in applications where the vehicle navigates in
clear water or very near to the seafloor. Due to excellent propagation of sound in water,
acoustic sensors remain the best choice in the underwater domain (Ribas 2008).

7. Multi — Robot EKF — SLAM

In order for a multi-robot team to coordinate while navigating autonomously within an
area, all robots must be able to determine their positions as well as map the navigation map
with respect to a base frame of reference. Ideally, each robot would have direct access to
measurements of its absolute position such as using GPS, but this is not possible indoor or in
the vicinity of tall structures. Therefore, utilising multi robot systems becomes attractive as
robots can operate individually but use information from each other to correct their
estimates (Mourikis, Roumeliotis 2005).

7.1 Collaboration Vs Cooperation

There are two types of multi robot systems: collaborative and cooperative multi robot
system. Collaborative case is when robots working as a team in real-time, continuously
update each others state estimates with the latest sensor information. While cooperative
kind is when robots share information via an external computer to find the group solution
based on available communicated information (Andersson, L. 2009).

Of interest in this chapter is the Cooperative SLAM Scheme. Assuming we have two robots
capable of individually performing SLAM and robot-robot relative measurements as shown
in figure 3. In the picture, SLAM results and as well as possible robot-robot relative
measurements results are fed into the Cooperative strategy module to calculate possible
route for each member. The module utilises the current global map information to derive
controls for the system. That is, determining the team manoeuvres providing optimal
reward in terms of exploration gain. Figure 3 below shows a Cooperative SLAM Scheme
which is an estimation and control closed loop problem similar to the structure discussed in
(Andrade-Cetto,]. et al. 2005).
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7.2 Map Initialisation

As in single robot SLAM, Multi robot SLAM system requires some common reference frame
between the robots. We then make assumptions that, (1) initially the global map is empty,
(2) robot one R; starts at known pose.

xF=[0 0 o] 62)

While the second robot R; is placed in front of the first and is detectable by R;.

7.3 State Augmentation

The first assumption states that the map is initially empty; therefore the known robots and
objects need to be added to the map before updating. Using stochastic representation as
discussed in (Smith, Self & Cheesman 1986), priori information can be inserted in the
estimated state vector and corresponding covariance matrix as shown in equation (63 & 64)
below.
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_ P(x;) P(xuxj)
| Plax)  PLx) “

B

Noting that all information inserted into the state vector X" needs to be represented in the
global reference frame B. From the second assumption, when a robot is observed by R; for
the first time, the system state vector needs to be augmented by the pose of the observed
robot with respect to frame of the observing robot. The observed pose estimate is then
transformed from the observer frame of reference to global frame through the following
equations:

R(”'): reos(d; +vy,) , )

rsin(6; +y,)

where R(f;) is a nonlinear transform function giving the spatial perception by the
observer robot. The corresponding observation covariance matrix R is represented in the
observer’s reference frame and also needs to be transformed into global frame as shown in
equation (67), i.e. GZR GZ . The aforementioned measurement covariance matrix R differs
with sensor type, but in this chapter, we model the laser range finder type of sensor,

providing range and bearing. Where range and bearing are respectively given by 7 and 9;

from equation (66). And I/, is the orientation of the observer robot.

A correct stochastic map needs the independences and interdependences to be maintained
through at the mapping process. Since no absolute object (robots or landmarks) locations are
given prior, the estimations of objects positioning are correlated and strongly influenced by the
uncertainty in the robot(s) locations. Equation (64) is a covariance matrix of the system, where
the leading diagonal elements are the variances of the state variables for R; and R;
respectively. These are evaluated similar to the derivation in (Martinelli, Pont & Siegwart
2005), that is:

Py iy (X)) = ka—lil)(k-1|k-1)(xi)vfk—liT + G.RG,, (67)

where Vf}Hi is the Jacobian of equation (65) with respect to the observer robot state,

derived as;
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s 1 0 —psin(@; +y,)
Vf, = af—B =10 1 pcos(d;+v,) (68)
o0 1

G, is also the Jacobian of equation (65) with respect to the observation. And it is calculated

as:

G - og”® ~ cos(ﬁji. +y,) —rsin(@} +y,)
. oz, - sin(@; +y,)  rcos(0; +y,) (69)

The off diagonal elements are computed as:

P(x,,x)=Vf P(x,x)Vf, (70)
where

P(x,,x,)=P(x,,x)" (71)

The results of equations (67),(70) and (71) are then substituted back into equation (64) giving
the stochastic map estimates at the initial poses.
The discrete conditional subscript used in equation (67) and the reminder of the paper is for

readability purposes therefore, P, ,, | implies P (k=1|k-1).

7.4 Robot Re-observation
If a robot already in the map is re-observed, the system state vector is not augmented but it

. . B . '
is updated. Thus, if we assume that robot R; located at pose X;" makes an observation Z l] of

B . Lo
another robot at pose X then observation function is given as:

Z,=h(x;,x)+w,_ ™)

Assuming W, _, is zero mean and of Gaussian distribution form, with covariance R,

calculated as:

R0

R-= 0 ’ 9?3 (73)

3x3 J
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Suppose the two robot are equipped with the same sensor, then R, and R, are the

observation covariances for the corresponding robot. The term h(x;, X j) in equation (72)

is a nonlinear function that relates the output of the sensor to the states. The function is
made up of relative distance and relative bearing (R; observes R;), given as:

\/(xj _xi)2 + (yj _yi)2

h(xi’x-/): _Sinl//i(xj_xi)—l_cos‘//i(yj_yi) (74)
atan - -
cosy,(x; —x;)+siny, (v, - y,)
Its jacobian is calculated as follows:
5% Vi h 0 5% Vi) 0
B R e e A U R R U R AR U I
i Vi %% =y X%

J i 1 j i 0
@—=x) + o) =Xy + ) C=x) + ) =) + G-

Given prior and current measurement information we can update state estimate using
Extended Kalman Filter (EKF). The filter update equation is evaluated as:

-’A"kuc = ')%f\k—l + K[zj _h(f‘f/ ’ACIB)J (76)
P,=P, - K Vhl)k\k—l (77)
K=P, Vi (VhP, Vh +R) 78)

):?k‘k implies X(k—1|k—1).

8. Conclusions

EKF is a good way to learn about SLAM because of its simplicity whereas probabilistic
methods are complex but they handle uncertainty better. This chapter presents some of the
basics feature based EKF-SLAM technique used for generating robot pose estimates together
with positions of features in the robot’s operating environment. It highlights some of the
basics for successful EKF - SLAM implementation:, these include: Process and observation
models, Basic EKF-SLAM Steps, Feature Extraction and Environment modelling, Data
Association, and Multi - Robot - EKF - SLAM with more emphasis on the Cooperative
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SLAM Scheme. Some of the main open challenges in SLAM include: SLAM in large
environments, Large Scale Visual SLAM, Active and Action based SLAM; development of
intelligent guidance strategies to maximise performance of SLAM, Autonomous Navigation
and Mapping in Dynamic Environments, and 3D Mapping techniques.
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1. Introduction

Mobile robot self-localization is a mandatory task for accomplishing its full autonomy dur-
ing navigation. Various solutions in robotics community have been developed to solve the
self-localization problem. Developed solutions can be categorized into two groups: rela-
tive localization (dead-reckoning) and absolute localization. Although very simple and fast,
dead-reckoning algorithms tend to accumulate errors in the system as they utilize only in-
formation from proprioceptive sensors as odometer readings (e.g. incremental encoders on
the robot wheels). Absolute localization methods are based on exteroceptive sensors in-
formation. These methods yield a stable locating error but are more complex and costly in
terms of computation time. A very popular solution for achieving online localization consists
of combining both relative and absolute methods. Relative localization is used with a high
sampling rate in order to maintain the robot pose up-to-date, whereas absolute localization is
applied periodically with a lower sampling rate to correct relative positioning misalignments
Borenstein et al. (1996a).

As regards absolute localization within indoor environments, map-based approaches are
common choices. In large majority of cases, it is assumed that a map (model) of the
workspace has been established. The environment model can either be pre-stored as ar-
chitects drawing CAD model or built online simultaneously with localization using sensor
data fusion or structure from motion technics. The classical approach to model-based local-
ization consists of matching the local representation of the environment built from sensor
information with the global model map and will be used in this chapter also.

So, this chapter presents two approaches to mobile robot self-localization regarding used per-
ceptive sensor combined with an environment model. First approach uses sonar range sensor
and second approach uses monocular camera. Environment model in the first approach is
an occupancy grid map, and second approach uses a 3D rendered model.

Sonar range sensor is often used in mobile robotics for localization or mapping tasks Lee
(1996); Wijk (2001) especially after occupancy grid maps were introduced Moravec & Elfes
(1985). Mostly feature maps are used because of their more accurate environment presenta-
tion. In such a case when sonar range measurement prediction is done additional steps have
to be made. First, appropriate environment feature has to be detected and then correspond-
ing uncertainty that detected feature is correct has to be computed. This uncertainty adds
also additional computation step into mostly used Kalman filter framework for non-linear
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systems making pose estimation more computationally complex. In this chapter an occu-
pancy grid map is used as the environment model in combination with Extended Kalman
filter (EKF) and Unscented Kalman filter (UKF). In this way computation of detected fea-
ture uncertainty is avoided and doesn’t have to be included in the Kalman filter localization
framework with sonar sensor.

General Kalman filter consist of a prediction (time update) and correction (measurement
update) step Welch & Bishop (2000). Prediction step makes an update of the estimated
state. In this case estimated state is mobile robot pose (combined mobile robot position and
orientation). So a kinematic mobile robot model is used for state prediction. In field of
mobile robotics such a kinematic model is also known as odometry Borenstein et al. (1996b).
It uses measured drive wheel speeds to compute mobile robot pose displacement from a
known start pose. It is accurate for short distances because of its aproximate quadratical
error growth rate. Such a growth rate arises from the fact that pose error in current pose
estimation time step is added to all previous made errors. Fortunately some odometry errors
can be taken into account slowing down the error growth rate Borenstein et al. (1996b). This
is done by odometry calibration and is also used in work described in this chapter.
Although navigation using vision has been addressed by many researchers, vision is not
commonly used on its own but usually in conjunction with other exteroceptive sensors,
where multi-sensor fusion techniques are applied, see e.g. Arras et al. (2001) and Li et al.
(2002). However, cameras have many advantages as range sensors comparing to sonars and
laser rangefinders as they are passive sensors, provide much more data about environment,
can distinguish between obstacles based on color etc. A great deal of work has been done
on stereo vision, see e.g. Guilherme & Avinash (2002), but for reasons of size and cost
monocular vision based navigation has been addressed by a number of researchers, e.g.
Aider et al. (2005); Jeon & Kim (1999); Kosaka & Kak (1992); Neira et al. (1997).

When using monocular vision, the localization process is composed of the five following
stages Guilherme & Avinash (2002); Kosaka & Kak (1992): 1) image acquisition from current
robot pose; 2) image segmentation and feature extraction; 3) model rendering; 4) matching
2D-image and 3D-model features and 5) camera pose computation. It is observed that each
stage may be time-consuming due to large amount of data involved. The strategy ultimately
adopted for each phase must then be very well-assessed for real-time use. For example,
an efficient real-time solution to the feature matching problem is presented in Aider et al.
(2005), where interpretation tree search techniques were applied. For mobile robot working
environment modelling and rendering professional freeware computer graphics tool Blender
www.blender3d.org (1995) was used, which is an open source software for 3D modelling, an-
imation, rendering, post-production, interactive creation and playback. It is available for all
major operating systems and under the GNU General Public License. The main advantage
of that choice is getting powerful 3D modelling tool while being able to optimize the code
for user application and use some external well proven computer graphics solutions that
Blender incorporates: OpenGL and Python. It also gives external renderer Yafray. Real-time
image segmentation for complex and noisy images is achieved by applying Random Win-
dow Randomized Hough Transform (RWRHT) introduced in Kélvidinen et al. (1994) which
is here used for the first time for robot self-localization to the best of our knowledge. We also
implemented and improved robot (camera) pose estimation algorithm developed in Kosaka
& Kak (1992).

This chapter is organized as follows. Second section describes used sensors including their
mathematical models. Following section describes applied sensor calibration procedures.
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Fourth section describes sonar based localization, followed with the fifth section describing
monocular vision based localization. Sixth section gives experimental results obtained with
a differential drive mobile robot including experiment condition description and comment
of localization results. Chapter ends with conclusion.

2. Mobile robot and sensors models

As mentioned in the introduction, used sensors are encoders, sonars and a mono camera.
Whence encoders measure mobile robot velocity which is used for odometric pose estimation
this section will describe mobile robot kinematic model used for odometric pose estimation.
Besides odometry, sonar and camera models will be described.

2.1 Mobile robot kinematics model

As mentioned above a differential drive mobile robot for indoor environments is used in
experiments. Its kinematics configuration with denoted relevant variables is presented in
Fig. 1. Such a mobile robot configuration has three wheels. Two front wheels are drive
wheels with encoder mounted on them and the third wheel is a castor wheel needed for
mobile robot stability. Drive wheels can be controlled independently. Kinematic model of
differential drive mobile robot is given by the following relations:

x(k+1) = x(k) + D(k) - cos (@(k) + A(az(k)) , M
y(k+1) = y(k) + D(k) - sin (@(k) + A@2<k)) , @
O(k+1) = Ok) + AO(K), ®)

D(k) = vt (k) - T, @)

AOK) = w(k) - T, )

oy - LR xR o

oty - SRR R o

where are: x(k) and y(k) coordinates of the center of axle [mm]; D(k) travelled distance
between time step k and k + 1 [mm]; v;(k) mobile robot translation speed [mm/s]; w(k)
mobile robot rotational speed [°/s]; T sampling time [s]; ©(k) angle between the vehicle and
x-axis [°]; A@(k) rotation angle between time step k and k + 1 [°]; wp (k) and wg (k) angular
velocities of the left and right wheel, respectively [rad/s]; R radius of the two drive wheels
[mm], and b mobile robot axle length [mm]. This general model assumes that both drive
wheels have equal radius. Sampling time T was 0.1 [s].

In case of real world mobile robot operations, drive wheel speed measurements are under
measurement error influence and some mobile robot parameters values aren’t exactly known.
Measurement error is mostly a random error with zero mean and can’t be compensated.
Unknowing exact mobile robot parameters present systematic error and can be compensated
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left wheel

right wheel

\/

Fig. 1. Differential drive mobile robot kinematics

by means of calibration. Crucial unknown parameters are drive wheel radii and axle length.
Wheel radii effect the measurement of the drive wheel circumference speed and axle length
measurement affects the mobile robot rotational speed. Equations (6) and (7) can so be
rewritten to present mentioned error influence:

(wL(k)R +ep) + (wr (k)R +¢er)
5 ,

(wr (k)R +eg) — (wr(k)R + )
b+£b ! ©)

where ¢, eg and ¢, are the error influences on the drive wheel circumference speed mea-
surements and axle length, respectively. It can be noticed here that axle length is also under
influence of systematic and random errors. Systematic error obviously comes from unknow-
ing the exact axle length. In this case random error is caused by the effective axle length,
which depends on the wheel and surface contact points disposition. Contact points dis-
position may wary during mobile robot motion due to uneven surfaces and influence of
non-symmetric mass disposition on the mobile robot during rotation.

'Ut(k) =

®)

w(k) =

2.2 Sonar model

An interpretation of measured sonar range is given in Fig. 2. It can be seen that in 2D a
sonar range measurement can be presented as a part of a circle arc. Size of circle part is
defined by the angle of the main sonar lobe and is typical for of the shelf sonar’s between
20 and 30 degrees. Therefore, the detected obstacle is somewhere on the arc defined by
measured range and main sonar’s lobe angle. Background of Fig. 2 shows a grid which is
used for creation of occupancy grid map. When a sonar range measurement is interpreted
in an occupancy grid framework usually a one to two cells wide area around the measured
range is defined as the occupied space. Space between the sonar sensor and measured range
is empty space. The sonar is a time of flight sensor, which means it sends a wave (acoustic
in this case) and measures the time needed for returning the wave reflected from an obstacle
back to the sonar. Generated acoustic wave has its most intensity along its axis, as denoted
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in Fig. 2, therefore resulting a more accurate distance measurement of obstacles that are
inline and perpendicular to the sonar axis. Whence wave intensity decreases with traversed
distance, absolute range measurement accuracy also decreases with wave-traversed distance.
This is related with requirement of a big range measurement which is a longer open time
window to accept the reflected wave and therefore enable more specular reflections and
outliers. Specular reflections and outliers present in this case false readings, which decrease
the quality of the obtained map. To take this sonar range measurement features into account
a stronger emphasis is given to the range measurements closer to the sonar sensor and
environment parts closer to the main sonar axis. Mathematically this can be expressed with
following equations [3]:

2
lx(@)—{l_<go) 000 (10)
0 |®| >0

A(p):]_l—'_tanh(;(p_pv)), (11)
where « (®) presents angular modulation function i.e., main lobe pattern of the used sonar
sensor; © angle between sonar axis and currently updated cell [°]; @ is one half of the sonar
main lobe angle [°]; p distance from the sonar sensor and currently updated cell [m]; A (p)
presents radial modulation function and p, presents visibility radius where less emphasis
is given to the sonar range measurement further away from visibility radius [m]. Parameter
B value depends from the used sonar sensor and for our Polaroid 6500 sonar sensor it is
12.5[°]. Parameter p, decreases influences of outlier readings and recommended value for
an indoor environment is 1.2 [m]. Sonar range measurement uncertainty is modeled with
angular and radial modulation functions. Most accurate range measurements are so within
main sonar axis which is used later in sonar range measurement prediction.

Measured
sonar range

< »

[T TIH&

| || Obstacle
. = -

Main sonar A 01
lobe angle ~[H=1 1]
D 1]
FaSLNENENEEEE 1]

Sonar, Sonar axis

sensor d
7

1
\
! LI N
1

Em/pty Occupied UnkEown
space space space

Fig. 2. Interpretation of a sonar range measurement
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2.3 Camera model

Generally, a camera has 6 degrees of freedom in three-dimensional space: translations in
directions of axes x,y and z, which can be described with translation matrix T(x,y,z), and
rotations around them with angles «, § and 7, which can be described with rotation matrices
Ry(a),Ry(B) and Rz (7). Camera motion in the world coordinate system can be described as
the composition of translation and rotation matrices:

C=T(x,y,2) Rz(7) Ry(B) Rx(w), (12)
where }
1 0 0 0
0 cosa —sina O
Rx(a) = 0 sine  cosa 0 |’
o 0 o0 1
[ cosp 0 sinp 0]
0 1 0 0
Ry(b) = —sinp 0 cosp 0 |’
0 0 0 1
cosy —siny 0 0]
sin cos 0 0
R.(g) = 07 07 10|’
0 0 0 1]
1 0 0 «x
01 0
Txyz)=1¢ o 1 Z
0 0 0 1

Inverse transformation C~! is equal to extrinsic parameters matrix that is

C e, B,7,%,,2) = Rye(—&) Ry(—P) Re(—7)T(—x,—y, —2). (13)

Perspective projection matrix then equals to P = S C~! where S is intrinsic parameters matrix
determined by off-line camera calibration procedure described in Tsai (1987). The camera is
approximated with full perspective pinhole model neglecting image distortion:

Wy X ayY, T
[(x,y)T = ( ECC +xo,;—cc +yo> ] , (14)

where ay = f/sy and ay = f/sy, sy and s, are pixel height and width, respectively, f is
camera focal length, (X, Y¢, Z.) is a point in space expressed in the camera coordinate system
and (x,y0)" are the coordinates of the principal (optical) point in the retinal coordinate
system. The matrix notation of (14) is given with:

WX ae 0 x9 O )éc
WY | = 0 ay yo 0 ZC (15)
W 0O 0 1 0 1C
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In our implementation, the mobile robot moves in a plane and camera is fixed to it at the
height h, which leaves the camera only 3 degrees of freedom. Therefore, the camera pose
is equal to the robot pose p. Having in mind particular camera definition in Blender, the
following transformation of the camera coordinate system is necessary C~!(—7/2,0,7 +
@, Px, py,h) in order to achieve the alignment of its optical axes with z, and its x and y axes
with the retinal coordinate system. Inverse transformation C~! defines a new homogenous
transformation of 3D points from the world coordinate system to the camera coordinate
system:

—cosp —sing 0 cos@ px +sing py

1 _ |0 0 -1 h
c = sing —cos¢p 0 —Sing px + cos@ py (16)
0 0 0 1
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Fig. 3. Visible frustrum geometry for pinhole camera model

Apart from the pinhole model, the full model of the camera should also include information
on the camera field of view (frustrum), which is shown in Fig. 3. The frustrum depends on
the camera lens and plane size. Nearer and further frustrum planes correspond to camera
lens depth field, which is a function of camera space resolution. Frustrum width is defined
with angles ¥, and ¥, which are the functions of camera plane size.

3. Sensors calibration

Sensor models given in the previous section describe mathematically working principles of
sensors used in this article. Models include also influence of real world errors on the sensors
measurements. Such influences include system and nonsystem errors. System errors are
constant during mobile robot usage so they can be compensated by calibration. Calibration
can significantly reduce system error in case of odometry pose estimation. Sonar sensor isn’t
so influenced by error when an occupancy grid map is used so its calibration is not necessary.
This section describes used methods and experiments for odometry and mono-camera cali-
bration. Obtained calibration parameters values are also given.

3.1 Odometry calibration

Using above described error influences, given mobile robot kinematic model can now be
augmented so that it can include systematic error influence and correct it. Mostly used aug-
mented mobile robot kinematics model is a three parameters expanded model Borenstein



66 Robot Localization and Map Building

et al. (1996b) where each variable in the kinematic model prone to error influence gets an
appropriate calibration parameter. In this case each drive wheel angular speed gets a cal-
ibration parameter and third one is attached to the axle length. Using this augmentation
kinematics model given with equations (8) and (9) can now be rewritten as:

(kiwp (k)R +er) + (kowgr (k)R + €gy)

v(k) = > ,

17)

(kawr (k)R + err) = (kiwp (K)R +¢1)
ksb + &,

where ¢1,, €g,, and g, are the respective random errors, k1 and kp calibration parameters
that compensate the unacquaintance of the exact drive wheel radius, and k3 unacquaintance
of the exact axle length.

As mentioned above, process of odometry calibration is related to identification of a parame-
ter set that can estimate mobile robot pose in real time with a minimal pose error growth rate.
One approach that can be done is an optimization procedure with a criterion that minimizes
pose error Ivanjko et al. (2007). In such a procedure firstly mobile robot motion data have
to be collected in experiments that distinct the influences of the two mentioned systematic
errors. Then an optimization procedure with a criterion that minimizes end pose error can be
done resulting with calibration parameters values. Motion data that have to be collected dur-
ing calibration experiments are mobile robot drive wheel speeds and their sampling times.
Crucial for all mentioned methods is measurement of the exact mobile robot start and end

pose which is in our case done by a global vision system described in details in Brezak et al.
(2008).

w(k) =

/ (18)

3.1.1 Calibration experiments
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Mobile robot end pose in O(\e“"a

case of a real trajectory ot
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___________________ v
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without errors Mobile robot end pose in
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Fig. 4. Straight line experiment

Experiments for optimization of data sets collection must have a trajectory that can gather
needed information about both, translational (type B) and rotational (type A) systematic
errors. During the experiments drive wheel speeds and sampling time have to be collected,
start and end exact mobile robot pose has to be measured. For example, a popular calibration
and benchmark trajectory, called UMBmark test Borenstein & Feng (1996), uses a 5 [m] square
trajectory performed in both, clockwise and counterclockwise directions. It's good for data
collection because it consist of straight parts and turn in place parts but requires a big room.
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In Ivanjko et al. (2003) we proposed a set of two trajectories which require significantly less
space. First trajectory is a straight line trajectory (Fig. 4), and the second one is a turn in place
trajectory (Fig. 5), that has to be done in both directions. Length of the straight line trajectory
is 5[m] like the one square side length in the UMBmark method, and the turn in place
experiment is done for 180 [°]. This trajectories can be successfully applied to described three
parameters expanded kinematic model Ivanjko et al. (2007) with an appropriate optimization
criterion.

Left turn
experiment

Mobile robot Mobile robot
end orientation start orientation
-— e

Right turn
experiment

Fig. 5. Turn in place experiments

During experiments collected data were gathered in two groups, each group consisting of
five experiments. First (calibration) group of experiments was used for odometry calibration
and second (validation) group was used for validation of the obtained calibration parameters.
Final calibration parameters values are averages of parameter values obtained from the five
collected calibration data sets.

3.1.2 Parameters optimization

Before the optimization process can be started, an optimization criterion I, parameters that
will be optimized, and their initial values have to be defined. In our case the optimization
criterion is pose error minimum between the mobile robot final pose estimated using the
three calibration parameters expanded kinematics model and exact measured mobile robot
final pose. Parameters, which values will be changed during the optimization process, are
the odometry calibration parameters.

Optimization criterion and appropriate equations that compute the mobile robot final pose
is implemented as a m-function in software packet MATLAB. In our case such function con-
sists of three parts: (i) experiment data retrieval, (ii) mobile robot final pose computation
using new calibration parameters values, and (iii) optimization criterion value computation.
Experiment data retrieval is done by loading needed measurements data from textual files.
Such textual files are created during calibration experiments in a proper manner. That means
file format has to imitate a ecumenical matrix structure. Numbers that present measurement
data that have to be saved in a row are separated using a space sign and a new matrix row
is denoted by a new line sign. So data saved in the same row belong to the same time
step k. Function inputs are new values of the odometry calibration parameters, and out-
put is new value of the optimization criterion. Function input is computed from the higher
lever optimization function using an adequate optimization algorithm. Pseudo code of the
here needed optimization m-functions is given in Algorithm 1 where X(k) denotes estimated
mobile robot pose.
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Algorithm 1 Odometric calibration optimization criterion computation function pseudo code

Require: New calibration parameters values {Function input parameters}

Require: Measurement data: drive wheel velocities, time data, exact start and final mobile
robot pose {Measurement data are loaded from an appropriately created textual file}
Require: Additional calibration parameters values {Parameters k; and k; for k3 computation

and vice versa}
wr, wgr <= drive wheel velocities data file
T « time data file
Xstart, Xfinal <= exact start and final mobile robot pose
repeat
X(k+1) = X(k) + AX(k)
until experiment measurement data exist
compute new optimization criterion value
return Optimization criterion value

In case of the expanded kinematic model with three parameters both experiments (straight
line trajectory and turn in place) data and respectively two optimization m-functions are
needed. Optimization is so done iteratively. Facts that calibration parameters k; and k;
have the most influence on the straight line experiment and calibration parameter k3 has the
most influence on the turn in place experiment are exploited. Therefore, first optimal val-
ues of calibration parameters ky and k; are computed using collected data from the straight
line experiment. Then optimal value of calibration parameter k3 is computed using so far
known values of calibration parameters k; and ky, and collected data from the turn in place
experiment. Whence the turn in place experiment is done in both directions, optimization
procedure is done for both directions and average value of k3 is used for the next iteration.
We found out that two iterations were enough. Best optimization criterion for the expanded
kinematic model with three parameters was minimization of the mobile robot final orienta-
tions differences. This can be explained by the fact that the orientation step depends on all
three calibration parameters as given with (7) and (18). Mathematically used optimization
criterion can be expressed as:

I= ®est - ®exact/ (19)

where O, denotes estimated mobile robot final orientation [°], and @y, exact measured
mobile robot final orientation [°]. Starting calibration parameters values were set to 1.0. Such
calibration parameters value denotes usage of mobile robot nominal kinematics model.

Above described optimization procedure is done using the MATLAB Optimization Toolbox ***
(2000). Appropriate functions that can be used depend on the version of MATLAB Opti-
mization Toolbox and all give identical results. We successfully used the following func-
tions: fsolve, fmins, fminsearch and fzero. These functions use the Gauss-Newton
non-linear optimization method or the unconstrained nonlinear minimization Nelder-Mead
method. It has to be noticed here that fmins and fminsearch functions search for a min-
imum m-function value and therefore absolute minimal value of the orientation difference
has to be used. Except mentioned MaTLAB Optimization Toolbox functions other optimiza-
tion algorithms can be used as long they can accept or solve a minimization problem. When
mentioned optimization functions are invoked, they call the above described optimization m-
function with new calibration parameters values. Before optimization procedure is started
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appropriate optimization m-function has to be prepared, which means exact experiments
data have to be loaded and correct optimization criterion has to be used.

3.1.3 Experimental setup for odometry calibration

In this section experimental setup for odometry calibration is described. Main components,
presented in Fig. 6 are: differential drive mobile robot with an on-board computer, camera
connected to an off-board computer, and appropriate room for performing needed calibra-
tion experiments i.e. trajectories. Differential drive mobile robot used here was a Pioneer
2DX from MOBILEROBOTS. It was equipped with an on-board computer from VersaLogic
including a WLAN communication connection. In order to accurately and robustly measure
the exact pose of calibrated mobile robot by the global vision system, a special patch (Fig. 7)
is designed, which should be placed on the top of the robot before the calibration experiment.

- Camera for global
WLAN vision localization
connection \

Computer for global
vision localization
Mobile robot with

—E— graphical patch
WLAN for global vision
connection localization

Fig. 6. Experimental setup for odometry calibration based on global vision

Software application for control of the calibration experiments, measurement of mobile robot
start and end pose, and computation of calibration parameters values is composed from
two parts: one is placed (run) on the mobile robot on-board computer and the other one
on the off-board computer connected to the camera. Communication between these two
application parts is solved using a networking library ArNetworking which is a component
of the mobile robot control library ARIA *** (2007). On-board part of application gathers
needed drive wheel speeds measurements, sampling time values, and control of the mobile
robot experiment trajectories. Gathered data are then send, at the end of each performed
experiment, to the off-board part of application. The later part of application decides which
particular experiment has to be performed, starts a particular calibration experiment, and
measures start and end mobile robot poses using the global vision camera attached to this
computer. After all needed calibration experiments for the used calibration method are done,
calibration parameters values are computed.

Using described odometry calibration method following calibration parameters values have
been obtained: k1 = 0.9977, ko = 1.0023, and k3 = 1.0095. From the calibration parameters
values it can be concluded that used mobile robot has a system error that causes it to slightly
turn left when a straight-forward trajectory is performed. Mobile robot odometric system
also overestimates its orientation resulting in k3 value greater then 1.0.
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Fig. 7. Mobile robot patch used for pose measurements

3.2 Camera calibration

Camera calibration in the context of threedimensional (3D) machine vision is the process of
determining the internal camera geometric and optical characteristics (intrinsic parameters)
or the 3D position and orientation of the camera frame relative to a certain world coordi-
nate system (extrinsic parameters) based on a number of points whose object coordinates in
the world coordinate system (X;,i = 1,2,---,N) are known and whose image coordinates
(x,i = 1,2,---,N) are measured. It is a nonlinear optimization problem (20) whose solu-
tion is beyond the scope of this chapter. In our work perspective camera’s parameters were
determined by off-line camera calibration procedure described in Tsai (1987).

N
min'y_ (sc*xl- - xi)z (20)
i=1

By this method with non-coplanar calibration target and full optimization, obtained were
the following intrinsic parameters for SONY EVI-D31 pan-tilt-zoom analog camera and
framegrabber with image resolution 320x240:

ay = ay = 379 [pixel],
xg = 165.9 [pixel], yo = 140 [pixel].

4. Sonar based localization

A challenge of mobile robot localization using sensor fusion is to weigh its pose (i.e. mobile
robot’s state) and sonar range reading (i.e. mobile robot’s output) uncertainties to get the op-
timal estimate of the pose, i.e. to minimize its covariance. The Kalman filter Kalman (1960)
assumes the Gaussian probability distributions of the state random variable such that it is
completely described with the mean and covariance. The optimal state estimate is computed
in two major stages: time-update and measurement-update. In the time-update, state pre-
diction is computed on the base of its preceding value and the control input value using the
motion model. Measurement-update uses the results from time-update to compute the out-
put predictions with the measurement model. Then the predicted state mean and covariance
are corrected in the sense of minimizing the state covariance with the weighted difference
between predicted and measured outputs. In succession, motion and measurement models
needed for the mobile robot sensor fusion are discussed, and then EKF and UKF algorithms
for mobile robot pose tracking are presented. Block diagram of implemented Kalman filter
based localization is given in Fig. 8.
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Fig. 8. Block diagram of non-linear Kalman filter localization approaches.

4.1 Occupancy grid world model

In mobile robotics, an occupancy grid is a two dimensional tessellation of the environment
map into a grid of equal or unequal cells. Each cell represents a modelled environment part
and holds information about the occupancy status of represented environment part. Occu-
pancy information can be of probabilistic or evidential nature and is often in the numeric
range from 0 to 1. Occupancy values closer to 0 mean that this environment part is free,
and occupancy values closer to 1 mean that an obstacle occupies this environment part. Val-
ues close to 0.5 mean that this particular environment part is not yet modelled and so its
occupancy value is unknown. When an exploration algorithm is used, this value is also an
indication that the mobile robot has not yet visited such environment parts. Some mapping
methods use this value as initial value. Figure 9 presents an example of ideal occupancy
grid map of a small environment. Left part of Fig. 9 presents outer walls of the environment
and cells belonging to an empty occupancy grid map (occupancy value of all cells set to
0 and filled with white color). Cells that overlap with environment walls should be filled
with information that this environment part is occupied (occupancy value set to 1 and filled
with black color as it can be seen in the right part of Fig. 9). It can be noticed that cells
make a discretization of the environment, so smaller cells are better for a more accurate map.
Drawback of smaller cells usage is increased memory consumption and decreased mapping
speed because occupancy information in more cells has to be updated during the mapping
process. A reasonable tradeoff between memory consumption, mapping speed, and map
accuracy can be made with cell size of 10 [em] x 10 [cm]. Such a cell size is very common
when occupancy grid maps are used and is used in our research too.
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Fig. 9. Example of occupancy grid map environment

Obtained occupancy grid map given in the right part of Fig. 9 does not contain any unknown
space. A map generated using real sonar range measurement will contain some unknown
space, meaning that the whole environment has not been explored or that during exploration
no sonar range measurement defined the occupancy status of some environment part.

In order to use Kalman filter framework given in Fig. 8 for mobile robot pose estimation,
prediction of sonar sensor measurements has to be done. The sonar feature that most precise
measurement information is concentrated in the main axis of the sonar main lobe is used for
this step. So range measurement prediction is done using one propagated beam combined
with known local sensor coordinates and estimated mobile robot global pose. Measurement
prediction principle is depicted in Fig. 10.

Y, Obstacle
Measured [ ] Sonar sensor

range orientation
Y,
Sonar sensor angle

G

Mobile robot

i orientation
-~ Mobile robot
e global position
T Global coordinate Xs

system center
Fig. 10. Sonar measurement prediction principle.

It has to be noticed that there are two sets of coordinates when measurement prediction is
done. Local coordinates defined to local coordinate system (its axis are denoted with Xy and
Y} in Fig. 10) that is positioned in the axle center of the robot drive wheels. It moves with
the robot and its x-axis is always directed into the current robot motion direction. Sensors
coordinates are defined in this coordinate system and have to be transformed in the global
coordinate system center (its axis are denoted with X and Y in Fig. 10) to compute relative
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distance between the sonar sensor and obstacles. This transformation for a particular sonar
sensor is given by the following equations:

Sxc = X + Soffp - 08 (soff@+®), (1)
Syc=y+ SoffD -sin (Soff@ + @) , (22)
SeG = O + Ssenso, (23)

where coordinates x and y present mobile robot global position [mm], ©® mobile robot global
orientation [°], coordinates Sxg and Sy sonar sensor position in global coordinates [mm],
Sec sonar sensor orientation in the global coordinate system frame [°], S,¢sp sonar sensor
distance from the center of the local coordinate system [mm], Syfre sonar sensor angular
offset towards local coordinate system [°], and Sgg sonar sensor orientation towards the
global coordinate system [°].

After above described coordinate transformation is done, start point and direction of the
sonar acoustic beam are known. Center of the sound beam is propagated from the start
point until it hits an obstacle. Obtained beam length is then equal to predicted sonar range
measurement. Whence only sonar range measurements smaller or equal then 3.0 m are used,
measurements with a predicted value greater then 3.0 m are are being discarded. Greater
distances have a bigger possibility to originate from outliers and are so not good for pose
correction.

4.2 EKF localization

The motion model represents the way in which the current state follows from the previous
one. State vector is expressed as the mobile robot pose, x; = [xk Vi @k]T, with respect to a
global coordinate frame, where k denotes the sampling instant. Its distribution is assumed
to be Gaussian, such that the state random variable is completely determined with a 3 x
3 covariance matrix Py and the state expectation (mean, estimate are used as synonyms).

Control input, uy, represents the commands to the robot to move from time step k to k + 1.
In the motion model u; = [Dy A@k]T represents translation for distance Dy followed by a
rotation for angle A@j. The state transition function f(-) uses the state vector at the current
time instant and the current control input to compute the state vector at the next time instant:

Xk+1 = f(xk, uk,vk), (24)

T . . .
where v, = [Ul,k Uz,k] represents unpredictable process noise, that is assumed to be Gaus-

sian with zero mean, (E{v;} = [0 0]T), and covariance Q. With IE{-} expectation function
is denoted. Using (1) to (3) the state transition function becomes:

X + (D + vy ) - cos(Of + Ak + vy 1)
f(xg, up, vi) = | Y + (D +011) - sin(O + AO +1px) | - (25)
O + AO, + Uy k

The process noise covariance Q; was modelled on the assumption of two independent
sources of error, translational and angular, i.e. Dy and A©®j are added with corresponding
uncertainties. The expression for Qy is:
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2
%) 0

Qk:{ 0 A®Rg |’ (26)

where 0123 and cri@ are variances of Dy and A®y, respectively.
The measurement model computes the range between an obstacle and the axle center of the
robot according to a measurement function Lee (1996):

hixpi) = 3/ (3 = 02+ (i — )2, @)

where p; = (x;,y;) denotes the point (occupied cell) in the world model detected by the ith
sonar. The sonar model uses (27) to relate a range reading to the obstacle that caused it:

Zik = hi(xe, pi) + Wik, (28)

where w; | represents the measurement noise (Gaussian with zero mean and variance 7; ;) for
the ith range reading. All range readings are used in parallel, such that range measurements
z; x are simply stacked into a single measurement vector z;. Measurement covariance matrix
Ry is a diagonal matrix with the elements ;. It is to be noted that the measurement noise is
additive, which will be beneficial for UKF implementation.
EKEF is the first sensor fusion based mobile robot pose tracking technique presented in this
paper. Detailed explanation of used EKF localization can be found in Ivanjko et al. (2004)
and in the sequel only basic equations are presented. Values of the control input vector u;_4
computed from wheels’ encoder data are passed to the algorithm at time k such that first
time-update is performed obtaining the prediction estimates, and then if new sonar readings
are available those predictions are corrected. Predicted (prior) state mean %, is computed
in single-shot by propagating the state estimated at instant k — 1, &;_; through the true
nonlinear odometry mapping:

%, = (X1, w1, E{vi_1}). @)

The covariance of the predicted state P, is approximated with the covariance of the state
propagated through a linearized system from (24):

P, = ViR 1V + VEQVE], (30)

where Vy = Vi (X¢_1,u;_1, E{vi_1}) is the Jacobian matrix of f with respect to x, while
Viy = VEu(Rk_1,ug_1, E{vk_1}) is the Jacobian matrix of f(-) with respect to control input
u. It is to be noticed that using (29) and (30) the mean and covariance are accurate only to the
first-order of the corresponding Taylor series expansion Haykin (2001). If there are no new
sonar readings at instant k or if they are all rejected, measurement update does not occur
and the estimate mean and covariance are assigned with the predicted ones:

% = R, (31)

P, = P;. (32)

Otherwise, measurement-update takes place where first predictions of the accepted sonar
readings are collected in 2,~ with ith component of it being:

2= hi(%, pi) + E{wix}. (33)
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The state estimate and its covariance in time step k are computed as follows:
X = *k_ + Kk(zk - ik_)’ (34)

P = (I-KiVhy)P,, (35)

where z; are real sonar readings, Vhy = Vhx(%, ,E{wy}) is the Jacobian matrix of the
measurement function with respect to the predicted state, and Kj is the optimal Kalman
gain computed as follows:

K = P_ Vh] (VhP_ Vh] +R;) . (36)

4.3 UKF localization

The second sensor fusion based mobile robot pose tracking technique presented in this chap-
ter uses UKE. UKF was first proposed by Julier et al. Julier & Uhlmann (1996), and further
developed by Wan and van der Merwe Haykin (2001). It utilizes the unscented transforma-
tion Julier & Uhlmann (1996) that approximates the true mean and covariance of a Gaussian
random variable propagated through nonlinear mapping accurate to the inclusively third
order of Taylor series expansion for any mapping. Following this, UKF approximates state
and output mean and covariance more accurately than EKF and thus superior operation of
UKF compared to EKF is expected. UKF was already used for mobile robot localization
in Ashokaraj et al. (2004) to fuse several sources of observations, and the estimates were,
if necessary, corrected using interval analysis on sonar measurements. Here we use sonar
measurements within UKF, without any other sensors except the encoders to capture angular
velocities of the drive wheels (motion model inputs), and without any additional estimate
corrections.

Means and covariances are in UKF case computed by propagating carefully chosen so called
pre-sigma points through the true nonlinear mapping. Nonlinear state-update with non-
additive Gaussian process noises in translation D and rotation A® is given in (25). The
measurement noise is additive and assumed to be Gaussian, see (28).

The UKF algorithm is initialized (k = 0) with Xy and Py, same as the EKF. In case of non-
additive process noise and additive measurement noise, state estimate vector is augmented
with means of process noise E{vy_1 } only, thus forming extended state vector &{_;:

T
R =E )= [ %, E{vea)T | (37)

Measurement noise does not have to enter the &;_; because of additive properties Haykin
(2001). This is very important from implementation point of view since the dimension of out-
put is not known in advance because number of accepted sonar readings varies. Covariance
matrix is augmented accordingly forming matrix P{_;:

a _ Pk—l 0
ra-[T 0] o

Time-update algorithm in time instant k first requires square root of the P{_; (or lower

triangular Cholesky factorization), , /P{_,. Obtained lower triangular matrix is scaled by the

factor :

Yy=VL+A, (39)
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where L represents the dimension of augmented state x;_; (L = 5 in this application), and A
is a scaling parameter computed as follows:

A=a?(L+x)— L (40)

Parameter a can be chosen within range [107#,1], and « is usually set to 1. There are 2L + 1
pre-sigma points, the first is X{_; itself, and other 2L are obtained by adding to or subtracting

from %{_, each of L columns of -y, /P{_,, symbolically written as:

g = [ K1 Ko TryPa X —7y/Pia } (41)
where X7 | = [(XF )T (X2 |)T]T represents the matrix whose columns are pre-sigma
points. All pre-sigma points are processed by the state-update function obtaining matrix
kal y_1 Of predicted states for each pre-sigma point, symbolically written as:

X1 = 1wy, 4] (42)

Prior mean is calculated as weighted sum of acquired points:

2L o
o— x
% =Y WXy (43)
i=0
where Xixk‘ 41 denotes the ith column of le“ 4_1- Weights for mean calculation Wl.(m) are given
by
(m) _ _A
Wi\ = 44
U Ry (44)
wm— L i L (45)
! 2(L+ A7)’
Prior covariance matrix P, is given by
5 W T
- — X a— X A—
P = Z(;Jwi [Xi,k\kq Ry HXi,k|k71 —% 0, (46)
=l

where Wl.(c> represent the weights for covariance calculation which are given by

© A 2
Wy’ = o7 +(1—-a"+pB), (47)
(C) — ; | —
W, = AL A) i=1,...,2L. (48)

For Gaussian distributions 8 = 2 is optimal.
If there are new sonar readings available at time instant k, predicted readings of accepted
sonars for each sigma-point are grouped in matrix Z;_; obtained by

Zyk—1 = h[ X pl + E{wi}, 49)
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where p denotes the series of points in the world map predicted to be hit by sonar beams.
Predicted readings 2, are then

2L (m)
2]; - 2 Wi Zi,klk—l‘ (50)
i=0

To prevent the sonar readings that hit near the corner of obstacles to influence on the mea-
surement correction, since their probability distribution cannot be approximated with Gaus-
sian, another threshold comparison were made. These problematic sonar readings are recog-
nized with mean 2;,( that differs from z; ; more than the acceptation threshold amounts, and
those are being discarded. Readings covariance is

2L
P, =) W (Zik1 — 2 2 — 21T + Ry, (51)
i=0

and state-output cross-covariance matrix is

2L
Pur = Y WLy — %012 — 21T (52)
=0

Kalman gain Ky is
Ky = Py, P, (53)

Posterior state covariance is finally calculated as
P, =P, — KiP,K{. (54)

The measurement correction is done as in (34).

5. Monocular vision based localization

In this section, we consider the problem of mobile robot pose estimation using only visual
information from a single camera and odometry readings. Focus is on building complex
environmental models, fast online rendering and real-time complex and noisy image seg-
mentation. The 3D model of the mobile robot’s environment is built using a professional
freeware computer graphics tool named Blender and pre-stored in the memory of the robot’s
on-board computer. Estimation of the mobile robot pose as a stochastic variable is done
by correspondences of image lines, extracted using Random Window Randomized Hough
Transform line detection algorithm, and model lines, predicted using odometry readings
and 3D environment model. The camera model and ray tracing algorithm are also described.
Developed algorithms are also experimentally tested using a Pioneer 2DX mobile robot.

5.1 Scene modelling and rendering

Referential model of the environment was built using Blender, where vertices, edges (lines)
and faces (planes) were used for model notation. An edge is defined with two vertices and a
face with three or four vertices. The drawn model is one object in which all vertices, edges
and faces are listed. For illustration, in Fig. 11, 3D model of the hallway in which our mobile
robot moves is shown. Although the environment model is quite complex, we achieved
online execution of the localization algorithms by applying fast rendering. Namely, in each
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Fig. 11. Hallway 3D model

step we render only the small region enclosed with the camera frustrum and then apply a
ray tracing algorithm to solve the occlusion problems.

The above described notation of the scene model, enables us to implement a ray tracing
algorithm. The algorithm is organized in two “for” loops, as shown in Fig. 12(b), where the
algorithm flowchart is depicted. The first (outer) loop goes over the edge list and the second
(inner) loop goes over the face list. The outer loop starts with the function IsInsideFrustrum
(point3D), which examines whether observed points are located inside the camera frustrum
and discards those that are not in it. Then, for a point p in the frustrum, where p is the point
in the middle of the edge determined with two vertices, e.vertl and e.vert2, as shown in Fig.
12(a), the direction of the vector ray is defined with point p and camera pose (cam_pos).
The inner loop starts with choosing a plane f from the list of faces, and then the function
Intersect (f, vector) returns intersection point Pr between the given plane f and direction
vector as an output value, or None if the intersection doesn’t exist. Visible edges are checked
by comparing distances from the camera pose to the the point p (distl) and to intersection
point Pr (dist2), see Fig. 12(a). If these two distances do not match, the checked model edge
(line) is invisible, and therefore not used in later matching procedure.

Notice the incompleteness of rendering because only edges whose middle point is visible
will be rendered visible. That does not affect the accuracy of the later matching algorithm
for partially visible model lines because it is done in Hough space where a line is represented
with a single point regarding its length. The rendering could produce only smaller number
of partially visible lines, but in this case it is not important because there are still enough
lines for estimating mobile robot’s pose while gaining faster algorithm execution.

5.2 Image segmentation

Mobile robot self-localization requires matching of edge segments in the current camera im-
age and edge segments in the environment model seen from the expected mobile robot pose.
In previous section we described line extraction from the environment model, and below
we describe the line extraction in the camera image (image segmentation). Image segmen-
tation is done by the Canny edge detector and RWRHT line detector algorithm described in
Kaélvidinen et al. (1994). The RWRHT is based on Randomized Hough Transformation (RHT),
which selects n pixels from the edge image by random sampling to solve n parameters of
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for e in data.edges: ‘ False

A A

If [ IsInsideFrustrum(e.vert1) == True or J
IsInsideFrustrum(e.vert2) == True or

IsInsideFrustrum(p) == True ]

ray = p - cam_pos

dist1 = || p— cam_pos ||
trace = None
foundVisible = 1

If [ IsInsideFrustrum(trace) == True ]

If (foundVisible == 1)

write edge in file

e reaches
the end of
data.edges

freaches
the end of
data.faces

A 4
dist1 End of ray
< > tracing

(a) model (b) algorithm flowchart

Fig. 12. Ray tracing

a curve, and then accumulates only one cell in parameter space. Detected curves are those
whose accumulator cell is greater then predefined threshold. The RWRHT is an extension of
the RHT on complex and noisy images that applies RHT to a limited neighborhood of edge
pixels. The benefit is the reduction of the computational power and memory resources. The
pseudo-code of the RWHT is written in Algorithm 2.

5.3 Mobile robot pose estimation

Once the correspondences have been established between image lines and model lines seen
from the current mobile robot pose, we could update the mobile robot pose by applying
an appropriate estimation technique. In most cases, linearized system and measurement
equations and Gaussian noise in states and measurements are satisfactory approximations.
Therefore, we apply Extended Kalman Filter (EKF) Welch & Bishop (2000), which is an opti-
mal estimator under the above assumptions.

The state vector that is to be estimated is the mobile robot pose p. Introducing uncertainty
in the equations (1), (2) and (3) as the zero mean Gaussian additive noise, the state equations
are obtained:

Pnt1 = fpn, 0(1), w(n)] +w(n), (55)
where w ~ N (0,Q).
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Algorithm 2 The Random Window RHT Algorithm

D <« all edge points in binary edge picture
d; <= randomly selected point from set D
m < randomly selected window size where m,,,;,;, < m < Mgy
W <« pixel data set of m x m neighborhood of the point d;
repeat

RHT algorithm on the set W
until maximum R times
if accumulator cell > threshold then

corresponding parameters are the parameters of detected curve
else

goto 2
end if

—_

—_ =
N =22

Measurement is a set S of pairs "model line - image line":

S = {{m,i}|m = visible model line, (56)
i = image line - perspective projection of m}.

The straight line in the world coordinate system which passes through the point (xg, yo, zo)
and has direction coefficients (a, b, c) is given by:

X a X0
y| = |blu+ |y |, uek (57)
z c 20

The straight line in image plane is given by

x cosy +ysiny =p, p>0, v€(0,2n], (58)

where p and v are the Hough space parameters of the line.

Let by applying perspective projection transformation P to a 3D model line we obtain 2D
straight line m and let its pair line i in the image be defined with the Hough space parameters
(p,7). The projection of the 3D point (xg, yo, z9) lies on the image line i and direction
coefficients of m and i lines are the same if the following conditions are fulfilled:
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X0

0 cosy
z1 = W/ psiny | =P Yo =0, (59)
1 %0
1
P
P b
) c
—siny 0
Z [ cosy ] ——— =0, (60)
0 a
p b
c
(S 0 -
z = [az] . (61)

Equations (59) and (60) are measurement equations and are used to correct mobile robot pose
with each correct match. Uncertainty in mobile robot pose means uncertainty in model lines
and is propagated to the Hough space in the same way as in Kosaka & Kak (1992), so we
will not go into details but only explain the main concept. For differentials of the equation
(15) we obtain

6X = {ffj ] — Jp(M, p)ép, (©)

where Jp(P) is Jacobian of perspective projection of the end point of 3D model line M taken
at expected values of random vector p. Notice that from this point on, we are using first
order Taylor approximations of nonlinear transformations. Covariance matrix related to pixel
coordinates of a single model line point is given by:

Tx = E[6X6X "] =Jp(M, p) £, [p(M, p) ", (63)

where ¥, is covariance matrix of mobile robot pose p. So, at this moment, we have deter-
mined uncertainty convex hull in which the probability of finding corresponding image line
is the highest. Furthermore, we can apply Hough transform H to that line segment, which
would lead to point representation i = (p, ) of the line on which the segment coincides with
elliptical uncertainty region defined by the Mahalanobious distance and covariance matrix.
If J3 denotes Jacobian of the Hough transform H with respect to variables p and ¢ we can
write:

6%,
o] &Yy
5Ys

_ Jp(M1, p) 0 Jp(My, p) 0 T
oy = I { 0 Jp(M2, p) ] Zp { 0 Jp(Ma, p) In- (65)
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We limit the search for image lines to uncertainty region in the Hough space C %2 deter-
mined by the constraint:

(h—h)z,/(h—h)" <2
This rises a matching problem if one model line has more then one image candidate, but the
problem was solved in Kosaka & Kak (1992) and Aider et al. (2005).
There are also quantization error, noise in camera image and error in edge detection and
image segmentation which have been approximated by Gaussian variable & ~ N (0, V) and
included in the EKF equations as the measurement noise. Finally, the equations of the im-
plemented EKF are:
a priori update:

Pny1 = flpnov(n) w(n)], (66)
20 = 2P hi)in], ©7)
Tppay = ATy, AT+Q  A=0f/0p|p—p, (68)
a posteriori update:
K”+1 = anJrl\n HT |:H Zp;ﬁl\n HT + Ri| 4 (69)
Pnt1 = Pnt1+Kyr1(z—2a), (70)
Zpy’*l = (I - K"+l H)ZP;HHM’ (71)

_ 0z R _ 0z y.oz’ N
where H = %‘pzp and R= [, 4 V- F |hi

6. Experimental results

This section presents obtained experimental results including description of experimental
setup and experiment conditions. First are presented results obtained using sonar sensors
and after that results obtained using monocular-vision. Section ends with comments on
obtained results.

6.1 Experimental setup description

Experiments are performed using a Pioneer 2DX mobile robot from MobileRobots. Its con-
figuration is presented in Fig. 13 only that in localization experiments monocular camera was
used insted of depicted stereo one. Used sensors are encoders for odometry, sonars, mono-
camera and a laser range finder. Laser range finder was used only for a comparison purpose
as a sensor that enables a more accurate localization than the sonars or mono-camera. It
is combined with a Monte-Carlo algorithm Konolige (1999) implemented as standard local-
ization solution in the mobile robot control software. Used camera for monocular-vision
localization is a SONY EVI-D31 pan-tilt-zoom analog camera. Laser sensor is a SICK LMS-
200, and sonars are Polaroid 6500 sensors.

Experimental environment including trajectory traversed by the mobile robot is presented in
Fig. 14. Global coordinate system is depicted on the left side. It’s a hallway with several door
niches. Mobile robot movement started in one corridor end and ended when it reached other
corridor end. Trajectory length is approximately 20 [m] and is generated using a gradient
based algorithm described in Konolige (2000). Obstacle avoidance was also active during all
experiments.
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Fig. 13. Pioneer 2DX mobile robot
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Fig. 14. Mobile robot trajectory for experimental evaluation.

Initial robot’s pose and its covariance was in all experiments set to (orientation given in
radians):

po=[ 210dm 925dm 7= |,

0.3000 0 0
Zpy = 0 0.3000 0 ,
0 0 0.0080

which means about 0.55 [dm] standard deviation in p, and py, and about 5 [°] standard
deviation in robot orientation. In every experiment mobile robot start pose was manually set
according to marks on the hallway floor, so given initial pose covariance was set to cover start
pose setting error margins. Experiments show that implemented self-localization algorithms
were able to cope with that starting pose error margins.

During all experiments relevant measurements data were collected and saved for obtained lo-
calization quality evaluation. Saved data included mobile robot drive wheel speeds, sampling
period, sonar range measurements, camera images, evaluated self-localization algorithm es-
timated pose and Monte Carlo based localization results. Pose obtained using Monte Carlo
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algorithm and laser range finder sensor was then used as the more accurate i.e. exact mobile
robot pose for comparison.

If localization was only done by odometry, results would be like shown on Fig. 15, i.e. pose
error would monotonically increase over time. It is obvious that mobile robot cannot perform
its tasks without any pose correction.

Robot trajectory through hallway
20 T T T T

,/—””//7 —— Monte Carlo
L -~ Odometry

£
kA
L : .
_40 L L L L L L L L L
20 40 60 80 100 120 140 160 180 200 220
X [dm]
Robot orientation during experiment
230 T T T
2 180 ]
I A -
=) h N
3 W
2 o430k
@ 3 ’ — Monte Carlo|
----Odometry
80 1 1 1 1 1
0 200 400 600 800 1000 1200
time step

Fig. 15. Robot trajectory method comparison: solid - Monte Carlo localization, dash-dot -
odometry

6.2 Sonar localization results

Figures 16 and 17 present results obtained using sonar sensors. Solid line denotes Monte
Carlo localization with laser range finder and doted line denotes sonar sensor based local-
ization results. Both figures consist of two parts. Upper part presents mobile robot trajectory
i.e. its position and lower part presents mobile robot orientation change.

As mentioned before two sonar sensor based localization approaches were implemented.
EKF based results are presented in Fig. 16 and UKF based results are presented in Fig. 17.
Both implementations use calibrated odometry as the motion model to increase localiza-
tion accuracy. An occupancy grid model is used for sonar sensor measurement prediction.
Whence occupancy grid size is 100 [mm] x 100 [mm], localization accuracy is expected to be
in this range.

Figures given in this section show that sonar sensors can be effectively used for self-
localization with accuracy in range of used occupancy model grid size. It can be noticed
that EKF ends with a pose estimation with bigger pose corrections. This feature arises from
the first order linearization done be the EKF. In case of the UKF corrections are of smaller
value as expected. More accurate pose estimation of the UKF can be proved by computing
pose error values on the whole traversed path. Pose error is computed as difference be-
tween estimated trajectory and referent Monte Carlo pose. With the EKF maximal position
error is 3.2 [dm], and maximal orientation error is 6.8 [°], while with the UKF their values
are 2.5 [dm]|, and 3.7 [°]. These values are important when self-localization algorithms are
used for longer trajectories. A bigger maximal pose error indicates a greater probability that
mobile robot will loose its pose indicating a necessary global pose correction.
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6.3 Monocular-vision localization results

Similar as in the sonar localization experiment the mobile robot was given navigational com-
mands to drive along a hallway and to collect odometry data and images from camera fixed
to it at multiples of the discretization time. Figure 18 shows line segments superimposed to
the camera view. Very good robustness to change of illumination and noise in camera image
can be noticed. Figure 19 shows rendered hallway model superimposed to the camera view,
before any correction was done. After image acquisition and model rendering, the off-line
optimal matching of rendered image lines and lines extracted from the camera image was
done. Obtained pairs and rendered model from corrected camera pose are shown in Fig. 20.
Updated mobile robot start pose and its covariance was (orientation given in radians):

po = [ 209.946 dm 9.2888 dm 3.1279 |

0 50 100 150 200 250 300

0 50 100 150 200 250 300

Fig. 19. Superposition of camera view and rendered model before correction
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0 50 100 150 200 250 300

Fig. 20. Superposition of camera view and rendered model after correction. Line pairs that
were matched and used as measurement are drawn with different colors for each pair.

0.2810 —0.0332 —0.0002
Yp, = | —0.0332 02026 —0.0034
—0.0002 —0.0034 0.0001

Complete trajectory compared to the Monte-Carlo trajectory is shown in Fig. 21. Almost
identical results are obtained in orientation and little shift exists in position.
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Fig. 21. Robot trajectory method comparison: solid - Monte Carlo localization, dots - our
method



88 Robot Localization and Map Building

7. Conclusion

Monotonous position error growth is inherent characteristic of every mobile robot naviga-
tional system based solely on proprioceptive sensors. In order to deal with various sources
of uncertainties in mobile robot localization it is necessary to establish a representative model
of its internal states and environment and use perceptive sensors in the pose estimation. In
this chapter we have demonstrated those properties on a differential drive mobile robot by
localizing it in a 2D environment by using sonar ring as the perceptive sensor and in a 3D
environment by using a mono camera as the perceptive sensor. In both cases we have applied
nonlinear Kalman filtering for pose estimation and have compared results with the Monte
Carlo localization based on a laser range finder, which is much more accurate sensor than
sonars and cameras. Achieved localization accuracies with sonar ring and with mono cam-
era are comparable to those obtained by the laser range finder and Monte Carlo localization.
The applied calibration of mobile robot kinematic model also contributed to the increased
accuracy.
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1. Introduction

Autonomous systems are able to move from one point to another in a given environment
because they can solve two basic problems: the localization problem and the navigation
problem. The localization purpose is to determine the current pose of the autonomous robot
or system and the navigation purpose is to find out a feasible path from the current pose to
the goal point that avoids any obstacle present in the environment. Obviously, without a
reliable localization system it is not possible to solve the navigation problem. Both problems
are among the oldest problems in human travels and have motivated a considerable amount
of technological advances in human history. They are also present in robot motion around
the environment and have also motivated a considerable research effort to solve them in an
efficient way.

The localization problem can be addressed in two main ways: on one hand, we have
positioning systems and, on the other hand, we have self-localization systems. The positioning
systems use external emitters (beacons) that are detected by on-board systems or an emitter
located on board and several external receivers together with a communication system to send
the robot the estimated pose. They use different variants of triangulation methods to estimate
the robot pose at a given time. Different positioning systems can be found. The best known is
the Global Positioning Systems (GPS) based on satellites around Earth and able to provide a
localization in outdoor environments. For indoor environments the problem is more complex
due to a high number of emitters and/or receivers required to obtain a complete coverage of
the working area. Radio (Wifi and Zigbee), vision, and ultrasound-based systems are active
research fields and have achieved an interesting development level, but these technologies
depend strongly on the emitters and/or receivers distribution in the building. The positioning
systems require to know the location of the emitters but they do not require to have an explicit
map of the environment. Obviously, an implicit map is required at least to determine the
distribution of the emitters or receivers along the environment. The global complexity of these
indoor positioning systems is their weakest point, but it can be very interesting when the
number of robots working in a given area is high. The self-localization systems use sensing
systems located on board the vehicle and do not require any external system. Typical
examples are ultrasound, laser, or vision-based localization systems where the emitter and the
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receiver are located on the robot. This approach requires a map of the environment
(predefined or learned) in order to estimate the robot pose. This chapter will focus on self-
location systems, which are a little more autonomous than positioning systems, particularly in
indoor environments linked to a mapping learning system.

The self-localization systems solve the pose estimation problem from two different initial
situations:

* Re-localization systems (also called tracking systems): they try to keep tracking the
mobile robot’s pose, assuming the robot knows its initial position (at least approximately).
Therefore, the self-localization system has to maintain the robot localized along the given
mission. The majority of existing algorithms address only the re-localization problem
because its mathematical treatment is less complex and, from a practical point of view, it is
relatively simple to provide to the robot an initial pose. In this case, the small incremental
errors produced along the robot motion and the initial knowledge of the robot’s pose make
classical approaches such as Kalman filters applicable. The Kalman filter for robot re-
localization was introduced in the Eighties (Crowley, 1989; Cox, 1991; Leonard & Durrant-
White, 1992; Jensfelt & Krinstensen, 1999) and has been extensively used. This type of filter
constitutes a very efficient solution to the re-localization problem. However, the
assumptions nature of the uncertainty representation makes Kalman filters not robust in
global localization problems.

* Global localization systems: they do not assume any a priori knowledge about the

robot’s initial pose and therefore, they have to estimate the robot’s pose globally. This
problem has proven to be much more difficult to solve because the search space requires to
use global techniques to explore or to integrate the received information until the pose
converge to a unique solution.
From a mathematical point of view, the global localization problem can be solved using two
different approaches: Bayesian-based estimation methods and optimization-based methods. In the
first approach, Bayesian methods integrate all existent probabilistic information (sensor and
motion information) into the posterior probability density at each motion-perception cycle,
and the point estimate is posteriorly obtained as the state with bigger posterior probability
density. Thus, these methods concentrate on the accurate modeling of the posterior probability
density as a way to represent the most feasible hypothetical areas and their probabilities. At
the convergence point the probability distribution is concentrated in a small area. This group
of solutions has been extensively studied and the vast majority of current methods can be
included here. Monte Carlo localization methods (Jensfelt et al., 2000) are purely Bayesian
methods where the posterior probability distribution is modeled explicitly through the density
obtained by the spatial distributions of particles (points with a given probability) along the
search space. Other methods can be considered quasi-Bayesian, such as multi-hypotheses
Kalman filters (Arras et al., 2002; Austin & Jensfelt, 2000; Jensfelt & Krinstensen, 1999; Cox &
Leonard, 1994; Roumeliotis & Bekey, 2000), grid-based probabilistic filters (Fox et al., 1999;
Burgard et al., 1996; Reuter, 2000) and, other hybrid solutions where the posterior probability
distribution is modeled implicitly (Dellaert et al., 1999; Thrun et al., 2001). Multi-hypotheses
Kalman filters are not completely Bayesian because, even if they maintain a set of multi-
hypotheses, each of them with an associated Gaussian probability whose aggregated
probability distribution can model the posterior, they do not operate on a pure Bayesian way
since they use a decision tree search mechanism based on geometrical constraints together
with probabilistic attributes to manage the global data association problem.
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In the second approach, the optimization-based methods use also all existent probabilistic
information to obtain a loss function that is minimized at each motion-perception cycle, and
the point estimate is the point with lowest value of the loss function. Among the
optimization-based approaches we can find differential evolution filters (Moreno et al.,
2006) and particle swarm optimization filters (Vahdat et al., 2007). These groups of methods
have been more recently used and, only in the last years, have been able to give efficient
solutions to the problem. This chapter presents a solution to the global localization problem
based on a modified version of the Evolutionary Localization Filter able to deal with the
problems introduced by observation and motion noise in the optimization process. The
method takes advantage of the capability of the Differential Evolution method to find the
minima in complex global optimization problems by using a stochastic search approach.

2. Localization problem formulation

The robot’s pose (x,y,0)" at time t will be denoted by x,, and the data up to time t by Y,.

The posterior probability distribution according to this notation can be written as
p(x,|Y,,M), where M is the environment model which is known. To alleviate the notation,
the term M is not included in the following expressions, p(x,|Y,). The sensor data
typically comes from two different sources: motion sensors which provide data related to
change of the situation (e.g., odometer readings) and perception sensors which provide data
related to environment (e.g., camera images, laser range scans, ultrasound measures). We
refer to the former as motions u; and to the latter as observations z,. Motion u(t—1) refers

to the robot displacement in the time interval [t—1,t] as a consequence of the control

command given at time t—1. We will consider that both types of data arrives alternatively,

Y, ={zy,uy,...,2,_1,u,_;,Z,} . These sensor data can be divided in two groups of data

Y, ={Z,,U,_,} where Z, ={z,,...,z,} contains the perception sensor measurements and
U, ={u,,...,u,,} contains the odometric information. To estimate the posterior
distribution p(x, |Y,), probabilistic approaches resort to the Markov assumption, which states

that future states only depend of the knowledge of the current state and not on how the
robot got there, that is, they are independent of past states.

From a Bayesian point of view, the global localization problem seeks to estimate the pose which
maximizes the a posteriori probability density. This problem consists of two linked problems. On
one hand, the integration of the probabilistic information available into the a posteriori
probability density function of each state, given the set of motions, the set of measures and the a
priori environment map of the environment. On the other hand an optimization problem to
2 MAP

t

determine the point %"*" with maximum a posteriori probability density at a given time.

" = argmaxp(x, |'Y,)
X

=arg mxaxp(zt | XUy gy Yy )p(xt [ X505 Y )

=arg m;axp(zt | x)P(Xe [ X )P 1Y)

t t
= arngaXH p(z | Xi)H P [ % 4,0, 4)p(X) @)
i-1 i=1
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This expression requires to specify p(x,|x,_;,u,,) and p(z,|x,). Where p(z, |x,) expresses
the probability density function for the observation z,, given the state x, and an
observation noise e, and p(x,|X, ;,u,,) indicates the probability density function for the

motion noise v. The expression (1) can be reformulated in an equivalent and more
convenient form by taking logarithms:

t t
mxax[z logp.(z; |x;)+ Z logp, (x; | X; 1,1 1) +1ogp(x,)] )
i1 i1
In general, the calculation of estimates for this optimization problem have no explicit
analytical solutions for nonlinear and non-Gaussian models, and have to be iteratively
solved to avoid the difficulties included in the optimization problem. These difficulties
derive from the following aspects:

1. It is highly non-linear. Non-linearities due to motion and perception functions
are propagated through the a posteriori robot pose probability density function.

2. Environment symmetries make the objective function to maximize multi-modal.
At initial stages the objective function admits a high number of solutions, even with the
same maximum value. That happens in highly symmetric environments, such as typical
offices buildings. The reason can be noticed in (2), where the second term p, is a constant in

absence of robot’s motion and the third term p(x,) is also constant in absence of initial pose

information. This leads to an objective function max, Z:: logp.(z; |x;) which only depends

on observations and has potentially multiple maxima in highly regular environments.

3. Another source of symmetries is originated by sensor limitations. The range and
angular resolution of the sensor adds observational symmetries. Besides, some specific
robot’s poses can originate observational limitations which adds symmetries (e.g., a robot
closes to a corner and looking at the corner).

In order to solve (2), a set of candidate estimates have to be initially generated, maintained
or pruned according to the new observation and motion information included in the
objective function. The problem is simplified in case the initial probability distribution is
Gaussian, because the problem becomes uni-modal and then, it is possible to obtain, even
analytically, an estimate (due to the problem can be converted into a quadratic minimization
problem, if non linear motion and observation models can be approximated by a linear
Taylor series expansion about the current estimate %,). This situation leads us to the well
known Extended Kalman Filter solution of the position tracking problem.

We will use the notation f;(x) to refer the objective function to maximize. The problem of
finding an x that maximizes f;(x) among all x that satisfy the conditions
X, =f(x,,u,)+V, and z, =h(x,)+e, is limited to finding the optimal value within the set of
all feasible points. A pose is feasible if it satisfies the constraints f() and h() . In the problem
under consideration, there exist, at least at initial stages, multiple optimal values. Thus, the
methods to solve the problem require to be able to manage a set of solutions. The Bayesian
methods use the a posteriori probability density function to do that, as was previously
commented. The method proposed here uses a different approach. The idea is to maintain a
set of feasible solutions to the localization problem, and let this set evolve towards optimal
values according to the observed motion and perception data.
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2.1 Recursive formulation

The MAP estimate formulated as an optimization problem subject to conditions, in equation
(2), is not practical from a computational point of view. To implement a global localization
algorithm in a robot, a recursive formulation is required. The objective function f;(x,) can

be expressed recursively in the following way:

fo(x) =2 logp.(z; | x;) + D logp, (x; | X1, u,) +1og p(x,)

i=1 i=1

t-1
=logp.(z,|x,)+ Y. logp.(z|x)

i=1
t-1

+logp, (X, [ X,_y,u,_.m)+ Y logp, (X, X5, u,_;)+logp(x,)
i=1

= IOg Pe(z %)+ IOg P, (X [ X Ug) HH (X% ) )

If we are able to solve the optimization problem at time t—1, and we have a set of sub-
optimal solutions which satisfy the optimization problem up to time t-1, the MAP
optimization problem can be reformulated as

Xe-1= m;::leOg Pv(Zt | Xt) + 1Og Pe(xt | Xt—l’ut—l) (4)

where %, is the x which maximize the MAP optimization problem at time t-1, and x|,

is the population set of sub-optimal solutions at the end of iteration t—1. Then solving (4)
we will obtain a recursive version of the MAP estimate.

3. Evolutionary Localization Filter algorithm

3.1 Differential Evolution: basic concepts

The algorithm proposed to implement the adaptive evolutive filter is based on the
differential evolution method proposed by Storn and Price (Storn & Price, 1995) for global
optimization problems over continuous spaces. The Adaptive Evolutionary Localization
Filter uses as a basic solution search method, the classical DE/rand/1/bin version with some
modifications to improve its characteristics in presence of a noisy fitness function.

The DE/rand/1/bin uses a parallel direct search method which utilizes n dimensional

parameter vectors x; = (x,,...,x},)" to point each candidate solution i to the optimization

problem at iteration k for a given time step t. This method utilizes N parameter vectors
{x};i=1,...,N} as a sub-optimal feasible solutions set (population) for each generation t of

the optimization process.

The initial population is chosen randomly to cover the entire parameter space uniformly. In
absence of a priori information, the entire parameter space has the same probability of
containing the optimum parameter vector, and a uniform probability distribution is
assumed. The differential evolution filter generates new parameter vectors by adding the
weighted difference vector between two population members to a third member. If the
resulting vector yields a lower objective function value than a predetermined population
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member, the newly generated vector replaces the vector with which it was compared;
otherwise, the old vector is retained. This basic idea is extended by perturbing an existing
vector through the addition of one or more weighted difference vectors to it (see fig. 2).

3.1.1 Differential Perturbation Operation
The perturbation scheme generates a variation v} according to the following expression,

vf = xl:1 + F(xfZ - x: ) ®)

k
T

where x;, x; and x; are parameter vectors chosen randomly from the population,

different from running index i, and mutually different. F is a real constant factor which
controls the amplification of the differential variation (xl:z - xf3 ).

3.1.2 Crossover Operation
In order to increase the diversity of the new generation of parameter vectors, a crossover is

introduced. The new parameter vector is denoted by u} = (uf,,us,,...,u,)" with

> Yin

N L
= { ©

x;; otherwise

where pﬁj is a randomly chosen value from the interval (0,1) for each parameter j of the

population member i at step k, and € is the crossover probability and constitutes the
crossover control variable. The random values p‘;j are made anew for each trial vector i.

k Kk
o F{xrz N KI‘3}

Fig. 1. New population member generation.

3.1.3 Selection Operation
To decide whether or not vector u} should become a member of generation i+1, the new

vector is compared to x! . If vector u} yields a value for the objective fitness function better

than x}‘ , then is replaced by uf for the new generation; otherwise , the old value xf is

retained for the new generation.
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3.1.4 Shift Operation
After the DE algorithm has completed its iterations, the points included in the population

set x; are moved according to the robot motion model x,, =f(x{,u,), the candidate pose
and the observed odometric data.

3.1.5 Fitness function
According to the optimization problem wunder -consideration, max,(logp,(z,|x,)

+ logp.(x, | X,_;,u,_,)) , the natural choice for fitness function is

fo (') =logp(z, | x,) +log p(x, | X, 1,1, ) )

This expression contains two probability densities associated to errors in the motion and
observation models (the perception error probability density distribution p(z,|x,) and the

robot’s motion error probability density distribution p(x,|x,_;,u,_;)). A third probability

model is used to model the information we have at initial stage about the initial a priori
robot’s pose p(x,). This initial probability pose distribution is used at the initial phase to

distribute the population set of the ELF algorithm. In case of global localization problem, the
initial pose information is null. Then, the population set is distributed according to a
uniform probability distribution along the space state.

To compute p(z,|x,), it is necessary to predict the value to be observed by the sensor,

assuming that the robot’s pose estimate is known. Let assume the pose estimate is %, the
sensor relative angle with respect to the robot axis is a; and a given environment model m .

According to the observation model, the noise-free predicted measurement will be
Zei =h(k,0,,m) (in our case, .; is computed using a ray tracing method). Assuming that

the measurement error is Gaussian with zero mean and known covariance (e,; *N(0,5,)),

the predicted measurement will be the center of the Gaussian probability distribution of the
expected distance measured by the o, sensor when robot is located at x,. Then the

probability of observing z,; with sensor i can be expressed as

(it
1 /27
g

——e
(27:05)1/2

p(z; [x) = ®)

The integration of all individual sensor beam probabilities into a joint probability value,
assuming conditional independence between the individual measurements, is expressed as

N N, 1
At = ti At = 9
p(Zt ‘ X ) EOIP(Z : ‘ X ) g (27[02)1/2 € ( )

12 (Zu*im 2
oa

where N, is the number of sensor observations.
The second probability required to calculate the objective function is p(x;|x;_;,u, ;). To

compute p(x;|x,_;,u,,), we have to predict the robot’s pose %, assuming that the robot’s
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pose estimate is %, ; and taking into account the motion command u,_, at that cycle. Let
xe=f(Xe1,u,,) denote this ideal predicted state. Assuming the motion error is a zero mean
with known variance Gaussian probability distribution (that is v~ N(0,P) ), this predicted

measure will be the center of the Gaussian probability distribution of the expected distance
when the robot is located at %, . Then, the p(x; |x;_;,u, ;) probability can be expressed as

PO X1t ) = 2 (10

[P|(2n)"
Introducing the expressions of p(x, |x,;,u,.;) and p(z,|x,) in (7)

(nn:)z

fy(x,) = logH (2nocl) e

+log(P|(2n)") e L -%0P™ (%=

Ny
—ZIog 2nel) z Z“
i=0

i E

)T
2

+1ogl( P| 27’ y”]—%( P (5" (8

which can be reduced to find the robot’s pose to minimize the following function

N 2
: )1 5 AP~ .
potx) =3 B2 T 2P ) (12

i=0 e

The differential evolutive localization filter will minimize iteratively the fitness function (12)
and then, the displacement is evaluated according to the odometric information. The
objective fitness function let us notice that the optimization considers the quadratic
observation error and the quadratic pose error between the predicted pose and the pose
under consideration weighted according its covariance matrix.

4. Difficulties to achieve a robust method

Different problems need to be solved in optimization methods to achieve a reasonable
robustness level. Some of this problems are general and related to the global localization
problem, and others are related to the nature of the basic algorithm adopted. Among the
general problems, we can remark the following ones:

* The lack of a method to determine the significance of a new point apart from the
fitness function value. This originates two classes of problems: premature convergence to a
local minima and, in case of multiple hypotheses situations, the premature elimination of
feasible hypotheses. Both situations originate a fail in the convergence to the true global pose.
This second situation can be observed in figure 2, where the red points are the pose hypotheses
at population set. In this case, the robot is localized at an office exactly equal to others in
dimensions and furniture. Due to the fact that the robot’s orientation is 270 degrees, it can not
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distinguish between offices and the hypothesis should be maintained trough iterations. But, if
we let the algorithm iterate, it can be observed how some of the hypotheses are removed. This
process can end in one hypothesis. Obviously, this algorithm behavior is not robust.
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Fig. 2. Premature hypothesis elimination, initial pose (105, 30, 270), 200 elements in
population and ¢ of 3% of the measured signal.

A traditional solution is to increase the population number to make more difficult the
premature elimination of feasible hypotheses and to limit the number of iterations to control
the algorithm progress.
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* A second important problem is how to determine the stopping criteria.

Traditional methods are: to fix a predefined iteration number or to stop the algorithm when
the fitness function does not improve for a number of iterations. However the use of a
predefined iteration number can also lead to premature elimination of hypotheses, as can be
observed in the example of figure 3, where, after three motions the algorithm, it has
converged prematurely to an incorrect pose. In the figure, the blue cross indicates the best
fitness pose of the population set and the magenta points show the observed laser
measurements projected over the environment map according to the best pose estimate.
The second idea for the stopping criteria consists on stopping the algorithm if after a predefined
number of iterations the best hypothesis is not modified. This stopping criteria is not easy to
establish. If the number of iterations without improvement is low, the algorithm can not
converge or converge very slowly. This problem can be observed in the example of figure 4 that
shows a stopping criteria of 20 cycles without best fitness improvement. In the figure can be
notice that the algorithm can not converge properly. This problem can be partially eliminated by
using a bigger number of default cycles. In that case, the algorithm does more iterations at each
perception-motion cycle but then, we move to the previous case situations where the algorithm
converges prematurely to an improper pose. Obviously, we can try to adjust the parameter to
each situation, but this adjust depends on the observation and motion noises, on the shape
and size of the environment observed at initial pose and, consequently, it is not robust.
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Fig. 3. Premature hypothesis elimination, starting pose (305, 30, 270), 200 elements in
population and O of 3% of the measured signal, motion +2.5 cells per cycle in y direction.
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* A third problem is the population dispersion. The problem can be perceived in
the last image of figure 4, where the population set is dispersed considerably when the robot
goes out of the office and passes to the corridor. Since Differential Evolution is a stochastic
search method, the pose set spreads along the best fitness areas contained in the stochastic
search ball (defined by the possible combinations of three elements stochastically taken from
the population set). If the population has not converged, it spreads when the robot moves to
an area where many possible poses has a similar fitness value. This problem is originated by
the lack of memory of each individual pose of the population set in the algorithm.
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Fig. 4. Convergence failure, starting pose (305, 30, 270), 200 elements in population and ¢ of

1% of the measured signal, motion +2.5 cells per cycle in y direction.

4.1 Solutions to deal with noisy fitness function problems
The two first problems are originated when a superior candidate solution may be
erroneously considered as an inferior solution due to the noise and eliminated from the set
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of solutions by the algorithm. Different solutions has been proposed in literature to
compensate the noise problem in evolutive algorithms:

* Increasing the population size. It is the most simple way to deal with the noise
problem. This technique reduces the probability of eliminating correct hypothesis
prematurely, but increases the computational cost of the algorithm. This solution does not
solve the dispersion problem.

* Resampling and averaging the fitness function from several samples reduces the
error in the fitness. This method assumes as estimate to evaluate the fitness function the

sampling mean that has its standard error reduced by +n, where n is the number of
samples used to estimate the mean. This technique is frequently used by the optimization
researchers, but it requires to sample the fitness function repeatedly. This technique can not
be used for dynamical systems because these systems do not remain in the same state and
consequently, they can not be used for the global localization system problem.

* Thresholding was proposed by Markon (Markon et al., 2001). The idea is to replace
an existing candidate solution only when the fitness difference is larger than a given threshold
7 . This method requires to calculate the threshold value, which depends on the variance of the
noise and the fitness distance to optimal fitness value. This mechanism requires to increase the
number of iterations, since the level of candidate solutions rejected increases.

* Estimation of the true fitness. This idea was suggested by Branke (Branke et al.,
2001). He proposes to estimate an individual fitness using a local regression of the fitness of
the neighboring individuals. The underlying assumptions of this method are: that the true
fitness function can be locally approximated by a low polynomial function, that the variance
in a local neighborhood is constant, and the noise is normally distributed.

The third problem (dispersion) requires a different approach and has not be widely studied
in literature (perhaps because it appears mostly in dynamical system subject to noise).

5. Rejection Differential Evolution Filter

The solution adopted in this work use three main mechanisms to improve the robustness
and efficiency of the basic DE algorithm to solve the global localization problem. These
mechanisms are:

1. A threshold rejection band to avoid the premature elimination of solutions. This
mechanism decreases the eagerness of the algorithm, allowing it to eliminate a candidate
solution from the set only when the offspring candidate is significatively better from a
statistical point of view.

2. An stopping criteria based on the expected fitness value to stop the algorithm
iterations in a statistically equivalent point. This idea will let the algorithm iterate as much as
possible to obtain a fast convergence towards the solution if there is a statistical improvement
between iterations or to stop very fast if no statistical improvement is obtained.

3. Adjustment of the perturbation amplification factor F. This mechanism tries to
maintain a high amplification factor while the population evolves in the first perception
cycle to the most the promising areas (a wide scope search is required) and then to limit the
algorithm search scope when the population set is distributed in the most feasible areas.
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5.1 Threshold determination
The fitness function to minimize is given by expression (12). For a given candidate x! the

fitness function value is given by

2

iroi & (Zt,i_Aj,') 1, i o \payli anT
i) =3 B2 )P (-0 (1)
iz0 o

where z,, is the measure given by the range scan sensor at angle o, at cycle t, Zi; is the

estimated observation for the candidate robot’s pose x!, and x, is the pose estimate (if it exists
at cycle t). The second term of the expression depends on the robot pose estimate %, that is not
known at initial step, and it is neglected until a unique pose estimate is obtained (that happens
when all population has converged to a limited area around the best pose estimate). The
fitness function before the convergence point information takes the following form:

- (Za—2h) 1 e

=2 g = (4

2 2
i=0 ZGe 2% G,

where v,; =(z,; —2l;) represents the discrepancy between the observed and the predicted

value of the sensor data. To estimate the expected noise band for the fitness function, we
need to calculate the expected value for E[f,] when the pose under evaluation is the true

one. The term Zio Vii/Gi where vt,i/ci are standard normal random variables N(0,1) is a
chi-square distribution with N, degrees of freedom. This distribution is well known and it

has mean N, and variance 2N, . Then, the expected minimum fitness value will be

Elf,]= [ £,(v)p(v)dv =N,/2 (15)
That means that, even if the pose we are considering was the true robot’s pose, the expected
fitness function value would be N_/2 due to observation errors produced at the perception

time. If two candidate poses x; and x', are compared at a given iteration time, the question
is: when can we consider there exists a reasonably evidence that candidate pose x, is better
than x'; ?. In the tests, different values for the threshold rejection level have been simulated.

To maintain the elitism in the method, one exception has been introduced (a pose candidate
with a fitness better than the best pose existent up to that moment will always pass to the
following iteration). That exception consists of selecting the best pose obtained for the next
iteration population, independently of the rejection threshold.

5.2 Stopping condition

A classical problem in optimization methods is how to determine a stopping condition. This
problem can be considered in different ways: limiting the number of iterations, iterating
until a pre-specified accuracy is obtained or iterating until no additional improvement is
obtained. But in case of noisy fitness problems, those conditions are not appropriate.
Assuming that the fitness function is a chi-square with N, degrees of freedom, it is possible

to obtain the p-quantile function value with a pre-specified p value of probability, or in
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other words, the fitness function value f,_, that has 1-p probability of being inferior to the

fitness function value at any perception cycle. Quantile values for some pre-specified
probability values and degrees of freedom can be found in statistics literature.

5.3 Amplification factor

The previous mechanisms improve greatly the robustness but they do not exploit the local
convergence. This effect is clearly evident in office buildings where many offices have the
same dimensions, which originates a multiple convergence areas. Once the robot gets out of
the office to a corridor, if factor F is maintained high, the population spreads along the
corridor areas.

To avoid this problem, the amplification factor is initialized at F=0.99 in the first iteration
of the observation cycle and, after the first perception cycle, F is decreased to a low value,
F=0.05. This tends to keep the search area of the algorithm at initial perception cycle as
wide as possible and, once the algorithm has localized the most feasible areas, the
amplification factor is decreased to a low value to concentrate the exploration in the
surroundings of the previous areas avoiding an unnecessary dispersion of the population.

6. Convergence results

To test the algorithm characteristics, a simulated environment has been considered (figure
5). This environment is similar to many office indoor areas. All offices are localized along
the central corridor. The offices localized on the upper part of the figure have the same
length in y dimension and an x length progressively decreasing (in one cell) from offices
localized on the left side of the figure to those located on the right side. On the contrary,
offices localized on the lower part of the figure are of exactly the same dimensions and
appearance. The offices localized on the upper and lower corners of the environment have
similar dimensions but doors are localized on different sides.

6.1 Test 1
The first test tries to determine the capability of the algorithm to localize the robot when it is

localized at a distinguishable pose. The true robot’s position is (x,y,0)" =(60,60,0)" and the

variance considered for each measurement in the simulation is of 3% of the measured signal,
which is relatively noisy compared with real laser scanners. The population set used in the
test is of 100 elements.

In the test example of figure 5, the stopping condition happens at iteration 334 . At that
point the estimated pose is (60.232,60.098,359.839) (units are in cells and degrees). The size

of the cell considered for the map is of 12 c¢m, which corresponds to an estimation error of
2.79 cm in x dimension, 1.182 c¢cm in y and 0.16 degrees in orientation, which is quite
accurate for the noise level and for one perception cycle. In figure 5, the red points indicate
the candidate poses position, the magenta points represent the points observed in the
environment according to the best pose obtained, and the blue cross represents the best pose
obtained. If we increase the noise level, the number of feasible points at the end of the first
perception cycle tends to increase, since to the noise level tends to make the disambiguation
capability of the method more difficult.
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Fig. 5. Convergence process along different iterations (50, 100, 150, 200, 250, 334) of the first
perception cycle.
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6.2. Test 2
The second test tries to determine the capability of the algorithm to identify all possible
feasible areas in case the robot is located in a non-distinguishable pose. The true robot

position is (x,y,0)" =(60,60,0)" and the variance considered for each measurement in the

simulation is of 3% of the measured signal, which is relatively noisy compared with real
laser scanners. The population set used in the test is of 100 elements. Figure 6 shows the
convergence population process along the iterations of the first perception cycle. It can be
noticed how the algorithm is able to concentrate the population in the most feasible areas (in
this case, in offices not localized in front of a laboratory door). The most interesting aspect of
this second test is that the algorithm does not eliminate any potential hypothesis.

After the first perception cycle the robot is moved upward (y direction) in the map: 2.5 cells
at each motion plus a Gaussian error. After the motion, the whole population set is moved
according to the odometry information and a new localization cycle is started, this time with
an amplification factor F=0.05. Figure 7 shows the successive population convergence
toward an only hypothesis.

In the test example of figure 7, the stopping condition changes following the next sequence:
314, 24,13, 11, 68 and 9. It can be noticed how the algorithm is heavier in the first perception
cycle since it needs to eliminate infeasible areas which require a high number of pose trails.
After that iteration, the stopping criteria is reached faster, requiring a number of iterations of
two orders of magnitude to converge. It can also be noticed that the number of iterations
increases when the robot goes out of the office and perceives the corridor. In that case, the
algorithm requires 68 iterations before reaching the stopping criteria. Once the robot
observes the corridor, it is able to converge to only one feasible pose area, since the
observations that let the algorithm disambiguate between the offices.

6.3. Test 3

The third test tries to determine the capability of the algorithm to identify all possible
feasible areas in case the robot is localized at the worst possible case. The worst case
happens when the robot is localized at a corner and observes the corner from a short
distance. In that case, it is a non-distinguishable pose and the number of possible feasible
poses exploits. The true robot’s position is (x,y,0)" =(10,70,135)", which corresponds to the

upper left corner of the hall localized at the left side of the test environment. The variance
considered for each measurement in the simulation is of 1% of the measured signal. Due to
the fact that the number of potential feasible poses is high, if a normal population is used
(we understand by normal population a population able to localize the vehicle in normal
situations), the algorithm fails because it does not have enough elements to manage the set
of potential hypotheses. In our experimental test, a minimum number of approximately
15-25 elements per potential pose is required. A population set of 1500 of elements has
been used to manage properly the high number of feasible hypotheses existent at the initial
cycle of the global localization. Figure 8 shows the high number of feasible poses existent at
the initial robot’s pose according to the perceived information. The number of feasible poses
at the end of the first perception cycle is of 54 . In this example, a population of is enough,
but at the end of the first cycle it has feasible poses. If we decrease the population, the
number of manageable poses decreases and the risk of incorrect convergence increases.
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Fig. 6. Convergence process along different iterations (50, 100, 150, 200, 250, 300, 314) of the
first perception cycle.
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Fig. 7. Convergence process along 6 successive perception-motion cycles where the robot
moves 2.5 cells upward after each perception cycle.
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After the first perception cycle, the robot is turned 10 degrees clockwise at each motion (plus
a random error added and unknown for the algorithm). After the motion, the whole
population set is moved according to the odometry information and a new localization cycle
is started. Figure 9 shows the successive population convergence towards an unique
hypothesis. After the initial perception cycle, the number of possible poses is pruned very
fast since new information about the environment is added to the algorithm.
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Fig. 8. Convergence process for the worst case pose ( 100, 200, 300, 400, 420) of the first

perception cycle.
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Fig. 9. Convergence process along 5 successive perception-motion cycles where the robot

turns 10° clockwise after each perception cycle.

From a practical point of view, the worse case situation is easy to alleviate by turning the vehicle
up to a pose with the maximum perception information. For this same example, if we start the

localization with an initial pose of (x,y,0)" =(10,70,135)" where the perceived area covered by

robot sensors is maximum, the problem disappears and a population of 100 elements is enough,

as can be noticed in figure 10.
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7. Accuracy results

To test the accuracy of the method for the initial localization, we have selected again a
distinguishable point (x,y,0)=(60,60,0) and we have increased the variance of the error in
sensor measurement. The variance considered in simulations is proportional to the
measured signal and is expressed as a fraction of the total measurement. This way, a value
of 0.01 indicates a variance of 1 % over the simulated value obtained for a given sensor. This
situation is harder than real conditions in laser scanners. The population used in simulation
is of 100 elements. For each case, 25 runs of the first perception cycle have been executed.
The results are shown in table 1, where the mean and variance of the absolute errors in x, y
and 0 are given. It also shows the average number of iterations required by the algorithm
until the stopping criteria is reached and the success ratio obtained for each noise level.

It can be notice that, for low noise variance levels (up to 5%), the accuracy of the algorithm is
below 0.15 cells in x and y dimensions and below 0.2° in orientation in all the cases. Since
the cell size used is 12 cm, that means an error below 1.8 cm in x and y dimensions and
below 0.2° in orientation at the end of the first perception cycle. For this signal error level,
the algorithm has successfully localized the true pose in all the runs and only one
hypothesis is maintained at the end of the first perception cycle. The stopping criteria is
reached in a relatively constant number of iterations for low noise levels, and it tends to
decrease slowly when the noise signal level increases.

The algorithm degrades slowly. For a 17.5% of variance in the noise level, the algorithm is
able to localize a position close to the true one in all simulations. We consider a localization
as successful if the initial pose estimated is in a 10 cells area around the true one. After that
level, the success ratio drop fast and, for a 25% of variance in the noise level, the success
ratio value is only of a 60%.

From this test, some conclusions can be drawn. The first one is that, if the place is
distinguishable, the algorithm is able to localize the initial pose with high accuracy, and only
when the noise increases considerably the algorithm starts to decrease its success ratio.

A second aspect to consider is the capability of the algorithm to maintain bounded the pose
estimation accuracy along a trajectory. A motion along the central corridor in the test
environment is simulated. For the simulations, a normal error with 2.5% of variance has
been adopted and the noise used for sensor observation is of 1% of variance. The real and
estimated trajectories are shown in figure 11 and the x, y, and 6 errors are shown in figure
12. The simulation results show that y error is very small and contained between [+0.05, -
0.05] cells ([+0.6, -0.6] cm). This is logical, since the corridor is relatively narrow and the y
position can be accurately estimated with the available information. For x variable, errors
are in a band between [+0.1, -0.1] cells ([+1.2 -1.2] cm) and they punctually reach values in
the band [+0.25, -0.25] cells. Regarding the orientation, 6 errors are in a band between [+0.1,
-0.1]° and they punctually reach values in the band [+0.25, -0.25]°. The error goes to -0.31° in

one occasion.
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o, lel. o, lel, o, lel, O o It Suc
0.01 0.051 0.052 0.021 0.017 0.046 0.044 295.8 1.0
0.02 0.112 | 0.091 0.031 0.031 0.082 0.058 342.6 1.0
0.03 0.140 | 0.125 0.040 0.036 0.081 0.081 362.5 1.0
0.04 0.134 | 0.133 0.067 0.047 0.120 0.071 365.7 1.0
0.05 0.139 | 0.098 0.132 0.147 0.180 0.188 298.5 1.0

0.075 0.276 | 0.248 0.212 0.266 0.408 0.588 316.2 1.0
0.10 0.416 | 0.383 0.301 0.277 | 0.485 0.525 298.6 1.0

0.125 0.374 | 0.308 0.529 0.415 0.835 0.765 246.7 1.0
0.15 1.255 | 2478 0.816 0.506 1.420 1.275 291.9 1.0

0.175 0.598 | 0.573 0.844 0.603 1.369 0.863 305.4 1.0
0.20 1.056 | 0.683 | 0.9611 | 0.705 2.186 1.641 2944 | 0.96

0.225 2242 | 3426 | 1.5681 | 1.365 2457 1.891 288.9 | 0.68

0.25 3.069 | 2575 | 1.5849 | 1.252 1.826 1.384 264.3 | 0.60

Table 1. Accuracy of the algorithm for different levels of noise, true location (60,60,0).

7.1. Computational cost
When analyzing the computational cost of the algorithm, two different situations have to be
considered:

* Initial localization cycle. In this situation, the algorithm explores the full state space
until the stopping condition is reached. The time used to reach the stopping condition
depends on the worst pose value considered as threshold in the stopping criteria. This time
for the test example is around 4.5 seconds (in a T8300 duo core processor at 2.4 GHz with
one core at execution). This time depends on the population set, the stopping criteria and
the sensed area. The sensor perception estimation is done by ray tracing on the environment
map and the estimation cost tends to grow with the size of the observed area since the
algorithm concentrates its exploration in feasible areas. At the end of this first perception
cycle, the feasible localization areas are determined.

* Re-localization cycle. Once the algorithm detects that the whole initial population
has converged, the population set is decreased to 30 elements. For this population set the
stopping condition is reached very fast and the computational cost decreases to 45
milliseconds per iteration.

These times allow the algorithm to be used on line except at the initial cycle.
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Fig. 12. Errors of the trajectory of Fig. 11 (in cells in x and y, and in degrees in 0).

8. Conclusion

One of the most interesting properties of the RDE (Rejection Differential Evolution) filter is
its efficiency in terms of convergence speed. The algorithm is able to exploit the perceptual
information to converge in the initial perception cycle if, from the initial pose, the robot
perceives any distinctive characteristic of its environment. A second characteristic is the low
number of pose solutions required to successfully localize the robot. For the test
environment under consideration, a population of 100-150 elements is enough, except in
non-informative situations where the number of hypotheses can grow up very fast and a
certain number of pose solutions is required to maintain a feasible area.

The number of population elements required to avoid the premature elimination of feasible
hypotheses has not been determined theoretically in the evolutive algorithms field, but in
our experimental tests, a number between 10 and 25 poses is required to maintain all
feasible hypothesis. In case of non informative situations where the sensors only let the
robot perceive a small part of the environment (for instance, when a robot is in a corner) the
potential number of hypotheses can rise very fast, which originates that the algorithm fails
when using a normal pose set size. This problem can be addressed in two ways: turning the
robot until a maximum environment area is perceived by the sensors or to detect the
uninformative situation and increase the pose set size. The first approach is easier and
requires less computational resources.

As in the majority of the population-based optimization methods, the algorithm robustness
increases with the population set size. If we consider the effect of the population size on the
accuracy of the algorithm, we need to consider the explored number of poses, since the total
number of explored poses is roughly speaking the product of the iteration number and the
population size. But in our test, the accuracy is maintained up to a certain number of
explored poses. This behavior differs completely from Monte Carlo method. As noticed by
several authors (Doucet, 1998; Liu & Chen, 1998), the basic Monte Carlo filter performs
poorly if the proposal distribution, which is used to generate samples, places not enough
samples in regions where the desired posterior probability distribution is large. This
problem has practical importance because of time limitations existing in on-line
applications.

The use of a rejection threshold and a stopping criteria adjusted to the statistical
characteristics of the objective function allows us to decrease considerably the population
size while maintaining the accuracy level of the method. In previous works, a minimum
population set of 250 - 300 elements were required, while in the RDE version a population
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of 100 has proved to be sufficient for the environment under consideration. At initial stages,
the algorithm has to evaluate the whole environment map and the initial number of samples
is related to the environment area and the area perceived with sensors. If the perceived area
is big, the possible number of hypotheses required for the environment can be reduced and,
consequently, the population required.

A significant characteristic of the method is the possibility of stopping the algorithm
convergence to avoid the premature elimination of feasible hypotheses until posterior
motion-perception cycles can add a significant statistical evidence to achieve the
convergence to one pose. This characteristic is critical when the initial robot’s pose is
localized in a repetitive place, such as an office, without singular characteristics and the
algorithm needs to detect the feasible hypotheses and to maintain them until distinctive
characteristics are perceived in posterior perception cycles.

Due to the stochastic nature of the algorithm search of the best robot’s pose estimate, the
algorithm is able to cope with a high level of sensor noise with low degradation of the
estimation results. The algorithm is easy to implement and the computational cost makes it
able to operate on line even in relatively big areas.
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1. Introduction

GNSS (Global Navigation Satellite System) system is the most famous system to realize local-
ization of mobile robots. It is able to provide a global position everywhere in the world.
Moreover, as it provides a global position, it is not necessary to place the robot in known or
structured environments (i.e. where several landmarks are available) to localize it unlike local
positioning systems. So, the GNSS system has became an unavoidable system to guide auto-
matically mobile robots.

Generally, GPS-RTK (Real Time Kinematic) sensors are used to localize and guide automat-
ically mobile robots in outdoor environment. This type of sensor has a precision about few
centimeters. However, they are expensive and difficult to use because they need differential
correction to improve their precision. Consequently, an other GPS receiver is necessary as a
reference. Moreover, their accurate measure is not always available because of GPS signal
losses or multipaths. In this case, their accuracy to within 2 centimeters which is their main
advantage, is not always available. So, it is impossible to use GPS-RTK sensors alone to have
an effective localization system in the context of autonomous guidance. It must be used with
other sensors to insure the localization when GPS signal is not available (Pein et al., 2006).
Some research makes an effective localization system for mobile robots using GPS-RTK with
other satellite sensors. However, the dissemination of automatic guidance system in outdoor
environment can use a low-cost sensors as natural GPS or GPS with a differential correction
(WAAS or EGNOS). This type of sensors are less expensive than GPS-RTK and easy to use,
because the operator has just to use and manage a single receiver. This last one has an accu-
racy between 1 and 3 meters with WAAS or EGNOS differential correction. To enhance their
precision, natural GPS data can be fused with other exteroceptive data as it is done in (Tessier
et al., 2006a). Generally, these localization systems are based on a Kalman Filter (KF) because
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autonomous guidance systems use a mono hypothesis localization estimation.

Nevertheless, there is an important assumption to use a KF, the errors of each sensor must
be zero-mean, Gaussian and white process. If this assumption is not true, the estimation of
position will be biased. Indeed, for every new observations of sensors data, the precision of
localization (i.e. size of confidence ellipsis built with the covariance matrix) increases but the
estimated position diverges from the true position (figure 1).

» Estimated position with associated uncertainty

y i

L AL BL C

" . . . X .
X Initial estimation X After one observation After two observations

X True position

Fig. 1. Localization results after the fusion of two observations coming from a colored process
(A attg;Batty; Catt withtg < t; < tp)

In this figure, the situation C shows the true position is out of estimated position (position
with its associated uncertainty). So, it becomes impossible to check the reliability of the
localization. Consequently, the estimated position becomes useless, the mobile robot doesn’t
know where it is truly and it is impossible to accurately guide the vehicle. This is critical
and dangerous situation which must be imperatively avoided. This critical situation appears
for the localization systems which use GNSS receiver because generally they don’t take care
of the GNSS error characteristics. So, we propose in this paper a method to improve GNSS
receiver precision and accuracy in the context of autonomous guidance.

In section II, we suggest an analysis of GNSS bias characterisation, one process to establish
a model of it, and a solution to detect disturbances in GNSS data. Then, in the section III,
we show how to improve easily a KF by inserting the prediction model and the condition.
We will see the result of this method showing the robustness of GNSS bias modeling and the
improvement of our localization system in the last section.

2. Characterisation of the GNSS error

The observations of GNSS data cause an unreliable estimated position. To better understand
the problem, we propose an analysis of GNSS data.

2.1 Data Analysis from a GNSS receiver

The GNSS systems are based on localization by triangulation. The satellites send a message
with the information (time and satellite ephemeris) allowing the receivers on the Earth calcu-
late their position. Unfortunately, the GNSS system is not perfect. Many measurement errors
cause a bad localization like satellite clock errors, ephemeris errors, atmospheric (ionosphere
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and troposphere) errors, multipath effects, receiver noise and resolution (for more information
see (Kaplan, 1996)). Table 1 summarizes these errors with their characteristics.

Error sources Precision Errors Characteristic
Satellites clock errors =+ 2 meters stable
Satellites ephemeris errors =+ 2.5 meters stable
Ionospheric effects =+ 5 meters stable
Tropospheric effects =+ 0.5 meters stable
Multipath effects + 1 meter unpredictable
Receiver noise and resolution | =+ 1 meter unpredictable

Table 1. GNSS Error Sources.

We see that most of error sources are stable process (i.e. they evolve slowly). If we compare
the low-cost GPS data with the true position coming from a GPS-RTK receiver (figure 2), we
see that the natural GPS error seems to be constant. If we observe the auto-correlation of GPS
longitude error between each iteration in static condition (figure 3), we realize this error is
very correlated between successive iterations (it is the same case for GPS latitude error). It
means the GPS error is a non white process. It is commonly named the GPS bias.

If we estimate the position with only the GNSS observations (position and associated covari-
ance given by GNSS receiver) thanks to a KF, we obtain very quickly an unreliable estimated
position (figure 4). It is always possible to increase the covariance of GNSS data. However,
although this solution increases the reliability of GNSS measurement, the real problem is the
GNSS error is a stochastical process. As soon as the position is calculated by KF thanks to
GNSS observations, the estimated uncertainty decreases too much and consequently, the sys-
tem becomes unreliable. So, it is necessary to know the value of GNSS error every time so as
to have a reliable estimated position.

2.2 GNSS error modelizing

We have seen the main problem of inefficiency of localization system based on a KF is the non
white GNSS error. So, we must find a model which describes this bias.

Some researcher proposed to find global criteria determining GNSS error (Nienaber &
Diekhans, 2006). These criteria consider only mean and standard deviation of the error in
static and dynamic condition during 24 hours. However, many applications (agricultural
tasks, automatic guidance, ...) run usually several hours and the characteristics (means and
variance) of GNSS error are not the same for 24 hours. Table 2 represents the mean and stan-
dard deviation of data for three different moments. So, it is impossible to determine a reliable
model with only mean and variance of GNSS error.

Database Longitude (m) | Latitude (m)
mean | RMS | mean | RMS
Database 1 (2 hours) | 1.05 1.27 0.24 1.81
Database 2 (2 hours) | 2.72 1.31 -1.62 | 1.24
Database 3 (2 hours) | 1.46 2.03 -0.70 | 1.26

Table 2. Means and Variances of data at three different moments.

Another solution is to estimate the GNSS error by inserting it in the state vector of KF as it is
described in (Perera et al., 2006). A method to determine bias sensor online is proposed. The
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Fig. 2. Example of GPS data coming from low-cost GPS (blue) and RTK-GPS (red)

error is determined thanks to an exteroceptive sensor. We propose to improve this solution
inserting a more accurate prediction model for GNSS error.

We make the assumption that the GNSS data is composed by position (x,y), an stochastical
process ((bx,by) the associated GNSS bias) and a zero-mean, white, Gaussian noise (€x,€y) like
(1). So, the aim is to look for a model which is able to predict the GNSS bias. This model must
be determined to have a residual error which is zero-mean, white, Gaussian process. Then,
this bias prediction model will be inserted in the KF to determine it and the position in the
same time (see section III). The observation error of KF becomes zero-mean, white, Gaussian
and doesn’t drift the localization.

pange = (3) + (1) () "

We have seen GNSS bias is a stochastical model. To answer the problematic, we choose to
use an AutoRegressive process described in (Laneurit et al., 2006) by Laneurit. Indeed, the AR
process is a filter which has a zero-mean, white, Gaussian process in input and the stochastical
process to determine in output. It is often used for a vocal identification like in (Kotnik &
Kaci¢, 2007). It is formulated in Z-transform by (2).

Y(z) 1
€(z) T+az 4wz 2+, +apz?
with Y the stochastical signal, € the zero-mean, white, Gaussian process, « and p respectively

the parameters and the order of AR process. In our case, the expression (2) becomes (3) in
discrete domain.

)]

Far =
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with by the GNSS bias at kt" iteration. Now, it must find the parameters and the order of the
AR process. This determination is made thanks to preliminary database of GNSS receiver.
To always have a stationary model, the AR parameters are calculated by Burg method (Burg,
1975). Now, for the choice of AR process order, we take the order at the point where the
power of € stops decreasing significantly. The figure 5 represents the power of residual error
between the real and estimated GNSS bias value for different AR order. Indeed, if AR process
order is too reduced, the process won't represent the intrinsic properties due to GNSS signal.
However, if AR process order is too big, the process will represent the properties due to signal
noise. Other criteria exist as AIC (Akaike Information Criteria) and BIC (Bayesian Information
Criteria) (Akaike, 1973) and (Schwarz, n.d.).
We have established the prediction model of GNSS bias thanks to AR process. But, the losses
of one satellite may cause a disruption of GNSS observation. The figure 6 shows the GNSS
observations change abruptly (about 50 centimeters) at time t=6160s. Another important ex-
ample of data disturbances is the multipath effects. When the receiver is close to an obstacle,
the GNSS signal may reflect on this obstacle before to be received. This quick evolution causes
disturbances on the prediction model. Consequently, to always have a GNSS localization reli-
able, these phenomena must be detected so as to reset the GNSS bias estimation.
The proposed idea to solve this problem is to compare the predicted GNSS data with the
observation thanks to the Mahalanobis distance in (Laneurit, 2006). Generally, this distance is
used to detect spurious data like in (Wu & Zhang, 2006). Contrary to Euclidean distance, it
takes care of data correlation. It is formalized by (4).

d= \/(Zgnss,k - Zk)T~(Rk + Rgn55)71~(zgnss,k - Zk) (4)
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Fig. 4. Longitude estimation by KF with only GNSS observations with variance given by
GNSS receiver (at t=5, the estimated position becomes false)

with Zgss x the GNSS observation in time k, the matrix Rgpss is the covariance matrix of the
GNSS observation, Z and R are respectively the predicted value of GNSS data and its associ-
ated covariance. If the Mahalanobis distance between predicted and observed GNSS data is
bigger than three, the GNSS localization system must be reset. Now, we are able to predict
the stochastical GNSS error so as to determine it with the position thanks to KF. That leads
to have only an observation error which can be considered like zero-mean, white, Gaussian
noise. We have all information to create an localization system reliable using GNSS system.

3. Integration of GNSS error model in KF

In the previous part, we have established the prediction model of GNSS bias for latitude and
longitude. Now, we will see how it is inserted in the KF. For GNSS localization, the state
vector of KF is X defined by (5).

T
Xk = (xk,yk, bx,k/ ooy bx,kfprlf by,k/ ooy by,kfpyfl) (5)
with xi, y, the estimation of Cartesian coordinates, by, by x bias of respectively longitude

and latitude at k" iteration and py and py the prediction model order of respectively for the
longitude and the latitude model. The choice of AR process order for the prediction bias
model is very important because it determines the size of state vector of KF (in this case,
Size(X) = 2+ px + py). If the size of state vector is too big, the computing time will be too
long for real-time applications and the automatic guidance can lost its stability.

The Kalman filter is composed in three parts : initialization, Prediction level and Correction
Level. We will describe each part for the bias estimation and add a new part for the detection
of disruption GNSS data.
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Fig. 5. Power of error predicted model e(p) for longitude. The best order is 8.

Initialization : Generally, the GNSS bias and the position are unknown. In that case, it is
impossible to determine them. Indeed, the GNSS observation represents the sum of them
and it is impossible with only GNSS data to separate them. We have an observation problem.
We are obliged to know one of them to begin the estimation. To show the precision and the
reliability of our method, we assume to begin the estimation with the known position (5cm
precision) and the bias with a precision of 10m. In our localization systems, we use data
coming from exteroceptive sensors. Then, the system can localize it without this information
until the new reset.

Prediction Level : In the previous section, we have seen equation of bias evolution (3). This
equation is the prediction equation of GNSS bias for the KE. So, the state evolution matrix A is
composed of three submatrices : Ay y for Cartesian position; A; and Ay, for respectively the
longitude and the latitude GNSS bias. The AR parameters are easily inserted in the submatrix
Ay, for example like (6).

7“1 PR e 7“}7,\'
Ay 0 0 1 ... 0 0
A= 0 Abx 0 with Abx = . . . . (6)
0 0 Ahu ' . K : :

The variance of prediction equation € is inserted in the prediction covariance matrix Q.

Detection of GNSS data disturbances : In the previous part, we have established a condition
to detect disturbances of GNSS data. This condition is based on the Mahalanobis distance.
This detection must be before the correction level to not degrade the estimation and after the
prediction level of KF to allow the comparison between predicted and observed GNSS data.
If the condition is respected, the estimation continues else the estimation must be initialized.
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Fig. 6. Constellation influence on GNSS data. The situation A is the satellite constellation
at t=6159s and the situation B at t=6160s. Between the two situations, the pointed satellite
disappears.

Correction Level : Now, the observed data is not only composed by the position but it is the
sum of the position and the associated bias. We have seen in the initialization, that causes
problem of observability. But, we make assumption the position is known with other sensor
in the initialization. The state observation matrix for the GNSS Hgpss is (7).

?)

. 10100...0
Zgnss,k = Hgnss x X with Hgnss = ( )

01010...0

To determine the power of their noise, we have made assumption that position data and bias
are signal which are only composed of low-frequency component so we have filtered data
signal by a high-pass filter and we have estimated the power of residual signal is equal to
those of observation error. This power is integrated in observation covariance matrix Rgpss-
We see we have an observability problem. To solve this problem, we must know at a moment
the position or the bias. In the initialization of localization systems, we know the true position
thanks to GPS-RTK. It is possible to determine position by exteroceptive sensors by example.
To resume, we obtain the figure 7.

4. Results

In this part, we present results of localization using GNSS with bias correction as we propose
in section III. First, we will see the localization results with only GNSS receiver. Then, we
will present our localization system for autonomous guidance and the improvement of this
method.
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Fig. 7. Principle of Kalman filter with the detection of GNSS disturbances

1

Localization with GNSS alone : This test is done with a low-cost GPS receiver Holux GR213.
We have established the prediction model in off-line before the test. Then, we have made
the test in static condition during two hours for different orders of AR process without the
condition to detect GNSS disturbances. The purpose of this test is to show the improvement
of precision and the reliability of the method for a long period. Table 3 summarizes the results.
In this table, we see that the choice of AR order is not an important parameter as it is
shown by the little difference between each model. We can use the AR1 process which is
the easiest model and the best for computing time. The figure 8 represents the estimated
longitude with our method. We see the estimation is reliable for a long time in spite of
GNSS disturbances. This result shows the robustness of prediction model. So for the
second test, based on the evaluation of the quality of a localization process using a low cost
GNSS receiver, we will use the AR1 process to establish a model of the GNSS stochastical error.

Localization for autonomous guidance : We have inserted the bias modeling in our localiza-
tion system used to automatically guide our small mobile robot AROCO (see figurell). The
sensors on-board the vehicle, amongst others, include a fiber-optic gyroscope (FOG) [KVH
DSP 3000], rear and front wheel encoders, a low-cost GPS (5m accuracy), a SICK PLS200 laser
measurement system and a CCD camera (SONY VL500). The SICK PLS200 provides range
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Bias model Error for longitude (m) | Error for latitude (m)
mean | max | RMS | mean | max | RMS

None (variance of GNSS | 1.31 3.33 0.53 -0.91 1.42 0.34

error given by the re-

ceiver)

AR 1 Process -0.015 | 0.040 | 0.009 | -0.010 | 0.045 | 0.011

AR 2 Process -0.009 | 0.249 | 0.066 | -0.009 | 0.29 | 0.078

AR 3 Process -0.022 | 0.197 | 0.081 | -0.147 | 0.356 | 0.094

AR 4 Process 0.007 | 0.217 | 0.098 | -0.194 | 0.424 | 0.122

AR 5 Process 0.069 | 0.310 | 0.118 | -0.233 | 0.488 | 0.143

Table 3. Error for Estimated position in static condition.
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Fig. 8. Longitude estimation by KF taking care of GNSS stochastical error

measurements to object ahead at 0.5° intervals over a span of 180° in one scan. The scanned
data arrive every 80ms. The SONY VL500 gives 7.5 640x480 YUV422 images per second. Fi-
nally, the robot is equipped with two on-board computer systems. The first running Linux
RTAI is a low level system responsible for driving engine. The second running Linux is a high
level system where our localization algorithm runs and sends control commands to the first
PC.

Our localization system (developed by Tessier (Tessier et al., 2006a)) fuses local information
with cheap GPS data (Tessier et al., 2006b). It estimates the vehicle’s state (absolute position
and orientation with their incertitude and their reliability) in a world reference frame repre-
sented by dynamic GIS (Geographic Information System). Local information given by land-
marks detection allows the system to improve the position of localization given by natural
GPS. Thanks to the use of proprioceptive and local information, an automatic guidance sys-
tem can estimate the reliability of its localization (Tessier, Berducat, Chapuis & Bonnet, 2007).
Before the correction of the GNSS bias, the only way to use natural GPS in our guidance sys-
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Camera

Fig. 9. Mobile robot used in experiments.

tem with an admissible level of reliability was to increase the GPS given by receiver. With
our correction of GPS bias, the precision and the reliability of natural GPS are enough high to
increase the performance of the guidance process.

Numerous real experimentations were made in outdoor environment to measure system ca-
pabilities and to attest the efficiency of our approach. We test it on our vehicle along the
trajectory presented in figure (figure 11). Due to the presence of trees along the trajectory,
we have satellite losses and lots of changes of satellite constellation.Thus, the vehicle moved
automatically in wooded environments, in clear area, close to buildings, in hilly ground and
under difficult climatic conditions (i.e. sunny weather, hailstorm, ...). The length of trajectory
is about 400 meters and the speed of the vehicle is maintained at approximatively 3m/s. The
purpose of GPS bias estimation is to improve precision and particularly the reliability of our
localization system. In our experimentation, we observe the estimated position of vehicle is
more reliable than the past experimentation (the detection of landmarks is always successful
contrary to the past experimentation). However, the localization system must be sometimes
initialised because of GNSS disturbances and must use exteroceptive sensor (every 1 minute
approximatively). If the landmarks is not available for a long time, the localization system
doesn’t certify its reliability, however the drift of estimated position due to GNSS disturbances
is very small in comparison at the past.

o For this experiment, the vehicle succeeds in tracking the pre-defined trajectory with a good
accuracy. However to check the repetitiveness and the sturdiness of the proposed approach,
the vehicle reproduces faithfully the trajectory during 10 laps without stopping. Seven check-
points have been placed on the path to measure the positioning errors. Those errors are pre-
sented in Table 4. They corresponds to the real lateral deviation of the vehicle with the refer-
ence path during the autonomous driving (i.e. localization and guidance). As we can notice,
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A B C D E F G

mean (cm) | -1.7 | -02 | 05 | -02 | 0 | -0.7 | -0.1
std (cm) 47 | 32 [ 37 ] 31 |39 14 | 22
max (cm) | 9.2 6 73| 45 6 36 | 52

Table 4. Real lateral deviation during path following for 10 laps.

the system is very accurate, the max error is below 10cm. The use of a multi-sensor system
with an active search approach permits to locate the vehicle accurately with real-time con-
straints.

e Even in presence of disturbances, the system behaves correctly. The day of this experimen-
tation, a strong downpour of hail fell. This disturbed the landmarks detection. Indeed, some
hailstones are detected by the range-finder (figure 10). Thanks to the focusing process, this
problem is attenuated and permits to identify some landmarks. Nevertheless, the system
failed in detecting other landmarks because they are masked by the hailstones. Consequently,
the reliability decreases and the vehicle speed slackens off. However, the system searches
more easily recognizable landmarks (lane side with the camera, wall with the range-finder)
to strengthen the estimation (i.e. increase the reliability) and boost the speed. At the end, the
SLAG approach is robust.
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Fig. 10. (left) A strong hailstorm during our experimentation.
(right) Range-finder measurement with three trees and their region of interest.

(a) The vehicle Aroco (b) Trajectory for the test

Fig. 11. Trajectory for the test with vehicle Aroco
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5. Conclusion

In this chapter, we have presented a method to improve localization systems based to data
association with GNSS receiver. This method increases the precision and the reliability of
localization based on an Kalman filter. It consists to take care the characteristics of GNSS
error. This error is an unpredictive stochastic process and it drifts the estimated position
which is calculated by a Kalman Filter. The developed idea is to establish a prediction model
of GNSS bias and to insert it in the localization system so as to modify the observation error
from low-cost GNSS receiver to zero-mean, white, Gaussian noise. We have seen a possible
model of GNSS error is Autoregressive process. We have determined its parameters and its
order. Then, we have shown how this model is inserted in the Kalman Filter. However, the
bias estimation needs to have sometimes absolute data (position of landmark of the envi-
ronment) coming from exteroceptive sensors. To do that we propose to use a multi-sensor
system (Tessier, Debain, Chapuis & Chausse, 2007) in which landmarks detection is given
by autonomous entities called “perceptive agents”. The main weakness of this multi-agent
fusion system is about the focusing process and the measure of the accuracy of the estimated
vehicle’s pose. Thanks to numerous experiments we noticed a strong robustness and a good
accuracy of the guidance process allowing using it at high speed even in an environment
with lots of elements like trees or buildings.

6. References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle,
Proceeding of the 2" International Symposium on Information Theory, Budapest, pp. 267
281.

Burg, J. (1975). Maximun entropy spectral analysis, Departement de Geophysiques, Universite de
Stanford, Stanford, Californie, USA .

Kaplan, E. (1996). Understanding GPS: Principles and Applications, Artech House.

Kotnik, B. & Kaci¢, Z. (2007). A noise robust feature extraction algorithm using joint wavelet
packet subband decomposition and ar modeling of speech signals, Signal Process
Vol.87: 1202-1223.

Laneurit, ]. (2006). Perception multisensorielle pour la localisation de robot mobile en envi-
ronnement extérieur, Phd thesis, Universite Blaise Pascal - Clermont-Ferrand, France .

Laneurit, J., Chapuis, R. & Chausse, E. (2006). Accurate vehicle positioning on a numerical
map, The International Journal of Control Automation and Systems Vol.3(No.1): 15-31.

Nienaber, G. & Diekhans, N. (2006). Accuracy analysis of gps-based autoguidance systems,
VDI BERICHTE Vol. 1958: 329.

Pein, C., Réhrich, D., Skjodt, P. & McClure, J. (2006). Combining gps and camera steering (Ips)
systems: in field applications and experiences, Proceeding of AgEng Bonn 2006, 64th
VDI-MEG International Conference Agricultural Engineering, Bonn, p. 1958.

Perera, L. D. L., Wijesoma, W. S. & Adams, M. D. (2006). The estimation theoretic sensor
bias correction problem in map aided localization, The International Journal of Robotics
Research Vol.25(No.7): 645-667.

Schwarz, G. (n.d.). Estimating the dimension of a model, The Annals of Statistics
Vol.6(No.2): 461-464.



132 Robot Localization and Map Building

Tessier, C., Berducat, M., Chapuis, R. & Bonnet, S. (2007). Characterization of feature detection
algorithms for a reliable vehicle localization, Proceeding of 6th IFAC Symposium on
Intelligent Autonomous Vehicles, Toulouse, France.

Tessier, C., Debain, C., Chapuis, R. & Chausse, F. (2006a). Active perception strategy for vehi-
cle localization and guidance, Proceeding of the 2!" IEEE International IEEE Conference
on Cybernetics & Intelligent Systems and Robotics, Automation & Mechatronics, Bangkok,
Thailand, pp. 244-249.

Tessier, C., Debain, C., Chapuis, R. & Chausse, F. (2006b). Fusion of active detections for
outdoors vehicle guidance, Proceeding of the 9 International IEEE Conference on Infor-
mation Fusion, Florence, Italie, pp. 1914-1921.

Tessier, C., Debain, C., Chapuis, R. & Chausse, F. (2007). A cognitive perception system for au-
tonomous vehicles, Proceeding of COGIS’07 COGnitive systems with Interactive Sensors,
Standford University California, USA.

Wu, N. & Zhang, J. (2006). Factor-analysis based anomaly detection and clustering, Decision
Support Systems Vol.42: 375-389.



Evaluation of aligning methods for
landmark-based maps in visual SLAM

Monica Ballesta, Oscar Reinoso, Arturo Gil,
Luis Paya and Miguel Julia

Miguel Hernandez University of Elche

Spain

1. Introduction

Building maps is one of the most fundamental tasks for an autonomous robot. This robot
should be able to construct a map of the environment and, at the same time, localize itself in
it. This problem, known as Simultaneous Localization and Mapping (SLAM), has received
great interest in the last years (Leonard & Durrant-Whyte, 1991).

In our particular case, the robots build their maps using the FastSLAM algorithm
(Montemerlo et al., 2002). The main idea of the FastSLAM algorithm is to separate the two
fundamental aspects of the SLAM problem: the estimate of the robot’s pose and the estimate
of the map. This algorithm uses a particle set that represents the uncertainty of the robot’s
pose (localization problem) meanwhile each particle has its own associated map (several
individual estimates of the landmarks conditioned to the robot’s path). The solution to the
SLAM problem is performed by means of a sampling and particle generation process, in
which the particles whose current observations do not fit with their associated map are
eliminated. The FastSLAM algorithm has proved to be robust to false data association and it
is able to represent models of non-linear movements in a reliable way (Howard, 2006).

In relation to the sensors used to build the maps, many authors use range sensors such as
sonar (Kwak et al., 2008; Wijk & Christensen, 2000) or laser (Thrun, 2004; Triebel & Burgard,
2005). Nevertheless, there is an increasing interest on using cameras as sensors. This
approach is denoted as visual SLAM (Valls Miro et al., 2006). These devices obtain a higher
amount of information from the environment and they are less expensive than laser as well.
Furthermore, 3D information can be obtained when using stereo cameras. These are the
sensors used in this work.

Most visual SLAM approaches are landmark-based. These landmarks consist of a set of
distinctive points which are referred to a global reference system. The main advantage of
landmark-based maps is the compactness of their representation. By contrast, this kind of
maps requires the existence of structures or objects that are distinguishable enough.

The map building problem can be solved by a single robot (Moutalier & Chatila, 1989), but it
will be more efficiently managed if there is a team of robots, which collaborates in the
construction of the map (Howard, 2006). In this case, the space can be divided so that the
distances traversed are shorter and thus the odometry errors will be smaller. In this work,
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we focus on this approach. In this context, two main proposals can be found in the
literature. On the one hand, there are some solutions in which the estimate of the maps and
trajectories is performed jointly (Fenwick et al., 2002; Gil et al., 2007; Thrun & Liu, 2004). In
this case, there is a unique map, which is simultaneous built from the observations of the
robots. In this way, the robots have a global notion of the unexplored areas so that the
cooperative exploration can be improved. Moreover, in a feature-based SLAM, a landmark
can be updated by different robots in such a way that the robots do not need to revisit a
previously explored area in order to close the loop and reduce its uncertainty. However, the
maintenance of this global map can be computationally expensive and the initial position of
the robots should be known, which may not be possible in practice.

On the other hand, some approaches consider the case in which each robot builds a local
map independently (Stewart et al., 2003; Zhou & Roumeliotis, 2006). Then, at some point
the robots may decide to fuse their maps into a global one. In (Stewart et al., 2003), there is
some point where the robots arrange to meet in. At that point, the robots can compute their
relative positions and fuse their maps. One of the main advantages of using independent
local maps, as explained in (Williams, 2001), is that the data association problem is
improved. First, new observations should be only matched with a reduced number of
landmarks in the map. Moreover, when these landmarks are fused into a global map, a more
robust data association can be performed between the local maps. However, one of the
drawbacks of this approach is dealing with the uncertainty of the local maps built by
different robots when merging them.

The map fusion problem can be divided into two subproblems: the map alignment and the
fusion of the data. The first stage consists in computing the transformation between the local
maps, which have different reference systems. Next, after expressing all the landmarks in
the same reference system, the data can be fused into a global map. In this work, we focus
on the alignment problem in a multirobot visual SLAM context.

2. Map Building

The experiments have been carried out with Pioneer-P3AT robots, provided with a laser
sensor and STH-MDCS2 stereo head from Videre Design. The stereo cameras have been
previously calibrated and obtain 3D information from the environment. The maps thus
built, are made of visual landmarks. These visual landmarks consist of the 3D position of the
distinctive points extracted by the Harris Corner detector (Harris & Stephens, 1998). These
points have an associated covariance matrix representing the uncertainty in the estimate of
the landmarks. Furthermore these points are characterized by the U-SURF descriptor (Bay et
al., 2006). The selection of the Harris Corner detector combined with the U-SURF descriptor
is the result of a previous work, in which the aim was to find a suitable feature extractor for
visual SLAM (Ballesta et al., 2007; Martinez Mozos et al., 2007; Gil et al., 2009).

The robots start at different positions and perform different trajectories in a 2D plane,
sharing a common space in a typical office building. The maps are built with the FastSLAM
algorithm using exclusively visual information. Laser readings are used as ground truth.
The number of particles selected for the FastSLAM algorithm is M=200.

The alignment experiments have been initially carried out using two maps from two
different robots (Section 5.1 and 5.2). Then, four different maps were used for the multi-
robot alignment experiments (Section 5.2.1). The trajectories of the robots can be seen in
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Figure 1. The laser measurements have been used as ground truth in order to estimate the
accuracy of the results obtained.
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Fig. 1. Trajectories performed by four Pioneer P3AT robots and a 2D view of the global map.
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3. Map alignment

The main objective of this work is to study the alignment stage in a multi-robot visual SLAM
context. At the beginning, the robots start performing their navigation tasks independently,
and build local maps. Given two of these feature maps, computing the alignment means
computing the transformation, if existent, between those maps. In this way the landmarks
belonging to different maps are expressed into the same reference system. Initially, before
the alignment is performed, the local map of each robot is referred to its local reference
system which is located at the starting point of the robot.

In order to compute the transformation between local maps, some approaches try to
compute the relative poses of the robots. In this sense, the easiest case can be seen in (Thrun,
2001), where the relative pose of the robots is suppose to be known. A more challenging
approach is presented in (Konolige et al., 2003; Zhou & Roumeliotis, 2006). In these cases,
the robots, being in communication range, agree to meet at some point. If the meeting
succeed, then the robots share information and compute their relative poses. Other
approaches present feature-based techniques in order to align maps (Se et al., 2005; Thrun &
Liu, 2004). The basis of these techniques is to find matches between the landmarks of the
local maps and then to obtain the transformation between them. This paper focuses on the
last approach.

In our case, although the maps are 3D, the alignment is performed in 2D. This is due to the
fact that the robots” movements are performed in a 2D plane. The result of the alignment is a
translation in x and y (tx and ty) and a rotation 6. This can be expressed as a transformation
matrix T:
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Given two maps m and m’, T transforms the reference system of m’ into the reference
system of m.

In order to select an adequate method to align this kind of maps, we have performed a
comparative evaluation of a set of aligning methods (Section 4). All these methods try to
establish correspondences between the local maps by means of the descriptor similarity.
Furthermore, we have divided this study into to stages: first with simulated data (Section
5.1) and then with real data captured by the robots (Section 5.2). These experiments are
performed between pairs of maps. However, we have additionally considered the multi-
robot case, in which the number of robots is higher than 2. In this case, the alignment should
be consistent, not only between pair of maps but also globally. This is explained in detail in
the next section (Section 3.1).

3.1 Multi-robot alignment

This section tackles the problem in which there are n robots (n>2) whose maps should be
aligned. In this case, the alignment should be consistent not only between pairs of maps but
also globally. In order to deal with this situation, some constraints should be established (Se
et al., 2005).

First, given n maps (n>2) and having each pair of them an overlapping part, the following
constraint should be satisfied in the ideal case:

Ty Taw.. Ta=1 )

where I is a 3X3 identity matrix. Each T; is the transformation matrix between map; and
mapj+1 and corresponds to the matrix in Equation 1. The particular case of T, refers to the
transformation matrix between map, and map;. The equation 2 leads to three expressions
that should be minimized:

El. sin(0:+...+ 0y)

E2. tq + to COS(91) + tyzsil’l(el) + tX3COS(61+92) + ty3sin(61+62) + ...+t COS(61+...+6n_1) +
tynsin(61+ ... +8n.1)

E2. ty1 + ta Sin(e1) + ‘L‘yzCOS(e1) - txgsin(61+62) + ty3COS(e1+ez) + ... - twn sin(61+...+6n.1) +
tyncos(01+...+0n1)

Additionally, given a set of corresponding landmarks between map; and mapi+1, and having
been aligned the landmarks of mapi+1 (Lj) into mapi’s coordinate system with the
transformation matrix T; (see Equation 1), the following expression should be minimized:

Lajimii)-Lifmao) ®)
where m(k) is the total number of correspondences between the k-pair of maps (k€{1n}).

The number of equations that emerge from Equation 3 is 2m(1)+2m(2)+...+2m(n). For
instance, if we have m(l) common landmarks between map; and map, and the
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transformation matrix between them is Ty, then for each common landmark we should
minimize the following set of expressions:

Ed. x2cos(01)+y2sin(01)+tx1-x1 with & € {4,X+4}

EN. y2cos(01)-x2sin(0;)+ty1l-yl with A € {X+5,3X+5}

where X=m(1)+m(2)+...+m(n)

So far, we have a non-linear system of S = 3 + 2m(1) +...+ 2m(n) constraints that we should
minimize. In order to obtain the aligning parameters that minimize the previous S
constraints, we used the fsolve MATLAB function. This iterative algorithm uses a subspace
trust-region method which is based on the interior-reflective Newton method described in
(Coleman, 1994; Coleman, 1996). The input for this algorithm is an initial estimate of the
aligning parameters. This is obtained by the RANSAC algorithm of Sec. 4.1 between each
pair of maps, i.e, map;-map;, map;-maps, maps-maps and maps-mapi. This will be the
starting point of the results obtained with fsolve function to find a final solution.

4. Aligning methods

4.1 RANSAC (Random Sample Consensus)

This algorithm has been already aplied to the map alignment problem in (Se et al., 2005).
The algorithm is performed as follows.

(a) In the first step, a list of possible corresponedences is obtained. The matching between
landmarks of both maps in done based on the Euclidean distance between their associated
descriptors d;. This distance should be the minimum and below a threshold thy = 0.7. As a
result of this first step, we obtain a list of matches consisting of the landmarks of one of the
maps and their correspondences in the other map, i.e., m and m’.

(b) In a second step, two pair of correspondences ([(x;y;zi),(xi,yi’,zi")]) are selected at random
from the previous list. These pairs should satisfy the following geometric constraint (Se et
al., 2005):

| (A2 + B)-(C2+D?) | <thy @)
where A = (x/-xj’), B = (yi’-yj’), C = (xi-xj) and D = (yi-yj) . We have set the threshold th; = 0.8

m. The two pairs of correspondences are used to compute the alignment parameters (t,, t,, 0)
with the following equations:

tx= x; - xi’cos0 - y;” sind ®)
t=yi - yi'cosb + x;” sind (6)
0 = arctan((BC-AD)/(AC+BD)) 7)

(c) The third step consist in looking for correspondences that support the solution obtained
(tv t, 0). Concretely, we transform the landmarks of the second map using the alignment
obtained, so that it is referred to the same references system as the first map. Then, for each
landmark of the transformed map, we find the closest landmark of the first map in terms of
the Euclidean distance between their positions. The pairing is done if this distance is the
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minimum and is below the threshold th,=0.4m. As a result, we will have a set of matches
that support the solution of the alignment.

(d) Finally, steps (c) and (d) are repeated M=70 times. The final solution will be that one
with the highest number of supports.

In this algorithm, we have defined three different thresholds: tho=0.7 for the selection of the
initial correspondences, th;=0.8 for the geometric constraint of Equation 4 and th,=0.4m for
selecting supports. Furthermore, a parameter min =20 establishes the minimum number of
supports in order to validae a solution and M=70 is the number of times that steps (c) and
(d) are repeated. These are considered as internal parameters of the algorithm and their
values have been experimentally selected.

4.2 SVD (Singular Value Decomposition)

One of the applications of the Singular Value Decomposition (SVD) is the registration of 3D
point sets (Arun et al., 1987; Rieger, 1987). The registration consists in obtaining a common
reference frame by estimating the transformations between the datasets. In this work the
SVD has been applied for the computation of the alignment between two maps. We first
compute a list of correspondences. In order to construct this list (m, m’), we impose two
different constraints. The first one is tested by performing the first step of the RANSAC
algorithm (Section 4.1). In addition, the geometric constraint of Equation 4 is evaluated.
Given this list of possible correspondences, our aim is to minimize the following expression:

| | Tm'-m| | ®)

where m are the landmarks of one of the maps and m’ their correspondences in the other
map. On the other hand, T is the transformation matrix between both coordinate systems
(Equation 1). T is computed as shown in Algorithm 1 of this section.

Algorithm 1. Computation of T, given m and m’

1: [u,d,v] = svd(m’)

2: z=uTm

3: sv=diag(d)

4: z;=z(1:n) {n is the Lumber of eigenvalues (not equal to 0) in sv}
5:w=z;./sv

6: T=(v*w)T

4.3 ICP (Iterated Closest Point)

The Iterative Closest Point (ICP) technique was introduced in (Besl & McKay, 1992; Zhang,
1992) and applied to the task of point registration. The ICP algorithm consists of two steps
that are iterated:

(a) Compute correspondences (m, m’). Given an initial estimate Ty, a set of correspondences
(m,m’) is computed, so that it supports the initial parameters To. Ty is the transformation
matrix between both maps and is computed with Equations 5, 6 and 7.

(b) Update transformation T. The previous set of correspondences is used to update the
transformation T. The new Tyx+1 will minimize the expression: | |Tyx+x m’-m| |, which is
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analogous to the expression (5). For this reason, we have solved this step with the SVD
algorithm (Algorithm 1).

The algorithm stops when the set of correspondences does not change in the first step, and
therefore Ty+1 is equal to T in the second step.

This technique needs an accurate initial estimation of the transformation parameters so that
it converges properly. For that reason, in order to obtain an appropriate initial estimate we
perform the two first steps in RANSAC algorithm (Section 4.1). The same threshold values
are used.

4.4 ImpICP (Improved Iterated Closest Point)

The improved ICP (ImpICP) method is a modification of the ICP algorithm presented in
Section 4.3, which has been implemented ad hoc. This new version is motivated by the
importance of obtaining a precise initial estimation of the transformation parameter To. The
accuracy of the results obtained is highly dependent on the goodness of this initial estimate.
For that reason, in this new version of the ICP algorithm, we have increased the probability
of obtaining a desirable result. Particularly, we obtain three different initial estimates instead
of only one. This is performed by selecting three different pairs of correspondences each
case in the second step of the RANSAC algorithm (Section 4.1), leading to three initial
estimates. For each initial estimate, the algorithm runs as in Section 4.3. Finally, the solution
selected is the transformation that is supported by a highest number of correspondences.

5. Experiments

The aim of this work is to find a suitable aligning method so that two or more maps can be
expressed in the same reference system. This method should be appropriate for the kind of
maps that our robots build, that is to say, landmark-based maps. With this idea, we have
selected a set of algorithms that satisfy this requirement (See Section 4).

In order to perform these experiments, we have organised the work in two stages: first, a
comparison of the aligning methods selected, using simulated data. In this case, we vary the
amount of noise of the input data and observe the results by aligning pairs of maps. Secondly,
we repeated the same experiments using real data captured by the robots. Furthermore, we
include an experiment showing the performance of the multi-alignment case explained in
Section 3.1, in which the number of maps we want to align is higher than 2.

5.1 Simulated Data

In order to perform the comparison between the aligning methods, we have built two 3D
feature maps as can be seen in Figure 2. The coordinates of the landmarks have been
simulated so that the alignment is evaluated with independence of the uncertainty in the
estimate of the landmarks. Then, these points are described by U-SURF, extracted from real
images which are typical scenarios of our laboratory. map; from Figure 2 has 250 points
(stars), whereas map?2 (circles) has a common area with map;, whose size is variable, and a
non-overlapping part which has 88 points. During the experimental performance, we test
with different sizes of the overlapping area between these two maps (pentagons), so that we
can observe the performance of the aligning methods vs. different levels of coincidence
between the maps.
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maps; is 0.35 rads rotated and tx = 5m, ty = 10 m translated from map1. The size of the maps
is 30X30 metres. Coincident points between the maps have initially the same descriptors.
However, a Gaussian noise has been added to map2 so that the data are closer to reality. As
a consequence, map2 has noise with oL in the localization of the points (coordinates’
estimate) and noise with oD in the descriptors. The magnitude of oL and oD has been
chosen experimentally.
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Fig. 2. 2D view of map1 and map2 (simulated data).

Figures 3, 4, 5 and 6 represent the results obtained with a noise of oL and oD equal to 0.20,
whereas in Figures 7, 8, 9 and 10 these values are 0.50. In the X-axis, the number of points
that both maps have in common is represented. This value varies from 0 to 160. The first
value shows the case in which the maps do not overlap at all. For each value, the experiment
is repeated 10 times. Then the Mean Quadratic Error is shown in the Y-axis (blue line). This
value is computed comparing the alignment obtained and a ground truth. The blue points
represent the individual values of the Error in each one of the 10 repetitions. In a similar
way, the number of supports is also included in the graphics (red points). The number of
supports is the number of correspondences that satisfy the transformation obtained. The
mean value of supports is represented with a red line. In Figures 3 and 7, the green line
represents the minimum value of supports required to validate the solution. Finally, all the
figures present with bars the number of failures obtained in the 10 repetitions. Each failure
represents the case in which the method does not converge to any solution or the solution
does not satisfy the requirements (RANSAC method). In these cases, we consider that no
alignment has been found.

Figures 3 and 7 show the results obtained with the RANSAC algorithm of Sec. 4.1. In figure
3, no solution is obtained until the number of overlapping points is higher than 60 points. In
all of those cases, the Mean Quadratic Error always below 2 m. Regarding the number of
supports (red line), we observe an ascendant tendency due to the increasing number of
overlapping points. In the case of 160 overlapping points, the number of supports is 80. If
the Gaussian noise is higher, these results get worse, as in Figure 7 where the number of
supports obtained is significantly lower. Furthermore, the first solution appears when the
number of overlapping points is 120.
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Figures 4 and 8 present the results of the SVD algorithm of Section 4.2. In those cases, the
error value having 100 overlapping points is close to 30. At least, the error has a descendent
tendency as the number of overlapping points increases. However, in Fig 8 the error values
are much more unstable. Regarding the number of supports, the tendency is quite constant
in both graphics.

The behaviour of the ICP algorithm of Section 4.3 is presented in Figs. 5 and 9. In Figure 5
the error value obtained is quite acceptable. It is noticeable that the error curve decreases
sharply from the case of 20 to 60 overlapping points. Then, the curve continues descending
very slightly. This last part of the curve shows that the error values are around 2, which is a
quite good result. Nevertheless, the yellow bars show, in some cases, a small number of
failures. Fig. 9 shows worse results.

Finally, in Figures 6 and 10, the results of the improved version of ICP are shown. In this
case, the results obtained are similar to that of ICP in terms of mean support values.
However, it is noticeable that the stability of the algorithm is higher. If we pay attention to
the yellow bars in Figure 6, it is shown that the algorithm always obtains a solution when
the number of overlapping points is equal or higher than 100. In Figure 10, the number of
failures is lower than in Figure 9.

In general, the best results are obtained by the ImpICP and RANSAC algorithms. RANSAC
obtains lower error values, whereas ImpICP is more stable in terms of having less number of
failures.

In addition to the experiments performed to evaluate the accuracy and suitability of the
aligning methods, we have also measured the computational time of each algorithm (see
Figure 11). The curves show an ascendant tendency. This is due to the fact that the size of
map?2 is higher as the number of overlapping points increases. It is remarkable that the
values of the computation time are very similar in all of the methods. For that reason, this
criterion can not be used to select one of the methods.
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5.2 Real Data

After performing the comparative analysis with the simulated data, the next step is to
evaluate the same aligning methods using real data captured by the robots, i.e., landmarks
consisting of Harris points detected from the environment and described by U-SURF.
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We evaluate the performance of the aligning methods at different steps of the mapping
process, i.e., at different iterations of the FastSLAM algorithm. At the beginning, the maps
built by each robot have a reduced number of landmarks and therefore there are fewer
possibilities of finding correspondences between these local maps. However, this situation
changes as long as the maps are bigger. In this situation the probability of finding
correspondences is higher and it is expected to obtain the alignment successfully.

In these experiments we have used the most probable map of each robot in order to
compute the transformation between their reference systems. We obtain the most probable
map of each robot at different iterations of the FastSLAM algorithm and try to align these
maps. The most probable map is the map of the most probable particle of the filter in each
particular moment.

The FastSLAM algorithm is performed in several iterations corresponding to the total
number of movements performed by the robot. In the experiments k is an index that denotes
the number of iterations. In this case, this number is k=1410 and the sizes of the maps at that
point are map;=263 landmarks and map,=346 landmarks. These maps have a dimension of
35X15 meters approximately.

In Figure 15(a), we can observe a 2D view of the local maps constructed by each robot and
referred to its local frame. In this figure, map: is represented by stars and has 181
landmarks. On the other hand, map: is represented by circles and it size is of 187 landmarks.
In Figure 15(b), we can see the two local maps already aligned. In this case, the most
probable maps of iteration k=810 have been used.

In order to compare the aligning methods with real data, we compute the alignment
parameters for each method at different iterations of the FastSLAM algorithm. The
evaluating measure is the Euclidean distance between the alignment parameters tx,ty and 0
the real relative position between the robots, denoted as ground truth. This measure was
obtained estimating the relative position of the robots being at their starting positions.
Figure 12, illustrates the comparison of the aligning methods we evaluate. For each method,
the error values (y axis) vs. the k-iteration of the algorithm (x axis) are represented.
Logically, as the number of iterations increases, the size of the maps constructed will be
higher and therefore it will be more probable to find a solution closer to the ground truth.
For this reason, it is expected to obtain small error values as the k-iteration increases. In
Figure 12 we can observe that the worst results are obtained with SVD. For instance, SVD
has an error of 4m with k-iteration =1409, i.e., at the end of the FasSLAM algorithm. Next,
ICP obtains similar results. However, it achieves better results in some cases. For example,
with k-iteration = 810 the error is lower than 1 m. Then, the ImpICP algorithm outperforms
these previous methods, since it achieves really small error values. Nevertheless, RANSAC
is the method that obtains better results. Despite the fact that it gives no solution with k-
iteration = 60 (probably because the maps are still too sparse in this iteration), the algorithm
obtains the smallest error values. In fact, from k-iteration =410 on the error is no higher than
0.5m. Finally, Figures 13 and 14 focus on the results obtained by the RANSAC algorithm.
Figure 13 shows the number of supports obtained in each case, which increases with the k-
iteration values. On the other hand, Figure 14 shows the decomposition of the error in its
three components (three alignment parameteres): error in tx, ty and 0.
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5.2.1 Multi-alignment results.

Table 1 presents an example of the results obtained with the fsolve function (Section 3.1).
This table shows the aligning results obtained in the group of four robots, where Tj
represents the alignment between robot i and robot j. On the top part of the table, we can
observe the aligning results between each pair of robots. These alignment parameters (t.ty
and 0) have been computed by means of the RANSAC algorithm described in Section 4.1.
These solutions are valid between pairs of maps but may not be consistent globally. Then,
on the bottom of the table, the alignment parameters (t'y,t'y and 6") have been obtained with
the fsolve function. In this case, the constraints imposed (see expressions E1 to EX of Section
3.1) optimize the solution so that it is globally consistent.

T1, T2 T3y T4
tx -0.0676 0.1174 -0.0386 0.0547
ty -0.0636 0.0423 0.8602 -0.8713
0 -0.0144 -0.0063 0.0286 -0.0248
' -0.0388 0.0677 -0.0408 0.0774
ty' 0.0363 -0.1209 0.9521 -0.9220
0 0.0079 -0.0375 0.0534 -0.0436

Table 1. Alignment parameters.

7. Conclusion

This work has been focussed on the alignment problem of visual landmark-based maps built
by the robots. The scenario presented is that of a team of robots that start their navigation
tasks from different positions and independently, i.e., without knowledge of other robots’
positions or observations. These robots share a common area of a typical office building. The
maps built with the FastSLAM algorithm are initially referred to the reference system of
each robot, located at their starting positions. In this situation, we consider the possibility of
merging these maps into a global map. However, in order to do that, the landmarks of these
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maps should be expressed in the same reference system. This is the motivation for the study
of the alignment problem. To do that we have perform a comparison of several algorithms
in order to select the most suitable for this kind of maps. The experiments have been carried
out using simulated data as well as real data captured by the robots. The maps built by the
robots are 3D maps. Nevertheless the alignment is performed in 2D, since the movement of
the robots is performed in a 2D plane.

The next step is the study the second stage: map merging, i.e.,, fusing all the data into a
global map. In this case, the uncertainty in the estimate of the landmarks should be
considered. The map fusion problem has to be conceived as integrated into the FastSLAM
problem, in which each robot pose is represented by a set of particles and each of them have
a different estimate of the map. With this idea, observations coming from other robots
should be treated different in terms of uncertainty. Furthermore, some questions are still
open such as: when do we fuse the maps, how do we use the global map after the fusion is
performed, etc. These ideas will be consider as future work.
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1. Introduction

Planning a collision-free path for a rigid or articulated robot to move from an initial to a
final configuration in a static environment is a central problem in robotics and has been
extensively addressed over the last. The complexity of the problem is NP-hard (Latombe,
1991). There exist several family sets of variations of the basic problem, that consider flexible
robots, and where robots can modify the environment. The problem is well known in other
domains, such as planning for graphics and simulation (Koga et al., 1994), planning for
virtual prototyping (Chang & Li, 1995), and planning for medical (Tombropoulos et al.,
1999) and pharmaceutical (Finn & Kavraki, 1999) applications.

1.1 Definitions and Terminology

A robot is defined into the motion planning problems as an object, which is capable to move
(rotating and translating) in an environment (the workspace) and it may take different
forms, it can be: a rigid object, an articulated arm, or a more complex form like a car or an
humanoid form.
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Fig. 1. Robot types.

Given different robot types, it is fully and succinctly useful to represent the position of every
point of the robot in a given moment. As shown in Figure 1. (a), a robot can be represented
as a point. When the robot is a point, as it is the case in theoretical discussion, it can be
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completely described by its translational coordinates, (x, y, z). For a robot which is a rigid
body freely moving in a 3D space (See Figure 1. (b)), the position of every point is
represented by six parameters (x, y, z) for the position and (a, 3, y) for its rotation in every
point on the space. Each parameter, or coordinate, necessary to give the full description of
the robot, is called a degree of freedom (DOF). The seven DOF shown in Figure 1. (c) is a
spanning wrench. It has the same six DOF as the cube robot plus a seventh DOF, the width
of the tool jaw. The far right n DOF in Figure 1. (d) demonstrates that the number of DOF
can become extremely large as robots become more and more complex.

Not only the number, but the interpretation of each DOF is necessary to fully understand
the robot’s position and orientation. Figure 2 (a) Shows six DOF that are necessary to
describe a rigid object moving freely in 3D. Six parameters are also necessary to describe a
planar robot with a fixed base and six serial links Figure 2. (b). Although the same size, the
coordinate vectors of each robot are interpreted differently.

vy
8, g
.'q-.:._ # -:':

a) b) a, < O
[ ﬂ L e,

—r

3D Workspace L,

6D (x,yz,pitch,roll,yaw) 20 ‘Worl space

Ghia, 8, 8, ,8,8,8)

Fig. 2. Number of Degrees of freedom for robots.

1.2 Paths and Connectivity

Throughout the history of artificial intelligence research, the distinction between problem
solving and planning has been rather elusive (Steven, 2004). For example, (Russell & Norvig,
2003) devotes a through analysis of “Problem-solving” and “Planning”. The core of the
motion planning problem is to determine whether “a point of the space” is reachable from
an initial one by applying a sequence of actions (Russell & Norvig, 2003), p. 375.

Besides, it is difficult to apply results from computational geometry to robot motion
planning, since practical aspects relevant to robotics are often ignored in computational
geometry, e.g. only static environments are considered usually. Since testing for collisions
between the robot and the environment is essential to motion planning, the representation
of geometry is an important issue.

The motion planning problem can be defined (Steven, 2004) as a continuum of actions that
can lead to a path in a state space. The path is obtained through the integration of a vector
field computed by using the plan. Thus, the plane has an important role because it describes
a set of states.
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1.3 Workspace and Configuration Space

The robot moves in a workspace, consisting of several objects, guided by natural lows. For
motion planning algorithms, the concept of workspace can be defined by considering two or
three dimensions; of course it can be defined by N-dimensions. In this context, the
workspace consists of rigid objects (obstacles) with six DOF. Initially, obstacles are placed in
static configurations, so they can not move within the environment. The workspace
representation is associated to a geometric model used to manipulate the objects. Both
features must be considered to address the motion planning problem. However, in many
instances, it may be possible to improve performance by carefully investigating the
constraints that arise for particular problems once again. It may be possible to optimize
performance of some of the sampling-based planners in particular contexts by carefully
considering what information is available directly from the workspace constraints.

1.3.1 Configuration Space

If the robot has n degrees of freedom, this leads to a manifold of dimension n called the
configuration space or C-space. It will be generally denoted by C. In the context of this
document, the configuration space may be considered as a special form of state space. To
solve a motion planning problem, algorithms must conduct a search in this space. The
configuration space notion provides a powerful abstraction that converts the complicated
models and transformations into the general problem of computing a path in a manifold
(Steven, 2004).

1.3.2 The motion planning problem

The basic motion planning problem is defined as follows: Given a robot, which can be any
moving object, a complete description of static workspace and star and goal configurations,
the objective is to find a valid (i.e., collision free) path for the robot to move through the
workspace from beginning to goal configurations. The robot must avoid collision with itself
as well as obstacles in the workspace environment.

1.3.3 Probabilistic roadmap methods

A class of motion planning methods, known as probabilistic roadmap methods (PRMs),
have been largely addressed (Ahuactzin, & Gupta, 1997), ( Amato et al., 1998), ( Boor et al.,
1999). Briefly, PRMs use randomization to construct a graph (a roadmap) in configuration-
space (C-space). PRMs provide heuristics for sampling C-space and C-obstacles without
explicitly calculating either.

When PRM maps are built, roadmap nodes correspond to collision-free configurations of the
robot, i.e. points in the free C-space (C-free). Two nodes are connected by an edge if a
collision-free path between the two corresponding configurations can be found by a “local
planning” method. Local planners take as input a pair of configurations and check the path
(edge) between them for collision. As output they declare the path valid (collision-free) or
invalid. Because of the large number of calls made to local planners, their design often
sacrifices sophistication for speed. When local planners (Amato et al., 1998) are
deterministic, the edges do not need to be saved, only the roadmap adjacency graph must
saved. PRM methods may include one or more ‘enhancement’ steps in which some areas are
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sampled more intensively either before or after the connection phase. The process is
repeated as long as connections are found or a threshold is reached.

A particular characteristic of PRM is that queries are processed by connecting the initial and
goal configurations to the roadmap, and then searching for a path in the roadmap between
these two connection points.

The following pseudo-code summarizes the high-level algorithm steps for both roadmap
construction and usage (query processing). Lower-level resources include distance metrics
for evaluating the promise of various edges local planners for validating proposed edges,
and collision detectors for distinguishing between valid (collision free) and invalid (in
collision) robot configurations.

Pre-processing: Roadmap Construction
1. Node Generation (find collision-free configurations)
2. Connection (connect nodes to form roadmap)

(Repeat the node generation as desired)
On Line: Query Processing

1. Connect start/ goal to roadmap
2. Find roadmap path between connection nodes

(repeat for all start/ goal pairs of interest)

1.4 The narrow corridor problem

A narrow passage occurs when in order to connect two configurations a point from a very
small set must be generated. This problem occurs independently of the combinatorial
complexity of the problem instance. There have been several variants proposed to the basic
PRM method which do address the “narrow passage problem”. Workspaces are difficult to
handle when they are “cluttered”. In general, the clutter is made up of closely positioned
workspace obstacles. Identifying “difficult” regions is a topic of debate. Nevertheless when
such regions are identified the roadmap can be enhanced by applying additional sampling.
Naturally, many of the nodes generated in a difficult area will be in collision with whatever
obstacles are making that area difficult. Some researchers, not wishing to waste computation
invested in generating nodes discovered to be in-collision, are considering how to “salvage”
such nodes by transforming them in various ways until they become collision-free.

2. Probabilistic Roadmap Methods

This section presents fundamental concepts about PRM, including a complete description of
PRM, OBPRM, Visibility Roadmap, RRT and Elastic Band algorithms. These methods are
important because they are the underlying layer of this topic. The parametric concept of
configuration space and its importance to build the roadmap is also presented.
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The world (Workspace or W) generally contains two kinds of entities:

1. Obstacles: Portions of the world that are “permanently” occupied, for example, as in the
walls of a building.

2. Robots: Geometric bodies that are controllable via a motion plan.

The dimension of the workspace determines the particular characteristic of W. Formulating
and solving motion planning problems requires defining and manipulating complicated
geometric models of a system of bodies in space. Because physical objects define spatial
distributions in 3D-space, geometric representations and computations play an important
role in robotics.

There are four major representation schemata for modelling solids in the physical space
(Christoph, 1997). They are the follows. In constructive solid geometry (CSG) the objects are
represented by unions, intersections, or differences of primitive solids. The boundary
representation (BRep) defines objects by quilts of vertices, edges, and faces. If the object is
decomposed into a set of nonintersecting primitives we speak of spatial subdivision. Finally,
the medial surface transformation is a closure of the locus of the centres of maximal
inscribed spheres, and a function giving the minimal distance to the solid boundary. We
describe the boundary representation because this is related to our work.

2.1 Geometric Modelling

There exists a wide variety of approaches and techniques for geometric modelling. Most
solid models use BRep and there are many methods for converting other schemata into
BRep (Christoph, 1997). Research has focused on algorithms for computing convex hulls,
intersecting convex polygons and polyhedron, intersecting half-spaces, decomposing
polygons, and the closest-point problem. And the particular choice usually depends on the
application and the difficulty of the problem. In most cases, such models can be classified as:
1) a boundary representation, and 2) a solid representation.
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Fig. 3. Triangle strips and triangle fans can reduce the number of redundant points.

Suppose W = R*. One of the most convenient models to express the elements in W is a set
of triangles, each of which is specified by three points, (x1, y1, z1), (x2, Y2, 22) and (x3, y3, z3). It
is assumed that the interior of the triangle is part of the model. Thus, two triangles are
considered as colliding if one pokes into the interior of another. This model is flexible
because there are no constraints on the way in which triangles must be expressed. However,
there exists redundancy to specify the points. Representations that remove this redundancy
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are triangle strips. Triangle strips is a sequence of triangles such that each adjacent pair
shares. Triangle fan is triangle strip in which all triangles share a common vertex, as shown
in Figure 3.

2.2 Rigid body transformations

Once we have defined the geometric model used to represent the objects in the workspace, it
is necessary to know how these objects are going to be manipulated (the robot as a
particular case) through the workspace. L