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Preface 

As an important extension of the motor capability of human being, mobile robots are now 
expected to implement various tasks and have become important tools in all kinds of appli-
cation fields, such as manufacturing plants, warehouses, nurse/medical service, tour guider, 
resource or space exploration, NANO manipulation, national defence and so on. In the fam-
ily of mobile robots, humanoid robots, robot pets or toys and robot assistants etc have now 
been becoming some new research and application trends, and more and more potential 
applications of mobile robots are emerging. In all these research and applications, a reliable 
and effective motion planning method plays a considerably important role in the successful 
completion of the corresponding tasks and purposes. The motion control problem of mobile 
robots, for example robot-cup competition, is also regarded as an effective platform in many 
institutes to study, test and demonstrate computationally intelligent methods and advanced 
control theories. For these reasons, the motion planning problem of mobile robots has been 
extensively studied in the field of robotics, and many noticeable methods have been pro-
posed for different purposes.  

The motion planning of mobile robots relies greatly on the known information about the 
involved environment perceived by sensors and the motion constraints of the robotic kine-
matics and dynamics. If the environment is static, well structured and completely known, 
there is usually less difficulty in the motion planning problems, which can be solved by us-
ing many existing path planning methods. However, when the environment is partially or 
totally unknown, unstructured, or dynamic changing, the demand of high autonomy for a 
mobile robot in such an environment will produce a great challenge for the motion planning 
task. For example, what sensors or energy supply should be adopted, how to model the en-
vironment with limited and noised environmental information from sensors, how to build 
the on line decision-making system of the robot, and how to find a satisfactory or optimal 
solution in real time which satisfies both the kinematical or dynamic constraints of the robot 
and the desired goal of the task, etc. Furthermore, the flexible and friendly interaction be-
tween mobile robots and environment including human being is more and more in great 
demand in many practical applications. All these provide great challenges to robotic tech-
niques including sensor or video signal processing and communication, pattern recognition, 
online intelligent decision making, robust motion control, mechanical structure and sensor 
device design etc. These problems are all the hot research topics covered by current robotic 
literature, and lots of efforts have been made to cope with these challenges.  

In this book, new results or developments from different research backgrounds and ap-
plication fields are put together to provide a wide and useful viewpoint on these headed re-
search problems mentioned above, focused on the motion planning problem of mobile ro-



bots. These results cover a large range of the problems that are frequently encountered in 
the motion planning of mobile robots both in theoretical methods and practical applications 
including obstacle avoidance methods, navigation and localization techniques, environ-
mental modelling or map building methods, and vision signal processing etc. Different 
methods such as potential fields, reactive behaviours, neural-fuzzy based methods, motion 
control methods and so on are studied. Through this book and its references, the reader will 
definitely be able to get a thorough overview on the current research results for this specific 
topic in robotics.  

 
The book is intended for the readers who are interested and active in the field of robotics 

and especially for those who want to study and develop their own methods in motion/path 
planning or control for an intelligent robotic system.  
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Local Autonomous Robot Navigation using 
Potential Fields 

Miguel  A. Padilla Castañeda, Jesús Savage, Adalberto Hernández and 
Fernando Arámbula Cosío 

University 
Country 

Chapter Abstract 
The potential fields method for autonomous robot navigation consists essentially in the 
assignment of an attractive potential to the goal point and a repulsive potential to each of 
the obstacles in the environment. Several implementations of potential fields for 
autonomous robot navigation have been reported. The most simple implementation 
considers a known environment where fixed potentials can be assigned to the goal and the 
obstacles. When the obstacles are unknown the potential fields have to be adapted as the 
robot advances, and detects new obstacles. The implementation of the potential fields 
method with one attraction potential assigned to the goal point and fixed repulsion points 
assigned to the obstacles, has the important limitation that for some obstacle configurations 
it may not be possible to produce appropriate resultant forces to avoid the obstacles. 
Recently the use of several adjustable attraction points, and the progressive insertion of 
repulsion points as obstacles are detected online, have proved to be a viable method to 
avoid large obstacles using potential fields in environments with unknown obstacles. In this 
chapter we present the main characteristics of the different approaches to implement local 
robot navigation algorithms using potential fields for known and partially known 
environments. Different strategies to escape from local minima, that occur when the 
attraction and repulsion forces cancel each other, are also considered. 

1. Introduction: The Potential Fields Method for Obstacle Avoidance 
The local autonomous robot navigation problem consists of the calculation of a viable path 
between two points, an starting and a target point. The local navigation approach should 
produce an optimum (usually shortest) path,  avoiding the obstacles present in the working 
environment. In general, the obstacles and the target could be static or dynamic. The 
obstacles could also be known a priory (e.g. the different walls in a building) or could be 
unknown (e.g. persons walking nearby the robot).  In this chapter are presented the 
following aspects of a potential fields scheme for autonomous robot navigation: The 
potential and force field functions; The use of single or multiple attraction points; The 
construction of an objective function for field optimization; The field optimization approach 
in known and unknown environments. In the last section of the chapter we present hybrid 
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approaches to recover from local minima of the potential field. During the chapter we have 
only considered potential fields defined in cartesian space, where attractive or repulsive 
potentials are a function of the position of the target or the obstacle. Recently, potential 
fields defined in a 2D trajectory space, using the path curvature and longitudinal robot 
velocity, have been reported (Shimoda et al., 2005). 

1.1 Previous works on artificial potential fields for autonomous robot navigation 
Artificial potential fields for autonomous robot navigation were first proposed by  Khatib 
(1990). The main idea is to generate attraction and repulsion forces within the working 
environment of the robot to guide it to the target. The target point has an attractive influence 
on the robot and each obstacle tends to push away the robot, in order to avoid collisions. 
Potential field methods provide an elegant solution to the path finding problem. Since the 
path is the result of the interaction of appropriate force fields, the path finding problem 
becomes a search for optimum field configurations instead of the direct construction (e.g. 
using rules) of an optimum path. Different approaches have been taken to calculate 
appropriate field configurations. 
Vadakkepat et al. (2000) report the development of a genetic algorithm (GA) for 
autonomous robot navigation based on artificial potential fields. Repulsion forces are 
assigned to obstacles in the environment and attraction forces are assigned to the target 
point. The GA adjusts the constants in the force functions. Multiobjective optimisation is 
performed on 3 functions which measure each: error to the target point, number of collisions 
along a candidate path, and total path length. This scheme requires a priory knowledge of 
the obstacle positions in order the evaluate the number of collisions through each candidate 
path. Kun Hsiang et al. (1999), report the development of an autonomous robot navigation 
scheme based on potential fields and the chamfer distance transform for global path 
planning in a known environment, and a local fuzzy logic controller to avoid trap situations. 
Simulation and experimental results on a real AGV are reported for a simple (4 obstacles) 
and known environment. McFetridge and Ibrahim (1998) report the development of a robot 
navigation scheme based on artificial potential fields and fuzzy rules. The main contribution 
of the work consists in the use of a variable for the evaluation of the importance of each 
obstacle in the path of the robot. Simulation results on a very simple environment (one 
obstacle) show that use of the importance variable produces smoother and shorter 
trajectories. Ge and Cui (2002) describe a motion planning scheme for mobile robots in 
dynamic environments, with moving obstacles and target point. They use potential field 
functions which have terms that measure the relative velocity between the robot and the 
target or obstacle.  
The main disadvantage of artificial potential field methods is its susceptibility to local 
minima (Borenstein and Koren, 1991), (Grefenstette and Schultz, 1994). Since the objective 
function for path evaluation is usually a multimodal function of a large number of variables. 
Additionally, in the majority of works on artificial potential fields for robot navigation, a 
single attraction point has been used. This approach can be unable to produce the resultant 
forces required to avoid  a large or several, closely spaced, obstacles ( Koren and Borenstein, 
1991). An scheme based on a fixed target attraction point and several, moving, auxiliary 
attractions points was reported in Arámbula and Padilla (2004). Multiple auxiliary 
attractions points with adjustable position and force intensity enable navigation around 
large obstacles, as well as through closely spaced obstacles, at the cost of increased 
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complexity of the field optimisation. A GA has been successfully used to  optimise  potential 
fields with a large number of unknown obstacles and four auxiliary attraction points. The 
approach is fast enough for on-line control of a mobile robot.  
In the following section we present different potential and force field functions which have 
been used for robot navigation. In section 3 we present the main characteristics of potential 
fields with one, as well as several attraction points. In section 4 we present the basics of field 
optimization: objective function construction; function optimization in known and unknown 
environments. In section 5 we introduce a hybrid method to avoid local minima during field 
optimization.  

2. Potential field and force field functions 
The first formulation of artificial potential fields for autonomous robot navigation was 
proposed by Khatib (1990). Since then other potential fields formulation have been proposed 
(Canny 1990, Barraquand 1992, Guldner 1997, Ge 2000, Arámbula 2004).  
In general, the robot is represented as a particle under the influence of an scalar potential 

field U ,  defined as: 

 repatt UUU +=  (1) 

 where attU  and repU  are the attractive and repulsive potentials respectively. 
The attraction influence tends to pull the robot towards the target position, while repulsion 
tends to push the robot away from the obstacles. The vector field of artificial forces   F(q) is 

given by the gradient of U : 

 repatt UU ∇+−∇=)(qF  (2) 

where U∇ is the gradient vector of U  at robot position  q(x, y) in a two dimensional map. 

 In this manner, F is defined as the sum of two vectors attatt U−∇=)(qF  and 

reprep U∇=)(qF , as shown in eq. 3. 

 )()()( qFqFqF repatt +=  (3) 

2.1 Artificial Potential Fields Formulation 
The most commonly used form of potential field functions proposed by Kathib (1990) is 
defined as: 
Attraction potential field 

 
2

2
1 dU att ξ=  (4) 

where d= aqq − ; q is the current position of the robot; aq is the position of  an attraction 
point; and  ξ is an adjustable constant. 
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Repulsion potential field 

 

2

0
0

0

1 1 1
2

0
rep

d d
U d d

d d

η
⎧ ⎛ ⎞
⎪ − ≤⎜ ⎟= ⎨ ⎝ ⎠
⎪ >⎩

  (5) 

where d= oqq −  for the robot position q and the obstacle position qo, 0d  is the influence 

distance of the force and η  is an adjustable constant. 
The corresponding force functions are: 
Attraction force 

 ( )aattatt U qqqF −−=−∇= ξ)(  (6) 

where q is again the robot position, aq  the position of the attraction point and ξ is an 
adjustable constant. 
Repulsion force 

 
03

0

0

( )1 1( )

0
rep

d d
d d dU

d d

η −⎧ − ≤⎪= ∇ = ⎨
⎪ >⎩

0

rep

q q
F (q)  (7) 

where d= oqq −  for the robot position q and the obstacle position qo, 0d  is the influence 

distance of the force and η  is an adjustable constant. 
The above formulation is popular due to its mathematical elegance and its simplicity; 
unfortunately, it suffers of oscillations and local minima under some obstacle configurations 
could cause problems, such: trap situations due to local minima, oscillations in narrow 
passages or impossibility of passing between closely spaced obstacles.  
Some different potential fields have been reported in the past in order to solve these 
problems. Ge and Cui (2000) proposed a modified formulation of Eq. 5 and Eq. 7 for 
repulsion forces for solving the problem of having a non-reachable target when it is placed 
nearby obstacles due to the fact that as the robot approaches the goal near an obstacle, the 
attraction force decrease and becomes drastically smaller than the increasing repulsion 
force. The modified repulsion potential takes the form of: 

 

2

0
0

0

1 1 1
2

0

n

rep
d d

U d d
d d

η
⎧ ⎛ ⎞
⎪ − ≤⎜ ⎟= ⎨ ⎝ ⎠
⎪ >⎩

goalq - q
 (8) 
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The term goalq - q is the distance between the robot and the goal position. The 

introduction of this term ensures that the total potential repatt UUU +=  arrives at its 

global minimum 0, if and only if = goalq q . The corresponding repulsion force is given by: 

 rep1 rep2 0

0

F F
0

OR RG
rep

d d
U

d d
+ ≤⎧

= ∇ = ⎨ >⎩
rep

n n
F (q)  (9) 

where 

 1 2
0

1 1( )
n

goal

d d d
η

−
= −rep

q q
F  (10) 

 
2 12

2
0

1 1( )
2

n

goald d
η −

= − −repF q q  (11) 

OR d= ∇n and RG goal= −∇ −n q q are two unit vectors pointing from obstacle to the 

robot and from the robot to the goal, respectively. In this way, 1rep ORF n  repulses the robot 

away from the obstacle, while 2rep RGF n attracts the robot toward the goal. Although this 

approach solves the problem of nonreachable goals which are nearby, still suffers of local 
minima at some obstacle configurations and combinations of η and ξ . 
Arámbula and Padilla (2004) modified equations 6 and 7 experimentally in order to amplify 
the effect of repulsion in obstacles and designed a potential field scheme with movable and 
adjustable, in real time, auxiliary attraction points in order to reduce the risk of the robot to 
being trapped in local minima. The modified artificial attraction force Fatt used for the target 
point and for each of the auxiliary attraction points is: 

 ( )
a

aattatt U
qq

qqqF
−

−−=−∇= 1)( ξ   (12) 

The aim of normalization of Eq. 6 is to produce an attraction force independent of the 

distance between the robot and the target point (Eq.12). The artificial repulsion force repF is 
defined as: 

 
( )

03
0

0

1 1
( )

0

o

rep rep

sqrt d d
U d d d

d d

η
⎧ −⎛ ⎞

⋅ − ≤⎪ ⎜ ⎟= ∇ = ⎨ ⎝ ⎠
⎪ >⎩

q q
F q  (13) 

As the robot gets closer to an obstacle, the repulsion force of the closest obstacle points 
grows in the opposite direction of the robot trajectory. If the robot distance to an obstacle 
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point is higher than 0d , that obstacle position has no  effect on the robot. An steep repulsion 
force function is needed in order to enable navigation through narrow passages, however it 

was observed that taking the square root  of 
0

1 1( )d d−  in Eq.13 provides a light 

increase of the repulsion forces at mid distances (as shown in Fig.1) enabling, in turn, a safer 
obstacle avoidance. The constant η is also adjustable in real time as the robot moves by a 
genetic algorithm as is explained in section 4.   
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Figure 1. Plot of the magnitude of equation 9 (diamonds) and the same equation without 
taking the square root of (1/d-1/d0) (stars) 

2.2 Distance Fields as Potential Fields 
Canny and Lin (1990) and Barraquand et al (1992) used a similar approach based on distance 
functions for building the potential field. Canny and Lin (1990) used the Euclidean distance 
field as a non-negative continuous and differentiable function defined as: 

 min ( ( , ))att i ii
U U D O xη= =  (14) 

where ( , )i iD O x  is the shortest Euclidean distance between an obstacle iO and the 
position x of the robot and η is and adjustment constant. In this manner, the potential 
tends to zero as the robot approaches the obstacles, so the robot moves along the skeleton of 
the distance field that represents the path of maximum attraction potential. Unfortunately, 
under certain obstacle configurations the resulting potential field may contain local maxima, 
specially if the robot is near obstacle concavities.  
Barraquand et al (1992) used a simple algorithm that computes the potential U as a grid 
where at the goal position goalx  is setting up the value of 0 and then progressively by 

region growing incrementing in 1 the value of the free obstacle neighbors and infinity in 
obstacle positions. Then the navigating path is found by tracking the flow of the negative 
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gradient vector field U−∇ starting from the initial robot position initx . The idea behind 
this approach is to produce a free of local minima potential field.   
Fig. 2 shows an example of an obstacle workspace and the potential fields produced by the 
calculation of the distance fields of both approaches. 

   
(a) (b) (c) 

Figure 2. Example of a workspace with distance field as potential field. a) Obstacle 
configuration; b) Skeleton of the potential field produced by Canny and Lin (1990); c) 
Skeleton of the potential field produced by Barraquand et al (1992) 

2.3 Harmonic Artificial Potential Fields 
Some authors have proposed the use of harmonic functions for building artificial potential fields 

which satisfies the 0T U∇ ∇ =  in order to avoid the problem of local minima (Connolly 1990, 
Utkin 1991, Guldner 1997). The generalized harmonic potential of a point charge q is: 

 
2 1,3,4,...

( )
1ln 2

n

q n
rU r

q n
r

−
⎧ =⎪⎪= ⎨
⎪ =
⎪⎩

 (15) 

for 0r > in  nℜ where 2
1 2, ( , ,..., )i n

n
r x x x x x= =∑  and the gradient 

U−∇ described by: 

 
1( 2) 1,3,4,...

( )
2

rn

r

qn e n
rU r

q e n
r

−
⎧ − =⎪⎪−∇ = ⎨
⎪ =
⎪⎩

 (16) 

where re denotes a unit vector in radial direction.  
In particular, Guldner et al (1997) introduced the harmonic dipole potential based on 
electrostatics, where points on the workspace represent point charges within a security zone 
inside ellipsoidal gradients. For a single obstacle, they defined the gradient of the harmonic 



Mobile Robots Motion Planning, New Challenges 

 

8 

potential field for a dipole charge as a security circle with radius R with a unit charge at the 
target point in the origin of the circle and a positive obstacle charge 1q <  defined as: 

 
Rq

R D
=

+
 (17) 

where D is the distance between the two charges. For multiple obstacles, independent 
security zones are determined for each obstacle in a transformed space and mapped in the 
original space without overlapping. When computing the navigation path, the method only 
considered the closest obstacle to the robot at each time and requires to switch obstacle 
potentials when the robot cross between security zones; in order to avoid discontinuities 
when switching potentials between obstacles, the resultant potential near the border of two 
zones is calculated by the weighted contribution of the obstacles, where the weight depends 
on the distance to the security borders of the obstacles. 

2.4 Physical Fields as Artificial Potential Fields 
Physical analogies for potential fields for robot navigation have been reported in the past for 
electrostatics (Guldner et al 1997), incompressible fluids dynamics (Keymeulen et al 1994), 
gaseous substance diffusion (Schmidt and Azarm 1992), mechanical stress (Masoud et al 1994) 
and steady-state heat transfer (Wang and Chirikjian 2000). For example, Wang and Chirikjian 
(2000) used temperature as the artificial potential field because in heat transfer the heat flux 
points in the direction of a negative temperature gradient; temperature monotonically decreases 
on the path from any point to the sink. In the analogy, the goal is treated as the sink that pulls 
the heat in and the obstacles as zero or very low thermal conductivity. With this approach the 
temperature is characterized as the harmonic field without local minima of the form: 

 qTK =∇⋅∇ )(  (18) 

 dV 0q
Ω

=∫  (19) 

 0T
n Γ

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠
 (20) 

 f K T= − ∇  (21) 

where T is the temperature over the workspace, q indicates the heat sources and sink, K is 

the thermal conductivity which is a function of space coordinates, Ω  is the configuration 
space where the robot moves and Γ is the boundary of this configuration space, n expresses 
the unit normal vector and f is the heat flux. Numerical solution is obtained from finite 
difference or finite element methods. 

3. Attraction point configurations 
In order to avoid trap situations or oscillations in the presence of large or closely spaced 
obstacles (Koren and Borenstein, 1991), in a map modelled as a two dimensional grid, 
several auxiliary attraction points can be placed around the goal cell (Fig. 3). Each attraction 
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force 
i
attF  located at cell ic , depends on the corresponding value of iξ  (Eq. 6), which needs 

to be adjusted by an optimization algorithm as described in the next section. The effect of 
auxiliary attraction points has been evaluated in two modalities (Arámbula and Padilla, 
2004): (1) auxiliary points placed at a fixed distance (of 15 cells) from the goal cell; and (2) 
auxiliary points placed at a variable distance ( between 0 and 15 cells), which is adjusted 
automatically with a GA. Results from both approaches are shown in section 4. The use of 
auxiliary attraction points with a force strength and position  automatically adjusted with a 
GA, allows for the generation of resultant force vectors which enable the robot to avoid 
large obstacles, as shown in Fig. 4. 

3.1. Multiple attraction points  

 
Figure 3. Attraction field composed of 5 attraction cells with adjustable position and force 
intensity 

  
a) b) 

Figure 4. a) A large obstacle which can not be avoided with one attraction point only; b) use 
of auxiliary attraction points of varying force intensity and position allow for the generation 
of resultant forces which guide the robot around the obstacle 
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4. Potential field optimization for obstacle avoidance 
4.1 Pre-calculated potential fields 
When the environment where a robot navigates is of the type of an office or a house, and it 
is known in advance, then the objects and walls can be represented using polygons.  

 
Figure 6. Representation of the testing environment using polygons 

Each polygon consists of a clockwise ordered list of its vertices. Representing the obstacles 
as polygons makes easier the definition of forbidden areas, which are areas which are not 
allowed for the robot to enter. They are built by growing the polygons that represent the 
objects by a distance greater than the radius of the robot, to consider it as a point and not as 
a dimensioned object (Lozano Pérez 1979). It is possible to create the configuration space in 
this way when the robot has a round shape. Fig. 6. shows a representation of a polygonal 
testing environment example testing environment. From the polygonal representation it is 
found the free space where the robot can navigate with this approach, which is formed by a 
set of equally spaced cells in which there are not obstacles, as it is shown in Fig. 7. 

 
Figure 7. Representation of the free space using cells 
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For each cell it is calculated the repulsion forces that each of the obstacles generates, they are 
added and the resulting force is obtained, Fig. 8 shows the repulsion force map for the 
environment. 

 
Figure 8. Repulsion force map for the environment shown in Fig. 6 

By calculating in advance the repulsion force map liberates the robot’s processors to perform 
other tasks, then knowing the destination the attraction force is calculated in each of the cells 
and added to the repulsion force calculated before. Figure 9 shows the attraction and repulsions 
force map, in which a robot navigates from the upper left corner to the lower right one. 

 
Figure 9. Attraction and repulsions force map 
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The use of this kind of repulsion and attraction force maps improves the performance of the 
robot, because it is not necessary to calculate for each of the robot positions the repulsion 
forces on-line. 

4.2 Optimization approaches 

4.2.1 Objective functions 
An objective function for robot navigation should measure the optimality of a path between 
two points. The main criteria to determine the optimality are: minimum travel distance, and 
safe obstacle avoidance throughout the path. Then the objective function should provide 
optimum values (minima or maxima) for the shortest travel paths, with maximum distances 
to each obstacle in the path. Objective functions are usually constructed by the system 
developer, according to the navigation conditions: known or unknown obstacles; one or 
several attraction points; navigation map. To illustrate we present two objective functions 
which have been succesfully used for local obstacle avoidance. 
As mentioned in the introduction Kun Hsiang et al. (1999), reported the development of an 
autonomous robot navigation scheme based on potential fields and the chamfer distance 
transform for global path planning in a known environment, and a local fuzzy logic 
controller to avoid trap situations. The chamfer distance transform produces a matrix where 
each entry is the distance to the closest obstacle, these distances are used to calculate the 
repulsion forces exerted by the obstacles on the robot. The attraction force of the goal point 
is a constant with a user defined magnitude. A fuzzy logic controller based on two objective 
functions was developed to avoid trap situations where the robot is not able to avoid an 
obstacle using only the potential field functions. The objective functions measure: the angle 
between the repulsive force of the closest obstacle and the resultant force (Ec. 22); the 
distance to the closest obstacle (Eq. 23). The controller tries to maximize the distance to the 
obstacles. An stop condition is used when the robot reaches the goal. 

 φ=θobs – θ (22) 

where: 
θobs is the angle of the repulsive force; 
θ is the angle of the resultant force. 

 diff=M(xi+1, yi+1)- M(xi,yi)  (23) 

where: 
M(xi+1, yi+1) is the distance to the closest obstacle at the next position; 
M(xi,yi) is the distance to the closest obstacle at the current position. 
In Arambula and Padilla (2004) is reported an objective function to evaluate force field 
configurations which correspond to an optimum robot position (i.e. positions closer to the 
goal cell which also avoid obstacles). The objective function value of each candidate force 
field configuration is evaluated with two criteria: minimisation of the error distance E  
between the robot and  the goal cell; and maximisation of the distance dmin to the closest 
obstacle cell. Equation 24 shows the objective function, which produces optimum 
(minimum) values for minimum E, and maximum dmin 
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where:  
dmin is the distance to the closest obstacle cell 
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qr is a candidate cell for the new robot position;  
qg is the  goal cell; 
The construction of the objective function (f ) favors robot paths that run away from the 
obstacles and result in decreasing distance to the goal cell. The case where dmin= 0  (which 
corresponds to a collision) is severely penalised. In Fig. 5a is shown the plot of Eq.24 for: 
0<=E<=44 and  0.1<= dmin<=5. 
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 (a) (b) 
Figure 5.(a) Plot of Eq.24 for: 0<=E<=44, 0.1<= dmin<=5;  (b) Plot of Eq.24 for: 0<=E<=44, 5<= 
dmin<=8 

As shown in Fig. 5a, f gives non-optimum high values for small dmin and large E, although 
smaller values of f can be achieved through  increased dmin or smaller E, the absolute 
optimum value of f=0 will only be achieved for E=0. In Fig. 5b is shown the plot of f in the 
range: 0<=E<=44, 5<=dmin<=8;  as can be observed, at a predefined maximum value of 
dmin=5,  f still shows an slope which guarantees that optimum values correspond to 
decreasing E. 

4.2.2 Adaptive potential fields 
If the robot navigates in an environment with unknown obstacles it is necessary to detect 
and avoid obstacles as the robot moves towards the goal. In Arámbula and Padilla (2004) 
was reported an scheme for online obstacle detection. The robot is represented as a particle 
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R  that moves in the configuration space C , modelled as a two dimensional grid, where 

each cell ic  inside C can be occupied by the robot, the goal or the obstacles. There is also an 

associated obstacle map M of the same size of C . The obstacle map is initially empty, and 

it is filled at the positions of the obstacles detected by the robot, as it moves inside C . The 
goal cell, and 4 auxiliary attraction points exert an attraction force on R given by Eq. 12, 
while each of the detected obstacle cells exerts repulsion forces given by Eq. 13. For obstacle 

detection,  a 55x  grid simulates the robot sensors. When R  moves, the positions of the 

sensors in the mask are updated and used to calculate the distance mind  to the closest 
detected obstacle (Fig. 10a). A predefined distance is assigned to obstacles outside of the 
detection mask, as shown in Fig. 10b. 

 

 

 
 (a) (b) 

Figure 10. Examples of obstacle sensing. a) The robot detects an obstacle at mind = 1; b) The 

robot does not detect any obstacle and sets mind to a predefined value of 5 

In order to avoid trap situations or oscillations in the presence of large or closely spaced 
obstacles (Koren and Borenstein, 1991), 4 auxiliary attraction points have been placed 

around the goal cell (Fig. 3). Each attraction force 
i
attF  located at cell ic , depends on the 

corresponding value of iξ , which is automatically adjusted by a genetic algorithm 
described in the next section. The effect of auxiliary attraction points was evaluated in two 
modalities: (1) auxiliary points placed at a fixed distance (of 15 cells) from the goal cell; and 
(2) auxiliary points placed at a variable distance ( between 0 and 15 cells), which is adjusted 
automatically by the GA. Results from both approaches are reported in section 4.3. Use of 
auxiliary attraction points with a force strength and position  automatically adjusted by the 
GA, allows for the generation of resultant force vectors which enable the robot to avoid 
large obstacles, as shown in Fig. 12. 
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4.2.2.1 Adaptive field optimization using genetic algorithms 
Genetic algorithms are an efficient  technique to optimise difficult functions in large search 
spaces. By testing populations of solutions represented as strings  (called chromosomes) in 
an iterative process, a GA is able to find a near optimal solution in a robust manner, with the 
ability to produce a “best guess” from incomplete or noisy data (Goldberg, 1989) . A GA was 

used to optimise the values of the variables ( iξ ) of 5 attraction points and the values of the 

variables  ( jη )  of up to 155 obstacle cells. Each variable has a range of {0, 1000} and was 
binary coded with 20 bits of resolution in order to maintain a large number of values for the 
repulsion and attraction forces. A chromosome is formed by concatenation of the 160 binary 
coded variables. As mentioned above two modalities of the approach were evaluated: (1) 
with auxiliary attraction points placed at fixed positions, and (2) with auxiliary attraction 
points placed at variable distance from the goal cell. To implement modality (2), four 
additional binary variables in the range {0, 15} and coded with 4 bits  each, are included in 
the chromosomes.  

The GA searches for optimum values of iξ  and jη  in a given binary string (chromosome) 
which move the robot to a position such that f (Eq. 24) has a minimum value. Only those  

jη  which correspond to obstacle cells detected by the robot are used to calculate the force 
fields given by Eq. 13, the rest of the repulsion weights in the string is ignored. At each 
generation of the GA, every chromosome in the current population is decoded and the value 
of Eqs. 12, and 13 is calculated, with this values is calculated the resultant force and the 
corresponding robot position. This robot position is evaluated with Eq. 24 and assigned a 
selection probability based on its objective function value (smaller values of the objective 
function correspond to higher selection probabilities). Each chromosome in the current 
population is assigned a number of copies with probability Ps using stochastic universal 
sampling (SUS) for selection and the ranking method to assign probabilities (Chipperfield 
et. al, 1995). Single point crossover is applied to the copies (offspring) with a probability of 
0.6, mutation is applied to each string with a probability of 0.01 per bit. Finally, the next 
generation of the GA is formed using fitness based reinsertion  with a generation gap of 0.8. 
This process continues until the robot reaches the goal cell or 200 generations (robot steps) 
are completed. Below is shown the pseudocode of the GA for robot navigation. 
 
Pop= Random initialisation of 50 binary chromosomes 
Step_count=0 
While step_count<200 

Calculate  Fatt (Eq.8),  Frep (Eq.9), and the next robot position for each chromosome 
in Pop; 
Calculate f  (Eq.10) for each robot position ; 
Assign a probability of selection  (Ps) to each chromosome  using the ranking 
method; 
Assign copies to each chromosome using SUS with probability of selection Ps;  
Mutate and cross the copies (offspring); 
Reinsert offspring in Pop with a generation gap of 0.8; 
Calculate f for Pop; 
Select best chromosome and move the robot to the corresponding position; 
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Increment step_count;  
If(d=0) 

finish 
end 

4.3 Potential Field Optimization in a Partially known environment: Experiments and 
results 
The genetic algorithm described above was implemented in Matlab using the GA toolbox 
developed at the University of Sheffield (Chipperfield et. al, 1995). A cell map of 40x40 cells 
simulating a five-room floor was used for evaluation. Random obstacle distributions were 
used, as shown in Fig. 11.  
 

 
Figure 11. Cell map simulating a five-room floor with random obstacle 

Ten experiments were performed, the start and goal positions for each experiment are 
shown in table 1, the origin is placed at the top-left corner of the cell map. Two intermediate 
goal points have been used to guide the robot through the corridor corner as well as through 
the door of the appropriate room. The positions of the intermediate goal points are also 
shown in table 1. The robot travels from the start position to each successive intermediate 
goal point and to the final goal point. 

Two modalities of the navigation algorithm were evaluated: (1) with auxiliary attraction 
point placed at fixed positions, and (2) with auxiliary attraction points placed at variable 
distance from each goal cell. In table 2 are shown the results of the 20 experiments 
performed, the first column shows the experiment number corresponding to table 1. 
Columns two and three show respectively, the total distance traveled by the robot 
(measured in cells), and the deviation (as a percentage) from the optimum shortest path. 
Auxiliary attraction points were placed at a fixed distance of five cells from each goal 
position. Columns four and five show respectively, the total distance traveled by the robot 
and the deviation percentage, for auxiliary attraction points placed at a variable distance, 
which is automatically adjusted by the GA. 
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Exp. No (start)-(goal) intermediate goal 1 intermediate goal 2 
1 (34, 9)-(11, 3) (20,10) (15,10) 
2 (34, 9)-(13, 14) (20,10) (15,21) 
3 (34, 9)-(3, 26) (20,10) (15,38) 
4 (34, 9)-(36, 27) (20,10) (25,38) 
5 (34, 9)-(37, 14) (20,10) (25,22) 
6 (34, 4)-(3, 6) (20,10) (15,10) 
7 (34, 4)-(3, 14) (20,10) (15,21) 
8 (34, 4)-(12, 26) (20,10) (15,38) 
9 (34, 4)-(30, 30) (20,10) (25,38) 

10 (34, 4)-(38, 22) (20,10) (25,22) 

Table 1. Start-goal and intermediate goal positions of each experiment 

Exp.No. Total distance 1 
(cells) 

Deviation from 
optimum 1  (%) 

Total distance 2 
(cells) 

Deviation from 
optimum 2 (%) 

1 34 17.2 48 65.5 
2 44 29.4 34 0 
3 collision Collision 69 6.1 
4 68 21.4 81 44.6 
5 46 15.0 65 62.5 
6 40 21.2 43 30.3 
7 49 11.4 48 9.0 
8 70 27.2 81 47.3 
9 75 41.5 70 32.0 
10 48 17.0 72 75.6 
  Average: 22.3%  Average: 37.3% 

Table 2. Experiment results: Total distance 1, and Deviation from optimum 1 obtained with 
auxiliary attraction points placed at fixed distance (five cells) from the goal; Total distance 
2, and Deviation from optimum 2 obtained with auxiliary attraction points placed at 
variable distance from the goal 

From the results shown in table 2, the average deviation from the optimum path length is 
larger (37% vs. 22%) for the second approach, this is most likely because we have a larger 
and more complex search space which results in a higher probability of suboptimal points 
being chosen by the GA. However the second approach was able to produce a feasible path 
without collisions for all the experiments. In contrast the first approach (using fixed 
auxiliary attraction points) was not able to reach the goal for experiment 3. In Fig. 12 are 
shown five paths produced by the second approach. The average time for path completion 
on a Pentium III PC at 750MHz is 115s with an average path length of 56 cells (i.e.2.05 
s/step). 
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(1) (2) 
 

    
(3) (4) 

 

   
(5) 

 
Figure 12. Paths produced by the navigation algorithm, using auxiliary attraction points 
placed at variable distance from the goal cell. Start-goal positions are as given in table 1 
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5. Hybrid Approaches to Recover from Local Minima 
Hybrid approaches can be used to modify a potential field configuration in which a local 
minimum has been detected, for example Fig. 13, shows a robot that found an obstacle in the 
middle of the path between the origin and the goal and it is oscillating back and forth, due 
to the repulsion and attraction forces. First the repulsion forces repealed the robot from the 
obstacle, and when the robot is a little far away from it, the attraction force pushed it back to 
the obstacle, and then the repulsion force acts again repeating the whole process. 
The potential field configuration can be modified by the addition of attraction forces that 
allow the robot to exit the local minima. By using the position of the known obstacle, 
additional attraction forces are added in places that will take the robot out of the local 
minimum. Usually additional attraction points are added in some of the vertices of the 
obstacles, as is shown in Fig. 14. 

 
Figure 13. The robot is stuck in a local minimum 

Basically the hybrid approach finds the obstacle in which the robot got stuck, then using its 
vertices V=(v1,v2,...,vN ) it selects the vertices vi, vi+1,...,vk-1,vk, where vi is the closest vertex 
from the stuck point, vi+1 is the clockwise vertex from vi and vk is the closest vertex to the 
goal. Using these selected vertices the approach places a new goal to reach at vi+1 disabling 
the original goal, after the goal in vi+1 is reached a new goal is issued at the next selected 
vertex and so on until vk is reached. Finally the original goal is set again. In the Fig. 14 we 
can see that four additional attraction forces where added to the space to take the robot 
away from the local minimum.  
There are cases in which this approach does not work because there are obstacles so large 
that can generate several local minima in which the robot can get stuck again. In this case 
another approach is to have a robotics behavioral architecture that consists of several 
behaviors in parallel (Arkin 1998), each of the behaviors generates an output according to 
the readings of the sensors connected to them and its internal state. Then a referee selects the 
output of one of the behaviors according to a selection mechanism and sends it to the robot’s 
actuators. Figure 15 shows this type of architecture with two behaviors, one with potential 
fields and the other with an state machine.  
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Figure 14. Four additional attraction forces are added to the environment to take the robot 
out of the local minima 

 

 
Figure 15. Behavior architecture used to control the movements of a robot 

The function of the state machine behavior is to detect when the robot gets stuck in a local 
minima and take it out of it. After it takes the robot out of the local minima the referee 
selects again the potential field behavior. Figure 16 shows the behavior that the robot 
follows to avoid an obstacle. When the robots senses an obstacle in the left or in the right it 
will go backward first and then turn to the right or to the left accordingly, if it finds the 
obstacle in front of it, it goes backward then turns to the left 90 degrees, goes forward and 
then turns to the right and forward again. This simple behavior allows the robot to avoid 
local minima. 
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Figure 16. Robot behavior to take a robot out of a local minimum 
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1. Introduction 
It is essential for any approach to motion planning to account for some spatial 
representation of obstacles where collision-free paths could be found efficiently. This 
problem has been extensively studied by the robotics community and has traditionally led 
to two different research areas. On the one hand we have motion planning approaches, 
where an optimal path is computed for a known scenario and a target location. The 
Configuration Space (C-Space) (Lozano-Perez, 1983) has been successfully employed as 
representation in this scope. In C-Space the robot can be represented as a single point in the 
high-dimensionality space of its degrees of freedom. On the other hand, some navigation 
approaches deal with unknown or dynamic scenarios, where motion commands must be 
periodically computed in real-time during navigation (that is, there is no planning). Under 
these approaches, called reactive or obstacle avoidance, the navigator procedure can be 
conveniently seen as a mapping between sensor readings and motor action (Arkin, 1998). 
Although reactive methods are quite efficient and have simple implementations, many of 
them do not work properly in practical applications since they often rely on too restrictive 
assumptions, like a point or circular representation of robots or considering movements in 
any direction, that is, ignoring kinematic restrictions. C-Space is not an appropriate space 
representation for reactive methods due to its complexity, which prohibits real-time 
execution. Hence simplifications of C-Space have been proposed specifically for reactive 
methods. Finally, combinations of the two above approaches have also been proposed 
(Khatib et al., 1997; Lamiraux et al., 2004; Quinlan and Khatib, 1993), which usually start 
computing a planned path based on a known static map, and then deform it dynamically to 
avoid collision with unexpected obstacles. These hybrid approaches successfully solve the 
navigation problem in many situations, but purely reactive methods are still required for 
partially known or highly dynamic scenarios, where an a priori planned path may need 
excessive deformation to be successfully constructed by a hybrid method. 
In this work we address purely reactive methods exclusively, concretely, the problem of 
reactively driving a kinematically-constrained, any-shape mobile robots in a planar scenario. 
This problem requires finding movements that approach the target location while avoiding 
obstacles and fulfilling the robot kinematic restrictions. Our main contribution is related to 
the process for detecting free-space around the robot, which is the basis for a reactive 
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navigator to decide the best instantaneous motor action. For this task, existing methods 
consider certain families of simple paths for measuring obstacle distances (which is 
equivalent to sampling the free-space). These families of paths, that we will call path models, 
must be considered not as planned paths but as artifacts for taking nearby obstacles into 
account. All existent reactive methods use path models that are an extension of the robot 
short-term action, as illustrated in Fig. 1: for holonomic robots that can freely move at any 
direction, straight lines are used, while for non-holonomic robots virtually all methods 
employ circular arcs. 

   
 (a) (b) 
Figure 1. (a) Holonomic robots can move following straight lines without restrictions, while 
(b) realistic non-holonomic robot can only move following sequences of circular arcs 

We claim that straight and circular paths, used in previous reactive methods, are just two 
out from the infinity of path models that can be followed by a robot in a memory-less 
system, that is, reactively. It is clear that considering other path models is more appropriate 
to sample the free-space than using the classic straight or circular models only. We shed 
light into this issue through the example in Fig. 2, where a robot (reactively) looks for 
possible movements. If we employ a single circular path model for sampling obstacles as in 
Fig. 2(a), it is very likely that the obstacle avoidance method overlooks many good potential 
movements – notice that any reactive method must decide according solely to the 
information that path models provide about obstacles. In contrast, using a diversity of path 
models, as the example shown in Fig. 2(b), makes much easier to find better collision free 
movements. This is one of the distinctive features of our approach: the capability to handle a 
variety of path models simultaneously. 
A fundamental point in the process of using path models to sample obstacles is that not any 
arbitrary path model is suitable for this purpose, since it must assure that the robot kinematic 
constrains are fulfilled while still being able of following the paths in a memory-less fashion, 
i.e. by a reactive method. It is worth discussing the properties of trajectories that fulfill this 
condition, called consistent reactive trajectories in Section 2.2, since it is an important reflection 
that cannot be found in previous works.  
To motivate the discussion, consider the robot in Fig. 3(a), which must decide its next 
movement from a family of circular arcs, each one giving a prediction for the distance-to-
obstacles. Since reactive navigation is a discrete time process, the decision will be taken 
iteratively, in a timely fashion, though at each time step the family of paths will be 
considered starting at the current pose of the robot. The central issue here is that, implicitly, it 
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is assumed that if the robot chooses one path at some instant of time, at the next time step it 
will have the possibility of continuing along the same trajectory. Otherwise, the prediction of 
distance-to-obstacles would be useless since foreseen trajectories can not be actually 
followed. In the case of circular arcs, this property indeed holds, as illustrated in the 
example in Fig. 3(b). The main contribution of the present work is a detailed formalization 
of this and other properties that need to hold for a path model being applicable to obstacle 
avoidance. 

  
(a) 

  
(b) 

Figure 2. Reactive methods take obstacles into account through a family of paths, typically 
circular arcs (a). However, we claim that other possibilities may be useful for finding good 
collision-free movements, as the path family shown in (b) 

As detailed in previous works (Blanco et al., 2006; Blanco et al., 2008), we decouple the 
problems of kinematic restrictions and obstacle avoidance by using path models to 
transform kinematic-compliant paths and real-world obstacles into a lower complexity 
space, a Trajectory Parameter Space (TP-Space for short). The transformation is defined in 
such a way that the robot can be considered as a free-flying-point in the TP-Space since its 
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shape and kinematic restrictions are already embedded into the transformation. We can 
then entrust the obstacle avoidance task to any standard holonomic method operating in the 
transformed space. 
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Figure 3. A schematic representation of the process involved in reactive navigation. At each 
time step, the robot employs a family of paths to sample the obstacles in the environment, 
and then chooses the most convenient action according to that information. It must be 
highlighted the important implicit assumption in the process, that the robot will be able to 
continue trajectories chosen at previous time steps. Since this does not hold in general for all 
path models, we develop in this work a template for path models that are proven to fulfill 
this requirement 

This idea was firstly introduced by Minguez and Montano in (Minguez et al., 2002), and has 
subsequently evolved in a series of works (Minguez et al., 2006; Minguez and Montano, 
2008). Our framework can be seen as an extension of (Minguez et al., 2002) since multiple 
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space transformations can be defined instead of just the one corresponding to circular arcs. 
We allow any number of space transformations by generalizing path models through 
Parameterized Trajectory Generators (PTGs), which are described in detail in subsequent 
sections. For further details on how our framework can be integrated into a real navigation 
system, and for extensive experimental results from both simulations and real robots, the 
reader is referred to our previous works (Blanco et al., 2006; Blanco et al., 2008). 
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Figure 4. The simultaneous representation of all the trajectories of a path family in C-Space 
generates a 3D surface which comprises all the potential poses the robot can reach using the 
path family 

2. Space Transformations for Obstacle Avoidance 
2.1 Overview 
Although not always put explicitly, any reactive navigation algorithm relies on the 
calculation of distance-to-obstacles to provide the robot with information for choosing the 
next movement. To the best of our knowledge, all previous (reactive) works make an 
implicit assumption that has never been questioned: distance-to-obstacles (i.e. collision 
distances) are computed by means of a single fixed path model: either straight or circular, 
commonly depending on the robot being holonomic or not. Distances are then taken along 
those 2D paths, though robot paths are actually defined as continuous sequences of 
locations and orientations, that is, as three-dimensional curves in C-Space – refer to Fig. 4. 
We propose instead to define distance-to-obstacles directly in C-Space, as described next. 



Mobile Robots Motion Planning, New Challenges 

 

28 

If all the paths from a given path model are represented in C-Space simultaneously we 
obtain a 3D surface, as the example in Fig. 4. We will refer to these surfaces as sampling 
surfaces, since distance-to-obstacle can be computed by measuring the distance from the 
origin to the intersection of those surfaces with C-Obstacles. Next we can straighten out the 
surface into a lower dimensionality space where obstacle avoidance becomes easier, that is, 
a TP-Space. In this process the topology of the surface is not modified. Since we are 
proposing a diversity of path models to be used simultaneously, we will have different 
associated sampling surfaces in C-Space to compute distance-to-obstacles. The whole 
process is illustrated in Fig. 5. 

Workspace TP-space Workspace

(a) (b) (c)
 

Figure 5. The process to apply simple obstacle avoidance methods to any-shape, non-
holonomic robots comprises these steps: (a) A family of path is used to sample distance-to-
obstacles, which gives us the obstacles in the transformed space (TP-Space), where (b) the 
obstacle avoidance method chooses a preferred direction. This straight line in TP-Space 
actually corresponds to a feasible path, as shown in (c) 

We define a TP-Space as any two-dimensional space where each point corresponds to a 
robot pose in a sampling surface. It is convenient to consider points in a TP-Space by their 
polar coordinates: an angular component α and a distance d. In this way the angular 
coordinate has a closed range of possible values. The mapping between a TP-Space and a 
sampling surface is carried out by selecting an individual trajectory out from the family 
using the coordinate, while d establishes the distance of the pose along that selected 
trajectory. 
This idea of applying obstacle avoidance in a transformed space was introduced in 
(Minguez et al., 2002), where the authors employed the Euclidean distance in the 2D plane, 
disregarding the robot orientation, as the distance measure for d. Alternatively, we measure 
distances through a non-Euclidean metric, directly along C-Space sampling surfaces. This 
has the advantage of taking into account robot turns, thus providing a more realistic 
estimate of how much a robot needs to move to follow a given trajectory. The region of 
interest in TP-space is a circle centered at the origin and of radius mR  (a constant that settles 
the collision avoidance maximum foresee range). We will refer to the TP-space domain as 

the 2D space D×S , with ] ],π π= −S  and [ ]0, mD R= . Note as well that the 

transformation is applied at each iteration of the navigation process, thus for all our 
derivations the robot is always at the origin. 

2.2 Definitions 
We define a 2D robot trajectory for a given parameter value as: 
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Since we address PTGs for realistic robots subject to non-holonomic constrains, trajectories 

are defined as the integration of their time derivative ( ), tαq , that is, 

 ( ) ( )
0

, ,
t

t dα α τ τ= ∫q q  (2) 

where it applies the initial condition q(, 0) = 0 for any . Note from Eq. (4) that we define the 
transformed space in terms of distance d rather than time t, in which the kinematic 
equations are naturally defined. The reason for this change of variable is that we are 
interested in the geometry of paths, which remains unmodified if the velocity vector u(·) is 
multiplied by any positive scalar, an operation equivalent to modifying the speed of the 
robot dynamically. For example, it is common in navigation algorithms to adapt the robot 
velocities to the clearness of its surroundings. 
Therefore, we define a PTG as: 

 ( )( )1( , ) ,PTG d dαα α μ −q  (3) 

where the function ( )1 dαμ − , mapping distances d to times t, is not relevant at this point 

and will be introduced later on. Thus, a PTG is a mapping of TP-Space points to a subset of 
C-Space:  

 ( )
2:

,
PTG D

dα
× ×

q
RS S

 (4) 

In the common case of car-like or differentially-driven robots, the derivatives in Eq. (2) are 
given by the same set of kinematic equations: 
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⎣ ⎦⎢ ⎥⎣ ⎦

q J q u

 (5) 

Here u is the vector comprising the linear ( v ) and angular (ω ) velocities of the robot at 
each instant of time t and for each value of the PTG parameter. The freedom for designing 
different PTGs is therefore bound up with the availability of different implementations of 

the actuation vector ( ), tαu . 
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In despite of the fact any function ( )·u  represents a kinematically valid path for a robot, 

which follows from Eq. (5) by definition, the present work is built upon the realization that 
not any arbitrary function leads to valid space transformations for obstacle avoidance 
methods. We specify next when such a transformation is valid for our purposes. 

Definition. A space transformation between C-space and TP-space is valid when it 
fulfils the following conditions: 
• C1. It generates consistent reactive trajectories. All path models are not applicable to 

reactive navigation because of the memoryless nature of the movement decision 
process, as discussed in section 1. 

• C2. It is WS-bijective. For each WS location (x,y), at most one trajectory can exist 
taking the robot to it, regardless the orientation. Otherwise, the target position 
would be seen at two different directions (straight lines) in TP-Space – recall that a 
PTG maps straight lines of the TP-Space into trajectories of the C-Space. 

• C3. It is continuous. Together with the last restriction, this condition assures that 
transformations do not modify the topology of the real workspace around the 
robot. 

These three conditions hold for the case of paths that are circular arcs. The main 
contribution of the present work is the following theorem, which proves that a broader 
variety of valid PTGs indeed exist and is suitable to reactive navigation. 

Theorem 1. A sufficient, but not necessary, condition for a PTG to be valid is that its 
velocity vector is of the form: 

 ( ) ( )( )
( )( )

· ,
,

 · ,
m v

m

v f a b t
t

a b t

α φ α
α

ω α φ α

⎡ ⎤+
= ⎢ ⎥

+⎢ ⎥⎣ ⎦
u  (6) 

where mv  and mω settle the desired maximum linear and angular velocities in absolute 

value, respectively, ( ),vf tα  is any Lipschitz continuous function which evaluates to 

non-zero over the whole domain, and a , b  are arbitrary constants with the restrictions 

0 / 1a b< ≤  and 0b < . Furthermore, the velocity vector becomes fully defined by just 

specifying its value for 0t = .  
The following section is devoted to a detailed analysis of PTGs in this form and to prove our 
claim of them always are valid in the sense that they fulfill all the conditions listed above. 

3. Proofs 

We start by defining the function ( )tαμ  as the distance traveled by the robot along a given 

trajectory α  in C-space from the origin and until the instant t, that is: 

 ( ) ( )
0

,t t
t d

tα
α

μ τ
∂

=
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q
 (7) 
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where the norm could be the Euclidean distance, though we will employ here a custom 
metric introduced in (Blanco et al., 2008), which accounts for robot turns through a constant 
ρ  that roughly represents the robot radius, leading to: 

 ( ) ( ) ( )( )
1
22 22

0
, ,

t
t v t t dαμ α ρ ω α τ= +∫  (8) 

Then, we can state the following lemma about the existence of ( )1 dαμ − , required in Eq. (3) 

for the definition of PTGs. 

Lemma 1. The function : t dαμ  is continuous and its inverse 1 : d tαμ −  is well-defined 

for any 0t ≥ . 
Proof. The first part, proving the continuity of ( )tαμ  is trivial since the function is defined 
as an integral, therefore it is differentiable. Next, it can be seen that the function is strictly 
increasing due to its derivative being the norm of q , which in general is non-negative, but 

given the hypothesis from theorem 1 of vf  evaluating to non-zero over all the domain, the 

case 0=q  can be ruled out. Being continuous and strictly-increasing ( )tαμ  becomes 

bijective for any 0t ≥  thus its inverse is well-defined.  
An important feature of any valid PTG is that different values of α  must generate unique 
trajectories (see condition C2), which is assured by the following lemma. 

Lemma 2. Provided 0b <  and 0 / 1a b< ≤ , then each value α ∈S  determines a unique 

trajectory passing through the origin with its heading tending to /a bα−  as t → ∞ . 

Proof. Since ( ), tαq  is Lipschitz continuous, and given the initial conditions ( ), tα =q 0  

for any value of α , there exists only one trajectory for each α value (Evans and Gariepy, 

1992), which is  determined by the value of ( ) ( ) ( ),0 ,0   ,0
T

vα α ω α= ⎡ ⎤⎣ ⎦q . From the 

hypotheses of theorem 1 it easily follows ( ) ( )1 2,0 ,0ω α ω α≠  for any  1 2α α≠  as long 

as a 0a ≠  (refer to Eq. (6)), thus the uniqueness of each trajectory is assured.  

Regarding the limit of the robot heading ( ), tφ α , we can solve the differential equation of 

the kinematic model in Eq. (5) for this term, that is: 

 
( ) ( )

( )( )
, ,

· ,m

t t

a b t

φ α ω α

ω α φ α

=

= +
 (9) 

which can be straightforwardly solved giving us: 

 ( ) ( ), 1 mbtat e
b

ωφ α α= − −  (10) 
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The parameter b determines the evolution of the heading over time. Since the robot heading 
must be bounded to the domain of S , we discard the values 0b > . The case 0b =  must 
be avoided as well since in that case Eq. (10) is not defined. Therefore, for the valid values 

0b < , the heading converges to: 

 ( )lim ,
t

at
b

φ α α
→∞

= −  (11) 

Notice the condition 0 / 1a b< ≤  assures ( ), tφ α  will always remain within its valid 

domain S . 
We address next the fundamental property of generated paths being consistent reactive 
trajectories – as stated by condition C1. The geometrical meaning of this property was 
discussed in section 1, recall Fig. 3 , and is now stated formally as follows. 

Lemma 3. For any α ∈S  and 0 0t ≥ , there exists a function ( ) 0
0, :A tα +× S R S  such 

as: 

 ( ) ( ) ( )0 0, , ',         , 0t t t t tα α α+ = ∀ ≥q q q⊕  (12) 

with ( )0' ,A tα α=  and where the ⊕ operator stands for pose composition (Smith et al., 1988). 

Proof. It can be trivially shown that this statement holds for 0t = , when Eq. (12) becomes: 
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,

,
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=

=

=

q q q

q 0

q

⊕

⊕  (13) 

Now, since both trajectories ( )0, t tα +q  and ( ) ( )0, ',t tα α⊕q q  pass through a 

common point in C-space at 0t = , it is enough to prove that their derivatives q  are 

identical at that instant for Lemma 2 to imply that both trajectories coincide for any 0t > . 
Taking into account the change of coordinates introduced by the pose composition operator, 

the condition of both time derivatives ( )·q  must coincide amounts to their velocity vectors 

( )·u  being identical at 0t = , that is, we must prove: 

 ( ) ( )0',0 , tα α=u u  (14) 

By noticing from Eq. (6) that u is a function of the term ( ),a b tα φ α+ , the above 

condition can be rewritten as: 
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where ( )0, tφ α  is given by the closed form expression in Eq. (11).  

It is interesting to highlight that the resulting expression for ( )' ,A tα α=  indicates that 

'α   is well-behaved, in the sense that it never exceed the limits ] ],π π− . It also reveals 

that all trajectories eventually become a straight path, as can be seen by taking the limit: 

 ( )0lim , 0
t

a bA t
b a

α α α
→∞

= − =  (16) 

where the fact that 0α =  generates a straight trajectory follows from the PTG design 
equations in theorem 1. Note how the final part of all the trajectories being identical to one 
of them aligns perfectly with our goal of consistent reactive trajectories (condition C1). 
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Figure 6. A schematic representation of the mapping a PTG performs between TP-Space 
points and C-Space robot poses. We represent the infinitesimal elements used in the proof of 

lemma 4. Basically, the idea represented here is that the curve for the trajectory ( )', tαq  

matches precisely trajectory ( ), tαq  if the coordinate origin of the former is changed to 

( ),dtαq  for some 'α  infinitesimally close to α  

Finally, the last requisite of a valid PTG (condition C3) is to generate continuous sampling 

surfaces in C-space, that is, the function ( ),PTG dα  must be continuous. 



Mobile Robots Motion Planning, New Challenges 

 

34 

Lemma 4. Given the hypotheses of theorem 1, ( ),PTG dα  is a 2-manifold of C-space with 

boundaries, and is continuous and derivable over the whole domain ( ),d Dα ∈ ×S . 

Proof. Firstly, due to lemma 1 it is enough to prove the continuity and differentiability of 

( ), tαq , since the mapping between distances d  and times t conserves those properties 

of q . 

We show next that ( ), tαq  has well-defined derivatives, which in turns implies it is 

continuous. For the case of ( ),t
t

α∂
∂

q
the proof is trivial since by definition this derivative is 

given by Eq. (5). 

The derivation of ( ),tα
α

∂
∂

q
 is more involved. It is illustrative to keep Fig. 6 as a reference 

through the following derivations to clarify the geometrical meaning of each term. Let dt  

be an infinitesimal increment in time, and ( ), tα  some fixed point in the domain of TP-

space. Then, using lemma 3.3 we can rewrite ( ), t dtα +q  as: 

 ( ) ( ) ( ), , ',t dt dt tα α α+ =q q q⊕  (17) 

where 'α is given by: 
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, ,
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b dt
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α α φ α

α ω α

α

= +

= +

= +

 (18) 

Making use of the definition of pose composition operators (Smith et al., 1988) we can 
rearrange Eq. (17) as follows: 

 ( ) ( ) ( )', , ,t t dt dtα α α= +q q q  (19) 

The geometrical meaning of this operation is that, as illustrated in Fig. 6, the curve 

( )', tαq  matches the curve ( ), tαq  if translated and rotated to the pose ( ), dtαq . As a 

result, this means that infinitesimal changes dα in a pair ( ), tα  leads to infinitesimal 

changes in ( ), tαq  that can be written down as: 



Foundations of Parameterized Trajectories-based Space Transformations  
for Obstacle Avoidance 

 

35 

 ( ) ( ) ( )( ) ( )
( )

( )

,0
, , , , 0

,0

v dt
d t t t t dt

dt

α
α α α α α

ω α

⎡ ⎤
⎢ ⎥+ = ⎢ ⎥
⎢ ⎥⎣ ⎦
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which follows from Eq. (19) and the definition of q  as an integral of the velocity vector u . 
Since the pose composition ⊕  and inverse composition  operators are both continuous 

and differentiable, it follows that the derivative α
∂
∂

q  is well-defined for any point ( ), tα . 

Finally, given ( ), tαq  is differentiable and so is ( ),PTG dα  at the whole domain of 

( ),dα , the surface generated by a PTG can be seen as a 2-manifold with boundaries 

(Spanier, 1981).  

4. Related work 
In this section we review the most well-known space representations that have been 
employed in mobile robot motion planning and collision avoidance, and put them in 
contrast with our approach. 
The C-Space has been extensively used in many fields, including robotic manipulators 
(Lozano-Perez, 1987), maneuver planning (Latombe, 1991), and mobile robot motion 
planning (Murphy, 2000). The complexity derived from its high dimensionality makes C-
Space not applicable to real-time reactive navigation. 
A first simplification for dealing with C-Space more efficiently is to assume a circular robot. 
Thus, C-Obstacles are no longer dependent on the robot orientation and the C-Space reduces 
to a planar space, the Workspace (WS). This space is employed by the well known potential 
field methods, like the VFF (Borenstein and Koren, 1989), VFH (Borenstein and Koren, 1991), 
and others (Haddad et al., 1998, Balch, 1993). Other reported methodologies are based on 
neural nets (Pal and Kar, 1995) and, more recently, the Nearness-Diagram (ND) approach 
(Minguez and Montano, 2004), which relies on a divide-and-conquer strategy that defines a 
set of different states according to the arrangement of nearby obstacles. All these methods 
deal with circular shaped robots, a too restrictive assumption for many real-life situations. 
For example, if a robotic wheelchair were assumed to be circular, it would never pass 
through a narrow doorway.  
Most of the approaches that deal with any-shape robots and take into account their 
kinematic restrictions propose working with another less limiting simplification of C-Space: 
the velocity space (Arras et al., 2002; Feiten et al., 1994; Ramírez and Zeghloul, 2001; 
Schlegel, 1998; Simmons, 1996), or V-Space for short. For mobile robots of our interest, V-
Space represents the space of the potential linear and angular robot velocities, hence the next 
movement can be chosen as a point in V-Space that results in constant curvature paths (i.e. 
circular paths). A common feature in many V-Space methods is the inclusion of a dynamic 
window (Fox et al., 1997), which restricts the range of reachable velocities to that compatible 
with the robot maximum acceleration. An important limitation of these methods is that, 
although many obstacles may be sensed, not all of them are exploited: only those ones 
falling into the robot dynamic window for the next step are considered for choosing the 
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instantaneous motion command. It is clear that better paths would be found if more 
comprehensive obstacle information were taken into account, which indeed implies looking 
ahead for more than one step, as our approach does. In addition to the utilization of a 
dynamic window, most V-Space approaches use only the family of circular paths to sample 
the free-space, which entails the risk of not detecting many free-space areas. There are some 
exceptions (Ramírez and Zeghloul, 2001; Xu and Yang, 2002) that make use of straight paths, 
but this model is not appropriate for most actual mobile robots. Only these two path models 
have been reported in the reactive collision avoidance literature. While a generic path can 
only be described in the three-dimensional C-Space (2D position plus heading), poses along 
a circular path can be defined through two parameters: the path curvature and the distance 
along the arc. Upon this parameterization, a TP-Space was proposed in (Minguez et al., 
2006) as an elegant and mathematically sound alternative to V-Space: if the navigation is 
carried out in the 2D TP-Space, the robot can be treated as a free-flying-point. That work 
demonstrates that navigation in a parameterized space allows us to decouple the problems 
of kinematic restrictions and obstacle avoidance. However, this approach has never been 
extended neither to cope with other path models apart from the circular one, nor to a 
number of different transformations, which are the contributions of the present work. 
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Figure 7. A summary with the classification of space representations used in obstacle 
avoidance 

To further clarify the relationship between the different existing representation spaces, 
please refer to Fig. 7, where TP-Spaces appear as a generalization of spaces such as WS and 
V-Space. However, it must be remarked that C-Space is the most general space 
representation, but at the price of an elevated computational cost due to its high 
dimensionality.  

5. Conclusions 
In this work we have reviewed existing methods for obstacle avoidance and reactive 
navigation, and discussed how space transformations can be employed to extend their 
applicability to kinematically-constrained and any-shape mobile robots, making use of a 
clear and useful separation of the problems of robot shape and kinematic restrictions, and 
collision avoidance. We have developed a generalized kinematics abstraction mechanism 
which allows us using a variety of path models (PTGs) to obtain a better sampling of the 
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whole C-Space from which more and better collision-free paths towards the target location 
can be found. We have settled the conditions that a PTG must hold to lead to a valid space 
transformation, and then we have introduced a PTG template which has been proven to 
always fulfill all the requirements. However, it must be remarked that theorem 1 determines 
a sufficient, but not necessary condition, thus indeed more valid PTGs may exist out of the 
given template (a prominent example are circular arcs). Finally, we should highlight that the 
applicability of PTGs is not limited to purely reactive navigation frameworks, hence their 
integration with hybrid planned-reactive approaches reveals as a promising research topic 
for the future. 
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1. Introduction 
This chapter presents two basic processes needed in a vision system for a mobile robot 
which is capable of reading the textual content encountered in its environment. We describe 
the general system outline and we present the structure and the experimental evaluation of 
the system modules that we built until the present. These two modules are designed to solve 
two essential problems facing our robotic reading system: text detection from scene images 
and text-pose estimation necessary for navigation guidance. Finding text in a natural image 
is the first problem that must be addressed and we propose four text-detection methods 
based on connected components (CoCos). We tested the effectiveness of these methods on the 
ICDAR 2003 Robust Reading Competition data. After text detection, for maneuvering the 
robot, we must estimate the orientation of the text surface with respect the viewing axis of 
the camera mounted on the robot. We propose an active-vision method for estimating the 
pose of a planar text surface using the edge direction distribution (EDD) as input to a neural 
network. We develop and evaluate a mathematical model to analyze how the EDD changes 
under canonical rotations and orthographic projection. We collected a set of camera-
captured images with text in front-parallel view and, by applying single-axis synthetic 
rotations on these images, we obtain the data necessary to train and test the neural network. 
Further work will be directed at integrating our text detection and pose estimation modules 
within a complete robotic vision system. 

2. Reading Robot 
Our main research effort is concentrated on developing a vision system for an autonomous 
robot that will be able to detect and read the text encountered in its environment. A reading 
robot is an interesting proof of concept and building it is challenging as it raises many 
essential computer-vision problems requiring real-time solutions. Provided with text 
reading capabilities, mobile robots can capture this information intended for human visual 
communication and use it for navigation and task execution. 
Our robot is essentially a computer on wheels with a controllable camera on top (equipped 
also with sonar sensors and odometry). Camera-based text reading in 3D space is a more 
defiant problem then classical optical character recognition (OCR) used for processing 
scanned documents. Two major aspects are different and play a very important role: the text 
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areas must be first found in the image because text may be anywhere in the scene (text 
detection) and, secondly, the orientation of the text surface with respect to the camera 
viewing axis needs to be inferred (pose estimation) as it will be different from case to case. 
Our aim is to solve these problems by exploiting the robot's ability to move. We explore 
therefore, in a robotic setting, the role of active vision in the machine recognition of text in 
3D (robotic OCR). 
We can identify 4 important modules that need to be integrated in the vision system of the 
reading robot: 
• text detection 
• text-pose estimation 
• robot/camera motion 
• character classification. 
The present chapter focuses on the first two modules of the system: the text detection 
module that finds the location of text in a natural scene image and the pose estimation 
module that computes the orientation of the text surface with respect to the viewing axis of 
the camera mounted on the robot. Once this information is known, the robot can be 
maneuvered and the camera can zoom-in to obtain (if possible) a high-resolution front-
parallel view of the text, which, in principle, would give the best final OCR result. 
Text detection is essentially a segmentation problem and, as such, it entails a known 
difficulty well established in the pattern recognition community. A perfect solution for this 
problem is hard to find. We adopt a connected-component-based approach for text 
detection. Connected components (CoCos) have the advantage of offering a quick access to 
the objects in the image. For a given text instance in a scene, the characters are usually 
similar in size and placed in a horizontal string. Using rules regarding size, aspect ratio and 
relative positioning can reduce the indiscriminate number of CoCos extracted from an 
image to obtain the final candidate text areas. In this chapter, we propose and evaluate four 
text detection methods using CoCos. 
For tackling the problem of text-pose estimation we adopt a texture-based approach. The 
texture feature that we shall use is the angular distribution of directions in the text region 
extracted from the edges. This distribution changes systematically with the rotation angle 
and we develop a mathematical model to describe this trend. We then show how the 
rotation angle of the text surface can be recovered back from the edge-direction distribution 
(EDD) using a feed-forward neural network. 
Here we consider, for simplicity, only single-axis rotations starting from front-parallel 
views. We impose this severe constraint in order to obtain a basic initial working system, 
perfectible in the future. Because robot motion is confined to the horizontal plane, only the 
rotation angle β of text around the vertical axis (Y) can be used for repositioning (see fig. 7). 
Initial experiments will be conducted in a simplified environment to test the basic robot 
functionality. In the totally unconstrained case, view normalization for the other rotations, 
around X and Z, will have to be performed in software. 
This chapter is organized as follows. In section 3, we give a general overview of the field, 
providing pointers to literature and commenting on prospective applications. In section 4, 
we propose four CoCo-based methods for text detection and analyze their strengths and 
weaknesses. The next section presents an overall view of general pose-estimation methods 
and relates our approach to the more generic problem of shape-from-texture. In section 6, 
we present our texture-based method for text-pose estimation: we describe the extraction of 
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the EDD, our underlying mathematical model and the use of the neural network. In the 
results section, first we evaluate the performance of the CoCo-based text detection methods 
when used individually and in combination. We then numerically check the validity of the 
theoretical EDD transform model and we evaluate the performance of the proposed text-
pose estimation method in terms of angular error. A discussion of the strengths and 
weaknesses of our approach follows and conclusions end the chapter. 
As regards our general approach to the problem of reading robotic systems, the following 
remarks are in place here. There is no formal mathematical solution to this complex 
problem. Therefore, a synthesizing approach has been followed, on the basis of what is 
known as 'best practice' in image processing, on the basis of geometric modeling and by 
using empirical evaluation. 

3. Text Recognition in Real Images 
Text detection and recognition in still images and video receives constant research attention, 
the references pointing to a number of systems (Clark & Mirmehdi, 2002b; Lienhart & 
Wernicke, 2002; Gao et al., 2001; Yang et al., 2001; Lopresti & Zhou, 2000; Li et al., 2000; 
Zhong et al., 2000; Wu et al., 1999) and a recent overview of camera-based document image 
analysis (Doermann et al., 2003). Two major categories of text have been identified: scene text 
incidentally picked up as part of the recorded scenery and overlay text added on the image 
by post hoc editing. Overlay text appears mostly in video and is carefully directed to carry 
information. It is assumed to appear in front-parallel view and with clear contrast, being less 
problematic to detect and recognize. Robust recognition of scene text is a more difficult 
problem and the robot has to confront it. 
Automatic text detection and reading in natural images has many potential applications. To 
mention only a few: Intelligent transport systems (e.g. automatic reading of traffic signs or 
car license plates); office space with pervasive computing (e.g. intelligent cameras might be 
watching over a desk and automatically respond to commands to process the captured text); 
image retrieval (images can extracted from large multimedia databases using their text 
content). 
Intelligent wearable cameras for visually impaired persons represent another particularly 
interesting application and an important research subject (Kang & Lee, 2002; Zandifar et al., 
2002). The number of visually impaired persons is increasing every year due to eye disease, 
traffic accidents etc (e.g. in Japan alone there are about 200,000 people with acquired 
blindness). Such a support system, using a portable computer, a controllable camera and a 
speech synthesizer, can help an unaccompanied blind person by providing auditory 
information about the textual content of a scene (e.g. street or shop name, restaurant menu 
etc). This type of application shares many points in common with our robotic research 
theme: the acquired scene images are complex and their textual content has high variability 
in pose and in character size, color, font and contrast. Text-pose estimation, which in our 
case is primarily used for robot navigation, might also play a role, if coupled with acoustic 
feedback, in helping a blind person. 
Text detection methods have been broadly classified in two categories: texture based methods 
and connected-component based methods. The methods in the first category use text texture for 
detection. To the casual observer, text areas have a distinctive general appearance in natural 
scenes. They exhibit a significant content of high frequencies, considerable variation in the 
gray levels, high density of edges, oriented in multiple directions, and these attributes are 
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uniform over a larger area. These rich textural features are exploited for text detection in 
combination with pattern-recognition techniques (k-means clustering, neural networks). 
We opted to investigate the CoCo-based text detection methods for our robotic application 
because of their relative simplicity and effectiveness (Liu et al., 1998; Matsuo et al., 2002; 
Yamaguchi et al., 2003). 

4. Text Detection Methods 
In this section, we describe four connected-component based methods for detecting text in 
natural scene images. All four methods have the following processing steps: 
• image preprocessing 
• image binarization 
• CoCo extraction 
• CoCo selection using heuristic rules. 
Only the image preprocessing step will be different from one method to another. Image 
binarization, CoCo extraction and selection will always be performed in similar fashion for 
all four proposed methods. 
Using CoCos for detecting text in natural images raises a number of problems. The basic 
question is: "In what space are the pixels connected?" The simplest example concerns bitonal 
(B/W) images, where the concept of connectedness is straightforward. For gray-scale 
images, things already start to be complicated and binarization is needed for CoCo 
extraction. However, there are several ways in which a meaningful connectedness in the 
image can be imposed on the basis of local features such as color and texture. Assuming that 
such features can be transformed into a single scalar per pixel, a suitable binarization 
method may provide the basis for the CoCo extraction. 
An inappropriate threshold might wipe away all or part of the text present in the image. A 
decision is also needed on whether to use a local or a global binarization method. For a 
defined class of images, local binarization methods can be adapted to perform significantly 
better than global methods (Trier & Jain, 1995). More research is needed in this direction, so 
we report here only on our results obtained using a global binarization method. Ideally, text 
characters should be extracted as individual CoCos. It is common knowledge that, 
unfortunately, on many occasions, this is not the case. Often, a CoCo might contain only a 
part of a broken character or several characters lumped together. This is an important 
difficulty and the different image preprocessing methods used represent an effort to 
confront this inherent problem. In the end, however, quite a significant number of errors 
still remain. 

4.1 Binarization method 
For binarization we use Otsu's classical method (Otsu, 1979). It is a simple, popular and 
quite effective global binarization method. The same threshold is used for the entire image. 
Otsu's method automatically selects the binarization threshold that optimally partitions the 
gray-level histogram of the image into two separate subhistograms. The threshold T is 
selected such that the combined within-class variance 2

wσ  of the thresholded foreground 
and background pixels is minimized. This is also equivalent to maximizing the between-
class variance 2

bσ  for the two classes of pixels: 
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where μ is the average value for the entire gray-level histogram, ω1, ω2 are the integrals of 
the two subhistograms (i.e. the proportions of pixels in the two classes after thresholding), 
σ1, σ2 are the standard deviations of the two subhistograms and μ1, μ2 are their average 
values. In programs, the third expression is usually implemented as it allows for an elegant 
and fast recursive computation. 

4.2 Extraction of small characters using mathematical morphology operations 
The first method we propose targets the small characters and it is based on mathematical 
morphology operations. We use a modified top-hat processing. In general, top-hat contrast 
enhancement is performed by calculating the difference between the original image and the 
opening image (Gu et al., 1997). As a consequence, the top-hat operation is applicable when 
the pixels of the text characters have higher values than the background. Additionally, in 
(Gu et al., 1997), the difference between the closing image and the original image is also 
used for text detection when character pixels have lower values than the background. This 
method is very effective, however it becomes computationally expensive if a large filter is 
used in order to extract large characters. 
We developed an invariant method applicable to small characters. We use a disk filter with 
a radius of 3 pixels and we take the difference between the closing image and the opening 
image. The filtered images are binarized and then CoCos are extracted. 
Top-hat image processing emphasizes the thin structures present in the image (thinner than 
the diameter of the structural filter used). As such, this method is only applicable for small 
characters (less than about 30 pixels in height). Besides text characters, other thin structures 
present in the image will also be detected (e.g. thin window frames). 
This method detects connected text areas containing several small characters. As western 
text consists of characters that are usually horizontally placed, we take horizontally long 
areas (1 < width / height < 25) from the output image as the final candidate text regions (see 
figure 1). 

4.3 Three methods for extracting large characters 
We propose three extraction methods for large characters (more than about 30 pixels in 
height). The first two are based on Sobel edge detection, an image processing technique 
presented in detail in section 6.1. The third text extraction method is based on RGB color 
information. Fig. 2 shows how the three methods act on a sample image. 
Each method extracts connected components that represent candidate text areas. Decision 
rules based on the sizes and relative positioning of these areas are afterwards used to prune 
the number of possibilities and reduce the large number of false hits. 
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Figure 1. Extraction of small characters using morphological operations: a) original image, 
b) difference between closing and opening, c) extracted area 

• Character extraction from the edge image 
In this method, Sobel edge detection is applied on each color channel of the RGB image. The 
three edge images are then combined into a single output image by taking the maximum of 
the three gradient values corresponding to each pixel. The output image is binarized using 
Otsu's method and then CoCos are extracted. 
This method fails when the edges of several characters are lumped together into a single 
large CoCo that is eliminated by the selection rules. This often happens when the text 
characters are close to each other or when the background is not uniform (see fig. 3). 
• Character extraction from the reverse edge image 
This method is complementary to the previous one; the binary edge image is reversed 
before connected component extraction. It will be effective only when characters are 
surrounded by continuous connected edges and the inner ink area is not broken (as in the 
case of boldface characters). 
• Color-based character extraction 
The three methods proposed until now use morphological and edge information for text 
detection. However, color information is also important, because, generally, text has almost 
the same color for a given instance encountered in the scene. The first step is to simplify the 
color space and we reduce it to 8 colors by the following procedure. We apply Otsu 
binarization independently on the three RGB color channels. Each pixel can now have only 
23 = 8 possible combinations of color values. We separate the 8 binary images and then we 
extract and select CoCos on each one independently. This method makes evident that global 
thresholding is not always appropriate and text characters can be lost. 
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Figure 2. A "good" example: a) original image, b) edge image, c) reverse edge image, 
d) 8-color image 
 

 
Figure 3. Several characters (namely 'R', 'C', 'H') are lumped into a single CoCo because their 
edges are connected by a background structure: a) original image, b) extracted area, c) close-
up view of the problematic CoCo 
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Figure 4. Size and relative positioning of extracted CoCos. Wi and Hi are the width and 
height of an extracted CoCo; Δx and Δy are the distances between their centers of gravity 

4.4 Connected component selection rules 
It can be noticed that, up to now, the proposed methods are very general in nature and not 
specific to text detection. As expected, many of the extracted CoCos do not actually contain 
text characters. At this point, rules are used to filter out the false detections (see fig. 4). 
We impose constraints on the aspect ratio and area to decrease the number of non-character 
candidates: 

 ii
i

i HW,
H
W. <<< 50210   (2) 

An important observation is that, generally, text characters do not appear alone, but 
together with other characters of similar dimensions and usually regularly placed in a 
horizontal string. We use the following rules to further eliminate from all the detected 
CoCos those that do not actually correspond to text characters: 

 )W,Wmax(x,)H,Hmax(.y,
H
H. jiji

j

i 220250 <Δ<Δ<<   (3) 

The system goes through all possible combinations of two CoCos and only those complying 
with all the selection rules succeed to the final proposed text region (see fig. 5). 
The actual thresholds used in the CoCo selection rules can be further heuristically tuned for 
the individual methods. This remains an open problem. The proposed values work 
reasonably well on the test dataset (containing western characters). The selection rules do 
not completely eliminate all the erroneous non-text CoCos (see fig. 6). 

 
Figure 5. Final result for the example given in fig. 2 
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Figure 6. The windows of a building comply with CoCo selection rules and they are falsely 
detected as text characters 

5. Approaches to Text-Pose Estimation 
After text detection, the orientation of the text surface must be determined in order to 
provide navigation guidance to the mobile robot. 
A very effective solution to text-pose estimation is based on finding vanishing points of text 
lines (Clark & Mirmehdi, 2002a; Myers et al., 2001). This type of knowledge-based approach 
has to impose restrictions on text layout (a minimum number of lines must be present, of 
sufficient length, with consistent paragraph justification) and the search for vanishing points 
is computationally expensive. 
We adopt a different approach that can best be described as a simple shape-from-texture 
model. Determining the orientation (pose) and curvature (shape) of 3D surfaces from image 
texture information is a core vision problem. The proposed solutions make assumptions 
regarding the texture (isotropic (Garding, 1993) or homogenous (Malik & Rosenholtz, 1997)) 
and type of image projection (perspective (Garding, 1995; Clerc & Mallat, 1999) or 
orthographic (Super & Bovik, 1995)). 
However, text texture does not have texels, it is homogeneous only in a stochastic sense and 
also, as we shall see, strongly directional, being a difficult candidate for the classical shape-
from-texture algorithms. 
We assume that text lies on a planar surface and we consider only single axis rotations. In 
this case, the general shape-from-texture problem reduces to determining the slant angle (the 
angle between the normal and the viewing axis Z) for rotations around X and Y (see fig. 7). 
For rotations around Z, the text surface remains parallel to the image plane and only text 
skew must de determined (a problem aptly addressed in the document analysis field). 
General shape-from-texture algorithms rely on differential distortions in the local spatial 
frequency spectra of neighboring image patches. In contrast, we will use the edge-direction 
distribution (EDD) as a general texture signature for the entire text region and we will 
recover the rotation angle from it using a neural network. Realizing that a lot of information 
is disregarded prematurely, we consider our method presented here as a quick and helpful 
way of providing navigation guidance to a mobile robot, rather then a broad and generic 
solution. 
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Figure 7. Experimental setup for text-pose estimation 

6. Our Text-Pose Estimation Method 
As demonstrated in (Clark and Mirmehdi, 2002b), the EDD and measures derived from it, 
such as symmetry and spread over directions, are very effective features for text detection as 
well. Here we will explore its use for pose estimation. 

6.1 Extraction of the edge-direction distribution 
As mentioned, one very important texture descriptor is the probability distribution of edge 
directions in the text area. EDD extraction starts with the classical Sobel edge-detection 
method, which is also used for two of the CoCo-based text detection methods described 
section 4.3 of this chapter. 
Two orthogonal Sobel kernels Sx and Sy (eq. 4) are convolved with the image I (in eq. 5, 
⊗ represents the convolution operator). The responses Gx and Gy represent the strengths of 
the local gradients along the x and y directions and G is their resultant total gradient (eq. 5). 
The orientation angle /φ  of the gradient vector G measured from the horizontal (gradient 
phase) can be computed as in eq. 6. A final correction of 90° (eq. 6) is necessary to go from 
gradient-direction /φ  to edge-direction φ , which is a more intuitive measure. 
As the convolution runs aver the image, we build an angle histogram of the edge-directions. 
We count into the histogram bins only the pixels where G surpasses a chosen threshold 
(10% in our implementation). This makes sure that we take into consideration only the 
strong edge regions and not the quasi-uniform larger areas. In the end, the edge-direction 
histogram is normalized to a probability distribution )(p φ . 
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The edge-direction distribution )(p φ  is the texture feature that we shall use in the sequel for 
pose-estimation. The EDD is built mainly on phase information, which is known to be 
important for vision. 

6.2 Text rotation in 3D and transform model for the edge-direction distribution 
In this subsection, we analyze how the edge-direction distribution changes with the rotation 
angle. We shall consider only single axis rotations of a planar text surface under 
orthographic projection (a similar analysis under perspective projection would be 
mathematically more unwieldy). 
• Rotation around X axis 
Consider a needle OA of length l0 initially contained in the front-parallel plane XOY and 
oriented at angle 0φ  with respect to the horizontal. We rotate it by angle α ∈ (-90°, +90°) 
around X axis to the new position OA' and then we project it back onto the front-parallel 
plane to OB (see fig. 8a). The projection OB will be of length l ( 0ll < ) and oriented at angle 
φ  ( 0φφ < ) with respect to the horizontal. The initial needle OA and its projection OB will 
appear at rescaled dimensions in the image. The projection equations are: 

 00 φφ coslcosllx ==  (7) 

 αφφ cossinlsinlly 00==   (8) 

Forward and backward relations for needle length and orientation are: 
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If we consider that the needle actually stands for a small edge fragment, we can now 
describe how the text EDD changes from the initial )( 00 φp  to )(φαp  after rotation. Two 
elements need to be taken into account: the length change ll →0  and the angle change 

φφ →0 . We express the new distribution as: 
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where )(φh  are some intermediary values. A renormalization of these values is necessary in 
order to obtain a proper final probability distribution that adds up to 1. 

 
Figure 8. a) Text rotation around X axis. b) EDD change after rotation around X axis by 50° 
Therefore, the EDD transform model that we propose is: 
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In equation 12, the intermediary values h undergo renormalization. The expression for h is 
obtained from equation 11 after evaluating the lengths ratio and the angle derivative. 
Unfortunately, the model cannot be formally developed beyond this point, making the 
numerical analysis our only option. This is the reason why we formulate equation 12 using 
discrete sums. 
The EDD )(φαp  corresponding to rotated text cannot be expressed in closed form as a 
function of the rotation angle α and the base EDD )( 00 φp  corresponding to front-parallel 
text. 
Qualitatively, after rotation around X axis, text appears compressed vertically. This 
foreshortening effect is reflected in the EDD (see fig. 8b): the horizontal component of the 
distribution increases at the expense of the vertical one. These changes in EDD are more 
pronounced at larger angles and this makes possible recovering the rotation angle α. 
• Rotation around Y axis 
We apply a similar analysis considering a rotation of angle β ∈ (-90°, +90°) around Y axis 
(see fig. 9a). The projection equations are: 
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 βφφ coscoslcosllx 00==  (13) 

 00 φφ sinlsinlly ==   (14) 

 
Figure 9. a) Text rotation around Y axis. b) EDD change after rotation around Y axis by 50° 
Forward and backward relations for needle length and orientation are: 
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Applying equation 11, the EDD transform model becomes: 
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where h are intermediary values that undergo renormalization. 
Here again, )(φβp  (corresponding to rotated text) cannot be expressed in closed form as a 
function of the rotation angle β and the base EDD )( 00 φp  (corresponding to front-parallel 
text). 
Qualitatively, after rotation around Y axis, text appears compressed horizontally. This 
foreshortening effect is reflected in the EDD (see fig. 9b): the vertical component of the 
distribution increases at the expense of the horizontal one. The rotation angle β can be 
recovered because the changes in EDD are more pronounced at larger angles. 
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Figure 10. a) Text rotation around Z axis. b) EDD change after rotation around Z axis by 40° 

• Rotation around Z axis 
In this case, text rotation by angle γ ∈ (0°, 360°) simply results in a rotation of the EDD 
(considered in polar form) by the same angle: 

 γφφγφφ −=+= 00 ,  (18) 

 ll,ll == 00  (19) 

 )(p)(p γφφγ −= 0   (20) 

An example showing how the EDD changes for rotations around Z axis is given in fig. 10b. 

6.3 The neural network 
Very early in our attempts to recover the rotation angle using multilinear regression, we 
obtained correlation coefficients larger than 0.85 between the cosine squared of the rotation 
angle and the probability values in the EDD. But an obvious and more appropriate choice is 
to use a neural network to extract the nonlinear inverse relationship between the EDD and 
the rotation angle. The ground truth data needed to train and test the neural network is 
obtained using synthetic rotations starting from front-parallel views. 
However, in trying to recover the rotation angle directly from the EDD, two problems 
appear: font dependence of the base EDD and quadrant ambiguity. One of the very 
important underlying assumptions is that the base EDD (i.e. that corresponding to the front-
parallel view) is almost the same for all machine-print text. Otherwise, a change in the EDD 
due to font will be wrongly interpreted as a rotation. This assumption is not true: the EDD is 
actually different for different fonts. This font dependence of the EDD is in fact what we, 
very successfully, exploited in solving the problem of identifying people based on their 
handwriting (Bulacu et al., 2003; Bulacu & Schomaker, 2003; Schomaker et al., 2003) (an 
interesting biometrics method enjoying renewed interest for its forensic applicability). 
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Figure 11. Text-pose estimation method. The neural network has one input unit for every 
EDD bin (36 in our implementation). The rotation angle is given by the output unit of the 
network. The difference between two successive EDDs is used as input for rotations around 
X and Y axes. The EDD itself is used as input for rotations around Z axis 

The second problem is quadrant ambiguity for rotations around the X and Y axes: under 
orthographic projection, text looks the same under rotation of +α and -α (+β and -β). The 
EDD cannot distinguish between the two situations and this can also be confirmed by 
observing that the functions depending on the rotation angle appearing in equations 12 and 
17 are even. 
In order to eliminate this problem, the idea is to consider in the analysis two images rather a 
single one, the second image being rotated at a fixed small angle δ from to the first. For a 
chosen δ, in one quadrant, the second image will be closer to the front-parallel view than the 
first. In the other quadrant, the situation will be reversed. The difference between the two 
EDDs extracted from the two images will clearly reflect this situation and the neural 
network has an easy job in inferring it from the training data. Using the difference between 
two EDDs diminishes also the font-dependence problem, which unfortunately cannot be 
completely eliminated resulting in inevitable final prediction errors. 
The robot, therefore, will need - for rotations around Y axis - to make a small exploratory 
movement, always to the same side (say e.g. to the right) in order to alleviate the ambiguity. 
Two implicit assumptions are tacitly adopted here: tracking (the robot needs to look at the 
same text area) and satisfactory control of the rotation angle δ. We anticipate to solve these 
constraints using camera (auto)focus and wheel odometry. 
For rotations around Z axis the quadrant ambiguity cannot be eliminated. While usually the 
vertical component of text is stronger than the horizontal one in machine-print, this 
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difference is not reliable enough to obtain accurate predictions based on it. The EDD is 
almost symmetric to rotations of 90° around Z axis and consequently our solution can only 
encompass one quadrant. In this case, two images are not needed, the EDD from a single 
image suffices to determine the rotation angle. This problem is more effectively addressed in 
the document analysis field. We present our neural network solution only to have a unitary 
treatment throughout. 

7. Experimental Results 
7.1 Text detection results 
For evaluating the performance of the proposed text detection methods, we used the dataset 
made available with the occasion of the ICDAR 2003 Robust Reading Competition (Lucas et 
al., 2003). The images are organized in three sections: Sample, Trial and Competition. Only 
the first two are publicly available, the third set of images being kept separate by the 
competition organizers to have a completely objective evaluation. The Trial directory has 
two subdirectories Trial-Train and Trial-Test. The Trial-Train images should be used to train 
and tune the algorithms. 
As we do not use machine learning in our text detection methods, we included all the 
images in Trial-Test and Trial-Train for evaluation. This difficult dataset contains a total of 
504 realistic images with textual content. 
We used a similar evaluation method as that of the ICDAR2003 competition. It is based on 
the notions of precision and recall. Precision p is defined as the number of correct estimates 
C divided by the total number of estimates E: 

 
E
Cp =  (21) 

Recall r is defined as the number of correct estimates C divided by the total number of 
targets T: 

 
T
Cr =   (22) 

For a given image, we calculate precision and recall as the ratio between two image areas 
(expressed in terms of number of pixels). E is the area proposed by our algorithm, T is the 
manually labeled text area and C is their intersection. We then compute the average 
precision and recall aver all the images in the dataset. 
There is usually a trade-off between precision and recall for a given algorithm. It is therefore 
necessary to combine them into a single final measure of quality f: 
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The parameter α was set to 0.5, giving equal weights to precision and recall in the combined 
measure f. 
Our results on the ICDAR 2003 dataset are shown in table 1. The edge-based text detection 
method obtained top overall performance. In this context, we note that, at ICDAR 2003 
(Lucas et al., 2003), the results for the winner of the competition were precision = 55%, recall 
= 46% and f = 50%. 



Text Detection and Pose Estimation for a Reading Robot 

 

55 

The morphological method did not obtain good overall results because the dataset contains 
relative large text characters. Consequently, we selected, from the ICDAR 2003 dataset, a 
group of 55 images that contain only small characters. We evaluated the efficacy of the 
morphological method on these images and obtained precision = 38%, recall = 55% and f = 
47%. We tested also the edge based method on these images and obtained precision = 26%, 
recall = 48% and f = 37%. The morphological method seems to be more effective for small 
characters. 
Table 2 shows the results obtained by combining methods. Fusion is performed by ORing 
the results of the individual methods. By collecting all the candidate areas given by the 
different methods, we reduce the risk of missing a text instance. This is confirmed also by 
the high recall rate obtained when all methods are combined using OR. The increase in 
recall is outbalanced by the decrease in precision. However, for the same f value, the method 
with the highest recall rate is preferable. 
In principle, it is naturally the job of the character recognizer to reject many of the false text 
detections based on its knowledge of character shape. The motivation for combining four 
text-detection methods is to have a high final recall rate. 

Method Precision Recall f 
Edge (E) 60% 64% 62% 

Edge reverse (R) 62% 39% 50% 

8 colors (8) 56% 43% 49% 

Morphology (M) 41% 16% 28% 

Table 1. Results for the individual text extraction methods 

Method Precision Recall f 
E + 8 54% 69% 62% 

E + R 56% 70% 63% 

E + M 55% 68% 62% 

E + R + 8 51% 73% 62% 

E + R + 8 + M 48% 76% 62% 

Table 2. Results obtained after fusing methods using OR 

7.2 Text-pose estimation results 
For evaluating the text-pose estimation method another dataset of images was needed. We 
used a Sony Evi D-31 PAL controllable camera to collect 165 images containing text in front-
parallel view. The images contain only text and the background is uniform. They are gray-
scale (8 bits/pixel) and have a resolution of 748x556. We strived to obtain sufficient 
variability in the dataset: 10 different fonts, appearing at different sizes in the images, from a 
single word to a whole paragraph per image. 
In order to test our text-pose estimation method, single-axis synthetic rotations are applied 
to these images using our own custom-built rotation engine. The number of bins in the EDD 
was set to N = 36. This was found to give a sufficiently fine description of text texture 
(10°/bin). 
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First we verify the validity of our EDD transform model and then we train a neural network 
to predict the rotation angle and evaluate its performance in terms of angular error. 
• Verification of the theoretical model 
From every image in the dataset, we extract the base EDD corresponding to the front-
parallel view. We then randomly select a rotation angle and we theoretically compute (using 
equations 12, 17, 20) what the EDD should be for the rotated image (forward transform). We 
then apply the rotation on the image and we directly extract the EDD corresponding to the 
new pose. We compare the theoretically predicted EDD with the empirically extracted EDD 
to check the validity of our theoretical model. 
An appropriate distance measure is the Bhattacharyya distance: 

 ∑
=

−=
N

i
ii gf)g,f(dist

1

1  (24) 

where f and g are the two EDDs. The distance varies between 0 and 1 and we express it in 
percentages to have an intuitive measure. If the distance is null, the two distributions are 
identical. 

 
Figure 12. Verification of theoretical model: Bhattacharyya distance between theoretical and 
measured EDD (in percentages). The horizontal lines represent average values (from table 3 
column 2) 
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We applied 400 random rotations on every image around each axis. The average distance is 
around 1% (see table 3) and in fig. 12 we show its dependence on the rotation angle. 
For rotations around X and Y axes, the error increases with the rotation angle. At larger 
angles, text is so compressed that letters fuse together in a single lump and our 
mathematical model no longer correctly describes the changes in the EDD. For rotations 
around Z, the error is small and does not have a systematic trend, but we can observe a 
sampling artifact: the error shows an oscillatory behavior as the probability flows from one 
bin to another of the EDD. 

Rotation 
around 

Theoretical Model 
Error (percentages)

Angle Prediction 
Error (degrees) 

X axis (pitch) 1.36% 3.8° 

Y axis (yaw) 1.11% 6.6° 

Z axis (roll) 0.78% 2.9° 

Table 3. Correlation between theoretical model and empirical data (column 2). Overall angle 
prediction error (column 3) 

• Evaluation of the angle prediction method 
In order to predict the rotation angle from the EDD (inverse transform), we use a standard 
feed-forward neural network (3 layers, fully connected between layers, nonlinear transfer 
functions in the hidden layer). The network architecture is 36x10x1 (see fig. 11). The training 
method is Rprop (Riedmiller & Braun, 1993), a more effective variant of backpropagation 
algorithm. 
From the beginning, we split the data into 100 images for training and 65 for testing. Every 
image is then rotated 400 times at randomly chosen angles (40000 training examples, 26000 
testing examples). For rotations around X and Y axes, two rotated images are in fact 
generated with a slight pose difference between them δ = 10°. The network is trained to 
predict the rotation angle (of the second image for example) using the difference between 
the two EDDs. For rotations around Z axis, a single EDD is used, but rotations are limited to 
one quadrant. 
Fig. 13 shows how the method performs on two typical examples. 
On the test data, we compute the root mean square (RMS) error between the predicted and 
the real rotation angle. The average angular prediction error is given in table 3. The method 
demonstrates good performance (3°- 7°angular error). 
In fig. 14 we show the dependence of the angular error on the rotation angle. As expected, it 
can be observed again that the error increases at larger angles for rotations around X and Y 
axes. 
Another interesting observation is that the prediction error for rotations around Y axis is 
larger than that for rotations around X axis. So we performed the following simple test: we 
first rotated all the images by 90° around Z and subsequently we applied all the regular 
analysis. The angular error for rotations around X axis snaps into the range of errors for 
rotations around Y axis and the reverse (see fig. 14), proving to be an inherent property of 
the data. 
The explanation is that the vertical component of text is more reliable than the horizontal 
one and, as it is most affected by rotations around X axis, the prediction is more accurate in 
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this case. Unfortunately, rotations around Y axis represent the case of most interest for our 
robotic application. 
For rotations around Z axis, an important observation is that for angles γ close to 0° and 90° 
the error increases as confusion appears (especially for uppercase characters) between the 
vertical and the horizontal components, which are the most prominent in the EDD. This is 
the reason why we opted for a single quadrant solution for this type of rotation. 
The method becomes unreliable for small characters (less than 20 pixels in height or width) 
as the EDD cannot be consistently extracted. We found that the method works well if more 
than 10 characters are present in the image. 

 
Figure 13. Typical performance: "good" example up, "bad" example down. Angular transfer 
functions are given for rotations around the X, Y, Z axis, from left to right panel. Ideally all 
the experimental points would be placed exactly on the diagonal for perfect predictions 

In a qualitative evaluation, we found that the proposed method works also on-line in 
combination with our controllable camera. The neural network, trained and tested off-line 
on synthetic rotations, estimates reasonably well text-pose during on-line operation under 
real rotations. The errors are, nevertheless, relatively larger. 
It is important to note at this point that the proposed algorithm is lightweight, on average 70 
msec being necessary on a 3.0 GHz processor to extract the EDDs from 2 images and run the 
neural network on their difference to predict the rotation angle. Therefore, using the robot's 
ability to make small exploratory movements seems like an attractive idea for solving the 
pose-estimation problem. 

8. Discussion 
One very important advantage of using CoCos for text detection is that they naturally allow 
the analysis to take place across scales. In this approach, scale does not represent such a 
problematic issue because the CoCo extraction process is scale independent. CoCos give a 
prompt, but rather imperfect, hold to the structures present in the image and CoCo selection 
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is an important complementary step. As the results indicate, further improvement is needed 
for our text detection module. 
For text-pose estimation, we decided to base our analysis on orthographic projection, while 
most shape-from-texture methods rely on perspective effects. We consider this approach to 
be more robust, as perspective effects diminish if, after text detection, the camera zooms into 
the text area (long focal length, small field of view). The proposed texture-based method for 
text-pose estimation does not impose constraints on text layout. It works even when text 
lines are not present or they are very short, or when only a few characters are available. We 
found that Greek fonts can be handled surprisingly well by the same neural network. 

 
Figure 14. Prediction results: angular error (in degrees). Horizontal lines represent average 
values (from table 3 column 3) 

We treated here only canonical rotations. The method can be directly extended to two-axis 
rotations, but our experiments are far from conclusive at the moment. We have not 
addressed free three-axis rotations. A particularly difficult instance is, for example, slanted 
text and text that is rotating about the surface normal. We will also consider in our future 
analysis second order moments of the EDD. 
Our commitment to a single feature makes our approach limited in the end. However we 
believe that we have a promising starting point and an effective algorithm to implement on 
the robot for planning ballistic "text-hunting" movements. 
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9. Conclusions 
In this chapter, we described the text detection and the pose estimation modules of a vision 
system for a reading robot. 
Four connected-component-based methods for text detection have been implemented and 
evaluated. The most effective proves to be the sequence: Sobel edge detection, Otsu 
binarization, connected component extraction and rule-based connected component 
selection. A high recall rate can be achieved by collecting all the candidate text areas 
proposed by the four individual methods (recall = 76%, precision = 48%, f = 62%). 
We also presented here a method for estimating the orientation of planar text surfaces using 
the edge-direction distribution (EDD) in combination with a neural network. We considered 
single-axis rotations and we developed a mathematical model to analyze how the EDD 
changes with the rotation angle under orthographic projection. We numerically verified the 
validity of our underlying mathematical model. In order to solve the quadrant ambiguity 
and improve performance, for rotations around X and Y axes, we consider a pair of images 
with a slight rotation difference between them. The change in the EDD is extracted and sent 
to a feed-forward neural network that predicts the rotation angle corresponding to the last 
image in the pair. For rotations around Z axis, a single EDD is used, the solution being 
applicable only to rotations in the first quadrant. The method has been tested off-line with 
single-axis synthetic rotations and shows good performance. In on-line operation, with real 
rotations, the errors are relatively larger. 
Though limited in scope, the methods proposed here are elegant, quite simple and very fast. 
Our future work will concentrate on integrating the described modules in the complete 
vision system of the reading robot.  
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1. Introduction 

In this work we present a novel system for autonomous mobile robot navigation. With only 
an omnidirectional camera as sensor, this system is able to build automatically and robust 
accurate topologically organised environment maps of a complex, natural environment. It 
can localise itself using that map at each moment, including both at startup (kidnapped 
robot) or using knowledge of former localisations. The topological nature of the map is 
similar to the intuitive maps humans use, is memory-efficient and enables fast and simple 
path planning towards a specified goal. We developed a real-time visual servoing technique 
to steer the system along the computed path. 
The key technology making this all possible is the novel fast wide baseline feature matching, 
which yields an efficient description of the scene, with a focus on man-made environments. 

1.1 Application 

 
Figure 1. Left: the robotic wheelchair platform. Right: the omnidirectional camera, 
composed by a colour camera and an hyperbolic mirror 

This chapter describes a total navigation solution for mobile robots. It enables a mobile robot 
to efficiently localise itself and navigate in a large man-made environment, which can be 
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indoor, outdoor or a combination of both. For instance, the inside of a house, an entire 
university campus or even a small city lie in the possibilities. 
Because of reliability problems of other sensors like e.g. GPS, why we aim at a vision-only 
solution to navigation. Vision is, in comparison with these other sensors, much more 
informative. Moreover, cameras are quite compact and increasingly cheap. We observe also 
that many biological species, in particular migratory birds, use mainly their visual sensors 
for navigation. We chose to use an omnidirectional camera as visual sensor, because of its 
wide field of view and thus rich information content of the images acquired with. For the 
time being, we added a range sensing device for obstacle detection, but this is to be replaced 
by an omnidirectional vision range estimator under development. 
Our method works with natural environments. That means that the environment does not 
have to be modified for navigation in any way. Indeed, adding artificial markers to every 
room in a house or to an entire city doesn’t seem feasible nor desirable. 
In contrast to classical navigation methods, we chose a topological representation of the 
environment, rather than a metrical one, because of its resemblance to the intuitive system 
humans use for navigation, its flexibility, wide usability, memory-efficiency and ease for 
map building and path planning. 
The targeted application of this research is the visual guidance of electric wheelchairs for 
severely disabled people. More in particular, the target group are people not able to give 
detailed steering commands to navigate around in their homes and local city 
neighbourhoods. If it is possible for them to perform complicated navigational tasks by only 
giving simple commands, their autonomy can be greatly enhanced. For most of them such 
an increase of mobility and independence from other people is very welcome. 
Our test platform and camera are shown in fig. 1.  

1.2 Method overview 
An overview of the navigation method presented is given in fig. 2. The system can be 
subdivided in three parts: map building, localisation and locomotion.  
The map building stage has to be gone through only once, to train the system in a new 
environment. The mobile system is lead through all parts of the environment, while it takes 
images at a constant rate (in our set-up one per second). Later, this large set of 
omnidirectional images is automatically analysed and converted into a topological map of 
the environment, which is stored in the system’s memory and will be used when the system 
is actually in use. 
The next stage is localisation. When the system is powered up somewhere in the 
environment, it takes a new image with its camera. This image is rapidly compared with all 
the images in the environment map, and an hypothesis is formed about the present location 
of the mobile robot. This hypothesis is refined using Bayes’ rule as soon as the robot starts to 
move and new images come in. 
When the present location of the robot is known and a goal position is communicated by the 
user to the robot, a path can be planned towards that goal using the map. The planned route 
is specified as a sequence of training images, serving as a reference for what the robot 
should subsequently see if on course. This path is executed by means of a visual servoing 
algorithm: each time a visual homing procedure is executed towards the location where the 
next path image is taken. 
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Figure 2. Overview of the navigation method  

The remainder of this chapter is organised as follows. The next section gives an overview of 
the related work. In section 3, our core image analysis and matching technique is explained: 
fast wide baseline matching. The sections thereafter describe the different stages of our 
approach. Section 4 discusses the map building process, section 5 explains the localisation 
method, section 6 describes the path planning, and section 7 details the visual servoing 
algorithm. We conclude with an overview of experimental results (section 8) and a 
conclusion (section 9). 

2 Related Work 
2.1 Image comparison 
A good image comparison method is of utmost importance in a vision-based navigation 
approach. Global methods compute a measure using all the pixels of the entire image. 
Although these methods are fast, they cannot cope with e.g. occlusions and severe 
viewpoint changes. On the other hand, techniques that work at a local scale, extracting and 
recognising local features, can be made robust to these effects. The traditional disadvantage of 
these local techniques is time complexity. In our approach, we combine novel global and 
local approaches resulting in fast and accurate image comparison. 

2.1.1 Global techniques 
Many researchers use global image comparison techniques. Straightforward global methods 
like histogram-based matching, used by (Ulrich & Nourbakhsh, 2000) don’t seem distinctive 
enough for our application. Another popular technique is the use of an eigenspace 
decomposition of the training images (Jogan & Leonardis, 1999), which yields a compact 
database. However, these methods proved not useful in general situations because they are 
not robust enough against occlusions and illumination changes. That is why (Bischof et al., 



Mobile Robots Motion Planning, New Challenges 

 

66 

2001) developed a PCA-based image comparison that is robust against partial occlusions, 
respectively varying illumination. 

2.1.2 Local techniques 
A solution to be able to cope with partial occlusions is comparing local regions in the 
images. The big question is how to detect these local features, also known as visual 
landmarks. 
A simple solution to do this is by adding artificial markers to strategically chosen places in 
the world. In this project we use natural landmarks, extracted from the scene itself, without 
modifications. Moreover, the extraction of these landmarks must be automatic and robust 
against changes in viewpoint and illumination to ensure the detection of these landmarks 
under as many circumstances as possible. 
Many researchers proposed algorithms for natural landmark detection. Mostly, local regions 
are defined around interest points in the images. The characterisation of these local regions 
with descriptor vectors enables the regions to be compared across images. Differences 
between approaches lie in the way in which interest points, local image regions, and 
descriptor vectors are extracted. An early example is the work of (Schmid et al., 1997), where 
geometric invariance was still under image rotations only. Scaling was handled by using 
circular regions of several sizes. (Lowe, 1999) extended these ideas to real scale-invariance. 
More general affine invariance has been achieved in the work of Baumberg (Baumberg, 
2000°), Tuytelaars & Van Gool (Tuytelaars et al., 1999; Tuytelaars & Van Gool, 2000), Matas 
(Matas et al.,2002), and Mikolajczyk & Schmid (Mikolajczyk & Schmid, 2002). 
Although these methods are capable to find high quality correspondences, most of them are 
too slow to use in a real-time mobile robot algorithm. That is why we propose a much faster 
alternative, as explained in section 3. 

2.2 Map structure 
Many researchers proposed different ways to represent the environment perceived by 
vision sensors. We can order all possible map organisations by metrical detail: from dense 
3D over sparse 3D to topological maps. We believe that the outer topological end of this 
spectrum offers the top opportunities. 
One approach is building dense 3D models out of the incoming visual data (Pollefeys et al., 
2004; Nistér et al., 2004). Such approach has some disadvantages. It is computationally and 
memory demanding, and fails to model planar and less-textured parts of the environment 
such as walls. Nevertheless, these structures are omnipresent in our application, and 
collisions need to be avoided. 
One way to reduce the computational burden is to make abstraction of the visual data. 
Instead of modelling a dense 3D model containing billions of voxels, a sparse 3D model is 
built containing only special features, called visual landmarks. 
Examples of researchers solving the navigation problem with sparse 3D maps of natural 
landmarks are (Se et al., 2001) and (Davison, 2003). They position natural features in a 
metrical frame, which is as big as the entire mapped environment. Although less than the 
dense 3D variant, these methods are still computationally demanding for large 
environments since their complexity is quadratic in the number of features in the model. 
Also, for larger models the metric error accumulates, so that feature positions are drifting 
away. 
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As a matter of fact, the need for explicit 3D maps in navigation is questionable. One step 
further in the abstraction of environment information is the introduction of topological 
maps. The psychological experiments of (Bülthoff et al., 1998) show that people rely more on 
a topological map than a metrical one for their navigation. In these topological maps, locally 
places are described as a configuration of natural landmarks. These places form the nodes of 
the graph-like map, and are interconnected by traversable paths. Other researchers (Vale & 
Ribeiro, 2003; Ulrich & Nourbakhsh, 2000; Kosecká & Yang, 2004) also chose for topological 
maps, mainly because they scale better to real-world applications than metrical, 
deterministic representations, given the complexity of unstructured environments. Other 
advantages are the ease of path planning in such a map and the absence of drift. 

2.3 Toplogical map building 
Vale (Vale & Ribeiro, 2003) developed a clustering-based method for automatic building of a 
topological environment map out of a set of images. Unfortunately, the latter method is only 
suited for image comparison techniques which are a metric function, and does not give 
correct results if self-similarities are present in the environment, i.e. places that are different 
but look similar. 
Very popular are various probabilistic approaches of the topological map building problem. 
(Ranganathan et al., 2005) for instance use Bayesian inference to find the topological 
structure that explains best a set of panoramic observations, while (Shatkay & Kaelbling, 
1997) fit hidden Markov models to the data. If the state transition model of this HMM is 
extended with robot action data, the latter can be modeled using a partially observable 
Markov decision process or POMDP, as in (Koenig & Simmons, 1996; Tapus & Siegwart, 
2005). (Zivkovic et al., 2005) solve the map building problem using graph cuts. 
In contrast to these global topology fitting approaches, an alternative way is detecting loop 
closings. During a ride through the environment, sensor data is recorded. Because it is 
known that the driven path is traversable, an initial topological representation consists of 
one long edge between start and end node. Now, extra links are created where a certain 
place is revisited, i.e. an equivalent sensor reading occurs twice in the sequence. This is 
called a loop closing. A correct topological map results if all loop closing links are added. 
Also in loop closing, probabilistic methods are introduced to cope with the uncertainty of 
link hypotheses and avoid links at self-similarities. (Chen & Wang, 2005), for instance, use 
Bayesian inference. (Beevers & Huang, 2005) recently introduced Dempster-Shafer 
probability theory into loop closing, which has the advantage that ignorance can be 
modelled and no prior knowledge is needed. Their approach is promising, but limited to 
simple sensors and environments. In this chapter, we present a new framework for loop 
closing using rich visual sensors in natural complex environments, which is also based on 
Dempster-Shafer mathematics but uses it differently. 

2.4 Visual Servoing 
As explained in section 1.2, the execution of a path using such a topological environment 
map boils down to a series of visual servoing operations between places defined by images. 
(Cartwright & Collett, 1987) proposed the so-called bearing-only ’snapshot’ model, inspired 
by the visual homing behaviour of insects such as bees and ants. Their proposed algorithm 
consists of the construction of a home vector, computed as the average of landmark 
displacement vectors. (Franz et al., 1998) analysed the computational foundations of this 
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method and derived its error and convergence properties. They conclude that every visual 
homing method based solely on bearing angles of landmarks like this one, inevitably 
depends on basic assumptions such as equal landmark distances, isotropic landmark 
distribution or the availability of an external compass reference. Unfortunately, because 
none of these assumptions generally hold in our targeted application we propose an 
alternative approach. 
If both image dimensions are taken into account, not limiting the available information to 
the bearing angle, the most obvious choice is working via epipolar geometry estimation (e.g. 
Tuytelaars et al., 1999; Basri et al., 1993). Unfortunately, in many cases this problem is ill 
conditioned. A workaround for planar scenes is presented by (Sagüés et al., 2005), who 
opted for the estimation of homographies. (Svoboda et al., 1998) proved that motion 
estimation with omnidirectional images is much better conditioned compared to perspective 
cameras. That is why we chose a method based on omnidirectional epipolar geometry. 
Other work in this field is the research of (Mariottini et al., 2005), who split the homing 
procedure in a rotation phase and a translation phase, which can not be used in our 
application because of the non-smooth robot motion. 

3. Fast wide baseline matching 
The novel technique we use for image comparison is fast wide baseline matching. This key 
technique enables extraction of natural landmarks and image comparison for our map 
building, localisation and visual servoing algorithms. 
We use a combination of two different kinds of wide baseline features, namely a rotation 
reduced and colour enhanced form of Lowe’s SIFT features (Lowe, 1999), and the invariant 
column segments we developed (Goedemé et al., 2004). These techniques extract local regions 
in each image, and describe these regions with a vector of measures which are invariant to 
image deformations and illumination changes. Across different images, similar regions can 
be found by comparing these descriptors. This makes it possible to find correspondences 
between images taken from very different positions, or under different lighting conditions. 
The crux of the matter is that the extraction of these regions can be done beforehand on each 
image separately, rather than during the matching. Database images can be processed off-
line, so that the images themselves do not have to be available at the time of matching with 
another image. 

3.1 Camera motion constraint 
The camera we use is a catadioptric system, consisting of an upward looking camera with a 
hyperboloidal mirror mounted above it. The result is a field of view of 360° in horizontal 
direction and more than 180° in vertical direction. The disadvantage is that these images 
contain severe distortions, as seen for instance in fig. 5. 
We presume the robot to move on one horizontal plane. The optical axis of the camera is 
oriented vertically. In other words, allowed movements consist of translations in the plane 
and rotation around a vertical axis. Figure 3 shows an illustration on this. 
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Figure 3.  Illustration of the allowed movements of the camera 

3.2 Rotation reduced and colour enhanced SIFT 
David Lowe presented the Scale Invariant Feature Transform (Lowe, 1999), which finds 
interest points around local extrema in a scale-space of difference-of-Gaussian (DoG) 
images. The latter tend to correspond to blobs which contrast with their background. A 
dominant gradient orientation and scale factor define an image patch around each interest 
point so that a local image descriptor can be found as a histogram of normalised gradient 
orientations. SIFT features are invariant to rotation and scaling, and robust to other 
transformations. 
A reduced form of these SIFT features for use on mobile robots is proposed by (Ledwich & 
Williams, 2004). They used the fact that rotational invariance is not needed for a camera 
with a motion constraint as in fig. 3. Elimination of the rotational normalisation and 
rotational part of the descriptor yields a somewhat less complex feature extraction and more 
robust feature matching performance. 
Because the original SIFT algorithm works on greyscale images, some mismatches occur at 
similar objects in different colours. That is why we propose an outlier filtering stage using a 
colour descriptor of the feature patch based on global colour moments, introduced by 
Mindru et al. [32]. We chose three colour descriptors: CRB, CRG and CGB, with  

  (1) 

where P,Q∈{R,G,B}, i.e. the red, green, and blue colour bands, centralised around their 
means. After matching, the correspondences with Euclidean distance between the colour 
description vectors above a fixed threshold are discarded. 
We tested these algorithms on the image pair in fig. 5. With the original SIFT algorithm, the 
first 13 matches are correct. Using our rotation reduced and colour enhanced algorithm, we 
see that up to 25 correct matches are found without including erroneous ones. 

3.3 Invariant column segments 
We developed wide baseline features which are specially suited for mobile robot navigation. 
There we exploited the special camera motion (section 3.1) and the fact that man-made 
environments contain many vertical structures. Examples are walls, doors, and furniture. 
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These don’t have to be planar, so cylindrical elements like pillars do comply too. Vertical 
lines in the world always project to radial lines in the omnidirectional image for the 
constrained camera motions. 
Here, these new wide baseline features are described for the use on omnidirectional images. 
More details and how they can be used on perspective camera images are described in 
(Goedemé et al, 2004). The extraction process of the wide baseline features starts as 
illustrated in figure 4. We stress that every step is invariant to changes in viewpoint and 
illumination. Along every line through the centre of the original image (left), we look for 
points having a local maximum gradient value (centre). Every consecutive pair of gradient 
maxima along the line defines the begin and end of a new invariant column segment (right). 

 
Figure 4.  Illustration of the invariant column segment extraction algorithm: (left) part of the 
original image, the white cross identifies the projection centre, (centre) local maxima of the 
gradient for one radius, (right) one pair of maxima defines a column segment 

We characterise the extracted column segments with a descriptor that holds information 
about colour and intensity properties of the segment. This 10-element vector includes: 
- Three colour invariants. To include colour information in the descriptor vector, we compute 
the colour invariants, based on generalised colour moments (equation 1), over the column 
segment. To include information about the close neighbourhood of the segment, the line 
segment is expanded on both sides with a constant fraction of the segment length (in our 
experiments 0.2). Figure 4 (right) shows this. 
- Seven intensity invariants. To characterise the intensity profile along the column segment, 
the best features to use are those obtained through the Karhunen-Lòeve transform (PCA). 
But because all the data is not known beforehand this is not practical. As is well known, the 
Fourier coefficients can sometimes offer a close approximation of the KL coefficients. In our 
method, because it is computationally less intensive and gives real output values, we choose 
to use the seven first coefficients of the discrete cosine transform (DCT), instead of Fourier.  
In many cases there are horizontally constant elements in the scene. This leads to many very 
resembling column segments next to each other. To avoid matching over and over again 
very similar line segments, we first do a clustering of the line segments in each image. As a 
clustering measure we use the Mahalanobis distance of the descriptor vectors, extended 
with the horizontal distance between the line segments. In each cluster a prototype segment 
is chosen for use in the matching procedure. 
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3.4 Matching 
These two kinds of local wide baseline features are very suited to quickly find 
correspondences between two widely separated images. A correspondence pair is 
established if for both features the other is the closest to it in the feature space, for the entire 
data set. Also, this match must be at least a fixed ratio better than the second best match. To 
be able to cope with different ranges of the elements of the descriptor vectors, distances are 
computed using the Mahalanobis measure (where we assume the cross-correlations to be 
zero): 

  (2) 

To speed up the matching, a Kd-tree of the reference image data is built. 
Fig. 5 shows the matching results on a pair of omnidirectional images. As seen in these 
examples, the SIFT features and the column segments are complementary, which pleads for 
the combined use of the two. The computing time required to extract features in two 
320x240 images and find correspondences between them is about 800 ms for the enhanced 
SIFT features and only 300 ms for the vertical column segments (on a 800 MHz laptop). 
Typically 30 to 50 correspondences are found.  

 
Figure 5. A pair of omnidirectional images with colour-coded corresponding column 
segments (radial lines) and SIFT features (circles with tail) 

For the description of a feature only the descriptors are used in the end, and not the 
underlying pixel data. As a result, the memory requirements for storing the reference 
images of entire environments can be kept limited. 

4. Map Building 
The navigation approach proposed is able to automatically construct a topological world 
representation out of a sequence of training images. During a training tour through the 
entire environment, omnidirectional images are taken at regular time intervals. The order of 
the training images is known. Section 4.1 describes the map structure targeted. In section 
4.2, the image comparison technique based on fast wide baseline features is described which 
is used by the actual map building algorithm, presented in section 4.3. 
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4.1 Topological Maps 
To be of use in the following parts of the navigation method, the topological map must 
describe all ‘places’ in the environment and the possible connections between these places. 
The topology of the world, being the maze of streets in a city or the structure of a house, 
must be reflected in the world model. The question remains what exactly is meant with such 
a place and how to delimit it. In a building, a place can be defined as a separate room. But 
then, what to do with long corridors, and outdoors with city streets?  
That is why we define a place with regard to the needs of the localisation and locomotion 
algorithms. To be able to get a sufficiently detailed localisation output, the sampling of 
places must be dense enough. For the locomotion algorithm, which performs visual homing 
between two places at a time, the distance between these places must be not too big to 
ensure errorless motion. On the other hand, a compact topological map with fewer places 
requires less memory and enables faster localisation and path planning. 
We discuss the image comparison method used in the map building algorithm before 
deciding on this place definition, as this comparison will lie at its basis. 

4.2 Image Comparison Measure 
The main goal of this section is to determine for each arbitrary pair of images a certain 
similarity measure, which tells how visually similar the two images are. Our image 
comparison approach consists of two levels, a global and a local comparison of the images. 
We first compare two images with a coarse but fast global technique. After that, a relatively 
slower comparison with more precision based on local features only has to be carried out on 
the survivours of the first stage. 

4.2.1 Global colour similarity measure 
To achieve a fast global image similarity measure between two images, we compute the 
same moments we used for the local features (equation 1) over the entire image. These 
moments are invariant to illumination changes, i.e. offset and scaling in each colour band. 
The Euclidean distance between two sets of these image colour descriptors gives a visual 
dissimilarity measure between two images. 
With this dissimilarity measure, we can clearly see for instance the difference of images 
taken in different rooms. Because images taken in the same room but at different positions 
have approximately the same colour scheme, a second dissimilarity measure based on local 
features is needed to distinguish them. 

4.2.2 Local measure based on matches 
First, we search for feature matches between the two images, using the techniques described 
in section 3. The dissimilarity measure is taken to be inversely proportional to the number of 
matches, relative to the average number of features found in the images. Also the difference 
in relative configuration of the matches is taken into account. Therefore, we first compute a 
global angular alignment of the images by computing the average angle difference of the 
matches. The dissimilarity measure Dm is now also made proportional to the average angle 
difference of the features after this global alignment:  
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(3) 

 
(4) 

,where N corresponds to the number of matches found, ni the number of extracted features 
in image i, and θ the angle difference for one match after global alignment. 

4.2.3 Combined dissimilarity measure 
We combine these two measures: only those pairs of images who have a colour dissimilarity 
under a predefined threshold are candidates for computing a matching dissimilarity. 
This combined visual distance between two images is related to the physical distance 
between the corresponding viewpoints, but is certainly not a linear measure for it. As a 
matter of fact, the disparity and appearance difference of features is also related to the 
distance of the corresponding natural landmark to the cameras. Therefore, in large spaces 
(halls, market squares), a certain visual distance will be corresponding to a much larger 
physical distance, compared to the same visual distance between two images in a small 
space. 
With this visual distance, the place definition problem in section 4.1 can be addressed on the 
basis of a constant visual distance between places instead of a constant physical distance. 

4.3 Map Building Algorithm 
We apply the mathematical theory of Demster and Shafer (Dempster, 1967; Shafer, 1976) on 
the topological map building problem posed. Out of a series of omnidirectional images, 
acquired at constant rate during a tour through the environment. Firstly, these images are 
clustered into places. Then, loop closing hypotheses are formulated between visually similar 
places of which evidence is collected using Dempster-Shafer theory. Once decisions are 
made about these hypotheses, the correct topology of the world is known. 
This technique makes it possible to cope with self-similar environments. Places that look 
alike but are different will more likely get their link hypothesis rejected. 

4.3.1 Image clustering 

 
Figure 6. Example for the image clustering and hypothesis formulation algorithms. Dots are 
image positions, black is exploration path, clusters are visualised with ellipses, prototypes of 
(sub)clusters with a star. Hypotheses are denoted by a dotted red line 
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The dots in the sketch figure of 6 denote places where images are taken. Because they were 
taken at constant time intervals and the robot did not drive at a constant speed, they are not 
evenly spread. We perform agglomerative clustering with complete linkage based on the 
combined visual distance (see section 4.2.3) on all the images, yielding the ellipse shaped 
clusters in fig. 6. The black line shows the exploration path as driven by the robot.  

4.3.2 Hypothesis formulation 
As can be seen in the lower part of fig. 6, not all image groups nicely cover one distinct 
place. This is due to self-similarities, or distinct places in the environment that are different 
but look alike and thus yield a small visual distance between them. 
For each of the clusters, we can define one or more subclusters. Images within one cluster 
which are linked by exploration path connections are grouped together. For each of these 
subclusters a prototype image is chosen as the medoid1 based on the visual distance, denoted 
as a star in the figure. 
For each pair of these subclusters within the same cluster, we define a loop closing hypothesis 
H, which states that if H=true, the two subclusters describe the same physical place and 
must be merged together. We will use Dempster-Shafer theory to collect evidence about 
each of these hypotheses. 

4.3.3 Dempster-Shafer evidence collection 
For each of the hypotheses defined in the previous step, a decision must be made if it was 
correct or wrong. Figure 7 illustrates four possibilities for one hypothesis. We observe that a 
hypothesis has more chance to be true if there are more hypotheses in the neighbourhood, 
like in case a and b. If no neighbouring hypotheses are present (c,d), no more evidence can be 
found and no decision can be made based on this data. 

 
Figure 7.  Four topological possibilities for one hypothesis 

We conclude that for a certain hypothesis, a neighbouring hypothesis adds evidence to it. It 
is clear that, the further away this neighbour is from the hypothesis, the less certain the 
given evidence is. We chose to model this subjective uncertainty by means of the ignorance 
notion in Dempster-Shafer theory. That is why we define an ignorance function ξ containing 
the distance between two hypotheses Ha and Hb: 

  (8) 

                                                                 
1The medoid of a cluster is computed analogous to the centroid, but using the median instead of the 
average. 
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where dth is a distance threshold and dH is the sum of the distances between the two pairs of 
prototypes of both hypotheses, measured in number of exploration images. 
To gather aleatory evidence, we look at the visual similarity of both subcluster prototypes, 
normalised by the standard deviation of the intra-subcluster visual similarities. The visual 
similarity  is the inverse of the visual distance, defined in equation 3. 
Each neighbouring hypothesis Hb yields the following set of Dempster-Shafer masses, to be 
combined with the masses of the hypothesis Ha itself:  

  (9) 

Hypothesis masses are initialised with the visual similarity of its subcluster prototypes and 
an initial ignorance value (0.25 in our experiments), which models its influenceability by 
neighbours. 

4.4 Hypothesis decision 
After combination of each hypothesis’s mass set with the evidence given by neighbouring 
hypotheses (up to a maximum distance dth), a decision must be made if this hypothesis was 
correct and thus if the subclusters must be united into one place or not. 
Unfortunately, as stated above, only positive evidence can be collected, because we can not 
gather more information about totally isolated hypotheses (like c and d in fig. 7). This is not 
too bad, because of different reasons. Firstly, the chance for correct, but isolated hypothesis 
(case c) is low in typical cases. Also, adding erroneous loop closings (c and d) will yield an 
incorrect topological map, whereas leaving them out will keep the map useful for 
navigation, but a bit less complete. Of course, new data about these places can be aqcuired 
later, during navigation. 
It is important to remind oneself that the computed Dempster-Shafer masses can not 
directly be interpreted as probabilities. That is why we compute the support and plausibility 
of each hypothesis after evidence collection. Because these values define a confidence 
interval for the real probability, a hypothesis can be accepted if the lower bound (the 
support) is greater than a threshold. 
After this decision, a final topological map can be built. Subclusters connected with accepted 
hypotheses are merged into one place, and a new medoid is computed as prototype of it. 
For hypotheses that are not accepted, two distinct places should be constructed. 

5. Localisation 
When the system has learnt a topological map of an environment, this map can be used for a 
variety of navigational tasks, firstly localisation. For each arbitrary new position in the 
known environment, the system can find out where it is. The output of this localisation 
algorithm is a location, which is—opposed to other methods like GPS—not expressed as a 
metric coordinate, but as one of the topological places defined earlier in the formerly 
explained map building stage. 
The training set doesn’t need to cover every imaginable position in the environment. A 
relatively sparse coverage is sufficient to localise every possible position. That is because the 
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image comparison method we developed is based on wide baseline techniques and hence 
can recognise scene items from substantially different viewpoints. 
Actually, two localisation modes exist. When starting up the system, there is no a priori 
information on the location. Every location is equally probable. This is called global 
localisation, alias the kidnapped robot problem. Traditionally, this is known to be a hard 
problem in robot localisation. In contrast, if there is knowledge about a former localisation 
not too long ago, the locations in the proximity of that former location have a higher 
probability than others further away. This is called location updating. 
We propose a system that is able to cope with both localisation modes. A probabilistic 
approach is taken. Instead of making a hard decision about the location, a probability value 
is given to each location at each time instant. The Bayesian approach we follow is explained 
in the next subsection. 

5.1 Bayesian Filtering 
Define x∈X a place of the topological map. Z is the collection of all omnidirectional images 
z, so that z(x) corresponds to the training observation at place x. At a certain time instant t, 
the system acquires a new image zt. The goal of the localisation algorithm is to reveal the 
place xt where this image was taken. 
We define the Belief function Bel(x,t) as the probability of being at place x at time t, given all 
previous observations. So,  

  (10) 

for all x∈X. In the kidnapped robot case, there is no knowledge about previous observations 
hence Bel(x,t0) is initialised equal for all x. 
Using Bayes’ rule, we find:  

  
(11)

 
Because the denominator of this fraction is not dependent on x, we replace it by the 
normalising constant η. If we know the current location of the system, we assume that 
future locations do not depend on past locations. This property is called the Markov 
Assumption. Using it, together with the probabilistic sum rule, equation 11 yields: 

  
(12) 

This allows us to calculate the belief recursively based on two variables: the next state density 
or motion model P(xt|xt-1) and the sensor model P(zt|xt-1). 

5.2 Motion Model 
The motion model P(xt|xt-1) explicits the probability of a transition from one place xt-1 to 
another xt. It seems logical to assume that a transition in one time instant between places 
that are far from each other is less probable than between places close to each other. We 
model this effect with a Gaussian:  
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(13) 

In this equation, the function dist(x1,x2) corresponds to a measurement of the distance 
between the two places. We approximate it as the minimum number of place transitions 
needed to go from x1 to x2 on the topological map, computed with the Dijkstra algorithm 
(Dijkstra, 1959). In equation 13, βx is a normalisation constant, and σx2 is the variance of the 
distances, measured on the map data. Once the topological map is known, the complete 
motion model can be computed off-line for usage during localisation. 

5.3 Sensor Model 
The entity P(zt|xt-1), called the sensor model, is the probability of acquiring a certain 
observation zt if the location xt-1 is known. This is related to the visual dissimilarity of that 
observation  and the training observation  at location . The probability of acquiring an image 
at a certain place that differs much from the training image taken at that place has a low 
probability. We model this sensor model also by a Gaussian: 

  
(14) 

This time, the function diss(z1,z2) refers to the visual dissimilarity explained in section 4.2.3. 
Unlike the motion model, the sensor model cannot be computed beforehand. It depends on 
the newly incoming query image data. Every location update step the visual dissimilarities 
of the query image with many database images must be computed. This validates our efforts 
to make the computation of the visual dissimilarity measure as fast as possible. 

6. Path planning 
With the method of the previous section, at each time instant the most probable location of 
the robot can be found, from which a path to a goal can be determined. How the user of the 
system, for instance the wheelchair patient, gives the instruction to go towards a certain goal 
is highly dependent on the situation. For every disabled person, for instance, an individual 
interface must be designed adapted to his/her possibilities. 
We assume a certain goal is expressed as a certain place of the topological map, e.g. as a 
voice command <<Kitchen! >>. From the present pose, computed by the localisation 
algorithm, a path can be easily found towards it using Dijkstra’s algorithm (Dijkstra, 1959). 
This path is expressed as a series of topological places which are traversed. 

7. Visual servoing 
The algorithm described in this section makes the robot move along a path, computed by 
the previous section. Such a path is given as a sparse set of prototype images of places. The 
physical distance between two consecutive path images is variable (1 to 5 metres in our 
tests), but the visual distance is constant, such that there are enough local feature matches as 
needed by this algorithm. 
It is easy to see that following such a sparse visual path boils down to a succession of visual 
homing operations. First, the robot is driven towards the place where the first image on the 
path is taken. When arrived, it is driven towards the next path image, and so on. Because a 
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smooth path is desired for the application, the motion must be continuous without stops at 
path image positions. 
We tackle this problem by estimating locally the spatial structure of the wide baseline 
features using epipolar geometry. Hence, at this point we bring in some 3D information. 
This may seem at odds with our topological approach, but the depth maps are very sparse 
and only calculated locally so that errors are kept local, don’t suffer from error build-up, and 
are efficient to compute. 

 
Figure 8.  Flowchart of the proposed algorithm for visual servoing along a path 

Fig. 8 offers an overview of the proposed method. Each of the visual homing operations is 
performed in two phases, an initialisation phase (section 7.1) and an iterated motion (section 
7.2) phase. 

7.1 Initialisation phase 
From each position within the reach of the next path image (the target image), a visual 
homing procedure can be started. Our approach first establishes wide baseline local feature 
correspondences between the present and the target image, as described in section 3. That 
information is used to compute the epipolar geometry, which enables us to construct a local 
map containing the feature world positions, and to compute the initial homing vector. 

7.1.1 Epipolar geometry estimation 
Our calibrated single-viewpoint omnidirectional camera is composed of a hyperbolic mirror 
and a perspective camera. As imaging model, we use the model proposed by (Svoboda & 
Pajdla, 1998). This enables the computation of the epipolar geometry based on 8 point 
correspondences. In (Svoboda, 1999), Svoboda describes a way to robustly estimate the 
essential matrix E, when there are outliers in the correspondence set. The essential matrix is 
the equivalent of the fundamental matrix in the case of known internal camera calibration, . 
Svoboda’s so-called generate-and-select algorithm to estimate E is based on repeatedly solving 
an overdetermined system built from the correspondences that have a low ‘outlierness’ and 
evaluating the quality measure of the resulting essential matrix. Because our tests with this 
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method did not yield satisfactory results, we implemented an alternative method based on 
the well-known Random Sample Consensus (RANSAC (Fischler & Bolles, 1981)) paradigm.  

 
Figure 9. Projection model for a pair of omnidirectional images 

The set-up is sketched in fig. 9. One visual feature with world coordinates X is projected via 
point u on the first mirror to point p in the image plane of the first camera. In the second 
camera, the mirror point is called v and the image plane point q. For each of the 
correspondences, the mirror points u and v can be computed as  

  (15) 

with tC=[0,0,-2e]T and  

  (16) 

In these equations K is the internal calibration matrix of the camera, and a, b and e are the 
parameters of the hyperbolic mirror. 
If E is the essential matrix, for all correspondences vTEu=0. This yields for each 
correspondence pair one linear equation in the coefficients of E=[eij]. 
For each random sample of 8 correspondences, an E matrix can be calculated. This is 
repeatedly done and for each E matrix candidate the inliers are counted. A correspondence 
is regarded an inlier if the second image point q lies within a predefined distance from the 
epipolar ellipse, defined by the first image point q. This epipolar ellipse B with equation 
xTBx=0 is computed with B=  

  (17) 

From the one essential matrix E with the maximal number of inliers the motion between the 
cameras can be computed using the SVD based method proposed by (Hartley,1992). If more 
than one E-matrix is found with the same maximum number of inliers, the one is chosen 
with the best (i.e. smallest) quality measure , where  is the ith singular value of the matrix E. 
Out of this relative camera motion, a first estimate of the homing vector is derived. During 
the motion phase this homing vector is refined. 
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7.1.2 Local feature map estimation 
In order to start up the succession of tracking iterations, an estimate of the local map must 
be made. In our approach the local feature map contains the 3D world positions of the visual 
features, centred at the starting position of the visual homing operation. These 3D positions 
are easily computed by triangulation. 
We only use two images, the first and the target image, for this triangulation. This has two 
reasons. Firstly, these two have the widest baseline and therefore triangulation is best 
conditioned. Our wide baseline matches between these two images are also more plentiful 
and less influenced by noise than the tracked features. 

7.2 Motion phase 
Then, the robot is put into motion in the direction of the homing vector and an image 
sequence is recorded. We rely on lower-level collision detection, obstacle avoidance and 
trajectory planning algorithms to drive safely (Demeester et al., 2003). In each new incoming 
image the visual features are tracked. Robustness to tracking errors (caused by e.g. 
occlusions) is achieved by reprojecting lost features from their 3D positions back into the 
image. These tracking results enable the calculation of the present location and from that the 
homing vector towards which the robot is steered. 
When the (relative) distance to the target is small enough, the entire homing procedure is 
repeated with the next image on the sparse visual path as target. If the path ends, the robot 
is stopped at a position close to the position where the last path image was taken. This 
yields a smooth trajectory along a sparsely defined visual path. 

7.2.1 Feature tracking 
The corresponding features found between the first image and the target image in the 
previous step, also have to be found in the incoming images during driving. This can be 
done very reliably performing every time wide baseline matching with the first or target 
image, or both. Although our methods are relatively fast this is still too time-consuming for 
a driving robot. 
Because the incoming images are part of a smooth continuous sequence, a better solution is 
tracking. In the image sequence, visual features move only a little from one image to the 
next, which enables to find the new feature position in a small search space. 
A widely used tracker is the KLT tracker of (Shi & Tomasi, 1994). KLT starts by identifying 
interest points (corners), which then are tracked in a series of images. The basic principle of 
KLT is that the definition of corners to be tracked is exactly the one that guarantees optimal 
tracking. A point is selected if the matrix  

  (18) 

containing the partial derivatives of the image intensity function over an N×N 
neighbourhood, has large eigenvalues. Tracking is then based on a Newton-Raphson style 
minimisation procedure using a purely translational model. This algorithm works 
surprisingly fast: we were able to track 100 feature points at 10 frames per second in 320×240 
images on a 1 GHz laptop. 
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Because the well trackable points are not necessarily coinciding with the anchor points of 
the wide baseline features to be tracked, the best trackable point in a small window around 
such an anchor point is selected. In the assumption of local planarity we can always find 
back the corresponding point in the target image via the relative reference system offered by 
the wide baseline feature. 

7.2.2 Recovering lost features 
The main advantage of working with this calibrated system is that we can recover features 
that were lost during tracking. This avoids the problem of losing all features by the end of 
the homing manoeuvre, a weakness of our previous approach (Goedemé et al., 2005). This 
feature recovery technique is inspired by the work of (Davison, 2003), but is faster because 
we do not work with probability ellipses. 
In the initialisation phase, all features are described by a local intensity histogram, so that 
they can be recognised after being lost during tracking. Each time a feature is successfully 
tracked, this histogram is updated. 
When tracking, some features are lost due to invisibility because of e.g. occlusion. Because 
our local map contains the 3D positions of each feature, and the last robot position in that 
map is known, we can reproject the 3D feature in the image. Svoboda shows that the world 
point XC (i.e. the point X expressed in the camera reference frame) is projected on point p in 
the image:  

  (19) 

wherein λ is the largest solution of  

  (20) 

Based on the histogram descriptor, all trackable features in a window around the 
reprojected point p are compared to the original feature. When the histogram distance is 
under a fixed threshold, the feature is found back and tracked further in the next steps. 

7.2.3 Motion computation 
When in a new image the feature positions are computed by tracking or backprojection, the 
camera position (and thus the robot position) in the general coordinate system can be found 
based on these measurements. 
It is shown that the position of a camera can be computed when for three points the 3D 
positions and the image coordinates are known. This problem is know as the three point 
perspective pose estimation problem. An overview of the proposed algorithms to solve it is 
given by (Haralick et al., 1994). We chose the method of Grunert, and adapted it for our 
omnidirectional case. 
Also in this part of the algorithm we use RANSAC to obtain a robust estimation of the 
camera position. Repeatedly the inliers belonging to the motion computed on a three-point 
sample are counted, and the motion with the greatest number of inliers is kept. 
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7.2.4 Robot motion 
In subsection 7.1.1, it is explained how the position and orientation of the target can be 
extracted from the computed epipolar geometry. Together with the present pose results of 
the last subsection, a homing vector can easily be computed. This command is 
communicated to the locomotion subsystem. When the homing is towards the last image in 
a path, also the relative distance and the target orientation w.r.t. the present orientation is 
given, so that the locomotion subsystem can steer the robot to stop at the desired position. 
This is needed for e.g. docking at a table. 

8. Experiments 
8.1 Test platform 
We have implemented the proposed algorithm, using our modified electric wheelchair 
‘Sharioto’. A picture of it is shown in the left of fig. 1. It is a standard electric wheelchair that 
has been equipped with an omnidirectional vision sensor (consisting of a Sony firewire 
colour camera and a Neovision hyperbolic mirror, right in fig. 1). The image processing is 
performed on a 1 GHz laptop. 

8.2 Map building 
The wheelchair was guided around in a large environment, while taking images. The 
environment was a large part of our office floor, containing both indoor and outdoor 
locations. This experiment yielded a database of 545 colour images with a resolution of 
320×240 pixels. The total distance travelled was approximately 450 m. During a second run 
123 images were recorded to test the localisation. A map and some of these images are 
shown in fig. 10.  
After place clustering with a fixed place size threshold (in our experiments 0.5), this resulted 
in a set of 53 clusters. Using the Dempster-Shafer based evidence collection, 6 of 41 link 
hypotheses were rejected, as shown in fig. 11. Fig. 12 shows the resulting 59 place 
prototypes along with the accepted interconnections.  

 
Figure 10.  A map of the test environment with image positions and some of the images 
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Figures 11 (left) and 12 (right). Left: topological loop closing, accepted hypotheses are shown 
in thick black lines, rejected in dashed thin black lines. Right: the resulting topological map, 
locations of the place prototypes with interconnections 

Instead of keeping all the images in memory, the database is now reduced to only the 
descriptor sets of each prototype image. In our experiment, the memory needed for the 
database was reduced from 275 MB to 1.68 MB. 

8.3 Localisation 
From this map, the motion model is computed offline as explained in section 5.2. Now, for the 
separate test set, the accuracy of the localisation algorithm is tested. A typical experiment is 
illustrated in fig. 13.  

 

Figure 13. Three belief update cycles in a typical localisation experiment. The black x 
denotes the location of the new image. Place prototypes with a higher belief value are 
visualised as larger black circles 
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In total, for 78% of the trials the maximum of the belief function was located at the closest 
place at the first iteration, after the second and third belief update this percentage raised to 
89% and 97%. 

8.4 Visual servoing 
8.4.1 Initialisation phase 
During the initialisation phase of one visual homing step, correspondences between the 
present and target image are found and the epipolar geometry is computed. This is shown 
in fig. 14.  

 
Figure 14.  Results of the initialisation phase. Top row: target, bottom row: start. From left to 
right, the robot position, omnidirectional image, visual correspondences and epipolar 
geometry are shown 

To test the correctness of the initial homing vector, we took images with the robot 
positioned at a grid with a cell size of 1 meter. The resulting homing vectors towards one of 
these images (taken at (6,3)) are shown in fig. 15. This proves the fact that even if the images 
are situated more than 6 metres apart the algorithm works thanks to the use of wide baseline 
correspondences. 

 
Figure 15.  Homing vectors from 1-meter-grid positions and some of the images 
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Figure 16. Three snapshots during the motion phase: in the beginning (left), half (centre) and 
at the end (right) of the homing motion. The first row shows the external camera image with 
tracked robot position. The second row shows the computed world robot positions [cm]. 
The third row shows the colour-coded feature tracks. The bottom row shows the sparse 3D 
feature map (encircled features are not lost) 

8.4.2 Motion phase 
We present a typical experiment in fig. 16. During the motion, the top of the camera system 
was tracked in a video sequence from a fixed camera. This video sequence, along with the 
homography computed from some images taken with the robot at reference positions, 
permits calculation of metrical robot position ground truth data. 
Repeated similar experiments showed an average homing accuracy of 11 cm, with a 
standard deviation of 5 cm, after a homing distance of around 3 m. 

8.4.3 Timing results 
The algorithm runs surprisingly fast on the rather slow hardware we used: the initialisation 
for a new target lasts only 958 ms, while afterwards every 387 ms a new homing vector is 
computed. For a wheelchair driving at a cautious speed, it is possible to keep on driving 
while initialising a new target. This resulted in a smooth trajectory without stops or sudden 
velocity changes. 

9. Conclusion 
This chapter describes and demonstrates a novel approach for a service robot to navigate 
autonomously in a large, natural complex environment. The only sensor is an 
omnidirectional colour camera. As environment representation, a topological map is chosen. 
This is more flexible and less memory demanding than metric 3D maps. Moreover, it does 
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not show error build-up and enables fast path planning. As natural landmarks, we use two 
kinds of fast wide baseline features which we developed and adapted for this task. Because 
these features can be recognised even if the viewpoint is substantially different, a limited 
number of images suffice to describe a large environment. 
Experiments show that our system is able to build autonomously a map of a natural 
environment it drives through. The localisation ability, with and without knowledge of 
previous locations, is demonstrated. With this map, a path towards each desired location 
can be computed efficiently. Experiments with a robotic wheelchair show the feasibility of 
executing such a path as a succession of visual servoing steps. 
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1. Introduction     
Wheeled Mobile Robots (WMR) have been widely studied in the past fifteen years. Due to 
kinematic constraints, many WMR are not integrable (non-holonomic). Therefore, standard 
techniques developed for robot manipulators are not directly applicable. In particular, the 
motion planning of WMR is still a relevant issue. Examples of motion planning for WMR are 
available in the literature (Latombe, 1991; Laumond et al., 1997; Gracia & Tornero, 2003; 
Borenstein & Koren, 1989). On the other hand, the singularity of WMR kinematics must be 
avoided since it implies slip or impossible control actions (Gracia & Tornero, 2007a). In the 
same way, in the vicinity of singularities there is high amplification of active joints’ error or 
high values for active joints. Therefore, the aim of the present research is to develop a 
practical approach for motion planning of WMR based on avoiding singularities. The 
chapter is organized as follows. Section 2 presents the kinematics of WMR considering four 
types of wheels: fixed, centered orientable (hereinafter orientable), castor and Swedish. 
Afterwards, section 3 discusses the possibilities for motion planning and develops a cost 
index based on singularity. To illustrate the applications of the proposed motion planning 
an industrial forklift is considered and several simulation results are shown. Finally, section 
4 points out the more outstanding contributions of this research. 

2. Kinematics of Wheeled Mobile Robots 
Firstly it will be introduced some terminology. Assuming horizontal movement, the 
position of the WMR body is completely specified by 3 scalar variables (e.g. x, y, θ), referred 
to in  (Campion et al., 1996) as WMR posture, p in vector form. Its first-order time derivative 
is called WMR velocity vector p  and separately (vx, vy, ω) WMR velocities (Muir & Neuman, 
1987). Similarly, for each wheel, wheel velocity vector and wheel velocities are defined. 

2.1 Kinematic models of wheels 
The kinematic modeling of a wheel is used as a previous stage for modeling the whole 
WMR (Gracia & Tornero, 2007a; Campion et al., 1996; Muir & Neuman, 1987; Alexander & 
Maddocks, 1989). Here, the four common wheels will be considered: fixed, orientable, castor 
and Swedish. As it is easy to obtain their equations using a vector approach, e.g. see (Gracia 
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& Tornero, 2007a) among many other possibilities, the detailed development will be 
omitted. The matrix equation of the off-centered orientable wheel or castor wheel is:  

 ( ) ( ) ( )
( ) ( ) ( )slip 

cos δ sin δ l sin δ α d cosδ d cosδ 0 ,sin δ cos δ l cos δ α d sin δ d sin δ r
i i i i i i i i i i i i

i i
i i i i i i i i i i i i i
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⎛ ⎞+ + + − − −⎛ ⎞⎜ ⎟= ⎜ ⎟− + + + − + ⎜ ⎟⎝ ⎠
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p
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where it has been used the parameters of Fig. 1 (a) and the variables of Table 1. 
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Figure 1. Castor wheel parameters:    l , d , α , , δi i i i iβ     Swedish wheel parameters:    l , α , β , γi i i i  

 

                 
Figure 2. Swedish wheel (also called Mecanum, Ilon or universal) with rollers at 45º 

The equation of the orientable wheel can be obtained from (1) with d δ 0i i= = : 

 ( )
( )slip 

cos sin l sin α 0 .sin cos l cos α r
i i i i i

i
ii i i i i i

β β β
ϕβ β β

−⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟− − ⎝ ⎠⎝ ⎠
pv  (2) 

The previous equation is also valid for fixed wheels, where the angle βi is constant. 
The matrix equation of the Swedish wheel (see Fig. 2) is (3) where it has been used the 
parameters of Fig. 1 (b) and the variables and constants of Table 1. 
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Symbol Description 

R Frame attached to the robot body with the Z-axis perpendicular to the 
floor surface 

 R  
Frame attached to the floor and instantaneously coincident with the robot 
frame R. This frame allows to avoid the dependency on a global stationary 
frame (Muir & Neuman, 1987) 

 (Li, Ei) 
Frames attached to the wheel i and to the roller of the Swedish wheel i, 
with the X-axes coincident with their rotation axle 

 p  
 

WMR velocity vector in coordinate frame R , equivalent to  
R R R T

R R R(   )x yv v ω  or T(   )x yv v ω  

 vslip i 
Sliding velocity vector of the wheel in coordinate frame Li (Ei for Swedish 

wheels) 

( , )i iβ ϕ  Angular velocity of the steering link and rotation velocity of the wheel in 
Lxi-axis 

riϕ  Rotation velocity of the rollers in Exi-axis (it is usually a free wheel 
velocity) 

r(r ,  r )i i  Wheel equivalent radius and roller radius  

Table 1. Frames, variables and constants 

 
( ) ( ) ( )
( ) ( ) ( )slip 

r
r

cos β γ sin β γ l sin β γ α r sin γ 0
sin β γ cos β γ l cos β γ α r cos γ r

i i i i i i i i i i
i i

i i i i i i i i i i i
i

ϕ
ϕ

⎛ ⎞+ + + −⎛ ⎞⎜ ⎟= ⎜ ⎟− + + + − ⎜ ⎟⎝ ⎠⎝ ⎠

p
v  (3) 

2.2 Kinematic models of wheeled mobile robots 
Once the type of WMR wheels and their equations are established, a compound kinematic 
equation for the WMR may be defined. Using (1), (2), and (3) we can obtain: 

 ( )
slip 1 p1 w1

w1
slip p w

w
slip N pN wN

wN

0
  ,

0

⎛ ⎞
⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

⎝ ⎠

p
v A A

q p
v A A A q

q
v A A

q

 (4) 

where N is the number of wheels; vslip is the composite sliding velocity vector; wiq  is a 

vector with all the wheel velocities of wheel i; wq is the composite vector of all the wheel 

velocities; q  is the vector of all the velocities; {Api, Awi} are the multiplying matrices 
obtained from (1), (2), and (3); {Ap, Aw} are the composite multiplying matrices; and A is the 
WMR kinematic matrix. Under the no-slip condition, the kinematic solution for velocity 
vector q  results in: 

 ⋅ =A q 0  (5) 
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 ∈q N (A) → = ⋅q B η , (6) 

where matrix B forms a basis of N (A), η  is an m-dimensional vector  representing WMR 
mobility, and m is the WMR mobility degree given by the nullity of A: 

 ( )dimm = =η dim(N (A)) ( ) ( )dim rank k g= − = −q A . (7) 

In order to use variables with physical meaning, the mobility vector η  should be replaced 
with a set of freely assigned velocities. Depending on whether wheel velocities or WMR 
velocities are chosen, a forward or inverse kinematic model is obtained. If a mix of both 
types of velocities is chosen a mixed solution is achieved. In order to check if an m-set of 
velocities aq  can be assigned, it must be verified that the determinant of the submatrix they 
define in (5) is non zero, that is: 

 nana

aa

⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

Bq ηBq
 (8) 

 1
a na na a aif  0   ,−≠ → = ⋅ ⋅B q B B q  (9) 

where naq  are the remaining non-assigned velocities of q . 
Alternatively to the previous procedure, based on the null space concept, it is possible to 
apply another method based on separating the m assigned velocities in (5): 

 na na a a = −A q A q . (10) 

To check if an m-set of velocities could be assigned aq , it must be verified that matrix Ana is, 
in general, of full rank g: 

 ( ) ( )narank rank g= =A A . (11) 

Therefore, the singularity of a kinematic model is given by a 0=B in (9) or alternatively 
when matrix Ana in (10) loses its full rank g. In (Gracia & Tornero, 2007a) it is characterized 
the singularity of WMR with a generic geometric approach. 
On the other hand, (Gracia & Tornero, 2007b) consider a kinematic solution with redundant 
information (dim( aq )>m) applying weighted left pseudoinverse to (10): 

 ( )( ) ( )
1T TT T

na na na na na na na a a a   
−

= −q A μ μ A A μ μ A q . (12) 

where ( )na a,μ μ  are the pre-multiplying weight matrices in (10) and, again, singularity 

arises when matrix Ana loses its full rank or equivalently when T
na na 0=A A . 

When singularity arises for an m-set of assigned velocities there are two approaches: 
- Loss of degrees of mobility: in order to avoid incompatibility the assigned velocities are 
coordinated properly, what implies a loss of degrees of mobility.  
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- Kinematics Incompatibility: no type of coordination for the assigned velocities is considered, 
so the kinematic incompatibility is not solved. If the assigned velocities are wheel velocities 
(forward kinematics), slip (due to the incompatibility, not because of accelerations) is 
inevitable. If they are WMR velocities (inverse kinematics), impossible (infinite) control 
action values are obtained. 
In the same way, the singularity of a redundant forward kinematics (12) would produce an 
infinite error in the estimation of the WMR velocity vector. Therefore, it is obtained the 
following criterion: singularity (i.e. mobility degree loss, slip, impossible control actions, or 
infinite error in the estimation) has to be avoided. Moreover, nearness to singularity is neither 
desirable since it implies: high amplification of wheel velocities’ error (redundant and non-
redundant forward kinematics) or high values for wheel velocities (non-redundant inverse 
kinematics). If the singularity depends on the steering angles of orientable or castor wheels 
the previous criterion is a planning criterion, i.e. the upper level planner (path generator) has 
to develop paths not close to singularities, otherwise it becomes design criterion.  

3. Motion Planning 
Given a starting and ending configuration of a given WMR, a motion planning problem 
consists of automatically computing a collision-free path. This gives rise to the famous piano 
mover problem, i.e. any solution appears as a path in the admissible (i.e. collision-free) 
configuration space. Many papers have proposed general, exact, approximate, efficient … 
methods in order to represent and explore this admissible configuration space: e.g. cellular 
decomposition, polygon representation, etc. (see (Latombe, 1991) for a synthesis of these 
approaches). One classical approach is based on tree graphs whose leafs are the WMR 
posture and whose branches are the paths from one posture to another. Then, the planner 
checks, during the construction of the tree graph, if the goal has been achieved. In order to 
avoid the high computational cost of the tree-graph method, it was developed the roadmap 
technique that builds a graph whose nodes are collision-free configurations and whose 
edges denote the presence of collision-free paths between two configurations. The roadmaps 
tend to capture both the coverage and connectivity of the configuration space and replace 
the concept of deterministic completeness by the concept of probabilistic completeness. 
However, numerous classical methods work only when the WMR is holonomic and not 
when there is some non-holonomic constraint between its configuration parameters. In order 
to overcome this, in (Laumond et al., 1997) it is developed a planner that firstly generates a 
collision-free path ignoring the non-holonomic constraints and afterwards the path is 
transformed into one that is feasible with respect to these constraints. 
On the other hand, other planners are specific for one task, e.g. in (Gracia & Tornero, 2003) it is 
presented a planner for parallel parking based on a geometric characterization for collision 
avoidance. Moreover, other types of approaches do not explicitly generate collision-free 
paths; instead, they integrate the WMR motion planning with the WMR control using tools 
like fuzzy, neural networks, reactive architecture, etc. For example, in (Borenstein & Koren, 
1989) it is used artificial potential fields: the WMR is attracted by the objective configuration 
and repelled by the obstacles. If a time value is associated to each point of the path it 
becomes a trajectory; otherwise, a forward constant velocity is usually used across the path.   
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3.1 Proposed cost index 
This research introduces a cost index based on kinematics singularity that is useful for many 
types of planners (based on tree graphs, roadmaps, etc.), since it allows to choose the path 
with minimum cost index among several possible collision-free paths. In the cost index it 
will be weighted the nearness to singularity of forward and inverse kinematics. This will 
allow avoiding singularity and nearness to singularity, i.e. high amplification of the WMR 
velocities’ error or high values for wheel velocities. Similarly to robotic manipulators, the 
singularity of inverse kinematic models can be deal with a null velocity on the path at the 
singularity point, which is equivalent to a loss of degrees of mobility. It implies to stop the 
WMR in order to reorientate it and/or its wheels, as it is pointed out in (Gracia & Tornero, 
2008) for the five types of WMR classified according to (Campion et al., 1996). This may be 
appropriate when there is not much space available (e.g. for parking maneuvers) but not in 
a general case, since it involves an important waste of time. Therefore, this option will not be 
considered here. The nearness to singularity of forward kinematic models produces high 
amplification of the WMR velocities’ error, what implies a tracking error if the assigned 
wheel velocities are actuated wheel velocities or an estimation error if they are sensed wheel 
velocities. Both types of forward models will be considered in the cost index. Therefore, it is 
proposed the following cost index: 

 ( ) ( ) ( ) ( )
N

2 4
6 o 7T

1 1 a 3 ainv fwd act 5 na na fwd sensed 

(N 1) (N 1)1 ( )
 i

i i i i

f i f i
J f f D

f f f=

⎛ ⎞− + − +
= + + + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ β

B B A A
, (13) 

where N is the number of branches/edges of the path in the tree-graph/roadmap; fi is a 
generic non-linear function; |Ba|inv i is the singularity of the inverse kinematic model; 
|Ba|fwd act i is de singularity of the forward models with actuated wheel velocities as 
assigned; T

na na fwd sensed 
 

i
A A  is de singularity of the forward model with redundant sensed 

wheel velocities; o iβ  is the steering velocity vector of all the orientable wheels; and D is the 
length or distance of the collision-free path. Note that, the singularity of forward models has 
been multiplied by fj (N – i +1) since the tracking/estimation error of the initial 
branches/edges is more important because it is propagated across the whole path. 
However, in order to limit the uncertainty of the estimation other global or local position 
sensors are required. Note also that, it has been introduced the steering velocities of the 
orientable wheels because they are not present in the velocity vector q , see (2). 

3.2 Example of motion planning 
The cost index of previous subsection will be obtained for the case of the industrial forklift 
of Fig. 3, which is equivalent to the tricycle WMR, where the origin of R (tracking point) has 
been located at the middle point of the fixed wheels. The traction of this industrial forklift is 
given by both fixed wheels, which are properly coordinated through a differential mechanism 
depending on the steering angle of the orientable wheel. Moreover, this WMR has three 
encoders measuring the rotation of both fixed wheels and the steering angle of the orientable 
wheel. 
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Figure 3. Industrial forklift Nichiyu FBT15 series 65 and equivalent tricycle representation 

The composite equation (4) of this WMR results: 

 

R
12

slip 1
1

slip slip 2
12 2

slip 3
3 3 3 3 3

3 3 3 3

1 0 0 0 0 0
0 1 l r 0 0
1 0 0 0 0 0 .0 1 l 0 r 0

cos sin l cos 0 0 0
sin cos l sin 0 0 r

ϕ
ϕ

β β β ϕ
β β β

⎛ ⎞
⎜ ⎟⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟= = ⎜ ⎟⎜ ⎟ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟⎝ ⎠⎜ ⎟− −⎝ ⎠

pv
v v

v
 (14) 

Under the no-slip condition, a kinematic solution (8) is: 

 
( )
( )

3 3

31

3 3 32

3 3 3 3

3

0
l cos
sin

Lsin l cos r
Lsin l cos r

l r

β
βϕ ηβ βϕ

ϕ β β

⎛ ⎞
⎜ ⎟−⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟=⎜ ⎟ −⎜ ⎟⎜ ⎟

+⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

p
. (15) 

For the redundant forward kinematics, (10) is particularized to: 

 12 1 1
na p 

12 2 2

3 3 3 3

1 0 0 0 0 0 0
0 1 l r 0 r 0
0 1 l 0 r 0 r

0 0 0 0cos sin l cos

ϕ ϕ
ϕ ϕ

β β β

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞= − → = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

p A p . (16) 

where it has been considered together the first and third equation of (14), and the last 
equation (used only to compute 3ϕ ) has been obviated. Therefore, the kinematics 
singularity is given by: 
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( ) {
( ) {

a 3 3 3inv

3 12
1 a 12 3 3 3 3fwd act1

3 12

3 12
2 a 12 3 3 3 3fwd act 2

3 12

T
a 1 2 na p na p fwd s

l cos 0 90º
atan(l / l )l sin l cos r 0 atan(l / l ) 180º

atan(l / l )l sin l cos r 0 atan(l / l ) 180º

( , )  

yvη β β

η ϕ β β β

η ϕ β β β

ϕ ϕ

= → =− = → = ±

= → = − = → = +

−= → = + = → = − +

= →

B

B

B

q A A
ensed

0 No solution, never singular.= →

 (17) 

The cost index (13) will be particularized to: 

 ( ) ( )
N

3 1 2 4 
2 22 2 T

1 a a ainv fwd act1 fwd act2 na p na p fwd sensed 

K (N 1)K K (N 1) K (N 1)
max ,M max ,M

                                                                                 

i i i i i

ii i
J

A A=

⎛ ⎞− +− + − +⎜ ⎟= + + + +
⎜ ⎟
⎝ ⎠

∑ B B B

( )( )N 2

5  3 
1

           K ,i
i

Dβ
=

+ +∑
 (18) 

where Kj is the weight of each term in the cost index and M is a kind of singularity 
saturation in order to not reduce in excess the WMR maneuverability. Note that the 
industrial forklift has one degree of mobility (m = 1), i.e. one instantaneous degree of 
freedom, that allows to specify a forward tracking velocity vy. It has another non-
instantaneous degree of freedom through the angle β3 of the orientable wheel that allows 
turning. Therefore, this WMR can track 2-dimensional paths. In order to obtain simulation 
results, it will be considered the tree graph technique together with the previous cost index. It 
will be used a constant forward velocity on the path, e.g. vy = 1 m/s, and the following 
motion equations between leaves/samples: 

 1

1 1

( / )(sin( T) sin )
( / )(cos( T) cos )           = + T,

k k y k k

k k y k k k k

x x v
y y v

ω θ ω θ
ω θ ω θ θ θ ω

+

+ +

= + + −
= − + −  (19) 

where T is the sample time, and it has been considered a constant forward motion vy and a 
constant turning motion ω between samples. If the WMR angular velocity ω is null, it must 
be used the following equations: 

 1 1 1Tcos       Tsin        = .k k y k k k y k k kx x v y y vθ θ θ θ+ + += + = +  (20) 

Note that the distance D of each collision-free path results  vy··T·N. For the construction of 
the tree graph it will be considered three possible steering velocities for the orientable wheel: 

3 max 3 max, 0, }β β{− . During the construction of the tree graph it will be verified if the goal 
has been achieved within a tolerance. The parameters used for the simulations results of Fig. 
4 are: vy = 1 m/s, T = 0.5 s, N = 22, 3 max 0.4 rad/s,β =  M = 0.01, K1 = K5 = 18, K2 = K3 = K4 = 
3; and it has been considered two rectangular obstacles that represent two warehouse 
shelves. The goal WMR posture p in the three examples of Fig. 4 are: (5.5, 0, 0); (2, 0, 180º); 
and (5, 0, any) respectively. The continuous thick line is the path with minimum cost index; 
the dashed thick line is the path with minimum distance; and the continuous thin lines are 
some (a sample) of the collision-free paths. 
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Figure 4. Simulation examples for the industrial forklift in a warehouse environment 
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4. Conclusion 
In the previous work (Gracia & Tornero, 2007a) the authors had characterized the 
singularity of WMR kinematics. In this chapter it has been shown how to use WMR 
singularity or nearness to WMR singularity for motion planning. In particular, it has been 
proposed a cost index that assesses the nearness to singularity of forward and inverse 
kinematic models.  This cost index can be used straightforward for many planning 
techniques (tree graphs, roadmaps, etc.) in order to choose one path among several possible 
collision-free paths. Therefore, the chosen path would avoid not only slip and impossible 
control actions (i.e. the singularity of forward and inverse kinematic models) but also high 
amplification of wheel velocities’ error and high values for wheel velocities (i.e. the nearness 
to the singularity of forward and inverse kinematic models). To illustrate the applications of 
the proposed approach it has been considered an industrial forklift that is equivalent to the 
tricycle WMR. Finally, several results have been shown for this WMR in a simulated 
environment. It is suggested as further work to integrate the presented motion planning 
with other classical techniques like artificial potential fields, fuzzy planners, etc.  
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1. Introduction 
1.1. Three Basic Design Themes 
This chapter describes the SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, 
Emotion, Intelligent, Goal-oriented Navigation) neural model to clarify how an animal, or 
animat, can learn to reach valued goal objects through planned sequences of navigational 
movements. The SOVEREIGN model embodies a self-organizing control system that 
attempts to learn and perform such behaviors autonomously. As the name SOVEREIGN 
indicates, this control system unifies visual, recognition, cognitive, cognitive-emotional, and 
motor competences. We believe that this is the first neural model that embodies and 
coordinates such a wide range of behavioral competences in an autonomous self-organizing 
control system that can operate in real time. These results have been briefly reported in 
Gnadt and Grossberg (2005a, 2005b, 2006) and in more detail in Gnadt and Grossberg (2008). 
SOVEREIGN contributes to three large themes about how the brain works. The first theme 
concerns how brains learn to balance between reactive and planned behaviors. During 
initial exploration of a novel environment, many reactive movements occur in response to 
unexpected and unfamiliar environmental cues (Leonard and McNaughton, 1990). These 
movements may initially appear to be locally random, as an animal orients toward and 
approaches many local stimuli. As such an animal becomes familiar with its surroundings, it 
learns to discriminate between objects likely to yield a reward and those that lead to 
punishment. Such approach-avoidance behavior is often learned via a perception-cognition-
emotion-action cycle in which an action and its consequences elicit sensory cues that are 
associated with them. Rewards and punishments affect the likelihood that the same actions 
will be repeated in the future. When objects are out of direct sensory range, multiple reactive 
exploratory movements may be needed to reach them. Eventually, reactive exploratory 
behaviors are replaced by more efficient planned sequential trajectories within a familiar 
environment. One of the main goals of SOVEREIGN is to explain how erratic reactive 
exploratory behaviors can give rise to organized planned behaviors, and how both reactive 
and planned behaviors may remain balanced so that planned behaviors can be carried out 
where appropriate, without losing the ability to respond quickly to novel reactive 
challenges.  
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The second design theme illustrates the hypothesis that advanced brains are organized into 
parallel processing streams with complementary properties (Grossberg, 2000a). Each 
stream’s properties are related to those of a complementary stream much as a lock fits its 
key, or two pieces of a puzzle fit together. The mechanisms that enable each stream to 
compute one set of properties prevent it from computing a complementary set of properties. 
As a result, each of these streams exhibits complementary strengths and weaknesses. How, 
then, do these complementary properties get synthesized into a consistent behavioral 
experience? It is proposed how interactions between these processing streams overcome 
their complementary deficiencies and generate behavioral properties that realize the unity 
of conscious experiences. In this sense, pairs of complementary streams are the functional 
units because only through their interactions can key behavioral properties be competently 
computed. SOVEREIGN clarifies how these complementary properties interact together to 
control goal-orienting sequences of navigational behaviors. For example, it is well-known 
that there are What and Where (or Where/How) cortical processing streams (Goodale and 
Milner, 1992; Mishkin, Ungerleider and Macko, 1983; Ungerleider and Mishkin, 1982). In 
particular, key properties of the What and Where cortical processing streams seem to be 
complementary. 
A third design theme underlying the SOVEREIGN model is that brains use homologous 
circuits to compute navigational and hand/arm movements. In other words, movements of 
the body and of the hand/arms are controlled by circuits that share many properties. This 
proposed homology clarifies how navigational and arm movements can be coordinated 
when a body moves with respect to a goal object with the intention of grasping or otherwise 
manipulating it using the hand/arm system. 
A considerable body of neural modeling of arm movement trajectory control (e.g., the VITE 
model: Bullock and Grossberg, 1988; Bullock, Cisek, and Grossberg, 1998) suggests that 
cortical arm movement control circuits compute a representation of where the arm wants to 
move (i.e., a target position) and compare this with an outflow representation of where the 
arm is now (i.e., the present position) by computing a difference vector between target 
position and present position representations. The difference vector represents the direction 
and distance that the arm needs to move to realize its goal position. Basal ganglia volitional 
signals of various kinds, such as a GO signal, translate the difference vector into a motor 
trajectory of variable speed. Additional cortical, spinal, and cerebellar circuitry is needed to 
ensure that the brain generates the forces that are needed to actually carry out such a 
commanded trajectory (e.g., the FLETE model: Bullock and Grossberg, 1991; Contreras-
Vidal, Grossberg, and Bullock, 1997).  
A key difference between navigation and hand/arm movement control concerns how 
present position is calculated. Because the arm is attached to the body, present position of 
the arm can be directly computed using outflow, or corollary discharge, movement 
commands that explicitly code the commanded arm position. In contrast, when a body 
moves with respect to the world, no such immediately available present position command 
is available. This difference requires more elaborate brain machinery to compute present 
position of the body in the world during navigational movements. The brain needs to use a 
variety of sensory cues, both proprioceptive and visual, to create a representation of present 
position that can be compared with representations of target position, so that a difference 
vector and volitional commands can move the body towards desired goal objects. In 
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summary, both navigational movement in the world and movement of limbs with respect to 
the body use a difference vector computational strategy. 

1.2. What SOVEREIGN Does 
SOVEREIGN’s perceptual competences include on-line, albeit simplified, visual 
representations of a 3D virtual reality environment in which the model controls navigation. 
SOVEREIGN computes, in parallel, both visual form and motion information about the 
world. As in the brain, the visual form of objects is computed within the What cortical 
processing stream, whereas visual motion is computed within the Where cortical processing 
stream. In this way, the brain can process both what objects are and where and how to track 
and act upon them.  
SOVEREIGN uses the visual form information to incrementally learn spatially-invariant and 
size-invariant object recognition categories to recognize visually perceived objects in the 
world. These recognition categories, in turn, learn to read out top-down attentive 
expectations of the visual objects that they code. Object categories in the What stream are 
spatially-invariant and size-invariant to prevent a combinatorial explosion from occurring in 
which each position and size of an object would need its own representation. In contrast, the 
Where stream represents the spatial locations of these objects. In particular, visual motion 
information is used to guide reactive orienting movements and attention shifts to locations 
at which changes occur in SOVEREIGN’s visual world. What-Where inter-stream 
interactions are needed to enable both recognition and acquisition of desired goal objects. 
These parallel streams help SOVEREIGN to balance between reactive and planned 
behaviors, in a manner that is further discussed below. 
SOVEREIGN also includes cognitive processes, notably mechanisms to temporarily store 
sequences of events in working memory, and to learn sequential plans, or chunks, of these 
sequences with which to predict and control future planned behaviors. Parallel object and 
spatial working memories and sequential chunking networks are modeled. The object 
working memory and chunking network are in the model’s What stream, and the spatial 
working memory and chunking network are in its Where stream. SOVEREIGN clarifies how 
these parallel cognitive processes cooperate to acquire desired goal objects that can only be 
reached through a sequence of actions, and to disambiguate sequential navigational 
decisions in contexts where only one of them would be insufficient. 
Cognitive-emotional mechanisms include the role of rewards and punishments in shaping 
goal-oriented behaviors. In particular, reinforcement learning can influence which learned 
cognitive chunks will be attended and selected to elicit behaviors that acquire desired goals 
within a familiar environment. Learned interactions between cognitive and emotional 
representations, notably motivationally-mediated attention, play an important role in this 
context-sensitive selection process. 
The SOVEREIGN model thus contributes solutions to three key problems: (1) How an 
animal, or animat that embodies biologically-inspired designs, learns to balance between 
reactive and planned behaviors in a task-appropriate way. (2) How plans are learned during 
erratic reactive behaviors in such a way that, after learning, they can be read out fluently at 
the correct times and in the correct spatial contexts. (3) How, in particular, an animat 
coordinates its reactive and planned behaviors so that its perception-cognition-emotion-
action cycles of exploration, real-time vision, learned recognition, sequential working 
memory storage, learning of sequential plans, reinforcement learning, and planned action 
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sequences are activated when needed as the animat navigates novel and familiar 
environments. 

2. SOVEREIGN Model 
2.1. Approach-Orienting Navigation and Learning in a 3D Virtual Reality Environment 
The SOVEREIGN model simulates these processes for an animat that experiences a 3D 
visual world in a virtual reality environment. This world is the relatively simple spatial 
format of a plus-maze (Munn, 1950). Although simple, this environment tests in a clear way 
many of the critical competences that the animat needs to achieve. Much of the problem’s 
difficulty arises because an animat may navigate the maze in different ways, including 
different speeds and directions of movement, on successive learning trials. Despite this 
variability of each experience of the maze, the animal can learn to navigate the maze to 
achieve valued goals in an efficient way. For our purposes, it is sufficient to assume that a 
learning trial starts after placing the animat in the maze, at the end of one arm. The goal 
location, in one of the other three arms, is baited with a cue that the animal finds rewarding. 
By shrouding the top of the maze, only route-based visual and motor cues can be used for 
navigation (O’Keefe and Nadel, 1978). Thus the model does not attempt to explain how 
spatial navigation, as supported by hippocampal place cells, is achieved. Only one visual 
cue is assumed to be visible at a time, at the end of each maze arm, from any location within 
the maze. A schematic diagram of the experimental setup appears in Figure 1a. 
A sequence of images from the 3D virtual reality simulation during reactive approach 
toward a visual cue appears in Figure 1b. As the animat approaches the choice point, a 
competitive struggle occurs between the salience of form and motion signals. Suppose that 
the form signals have led to previous object category learning and have led to positive 
reinforcement that increases their motivational salience. Such motivational salience 
enhances the strength of the form representation through attentional feedback. Then the 
form signals may more effectively compete with the motion signals to determine the 
animat’s momentary behavior. If the form cues win the competition, then the animat can 
continue to carry out an approach movement that is consistent with its recognition. If the 
motion signals win the competition, then they may trigger a reactive head-orienting 
movement to the right or left at a choice point, revealing another source of form signals at 
the end of an adjacent corridor. The outcome of this form-motion competition is sensitive to 
navigational variations that change from trial to trial. The sequence of visual scenes that are 
processed during a typical head-orienting behavior is illustrated in Figure 1c. An alternation 
of approach and orienting movements is characteristic of the animat’s exploration of a novel 
environment. 
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(a) 

 
(b) 

 
(c) 

Figure 1. (a) The 3D graphical simulation generates perspective-views from any location 
within the plus-maze. (b) Snapshots from the 3D virtual reality simulation depict changes in 
the scene during reactive homing toward the triangle cue. (c) During reactive approach to 
the triangle cue, visual motion signals trigger a reactive head orienting movement to bring 
the star cue into view 
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2.2. Parallel Visual and Motor Working Memory and Chunking Networks 
The animat’s control system is split into a number of subsystems shown in the macrocircuit 
of Figure 2. The primary input is via the visual system. The Visual Form and Motion System 
processes visual cues within the What and Where cortical streams, respectively. The What 
cortical stream learns position-invariant and size-invariant object categories via on-line 
incremental learning. The Where stream computes measures of the relative location of 
visual cues from the animat. In particular, the distance and direction of the animat from a 
prescribed visual cue are used to cause approach movements towards that visual cue, or 
from memory. Motion cues result from the animat’s self-motion, and determine whether the 
animat will make a left or right turn, and how big a turn, instead of continuing to approach 
a target cue.  
These visual form and motion signals compete for control of the animat’s approach-
orienting behaviors within the Visual Form and Motion System. Learned visual categories 
can be amplified in strength, and thereby more probably attended, by feedback from 
motivational centers, called Drive Representations, through learned reinforcement-
motivational feedback loops that embody their value as events that predict desired rewards. 
For this to happen, the invariant object categories are amplified by motivational signals that 
draw attention to them, and amplify, in turn, the approach commands corresponding to that 
object’s position relative to the animat. Such a motivational amplification requires What-
Where inter-stream interactions between position-invariant and position-variant 
information. 
When a motivationally-modulated form cue wins, approach persists. When a motion cue 
wins, an orienting movement often begins. When motion cues are balanced in strength 
relative to the present gaze direction, the net left vs. right orienting signal is zero, after 
opponent competition between the opposite directions takes place. A form cue can then win 
with high probability. However, a suitably strong left/right motion cue difference can win 
the form-motion competition and direct the Motor Approach and Orienting System to 
initiate a head-orienting movement in the favored direction. Target position information for 
approach behaviors, and motion information for head-orienting behaviors, is relayed from 
the Visual Form and Motion System to the Motor Approach and Orienting System (Figure 
2), where they direct body-approach movements or head-and-body orienting movements.  
How does the animat know where a target cue is with respect to its current position? As 
noted in Figure 2, proprioceptive and vestibular signals provide the ground truth upon 
which the animat’s location is estimated relative to its starting point, and with respect to 
targets in its environment. Proprioceptive and vestibular cues are capable of guiding animat 
navigation in a familiar environment even in the dark, and can modify movements quickly 
to cope with uneven or slippery terrains. Visual cues are also used during navigation to 
estimate body and head position and displacement relative to the animat. These visual 
signals are associated with, and adaptively calibrated with respect to, the representations 
that are activated by proprioceptive and vestibular motor signals. These multiple sources of 
information work together to more accurately guide movements under varying conditions 
than any one source of positional signals could. 
Estimates of spatial displacement compute the NET body displacement and head rotation 
from a starting point. Sequences of such approach-orienting displacements represent a path 
that can command an animat to move from a starting location to a goal location in a maze.  
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Figure 2. The key interactions between components of the SOVEREIGN model are shown in 
this flow diagram. See text for details 
The Visual Working Memory and Planning System temporarily stores sequences of visual 
object categories in short-term working memory. It also categorizes, or chunks, sequences of 
stored object categories. Chunks are learned that are sensitive to object sequences of variable 
lengths. These visual list chunks can learn to activate motor commands in the Motor 
Approach and Orienting System via top-down learning. The motor commands encode 
approach-orient movements. The Visual Working Memory and Planning System operates in 
parallel with a Motor Working Memory and Planning System that temporarily stores 
sequences of motor commands in working memory. It also categorizes, or chunks, 
sequences of stored motor commands. These motor list chunks can also learn to activate 
approach-orient commands within the Motor Approach and Orienting System.  
Why are visual and motor list chunks both needed? Together these parallel visual and 
motor working memories can disambiguate decisions that only one of them, acting alone, 
may find ambiguous. For example, the sequences of approach distances and head turns in 
two different environments may be the same, but their sequence of visual cues may be 
different. In a different environment, the sequence of visual cues may be the same, but their 
sequences of motor actions may differ. The visual and motor working memories induce the 
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learning of list chunks, or sequential planning cells, that are sensitive to their respective 
object and action sequences, and can read out a prediction of the next motor command. The 
sequence that can disambiguate two different environments will typically win over one that 
cannot.  
Rewards and punishments can modulate animat learning and determine what visual 
representations are attended and what motor plans are executed. Upon receiving reward, 
the active chunks are associated with active drives and actions. Drive inputs represent the 
animat’s internal motivational state, and reward inputs represent valued inputs from the 
external environment. Both types of inputs combine in Drive Representations, which are 
most highly activated when a drive input representing a strong internal need combines with 
either a primary reward or a conditioned reinforcer input from the Visual Form and Motion 
System (Figure 2). After such a combination of cognitive and emotional learning occurs, 
when the animat sees a familiar sensory cue under a prescribed motivational state, it can 
recall a motivationally-compatible plan to reach the site of previous reward. Repeated, 
random exploration of the environment hereby effects a gradual transition from reactive to 
more efficient, planned control that leads the animat to its various motivated goals. Due to 
the selective role of motivational feedback, the animat is capable of learning to carry out 
different plans to satisfy different motivational goals even in response to the same sensory 
cues. 
Visual and motor list chunks may learn to activate different approach-orient commands 
under different motivational states. How can a single chunk give rise to multiple responses? 
How this occurs can be seen by noting that emotional centers are often organized into 
opponent affective processes, such as fear and relief, and that oppositely valenced rewards 
can be conditioned to these opponent channels (Grossberg, 1984b, 2000b). These opponent-
processing emotional circuits are called gated dipoles. In such a circuit, habituative 
transmitters “gate”, or multiply, signal processing in each of the channels of the opponent 
“dipole.” The response amplitude and sensitivity to external reinforcing inputs and internal 
drive inputs of these opponent-processing emotional circuits are calibrated by an arousal 
level and chemical transmitters that slowly inactivate, or habituate, in an activity-dependent 
way.  
Sensory and cognitive representations, no less than emotional representations, can be 
organized into opponent channels with habituative ON and OFF cells. Unexpected events 
can trigger a burst, or sudden increment, of nonspecific arousal. When such an arousal burst 
is received on top of the baseline tonic arousal input of a normal dipole, it can cause an 
antagonistic rebound of activity in the OFF channel. In other words, the sensory, cognitive, 
or emotional hypothesis that is represented in a dipole’s activity can be disconfirmed by an 
unexpected event. An unexpected event can hereby reset ongoing processing and lead to a 
shift of attention. SOVEREIGN expands the gated dipole mechanism into a gated multipole, 
which can select between multiple opponent drive channels. Each channel, whether 
representing an exploratory or consummatory drive state, can be associated with a 
particular learned response. 
SOVEREIGN embodies a system synthesis and further development of biologically-derived 
neural networks that have been mathematically and computationally characterized 
elsewhere. These include LAMINART and FORMOTION models for form and motion 
processing (Berzhanskaya, Grossberg, and Mingolla, 2007; Cao and Grossberg, 2005; 
Grossberg, Mingolla, and Viswanathan, 2001; Grossberg and Yazdanbakhsh, 2005; Raizada 
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and Grossberg, 2003), ART fast incremental learning classifiers (Carpenter, et. al., 1992), 
STORE working memories (Bradski, Carpenter, and Grossberg, 1994), Masking Field 
sequence chunking networks (Cohen and Grossberg, 1986, 1987; Grossberg and Myers, 2000; 
Grossberg and Pearson, 2007), Gated Dipole opponent processes (Grossberg, 1980, 1984a; 
Grossberg and Seidman, 2006), CogEM cognitive-emotional circuits for reinforcement 
learning (Grossberg and Merrill, 1992, 1996; Grossberg, 2000), Spectral Timing circuits for 
adaptively timed learning (Grossberg and Merrill, 1992; Fiala, Bullock, and Grossberg, 1996), 
and volitional (GO) and endogenous (ERG, Endogenous Random Generator) gates to release 
consummatory and exploratory behaviors, respectively (Bullock and Grossberg, 1988; 
Gaudiano and Grossberg, 1991; Pribe, Grossberg, and Cohen, 1997). We are not aware of any 
other autonomous agent that has yet integrated this range of self-organizing biological 
competences. 

2.3. Reactive Exploration 
The following sequence illustrates the functional flow of the visual input system during 
reactive exploration in the plus–maze of Figure 1. North designates the vertical direction, 
with South, East and West following accordingly. For definiteness, assume that the animat is 
placed into the maze and that all extra–maze cues are suppressed. Furthermore, the animat 
is motivated under both an exploratory and a hunger drive. The drive and reward inputs to 
the Drive Representation and then into the Visual and Motor Working Memory and 
Planning Systems are shown in Figure 2. The exploratory drive is assumed to be excited by 
an Endogenous Random Generator, or ERG, which is an internal arousal source. Such a 
source is active when the animat is placed into a new environment. The exploratory drive is 
inhibited by consummatory drive activity that can support realization of a valued goal. The 
animat receives a reward (e.g., food) upon reaching the goal location, which is located at the 
end of the West arm. We show how reactive visual signals during exploration eventually 
lead the animat toward the goal location, and reinforcement signals strengthen the 
association between stored plan items and the current motivational state. A step-by-step 
description of the model under reactive visual guidance follows. 
Suppose that, by chance, the animat starts the maze shifted to the left of the corridor, with 
its head facing slightly to the right of the visual cue (Figure 3a). The left shift reduces the 
distance to motion cues on the left side of the maze. Because of this positional bias, motion 
signals within the Visual Form and Motion System (Figure 2) will receive a strong leftward 
bias. These assumptions are used to demonstrate an exploratory trial which ensures that the 
animat makes its first head-orienting movement toward the goal location. During the 
experimental trial, the animat moves forward (Figure 3b), turns left (Figure 3c) and 
approaches the goal location (Figure 3d) under reactive control. 
Movement is organized into orienting and approach movements. In particular, a visually-
activated motor command from the Visual Form and Motion System triggers a Motor 
Outflow command (Figure 2) that specifies a head-orienting angle to align the head with the 
triangle target. The resulting signals activate the Motor Plant (Figure 2), which converts the 
movement command into a physical displacement. A head-orienting movement towards the 
triangle target is thereby initiated. The head turn continues until the NET head-orienting 
displacement equals the commanded displacement angle. 
When the animat faces the triangle cue, a Motor Outflow command from the Visual Form 
and Motion System activates the Motor Plant (Figure 2) to initiate an approach movement 
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toward the triangle cue. When the Motor Plant converts the commanded approach 
movement into a physical displacement, the animat’s body is passively aligned with the 
head during an approach movement to maintain a stable posture. Such dynamic stability 
control is assumed to be present, but is beyond the scope of this work.  
During the approach movement, the Motor Approach and Orienting System continues to 
compute the NET head and body displacement toward the visual target cue. In the absence 
of competing cues, the body-approach movement could continue until the animat reaches 
the cue. However, the Visual Form and Motion System processes both form and motion 
signals while the animat continues to move. A sufficiently strong motion signal in the 
model’s visual periphery can win a competition between Parvo form target locations and 
Magno motion cues. If a motion cue wins, then it can terminate the approach movement and 
trigger a reactive head-orienting movement away from the visual target cue. 
As noted above, when the animat starts in a position that is shifted to the left side of the 
corridor, as in Figure 3a, motion signals in the left visual hemifield are stronger than those in 
the right hemifield. Left vs. right motion signals accumulate in the Visual Form and Motion 
System. When the left motion signal is sufficiently strong relative to the right motion cue 
and the form signal, a reactive head-orienting command is sent to the Motor Approach and 
Orienting System. 
As the animat carries out these movements, it learns an invariant object category, or chunk, 
for the triangle visual cue. Top-down signals from the Visual Working Memory and 
Planning System (Figure 2) corresponding to the Triangle chunk learn the NET body 
approach and orienting movements computed by the Motor Approach and Orienting 
System. The triangle cue hereby learns to predict the Forward-Left body movement. The 
Forward-Left body movements are also stored in the Motor Working Memory and Planning 
System. 
After the animat turns left, invariant preprocessing and learned ART categorization within 
the Visual Form and Motion System encode a 3D representation of the square cue. This 3D 
representation is stored in the Visual Working Memory and Planning System (Figure 2), 
while the NET body displacement in the Motor Approach and Orienting System is reset to 
prepare for the next movement. Then the cycle of computing the NET head and body 
displacements begin again, as the animat navigates toward the square cue. 
The square cue is at the rewarded location. When the animat reaches this location, it receives 
a reward, such as food. The active hunger drive representation is then associated with the 
currently active plan chunks stored in both the Visual Working Memory and Planning 
System and the Motor Working Memory and Planning System (Figure 2). In particular, the 
visual Triangle-Square list chunk is learned and associated with the hunger drive 
representation. In addition, signals from the Triangle-Square chunk learn the NET body 
orienting and approach movement computed by the Motor Approach and Orienting 
System, and thereby learns to predict the Forward body movement that brings the animat to 
the square cue after it turns left in the West arm of the maze. Figure 4 summarizes this 
sequence of events. 
One additional point should be made: All animat behaviors are motivated by some Drive 
Representation (Figure 2). During initial exploratory activities, an exploratory drive is 
active. As learning occurs, the exploratory drive is supplanted by the consummatory 
motivational sources that correspond to the reward; e.g., the hunger drive when the animat 
is rewarded by food. These processes are now described in greater detail. 
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Figure 3. (a) Animat position and head direction facing the triangle cue at the start of the 
trial. Perspective-views of the 3D virtual reality scene at key locations within the maze are 
shown by a dashed line. (b) Animat position and head direction while approaching the 
triangle cue and nearing the choice point. (c) Animat position and head direction after a 
head orienting turn toward the square cue. (d) Animat position and head direction after 
reaching the goal location at the square cue 
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Figure 4. An initial maze trial in which the animat is under reactive visual guidance is 
shown in this diagram. An approach movement toward the triangle cue is interrupted by 
motion signals to the left. After a reactive head orienting movement, the square cue comes 
into view. After approaching the square cue, the rewarded location is reached and adaptive 
weights are adjusted to strengthen the association between the forward-left-forward 
sequence and the current motivational state. The arrows and symbols (F1,L) and (F1,S), along 
with the triangle and triangle-square symbols in the dotted ellipses, summarize that a 
forward-left movement sequence with a forward distance of F1 is associated with the 
Triangle list category, and a forward-straight movement also with a forward distance of F1 is 
associated with the Triangle-Square list category 

2.4. Visual Form and Motion System 
The Visual Form and Motion System processes signals from the What Parvo cortical 
processing stream and the Where Magno cortical processing stream (Figure 5). This 
separation of functionality endows the animat with three major capabilities. First, the animat 
can utilize target object recognition and cognitive-emotional conditioning circuitry to learn, 
choose, and execute motivationally–compatible movements within an overall plan. Second, 
the animat can use form information to localize visual references, or beacons, to measure its 
progress over varying terrain. Finally, the animat can process motion boundaries generated 
during movement toward a choice point within a maze. As the animat nears a choice point, 
its field–of–view and the intensity of boundary-derived motion signals increase, which can 
trigger a reactive head–orienting movement. The visual system also drives several 
important control signals within the model, as described below. 
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The visual environment is simulated in a virtual reality environment by rendering 3D 
chromatic scenes as 2D “snapshots” at regular intervals during head-orienting and body-
approach movements. As indicated in Figure 1, the visual environment is simplified in 
SOVEREIGN, which focuses on the various learning and navigational aspects of sequential 
goal-oriented navigation. A visual target object is separated from the background by a two-
stage Figure-Ground Separation module that is within the Parvo stream (Figure 5, left 
stream). At present, the first processing stage is accomplished in a simple way by using 
visual targets that are yellow (Figure 1), or have the grayscale corresponding to yellow, and 
are thereby selected from the background. The second processing stage selects object 
boundaries via convolution with a 2D Laplacian-of-Gaussian filter. Future model 
developments will include more sophisticated neural models for 3D vision and figure-
ground separation (Cao and Grossberg, 2005; Fang and Grossberg, 2007; Grossberg and 
Yazdanbakhsh, 2005; Kelly and Grossberg, 2000). 
 

 
Figure 5. The Visual Form and Motion System flow diagram depicts the stages of visual 
processing in the model. See text for details 
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When an object falls within the visual field and it is separated from its background, the 
coordinates of its centroid, in the 2D image plane, are computed (cf., Russell, 1932) and 
passed to the Reactive Visual TPV module (Figure 5). The Reactive Visual TPV module 
converts the centroid from image plane coordinates to head-centered spatial coordinates by 
using the perspective transformation (Schilling, 1990). The Body Spatial Coordinates module 
computes the angle between the head and body, before combining this information with the 
target coordinates in the Reactive Visual TPV module to compute the body-centered 
distance and angle coordinates of the visual target. The Reactive Visual TPV module 
updates the Reactive Visual TPV Storage module until the volitional Approach and 
Orienting GO signal (GOP) releases a head-orienting or body-approach movement (Figure 
5). The head-orienting movement brings the visual target to the center of gaze. Such a 
transformation into body–centered coordinates can be learned by using a more elaborate 
network (Greve et. al., 1993; Grossberg et. al., 1993; Guenther et al., 1994). 
The left path of the Parvo stream in Figure 5 is devoted to learning a size-invariant and 
position-invariant object category representation of a visual target within the Invariant 
Visual Target Map. In order to accomplish this, the figure-ground-separated visual target 
undergoes a log-polar transformation followed by Gaussian coarse-coding (Baloch and 
Waxman, 1991; Bradski and Grossberg, 1995). The log-polar transform computes a 
representation of the visual target object that is size-invariant and position-invariant. This 
invariant map representation of the target is then transformed into an object category, 
leading to further compression and invariance under modest changes in object shape, by 
using unsupervised incremental learning by a Fuzzy ART classifier (Carpenter et al., 1991). 
The Fuzzy ART classifier and Reactive Visual TPV Storage modules comprise What and 
Where cortical representations of visual target objects.  
The Fuzzy ART classifier can be generalized in a future version of SOVEREIGN to enable 
learning of 3D target objects from one of multiple views. This requires additional processing 
stages to learn individual view categories which can be associatively linked to a view-
invariant object category (Baloch and Waxman, 1991; Bradski and Grossberg, 1995; Fazl, 
Grossberg, and Mingolla, 2007). 

2.5 Motor Approach and Orienting System 
As noted above, the Motor Approach and Orienting System directs body-approach and 
head-orienting movements (Figure 2). Cumulative estimates of each approach-orienting 
movement that is processed within the Motor Approach and Orienting System are stored in 
the Motor Working Memory and Planning System (Figure 2). This section summarizes how 
these estimates are computed. 
The Motor Approach and Orienting System flow diagram is shown in Figure 6. Target 
position information originates from one of two sources. First, it can be received from the 
body-centered distance and angle coordinates of the visual target object computed in the 
Reactive Visual TPV module (Figure 5). Second, it can be received from learned top–down 
signals from the processing stage that computes Motivated WHAT and WHERE Decisions 
(Figure 6). These decisions comprise responses from the animat’s learned experience which 
are compatible with the current motivational state. An approximate measure of head-
orienting and body displacement is computed by the NET module (Figure 6). Target 
position information flows from the Reactive Visual TPV to the Reactive Visual TPV Storage 
module. The NET activity is subtracted from the Stored TPV via learned weights to compute 
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the Reactive Difference Vector, or DV, which represents the angle and distance to move. The 
learned weights from the NET activity are necessary to calibrate the DV activity. Similarly, 
learned top-down commands from the Motivated WHAT and WHERE Decisions activate 
the Planned DV, where NET movement signals are subtracted, yielding a planned angle and 
distance to move. Calibration of planned commands is accomplished entirely by the top-
down adaptive weights. The Reactive DV and Planned DV are the first motor control stages 
which can elicit head-orienting and body-approach movements. 

 
Figure 6. The Motor Approach and Orienting System flow diagram depicts the control 
hierarchy which generates motor outflow commands. See text for details 

The NET estimates of head-orienting and body-approach displacement requires multiple 
stages of processing to be computed (Figure 6). NET estimates during navigation replace the 
outflow present position estimates that are computed during hand/arm movements. The 
NETS module (Figure 6) calculates this displacement using target positions computed by the 
Visual Form and Motion System (Figure 5). Body–centered spatial coordinates are denoted 
by an “s” subscript. The NETS field activity encodes the net body movement toward a target 
in spatial coordinates by subtracting the Reactive Visual TPV activity from the Reactive 
Visual TPV Storage module activity.  
Initially, target position information flows from the Reactive Visual TPV to the Reactive 
Visual TPV Storage module and a short burst of learning zeros the difference at the NETS 
module. As the animat moves toward a target, updates to the Reactive Visual TPV Storage 
module cease and the Reactive Visual TPV decreases, thereby allowing the NETS module 
activity to grow. Vestibular and proprioceptive feedback signals are integrated into 
distances by the NETMV module (Figure 6). 
Learning at the output of the NETMV module calibrates the vestibulo-motor signals relative to 
the visual signals at the S-MV Mismatch module. This adaptive process uses a slow learning 
rate while visual signals are available from the Visual Form and Motion System (Figure 5). The 
resulting activity at the S-MV Mismatch module serves as a correction factor which can 
account for the animat’s progress either without visual feedback (e.g., in the dark) or over 
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uneven (e.g., slippery) terrain. When the NETS and NETMV module activity are identical, then 
the correction factor is zero and the S-MV Mismatch module activity is also zero.  
The NET module combines signals from the NETS and S-MV Mismatch modules into a robust 
sensory-motor representation of body displacement. The NETS module is only active when 
Parvo signals are present in the Invariant Visual Target Map module (Figure 5). Learned 
weights from the NET module inhibit activity of the Reactive DV (Figure 6). When the animat 
has reached the target under visual guidance, the Reactive Visual TPV reaches zero and these 
adaptive weights are updated, thereby inhibiting the Reactive DV, and stopping the 
movement. On future trials, the Reactive DV module can be driven to zero by a calibrated 
level of activity in the NET module, regardless of whether visual input is available. 
While under reactive control, visual target coordinates flow into the Reactive Visual TPV 
Storage module and activate the Reactive DV module, which initiates head and body 
movements. The Approach or Orienting GOP control signals are activated when the Reactive 
or Planned DV command is released under volitional control. The activation of the 
Approach or Orienting GOP allows the DV signals to initiate a head-orienting or body-
approach movement. Updates to the Reactive Visual TPV Storage module (Figure 6) 
continue until the Approach or Orienting GOP is activated. However, under planned 
control, Motivated WHAT and WHERE Decisions (Figure 6) learn to read out planned head-
orienting and body-approach movements. Top-down commands are computed in the 
Planned DV module, which can initiate head and body movements in response to 
motivationally-compatible plan items. As then plan unfolds, NET increases until the 
Planned DV approaches zero, thus terminating a planned movement. The Top-down 
Readout Mismatch module compares the activity of the learned top-down command and 
the NET module. A sufficiently large discrepancy between these fields can elicit a control 
signal to select a different top-down signal from the Motivated WHAT and WHERE 
Decisions. For instance, the control signal is released when a planned response is 
interrupted by a strong motion signal which activates the Head-Orienting Movement 
module (Figure 5) and the animat turns away from the planned response direction. 

3. End-to-end SOVEREIGN Simulation 
One key SOVEREIGN simulation is demonstrated herein. In the Motivated Choice 
Experiment, the animat learns the route to two different goal locations under two different 
motivational states. The simulation summary contains the following types of information: 
(1) Explanation of the experimental setup; (2) movement trajectories; (3) a step-by-step 
description of model dynamics; (4) snapshots of visual input at key moments; (5) multi-trial 
learning; and (6) summary of the model properties demonstrated. 

3.1 Motivated Choice Experiment 
In this classic example of spatial learning, the animat learns the route to two different goal 
locations under two different motivational states. Specifically, the Forward-Left-Forward 
sequence when hungry leads to a food reward, whereas the Forward-Right-Forward sequence 
leads to a water reward when thirsty. Upon reaching the end of the goal arm, the animat is 
rewarded and long-term memory weights are updated using a slow learning rate. For the first 
five training trials of this sequence, the animat has a high hunger drive and is rewarded with 
food at the end of each trial. For the next five trials, the animat is thirsty and is rewarded with 
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water at the end of each trial. The eleventh and final trial retests the response under the hunger 
drive to demonstrate that learning under each drive is preserved. 
The diagram shown in Figure 7a shows the position, actions and local views seen by the 
animat during this training trial. Similarly, the diagram in Figure 7b shows the Visual and 
Motor Working Memory and Planning System plan chunks which are stored during this 
experimental trial. This simulation is similar to that presented in earlier examples. However, a 
summary is offered here for completeness. The animat starts this trial shifted to the left within 
the corridor, thereby increasing Magno signals in the left hemifield. The hungry animat learns 
to categorize the triangle cue and updates the Visual Working Memory and Planning System. 
It approaches the triangle cue under reactive control. As it nears the choice point, Magno 
signals trigger a head-orienting movement to the left bringing the square cue into view. The 
Triangle chunk is associated with the exploratory drive and can now sample the Forward-Left 
movement. The animat then learns to categorize the square cue. The Visual and Motor 
Working Memory and Planning System are updated and the animat approaches the square 
cue under reactive control. Upon reaching the food reward, all active chunks are associated 
with the hunger drive and the Forward-Left and Triangle-Square chunks sample the Forward-
Straight movement command. The initial training trial is complete. 
The diagram in Figure 7c shows the learned plan chunks and their associated motor responses 
which are gradually strengthened during training. After several trials, the hungry animat 
starts this trial centered in the corridor, yielding Magno signals which are balanced between 
left and right. After learning to categorize the triangle cue and updating the Visual Working 
Memory and Planning System, the Triangle chunk can read out the command to go Forward-
Left via top-down signals. The planned command overrides reactive signals and the animat 
moves forward and turns left. Both the approach speed and Parvo gain are increased because 
the previously rewarded plan element has been reactivated. After the turn is complete, the 
Triangle chunk is again associated with the exploratory drive. This learning is triggered by the 
exploratory learning signal in the absence of explicit reward, and is activated after a head turn 
is completed. After learning to categorize the square cue, the Visual and Motor Working 
Memory and Planning System are updated and the Forward-Straight command is directly 
read out via top-down Motivated WHAT and WHERE Decision signals. After approaching 
under planned control, the animat is rewarded with food and the active chunks are associated 
with the hunger drive. The Forward-Left and Triangle-Square chunks can sample the 
Forward-Straight movement command. The test trial is complete. 
The diagram in Figure 8a shows the position, actions and local views seen by the animat 
during this experimental test trial. Similarly, the diagram in Figure 8b shows the Visual and 
Motor Working Memory and Planning System plan chunks which are stored during this 
experimental trial. After several learning trials, the thirsty animat starts this trial centered in 
the corridor, yielding Magno signals which are balanced between the left and right sides of 
the visual field. After learning to categorize the triangle cue and updating the Visual 
Working Memory and Planning System, the Triangle chunk is able to read out the command 
to go Forward-Right via top-down Motivated WHAT and WHERE Decision signals. The 
planned command overrides reactive signals and the animat moves forward and turns right. 
Both the approach speed and Parvo gain are increased because the previously rewarded 
plan element has been reactivated. After the turn is complete, the Triangle chunk is again 
associated with the exploratory drive. After learning to categorize the star cue, the Visual 
and Motor Working Memory and Planning System are updated and the Forward-Straight 
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command is directly read out via top-down signals. After approaching under planned 
control, the animat is rewarded with water and the active chunks are associated with the 
thirst drive. The Forward-Right and Triangle-Star chunks can sample the Forward-Straight 
movement command. The test trial and this sequence of experiments are complete. 

 
(a) 

   
 (b) (c) 
Figure 7. (a) Perspective views are shown for selected points during maze exploration 
toward the goal location in the left arm. (b) Each ellipse graphically depicts the short-term 
memory chunks represented in both the Visual and Motor Working Memory and Planning 
System during exploratory learning. (c) Each ellipse graphically depicts the short-term 
memory chunks and associated motor responses in both the Visual and Motor Working 
Memory and Planning System after exploratory learning 
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(a) 

 
(b) 

Figure 8. (a) Perspective views are shown for selected points during maze exploration under 
planned control. (b) Each ellipse graphically depicts the short-term memory chunks and 
associated motor responses in both the Visual and Motor Working Memory and Planning 
System after exploratory learning 
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4. General Discussion and Conclusions 
The SOVEREIGN architecture embodies a number of design principles whose mechanistic 
instantiation as neural circuits (Figure 2) enable incremental learning of planned action 
sequences to carry out route-based navigation towards a rewarded goal. SOVEREIGN 
circuits are based on neural models that have elsewhere been used to explain and predict 
many behavioral and brain data. Here the emphasis is on designing a neuromorphic 
controller that emphasizes behavioral competence.  
The model has several notable strengths relative to other available models, including the 
following ones: First, it provides an end-to-end model that includes on-line vision, visual 
recognition learning and categorization, working memory storage of sequences of visual 
and motor categories, learning of sequential cognitive and motor plans, cognitive-emotional 
interactions whereby reinforcement learning can select plans that can attain a currently 
valued goal, and balancing of visually reactive exploratory vs. planned movement decisions, 
based upon the relative salience of bottom-up and top-down information through time. 
Second, unlike various other models (e.g., Barto and Sutton, 1981; Dayan, 1987; Schmajuk, 
1990), no explicit spatial goal gradient, proportional to the spatial distance from the goal, is 
required to guide goal-oriented sequential behavior in SOVEREIGN. Third, list chunks 
provide a compact context-sensitive code for learning plans to navigate a large number of 
different routes. Fourth, reliable, single–trial learning of a maze can occur if the animat 
happens to find the goal location during an exploratory trial. Fifth, the animat can respond 
to the same sequence of visual or motor events in different ways to achieve different goals 
when different drives are prepotent.  
Whereas the detailed circuit realizations that are currently used in SOVEREIGN will 
doubtless be modified and further developed in the future, it embodies design principles 
that may need to be incorporated, in some form, into future autonomous adaptive 
controllers of navigational behaviors. One weakness in the current version of SOVEREIGN 
is that its navigational behaviors are all route-based. The model does not yet include 
mechanisms of spatial navigation (O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978) 
such as the role of hippocampal place fields, head-direction cells, and the theta rhythm (e.g., 
Burgess et al., 1995). Such a development would require an understanding of how place 
fields form, notably the role of entorhinal grid cells in their formation (e.g., Hafting, Fyhn, 
Molden, Moser, and Moser, 2005), which other modeling research is currently investigating 
(e.g., Fuhs and Touretzky, 2006; Gorchetchnikov and Grossberg, 2007). 
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1. Introduction  
A catadioptric vision system using diverse mirrors has been a popular means to get 
panoramic images(K.Nayar, 1997) which contains a full horizontal field of view (FOV). This 
wide view is ideal for three-dimensional vision tasks such as motion estimation, 
localization, obstacle detection and mobile robots navigation. Omnidirectional stereo is a 
suitable sensing method for such tasks because it can acquire images and ranges of 
surrounding areas simultaneously. For omnidiretional stereo vision, an obvious method is 
to use two (or more) cameras instead of each conventional camera (K.Tan et al., 2004; 
J.Gluckman et al., 1998; H.Koyasu et al. 2002; A.Jagmohan et al. 2004). Such two-camera (or 
more-camera) stereo systems are relatively costly and complicated compared to single 
camera stereo systems. Omnidirectional stereo based on a double-lobed mirror and a single 
camera was developed (M.F.D. Southwell et al. 1996; T.L. Conroy & J.B. Moore, 1999; E. L. L. 
Cabral, et al. 2004; Sooyeong Yi & Narendra Ahuja, 1996) . A double lobed mirror is a 
coaxial mirror pair, where the centers of both mirrors are collinear with the camera axis, and 
the mirrors have a profile radially symmetric around this axis. This arrangement has the 
advantage to produce two panoramic views of the scene in a single image. But the 
disadvantage of this method is the relatively small baseline it provides. Since the two 
mirrors are so close together, the effective baseline for stereo calculation is quite small. We 
have developed a novel omnidirectional stereo vision optical device (OSVOD) based on a 
common perspective camera coupled with two hyperbolic mirrors, which are separately 
fixed inside a glass cylinder. As the separation between the two mirrors provides much 
enlarged baseline, in our system, the baseline length is about 200mm, the precision has 
improved correspondingly (Fig. 1). 

                                                                 
1 This work is supported by National Science Foundation of P.R. China (60575024). 
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 a b 
Figure 1. a: The appearance of the stereo vision system. b: The configuration of the system 

  
Figure 2. Real indoor scene captured for depth map reconstruction 

The coaxial configuration of the camera and the two hyperbolic mirrors makes the epipolar 
line radially collinear, which makes the system free of the search process for complex 
epipolar curve in stereo matching (Fig. 2). The OSVOD is mounted on top of mobile robot 
looking downwards, at a height of approximately 0.75 meters above the ground plane. We 
also notice that G. Jang et al. (G. Jang, S. Kim & I. Kweon, 2005) proposed a wide-baseline 
catadioptric stereo system, in which the system design is similar to us but the system design 
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and mirror types are different. Furthermore, for a mobile robot, our system is designed to 
obtain omnidirectional images that are different from above mentioned stereo systems. Note 
that our images are taken from a special angle of view to obtain the planform of scene, 
which aims to reconstruct the depth map that denotes the heigh information (vertical depth) 
but not the horizontal distance information in common stereo systems. Albeit the calculative 
precision of triangulation was improved theoretically due to the wider baseline, more 
complex and difficult stereo matching problem should be brought on because of the wider 
disparity space that exists and more serious image distortion. A major aim of this paper is to 
propose an integrated framework, which mainly focuses on stereo matching to enhance the 
performance for depth map regeneration. Since our primary goal is to propose a precise and 
suitable algorithm for stereo matching to satisfy the reliability requirement via an 
omnidirectional stereo vision system, we chiefly review previous stereo matching methods 
as follows. State of the art algorithms for dense stereo matching can be divided into two 
categories. One category is local methods, in which some kind of similarity measure over an 
area is calculated (Devernay & F. Faugeras, 1994). They work well in relatively textured 
areas in a very fast speed, while they cannot gain correct disparity map in textureless areas 
and areas with repetitive textures, which is an unavoidable problem in most situations. In 
(Sara, R., 2002) a method of finding the largest unambiguous component has been proposed, 
but the density of the disparity map varies greatly depend on the discriminability of the 
similarity measure in a given situation. The other one is global methods which are generally 
energy minimization approaches, these methods make explicit smoothness assumptions and 
try to find a global optimized solution of a predefined energy function that take into account 
both the matching similarities and smoothness assumptions. Most recent high-perfomance 
algorithms belong to energy minimization approaches (Pedro F. Felzenszwalb & Daniel P. 
Huttenlocher, 2006; Y. Boykov et al., 2001; V. Kolmogorov & R. Zabih, 2001; Yedidia, J.S. et 
al., 2000) due to powerful new optimization algorithms such as graph cuts and loopy belief 
propagation. The results, especially in stereo, have been dramatic, according to the widely-
used Middlebury stereo benchmarks (D. Scharstein & R. Szeliski, 2002), almost all the top-
performing stereo methods rely on graph cuts or LBP. Moreover, these methods give 
substantially more accurate results than what were previously possible. Although numerous 
methods exist for stereo matching, as to our knowledge, most algorithms are presented and 
implemented using standard images, there are few algorithms specifically designed for 
single camera omnidirectional stereo. Sven Fleck et al. (Sven Fleck et al., 2005) completely 
use a common graph cut method to acquire a 3D model using a mobile robot that is 
equipped with a laser scanner and a panoramic camera. Other work in point based 
omnidirectional reconstruction on mobile robotics can be found in (R. Bunschoten & B. 
Kr¨ose, 2003), however this is not based on graph cuts that we are concerned in this paper. 
Considering the peculiarities of omnidirectional images, we adapt improved graph cut 
method, in which a new energy model is introduced for more general priors corresponding 
to more reasonable piecewise smoothness assumption since the well-known swap move 
algorithm can be applied to a wider class of energy functions (Y. Boykov et al., 2001). The 
proposed energy function is different from previous any other ones since the smooth item is 
based on three variables whereas others only consist of two variables. We also show the 
necessary modification to handle panoramic images, including deformed matching 
template, adaptable template scale to elaborate the date term. In the rest of the paper, we 
first necessarily introduce a full model of calibration in the system. In section 3, our 
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improved optimization model is presented. We generalize our completed omnidirectional 
stereo matching framework in section 4. In section 5, experiments and their results are 
given. Finally, we conclude the paper. 

2. Calibrating the System 
2.1 Principle of Our Vision System 

The system we have developed (Su & Zhu, 2005) is based on a common perspective camera 
coupled with two hyperbolic mirrors, which are separately fixed inside a glass cylinder 
(Fig.1a). The two hyperbolic mirrors share one focus which coincides with the camera 
center. A hole in the below mirror permits imaging via the mirror above. As the separation 
between the two mirrors provides much enlarged baseline, the precision of the system has 
been improved correspondingly. The coaxial configuration of the camera and the two 
hyperbolic mirrors makes the epipolar line radially collinear, thus making the system free of 
the search process for complex epiploar curve in stereo matching (Fig. 3). 
To describe the triangulation for computing 3D coordinates of space points, we define the 
focal point O  as the origin of our reference frame, z-axis parallel to the optical axis pointing 
above. Then mirrors can be represented as: 

 
2 2 2( ) ( ) 1, ( 1,2)2 2

z c x yi i
a b

− +− = =  (1) 

Only the incident rays pointing to the focus (0,0,2 )F ca a , (0,0,2 )F cb b  will be reflected by the 
mirrors to pass through the focal point of the camera. The incident ray passing the space 
point ( , , )P x y z  reaches the mirrors at points Ma  and Mb , being projected onto the image at 
points ( , , )P u v fa a a −  and ( , , )P u v fb b b −  respectively. As Pa  and Pb  are known, Ma  and 
Mb  can be represented by: 
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Since point Ma  and Mb  are on the mirrors, they satisfy the equation of the mirrors. Their 
coordinates can be solved from equation group (1) and (2). Then the equation of rays F Pa  
and F Pb  are: 
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We can finally figure out coordinate of the space point P  by solving the equation (3). 

2.2 Overview of Omnidirectional Camera Calibration 

In using the omnidirectional stereo vision system, its calibration is important, as in the case 
of conventional stereo systems (Luong & Faugeras, 1996; Zhang & Faugeras, 1997). We 
present a full model of the imaging process, which includes the rotation and translation 
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between the camera and mirror, and an algorithm to determine this relative position from 
observations of known points in a single image. 
There have been many works on the calibration of omnidirectional cameras. Some of them are 
for estimating intrinsic parameters (Ying & Hu, 2004; Geyer & Daniilidis, 1999; Geyer 
Daniilidis, 2000; Kang, 2000). In (Geyer & Daniilidis, 1999; Geyer Daniilidis, 2000), Geyer & 
Daniilidis presented a geometric method using two or more sets of parallel lines in one image 
to determine the camera aspect ratio, a scale factor that is the product of the camera and mirror 
focal lengths, and the principal point. Kang (Kang, 2000) describes two methods. The first 
recovers the image center and mirror parabolic parameter from the image of the mirror’s 
circular boundary in one image; of course, this method requires that the mirror’s boundary be 
visible in the image. The second method uses minimization to recover skew in addition to 
Geyer’s parameters. In this method the image measurements are point correspondences in 
multiple image pairs. Miousik & Pajdla developed methods of calibrating both intrinsic and 
extrinsic parameters (Miousik & Pajdla, 2003a; Miousik & Pajdla, 2003b). In (Geyer & 
Daniilidis, 2003), Geyer & Daniilidis developed a method for rectifying omnidirectional image 
pairs, generating a rectified pair of normal perspective images. 
Because the advantages of single viewpoint cameras are only achieved if the mirror axis is 
aligned with the camera axis, these methods mentioned above all assume that these axes are 
parallel rather than determining the relative rotation between the mirror and camera. A 
more complete calibration procedure for a catadioptric camera which estimates the intrinsic 
camera parameters and the pose of the mirror related to the camera appeared at (Fabrizio et 
al., 2002), the author used the images of two known radius circles at two different planes in 
an omnidirectional camera structure to calibrate the intrinsic camera parameters and the 
camera pose with respect to the mirror. But this proposed technique cannot be easily 
generalized to all kinds of catadioptric sensors for it requires the two circles be visible on the 
mirror. Meanwhile, this technique calibrated the intrinsic parameters combined to extrinsic 
parameters, so there are eleven parameters (five intrinsic parameters and six extrinsic 
parameters) need to be determined. As the model of projection is nonlinear the computation 
of the system is so complex that the parameters cannot be determined with good precision. 
Our calibration is performed within a general minimization framework, and easily 
accommodates any combination of mirror and camera. For single viewpoint combinations, 
the advantages of the single viewpoint can be exploited only if the camera and mirror are 
assumed to be properly aligned. So for these combinations, the simpler single viewpoint 
projection model, rather than the full model described here, should be adopted only if the 
misalignment between the mirror and camera is sufficiently small. In this case, the 
calibration algorithm that we describe is useful as a software verification of the alignment 
accuracy. 
Our projection model and calibration algorithm separate the conventional camera intrinsics 
(e.g., focal length, principal point) from the relative position between the mirrors and the 
camera (i.e., the camera-to-mirrors coordinate transformation) to reduce computational 
complexity and improve the calibration precision. The conventional camera intrinsics can be 
determined using any existing method. For the experiments described here, we have used 
the method implemented in http://www.vision.caltech.edu/bouguetj/calib_doc/. Once the 
camera intrinsics are known, the camera-to-mirrors transformation can be determined by 
obtaining an image of calibration targets whose three-dimensional positions are known, and 
then minimizing the difference between coordinates of the targets and the locations 
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calculated from the targets’ images through the projection model. Fig. 3 shows one example 
of calibration image used in our experiments. The locations of the three dimensional points 
have been surveyed with an accuracy of about one millimeter. If the inaccuracy of image 
point due to discrete distribution of pixels is taken into account, the total measuring error is 
about five millimeters. 

2.3 Projection Model 
Fig. 3 depicts the full imaging model of a perspective camera with two hyperbolic mirrors. 
There are three essentially coordinate systems. 

 
Figure 3. The projection model of the omnidirectional stereo vision system. There are 
transformations between the camera coordinate system and the mirror (or world) coordinate 
system 

1. The camera coordinate system centered at the camera center Oc , the optical axis is 
aligned with the z-axis of the camera coordinate system;  

2. The mirror system centered at common foci of the hyperbolic mirrors Fo , the mirrors 
axes is aligned with the z-axis of the mirror coordinate system (We assume that the axes 
of the mirrors are aligned well, and the common foci are coincident, from the mirrors 
manufacturing sheet we know it is reasonable); 

3. The world system centered at Ow . The omnidirectional stereo vision system was placed 
on a plane desk. As both the base of vision system and desk surface are plane, the axis 
of the mirror is perpendicular to the base of the system and the surface of the desk 
feckly. We make the mirror system coincide with the world system to simplify the 
model and computations.  

So the equations of hyperboloid of two sheets in the system centered at Ow  are the same as 
equation (1). For a known world point ( , , )P x y zw w w  in the world (or mirror) coordinate 
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system whose projected points in the image plane are also known, ( , )1 1 1q u v  and ( , )2 2 2q u v  
are respectively projected by the upper mirror and bellow mirror. Then we get their 
coordinates in the camera coordinate system: 

 
( )
( )

0
, ( 1,2)0

cxi u u ki u
cy v v k ii vi

fczi

⎡ ⎤
−⎡ ⎤⎢ ⎥

⎢ ⎥⎢ ⎥= − =⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥

⎣ ⎦

 (4) 

Where f  is the focal length; uk and vk are the pixel scale factors; 0u and 0v are the 
coordinates of the principal point, where the optical axis intersects the projection plane. 
They are intrinsic parameters of the perspective camera. 
So the image points ( )c

i
c
i

c
ic zyxP ,,  of the camera coordinate system can be expressed relative 

to the mirror coordinate system as: 

 , ( 1,2)

m cx xi i
m cy R y t ii i
m cz zi i

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= + =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (5) 

Where R  is a 3×3 rotation matrix with three rotation angles around the x-axis (pitch α ), y-
axis (yaw β ) and z-axis (title χ ) of the mirror coordinate system respectively; [ , , ]t t t tx y z=  

is the translation vector. So the origin [0,0,0]TOc = of the camera coordinate system can be 

expressed in the world coordinate system [ , , ]TO t t tm x y z= , so the equations of lines 1O Mc  

and { | }f f p Pp= ∈  which intersect with the upper mirror and bellow mirror respectively at 

points 1M  and 2M , can be determined by solving simultaneous equations of the line 1O Mc  
or 2O Mc  and the hyperboloid. Once the coordinates of the point 1M  and 2M  have been 
worked out, we can write out the equations of the tangent plane л1 and л2 which passes the 
upper and the bellow mirror at point 1M  and 2M  respectively. Then the symmetric points 

1Oc  and 2Oc  of the origin of the camera coordinate system Oc  relative to tangent plane л1 
and л2 in the world coordinate system can be solved from the following simultaneous 
equations: 

 

2 2 2 2

( 1,2)2 2 2 2( ) ( ) ( )( ),

2 2 2 2 2 22[ ( )] 0

y ty z tzi i ix txo o oc c c
a x a y b z b ci M i M i M i ii i i
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 (6) 
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Hitherto the incident ray 1
2O Mc  and 2

1O Mc  can be written out to determine the world 
point ( , , )P x y zw w w . Generally, the two lines are non-co-plane due to various parameter 

errors and measuring errors, we solve out the midpoint ( )ˆ ˆ ˆ, , TG x y zw w w= of the common 
perpendicular of the two lines by 

 

1 1 2[ ( )] 02 2 1 1 2
1

2
1 1 1

2 1 2[ ( )] 01 2 1 2 1
2

1
2 2 2

O M O M O M G Mc c c OG
G M tG Oc

O M O M O M G Mc c c OG
G M tG Oc

⎧
× × • =⎪

⇒⎨
⎪ =⎩

⎧
× × • =⎪

⇒⎨
⎪ =⎩

2/)( 21 OGOGOG +=  (7) 

From all of them above, we finally come to the total expression to figure out the world point 
( )T

www zyxG ˆ,ˆ,ˆ=  from two image points respectively projected by the upper mirror and 
bellow mirror and six camera pose parameters left to be determined. 

 ( )
ˆ
ˆ, , , , , , , , ,1 1 2 2
ˆ

xw
G t t t u v u v yx y z w

zw

α β χ
⎡ ⎤
⎢ ⎥=⎢ ⎥
⎢ ⎥⎣ ⎦

 (8) 

Equation (8) is a very complex nonlinear equation with high power and six unknown 
parameters to determine. The artificial neural network trained with sets of image points of 
the calibration targets is used to estimate the camera-to-mirror transformation. 
Taking advantage of the ANN capability, which adjusts the initial input camera-to-mirror 
transformations step by step to minimize the error function, the real transformations 
parameters of the camera-to-mirror can be identified precisely. 

2.4 Error Function 
Considering the world points with known coordinates, placed onto a calibration pattern, at 
the same time, their coordinates can be calculated using the equation (8) from back-
projection of their image points. The difference between the positions of the real world 
coordinates and the calculated coordinates is the calibration error of the model. Minimizing 
the above error by means of an iterative algorithm such as Levenberg-Marquardt BP 
algorithm, the camera-to-mirror transformation is calibrated. The initial values for such 
algorithm are of consequence. In our system, we could assume the transformation between 
cameras and mirrors is quite small, as the calculation error without considering the camera-
to-mirror transformation is not significant thus using R=I and T=0 as the initial values is a 
reasonable choice. 
We minimize the following squared error ε2: 

 ( )
2

2 , , , , , , , , ,1 1 2 2
1

n i i i iP G t t t u v u vi i x y z
i

ε α β χ= −∑
=

 (9) 
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Where n is the number of the calibration points. 

Because ( ), , , , , , , , ,1 1 2 2
i i i iG t t t u v u vi x y zα β χ  depends on the camera-to-mirror transformation, (9) 

is optimized with respect to the six camera-to-mirror parameters. 

2.5 Calibration Result 
The calibration was performed using a set of 81 points equally distributed on a desk with 
different heights from 0 to 122mm around the vision system. 

 
Figure 4. A calibration image used in our experiments. The coaxial configuration of the 
camera and the two hyperbolic mirrors makes the epipolar line radially collinear, which 
makes the system free of the search process for complex epipolar curve in stereo matching 

The calibration results with real data are listed in Table 1. 

 α β χ xt  yt  zt  
value -0.9539° 0.1366° 0.1436° -0.0553mm -0.1993mm 1.8717mm 

Table 1. Calibration result with real data 

The calibration error was estimated using a new set of 40 untrained points, the average 
square error of the set points is 34.24mm without considering the camera-to-mirror 
transformation. Then we calculate the error with the transformation values listed in Table 1, 
the average square error decrease to 12.57mm. 

3. Improved Graph-cut Model 
In this section, we first briefly introduce the prior work on graph cuts, after that our 
improved optimization model and corresponding algorithm are presented. Note that our 
work has been done about graph cuts mainly based on related excellent work in [14], [15], 
[20] and [21], in our paper, most general depiction is based on above papers. 
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3.1 Two-variable Smooth Model 
In terms of the energy minimization, many early vision problems, which of course contain 
stereo matching, can be formulated in following energy model: 

 ( ) ( ) ( ).E f E f E fdata smooth= +  (10) 

In Eq. (10), the data term ( )E fdata  represents some extent similarities between f  and the 
observed data and typically, 

 ( ) ( ).E f D fp pdata p P
∑=
∈

 (11) 

Where, P  denotes the set of image pixels that need to be assigned labels. The label assigned 
to pixel p P∈ is denoted by f p , and f  is the set of all assignments: { | }f f p Pp= ∈ . Dp  

measures how well the label f p  fits the pixel p  in the observed image. The smooth term 

( )E fsmooth  usually represents the smoothness of f ,which is a critical issue and lots of 
functions have been proposed, typically it can be expressed as follows, 

 ( ) ( , ).
( , )

E f V f fpq p qsmooth p q N
∑=

∈
 (12) 

Where N represents the set of neighboring pixel pairs, in this case, Vpq represents the 
smoothness of pixels p and q that are respectively denoted by fp and fq, thereby Esmooth 
reflects the smoothness of all the neighboring pixels because our prior knowledge tells us 
that the surfaces of objects invariably keep relatively smooth except for some discontinuity 
area. We call the smoothness model that based on this function two-variable smoothness 
model because Esmooth  refers to two variables. Considering above description, the 
following energy function is commonly minimized in computer vision and graphical fields 
such as image restoration, image segmentation and stereo matching: 

 ( ) ( ) ( , ).
( , )

E f D f V f fp p pq p q
p P p q N

= +∑ ∑
∈ ∈

 (13) 

Currently, there are two typical two-variable smoothness models that specify smooth 
assumption that exist. One is Potts model, in which, the smooth term is depicted by 
following expression, 

 ( , ) min(1, )V f f C f fpq p q pq p q= ⋅ −  (14) 

where once any difference exists in label pairs, the penalty to this difference via smooth 
energy is bound to be the same amount, theoretically, the expectation of labels f should be 
constant since only the smoothness assumption is considered, however, the presence of the 
data term usually results in piecewise constant in fact. The other model is truncated convex 
priors, 

 ( , ) min( , ( )).V f f C T g f fpq p q pq p q= ⋅ −  (15) 
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Generally, ( )g x  is convex and symmetric, for linear truncated function, ( )g x x=  and when 
2( )g x x= , it is truncated quadratic function, this smoothness energy function tend to give a 

piecewise constant assumption theoretically on smoothness term, albeit practically the 
piecewise smooth results may come out owing to the data term. In this case, label set f is 
expected to be consisted of several pieces and in each piece the difference between the 
adjacent pixels in f is just a little, in other words, the neighboring pixels tend to vary 
smoothly. The truncation constant T is crucial to limit the penalty on smooth, otherwise, the 
penalty on neighboring pixel fp and fq might be unboundedly large, this is somewhat 
ridiculous since discontinuity always exist in most images and it may lead to oversmoothed 
label set f. 

3.2 Three-variable Smooth Model 
Our three-variable smoothness model is proposed to solve the problem that exists in two-
variable smoothness one. Note that only two variables, which are usually labels of 
neighboring pixels, are considered in smoothness assumption. Apparently, only the zero 
order and first order derivatives can be obtained via only two adjacent pixels. Nevertheless, 
sometimes they are not enough to specify the smoothness of a surface although expecting to 
minimize the difference of neighboring pixels (lesser first order derivative of f) invariably 
gives a reasonable constraint to make the whole surface that denoted by f varies relatively 
smoothly. This constraint is reasonable customarily mainly because the less difference 
between neighboring pixels likely means the more smoothly f varies. And also the data 
term, which accounts for biggish proportion in the whole energy function, always tend to 
enshroud the imprecise smoothness model. However, the smoothness term needs to be 
more precise to obtain reliable results when the disparity space is large, which means the 
reconstructed scene surface needs to be more elaborated and when the data term can not 
contribute to the energy function well in some conditions such as weak textured and 
textureless area. Unfortunately, these two take place in our omnidirectional images. To 
represent the smoothness of f better, we propose a three-variable smoothness model in 
which Esmooth typically can be expressed in following form: 

 ( ) ( , , ).
( , , )

E f V f f fsmooth pqr p q r
p q r N

= ∑
∈

 (16) 

In Eq. (16), neighboring pixels p, q and r are series-wound orderly, Esmooth contains three 
variables so that it can represent the smoothness of f more appropriately than two-variable 
model does. Now we give the concrete expression: 

 ( , , ) min( , ( 2 )),V f f f C T g f f f f fpq p q r pqr p r q p r= ⋅ + − + −  (17) 

where g(x) can be defined as the same in Eq. (16), |fp+fr-fq| represents the second 
derivative of label fr. In this case, the labels between the neighboring pixels tend to vary 
consistently and that also means less curvature which can represent the smoothness of 
surface better. Without doubt, to vary steadily is also important, thereby, |fp-fr|, which 
denotes the offset between first pixel p and last pixel r, is added in Vpqr. Obviously, the 
labels are expected to vary both smoothly and consistently in three-variable smoothness 



Mobile Robots Motion Planning, New Challenges 

 

134 

model while in two-variable smoothness model, the labels are only emphasized on varying 
smoothly. 

3.3 Graph cuts for 3-variable smooth model 
As we know, it is NP-hard to optimize the energy functions in Eq. (14) and Eq. (15). To solve 
this problem, Boykov et al. (Y. Boykov et al., 2001) developed the expansion and swap 
algorithm in which when Vpq is Potts and truncated linear or quadratic, the energy function 
can be optimized approximately. Now we use swap algorithm to optimize our 3-variable 
smoothness model. 
Before constructing graph for 3-variable smoothness model, in the first place, we necessarily 
prove this energy function is graph-representable which is equal to proving Esmooth(f) is 
regular. According to (V. Kolmogorov & R. Zabih, 2004), we only need to confirm all the 
projections of Vpqr of two variables are regular. To complete the proof of this conclusion, 
following three inequalities should be proved, for simplicity, we use V to represent Vpqr. 

 ( , , ) ( , , ) ( , , ) ( , , ),V f V f V f V fr r r rα α β β α β β α+ ≤ +  (18) 

 ( , , ) ( , , ) ( , , ) ( , , ),V f V f V f V fq q q qα α β β α β β α+ ≤ +  (19) 

 ( , , ) ( , , ) ( , , ) ( , , ),V f V f V f V fp p p pα α β β α β β α+ ≤ +  (20) 

For (18), because g(x) increase monotonously when x > 0 , combining Eq. (17), we just need 
to prove following inequality: 

 2 2 .f f f fr r r rα β α β β α− + − ≤ − + + − +  (21) 

Without loss of generality, supposing α β< , three possible relationships might exist among  
α , β  and fr, we discuss them respectively as follows. When frα β< < , it yields       

,f fr rα β β α− + − = − while 2 2 3( )f fr rα β β α β α− + + − + = − . In this case, (18) is proper. 

When fr α β< < , it yields 2 2 2f f f fr fr r r rα β α β β α β α− + − − − + =− + − ≤ − + . So (18) is proper 
too. While frα β< < , likewise the same conclusion can be acquired. 
To prove (19) analogously, only following inequality should be fulfilled: 

 2 2 2 2 2 .f f fq q qα β α β α β− + − ≤ + − + −  (22) 

Note that the inequality below is invariably true, 2 2x y x y x y x y+ ≤ − + + ≤ + . Thus (19) can 
be proved simply. Also we can prove (20) similarly, as (20) is very similar to (19). Now we 
have proved that our three-variable smoothness model is graph-representable definitely. We 
use swap algorithm in (Y. Boykov et al., 2001) analogously to optimize our energy model, 
since the integrated illustration about graph construction has been described in (V. 
Kolmogorov & R. Zabih, 2004), we only need to specify three possible cases in energy 
function Vpqr as follows. One case is that , , { , }f f fp q r α β∈ , in this case, Vpqr is the typical 

regular function of three binary variables. The second case is only two of fp, fq, fr belong to 
{ , }α β , in this  case, Vpqr is virtually a regular function of two binary variables. The last 
case is the simplest one in which only one of these three continuous labels belongs to { , }α β , 
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Vpqr is a regular function of one binary variable. Note that above three cases nearly 
invariably exist in fact. We no longer describe the graph construction process since all the 
cases are amply described in (V. Kolmogorov & R. Zabih, 2004), although our graph 
construction process is slightly different when considering the actual model. 

4. Stereo Matching 
In this section, combining the improved model and corresponding graph cuts algorithm, we 
present detailed steps for omnidirectional stereo matching. 

4.1 Handling Omnidirectional Images 

 
a 

 
b 

Figure 3. Unwrapped cylindrical images, of which a corresponding to outer circle image and 
b inner circle image 

The images acquired by our OSVOD (Fig. 2) have some particularities in contrast to normal 
stereo pairs as follows, which may lead to poor results using traditional stereo matching 
methods: (1) The upper mirror and nether mirror have different focal length that the camera 
focal length has to compromise with the two, thus causing defocusing effect. As a result, 
similarity measures, such as SSD, take on much less discriminability. (2) In this close-quarter 
imaging, the object surface is always not frontal-parallel to the virtual retina of the camera, 
resulting in large foreshortening effect between the outer circle image and the inner circle 
image. (3) Quite a number of weak textured and textureless areas exist in our real indoor 
scene, more difficulties are bound to bring on in stereo matching. We choose this scene with 
an eye to the actual ground circumstance, which is usually apt to be weak textured and 
textureless. (4) The wide-baseline vision system can enhance the calculative precision, 
whereas, the pending disparity space is larger correspondingly, this increases the search 
range and ambiguous results tend to bring on. To solve these problems, our method consists 
of the following several steps: we first convert the raw image both to two cylindrical images 
and planform images corresponding to images via nether and upper mirrors respectively 
(Fig. 5 and Fig. 6). The vertical lines with the same abscissa in the cylindrical images are the 
same epipolar. We compute a similarity measurement for each disparity on every epipolar 
curve in the cylindrical images. The similarity measurement of a pixel pair is set as the 
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average cost value of that computed from cylindrical images and that from planform 
images. This is to solve problem (2), as surface perpendicular to the ground tend to have 
good similarity measurement on the cylindrical images and surface parallel to the ground 
on the planform images. Second, we choose an appropriate similarity measure described 
below and also make necessary modification in the iteration of graph cuts to handle 
panoramic images, including deformed matching template, adaptable template scale. 
Finally we use improved 3-variable smoothness model via graph cuts to enhance the 
performance of our algorithm largely. These two steps are to solve problems (1), (3) and (4). 

    
 a b 

Figure 4. Converted planform images, of which a corresponding to outer circle image and b 
inner circle image 

4.2 MZNCC 
The similarity measure we choose here is zero-mean normalized cross correlation (ZNCC), 
since it is invariant to intensity and contrast between two images. But directly using this 
measure would result in low discriminability. Chances exist that two templates with great 
difference in average gray-level or standard deviation which cannot be deemed as matched 
pair may have high ZNCC value. To avoid this possibility, we modified ZNCC (called 
MZNCC) by multiplying a window function as follows: 

 ( ( , ) ) ( ( , ) ) max( , )( , ) ( ) ( 1)
min( , )

I i j d I i ja a b b a bMZNCC p d w wa b
a b a b
μ μ σ σμ μ

σ σ σ σ
+ − ⋅ −∑= ⋅ − ⋅ −

⋅
 (23) 

where 
1,

( )
/

x
w x

x x
λ

λ λ
<⎧

=⎨ ≥⎩
, aμ  and bμ  are the average grey-level of matching window, aσ  

and bσ  are the standard deviation, d denotes the disparity of pixel p. 
We define our texure level of each point following the notion of bandwidth of the bandpass 
filter. For a given pixel and a given template centred in the pixel, we slide the template one 
pixel at a time in the two opposite directions along the epipolar line and stop at the location 
the MZNCC value of the shifted template with the primary one decrease below a certain 
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threshold for the first time. Let l be the distance between the two stop points, which is 
inverse proportional the texture level. The definition of texture intensity can be formalized 
as: 

 
2( ( , ) )( , ) 2( , )

I u i v j ITex u v
lr i j r

−
+ + −= ∑

− ≤ ≤
 (24) 

Where r is the radius of the template. With the use of this defined texture intensity and two 
thresholds, the whole image can be divided into three regions: strong textured, weak 
textured and textureless regions. Unlike others straightforwardly use sum of intensity 
difference, we define the data term in our energy function in the form of MZNCC value 
multiplies a penalty coefficient Cp aim to assign different weights to different points based 
on the texture level. Generally, as the less reliability of the weak textured area and 
textureless one, we give following form of Cp. 

 
,
, .
,

Tex ts s
C t Tex tp w w s
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μ
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 (25) 

where s w lμ μ μ> >  and , ,t t ts w l  represent corresponding thresholds to differentiate above 
three typical areas. 

4.3 Template Rectification and Adaptive Scale 
For certain corresponding pixel pairs, it is expected that the MZNCC value of the two 
templates centered at these two points are very close to 1. This expectation is well satisfied 
when the two image templates are the projections of a single surfaces and this surface is 
frontal-parallel to the imaging plane of the virtual camera. When larger image templates 
straddle depth discontinuities, possibly including occluded regions, the MZNCC value may 
decrease to a value much smaller than 1. Also, if the surface is not parallel to the imaging 
plane, especially as the ground plane in our scene perpendicular to the imaging plane, the 
foreshortening effect makes the two templates differ quite significantly, also reduce the 
MZNCC value to an unsatisfactory amount.  
In this iterative framework of graph cuts, it is natural to estimate the appropriate template 
scale not to straddle depth discontinuities and rectify the template to compensate the 
foreshortening effect from current temporal result at each step. At each pixel in the image, 
we first use the largest template scale. We then compute the variance of the depth data in 
the template. If the variance exceeds an appropriately chosen threshold, it may be that the 
template scale is too large. Otherwise we continue to make use this template scale for 
MZNCC calculation.  
After the scale is determined, it is ensured that the template corresponds to a single surface. 
We use the depth data to fit this surface to a plane in 3-D space, and then reproject this plane 
to the other image. Normally, the reprojected template is not a rectangle any more if the 
surface is not frontal-parallel. And we compute the MZNCC value between the rectangle 
template in the reference image and the rectified template in the other image. In this way, 
foreshortening effect is well compensated. 
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4.4 Graph Cuts 
Considering the high-performance results in stereo matching, eventually, we use improved 
graph cuts based on three-variable smoothness model to optimize our energy function. 
Since the critical part of energy function has been discussed in section 3, now we briefly 
present the general form corresponding to our omnidirectional stereo. We use the 
appropriate energy function E in the form (10) to accommodate close-quarter measurement. 

( )E fdata  describes the MZNCC of corresponding pixels, and we also use different penalty 
coefficients to distinguish pixels with different texture. 

 ( ) (1 ( , )),E f C MZNCC p fdata p p= − ⋅∑  (26) 

Esmooth  introduces a penalty for neighboring pixels having different disparity values. 

 ( ) min( , ( 2 )).
( , , )

E f C T g f f f f fsmooth pqr p r q p r
p q r N

= ⋅ + − + −∑
∈

 (27) 

Note that we do not take occlusion into account when considering no occlusions come forth 
since we invariably choose the unwrapped cylindrical image, which corresponds to the 
outer image reprojected by nether mirror, as the reference image in stereo. You see, as the 
upper mirror is higher than the nether one, any point that can be seen in outer image must 
be seen in inner image unless it exceeds the view area in the camera or the theoretical 
matching point can not exist. In this case, we call it falls in ‘blind area’, virtually this always 

comes true in our omnidirectional images and we invariably neglect the pixels in ‘blind 

area’. 

5. Experimental Results 
In this section, we present our experimental results. In data term  Edata ,Cp can be defined 
as follows: 

1, 10
0.5 2 10,

0.25 0 2

Tex
C Texp

Tex

>⎧
⎪= ≤ ≤⎨
⎪ < <⎩

 

in view of Esmooth , Cpqr =0.01, T=100, g(x)=x2 . 
To observe the experimental results legibly, we utilize a part of the real images (Fig. 7(a), 
200*200) in Fig. 3 to test our algorithm. Fig.8 shows the experimental results via two typical 
2-variable smoothness models and our 3-variable one. Fig. 7(b) gives the initial depth map 
by MZNCC via winner-take-all (WTA). Fig. 7(c) shows the depth map based on the Potts 
model. Fig. 7(d) denotes the results of traditional 2-variablated convex priors. Fig. 7(e) and 
Fig. 7(f) present our results based on 3-variable truncated convex priors model respectively. 
The 2-variable model, which results in smaller gaps in depth map, performs better than 
Potts model. Notice that our algorithm produces an answer which varies most smoothly and 
consistently in three models because our energy function can approximate the true scene 
better, especially in our omnidirectional images which possess some particularities we have 
mentioned above. Note that when introducing template rectification and adapt scale (f) 
performances better at the boundary than (e), however, due to the imprecise initial depth 
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map, the amelioration is not very obvious but unspent. Unlike some standard images, 
obtaining precise groundtruth depth map for our real images is quite complicated, 
therefore, it is hard to describe our results quantitatively. Note that in all the experimental 
results, we neglect the ‘blind area’, in which we simply set a certain depth value. 
 
 
 

 
Figure 7. Depth maps of part omnidirectional images 

Finally, we give the complete depth map in Fig. 8 and also the corresponding obstacle 
sketch map consisting of point clouds can be found in Fig. 9. Fig. 8 describes the stereo 
correspondence of images in Fig. 7 precisely and this preferable performance is reliable for 
depth map regeneration, even though the obstacle we placed on ground is somewhat low, 
which results in relatively difficulties in the reconstructed process. Fig. 9 shows an effective 
obstacle sketch map for a mobile robot. These point clouds denote existence of obstacle, we 
can see the resolution gets lower when the object is far from the center (maybe need to zoom 
in to see clearly), this was also mentioned in (G. Jang, S. Kim & I. Kweon, 2005). To get a 
reasonable obstacle sketch map, we necessarily set a small threshold (about 10mm in this 
paper) to judge if the corresponding point should be seen as an obstacle point since the error 
nearly invariably exists. 
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Figure 8. Final depth map (Fig.5(a) is reference image) 

 
Figure 9.  Final omnidirectional obstacle sketch map 

6. Summary 
In this paper, we have developed a graph-representable three-variable smoothness model 
for graph cuts to fit the smooth assumption for our omnidirectional images taken by a novel 
vision sensor. We further develop MZNCC as a suitable similarity measurement and also 
the necessary modification, including deformed matching template and adaptable scale. 
Experiments demonstrate the effectiveness of our algorithm, based on which, the 
regenerated obstacle map is finer for a mobile robot. 
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1. Introduction  
During the past two decades, researchers in mobile robotics have dealt with different path 
planning methods. In most cases, the methods goal is to find free collision paths; which will 
meet the initial and final configurations to complete a mission. Some researchers have 
proposed methods where the robot’s configuration is perfectly known at each instant during 
the planning and navigation stages(Moreno & Dapena, 2003) . This is not always possible. 
Dealing with uncertainty, in the planning stage, is essential when the position errors values 
approach values close to the allowed thresholds for the mission. Plans based on geometrical 
models, assuming null uncertainty, are clearly insufficient when the mobile robot has to 
coexist with humans or other kind of difficult situations. Thus, the use of planners, which 
not explicitly deal with uncertainty, is limited to simple situations, where the errors are less 
than the allowed thresholds to accomplish the missions (Bouilly & Siméon, 1996). In general, 
the basic requirements for the autonomous navigation of a mobile robot are environmental 
recognition, path planning, driving control and location estimation/correction capabilities 
(Nakamura, 1991, Haralick & Shapiro). The location estimation and correction capabilities 
are practically indispensable for the autonomous mobile robot to execute the given tasks 
efficiently. There are many factors involved in obtaining accurate location information while 
the mobile robot is moving (Sim & Dudek). To get reliable and precise location data, sensor 
fusion techniques (Ayache & Faugeras, 1989, Zhou & Sakane, 2001) have also been 
developed. When a CCD camera is utilized under good illumination conditions, certain 
patterns or shapes of objects are also effective for determining the location (Han et.al, 1999, 
Segvic & Ribaric, 2001). Similarly when a mobile robot is moving in a building, the walls, 
edges, and doors can be utilized for position estimation (Betke, 1994 David, 1989). Most 
researches (Choset, 2001, Sanisa, 2001, Philippe & Colle, 2001) focus on the indoor 
navigation of a mobile robot in a well-structured environment. In other words, beacons, 
doors, and corridor edges are utilized to estimate the current location of the mobile robot. 
However, in cases such as when a mobile robot is navigating under a deep sea or in a forest 
(Kim, et.al, 2001), there are no landmarks that can be utilized to determine the location.  
This paper considers the situations where a mobile robot and a walking human coexist in a 
structured intelligent environment, such as assembly line in a factory. In these cases, one 
cannot utilize any landmarks or special features known a priori (Lallet & Lacroix, 1998, 
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Olson, 2000) to localize the mobile robot. The only thing that can be utilized for the 
localization is the information on a human captured by a CCD camera attached on top of the 
mobile robot. And an intelligent environment is used in order to solve these problems, a 
new scheme for the mobile robot localization using the information on the moving object 
has been developed. This situation might be considered as the inverse of tracking of an 
unknown moving object using a navigating robot with a camera whose location is precisely 
calibrated and stored all the time. The tracking problem has been already tackled in many 
researches (Nair & Aggarwal, 1989). 
In this research, the data coming from the dead reckoning sensors are used to obtain the 
initial location of the mobile robot and it is corrected through the position estimation 
procedure using the information on the moving object/walking human. For the quantitative 
analysis of this approach, the position uncertainty of the mobile robot (Adam & Rivlin, 2000, 
Caglioti, 2001) is represented by an uncertainty ellipsoid that shows the directional 
uncertainty quantitatively. The trajectory of the moving object is transformed to the image 
frame and represented as a geometrical constraint equation that is used for the Kalman 
filtering process (Kalman, 1960, Sorenson, 1966) that estimates the position of the mobile 
robot to reduce the size of the uncertainty ellipsoid. And a mobile robot cooperates with 
multiple intelligent sensors, which are distributed in the environment. The distributed 
sensors recognize the mobile robot and the moving objects/walking human, and give 
control commands to the mobile robot. The mobile robot receives the necessary support for 
localization control from the environmental sensors. We aim to perform mobile robot 
localization without applying any burden to the human with a mobile robot that is simple in 
structure. We propose intelligent space (ISpace) as an intelligent environment with many 
intelligent sensors, and are building an environment where humans and mobile robots can 
now coexist. The mobile robot of this research is one of the physical agents for human 
support in ISpace (Lee & Hashimoto, 2001). 
This paper is organized as follows. In Section 2, the concept of ISpace and the robot 
localization in intelligent space are explained. Section 3 describes the driving model of a 
mobile robot and the position estimation uncertainty. In Section 4, the image transformation 
relation, image projection of the walking human’ trajectory, and the position correction 
technique using the Kalman filter are described. Section 5 explains the proposed control 
method is applied to ISpace. The simulations and the experiments of robot localization are 
performed and the effect of the proposed method is verified. Finally, the Conclusions and 
directions for future work are described in Section 6. 

2. Robot Localization in Intelligent Space 
2.1 Structure of ISpace 
ISpace is a space where many intelligent devices are distributed throughout the whole of the 
space, as shown in Fig. 1. These intelligent devices have sensing, processing and networking 
functions, and are named distributed intelligent networked devices (DINDs). These devices 
observe the positions and behavior of both humans and robots coexisting in the ISpace. The 
information acquired by each DIND is shared among the DINDs through the network 
communication system. Based on the accumulated information, the environment as a 
system is able to understand the intention of humans. For supporting humans, the 
environment/system utilizes machines including computers and robots. 
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Figure 1. Structure of Intelligent environment by distributed cameras 

2.2 ISpace System with Multi-camera 
In ISpace, the CCD camera is adopted as the sensor for DINDs, and the tracking of moving 
objects, such as walking human, and mobile robot, is performed. There are two advantages 
in using CCD cameras. One is that the position measurement of the targets is a noncontact 
method. The other is that the human doesn’t have to carry any special devices for the 
DINDs to be able to measure his position. Experiments were performed in the laboratory 
room, which is about 7 m in both width and depth, is used for the ISpace. The ISpace has a 
mobile robot as a human-following agent, six DINDs which can obtain the situation in the 
environment, and a projector and a screen which present suitable information to the human. 
Each module is connected through the network communication. Three DINDs are used in 
order to recognize the mobile robot and to generate the control commands. The other three 
DINDs are used to recognize the position of the human. DINDs are placed as shown in Fig. 
1.  
In the Intelligent Space, the DIND understands events occurring within the space and offers 
appropriate services for people by using devices such as robots, displays, and speakers. We 
can avoid the redundancy of function by sharing the information obtained by the DINDs 
and assigning each DIND to either recognize a walking human or a robot. The recognition 
and control performance in 3-D space were improved by locating each DIND for a walking 
human or robot using the position of triangular form. This intelligence, obtained spatially by 
the DINDs, connects the physical and digital spaces and enables the understanding of the 
human’s motion. 
Fig. 2 is a picture of the actual ISpace. The placement of the three DINDs for human 
recognition is optimized to expand the viewable area of the cameras so that the head and 
hands of the human can be recognized over a wide area (Akiyama, Lee, & Hashimoto, 2002). 
On the other hand, the placement of DINDs for the mobile robot has to be decided by trial 
and error. It is desirable that the DINDs for the mobile robot recognize the whole of the area 
covered by three DINDs for human recognition in order to achieve the human-following 
system and reliable mobile robot control. Thus, three DINDs are placed so that the area for 
human recognition is completely covered. Human walking information is extracted by 
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background subtraction and by detecting the skin color of a face and hands on captured 
images. 
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Figure 2. Experimental environment 

A mobile robot is connected to the DIND network via wireless LAN, as shown in Fig. 3, and 
shares the resources of the DIND’s. For recognizing the position of the robot, one color 
panels are installed around the mobile robot. The pattern of the color panel is recognized by 
the DIND and it estimates the posture and position of the robot by kinematics of robot 
projected onto an image plane. Since the height of the mobile robot is already known, the 
position of a mobile robot is reconstructed from one camera image. 
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Figure 3. Mobile robot and network system in ISpace 

3. Position Uncertainty Modeling 
3.1 Ellipsoid point with uncertainty ellipse 
The “ellipsoid point with uncertainty ellipse” is characterized by the coordinates of an 
ellipsoid point (the origin), distances r1 and r2, and the angle of orientation A. It formally 
describes the set of points on the ellipsoid that fall within or on the boundary of an ellipse 
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with semi-major axis of length r1 oriented at angle A (0 to 180o) measure d clockwise from 
the north and semi-minor axis of length r2. The distances are the geodesic distances over the 
ellipsoid, i.e., the minimum length of a path on the ellipsoid that joins the two points, as 
shown in Fig. 5(4). 
The ellipsoid point can be used to indicate points on the Earth’s surface or near the Earth’s 
surface that have the same latitude and longitude. The confidence level with which the 
position of a target entity is included within this set of points is also specified along with 
this shape. The typical use of this shape is to indicate a point when its position is known 
only with a limited accuracy, but the geometrical contributions to uncertainty can be 
quantified. 

 
Figure 4. Description of an uncertainty ellipse 

Mathematically, an ellipsoid Et is a region of space defined as follows: 

 Et :={x∈Rn: (xoxm)Pt-1(xoxm) ≤1.0 },  (1) 

for some x∈Rn, where the subscripts o and m represent the observed point and the point in 
the map, respectively. Pt is a symmetric and positive definite matrix. 
The aim of the ellipsoid method is to begin with a large ellipsoid (usually an n-dimensional 
sphere where n is a dimension of a state space) that contains the whole uncertainty set and 
to then generate a sequence of progressively smaller/larger ellipsoids, leading to an 
ellipsoid that fits the state uncertainty as tightly as possible. 
The positional uncertainty of the object point in world coordinates is calculated by first 
applying the rotation between the robot and the world coordinates and then adding the 
uncertainty of the robot position. In order to determine the correspondence between the 
observation and the map, we integrate the observation result with the map to reduce the 
positional uncertainty of object points. For this purpose, we need to determine the 
correspondence between the object points in the observed data and those in the map. For 
each observed point, we identify the corresponding point on the map that satisfies the Eq. 
(1). 

3.2 Modeling of Mobile Robot 
The initial position of a mobile robot can be specified precisely. However, measurement 
error and slippage during the movement may cause the position estimation uncertainty to 
be large. This uncertainty increases with driving distance, and may eventually result in 
losing the location of the mobile robot. 
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Figure 5. Geometrical model of a mobile robot 

The robot’s position will be represented by the vector of its spatial variables ( )kx , as a point 
in the Cartesian plane, with ( )rx k  and ( )ry k  coordinates and an orientation ( )r kθ , 

[ , , ]T
r r rx y θ=x . The simplified kinematic model proposed in (Adam, Rivlin & Shimshoni, 

2000) describes how the robot’s position changes in time, in relation to an initial position, in 
response to a ( )ku  control input formed by a ( )T k  translation followed by a ( )r kθ  rotation: 

( )  [ ( ),  ( )]T
rk T k kθ=u . The state, for a given instant, is obtained from the state transition 

function ( ( ),  ( ))f k kx u , represented in Eq. (2) 
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where ( ( ), ( ))f k kx u , is a non-linear state transition function, ( )kv  is a noise source assumed 
to be zero-mean Gaussian with covariance ( )kQ → (0,  ( ))N Q k  and finally ( )ku  is the control 
input. The position uncertainty of the robot is modeled by means of a Gaussian distribution 
of probability centered in the vehicle position at a given moment. Eq. (2) allows to obtain the 
mean vector estimation in the k + 1 position. It is now necessary to estimate the covariance 
matrix in the same position. The first two moments, the mean and the covariance of the 
distribution function, which follow the spatial position relationship, must be determined. 
The covariances matrix related to the prediction, in the non-linear spatial relationship case, 
is obtained from the Taylor series expansion. Therefore, the estimated position of a mobile 
robot and ˆ ( | ) k kx covariance matrix equation is shown in Eq. (3) and Eq. (4), respectively 
(Kalman, 1960). 

 ))u(),(x()1(x̂ kkfk =+   (3) 

 ( 1| )  ( | ) ( )Tk k k k k+ = ∇ ∇ +P f P f Q ,  (4) 
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where ∇f  is the state transition function Jacobian, obtained as the linearizing result around 
the estimated state. The state transition function Jacobian is described in Eq. (5) 

 

ˆ1 0 ( )sin( ( | ))
ˆf = 0 1 ( )cos( ( | ))

0 0 1
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T k k k

T k k k

θ

θ
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⎢ ⎥
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.   (5) 

In order to estimate the vehicle position, odometry is not enough. The ˆ( | )x k k  covariance 
matrix equation shown in Eq. (4) tends to grow continuously (Fig. 6). Using this covariance 
matrix, the position estimation uncertainty can be represented as a hyper-ellipsoid. That is, 
the uncertainty hyper-ellipsoid can be defined (Nakamura, 1991) from the SVD (singular 
value decomposition) of the covariance matrix. This SVD provides the principal axis by the 
left singular vectors and the length along the axis by the corresponding singular values. Fig. 
6 illustrates the effectiveness of the uncertainty ellipsoid as an example. It shows that the 
uncertainty ellipsoid becomes larger with the movement of a mobile robot, and that the 
geometrical shape of the ellipsoid directly represents the position estimation uncertainty 
along a given axis. 
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Figure 6. Uncertainty ellipsoids with the movement of a mobile robot 

4. Position Estimation based DINDs 
4.1 Image projection of walking human 
During navigation, a mobile robot may need to re-locate its position. When there is a 
walking human that can be captured by the CCD camera of DINDs and the motion 
information on the walking human is available to the mobile robot, it may stop at its current 
position to improve the position estimation accuracy of itself by observing the walking 
human. The given object trajectory can be represented as a linear equation in the image 
frame, and using the current position estimation of the mobile robot, geometric constraint 
equations can be derived through coordinate transformation.  
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The derivation procedure of geometric constraint equations is going to be illustrated with an 
example shown in Fig. 7. The conventional pin-hole model (Haralick & Shapiro, 1993) is 
utilized to form a geometrical model of the camera. In Fig. 7, ( W W Wx y z ) and (u, v) 
represent the reference coordinates and the image coordinates, respectively. 
 

WY

WX

DIND
Network

Human Tracking
Vision SensorRobot Tracking

Vision Sensor

h

V

U

WZ

Walking human path

 
Figure 7. Coordinates for a walking object and a mobile robot 

The walking human is assumed to have the following trajectory on the WW yx −  plane of 
the reference coordinates, without loss of generality:    

 0),( =WW yxf   (6) 

where )( 0 hzzW ≠= is also assumed to be constant and not equal to the camera height, h . 
The walking human trajectory in the reference coordinates can then be transformed into the 
robot coordinates, as follows: 
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where T
rrr zyx ][

∧∧∧
 represents the current estimated position of the mobile robot and 

T
WWW zyx ][  represents the position of the walking human. 

This point ( T
RRR zyx ][ ) is again mapped onto the image frame using the perspective 

projection, as follows (Haralick & Shapiro, 1993, Han et.al, 1999): 
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where λ  represents the camera focal length, and [ ]Tvuz = is the position of the walking 
human on the image frame.  Based on the equations (7) and (8), the geometric constraint 
equation can be generally represented as 

 0),( =
∧
xzf    (9) 

where T
rrr zyxx ]ˆ,,[ˆ =  represents the current estimated position of the mobile robot. 

4.2 Position Correction 
The calculated position of the walking human in the image frame, based on the estimated 
robot position, has some discrepancy from the actual value. Utilizing this error, the practical 
position of the robot can be corrected recursively. To overcome vague input information, i.e., 
the human position in the image frame includes noise and the position estimation of the 
robot has uncertain components, the Kalman filtering technique is adopted to form a robust 
observer (Kalman, 1960, Sorenson, 1966). The geometric constraint equations between the 
human image coordinates and the robot position are approximated to a linear system 
equation, and the Kalman filtering technique is applied to estimate the robot position.     
It is assumed that i-th measured vector, i.e., the position of the walking human, ˆiz , includes 
noise with the following average and variance: 

 iii zz ν+=ˆ
 (10) 

where 0][ =iE ν  and 
i

T
ii SE =][ νν . 

The nonlinear constraint equations are approximated to linear ones using the Taylor series 
expansion, ignoring the higher order nonlinear terms at the measured vector, ˆiz , and the 

estimated position of the mobile robot, 1ˆ −ix . That is,  
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respectively. 
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For a linear system, the equation (11) can be rearranged as the following matrix equation 
(Ayache & Faugeras, 1989). 

 iii uxMy +=
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    (12) 
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1

1 1ˆ ˆˆ( , )

i

i i i i

x x

fy f z x x
x ∧ ∧

−

− −∧

=

∂= − +
∂

 , 

1i

i

x x

fM
x ∧ ∧

−

∧

=

∂=
∂

 and ˆ( )
i

i i i
z z

fu z z
z ∧

=

∂= −
∂

. 

In this equation, iy  becomes the new measured vector, iM  combines the measured vector 

and the robot position, x̂ , linearly, and iu  is the error for linearization of the measured 
vector with the following average and variance values (Nakamura, 1991). 

 0][ =iuE   (13) 
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Since iM  and iy  are a priori given values, if we have the average and variance of iu , we 

can obtain the optimal estimated value of x̂  with the new variance. The Kalman filter 
provides the estimated value, x̂ , which minimizes the expected squared error norm,  

)]ˆ()ˆ[( xxxxE T −− as the linear combination of the measured vectors, { iy }, as follows: 

 )ˆ(ˆˆ 11 −− −+= iiiiii xMyKxx    (15) 

 
1

11 )( −
−− += i

T
iii

T
iii WMPMMPK    (16) 

 1)( −−= iiii PMKIP    (17) 

where 
iK  represents the Kalman gain, 

iP  is the zero-mean-variance matrix of the estimated 

error by the ith  measured vector, and ix̂  is the estimated robot position by the ith 
measured vector. 
The initial robot position estimation and variance, 0x̂  and 0P , can be obtained using the 
mobile robot driving model. Using the n image frames from the image coordinates of the 
moving object, the final robot position is recursively estimated as nx̂ , with a variance of 

nP . 
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5. Simulation and Experiments 
5.1 Simulation 
The simulations were performed for two different patterns of walking human motion: the 
parabolic motion and the sinusoidal motion. To make it realistic, the following camera 
parameters in Table 1 were utilized: 

Parameter value 

Camera height ( )h  220cm  

Focal length ( )λ  1.25cm  

CCD size ( ) ( )H V×  0.66 0.48cm cm×  

Table 1. The parameters of camera system 
The variances of the measured vectors were independent of each other; the empirical 
variances were obtained as follows: 

 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

2

2

005.00
0005.0

iS
 .   (18) 

The estimated initial position and the error variance came from a mobile robot driving 
model with 100 msec of control cycle, where the input errors of the wheel angle readings are 
limited to within 2% for Kalman filtering. 
Case 1: a parabolic walking motion case 
As the simplest example, an object was assumed to be moving along a parabolic curve, 
specified as the range, 400 600[ ]wX cm= − , 20.1( 500) 1200[ ]w wY X cm= − − + , ][100 cmZ w = , 
walking speed: 30 Cm/sec. 
 

 

Moving object

 
(a) Trajectory of moving object                (b) Image coordinates of a moving object 

Figure 8. Moving object trace on the image frame 
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Final Uncertainty Ellipsoid

Initial Uncertainty Ellipsoid

 
Figure 9. Improvement of position estimation uncertainty 

 
Figure 10. Position estimation errors 

Fig. 8 (a)-(b) represents the moving path of the walking human in 3-D space and on the 
image frame respectively, and Fig. 9 shows the quantitative improvement of the position 
estimation uncertainty. Finally, Fig. 10 represents the position estimation error for each 
component of the robot position, (x,y,θ ) when the parabolic walking motion is utilized for 
the localization. Note that since the walking human provides the useful information useful 
for the position correction on the x-y plane, the uncertainty ellipsoid shrunk along all 
directions, as shown in Fig. 9. Also notice that both of the x and y position errors of the robot 
converse to zero for the same reason, as shown in Fig. 10. The position estimations and zero-
mean variances before and after the 100 times iterations are shown as:  

Initial: 0ˆ [490 480.5 95 ]Tx cm cm= °  and 
0

243.1162 89.8719 0.6576
89.8719 62.9118 0.2529
0.6576 0.2529 0.0105

P
− −⎡ ⎤

⎢ ⎥= −
⎢ ⎥−⎣ ⎦

 



Motion Estimation of Moving Target using Multiple Images in Intelligent Space 

 

155 

Final: 100ˆ [500.4 499.6 90.2 ]Tx cm cm= °  and 

⎥
⎥
⎥
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⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−
=

00044.00080.0
0044.04273.151574.2
0080.01574.26294.3

100P . 

Note that the estimated position, 
100ˆ [500.4 499.6 90.2 ]Tx cm cm= ° , converges to the real 

position, Tcmcmx ]90500500[ °=  precisely. 
Case 2: a sinusoidal walking motion case 
As a general case, the trajectory of a walking human was assumed to be a sinusoidal 
trajectory, represented as follows: 

400 600[ ]wX cm= − , 30.01( 500) 300[ ]w wY X cm= − − + , ][100 cmZ w = , walking speed: 30 
Cm/sec. 

   
(a) Trajectory of moving object   

 
 (b) Image coordinates of a moving object 

Figure 11. Moving object trace on the image frame 
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Initial Uncertainty Ellipsoid

Final Uncertainty Ellipsoid

 
Figure 12. Improvement of position estimation uncertainty 

Fig. 11 (a)-(b) represents the sinusoidal moving path of the walking human and the image 
coordinates of a moving object respectively, and Fig. 12 shows the uncertainty ellipsoid for 
moving object closer to the walking human tends to be smaller, as expected for visual 
information with updated estimation. Finally, Fig. 13 represents the position error and the 
orientation error for each component of the robot position respectively. These simulation 
results indicate that the Multi-visual estimation correspond well to actual objects in the 
ISpace.  

Initial: 0ˆ [490 480 95 ]Tx cm cm= °  and  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
=

0015.01829.05576.0
1829.03118.627719.89
5576.07719.899162.242

0P  

Final: 100ˆ [503.4 504.0 90.2 ]Tx cm cm= °  and 
100

5.7384 -2.2684 0.0180
-2.2684 15.8873 -0.0174
0.0180 -0.0174 0

P
⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

. 

Note that the estimated position, 
100ˆ [503.4 504.0 90.2 ]Tx cm cm= ° , converges to the real 

position, Tcmcmx ]90500500[ °=  precisely. 

 
Figure 13. Position estimation errors 
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5.2 Experiments 

WXWY

  

Goal

Walking
human path

)cm200,cm30(

wX

wY

)90,cm0,cm0( °

cm30-80
cm400250Yw −=

X w =

 
Figure 14. Experimental environment 

The real experiments were performed at the ISpace as shown in Fig. 2. In this experiment, 
the robot is driven to follow walking human in the ISpace. The initial position of the mobile 
robot was set as  (0 cm, 0 cm, 90o) and aimed towards the goal position, (30 cm, 200 cm, 90o), 
where the CCD camera of DIND tracks the walking human on the floor to correct its own 
position. The trajectory of the walking human was captured by a color CCD camera, VC-
C4R, made by CANON Inc. and the trace was given as 30 80[ ]wX cm= − , 

250 400[ ]wY cm= − , and ][100 cmZ w =  with the speed of 100 Cm/sec. The parameters used 
for the experiments were the same as for the simulations. When the robot arrived at the goal 
position, it captured 20 frames of images every 100 msec for the walking human to estimate 
and correct its own position utilizing the information on the walking human. The real 
position of the mobile robot was [33 208 90 ]Tcm cm ° , and the estimated position of the 
mobile robot and the variance of the estimated error were given as  

0ˆ [28 195 87.9 ]Tx cm cm= °  and  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
=

001.0003.0154.0
003.0183.0021.1
154.0021.1951.49

0P . 

After the 100 frames of observation, the estimated position of the mobile robot became very 
close to the real position, and the variance of the estimated error was greatly reduced, as 
shown below:  

100ˆ [29.4 196.4 89.7 ]Tx cm cm= °  and 
100

8.0406 0.1784 0.0252
0.1784 0.1660 0.0006

0.0252 0.0006 0.0001
P

−⎡ ⎤
⎢ ⎥= − −
⎢ ⎥−⎣ ⎦

. 
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Initial Uncertainty Ellipsoid

Final Uncertainty Ellipsoid

  
(a) Robot position estimation uncertainty                         (b) Position errors 

Figure 15. Improvement of position estimation uncertainty 

The robot position estimation uncertainty was represented as an uncertainty ellipsoid and it 
was very impressive that the size of the ellipsoid shrunk only along the normal direction of 
the walking human, as shown in Fig. 15 (a). Fig 15(b) shows the position errors of the mobile 
robot. As expected, we can see that the position error reduced significantly as the robot 
moves, depending on the motion it observes. The overall robot pose uncertainty for each 
cycle decreases over iterations, showing that by observing the scene repeatedly with DINDs, 
the estimation uncertainty reduces and hence a better robot pose is obtained. The robot 
orientation also decreases slightly for this reason, when walking motion has not acute angle 
turn. 
These experimental results correspond to the experiment performed inside the 7 m x 7 m 
space. Evidently, in the experiment, the simulation error range appears low since the mobile 
robot and the walking human were assumed to be point objects, and the size of point was 
set to 30 cm x 100 cm. Moreover, the simulation result is better than the experimental result 
because of the following factors in the real experiment: nonlinear elements in the motion of 
walking human, the robot position error due to wheel slippage, rough surface, and sensor 
error. 
As regards the additional experimental results, Fig. 16 presents the experimental results 
with respect to walking speed for case 1. For comparison purposes, the Kalman filter was 
also designed based on case 1, and its outputs are plotted in the figure. The walking human 
moved along a parabolic trajectory in the x-y axis, and the motion models had the same 
zero-mean variance. Fig. 16(a) shows the data plot of the localization error when only the 
constraints imposed by the visibility regions are used. As evident from the figure, the DIND 
system is unable to localize the mobile robot based on this information alone. Moreover, 
when the average walking speed is 100 cm/s, the localization accuracy is reasonably high 
and the robot is capable of quickly determining its absolute position in the environment.  
Fig. 16(b) presents the experimental result when the walking speed is above 110 cm/s and 
the turns of human are included. When the walking human accelerates, the DIND4, DIND5, 
and DIND6 are used to track the accurate position and direction of the human. As compared 
to Fig. 16, the response of the position is reasonably smooth, whereas the orientation  
continues to be very noisy during the sampling step 30. This is due to distortions of the 
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images caused by the human’s motion and walking speed. During the sampling step of 90 
ms, the position error is at most 100 mm, and the orientation error is up to 5 degrees. 
In future research efforts, it is necessary to examine the influence of the mobile robot, which 
maintains a flexible distance between the robot and the human. In the ISpace, since a 
human-walking trajectory is newly generated at every step, it is considered to be a function 
of time. Therefore, the application of tracking control is effective. However, although the 
target trajectory of a mobile robot is continuous and smooth when the usual tracking control 
is applied, the actual human-walking trajectory that is to be tracked by the robot is generally 
unstable. In such cases, stable human-following behavior may not be achieved by the usual 
tracking control.  

 
(a) Position and orientation error at an average speed of 100 cm/s 

 
(b) Position and orientation error at an average speed of above 110 cm/s 

Figure 16. Experimental results of relative human motion 

6. Conclusion 
In this paper, using the images of walking human, an absolute position estimation method 
for a human following robot in ISpace was presented. First, the position estimation 
uncertainty of the mobile robot is quantitatively represented by the uncertainty ellipsoid. 
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The real human position is transformed to geometric constraint equations in the image 
coordinates for a given robot position. The control algorithm using the linear constraint 
equations and the Kalman filtering technique was proposed for a mobile robot in order to 
estimate and correct its position recursively, and follow a walking human whose position is 
estimated incompletely. 
Specifically, the pre-determined path of a walking human is projected onto an image frame 
and the geometrical constraint equations between the human’s image coordinates and the 
estimated human following robot position are derived. Since the location is based on the 
estimated position of the mobile robot, there exists positional discrepancy between the 
estimated image coordinates and the real position of the walking human. Using this 
discrepancy, the position of the mobile robot is corrected recursively. Since the image 
coordinates of the human are subjected to noise, the Kalman filtering technique is adopted 
for robust estimation. Next, cooperation between the multiple DINDs was described. The 
position of the human and the mobile robot in ISpace was measured with DINDs. To control 
a mobile robot in a wide area, cooperation of the DINDs, effective communication and role 
assignment are required. Finally, simulations and an experiment into the human-following 
control of a mobile robot were performed using the proposed control algorithm. It was 
recognized that position estimation accuracy depends on the path of the walking human. 
The effectiveness of this algorithm is verified through real experiments.  
Future studies will involve improving the estimation accuracy for the human following 
robot and applying this system to complex environments where many people, mobile robots 
and obstacles coexist. Real time image processing and camera calibration are needed to 
improve the estimation accuracy for the distance between the human and the mobile robot. 
Since the proposed algorithm absorbs the kinematic differences between humans and 
robots, any kind of mobile robot, including legged robots, can be used as human-following 
robots, as long as the robot is able to move at the speed of human walking. Moreover, it is 
necessary to survey the influence of the mobile robot which maintains a flexible distance 
between the robot and the human, and introduces the knowledge of cognitive science and 
social science. 
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1. Introduction     
Detection of moving objects has been utilized in industrial robotic systems, for example, in 
the recognition and monitoring of unmanned systems that also require compression of 
moving images (Senior, 2002,  Bierlaire & Antonini, 2003). Trajectory prediction of moving 
objects is required for a mobile manipulator that aims at the control and observation of 
motion information such as object position, velocity, and acceleration. Prediction and 
estimation algorithms have generally been required for industrial robots. For a simple 
example, in a pick-and-place operation with a manipulator, the precise motion estimation of 
the object on the conveyor belt is a critical factor in stable grasping (Nummiaro, et.al, 2002, 
Allen, et.al, 1992). A well-structured environment, such as the moving-jig that carries the 
object on the conveyor belt and stops when the manipulator grasps the object, might obviate 
the motion estimation requirement. However, a well-structured environment limits the 
flexibility of the production system, requires skillful designers for the jig, and incurs a high 
maintenance expense; eventually it will disappear from automated production lines.   
To overcome these problems, to tracking a moving object stably without stopping the 
motion, the trajectory prediction of the moving object on the conveyor belt is necessary (Ma, 
Kosecka & Sastry, 1999). The manipulator control system needs to estimate the most 
accurate position, velocity, and acceleration at any instance to capture the moving object 
safely without collision and to pick up the object stably without slippage. When the motion 
trajectory is not highly random and continuous, it can be modeled analytically to predict the 
near-future values based on previously measured data (Choo & Fleet, 2001). However, this 
kind of approach requires significant computational time for high-degrees-of-freedom 
motion, and its computational complexity increases rapidly when there are many modeling 
errors. In addition, performance is highly sensitive to the change of the environment. Those 
state-of-the-art techniques perform efficiently to trace the movement of one or two moving 
objects but the operational efficiency decreases dramatically when tracking the movement of 
many moving objects because systems implementing multiple hypotheses and multiple 
targets suffer from a combinatorial explosion, rendering those approaches computationally 
very expensive for real-time object tracking (Anderson & Moore, 1979). 
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Figure 1. Intelligent environment by distributed cameras 

It is necessary for the intelligent environment to acquire various information about humans 
and robots in the environment. When the environment does not know where humans and 
robots are respectively, the environment cannot give the enough service to the appropriate 
user as for the physical service especially. Therefore, it is considered that how to get the 
location information is the most necessary of all. The system with multiple color CCD 
cameras is utilized as one of the means to acquire the location information in an intelligent 
environment. It can achieve the human centered system because the environment acquires 
the location of human noncontactly and the equipment of the special devices isn’t required 
for human. Moreover, camera has the advantage in wide monitoring area. It also leads to 
acquisition of details about objects and the behavior recognition according to image 
processing. Our intelligent environment is achieved by distributing small intelligent devices 
which don’t affect the present living environment greatly.  

2. Vision System in Robotic Space 
2.1 Structure of Robotic Space 
Fig. 2 shows the system configuration of distributed cameras in Intelligent Space. Since 
many autonomous cameras are distributed, this system is autonomous distributed system 
and has robustness and flexibility. Tracking and position estimation of objects is 
characterized as the basic function of each camera. Each camera must perform the basic 
function independently at least because over cooperation in basic level between cameras 
loses the robustness of autonomous distributed system. On the other hand, cooperation 
between many cameras is needed for accurate position estimation, control of the human 
following robot (Kitagawa, 1996), guiding robots beyond the monitoring area of one camera 
(Chen & Young, 2002), and so on. These are advanced functions of this system. This 
distributed camera system of Intelligent Space is separated into two parts as shown in Fig. 2. 
This paper will focus on the tracking of multiple objects in the basic function. Each camera 
has to perform the basic function independently of condition of other cameras, because of 
keeping the robustness and the flexibility of the system. On the other hand, cooperation 
between many cameras is needed for accurate position estimation, control of mobile robots 
to supporting human (Harris, 1995, Norlund & Eklundh, 1997), guiding robots beyond the 
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monitoring area of one camera (Atsushi, et.al, 2002), and so on. These are advanced 
functions of this system. 

 
Figure 2. Configuration of distributed camera system 

2.2 Previous Research for Tracking 
Neural networks can be classified into two categories: supervised learning- and 
unsupervised learning methods. In most of the previous research, the supervised learning 
method was adopted to overcome the nonlinear properties (Roberts, 1995, Atsushi, et.al, 
2002). Since the supervised learning method requires the relation between input and output 
(Chen & Young, 2002) at all times, it is not suitable for real-time trajectory estimation for 
which the input-output relation cannot be obtained instantaneously in the unstructured 
environment. Therefore, in this study, SOM (Self Organizing Map), that is, a type of 
unsupervised learning method, was selected to estimate the highly nonlinear trajectory that 
cannot be properly predicted by the Particle filter. Also, SOM is a data-sorting algorithm, 
which is necessary for real-time image processing since there is so much data to be 
processed. Among the most popular data-sorting algorithms, VQ (Vector Quantization), 
SOM, and LVQ (Learning Vector Quantization), SOM is selected to sort the data in this 
approach since it is capable of unsupervised learning. Since VQ is limited to the very special 
case of a zero neighborhood and LVQ requires preliminary information for classes, neither 
of them is suitable for the unsupervised learning of the moving trajectory.  Fig. 3 shows the 
estimation and tracking system for this research. The input for the dynamic model comes 
from either the Particle filter or SOM according to the following decision equation:  

 outout SOMkFilterParticlekvalueredictedP ⋅−+⋅= )1(  (1) 

where k=1 for error threshold≤  and k=0 for error threshold> . 
The threshold value is empirically determined based on the size of the estimated position 
error. 
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Figure 3. Estimation and tracking system of robotic space 

3. Processing Flow 
3.1 Extraction of Object 
Classifying the moving-object pattern in the dynamically changing unstructured 
environment has not yet been tackled successfully (Wren, et.al, 1997). Therefore, in this 
research, the camera was fixed on a stable platform in order to capture static environment 
images. To estimate the states of the motion characteristics, the trajectory of the moving 
object was pre-recorded and analyzed. Fig. 4(a) and Fig. (b) represent the object images at (t-
1) instance and (t) instance, respectively.  

   
(a)  (t-1) instance                                 (b) (t) instance 

Figure 4.  Detected image of moving object at each instance 

As recognized in the images, most parts of the CCD image correspond to the background. 
After eliminating the background, the difference between the two consecutive image frames 
can be obtained to estimate the moving-object motion. To compute the difference, either the 
absolute values of the two image frames or the assigned values can be used. The difference 
method is popular in image pre-processing for extracting desired information from the 
whole image frame, which can be expressed as 

  ),(2Image),(1Image),(Output yxyxyx −=  (2) 
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The difference image between Fig. 4(a) and Fig. 4(b) is represented in Fig. 5. When the 
difference image for the whole time interval can be obtained, the trajectory of the moving 
object can be calculated precisely. 

 
Figure 5. Difference image between (t) and (t-1) instance images 

3.2 Target Regions Encoded in a State Vector 
Particle filtering provides a robust tracking framework, as it models uncertainty. Particle 
filters are very flexible in that they not require any assumptions about the probability 
distributions of data. In order to track moving objects (e.g. pedestrians) in video sequences, 
a classical particle filter continuously looks throughout the 2D-image space to determine 
which image regions belong to which moving objects (target regions). For that a moving 
region can be encoded in a state vector. In the tracking problem the object identity must be 
maintained throughout the video sequences. The image features used therefore can involve 
low-level or high-level approaches (such as the colored-based image features, a subspace 
image decomposition or appearance models) to build a state vector. A target region over the 
2D-image space can be represented for instance as follows:  

 r {l, s, m, }γ=  (3) 

where l  is the location of the region, s  is the region size, m  is its motion and γ  is its 
direction. In the standard formulation of the particle filter algorithm, the location l, of the 
hypothesis, is fixed in the prediction stage using only the previous approximation of the 
state density. Moreover, the importance of using an adaptive-target model to tackle the 
problems such as the occlusions and large-scale changes has been largely recognized. For 
example, the update of the target model can be implemented by the equation 

 1r (1 ) r E[r ]t t tλ λ−= − +  (4) 

where λ  weights the contribution of the mean state to the target region. So, we update the 
target model during slowly changing image observations. 
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4. Tracking Moving Objects 
4.1 State-Space over the Top-View Plan 
In a practical particle filter (Ma, Kosecka & Sastry, 2001, Choo & Fleet, 2001) 
implementation, the prediction density is obtained by applying a dynamic model to the 
output of the previous time-step. This is appropriate when the hypothesis set approximation 
of the state density is accurate. But the random nature of the motion model induces some 
non-zero probability everywhere in state-space that the object is present at that point. The 
tracking error can be reduced by increasing the number of hypotheses (particles) with 
considerable influence on the computational complexity of the algorithm. However in the 
case of tracking pedestrians we propose to use the top-view information to refine the 
predictions and reduce the state-space, which permits an efficient discrete representation. In 
this top-view plan the displacements become Euclidean distances. The prediction can be 
defined according to the physical limitations of the pedestrians and their kinematics. In this 
paper we use a simpler dynamic model, where the actions of the pedestrians are modeled 

by incorporating internal (or personal) factors only. The displacements 
Mt

topview  follows the 
expression 

 
1M A( )M Nt t

topview topview topviewγ −= +  (5) 

where A(.) is the rotation matrix, topviewγ  is the rotation angle defined over top-view plan 

and follows a Gaussian function ( ; )topviewg γγ σ , and N is a stochastic component. This model 
proposes an anisotropic propagation of M : the highest probability is obtained by preserving 
the same direction. The evolution of a sample set is calculated by propagating each sample 
according to the dynamic model. So, that procedure generates the hypotheses. 

4.2 Estimation of Region Size 
The height and width of the robot can be obtained using geometric analysis. 

),( bottombottom yx),( toptop yx
2y

1y

lengthz

heightOBJ

o
 

Figure 6. Approximation of Top-view plan by image plan with a monocular camera 
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As shown in Fig. 6, the distance 1y  from the lowest coordinates of the object to the origin is 
calculated using bottomy  by geometric analysis as,  

 Oyy bottom −=1  (10) 

where O represents the origin. 

In the same manner, topy  can be calculated by replacing bottomy  as topy  and bottomyP ,  as 

topyP , . Therefore, the distance 2y  from the highest coordinates of the object to bottomy  is 

calculated as,  

 bottomtop yyy −=2 . (11) 

When the coordinates, 1y and 2y are obtained, the height heightOBJ of the robot can be 

calculated as, 

 )( 21

2

yy
yz

OBJ length
height +

×
=

 (12) 

from the similarity properties of triangles. 
Following the same procedure, the width of the mobile robot can be obtained as follows:  
The real length pixellength  per pixel is calculated as follow: 

 
)/( ,, bottomytopyheightpixel PPOBJlength −=

. (13) 

Then, the width, widthOBJ , of the object is calculated as 

 
)( ,, leftxrightxpixelwidth pplengthOBJ −×=

. (14) 

5. Experiments 
To compare the tracking performance of a mobile robot using the algorithms of the Particle 
filter and SOM, experiments of capturing a micro mouse with random motion by the mobile 
robot were performed. As can be recognized from Fig. 7, SOM based Particle Filter provided 
better performance to the mobile robot in capturing the random motion object than the other 
algorithms. As shown in Fig. 7, the mobile robot with SOM based Particle Filter has a 
smooth curve to capture the moving object. As the result, the capturing time for the moving 
object is the shortest with SOM based Particle Filter. Finally, as an application experiments 
were performed to show the tracking and capturing a mobile object in robotic space.  
Fig. 8 shows the experimental results for tracking a moving object that is an 8x6[cm] red-
colored mouse and has two wheels with random velocities in the range of 25-35[cm/sec]. 
First, mobile robot detects the moving object using an active camera. When a moving object 
is detected within view, robot tracks it following the proposed method. 
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(a) SOM                                           (b) SOM + Particle Filter 

Figure 7. Tracking trajectory by SOM and SOM based particle filter 

    
                           (a) Input Image                               (b) Extracted Image 

    
(c) Input Image with two robots        (d) Extracted Image with two robots 

Figure 8. Experimental results for tracking a moving object 

6. Conclusion 
In this paper, the proposed tracking method adds an adaptive appearance model based on 
color distributions to particle filtering. The color-based tracker can efficiently and 
successfully handle non-rigid and fast moving objects under different appearance changes. 
Moreover, as multiple hypotheses are processed, objects can be tracked well in cases of 
occlusion or clutter. This research proposes estimation and tracking scheme for a moving 
object using images captured by multi cameras. In the scheme, the state estimator has two 
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algorithms: the particle filter that estimates the states for the linear approximated region, 
and SOM for the nonlinear region.  The decision for the switchover is made based on the 
size of the position estimation error that becomes low enough for the linear region and 
becomes large enough for the nonlinear region. The effectiveness and superiority of the 
proposed algorithm was verified through experimental data and comparison. The 
adaptability of the algorithm was also observed during the experiments. For the sake of 
simplicity, this research was limited to the environment of a fixed-camera view. However, 
this can be expanded to the moving camera environment, where the input data might suffer 
from higher noises and uncertainties. As future research, selection of a precise learning 
pattern for SOM in order to improve the estimation accuracy and the recognition ratio, and 
development of an illumination robust image processing algorithm, remain.  
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1. Introduction     
Motion planning of mobile robots in uncertain dynamic environments has been a hot topic in 
robotic literature. It requires a mobile robot to decide its motion behaviour on line using limited 
and noised information of the local environment from sensors. There are many methods having 
been proposed to deal with this problem (Salichs and Moreno 2000, Jing 2005). Noticeably, 
artificial potential field (APF) based methods have gained increasingly popularity among 
researchers due to its high safety, simplicity and elegance (Khatib 1986, Rimon and Koditschek 
1991, Kant and Zucher  1988, Rimon  and Koditschek 1992, Koren and Borenstein 1991, Guldner 
and Utkin 1995, Ge  and Cui 2000, Prassler 1999, Noborio et al 1995, Krogh 1984,  Satoh 1993, 
Louste and Liegeois 2000, Wong and Spetsakis 2000, Singh et al 1997, Tsourveloudis et al 2001, 
Masoud and Masoud 2000). However, when the involved environment is totally or partially 
unknown or even dynamically changing, local minima are usually encountered, where the robot 
is trapped and cannot move on. There may also be unnecessary oscillations on the planned 
trajectory between multiple obstacles (Koren and Borenstein 1991). These inhibit the practical 
applications of this methodology to a certain extent. To overcome these problems, there are 
already some methods having been proposed in literature. For example, Krogh (1984) proposed a 
generalized potential field, in which the strength of repulsion is directly proportional to the 
speed of approach and inversely proportional to the minimum avoidance time. Satoh (1993) 
proposed Laplace potential field, which requires the potential field to be harmonic, and satisfy 
the Laplace equation. In Louste and Liegeois (2000), the authors used viscous fluid field instead 
of conventional APF to achieve near optimal path planning. Moreover, electric-like fields (Wong 
and Spetsakis 2000), magnetic field (Singh et al 1997), electrostatic potential field (Tsourveloudis 
et al 2001) were all proposed for the navigation and motion planning problems. But all these 
methods either require some global environment information or only deal with navigation 
problems in static environments, and only a few take into consideration of the actual dynamic 
constraints of the mobile robot such as saturations of velocity and acceleration. Moreover, few of 
the existing potential fields can guarantee the safety and reachability of the mobile robot with 
consideration of the actual dynamic constraints in uncertain dynamic environments. 

                                                                 
* The first author has been with the University of Sheffield since Oct 2005. 
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The reason for the drawbacks of the ACF as mentioned above is that, in our opinion, this 
simple “repulsive and attractive” information model of the environments in APF methods 
cannot completely and accurately reflect the actual states and real motion purpose of the 
mobile robot. Hence, it is difficult or even impossible to decide the optimal or satisfactory 
motion behaviour in some complicated situations just based on this simple information 
model of the environments of APF using only attractive and repulsive forces. In order to 
overcome the drawbacks of the conventional APFs, it does need to change the simple 
“repulsive and attractive” information model to another more appropriate information 
model of the environments, and make the new model be adaptable to motion purpose and 
relative states of the mobile robot with respect to obstacles. 
Therefore, an artificial coordinating field (ACF) is proposed in this chapter. In order to 
overcome the drawbacks of APF, a special force vector called Coordinating Force is defined 
and added to the conventional APF, and the ACF is designed to be adaptable to the motion 
purpose and relative states of the mobile robot with respect to obstacles, which includes not 
only the information of relative positions of the robot with respect to an obstacle, but also 
the information of the relative velocity, maximum acceleration and velocity of the robot. 
Decision-making of the robot’s behavior when avoiding an obstacle is based on a special 
variable, called coordinating factor λ , which is simple and in an optimal way. The safety 
and reachability of the proposed method are theoretically analyzed with some assumptions 
on the environments. Simulation results are given to illustrate our method. 

2. Definition of the ACF  
Our study is restricted to the 2-D planar case. Some notations are introduced as follows. The 
planar U can be denoted as a point set U ={p=(x,y)T|x,y ∈ℝ}, where point (x,y)T is a column 

vector, (*)T is the transpose of vector (*), ℝ is the set of all the real numbers. D∂ denotes the 
boundary of a subset D in U. Without specialty, a bold italic symbol denotes a vector. e(A) 
denotes the unitary vector of a vector A, i.e., e(A) AA= , where A  denotes the Euclidian 
norm of A. Difference of two point is a vector, e.g., A=q1-q2, where q1, q2∈U, the direction of 
A is from q2 to q1, i.e., e(A)=e(q1-q2). Moreover, “a b” denotes “a is approaching to b nearly 
or very nearly”. On the contrary, “a>>b” and “a<<b” denote that “a is much larger or smaller 
than b” respectively.  
In addition, the mobile robot can be regarded as a point mass with weight M, its goal is 
denoted by qd. An obstacle can be regarded as a point set O or Oi in U, where the subscript i 
is to distinguish different obstacles. The obstacle Oi may also be called obstacle i later on. 
The distance between two point set Oi and Oj is defined as qpOOd

OqOp
−=

∂∈∂∈ 21 ,21 min),( . 

Define a mapping gO: q ∂ O such that p= gO(q)= pq
Op

−
∂∈

minarg , where Uqp ∈, . 

Obviously, p is the nearest point on the boundary of O to q. For an obstacle Oi, this mapping 
function is also written in short as gi(q).  
The ACF is defined as a force vector field as follows (see Figure 1). The attractive field at the 
goal qd of the mobile robot is defined as: Uq ∈∀  

 )()( qqKq da −⋅=aF    (1a) 
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where Ka is to be defined. For an obstacle O, define the ACF as: OUq \∈∀  
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where }1,0,1{ −∈λ is called coordinating factor, ⎥⎦
⎤

⎢⎣
⎡=
− 01

10T ; (1b) is the artificial repulsive-

coordinating field of obstacle O, which is also called in short as artificial coordinating field 
(ACF) in this study; (1c) is the repulsive force vector, KrO is to be defined; (1d) is the 
coordinating force vector, which is orthogonal to the repulsive force and whose direction is 
determined by λ , KnO is to be defined. For different obstacle Oi, the aforementioned force 
vectors are rewritten in short as: Fci, Fri, Fni, respectively, and the corresponding parameters 
are rewritten as Kri, Kni, iλ , respectively. If the repulsive force (1c) is substituted by the 
attractive force (1a), then the new artificial field is called artificial attractive-coordinating 
field. Moreover, we can also define the ACF in 3-dimensional space using a similar method 
as above.  

                             

bound DF∂
bounded
space D
repulsive

coordinating
force

 
 (a) Different forces in an ACF  (b) A bounded repulsive ACF with λ =1 
Figure 1. The repulsive force and attractive force in an ACF 

At any time instant t, let the x-coordinate of the dynamic coordinates on the mobile robot 
with respect to an obstacle O be parallel to the coordinating force vector, and the y-
coordinate be parallel to the repulsive force vector. Obviously, the ACF has two-
dimensional orthogonal force vectors, thus the mobile robot has two DOF to be controlled in 
its dynamic coordinates when meeting an obstacle, this may help to realize some desired 
motion behavior. Compared with ACF, the conventional APF can only exert one-
dimensional force to the mobile robot in the dynamic coordinates. Thus the mobile robot can 
only run away from the APF when meeting an obstacle, but not avoid the obstacle with 
intention. This may be a major reason that there are local minima in conventional APFs for 
uncertain dynamic environments. Especially, it is noted that the direction of the 
coordinating force vector in an ACF at any time is determined by λ . If let λ =0, then FcO 
(q)=0 (referring to the point p in Figure 1), and there is only a repulsive force at point p in 
this case, which is right the APF. Hence, APF is only a special case of ACF. Since more 
environmental information and motion purpose of the mobile robot can be represented in 
the ACF, the states of a mobile robot can be controlled for some special purposes by using 
the orthogonal forces in the ACF. Moreover, considering the motion planning problem in 
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uncertain dynamic environments, only the distance between an obstacle and the mobile 
robot is near enough (e.g., less than a constant R), for the obstacle to be detected by the 
robot’s sensors. Therefore, the radius of the ACF of an obstacle should be less than the 
distance R around the boundary of the obstacle. 
It shall be noted that similar but different work to our ACF defined above can be found in 
literature. Note in Masoud and Masoud (2000), two orthogonal fields were used, a scalar 
potential field in normal space and a circular field in tangent space around obstacles, to 
locally switch the robot from one trajectory to another in order to adapt the unknown 
changing environments. The idea of orthogonal fields is very similar to ours. The difference 
is that it needs to solve boundary value problems, and needs also some global environment 
information. The circular field is only used to shift the robot from one path to another when 
meeting unknown static obstacles, and the whole field is still a passive one as most existing 
fields, namely, it cannot be adaptable to the states and motion purpose of the robot in the 
local environment. Note also in Medio and Oriolo (1999), a vortex field was proposed, 
which is also a passive field, and has no repulsive force compared with APFs.  

3. Properties and Designs of ACF  
This section discusses the properties of the ACF and studies how to design the parameters 
of the ACF to achieve the desired performance in the motion-planning problem of mobile 
robots in uncertain dynamic environments. More notations are introduced as follows. The 
position of the mobile robot is denoted by q without specialty, the maximum velocity and 
acceleration of the mobile robot are Vmax m/s and amax m/s2, and the radius within which an 
obstacle can be effectively detected by the sensors is R. Assume that R>>2(Vmax)2/amax. The 
region covered by the circle at point q=(x,y)T with a radius R is called observable region 
denoted by P(q). All the static and moving obstacles in P(q) that can be detected by the 
sensors are denoted by sets Os and Od, respectively. For instance, if a static obstacle Oi is 
detected by the sensors, then it can be written as Oi∈Os or i∈Os. Velocity vectors of the 
mobile robot and an obstacle Oi are denoted by Vr and Vi, respectively, and the relative 
velocity of the mobile robot with respect to the obstacle Oi is Vir=Vr-Vi. In this section, we 
design the ACF based on the analysis of the dynamics of a point in ACFs. 

3.1 Controllability of a mobile robot in the ACFs  
For the motion-planning problem, there is an attractive field Fa(q) at the goal point qd= 
(xd,yd)T, and some ACFs Fci(q) with respect to different obstacles Oi (i=1,2,…,N) in the planar 
U. Assume that d(Oi,Oj)>0，d(qd,Oi)>0 for all i=1,2,…,N. For any time t, the dynamics of the 
mobile robot in the artificial fields can be written as: 

 ∑∑
∪∈∪∈

+++−−=
sdsd OOiOOi

df qqqqqKqM )()()()( niria FFF  (2) 

where, Kf>0 is a parameter to be defined, dq is the desired velocity of the mobile robot. 
Equation (2) is called Planning Equation. The first term on the right side of the equality is to 
balance the dynamics of the mobile robot and control the velocity to a desired level stably. 
The last three terms stand for all the virtual forces received by the mobile robot, they can be 
rewritten as   
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∑∑
∪∈∪∈
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Substitute (1) into (2), and transform (2) into state space equation form, we can have: 
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where          
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Figure 2. The mobile robot meets a moving obstacle 

 
Figure 3.  The mobile robot is passing a passage between two obstacles 
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It can be verified that, (3) is complete state controllability. From (4), the states of (3) is 
completely controlled by the variables Ka, Kri, Kni and iλ of the ACFs. Hence, by properly 
choosing the variables of the ACFs, the desired motion behavior of the mobile robot can be 
obtained. Without loss of generality, let dq =0 in (2). Specially considering the APF case, i.e., 

let iλ =0 in (2-4). Ftotal will be zero in the local minima where the robot may be trapped. 
However, in ACFs, this is not the case. The local minima can be removed by properly 
choosing the coordinating factors and other variables of the ACFs such that Ftotal cannot be 
zero. This is further discussed in the following sections. 

3.2 Adaptability of the ACFs  
For different collision risk or different relative states of a mobile robot with respect to 
obstacles, the mobile robot should adopt different motion behavior or strategy according to 
an optimal evaluation. For this purpose, the ACFs should be adaptable to the collision risk 
or relative states of the mobile robot and can generate virtual forces of different magnitude 
and properties corresponding to different situations. This adaptability of ACFs can help the 
mobile robot to coordinate its motion behavior to avoid different type of obstacles and go to 
its goal in an optimal or a satisfactory way. To this aim, evaluations of the collision risk of a 
mobile robot are investigated with only the local information of the environments at first. 
And then the ACF is designed using these evaluation functions. Note that ∠ (*,*) denotes 
the angle of two vectors later on. 
Assume that the mobile robot with velocity Vr and position q meets an obstacle Oi with 
velocity Vi at time t (See Figure 2). From point q, make two lines tangent to the boundary 

iO∂ at point a and b, respectively. If the relative velocity Vir=Vr-Vi is regarded as the velocity 
of the mobile robot, then the obstacle Oi can be regarded to be static. Let  

)2))e()(e(,(1 qbqav −+−∠= irVθ , 2))e(),(e(2 qbqav −−∠=θ . 

It is easy to verify that, if 21 vv θθ ≤ holds and Vir is also kept unchanging, then the robot 
must be heading a collision with the obstacle. Let  

⎩
⎨
⎧ ≤

=
else

E vv
Vi 0

1 21 θθ
, 

which is called velocity risk with respect to obstacle Oi. Obviously, EVi=1 implies a possible 
collision. Define the absolute collision risk with respect to Oi as: 

))sup()sup()(1()(g 212i 21 irir VV+−+⋅⋅+−= vvvViriskriski EkqqkE θθθ  

where 0<krisk1, krisk2<1. The total collision risk with respect to all the observable obstacles is  

E= ∑
∪∈ OsOdi

iE . 

Then define the relative collision risk with respect to obstacle Oi as:  

EEE iri =  
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Using the evaluations of the collision risk with respect to obstacles above, we define the 
corresponding variables of the ACF as follows: 
i. When the collision risk is increasing, the attractive force should be increased 

accordingly in order to attract the mobile robot to move towards its goal. However, too 
large magnitude of the attractive force may affect the safety of the robot in complicated 
situations. Hence, we let 

 )),min(1( EMkK aaa +=    (5)  

where ka>0, Ma>0 are constants. 
ii. In order to guarantee the safety, the magnitude of the repulsive force should be 

proportional to the collision risk with respect to an obstacle Oi. Hence, we let  

 )(g)( i1 qqkEkK rirircri −⋅+⋅= ε   (6) 

Where krc>0 is a constant, kri is to be defined, 10 1 <≤ ε is the minimal relative collision 
risk corresponding to different situations to be defined. 

iii. As for the magnitude of the coordinating force, it is defined similarly to the repulsive 
force, and additionally it is defined to be limited: 

 ))(g)(,min( i2 qqkEkMK nirincnni −⋅+⋅= ε  (7) 

 where, knc>0 is a constant, Mn is the upper bound of Kni and satisfies 
Mn>>sup( aF ), 10 2 <≤ ε is similar to 1ε , and kni is to be defined. 

It should be noted that from (5-7), the magnitude of all the virtual forces has relation with 
the collision risk. Especially, the magnitude of an ACF is a function of the relative collision 
risk. The higher the collision risk with respect to an obstacle is, the larger is the force 
generated by the ACF of the obstacle. Hence, the robot dynamic is basically dominated by 
the obstacles with higher collision risks. This helps to guarantee the safety of the mobile 
robot and can pass the collision risk from one robot to another.  

3.3 Safety of a mobile robot in the ACFs  
The safety of a mobile robot not only has relation with the complexity of the environments 
but also is subjected to the dynamic constraints of the mobile robot. Obviously, if Vir﹒e(gi(q) - 
q) ≤ 0 whenever d(q,Oi) 0, then there will be no collision to happen. For this reason, we let 
kri in (6) be: 

 ( )n
iri aq-(q)(Oqdk )2)))gepos((),(pos(1 max

2
i⋅−= irV   (8) 

where 1≥n , pos(x)=max(0,x) (this is directly used later on), d(q,Oi)= )(gi qq − .  
Based on the designs of the ACF above, the safety of the mobile robot can be guaranteed 
with some environment constraints. The main results are given as follows. 
Proposition 1. Assume R>>2(Vmax)2/amax, and at time t the mobile robot is at point q 
satisfying d(q,Oi)<R. Let Fother=Ftotal-Fri. If  )-)(ge( i qq⋅otherF <<∞, and the velocity and 

acceleration of the obstacle Oi satisfy maxV<iV and 0)-)(ge( i ≥⋅ qqiV whenever 
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0i )O,d( Sq → , then qqt ≠∀ )(g, i , that is there will be no collision to happen between the 

mobile robot and the obstacle Oi, where S0= max
2

i 2)))-)(ge(pos(( aqq⋅irV . 
Proof. Let v= )-)(ge( i qq⋅irV , which is the relative velocity of the mobile robot with respect to 
the nearest point of obstacle Oi. If v≤0 then the safety is guaranteed. Consider the case v>0 in 
the following. Since maxV<iV , and R>>2(Vmax)2/amax, we have R>>S0. Hence, 

0i )O,d( Sq > usually holds at the beginning that the robot meets the obstacle. 

Whenever 0i )Od(q, S→ , if maxi )-)(ge( aqq −=⋅rV holds, and due to the assumptions on 

the obstacle Oi, we have =⋅ )-)(ge( i qqirV )-)(ge()( i qq⋅− ir VV maxa−≤ . Hence, if the 

robot can go with an acceleration –amax in the direction of e(gi(q)-q), there must be Vir﹒e(gi(q)-
q) ≤ 0 whenever d(q,Oi) 0, that is, there is no collision to happen between the mobile robot 
and the obstacle Oi. From (6) and (8), whenever 0i )O,d( Sq → , then ∞→rik , that is, 

q)-(q)e( ig⋅riF =-∞. If additionally q)-(q)e( ig⋅otherF <<∞, then ∞=⋅ (q))-e(q igtotalF , 

that is, (q))-e(q ig⋅totalF )( df qqK −− >>M﹒amax. Then from (2), the mobile robot must go 

with an acceleration –amax in the direction of e(gi(q)–q). This completes the proof. 
According to Proposition 1, we define Environment Constraint 1: 

dOi ∈∀ , maxV<iV and 0)-)(ge( i ≥⋅ qqiV  

whenever max
2

ii 2)))-)(ge(pos(()O,d( aqqq ⋅→ irV  

In (8), the dynamic constraints of the mobile robot are considered in the design of the 
magnitude of the repulsive force. It can guarantee the safety of the mobile robot with the 
environment constraint 1 from Proposition 1. In most of the conventional APF, the repulsive 
force is only a function of the relative position of the mobile robot with respect to an 
obstacle. Hence it cannot guarantee the safety of the mobile robot in applications. From the 
results above, the following result is obvious. 
Theorem 1. In static environments, the ACFs, based on the parameter designs in (6) and (8), 
can guarantee the safety of the mobile robot. 
By using contradiction, it is easy to prove Theorem 1. In order to guarantee that the ACF can 
guarantee the safety of the mobile robot in a dynamic environment, we firstly prove the 
following proposition. 
Proposition 2. Assume two moving obstacles Oi , Oj and the mobile robot are moving in a 
same line path at time t, the mobile robot is between Oi and Oj. Their velocities are Vi, Vj and 
Vr, respectively. And assume e(Vi)=-e(Vj). Then when the two obstacles are approaching 
each other, i.e., d(Oi,Oj) δ as t ∞ , where δ is a small positive number, the robot will not 
collide with the obstacles based on the ACFs defined above. 
Proof. Let vi=Vir﹒e(gi(q)-q), and vj=Vjr﹒e(gj(q)-q). Whenever d(Oi,Oj) δ , we have 
d(q,Oi) max

2 2)pos( avi , d(q,Oj) max
2 2)pos( av j . According to (6,8), Fri and Frj are both 

very large for this case. According to (5,7), the attractive force and the coordinating force are 
both limited, and the coordinating force is orthogonal to the repulsive force at any time, thus 
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they both can be neglected to consider the safety problem. Then (2) can be rewritten as: 
rjri FF −+−≈ qkqM f . Obviously, the mobile robot will track the balance point of the two 

repulsive fields in this case. From the assumptions of this proposition, the balance point of 
the repulsive forces on the line path is a safe point. This completes the proof.  
According to Proposition 2, define the Environment Constraint 2: 

dsjiji OOOOOOd ∪∈∀> ,,0),(  

In face, the effect of the coordinating forces in the case of Proposition 2 helps to guarantee 
the safety of the mobile robot, though it is not considered there. By far, we obtain the 
following result. 
Theorem 2. Assume the maximum velocity and acceleration of the mobile robot are Vmax and 
amax, respectively. The maximum radius of the sensors within which the obstacles can be 
effectively detected is R>>2(Vmax)2/amax, and assume the environment constraints 1-2 are 
satisfied. Then the mobile robot is safety in the ACFs using the designs in (5-8). 
Proof. If there only one observable obstacle, it is the case in Proposition 1. Otherwise, any 
other case can be regarded as the typical case in Proposition 2 that the robot is moving 
between two obstacles. Hence, from Proposition 1 and 2, the mobile robot is safe in the 
ACFs.  

3.4 Reachability of the ACFs 
Reachability of the ACFs is the ability of the mobile robot using ACFs to reach its goal 
provided that there is a safe path from the starting point to the goal in the environment. This 
requires that there are no local minima in ACFs. In conventional APFs, the attractive force 
and repulsive force may be balanced at some points where local minima exist. These points 
are usually between multiple obstacles or on the opposite side of an obstacle with respect to 
the goal point. However, local minima at these points can be removed by properly using the 
coordinating forces in ACFs.   
• Using the Coordinating Force to Remove Local Minima 
Let kni in (7) be 

 ( )m
ni aqqqqk )2)))-)(ge((pos()(gpos(1 max

2
ii ⋅−−= irV   (9) 

where m>0 is to be defined. 
Obviously, it is easy to remove the local minima using the coordinating force if there is only 
one observable obstacle. As for the multiple obstacles case, the coordinating force should be 
designed to remove the local minima between any two obstacles in the observable region 
such that the mobile robot can go through the passage between any two obstacles satisfying 
the environment constraints 1-2. 
Definition 1. Curve C is an equi-repulsive-force curve between two obstacles Oi and Oj, if 
the following equation holds: )()(, ppCp rjri FF =∈∀  (Referring to Figure 3).  

Lemma 1. Neglecting the effects of the attractive and coordinating forces, the mobile robot is 
moving on the curve C when passing a passage between two obstacles, and the following 
equations hold: (The proof is omitted) 
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),(),(, ji OqdOqd ≈≈ jrir VV ，Eri ≈ Erj. 

Proposition 3. Assume that the mobile robot is at point q on the curve C between obstacles 
Oi and Oj at time t, d(Oi,Oj)= 02 >a , and the obstacles satisfy environment constraints 1-2. 
Neglecting the effect of the attractive force, in order for the mobile robot to pass the passage 
between Oi and Oj, the ACFs should satisfy the following minima-free conditions:  
before passing the passage:  

))2))()((),)((g((minarg
}1,1{

qqqqll rirj FFT −−−⋅⋅∠=
−∈

λλ
λ

, 

after passing the passage:  

))2))()((),)((g((minarg
}1,1{

qqqqll rirj FFT +−⋅⋅∠=
−∈

λλ
λ

or 0， 

and                                       

alqFkaRlqFk m
nc

n
rc ⋅≤− )),(()),(( 22  

where 

F(q,l)= )2))-)(ge((pos)(g( max
2 aqqqq l llrV ⋅−− , },{ jil ∈ . 

Proof. The repulsive and coordinating forces exerted on the mobile robot by obstacles Oi and 
Oj are 
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According to Lemma 1, in order for the robot to pass the passage along Curve C, the 
following equations hold: F(q,i) ≈ F(q,j), Eri ≈ Erj. Let )))(ge()),(g(e( ji qqqq −−∠=θ , and 

according to the cosine lemma in a triangle and the principle to choose λ  given in the 
proposition, we have 

rF =
2

)(2 n
rc Fk⋅ +

2
)(2 n

rc Fk⋅ cosθ, 

nF =
2

)(2 m
nc Fk⋅ +

2
)(2 m

nc Fk⋅ cos(π-θ) = 
2

)(2 m
nc Fk⋅ - 

2
)(2 m

nc Fk⋅ cosθ. 

where, )( 1ε+= rircrc Ekk , )( 2ε+= rincnc Ekk ，F=F(q,i). Neglecting Fa, in order for the 

robot to pass the passage, only if rF ≤ nF holds. Hence, we have  

2
)( n

rc Fk (1+ cosθ) ≤
2

)( m
nc Fk (1- cosθ), 
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(this inequality is denoted as p1). Due to the maximum detecting radius of the sensors is R, 

and min( )(g)(g qq ji − )=2a, applying the cosine lemma to the minimum θ in the triangle 

(q,gi(q),gj(q)), we can obtain R2+R2-2R2cosθ=(2a)2, which further yields: cos(θ)max=1-
2)2( Ra . Substitute it into (p1), and let 21 εε = , we obtain  

)( n
rc Fk 22 aR − ≤ aFk m

nc ⋅)( . 

This completes the proof.  
Let m=n, according to Proposition 3 we have 

knc/krc≥ 1)( 2 −a
R . 

Note that the smaller a is, the larger is knc/krc in this case. It is consistent with the practical 
fact. If the robot is a circle with radius r, then the corresponding condition should be:  

knc≥krc )2( +r
R

r
R . 

This is verified in the simulations. Proposition 3 provides a theoretical view point to the 
design of the ACFs’ parameters, though some assumptions are strict. In fact, the minima-
free conditions in Proposition 3 are just sufficient, since the attractive force is neglected in 
the proof.  
• Online Decision Making Based on Coordinating Factors 
In order to remove the local minima between multiple obstacles in uncertain dynamic 
environments, the coordinating factors with respect to different obstacles should be 
properly decided on line such that the coordinating forces can provide actuating forces to 
the mobile robot to balance the repulsive forces. On the other hand, the wall-following 
behavior (Lumelshy and Skewis 1999) should be adopted when the mobile robot meets a 
large obstacle of even nonconvex shape such that the robot can follow the boundary of the 
obstacle to go until the robot can directly find in free space the direction in which the goal 
exists. In this case, the coordinating force is used directly as the actuating force for the robot 
to follow the “wall”. For this purpose, the coordinating factors should also be properly 
decided on line. 
The decision making of λ  is based on the decision making of the local sub-goal in the 
observable region of the mobile robot. The local sub-goal (Xu et al 1998) is denoted by eds, 
which should be an appropriate tradeoff between the collision-avoidance behavior and the 
going-to-goal behavior. In this study, the mobile robot is expected to avoid an obstacle along 
the shortest path in local environment. For a static obstacle, the wall-following behavior 
should be able to be generated; and for a moving obstacle, the robot is expected to run away 
from the trajectory of the obstacle as fast as possible. To these aims, the local sub-goal is 
decided as follows with respect to an obstacle O: 

 If  OV≤OV :  eds=e(Fa)+κ e(Vr)  (10a) 

 else        eds= -e(VO)+κ e(Vr)  (10b) 
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where Vr and VO are the velocities of the mobile robot and the obstacle, respectively, 
κ >0，VO is a constant. Then the optimal decision-making of the coordinating factor with 
respect to the obstacle O is  

 )90)),)((g(arg( 0
O}1,1{

≤−⋅⋅∠=
−∈ dseT qqλλ

λ
  (10c) 

If the velocity of an obstacle is lower than a constant VO, then it can be regarded as a static 
obstacle. (10a) is a tradeoff between the going-to-goal behavior and the collision-avoidance 
behavior, and (10b) provides such a sub-goal that the robot is expected to avoid a moving 
obstacle as fast as possible. The angle between the optimal direction of the coordinating 
force and the local sub-goal is less than 900 such that the coordinating force can provide an 
actuating force to the mobile robot. It should be noted that different coordinating factor may 
correspond to a different motion behavior, the desired motion behavior of the mobile robot 
is basically determined by the optimal decision-making of the coordinating factors. It can 
also be verified that the coordinating factor decided by (10c) is consistent with the minima-
free conditions in Proposition 3.  
• Realization of the Wall-Following Behavior and no Local Minima 
In order to realize the wall-following behavior with respect to an obstacle, the coordinating 
factor should be kept constant once the mobile robot meets the obstacle. To show that (10c) 
can provide a consistent coordinating factor with respect to an obstacle, we have the 
following results. 
Fact 1. Assume the boundary O∂ of an obstacle O is differentiable. q* is a point outside of 
O. Op ∂∈∀ , t(p) is a tangent line at this point. er(t(p)) is the unitary vector of the tangent 
line at point p in anticlockwise, and el(t(p)) is in clockwise. Then we 
have 090))),((( ≤∠ ds ee pt , where ed=e(q*-p)+es(t(p)) , s=r or l. 
Define Environment Constraint 3:  
All the obstacles are convex, and their boundaries are one-time differentiable. 
Proposition 4. All the obstacles satisfy the environment constraints 1-3. Let fr=Fae(Fri), 
fn=Fae(Fni). If choose knc in (7) such that Fnie(Fni)+fn>0, then wall-following behavior can be 
generated based on (10) once the robot meets the obstacle Oi in the case fr<0. 
Proof. Due to the obstacle Oi is convex, its boundary O∂ i can be classified into two parts 
according to the sign of fr. In the side of fr≥0, the angle between the repulsive and attractive 
forces is less than 900, the mobile robot can run away from the ACF of the obstacle quickly. 
Hence the wall-following behavior is unnecessary in this case. And for the case fr<0, the 
angle between the repulsive and attractive forces is more than 900. In the latter case, it can be 
regarded that fr=-Fre(Fr), and then the planning equation in (2) can be rewritten as: 

[ ] [ ] ninininiririniria FFFFFFFFF +⋅=+⋅++⋅=++=+ )()()( efefefqKqM nnrf , 

Obviously, the velocity of the mobile robot is basically determined by the coordinating 
force, and it finally converges to ( ) fn Kfq nini FF +⋅= )(e . If Fnie(Fni)+fn>0 holds, then we 

have e( q )=e(Fni). Now utilizing Fact 1, e(Fni) can be regarded as the direction of the tangle 

line of the obstacle boundary, i.e., er(t(p)) or el(t(p)). If OV≤iV , the sub-goal decided by 
(10a) is equivalent to ed in Fact 1 with q*=qd, otherwise, q*=p-Vi. In both cases, we always 
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have 090)),(e( ≤∠ dni eF . That is, if the current coordinating factor 1=λ (or -1) with 
respect to obstacle Oi, then 1=λ (or -1) still holds according to (10c) for the next time. The 
wall-following behavior is generated for this case. This completes the proof. 
Further study can show that the wall-following behavior can also be realized for a non-
convex obstacle based on (10), this was discussed in Jing and Wang (2004). The repulsive 
force may prevent the mobile robot to reach its goal if the goal point is very near to an 
obstacle. To overcome this problem, we let (Wong and Spetsakis 2000) (with respect to a 
static obstacle) 

 ( )2,min 3
1

k
ddrc qqqqkk −−⋅=   (11) 

where k1>0, 0<k2≤1 are both constants.  
To achieve minima-free ACFs, define Environment Constraint 4:  
For any two obstacles Oi,Oj, let ed=(e(qd-p)+es(t(p)))/2, )(qPOp i ∩∂∈ .Considering the case 

)()(g j qPOp j ∩∂∈ , if s=l, clock(e(gj(p) -p),ed)= 1 holds, and if s=r, clock(e(gj(p) -p),ed)= -1 

holds. Where, clock(a,b) is defined as: it is -1 if b can be obtained by rotating a with the 
angle )( ba,∠ , otherwise, it is 1. 
With the deliberate designs above, it can be seen that the reachibility of the robot can be 
guaranteed under the environmental contraints 1-4. Due to the attractive force, the mobile 
robot is always approaching an obstacle that is on the line jointing the current position of the 
mobile robot and its goal. If the mobile robot meets a static obstacle Oi, then according to 
Proposition 4, the wall-following behavior is generated. During the wall-following with 
respect to this static obstacle Oi, if the mobile robot meets another moving obstacle satisfying 
the environment constraints 1-4, then according to (10) and Proposition 3, the mobile robot 
either runs away from the trajectory of the moving obstacle as fast as possible, or passes a 
passage between two obstacles to avoid the moving obstacle. And then, the mobile robot 
comes back again to the state following the boundary of an obstacle that is on its desired 
shortest path to the goal. If the mobile robot meets a static obstacle Oj during it is following 
the boundary of the static obstacle Oi in anti-clockwise (i.e., iλ =1). Due to the environment 
constraint 4 and according to Proposition 4, we can have clock(e(Frj(q)),ed)= 1 and ed=(e(qd-
q)+e(Vr))/2. Utilizing (10) again, we have ∠ (Fnj(q),ed) ≤ 900, then clock(e(Frj),e(Fnj))=1 must 
hold in this case, i.e., jλ =-1 with respect to Oj. It is easy to verify that, the minima-free 

conditions in Proposition 3 are satisfied in this case. That is, the mobile robot can pass the 
passage between Oi and Oj, and the wall-following behavior can be kept during passing this 
passage. If the mobile robot follows the boundary of Oi in clockwise, the same conclusion 
can be made. After the mobile robot avoids obstacle Oi completely, it may meet another 
obstacle and then the similar process as above is carried out again due to the actuation of the 
attractive force, until it reaches the goal finally.  

4. Motion Planning of the Mobile Robot in Uncertain Dynamic Environments  
Assume the goal of the mobile robot is known. The motion planning problem can be written 
as: To find the optimal u(t), i.e.,  
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))((minarg uu
u

J
uU∈

=  

(in the following algorithm, it is transformed to be the optimal decision making equation (10) for λ , 
where Uu is the decision making space of u satisfying the dynamic constraints) such that the mobile 
robot can go safely from its stating point q0 to its goal point qd, i.e.,  

(1) Φ=∩∀ iOqi, , (2) dTt
qtqT =∞<∃

→
)(lim, . 

Considering the dynamic constraints of mobile robots, the states of (3,4) should be subjected 
to the saturation constraints of the velocity and acceleration (Jing and Wang 2002). For (3,4), 
we use the following control law: 
If there is no observable obstacle 
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1,0 ≤< βα , Ka=0, Kri=0,Kni=0, (i=1,2…), Kf>0. 

If there are observable obstacles, let 0=dq and 
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where, Ka,Kri,Kni, λ i are chosen according to (5-11). The outputs of the planning equation are 
the desired behavior for the mobile robot to take. 

5. Simulations  
The planning equation (3) is used in the simulations. The parameters of the mobile robot are 
set as follows: its radius is r=0.3m, the maximum acceleration amax=0.5 m/s2, the maximum 
velocity Vmax=0.5m/s, the maximum detecting radius of the sensors is 
R=1.5m>2(Vmax)2/amax.  
 
 



Artificial Coordinating Field based Motion Planning of Mobile Robots 

 

187 

The parameters of the ACF are chosen as follows: 
Step1. For the parameters of the attractive force (in (5)), let ka=1, Ma =4. If these parameters 

are set to be too large, they may affect the safety of the robot.  
Step2. For the parameters of the repulsive force (in (6)(11)), let n=2 , 1ε =0.05, 

( )2,min 3
1

k
ddrc qqqqkk −−⋅= , k1=0.5�k2=0.5. The repulsive force should be 

much larger than the attractive force within the minimum safe radius predefined for 
the robot.  

Step3. For the parameters of the coordinating force (in (7)), let 2ε =0.05, Mn =200, knc=6kr m=2 
(in Proposition 3). Based on the parameters chosen for the repulsive force, these 
parameters for the coordinating force are chosen basically according to Proposition 3.  

Step4. For collision risk, let krisk1=0.1, krisk2=0.9. They are chosen according to different 
inclinations.  

Step5. For the decision making of the coordinating factor(in (10)), let VO=0.2m/s, κ =2. The 
largerκ is, the larger is the impact of the current velocity on the sub-goal, which 
further affects the trajectory of the mobile robot.  

Step6. For the parameters for the control law(in (12)), let α =1, β =0.5, Kf=10. The larger Kf 
is, the larger is the damp of the planning equation. 

• The ACFs can reduce oscillations 
Figure 4 is the result using the conventional APFs, and the results of the ACFs are given in 
Figure 5. The coordinating forces can exert an actuating force to the mobile robot with 
proper decision making of the coordinating factors, and all the virtual forces in ACFs are 
proportional to the collision risk. Hence, the ACFs can effectively reduce the oscillation on 
the trajectory between multiple obstacles. However, the oscillation of “S” shape exists on the 
trajectory planned by the conventional APFs based methods. It should also be noted that the 
velocity and acceleration planned for the mobile robot by ACFs are both satisfied with the 
dynamic constraints. 
 
 

 
Figure 4.  Results of the conventional APFs 
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Figure 5.  Results of the ACFs 

• The ACFs can improve the autonomy and intelligence of the mobile robot and 
remove local minima when meeting obstacles and other robots  

The moving obstacle is assumed to be a circle with radius 0.35m and velocity 0.35m/s. A 
simulation process is in Figure 6 (A-H). In Figure 6, Ri denotes a robot i, Oj denotes a 
dynamic unknown obstacle j, and others are static obstacles. A line between the current 
position of a robot and its goal indicates the desired direction. A ray on dynamic obstacle 
indicates its moving direction. In figure A and B, R3 meets R5, by anti-clockwise rotating 
they avoid collision with each other, and obviously it is ideal for a shorter collision-free 
path. In Figure A and B, R1 meets a large static obstacle, wall-following behavior is used. In 
Figure C, R1 passes a passage between two static obstacles, in conventional APF there may 
be local minima which will prevent the robot passing. When the robot meets dynamic 
obstacles, coordinating force can make the collision-avoidance behavior of the robot more 
intentionally and effectively. See it in Figure C, if no coordinating force, R1 might be pushed 
back, but in fact from its trajectory in Figure H we can note that a turning-left behavior 
occurred due to the coordinating force, which makes the motion more effective and rational. 
In other Figures, we can also see such effective and intelligent collision-avoidance behaviors. 
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More discussions about this subject can also be referred to Jing and Wang (2003), Jing et al 
(2004c) and Jing (2004).  
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Figure 6. A simulation process (A-H) 

6. Conclusions  
In order to overcome some noticeable drawbacks of the traditional APF based methods such 
as local minima and oscillations on the planned trajectory, an artificial coordinating field 
was proposed recently (Jing et al 2002, 2003, 2004abc). This chapter provides a simple 
introduction for these newly developed results. A coordinating force is added to the 
conventional APF which is orthogonal to the repulsive force, and the field parameters are 
designed with consideration of the states and task of mobile robots under different 
enviromental situations. These enable the ACF to be more robust and effective for behavior 
decisions of mobile robots and adaptable to the change of environments when there are 
different intelligent and unintelligent obstacles. Local minima and unnecessary oscillation in 
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planned trajectory can be avoided. More intelligent coordination between different mobile 
robots in obstacled environments can also be achieved.  
There are three principles in designing the ACFs:  
a. All the virtual forces are functions of the motion purpose and relative states of the 

mobile robot with respect to the local environments,  
b. The repulsive force should satisfy the dynamic constraints of the mobile robot,  
c. The coordinating force should satisfy the minima-free conditions.  
Based on these designs, the ACFs are adaptable to environments and controllable for robots. 
The ACFs based motion planning can guarantee the safety and reachability under certain 
environment constraints. Since more information of the robot and environment can be 
represented, the ACFs are more robust. In the local dynamic coordinates defined in Section 
2, the ACF has full-dimensional forces, instead of one-dimensional force in the conventional 
APF. This is the most important and fundamental difference between ACF and APF, and the 
conventional APF is just a special case of the ACF. 
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1. Introduction 
With the remarkable progresses in robotics, mobile robots can be used in many applications 
including exploration in unknown areas, search and rescue, reconnaissance, security, 
military, rehabilitation, cleaning, and personal service. Mobile robots should carry their own 
energy source such as batteries which have limited energy capacity. Hence their 
applications are limited by the finite amount of energy in the batteries they carry, since a 
new supply of energy while working is impossible, or at least too expensive to be realistic. 
ASIMO, Honda’s humanoid robot, can walk for only approximately 30 min with its 
rechargeable battery backpack, which requires four hours to recharge (Aylett, 2002). The 
BEAR robot, designed to find, pick up, and rescue people in harm’s way, can operate for 
approximately 30 min (Klein et al., 2006). However, its operation time is insufficient for 
complicated missions requiring longer operation time. Since operation times of mobile 
robots are mainly restricted by the limited energy capacity of the batteries, energy 
conservation has been a very important concern for mobile robots (Makimoto & Sakai, 2003; 
Mei et al., 2004; Spangelo & Egeland, 1992; Trzynadlowski, 1988; Zhang et al., 2003). Rybski 
et al. (Rybski et al., 2000) showed that power consumption is one of the major issues in their 
robot design in order to survive for a useful period of time. 
Mobile robots usually consist of batteries, motors, motor drivers, and controllers. Energy 
conservation can be achieved in several ways, for example, using energy-efficient motors, 
improving the power efficiency of motor drivers, and finding better trajectories (Barili et al., 
1995; Mei et al., 2004; Trzynadlowski, 1988; Weigui et al., 1995). Despite efficiency 
improvements in the motors and motor drivers (Kim et al., 2000; Leonhard, 1996), the 
operation time of mobile robots is still limited in their reliance on batteries which have finite 
energy. We performed experiments with mobile robot called Pioneer 3-DX (P3-DX) to 
measure the power consumption of components: two DC motors and one microcontroller 
which are major energy consumers. Result shows that the power consumption by the DC 
motors accounts for more than 70% of the total power. Since the motor speed is largely 
sensitive to torque variations, the energy dissipated by a DC motor in a mobile robot is 
critically dependent on its velocity profile. Hence energy-optimal motion planning can be 
achieved by determining the optimal velocity profile and by controlling the mobile robot to 
follow that trajectory, which results in the longest working time possible. 
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The total energy drawn from the batteries is converted to mechanical energy by driving 
motors, which is to induce mobile robot’s motion with some losses such as armature heat 
dissipation by the armatures in the motors. The DC motor is most widely used to produce 
mechanical power from electric power. It converts electric power into mechanical power 
during acceleration and cruise. Moreover, during deceleration, mechanical energy can be 
converted back to electrical energy (Electro-Craft, 1977). However, the motor is not an ideal 
energy converter, due to losses caused by the armature resistance, the viscous friction, and 
many other loss components. Many researchers have concentrated on minimizing losses of a 
DC motor (Trzynadlowski, 1988; Angelo et al., 1999; Egami et al., 1990; El-satter et al., 1995; 
Kusko & Galler, 1983; Margaris et al., 1991; Sergaki et al., 2002; Tal, 1973). They developed 
cost function in terms of the energy loss components in a DC motor in order to conserve 
limited energy. The loss components in a DC motor include the armature resistance loss, 
field resistance loss, armature iron loss, friction and windage losses, stray losses, and brush 
contact loss. Since it is difficult to measure all the parameters of the loss components, its 
implementation is relatively complex. To overcome this problem, some researches 
considered only the armature resistance loss as a cost to be minimized (Trzynadlowski, 
1988; Tal, 1973; Kwok & Lee, 1990). However, loss-minimization control is not the optimal in 
terms of the total energy drawn from the batteries. 
Control of wheeled mobile robot (WMR) is generally divided into three categories (Divelbiss 
& Wen, 1997). 
• Path Planning: To generate a path off-line connecting the desired initial and final 

configurations with or without obstacle avoidance. 
• Trajectory Generation: To impose a velocity profile to convert the path to a trajectory. 
• Trajectory Tracking: To make a stable control for mobile robots to follow the given 

trajectory. 

 
Figure 1. Traditional overall scheme of WMR control 

Trajectory means a time-based profile of position and velocity from start to destination 
while paths are based on non-time parameters. Fig. 1 shows the overall control architecture 
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of WMR system (Choi, 2001). Finding a feasible trajectory is called trajectory planning or 
motion planning (Choset et al., 2005). 
Trajectory planning (motion planning) is a difficult problem since it requires simultaneously 
solving the path planning and velocity planning (trajectory generation) problems (Fiorini & 
Shiller, 1998). Most of the paths of WMR consist of straight lines and arcs. The pioneering work 
by Dubins (Dubins, 1957) and then by Reeds and Shepp (Reeds & Shepp, 1990) showed that 
the shortest paths for car-like vehicle were made up of straight lines and circular arcs. Since 
these paths generate discontinuities of curvature at junctions between line and arc segment, a 
real robot would have to stop at each curvature discontinuity. Hence frequent stops and 
turnings cause unnecessary acceleration and deceleration that consume significant battery 
energy. In order to remove discontinuity at the line-arc transition points, several types of arcs 
have been proposed. Clothoid and cubic spirals provide smooth transitions (Kanayama & 
Miyake, 1985; Kanayama & Harman, 1989). However, these curves are described as functions 
of the path-length and it is hard to consider energy conservation and dynamics of WMR. Barili 
et al. described a method to control the travelling speed of mobile robot to save energy (Barili 
et al., 1995). They considered only straight lines and assumed constant acceleration rate.  Mei 
et al. presented an experimental power model of mobile robots as a function of constant speed 
and discussed the energy efficiency of the three specific paths (Mei et al., 2004; Mei et al., 2006). 
They did not consider arcs and the energy consumption in the transient sections for 
acceleration and deceleration to reach a desired constant speed. 
In this book chapter, we derive a minimum-energy trajectory for differential-driven WMR that 
minimizes the total energy drawn from the batteries, using the actual energy consumption 
from the batteries as a cost function. Since WMR mainly moves in a straight line and there is 
little, if any, rotation (Barili et al., 1995; Mei et al., 2005), first we investigate minimum-energy 
translational trajectory generation problem moving along a straight line. Next we also investigate 
minimum-energy turning trajectory planning problem moving along a curve since it needs turning 
trajectory as well as translational trajectory to do useful actions. To demonstrate energy 
efficiency of our trajectory planner, various simulations are performed and compared with 
loss-minimization control minimizing armature resistance loss. Actual experiments are also 
performed using a P3-DX mobile robot to validate practicality of our algorithm. 
The remainder of the book chapter is organized as follows. Section 2 gives the kinematic and 
dynamic model of WMR and energy consumption model of WMR. In Section 3, we 
formulate the minimum-energy translational trajectory generation problem. Optimal control 
theory is used to find the optimal velocity profile in analytic form. Experimental 
environment setup to validate simulation results is also presented. In Section 4, we 
formulate the minimum-energy turning trajectory planning problem and suggest iterative 
search algorithm to find the optimal trajectory based on the observation of the cost function 
using the solution of Section 3. Finally, we conclude with remarks in Section 5. 

2. WMR Model 
2.1 Kinematic and Dynamic Model of WMR 
It is well known that a WMR is a nonholonomic system. A full dynamical description of 
such nonholonomic mechanical system including the constraints and the internal dynamics 
can be found in (Campion et al., 1991). Yun (Yun, 1995; Yun & Sarkar, 1998) formulated a 
dynamic system with both holonomic and nonholonomic constraints resulting from rolling 
contacts into the standard control system form in state space. Kinematic and dynamic 
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modeling of WMRs has been addressed by several researches. A systermatic procedure for 
kinematic model derivation can be found in (Alexander & Maddocks, 1989; Muir & 
Neuman, 1987). Campion et al. (Campion et al., 1996) have given a general and unifying 
presentation of the modeling issue of WMR with an arbitrary number of wheeles of various 
types and various motorizations. They have pointed out the structural properties of the 
kinematic and dynamic models taking into account the restriction to the robot mobility 
induced by constraints. 
Unlike car-like robot (Jiang et al., 1996; Laumond et al., 1994; Laumond et al., 1998), we 
assumed that a WMR has a symmetric structure driven by two identical DC motors, as 
shown in Fig. 2. Define the posture (position x , y  and orientation θ ) as 

( ) ( ) ( ) ( )= ⎡ ⎤⎣ ⎦
Tt x t y t θ tP , the translational velocity of a WMR as v , and its rotational 

velocity as ω . Then the WMR’s kinematics is defined by 

 
⎡ ⎤ ⎡ ⎤

⎡ ⎤⎢ ⎥ ⎢ ⎥= =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

cos 0
, sin 0

0 1
P P

x θ
v

y θ
ω

θ
T T  (1) 

 
Figure 2. Structure of WMR 

Assume that two identical DC motors have the same armature resistance aR , back-emf 
constant bK , and gear ratio n . To simplify dynamics, we ignore the inductance of the 
armature circuits because the electrical response is generally much faster than the 
mechanical response. Letting sV  be the battery voltage, the armature circuits of both motors 
are described as 

 = −a s bR V K ni u w  (2) 

where ⎡ ⎤= ⎣ ⎦
TR Li ii  is the armature current vector, ⎡ ⎤= ⎣ ⎦

TR Lω ωw  is the angular velocity 

vector of the wheeles, and ⎡ ⎤= ⎣ ⎦
TR Lu uu  is the normalized control input vector.  

Superscripts R and L correspond to right and left motors, respectively.  
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In addition, the dynamic relationship between angular velocity and motor current, 
considering inertia and viscous friction, becomes (Yun & Yamamoto, 1993) 

 + =v t
d F K n
dt

J
w w i  (3) 

where vF  is the viscous friction coefficient and equivalent inertia matrix of motors J is 
= TJ S MS , which is 2x2 symmetric.  

From Eqs. (2) and (3), we obtain the following differential equation. 

 + =w Aw Bu  (4) 

where 

− ⎛ ⎞⎡ ⎤
= = +⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝ ⎠
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A J , −⎡ ⎤
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s t

a

b b V K n
b b R

B J  

Define a state vector as [ ]= Tv ωz . Then v  and ω  are related to Rω  and Lω  by 

 
⎡ ⎤⎡ ⎤

= = =⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦
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q qL

v ω
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z T T w , ⎡ ⎤
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r b r b

T  (5) 

Using the similarity transformation, from Eqs. (4) and (5), we obtain the following equation 

 + =z Az Bu  (6) 

where 

1 21

1 2

0 0
0 0

v
q q

ω

π a a
π a a

− +⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
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+ +⎡ ⎤⎡ ⎤
= = = ⎢ ⎥⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

B T B  

The overall dynamics of a WMR is shown in Fig. 3, where 2I  is the 2x2 unit matrix. 

 
Figure 3. Block diagram of WMR 

2.2 Energy Consumption of WMR 
The energy drawn from the batteries is converted to mechanical energy to drive motors and 
losses such as the heat dissipation in the armature resistance. In a WMR, energy is 
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dissipated by the internal resistance of batteries, amplifier resistance in motor drivers, 
armature resistance, and viscous friction of motors. Fig. 4 shows a simplified circuit diagram 
of a WMR system. 

 
Figure 4. Circuit diagram of batteries, motor drivers, and motors of WMR 

A pulse width modulated (PWM) controller is the preferred motor speed controller because 
little heat is generated and it is energy efficient compared to linear regulation (voltage  
control) of the motor. We assume that an H-bridge PWM amplifier is used as a motor driver, 
and this is modeled by its amplifier resistance RAMP and PWM duty ratio Ru  and Lu . In our 
robot system, P3-DX, internal resistance of battery (CF-12V7.2) is approximately 22mΩ and 
power consumption by the motor drivers is 0.2W. Since internal resistance of battery is 
much smaller compared with armature resistance of motor (710mΩ) and the power 
consumption by the motor drivers is much smaller than that of motors (several watts), they 
are ignored here. Hence the total energy supplied from the batteries to the WMR, EW, is the 
cost function to be minimized and is defined as 

 T T
W sE dt V dt= =∫ ∫i V i u  (7) 

where 
TR LV V⎡ ⎤= ⎣ ⎦V  is the input voltage applied to the motors from the batteries, and 

/
TR L

sV u u⎡ ⎤= = ⎣ ⎦u V . 
As there is a certain limit on a battery’s output voltage, WMR systems have a voltage 
constraint on batteries: 

 max maxRu u u− ≤ ≤ , max maxLu u u− ≤ ≤  (8) 
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From Eqs. (2) and (5), EW can be written in terms of the velocity and the control input as 

 ( )1 2
T T T

W qE k k dt−= −∫ u u z T u  (9) 

where 2
1 /s ak V R=  and 2 /b s ak K nV R= . 

From Eqs. (2) and (3), the cost fuction EW becomes 

 1 1T T T T T Tb b
W a v q q q q

t t

K KE R dt F dt dt
K K

− − − −= + +∫ ∫ ∫i i z T T z z T J T z  (10) 

Note that the first term, ( )T
R aE R dt= ∫ i i , is the energy dissipated by the armature resistance 

in the motors and the cost function of loss-minimization control considering only the 

armature resistance loss. The second term, 1T Tb
F v q q

t

KE F dt
K

− −⎛ ⎞
=⎜ ⎟
⎝ ⎠

∫z T T z , corresponds to the 

velocity sensitive loss due to viscous friction. The last term, 1T T Tb
K q q

t

KE dt
K

− −⎛ ⎞
=⎜ ⎟
⎝ ⎠

∫z T J T z , is the 

kinetic energy stored in the WMR and will have zero average value when the velocity is 
constant or final velocity equal to the initial velocity. This means that the net contribution of 
the last term to the energy consumption is zero. 

3. Minimum-Energy Translational Trajectory Generation 
A mobile robot’s path usually consists of straight lines and arcs. In the usual case, a mobile 
robot mainly moves in a straight line and there is little, if any, rotation (Barili et al., 1995; 
Mei et al., 2005). Since the energy consumption associated with rotational velocity changes is 
much smaller than the energy consumption associated with translational velocity changes, 
we investigate minimum-energy translational trajectory generation of a WMR moving along 
a straight line. Since the path of WMR is determined as a straight line, this problem is 
reduced to find velocity profile minimizing energy drawn from the batteries. 

3.1 Problem Statement 
The objective of optimal control is to determine the control variables minimizing the cost 
function for given constraints. Because the rotational velocity of WMR, ω , is zero under 
translational motion constraint, let ( ) ( ) 0 0 Tt x t= ⎡ ⎤⎣ ⎦P  be the posture and 

( ) ( ) 0 Tt v t= ⎡ ⎤⎣ ⎦z  be the velocity at time t . Then the minimum-energy translational trajectory 
generation problem investigated in this section can be formulated as follows. 
Problem: Given initial and final times 0t  and ft , find the translational velocity ( )v t  and the 

control input ( )u t  which minimizes the cost function 

( )
0

1 2
ft T T T

W qt
E k k dt−= −∫ u u z T u  
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for the system described by Eq. (6) subject to 

(1) initial and final postures: ( ) [ ]0 0 0 0 Tt x=P  and ( ) 0 0
T

f ft x⎡ ⎤= ⎣ ⎦P , 

(2) initial and final velocities: ( ) [ ]0 0 T
st v=z  and ( ) 0

T

f ft v⎡ ⎤= ⎣ ⎦z , and 

(3) satisfying the batteries’ voltage constraints, maxu  
As time is not critical, a fixed final time is used. 

3.2 Minimum-Energy Translational Trajectory 
Without loss of generality, we assume that the initial and final velocities are zero, and the 
initial posutre is zero. Then the minimum-energy translational trajectory generation problem can 
be written as 

 minimize ( )1 20

ft T T
W qE k k dt−= −∫ u u zT u  (11) 

 subject to       = − +z Az Bu  (12) 

 ( ) ( ) [ ]0 0 0 T
ft= =z z  (13) 

 
0

0 0ft T

f P fP dt x⎡ ⎤= = ⎣ ⎦∫ T z  (14) 

 
max max

max max

R

L

u u u
u u u

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
≤ = ≤⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u  (15) 

We used the Pontryagin’s Maximum Principle to find the minimum-energy velocity profile 
that minimizes Eq. (11) while satisfying the constraints in Eqs. (13) – (15) for the system, 
with Eq. (12). Let the Largrange multiplier for the posture constraint, Eq. (14), be 

T

x y θα α α⎡ ⎤= ⎣ ⎦α . Defining the multipler function for Eq. (12) as, [ ]T
v ωλ λ=λ , the 

Hamiltonian H  is 

 ( )1 2 /T T T T T T
q p f fH k k t−= − − + + − +u u z T u α T z α λ Az BuP  (16) 

The necessary conditions for the optimal velocity *z  and the control input *u  are 

 1
1 2/ 2 0T

qH k k −∂ ∂ = − + =u u T z B λ  (17) 

 2/ T T T
q PH k −∂ ∂ = − − − = −z T u T α A λ λ  (18) 

 /H∂ ∂ = − + =λ Az Bu z  (19) 

From Eqs. (17) – (19), we obtain the following differential equation. 

 1 12

1 1

1 0
2

T T T T T T T
q P

k
k k

− − − −⎛ ⎞
− − + =⎜ ⎟
⎝ ⎠

z BB A B B A BB T B A z BB T α  (20) 
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As TBB  and A  are diagonal matrices, Eq. (20) is reduced to quadratic differential form as 
follows.  

 0T T T
P− + =z Q Qz R T α  (21) 

where 12

1

T T T T
q

k
k

− −= −Q Q A A BB T B A , 
1/ 0

0 1/
v

ω

τ
τ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Q , and 
1

0
02

T
v

ω

η
ηk

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

B BR . Here 

( ) ( )2
1 2 / /v v v t b aτ J J F F K K n R= + +  denotes the mechanical time constant for translation and 

( ) ( )2
1 2 / /ω v v t b aτ J J F F K K n R= − +  denotes the mechanical time constant for rotation of WMR. 

Since we ignore energy dissipation associated with rotational velocity changes and consider 
only a WMR moving along a straight line (i.e., rotational velocity is zero), the optimal 
velocity *z  becomes 

 ( ) ( )
( )

* / /
1 2*

* 0

v vt τ t τ
vv t C e C e K

t
ω t

−⎡ ⎤ ⎡ ⎤+ +
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

z  (22) 

where 
/

1 / /
1f v

f v f v

t τ

vt τ t τ
eC K

e e

−

−
−=

−
, 

/

2 / /
1 f v

f v f v

t τ

vt τ t τ
eC K

e e−
−=

−
, 

( )
( ) ( )

/ /

/ / / /2 2

f v f v

f v f v f v f v

t τ t τ
f

v t τ t τ t τ t τ
v f

x e e
K

τ e e t e e

−

− −

−
=

− − + −
 

To investigate the properties of the minimum-energy velocity profile, the minimum-energy 
translational velocity profile, Eq. (22), is shown in Fig. 5 as velocity per unit versus time per 
unit, where the reference velocity is taken as the /f fx t  ratio and the reference time / ft t  for 
various /v fk τ t=  (the ratio of translational mechanical time constant per displacement time) 
using the parameters shown in Table 1. 
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Figure 5. Minimum-Energy velocity profiles for incremental motion at various /v fk τ t=  
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Parameter Value Parameter Value 
aR  0.71Ω tK  0.023Nm/A 

bK  0.023V/(rad/s) n  38.3 

cm  13.64Kg ωm  1.48Kg 

sV  12.0V maxu  1.0 

vF  0.039Nm/(rad/s) r  0.095m 

b 0.165m 1 2

2 1

J J
J J
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

J  
0.0799 0.0017
0.0017 0.0799
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Table 1. Parameters of the WMR, P3-DX 

This shows that for k  close to zero the minimum-energy velocity profile resembles a widely 
used trapezoidal velocity profile, whereas for values of 0.2k >  the profile rapidly converges 
to a parabolic profile instead of the widely used trapezoidal profile. As shown in Fig. 5, the 
minimum-energy velocity profile has a symmetric form for the minimum-energy translational 
trajectory generation problem, of Eqs. (11) – (15) as follows.  

 ( )
( ) ( )( ) ( )

( )( ) ( )
*

sinh / sinh / sinh /

2 1 cosh / sinh /

f v f v vf

fv
f v f v

v

t τ t t τ t τx
v t tτ t τ t τ

τ

− − −
=

− +
 (23) 

Eq. (23) means that the minimum-energy velocity profile depends on the ratio of the 
mechanical time constant vτ  and the displacement time ft . 

3.3 Simulations and Experiments 

3.3.1 Simulations 
Several simulations were performed to evaluate the energy saving of the minimum-energy 
control optimizing the cost function WE  of Eq. (11); these were compared with two results 
of other methods: loss-minmization control (Trzynadlowski, 1988; Tal, 1973; Kwok & Lee, 
1990) optimizing energy loss due to armature resistance of a DC motor, ( )T

R aE R dt= ∫ i i , and 

the fixed velocity profile of commonly used trapezoidal velocity profile optimizing the cost 
function WE  of Eq. (11). 
Table 3.2 shows the simulation results of the energy saving for various displacements fx  
and displacement time ft . Minimum-Energy denotes the mnimum-energy control 
optimizing the cost fucntion WE , Loss-Minimization denotes the loss-minimization control 
optimizing the cost function RE , and TRAPE denotes the trapezoidal velocity profile 
optimizing the cost fuction WE . Values in parenthesis represent percentage difference in the 
total energy drawn from the batteries with respect to that of minimum-energy control. It 
shows that minimum-energy control can save up to 8% of the energy drawn from the 
batteries compared with loss-minimization control and up to 6% compared with energy-
optimal trapezoidal velocity profile. Because the minimum-energy velocity profile of Eq. 
(23) resembles a trapezoid for a sufficiently long displacement time, the energy-optimal 
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trapezoidal velocity profile converges to minimum-energy velocity profile and is a near 
energy-optimal velocity profile for a longer displacement time. However, it expends more 
energy when frequent velocity changes are required due to obstacles. 

Constraints Total Energy Drawn from the Batteries WE  (J) 

ft  fx  Minimum-Energy Loss-Minimization TRAPE 
2.0s 1.0m 7.26 7.38 (1.65%) 7.70 (6.06%) 
5.0s 3.0m 19.07 20.26 (6.24%) 19.57 (2.62%) 
10.0s 5.0m 24.26 26.22 (8.08%) 24.57 (1.27%) 
20.0s 10.0m 46.56 49.38 (6.06%) 46.85 (0.62%) 
30.0s 15.0m 68.92 71.91 (4.34%) 69.20 (0.41%) 

Table 2. Comparison of energy saving for various ft  and fx  

Compared with loss-minimization control, minimum-energy control has a significant 
energy saving for a displacement time greater than 2s. For a further investigation, we 
performed a careful analysis of two optimization problems: minimum-energy control and 
loss-minimization control. Fig. 6 shows the simulations for various time constants vτ  that 
were performed  for tf = 10.0s and xf = 5.0m. As the energy-optimal velocity profile depends 
on = /v fk τ t , as shown in Fig. 5, the mechanical time constant affects the velocity profiles of 
the two optimization problems with different cost functions. 
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Figure 6. Cost function plot with respect to mechanical time constant τ  

Applying the Pontryagin’s Maximum Princple to optimize the cost function, the mechanical 

time constants are ( ) ( )= + + 2
1 2 / /v v v t b aτ J J F F K K n R  for minimum-energy control and 

( )= +1 2 /v vτ J J F  for loss-minimization control. Fig. 6 shows the change of the cost function 
with respect to various mechanical time constant τ . 
From Eq. (2), decreasing the armature current increases the value of the back-emf and the 
motor speed. Because the mechanical time constant of minimum-energy control less than 
that of loss-minimization control, the armature current in minimum-energy control quickly 
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decreases, as shown in Fig. 7(c) during acceleration and deceleration. Hence minimum-
energy control can accelerate and decelerate at a higher acceleration rate as shown in Fig. 
7(a). Corresponding control inputs are shown in Fig. 7(b) and energy consumptions for each 
case are shown in Fig. 7(d). 
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Figure 7. Simulations of minimum-energy control and loss-minimization control for tf = 
10.0s and xf = 5.0m, (a) Optimal velocity profile, (b) Corresponding control inputs, (c) 
Armature current change, (d) Comparison of energy consumption 
Table 3 shows the ratio of consumed energy for each energy component of Eq. (10) with 
respect to total energy drawn from the batteries during the entire process for minimum-
energy control. Note that the kinetic energy acquired at start up is eventually lost to the 
whole process when the final velocity is equal to the initial velocity, as shown in Table 3. 

tf xf EW(%) ER (%) EF (%) EK (%) 
2.0s 1.0m 7.26 2.30 (31.68%) 4.96 (68.32%) 0.00 (0.00%) 
5.0s 3.0m 19.07 2.35 (12.32%) 16.72 (87.68%) 0.00 (0.00%) 
10.0s 5.0m 24.26 1.82 (7.50%) 22.44 (92.50%) 0.00 (0.00%) 
20.0s 10.0m 46.56 2.51 (5.39%) 44.05 (94.61%) 0.00 (0.00%) 
30.0s 15.0m 68.92 3.26 (4.73%) 65.66 (95.27%) 0.00 (0.00%) 

Table 3. Ratio of energy consumption of each energy component for minimum-energy 
control 
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Since most of the battery energy is dissipated by the armature resistance for a short 
displacement time, the minimum-energy control does not have significant energy savings 
for a short displacement time but shows significant energy savings for a long displacement 
time, as shown in Table 2. 
Fig. 8 shows the power consumption for each energy component of minimum-energy 
control and loss-minimization control for the constraints given in Fig. 7. It shows that the 
minimum-energy control requires greater energy consumption than loss-minimization 
control during accleleration, whereas minimum-energy control consumes less energy after 
accleration. It means that even though the minimum-energy control requires larger energy 
consumption than loss-minimization control druing acceleration, it consumes less energy 
after acceleration. During deceleration a certain amount of energy is regenerated and stored 
in the batteries: 0.94J for minimum-energy control and 0.62J for loss-minimization control. 
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Figure 8. Comparison of power consumption for each energy component, (a) Minimum-
energy control, (b) Loss-minimization control 

3.3.2 Experimental Environment Setup 

 
Figure 9. The Pioneer 3-DX robot with a laptop computer 
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To validate the energy saving of the proposed minimum-energy control, we performed 
experiments with an actual robot. We use a commercial mobile robot, P3-DX. Fig. 9 is a 
picture of P3-DX with a laptop computer. 
The robot is powered by rechargeable batteries with 12V and has two DC motors with 
encoders driving two wheels. The maximum translational velocity is approximately 1.2m/s. 
A Renesas SH2-7144 RISC microcontroller is used to control motors and it communicates 
with PC client through RS232 serial port. The microcontroller is managed by an Advanced 
Robot Control and Operations Software (ActiveMedia, 2006). 

Current Sensing Circuit

P3-DX

RSENSE

SH2 Microcontroller

Motors Encoders

Laptop Computer
(Linux with RTAI)

+

-
Active LPF MSP430

MicrocontrollerADC

RS232 (115K)

RS232 (115K)

USB –  Serial
Converter

MSP430
Microcontroller

 
Figure 10. Experimental environment setup 
Fig. 10 shows our experimental environment setup. The laptop computer is used to control 
the robot and to measure the current drawn from the batteries for calculating energy 
consumption. The robot is controlled by acceleration rate and desired velocity as control 
commands, and robot’s velocity profile is piecewise linear. Since the velocity profiles of 
minimum-energy and loss-minimization control are nonlinear, we approximated them to 
piecewise linear velocity profile with 10ms sampling time. The laptop computer is 
connected to the robot through a serial port with 115Kbps baud rate, and sends a set of 
acceleration rate and desired velocity of approximated piecewise linear velocity profile to 
the robot every control period of 10ms, and receives a Standard Information Packet 
(ActiveMedia, 2006) including velocity and position from the robot every 10ms. Since it is 
difficult to control every 10ms in Windows or general Linux, we adopted Real-Time 
Application Interface (RTAI), one of Linux real-time extension, as an operating system of the 
laptop computer for real-time control (Lineo, 2000). 
To measure the drawn energy from the batteries, we sense high side battery current using 
bi-directional current sensing circuit as shown in Fig. 10. We monitor the current through 
RSENSE using LT1787 current sense amplifiers with 1.25V reference and filter output of 
amplifier to obtain average output with unity gain Sallen-Key 2nd order active low pass 
filter with 1KHz cut-off frequency and unity damping ratio. Then MSP430 microcontroller 
samples the filtered output with 200Hz sampling rate using 12-bit ADC and transmits 
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sampled array data to the laptop computer energy 10ms. Since the measured current 
includes current drawn by microcontroller as well as current drawn by motors, we subtract 
the measured current when the robot is in initial stop state to obtain the current drawn by 
motor driving. Fig. 11 shows the bi-directional battery current sensing hardware. 

 
(a) 

 
(b) 

Figure 11. Battery current sensing hardware, (a) Bi-directional current sensing circuit, (b) 
MSP430 microcontroller with 12-bit ADC for data acquisition with USB-to-Serial converter 

3.3.3 Experiments 
We performed experiments for the constraints in Table 2 and compared with loss-
minimization control. To calculate energy consumption, we calculated the armature current 
and the applied voltages of each motor using the ratio of the armature current between two 
motors since we can only measure the batteries’ current of P3-DX. The ratio of the armature 
currents can be obtained from Eqs. (3) and (5) using measured velocity of WMR as follows. 

 ( ) ( ) ( )
( ) ( ) ( )

1 2 1 2

1 2 2 1

R
v

L
v

J J v b J J ω F v bωiρ
i J J v b J J ω F v bω

+ + − + +
= =

+ + − + −
 (24) 

Since battery current is = +B R Li i i , the armature current of two motors are 

 
1

R Bρi i
ρ

=
+

, =
+
1

1
L Bi i

ρ
 (25) 

and applied voltages of two motors is obtained from Eq. (2). Then we can calculate the 
drawn energy from the batteries, Eq. (7). 
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Figs. 12 and 13 show the experimental results that were performed for tf = 10.0s and xf = 
5.0m compared with simulation results. Actual velocity of the robot follows well desired 
velocity. Since we ignore the armature inductance of the motor, armature current change 
and power consumption has slightly different change during accleration and deceleration. 
However, they show the similar overall response. 
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Figure 12. Experimental results of minimum-energy control for tf = 10.0s and xf = 5.0m, (a) 
Velocity profile, (b) Armature current change, (c) Power consumption, (d) Energy 
consumption 
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Figure 13. Experimental results of loss-minimization control for tf = 10.0s and xf = 5.0m, (a) 
Velocity profile, (b) Armature current change, (c) Power consumption, (d) Energy 
consumption 
Table 4 shows the experimental results for energy savings for various displacements xf and 
displacement time tf. Values in parenthesis represent percentage difference in the total 
energy drawn from the batteries with respect to that of minimum-energy control. 
Experimental results revealed that the minimum-energy control can save up to 11% of the 
energy drawn from the batteries compared with loss-minimization control. 
Since we ignore the inductance of the motors and there can be errors in modelling and 
measuring the energy drawn from the batteries for experiments is slightly different to that 
of simulations. However, we can see that the minimum-energy control can save the battery 
energy compared with loss-minimization control in both experiments and simulations. 
Table 4 also shows that the percent of energy savings difference between minimum-energy 
control and loss-minimization control has a similar tendency with that of simulation results 
in Table 2. 
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Constraints Total Energy Drawn from the Batteries WE  (J) 

ft  fx  Minimum-Energy Loss-Minimization 
2.0s 1.0m 8.73 8.97 (2.75%) 
5.0s 3.0m 20.42 22.63 (10.82%) 
10.0s 5.0m 23.93 26.59 (11.12%) 
20.0s 10.0m 45.27 50.16 (10.80%) 
30.0s 15.0m 66.61 69.95 (5.01%) 

Table 4. Comparison of experimental results of energy saving for various ft  and fx  

4. Minimum-Energy Turning Trajectory Planning 
4.1 Problem Statement 
In Section 3, we investigated minimum-energy translational trajectory generation of WMR 
moving along a straight line. To do useful actions, WMR needs rotational trajectory as well 
as translational trajectory. 
According to the configurations of initial and final postures, we can consider two basic 
paths. The one is single corner path which consists of an approach heading angle followed 
by a departure heading angle that is along a line at some angle relative to the approach line. 
That is, it is unnecessary to change the sign of rotational velocity to reach final posture, and 
the other is double corner path which necessary to change the sign of rotational velocity to 
reach final posture as shown in Fig. 14. More complicated paths can be constructed by 
combining multiple single corner paths. 

 Ps

Pf

 
(a) (b) 

Figure 14. Classification of paths, (a) Single corner path, (b) Double corner path 

For simplicity, we consider the single corner path. Futhermore, because of nonlinear and 
nonholonomic properties, a graphical approach will be used with the following definition 
about two sections to solve trajectory planning problem. 
• Rotational section is a section where the rotational velocity of WMR is not zero, as a 

result, turning motion is caused. 
• Translational section is a section where the rotational velocity is zero, as a result, linear 

motion is caused only. 
Since the paths for single corner are expected to be made up with one rotational section and 
two translational sections surrounding the rotational section, we divide our trajectory 
planning algorithm into three sections. The first is RS (rotational section) which is focused 
on the required turning angle, and the others are TSB (translational section before rotation) 



Minimum-Energy Motion Planning for Differential-Driven Wheeled Mobile Robots 

 

211 

and TSA (translational section after rotation) which are secondary procedure to satisfy the 
condition of positions. 
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Figure 15. Sections in path and requirement of path-deviation 

As shown in Fig. 15, let [ ]T
s s s sx y θ=P  and 

T

f f f fx y θ⎡ ⎤= ⎣ ⎦P  be given initial and final 

postures, and [ ]T
m m mx y= −P  be the via point which is an intersection of the forward ray 

of sP and the backward ray of fP , where ‘-‘ means that value is not used. Since there are 
limitations by obstacles or walls in real world, we consider the bound of path-deviation D 
(or deviation from the corner, ( )/cos Δ /2cD D θ=  where Δ f sθ θ θ= − ) as shown in Fig. 15, 
which limits path-deviation from the given configuration. In Fig. 15, path-deviation is given 
considering the safety margin to avoid collisions to the obstacles. Hence the path for single 
corner is divided into three sections: TSB, RS, and TSA. 
Then the minimum-energy turning trajectory planning problem can be formulated as follows. 
Problem: Given initial and final times 0t  and ft , find the trajectory, that is path and velocity 
profiles, which minimizes the cost function 

( )
0

1 2
ft T T T

W qt
E k k dt−= −∫ u u z T u  

for the system described by Eq. (6) subject to 
(1) initial and final postures: ( )0t = sP P  and ( )f ft =P P , 

(2) initial and final velocities: ( )0 st =z z  and ( )f ft =z z , 

(3) satisfying the batteries’ voltage constraints maxu , and 
(4) satisfying the path-deviation constraint D. 

4.2 Minimum-Energy Turning Trajectory Planning 
4.2.1 Overview of the Method 
WMR’s path is described by finite sequences of two straight lines for translational motions 
and an arc for rotational motion in between as shown in Fig. 15. The velocity of the WMR 
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depends on planning path and the path of the WMR depends on planning velocity profile. 
Hence energy consumption depends on path and velocity, i.e., the trajectory. We define a 
trajectory of the WMR at time t as ( ) ( ) ( ) Tt S t θ t= ⎡ ⎤⎣ ⎦q , where ( )S t  is the displacement 

profile of the WMR and ( )θ t  is the orientation profile of the WMR. Since velocity of the 
WMR is a time derivative of trajectory, trajectory has the following relationship. 

 =q z  or dt= ∫q z  (26) 

In Fig. 15, let RsP  and RfP  be start and end postures of RS, and velocities at RsP  and RfP  be 
zRs  and zRf , respectively. Without loss of generality, we stipulate that initial posture is 

[ ]0 0 0 T
s =P , and the initial and final velocities are ( ) ( ) [ ]0 0 0 T

ft t= =z z . We define the 

velocities at tRs  and tRf  are ( ) [ ]0 T
Rs Rs Rst v= =z z  and ( ) 0

T

Rf Rf Rft v⎡ ⎤= =⎣ ⎦z z , 

respectively. Then the velocity profile has a shape as shown in Fig. 16. 
 

 

v(t)

(t)

TSB RS TSA

ts=0 tRs tRf tf

vRs

vRf

vs = vf
TTSB TRS TTSA Time

Time

Translation with
Acceleration Rotation Translation with

Deceleration

 
Figure 16. Possible shape of the velocity profile for single corner trajectory 

The tRs  and tRf  denote initial and final time of RS. We define a time interval of TSB as 

0TSB RsT t T= − , a time interval of RS as RS Rf RsT t t= − , and a time interval of TSA as 

TSA f RfT t t= − . 
WMR is a nonholonomic system. Since its position should be integrated along the curved 
trajectory by Eq. (1), there are no analytic expressions available. In our trajectory planning 
strategy, RS is planned first to turn the required turning angle Δ f sθ θ θ= − . To satisfy the 
condition of positions, TSB and TSA are planned to cover remaining distances TSBL  (along 

sθ ) and TSAL  (along fθ ) as shown in Fig. 17. 
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Figure 17. Calculation of TSBL , TSAL , and '

cP  

4.2.2 Rotational Section 
In rotational section RS, let trajectories at tRs  and tRf  be the ( ) [ ]T

Rs Rs Rst S θ=q  and 

( ) T

Rf Rf Rft S θ⎡ ⎤= ⎣ ⎦q . Then the minimum-energy turning trajectory planning problem for RS 

can be written as follows. 
Problem RS: Find a trajectory for Rs Rft t t≤ ≤  which minimizes the cost function Eq. (9) 
subject to 
(1) initial and final postures: ( )Rs Rst =q q  and ( )Rf Rft =q q , 

(2) initial and final velocities: ( )Rs Rst =q z  and ( )Rf Rft =q z , and 

(3) satisfying the path-deviation constraint D. 
We used the Pontryagin’s Maximum Principle to deal with the minimum-energy trajectory 
of RS. Defining the Largrange multiplier for the trajectory ( )tq  as [ ]T

S θα α=α  and the 

multiplier function for Eq. (6) as [ ]T
v ωλ λ=λ ,  the Hamiltonian is 

 ( )1 2
Rf RsT T T T T

q
Rf Rs

H k k
t t

−
⎛ ⎞−

= − − − + − +⎜ ⎟⎜ ⎟−⎝ ⎠

q q
u u z T u α z λ Az Bu  (27) 

The necessary conditions for the optimal velocity *z  and the control input *u  are 

 1
1 2/ 2 0T

qH k k −∂ ∂ = − + =u u T z B λ  (28) 

 2/ T T
qH k −∂ ∂ = − − − = −z T u α A λ λ  (29) 

 /H∂ ∂ = − + =λ Az Bu z  (30) 

From Eqs. (28) – (30), we obtain the following differential equation. 

 0T T T
P− + =z Q Qz R T α  (31) 
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where 12

1

T T T T
q

k
k

− −= −Q Q A A BB T B A , 
1/ 0

0 1/
v

ω

τ
τ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Q , and 
1

0
02

T
v

ω

η
ηk

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

B BR . Here 

( ) ( )2
1 2 / /v v v t b aτ J J F F K K n R= + +  denotes the mechanical time constant for translation and 

( ) ( )2
1 2 / /ω v v t b aτ J J F F K K n R= − +  denotes the mechanical time constant for rotation of 

WMR. 
Solving Eq. (31), the optimal velocity profile in RS, *

RSz , becomes 

 ( )
( ) ( )

( ) ( )

/ /
1 2*

/ /
1 2

Rs v Rs v

Rs ω Rs ω

t t τ t t τv v
v

RS Rs t t τ t t τω ω
ω

C e C e K
t t

C e C e K

− − −

− − −

⎡ ⎤+ +
− = ⎢ ⎥

⎢ ⎥+ +⎣ ⎦
z  (32) 

where 

( )/ /

1 / /

1RS v RS v

RS v RS v

T τ T τ
Rs Rf vv

T τ T τ

v e v K e
C

e e

− −

−

− − −
= −

−
, 

( )/ /

2 / /

1RS v RS v

RS v RS v

T τ T τ
Rs Rf vv

T τ T τ

v e v K e
C

e e−

− − −
=

−
 

( )( ) ( )( )
( ) ( )

/ / / /

/ / / /

2

2 2

RS v RS v RS v RS v

RS v RS v RS v RS v

T τ T τ T τ T τ
Rf Rs v Rs Rf

v T τ T τ T τ T τ
v RS

S S e e τ v v e e
K

τ e e T e e

− −

− −

− − + + − −
=

− − + −
 

/

1 / /

1RS ω

RS ω RS ω

T τ
ω

ωT τ T τ

eC K
e e

−

−

−=
−

, 
/

2 / /

1RS ω

RS ω RS ω

T τ
ω

ωT τ T τ

eC K
e e−

−= −
−

, 

( )( )
( ) ( )

/ /

/ / / /2 2

RS ω RS ω

RS ω RS ω RS ω RS ω

T τ T τ
f s

ω T τ T τ T τ T τ
ω RS

θ θ e e
K

τ e e T e e

−

− −

− −
=

− − + −
 

Since the path of WMR depends on the velocity profile, the displacement length of RS, 
Δ RS Rf RsS S S= − , is an unknown parameter. From Eq. (32), the trajectory of RS is determined 
by four unknown variables of RS: time interval RST , initial velocity Rsv , final velocotiy Rfv , 
and the displacement length Δ RSS . To consider the path-deviation requirement, we 
calculate the path of WMR in RS with respect to the sP  from the planned trajectory of Eq. 

(32)  using the integral of z , Eq. (26). Let ' ' ' ' T

Rf Rf Rf Rfx y θ⎡ ⎤= ⎣ ⎦P  be the final posture of RS 

with respect to the sP  , [ ]T
c c cx y= −P  be the corner point, and 

T
x y θ⎡ ⎤= ⎣ ⎦

' ' ' '
c c c cP  be the 

point which the y-coordinate of the planned RS path is equal to the y-coordinate of the 
corner point cP . Corner point cP  can be obtained from the path-deviation requirement D, 
the required turning angle Δ f sθ θ θ= − , and via point mP  as follows. 

 [ ]tanΔ T
c mx D θ D= − ⋅ −P  (33) 

To connect the path of RS planned with respect to sP  with those of TSB and TSA, we 
calculate the remaining distances TSBL  for TSB and TSAL  for TSA from '

RfP  and fP  as 
follows. 
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'

'
'

, Δ /2

,
tanΔ

f Rf

TSB f Rf
f Rf

x x θ π
L y y

x x otherwise
θ

⎧ − =
⎪= ⎨ −

− −⎪
⎩

 and 
'

sinΔ
f Rfy y

θ
−

=TSAL  (34) 

Then the postures of RsP  and RfP  (See Fig. 15) are 

 
Rs TSB

Rs Rs s

Rs s

x L
y y
θ θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

P  and 

'

'
Rf Rf TSB

Rf Rf Rf

Rf f

x x L
y y
θ θ

⎡ ⎤ ⎡ ⎤+
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

P  (35) 

To obtain a feasible trajectory of RS, the following conditions should be satisfied. 

 '
c TSB cx L x+ ≥ , 0TSBL > , and 0TSAL >  (36) 

4.2.3 Two Translational Sections 
After planning the rotational section RS, we obtain the remaining distances TSBL  and TSAL  of 
Eq. (34) to plan the trajectories of TSB and TSA. To obtain energy-optimal trajectories of TSB 

and TSA, let trajectories at 0t  and ft  be the ( ) [ ]0
T

s st S θ=q  and ( ) T

f f ft S θ⎡ ⎤= ⎣ ⎦q . Then 

the minimum-energy trajectory planning problem for TSB and TSA can be written as 
follows. 
Problem TSB: Find a trajectory for 0 Rst t t≤ ≤  which minimizes the cost function Eq. (9) 
subject to 
(1) initial and final postures: ( )0 st =q q  and ( )Rs Rst =q q , and 
(2) initial and final velocities: ( )0 st =q z  and ( )Rs Rst =q z . 
Problem TSA: Find a trajectory for Rf ft t t≤ ≤  which minimizes the cost function Eq. (9) 

subject to 
(1) initial and final postures: ( )Rf Rft =q q  and ( )f ft =q q , and 

(2) initial and final velocities: ( )Rf Rft =q z  and ( )f ft =q z . 

Applying the same process in RS, the optimal velocity profiles of TSB and TSA, *
TSBz  and 

*
TSAz  become 

 ( )
( ) ( )0 0/ /

* 1 2
0 0

v vt t τ t t τTSB TSB TSB
v

TSB
C e C e Kt t

− − −⎡ ⎤+ +
− = ⎢ ⎥

⎢ ⎥⎣ ⎦
z  (37) 

 ( )
( ) ( )/ /

* 1 2

0

Rf v Rf vt t τ t t τTSA TSA TSA
v

TSA Rf
C e C e Kt t

− − −⎡ ⎤+ +− = ⎢ ⎥
⎢ ⎥⎣ ⎦

z  (38) 
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where 

( )/ /

1 / /

1TSB v TSB v

TSB v TSB v

T τ T τTSB
s Rs vTSB

T τ T τ

v e v K e
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e e
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− − −
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−
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T τ T τTSB
s Rs vTSB

T τ T τ

v e v K e
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e e−

− − −
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−
 

( )( ) ( )( )
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/ / / /

/ / / /

2
2 2

TSB v TSB v TSB v TSB v

TSB v TSB v TSB v TSB v

T τ T τ T τ T τ
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v T τ T τ T τ T τ
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S S e e τ v v e e
K

τ e e T e e

− −

− −

− − + + − −
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− − + −
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1TSA v TSA v

TSA v TSA v

T τ T τTSA
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T τ T τ

v e v K e
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e e
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−

− − −
= −

−
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1TSA v TSA v

TSA v TSA v

T τ T τTSA
Rf f vTSA

T τ T τ

v e v K e
C

e e−

− − −
=

−
 

( )( ) ( )( )
( ) ( )

/ / / /

/ / / /

2

2 2

TSA v TSA v TSA v TSA v

TSA v TSA v TSA v TSA v

T τ T τ T τ T τ
f Rf v Rf fTSA

v T τ T τ T τ T τ
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S S e e τ v v e e
K
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Note that Δ TSB Rs sS S S= −  and Δ TSA f RfS S S= −  are the displacement lengths of TSB and TSA, 
respectively. From Eqs. (37) and (38), the trajectories of TSB and TSA are determined by two 
unknown variables of TSB and TSA: time interval TSBT  of TSB and time interval TSAT  of TSA. 

4.2.4 Trajectory Optimization 
Since 0f TSB RS TSAt t T T T− = + + , from Sections 4.2.2 and 4.2.3, the minimum-energy turning 
trajectory is determined by five variables: RST , Rsv , Rfv , Δ RSS , and TSBT . Since there is no 
analytic expression for the posture function of WMR, we performed numerous simulations 
to analyze the convexity of the cost function. Fig. 18 is the one of numerous simulations of 
the cost function using full search. 
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Figure 18. Plot of the cost function of feasible solution for tf = 2.5s and Pf = [0.50m 0.75m 
90°]T, (a) The plot of the inverse of the cost function, (b) Contour plot of the inverse of the 
cost function 

It shows that the cost function is convex with respect to RST  and Rsv . Numerous simulations 
also showed that the cost function is convex with respect to Rfv  and TSBT  also. Hence we 
constructed an iterative search with quintuple loops with variables to find the minimum-
energy turning trajectory. 
Fig. 19 is the overall flowchart of iterative search with quintuple loops to find minimum-
energy turning trajectory. Fig. 20 contains partial detailed flowcharts of Fig. 19. Figs. 20(a) – 
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20(d) are iterative search loops to plan the trajectory of RS satisfying the feasibility 
conditions of Eq. (36). In Fig. 20(d), maximum displacement length of RS is max

RS s fS L L= +  as 
shown in Fig. 15. Combining the solutions of minimum-energy trajectories for the required 
cornering motions, we can get the overall minimum-energy turning trajectory. 

 
Figure 19. Overall flowchart of itertaive serach with quintuple loops to find minimum-
energy turning trajectory 
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Figure 20. Partial flowchart of iterative serach with quintuple loops to find minimum-energy 
turning trajectory, (a) Search loop for finding TRS, (b) Search loop for finding vRs, (c) Search 
loop for finding vRf, (d) Search loop for finding ΔSRS satisfying feasibility conditions of RS, 
Eq. (36), (e) Search loop for finding TTSB 

4.3 Simulations and Experiments 

4.3.1 Simulations 
A number of simulations were performed to evaluate the energy savings of the minimum-
energy turning trajectory minimizing the cost function EW of Eq. (9) and compared to the 
trajectory using loss-minimization control, which optimizes the energy loss due to armature 
resistance of the DC motor, RE .  
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Tables 5 and 6 show the simulations results for the variables of planned turning trajectory 
by the minimum-energy control and loss-minimization control, respectively. For a sufficient 
cruise motion in TSB and TSA, based on observation of the property of the minimum-energy 
velocity profile shown in Fig. 5, we set the final time to tf = 15.0s greater than 20τv (≈ 7.8s). 
Since there are many interations to find minimum-energy turning trajectory, we 
implemented the algorithm in C language and simulation takes much time about 4 ~ 6 
hours for simulation constraints of Tables 5 and 6 using a PC with Intel Core2 Duo 2.13GHz 
processor. 

Constraints Optimized Variables of Turning Trajectory 
Pf D TRS vRs vRf ΔSRS TTSB TTSA ΔSTSB ΔSTSA EW 

[(m) (m) (°)] (m) (s) (m/s) (m/s) (m) (s) (s) (m) (m) (J) 
0.1 2.201 0.305 0.305 0.669 7.212 5.587 2.091 1.592 12.33 2.50 2.00 90 0.2 4.698 0.300 0.309 1.256 5.968 4.334 1.726 1.222 11.34 
0.1 2.109 0.347 0.314 0.556 8.726 4.165 2.944 1.320 15.58 2.50 1.50 120
0.2 3.398 0.319 0.319 1.011 8.311 3.291 2.586 0.949 13.43 

Table 5. Simluation results of minimum-energy turning trajectory 

Constraints Optimized Variables of Turning Trajectory 
Pf D TRS vRs vRf ΔSRS TTSB TTSA ΔSTSB ΔSTSA EW 

[(m) (m) (°)] (m) (s) (m/s) (m/s) (m) (s) (s) (m) (m) (J) 
0.1 2.703 0.323 0.319 0.747 6.736 5.562 2.050 1.552 12.87 2.50 2.00 90 
0.2 3.724 0.370 0.348 1.384 6.310 4.966 1.652 1.168 12.21 
0.1 2.607 0.319 0.309 0.616 7.854 4.539 2.915 1.286 16.46 2.50 1.50 120
0.2 3.223 0.381 0.338 1.115 7.873 3.904 2.516 0.910 14.23 

Table 6. Simluation results of loss-minimization turning trajectory 

The results of energy savings for various simulations are summarized in Table 7. It shows 
that the minimum-energy turning trajectory can save up to 8% of the energy drawn from the 
batteries compared with loss-minimization turning trajectory. 

Pf D Total Energy Drawn from the Batteries 
[(m) (m) (°)] (m) Minimum-Energy Loss-Minimization Energy Saving 

0.1 12.33J 12.87J 4.38% 2.50 2.00 90 
0.2 11.34J 12.21J 7.67% 
0.1 15.58J 16.46J 5.65% 2.50 1.50 120 
0.2 13.43J 14.23J 5.96% 

Table 7. Comparison of energy savings of minimum-energy turning trajectory planning and 
loss-minimization turning trajectory planning 

Fig. 21 shows a typical resultant trajectory that were performed for tf = 15.0s, Pf = [2.50m 
1.50m 120°]T, and 0.2mD = . The mechanical time constant affects the velocity profiles of the 
two optimization problems with different cost functions. Applying the Pontryagin’s 
Maximum Principle to optimize the cost function of loss-minimization control, we obtain 
the mechanical time constants for loss-minimization control as follows: ( )1 2 /v vτ J J F= +  for 
translational motion and ( )1 2 /ω vτ J J F= −  for rotational motion. 
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Figure 21. Simulations of minimum-energy control and loss-minimnization control turning 
trajectory for tf = 15.0s, Pf = [2.50m 1.50m 120°]T, and D=0.2m, (a) Optimal velocity profile, 
(b) Optimal planned path, (c) Armature current change, (d) Corresponding drawn battery 
current, (e) Comparison of energy consumption, (f) Corresponding power consumption 

From Eq. (2), decreasing armature current increases the value of the back-emf and the motor 
speed. Because the mechanical time constants of minimum-energy control are less than 
those of loss-minimization control, the armature current in minimum-energy control quickly 
decreases during acceleration and deceleration, as shown in Fig. 21(d). Hence we can see 
that the minimum-energy control accelerates and decelerates more quickly than the loss-
minimization control as shown in Fig. 21(a) and the minimum-energy control gives a cruise 
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or cruise-like motion to WMR in TSB and TSA as we expected. However, the loss-
minimization control accelerates and decelerates in whole time since its mechanical time 
constant is much greater than that of minimum-energy control. Fig. 21(f) shows that 
although the minimum-energy control requires larger energy consumption than the loss-
minimization control during acceleration, it consumes less energy after acceleration. Also 
note that during deceleration a certain amount of energy is regenerated and stored into the 
batteries in both minimum-energy control and loss-minimization control. However, amount 
of regenerated energy in the loss-minimization control is much smaller than that of the 
minimum-energy control since deceleration rate of loss-minimization control is much 
smaller than that of minimum-energy control due to larger mechanical time constants. 

4.3.2 Experiments 
To validate the energy savings of the proposed minimum-energy turning trajectory, we 
performed experiments with P3-DX and compared with the loss-minimization control for 
the constraints of simulations. Figs. 22 and 23 show typical experimental results that were 
performed to compare with simulation results of Fig. 21.  
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Figure 22. Experimental result of minimum-energy turning trajectory for tf = 15.0s, Pf = 
[2.50m 1.50m 120°]T, and D=0.2m, (a) Actual robot velocities, (b) Actual robot path, (c) 
Drawn battery current, (d) Energy Consumption 
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Figure 23. Experimental result of loss-minimization turning trajectory for tf = 15.0s, Pf = 
[2.50m 1.50m 120°]T, and D=0.2m, (a) Actual robot velocities, (b) Actual robot path,  
(c) Drawn battery current, (d) Energy consumption 

Actual velocity of the robot follows well reference velocity as shown in Figs. 22(a) and 23(a). 
Since there are some errors in kinematic parameters and velocity tracking, actual trajectory 
is slightly different to reference trajectory as shown in Figs. 22(b) and 23(b), and there is a 
final position error about 20mm ~ 30mm. However, experimental results show similar 
response with simulation results. Figs. 22(c) and 23(c) show the drawn battery current. Since 
we ignore the armature inductance of the motor, drawn battery current has slightly different 
change during acceleration and deceleration. However, they show the similar overall 
response. 
Table 8 shows the total energy drawn from the batteries of experiments. Values in 
parenthesis represent the final position errors. Experimental results revealed that the 
minimum-energy turning trajectory can save up to 9% of the energy drawn from the 
batteries compared with loss-minimization turning trajectory. 
Since we ignored the inductance of the motors and there can be errors in modeling and 
measuring, the energy drawn from the batteries is slightly different to that for simulations. 
However, we can see that the minimum-energy turning trajectory can save the battery 
energy compared with loss-minimization turning trajectory in both expereiments and 
simulations. Table 8 also shows that the the percent of energy saving difference in 
experiments has a similar tendency that of simulations.  
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Pf D Total Energy Drawn from the Batteries 
[(m) (m) (°)] (m) Minimum-Energy Loss-Minimization Energy Saving 

0.1 12.05J (24mm) 13.10J (17mm) 8.71% 2.50 2.00 90 
0.2 11.59J (23mm) 12.36J (24mm) 6.64% 
0.1 15.34J (25mm) 16.71J (25mm) 8.93% 2.50 1.50 120 0.2 13.63J (25mm) 14.21J (31mm) 4.26% 

Table 8. Comparison of experimental results of minimum-energy turning trajectory 
planning and loss-minimization turning trajectory planning 

5. Conclusion 
In this book chapter, we derived the minimum-energy trajectory for WMR considering 
practical energy drawn from the batteries. First we investigated the minimum-energy 
translational trajectory generation moving along a straight line. Using the Pontryagin’s 
Maximum Principle, the energy-optimal velocity profile that minimizes total energy 
drawn from the batteries is found to be a reasonable complex analytic form. The 
minimum-energy velocity profile is shown to depend on the ratio of the mechanical time 
constant and displacement time. Simluations show that minimum-energy control can give 
significant energy savings, up to 8% compared with loss-minmization control and up to 
6% compared with the widely used trapezoidal velocity profile, minimizing the total 
energy drawn from the batteries. The experimental results also showed that the proposed 
minimum-energy control can save the battery energy up to 11% compared with loss-
minimization control. 
Since WMR also needs turning trajectory as well as translational trajectory to do useful 
actions, we also investigated the minimum-energy turning trajectory planning for WMR. To 
overcome nonholonomic and nonlinear properties of a WMR, we divided our trajectory 
into three sections. The first is RS, which is focused on the rotational motion with the 
required turning angle, and the others are TSB and TSA, which are adjoining procedures 
focused on translational motion. Energy optimal trajectory for each section was obtained 
using the Pontryagin’s Maximum Principle. To combine three sections and find the 
minimum-energy trajectory, since there is no closed-form solution combining three 
solutions, we suggested an iterative search method with quintuple loops based on 
observations of the cost function. Since iterative search is composed of quintuple loops 
and there are many iterations loops to calculate robot’s position due to its nonholonomic 
property, we implemented the algorithm in C language and simulations took several 
hours using a PC with Intel Core2 Duo 2.13GHz. Simulation results showed that the 
minimum-energy turning trajectory can save the battery energy up to 8% compared with 
loss-minimization turning trajectory. The experimental results also revealed that the 
minimum-energy turning trajectory can save up to 9% of the energy drawn from the 
batteries compared with loss-minimization turning trajectory. 
As a further works, it remains a problem to solve about on-line trajectory planning for the 
overall real-time control of WMR. Also it is necessary to design a trajectory tracking 
controller reducing velocity tracking and posture errors for more accurate motion control 
for actual robots. 
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1. Introduction 
In the past decade, ongoing revolutions in computing effectiveness and miniaturization of 
processors/sensors/actuators have facilitated the transition of research focus from an 
individual mobile robot to networked distributed teams of mobile robots. The development 
of effective motion-planning methods for such collectives is critical to realizing the full 
potential of the group in numerous applications ranging from reconnaissance, foraging, 
herding to cooperative payload transport.  
While considerable literature exists for motion planning of individual mobile agents, the 
renewed challenge lies in creating motion plans for the entire team while incorporating 
notions such as cooperation. The “formation” paradigm has emerged as a convenient 
mechanism for abstraction and coordination with approaches ranging from leader-following 
(Wang, 1991; Desai et al., 2001), virtual structures (Lewis and Tan, 1997; Beard et al., 2001) 
and virtual leaders (Leonard and Fiorelli, 2001; Ogren et al., 2002). The group control 
problem now reduces to a well-known single-agent control problem from which the other 
agents derive their control laws but requires communication of some coordination 
information. Early implementations involved the kinematic specification of the followers’ 
motion-plans as a “prescribed motions” relative to a team-leader without the ability to affect 
the dynamics of the leader. Subsequent approaches have incorporated some form of 
“formation-feedback” from the members to the overall group using natural or artificially 
introduced dynamics within the constraints. The formation paradigm has evolved to allow 
prescription of parameterized formation maneuvers and group feedback (Egerstedt and Hu, 
2001; Young et al., 2001; Ogren et al., 2002). From these seemingly disparate approaches, a 
dynamic system-theoretic perspective has emerged for examining the decentralized multi-
agent “behavioral control” in the context of “formations” (Lawton et al., 2000; Egerstedt and 
Hu, 2001; Leonard and Fiorelli, 2001; Young et al., 2001; Ogren et al., 2002; Olfati-Saber and 
Murray, 2006). “Behavioral” control laws, derived implicitly as gradients of limited-range 
artificial potentials, can be implemented in a decentralized manner while permitting a 
Lyapunov-based analysis of formation maintenance. 
Various variants of the Artificial Potential Field (APF) framework have been leveraged in 
implementing such behavioral motion-planning/control of robot collectives due to their 
seeming ease of formulation, decentralization and scalability. However, we note that while 
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stability guarantees (typically asymptotic) may be obtained, APF approaches are unable to 
guarantee strict formation maintenance. Such strict formation maintenance is critical in 
applications such as cooperative payload transport by collectives (Bhatt et al., 2008)  or in 
distributed sensor deployment applications where the robots are to form some geometric 
pattern and maintain it while moving about in the world (Young et al., 2001). 
We note that the group of independent mobile robots moving together in formation and 
coupled together by constraint dynamics can alternatively be viewed as a constrained 
mechanical system. The computation of motion plans for such collectives in a potential field 
may also be viewed as simulating the forward dynamics of a constrained multi-body 
mechanical system. By doing so, we would like to link (and leverage) the extensive literature 
on formulation and implementation of computational simulation of multibody systems 
(Haug, 1989; Shabana, 1989; Schiehlen, 1990; García de Jalón and Bayo, 1994; Ascher and 
Petzold, 1998) to the problem of motion planning of mobile robot collectives.  
In this chapter, we evaluate the formation maintenance performance of several formulations 
developed by analogy to the approaches used for constrained mechanical systems. These 
include: (i) a direct Lagrangian multiplier elimination approach (to serve as the benchmark); 
(ii) a penalty-formulation approach which is the most popular implementation; and (iii) a 
constraint manifold projection approach. We note that the instabilities introduced in the 
form of the “formulation stiffness” at the algorithm development stage have the potential to 
hinder the subsequent control and requires a careful quantitative examination (Ascher et al., 
1997). Hence, we compare and contrast the various approaches on the basis of modular 
formulation, distributed computation and relative computational efficiency and accuracy. 
These aspects are studied in the context of the motion-planning of a group of point-mass 
mobile robots which are constrained together by means of rheonomous holonomic 
constraints.  
The rest of the paper is organized as follows: Section 2 presents a brief discussion of various 
candidate formulations of forward dynamics approaches for constrained multibody 
systems. In Section 3, the dynamic model of the system of point-mass robots moving in 
plane is introduced and the candidate methods are evaluated from viewpoint of distribution 
of computation. Section 4 discusses the standardized test arena and the performance 
evaluation metric which is then used in Section 5 to compare and contrast the methods. 
Section 6 presents a brief discussion and concluding remarks. 

2. Forward Dynamics Formulations for Constrained Mechanical Systems 
In this section we briefly review some of the available alternative formulations for 
developing the forward dynamics simulations in constrained mechanical systems. At the 
outset, we note that suitable selection of a set of configuration coordinates is of particular 
importance due to its impact both on the ease of formulation and the subsequent 
computational efficiency. We make use of expanded sets of dependent Cartesian coordinates 
linked together by holonomic constraints as being most appropriate for modular composition 
and general-purpose analysis.  
The overall dynamics can be formulated as a system of ODEs whose solutions are required 
to satisfy additional holonomic (algebraic) constraint equations as Lagrangian equations of 
the first kind (Arnold, 1989):  
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 υ=q  (1) 

 ( ) ( ) ( )υ υ λ= −, , , TM q f q u t A q  (2) 

 ( )=, 0C q t  (3) 

where 
q is the n -dimensional vector of generalized coordinates. 

υ  is the n -dimensional vector of generalized velocities. 

( )M q  is the n n×  dimensional inertia matrix. 

( ), , ,f q u tυ  is the n -dimensional vector of external forces.  

u  is the vector of actuator forces/torques. 

( ),C q t  is the m -dimensional vector of holonomic constraints. 

( )A q C q=∂ ∂  is the m n×  dimensional constraint Jacobian matrix. 

λ  is the m -dimensional vector of Lagrange multipliers. 
The solution of resulting system of index-3 Differential Algebraic Equations (DAEs) by 
direct finite difference discretization is not possible using explicit discretization methods. 
We adopt a converted ODE approach, wherein all the algebraic position and velocity level 
constraints are differentiated and represented at the acceleration level to obtain an 
augmented index-1 DAE (in terms of both, the unknown accelerations and the unknown 
multipliers). Differentiating the position constraints in Eq.(3), with respect to time, yields the 
velocity-level constraints: 

 = = 0C Av  (4) 

Further differentiation with respect to time yields the acceleration level constraints as: 

 = + = 0C Av Av  (5) 

Thus, Eq. (2) can then be written together with Eq. (5) as an index-1 DAE as: 

 
( ) ( ) ( ) ( )

λ
+ ×+ × + + ×

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦1 1
0

T

n mn m n m n m

fvM A
A Av

 (6) 

In a typical forward dynamics simulation setting, the index-1 DAE systems resulting from 
the converted ODE approach are then converted into final system of first-order ODEs by: (a) 
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direct Lagrange multiplier elimination; (b) penalty-formulation; or (c) constraint manifold 
projection.  

2.1 Direct Lagrange Multiplier Elimination  
In this approach, a simultaneous solution of the augmented linear system of Eq. (6) is 
obtained at each time step. While an explicit inversion of the augmented system may be 
avoided by adopting a Gaussian elimination method, the overall approach may still be 
denoted as: 

 
( )
( )λ

− ⎡ ⎤⎡ ⎤⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

1
1

2

,

0 ,

T f q vfv M A
A Av f q v

 (7) 

Thus, the overall system may now be written as a system of first order ODEs as: 

 ( )
υ

υ
×

×
×

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

1
2 1

1 1 ,
n

n
n

q
x

q f q
 (8) 

which may then be integrated using standard numerical solvers. The main advantage is its 
conceptual simplicity and simultaneous determination of the accelerations and the Lagrange 
multipliers by solving a linear system of equations. However, this is a centralized approach 
and does not scale up very well. 

2.2 Penalty-Formulation 
In penalty-based approaches the holonomic constraints are relaxed and replaced by 
linear/non-linear virtual springs and dampers, thereby incorporating the constraint 
equations as a dynamical system penalized by a large factor. The Lagrange multipliers are 
approximated using a virtual spring type law (based on the extent of the constraint violation 
and assumed spring stiffness) and eliminated from the list of +n m  unknowns leaving 
behind a system of 2n  first order ODEs. While the sole initial drawback may appear to be 
restricted to the numerical ill-conditioning due to selection of large penalty factors, it is 
important to note that penalty approaches only approximate the true constraint forces and 
can create unanticipated problems (as will be discussed later). This individual multiplier 
values can be explicitly calculated as λ = +

i ii P i D iK C K C  where 
iPK  is the spring constant, 

iDK  is the damping constant and ( )iC q  is the constraint violation in the direction of the 

respective λi . By substituting the value of λ  in Eq. (2), the final ODE system can be written 
as:  

 ( )( )
×

× −
×

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ − +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

1
2 1 1

1

n
n T

n P D

vq
x

q M f A K C K C
 (9) 
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where ⎡ ⎤= ⎢ ⎥⎣ ⎦iP PK diag K and ⎡ ⎤= ⎢ ⎥⎣ ⎦iD DK diag K . 

2.3 Constraint Manifold Projection 
This approach seeks to take the dynamical equations with constraint-reactions into the 
tangent and cotangent subspace. The rheonomous holonomic constraints, ( )=, 0C q t ,  can be 

written in differential form as: 

 ( )
⎡ ⎤ ⎡ ⎤∂ ∂⎢ ⎥ + = ⇔ =⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦⎢ ⎥⎣ ⎦

0C Cq Aq a q
q t

 (10) 

Let ( )S q  be an ( )× −n n m  dimensional full rank matrix whose column space is in the null 

space of A  i.e. 0AS = . The orthogonal subspace is spanned by the so-called constraint 
vectors (forming the rows of the matrix A ) while the tangent subspace complements this 
orthogonal subspace in the overall generalized velocity vector space. All feasible dependent 
velocities, q , of a constrained multibody system necessarily belong to this tangent space, 

appropriately called the space of feasible motions. This space is spanned by the columns of S ) 
and is parameterized by an ( )n m− -dimensional vector of independent velocities, ( )tν , 
yielding the expression for the feasible dependent velocities as:  

 ( ) ( )ν η= = +q v S t q  (11) 

where ( )η q  is the particular solution of (10). Differentiating this further we get: 

 ( )ν ν η ν γ ν= + + = + ,v S S S q  (12) 

where ( )γ ν ν η= +,q S  needs to be calculated numerically which has potential of 

introducing errors. In order to avoid this situation, we adopted the method in (Yun and 
Sarkar, 1998).  
Such a projection process works out well in a Riemannian setting (where the notion of 
orthogonal complement subspaces exists). Special care needs to be exercised when treating 
configuration spaces such as ( )2SE  or ( )3SE . A family of projections exists depending on 
selection of dependent/independent velocities. However, once a projection is selected, the 
dynamic equations of motion can now be projected on to the instantaneous feasible motion 
directions, to obtain the so-called constraint-reaction-free equations of motion. Pre-
multiplying both sides of Eq. (2) by TS  and noting that = 0T TS A  we get: 
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 =T TS Mv S f  (13) 

By substituting υ  from Eq. (12) into Eq. (13) and solving for v  we get: 

 ( ) ( )1T T TS MS S M S fν γ
−

=− −  (14) 

The resulting overall system of ODEs may be expressed in state-space form as: 

 ( )
( ) ( ) ( )

ν η

ν γ

×
−− ×

− ×

⎡ ⎤+⎡ ⎤ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

1
12 1

1

n
n m T T T

n m

Sq
x

S MS S M S f
 (15) 

The final solution may be obtained either by numerically integrating a system of 2n m−  
first-order ODEs in the n  dependent velocities and −n m  independent accelerations.  

2.4 Baumgarte Stabilization 
The drawbacks of the Constraint Manifold Projection approach include: (i) the need to 
provide additional consistent initial conditions; and (ii) the mild instability of the 
differentiated constraints resulting in state-drift from the position-level constraint manifold. 
While the growth rate can be reduced by lowering the error tolerance and by using smaller 
step-sizes or greater numerical precision, this comes at the cost of longer and more 
expensive computations. Baumgarte stabilization (Baumgarte, 1983) involves the creation of 
an artificial first or second-order dynamical system which has the algebraic position-level 
constraint as its attractive equilibrium configuration. For example, when the holonomic 
constraints in Eq. (3) are approximated by a first order system of the form, we obtain: 

 ( ) ( )σ σ+ = >, , 0, 0C q t C q t  (16) 

where σ  is the rate of convergence. The equilibrium condition for this first order system is 
the constraint manifold ( )=, 0C q t  and for any initial condition ( )0q , which may not satisfy 

the holonomic constraint equation ( )( )0 0C q = , the above first order equation guarantees 

exponential convergence of ( )( )= 0C q t  to zero as the time t  progresses. The rate of 

convergence will be determined by σ , which can be chosen based on specific application. 
Eq. (16) can be suitably modified as: 

 ( )σ
⎡ ⎤ ⎡ ⎤∂ ∂⎢ ⎥ =− − ⇔ =⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦⎢ ⎥⎣ ⎦

C Cq C Aq a q
q t

 (17) 

and the rest of solution process remains unchanged. While Baumgarte’s technique is very 
popular in the engineering application community, principally due to the resulting 
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augmented ODE formulation, the practical selection of the parameters of the stabilization 
system depends both on the discretization methods and step-size and is widely regarded as 
an open research problem (Ascher et al., 1995). 

3. Distributed Modeling of the N-Mobile Robot Collective 
We consider a collective formed by N -robots, each with point-mass im  operating in the 

horizontal plane with a configuration vector [ ]= ∈ 2, T
i i iq x y  w.r.t an inertial frame { }F , 

as shown in Fig 1.  
 

 
Figure 1. A robot collective form by = 3N  point mass robots operating in the horizontal 
plane w.r.t an inertial frame { }F  

The governing EOM for each robot take the simple form =i iM q u , where 

×= ∀ =2 2    1, ,i iM m I i N . The equations of the overall collective moving in formation can 
be written in an index-3 DAE form as: 

 ( ) ( ) ( ) ( )
( )

λ

=

+ + = −

=

,

0

T

q v

M q q V q q G q E q u A

C q

 (18) 

 where 
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( )Tq pu k V=− ∇ ; ( ) 2 2N NE q I ×= ; ( ) 0G q = ; 

( ), 0V q q =  

We will consider the case where a rigid formation is desired. The 2 3N −  constraint equations 
(Olfati-Saber and Murray, 2002) that maintain the rigidity are obtained from the 
requirement that each robot tries to maintain a desired distance with the others:  

 ( ) ( )
(2 3) 1

0ij
N

C q C q
− ×

⎡ ⎤= =⎢ ⎥⎣ ⎦
 (19) 

Equation (18) represents the centralized form of the governing equations using artificial 
potentials. We now consider the possibility of distributing the motion-planning 
computations between the multiple agents. Further details are available in Lee (2004). 

3.1 The Penalty Formulation  

Noting that the state vector 
TT T T

A B Cq q q q⎡ ⎤= ⎢ ⎥⎣ ⎦  has state variables belonging to each of the 

robots ,A B  and C , the distributed model may be obtained in state-space form as: 

 [ ] ( )( )14 1 ;    , ,
i i

ii
i T

i i i i i P i D i

q
x i A B C

q M E u A K C K C

υ
−×

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥= = ∀ =⎢ ⎥⎢ ⎥ − +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 (20) 

where 
iPK , 

iDK  are the compliance and damping matrices and iC  represents the extent of 

the constraint violation as pertinent to robot i . 
The three dynamic sub-systems, shown in Eq. (20), can be simulated in a distributed manner 
if at every time step: (i) either the information pertaining to ( )iC q , the extent of the 

constraint violation, is made available explicitly or (ii) computed by exchanging state 
information between the robots. The sole coupling between the two sub-parts is due to the 
Lagrange multipliers, which are now explicitly calculated using the virtual spring. While 
this is shown for a “three robot system”, the process generalizes easily for “N-robot” system.  

3.2 Constraint Manifold Projection  
We examine this approach as an appropriate alternative to the penalty formulation where 
again our emphasis is on distribution of the motion planning computations to be performed 

by the individual robots. Noting that the state vector may be written as 
TT T T

A B Cq q q q⎡ ⎤= ⎢ ⎥⎣ ⎦ , 

the projected dynamics equations may be partitioned as: 
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 (21) 

Thus, it is now possible to calculate the state vectors forming separately as: 

 
( ) ( )( )1 ;   , ,

i ii
i T T

i i i i i i

Sq
x i A B C

S MS S M E u

ν η

ν γ
−

⎡ ⎤+⎡ ⎤ ⎢ ⎥⎢ ⎥= = ∀ =⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 (22) 

By examining Eq. (21), we note that the overall system can be evaluated in a distributed 
manner if states iq  and iν  are made available. Each independent sub-part can now be 

numerically integrated on a mobile robot thereby permitting independent operation. At 
each time-instant, the complete state of the system needs to be exchanged between the 

robots. The coupling between the various sub-parts is due to the existence of the ( ) 1TS MS
−

. 

This matrix inverse needs to be computed on each and every processor (although we note 
that the explicit calculation of the inverse is typically avoided by using an optimal equation 
solver). Alternatively, state information from the slave processors could be collected by a 

central processor at each time instant, the ( ) 1TS MS
−

 computed and the result subsequently 

broadcasted to all robots. 

4. The Standardized Test Arena 
In order to compare the performance of various methods for motion planning of robot 
collectives within a potential-field framework, we developed a standardized test course. A 
graphical user interface (GUI) is used to locate the positions of the initial robot 
configurations, the obstacles and the target. As shown in Figure 2(a). Then an APF is 
developed in the form of a navigation function (Rimon and Koditschek, 1992) to ensure a 
unique minimum. This is shown as a 3D plot in Figure 2(b) and as a contour plot in Figure 
2(c). 
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Figure 2. Standard test course for performance measurement (a) Formation, with 
environment and target; (b) 3-d plot; and (c) contour plot of the generated navigation 
function 
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5. Performance Evaluation 
In what follows, we treat the results from the forward dynamic simulations with a fixed 
time step as generating the motion plans for the robot collective. In Section 3, we examined 
how both the penalty- and projection-based formulations for motion planning of N -robot 
collective (for 3,  10N = ), that could be distributed to run on separate processors (requiring 
only the exchange of state information at every time instant). This is implemented using 
MATLAB. Figure 3(a) shows the corresponding simulation result of the 3-robot collective 
while Figure 3(b) shows the results from a larger 10-robot collective.  
We then study the performance of the various formulations in the context of accumulated 
individual constraint errors as well as the overall formation error for a fixed time step and 
additionally study the effects of varying the time-step. The formation error is computed as 

( )C q  and corresponds to the structural error used by Egerstedt and Hu (2001) and Olfati-

Saber and Murray (2006). A number of simulations with different values for fixed time-steps 
(ranging from 1e-2 to 1e-4) were performed by Lee (2004). However, only the resulting 
formation errors from running the two methods for a fixed step size of 1e-3 seconds are 
shown in Figure 4. Each method has independent parameters that could potentially affect 
the performance of the method – the virtual spring/damper parameters ( ),

i iP DK K  in the 

penalty formulation and the stabilization factor (σ in the constraint manifold projection 
method). The effects of these parameters are studied in greater detail in Lee (2004).  
Figure 4(a) shows the results from the benchmark formulation using direct Lagrange 
elimination method. In Figure 4(c), we note that the selection of the value of the 
independent parameter σ  only plays a minor role since regardless of the selected value the 
constraint error remains near about 1e-6 which is in agreement with benchmark problem. In 
contrast, in Figure 4(b) we see that for small values of the spring stiffness, considerable 
constraint error results which decreases as PK  is increased. While this constraint error 
reduces to the order of 1e-3 as the spring stiffness is increased to 500, formation maintenance 
never reaches the levels observed for the projection-based method. 
We also performed a similar simulation studies (with fixed time-step of 1e-3 seconds) with 
10 point mass mobile robots in order to test the scalability of the adopted approaches, the 
corresponding simulation result is shown in Figure 3(b). The results shown in Figure 5 
follow the same general trend observed in Figure 4. However, the distinction between the 
three methods (as manifested in the total formation error) is far more pronounced. 
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Figure 3. (a) The simulation result showing the three robots in a triangular formation move 
from their initial position to the target position while maintaining formation; and (b) The 
simulation result of 10 robots forming an interconnected triangular formation in a 
workspace with one obstacle 
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Figure 4. Constraint error for numerical integration with fixed time-step (1e-3 sec) for 3 
point mass robots case, using (a) Method I: Direct Lagrange Elimination (Benchmark); (b) 
Method II: Penalty formulation; and (c) Method III: Constraint manifold projection 
approaches 
Many have noted the various advantages of penalty formulation including: automated 
treatment of appearing/ disappearing constraints, robustness near singularities, in addition 
to the natural decoupling offered by the formulation. However, the Lagrange multipliers 
only form a part of the complete picture regarding the constraint forces. They represent the 
magnitude-type contribution while the other (and perhaps most important) part is the 
directional information that is embedded in the constraint Jacobian. The imperfect 
approximation of the Lagrange multipliers, coupled with the (artificial) relaxation of the 
constraints can over time lead to alternate configurations thereby indirectly affecting the 
directions of constraint vectors.  Hence, not withstanding the small magnitudes of the 
constraint violations, the incorrect projection of the Lagrange multipliers would: (i) yield 
seemingly correct but non-physical results; (ii) and additionally act as a continuous source 
of disturbance. Schiehlen et al. (2000) noted very similar results when a similar comparison 
was performed in the context of distributed dynamic simulation by coupling two or more 
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minimal local subsystem with explicit (force-coupled) or implicit (DAE approach) 
enforcement of holonomic constraints. 
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Figure 5. Constraint error for numerical integration with fixed time-step (1e-3 sec) for 10 
point mass robots case, using (a) Method I: Direct Lagrange Elimination (Benchmark); (b) 
Method II: Penalty formulation; and (c) Method III: Constraint manifold projection 
approaches 

6. Discussion & Summary 
In this research, we examined aspects of the development and performance-evaluation of 
two alternate methods for distributed motion-planning for robot collectives within an 
artificial potential framework. These approaches arise by drawing the analogy to 
formulation methods in use for modular and distributed forward dynamics simulations of 
constrained mechanical systems. (Similar situations may also be encountered in other arenas 
where the governing equations take the form of sets of ODEs coupled together by algebraic 
constraints and solution of the combined system of DAEs needs to be found).  
Our preliminary results (examined in the context of distributed motion planning of 3-robot 
collective and 10-robot collective discussed in the previous section) indicate that a global 
unified view of the evaluation of the computational complexity of the simulation is 
advisable. Specifically, at an algorithmic development level, the penalty-formulation within 
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an APF framework provides a seemingly natural method for decoupling and distributing 
the computation, reduced computational complexity and an elegant Lyapunov-based 
setting to prove stability results. However, this is typically at the cost of formation 
maintenance – the projection-based approach does not distribute as well and is 
computationally more expensive per time-step. However, in the overall picture, this 
approach generates motion plans with smaller formation errors for a specified time-step and 
would have overall computational advantages over using the penalty formulation with a 
much smaller time-step. 
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1. Introduction     
In-situ observations of minor bodies like asteroids or comets are scientifically very 
important because their sizes are too small to have high internal pressures and 
temperatures, which means they should hold the early chemistry of the solar system. In 
recent years, some rendezvous or sample-return missions to small body have received a lot 
of attention in the world. To date, the missions of NEAR (Farquhar, 2001), Deep Space 1 
(Rayman et al., 2000), Deep Impact (Chiu et al., 2000), and Stardust (Atkins, et al., 2000) have 
been successfully performed, while MUSES-C (Kawaguchi et al., 2000) and Rosetta 
(Wittmann, et al. 1999) are currently in operation. NEAR spacecraft was successfully put 
into the orbit of the asteroid 433 Eros in February 2000. After precise remote-sensing 
observations, NEAR spacecraft succeeded in hard-landing on the surface of EROS in 
February 2001. In Japan, meanwhile, ISAS (Institute of Space and Astronautical Science) 
launched an asteroid sample and return spacecraft MUSES-C toward a near Earth asteroid 
1998SF36 in 2003 and performed soft landing on the asteroid in 2005. 
In deep space missions, ground based operation is very limited due to the communication 
delay and low bit-rate communication. Therefore, autonomy is required for deep space 
exploration. On the other hand, because little information on the target asteroid is known in 
advance, robotics technology is used for the spacecraft to approach, rendezvous with, and 
land on the asteroid safely. Various kinds of advanced and intelligent robotics technologies 
(Kubota et al. 2001) have been developed and used for navigation and guidance of the 
explorer to touch down and collect samples. This chapter describes the outline of the sample 
return mission MUSES-C, descent and touch-down scenario, vision based navigation 
scheme, sensor based motion planning, autonomous functions, and flight results in detail. 
This chapter is structured as follows. Section 2 describes the mission purpose and the 
configuration of MUSES-C spacecraft. In Section 3, navigation sensors are explained. In 
Section 4 discusses the strategy for autonomous approach and landing. Autonomous 
descent scheme based on navigation sensors is introduced. In Section 5, a vision based 
navigation scheme is presented. In Section 6, flight results in MUSES-C mission is presented. 
Finally, Section 7 is for discussions and conclusions.  
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2. MUSES-C Mission 
2.1 Outline of MUSES-C Mission 
ISAS launched the MUSES-C spacecraft toward the asteroid in May 2003, which is named 
"Hayabusa". The MUSES-C project (Kawaguchi et al., 1998) is aiming at demonstrating four 
key technologies required for the future sample and return missions from extra-terrestrial 
bodies. Those technologies are : 1) solar electrical propulsion with ion thrusters in an 
interplanetary space, as a primary propulsive means, 2) autonomous optical guidance and 
navigation, 3) automated sampling mechanism, and 4) direct hyperbolic reentry of the 
recovery capsule to the ground. 
The target body of the MUSES-C spacecraft is a near Earth asteroid 1998SF36 which is 
named "Itokawa". The launch date was May 9th in 2003 and the arrival at 1998SF36 in 
September 2005. Leaving the asteroid in December 2005, the spacecraft returns to the Earth 
in June 2010. The mission duration from launch to the Earth return is about 7 years. In 
MUSES-C mission, the spacecraft Hayabusa has stayed for about four months around the 
asteroid and both mapping and sampling operations were carried out during that short 
period. Figure 1 shows the illustration of MUSES-C mission. 
Hayabusa was launched via the ISAS medium class launch vehicle M-V. The mass of the 
spacecraft is about 500[kg] including chemical and ion engine propellant of 130[kg]. The 
solar cell is a tri-junction one and the solar panel generates approximately 1.8[kW]. During 
the flight, the distance from the earth is shorter than 2[AU]. 

 
Figure 1. MUSES-C Mission (Ikeshita/MEF/JAXA) 

2.2 MUSES-C Spacecraft 
In deep space, it is difficult to operate a spacecraft on a real-time basis remotely from the 
earth mainly due to the communication delay. So autonomous navigation and guidance are 
required for descent and touch-down to the asteroid. For this purpose, MUSES-C has some 
navigation sensors and onboard image processing system (Hashimoto et al., 2000).  The 
rendezvous and touch down to the asteroid, whose size, shape, surface condition are 
unknown, requires intelligent and advanced navigation, guidance and control system. 
Figure 2 shows the overview and the configuration of the MUSES-C spacecraft.  
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Figure 2. Overview and Configuration of MUSES-C Spacecraft 

2.3 AOCS and GNC System 
When the spacecraft was designed, the exact size, the shape, and the surface condition of the 
target asteroid were unknown. The GNC system was designed so that it could cope with 
various situations within the severe weight and power restrictions for the spacecraft. Figure 
3 shows the AOCS and GNC system of Hayabusa spacecraft. TSAS (Two axis Sun Aspect 
Sensor), STT (Star Tracker) and IRU (Inertial Reference Unit) are combined to determine the 
spacecraft attitude. ACM (AcceleroMeter) is used to accurately measure the velocity 
increment gained by RCS (Reaction Control System) firings. RW (Reaction Wheel) and RCS 
thrusters are used for attitude and position control. Twelve thrusters were installed on the 
spacecraft and this arrangement allows the control of translational and rotational motion 
independently. 
Some navigation sensors (Hashimoto et al., 2003) for descent and touchdown are equipped 
on Hayabusa spacecraft. The spacecraft has two kinds of optical navigation cameras. The 
narrow angle camera (ONC-T) is used for mapping (Maruya et al., 2006) and multiple 
scientific observations of the asteroid from the Home Position. The wide angle cameras 
(ONC-W1 and ONC-W2) are both used for onboard navigation, though W2 is used only 
when high-phase angle observation. Control electronics for ONCs (ONC-E) equipped with a 
RISC processor and a Gate Array image processor has some image processing functions 
such as image compression, center-finding of bright object, correlation tracking, feature 
terrain extraction, etc. Measurement of the altitude is performed with LIDAR (Light radio 
Detecting And Ranging). LIDAR covers the measurement range from 50[m] to 50[km]. For 
sampling the surface materials, cancellation of the relative horizontal speed is essential 
while touch down. To accomplish this requirement, the spacecraft drops a Target Marker 
(TM) that can act as a navigation aid by posing as an artificial landmark on the surface. The 
position of TM is estimated by using ONC. Since it is not so easy to detect TM from several 
tens of meters altitude, TM is equipped with reflexive reflector and ONC has a flash lamp 
(FLA) whose radiation is synchronized with camera exposure. Laser Range Finder (LRF) is 
used at lower altitude. LRF has four beams that are canted with 30 [deg] and can measure 
the range from 7[m] to 120[m]. LRF can provide the height and attitude information with 
respect to the surface. Four sets of Fan Beam Sensors (FBS) are equipped onboard as alarm 
sensors to detect some potential obstacles that may hit the solar cell panels.  
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The GNC logic is implemented in AOCU (Attitude and Orbit Control Unit), where a high 
performance microprocessor is equipped. Figure 4 shows the block diagram of GNC 
functions. The core of onboard navigation system is an extended Kalman filter. The filter 
outputs the estimated position and velocity relative to Itokawa. The state dynamics for the 
Kalman filter employs orbit dynamics model around Itokawa. Simple gravity field model is 
included in the dynamics. The observations for spacecraft position come from ONC, LIDAR 
and LRF. 
 

 
Figure 3.  AOCS and GNC System of Hayabusa Spacecraft 

 

 

 
Figure 4. Block Diagram of AOCS/GNC System 
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3. Navigation Sensors 
For autonomous descent and touchdown, various kinds of navigation sensors are used. The 
specifications of the main sensors for navigation are described as follows. 

3.1 ONC-W 
Hayabusa spacecraft has one telescopic camera ONC-T and two wide FOV cameras: ONC-
W1 and W2. ONC-W1 whose FOV aligned to -Z axis of the spacecraft is used for on-board 
navigation. ONC-W2 has the FOV of -Y direction, which is used for terminator observation 
phase. The FOV of ONC-W1 is 60deg x 60deg and the resolution is 1000(H) x 1024(V). The 
overview of ONC-W1 is shown in Figure 5. 

3.2 LIDAR 
LIDAR is a pulse laser radar which measures the traveling time of the pulse between the 
spacecraft and the asteroid surface. A Photo of the prototype model is shown in Figure 5. 
Since the magnitude of received signal will change about 106 orders between 50km and 50m, 
LIDAR has automatic gain control function of APD. Transmitting pulse can be synchronized 
with external signal such as AOCS timing. This function is not only for precise range 
measurement but also synchronization with the exposure of ONC-T or NIRS, which helps 
the alignment measurement of both sensors. To minimize the weigh of optics, the reflecting 
mirror is made of SiC. 
 

      
Figure 5. Overviews of  ONC-W (Left) and LIDAR (Right) 

3.3 LRF 
LRF(Laser Range Finder) consists of four beams sensors for navigation(LRF-S1), one beam 
sensor for touchdown detection(LRF-S2), and an electronics circuit (LRF-E). Photos of LRF-
S1 and LRF-S2 are shown in Fig.6. LRF detects the range to the surface with the phase 
deference between AM-modulated transmitting and receiving laser light. LRF-S1 has four 
beams canted 30deg from vertical direction and AOCU can calculate relative attitude and 
position to the surface using four beam range information. The target of LRF-S2 is the side 
surface of the sampler horn and it detects the change of the length of the horn which means 
that the horn is collide with the surface. LRF has single electronics and S1 and S2 are 
switched by commands when used. 
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3.4 FBS 
FBS (Fan Beam Sensors) are sensors for detecting obstacles bigger than 10cm. A pair of a 
transmitter (FBS-T) and a receiver (FBS-R) forms a three-dimensional detection area shown 
in Fig.7. Four pairs of FBS cover almost half of the area beneath the spacecraft's solar cell 
panels as shown in Fig.8. 

      
Figure 6. Overviews of LRF-S1 and LRF-S2 

      
Figure 7. Overviews of FBS-T and FBS-R 

 
Figure 8. Detection Area of FBS 
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4. Autonomous Landing 
For landing on an unknown body safely, it is necessary to obtain the terrain information of a 
planetary surface around a landing point. It is also important to guide a spacecraft to the 
landing point without hitting rocks or big stones. In the touch down phase, cancellation of 
the horizontal speed relative to the surface of the landing site is essential. Hayabusa 
spacecraft uses a new method to land on the surface of an unknown body autonomously, 
using optical cameras and laser altimeter (Hashimoto et al., 2002). The strategy for 
autonomous descent and touch-down consists of the following phases. The autonomous 
descent and landing sequence is illustrated in Fig.9. 

 
Figure 9. Scenario for final descent and touchdown 

4.1 Descent Phase 
While the whole of the asteroid image is in the field of view (FOV) of the optical navigation 
camera (ONC), the 3D navigation scheme (Hashimoto et al. 2001) based on the center-
finding of the asteroid is used. After a part of the asteroid goes out of the FOV (about 1 km 
altitude), the spacecraft will nominally descent with only vertical velocity control because it 
cannot detect the direction of the asteroid center. Therefore, navigation accuracy depends 
upon the initial position and velocity, which are determined in the Home Position.  
For an experiment, Navigation, Guidance, and Control (NGC) system has also a natural 
terrain tracking function. That is, characteristic features like craters on the surface are 
extracted from images and tracked autonomously. If some tracked features are recognized 
to be unsuitable for tracking, new appropriate features are extracted automatically. The line-
of-sight vectors to the extracted features provide relative position to the surface. Since the 
locations of the features are unknown in the asteroid-fixed coordinate system, the spacecraft 
measures only the deviation of the vectors, that is, it can obtain relative velocity to the 
surface. 

4.2 Final Descent Phase 
The sampling method in MUSES-C mission is a so-called touch-and-go way. That means the 
spacecraft shoots a small bullet to the surface just after the touch-down is detected, collects 
ejected fragments with a sampler horn, and lifts off before one of solar cell panels hits the 
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surface. Therefore, the control of the vertical velocity and the cancellation of the horizontal 
speed are essential for both successful sampling and the spacecraft safety. To meet these 
requirements, TM is released from the spacecraft at the altitude of about 30[m]. At the 
altitude of about 30[m], ONC tries to capture TM, that would be placed near the target 
landing point. To ensure the visibility of TM, the surface of TM is covered with reflexive 
reflector and ONC provides the differential image taken by flash-on and flash-off. 
After TM is successfully captured, the relative navigation logic is initiated to obtain the 
position with respect to TM and the local horizon, which is calculated based on the asteroid 
model. The spacecraft moves to the position right above the TM, and then the attitude of the 
spacecraft is aligned to the local horizon determined from Laser Range Finder (LRF) 
measurements. The spacecraft is guided to the landing point and stays there until the 
relative velocity is stabilized within a limit. The introduction of an artificial landmark 
drastically reduces the computational load and uncertainty of image processing, even 
though the function of natural terrain tracking (Misu et al., 1999) remains as an experiment 
and backup. 

4.3 Touchdown Phase 
After the alignment, the spacecraft starts descending again and touches down the asteroid 
surface to collect samples. During the touchdown descent, some potential obstacles are 
checked with Fan Beam Sensors (FBS). If any obstacle is detected, the touchdown and 
sampling sequence is terminated and emergency assent is initiated. When the touchdown is 
detected, the spacecraft collects the sample as soon as possible and then lifts off. Figure 10 
shows the sensors used for touchdown detection (Uo et al., 2006). Before the touchdown 
descent, AOCU changes the sensor from LRF-S1 to LRF-S2, which can sense the distance 
between LRF and the target on the horn and also sense the brightness of the target on the 
horn. LRF-S2, ACM and IRU are used for touchdown detection. 

 
Figure 10. Touchdown Detection Scheme 

4.4 Sampling Phase 
A sample collection technique is what the MUSES-C spacecraft demonstrates first in the 
world. Different from the large planets, the asteroid is a very small object whose gravity 
field is too little for any sampler to dig and drill the surface. Nevertheless, the spacecraft has 
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to cope even with the hard surface such as rocks, while it is requested to function for soft 
surface like sands as well. Therefore, a novel sample collection system is introduced as 
shown in Fig.11. The introduced method is the combination of the Shooting Projectile and 
the Fragment Catcher. The basic idea is retrieving fragments from the surface ejected by the 
projectile shot. And a key in the mechanism is the use of the catcher whose inlet surface 
covers the shot area that is concealed from the main body of the spacecraft, so that the 
fragments and dusts cannot hit the spacecraft at all. The spacecraft extends a mast whose tip 
end is equipped with a gun shooting a projectile of 10[g] at the speed of 300[m/sec]. A tiny 
hole that opens above a flange relieves the high-pressured gas after the shot. It has 
deceleration device inside that absorbs the fragments/projectile kinetic energy.  

Muses-C 
Spacecraft

Horn

Projector

Reentry 
Capsule

Catchers

      
Figure 11. Sample Collection System 

4.5 Descent and Touchdown Sequence 
Figure 12 shows the operation sequence below the height of 500[m]. First, onboard 
navigation system is initialized by ground command. Initial position and velocity is 
calculated using GCP navigation. The onboard guidance logic is then initiated, and the 
descending begins. The GNC system keeps the constant descending velocity. In this case, 
the descending velocity is set at 0.1[m/s]. When the spacecraft reaches the height of 100[m], 
the spacecraft checks if the "continue" command is sent from the ground. If the continue 
command is not received by this time, the spacecraft interrupts descending and return to 
Home Position. At a height of 40[m], the wire that ties target marker on the spacecraft is cut. 
Right after that, the spacecraft decreases the descending velocity. Thus the target marker 
leaves the spacecraft and continues to fall on to the surface at a speed of about 10[cm/s]. The 
spacecraft begins slow free fall. During the free fall, the spacecraft examines if the LRF data 
is valid, and the consistency between the LRF data and the navigation solution generated 
using LIDAR data. If the consistency is within an expected range, the navigation filter 
begins to use LRF data instead of LIDAR data. Using the LRF based navigation solutions, 
the spacecraft hovers at a height of 17[m]. In this hovering point, the spacecraft waits the 
target marker to reach the surface. ONC is changed to the TMT mode after the TM 
separation. When the target marker image is acquired by ONC, after the interval to wait for 
the TM to reach the surface, relative position with respect to the target marker is determined 
combined with the LRF data. The Six DOF controller is activated after the navigation filter 
solution converges.  
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Several abort functions are implemented on the spacecraft. The spacecraft stops the 
sequence and returns to home position in the following events. These functions are 
automatically enabled and disabled according to the progress of the sequence. 
1. Loss of LIDAR observation 
2. Loss of LRF observation 
3. Loss of ONC observation 
4. Obstacle detection by FBS 
5. Large error of attitude and attitude rate 

 
Figure 12. Operation Sequence 
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5. Vision based Navigation 
The following image processing techniques are used for visual navigation in MUSES-C 
mission as shown in Fig.13. 

5.1 WCT (Whole image Center Tracking)  
In this mode, groups of adjoining pixels whose brightness beyond the specified threshold 
are extracted and the center address and the total number of the pixels of each group are 
calculated. Though less than nine groups are extracted as the specification, only one group, 
which has maximum number of pixels is usually used for center finding of the asteroid. 
When the image of the asteroid is divided into some portions with the illumination 
condition, Attitude and orbit control unit (AOCU) uses some relatively large groups and 
estimates real center of the asteroid. 

5.2 TMT (Target Marker Tracking)  
The function of this mode is basically the same as WCT mode except that TMT uses a 
differential image between flush-on and off. Different from the center finding of the whole 
asteroid image, the size of the extracted groups are expected to be a few pixels considering 
the distortion of the optics and the number of extracted groups must be one in order to track 
TM properly. 
Artificial target marker is dropped down onto the asteroid surface to cancel the relative 
velocity. To use such a target marker, it is needed to develop a marker object with low 
restitution coefficient under the micro-gravity environment. To develop an object with low 
restitution coefficient, Japanese traditional "otedama" concept is introduced. "Otedama" is 
made of some amount of small beads inside a soft cover cloth. When "otedama" collides 
with other object, beads are expected to reduce the total collision energy as shown in Fig.14. 
To investigate the collision mechanism of "otedama", the dropping tower micro-G 
experiments were performed at MGLAB in Gifu in Japan. Experimental results show that 
the restitution coefficient values of "otedamas" mark below 0.1 (Kubota et al., 2007). 

5.3 FWT (Fixed Window correlation Tracking)  
This mode is prepared for an experiment and a backup when TM is not captured. Some 
tracking windows are designated on an image and the windows are used for templates of 
the tracking. Each window on the next coming image is correlated with corresponding 
template and the deviation of horizontal and vertical pixels between images are calculated. 
FWC is used to measure the relative velocity against the surface. 

5.4 AWC (Auto Window Tracking)  
Auto window tracking (AWC) (Misu et al., 1999) is also prepared for an experiment and a 
backup and the function of the correlation tracking is the same as FWC. AWC 
autonomously sets tracking windows. Firstly, some edges are extracted on the image, and 
the areas which contain a lot of edges are selected as characteristic terrain, and then tracking 
windows are set around the terrain. Though the developed algorithm is advanced and 
somehow complex, it seems more robust against terrain and illumination condition than 
FWC, because it uses featured windows, which can be easily tracked. 
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 (a) WCT   (b) TMT  (c) AWC 
Figure 13. Image Processing 

      
Figure 14. Target Markers 

5. Navigation and Control Scheme 
5.1 Navigation Scheme 
To satisfy the stringent requirement on position and velocity estimation, a navigation filter 
that utilizes Kalman filter technique (Hashimoto et al., 2001) is adopted. The outputs of the 
navigation sensors are used to update the propagated states. The update gain is calculated 
so that the estimation error is minimized. The linearlized state dynamics and observation 
equations used in the position filter are: 

  (1) 

where: (suffix i is omitted) 

  (2) 

  (3) 

dT :state integration interval 
d i-1 :velocity increment measured with ACM 
d G :estimated gravitational effect 

  (4) 

  (5) 
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  (6) 

  (7) 

L : Measurements of LIDAR or LRF 
 : Measurement vector of ONCs  =(nX, nY, nZ)T 

SC : Position of the spacecraft 
LO : Position of the range measurement point 
CO : Position of the camera target 

/#   : Denotes a vector expressed in navigation reference frame:# 
Note) Bold letter such as φ denotes a matrix, and  denotes a vector. 
The dynamics and observation equations are processed in Kalman filter algorithm. The 
propagation of the covariance is executed as follows: 

  (8) 

  (9) 

  (10) 

where: 
k : equals 1 when delta V is executed. Otherwise zero 
qV : DeltaV measurement error 
qG  : Velocity increment estimation error including gravity and dynamics model error 
This filter implementation is applied through all the phases by properly selecting/switching 
the reference frame and for example, CO means the center of the asteroid in high altitude 
descent phase and TM in final descent phase. LO is approximated onboard, by calculating 
the intersection of laser beam and asteroid shape model. 

5.2 Control Scheme 
In the final descent and touchdown phase, various operations, such as surface 
synchronization, attitude alignment to local horizontal surface and stable hovering are 
required. Six degree-of-freedom variables, three for position and three for attitude, are 
independently controlled by the thruster control law that utilizes thruster switching curves 
defined on the phase plane. The outline of the switching curve is shown in Fig.15. In the fine 
control region, attitude is controlled by RW. Details of the control law have been presented 
in the paper (Yamashita et al., 2001). 
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Figure 15. Thruster Switching Curve 

6. Flight Results 
6.1 Landing Site on Asteroid Itokawa 
Figure 16 shows the picture of Itokawa taken by onboard optical navigation camera. The 
landing and sampling site was selected at the Joint Science Team meeting held in the end of 
October 2005, considering the scientific interest and the spacecraft safety. From the results 
on the global mapping of Itokawa from Home Position, it was found that most of the 
Itokawa surfaces were rocky or steep area, and “Muses-sea” was the only one candidate of 
landing points are shown by the circle in Fig.16. 

 
Figure 16. Picture of Itokawa and Landing Site “Muses-sea” 

6.2 First Touchdown Results 
The first landing for sampling was tried on November 20th 2005. The guidance and the 
navigation (Kubota et al., 2000) were all performed in order as almost planned. The 
guidance accuracy was within 30 meters horizontally in terms of the hovering point (Kubota 
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et al., 2006). The target marker was released at about 40m altitude, because the velocity of 
target marker was smaller than nominal one and the spacecraft needed more time to get to 
the surface. The optical navigation camera could track the target marker properly. Figure 17 
shows the low-altitude image, in which the shadow of Hayabusa spacecraft on the surface 
and the shinning released target marker could be seen.  
After the obstacle had detected, the spacecraft continued descending because the attitude 
error was so large enough to prevent ascending the thruster firing. As a result, the spacecraft 
did unexpected touch-down without sampling sequence, and stayed on the surface for 
about 34 minutes until the forced ascent was commanded from the ground. The attitude of 
the spacecraft was controlled during the free-fall and then touchdowns were performed as 
shown in Fig.18. Therefore natural sample collections seemed to be conducted.  

 
Figure 17. Navigation image taken during descent on 20th Nov. 2005 (Left: taken at 30m 
altitude, Right: taken at 200m altitude) 

 
Figure 18.  LRF data during bouncing and landing 

6.3 Second Touchdown Results 
The second and final landing was performed on November 26th 2005 (Yano et al., 2006). The 
descent path taken was almost same as that at the 1st touching-down attempt, toward the 
west part of the Muses-sea. As already one TM was in the Muses-sea, to avoid the confusion 
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for image processing, a new marker was not released, this time. That is, TM was not used for 
the horizontal speed canceling, because GNC team had confidence to control the spacecraft 
remotely from the ground station. And also the obstacle detection was not set to be active, 
but to be monitored, since it seemed reporting too-sensitive signal in the 1st touchdown trial 
on 20th Nov 2005. The touch-down sequence was set so that the lift off must be only after 
the sampler horn deformation had detected and the sampling sequence had completed. In 
the second touchdown trial, the navigation and guidance to the aimed landing point was 
perfect. Figure 19 shows the image sequence taken by ONC-W1. In Fig.20, TM released on 
20th Nov could be seen in the same position. Figure 21 shows the obtained LRF data. 
Terrain alignment was successfully performed at about 7[m] altitude. Touching-down speed 
was estimated about 10[cm/second]. When Hayabusa lifted-off, the +Z axis (High Gain 
Antenna axis) was 7 degrees off from the Sun direction as expected. The communication 
was established very well and every instrument aboard functioned normally. Though it 
seemed perfect landing and sampling, after the spacecraft returned to Home Position, it lost 
the attitude and could not communicate with the high-speed link to the ground stations. 
Therefore detailed data could not be obtained so far. 

 
Figure 19. Image Sequence for 2nd Touchdown on 26th Nov. 2005 

 
Figure 20. Target Marker released 1st Touchdown in 20th Nov. 2005 
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Figure 21. LRF data before touch-down on 26th Nov. 2005 

7. Conclusion 
This chapter has presented the motion planning of intelligent explorer in Japanese asteroid 
sample return mission. This chapter explained the navigation sensors and navigation 
strategy in the descent and touchdown phase for Hayabusa spacecraft. Target marker 
tracking and attitude alignment have been described in detail. And the flight data showed 
the effectiveness of the proposed and installed schemes. Hayabusa spacecraft succeeded in 
touchdown on the surface of Itokawa and lift-off the surface. 
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Abstract 
The problem of path generation for the autonomous vehicle in environments with infinite 
number obstacles is considered. Generally, the problem is known in the literature as the 
path planning. This chapter treated that problem using the algorithm, named MKBC, which 
is based on the behavioral cloning and  Kohonen rule. In the behavioral cloning, the system 
learns from control traces of a human operator. Kohonen rule connected with  the weighting 
coefficients,  while the MKBC  algorithm does  not use the weighting values as values from 
the previous time, but permanentlly uses the training values as weighting values. That is 
something which   enables an intelligent system to learn from the examples (operator’s 
demonstrations) to control a vehicle in the process of the obstacles  avoiding, like the human 
operator does. Like that, the very important MKBC characteristic is the  symplicity. The 
MKBC simplicity is something which is so  obviously,  specialy according to the RBF neural 
network and the  machine learnig algorithm which is used the previously. Following the 
MKBC  given  context the problem narrow passage avoiding and the goal position reaching  
fundamentally  is observed. Namely,  defining if – then rule, according to  the named cases  
is treated  as  destroying of the consistency of the  methodology. In that sense, using  MKBC 
neural  network  the solution was  found. A the end,  the autonomous vehicle mathematical 
model which is given by nonlinear equations describing a 12 state dynamical system is used 
and in that case the  MKBC algorithm is applied successfully.  Eventually, as it has been 
illustrated  the previously, the advantage of the entire methodology  lies  in the fact that a 
complete path of the vehicle can be defined off-line, without using sophisticated symbolical 
models of  obstacles. These are  facts that MKBC algorithm and  the given methodology 
substantially differ  from the others. In the next phase it is expected to confirm results in on 
– line simulation process. 
Key words: vehicle path  planning, behavioral cloning, cloning success, obstacle avoiding, 
machine learning, Kohonen rule,  neural network, Shark dynamical model. 

1. Introduction 
In the last years en increasing interest in mobile robots has appeared, notably in aeronautical 
space exploration, automatized  agriculture, collective mobile robot games, and so on (P. 
Vadakkepat, X. Peng et al., 2007). These application require the mobile robot to move in 
partially known environments with the high amount of uncertainty.  Moving – obstacle 
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avoidance with unknown obstacle trajectory remains remarkable challenge and has opened 
a research area in the control of the mobile robots, but  it is treated in our research  using the 
methodology which is connected with unmoving obstacles. Many approaches are available 
to study this research area.  In its simplest form, the  motion planning problem can be 
defined as follows (C. Latombe, 1991; J. Schwartz, M. Sharir, J. Hopcroft, 1987).  Let B be the 
autonomous vehicle  consisting of  collection of rigid subparts having a total k degrees of 
freedom, and let B be free to move in two - or three - dimensional space V, avoiding 
obstacles whose geometry is known.  For a given initial position  S and a desired target 
position G of B, the task is to determine whether there exist a continuous obstacle - avoiding 
motion of B from S to G, and if so, to find such a motion.  The simplest collision avoidance 
algorithm fall into the generate and test paradigms. A simple path from S to G, usually a 
straight  line, is hypothesized and then it is tested for potential collisions between B and 
obstacles. If collision is detected, a new path is proposed using information about detected 
collision. This process repeats until no collision is detected. But in spite of its simplicity these 
methods have not found significant application. They have several fundamental drawbacks. 
One of these is inability to propose a radically different and better path from local 
information about potential collision.  Another is that collection methods are based on a 
configuration space approach(J. Reif, 1987; C. Latombe, 1991; J. Schwartz, M. Sharir, J. 
Hopcroft, 1987). The configuration of rigid body is set of independent parameters that 
characterize the position of every point of it.  For the vehicle B some regions represent illegal 
configuration space because there are obstacles. So the find path (the vehicle motion 
planning) approach means that the vehicle have to be shrank to dimension of a reference 
point and to grow obstacles, i.e. to compute forbidden regions for the reference point. 
Finding the path of the vehicle is in this way transformed in finding the path of the reference 
point, moving in configuration space and avoiding obstacles.  For the vehicle B moving from 
position S to position G the desired path is the shortest path which takes into account all 
constraints of the position of the reference point of B. It is possible to obtain this path by 
generating an appropriate graph (visibility graph, connectivity graph,…) and finding a path 
from graph node S to graph node G. Fundamental problem arising during the 
implementation of these methods is concerned with the obstacle growing and graph 
searching.  For both cases the problem complexity is very large. For example, while in the 
planar case the shortest path can be found in time that is in the worst case the quadratic in 
the number of obstacle vertices and edges, finding the shortest path between two points in 
three dimensions, which avoids a collections of polyhedral obstacles is NP - hard (J. 
Schwartz, M. Sharir, and J. Hopcroft,1987; J. Reif,1987). This is a specially very large problem 
if the world model changes. Other classes of approaches are developed as alternative to the 
traditional ones. A typical such approach (O. Khatib, 1986)  regards the obstacles as the 
sources of repelling potential field, while the  goal position G of the vehicle is considered as 
a strong attractor. The vehicle B follows potential gradient vector field. These approaches  
try to find the local minimum only.  As the next, we can consider the direction which 
assumes problem solution capability of the vehicle motion planning based on the transfer of 
skill into controllers of the vehicle (D. Michie, R. Camacho, 1994; C. Sammut, S.Hurst, D. 
Kedzier, D. Michie, 1992).  
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2. Motion planning based on the behavioral cloning  
Skill is often defined as an ability to perform a high quality  sensory-motor coordination and 
control in real time. Humans exhibits such a skill as a result of training over a period of time. 
It would be especially useful if we can also provide systems with the capability of acquiring 
such a skill. In this sense two approaches have been known. The former treats the skill as 
something that could be acquired in a dialogue with an operator. In that process it is 
expected from the operator to describe skills he has been governed over the control of the 
vehicle. Here arises some difficulties because the skill is human subconscious action and so 
cannot be completely consciously and reliably described. An alternative approach is to start 
from the assumption that the skill can be reconstructed, using learning algorithms, from the 
manifestation trace of it  (D. Michie, R. Camacho, 1994; C. Sammut, S.Hurst, D. Kedzier, D. 
Michie, 1992).  Sammut, Hurst,  Kedzier and  Michie   give a description of the solution  
belonging to the flight control area. Our idea (R. Kulic, Z. Vukic,  2006)  is to enable an 
intelligent system to learn from the examples (operator’s demonstrations) to control a 
vehicle avoiding obstacles, like the human operator does.  
In section III the intelligent controller concept is given. In section IV  the results in controller 
development are presented. In section V the conclusion is given and possibilities of further 
development are discussed. 

3. Elements of concept controller development 
3.1 Learning problem 
Suppose that is given a data set giving living area and price of m houses in some place. How 
can is possible learn to predict the prices of other houses in that place, as function of living 
areas? To denote the input variables or input features  (living areas in this case)  x1i is used. 
And yi is used to denote the output or target variable which is need training  to predict. The 
dataset {(xi,yi), i=1,..,m} that will be used to learn is called a training set. If X denote the 
space input values and Y denote the space output values the goal is for given a training set 
to learn a function h: X→Y. The function h(X)  is  called a hypothesis and it have to be a 
good predictor for the corresponding values of Y. When the target variable is continuous, 
the learning problem is called a regression problem. When the target variable take on only 
small number of discrete values, the learning problem is called a classification problem. Lets 
consider a slightly richer dataset with a number of bedrooms in each house. The X is two – 
dimensional vector, with  x1i, x2i  features. In general, when designing learning problem, it is 
up to us to decide what features to choose. To perform learning it is have to decide how we 
are going to represent hypothesis h.  A choice can be to approximate it as a linear function of 
x ={ x1i, x2i … xni}: 

h(x) = θ0 + θ1 x1i + θ2 x 2i+..+ θn x ni 

The θi  ‘s are the parameters (or weights) parameterizing  the space of linear functions 
mapping from X to Y. To simplify  notation it is introduced xi0=1. So that 
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where n is the number of input variables , without x0. For given training set, how it is 
possible learn the parameters θj? One reason is to make h(X) close to Y, at  least for the 
training example. To formalize this, it can be defined a function that measures for each value 
of the θj how close h(xi) to the corresponding yi. So, the least –squares cost function is 
defined: 

2
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That function is  a special case of a much broader family of algorithms. Now, it is needed to 
choose vector θ to minimize J(θ). To do so, lets us a search algorithm that starts with some 
initial guess for θ and repeatedly changes θ to make J(θ) smaller, until it is reached the value 
of  θ that minimize J(θ).  Lets consider the gradient descent algorithm, which starts with 
some initial θ, and repeatedly perform the update: 
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This update is simultaneously performed for all values of j=0,…,n. The learning rate α 
repeatedly changes in the direction of steepest decrease of J(θ). For one training example we 
have: 
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For single training example that gives the rule: 
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This is called LMS (least mean squares ) update rule or Widrow – Hoff learning rule. For 
instance the magnitude of the update is proportional to the error (yi – h(x i )). For m training 
example the corresponding update rule 

Repeat until convergence exist { 
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}. 

The optimization problem have been given  here for linear regression has only one global 
optima. Assuming the learning rate not too large this batch gradient descent method always 
converges to the global minimum.  
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3.2. Bihevioral cloning process 
The idea of controller development by cloning the human operator (D. Michie, R. 
Camacho,1994) is illustrated in Figure 1.  

Log
file

Operator
Robot

Machine 
learning 
programm

Environment 
simulator

 
Figure 1. Behavioral cloning process. The autonomous underwater vehicle is named as the 
robot 

In the obstacles avoiding problem, this idea could be interpreted in the following way. 
During one of the simulation phases, called the training phase, operator guides the vehicle 
avoiding unmoving obstacles located in its working space.  During this phase variables that 
are evaluated as relevant are written into LOG FILE. In the second simulation phase, called 
the learning phase,  the machine learning program, takes  data from the LOG FILE, 
generates differential equations, that define the operator’s trajectory. In the third phase, 
called the verifying phase, operator is excluded from the vehicle control process and the 
vehicle is controlled solely by a clone induced in the learning phase. This  development of 
process phases are needed for the repeated changing of both problem domain 
representation and/or learning system regarding cloning success criterion. Using “several” 
vehicle models (problem domain representations) and “several” machine learning systems, 
we attempt to find an appropriate domain model and an appropriate machine learning 
system that will enable the vehicle to avoid obstacles according to cloning success criterion. 

3.3 The vehicle kinematical   model 
The following kinematical model of the vehicle is  used: 

ψ (n)=ψ(n-1) + Δ t r(n), 

x(n) = x(n-1) + Δt v cos (ψ(n)), 

y(n) = y(n-1) + Δt v sin (ψ(n)), 

where: ψ is the heading angle of the vehicle (ψ=0 if the vehicle is oriented parallel   to x-axis 
); r and v are control variables i.e. desired rotation speed and  translation speed respectively; 
x, y are position coordinates, Δt  is the sampling time and n is the time index. The vehicle  is 
represented as a geometrical figure. Its dimensions are not neglected and we should point 
out that this is a very important fact.  The selection of the vehicle model is inspired by 
conventional methodology that is used in control systems for a given path (R. Stojic, R. 
Kulic, M. Zivanovic, 1990). 
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3.4 Environment models 
Environment model amounts to the distances of the vehicle gravity center from  the goal 
position (dxG and dyG ) and  from the obstacles (di). dxG and dyG  are calculated as:  

dxG= x – xG,   

dyG= y – yG ,  

where xG, yG are the goal position coordinates. Obstacles are represented by  its 
characteristic values, as illustrated  in Figure 2. Obstacle area is divided into sub-areas .  
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Figure 2. Triangular obstacle as the environment 

A procedure, for the simulation purpose, calculating  the vehicle  distance di from i-th 
obstacle   is explained for a triangle obstacle as:  
SubArea-4: 
if((x>=x1)and(y>=yB))         then   di= ((x-x1)2 + (y-y1)2)1/2, SubArea5: 
if((x>=x1)and(y<yB)and((y>=yC) then  
di = |[y+[(y1-y2) ⁄ (x2-x1)]x +[(y2-y1) ⁄ (x2-x1)]x1-y1] ⁄ [[(y1-y2) ⁄ (x2-x1)]2+1]1⁄2 |,  
yB and yC are  lines that are normal onto the line BC at points B and C. 

3.5 Cloning success criterion  
Performance error is very important for the evaluation of the quality of clone that was 
constructed. Regarding the ideal case the goal concept and the approximation concept of the 
vehicle trajectory  are identical and the performance error is equal to zero. Ideal trajectory in 
x-y plane without obstacles is, for example, a straight line between the start S and the goal G 
positions of the vehicle. Operator, in a training phase, mostly does not manage to realize this 
trajectory. Position error Exy is based upon a distances dop(i) and dcl(i) of operator and clone 
trajectories, respectively, from the named straight  line.  Our problem is to avoid obstacle 
and so we can consider only Eperf  as:  
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For avoiding n obstacles we have to find (d)m= min{ di ,i=1,..n} in order to define: 
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Eventually, we can say that between two clones  more successful is the one which produces 
lower performance error regarding equations (1) and (2). 

3.6 The vehicle goal position as the obstacle 
The vehicle goal position can be treated as the obstacle, but it has not been applid earlier in 
[12], [13].  In that sense the distance from the vehicle goal position and the vehicle gravity 
centre was taked into account, as  dgoal. Now the attribute number is extended and  
¨minimum distance¨  is determined by relation: dmin  =  min { dgoal, d1, d2  , .....,dk  }, where d1, 
d2  , ....,dk    are the mimial distance for avoiding K obstacles. Eventually, when we consider 
the vehicle goal position as the obstacle, we enable  the vehicle path generation to become  
simple, but not to become optimal. 

3.7 Learning systems  

3.7.1 Radial basis function (RBF) of neural network 
The model is commonly referred to as the radial basis function (RBF) network. The most 
important attribute that  distinguishes the RBF network from earlier radial based models is 
its adaptive nature. It generally allows to utilize  a relative small number of locally tuned 
units. RBF network were independently proposed by several authors (D. S. Broomhead, D. 
Lowe ,1988; S. Lee, R. Kill, 1988;  M. Niranjan , F. Fallside,1988).The following is a 
description of the basic  RBF architecture Figure 3. The RBF network has a feedforward 
structure consisting of a single hidden layer of  Q locally tuned units, which are 
interconnected to an output layer of L linear units.  All hidden units simultaneously receive 
R dimensional  real –valued  input vector p. Notice the absence of hidden layer weights. 
Each hidden unit output aj  is obtained by calculating the closeness of the input p to n 
dimensional parameter  vector μj (IW in Figure 2). This parameter is associated with jth 
hidden units. The response characteristics of the jth hidden units are given by  
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where K is a strictly positive radially symmetric function (kernel) with a unique maximum 
at its center μj and which drops off rapidly to zero away from the center. The parameter σj is 
the width of the receptive field of the input space for unit j. This means that aj has an 
appreciable value only when distance || p- μj|| is smaller than the width σj. A specially but 
commonly used RBF network assumes  a Gaussian basis function for the hidden units, i.e.: 
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where σj and μj, are the standard deviation and mean of the jth unit. The norm is the 
Euclidian norm. The output of the RBF network is the L dimensional vector a2, which is 
given by: 

∑
=
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jij aLWa
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||nprod||
Qx1

Qx1

Input

Radial basis layer Special linear layer  
Figure 3. A radial basis function neural network consisting of a single hidden  layer of 
locally tuned units that is fully interconnected to an output layer of linear units 

RBF networks are best suited for approximating continuous real valued mappings f : 
Rn→RL, where n is sufficiently small. According to the previously named equations the RBF 
network may be as approximating a desired unction f(p).The degree of accuracy can be 
controlled by three parameters the number of basis functions to be used, their location and 
their width. The RBF networks are considered as universal approximators (T. Poggio, F. 
Girosi, 1990).  The training of RBF network is addressed. .Consider training set of m labeled 
pairs {xj, yj) which are represent samples of a continuous multivariate  function. The 
criterion function is an error function E to be minimized over the given training set. It is 
desired to develop a training method that minimizes E by updating the free parameters of 
the RBF.  These parameters are  σj, μj and wij. One of the first training methods that comes to 
mind is a fully supervised gradient descent methods over E, as it is given in section 3.1. 

3.7.2 RBF neural network algorithm and behavioral cloning 
The algorithm RBF neural network algorithm is given below for kinematical model which is 
given in 3.3. 
for m:=1 to N  do                                           % N is number of training examples  
   begin 
      dist[m,1] := (0.8326 / spread)2 * (IW[m,1] – d_min )2;      % d_min = dmin ; 
       a[m,1] := e-dist[m,1];                      % IW[m,1] is the training examples set of the distance dmin 
   end; 
for j :=1 to N  do  
   begin 
      a2  := a2+ LW[1,j] * a[j,1]; 
      am :=  am + a[j,1];     
   end;                                                    %  LW[m,1] is the training examples set of the angle ψ 
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if ((am > 0) or (am <0)) then a2 := a2/am; 
psides := a2; 

r := (psides –psi) / dt;                                         %   t
r des

Δ
−

=
ψψ

   ,     dt= Δt=0.05 s 

 
Control strategy was r = (ψdes - ψ ) / Δt, v=0.1, where ψdes is the desired value of angle ψ. 

3.7.3 Modification Kohonen rule and behavioral cloning - MKBC algorithm 
Thus, as  it is given in Figure 3, the neuron whose weight vector was closest to the input 
vector is updated to become even more closer. Suppose that the ith neuron wins, then the 
elements of the ith  row of the input weighting matrix are adjusted as shown: 

iLW1,1(q)= iLW1,1 (q-1)+ α(p(q) – iLW1,1 (q-1)), 

where p(q) is input vector, q is the time index and  α must be specially tuned according to 
the domain. With regarding to the original  Kohonen rule connected with  the weighting 
coefficients, as the neural network,   this algorithm does  not use the weighting values as the 
values from the previous time, but permanentlly uses the training values as the weighting 
values. This  enables an intelligent system to learn from the examples (operator’s 
demonstrations) to control a vehicle in avoiding obstacles, like the human operator does. 
This seems, at least for this case,  to be better according  to the original idea of the Kohonen 
rule. The algorithm is given below.  
for i:=1 to M do 
begin  
AS(1,1) :=0; 
end; 
 alfa(i,n);                   % Must be specially  tuned    
                                  % according to the domain;        
                                  % n is  the time index;                 
for i:=1 to M do       % M is the number of inputs; 
begin                       
for j :=1 to N  do     % N is the number of the     
                                %training  examples;   
   begin 
 
       LW[i,j,n] :=  alfa[i,n] * ( p[i,n0]  -  p[i,n]);  %  p[i,n] is the  input   
                                                                              %  vector; 
                                                                              %  p(i,n0) are the training example set 
      AS(i,n) :=  AS(i,n) + ( LW[i,j,n0] – LW(i,j,n))2 ;  % LW[i,j,n0] is the training examples set 
 
   end; 
    a(i,n) := sqrt (AS(i,n));                                    %  a(i,n) is the  output  
                                                                             %  vector; 
end; 
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The algorithm means that by using N training examples the weight vector LW [i,j,n0 ], 
{i=1,M; j=1,N} can be formed1. Then LW[i,j,n0] need to be modified according to:  1) the 
actual values of the input vector2 p[i,n], {i=1,M}  and 2) the actual value of the tuned vector  
α[i,n],{i=1,M},  where n is the time index. The resulting weighting  vector is LW[i,j,n]  and it 
has deviation according to the input vector p[i,n].   The output vector is a[i,n] and it is 
connected with the weight vector as is illustrated by two last lines of the algorithm.   

3.8 The MKBC algorithm and the motion planning  
The MKBC algorithm is needed to be adapted in order to be used in the motion planning 
domain. The motion planning  with the weight vector uses  LW  (Table 1), the training 
values of the learned variable which is the heading  angle ψ  ( Section 3.3). Firstly, the 
algorithm requires  the modification  of the training vector LW. The modification executes, 
as is given below,  using: 1) N training examples in IW and LW, where IW are the training 
values of the  minimal distance  dmin (section 3.6), 2) the current input value dmin and 3) 
tuning factor α . Secondly, the algorithm finds  the desired output value  using, in some 
sense, least – square cost function of  the heading angle.  The algorithm  output value 
enables the obstacle avoidance and it is the desired value of the heading angle (ψdes ). The  
algorithm is given below. 
AS :=0; 
alfa = Kc – Kα * d_min;     % The values  Kc  and Kα  must be  tuned;   
      
for j :=1 to N  do               % N is the number   of the training examples;     
   begin 
 
      LW[2,j] :=  alfa * ( IW [1,j] – dmin); 
      AS :=  AS + ( LW[2,j] – LW[1,j])2 ; 
 
   end; 
     psides := sqrt (AS);              %  ASdes =ψ ; 
                                                  %     r := (psides –psi) / dt;   ,     dt= Δt=0.05 s; 
On the other hand, when the modified Kohonen rule with  the weighting parameters is 
used,  then the algorithm does  not use the weighting values  IW as the distance dmin from 
the previous time, but always uses IW as the training values of the distance dmin to 
determine the training values LW of the heading angle ψ . This  enables  an intelligent 
system to learn from the examples (operator’s demonstrations) to control a vehicle in 
avoiding obstacles, like the human operator does. The very important MKBC characteristics 
are the operator cloning and symplicity, the simplicity specialy according to the RBF neural 
network.  The coefficient   α  has values that are changed from time to time. Firstly, when it  
is tuned this factor enables the heading angle ψ  to increase when  the vehicle distance  from 
the obstacles edges is small (i.e. dmin ≈ 0.08). The performance error Exy has a minimum for 
that α value. While α factor increases, the total time T of the autonomous vehicle moving 
without touching the obstacle  also increases.  

                                                                 
1 n0 means the training example set.  
2 The training value of the input vector  is p[i,n0]. 
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4. Experiments and results 
In order to form training instances the task was  only  to avoid obstacles. The robot start position 
was its  goal position. The minimal number  of robot traveling  from the start to the goal was 
to be one. It is the framework for selecting appropriate training instances. The idea is to combine this 
control strategy with control strategy without obstacles in order to form a full controller.  
When an obstacle was included, the robot trajectory for training scene is illustrated in Figure 
4.  
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Figure 4. The robot trajectory used in order to gather training example 

Control strategy was r = (ψdesired - ψ ) / Δt, v=0.1. 

4.1 Experiments with  RBF neural network 
In the following is described application of RBF network in mobile robot motion planning.  
A relatively small  corresponding training set is given in Table 1. 

dex 
J 

Distance (IW[j,1]) 
or 
dmin 

Angle 
Ψ or LW[1,j] 

Angle modified 
Ψm    or  LW[1,j] 

Factor 
fm 

1 0.04 10.906 10.906 1 
2 0.0494 13.8025 13.8025 1 
3 0.0591 11.425 11.425 1 
4 0.08 0.0035 81.025 23151 
5 0.08 9.513 85.617 9 
6 0.081 12.070 12.070 1 
7 0.0894 12.692 12.692 1 
8 0.0923 12.556 12.556 1 
9 0.1006 7.6405 7.6405 1 
10 0.12 0.6895 3.4475 5 

Table 1. The original end the modified training examples according to the movement of the 
vehicle 
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The firstly by tuning spread  factor (section 3.7.1 and 3.7.2) is tuned σj. For step k=1 spread 
=1, and then spread decreased in 0.01. Process was stopped for  spread=0.002. The 
performance error Exy has minima for that spread value. While spread factor decreased, total 
time T of the mobile robot moving without touching of obstacles increased: (spread=0.005, 
T=534 s;   spread=0.003, T=600 s; spread=0.002, T=637 s). In order to decreased performance 
error for small the robot distance from obstacles edges (dmin ≈ 0.08), LW[1,j] is multiplied by 
fm [j] as  it is given in Table 1 and in Figure 5.  
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 Figure  5. Modifying   the LWij  parameters or Ψ training instances for  the RBF network in 
order to decrease performance error   Exy 

For fm [4]=23151, fm[5]=6 and another {fm [j]=1,j=1,2,3,6,7,8,9,10}, it was T=1248 s. But for fm 
[j]  which have values as it was given in Table 1 performance error was Exy = 0.00382 and 
robot moving was not time limited. Two  scenes  with five static obstacles is given in Figure 
6. In that case we have situation when the mobile robot moves away from P1 obstacle to be 
close, until some critical distance and without touching, to  obstacles P2,P3,P4 and P5. The 
robot safely avoids the obstacles touching. Changing fm[j] repeatedly takes a step in the 
direction of steepest decrease of Exy, like the cases described for function J in section 3.1. But 
some   changes  are inappropriate. Accordingly generally speaking we wished, but  we 
could not manage, to synthesize the controller to guide the mobile robot to “oscillate”  
between obstacle P1 and set of obstacles P2,P3,P4 and P5. Exists the tendency of the clone to 
guide the robot in such a fashion that its distance from obstacle edges enhance gradually. 
The problem is when the controller  solves turning to the left, i.e. it have  to conclude that 
the robot distance, for example,  from vertices of obstacle P4 is greater than from the robot 
distance from vertices  of obstacle P5 . Until that the robot avoids obstacle P4 attempting to 
turn, not to the left, but  to the right.  It is reason that the robot more and more is closed to 
obstacles P2, P3, P4 and P5.   For small distance of  the robot from obstacle  vertices we 
attempt to increase reaction time when turns around a square.  
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Figure 6. The mobile robot trajectory in xy plane for five static obstacles . The mobile robot is 
controlled by RBF neural  network controller 

4.2 MKBC algorithm as advance according to   RBF neural network algorithm  
The training instances Table 1 (selected 10 from 1801) the previously  were tuned using RBF 
neural network (Section 4.1), i.e. an appropriate fm factor was selected. In order to form 
training instances the task was to avoid rectangle obstacle and achieve the minimal number 
of one vehicle travels from the start to the goal position. On the other hand, the goal is the 
number of instances to be as small as possible. The MKBC algorithm (section 3.8) was tested 
as it is illustrated by Figure 7 for Kc =1000 and Kα =50 and  

 t
r des

Δ
−= ψψ *9.0*1623.3

  control strategy, for ∆t = 0.05. 
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The vehicle start position and obstacles are given by relations:  
Start S = (0.15, 0.15), 
Position 1 P1 = (0.3,0.3,0.7,0.7),  
Position 2 P2 = (0.0, 0.95,1.0,1.0),  
Position 3 P3 = (0.95,0.0,1.0,1.0),  
Position 4 P4 = (0.0,0.0,1.0,0.05),  
Position 5 P5 = (0.,0.0.05, 1.0), for  v =0.2 [m/s].  
For training instances given in Table 1 and for  fm [4] = 23151, fm[5] = 6 and another {fm [i] = 
1, j = 1,2,3,6,7,8,9,10}, as it  is given in Table 1 the simulation time T using the exposed 
algorithm was greater then  about 6000  [s]. LW[1,i] is multiplied by fm [i] as  is given in 
Table 1.  For fm [i]  with values given in Table 1 performance error was Exy = 0.00180 and the 
vehicle movement was  time unlimited. So we take that fm is exactly as it is given in Table 1.  
In this case we have situation when the autonomous vehicle moves away from P1 obstacle 
to be closed, until some critical distance and without touching obstacles P2,P3,P4 and P5. 
Here, the tendency of the clone exists to guide the vehicle in such a fashion that its distance 
from the obstacle edges enhance gradually. The problem appears when the controller  solves 
the turn to the left. Namely, it should conclude that the vehicle distance, for example,  from 
vertices of obstacle P4 is greater than from the vehicle distance from vertices  of obstacle P5. 
The vehicle avoids obstacle P4 attempting to turn, not to the left, but  instead to the right.  
This is the main reason why  the vehicle is closer and closer to obstacles P2, P3, P4 and P5.   
Changing fm[j] repeatedly takes a step in the direction of steepest decrease of Exy, like in the 
cases described early. Like that, if we make  the possibility that the  coefficint  α  changes  
according to the dmin  changing, we will going to  induce  a stroughly encahement with 
regard to the simulation time which is  the  touch free.  
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Figure 7. XY trajectory of the vehicle controlled  by clone based on modified  Kohonen rule 

For Kc =1000 and Kα =50 and for the named control strategy we have practically infinite the 
time which is touch of free. The simplicity and that is reason to accept the MKBC algorithm 
as an advancement according to the RBF neural network. At the end, Simulink 
implementation MKBC for the vehicle kinematical model is very simple and it is illustrated 
in Figure 8, but according to Matlab integration method constants Kcte,Kα and Kpsidesired  must 
be corrected as Kcte=500,Kα=100 , Kpsidesired=0.7. 



Modification  of Kohonen Rule  
for Vehicle Path Planing by Behavioral Cloning 

 

275 

three circle
touch
STOP

 dm
.

x

1/ 0.05

AUTOPILOT

 r

Psi

PSIdes

y

 0.9

v=0.2

environment  and

0.7

XY Graph
sin

Trigonometric
Function1

cos

Trigonometric
Function

Y

To Workspace1

X

To Workspace
Sum5

Sum2

Sum

In1

In2 Out1

Subsystem1

In1

In2

Subsystem

Step

Psi2

Psi

Product1

Product

In1Out1

Modification of 
Kohonen

sqrt

Math
Function2

u2

Math
Function1

u2

Math
Function

1
s

Integrator6

1
s

Integrator2

1
s

Integrator1

1
s

Integrator

-K-

Gain3

-K-

Gain2

-K-

Gain1

 
a) Simulink model 

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

X

Y

 
b) 2D trajectory  for three obstacles when  Kcte=500,Kα=100 

Figure 8. Simulink model for MKBC algorithm and an appropriate result 

4.3 The narrow passage avoiding by MKBC algorithm 
In literature (R. Kulić, 2004) is treated  the narrow passage avoiding. In order to avoid the 
robot traveling through narrow passages between obstacles is needed  to define a rule 
regarding dimension of the autonomous vehicle. In this section MKBC algorithm, as an 
advancement according to the RBF, is used. That algorithm is applied in order to solve the 
situation which is given in Figure 9b) -9h). In different situations which are  illustrated by 
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Figure 9b) – 9h) the vehicle moves from different start positions to different  goal positions   
avoiding obstacles and narrow passages also. All experiments are quite successful. The 
narrow passages are avoided using the reason which is  described the previously. In Figure 
9b), for example, the autonomous vehicle moves away from P6 obstacle to be close P7, until 
some critical distance, and so on, to be close until some critical distance from obstacles P4, 
P3, P2, P1, …,  and always changes Ψ rapidly in order to be  safely avoided the obstacle 
touch for long time. Changes Ψ rapidly is connected with the changing fm[j] also rapidly as it 
illustrated in Figure 5.  It is the manner repeatedly takes a step in the direction of steepest 
decrease of Exy. According to the different situations  the vehicle  managed  to avoid 
obstacles   again and again, and never did  not have the chance to stop, i.e.  that process is 
has not time limiting and  we observed  that all  experiments  are quite successful.  It was 
found  that the obstacle avoiding and also the narrow passage avoiding is enabled by the 
same MKBC  algorithm  or by the methodology  which is the previously described and it 
means that the solution consistency is saved.  
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Figure 9.  The autonomous vehicle trajectory in xy plane for 5 and for 7 static obstacles 

The previously, in literature (R. Kulic, 2006),  it is  concluded, according to the given 
machine learning system,   to avoid the vehicle traveling through the narrow passages 
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between obstacles it is needed to define a rule regarding their dimensions and now it could 
be added that rules can be escaped by changing in structure of the given learning system in 
sense that  it is to be able to change Ψ rapidly. 

4.4 The goal position reaching 
We interested in the goal reaching as it is given in (R. Kulic, 2004) and many disadvantages 
of if – then rules are named according to this problem.  Situation is more and more difficult 
when the number of obstacles are increasing. 

4.4.1 The virtual obstacle based on line connecting the goal and the start position 
In the next experiments the line which connect the goal and the start position serves to be 
formed a virtual obstacle as it is illustrated in Fig. 10.  According to the Fig. 10 it is posible to 
form relations (3 – 8): 

 

;05.044,4
;3,05.03
;05.02,2

;1,05.01

−==
=−=

+==
=+=

YYXGX
YGYXGX
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It is known that the normal distance of the point M(X,Y) from the line aX+bY+c=0 is: 

 
22 ba

cbYaX
d

+

++
=  (8) 

A procedure, for the simulation purpose, calculating  the vehicle  distance from the virtual 
obstacle    is given as: SubArea-1: if((Y<=YP1)and(Y<=YP2))         then   dv= ((X-X1)2 + (Y-
Y1)2)1/2, SubArea2: if((Y>=YP4)and(Y<YP2)and(Y<=YP3)) then dv = |Y+[(Y1-Y2) ⁄ (X2-X1)] X 
+[(Y2-Y1) ⁄ (X2-X1)] X1-Y1]  | ⁄ [[(Y1-Y2) ⁄ (X2-X1)] 2+1] 1⁄2,….. and so on for all of from  the 

                                                                 
3 0.05 *2 means that the virtual obstacle is not only the line but has dimensions which is randomly 
determined. Equations (3) – (8) define the line which is connected with two determined points. 
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eight areas. This approach enables the vehicle moving from the start to the goal position 
expanding distance set  by  defining: (d)m= min{dv, di, i=1,..n}, using  only  the equation  
according to the obstacle avoiding.     
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Figure 10. The virtual obstacle based on  the start - the goal line 

4.4.2 Experiments using the  virtual obstacle 
As the first, the methodology which is exposed in section 4.1  is tested using GoldHorn 
machine learning system  and (A. Karalic,1991) and equation (9) 

 
0064.0

13735.0+−
= md

desiredψ  (9) 

and control strategy: r = (ψdesired - ψ ) / Δt, v=0.1 .  The result is given in Figure 11. 
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Figure 11. The virtual obstacle based on  the start - the goal line and GoldHorn clone 

The virtual obstacle is treated and according to all of obstacles  obviously the touch is 
detected because reaction time of GoldHorn  clone is inappropriate, as it was observed the 
previously.   
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Figure 12.  The autonomous vehicle trajectory in xy plane for three and for five static 
obstacles. The autonomous vehicle is controlled by  neural  network clone 

A neural network MKBC algorithm as an advancement according to the GoldHorm machine 
learning system (A. Karalič, 1991) and to  the RBF is used. MKBC algorithm is applied in 
order to solve the situation which is given in Fig. 12a),b), c). In situation illustrated by Fig. 
12a) for three obstacles the vehicle moves from the start position S(0.35,0.15) to the goal 
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position  G(0.85, 0.8) avoiding the virtual obstacle also. The experiment is successful. Like 
that, the experiment is successful in Fig. 12b), where  the virtual obstacle is treated again and 
where the vehicle reaction time is quite appropriate.  In Fig. 12c) is illustrated situation with 
five static obstacles P1 – P5, and virtual obstacle P6 which is illustrated also. After a great 
number of obstacles avoiding circles  the vehicle attempts to move to the goal G, but some 
oscillations appear and the vehicle decides to avoid obstacles and reach the goal  again and 
again, and has not the chance to stop. That process has not been time limited, but it means 
that experiment is quite successful: we have obstacle avoiding and the goal position 
reaching using the same algorithm, i.e. the same  relations (R. Kulić, 2004).  

4.5 Results end experiments in 3D space 
4.5.1 Kinematikal  3D model   
We have applied behavioral cloning and  machine learning  and got some results, e.g., 
equations,  which were suspected: this results could  not  suit us if we had dynamical model 
or if we had real time dynamical system. Generally  we expected, equations could be wrong 
in some sense, but the methodology had to be an appropriate. It is illustrated in the next 
section. But for some class of trajectories vehicle moving can be decomposed on moving in 
the  vertical and moving in the horizontal plain (R. Stojić, et al., 1990), and for some class of 
trajectories we can take that ψdesired(n)=θdesired (n). In that sense the next 3D kinematical model 
of the autonomous vehicle is observed:  

ψ (n)=ψ(n-1) + Δ t r(n),  

θ(n)=θ(n-1)+ Δ t q(n),   

x(n) = x(n-1) + Δt v cos (ψ(n)),  

y(n) = y(n-1) + Δt v sin (ψ(n)),  

z(n) = z(n-1) - Δt v sin  (θ(n)),  

where θ is pitch angle, q is the appropriate control variable in vertical plane. To avoid 
obstacle in 3D the next control rule is observed, also: 

if (n = even) then r (n)=r(n-1) else r(n) = (ψdesired (n)- ψ (n)) / Δt;   

if (n= odd ) then q(n) = (n-1)  else q (n) =  (θdesired (n) - θ (n) ) / Δt.   

A simulated scene is illustrated by Figure 13, where the obstacles were avoided successfully. 
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Figure 13. The autonomous vehicle 3D trajectory 
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It can be concluded that the proposed method gives results that can easily be applied in 3D 
space.  

4.5.2 The complete 3D mathematical model of the vehicle 
In literature (G. Campa, M. Innocenti, 1999) is presented development of a mathematical 
model of an vehicle and its translation under Matlab environment. At the same time the 
report presents and explain both the equations and the Matlab code that implements those 
equations.  The used approach is independent on which kind of vehicle is modeled, on 
which environment the vehicle moves (air or water). It means that the report could be  easily 
taken as a reference for a wide class of vehicle modeling problems.  In the final chapters  
several examples on how to use the given nonlinear model for simulation, analysis and 
control synthesis purposes are given. In Figure 14 is rigid body in 6 DOF with two 
coordinate frames: body fixed referenced frame and earth fixed reference frame.   

 
Figure 14. The observed vehicle 

The considered vehicle has structure a cylindrical body, an aerodynamic prow and two sets 
of cross -configured mobile fins, numbered as in Figure 14. Each fin has its own fixed frame 
in order to rotate about its y -axis. The rotation angle is in counter  clockwise. The 4 fins 
belonging to the front  set (numbered from 1 to 4)  refer as “wings”, while the others 4 fins 
(numbered from 5 to 8) refer as “tails”. Matlab function vxdot is the Matlab code equivalent 
of equation (62) (G. Campa, M. Innocenti , 1999) at equation describe a 12 state dynamic 
system. It takes as input a 38 – dimensional vector containing: 1) the 12 system states 
(generalized position and velocity ); 2)fin angles vector , 8 elements; 3) external force and 
moment with respect to the body frame, (e. g. thrusters), 6 elements; 5) external force and 
torque  with respect to the earth frame ( e. g. attached cable or other force due to the contact 
with external objects), 6 elements; 6) marine current speed and acceleration with respect  to 
the earth frame, 6 elements. Matlab vxdot function    uses the named input and the 
information about vehicle structure ( G. Campa, M. Innocenti,1999)  stored in special global 
variable “veh” ) to compute derivatives of the system states  as described in (62) . The 
named nonlinear model is linearized  about the operating point determined by 
[x,y,z]=[0,0,0], [u,v,w]=[3m/s, 0, 0], the thrust is 416N, there is no sea current and there is no 
other external forces.    
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4.5.1. The classical regulator design 
The Linear Quadratic Regulator is one of the regulators which is given in (G. Campa, M. 
Innocenti, 1999).  Its appropriate scheme is given in Figure 7.  

 
Figure 15. LQR closed loop scheme 

Authors found the named regulator as a very good choice for testing the closed loop 
behavior of the used nonlinear model  and treated it  as the best in term of both performance 
and robustness. Having in the workspace the matrices a,b,c,d of the linear model , the 
feedback regulator is  given in Matlab by: 

>> Q=diag ([20 20 20 ones(1,6)]); R=eye(size(b,2));  

That command line gives Q and R weight matrices  meaning that the attitude states are 
weighted a value of 20 compared to the value 1 of the remaining states and inputs.  Matrix K 
is given as: 

>> K=lqr(a,b,Q,R); 

The nonlinear model starts from the same input and initial conditions the previously 
considered for the linearization. As disturbance, a slow and constant sea current is 
considered, and some noice is added to each available measurements. To increase of realism 
of the simulation a model of the actuators with delays, position limiter and rate limiter is 
included as it is given by Figure 16. 

 
Figure 16. Actuators model 
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A sensors model is given in Figure 17.  

 
Figure 17. Sensors model 

The command to be tracked consists in 3 independent steps of angle 0.1 rad and maximum 
amplitude 0.3 rad.  The inputs or channels: yaw, pitch and roll are appear with time delay 
from 5s. Sample time is 0.1s. These inputs are used in experiments described in next section.  

4.5.2 To avoid obstacles  regulator design 
As existed our good experience according learning algorithm GoldHorn (R. Kulic, Z. Vukic 
2006), in training phase we decided to use it again, i.e. use it  clone based on equation  

 54286.108005.0 −−= mdesired dψ   (10), 

 54286.108005.0 −−= mddesiredθ   (11), 

which GoldHorn  managed to find. In order to form training instances system in Figure 3 is 
changed adding Simulink subsystems containing: 1) GoldHorn clone as operator, 2) virtual 
simulation environments,  3) the fashion of calculating4  dm,  4) the fashion of detecting 
touch between  the vehicle and the obstacles  and 5) the fashion of  gathering  the training 
instances in the Matlab workspace. Part of that model is given in Figure 18. 
Situation with the vehicle start position S[0,0,0] and  three unmoving sphere obstacles: 
O1[40,10,0,30], O2[30,40,20,20], O3[10,20,40,20]5 is observed. In the training phase the vehicle 
is controlled by GoldHorn clone in order to avoid sphere obstacle from 0s to 500s. Sample 
time was 0.1s. The clone did not manage to realize the trajectory  which mean that the 
vehicle start position is equal the vehicle goal position.  It was difficult: the previously 
operator has not been  a skilled worker and GoldHorn machine learning controller was 
similar to him. From 5122 examples were selected 10, i.e. 500th, 1000th, 1500th, …, 5000th, as it 
is given in Table 2.  It is important to expose that using training instances and Matlab polyfit 
instruction we get some unsatisfactory results. 

 

                                                                 
4 di is distance of  the vehicle gravity center  from ith obstacle and dm is defined as: 
 dm =min(di  , i=1,n), where n is number of obstacles. 
5 Sphere is given as: O(a,b,c,R), where a,b,c are coordinates  of center and R is the radius. 
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Figure 18. The part of Simulink model connected with the training phase 

 

No. Ψ Angle dm  distance 

1 -0.8162 2.1189 

2 -1.5639 7.1298 

3 -2.4173 19.0685 

4 -3.4051 27.7691 

5 -4.2736 28.9622 

6 -4.6729 20.8607 

7 -4.359 12.796 

8 -3.7437 17.9315 

9 -3.463 29.6801 

10 -13.3025 150.2197 

Table 2. The training examplse for 3D nonlinear dynamical model 
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4.5.3 The experiments and results 
In verifying phase it is needed to connect ψdesired with ψ and θ inputs as it is illustrated in 
Figure 7. But it was not enough. Namely, it was observed that is needed to be synthesized  
additional regulator regarding obstacle avoiding process and to be formed the  closed loop 
system according ψ and θ, or according  minimal distance dm  between the vehicle and 
obstacles. To require that kind of correction  is a consequence of the fact that the learner 
outputs the hypothesis that has the minimum error over the training examples, but has the 
error (T. Mitchell, 1997).  So, a PID regulator was added and its founded  constants are: 
kp=0.005, kd=0.0009, ki=0.0001. According to MKBC algorithm given in Section 3.8 tuned 
constants are: kα=0.00005, kcte=-0.1. Between θ and ψ time delay was Tθ =1s and  roll angle was  
ϕ=0.1rad. Maximum amplitude was: for θ i ϕ  (-0.3, 0.3) rad., and for  ψ   (-∞, +∞)rad. Part of 
Simulink model connected with verifying phase is illustrated by Figure 19. Situation with 
the vehicle start position S[0,0,0] and  three unmoving sphere obstacles, with different 
positions and dimensions according to the training phase, are observed: O1[20,30,40,10], 
O2[30,40,50,20], O3[40,10,350,10] . The results are illustrated by Figure 20. As illustrated in 
figure 20b) the tendency of the regulator to guide the vehicle in such a fashion that its 
distance from obstacle edges increases was not observed. That fact is a good reason for the 
conclusion that these  results, with sophisticated kinematical and dynamical model of the 
vehicle,  quite confirm the results exposed the result the previously exposed when, when 
was used only kinematical model of the vehicle. 
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Figure 19. The part of Simulink model connected with the verifying phase 
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Figure 20. The simulation results of the autonomous vehicle moving and the obstacles 
avoiding  

5. Conclusion  
As it is exposed the obtained MKBC clone is tuned to produce the results that are more 
appropriate then  those given in (R. Kulic, Z. Vukic, 2006). This is especially important when  
the vehicle turns around the  square.The very important MKBC characteristics are the 
operator cloning and symplicity, the simplicity specialy according to the RBF neural 
network. The reaction time substantially  decreases for small distance of  the vehicle from 
the obstacle  vertices and edges according to  the RBF  neural network.  According to the 
different situations  the vehicle  managed  to avoid obstacles   again and again, and never 
did  not have the chance to stop, i.e.  that process is has not time limiting  in 2D space 
specially  and  we observed  that all  experiments  are quite successful.  Following the given  
context the problem narrow passage avoiding and the goal position reaching  
fundamentally  is observed. Namely,  defining if – then rule according to the problem  is 
observed as destroying of the consistency of the reached methodology. MKBC algorithm  
gives chance that the obstacle avoiding, the narrow passage avoiding  and goal position 
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reaching is enabled by the same algorithm or by the methodology  which is the previously 
described and  it means that the solution consistency is saved. The algorithm complexity is 
about O(n), where n is the number of obstacles. A the end,  the autonomous vehicle 
mathematical model is given by nonlinear equations describing a 12 state dynamical system 
and in that case the exposed methodology is applied successfully.  The advantage of this 
approach lies in the fact that a complete path can be defined off-line, without using 
sophisticated symbolical models of  obstacles. By this fact the named methodology 
substantially differs from the others. In the next phase it is expected to confirm results in on 
– line simulation process. 
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1. Introduction 
Autonomous mobile robots have a wide range of applications in industries, hospitals, 
offices, and even the military, due to their superior mobility. Some of their capabilities 
include automatic driving, intelligent delivery agents, assistance to the disabled, exploration 
and map generation for environmental cleanup, etc. In addition, their capabilities also allow 
them to carry out specialized tasks in environments inaccessible or very hazardous for 
human beings such as nuclear plants and chemical handling. They are also useful in 
emergencies for fire extinguishing and rescue operations. Combined with manipulation 
abilities, their capabilities and efficiency will increase and can be used for dangerous tasks 
such as security guard, exposition processing, as well as undersea, underground and even 
space exploration. 
In order to adapt the robot's behavior to any complex, varying and unknown environment 
without further human intervention, intelligent mobile robots should be able to extract 
information from the environment, use their built-in knowledge to perceive, act and adapt 
within the environment. An autonomous robot must be able to maneuver effectively in its 
environment, achieving its goals while avoiding collisions with static and moving obstacles. 
As a result, motion planning for mobile robots plays an important role in robotics and has 
thus attracted the attention of researchers recently. The design goal for path planning is to 
enable a mobile robot to navigate safely and efficiently without collisions to a target position 
in an unknown and complex environment. The navigation strategies of mobile robots can be 
generally classified into two categories, global path planning and local reactive navigation. 
The former is done offline and the robot has complete prior knowledge about the shape, 
location, orientation, and even the movements of the obstacles in the environment. Its path 
is derived utilizing some optimization techniques to minimize the cost of the search. 
However, it has difficulty handling a modification of the environment, due to some 
uncertain environmental situations, and the reactive navigation capabilities are 
indispensable since the real-world environments are apt to change over time. On the other 
hand, local reactive navigation employing some reactive strategies to perceive the 
environment based on the sensory information and path planning is done online. The robot 
has to acquire a set of stimulus-action mechanisms through its sensory inputs, such as 
distance information from sonar and laser sensors, visual information from cameras or 
processed data derived after appropriate fusion of numerous sensor outputs. The action 
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taken by the robot is usually an alternation of steering angle and/or translation velocity to 
avoid collisions and reach the desired target. Nevertheless, it does not guarantee a solution 
for the mission, nor is the solution the optimal one. 
Reactive behavior-based mobile robot responds to stimuli from the dynamic environment, 
and its behaviors are guided by local states of the world. Its behavior representation is 
situated at a sub-symbolic level that is integrated into its perception-action (i.e., sensor-
motor) capacities analogous to the manifestation of the reflex behavior observed in 
biological systems. Some researches have focused on this kind of robot system and have 
demonstrated its robustness and flexibility against an unstructured world (Chang, 1996). 
Reactive behavior-based strategy is now becoming attractive in the field of mobile robotics 
(Lee, et al., 1997) to teach the robot to reach the goal and avoid obstacles. Two different kind 
of reactive navigation strategies have been studied. The first application task for the mobile 
robot is to navigate in a stationary environment while avoiding static obstacles but reaching 
a goal safely. A well-known drawback is that the mobile robot suffers from local minima 
problems in that it uses only locally available environmental information without any 
previous memory. In other words, a robot may get trapped in front of an obstacle or wander 
indefinitely in a region whenever it navigates past obstacles toward a target position. This 
happens particularly if the environment consists of concave obstacles, mazes, etc. Several 
trap escape algorithms, including the random walk method (Baraquand and Latombe, 1990), 
the multi-potential field method (Chang, 1996), the tangent algorithm (Lee, et al., 1997), the 
wall-following method (Yun and Tan, 1997), the virtual obstacle scheme (Liu et al., 2000), 
and the virtual target approach (Xu, 2000) have been proposed to solve the local minima 
problems. The second application task is to navigate mobile robot in an unknown and 
dynamic environment while avoiding moving obstacles. Various methods have been 
proposed for this purpose, such as configuration-time space based method (Fujimura and 
Samet, 1989), planning in space and time independently (Ferrari et al., 1998), cooperative 
collision avoidance and navigation (Fujimori, 2005), fuzzy based method (Mucientes et al., 
2001), velocity obstacles method (Prassler et al., 2001), collision cone approach (Qu et al., 
2004), and potential field method (Ge and Cui, 1989). Another approach for motion planning 
of mobile robots is the Velocity Obstacle (VO) method first proposed by Fiorini and Shiller 
(Fiorini and Shiller, 1998).  
In the last decade, it has been shown that the biologically inspired artificial immune system 
(AIS) has a great potential in the fields of machine learning, computer science and 
engineering (Castro and Jonathan, 1999). Dasgupta (1999) summarized that the immune 
system has the following features: self-organizing, memory, recognition, adaptation, and 
learning. The concepts of the artificial immune system are inspired by ideas, processes, and 
components, which extracted from the biological immune system. A growing number of 
researches investigate the interactions between various components of the immune system 
or the overall behaviors of the systems based on an immunological point of view. 
Immunized systems consisting of agents (immune-related cells) may have adaptation and 
learning capabilities similar to artificial neural networks, except that they are based on 
dynamic cooperation of agents (Ishida, 1997). Moreover, immune systems provide an 
excellent model of adaptive process operating at the local level and of useful behavior 
emerging at the global level (Luh and Cheng, 2002). Accordingly, the artificial immune 
system can be expected to provide various feasible ideas for the applications of mobile 
robots (Ishiguro et al., 1997; Lee and Sim, 1997; Hart et al., 2003; Duan et al., 2005). As to 
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mobile robot navigation problem, Ishiguro et al. (1995) proposed a two-layer (situation-
oriented and goal-oriented) immune network to behavior control of autonomous mobile 
robots. Simulation results show that mobile robot can reach goal without colliding fixed or 
moving obstacles. Later, Lee et al. (2000) constructed obstacle-avoidance and goal-approach 
immune networks for the same purpose. Additionally, it shows the advantage of not falling 
into a local loop. Afterward, Vargas et al. (2003) developed an Immuno-Genetic Network for 
autonomous navigation. The simulations show that the evolved immune network is capable 
of correctly coordinating the system towards the objective of the navigation task. In 
addition, some preliminary experiment on a real Khepera II robot demonstrated the 
feasibility of the network. Recently, Duan et al. (2004) proposed an immune algorithm for 
path planning of a car-like wheeled mobile robot. Simulations indicate that the algorithm 
can finish different tasks within shorter time. It should be noted that, however, all of the 
above researches did not consider solving the local minima problems. Besides, none relative 
researches implement AIS for mobile robot navigating in dynamic environments. 
Two different kind of reactive immune networks inspired by the biological immune system 
for robot navigation (goal-reaching and obstacle-avoidance) are constructed in this study. 
The first one is a potential filed based immune network with an adaptive virtual target 
mechanism to solve the local minima problem navigating in stationary environments. 
Simulation and experimental results show that the mobile robot is capable of avoiding 
stationary obstacles, escaping traps, and reaching the goal efficiently and effectively. 
Employing the Velocity Obstacle method to determine the imminent collision obstacle, the 
second architecture guide the robot avoiding collision with the most danger object (moving 
obstacle) at every time instant. Simulation and experimental results are presented to verify 
the effectiveness of the proposed architecture in dynamic environment. 

2. Biological immune system 
The immune system protects living organisms from foreign substances such as viruses, 
bacteria, and other parasites (called antigens). The body identifies invading antigens 
through two inter-related systems: the innate immune system and the adaptive immune 
system. A major difference between these two systems is that adaptive cells are more 
antigen-specific and have greater memory capacity than innate cells. Both systems depend 
upon the activity of white blood cells where the innate immunity is mediated mainly by 
phagocytes, and the adaptive immunity is mediated by lymphocytes as summarized in Fig. 
1. The phagocytes possess the capability of ingesting and digesting several microorganisms 
and antigenic particles on contact. The adaptive immune system uses lymphocytes that can 
quickly change in order to destroy antigens that have entered the bloodstream. 
Lymphocytes are responsible for the recognition and elimination of the antigens. They 
usually become active when there is some kind of interaction with an antigenic stimulus 
leading to the activation and proliferation of the lymphocytes. Two main types of 
lymphocytes, namely B-cells and T-cells, play a remarkable role in both immunities [34]. 
Both B-cell and T-cell express in their surfaces antigenic receptors highly specific to a given 
antigenic determinant. The former takes part in the humoral immunity and secrete 
antibodies by the clonal proliferation while the latter takes part in cell-mediated immunity. 
One class of the T-cells, called the Killer T-cells, destroys the infected cell whenever it 
recognizes the infection. The other class that triggers clonal expansion and stimulates or 
suppresses antibody formation is called the Helper T-cells. 



Mobile Robots Motion Planning, New Challenges 

 

294 

 
Figure 1 Illustration of the biological immune system 

When an infectious foreign pathogen attacks the human body, the innate immune system is 
activated as the first line of defense. Innate immunity is not directed in any way towards 
specific invaders but against any pathogens that enter the body. It is called the non-specific 
immune response. The most important cell in innate immunity is a phagocyte, which 
internalizes and destroys the invaders to the human body. Then the phagocyte becomes an 
Antigen Presenting Cell (APC). The APC interprets the antigen appendage and extracts the 
features by processing and presenting antigenic peptides on its surface to the T-cells and B-
cells. These lymphocytes will be able to sensitize this antigen and be activated. Then the 
Helper T-cell releases the cytokines that are the proliferative signals acting on the producing 
B-cell or remote the other cells. On the other hand, the B-cell becomes stimulated and creates 
antibodies when it recognizes an antigen. Recognition is achieved by inter-cellular binding, 
which is determined by molecular shape and electrostatic charge. The secreted antibodies 
are the soluble receptor of B-cells and these antibodies can be distributed throughout the 
body (Oprea, 1996). An antibody’s paratope can bind an antigen’s epitope according to its 
affinity. Moreover, B-cells are also affected by Helper T-cells during the immune responses 
(Carneiro et al., 1996). The Helper T-cell plays a remarkable key role for deciding if the 
immune system uses cell-mediated immunity or humoral immunity (Roitt et al. 1998), and it 
connects the non-specific immune response to make a more efficient specific immune 
response. The Helper-T cells work primarily by secreting substances known as cytokines 
and their relatives  (Roitt et al. 1998) that constitute powerful chemical messengers. In 
addition to promoting cellular growth, activation and regulation, cytokines can also kill 
target cells and stimulated macrophages. 
The immune system produces the diverse antibodies by recognizing the idiotype of the 
mutual receptors of the antigens between antigen and antibodies and between antibodies. 
The relation between antigens and antibodies and that amongst antibodies can be evaluated 
by the value of the affinity. In terms of affinities, the immune system self-regulates the 
production of antibodies and diverse antibodies. Affinity maturation occurs when the 
maturation rate of a B-cell clone increases in response to a match between the clone’s 
antibody and an antigen. Those mutant cells are bound more tightly and stimulated to 
divide more rapidly. Affinity maturation dynamically balances exploration versus 
exploitation in adaptive immunity (Dasgupta, 1997). It has been demonstrated that the 
immune system has the capability to recognize foreign pathogens, learn and memorize, 
process information, and discriminate between self and non-self. In addition, the system can 
be maintained even faced with a dynamically changing environment. 
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Jerne (1973) has proposed the idiotypic network hypothesis (immune network hypothesis) 
based on mutual stimulation and suppression between antibodies as Fig. 2 illustrates. This 
hypothesis is modeled as a differential equation simulating the concentration of a set of 
lymphocytes. The concept of an immune network states that the network dynamically 
maintains the memory using feedback mechanisms within the network. The various species 
of lymphocytes are not isolated but communicate with each other through the interaction 
antibodies. Jerne concluded that the immune system is similar to the nervous system when 
viewed as a functional network. Based on his speculation, several theories and mathematical 
models have been proposed (Farmer et al., 1986; Hoffmann, 1989; Carneiro et al., 1996). In 
this study, the dynamic equation proposed by Farmer (1986) is employed as a reactive 
immune network to calculate the variation on the concentration of antibodies, as shown in 
the following equations: 

 )()()()(
11

takmtamtam
dt

tdA
iii

N

k
k

su
ki

N
st
i

i
AbAb

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−= ∑∑

==
 (1) 

 
))(5.0exp(1

1)(
tA

ta
i

i −+
=  (2) 

where i, ℓ, k = 0, 1,…, NAb are the subscripts to distinguish the antibody types and NAb is the 
number of antibodies. Ai and ai  are the stimulus and concentration of the ith antibody. st

ijm , 
su
kim  indicate the stimulative and suppressive affinity between the ith and the jth, kth 

antibodies, respectively. mi denotes the affinity of antigen and antibody i, and ki represents 
the natural death coefficient. Equation (1) is composed of four terms. The first term shows 
the stimulation, while the second term depicts the suppressive interaction between the 
antibodies. The third term is the stimulus from the antigen, and the final term is the natural 
extinction term, which indicates the dissipation tendency in the absence of any interaction. 
Equation (2) is a squashing function to ensure the stability of the concentration (Ishiguro et 
al., 1997). 

 
Figure 2. Idiotypic network hypothesis 

On the other hand, Hightower et al. (1995) suggested that all possible antigens could be 
declared as a group of set points in an antigen space and antigen molecules with similar 
shapes occupy neighboring points in that space. It indicates that an antibody molecule can 
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recognize some set of antigens and consequently covers some portion of antigen space as 
Fig. 3 illustrated. The collective immune response of the immune network is represented 

as ∑
=

AbN

i
iAbf

1
)( , where f(Abi) indicates the immune response function between antigen and the 

ith antibody. Note that any antigen in the overlapping converge could be recognized by 
several different antibodies simultaneously. Afterward, Timmis et al. (1999) introduced 
similar concept named Artificial Recognition Ball (ARB). Each ARB represents a certain 
number of B-cells or resources, and total number of resources of system is limited. In 
addition, each ARB describes a multi-dimensional data item that could be matched to an 
antigen or to another ARB in the network by Euclidean distance. Those ARBs located in the 
other’s influence regions would either be merged to limit the population growth or pulled 
away to explore new area. ARBs are essentially a compression mechanism that takes the B-
cells to a higher granularity level. 
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Figure 3. The antigen space 

3. Motion Planning in Stationary Environments 
3.1 Reactive immune network 
A reactive immune network inspired by the biological immune system for robot navigation 
(goal-reaching and obstacle-avoidance) in stationary environments is described in this 
section. The architecture of the proposed navigation system is depicted in Fig. 4. The 
antigen’s epitope is a situation detected by sensors and provides the information about the 
relationship between the current location and the obstacles, along with the target. This 
scene-based spatial relationship is consistently discriminative between different parts of an 
environment, and the same representation can be used for different environments. 
Therefore, this method is tolerant with respect to the environmental changes. The interpreter 
is regarded as a phagocyte and translates sensor data into perception. The antigen 
presentation proceeds from the information extraction to the perception translation. An 
antigen may have several different epitopes, which means that an antigen can be recognized 
by a number of different antibodies. However, an antibody can bind only one antigen’s 
epitope. In the proposed mechanism, a paratope with a built-in robot’s steering direction is 
regarded as a antibody and interacts with each other and with its environment. These 
antibodies/steering-directions are induced by recognition of the available 
antigens/detected-information. In should be noted that only one antibody with the highest 
concentration will be selected to act according to the immune network hypothesis. 



An Immunological Approach to Mobile Robot Navigation 

 

297 

 
Figure 4. The architecture of the immunized network reactive system 

In the proposed immune network, antibodies are defined as the steering directions of 
mobile robots as illustrated in Fig. 5, 

( ) Ab
Ab

ii Nii
N

Ab ,,2,1        1- 360 ⋅⋅⋅=°=≡ θ , 

where NAb is the number of antibodies/steering-directions and θi is the steering angle 
between the moving path and the head orientation of the mobile robot. Note that 0°≤ θi 
≤360°.  
 

 
Figure 5. Configuration of mobile robot and its relatives to target and obstacles 

In addition, the antigen represents the local environment surrounding the robot and its 
epitopes are a fusion data set containing the azimuth of the goal position θg, the distance 
between the obstacles and the jth sensor dj, and the azimuth of sensor θSj, 
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where Ns is the number of sensors equally spaced around the base plate of the mobile robot, 
dmin≤ dj≤ dmax and 0°≤ θSj≤360°. Parameters dmin and dmax represent the nearest and longest 
distances measured by the range sensors, respectively. It should be noted that different 
antigens (local environments) might have identical epitopes (fusion information from range 
sensors). There is no necessary relationship between NAb and Ns since they depend on the 
hardware (i.e. motor steering angles and number of sensors installed) of mobile robot. 
Nevertheless, simulation results show that better performance could be derived if Ns equal 
to or larger than NAb. 
The potential-field method is one of the most popular approaches employed to navigate the 
mobile robot within environments containing obstacles, since it is conceptually effective and 
easy to implement. The method can be implemented either for off-line global planning if the 
environment is previously known or for real-time local navigation in an unknown 
environment using onboard sensors. The Artificial Potential Field (APF) approach considers 
a virtual attractive force between the robot and the target as well as virtual repulsive forces 
between the robot and the obstacles. The resultant force on the robot is then used to decide 
the direction of its movements. In the proposed immune network, the resultant force on the 
robot is defined as mi, the affinity value between the antigen/local environment and the ith 
antibody/steering angle, 

 Abobsgoali NiFwFwm
ii

,,2,1           21 ⋅⋅⋅=+=   (3) 

The weighing values w1 and w2 indicate the ratio between attractive and repulsive forces. 
Note that 0≤w1, w2≤1 and w1+w2=1. The attractive force Fgoali of the ith steering direction (i.e. 
the ith antibody) is defined as follows: 

 Ab
gi

goal ,N,,iF
i

⋅⋅⋅=
−+

= 21        ,
0.2

)cos(0.1 θθ
  (4) 

Note that Fgoali is normalized and 0≤ Fgoali≤1. Obviously, the attractive force is at its maximal 
level (Fgoali=1) when the mobile robot goes straightforward to the target (i.e. θi = θg). On the 
contrary, it is minimized (Fgoali=0) if the robot’s steering direction is the opposite of the goal. 
The repulsive force for each moving direction (the ith antibody θi) is expressed as the 
following equation, 

 ∑
=

⋅=
S

i

N

j
jijobs dF

1
   α   (5) 

where aij=exp(-Ns×(1-δij)) with δij=[1+cos(θi- θSj)]/2. Fig. 6 demonstrates the relationship 
between αij and δij. The parameter αij indicates the weighting ratio for the jth sensor to 
steering angle θi while jd  represents the normalized distance between the jth sensor and the 
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obstacles. Coefficient δij expresses influence and importance of each sensor at different 
locations. The equation shows that the information derived from the sensor closest to the 
steering direction is much more important due to its biggest δij value. Kubota et al. (2001) 
have proposed a similar ‘delta rule’ to evaluate the weighting of each sensor too. 
 

 
Figure 6. Relation between αij and δij 

The normalized obstacle distance for each sensor jd  is fuzzified using the fuzzy set 
definitions. The mapping from the fuzzy subspace to the TSK model is represented as three 
fuzzy if-then rules in the form of 

3

2

1

     yTHEN          is       IF
     yTHEN         is       IF
     yTHEN          is       IF

Ld
Ld
Ld

j

j

j

=

=

=

d
m
s

 

where L1, L2, and L3 are defined as 0.25, 0.5 and 1.0, respectively. The input variable of each 
rule is the detected distance dj of the jth sensor. The antecedent part of each rule has one of 
the three labels, namely, s (safe), m (medium), and d (danger). Consequently, the total 
output of the fuzzy model is given by the equation below, 
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ddd
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j μμμ

μμμ
++
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where μsafe(d), μmedium(d), μdanger(d) represent the matching degree of the corresponding rule. 
Fig. 7 illustrates the membership function and labels for measured distance dj. 
 

 
Figure 7. Membership function and labels for measured distance dj 
As to the stimulative-suppressive interaction between the antibodies/steering-directions are 
derived from equation (1) as follows, 
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and the stimulative-suppressive affinity ss
im  between the ith and jth antibody/steering-

angle is defined as 

 Abii
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Obviously, stimulative-suppressive effect is positive ( ss
im >0) if °<Δ<°− 9090 iθ . On the 

contrary, negative stimulative-suppressive effect exists between two antibodies if their 
difference of steering angles are greater than 90° or less than -90° (i.e., °>Δ 90iθ  or 

°−<Δ 90iθ ). In addition, there is no any net effect between orthogonal antibodies (i.e. 
°±=Δ 90iθ ). The immune system responses to the specified winning situation that has the 

maximum concentration among the trigged antibodies by comparing the currently 
perceived situations (trigged antibodies). In other words, antibody with the highest 
concentration is selected to activate its corresponding behavior to the world. Therefore, 
mobile robot moves a step along the direction of the chosen steering angle/antibody. 

3.2 Local minimum recovery  
As mentioned in the previous section, one problem inherent in the APF method is the 
possibility for the robot to get trapped in a local minima situation. Traps can be created by a 
variety of obstacle configurations. The key issue to the local minima problems is the detection 
of the local minima situation during the robot’s traversal. In this study, the comparison 
between the robot-to-target direction θg and the actual instantaneous direction of travel θi was 
utilized to detect if the robot got trapped. The robot is very likely to get trapped and starts to 
move away from the goal if the robot’s direction of travel is more than 90°off-target (i.e. |θi -
 θg|>90°). Various approaches for escaping trapping situations have been proposed as 
described previously. In this study, an adaptive virtual target method is developed and 
integrated with the reactive immune network to guide the robot out of the trap. 
In immunology, the T-cell plays a remarkable key role in distinguishing a “self” from other 
“non-self” antigens. The Helper-T cells work primarily by secreting substances to constitute 
powerful chemical messengers to promote cellular growth, activation and regulation. 
Simulating the biological immune system, this material can either stimulate or suppress the 
promotion of antibodies/steering-directions depending on whether the antigen is non-self 
or self (trapped in local minima or not). Different from the virtual target method proposed 
in [10-11], an additional virtual robot-to-target angle θv (analogous to the interleukine 
secreted by T-cells) is added to the goal angle θg whenever the trap condition (|θi - θg|>90°) 
is satisfied, 
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 θg(k+1)= θg(k)+ θv(k) (8) 

with 
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where Δθg= θg(k)-θg(k-1) and θc(k)=θc(k-1)+λ. 
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Figure 8. Flowchart of the mobile robot navigation procedure 
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Parameters k-1, k, and k+1 represent the previous state, the current state and the future state, 
respectively. Symbol “±” indicates that the location of the virtual target can be randomly 
switched to either the right (i.e. “+”) or the left (i.e. “−”) side of the mobile robot so that the 
robot has a higher probability of escaping from the local minima in either direction. λ is an 
adjustable decay angle. The bigger the value is, the faster the location of virtual target 
converges to that of the true one and the easier it is for the robot to get trapped in the local 
minima again. In this study, λ is determined after multiple simulation runs and set to 0.2. 
The incremental virtual angle θv(k) in the proposed scheme is state dependent and self-
adjustable according to the robot’s current state and the action it took previously. This 
provides powerful and effective trap-escaping capability compared to virtual target method, 
which keeps θv a constant value. θc is a converging angle and its initial value is 0. Fig. 8 
shows the flowchart of navigation procedure for mobile robot employing the proposed 
reactive immune network. 
For carrying out the necessary simulation and validating the efficacy of the proposed 
methodology, a computer program was developed using C++ language with graphical user 
interface. The simulation environment contains a robot and obstacle constructed by 
numerous square blocks 10cm in length. The environmental condition adopted in 
simulation is a 300cm×300cm grid. The size of the simulated robot is a circle with 10cm 
diameter. During each excursion, the robot tries to reach target and avoid collision with 
obstacle. Fig. 9 elucidates and demonstrates the performance of the proposed strategy for 
the robot to escape from a recursive U-trap situation, which may make the virtual target 
switching strategy (Xu, 2000) ineffective as Chatterjee and Matsuno (2001) suggested. 

 
Figure 9. Robot path and state of the indices along the trajectory 
The robot first enters a U-shaped obstacle and is attracted to the target due to the target’s 
reaching behavior until it reaches the critical point . Clearly, the azimuth of goal θg is kept 
the same during this stage; however, the distance between the robot and the target is 
decreased quickly. The detection of the trap possibility because of the abrupt change of 
target orientation at location  (θg) makes the target shift to a virtual position A* (θg - Δθg). 
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Δθg is defined as 45° is this study. Note that the switch-to-left or the switch-to-right of the 
virtual target (i.e., minus or plus Δθg) is selected randomly. On the way → , Δθg is 
decreased gradually according to equation (8) until a new local minimal is found at location 

. Again, the location of virtual target switches from A* to B*. Fig. 9 and Fig. 10 show that 
there is a successive virtual target switching A*→B1→B2→B* when the robot moves around 
the left upper corner where it is tracked in a trap (to satisfy condition |θi - θg|>90°) three 
times. After passing through the critical point , the robot keeps approaching the virtual 
target until reaching the third critical point . Concurrently, the associated orientation of 
the virtual target is decreased from B* to C. Once more, it takes three times for the robot to 
escape from the trap situation in the left lower corner on the path →  (orientation of the 
virtual target C→C1→C2→C*→D). Similar navigation procedures take place on the way 

→  (orientation of virtual target D→D1→D2→D*→E→E*). After escaping from the 
recursive U-shaped trap, the mobile robot revolves in a circle and finally reaches target  
without any trapping situations (azimuth of virtual target θg decreases gradually from E* to 
T illustrated with a dashed line). The derived trajectory illustrated in Fig. 8 is quite similar to 
the results derived by Chatterjee and Matsuno (2001). Fig. 10 illustrates the other possible 
trajectory to escape the same trap situation due to the random choice of the “plus” or 
“minus” robot-to-target angle Δθg, as shown in equation (8). Obviously, the mechanism for 
virtual target switching to the right or to the left (i.e., ± Δθg) increases the diversity and 
possibility of the robot’s escaping from the local minima problem. 

 
Figure 10. The other possible trajectories to escape the recursive trap situation 

4. Motion Planning in Dynamic Environments 
4.1 The velocity Obstacle method 
This section briefly describes the velocity obstacle (VO) method for the obstacles. For 
simplicity, the mobile robot and moving obstacles are assumed to be approximated by 
cylinders and move on a flat floor. Fig. 11(a) shows two circular objects A and B with 
velocities vA and vB at time t0, respectively. Let circle A represent the robot and circle B 
represent the obstacle. To compute the VO, obstacle B must be mapped into the 
configuration space of A, by reducing A to a point Â and enlarging B by the radius of A 
to B̂ as Fig. 11(b) demonstrates. The Collision Cone, CCA,B, is thus defined as the set of 
colliding relative velocities between Â and B̂ : 

 { }0ˆ| ,, /≠∩= BCC BAA,BBA λv  (9) 
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where vA,B = vA − vB is the relatively velocity of Â with respect to B̂ , and λA,B is the line of 
vA,B.This collision cone is the light gray sector with apex in Â, bounded by the two tangents 
λf and λr from Â to B̂  as shown in Fig. 11(b). Clearly, any relative velocity vA,B outside CCA,B 
is guaranteed to be collision-free, provided that the obstacle B̂  maintains its current shape 
and speed. The collision cone is specific to a particular robot/obstacle pair. To consider 
situation of multiple obstacles, it is better to establish an equivalent condition on the 
absolute velocities vA. This could be done simply by adding the velocity vB to each velocity 
in CCA,B, or equivalently, translating the collision cone CCA,B by vB, as shown in Figure 11(b). 
The velocity obstacle VO (in dark gray sector) is thus defined as: 

 A,BBACCVO v⊕= ,  (10) 

where ⊕ is the Minkowski vector sum operator. The VO partitions the absolute velocities vA 
into avoiding and colliding velocities. Selecting vA outside of VO would avoid collision with 
B. Velocities vA on the boundaries of VO would result in A grazing B. 

 
Figure 11. The Velocity Obstacle approach 
In the case of multiple obstacles, they are prioritized according to their danger level so that 
the most imminent collision obstacle is avoided first. In this study, a “collision distance 
index” is defined as follows to compute the danger level for each obstacle: 

 obs
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where dr,obsj represents the distance between robot and the jth obstacle, vj is speed of the jth 
obstacle, and Ts is the sampling time. Obviously, the smaller the collision distance index, the 
more dangerous to collide obstacle. 

4.2 Potential field immune network 
A potential field immune network (PFIN) inspired by the biological immune system for 
robot navigation in dynamic environment is described in this section. For simplicity, one can 
make the following choices without loss of any generality: 
• The mobile robot is an omni-directional vehicle. This means any direction of velocity 

can be produced at any time. In addition, maximum velocity and acceleration are 
assumed to be limited considering dynamics of robot and obstacles. 
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• The mobile robot and moving obstacles under consideration are approximated by 
cylinder with radius rr, and ro. This is not a severe limitation since general polygons can 
be represented by a collection of circles. Chakravarthy and Ghose (1998) showed that 
the union of all these circles can still be meaningfully used to predict collision between 
the irregularly shaped objects. Moreover, the resulting inexact collision cone can still be 
used effectively for motion planning. 

• The mobile robot and moving obstacles move in a flat floor. Moving obstacles may 
change their velocities (amplitude and direction) at any time. 

• The obstacles move along arbitrary trajectories, and that their instantaneous states 
(position and velocity) are either known or measurable. Prassler et al. (2001) have 
proposed such a sensor system includimg a laser range finder and sonar. 

Fig. 12 illustrates the architecture of the proposed potential field immune network. The 
mechanism, imitating the cooperation between B-T cells, can help the robot adapt to the 
environment efficiently. In the immunology, the T-cell plays a remarkable key role for 
distinguishing a “self” from other “non-self” antigens. Resembling the biological immune 
system, its function is to prioritize the obstacles employing the VO method so that the 
obstacle with most imminent collision can be identified. In other words, T-cell in PFIN 
distinguishes an “imminent” from other “far-away” obstacles. 

 
Figure 12. The architecture of the potential field immune network 
In PFIN, the antigen’s epitope is a situation detected by sensors and provides the 
information about the relationship between the robot’s current states and the obstacles, 
along with the target as Fig. 12 depicted. Therefore, the antigen represents the local 
environment surrounding the robot each time interval and its epitopes are a fusion data set 
for each obstacle as Fig. 13 shows. 

{ } obsobsrobsrgrgrj NjddAg
jj
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where θr,g and θr,obsj represent the orientations between robot and target, and the jth obstacle, 
respectively. dr,g and dr,obsj represent the distance between robot and target, and the jth 
obstacle, respectively. Nobs is the number of moving obstacles. 
This scene-based spatial relationship is consistently discriminative between different parts 
of an environment. The interpreter is regarded as a phagocyte and translates sensor data 
into perception. The antigen presentation proceeds from the information extraction to the 
perception translation. An antigen may have several different epitopes, which means that an 
antigen can be recognized by a number of different antibodies. However, an antibody can 
bind only one antigen’s epitope. In the proposed immune network, the antibody’s receptor 



Mobile Robots Motion Planning, New Challenges 

 

306 

is defined as the situation between robot and the imminent collision obstacle as the 
following 

obsrobsrgrgr AbdAbAbdAb ,4,3,2,1     ;    ;    ; θθ ≡≡≡≡  

where dr,obs and θr,obs represent the distance and orientation between robot and the imminent 
collision obstacle, respectively. 

 
Figure 13. Configuration of mobile robot and its relatives to target and obstacles 
The response of the overall immune network is thus derived by determining the set of 
affinities associated with the receptors and the structural similarity between antigen and 
antibody defined by quantification of the distance in antigen space. In this study, the 
collective immune response function of the immune network is defined as the following 
immune functions, 
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where vr and ωr are the robot’s velocity and angular velocity outputs, respectively. This is a kind 
of artificial potential field approach since it considers a virtual attractive force between the robot 
and the target (i.e. f(Ab1) and f(Ab2)) as well as virtual repulsive forces between the robot and the 
obstacle (i.e. f(Ab3) and f(Ab4)). The resultant force on the robot is then used to decide the 
velocities (i.e. vr and ωr) of its movements. Functions f(Abi) are expressed as following, 
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where mi is the affinity of antigen (the most imminent collision obstacle) and the ith 
antibody, mij is the stimulation/suppressive affinity between the ith and jth antibody. 
Corresponding constant parameters are K1= 20, K2= 30, K3= 15, K4= 30, respectively. Note 
that these values are defined according to the velocity limitation of the robot and obstacles. 
The affinity of the antigen and the ith antibody mi is fuzzified using the fuzzy set definitions 
as Fig. 14 illustrates. 
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Figure 14. Membership functions of antibodies 
The mapping from the fuzzy subspace to the TSK model is represented as fuzzy if-then rules 
in the form of 

IF dr,g is zero  THEN vr = 0cm/s 
IF dr,g is near  THEN vr = 10cm/s 
IF dr,g is medium  THEN vr = 15cm/s 
IF dr,g is far  THEN vr = 20cm/s 
IF θr,g is -far   THEN ωr = -30º/s 
IF θr,g is -medium  THEN ωr = -25º/s 
IF θr,g is -near  THEN ωr = -20º/s 
IF θr,g is -close  THEN ωr = -10º/s 
IF θr,g is +close  THEN ωr = 10º/s 
IF θr,g is +near  THEN ωr = 20º/s 
IF θr,g is +medium  THEN ωr = 25º/s 
IF θr,g is +far  THEN ωr = 30 º/s 
IF dr,obs  is zero  THEN vr = -15cm/s 
IF dr,obs  is near  THEN vr = -10cm/s 
IF dr,obs  is medium  THEN vr = -5cm/s 
IF dr,obs  is far  THEN vr = 0cm/s 
IF θr,obs  is -far  THEN ωr = 10º/s 
IF θr,obs  is -medium   THEN ωr = 20º/s 
IF θr,obs  is -near  THEN ωr = 30º/s 
IF θr,obs  is +near  THEN ωr = -30º/s 
IF θr,obs  is +medium  THEN ωr = -20º/s 
IF θr,obs  is +far  THEN ωr = -10º/s 

Consequently, the centroid defuzzification method is employed to calculate the weighted 
average of a fuzzy set, 
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where μk represent the matching degree of the kth rule and yk represent its corresponding 
output value. Finally, the stimulation and suppressive interaction mij between the ith and jth 
antibodies are optimized utilizing genetic algorithms. Hundreds of different circumstances 
with randomly generated moving obstacles were employed to optimize the affinity values 
mij of PFIN. Fig. 15 demonstrates one of the cases in which several tens of obstacles 
circumrotate at randomly generated positions with different radius. Fig. 15(a) shows that 
robot reaches target successfully while Fig. 15(b) demonstrates that robot is failed to reach 
target in the optimization procedure. Table 1 lists the derived optimal stimulation and 
suppressive affinity value mij between the ith and jth antibodies. 

 
Figure 15. Randomly generated moving obstacles for optimizing mij 

mij j=1 j=2 j=3 j=4 
i=1 1 -0.13 -0.24 -0.04
i=2 -0.02 1 -0.11 -0.42
i=3 -0.37 -0.84 1 0.92 
i=4 -0.21 -0.92 -0.31 1 

Table 1. The stimulation and suppressive interaction affinity value mij 

5. Simulation and discussions 
5.1 Motion Planning in Stationary Environments 
Numerous simulation examples presented by researchers (Xu, 2000; Chatterjee & Matsuno, 
2001; Kubota et al., 2001) were conducted to demonstrate the performance of mobile robot 
navigation employing RIN to various unknown environments; in particular, the capability 
of escaping from the traps or the wandering situations described. Assuming that the robot 
has eight uniformly distributed distance sensors (i.e. Ns=8) and eight moving directions 
including forward, left, right, back, forward left, forward right, back left, and back right (i.e. 
NAb=8) as Fig. 16 shows. Fig. 17(a) demonstrates the similar trajectory of the mobile robot to 
escape from loop-type and dead-end-type trapping situations in (Chatterjee & Matsuno, 
2001). Again, Fig. 17(b) demonstrates the other possible trajectory (escaping from the left 
side) due to the random selection scheme (“±”) mentioned previously. 
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Figure 16. Configuration of mobile robot employed in simulation 

 
Figure 17. Robot trajectories to escape from loop type and dead-end type trap situation 

 
Figure 18. Robot trajectories to escape from different trapping situations 
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To validate the efficiency of the proposed scheme further, three trap environments adopted 
in (Madlhava & Kalra, 2001) were utilized in this study. Obviously, the simulation results 
depicted in Fig. 18 show that the robot is capable of escaping from all the traps as expected. 
Finally, the most famous and utilized example, U-shaped trap problem, is employed in this 
study. Fig. 19 shows part of the paths of the robot escaping from the U-shaped trap with 
different L/W (length/width) ratios. Clearly, the robot is capable of escaping from different 
ratio U-shaped environments. As to the double U-shaped trap environment (Kunota et al., 
2001), Fig. 20 demonstrates the four trajectories for the robot to escape utilized RIN. 
Apparently, RIN successfully drives the robot to escape the double U-shaped trap. 

 
Figure 19. Robot trajectories to escape from U-shaped trap with different length/width ratio 

 
Figure 20. Robot trajectories to escape from double U-shaped trap 

5.2 Motion Planning in Dynamic Environments 
Numerous simulations have been utilized to evaluate the performance and effectiveness of a 
mobile robot among multiple moving obstacles using the proposed PFIN. In the simulations, 
the size of the test field is 5m ×5m, and the radius of robot and obstacles are rr = 0.1 m and ro = 
0.1 m, respectively. In addition, the speed constraints on mobile robot and moving obstacles 
are vr max = 20 cm/s, vo max = 20 and ωr max = 30º/s. The sampling time for each step is Ts = 
0.03sec. To carry out these computations, a computer program was developed employing C++ 
programming tools with a graphical user interface. The simulation examples demonstrated in 
figures are given with graphical representations in which the trajectories of the moving object 
and the robot are described. Moreover, figures show the velocity-time history and azimuth-
time history of the robot, respectively. In each figure, circles indicate the position of the robot 
and obstacles at each time instant when the robot executed an action. A high concentration of 



An Immunological Approach to Mobile Robot Navigation 

 

311 

circles indicates a lower velocity (of the obstacle and of the robot) whilst a low concentration is 
a reflection of a greater velocity. In addition, the state responses (speed and orientation) of 
robot and obstacles are depicted in the figures. Obviously, the robot smoothly avoids the 
moving obstacles and reaches goal as expected for all cases. 
Fig. 21 reveals that an obstacle coming from left side along a straight line cross the robot 
path. Within the interval of points A and D (at fifth and fourteenth sampling instant 
respectively), the obstacle slows down its speed in front of the robot’s way to goal. 
Obviously, the robot appears a “hunting” behavior in this duration. Figs. 22(a)-22(d) explain 
this behavior employing the VO concept. At position A as Fig. 22(a) shown, the robot will 
collide with the obstacle since the relative velocity between robot and obstacle (i.e. vro) is 
inside the velocity cone CCAB. Thus the robot turns left (positive angular velocity as Fig. 21 
shown) to avoid collision and reach position B. Because vro is outside the velocity cone in 
position B and there is no danger to collide the obstacle as Fig. 22(b) depicted, the robot 
turns right again due to the attraction force from the target. Once more, robot turns left to 
avoid collision at position C as Fig. 22(c) demonstrated. The “hunting” behavior (i.e. turn left 
and then turn right) is repeated until the robot reaches the position D. Subsequently, the 
robot finds that it may collide with the obstacle in next time step again as Fig. 22(d) shown. 
Robot decelerates its speed to stop quickly and then goes back to the position E (negative 
velocity from position D to E as Fig. 21 shown). Finally, the robot turns right and passed 
over behind the obstacle rapidly to reach the goal since the obstacle is no longer a threat. 

 
Figure 21. Trajectories and associated state responses of mobile robot and obstacle 

 
Figure 22. Velocity cone of robot at different positions 
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Fig. 23 shows a simulation result by which the robot can avoid two moving obstacles one 
after another then reach the goal. These obstacles come from different sides with arbitrary 
trajectory and varying speed cross the robot path. Similar to the previous simulation, the 
robot decelerates its speed at points A and B to avoid the first and second obstacles 
separately. Then it accelerates and moves towards the goal without collision 

 
Figure 23. Trajectories and associated state responses of mobile robot and obstacles 
Fig. 24 demonstrates the motion planning of a mobile robot tracking a moving goal while 
avoiding two moving obstacles. Obviously, mobile robot is able to reach goal and avoid 
moving obstacles no matter what the goal is fixed or moving employing the proposed PFIN. 
The robot decelerates at position A’ to wait for the first obstacle while accelerates at position 
C’ to exceed the second obstacle. Moreover, robot turns bigger angles at position B’ to follow 
the moving target compared with that of fixed target case. Note that the two obstacles have 
the same trajectories in both cases. 

 
Figure 24. Trajectories of robot and obstacles for fixed/moving goals 
Fig. 25 demonstrates another example of motion planning for the case of suddenly 
moving/stopped obstacle. Figs. 25(a)-25(d) illustrate a simulation result by which the robot 
successfully avoid two moving and two static obstacles. As usual, the robot exceeds the first 
moving obstacle at position A’ and waits for the second moving obstacle at position C’. Fig. 
25(e) demonstrates that the robot reaches target safely even though the second static obstacle 
abruptly moves when the robot approaches it. Fig. 25(f) shows the similar result except that 
the second moving obstacle unexpectedly stops when it near the robot. Note that both the 
moving and stopping actions of the second static obstacle shown in Fig. 25(e) and Fig. 25(f) 
are pre-programmed to test the performance of the proposed architecture. 
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Figure 25. Trajectories of robot and obstacles for suddenly moving/stopped obstacle 
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6. Experimental Results 
Numerous experiments were implemented to evaluate the performance in real application. 
Fig. 26 shows the mobile robot (with omni-directional wheel) used. Its dimension is 
416mm×363.7mm×670mm. The robot installed with 8 ultrasonic sensors, two web-cams, and 
a laser range finder. Figs.27, 28 demonstrate the pictures of the robot navigate in two “U” 
shape obstacles (with different length and width: 160mm×320mm, and 300mm×100mm) and 
their corresponding trajectories, respectively.  
 

 
Figure 26. Dimension and pictures of the mobile robot 

 

  
Figure 27. Navigation of robot in 160mm×320mm “U” obstacle and corresponding 
trajectories 

 

   
Figure 28. Navigation of robot in 300mm×100mm “U” obstacle and corresponding 
trajectories 



An Immunological Approach to Mobile Robot Navigation 

 

315 

Fig. 29 illustrate the pictures of the robot navigate in a “sequential-U” shape obstacle 
(400mm×190mm with a 90mm bar in middle) and its corresponding trajectory, respectively. 

    
Figure 29. Trajectories in “sequential-U” shape obstacle and corresponding trajectories 
All these figures show that the mobile robot is capable of navigating to the goal and 
escaping from local minimum traps employing the proposed reactive immune network. 
Note that mobile robot can approach target from both sides randomly as described in 
previous section. 

6. Conclusion 
Two different kind of reactive immune networks inspired by the biological immune system 
for robot motion planning are constructed in this study. The first one is a potential filed 
based immune network with an adaptive virtual target mechanism to solve the local minima 
problem navigating in stationary environments. Simulation and experimental results show 
that the mobile robot is capable of avoiding stationary obstacles, escaping traps, and 
reaching the goal efficiently and effectively. Employing the Velocity Obstacle method to 
determine the imminent collision obstacle, the second architecture guide the robot avoiding 
collision with the most danger object (moving obstacle) at every time instant. Simulation 
results are presented to verify the effectiveness of the proposed architecture in dynamic 
environment. Currently, laser range finder is utilizing to evaluate the performance of the 
proposed mechanism. 

7. Acknowledgements 
The authors would like to acknowledge the National Science Council, Taiwan, R.O.C., for 
making this work possible with grants NSC 95-2221-E-036-009 and NSC 96-2221-E-036-032-
MY2. 

8. References 
Baraquand, J.; & Latombe, J.C. (1990). A Monte-Carlo algorithm for path planning with 

many degrees of freedom, Proceedings of the IEEE International Conference on Robotics 
and Automation, pp. 1712-1717, Cincinnati, OH, May, 1990 

Carneiro, J.; Coutinho, A.; Faro, J. & Stewart, J. (1996). A model of the immune network with 
B-T cell co-operation I-prototypical structures and dynamics, Journal of theoretical 
Biological, Vol.182, No.4, 1996, pp. 513-529 



Mobile Robots Motion Planning, New Challenges 

 

316 

Chakravarthy, A. & Ghose, D. (1998). Obstacle Avoidance in a Dynamic Environment: A 
Collision Cone Approach, IEEE Transactions on Systems, Man, and Cybernetics—Part 
A: Systems and Humans, Vol.25, No.5, 1998, pp. 562-574 

Chatterjee, R. & Matsuno, F. (2001). Use of single side reflex for autonomous navigation of 
mobile robots in unknown environments, Robotics and Autonomous Systems, Vol.35, 
No.2, 2001, pp. 77-96 

Chang, H. (1996). A new technique to handle local minima for imperfect potential field 
based motion planning, Proceedings of the IEEE International Conference on Robotics 
and Automation, pp. 108-112, Minneapolis, Minnesota, April, 1994 

Dasgupta, D. (1997). Artificial neural networks and artificial immune systems: similarities 
and differences, IEEE International Conference on Systems, Man, and Cybernetics, pp. 
873-878, Orlando, Florida, October, 1997 

Dasgupta, D. (1999). Artificial Immune Systems and Their Applications, Springer-Verlag, ISBN 
3-540-64390-7, Berlin Heidelberg 

de Castro, L.N. & Jonathan, T. (1999). Artificial immune systems: A new Computational 
Intelligence Approach, Springer-Verlag, ISBN 1-85233-594-7, London 

Duan, Q.J.; Wang, R.X.; Feng, H.S. & Wang, L.G. (2004). An immunity algorithm for path 
planning of the autonomous mobile robot, IEEE 8th International Multitopic 
Conference, pp. 69-73, Lahore, Pakistan, December, 2004 

Duan, Q.J.; Wang, R.X.; Feng, H.S. & Wang, L.G. (2005). Applying synthesized immune 
networks hypothesis to mobile robots, IEEE International Conference on Autonomous 
Decentralized Systems, pp. 69-73, Chengdu, China, April, 2005 

Farmer, J.D.; Packard, N.H. & Perelson, A.S. (1986). The immune system adaptation, and 
machine learning, Physica, Vol.22-D, Vol.2, No.1-3, 1986, pp. 187-204 

Ferrari, C.; Pagello, E.; Ota, J.; & Arai, T. (1998). Multi-robot motion coordination in space 
and time, Robotics and Autonomous Systems, Vol.25, No.2, 1998, pp. 219-229 

Fiorini, P. & Shiller, Z. (1998). Motion planning in dynamic environments using velocity 
obstacles, International Journal of Robotics Research, Vol.17, No.7, 1998, pp. 760-772 

Fujimura, K. & Samet, H. (1989). A hierarchical strategy for path planning among moving 
obstacles, IEEE Trans on Robot and Automat, Vol.5, No.1, 1989, pp. 61-69 

Fujimori, A. (2005). Navigation of mobile robots with collision avoidance for moving 
obstacles, Proc Instn Mech Engrs Part I: J Systems and Control Engineering, Vol.219, 
No.1, 2005, pp. 99-110 

Ge, S. S. & Cui, Y. J. (1989). Dynamic motion planning for mobile robots using potential field 
method, Autonomous Robots, Vol.13, No.3, 1989, pp. 207–222 

Hart, E.; Ross, P.; Webb, A. & Lawson, A. (2003). A role for immunology in “next 
generation” robot controllers, Lecture Notes in Computer Science, Vol.2787, 2003, pp. 
46-56 

Hightower, R.; Forrest, S. & Perelson, A. S. (1995). The evolution of emergent organization in 
immune system gene libraries, Proceedings of Sixth International Conference on Genetic 
Algorithms, pp. 344-350, Pittsburgh, PA, July, 1995 

Hoffmann, G.W. (1989). The immune system: a neglected challenge for network theorists, 
IEEE International Symposium on Circuits and Systems, pp. 1620-1623, Portland, OR, 
May, 1989 



An Immunological Approach to Mobile Robot Navigation 

 

317 

Ishida, Y. (1997). The immune system as a prototype of autonomous decentralized systems: 
an overview, Proceedings of Third International Symposium on autonomous decentralized 
systems, pp. 85-92, Berlin, Germany, April, 1997 

Ishiguro, A.; Watanabe, Y. & Uchikawa, Y. (1995). An immunological approach to dynamic 
behavior control for autonomous mobile robots, IEEE/RSJ International Conference on 
Intelligent Robots and Systems, pp. 495-500, Pittsburg, PA, 1995 

Jerne, N.K. (1973). The immune system, Scientific American, Vol.229, No.1, 1973, pp. 52-60 
Kondo, A. T.; Watanabe, Y.; Shirai, Y. & Uchikawa, Y. (1997). Emergent construction of 

artificial immune networks for autonomous mobile robots, IEEE International 
Conference on Systems, Man, and Cybernetics, pp. 1222-1228, Orlando, Florida, 
October, 1997 

Kubota, N.; Morioka, T.; Kojima, F. & Fukuda, T. (2001). Learning of mobile robots using 
perception-based genetic algorithm, Measurement, Vol.29, No.3, 2001, pp. 237-248 

Lee, D.-W. & Sim, K.-B. (1997). Artificial immune network-based cooperative control in 
collective autonomous mobile robots, IEEE International Workshop on Robot and 
Human Communication, pp. 58-63, Sendai, Japan, September, 1997 

Lee, D.-J.; Lee, M.-J.; Choi, Y.-K. & Kim, S. (2000). Design of autonomous mobile robot action 
selector based on a learning artificial immune network structure, Proceedings of the 
fifth Symposium on Artificial Life and Robotics, pp. 116-119, Oita, Japan, January, 2000 

Lee, S.; Adams, T.M. & Ryoo, B.-Y. (1997). A fuzzy navigation system for mobile 
construction robots, Automation in Construction, Vol.6, No.2, 1997, pp. 97-107 

Liu, C.; Marcelo Jr., H.A.; Hariharan, K. & Lim, S.Y. (2000). Virtual obstacle concept for local-
minimum-recovery in potential-field based navigation, Proceedings of the IEEE 
International Conference on Robotics and Automation, pp. 983-988, San Francisco, CA, 
April 2000 

Luh, G.-C. & Cheng, W.-C. (2002). Behavior-based intelligent mobile robot using immunized 
reinforcement adaptive learning mechanism, Advanced Engineering Informatics, 
Vol.16, No.2, 2002, pp. 85-98 

Madlhava, K. & Kalra, P.K. (2001). Perception and remembrance of the environment during 
real time navigation of a mobile robot, Robotics and Autonomous Systems, Vol.37, 
No.1, 2001, pp. 25-51 

Mucientes, M.; Iglesias, R.; Regueiro, C. V.; Bugarín, A.; Cariñena, P. & Barro, S. (2001). 
Fuzzy temporal rules for mobile robot guidance in dynamic environments, IEEE 
Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, 
Vol.21, No.3, 2001, pp. 391-398 

Oprea, M.L. (1996). Antibody repertories and pathogen recognition: the role of germline diversity 
and somatic hypermutation, PhD Dissertation, Department of Computer Science, The 
University of New Mexico, Albuquerque, New Mexico 

Prassler, E.; Scholz, J. & Fiorni, P. (2001). A robotic wheelchair for crowded public 
environments, IEEE Robotics and Automation Magazine, Vol.7, No.1, 2001, pp. 38-45 

Qu, Z.; Wang, J. & Plaisted, C.E. (2004). A new analytical solution to mobile robot trajectory 
generation in the presence of moving obstacles, IEEE Transactions on Robotics, 
Vol.20, No.6, 2004, pp. 978-993 

Roitt, I.; Brostoff, J. & Male, D.K. (1998). Immunology, Mosby-Harcourt Publishers Ltd, ISBN 
0723429189, London 



Mobile Robots Motion Planning, New Challenges 

 

318 

Timmis, J.; Neal, M. & Hunt, J. (1999). Data analysis using artificial immune systems, cluster 
analysis and Kohonen networks: some comparisons, IEEE International Conference 
on Systems, Man, and Cybernetics, pp. 922-927, Tokyo, Japan, October, 1999 

Vargas, P.A.; de Castro, L.N.; Michelan, R. & Von Zuben, F.J. (2003). Implementation of an 
Immuno-Gentic Network on a Real Khepera II Robot, IEEE Congress on Evolutionary 
Computation, pp. 420-426, Canberra, Australia, December, 2003 

Xu, W.L. (2000). A virtual target approach for resolving the limit cycle problem in 
navigation of a fuzzy behaviour-based mobile robot, Robotics and Autonomous 
Systems, Vol.30, No.4, 2000, pp. 315-324 

Yun, X. & Tan, K.-C. (1997). A wall-following method for escaping local minima in potential 
field based motion planning, Proceedings of the IEEE International Conference on 
Advanced Robotics, pp. 421-426, Monterey, CA, July, 1997 



16 

A Mobile Computing Framework for Navigation 
Tasks 

Mohammad R. Malek1,2, Mahmoud R. Delavar3  
and Shamsolmolook Aliabady2 

1Dept. of GIS, Faculty of Geodesy and Geomatics Eng., KN Toosi University of  
Technology, 2National Cartographic Center, 3Dept. of Surveying and Geomatics Eng., 

University of Tehran 
Iran  

1. Introduction 
Mobile agents and movement systems have been rapidly increased worldwide. Within the 
last few years, we were facing many advances in wireless communication, computer 
networks, location-based engines, and on-board positioning sensors. Mobile GIS as an 
integrating system of mobile user, wireless network, and some GIS capabilities has fostered 
a great interest in the GIS field [14]. Without any doubt navigation and routing could be one 
of the most popular GIS based solution on mobile terminals. Due to this fact the mobile GIS 
is defined as an area about non-geographic moving object in geographic space [22].  
Although the mobile computing has been increasingly growing in the past decade, there still 
exist some important constraints which complicate the use of mobile GIS systems. The 
limited resources on the mobile computing would restrict some features that are available 
on the traditional computing. The resources include computational resources (e.g., processor 
speed and memory) user interfaces (e.g., display and pointing device), bandwidth of mobile 
connectivity, and energy source [3], [11], [22], and [38]. In addition, one important 
characteristic of such environment is frequent disconnection that is ranging from a complete 
to weak disconnection [11] and [44]. The traditional GIS computation methods and 
algorithms are not well suited for such environment. These special characteristics of mobile 
GIS environment make us pay more attention to this topic.  
In this chapter, in order to provide a paradigm that treats with mobile objects; i.e. an 
automatic machine that is capable of movement in a mobile information environment; a 
logical framework is presented. In this framework the concept of spatial influenceability is 
combined with well-known formal structure; i.e. network structure. In our view, 
influenceability which stands for both space and time domains is a primary relation. It has 
some exclusive properties in the mobile information context. It can be served as a basis for 
context-aware mobile computing because it depends on abilities of single player or agent.  
Within the framework of this chapter we attempt to apply an idea to treat moving objects in 
mobile GIS environment based on partitioning in space and time. The idea is, to divide 
space-time into small parts and find solution (e.g. collision-free paths and wayfinding 
procedures) recursively. In this paper, finding a path without any conflict which is so-called 
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collision-free path is highlighted. It is an important task of routing and navigation. 
Collision-free path and its variants find applications in robot motion planning, intelligent 
transportation system (ITS), and any mobile autonomous navigation system. It will be 
concluded that Wayfinding which is a fundamental spatial activity that people experience in 
daily lives, could be solved by this method.  

2. Related Works  
An overview of collision detection, mathematical methods, and programming techniques to 
find  collision-free and  optimal path between two states for a single vehicle or a group of 
vehicles can be found in [8], [19], [40] and [18] respectively.  In the field of robot motion 
planning potential field methods introduced by Khatib, are widely used [27]. The main 
attraction of potential method is its ability to speed up the optimization procedure. New 
researches in this area can be found as well in [2] and [18]. Path planning techniques using 
mixed-integer linear program were developed earlier, especially in the field of aerial 
vehicles navigation (see e.g. [32-33], [35-36], and [39]). The reader who wants to see more 
related topics is referred to [12]. In almost all works it is assumed that the moving object 
cruises within a fixed altitude layer, with a fixed target point, and its velocity is predefined. 
In addition, accessibility to up-to-date knowledge of the whole mobile agents and a global 
time frame are prerequisite. The lack of two last conditions in distributed mobile computing 
environment is a well-known fact. 
A method for reducing the size of computation is computation slice [13] and [30]. The 
computation slicing as an extension of program slicing is useful to narrow the size of the 
program. It can be used as a tool in program debugging, testing, and software maintenance. 
Unlike a partitioning in space and time, which always exists, a distributed computation slice 
may not always exist [13].  
Among others, two works using divide and conquer idea, called honeycomb and space-time 
grid, are closer to our proposal. The honeycomb model [9] focuses on temporal evolution of 
subdivisions of the map, called spatial partitions, and gives a formal semantics for them. 
This model develops to deal with map and temporal map only. The concept of space-time 
grid is introduced by Chon et al. [5-7]. Based upon the space-time grid, they developed a 
system to manage dynamically changing information. In the last work, they attempt to use 
the partitioning approach instead of an indexing one. This method can be used for storing 
and retrieving the future location of moving object.  
In the previous work of the first author [25-28] a theoretical framework using 
Influenceability and a qualitative geometry in the mobile environment with application in 
the relief management was presented. This article can be considered as an empirical 
extension of them. 

3. Algebraic and Topological structure 
Causality is a well-known concept. There is much literature on causality, extending 
philosophy, physics, artificial intelligence, cognitive science and so on (e.g. [1, 16, and 40]). 
In our view, influenceability stands for spatial causal relation, i.e. objects must come in 
contact with one another; cf. [1]. Although influenceability as a primary relation does not 
need to prove, it has some exclusive properties which show why it is selected. 
Influenceability supports contextual information and can be served as a basis for context 
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aware mobile computing which has attracted researchers in recent years [10] and [31]. This 
relation can play the role of any kind of accident and collision. It is well-known that the 
accident is the key parameter in most transportation systems (for example see [36]). As an 
example the probability of collision defines the GPS navigation integrity requirement. In 
addition, this model due to considering causal relation is closer to a naïve theory of motion 
[30]. 
In the relativistic physics [17] based on the postulate that the vacuum velocity of light c is 
constant and maximum velocity, the light cone can be defined as a portion of space-time 
containing all locations which light signals could reach from a particular location (Figure 1). 
With respect to a given event, its light cone separates space-time into three parts, inside and 
on the future light cone, inside and on the past light cone, and elsewhere. An event A can 
influence (influenced by) another event; B; only when B (A) lies in the light cone of A (B). In 
a similar way, the aforementioned model can be applied for moving objects. Henceforth, a 
cone is describing an agent in mobile GIS environment for a fixed time interval. That means, 
a moving object is defined by a well-known acute cone model in space-time. This cone is 
formed of all possible locations that an individual could feasibly pass through or visit. The 
current location or apex vertex and speed of object is reported by navigational system or by 
prediction. The hyper surface of the cone becomes a base model for spatio-temporal 
relationships, and therefore enables analysis and further calculations in space-time. It also 
indicates fundamental topological and metric properties of space-time.  
As described in Malek [25- 26], the movement modeling, are expressed in differential 
equation defined over a 4-dimensional space-time continuum. The assumption of a 4-
dimensional continuum implies the existence of 4-dimensional spatio-temporal parts. It is 
assumable to consider a continuous movement on a differential manifold M which 
represents such parts in space and time. That means every point of it has a neighborhood 
homeomorphic to an open set in Rn. A path through M is the image of a continuous map 
from a real interval into M. The homeomorphism at each point of M determines a Cartesian 
coordinate system (x0, x1, x2, x3) over the neighborhood. The coordinate x0 is called time. In 
addition, we assume that the manifold M can be covered by a finite union of neighborhoods. 
Generally speaking, this axiom gives ability to extend coordinate system to the larger area. 
This area shall interpret as one cell or portion of space-time. The partitioning method is 
application dependent. The partitioning method depends on application purposes [6] on the 
one hand, and limitation of the processor speed, storage capacity, bandwidth, and size of 
display screen on the other hand. It is important to note that the small portion of space and 
time in this idea is different from the geographical area covered by a Mobile Supported 
Station (MSS). This idea is similar to Helmert blocking in the least squares adjustment 
calculation [42]. 
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Figure 1. A cone separates space-time into 3 zones, past, future, and elsewhere 

Let us take influenceability as an order relation (symbolized by ≺ ) be primitive relation. It is 
natural to postulate that influenceability is irreflexive, antisymmetric, but transitive, i.e., 

( ) ( )x y y z x z∧ ⇒≺ ≺ ≺  (1) 

Thus, it can play the role of ‘after’.  
Definition 1 (Temporal order):  Let x and y be two moving objects with xt  and yt  

corresponding temporal orders, respectively. Then,   

( ) ( )x yx y t t⇒ <≺  (2) 

Connection as a reflexive and symmetric relation [10]can be defined by influenceability as 
follows: 
Definition 2 (Connect relation):  Two moving objects x and y are connected if the following 
equation holds;  

( ) ( , ) : [( ) ( )] { ( )[( ) ( )]}xy C x y x y y x a x a y y a x∀ = ∨ ∧ ¬ ∃ ∨≺ ≺ ≺ ≺ ≺ ≺  (3) 

Consequently, all other exhaustive and pairwise disjoint relations in region connected 
calculus (RCC) [3], i.e., disconnection (DC), proper part (PP), externally connection (EC), identity 
(EQ), partially overlap (PO), tangential proper part (TPP), nontangential proper part (NTPP), and 
the inverses of the last two; TPPi and NTPPi; can be defined.  
The consensus task as an acceptance of the unique framework in mobile network can not be 
solved in a completely asynchronous system, but as indicated by Malek [24] with the help of 
influenceability and partitioning concept, it can be solved. Another task in mobile network 
is leader election. The leader, say a, can be elected by the following conditions:  

{ }:x The set of moving objects a x∀ ∈ ≺ .  

Furthermore, some other relations can be defined, such as which termed as speed-connection 
(SC) and time proper overlap (TPO) (see Figure 2): 
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 ( , ) : ( , )
{[ ( , ) ( ) ( ( , ) ( ( , ) ( , ) ( , )] ( , )}
SC x y EQ x y

C x y ab EC x a EC x b EC y a EC y b C a b
= ¬ ∧
∧ ∀ ∧ ∧ ∧ ⇒

 (4) 

 ( , ) : {( ) ( ( , ) [ ( ( , ) ( , ))] }TPO x y x y PO x y z SC x z PO y z= ∧ ∧ ∀ ⇒≺  (5) 

a)     

Figure 2: a) Speed-connection relation and b) Time-proper relation between two objects 

As an example, team arrangement is considered. Team arrangement is an important task of 
any team coaching. Team arrangement in a mobile environment finds its applications not 
only in online problems such as Robocup or battlefield problem, but also in offline coaching. 
The main assumptions about mobile environment are valid in the usual coaching problem. 
Robocup is a well known application area of this problem. Team arrangement in such a 
mobile environment is a complex task in space and time. In this scenario players can be 
modeled with a cone based on their estimated speed and position (Figure 3). 

 
Figure 3.  Robocup soccer from influenceability view point 

Table 1 shows some different situations between players and their correspond relations 
based on our proposed model. 

Space

Time 

Space 

Time

(b)



Mobile Robots Motion Planning, New Challenges 

 

324 

Presentation Application Relation 

 

Design of the defense 
players Players A and B overlap 

 

Man-for-man type of 
defense 

Player A covers B 
completely 

  

Arrangement of players to 
minimize empty space Externally connection 

 

Player z can attack from 
gap between a and b 

C(a,z) and C(b,z) but ¬ C(a,b) 
 

Table 1. Some relations between players and their presentations 

4. Collision-Free Path 
An important task in navigation systems is to find a secure or collision-free path. A 
collision-free path is a route that a moving object does not have any collision or intersection 
with obstacles as well as other moving objects. Finding a collision-free path requires four 
steps, dividing the space domain into small parts, finding connected cones, computing free 
space, and finally solving an optimization problem.  The problem discussed in this section is 
using a mathematical programming technique to find the optimal or near optimal collision-
free path between moving objects. The details of the other steps are left for future articles. 
 After partitioning space-time into space-time cells, all connected cones in space-time should 
be calculated.  Let [t]=[ti,ti+1] be an interval of time. The circle section of kth cone at tj; 
ti ≤ tj ≤ ti+1 is denoted by CIR(Ok,tj), where Ok is the center point. The radius of CIR(Ok,tj) is 
calculated by speed; vk; 

 rk= vk.( tj- ti) (6) 

The intersection of two circles is a lens-shaped region. As it can be seen in Figure 4, the 
following equations can be given: 

DRL =√[(xR - xL)2+( yR - yL)2] 

 aRL = |rR + rL-D| (7) 

a bzz a 

a b

b

a
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bRL = rk2- ( rk-a)2 

where  x, y are the coordinates of point O. 

 
Figure 4.  Intersection of two circles 

Removing the barriers gives free space.  It can easily be accomplished by removing all 
obstacles in topological structured map or by using trapezoidal map (see e.g. [8]). The 
trapezoidal map is an arrangement of line segments, which partitions the space into 
trapezoidal sections. Each trapezoidal has exactly two non-vertical boundaries and belongs 
to one face.  
Figure 5 shows different kind of barriers. Barriers vary in size, shape and their behavior in 
time. The barrier (a)  is constant barrier like a wall, (b) is a temporary barrier with a spatial 
extend, for example closing a road for a few hours, (c)  is a changing size barrier in time. 

 
Figure 5.  Different types of barriers 

It will be distinguished between two network architectures, centralized and co-operative. In 
the centralized architecture, a control center exists which receives and sends data to moving 
objects. In the co-operative architecture all moving objects exchange information between 
themselves [21]. In the former architecture, the control variables of all nodes associates in the 
optimization, but in the later only variables of the active node are considered. One example 

(a) Spac

(b)
(c)

Time
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of such optimization is used for unmanned aerial vehicles (UAV) or any other 
autonomously guided robots. 

4.1. Centralized Network 
As explained before, the hyper-surface of the cone indicates the fundamental topological 
and metrical properties of space-time. The collision-free paths, result of these cones, 
collectively guarantee a global collision-free route. Finding a collision-free path needs to 
solve the constrained optimization problem as discuss in this section. 
Trying to find the new control parameters (position and speed) such that variation of 
parameters minimized and no collision accrued, leads to a constrained optimization 
problem. Consider the following model 

 
*= +u u v  (8) 

where 
m∈v is the vector of residuals, u  and *u  are the variables and estimated 

parameters, respectively. We select the sum of squares of residuals as the target function, 
which has to be minimized: 

 ( ) : ,  minΦ =< > →u v v  (9) 

The manifold MT can be introduced by means of target function (9) as: 

,  ; Φ =< > ∈v v u  

 MT:= {Φ| u∈ }  (10) 

where ⊆ m is an open set which includes u and <.,.> indicates inner product. 

Minimizing Φ means finding local extreme point in target manifold [24]. In addition, 
having some conditions: 

 G(u,c)=0 (11) 

the best looked for result  must be satisfied in them. In the equation (11) the vector c 
includes the constants and n nonlinear equations are denoted by G. In the current problem, 
system equation (11) translates to 

 Dij – (ri + rj ) ≥ εk ; ∀i,j : i≠j , k=1,…,n (12) 

where ε=ε(u,S,E,…) is a small quantity function of navigation parameters, shape 
and size of object, and other environment variables depending on specification of the 
problem domain. The total equations (9) and (12) results to a constrained optimization, 
which has to be solved by for instance one of ‘Direct substitution’, ‘Constrained variation’, 
‘Lagrange multipliers’ methods [34]. The first order optimality condition leads to the system 
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of nonlinear normal equations. Using the Lagrange multipliers and applying the first order 
optimality conditions the following system result [15] 

u*- (δG(u,c)/ δ u*).k=u 
 G(u,c) = 0 (13) 

where k is Lagrange multipliers. MALEK [23-24] discussed nonlinear approaches and their 
geometrical interpretations to solve such problems. In a centralized architecture, u consists 
of the parameters of all objects in the net. The result of the optimization will send to the all 
nodes, which have influenceability relation to each other. On the contrary, in the co-
operative architecture, u consists of speed and position parameters of the active object and 
result will apply only to own itself. Through the following example the suggested method 
will be more clarified. 
Example: Consider four vessels with the following properties: 

 

 
 X-Coordinate Y-Coordinate   Speed (m/sec) 

V1 100       100      20 
V2 200       200      16 
V3 -50      -50      24 
V4 500      500      20 

Table 2. Coordinate and speed at start time 

By  ti=0  ;  ti+1=5 and ε=0 the following table holds 

    r1=100       r2=80      r3=120        r4=100 

Table 3. Radius of the CIR(O,5) 
By checking (7) all connected cones can be found (Table 4). 

 

    V1 V2  V3 V4 

V1          _    Intersect  Intersect Not Intersect 

V2           _ Not Intersect Not Intersect 

V3           _ Not Intersect 

V4            _ 

Table 4. Intersected cones 

The initial position, result of system equation (13) in a centralized architecture and the final 
position are shown in the figure 4, table 4 and figure 6, respectively. 
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 X-Coordinate Y-Coordinate   Speed (m/sec) 

V1 99.224 99.224 16.944 
V2 200.6 200.6 11.73 
V3 -49.828 -49.828 25.214 

Table 5. The result of constrained optimization 

 
 V3 V1 V2 V4 
Figure 6. Four moving objects from isometric view 

 
 V3 V1 V2 
Figure 7. three moving objects after optimization from isometric view 

4.2 Co-operative Network  
Let us continue with the following scenario: A private company in order to attract more 
tourists to the lake “Wörthersee” in Austria provides an autonomous navigation system for 
their motorized small boats. Each boat equipped with a palm-top computer; using GPS for 
positioning; that can communicate via a wireless network. Based upon this capability, the 
system can play the role of online tourist guide at each part of the lake. The server sends the 
necessary information like current position and velocity of the other boats those are relevant 
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to the mobile host. That means, the only information of the agents that have accident 
possibility in the current cell will be sent. As an instance, only the information of the agent 
number 2 will be sent to the agent number 1 in the Figure 2. This rule can be formalized by 
spatial influenceability relation [25]. The mobile host will send its state information like its 
position and velocity once they have significant changes. 
At call setup an optimal route is generated. This task can be done by the fixed host. In each 
cell, the preliminary route is ensured that no collision occurred. It is natural to define the 
target function by minimizing the distance between calculated route and the optimal one. It 
may be named as nearest to optimal path. The method described in this part provides a 
minimum distance formulation (15). It is combined with the linear collision avoidance 
constraints [39], turn and velocity constraints, and is extended to match with partition and 
conquer idea. 

dΣdT.Min  

 S.T.: (14) 
Collision avoidance, turn, and velocity conditions 

d  is the vector of distances between optimal state parameters and the estimated control 
parameters in the space-time grid of interest. Finally, the linear constraint quadratic 
optimization problem should be solved. This part can be run in the clients and the 
procedure will repeat in other parts. 

4.2.1 Collision avoidance condition 
We shall consider for simplicity of exposition of two moving objects in a two-dimensional 

space. The position of agent p at time step i is given by ),( i
p

i
p yx  and its velocity 

by
),( i

yp
i
xp vv

, forming the elements of the state vector
i
xpS

 . The real value of the state 
parameter is represented by an asterisk. At every time interval the corresponding surfaces; 
i.e. cone; of both objects must lie outside each other. It is possible to consider one object as a 
point and similar to classical approach taken in robot motion planning, enlarge another 
object with the same size. In this case, the problem becomes easier where the point should 
be outside of a polygon. With this trick linear conditions introduced by Schouwenaars et al. 
[39] can be used: 
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where ld is the safety distance in direction l, i
pqkc are a set of binary variables (0 or 1) and 

R is a positive number that is much larger than any position or velocity to be encountered 
in the problem. 

4.2.2 Turn and Velocity Condition 
It is possible to define other conditions to constrain the rate of turning ( maxα ) and changing 

velocity ( Δ ). Turn condition can be defined with the help of coordinates. Assuming space-
time is small, linearization may apply. Other linear equations are suggested by Richards and  
How [36]. The velocity conditions can be derived easily as linear function from parameters. 

 

Δ≤−

≤
−
−

*

max

vv

yy
xx

i
p

j
p

i
p

j
p α

 (16) 

4.2.3   Example 
This example demonstrates that the suggested method forms an acceptable collision-free 
path for two boats. Figure 8 shows current locations of the boats, destinations, and space 
grids. The time axis is perpendicular to the space. Minimum distance optimality condition 
results to straight line paths to the destinations which clearly lead to a collision. In this 
example, the control parameters of the left vehicle are optimized.  

 
Figure 8. The trajectories of two intersecting boats. Accident will occur at fifth time interval 

Let minimum speed, maximum speed, fixed time interval, and maximum deviation angle 
(off-route angle) be 12 m/s, 30 m/s, 20 sec., and 5 degrees, respectively. It can be easily seen 
that the approximate envelope of cones with that deviation angle is a rectangle in 2-
dimensional and a cylinder in 3-dimensional space. Figure 3 shows the result of 
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optimization with equal weight for all parameters. As can be seen, only velocity of the left 
boat at collision time is reduced without any significant change in direction. In order to 
reach a minimum time trajectory or maximum traveling with a fixed amount of money in 
our scenario, high weights for velocity are defined and the results are shown in the Figure9. 
By this method it is not necessary to assume that target point and the altitude are fixed. In 
each space-time cell some new object can appear. Due to linear formulation, this approach 
may be used in real or fast-time systems. 

 
Figure 9. The designed trajectory for the left boat when all parameters are considered with 
equal weights 

 

    
Figure 10. The designed trajectories with different turn conditions and priority of the 
velocity 
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5. Conclusion and Further Work  
This chapter has demonstrated that concerns to mobile GIS theory can profitably be 
addressed in terms of the partition and conquer idea, and influenceability relation. Of 
particular significance the collision-free path problem in the context of a limited resources 
mobile GIS environment was addressed. We have demonstrated that concerns to mobile GIS 
theory can be addressed profitably in terms of the partition and conquer idea. It is based on 
partitioning space-time into small parts, solving the problem in those small cells and 
connecting the results with each other to find the final result. The reasons behind are clear. 
The problems can be solved easier and many things are predictable at a small part of space-
time. Then, a logic-based framework for representing and reasoning about qualitative 
spatial relations over moving agents in space and time was derived. We provide convincing 
evidence of the usability of our suggested method by demonstrating how it can provide 
model for routing and navigation. A mathematical programming formulation has been 
proposed and simulated by an example to express optimal or near optimal collision-free 
path under the framework of such partitioning paradigm. 
One important possible application of suggested methodology as our further work is mobile 
wayfinding services. It is based on the suggested method because wayfinding is an ordered 
presentation of the needed information to access an environment. It can be done in small 
parts as far as reaching to the desired point. A detailed uncertainty modeling for 
partitioning method and solving inverse problem, i.e., to determine the size and other 
characteristics of small parts based on the given information about  needed precision, 
resource constraints, etc. are also among our future work.  
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1. The Harmonic Potential Field Planning Approach: A Background 
Utility and meaning in the behavior of an agent are highly contingent on the agent’s ability 
to semantically embed its actions in the context of its environment. Such an ability is cloned 
into an agent using a class of intelligent motion controllers that are called motion planners. 
Designing a motion planner is not an easy task. A planner is the hub that integrates the 
internal environment of an agent (e.g. its dynamics and internal representation etc.), its 
external environment (i.e. the work space in which it is operating, its attributes and the 
entities populating it), and the operator’s imposed task and constraints on behavior as one 
goal-oriented unit. Success in achieving this goal in a realistic setting seems closely tied to 
the four conditions stated by Brooks which are: intelligence, emergence, situatedness, and 
embodiment (Brooks, 1991).  While designing planners for agents whose inside occupies a 
simply-connected region of space can be challenging, the level of difficulty considerably 
rises when the planner is to be designed for agents whose inside no longer occupies a 
simply-connected space (i.e. the agent is a distributed entity in space). This situation gives 
rise to sensitive issues in communication, decision making and environment representation 
and whether a centralize top-down mode for behavior generation should be adopted or a 
decentralized, bottom-up approach may better suit the situation at hand.  
To the best of this authors’ knowledge, the potential field (PF)  approach was the first to be 
used to  generate  a  paradigm  for  motion  guidance (Hull,1932); (Hull,  1938). The 
paradigm began from the simple idea of an attractor field situated on the target and a 
repeller field fencing the obstacles.  Several decades later, the paradigm surfaced again 
through the little-known work of Loef and Soni which was carried out in the early 1970s  
(Loef , 1973); (Loef  &  Soni, 1975). Not until the mid-1980s did  this  approach  achieve  
recognition  in  the  path  planning literature through the works of Khatib  (Khatib , 1985),  
Krogh (Krogh, 1984),  Takegaki  and Arimoto (Takegaki  &  Arimoto, 1981), Pavlov and 
Voronin (Pavlov & Voronin, 1984) ,Malyshev (Malyshev, 1980), Aksenov et al. (Aksenov et  
al., 1978), as well as Petrov and Sirota (Petrov, Sirota ,1981); (Petrov &  Sirota, 1983). 
Andrews and Hogan also worked on the idea in  the  context  of  force control (Andrews  & 
Hogan, 1983).  
Despite its promising start, the attractor-repeller paradigm for configuring a potential field 
for use in navigation faced several problems. The most serious one is its inability to 
guarantee convergence to a target point (the local minima problem). However, the problem 
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was quickly solved. One solution uses a configuration that forces the divergence of the PF 
gradient to be zero almost everywhere in the workspace, hence eliminating the local minima 
problem. The approach was named the harmonic potential field (HPF) planning approach. 
A basic setting of this approach is shown in (1) below:  

   L2V(X)=0              X0Ω  (1) 

subject to:  V(XS) = 1,  V(XT) = 0 , and ∂
∂
V = 0
n

 at  X = Γ, 

where Ω is the workspace,  Γ is its boundary, n is a unit vector normal to Γ, Xs is the start 
point, and XT is the target point. 
Although a paradigm to describe motion using HPFs has been available for more than three 
decades,  it was not until 1987 that Sato (Sato, 1987) formally used it as a tool for motion 
planning (an English version of the work may be found in  (Sato, 1993)). The approach was 
formally introduced to the robotics and intelligent control literature through the 
independent work of Connolly et al. (Connolly et al., 1990), Prassler (Prassler, 1989) and 
Tarassenko et al. (Tarassenko &  Blake, 1991) who demonstrated the approach using an 
electric network analogy, Lei  (Lei, 1990) and Plumer (Plumer, 1991) who used a neural 
network setting, and Keymeulen et al. (Decuyper &  Keymeulen, 1990); (Keymeulen & 
Decuyper, 1990)  and Akishita et al. (Akishita et al., 1990) who utilized a fluid dynamic 
metaphor in  their development of the approach.  Cheng et al. (Cheng & Tanaka, 
1991);(Cheng, 1991);(Kanaya et al., 1994) utilized harmonic potential fields for the 
construction of silicon retina, VLSI wire routing, and robot motion planning. A unity 
resistive grid was used for computing the potential. In (Dunskaya & Pyatnitskiy 1990) a 
potential field was suggested whose differential properties are governed by the 
inhomogeneous Poisson equation for constructing a nonlinear controller for a robotic 
manipulator taking into consideration obstacles and joint limits.  
Harmonic potential fields (HPFs) have proven themselves to be effective tools for inducing 
in an agent an intelligent, emergent, embodied, context-sensitive and goal-oriented behavior 
(i.e. a planning action). A planning action generated by an HPF-based planner can operate 
in an  informationally-open and organizationally-closed mode; therefore, enabling an agent 
to make decisions on-the-fly using on-line sensory data without relying on the help of an 
external agent. HPF-based planners can also operate in an informationally-closed, 
organizationally-open mode (Masoud, 2003) ;(Masoud &  Masoud, 1998) which makes it 
possible to utilize existing data about the environment in generating the planning action as 
well as illicit the help of external agents . A hybrid of the two modes may also be 
constructed. Such features make it possible to adapt HPFs for planning in a variety of 
situations.  For example in (Masoud &  Masoud,  2000) vector-harmonic potential fields 
were used for planning with robots having second order dynamics. In (Masoud, 2002) the 
approach was configured to work with a pursuit-evasion planning problem, and in 
(Masoud &  Masoud, 2002) the HPF approach was modified to incorporate joint constraints 
on regional avoidance and direction. The decentralized, multi-agent, planning case was 
tackled using the HPF approach in (Masoud, 2007).  The HPF approach was also found to 
facilitate the integration of planners as subsystems in networked controllers containing 
sensory, communication and control modules with a good chance of yielding a successful 
behavior in a  realistic, physical setting (Gupta et al.,  2006).    
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Although a variety of provably-correct, HPF-based planning techniques exist for the 
continuous case, to the best of this author’s knowledge, there are no attempts to formally 
use HPFs to synthesize planners that work with discrete spaces described by weighted 
graphs. Planning in discrete spaces is of considerable significance in managing the 
complexity in high dimensions (Aarno et al., 2004); (Kazemi et al. , 2005). It is also important 
for dealing with inherently discrete systems such as robustly planning the motion of data 
packets in a network of routers (Royer &  Toh, 1999).  
In this work a discrete counterpart to the continuous harmonic potential field approach is 
suggested. The extension to the discrete case makes use of the strong relation HPF-based 
planning has to connectionist artificial intelligence (AI).  Connectionist AI systems are 
networks of simple, interconnected processors running in parallel within the confines of the 
environment in which the planning action is to be synthesized. It is not hard to see that such 
a paradigm naturally lends itself to planning on weighted graphs where the processors may 
be seen as the vertices of the graph and the relations among them as its edges. Electrical 
networks are an effective realization of connectionist AI.  Many computational techniques 
utilizing electrical networks do exist (Blasum et al., 1996);(Duffin, 1971);(Bertsekas, 
1996);(Wolaver, 1971) and the strong relation graph theory has to this area (Bollabas, 
1979);(Seshu, Reed, 1961) is well-known. This relation is directly utilized for constructing a 
discrete counterpart to the BVP in (1) used to generate the continuous HPF. The discrete 
counterpart is established by replacing the Laplace operator with the flow balance operator 
represented by Krichhoff current law (KCL) (Bobrow, 1981). As for the boundary conditions, 
they are applied in the same manner as in (1) to the boundary vertices. The discrete 
counterpart is supported with definitions and propositions that help in utilizing it for 
developing motion planners. The utility of the discrete HPF (DHPF) approach is 
demonstrated in three ways. First, the capability of the DHPF approach to generate new, 
abstract, planning techniques is demonstrated by constructing a novel, efficient, optimal,  
discrete planning method called the M* algorithm. Also, its ability to augment the 
capabilities of existing planners is demonstrated by suggesting a generic solution to the 
lower bound problem faced by the A* algorithm. The DHPF approach is shown to be useful 
in solving specific planning problems in communication. It is demonstrated that the discrete 
HPF paradigm can support routing on-the-fly while the network is still in a transient state. It 
is shown by simulation that if a path to the target always exist and the switching delays in 
the routers are negligible, a packet will reach its destination despite the changes in the 
network which may simultaneously take place while the packet is being routed. An 
important property of the DHPF paradigm is its ability to utilize a continuous HPF-based 
planner for solving a discrete problem.  For example, the HPF-based planner in (Masoud, 
2002) may be adapted for pursuit-evasion on a grid.  Here a note is provided on how the 
continuous, multi-agent, HPF-based planner in (Masoud, 2007) may be adapted for solving 
a form of the sliding block puzzle (SBP).  

2. HPF and Connectionism: 
Learning is the main tool used by most researchers to adapt the behavior of an agent to 
structural changes in its environment (Tham & Prager, 1993),(Humphrys, 1995),(Ram et al., 
1994).  The overwhelming majority of learning techniques are unified in their reliance on 
experience as the driver of action selection. There are, however, environments which an 
agent is required to operate in that rule-out experience as the only mechanism for action 
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selection. Learning, or the acquisition of knowledge needed to deal with a situation, may be 
carried-out via hieratical, symbolic reasoning.  Despite the popularity of the symbolic 
reasoning AI approach, its fitness to synthesize autonomous and intelligent behavior in such 
types of environments is being seriously questioned (Brooks, 1990); (Brooks, 1991). 
Representing an environment as a group of discrete heterogeneous entities that are glued 
together via a hierarchical set of relations is a long standing tradition in philosophy and 
science. There is, however, an opposing, but less popular, camp to the above point of view 
stressing that representations should be indivisible, and homogeneous. Distributed 
representations have already found supporters among modern mathematicians, system 
theorists, and philosophers. Norbert Wiener said "The identity of a body is more like the 
identity of a flame than that of a stone; it is the identity of a structure, not of a piece of 
matter" (Wiener, 1950);(Wiener, 1961).  In (Lefebvre,1977) Lefebvre viewes an entity or a 
process as a wave that glides on a substrate of parts where the relation between the two is 
that of a system drawn on a system.  In (Campbell , 1994) Campbell argues against the 
hypothesis that geometrical symbols are used by creatures, to model the environment that 
they want to navigate. He postulate the existence of a more subtle and distributed 
representation of the environment inside an agent.  With this in mind, the following 
guidelines are used for constructing a representation: 
1. A representation is a pattern that is imprinted on a substrate of some kind. 
2. The substrate is chosen as a set of homogeneous, simple automata that densely covers 

the agent's domain of awareness. This domain describes the state of the environment 
and is referred to as state space. 

3. The representation is self-referential. A self-referential representation may be 
constructed using a dense substrate of automata that depicts the manner in which an 
agent acts at every point in state space. Self-referential representations are completely at 
odd with objective representations. They are a product of the stream of philosophy and 
epistemology (theory of knowledge) (Glasserfeld, 1986), (Lewis, 1929), (Nagel & Brandt, 
1965), (Masani, 1994) which stresses that ontological (absolute or objective) reality does 
not exist, and any knowledge that is acquired by the agent is subjective (self-referential.) 

4. In conformity with the view that objective reality is unattainable, a representation is 
looked upon as merely a belief. Its value to an agent is in how useful it is, not how well 
it represents its outside reality. Therefore, a pattern that evolves as a result of a self-
regulating construction is at all phases of its evolution a legitimate representation. 

A machine is a two-port device that consists of an operator port, an environment port, and a 
construction that would allow a goal set by the operator, defined relative to the environment 
to be reached. CYBERNETICS (Wiener, 1950); (Wiener, 1961), or as Wiener defined it: 
"communication and control in the animal and the machine," is based on the  conjectures 
that a machine can learn, can produce other machines in its own image, and can evolve to a 
degree where it exceeds the capabilities of its own creator. It is no longer necessary for the 
operator to generate a detailed and precise plan to convert the goal into a successful motor 
action. The operator has to only provide a general outline of a plan and the machine will fill 
in the "gaps"; hence confining the operator's intervention to the high-level functions of the 
undergoing process. Such functions dictate goals and constrain behavior. The machine is 
supposed to transform the high-level commands into successful actions. CYBERNETICS 
unifies the nature of communication and control. It gives actions the soft nature of 
information. To a cybernist a machine that is interacting with its environment is an agent 
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that is engaging in information exchange with other agents in its environment. In turn, a 
machine consists of interacting subagents, and is an interactive subagent in a larger 
machine. A controller which forces an agent to comply with the will of the operator is seen 
as an encoder that translates the requests of the operator to a language the agent can 
understand. Therefore, an action is a message, and a message is an information-bearing 
signal or simply information. Accepting the above paves the way for a qualitative 
understanding of the ability of a machine to complement the plan of the operator. Let an 
information theoretic approach (Shannon, 1949); (Gallager, 1968) be used to examine two 
agents that are interacting or, equivalently, exchanging messages. Assume that the activities 
of the first agent has Ix equivalence of information, and that  the second has Iy. Although 
what is being contributed by the interacting agents is equal to Ix+Iy (self-information), the 
actual information content of the process is Ix+Ixy+Iy, where Ixy is called mutual 
information. While the measure of self information is always positive definite (Ix=-log(Px) 
,Iy=-log(Py)), the measure of mutual information (Ixy= log(Px,y/(Px.Py)) is indefinite (Px 
and Py are the probability of x and y respectively, and Px,y is their joint probability). In an 
environment where carefully designed modes of interaction are instituted among the 
constituting agents, the net outcome from the interaction will far exceed the sum of the 
individual contributions.  On the other hand, in non-cooperative environments the total 
information maybe much less than the self-information (an interaction that paralyzes the 
members makes Px,y/ 0, and Ixy 6-4). It has been shown experimentally and by simulation 
that sophisticated goal-oriented behavior can emerge from the local interaction of a large 
number of participants which exhibit a much more simplistic behavior. This has motivated a 
new look at the synthesis of behavior that is fundamentally different from the top-bottom 
approach which is a characteristic of classical AI. Artificial Life (AL) (Langton, 1988) 
approaches behavior as a bottom-up process that is generated from elementary, distributed, 
local actions of individual organisms interacting in an environment. The manner in which 
an individual interact with others in its loca1 environment is called the Geno-type. On the 
other hand, the overall behavior of the group (Phenotype, or P-type) evolves in space and 
time as a result of the interpretation of the Geno-type in the context of the environment. The 
process by which the P-type develop under the direction of the G-type is called 
Morphogenesis (Thorn, 1975). 
To alter its state in some environment an agent (from now on is referred to as the operator) 
needs to construct a machine that would interface its goal to its actions. The machine (or 
interface) function to convert the goal into a sequence of actions that are imbedded into the 
environment. These actions are designed to yield a corresponding sequence of states so that 
the final state is the goal state of the operator. The action sequence is called a plan and it is a 
member of a field of plans (Action field) that densely covers state space so that regardless of 
the starting point, a plan always exist to propel the agent to its goal. To construct a machine 
of the above kind the operator must begin by reproducing itself by densely spreading 
operator-like micro-agents at every point in state space (Figure-1). The only difference 
between the operator-agent and an operator-like micro-agent is that the state of the operator 
evolves in time and space while the state of the micro-agent is stagnant and immobilized to 
one a priori known point in state space. The second part of machine construction is to induce 
the proper action structure over the micro-agent group. It is obvious that a hierarchical, 
holistic, centralized approach for inducing structure over the group entails the existence of a 
central planning agent/s that is/are not operator-like. Including such an agent in the 
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machine violates organizational closure, i.e. the restrictions on intelligent machines receiving 
no influx of external intelligence to help them realize their goals. In other words, the agent 
must be able to lift itself from its own bootstraps. By restricting the forms of the agents 
constituting the machine to that of the operator, an AL approach does not require the 
intervention of any external intelligence to help in the construction of the machine.  The AL 
approach, which is decentralized by definition (i.e. no supervisor is needed), requires a micro-
agent to locally constrain its behavior (Genotype, or G-type behavior) using the information 
derived from the states of the neighboring micro-agents (Figure-1). Unlike centralized 
approaches where each micro-agent has to exert the "correct" action in order to generate a 
group structure that unifies the micro-agents in one goal-oriented unit, the AL approach only 
requires the micro-agent not to exert the "wrong" action that would prevent the operator from 
proceeding to its goal. Obviously, not selecting the wrong action is not enough, on its own, for 
each micro-agent to restrict itself to one and only one admissible action that would constitute a 
proper building block of the global structure that is required to turn the group into a 
functional unit. In an AL approach, the additional effort (besides that of the G-type behavior) 
needed to induce the global structure on the micro-agents is a result of evolution in space and 
time under the guidance of the environment. This interpretation or guidance is what 
eventually limits each micro-agent to one and only one action that is also the proper 
component in a functioning group structure. 

 
Figure 1. An interacting collective of micro-agents & Layers of functions in a micro-agent 

To construct a machine that operates in an AL mode, the operator must have the means to: 
1. Reproduce itself at every point in state space.  
2. Clone the geno-type behavior in each member of the micro-aqent group. 
3. Factor the environment in the behavior generation process.  
The HPF approach lends itself to the above guidelines for the construction of an AL-driven, 
intelligent machine.   The potential field is used to induce a dense collective of virtual agents 
covering the workspace. The interaction among the agents is generated by enforcing the 
Laplace equation. The environment is factored into the behavior generation process by 
enforcing the boundary conditions. More details can be found in (Masoud, 2003);(Masoud &  
Masoud, 1998).  

3. The DHPF approach: 
This section provides basic definitions and propositions that serve as a good starting point 
for the understanding and utilization of the DHPF approach.  
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Definition -1: Let G be a non-directed graph containing N vertices. Let the cost of moving 
from vertex i to vertex j be Cij (Cij=Cji). Let a potential Vi be defined at each vertex of the 
graph (i=1,..,N), and Iij be the flow from vertex i to vertex j defined as:   
 

V -Vi j
I =ij

Cij
, (2) 

where Vi > Vj .Note that equation-2  is analogous to ohm’s law in electric circuits (Bobrow, 
1981). Let T and S  be the target and  start boundary vertices respectively.  
A discrete counterpart for the BVP in (1) is obtained if at each vertex of G (excluding the 
boundary vertices) the balance condition represented by KCL is enforced: 

∑ =0Iij
j

      i=1,..,N,  i ≠T,  i≠S 

and 
 VS = 1, VT = 0.  (3) 

Definition-2:  Let the equivalent cost between any two arbitrarily chosen vertices, i and j, of 
G (Ceqij) be defined as the potential difference applied to the i-j port of G (ΔV) divided by 
the flow, I, entering vertex i and leaving vertex j (figure-2) 

 ΔVCeq =ij I
  (4) 

Proposition-1:  The equivalent cost of a graph, G, that satisfies KCL at all of its nodes (i.e. an 
electric network) as seen from the i-j port (vertices) is less than or equal to the sum of all the 
costs along any forward path connecting vertex i to vertex j. Note that if the proposition 
holds for forward paths, it will also hold for paths with cycles.     

 
Figure 2. Equivalent cost of a graph as seen from the i-j vertices 

Proof: Since the graph is required to satisfy KCL, then any internal flow in the edges of the 
graph is less than or equal to the external flow I (figure-3).  

 
Figure 3. KCL splits input current into smaller or equal components 
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Consider a forward sequence of vertices connecting vertex i to vertex j: i→i+1→...→i+L-1→j. 
The potential difference at the k’th edge (ΔVk) in the selected path is: ΔVk = Vi+k-1 - Vi+k. The 
potential difference between i and j may be written as:  

 ΔV =  ΔV1 + ΔV2 + .... + ΔVk+ .....+ ΔVL  (5) 

       = C1I1  + C2I2 + ..... + CKIK+ ....+ CLIL , 

where for simplicity Ck is used to denote Ci+k-1,i+k , and Ik is used instead of Ii+k-1,i+k . Now 
divide both sides by the flow I:  

 1 k L
i, j 1 k L

V I I ICeq C ...... C ....... C
I I I I

Δ = = + + + +   (6) 

Since Ik/I ≤ 1, we have: 

 Ceqi,j ≤ C1+....+Ck+....CL .  (7) 

Proposition-2:  If G satisfies the conditions in equation-3, then the potential defined on the 
graph (V(G)) will have a unique minimum at T (VT) and a unique maximum at S (VS).  
Proof:  The proof of the above proposition follows directly from KCL and the definition of a 
flow (equation-2). If at  vertex i Vi is a maximum, local or global, with respect to the potential 
at its neighboring vertices, all the flows along the edges connected to i will be outward (i.e. 
positive). In this case KCL will fail. Vice versa if Vi is a minimum. 
Proposition-3:  Traversing a positive, outgoing flow from any vertex in G will generate a 
sequence of vertices (i.e. a path) that terminates at T. Vice versa, traversing a negative, 
ingoing flow from any vertex in G will generate a sequence of vertices (i.e. a path) that 
terminates at S.  
Proof:  Assume that a hop is going to be made from vertex i to vertex i+1 based on a selected 
outgoing, positive flow Ii,i+1  (Figure-4).  

 
Figure 4. positive flow-guided vertex transition 

From the definition of a flow we have:  

 Vi - Vi+1 = C i,i+1AIi,i+1 .  (8) 

Since we are dealing with positive costs, and the flow that was selected is positive, we have:  

 Vi - Vi+1 > 0,      or     Vi > Vi+1.  (9) 

By guiding vertex transition using positive flows, a continuous decrease in potential is 
established. This means that the unique minimum, VT, will finally be achieved. In other 
words, the path will converge to T. The proof of the second part of the preposition can be 
easily carried out in a manner similar to the first part.   
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Proposition-4:  A path linking S to T generated by moving from a vertex to another using a 
positive flow cannot have repeated vertices (i.e. it contains no loops).  
Proof:  If the flow used to direct vertex transition loops back to a previously encountered 
vertex, it will keep looping back to that vertex trapping the path into a cycle and preventing 
it from reaching the target vertex. Since in proposition-3 convergence to T of a positive flow 
driven path is guaranteed, no cycles can occur and the path cannot have repeated vertices.    
Definition-3:  Since a positive flow path (PFP) beginning at S is guaranteed to terminate at T 
with no repeated vertices in-between, the combination of all PFPs define a tree with S as the 
top parent vertex and bottom, offspring vertices equal to T. This tree is called the harmonic 
flow tree (HFT).  
Proposition-5:  The HFT of a graph contains all the vertices in that graph.  
Proof:  Since all PFPs of a graph start at S and terminate at T, the boundary vertices have to 
be a part of the HFT. Since at the remaining intermediate vertices the flow balance relation 
in equation-2 (KCL) is enforced, positive flow must enter each of these vertices; otherwise, 
the balance relation cannot be enforced. Therefore, every intermediate vertex has to belong 
to a PFP which makes it also a vertex in the HFT tree.  
Proposition-6:  The HFT of a graph contains the optimal path linking S to T.  
Proof:  If the optimum path of a graph linking S to T is not a branch of its HFT, then some of 
the hops used to construct that path were driven by negative flows. It is obvious that the 
optimum path cannot be constructed, even partially, using negative flows. If negative flows 
are used, convergence cannot be guaranteed. Even if countermeasures are taken to prevent  
a cycle from persisting, vertices will get repeated and the path will contain loops that can be 
easily removed to construct a lower cost path. However, a proof that negative flows cannot 
be used in constructing a least cost path may be obtained using the weighted Jensen 
inequality: 

 ⋅ ⋅ ≥ ⋅ ⋅1 1 L L 1 1 L Lw f(x )+....+w f(x ) f(w x +....+w x )   (10) 

  where f( ) is a convex function and w1+...+wL=1, wi≥0. Equality will hold if and only if 
x1=x2=..=xL.  
Assume that the optimal path connecting S to T contains L hops (L+1 vertices). The cost of 
that path may be written as:  

 ⋅ ⋅ ⋅1 2 L 1 2 L
1 2 L

1 1 1C=C +C +....+C =ΔV +ΔV ....+ΔV ,
I I I

  (11) 

where ΔVl’s and Il’s are defined in the proof of proposition-1.  Since KCL is enforced we 
have:  

 1 L S TΔV +....+ΔV =V -V =1-0=1.   (12) 

Also, notice that 1/l 1f(I )= I   is a convex function of Il. Therefore, the weighed Jensen 
inequality may be applied to the cost function above,  

 ⋅ ⋅ ≥ ⋅ ⋅1 1 L L 1 1 L LΔV f(I )+....+ΔV f(I ) f(ΔV I +....+ΔV I ) .  (13) 

or   ≥
⋅ ⋅

∑
∑ ∑

L

i L L
2i=1

i i i i
i=1 i=1

1 1C =
ΔV I C I

 .  (14) 
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For the case of an electric network Ik and the corresponding ΔVk are related using ohm’s 
law. For a positive cost having a negative ΔVk implies a negative Ik. Therefore, the inequality 
will still hold for negative values of ΔVk. This variational inequality may be used to establish 
a lower bound on the cost of a path connecting the start and target vertices. It is interesting 
to notice that the lower bound on the cost is equal to the inverse of the power consumed in 
traversing a path. According to the inequality, a zero difference between the two can only 
occur if all the flows along the path are the same. In general, the more variation in the value 
of the flows along the path the more is the deviation from the optimal cost will be. It is 
obvious that the extreme case of mixing positive and negative flows in constructing the path 
cannot lead to the optimum solution. 
Proposition-7:  The optimum path (or any PFP for that matter) must contain at most N 
vertices.  
Proof:  It is obvious that if the path contains more than N vertices, an intermediate vertex in 
the path is repeated. Based on the previous propositions, this cannot happen. Therefore 
transition from S to T must be obtained in N hops or less.  

4.  The M* Algorithm:  

It is not hard to see that the DHPF belongs to connectionist AI.  Even in its raw form, as 
shown by preposition-3, the approach is capable of tackling planning problems in a 
provably-correct manner. While connectionist AI and symbolic reasoning AI are considered 
to be two separate camps in artificial intelligence, there is a trend to hybridize the two in 
order to generate techniques that combine the attractive properties of each approach. In this 
section it is demonstrated that the DHPF approach can work in a hybrid mode. The reason 
for that is: the flow induced by the connectionist system has a structure which can be 
reasoned about to enhance or add to the basic capabilities of the DHPF approach. This is 
demonstrated in this section by suggesting the M* algorithm for finding the minimum cost 
path between S and T on a graph. By interfacing the connectionst layer to a symbolic layer, 
the quality of the path which the connectionist stage is guaranteed to find is enhanced. 

4.1 The M*: direct realization:  
The followings are the steps for directly realizing the M* procedure:  
01. Write the KCL equations for each vertex of the graph 

    ∑ ij
j

I =0    i = 1,...,N  (15) 

02. From the KCL equations derive the vertex potential update equations: 

  
N

i i,k k
k=1
k i

V = b V

≠

∑   (16) 

03. Initialize the variables:     VS=1; VT=0;  Vi=1/2    i=1,..,N   i≠S,   i≠T   (17) 

04. Loop till convergence is achieved performing the  operations: 
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N

i i,k k
k=1
k i

V = b V

≠

∑      i=1,..,N, i≠S,   i≠T    (18) 

05. Compute the flows  
06. Using the flows construct the HFT of the graph 
07. Starting from the last parent nodes, for each node retain the branch with lowest cost and 
delete the others  
08. Move to the parent nodes one level up and repeat step 7.   
09. Repeat step 8 till the top parent node S is reached 
10. The remaining branch connected to S is the optimal path linking S to T.  

4.2  An Example 
Consider the weighted graph shown in figure-5. It is required that a minimum cost path be 
found from the start vertex S=1 to the target vertex T=5. The transition costs are: C16=1, 
C14=3, C23=4, C34=7, C26=1, C37=5, C35=2, C47=6, C67=9, C57=5. The KCL equations are: 

Vertex-1: 1 4 1 6

14 16

V -V V -V+ =0
C C

   Vertex-2: 1 4 1 6

14 16

V -V V -V+ =0
C C

  

Vertex-3: 3 2 3 4 3 5 3 7

23 34 35 37

V -V V -V V -V V -V+ + + =0
C C C C

   Vertex-4: 4 1 4 3 4 7

14 34 47

V -V V -V V -V+ + =0
C C C

  

Vertex-5: 5 3 5 7

35 57

V -V V -V+ =0
C C

     Vertex-6: 6 1 6 2 6 7

16 26 67

V -V V -V V -V+ + =0
C C C

    (19) 

Vertex-7: .7 3 7 4 7 5 7 6

37 47 57 67

V -V V -V V -V V -V+ + + =0
C C C C

  

The update equations may be derived as: 

4 6
1 1,4 4 1,6 6

1 14 16

1 V VV = [ + ]=b V +b V
K C C

,   3 6
2 2,3 3 2,6 6

2 23 26

1 V VV = [ + ]=b V +b V
K C C

 

2 4 5 7
3 3,2 2 3,4 4 3,5 5 3,7 7

3 23 34 35 37

1 V V V VV = [ + + + ]=b V +b V +b V +b V
K C C C C

  

1 3 7
4 4,1 1 4,3 3 4,7 7

4 14 34 47

1 V V VV = [ + + ]=b V +b V +b V
K C C C

,     3 7
5 5,3 3 5,7 7

5 35 57

1 V VV = [ + ]=b V +b V
K C C

 (20) 

1 2 7
6 6,1 1 6,2 2 6,7 7

6 1,6 2,6 6,7

1 V V VV = [ + + ]=b V +b V +b V
K C C C

 

3 4 5 6
7 7,3 3 7,4 4 7,5 5 7,6 6

7 37 47 57 67

1 V V V VV = [ + + + ]=b V +b V +b V +b V
K C C C C
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where  

1 14 16

1 1 1=[ + ]
K C C

 
2 23 26

1 1 1=[ + ]
K C C

 
3 23 34 35 37

1 1 1 1 1=[ + + + ]
K C C C C

 

4 14 34 47

1 1 1 1=[ + + ]
K C C C

 
5 35 57

1 1 1=[ + ]
K C C

 1 2 7

6 16 26 67

1 V V V=[ + + ]
K C C C

 

 
7 37 47 57 67

1 1 1 1 1=[ + + + ]
K C C C C

 

Setting V1=1, V5=0 and applying the procedure described above we obtain the vertices 
potential: V1=1, V2=0.74673, V3=0.33753, V4=0.70006, V5=0,   V6=0.84902,  V7=0.41093 . The 
flows may be computed as: I14=0.09998, I16=0.15098, I23=0.1023, I47=0.048189, I43=0.05179, 
I35=0.16877, I62=0.1023, I67=0.048677, I73=0.014679, I75=0.082186. The graph, flows and 
corresponding HFT are in figure-5.   

  

   
Figure 5. The graph and corresponding flows and HFT 
Now start reducing the HFT,  
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Level-1 parent node branch removal 

 

Level-2 parent node branch removal 

 

Level-3 parent node branch removal 

Figure 6c. Level-3 parent node branch removal 

As can be seen from figure-6 the optimum path:  5→ 3→2→6→1 with a cost 8 was obtained 
after only two levels of branch removal. The HFT need not be computed explicitly in order to 
carry out the branch removal procedure.  The M* algorithm may be implemented indirectly 
using a procedure that successively relaxes the graph till only the optimal path is left. 

4.2 The M* indirect realization:  
In this subsection a successive relaxation procedure for implementing M* is suggested.  The 
rapid growth of an HFT with the size of a graph makes it impractical to apply the algorithm 
on the tree directly. Here a procedure that allows us to operate on the HFT indirectly by 
successively relaxing the graph is suggested. In order to apply the procedure the following 
terms need to be defined (figure-7): positive flow index (PFI) of a vertex: number of edges 
connected to the vertex with outward positive flows. Negative flow index (NFI) of a vertex: 
is the number of edges connected to the vertex with inward negative flows.  

 
Figure 7. PFI and NFI of a vertex 



Mobile Robots Motion Planning, New Challenges 

 

348 

The procedure is:  
0-compute the PFI and NFI for each vertex of the graph, 
 1-starting from the target vertex and using the negative flows along with the NFIs and PFIs 
of the vertices, detect the junction vertices and label them based on their levels, 
 2- at the encountered junction vertex clear NB buffers where NB=PFI of the junction vertex,  
 3- starting from the junction vertex, trace forward all paths to the target vertex traversing 
vertices with positive flows and PFIs=1,  
4- excluding the lowest cost path, delete all the edges in the graph connecting the junction 
vertex to the first, subsequent vertices in the remaining paths,  
5- decrement the PFI of the junction vertex by the number of edges removed from the graph,  
6- decrement the NFIs of the first subsequent vertices from step 4 by 1,  
7- if the NFI of any vertex in the graph  from step 4 is  equal zero and the vertex is not a start 
vertex, delete the edge in the graph connecting that vertex to the subsequent vertex and 
reduce the NFI of the subsequent vertex by 1,  
8- repeat 7 till all the reaming vertices in the paths with PFIs=1 have NFIs >0,  
9- go to 1 and repeat till there is only one branch left in the graph with two terminal vertices 
having NFI=0, PFI=1 and NFI=1, PFI=0. This is the optimum path connecting the start 
vertex to the target vertex.  
In figure-8 the procedure is applied, in a step by step manner,  to gradually reduce the 
graph in figure-5 to the optimum path connecting vertex 1 to 5.  
 

      
initially traced path:  5→7   
constructed paths:     7→5         cost=5 

     7→3→5    cost=5+2=7 (eliminate edge 7→3 in graph) 
 

      
initially traced path: 5→3→2→6         
constructed paths:    6→7→5          cost=9+5=14 (eliminate edge 6→7 in graph)  

     6→2→3→5    cost=1+4+2=7  
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initially traced path:  5→7→4 
constructed paths:     4→7→5        cost=6+5=11 (eliminate edge 4→7 in graph) 

     4→3→5        cost=7+2=9 
 

      
Vertex 7 NFI=0, not a start vertex (eliminate edge 7→5 in graph) 

 

      
initially traced path: 5→3→2→6→1  
constructed paths:    1→4→3→5    cost= 3+7+2=12 (eliminate edge 164 in graph) 

    1→6→2→3→5   cost=1+1+4+2=8  

      
Vertex 4 has an NFI=0 and is not a start vertex (eliminate edge 4 → 3) 
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All intermediate vertices have an NFI=PFI=1 → Algorithm terminates. 
Figure 8. M*-based successive relaxation. 

The optimum path is: 1→6→2→3→5 having a cost of 8.  

5. A Lower bound for A* 

 For the A* algorithm to work, a lower bound on the cost from each vertex of the graph to 
the target vertex has to be supplied. For spatial planning problems the Euclidian distance 
between the vertices provides such a bound. However, for the general case finding a lower 
bound may be a source of difficulties that prevents the use of the A* algorithm. In the 
followings it is shown that the concept of equivalent cost (resistance) from the resistive 
network paradigm can effectively solve this problem.  
Consider the simple graph in figure-9 where S=1 and T=4. To apply the A* algorithm, the 
path at node 1 should be expanded towards 2 and 3. In order to sort the paths so that the 
next path expansion can be determined, lower estimates on the cost of moving from 2 to 4 
and 3 to 4 are needed. Expansion of the path towards 2 may be achieved by simply 
removing all the edges of the graph that are attached to 1 leaving only the edge connected to 
vertex 2 (figure-9).  The flows are then computed for the remaining part of the network. The 
equivalent cost from 2 to 4 (Ceq24) may be computed as:  

 24 12
12

1Ceq = -C
I

   (21) 

Since in proposition-1 it is proven that the equivalent cost between two vertices in a graph is 
less than or equal to the least cost path connecting these vertices, the equivalent cost may be 
used as the lower bound estimate required by the A* algorithm. The minimum cost bounds 
needed for the remaining path expansions may be obtained in a similar manner.  

 
Figure 9.  Path expansion, the A* 
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5.1 An example: 
The same example in the previous section is repeated using the A* algorithm and the 
equivalent cost concept.  The successive path expansions are shown in figure-10. The 
optimum path is: 1→6→2→3→5 having a cost of 8. 

 
Figure 10. A* applied to the graph in figure-4 
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6. Routing on-the-fly 

In the previous sections optimal algorithms for planning motion on a weighted graph 
utilizing the flow in a resistive grid are suggested. In order to apply these algorithms the 
graph must have a fixed structure known to the central unit that is processing the data and 
generating the path. While the above setting applies in many practical situations there are 
cases where such a scenario cannot be applied, e.g. ad-hoc networks. Also, reliability and 
cost issues may make it undesirable to have the whole process hinge on the success of a 
single, central agent. The alternative is to execute the routing process in an asynchronous, 
decentralized, self-organizing manner. In this case each vertex of the graph is assumed to be 
a router with limited sensing, processing and decision making capabilities where the 
immediate domains of awareness and action of a router are limited to a subset of the 
network with the remaining part being transparent to the router concerned. In other words, 
the router should sense locally, reason locally, and act locally yet produce global results 
(figure-11). 

 
Figure 11. decentralized routing 
In a centralized mode, the routers keep exchanging states till convergence is achieved. The 
potential is then communicated to a central agent which in a single shot lays a path to the 
target (figure-12). In a decentralized mode, communication of states between routers need 
not necessarily be sustained till a steady state is reached. Instead, during communication 
among the routers, whenever possible, the router with the packet attempt to pass it to a 
neighboring router using a simple, local, potential-based procedure that can be easily 
implemented on-board a router. As can be seen, under ideal situation, in a discrete HPF 
paradigm, the decentralized mode reduces to the centralized one. 
 

 
 Centralized mode Decentralized mode 
Figure 12. centralized and decentralized modes in a discrete HPF paradigm 
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The following is one of the decentralized procedures that may be derived from this 
paradigm:  
0- fix the potential at the target vertex to zero,  
1- each router establishes connectivity with selected neighboring routers and assigns 
appropriate costs,  
2- fix the potential at the router that currently hold the data packet to 1,  
3- excluding the routers with the packet and the target router, each router should update its 
potential using equation (18),  
4- forward the packet from the current router to the associated router with highest positive flow,  
5- if the router is not the target router go to 1,  
6- target router is reached.  
The procedure is simulated for the graph in figure-5. The potential field was initially set 
using a random number generator that is uniformly distributed between (0, 1). The output 
of the process is the path: 1 → 6 → 2→ 3 → 5 having the cost 8. 
 

 
Figure 13. vertex number vs hop number under random router malfunction 
To test the robustness of the procedure the example is repeated while inducing, at each hop, 
a malfunction in a randomly selected router (excluding the target router and the one 
currently holding the packet). In the following the vertex number as a function of the hop 
number is shown for one of the trials (figure-13). As can be seen the packet finally converges 
to the target vertex. Convergence was observed for all the trials that were carried out. The 
number of hops needed for the packet to reach the target vertex as a function of the trial 
number and the corresponding histogram are shown in figure-14. 
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Figure 14.  convergence hop number versus trial number and the corresponding histogram 

7. A Note on Solving the Sliding Block Puzzle:  
Designing a planer for the sliding block puzzle (Hordern, 1986) is a challenging task. It is 
proven that, if symbolic reasoning AI is used, the problem is PSPACE-complete. The 
difficulty of this problem made it an excellent choice for testing heuristic AI algorithms in 
order to plan the tiles’ motion so that a certain target arrangement is achieved.  
With little modification the continuous, multi-agent, decentralized, HPF-based planner 
suggested in (Masoud, 2007) may be used to tackle specific forms of the SBP problem.  This 
HPF-based planner guarantees that convex shaped blocks can be placed in any 
configuration within an arbitrarily- shaped confine provided that the narrowest passage 
within the confine is wide enough to allow the two largest objects  to pass at the same time. 
In other words, if the SBP has two tiles missing, it is completely solvable. The usual form of 
the SBP contains empty space for one block only. For this case the multi-agent planner 
cannot guarantee that motion of the tiles can be planned so that a final configuration, even if 
it belongs to the resolvable set, is attained.  
The multi-agent planner  uses two types of fields for controlling the motion of each tile of 
the SBP: a global field, called the purpose field (PRF), constructed using harmonic potential 
for each agent individually assuming that no other agents is sharing its workspace. This  
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field function to drive the agent to the specified target. The second component is a local field 
fencing the agents. This component is called the conflict resolving field (CRF). Figure-15 
shows the, evolutionary self-organizing nature of the multi-agent, HPF-based planner while 
attempting to lay trajectories for two sets of robots moving along opposite direction along a 
tight road.  
The method in (Masoud, 2007) may be applied with little modification to the SBP problem.  
The only modification is to replace the rectangular space in which the tiles of the SBP slide 
with a rectangular grid (figure-16). The PRF of the individual tile may be easily computed 
using equation (3). The CRF components remain unchanged.  

 
Figure 15. Problem solving through self-organization 
 

 
Figure 16. Restricting a PRF to a rectangular grid in a SBP solver 

8. Conclusions 

This work is an attempt to show that in addition to the attractive features the HPF approach 
already have, it is fully capable of tackling planning problems in discrete spaces.  The ability 
to extend the approach to such type of problems is not a mere coincidence; it is rather the 
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product of a deeply rooted relation the HPF approach has to both AI and mathematics. This 
relation is what allows this approach to provide a framework able to accommodate a large 
variety of planning situations, both applied and abstract, as well as provide the tools needed 
to analyze them and understand their behavior in both qualitative and quantitative 
manners. Besides the abstract side, the HPF approach possess a physical  intuitive side that 
serves as a good aid for configuring the approach to suit a desired planning situation as well 
as  help in understanding the properties of the suggested method.  
The ability of the HPF approach to work in a hybrid, symbolic-connectionist, AI mode adds 
more value to this method. This value is vivid in the case of data network where 
communication can still be maintained through local interaction even if the central entity 
planning traffic is no longer functioning. The fact that in this work the development for the 
DHPF approach is only provided for non-directed graphs does by no means reflect any 
shortcoming on part of the approach to deal with directed graphs. The ability of the HPF 
approach to enforce directional constraints for both the continuous and discrete cases has 
already been demonstrated in (Masoud & Masoud, 2002). The DHPF approach is even 
capable of making the connectivity between the vertices conditional on external, user-
specified events while providing a provably-correct planning action.  
This author is a firm believer in the point of view stating that a the discrete and continuous 
components in a hybrid system are inseparable (Wiener, 1961); (Wiener, 1950); (Lefebvre; 
1977). Rather, the discrete system should appear as a pattern induced on a continuous 
substrate instead of a distinct discrete system module interfaced to a continuous one. This 
work and the associated mathematical development should be looked at only as a proof-of-
principle of the ability of the HPF approach to tackle, in a provably-correct way, planning in 
purely discrete domains. This author views this proof of principle as an important argument 
against the misconception that the HPF approach is incapable of doing so.  
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Mobile Robot with Preliminary-announcement 
and Indication of Scheduled Route and 

Occupied Area using Projector 
Takafumi Matsumaru 

Shizuoka University 
Japan 

1. Introduction 
We are proposing approaches and equipments for preliminarily announcing and indicating 
to people the upcoming operation of mobile robot moving on a two-dimensional plane. We 
have developed four kinds of prototype robot in which our approaches are realized. This 
chapter focuses on the projection robot PMR-5 and the revised version PMR-5R, in which 
projection equipment projects a two-dimensional frame on a running surface and the frame 
contains the information about the robot’s upcoming operation. 

2. Background and Objectives 
2.1 Preliminary-announcement and indication of upcoming operation 
Human beings interact signaling their own and predicting others’ actions and intentions 
nonverbally through body language, hand gestures, facial expressions, and whole body 
operations. Most people moving through a crowd, for example, find little trouble plotting a 
passage through a forest of bodies without bumping into or otherwise upsetting or 
needlessly distracting others. Human beings hone social and physical skills that make their 
movement practically second nature based on a sense of affinity, familiarity, common 
appearance – sharing what they like to call “common sense”. 
Robots call up exactly the opposite reaction – disaffinity, unfamiliarity, uncommon 
appearance – no sharing of the common sense that would make robot movement predictable 
to people – or human movement predictable to robots. If I see that you are bent forward 
walking fast and your eyes on a distant goal, I can predict that getting out of your way is 
appropriate and I can guess how fast I’ll have to move to let you through. If, however, you 
are a robot, I probably have no idea how to deal with your movement – how fast you might 
walk and what direction you may take. This lack of shared knowledge and common sense 
between human and artificial organisms is what has made their interaction such a problem – 
the simplest aspect of which is to avoid the risk of contact and collision. 
We are studying functions to notify people of an artificial organism's approach upcoming 
and intentions before it moves in order to avoid the risk of unintended contact or collision 
between people and artificial organism, focusing on mobile robots or transport vehicles 
moving on a two-dimensional plane (Fig. 1). Such robots should announce their direction 
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and speed of movement. Such announcement should be simple and immediately 
understandable enough to be acceptable to people. It must also be easy for people to 
understand based on their common sense.  
We have proposed four approaches categorized in two types to preliminarily announce and 
indicate the speed and direction of upcoming movement of mobile robot as shown in Table 
1 (Matsumaru & Hagiwara, 2001a; Matsumaru, 2004). The first type announces the state of 
operation just after the present: lamp method and blowout (telescopic arrow) method, and 
the second type indicates the operations from the present to some future time continuously: 
light ray method and projection method.  
The effect of preliminary-announcing and indicating the upcoming robot operation, the 
difference according to methods, and the appropriate timing to announce have been 
examined by using a software simulation before the hardware equipments that made the 
approaches embodiment were designed and manufactured (Matsumaru & Hagiwara, 2001b; 
Matsumaru et al., 2003c, 2003d; Matsumaru et al., 2004). 

 
Figure 1. Contact and collision avoidance 

(1) Announcing state just after the present (2) Indicating operations continously 
(a) Lamp (b) Blowout (c) Light ray (d) Projection 
 
 
 
 
 

   

Several lamps are 
set on the top. 
Direction of 
movement is by 
turning the lamp on. 
Speed of movement 
is by blinking speed 
or color of lamp. 

Blowout put on a 
turntable is set on 
the top. Speed of 
movement is by 
length of blowout. 
Direction of 
movement is by tip 
direction of 
blowout. 

Light ray draws 
scheduled route on 
running surface 
from present to 
some future time 
using pan-tilt 
mechanism. 
Situation on the 
way can be 
indicated. 

Not only  scheduled 
route but also state 
of operation, such 
as stop or going 
backward, can be 
displayed in the 
projected frame. 

Table 1. Proposed approaches 

Main content to announce and display in the second type of proposed approaches is the 
scheduled route on running surface from the present to some future time. 
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Light ray method is intended to draw only the scheduled route (Table 1 (c)). The scheduled 
route expressed with the afterimage of radiant irradiated on running surface was 
monochrome (red or green) on the developed robot PMR-1, which embodied the light ray 
method, since the a single colour laser pointer was used as a light source (Matsumaru et al., 
2006a, 2006b). Outward appearance and main specifications of PMR-1 are shown in Fig. 2 
and Table 2. Period to display the scheduled route is predefined, such as until 3-second-
later. Drawn route expresses the direction of movement directly. Strong point of light ray 
method is the “situation on the way” can be indicated, such as whether going the shortest 
route directly or going via somewhere to bypass something when moving to some place. 
However information about time is insufficient in the route drawn in a single colour. The 
speed of movement can be expressed with the length of drawn route, since we decide 
beforehand until how many seconds after the present the scheduled route is displayed. 
However it is only the average speed in that period. If we decide the route is drawn until 3-
second-later, it is recognized whether fast or slow as the average speed during three seconds 
by the length of drawn route, then a change of speed in the period is not expressed. For 
example, although it will be slow from the present to 1-second-later, it will become fast from 
1-second-later to 2-seconds-later and it will come back to be slow after 2-seconds-later again. 
Moreover the problem is it is difficult for people to understand the rule at a glance since 
only the afterimages of radiant is the source of information. Even if people understand the 
afterimage of radiant expresses the scheduled route, careful observation for a while and 
matching between expressions and operations are required to understand both the route of 
movement during some predefined period and the relation between the length of drawn 
route and the exact amount of robot’s speed. 

 
Figure 2. Outward appearance of PMR-1R 
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Projection method is developed from the light ray method (Table 1(d)). A projection 
equipment projects a two-dimensional frame on a running surface to indicate both the 
scheduled route and the states of operation such as stop and going backward. Internal 
condition of the robot such as remaining battery charge and warning on worn parts or 
overheating apparatus can also be displayed in the frame. If the projected frame is 
sufficiently large, the projector can be fixed to the robot and any moving portion for 
preliminary-announcement and indication function becomes unnecessary.  
Toyota Motor Corp. announced “road surface depiction (laser tactile sense)” in the autumn 
of 2004 similar in irradiation or projection on a running surface (Toyota, 2004). However this 
mainly targets collision avoidance among vehicles, not intending upcoming movement of 
the vehicle for pedestrians. 

Item Specification 
Mobile mechanism two-wheel drive 
Max. mobility 36 mm/s, 41.4 deg/s 
Size D460-W480-H910 mm 
Weight 30.0 kg 

Table 2. Main specifications of PMR-1R 

2.2 Conventional Projection Interface 
Human interface (HI) means the coupling part between people and a machine or a 
computer, and it indicates the scheme or structure to make artificial organisms user-friendly 
in a narrow meaning. Display equipment is commonly used as a human interface to show 
visual information through a screen, including CRT (cathode-ray tube), LCD (liquid crystal 
display), and projector (projection equipment). As a multifunctional interface containing 
some display unit for visual information, Digital Desk (Wellner, 1991) changed the previous 
indirect relationship between a user and a computer where a screen and a mouse device are 
used. On Digital Desk, three functions, visual display function (desktop is projected on a 
very common desk), control function (user's own fingertip is used to direct operations 
instead of mouse and icon), and registration function (documents and objects like doll are 
taken in, for example, using a camera and information is processed on desktop 
electronically) were considered. Researches on these three functions include Enhanced Desk 
(Koike et al., 2001), Sensetable (Patten et al., 2001), Illuminating Clay (Piper et al, 2002), 
SmartSkin (Rekimoto, 2002), Lumisight Table (Kakehi et al., 2005), Attentive Workbench 
(Nikaido et al., 2005), and so on. There are also some researches of projection on a wall 
instead of a desktop (Matsushita, 1997 and Nakanishi, et al. 2002). Those are mainly 
concerning human-machine interaction on visual information. Consequently reaction 
function (reaction force against operation is presented to the user) is studied as fourth 
function of Digital Desk. Researches include, for example, PSyBench (Physically 
Synchronized Bench) (Brave et al., 1998), Visual Haptic Workbench (Brederson et al., 2000), 
Actuated Workbench (Pangaro et al., 2002), and Proactive Desk (Noma et al., 2004). 
However those interactions are bounded between people and virtual environment even via 
physical force sense. 
As an interface for tasks to actual objects, projector is commonly used to present information 
from remote supporter to on-site worker in order to support and prescribe from remote site 
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(Hiura et al., 2003; Machino et al., 2005). RFIG (Radio Frequency Identification and 
Geometry) lamps are interesting as an interaction of information in real workspace (Raskar 
et al., 2003). Using an active RFID tag with photo electronic sensor and a handheld projector 
with camera, both the ID and position of a tag within a limited area are recognized by 
projecting grey code pattern light from the projector, then the related information is 
projected on the object. 
Some research uses projector as an interface between people and robot, for example, in 
order to teach operations to a robot (Terashima & Sakane, 1999; Sato & Sakane, 2000; 
Yamashita & Sakane, 2001). Those are mainly for off-line teaching, and the operation and 
direction to working robot are seldom taken into consideration. About the actually working 
robot, the information sharing function on manipulator (Wakita et al., 2001) is examined, as 
a method of showing people around the operational information of the robot. However this 
is only for ground-fixed manipulator. 

3. Projection Robot, PMR-5 and PMR-5R 
Projection robots PMR-5 (Matsumaru, 2006; Matsumaru, et al., 2007) and PMR-5R were 
developed to make the projection method embodiment. PMR-5 and PMR-5R have common 
system configuration which consists of mobile mechanism and announcement apparatus as 
shown in Fig. 3. Diameter of wheels in PMR-5 is 50 mm while that in PMR-5R is 100 mm. 
Liquid-crystal projector is used for the announcement apparatus. PC for control is equipped 
on the robot and only power source (AC 100 V) is supplied from outside. 
The liquid-crystal projector is set up upward at the front of robot, and the frame reflected on 
the mirror just above the projector is projected on running surface. This structure makes 
total height of robot, about 1.0 m, lower while the shortest projection distance, 1.2 m, is 
secured. Size of the projected frame on running surface is 36-inch type (550 mm length by 
740 mm width) with the mirror (140 mm length by 190 mm width) settled at 1.0 m heights. 
Outward appearance and main specifications of PMR-5 are shown in Fig. 4 and Table 3, 
while those of PMR-5R are in Fig. 5 and Table 4. 
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Figure 3. System configuration 
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Figure 4. Outward appearance of PMR-5 

 
Figure 5. Outward appearance of PMR-5R 
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Item Specification 

Mobile mechanism two-wheel drive 

Max mobility 18 mm/s, 20.7 deg/s 

Size D500-W440-H1000 mm 

Weight 25.0 kg 

Table 3. Main specifications of PMR-5 

 

Item Specification 

Mobile mechanism two-wheel drive 

Max mobility 36 cm/s, 41.4 deg/s 

Size D500-W440-H1000 mm 

Weight 25.0 kg 

Table 4. Main specifications of PMR-5R 

4. Contents to Project in PMR-5 
Main content of the projected frame is the “scheduled route”, as in the light ray robot PMR-
1. Scheduled route until 3-second-later can be displayed in the frame by the mounted 
projector and the settled mirror, considering the size of the projected frame and the mobility 
performance of the robot.  Projected route is shown as chain of three arrows in different 
colours showing the time information of the route – red arrow from the present to 1-second-
later, yellow arrow from 1-second-later to 2-second-later, and green arrow from 2-second-
later to 3-second-later – considering that approaching robot increases risk gradually. The 
width of drawn arrows is also adjusted with the length depending on the speed of 
movement thinking that robot movement at high speed raises danger. Consequently the 
arrow can be curved freely and not only the length but also the width is adjusted according 
to the speed of movement of the robot (Fig. 5(b)). “State of operation” can also be seen in the 
frame (Fig. 5(c)). For on-the-spot rotation, corresponding sign is displayed at right or left in 
the frame depending on the direction of movement. Characters for stop or going backward 
are also displayed in the frame. Dark background is prepared for bright running surface to 
keep visibility in addition to normal white background (Fig. 6). 
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 Straight-fast  Straight-slow 

(a) Speed of movement: length/width of chained arrows 

   
 Turn On-the-spot rotation 

(b) Direction: curved condition of arrows or sigh 

   
 Going backward   Stop 

(c) State of operation: characters 
Figure 5. Exact descriptions on PMR-5 
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  (a) Going forward   (b) Stop 

Figure 6. Projected frame with dark background 

State of operation to display is roughly divided into four – going forward, on-the-spot 
rotation, going backward, and stop. 
(1) Distinction of state of operation: 
First, the state of operation to display is distinguished from the speed instruction, rotation 
factor xJ  and translation factor xJ , which is taken in from some input device every 50 ms 
and accumulated in the instruction buffer during the latest three seconds. 
• There is an instruction in which translation factor is negative. → Going forward 

(because the used joystick is a flight simulator type) 
• There is an instruction in which translation factor is zero but rotation factor is not zero. 

→ On-the-spot rotation 
• There is an instruction in which translation factor value is positive. → Going backward 
• There is an instruction in which both translation factor and rotation factor are zero at 

the same time. → Stop 
State of operation displayed in the frame is independent each other even if two or more 
states are distinguished simultaneously. Accordingly multiple states may be displayed in 
the frame at the same time, for example, when it does stop after going forward. 
(2) Contents and method to display: 
Secondly, contents to display are refreshed in every 50 ms – same as command input cycle. 
Only one projector is equipped on the developed robot so that it can project only one frame 
of a fixed size to predefined position in front of the robot. 
a) Going forward: Going forward is expressed with the chain of three arrows in which the 
scheduled route is expressed as the long axis of arrows in different colors showing the time 
information of the route, although in the light ray robot PMR-1 the scheduled route drawn 
by laser pointer is a simple line in a single color (movement afterimage of red radiant) and 
the length of drawn route only shows the average speed during three seconds. 
Sixty polygons are prepared from sixty speed instructions acquired every 50 ms during the 
latest three seconds. Those are connected perpendicularly and form three arrows after 
transformed so as to look like the correct form. One arrow consists of twenty polygons – one 
triangular polygon aPo  for the tip of arrowhead, seven quadrangle polygon bPo  for the 
arrowhead except tip, and twelve quadrangle polygon cPo  for the rod of the arrow (Fig. 7). 
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Poa

Pob

Poc

            

 

 
 (a) Straight (b) Turn 

Figure 7. Each arrow consists of twenty polygons 

Three arrows are formed connecting sixty polygons from base to tip using instructions from 
the oldest to the latest one (Fig. 8(a)). When a new speed instruction is acquired, the polygon 
A  shaped using the newly acquired instruction is arranged at top of green arrow, while 

sixty polygons are shifted to the base of arrows (toward the robot) (Fig. 8(b)). The position of 
polygon A  (top of green arrow) shows the position where the robot will reach three 
seconds later. When the next speed instruction is acquired, the polygon A  is shifted once to 
the base of arrows (toward the robot) and the polygon B  which is shaped using the new 
instruction is arranged at the top of green arrow (Fig. 8(c)). Thus the polygon A  is shifted to 
the base of arrows (toward the robot) one by one as time goes on. It reaches the base of 
arrows three seconds later, then the corresponding speed instruction is performed and the 
robot moves in that manner (Fig. 8(d)). 
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  (c) Next command B  (d) Three seconds later 

Figure 8. Flow of polygons made from input command 
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The rate of the length of polygon along the direction of route against the robot's speed of 
movement was determined by trial and error so that the arrows might agree with the actual 
robot movement. Moreover the rate of the width of polygon against the amount of speed 
instruction was also determined by trial and error considering the visual quality of the 
arrows. In any case all polygons are connected perpendicularly after calculating the 
inclination angles and carrying out the coordinate transformation using the speed 
instruction, rotation factor xJ  and translation factor yJ . The form of each polygon is 

adjusted so that the scheduled route may be expressed smoothly even though any speed 
instruction, not only going straight but also arbitrary rotation, is given. 
Specifically the following processing is performed (Fig. 9). First, the speed of movement of 
wheels on both sides nV1 , nV2  mm/s is obtained from each speed instruction value xnJ , 

ynJ  of sixty pieces for three seconds ( n =1~60). The difference of movement distance nS  

mm between right and left wheels during 50 ms and the rotation angle nrot  rad are 
computed, where Lw  mm is the distance between wheels. 

 ( ) 05.021 ×−= nVnVnS   (1) 

 ⎟
⎠
⎞⎜

⎝
⎛−= Lw

nS
nrot 1tan    (2) 

Next, the rotation angle nsumrot  rad of the n -th polygon and the displacement ( nx , ny ) 
by the speed instruction are calculated in the coordinates on the projected frame, where the 
variable a  is the coefficient determined by trial and error in order to make the actual 
movement and the projected frame in agreement.  

 ∑
=

=
n

n
nrotnsumrot

1
  (3) 

 ( ) ( )nsumrotynJanx sin×−×=   (4) 

 ( ) ( )nsumrotynJany cos×−×=   (5) 

Then the central point ( nX , nY ) of the n -th polygon from the original position ( 0X , 0Y ), 
which is shown on the bottom line in the figure, is computed on the frame. 

 ∑
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1
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 ∑
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1
01    (7) 

The position of both ends of the bottom line of the n -th polygon are calculated just with 
computing the position where it is apart from the central point only by the width nd  of 
arrow which is decided from the position of the polygon in the arrow (whether tip, 
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arrowhead or rod) and the amount of speed instruction. By repeating these procedures the 
scheduled route can be displayed as three arrows correctly. 

 

( )
( ) ⎥⎦

⎤
⎢
⎣

⎡
×+
×+

=⎥
⎦

⎤
⎢
⎣

⎡

nnn

nnn

sumrotdY
sumrotdX

Y
X

sin
cos

( )
( ) ⎥⎦

⎤
⎢
⎣

⎡
×−
×−

=⎥
⎦

⎤
⎢
⎣

⎡

nnn

nnn

sumrotdY
sumrotdX

Y
X

sin
cos

⎥
⎦

⎤
⎢
⎣

⎡

0

0

Y
X

⎥
⎦

⎤
⎢
⎣

⎡

n

n

Y
X

nsumrot
nd

nd

⎥
⎦

⎤
⎢
⎣

⎡

−

−

1

1

n

n

Y
X

⎥
⎦

⎤
⎢
⎣

⎡

−

−

2

2

n

n

Y
XX

Y

nPo

 
Figure 9. Position of quadrangular polygon in the frame 
b) On-the-spot rotation/Going backward/Stop: In case of on-the-spot rotation, going 
backward, and stop, the treatment is the same in displaying the state of operation. The 
corresponding sign for on-the-spot rotation and the characters of BACK or STOP for going 
backward and stop are displayed in the frame respectively. Those are always displayed in 
grey, while displayed in yellow if the operation is performed within three seconds and the 
color turns in red when the operation is executed at that time. 

5. Contents to Project in PMR-5R 
Mobility performance of PMR-5R is doubled from PMR-5 with replacing the driving wheels 
to those of double diameters leaving the same driving mechanisms. Therefore the projected 
frame with the same size as on PMR-5 can inform the upcoming operation until 1.5-second-
later. In PMR-5R the upcoming occupied width and area during robot's travelling are 
displayed on the frame by drawing a belt with the same width as the robot. People will 
never come into contact nor collision with robot and safety will be secured only if they do 
not just step on the belt. The belt is colour-coded based on the traffic signal – red part from 
the present to 0.5-second-later, yellow part from 0.5-second-later to 1.0-second-later, and 
green part from 1.0-second-later to 1.5-second-later – like arrows in PMR-5 (Fig. 10(a)). The 
belt can be curved freely and the length of belt is adjusted depending on the speed of 
movement (Fig. 10(b)). The belt has semitransparent striped pattern which moves towards 
robot synchronizing with robot movement. Accordingly it looks like the belt is fixed on the 
floor and the robot moves rewinding the belt. That makes easy to understand the meaning 
of the projected belt for people around. Moreover we decide to display the grey arrows 
along the center of belt in order to make easier for people to understand the scheduled 
route. The arrows are also curved freely and their width and length are adjusted depending 
on the speed of movement as in PMR-5. State of operation can also be seen in the frame (Fig. 
10(c)). For on-the-spot rotation, corresponding sign is displayed at right or left in the frame 
depending on the direction of movement. Characters for stop or going backward are also 
displayed in the frame. 
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  Straight-fast  Straight-slow  

(a) Speed of movement: length of belt and length/width of chained arrows 

   
 Turn   On-the-spot rotation  

(b) Direction: curved condition of belt/arrows or sigh 

   
 Going backward   Stop 

(c) State of operation: characters 
Figure 10. Exact description on PMR-5R 
Sixty polygons are prepared from thirty speed instructions acquired every 50 ms during the 
latest 1.5 seconds. That is, every speed instruction is dual partitioned from which two 
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polygons are made to let the drawn belt look smooth (Fig. 11). Processing procedures to 
draw the belt and arrows are the same as in PMR-5. 
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 (a) Straight  (b) Turn 

Figure 11. Each part of belt consists of twenty polygons 
Three kinds of striped pattern on color coding as bright tone and dark tone of polygons are 
prepared. When a new speed instruction is acquired, two polygons A  shaped using the 
speed instruction are arranged at tip end of the belt, while sixty polygons are sifted toward 
the robot (Fig. 12(a)). The corresponding polygons to form the part of arrows are also 
shaped as in PMR-5 at the same time, which are not shown in the figure. When the next 
speed instruction is acquired, the previous polygons are shifted to the robot keeping their 
colour tone. And new two polygons B  shaped using the new instruction with decided 
colour tone are arranged at tip end of the belt (Fig. 12(b)). Two polygons A  reach the 
bottom end of belt 1.5 seconds later, then the corresponding instruction is performed and 
the robot moves in that manner. 
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Figure 12. Flow of striped pattern of polygons 

6. Discussion 
In the questionnaire evaluation (Matsumaru, 2007b), PMR-5 has received the highest 
evaluation score comparing with other three prototype robots, eyeball robot PMR-2 
(Matsumaru et al, 2003a, 2003b; Matsumaru et al, 2005), arrow robot PMR-6 (Matsumaru 
et al, 2001; Matsumaru, 2007a), and light ray robot PMR-1. In the experimental 
examination in simulated interactive situation between people and robot, the passing each 
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other and the positional prediction, we have clarified that the method of indicating 
operations from the present to some future time continuously is effective when a person 
wants to avoid contact or collision surely and correctively owing to the feature that 
complicated information can be accurately transmitted of PMR-5R (Miyata et al., 2007).  
Here the knowledge and consideration obtained through the research project are 
summarised as follows. 
(1) Artificial mechatronic system which moves its body physically 
This research is aimed at artificial mechatronic systems which coexists with people like a 
human-friendly robot. We are willing to derive some benefit from such robot moving its 
body physically. The research is inspired from awareness of the issues that people may 
feel threat and receive sense of incongruity from existing human-friendly robot because it 
is difficult to understand the function and performance and the upcoming operation and 
intention of the robot only from its outward appearance. Accordingly there is a risk of 
contact or collide between people and robot. There should be two approaches to solve the 
problem. First approach is to design the structure and movement of robot so that it is easy 
to understand and predict its function and upcoming operation from its appearance. 
Second approach is to superimpose a new function to preliminary-announce and indicate 
its upcoming operation. This research takes the latter. The function to preliminary-
announce and indicate the upcoming operation of robot aims at providing it to those who 
are willing to react actively due to the information. Consequently the robot assumed here 
is supposed to have some safety function to detect obstacles and people around and avoid 
them autonomously. We do not assume that the robot comes into contact with those who 
have neither awareness nor interest on the robot movement. What to emphasize here is 
that it is insufficient even if a robot does not contact with people. It is also important that 
robots never pose a threat to people and people can live together with robot comfortably 
without anxiety. 
(2) Sensory perception to be used 
Each of four proposed methods complains to people's visual sense. If sound or voice is 
used to transmit information through auditory sense, information can be transmitted to 
everyone around, including those who do not want or desire it. Moreover sound or voice 
disturbs public peace. Accordingly only in the case that has a substantial need and 
requires emergency to transmit information to everyone around for safety reason, a robot 
might utter sound or voice, like heavy vehicles when turning at crossing. Since we 
decided to use visual sense here, we considered the method should be intelligible in 
which people can understand the shown contents immediately even at a glance, instead of 
taking a long looking. For that purpose it is necessary to take into consideration general 
common sense and customs, popular prejudice, basic knowledge stored through ordinary 
experiences, etc. 
(3) Kind of information to transmit 
Direction indicator or winker lamp of passenger cars has a serious problem by expressing 
several meanings only with a single sign of blinking – turn (more various when including 
curvature factor and selection of corner to turn), lane changing, pulling over to the kerb 
(following up with parking), etc. It is difficult to setup the relation between sign and 
meaning. Especially when we want to transmit many kinds of information, namely 
various robot operations, the kind of sign becomes varied. Therefore it is difficult to 
memorize the meaning corresponding to each sign if the difference among signs is too 
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large. On the contrary it is easy to confuse with each other when various signs are very 
similar. 
(4) Announcing state just after the present 
Eyeball robot PMR-2 admits some interpretation between robot operation and sign for 
announcement, while arrow robot PMR-6 has direct connection between them. It is 
comparatively intelligible that the direction of movement is shown as eye positioning in 
the display, because the gaze is one of the keys to guess other's intention among people. 
Arrow is intelligible for everyone even at first sight, since it is commonly used in daily life 
and usually employed to express the direction. However it is difficult to show the speed 
of movement quantitatively by the degree of eye opening or the size of arrow. Especially 
on the speed of movement these two expressions might be used effectively after looking 
at the sign of moving robot and storing their knowledge. Accordingly these expressions 
will be effective in the situation and scene in which the information about the direction of 
movement has priority rather than that about the speed of movement. In the 
questionnaire evaluation, not a few people admired the eyeball expression as social and 
friendly due to personification and also the arrow expression as intelligible owing to 
straightforwardness and lucidness. Therefore those expressions will become candidates to 
examine for usage with greater importance to sociableness or lucidity. 
(5) Indicating operations continuously 
Light ray robot PMR-1 displays the scheduled route in a single colour as line expression, 
while projection robot PMR-5 indicates the occupied area in multiple colours as field 
expression. Line expression is effective in contact avoidance even for small-size robots. 
Field representation is valid for wide-width organisms compared with human body like 
automobiles. When it is difficult to project a large frame, for example, by restriction of 
projection equipment, drawing borderlines on both sides can be considered to indicate 
occupied area in which the organism is going to pass through. These two methods of 
drawing lines and projecting frame by light have a big advantage that information can be 
indicated anywhere without special maintaining. However it is supposed that the surface 
to draw or project is plane with little unevenness and the environment should be under 
the right condition in which the reflected light is clearly visible. Accordingly those 
expressions will be useful in mobile robot which moves indoor on a floor at first. 
(6) Procedure to design and apply as interface 
We have proposed and examined four methods, but we don't have to determine the best 
one. Each method has special and clear features respectively – indicating states of 
operation (subjective interpretation and clear interpretation) and displaying operations 
continuously (line expression and field representation). And this research has clarified 
their advantages and disadvantages. We think the method suitable for each application 
will be selected and applied referencing these clarified features. First it is necessary to 
declare the scene and situation where the preliminary-announcement and indication 
function is used, the kind and its number of required information, the contents of prior 
information, etc. in the intended application. Secondly candidates are chosen from four 
methods, then the developed method and the improved equipment are examined. The 
environment where the method using display or projection equipment might be effective 
will be restricted at first, such as indoor applications with flooring where sunlight will be 
never gotten directly. 
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7. Conclusion 
This chapter presented the projection robot PMR-5 and the revised version PMR-5R in 
which projector projects a two-dimensional frame on a running surface which indicate the 
upcoming robot operation. 
Robots with preliminary-announcement function of its upcoming operation are not expected 
to pose problems in task accomplishment when moving along predefined routes or even if 
the route is decided on site, like robot cleaners, because the route is announced beforehand 
and the robot actually moves that way for some time. In manual operation in real time, 
however, as with automobiles, it will cause problems. The maneuverability in operator will 
become worse because the time-delay will be always inserted between the instruction and 
the execution. In that case we have to devise the method that the robot executes the 
instruction from operator in real time forecasting operator’s next operation from operational 
record and environmental condition (Akamatsu, 2003) and indicating the forecasted 
operation to surroundings. In addition, future work includes the study on dealing with the 
case that operator behaves contradictory to the forecasted operation and the case that robot 
does some autonomous operation suddenly to secure safety like stopping.  
We will continue to study to improve the affinity between human beings and mechatronic 
systems to establish a standard for mutual coexistence.  
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1. Introduction 
In order to perform motion planning it is usually necessary to define some representation of 
the environment and have some method of determining the robot’s location in that 
environment.  Mapping is the problem of determining the representation, while localization 
is the problem of finding the robot’s position.  Many probabilistic techniques for localization 
depend on the map being defined as a finite sized set of landmarks which the robot’s 
sensors observe, giving their relative displacement from the robot.  However, physical 
sensors do not usually detect landmarks unambiguously.  Instead, they report the distance 
to the nearest obstacle, or return an image of the environment.  In order to use a landmark 
based algorithm, the sensor readings must be pre-processed in a separate step to convert the 
raw sensor data into a set of detected landmarks, such as in [Leonard and Durrant-Whyte 
1991].  The additional step introduces more error into any algorithm, as well as discarding 
much of the sensor information which does not detect any landmark.   
One of the primary drawbacks of landmark based maps is the data association problem.  
Because raw sensor data is not labelled with the correct landmark detected, the sensor 
processing must somehow determine exactly which landmark was observed.  If mistakes are 
made the localization and mapping algorithms which depend on the sensor data will fail.  In 
order to compensate for the data association problem, many localization and SLAM 
algorithms include a method for determining the associations between the sensor data and 
the landmarks, however these techniques add significantly to the complexity of the 
solutions.  Also, they do not solve the problem of actually finding landmarks in the raw 
sensor readings.  Some examples of these algorithms include GraphSLAM [Folkesson and 
Christensen 2004] and Sparse Extended Information Filters (SEIF) [Thrun et al. 2004], both of 
which can be implemented to handle data associations in a probabilistic way as described in 
[Thrun et al. 2005].  Even with these integrated solutions, the data association problem adds 
a significant amount of error. 

2. Occupancy Grid Maps 
One common technique for map representation that does not suffer from data associations is 
to use occupancy grid maps to approximate the environment.  An occupancy grid map 
represents the environment as a block of cells, each one either occupied, so that the robot 
cannot pass through it, or unoccupied, so that the robot can traverse it.  Unless your 
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environment is composed entirely of cubes, occupancy grid maps cannot be absolutely 
accurate, but by choosing a small enough cell size they can provide all the necessary data.  
Any sensor will report the status of a set of grid cells that can be checked without reference 
to the rest of the map.  An early implementation of occupancy grid maps was used in 
[Moravec 1988] to automatically generate a map of the environment.  Sensor readings are 
compared to the map, altering the probability that observed cells are occupied.  For 
example, a sonar sensor returns the closest object within a cone, so the cells in the volume of 
the cone closer than the reading are probably unoccupied.  Moravec represents each cell as a 
probability of being traversable and initializes them to an unknown value.  He describes a 
probabilistic technique to update cells for various types of sensors and gives a technique to 
allow the map to be updated as the robot moves.  Unfortunately, this technique is not 
actually localization and does not help the robot know its own position.  The map is 
maintained relative to the robot, rather than in a global frame of reference.  In other words, 
the robot is assumed to be at a fixed location, while the map moves around it.  As the robot 
moves, the map is blurred according to the motion.  The robot’s sensors can correct the map 
in its immediate area, but unobserved portions of the map must blur into uselessness.  There 
is also no way to discover the robot’s location in reference to previously visited locations. 
Although the technique is problematic as a localization algorithm, it provides a very 
powerful way to represent the environment.  Using an occupancy grid map allows the raw 
sensor data to be used without trying to detect and identify landmarks.  Also, since raw data 
is used, no information is discarded because it does not correspond to a landmark.  The only 
problem is that there are a huge number of map features, one for each grid cell.  Algorithms 
which consider the relation of the robot to a set of distinct landmarks cannot be applied 
when the number of features is so large.  Thus, using occupancy grid maps limits the type of 
localization and mapping techniques that can be used. 

2.1 Mapping Technique 
To create an occupancy grid map it is necessary to determine the occupancy probability of 
each cell.  In order to do this efficiently the assumption is often made that map cells are 
independent.  Although this is not strictly accurate, especially when considering adjacent 
cells representing the same physical object, it greatly simplifies the mapping algorithm 
without significantly increasing the error.  As a result, the probability of a particular map, 
m, can be factored into the product of the individual probabilities of its cells.  The map 
depends on the robot’s location history, xt = {x0, …, xt}, and the sensor readings at each 
location in the path, zt 
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The probability of a particular cell is easy to determine given the robot’s position and sensor 
readings, since it is determined by whether the robot observes the cell as unoccupied or 
occupied.  Since the probability is determined by the robot’s entire history, all these sensor 
readings must be taken into account.  The mapping algorithm usually builds the cell 
probabilities up iteratively, considering each {xt, zt} from time t = 0 to the most recent 
reading.  Although these readings could be considered in any order, the iterative processing 
makes the most sense, allowing additional readings to be added and leading eventually to 
simultaneous mapping and localization (SLAM) solutions such as described in section 4. 
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With occupancy grid maps, the mapping step must determine the probability of each cell, as 
represented by equation (1).  Proceeding iteratively, the map cells are updated according to 
the position and sensor readings.  Of course, it would require significant processing to 
update the entire map on each step, but this is unnecessary.  Only the cells which are 
actually observed need to be updated.  Each cell that is perceived by the sensor given the 
robot’s position is updated depending on whether the sensor indicates it is occupied or 
unoccupied.  Although the map is defined by the occupancy probability, for simplicity the 
actual values for each cell, p(mn | xt, zt), are calculated in log odds form.  
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p(mn) is a constant prior occupancy probability, so the only important part of equation (3) is 
p(mn | xt, zt), which is called the inverse sensor model.  Although a highly accurate inverse 
sensor model is difficult to determine, a simplified implementation that returns a high value 
if the sensors report an object in the cell and a low value otherwise is often acceptable.  
Occupancy grid mapping updates a map according to a sensor reading at a location so that, 
as evidence accumulates, the map becomes correct.  Of course, the success of the mapping 
algorithm depends on the location xt being correct, just as the success of localization 
depends on an accurate map. 

3. MCL 
Monte Carlo Localization uses models of various sensors, together with a recursive Bayes 
filter, to generate the belief state of a robot’s location.  In fact, MCL is a specific instance of a 
POMDP (Partially Observable Markov Decision Process).  A standard form of MCL uses a 
motion model to predict the robot’s motion together with a sensor model to evaluate the 
probability of a sensor reading in a particular location.  The sensor model necessarily 
includes a static map of the environment.  The algorithm can be applied to virtually any 
robot with any sensor system, as long as these two models can be created.  One common 
implementation where MCL is very successful is on a wheeled robot using a range sensor 
such as a laser rangefinder.  A benefit of this combination is that the map and location used 
by the algorithm are in a human readable format.  Although I give the general algorithm in 
the following sections, which should be applicable to other robots, where application 
specific details are required, I assume the type of robot as described. 
Other localization algorithms than MCL exist, but they are currently much more limited 
than MCL and require specific environment features in order to be effective.  Most other 
localization algorithms require that the map be composed of discrete landmarks and often 
they increase in runtime with the size of the map.  Extended Kalman Filter (EKF) 
localization [Leonard and Durrant-Whyte 1991] is an alternative technique that has both of 
these problems, which are exacerbated when landmarks cannot be identified exactly.  Even 
with various optimizations to improve execution, such as using the unscented transform 
(UKF localization) [Julier and Uhlmann 1997] or multi hypothesis tracking (MHT), the 
algorithm still applies primarily to feature based maps [Thrun et al. 2005].  Since a large, 
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indoor environment is unlikely to have discrete, unambiguous features, these techniques are 
ineffective for the type of problem we are considering.  In order to apply them it is usually 
necessary to preprocess the map as in [Leonard and Durrant-Whyte 1991] to create an 
artificial landmark based map.  The map processing step introduces additional error and 
discards much of the information provided by the original map.  Another serious problem is 
that these alternative techniques cannot handle multiple hypotheses of the robot’s location.  
Each one maintains only a single Gaussian representation of position.  MCL, in contrast, can 
maintain multiple separate locations.  Markov localization using probabilities over a grid is 
also possible, however it increases in runtime with the size of the state space.  Since a robot 
in a real, dynamic environment requires a real valued state space, true Markov grid based 
localization is usually impossible.  Because of these drawbacks, MCL is currently one of the 
most effective localization techniques and the most commonly used, especially for real 
robots operating in real environments. 

3.1 Recursive Bayes Filter  
MCL is an implementation of a recursive Bayes filter.  The posterior distribution of robot 
poses as conditioned by the sensor data is estimated as the robot’s belief state.  A key detail 
of the algorithm is the Markovian assumption that the past and future are conditionally 
independent given the present.  For a robot, this means that if its current location is known, 
the future locations do not depend on where the robot has been.  In virtually any 
environment this is the case, so making the assumption is reasonable in general. 
To produce a recursive Bayes filter, we represent the belief state of the robot as the 
probability of the robot’s location conditioned by the sensor data, where sensors include 
odometry (ut). 

 ),...,,,...,,|()( 0101 uuuzzzxpxBel tttttt −−=  (4) 

xt represents the robot’s position at time t, zt the robot’s sensor readings at time t and ut is 
the motion data at time t.  To simplify the subsequent equations we use the notation at = {at, 
…, a0}. 
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While this equation is a good representation of the problem, it is not much use since it 
cannot be calculated as is.  By applying a series of probabilistic rules, together with the 
Markovian assumption, equation (5) is converted into a more usable form.   

 
∫
−

−
−−

−−=

1

1
11

11 ),|(),|()|()(

tx

t
tt

ttttttt dxzuxpxuxpxzpxBel η  (6) 

Obviously, p(xt-1 | zt-1, ut-1) is Bel(xt-1), giving us the recursive equation necessary for a 
recursive Bayes filter.  η is a normalization constant that can be calculated by normalizing 
over the state space.  p(zt | xt) is the sensor model, representing the probability of receiving 
a particular sensor reading given a robot’s location.  Finally, p(xt | xt-1, ut) is the motion 
model.  It is the probability that the robot arrives at location xt given that it started at 
location xt-1 and performed action ut.  The sensor and motion model are representations of 
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the physical components of the robot and must be determined experimentally for each robot 
and sensor device. 

3.2 Particle Approximation 
It would appear that, given the two models, equation (6) is all that is necessary to perform 
localization with MCL.  Unfortunately, a problem occurs with the integral.  The equation 
requires integrating over the entire state space.  Although we can evaluate the models at any 
point in the space, there is no closed form to the integral.  Further, even a simple robot 
moves in a continuous, 3 dimensional state space with an x and y location together with an 
angle of rotation.  Calculating the integral over this space is impossible, especially for a real 
time algorithm.  In order to solve this problem, we approximate the continuous space with a 
finite number of weighted samples. 
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The integral over the space becomes a sum over the finite number of particles. 
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Of course, approximating the space results in a certain amount of error when low 
probability locations are not represented.  If the robot is really at one of these locations it can 
never be localized.  However, if the number of particles is well chosen MCL works properly 
in most situations. 

3.3 Resampling 
One problem with using a finite set of particles to represent an infinite space is that the 
weight of particles representing a low probability location will quickly decrease and is 
unlikely to ever increase again.  Similarly, if there are too few particles representing a high 
probability location, they will disperse and eventually lose the robot’s position.  What is 
needed is a method for relocating low probability particles to high probability locations and 
recalculating their probability.  The method used in MCL is resampling.  After the particles 
are weighted by the sensor model they are resampled to represent the high probability 
locations.  N particles are chosen randomly from the list of N weighted particles, with 
probability according to their weight.  These particles are chosen with replacement, so that 
after a particle is chosen it remains in the original list and has the same probability of being 
sampled again.  A high probability particle might be selected several times and so multiple 
copies might occur in the new list, while a low probability particle might never be chosen at 
all and its location would die out.  The resampled list will thus have multiple particles in 
high probability locations and none in low probability ones.  Another effect of resampling is 
to set all the sample weights to 1 / N.  Instead of having individual weights representing the 
probability of a location, the number of particles indicates the probability.  A high 
probability location will have many particles and thus, if the robot is present, it is likely to 
be tracked as it moves.  Of course, low probability locations will die out and be 
unrepresented, so localization will fail if the robot is truly at one of these positions.   
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3.4 Bias 
Representing an infinite space with a finite number of samples necessarily introduces some 
error.  In order to accurately represent high probability locations, the particle filter discards 
lower probability regions as their low likelihood particles are not selected during the 
resampling process.  Bias is the name given to the problem that MCL tends to consider only 
the highest probability locations, letting others be removed.  The effect is that MCL is biased 
towards areas that have a large number of particles, tending to converge, over time, to a 
single cluster in the highest probability location.  However, in most situations the high 
probability location contains the robot and so the convergence provides the correct result. 

3.5 Algorithm 
As the robot moves, it reports its odometry and sensor data to the MCL algorithm.  After 
each reported move every particle is moved according to the random motion model, based 
on the motion actually reported.  The particles are then updated with a weight determined 
by the sensor model for the particle’s location.  Finally, the particles are resampled by 
repeatedly choosing samples randomly, with replacement, from the current set, according to 
the weights assigned by the sensor model. 

1: Create a set {xt[n], wt[n]} from Xt-1 by repeating N times: 

1.1:  Choose a particle xt-1[n] from Xt -1.  Because of the resampling step this 
particle may be selected either iteratively or randomly. 

1.2:  Next, draw a particle xt[n] ~ p(xt | ut, xt-1[n]).  This particle is the result of a 
random motion according to the motion model. 

1.3:  Set the weight of the particle using the sensor model: wt[n] = p(zt | xt[n]). 

2: Resample randomly according to weight from {xt[n], wt[n]} into Xt, which causes the 
particle weights to become uniform. 

Table 1. MCL Algorithm 

The effect of resampling is to replace the weight of the individual particles with the number 
of particles at that location.  On the robot’s next move the particles at a high probability 
location will spread out as they are moved randomly according to the motion model, with at 
least one landing in the robot’s new location.  Then the resampling will cause more particles 
to appear at the correct location, while incorrect locations die out.  Assuming that the 
models and map are accurate, MCL will correctly track the robot’s changing location.  
Various parameters can be tuned manually to adjust the rate of convergence and the 
behaviour of the models.  Once the belief over the robot’s location is generated, a single 
location for the robot can be found by looking at the mean of the particles. 

3.6 Sensor Model 
Corrections to the robot’s location as determined by dead reckoning are made according to 
the robot’s other sensors.  The sensors, usually some type of rangefinder device, determine 
the weight of each particle.  The weight is calculated according to p(zt | xt) which represents 
the sensor model, the probability of getting a particular sensor reading given a suggested 
robot location.  The sensor model depends heavily on the exact physical sensors installed on 
the robot, so there can be no general equation.  Since the model is not sampled as is the 
motion model, it is often implemented as a large, precalculated table, where any particular 
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sensor probability can be quickly looked up.  A table implementation allows a more 
complex function to be used than could be calculated in real time.  One function that is 
sometimes used for a laser rangefinder device gives the probability of each possible 
returned range value, given each possible actual distance to a wall.  Such a function can be 
composed of a Gaussian distribution centered on the actual wall distance, since that distance 
is the most probable return value, together with other functions depending on the features 
of the physical device.  Common additions are an exponential function multiplied by a 
linear one representing false negative values and another exponential function representing 
false positives.  The overall probability of a laser reading, which is composed of multiple 
range values in different directions, is the product of the probability of each range value.  
Given a robot position, the distance to the wall along each sensor ray can be determined 
from the map and the probability of the range value returned given that distance can be 
looked up from the table.  These probabilities are then multiplied together to get p(zt | xt). 

3.7 Motion Model 
The motion model p(xt | xt-1, ut) is a critical part of MCL.  Unlike the sensor model, which 
gives the probability of getting a specific sensor reading at a particular location, it is 
necessary to sample from the motion model.  Given a starting location and a reported 
motion (xt-1 and ut), MCL requires that we be able to choose a final location randomly 
according to the motion model.  This requirement precludes us from using any motion 
model that is very complex.  In fact, most motion models are a combination of simple 
Gaussian distributions.  For a holonomic wheeled robot, the most common representation is 
with two kinds of motion leading to three kinds of error.  Each movement of the robot is 
represented as a linear movement followed by a stationary turn.  Although a particular 
robot probably does not follow these exact motions, if we break the robot’s motion into 
small increments we can use them as an approximation.   
These two motions are often implemented using two Normal distributions for many 
common robots.  However, the algorithms described in this section should work for any 
model, provided it is possible to sample from it.  In general, some collection of Gaussians 
works well, since they are often good approximations to a physical system while at the same 
time being easy to sample from and optimize. 

3.8 Raytracing 
Calculation of the sensor model p(zt| xt) involves determining the probability of receiving a 
particular sensor reading given the location in the environment.  For a laser rangefinder the 
readings are distance measurements.  Given a robot’s possible location in the map, the 
expected distance to the wall is usually determined by raytracing from the robot to the 
nearest wall.  The robot’s physical sensors determine its actual distance to the wall and, once 
the distance from the map and the distance from the world are known, the probability can 
be calculated either mathematically or by a table lookup. 

4. FastSLAM 
4.1 SLAM Problem 
The problem of determining the map and robot position at the same time is called 
Simultaneous Localization and Mapping, (SLAM).  It involves finding the distribution over 
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a state space which includes both robot position and the complete map.  The given data is 
the sensor and odometry information from the start until the current time.  Even the 
definition of SLAM results in two different problems.  Determining the map and location 
during operation of the robot requires finding only the current location xt as well as the 
static map m.  That results in the problem of online SLAM, which is intended to localize the 
robot during operation while also creating the map.  Online SLAM is concerned with 
determining p(xt, m | zt, ut), which is the state at the current time.  Using new information 
to update old estimates is not part of online SLAM, even though new information could 
update the map so that past localization could be corrected.  The other SLAM problem is 
called the full SLAM problem, and it involves finding the complete pose history of the robot 
and the map.  The probabilistic formula is p(xt, m | zt, ut), since we want all of the robot’s 
states, instead of just the current one.  The difference is that full SLAM uses current data to 
correct past estimates.  Online SLAM is used to localize the robot dynamically while full 
SLAM is often an offline algorithm concerned with finding out what the robot has already 
done.  If the robot needs to make decisions based on its location, then it is necessary to use 
online SLAM.  If the objective is to determine where a robot controlled by some other 
method, for example a human driver, has been, then full SLAM is more powerful.  Both the 
problems have an application and the various solutions are similar, although not identical.  
In fact, online SLAM is the result of removing the past poses from the full problem using 
integration. 
Although SLAM is technically the definition of a particular problem, it is also the name 
given to the current set of solutions to the problem.  These solutions all have several 
common elements which are shared by all effective solutions to both the online and full 
problems.  One of the most important factors of the SLAM solutions is correspondences.  
Since SLAM considers the map as well as the robot pose, there must be some definition of a 
correct map.  In SLAM, maps are defined as sets of objects and a correct map is one that has 
each object in the correct location.  Of course, sensors do not report the location of specific 
objects, so it is necessary to find which object each sensor reading corresponds to.  
Unfortunately, it may be difficult to determine exactly which object is being observed.  As 
we have seen, heuristic methods can be used to filter the raw sensor data into object 
locations, but any such technique will have a certain percentage of errors.  Some SLAM 
algorithms explicitly take correspondence probabilities into account, adding yet another 
term to the posteriors.  If we define ct to be the set of correspondences between sensor 
readings and objects at time t, the online SLAM problem becomes p(xt, m, ct | zt, ut), while 
the full problem is p(xt, m, ct | zt, ut).  Of course, increasing the size of the state space 
significantly increases the complexity of the problem and thus the run time of the solution.  
Many SLAM algorithms can be proved to eventually converge to the correct map, but only if 
the objects can be identified correctly.  If identification is not certain, the guarantee of 
convergence is lost.  The problem of determining which object is detected by a sensor 
reading is called the data association problem and it is the central drawback to SLAM 
algorithms.  In effect, SLAM usually creates a landmark based map, rather than a pure 
occupancy grid map.  As we have seen, correctly identifying landmarks in localization is a 
difficult problem, which can be overcome by using raw sensor readings in the MCL 
algorithm.  However, the corresponding SLAM solution suffers from additional problems. 
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4.2 FastSLAM Derivation 
Simultaneous Localization and Mapping is divided into two slightly different domains.  The 
first, called online SLAM, is the problem of finding the robot's current pose xt and the map 
m, given the sensor readings zt and odometry ut.  The more complex problem is to find the 
robot's path xt = {x1, …, xt} given the same data.  Finding the complete path is called the full 
SLAM problem.  Obviously, full SLAM is the more complete problem but online SLAM can 
be derived from full by integrating out the past poses, as shown in equation (10). 

 Full SLAM : ),|,( ttt uzmxp  (9) 
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The reduced problem is called online SLAM because it is simplified enough to be solved in 
real time, whereas most full SLAM solutions require offline processing. 
One of the benefits of FastSLAM [Montemerlo et al. 2002] is that it simultaneously solves 
both the online and full SLAM problems.  Of course, any solution to the full SLAM problem 
also produces a solution to online SLAM, but FastSLAM, although it works in real time, 
solves for the entire path of the robot.  The key to FastSLAM is that if the robot's location is 
known, the locations of objects in the environment are independent.  Thus, the SLAM 
problem can be factored into localization and mapping problems.  
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The first term is obviously a localization problem which requires finding the robot's path xt 
given its odometry and sensor data.  The second term is the mapping problem which finds a 
particular feature's position, mn, given the robot's path and sensor readings.  Equation (11) 
leads to an iterative algorithm for FastSLAM where the robot's position is calculated, and 
then the map is updated based on that position.  Unfortunately, it is unlikely that at every 
step a single location for the robot can be derived.  Nor can the algorithm rely on a 
probabilistic position, since the factoring is only valid given a fixed xt.  These requirements 
lend themselves to a technique that represents the robot's location as a finite collection of 
exact states.  Fortunately, such a technique, Monte Carlo Localization (MCL), exists. 

4.3 Occupancy Grid FastSLAM 
Unlike most SLAM algorithms, it is possible to use FastSLAM on an occupancy grid map 
directly, without first processing it for landmarks.  Since the algorithm updates the map 
with reference to a given robot position, the specific representation of the map as Gaussian 
landmarks is not required.  Instead, an occupancy grid can be used and updated according 
to the standard techniques.  As in [Moravec 1988], observed cells are updated according to 
whether the sensors observed them as occupied or unoccupied.  However, since each 
particle represents an exact robot path, there is no need to blur past readings.  The grid cell 
implementation even overcomes the data association problem, since landmarks can no 
longer move, the cell being observed is exactly determined by the robot’s location.  An 
implementation called DP-SLAM, [Eliazar and Parr 2004] was able to successfully localize 
and map a real environment including a large loop. 
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The only serious problem with FastSLAM occurs with the difficult situation of loop closure.  
In other algorithms, when the robot re-enters known territory it becomes necessary to search 
a much larger set of landmarks for correspondences, possibly the entire set.  However, 
FastSLAM represents all possible robot positions in a finite set of samples.  When it closes a 
loop, it can only be successful if some particle has followed the true path.  The longer the 
loop, the greater the uncertainty of the robot’s position.  As uncertainty increases, the 
number of particles necessary to represent the belief also increases.  Eventually, there will 
not be enough particles to represent the distribution and the correct location may be lost.  
FastSLAM alone suffers the problem, since all other SLAM solutions use the correlations to 
determine the position.  The problem with particle filters is that they only represent the 
highest probability region of a distribution, whereas the Gaussian distributions used by 
other techniques represent the entire distribution.  Of course, particles can represent much 
more complex and nonlinear distributions than is possible with Gaussians.  The drawback 
to using particle filters in FastSLAM is that the number of particles maintains the diversity 
of the robot’s position, and as soon as the uncertainty goes beyond the number of particles, 
the algorithm may fail.  Thus, the size of the particle set must be tuned to the environment, 
based on the size of the longest loop, and increasing the number of particles to this extent 
may make the algorithm inefficient. 
Grid based FastSLAM is performed by combining the MCL particle filtering with the 
occupancy grid mapping algorithm using Rao-Blackwellized particle filters [Montemerlo et 
al. 2002; Thrun et al. 2005].  Each particle consists of both the robot's state and an occupancy 
grid map.  Of course, particle filtering could be used over the entire state space.  However, 
this would require a number of particles exponential in the number of state variables, in this 
case the number of cells in the map.  Instead, the factorization in equation (11) is used to 
separate the robot state from the map.  The particle filter is only used for the robot's state, 
often x, y and orientation (θ) for a terrestrial indoor robot.  The map for each particle is 
updated according to the occupancy grid mapping algorithm, with the position fixed at the 
position of the particle.  This separation allows the occupancy grid algorithm to work with a 
guaranteed position, while still allowing for uncertainty in the robot's pose.  By looking at 
the highest probability location we can determine the current best guess of the robot's 
position and the map.  At each step, the set of N particles Xt-1 is updated to Xt according to 
the following algorithm: 

1: for k = 1 to N 
2:  xt[k] ~ p(xt | xt-1[k], ut, m) 
3:  wt[k] = p(zt | xt[k], m) 
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5:  Xt' = Xt' ∪ <xt[k], mt[k], wt[k]> 
6:  endfor 
7: for k = 1 to N 
8:  draw i from Xt' with probability α wt[i] 
9:  Xt = Xt ∪ <xt[i], mt[i]> 
10: endfor 

Table 2. Occupancy Grid FastSLAM algorithm 
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Line 2 updates the set of particles by randomly choosing a new location for each one based 
on the previous location of the particle and the motion model.  The sensor model is used to 
determine a weight for the new location based on the sensor readings in line 3.  The primary 
difference from MCL occurs in line 4, where the occupancy probability of the map attached 
to the particle is updated according to the sensor readings used at the particle's new 
location.  Of course, these maps are maintained via the log odds ratio as in section 2.1.  
Finally, in the loop of lines 7 - 10, the updated particles are resampled.  N new particles are 
chosen randomly according to the weights, with replacement, to make the new particle set.  
Resampling has the effect of replacing the particle weight with the number of samples at a 
location.  Thus, low probability locations die out while high probability locations gather 
enough particles that, on the next update, the correct location will be selected by the motion 
model in line 2. 

5. Dynamic Maps in MCL 
One drawback to localization with MCL is that it requires a static map of the environment.  
Sensor readings are compared with the expected values from the map and the comparison 
generates the probability of the robot’s location.  Errors in the map are partially 
compensated for by increasing the error that is assumed for the sensors.  Another way to 
compensate for map errors is that the number of correct sensor readings will probably 
overrule incorrect ones.  However, because MCL combines sensor error and map error, as 
map error increases, the allowable sensor error decreases until finally the algorithm fails and 
the map must be rescanned. Each error in the map is usually a minor matter for a localized 
robot; it is the combination of minor errors that can cause problems. 
A localized robot rarely becomes mislocalized due to map errors, but this is not true of 
global localization, where the robot’s initial location is unknown.  Especially in symmetric 
environments, global localization can easily fail due to minor map errors that would be 
ignored by a localized robot. 
The approach described in this section is based on the idea that if a robot is localized it may 
reasonably expect its sensor data to reflect the environment.  If that is the case, then it 
should be possible to update the map according to the sensor data.  If a known error in the 
map is fixed, then the robot will have a greater ability to deal with any subsequent errors.  
Since global localization may depend heavily on minor features, having an updated map 
can be a great benefit. 
Violating the static map assumption and detecting changes allows localization to be more 
accurate and more robust to error.  It also provides additional information that may be 
useful in planning the robot’s activities.  Detecting opening doors and moving objects makes 
path planning more reliable, because it will be based on a more accurate representation.  
Further, when a new opening into an unexplored are is detected, the robot can add the new 
region to the map.  The dynamic map algorithm described here makes it far easier for a 
robot to be deployed long term in an environment where other agents, including humans, 
are present and making changes. 
Dynamic maps for MCL can also be implemented by identifying binary objects, such as 
doors, and tracking their status using similar probabilistic methods [Avots et al. 2002].  
There are several benefits of having explicit objects.  Since an object consists of multiple cells 
that have the same probability, each scan provides more information about the object, 
allowing its state to be altered more quickly.  Also, since most of the map is not dynamic, the 
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probability of objects can be changed much more rapidly, since changes in the objects 
probably will not be able to change the map to make an invalid location match the sensors.  
However, explicit objects need to be manually defined before execution, adding to the work 
of defining maps.  Since objects are binary, either present or absent, a moving object must be 
represented explicitly by creating a binary object at each possible location.  With the 
dynamic maps described here, an object can appear anywhere without user interference.  
Finally, the method in [Avots et al. 2002] involves a different importance factor, which 
increases the runtime logarithmically in the number of objects, making it unsuitable for 
having each map cell dynamic. 
Algorithms for simultaneous localization and mapping (SLAM) have the ability to localize 
the robot and generate the map simultaneously in real time [Montemerlo et al. 2002].  These 
algorithms are meant to dynamically alter the map in the same way as dynamic map MCL.  
Many of these methods use an algorithm which is guaranteed to converge to a correct 
solution.  However, they suffer from the data association problem.  On every sensor scan it 
must be possible to uniquely identify which feature of the map is responsible for each sensor 
reading.  If this is impossible, then the guarantee of correctness does not hold. SLAM does 
not discover and use cell correlations, so the rate of update is slower if the map changes, 
since each cell must be considered independently.  Further, SLAM involves significantly 
more processing than MCL, using up computing power that may not be necessary, 
especially after the map is generated.  Dynamic map MCL was created specifically to 
provide an accurately changing map without incurring any significant overhead.  Since it is 
a constant time addition to MCL, the map can be updated without requiring any more 
computing power than ordinary localization.  Of course, the map cannot be generated from 
nothing as it can with SLAM, but once the map exists it can be kept up to date almost 
without cost.  SLAM also, in common with ordinary MCL, makes the assumption that the 
map is static.  Over time, the algorithm becomes more certain of the map and any changes 
will take longer to appear.  Dynamic MCL explicitly makes the assumption that the map 
will change. 
Algorithms that consider dynamic environments typically assume a static map with 
dynamic elements, such as people, which must be eliminated from consideration.  In effect, 
these algorithms assume a static map but allow an additional form of sensor noise in the 
form of moving people.  [Hahnel et al. 2003] describes a method for creating a map, using 
standard EM SLAM techniques, which can discover the static map of the environment 
despite dynamic elements.  Similarly, [Fox et al. 1999] gives an algorithm for using MCL in 
an environment with many moving objects.  Although both these papers give a method for 
handling a dynamic environment, they both assume an underlying static map.  The benefit 
of dynamic MCL is that the static map assumption is no longer necessary.  As the algorithm 
runs, it changes the map to correspond to the environment.  Since dynamic MCL is 
implemented as an augmentation to ordinary MCL, there is no reason that other 
augmentations could not be used if warranted by the problem.  For example, the algorithm 
described in [Fox et al. 1999] to discard readings relating to dynamic objects during MCL 
can coexist with my algorithm for modifying the map in accordance with changes in the 
environment.  Dynamic MCL allows fundamental changes to be accounted for, as opposed 
to merely ephemeral objects that are only observed once. 
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5.1 Dynamic Maps 
In order to alter the map, it needs to be added to the MCL formula.  Consider each cell of the 
map to be an independent object, which can be either present or absent.  Although 
independence is usually not entirely valid, it is an assumption that is often made.  Consider 
yt = {y1,t,…,yK,t} the set of individual cells in the map.  Since we are considering these cells to 
be independent, if the location is known, then p(yt| xt,zt) = ∏p(yk,t| xt,zt).   
With this background, the new state equation is p(yt, xt| zt, ut).  Unfortunately, it turns out 
that this equation cannot be factored, since the map state is not fully determined with only 
the current location.  However, notice that each sample in MCL represents not only a 
current location, but also the history of locations that lead to that location.  Since each 
particle is only moved according to the motion model, they may be considered as xt instead 
of xt with no change to the algorithm.  If we use the equation p(yt, xt| zt, ut), then it is 
possible to factor it and we can also use the MCL algorithm without significant changes.  
The factorization used is similar to the one in [Avots et al. 2002], which was used to add the 
state of doors into the MCL algorithm. 

5.2 Factoring 
The size of the state space of (yt,xt) is exponential in the size of yt, so we need some way of 
factoring the posterior in order to reduce the state space. 
First, Bayes rule and the Markovian property give us:  
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Now, consider the 3 parts of equation (12). 
Without any data we assume that all states are equally likely, and also that the probability of 
a random sensor scan is a constant.  Therefore: 
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Remembering that cells in the map change status independently in the model, and again 
using the Markovian assumption, we get: 
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Finally: 
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Recombining these three equations and simplifying we get the factorization:   
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Which contains the original MCL posterior and a new probability for the cells in the map.  
See [Avots et al. 2002] for more details about the factorization. 
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5.3 Binary Object Bayes Filtering 
Since the method for calculating p(xt| zt, ut) is already known in the MCL algorithm, the 
only new method needed is to calculate the probability of each cell in the map.  These cells 
are binary objects since they are either present or absent.  Each yk,t can be either 0 or 1 with 
the probability of each summing to 1.  Thus, the method for calculating the probabilities is 
the same as in [Avots et al. 2002].  Let πk,t = p(yk,t = 1|xt,zt,ut).  Then 
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where 
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In equation (17) the only unknown probability is p(zt|xt,zt-1,ut) in the denominator.  Rather 
than trying to calculate it, we exploit the fact that yk,t is binary so (1 – πk,t) can be calculated 
in the same way as πk,t using yk,t = 0 instead of yk,t = 1.  The two equations are then divided 
to cancel the unknown quantities. 
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The result, equation (19), consists entirely of known quantities.  p(yk,t=1) is the prior 
probability that a cell is occupied.  The various p(yk,t|yk,t-1) values are the transition 
probabilities for a cell, πk,t-1 are, of course, the prior occupancy probabilities and finally, 
p(yk,t=1|xt,zt) is the probability of occupancy given robot location and sensor data.  To get a 
useful value from the odds ratio, we use the equality πk,t = 1 – (1 + πk,t/(1 - πk,t))-1. 
The representation of πk,t is actually in closed form, so it requires only a constant time 
operation to calculate.  Since p(yk,t=1|xt,zt) involves sensor values and raytraces which are 
already used for MCL, little additional processing should be required.  It is possible to 
modify the importance factor, as in [Avots et al. 2002], to take into account the new map 
data, where each cell is not merely present or absent but has a probability of presence.  
Using this data results in a runtime increase at least logarithmic in the number of binary 
objects.  The probability of a location becomes the sum of the probabilities of that location 
for both states of all visible objects, multiplied by the probability of the object states.  While 
that is acceptable if there are only a small number of objects, such as doors, if the objects are 
the cells of a map, the number becomes unmanageable.  However, most map data used for 
MCL is actually represented as probabilities in an occupancy grid map, but is thresholded to 
be either present or absent.  I decided to use the same simplification for my algorithm and 
consider each cell as either present or absent depending on a threshold value on its 
probability.  The processing time therefore remains unchanged, since the importance factor 
is calculated in the same way. 

5.4 Cell Correlations 
In order to perform the factorization, it is necessary to assume that map cells change 
independently of each other.  However, this assumption is not entirely accurate.  In fact, 
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groups of adjacent cells that represent the same objects are likely to be completely 
dependent. To some extent ordinary MCL also assumes cells are independent, but it only 
becomes relevant when the cell probabilities are changed in dynamic MCL.  It is easy to 
model correlations by annotating the map with correlation probabilities between adjacent 
cells, however, using this information is more difficult.  Methods such as loopy belief 
propagation or variational methods [Jordan et al. 1999] can propagate belief through a 
connected graph, but they are time consuming and sometimes do not converge.  Since 
dynamic MCL must run in real time without being much slower than ordinary MCL, these 
techniques are not sufficient.  However, it should be noticed that the cell correlations in a 
map are of restricted types.  Small groups of adjacent cells are highly correlated, while being 
uncorrelated with their neighbours.  Because of the limited correlation, it is possible to use a 
modified variational technique in order to implement cell correlations.  When a cell is 
updated, the update is propagated to adjacent cells along the links, but the propagation is 
not permitted to flow back to a cell that has already been modified.  Also, the flow stops 
when the accumulated correlation probability falls below a threshold.  In practice, only a 
few steps occur, but these achieve a significant improvement in the results. 
The key to using cell correlations is to perform operations using two different and 
conflicting sets of assumptions.  Each set of assumptions reduces one part of the problem to 
a solvable operation but makes the other part intractable.  We have already seen that, by 
assuming cells to be independent, we can factor the belief as: 
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This factorization is used to update the individual cells according to the robot’s sensors.  
However, once the update is performed we discard both the assumption and the resulting 
factorization.  Instead, we assume that each cell depends on its neighbours and is 
independent of the robot’s sensors and position.  According to this set of assumptions: 

 
∏ −−−−=

=

=

k
trightktleftktdownktupktk

ttt
t

ttt

ttt
t

tttttt
t

yyyyypuzxp

ypuzxp

uzxypuzxpuzxyp

),|(),|(

)(),|(

),,|(),|(),|,(

,,,,,

 (21) 

The determination of the robot’s position is unchanged, but the map cells now depend on 
their neighbours and not on the robot.  By making this assumption any changes made to the 
map can be propagated to the adjacent cells and the weight of the cell correlations adjusted.  
Separating the algorithm into two phases with different assumptions allows the algorithm 
to consider additional dependencies without having to deal with the intractable problems 
caused by the interaction of the new dependencies with the old.  In effect, during the first 
phase of the algorithm, as represented by equation (20), we assume that cells are influenced 
only by the robot, with additional effects coming from some unknown source.  During the 
second phase, shown by equation (21), we assume that cells are only affected by their 
neighbours, with other changes caused by external, unconsidered, forces.  Of course, two 
sets of contradictory assumptions cannot possibly be a reflection of reality, however, each 
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assumption is a reasonable simplification and using both sets iteratively results in less 
simplification than either set exclusively. 
In dynamic MCL, it is necessary to modify the cell correlation probabilities dynamically on 
each cycle.   However, given the nature of the sensors used, it is unlikely that adjacent map 
cells will be observed on a single scan.  The solution to the problem is to cache observed 
changes to each cell until an adjacent cell has also been observed.  At that point, the 
difference in the changes of the cells can be used to adjust the correlation between them. 
Adding cell correlations significantly improves the dynamic MCL algorithm since a 
correlated group of cells can change together whenever any member of the group is 
observed.  The result is that although the update of individual cells must be slow to allow 
localization to work, if a group of cells change they will update very quickly, since each 
observation will correlate them, and as they become more correlated every observation of a 
member of the group will update the entire group.  Thus, an object can appear or vanish 
more quickly than any single cell. 

5.5 Algorithm 
The preceding formulae can be used to augment an implementation of MCL in order to 
modify the map dynamically during processing.  The MCL algorithm must raytrace along 
all sensor paths to calculate the probability of a particle.  However, if the robot’s position is 
known with high probability, then any differences between the sensor reading and the 
raytrace are more likely to be errors in the map than in the sensors.  In that case, the logical 
action is to correct the map. 
The method I used is to consider each cell of the map to be present with probability πk,t.  On 
each step of the MCL algorithm an augmented raytracer is used for the robot’s most likely 
location.  The augmented raytracer follows a ray normally, passing through each map cell 
along the ray.  However, at each cell along the path, the probability of that cell is altered 
according to equation (19).  Although the augmented raytracer could be run on all samples, 
it is more productive to determine the most likely location and use the augmented raytracer 
only on it.  When the robot’s location is not known, the new raytracer is not used.   
For calculating the sensor probability of each cell, the simplifying assumption that either 
that cell or the existing wall is correct is used.  The assumption is necessary because the 
normalizer for the sensor probabilities is not known, so some method must be used to 
normalize the values.  In practice, when a new cell becomes occupied, it exceeds the 
threshold before any other cell, and then the assumption becomes valid again.  The short 
period during which it is invalid for some cells does not affect the operation of the 
algorithm. 
In order to find the robot’s most likely location, the sample with the highest importance 
factor is used.  Other locations are possible, including the weighted average of all samples.  
The algorithm cannot run if the robot’s location is unknown. 
These implementation details do not change the fundamental algorithm, which is a 
implementation of MCL together with the binary object formulae as described above.  The 
only simplification to equation (19) is in the calculation of p(yk,t = 1|xt,zt), a value which is at 
best a numerical approximation to the error in a physical sensor device. 
The following pseudocode summarizes the algorithm for dynamic MCL. 
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1: Repeat N times 
2:  Draw a random particle 
3:  Move particle according to the motion model 
4:  Annotate particle with a weight from the sensor model 
5: Resample a new set of particles from the annotated set 
6: Find the most probable location (mean of particles) 
7: For each sensor reading 
8:  Raytrace to the nearest occupied cell 
9:  For each cell on the path 
10:   Alter the occupancy probability of the cell 

11:   Alter the occupancy probability of neighbouring cells according 
to influence 

12:   Mark cell as observed 
13:   If neighbouring cell marked observed 
14:    Adjust influence between cells 
15:    Unmark cells as observed 

Table 3. Dynamic MCL algorithm 

5.6 Experimental Evaluation 
The dynamic map algorithm was implemented and tested using real data collected in our 
building.  The data was created using a Pioneer 2Dxe robot equipped with a laser 
rangefinder.  The objective of the tests was to show that the map could be updated correctly 
without introducing errors or causing localization to fail.  Since the algorithm has an almost 
constant runtime there is no tradeoff necessary between the time required to update the 
map and the benefit obtained by doing so.   
Dynamic map MCL is designed to gradually update the map of the environment used for 
localization.  Ordinarily, MCL uses a static map which, in a dynamic environment, 
gradually becomes less accurate.  The experiments were selected to validate the dynamic 
algorithm by demonstrating that over time the map becomes a more accurate representation 
of the environment.  Obviously, localization and global localization will perform better on a 
more accurate map.  However, the improvement is a greater tolerance for other sources of 
error and is not detectable from the results of localization.  The experiments demonstrate 
that the map is updated correctly, the benefit obtained from this update depends on the 
specific problem.  

 
Figure 1. Before and after 2 passes through the environment 

Figure 1 shows the map of the environment used to generate the test data.  Changes were 
made to the environment after the map was scanned by opening and closing doors and by 
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placing boxes in the corridors.  After 1 pass through the changed environment the robot has 
mostly added the new features to the map and has correlated the changed objects, allowing 
them to be completed very quickly. 
After 2 passes, all changes have been completely added to the map.  The rate of update is 
slower than in [Avots et al. 2002] because each cell must be observed several times, instead 
of each object.  However, without correlations it takes at least 5 passes to completely adapt 
the map.  Allowing cells to become correlated permits much faster updating without 
compromising localization.  In [Avots et al. 2002] the dynamic objects can be updated in a 
single pass because they are manually defined ahead of time and are known to be 
completely correlated.  Since dynamic MCL has no predefined objects or correlations, it is 
necessarily slower, but because it can discover the correlations it can still update very 
quickly. 

 
Figure 2. Before and after 5 passes through the environment using a schematic map 

Another test, shown in Figure 2, was to use the same data but starting with a map consisting 
of the minimum possible information.  From a schematic map consisting of only the walls 
and partitions, the algorithm was able to adapt it with all the features that were missing.  
Those portions of the map that were observed were corrected properly.  The benefit of being 
able to start with a limited map is that it may not be necessary to scan a map manually with 
a robot.  Instead, the map could be entered using blueprints of the environment and, as the 
robot passed through, it could correct the map until it was accurate.  Usually, MCL uses the 
most accurate map possible, since it will lose accuracy over time, but with a dynamic map 
the accuracy of the map increases as the robot traverses the environment.  Of course, 
portions of the environment that were insufficiently observed were not completely added to 
the map, so the result is not identical to the environment.  However, observed areas have 
become more accurate and the map will only become a better reflection of the environment 
as the robot traverses it over time. 
Another feature noticeable in Figure 2 is that some of the objects in the corridor are 
somewhat more diffuse than they appeared in Figure 1.  Since the map is less accurate to 
begin with, localization is necessarily less accurate.  As the map is corrected and localization 
becomes better, the location of the objects becomes clearer.  After 5 passes, the objects are 
almost completely defined in the map, but some of them obviously require several more 
passes to full correct them.  The benefit of dynamic MCL is that the robot can operate 
independently of this process.  As it performs its task, the map becomes more accurate.  All 
other data files tested exhibited similar behaviour, with the observed portions of objects 
being added to the map and no new errors introduced. 
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5.7 FastSLAM Comparison 
The dynamic MCL algorithm is very similar to FastSLAM, with the major difference being 
that FastSLAM keeps the map state separately for each particle, while dynamic MCL 
maintains a single global map.  The single map results in two significant changes in the 
behaviour of the algorithm.  First, the run time over ordinary MCL is only increased by a 
constant in terms of the number of particles.  Regardless of how many particles are 
necessary for localization, dynamic map MCL requires the same amount of additional 
processing.  FastSLAM requires additional processing that is at least linear in the number of 
particles, disregarding the work necessary to continuously copy the maps.  Dynamic MCL 
thus requires significantly less processing power than FastSLAM. 
The per particle map is what allows FastSLAM to determine a map from nothing while 
localizing, since it can maintain multiple hypotheses until the robot observes a 
distinguishing feature.  However, these map hypotheses necessarily include some unlikely 
maps.  When the environment is mostly known these borderline maps are unnecessary.  The 
basis of dynamic MCL is that the map is mostly known.  In this case, the robot’s position can 
be determined and the map can be altered based on the single correct position, instead of 
updating based on multiple hypothesized positions.  In the case with a pre-existing map, 
FastSLAM’s ability to update the map is provided by dynamic MCL without the drawback 
of having to consider maps based on multiple conflicting paths.  Of course, if the map is 
unknown considering multiple paths is necessary for success, so dynamic MCL is in no way 
a replacement for FastSLAM, it merely uses similar ideas to apply to a situation that 
FastSLAM does not handle well.  If the map of the environment is mostly known in 
advance, dynamic MCL provides an efficient solution to handling dynamic elements and 
previously unobserved areas, without causing additional uncertainty. 
To discover if dynamic MCL provides appreciable efficiency gains over FastSLAM when the 
appropriate map is available, the FastSLAM algorithm was run on the same data set as in 
Figure 1.  FastSLAM was able to generate a map, but it took 428 seconds and, of course, did 
not include the areas that were not visited.  In contrast, dynamic MCL completed the 2 
passes in 68 seconds, an 84% improvement.  When only minor features need to be updated 
in a mostly complete map, it is unnecessary to incur the cost of FastSLAM, since in these 
cases dynamic MCL is far more efficient while providing the same result.  Dynamic MCL 
also allows previously visited areas to remain in the map, even if the robot has not observed 
them. 

6. Skeletal FastSLAM 
While FastSLAM is a good solution for localization and mapping, it suffers from some 
problems, notably the loop closure problem. As the robot travels around a loop in the 
environment, it has no way to incrementally correct its position.  Only once the robot arrives 
at the end of the loop can it realize that the correct path is the one that arrives in the right 
place so that the map joins up.  Because particle filtering only represents the highest 
probability locations, over a long loop the correct path may be lost.  Surviving this problem 
requires a number of particles relative to the size of loops in the map, which means the 
algorithm increases in runtime and memory with the size of the map. 
SLAM is normally defined as generating a map from total uncertainty about the 
environment.  However, there is often some information available about the map, especially 
in an indoor environment.  Unless your robot is a bulldozer, it is constrained to follow 
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certain paths indoors, corresponding to the building's corridors.  These corridors are 
relatively easy to describe based on a simple floor plan, or even by observing the 
environment.  In this section, I demonstrate how minimal information about the skeleton of 
the environment can be used to improve FastSLAM and reduce the loop closure problem, 
requiring only enough particles for the local areas of uncertainty.  Skeletal FastSLAM 
provides an intermediate step between pure localization with a static map and pure SLAM 
with total uncertainty about the environment.  Many problems with some preexisting 
knowledge might benefit from this approach.  
The primary contribution of skeletal FastSLAM is to bridge the gap between the total 
knowledge required by MCL and the complete uncertainty that is the initial condition for 
SLAM.  Although these two algorithms are powerful, there are many situations that are 
somewhere between the two conditions.  For these problems, the choices are to accept the 
error caused by the uncertainty in MCL or to discard the initial information in SLAM.  The 
algorithm described in this chapter allows FastSLAM to take advantage of some initial 
information.  Similarly to the dynamic map MCL algorithm in Section 5, skeletal FastSLAM 
applies to problems with partial knowledge of the environment.  The ability to use partial 
knowledge increases the usefulness of FastSLAM to situations that would ordinarily be 
much more difficult. 
The key to using a skeleton map of the environment in FastSLAM is to realize that, 
especially in an indoor environment, the robot must follow certain paths.  Obviously, a 
particle whose path corresponds to one of these corridors in the environment is more likely 
than one traveling at a tangent to the corridor.  Of course, this only applies if the particle is 
close enough to the corridor, but when one of the corridors affects the robot's path, it can act 
as a very useful indication of the correct path. 

6.1 Monte Carlo Localization with Paths 
Although MCL is originally defined to solve for only the robot's current position, as in 
section 3 and [Dellaert et al. 1999], it is trivial, by recording the past poses of each particle, to 
alter it to track the robot's entire path.  The derivation is similarly easy to alter, again using 
the Markovian assumption, producing models identical to ordinary MCL. 
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6.2 Derivation of FastSLAM with Skeleton 
In order to consider a topological map in FastSLAM, we need to add it to the equations in a 
form that can be easily calculated.  Let S be the skeletal map, then the FastSLAM 
factorization becomes: 
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We assume the map is independent of the skeleton, which only affects the robot's position.  
Thus, the occupancy grid mapping portion of FastSLAM is unchanged.  Only the 
localization needs to take S into account. 
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Note that, because the map is independent of the skeleton, the skeleton does not affect the 
sensor readings zt, which depend only on the robot's state, including the map. 
The new motion model for localization is p(xt | ut, xt-1, S).  However, it is not obvious how to 
sample from this model as required by MCL.  Fortunately, given that the distance between 
xt and xt-1 is small, we can factor the model into our original model and an additional term 
representing the motion probability of the motion given the skeleton map. 
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Equation (26) can be greatly simplified using the Markovian assumption again.  Also, notice 
that the same operation as in equation (23) produces the ordinary motion model in the 
second term, while still leaving the entire path for use with the skeleton map. 
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Having factored the motion model from the skeleton, all that remains is to convert p(S | xt) 
into a form that can be calculated. 
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Putting equation (29) back into the localization formula of (25) results in localization which 
takes into account the skeleton map. 
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The final equation indicates that the modification to the motion model alters the weight of 
each particle.  Thus, the localization step continues as normal while the probability of the 
particle's motion based on the skeleton map is multiplied with the sensor probability to 
determine the likelihood of the sample.  The result will be to make particles which travel 
according to the skeleton more likely to be resampled then those which conflict. 
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6.3 Creating the skeleton map 
Of course, the first step in implementing this technique is to define what exactly is meant by 
a skeleton map.  The skeleton is defined by a series of line segments marked by their 
endpoints.  Each line segment marks a corridor that constrains the robot's direction of travel.  
It is not necessary for every possible path to be represented, only those composing major 
loops in the environment.  The skeleton gives the direction and length of each corridor, 
including the structure of their intersections.  Such a map is very easy to construct, 
especially in an indoor environment where a schematic diagram is often available.  Also, 
buildings are usually constructed with corridors at right angles, making it easy to determine 
the intersections of the skeletal map.  In such an environment, any user could easily define 
the necessary skeleton with minimal understanding of the underlying algorithm. 

6.4 Defining the skeleton model 
In order to actually implement skeletal FastSLAM as defined in equation (30), we need to 
create a method of calculating the model p(xt | S).  Fortunately, this model does not need to 
be sampled from as does the motion model, allowing more flexibility in its creation.  Since 
the objective is to more highly weight paths the closer they are to the corridor, some type of 
probability based on the difference in angle between the path and the skeleton is the 
obvious choice.  The model used is a Gaussian distribution centered at 0 degrees mixed with 
a uniform distribution according to a gain value.  The smaller the difference between the 
angle of the robot's path and the angle of the line segment of the map, the more probable the 
particle.  Of course, this only applies as the particle travels along the particular corridor.  If 
the robot turns away from the corridor it is probably exploring some area not represented 
by the skeleton.  In that case, the probability is a uniform distribution.  Also, the current 
segment of the skeleton map that the robot is following is determined by which segment is 
closest.  However, if the distance between the robot and the line is too great, then the 
probability is once again uniform, since a particle must be within a corridor to be affected by 
it.  The result is a model that increases the probability of particles traveling along the 
skeleton and decreases the probability of those traveling at a tangent to it, while leaving 
those that are not following the skeleton unchanged.  The model for particles within range 
of a skeleton line segment is illustrated in Figure 3.  However, note that the actual values 
depend on the parameters selected for gain, variance, and threshold angle. 

 
Figure 3. Skeleton map probability model 
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6.5 Algorithm 
Given the derivation in section 6.2 and the model from 6.4, the actual implementation of 
skeletal FastSLAM is relatively straightforward.  In order to reduce errors caused by minor 
corrections in the robot's heading while it follows a corridor, linear regression is used to 
track the line which best fits the robot's path.  The regression is restarted every time the 
robot changes its current closest line segment.  Then, the difference between the robot's 
course and the direction of the skeletal line segment is simply the difference between the 
angle of two lines, a straightforward algebraic computation.  With that angle, the skeleton 
map model can be evaluated and the only change in the algorithm in Table 2 occurs on line 
3, which becomes wt[k] = p(zt | xt[k], m) * p(xt[k] | S). 
It is, of course, necessary to provide various parameters, notably the variance and gain of 
the skeleton model as well as the threshold distance for the robot to be within a corridor and 
the threshold angle for the model.  However, most of these parameters depend on the 
physical features of the environment and good values can be determined by examining its 
structure.  The threshold distance depends on the corridor width, while the threshold angle 
depends on the relative corridor angles.  Finally, the gain depends on how well the 
environment is represented by the skeleton map.  These values probably do not need to 
change between different environments or robots, unless there are radical differences in the 
map.  Even then, convergence will probably only require more particles, rather than failing. 
Compared to ordinary FastSLAM, using a skeletal map adds runtime that is linear in the 
number of line segments in the skeleton.  Since the topology of an indoor environment is 
usually fairly simple, the increase in processing required is minimal.  If skeletal FastSLAM 
can reduce the number of particles required for convergence in an environment then the 
gains in processing time will more than offset the increase required to implement the 
algorithm. 

6.6 Experimental Evaluation 
In order to validate skeletal FastSLAM with occupancy grid maps it was tested against data 
sets gathered using a real robot in an indoor environment, as well as with various simulated 
data sets.  The simulated data demonstrates the benefits of the algorithm in various 
situations, while the physical data sets show that it really does generate improvement in a 
real environment.   
Loop closure is one of the major problems with FastSLAM and the skeletal algorithm is 
designed to reduce the processing required for loops in certain environments.  The 
experiments were chosen to show the actual reduction provided by the skeleton in specific 
environments.  From the results presented here we can determine that skeletal FastSLAM 
will provide a benefit in a wide range of circumstances where the fundamental assumption 
of fixed corridors applies.  Since we cannot specifically test an algorithm’s loop closure 
ability, we rely on tests of the minimum processing required to develop a map with the 
correct structure as determined by a human observer.  Although this criteria is somewhat 
vague, there was no problem in making the decisions since the maps tended to either 
converge correctly or diverge to random nonsense.  The minimum number of particles 
necessary to generate a correct solution was used to determine the minimum run time for 
each algorithm.  Since skeletal FastSLAM and ordinary FastSLAM require approximately 
the same amount of processing the skeletal algorithm must converge on fewer particles to 
provide a benefit.  Comparing the minimum run times for convergence proves the benefits 
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of using the skeleton do not outweigh the extra processing required to compare particles to 
the skeleton map. 

6.6.1 Simulated data 
Data sets generated from simulated environments test the basic behaviours of the skeletal 
algorithm in standard situations.  One of the most basic environments is a wide, straight 
corridor.  A 40 meter long corridor is typically a very difficult situation for FastSLAM 
because there is no indication as to the correct direction.  A straight corridor gives almost 
exactly the same readings as one that curves slightly.  Since the robot does not turn as it 
traverses the corridor there is no way for FastSLAM to correct the readings.  Because of this, 
it required a minimum of 210 particles for ordinary FastSLAM to converge correctly using 
the data set.  Compared to that, a single corridor is a very easy environment for skeletal 
FastSLAM, which required only 100 particles to converge.  The run time for convergence of  
skeletal FastSLAM was 156 seconds for this data set, an improvement of 45% over regular 
FastSLAM’s 283 seconds.  Skeletal FastSLAM provides a serious advantage when an 
environment provides little information about global orientation. 
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Figure 4. Error in position over time for normal FastSLAM vs. skeletal in a simple loop 

The next data set was a large loop around a 40 meter square.  Because the turns allow the 
robot to see back along its course, this environment was easier for FastSLAM to handle.  
Ordinary FastSLAM required 100 particles to converge with the data, while the skeletal 
algorithm was successful with 30.  The time for convergence of 181 seconds for skeletal 
FastSLAM was a 67% improvement over ordinary FastSLAM’s 558 seconds.  In Figure 4 we 
can see the results of this test.  For normal FastSLAM the error drifts, generally increasing 
over time, until the final section where the loop is closed.  At that point, the error drops 
abruptly.  In contrast, skeletal FastSLAM tends to retain a relatively constant error, changing 
only at the corners of the map, marked by the vertical lines, where the skeleton algorithm 
does not apply.  The error is so much smaller when the loop is closed that it quickly 
decreases back to almost 0.  Normal FastSLAM only managed to converge by shifting the 
entire map, thus retaining a larger error.  By reducing the error increase in the corridors, 
skeletal FastSLAM is able to correct the position much more quickly when the loop is finally 
closed.  The simulated data indicates that the algorithm provides a major benefit in the 
situations where it applies and leaves more leeway for handling the remaining situations, 
such as the corners. 
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6.6.2 Real data 

 
Figure 5. Two real environments with skeleton maps 

Data from a 180 degree laser scanner mounted on a Pioneer 3Dxe differential drive 
holonomic robot was collected from two different real environments.  Since there was no 
way to get the ground truth of the robot's position, I instead observed the minimum number 
of particles necessary for the map to converge to a representation which corresponded to the 
correct map.  The primary observation about a correct map is that all of the loops are closed, 
connecting to the appropriate corridors.  In practice, convergence was easy to determine, 
since, if the map did not converge, it instead diverged radically, becoming reduced to 
nonsense. 
In the first environment in Figure 5, regular FastSLAM required at least 160 particles to 
converge, while using the skeleton map only required 100.  The 60% larger set of particles 
for ordinary FastSLAM is necessary because the environment contains many long loops.  
Without the skeleton, more particles are necessary to allow these loops to close properly.  
The runtime of skeletal FastSLAM was a 58% improvement over the ordinary algorithm, 
converging in only 466 seconds compared to 737. 
The second environment only has a single corridor and the robot travels through two 
rooms.  Although the path into the rooms is marked by the skeleton, the path between them 
is not.  The greater area that is not represented by the skeleton, coupled with fewer loops, 
results in less of an improvement.  Skeletal FastSLAM needed 110 particles to converge in 
this environment, while ordinary FastSLAM needed 140, an increase of 27%.  There was also 
an improvement of 23% in the runtime, with skeletal FastSLAM reducing the necessary time 
from 511 seconds to 391. 
The improvements demonstrate that skeletal FastSLAM provides a significant improvement 
over ordinary FastSLAM, correctly converging with fewer particles, and thus less 
computation, using real data sets.  Coupled with the simulated data, the results show that 
using a skeleton map is an effective addition to FastSLAM. 
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 Original Skeletal % improvement 

 particles runtime particles runtime particles runtime 

Simulated 
corridor 

210 283.672s 100 156.329s 52.4% 44.9% 

Simulated loop 100 558.078s 30 181.078s 60% 67.6% 

Real 
environment 1 

160 737.016s 100 466.938s 37.5% 36.6% 

Real 
environment 2 

140 511.047s 110 391.031s 21.4% 23.5% 

Table 4. Experimental comparison of skeletal FastSLAM algorithm vs. original 

6.7 Conclusion 
Performing most tasks on a real robot, including path planning, requires knowing the 
configuration of the environment and the robot’s position within it.  One of the most 
adaptable representations is an occupancy grid map, which allows most types of 
environment to be accurately modeled.  However, using occupancy grid maps limits the 
types of localization and mapping algorithms that can be used.  Of the possible techniques, 
particle filter based methods are very effective.  MCL provides accurate real-time 
localization while FastSLAM is a good solution for simultaneous localization and mapping.  
However, the basic implementations of these techniques have drawbacks in certain 
situations. 
Section 5 describes an augmentation to MCL which allows the map to be updated according 
to the sensor measurements of a localized robot without a serious increase in running time.  
By considering each cell of the map to be an independent binary object and by making some 
simplifying assumptions, the static map required by MCL can be modified dynamically 
without requiring any user intervention.  Instead of becoming less accurate over time, the 
map becomes more accurate as the robot traverses the environment.  Experiments with real 
datasets show that the map can be updated properly without introducing errors.  A change 
in the environment can be reflected in the map after very few passes by the robot.  The result 
of the algorithm, having an accurate map, will always benefit the accuracy of MCL. 
Dynamically correcting the map causes the largest source of error in MCL to decrease over 
time.  Ordinarily, the best possible situation is for this error to remain constant, however in 
environments with dynamic elements, especially people, it is more likely that gradual 
changes occur.  As the physical environment changes, errors build up in MCL, reducing its 
ability to handle any additional error.  With dynamic updates the error is instead reduced 
over time, making localization more robust to other problems.  Also, recognizing changes in 
the map might allow certain circumstances to be detected and considered in planning.  For 
example, doors could be detected when they open and the robot could be sent to explore the 
new area.  Also, new routes could be discovered as objects are moved.  Removing the static 
map assumption greatly increases the power of MCL to handle real situations with dynamic 
elements.  Furthermore, recognizing changes in the environment allows further 
improvements to be made at higher levels of control. 



Occupancy Grid Maps for Localization and Mapping 

 

407 

FastSLAM is an effective solution to both the online and full simultaneous localization and 
mapping problem in indoor environments where individual features are hard to determine.  
However, it suffers from problems in loop closure which require progressively more 
particles as the size of loops in the environment increase.  By adding an easily created 
skeletal map into the algorithm, it is possible to significantly obviate this problem, allowing 
the FastSLAM algorithm to solve local uncertainties while aiding it in closing loops.  A 
skeleton map indicates the direction that the robot must be taking so that, instead of wasting 
particles on multiple divergent trajectories, the algorithm can concentrate them around the 
correct path, significantly reducing the need for additional particles.  As the corridors 
increase in length, ordinary FastSLAM requires an increasing number of particles, while 
skeletal FastSLAM continues to require only enough for the local uncertainties, becoming 
independent of the overall size of the map. Using a skeletal map is a low cost improvement 
to FastSLAM that is very useful in indoor environments whose overall configuration is 
known, even though the exact map may not be. 
Skeletal FastSLAM, like dynamic map MCL, allows FastSLAM to handle situations with 
partial knowledge of the environment.  Since initial knowledge no longer needs to be 
discarded, the behaviour of the algorithm is improved.  By allowing additional information 
to be applied in the FastSLAM algorithm the technique can be very effective in specific 
situations where ordinary FastSLAM would require much more work.  These methods of 
skeletal FastSLAM and dynamic map MCL lead to localization and mapping techniques that 
can generate a map and path from any type of starting information.  Once the map and 
robot location are accurately known, it is possible to proceed with path planning and any 
other tasks the robot must perform. 
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Abstarct  
Navigation of multiple mobile robots using neuro-fuzzy controller has been discussed in this 
paper. In neuro-fuzzy controller the output from the neural network is fed as an input to fuzzy 
controller and the final outputs from the fuzzy controller are used for motion control of robots. 
The inputs to the neural network are obtained from the robot sensors (such as left, front, right 
obstacle distances and the target angle). The neural network used consists of four layers and 
the back propagation algorithm is used to train the neural network. The output from the 
neural network is initial-steering-angle. Inputs to the fuzzy-controller are initial-steering-angle 
(the output from neural network) and left, front, right obstacle distances. The outputs from the 
fuzzy controller are the crisps values of left and right wheel velocity. From the left and right 
wheel velocity final-steering-angle of a robot is calculated. The neuro-fuzzy controller is used 
to avoid various shaped obstacles and to reach target. A Petri-net model has been developed 
and is used to take care of inter-robot-collision during multiple mobile robot navigation. A 
piece of software has been developed under windows environment to implement the neuro-
fuzzy controller for robot navigation (appendix-1). Six real mobile robots are built in the 
laboratory for navigational purpose (appendix-2) in reality. By using the above algorithm it is 
visualised that, multiple mobile robots (up-to one thousand) can navigate successfully 
avoiding obstacles placed in the environment.  

1. Introduction 
Developing navigation technique for mobile robot remains on of the frontier research field 
since last two decades. Many researchers are focusing their thoughts in scientific manner to 
find out a good navigation technique for mobile robot. By increasing the number of mobile 
robots (i.e. multiple mobile robot navigation) the criticality of the problem is increased by 
many folds.  
Beaufrere et al.[1,2] have discussed about navigation planning through an unknown 
obstacle field for mobile robot. They have used a two dimensional array to rapidly model 
the local free environment for the mobile robot navigation. The algorithm composed of three 
modules whose function were to avoid obstacles, to reach the target point and to manage 
direction changing of the mobile robot during path planning. For their approach they have 
used a method based on fuzzy reasoning and have also tested the approach by simulation. 
By taking Gaussian function as an activation function, a fuzzy-Gaussian neural network 
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(FGNN) controller for mobile robot has bin described by Watanabe et al.[3]. The 
effectiveness of their proposed method has been illustrated by performing the simulation of 
a circular or square trajectory tracking control. The paper by Racz et al.[4] has presented a 
neural network based approach to mobile robot localisation in front of a certain local object.  
Ishikawa [5] in his paper has described about a navigation method using fuzzy control. His 
purpose is to construct an expert knowledge for efficient and better piloting of autonomous 
mobile robot. He has used fuzzy control to select suitable rules i.e. tracing a path/ avoiding 
obstacles according to a situation, which was derived from sensor information by using 
fuzzy control. He has established his theory by means of simulation. 
Martinez et al. [6] have considered a problem which consists of achieving sensor based 
motion control of mobile robot among obstacles in structured and/or unstructured 
environments with collision-free motion as the priority. For this they have taken fuzzy logic 
based intelligent control strategy, to computationally implement the approximate reasoning 
necessary for handling the uncertainty inherent in the collision avoidance problem. Sensor-
based navigation method, which utilised fuzzy logic and reinforcement learning for 
navigation of mobile robot in uncertain environment, has been proposed by Boem et al. [7]. 
Their proposed navigator has consisted of avoidance behaviour and goal-seeking behaviour. 
They have designed the two behaviours independently at the design stage and then 
combined together by a behaviour selector at the running stage. 
Kam et al.[8] have discussed about the fuzzy techniques of using sensors in robot 
navigation. They have also discussed about the problem in machine intelligence, including 
Kalmann filtering, rule-based techniques and behavior based algorithms. Wang [9] has used 
fuzzy logic for navigation of mobile robot. Tschicholdgurman [10] has described about 
fuzzy rule-net for the mobile robot navigation. Using the rule-net he has also shown the 
simulation result for mobile robot. Benreguieg et al.[11] have discussed about navigation of 
mobile robot using fuzzy logic. 
Kodaira et al.[12] have described an intelligent travel control algorithm for mobile robot 
vehicle using neural networks. They have proposed a method that realises path planning 
and generation of motion command simultaneously. They have confirmed the validity of 
the proposed travel by computer simulation. Aoshima et al.[13] have described a simplified 
dynamic model  of a small tunneling robot. They have constructed a dynamic model for 
directional correction and determined its parameter by least square method. They have used 
a neural network to automatically obtain four feedback gains for the directional control of 
both pitching and yawing. Tani et al. [14,15,16,17] have presented a novel scheme for 
sensory-based navigation of a mobile robot. They have shown that their scheme constructs a 
correct mapping from sensory inputs sequences to the manoeuvring outputs through neural 
adaptation, such that a hypothetical vector field that achieves the goal can be generated. 
Their simulation results has shown that robot can learn task of homing and sequential 
routing successfully in the work space of a certain geometrical complexity. 
Neural network approach for navigation of indoors mobile robot has been discussed by 
Dubrawski [18]. His algorithm allows for an efficient search a decision space and also for a 
concurrent validation of the learning algorithm performance on a given data. Fiero et al.[19,20] 
have discussed about the navigation of mobile robot using neural network. Burgess et al.[21] 
have used neural network technique of navigation of miniature mobile robot. By using the 
sensory data and the algorithm, the robot is able to find out current heading direction. Masek 
et al.[22] have discussed about the mobile robot navigation using sonar data. There robot 
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navigation task is performed by simulating a simple back-propagation neural network. Chang 
et al.[23] in their paper, have presented  an environment predictor that provides an estimate of 
future environment configuration by fusing multi-sensor data in real time. They have 
implemented the predictor by an artificial neural network (ANN) using a relative-error-back-
propagation (REBP). Their REBP algorithm enables the artificial neural network to provide 
output data with a minimum relative error. They have verified their result by computer 
simulation and navigation experiment. 
In the above literature survey, it is seen that many researcher have focused their idea in 
finding out navigational technique for mobile robot. Still a systematic approach is needed in 
finding out a proper navigation technique of multiple mobile robots navigating in a highly 
cluttered unknown environment. 
Keeping the above objectives in mind navigation technique has been developed systematically 
for navigation of multiple mobile robots in a highly cluttered unknown environment. A neuro-
fuzzy controller has been developed for avoidance of the obstacle and for target seeking 
behaviour.  The inputs for the neural network robots left obstacle distance, front obstacle 
distance, right obstacle distance and target angle(i.e. angle made by the robot with respect to. 
the target). The output from the neural network is initial-steering-angle. The output from the 
neural network along with the left-obstacle, front-obstacle and right obstacle distance is input 
to the fuzzy controller. The outputs from the fuzzy controller are the crisp values of left-wheel-
velocity and right-wheel-velocity of the robot.  From the left-wheel-velocity and right-wheel-
velocity the final-steering-angle of a robot is calculated. Inter robot collision avoidance are 
achieved by using the Petri-net model, by which robots are prioritised. Six mobile robots are 
also built up in the laboratory for navigation purpose. Windows based software has been 
developed where the above technique has been implemented. Results achieved by the use of 
above technique for the navigation of multiple mobile robot shows the authenticity of the 
proposed technique. Navigation of multiple mobile robots in a highly cluttered unknown 
environment has got many application such as, automation in industry, working in hazardous 
conditions (where human being can not reach), space mission, or any other mass activity 
where there is a need of multiple mobile robots. 

2. Analysis of navigation method 
Navigation of multiple mobile robots in a highly cluttered environment, using neuro-fuzzy 
controller, has been analysed systematically in the following section. For the neuro-fuzzy 
controller the inputs to the neural network are left-obstacle distance, front-obstacle distance, 
right-obstacle distance and target angle (angle of robot with respect to target). The output 
from the neural network is initial-steering-angle. Again the output from the neural network 
along with the left-obstacle distance, front-obstacle distance and right-obstacle distance are 
the inputs to the fuzzy controller. The outputs from the fuzzy controller are left-wheel 
velocity and right-wheel velocity, which decides the final-steering-angle (Figure 1). 

2.1 Analysis of neural network used in neuro-fuzzy controller 
The neural network used is a four-layer perceptron. This number of layers has been found 
empirically to facilitate training. The input layer has four neurons, three for receiving the 
values of the distances from obstacles in front and to the left and right of the robot and one 
for the target bearing. If no target is detected, the input to the fourth neuron is set to 0. The 
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output layer has a single neuron, which produces the steering angle to control the direction 
of movement of the robot. The first hidden layer has 10 neurons and the second hidden 
layer has 3 neurons. These numbers of hidden layer have also been found empirically. 
Figure 1 depicts the neural network with its input and output signals.  

 
Figure 1. Neuro-fuzzy controller for mobile robots navigation 

The neural network is trained to navigate by presenting it with patterns representing typical 
scenarios, some of which are depicted in Figure 2. For example, Figure 2a shows a robot 
advancing towards an obstacle, another obstacle being on its right hand side. There are no 
obstacles to the left of the robot and no target within sight. The neural network is trained to 
output a command to the robot to steer towards its left side. 
During training and during normal operation, input patterns fed to the neural network 
comprise the following components. 

 [ ] robot  thefrom distance obstacleLeft     y 1
1 =  (1a) 

 [ ] robot  thefrom distance obstacleFront     y 1
2 =  (1b) 

 [ ] robot  thefrom distance obstacleRight     y 1
3 =  (1c) 

 [ ] bearingTarget     y 1
4 =  (1d) 

These input values are distributed to the hidden neurons which generate outputs given by: 

 [ ] [ ]( )    Vf    y lay
j

lay
j =  (2) 
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where 

 [ ] [ ] [ ]∑ 1−=
i
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ji

lay
j    y.WV   (3) 

 
Figure 2. Example training patterns 
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lay = 2, 3 
j = label for jP

th
P neuron in hidden layer ‘lay’ 

i = label for iP

th
P neuron in hidden layer ‘lay-1’ 

[ ]lay
jiW   = weight of the connection from neuron i in layer ‘lay-1’ to neuron j in layer ‘lay’ 

f(.) = an activation function chosen as the sigmoid function (Figure 3): 

( ) xx
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eexf −

−

+
−=  (4) 

 
Figure 3. Hyperbolic tangent function 

During training, the network output θBactualB may differ from the desired output θBdesiredB as 
specified in the training pattern presented to the network. A measure of the performance of 
the network is the instantaneous sum squared difference between θBdesiredB and θBactualB for the 
presented training patterns: 

 ( )2

patterns
training all

actualdesired2
1Err ∑ θ−θ=  (5) 

As mentioned previously, the error back propagation method is employed to train the 
network [7]. This method requires the computations of local error gradients in order to 
determine appropriate weight corrections to reduce Err. For the output layer, the error 

gradient [ ]4δ  is:  
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The local gradient for neurons in hidden layer [lay] is given by: 
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The synaptic weights are updated according to the following expressions: 

 ( ) ( ) ( )1tWtW1tW jijiji +Δ+=+  (8) 

and   ( ) ( ) [ ] [ ]1−ηδ+Δα=1+Δ lay
i

lay
jjiji ytW  tW  (9) 

where 
α = momentum coefficient (chosen empirically as 0.2 in this work) 
η = learning rate (chosen empirically as 0.35 in this work) 
t = iteration number, each iteration consisting of the presentation of a training  
     pattern and correction of the weights. 
The final output from the neural network is: 

 [ ]( )4
1actual Vf=θ  (10) 

where 

 [ ]∑=
i

3
i

4
i1

4
1 yWV  (11) 

2.2 Analysis of fuzzy logic used in neuro-fuzzy controller 
The fuzzy logic used in the neuro-fuzzy controller has been discussed in the following 
section. 
Fuzzy logic was 1P

st
P introduced in 1965, by Lotif Zadeh [24]. A fuzzy set A on the universe X 

is a set defined by a membership function μBAB representing a mapping 

 μBA B: X  {0,1}. (12) 

Where the value of μ BAB(x) for the fuzzy set A is called the membership value or the grade of 
membership of  Xx∈ . The membership value represents the degree of x belonging to the 
fuzzy set A [25]. Fuzzy-fied inputs are inferred to a fuzzy rule base. This rule base is used to 
characterise the relationship between fuzzy inputs and fuzzy outputs. Let us consider an 
example in which a simple fuzzy control rule relating the input n to the output p may be 
expressed in the condition-action form as follows. If x is A then z is C. Where A and C is 
fuzzy values defined in the universe x and z, respectively. The inference mechanism 
provides a set of control action according to fuzzy-fied inputs. As the outputs are in 
fuzzified sense, a defuzzification method is required to transform fuzzy outputs into a crisp 



Mobile Robots Motion Planning, New Challenges 

 

416 

output value, which can be applied in real sense. For this a well known defuzzification 
method i.e. centriod method i.e.: 

 
∫
∫

μ

μ
=

dz  )z(

dz z )z(
z

c

c
0  (13) 

Where ∫ means ordinary integral . 0z  is a crisp output value of the fuzzy controller. 

2.2.1. Inputs and outputs from the fuzzy controller   
The inputs and outputs from the fuzzy controller are analysed in the following section. 
The inputs to the fuzzy controller are left_obs (left obstacle distance), right_obs (right 
obstacle distance) and front_obs(front obstacle distance) and initial-steering-angle (out put 
from the neural network controller). Terms such as near, medium and far are used for 
left_obs, right_obs and front_obs (Figure 4). Terms such as pos(Positive), zero and 
neg(Negative) are defined for  initial-steering-angle(Figure 4). The out-put from the the 
fuzzy controller are left_velo and right_velo. Terms such as fast, medium and slow, are 
defined for left_velo(left velocity) and right_velo(right velocity). The member ship functions 
described above are shown in Figure 4. All these membership function are triangular or 
trapezoidal which can be determined by three inputs, the parameters are listed in the Table-
1. 

Variables Near (Meter) Medium (Meter) Far (Meter) 
0.0 0.8 2.0 
0.8 2.0 3.2 

Left Obstacle (LD) 
and 
Right Obstacle (RD) 2.0 3.2 4.0 
(a)  Parameters for Left and Right Obstacle 

Variables Near (Meter) Medium (Meter) Far (Meter) 
0.0 0.6 2.0 
0.6 2.0 3.4 Front Obstacle (FD) 
2.0 3.4 4.0 

(b)  Parameters for Front Obstacle 

Variables Negative (Degree) Zero (Degree) Positive (Degree) 
-180.0 -20.0 0.0 
-20.0 0.0 20.0 Heading Angle (HA) 
0.0 20.0 180.0 

(c)  Parameters for Heading Angle 

Variables Slow (Meter/Sec)  Medium (Meter/Sec)  Fast (Meter/Sec) 
-0.35 -0.1 0.0 
-0.1 0.0 0.1 

Left Wheel Velocity (LV) 
and 
Right Wheel Velocity (RV) 0.0 0.1 0.35 
(d)  Parameters for Left and Right Velocity 

Table 1. Parameters of fuzzy membership functions 
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Figure 4a. Fuzzy controller for mobile robot navigation 

 
Figure 4b. Fuzzy membership functions 
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2.2.2 Obstacle avoidance 
The fuzzy control rules for avoiding collision with obstacles are listed in Tables 2a and 2b. 
Rules 1-12 (Table 2a) are dealing with pure obstacle avoidance when the robot turns away 
from an obstacle as soon as possible. For example, if the obstacle to the left of the robot is far, 
the obstacles to the right and in front of the robot are near and the heading angle is negative, 
then the robot should immediately turn to the left. To achieve this, the left wheel velocity 
should be small and the right wheel velocity should be large (see Rule 3).  
As with the fuzzy controller defined in Rules 13-18 (Table 2b) handle obstacle avoidance and 
wall following simultaneously. For instance, Rule 13 caters for the case where the left and 
front obstacles are far from the robot and the right obstacle is near. In this situation, the 
robot continues to move ahead, keeping the right obstacle (a wall) to its right hand side. 

FuzzyRuleNo. Action Left_obs Front_obs Right_obs Head_ang Left_velo Right_velo 

1 OA Far Near  Med Neg Slow Fast 
2 OA Far Near Far Z Fast Slow 
3 OA Far Near Near Neg Slow Fast 
4 OA Med Med Near Neg Slow Fast 
5 OA Med Near Far Pos Fast Slow 
6 OA Med Near Med Neg Slow Fast 
7 OA Med Near Near Neg Slow Fast 
8 OA Near Med Med Z Fast Slow 
9 OA Near Med Near Z Fast Slow 
10 OA Near Near Far Pos Fast Slow 
11 OA Near Near Med Pos Fast Slow 
12 OA Near Near Near Pos Fast Slow 

Table 2a. Obstacle avoidance 

FuzzyRuleNo. Action Left_obs Front_obs Right_obs Head_ang Left_velo Right_velo 

13 OA & WF Far Far Near Z Med Med 
14 OA & WF Far Med Near Z Med Fast 
15 OA & WF Med Far Near Z Med Med 
16 OA & WF Near Far Med Z Med Med 
17 OA & WF Near Far Near Z Slow Slow 
18 OA & WF Near Med Far Z Fast Med 

Table 2b.  Obstacle avoidance and wall following 

FuzzyRuleNo. Action Left_obs Front_obs Right_obs Head_ang Left_velo Right_velo 

19 TS Far Far Far Pos Fast Slow 
20 TS Far Far Far Neg Slow Fast 
21 TS Far Far Near Neg Slow Fast 
22 TS Near Far Far Pos Fast Slow 
23 TS Far Near Near Neg Slow Fast 
24 TS Near Near Far Pos Fast Slow 

Table 2c. Target finding 

Table 2. List of fuzzy rules for multiple mobile robot navigation 
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Note:  Left_obs – Left Obstacle, Front_obs – Front Obstacle, Right_obs – Right Obstacle, 
Head_ang – Heading Angle, Left_velo – Left Velocity, Right_velo – Right Velocity, 
OA – Obstacle Avoidance, WF – Wall Following, TS – Target Steering, Neg – 
Negative, Pos – Positive, Z – Zero, Med – Medium 

2.2.3 Targets finding  
If a mobile robot detects a target, it will directly move towards it unless there is an obstacle 
obstructing its path. In that case, the robot will move around the obstacle before proceeding 
towards the target. The target finding rules are listed in Table 2c. An example is Rule 19 
which directs the robot to turn right (high left wheel velocity and low right wheel velocity) 
because that is where the target is located and there are no obstacles in the vicinity. 

2.3. Inter robot collision avoidance 
At start robots are placed in the cluttered unknown environment, without any prior 
knowledge of targets, obstacles and other robots in the environment. Each robot has a aim of 
finding the targets avoiding obstacles and inter robot collision (Task-1) as shown in Figure 5.  
Once the robots have received a command to start, they will navigate in search of targets by 
avoiding obstacles with the help of proper steering angle, which will be decided by neuro-
fuzzy controller (Task-2).  
During the navigation if path of a robot is obstructed by another robot, then conflicting 
situation between the robots is detected (Task-3). Conflicting robots will negotiate with each 
other and they will be prioritised. The lower priority robot will be treated as static obstacle 
and higher priority robot as moving robot (Task-4). As soon as the conflicting situation is 
solved between the above two robots, the free robots will co-ordinate with the other 
conflicting robots (Task-5) to see whether there is any other conflicting situation with them. 
If a robot during navigation meet with other two conflicting robots (Task-6), than the 
priority of the last robot will be lowest and will be treated as a static obstacle till the 
conflicting situation is being resolved between the first two robots. As soon as conflicting 
robots resolve all conflicting situations, they will again start Task-2. 
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Figure 5. Petri Net Model for avoiding inter-robot collision 

3. Demonstrations 
3.1 Simulation Results 
• Obstacle Avoidance and Target Seeking  
This exercise shows that the mobile robots can navigate without hitting obstacles and can 
find targets in a cluttered environment. Nine robots are involved together with several 
obstacles including two U-shaped containers housing one target each. Figure 6a depicts the 
initial state when the nine robots are arranged into two groups positioned at two locations 
in an enclosure. From Figure 6b, it can be seen that the robots are able to locate the targets 
while successfully avoiding collision against the obstacles. 
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Figure 6a. Obstacle avoidance and target seeking (initial state) 

 
Figure 6b. Obstacle avoidance and target seeking (final state) 
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• Escape from Dead Ends 

 
Figure7a. Escape from dead ends (initial state) 

 
Figure 7b. Escape from dead ends (intermediate state) 
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Figure 7c. Escape from dead ends (final state) 

This exercise is similar to that discussed in the previous chapter (see Figure 7a) where U-
shaped containers are used to simulate dead ends from which trapped robots should escape. 
There are 10 robots in an enclosure comprising two U-shaped containers and other 
obstacles. Figure 7b depicts an intermediate state. It can be seen that most of the robots are 
outside the containers. All of those that have strayed inside have escaped. Figure 7c shows 
that the other trapped robots have also escaped and all the targets have been located. 
• Wall Following 
Two robots are involved in this exercise. Figure 8 shows that the robots are able to follow 
the walls of a corridor and reach the targets successfully. 
• Navigation of a Large Number of Robots 
One thousand robots are involved in this exercise. Figure 9 is a snap shot of what happens. 
It can be noted that all the robots stay well away from the obstacles. 
• Inter-robot Collision Avoidance 
This exercise demonstrates that the robots do not collide with one another even in a 
cluttered environment. For ease of visualisation, only a small number of robots are 
employed. Figure 10a and 10b depict the trajectories of the robots for the neuro-fuzzy 
controller. It can be seen that the robots are able to resolve conflict and avoid one another. 
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Figure 8. Wall following (final state) 

 
Figure 9. Navigation of a large number of robots 
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Figure 10a. Collision free movements (initial state) 

 
Figure 10b. Collision free movements (final state) 
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3.2 Experimental Results  
Figures 11a, 11b, 12a and 12c show the experimental results obtained. The results for the 
neural and neuro-fuzzy controllers for a single robot are presented in Figure 11a and 11b. In 
Figures 12a and 12b, the results for the neural and neuro-fuzzy controllers for four mobile 
robots are shown respectively. The experimental paths drawn follow closely those traced by 
the robots during simulation. It can be seen that the robots are able to avoid obstacles and 
reach the targets. Table 3 shows a comparison between the average time taken by the robots 
in simulation and the practical tests for obstacle avoidance and target seeking 

 
Figure 11a. Work space environment of one mobile robot (initial state) 

 
Figure 11b. Experimental results for one robot 
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Number of 
robots 

Time taken (Seconds) using 
Neural technique 

Time taken (Seconds) using 
Neuro-Fuzzy technique 

4 11.14 10.39 
8 23.37 20.25 
10 22.46 19.43 
16 34.42 30.49 
24 54.31 51.05 
40 78.12 71.05 
56 123.57 111.45 
70 259.01 228.54 

Table 3. Times taken to reach target using different techniques 

 

 

 
Figure 12a. Experimental results for four robots (neural controller) 
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Figure 12b. Experimental results for four robots (neuro-fuzzy controller) 

4. Conclusions: 
Analysis and discussion on navigation of multiple mobile robots has been carried out in this 
paper using neuro-fuzzy technique. The conclusions drawn from the above analysis have 
been depicted below. 
Using neuro-fuzzy technique mobile robots are able to navigate in a cluttered unknown 
environment. Mobile robots are able to escape from U-shaped objects(dead end obstacles) 
and can get the targets successfully using neuro-fuzzy technique (Figure 7.). When the 
robots are not able to see any target in one side of wall, they will continue at the edge of the 
wall assuming that the targets are lacated in other side of the wall(wall following action). 
The wall following action has been achieved successfully using neuro-fuzzy technique 
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(Figure 8.). In the present navigation method robots are able to avoid inter robot collision, 
which can be visualised from (Figures 10). As many as one thousand mobile robots can 
navigate successfully using neuro-fuzzy controller (Figure 9.). 
The present research has got a tremendous application such as automation of industry, 
space mission, agricultural activity and mass activity where many robots are required at a 
time. This technique can again revised by fusing some other technique to neuro-fuzzy 
technique such as adaptive technique. 
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6. Appendix-1 
The software ROBNAV has been developed in the laboratory under Microsoft’s Windows 
environment.  
By using the software users can have: 
i. Various options and can create a navigational environment for multiple mobile robots. 
ii. Many mobile robots inside the environment (multiple mobile robots). 
iii. Different types of obstacles inside the environment (in order to create a cluttered 

environment for multiple mobile robots navigation). 
iv. Many targets in the environment.  
By the help of the software, neuro-fuzzy controller has been implemented for navigation of 
multiple mobile robots and the results obtained are shown in Figures 6 to 12.  The overview 
outlay of the software has been shown in Figure 13. 

7. Appendix-2 
A prototype view of a mobile robot (out of several similar mobile robots that have been 
constructed in the laboratory for navigational purposes) is shown in Figure 14. Each mobile 
robot consists of: 
i. Three wheels, of which two are driven by stepper motors and the third by caster wheel. 
ii. PC-Mother board. 
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iii. Ultrasonic Card, six ultrasonic transmitters and receivers, for measuring the obstacle 
distances around the robot. 

iv. Infrared card, six infrared transmitters and eight infrared receivers, used for detecting 
the targets. 

v. Radio Modem Card, for remote transactions of commands with other robots and also 
with other computers. 

vi. Hard-disk,  for storing the software required for navigation of the mobile robot. 
vii. Two touch sensors, one at the front end and one at the rear end of the robot. 
viii. An onboard battery for power supply. 
The components discussed above are shown in the Figure 14. 
 
 
 
 
 
 
 
 

 
Figure 13. ROBNAV software package 
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(a) Schematic view of a robot 

 
 

 
(b)  Actual view of a robot 

 

Figure 14. A mobile robot 
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1. Introduction to Qualitative Spatial Reasoning 
Qualitative Reasoning aims at studying concepts and calculi on them that arise often at early 
stages of problem analysis when one is refraining from qualitative or metric details, cf., [14]; 
as such it has close relations to the design, cf., [10] as well as planning stages, cf., [29] of the 
model synthesis process. Classical formal approaches to spatial reasoning, i.e., to 
representing spatial entities (points, surfaces, solids) and their features (dimensionality, 
shape, connectedness degree) rely on Geometry or Topology, i.e., on formal theories whose 
models are spaces (universes) constructed as sets of points; contrary to this approach, 
qualitative reasoning about space often exploits pieces of space (regions, boundaries, walls, 
membranes) and argues in terms of relations abstracted from a common-sense perception 
(like connected, discrete from, adjacent, intersecting). In this approach, points appear as ideal 
objects (e.g., ultrafilters of regions/solids [78]). 
Qualitative Spatial Reasoning has a wide variety of applications, among them, to mention 
only a few, representation of knowledge, cognitive maps and navigation tasks in robotics 
(e.g. [39], [40], [41], [1], [3], [21], [37], [26]), Geographical Information Systems and spatial 
databases including Naive Geography (e.g., [24], [25], [33], [22]), high-level Computer Vision 
(e.g. [84]), studies in semantics of orientational lexemes and in semantics of movement (e.g. 
[6], [5]). Spatial Reasoning establishes a link between Computer Science and Cognitive 
Sciences (e.g. [27]) and it has close and deep relationships with philosophical and logical 
theories of space and time (e.g., [65], [8], [2]). A more complete perspective on Spatial 
Reasoning and its variety of themes and techniques may be acquired by visiting one of the 
following sites: [75], [83], [56]. 
Any formal approach to Spatial Reasoning requires Ontology, cf., [32], [70], [11]. In this 
Chapter we adopt as formal Ontology the ontological theory of Lesniewski (cf. [49], [50], 
[69], [47], [36], [18]). This theory is briefly introduced in Section 2. 
For expressing relations among entities, mathematics proposes two basic languages: the 
language of set theory, based on the opposition element—set, where distributive classes of 
entities are considered as sets consisting of (discrete) atomic entities, and languages of 
mereology, for discussing entities continuous in their nature, based on the opposition part-
whole. Due to this, Spatial Reasoning relies to great extent on mereological theories of part, 
cf., [4], [5], [6], [12], [15], [30], [31], [28], [71], [72], [55]. 
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Mereological ideas have been early applied toward axiomatization of geometry of solids, cf., 
[45], [78]. Mereological theories dominant nowadays come from ideas proposed 
independently by Stanislaw Lesniewski and Alfred North Whitehead. 
Mereological theory of Lesniewski is based on the notion of a part (proper) and the notion of 
a (collective) class, cf., [49], [51], [18], [73], [52]. Mereological ideas of Whitehead based on 
the dual to part notion of an extension [85] were formulated in the Calculus of Individuals 
[46] and given a formulation in terms of the notion of a connection [12]. Mereology based on 
connection gave rise to spatial calculi based on topological notions derived therefrom 
(mereotopology) cf. [16], [14], [20], [23], [5], [6], [15], [30], [31], [28], [71], [55]. 
Our approach to spatial reasoning is based on the paradigm of rough mereology, see sect. 4. 
Rough mereology is based on the predicate of being a part to a degree and thus it is a 
natural extension of mereology based on part relation. 
We demonstrate that in the framework of rough mereology one may define a quasi—Čech 
topology [19] (a quasi— topology was introduced in the connection model of mereology 
[12], [5] under additional assumptions of regularity). By a quasi-topology we mean a topology 
without the null element (being the equivalent of the empty set). 
Finally, we apply rough mereology toward inducing geometrical notions. It is well known, 
cf., e.g., [79], [8] that geometry may be introduced via notions of nearness, betweenness etc. 
In Section 7, we define these notions by means of a rough mereological notion of distance 
and we show that in this way a geometry may be defined in the rough mereological 
universe. This geometry is clearly of approximate character, approaching precise notions in 
a degree due to uncertainty of knowledge encoded in rough inclusions. 
We show applications of the proposed scheme to localization and navigation by a mobile 
robot equipped with sonar sensors in an environment endowed with a GPS system and we 
discuss its implementations in the Player/Stage system. 

2. Ontology of spatial objects 
In reasoning with spatial objects, of primary importance is to develop an ontology of spatial 
objects, taking into account complexity of these objects. We propose a hierarchical ontology 
obtained by iterative application of the Lesniewski ontological principle. Ontology was 
intended by Stanislaw Lesniewski as a formulation of general principles of being [50], cf., 
also [36], [47], [69], [35]. In application-oriented spatial reasoning systems, ontology appears 
as typology of concepts and their successive taxonomy, cf., e.g., [54] (to quote a small 
excerpt: edge is frontier, barrier, dam, cliff, shoreline). 
The only primitive notion of Ontology of Leśniewski is the copula " is". 
We begin with the axiom of Ontology. 
The Leśniewski Ontological Axiom is formulated in terms of the conjunctive is whose 
intuitive semantics denotes the fact that one object (individual) falls under the scope of a 
collective notion (a collection of individuals). 
We assume a set of primitive objects S, a set of complex objects C, and we formulate a 
restricted ontological axiom: 

X is Y iff (X ∈  S) ∧  (Y ∈  C) ∧  (for all Z ∈  S.Z is X ⇒  Z is Y). 

The meaning is: X is an object from S and X belongs in Y extensively (anything in S which is 
X is also Y). 
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Example 1 Assume a unit grid on the Euclidean d-space Rd, let S1 be the collection of unit cubes 
resulting from the grid, and C1 a non-empty collection of connected unions of finitely many cubes 
(one may look at this as a collection of obstacles built from single cubes). On the next level, S2 can be 
taken as C1, and C2 can be defined as a collection of finite unions of members of C1 which are pairwise 
disjoint (making an environment map of obstacles). 
Example 2 S is a collection of closed discs, and C is a collection of finite unions of (eventually, 
pairwise disjoint) closed discs. 
Extending the idea just put forth, we define a Layered Ontology (LO) as a 
sequence ((Si, Ci) : i = 1, 2,...) such that: 
LO1. (Si, Ci) are related by the Ontology Axiom for each i; 
LO2. Si+1 = Ci for each i; 
LOS. Ci = Fi(Si) for each i, where Fi is an operator (in examples above it was taken as the 
union). 
Ontological theories play an important role in Approximate Reasoning [11], [32], [70] 
witnessed with particular clearness in Spatial Reasoning [54], [22] where Ontology plays a 
basic role as it sets spatial concepts and their taxonomy. 

3. Mereology 
Yet another source of ideas and points of reference for rough mereology are mereological 
theories of concepts/sets. We refer here to two mainstream theories of mereology, viz., 
mereology due to Lesniewski [49], [51], [52], [73], [74], [18], [79], [13], [48] and mereology 
based on the notion of connection [12], [46], [85], [15], [16], [55], [4], [6]. 
Of the two theories, mereology based on connection offers a richer variety of 
mereotopological functors; mereology based on the notion of part offers a formalism of 
which the formalism of rough mereology is a direct extension and generalization: the latter 
was proposed [58], [59], [61], [62] to contain mereology as the theory of the predicate μ1. 

3.1 Mereology based on parts 
We denote with the symbol pt the relation of part on a collection of objects, 
subject to conditions, 
PI. X is pt Y ⇒  X is X ∧ Y is Y (the relation pt is defined for individual entities only); 
P2. X is pt Y ∧  Y is pt Z  ⇒  X is pt Z (pt is transitive); 
P3. ¬ (X is pt X) (pt is non-reflexive). 
On the basis of the notion of part, we define the notion of an element (an improper part; 
called originally in [49], an ingredient) as a relation el: 

X is el Y ⇔  X is pt Y ∨  X = Y. 

The remaining axioms of mereology are related to the class functor which converts 
distributive classes (general names) into individual entities. The class operator Cl is a 
principal tool in applications, cf., [58], [59], [61], [62], [68]. 
We may now introduce the notion of a (collective) class via the class functor Cl. 

3.1.1 The class operator 
An individual X is the class of a non-vacuous collection M of objects, in symbols, X is Cl , 
if  
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Cl1. If Y ∈   then Y el X;  
Cl2. ∀ Z.(Z is el X ⇒ ∃ U, W.(U is Y ∧  W is el U ∧  W is el Z). 
Let us disentangle the meaning of this definition. First, we may realize that the class 
operator Cl is intended as the operator converting names (general sets of entities) into 
individual entities i.e. collective classes; its role may be fully compared to the role of the 
union of sets operator in the classical set theory. The analogy is indeed not only functional 
but also formal. 
By Cl1., the class contains any member of the collection; by Cl2., the class contains all objects 
Z with the property: each element of Z has an element in common with an object in the 
collection. 
Thus, the class functor pastes together individuals in Y by means of their common elements. 
A basic tool in reasoning by means of mereology, see [51], is the following inference rule, 
IR. For X, Y: if for each Z (from Z is el X it follows that there is T such that T is el Z ∧  T is el 
Y) then X is el Y. 

3.2 Mereology based on connection 
This approach [85], [46], [12] is based on the functor of being connected; for the uniformity 
of exposition sake, we will formulate all essentials of this theory in the ontology language 
applied above. 
The requirements for a functor Con of connection are as follows, 
Conl. X is Con Y => X is X ∧  Y is Y (asserting that Con is defined on individuals); 
Con2. X is Con X (asserting refiexivity of Con); 
Con3. X is Con Y ⇔  Y is Con X (asserting that Con is symmetric);  
Con4. For all Z (Z  is Con X ⇔  Z   is Con Y ⇒  X = Y) (asserting extensionality of Con). 
From the functor Con, other functors are derived,  
DCon. X is DConY ⇔  non(X is ConY) (X is disconnected from Y);  
ElC. X is elC Y ⇔    for all Z (Z is ConX) ⇒  Z is ConY) (X is a connection element of Y); 
P. X is P Y ⇔  X is elC Y ∧  non(Y is elC X) (X is a part of Y);  
Ov. X is Ov Y ⇔ exists Z (Z is elC X) ∧  Z is elC Y) (X, Y overlap); 
ECon. X is .ECon Y ⇔   X is Con Y ∧  non (X is Ov Y) (X is externally connected to Y); 
TP. X is TP Y ⇔ X is P Y ∧  exists Z (Z is .ECon X ∧  Z is .ECon Y) (X is a tangential part of 
Y); 
NTP. X is NTP Y ⇔  X is P Y ∧  non (X is TP Y) (X is a non-tangential part of Y). 
Connection allows for a variety of functors of topological characters (one may define a 
quasi-topological interior by means of NTP, cf., eg., [5], [6], [12], [55]). 

4. Rough mereology 
Rough mereology, see [59], [60], [61], [62] begins with the notion of a rough inclusion which is 
a parameterized relation μr  such that for any pair of individual entities X, Y the formula Y is 
μr X means that Y is a part of X to a degree r where r ∈ [0,1]. 
The following is the list of basic postulates for rough inclusions; el is the element relation of 
a chosen mereology system. 
RM1. X is μ1Y ⇔  X is el(Y) (a part in degree 1 is equivalent to an element);  
RM2. X is μ1Y ⇒  for all Z (Z is μr X => Z is μr Y) (monotonicity of μ);  
RM3. X is μr Y ∧  s ≤  r ⇒  X is μs Y (assuring the meaning “a part in degree at least r”). 
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4.1 Rough inclusions on collections of objects 
Assume that we are given two individuals X, Y being classes of (finite) names: 
X=Cl(X’), Y=Cl(Y’) and that we have defined values of μ for pairs T, Z of individuals where 
Tis X', Zis Y'. 
We extend μ to a measure μ* on X, Y by letting: 

{ }{ } *
' ' : is ( ) and is ( ).Z Y T X s rr min max max s Z T Y Xμ μ∈ ∈=  

It may be proved straightforwardly that the measure μ* satisfies (RM1)— (RM4). 

4.2 Transitive rough inclusions 
We introduce now [58], a modification to our functors μr; it is based on an application of 
residuated implication [38] and a measure of containment defined within the fuzzy set 
theory (the necessity measure) [34] , [7] . Combining the two ideas, we achieve a formula for 
μr which allows for a transitivity rule; this rule will in turn allow to introduce into our 
universe rough mereological topologies. We therefore recall the notion of a t-norm  as a 
function of two arguments  : [0, 1]2 →  [0, 1] which satisfies the following requirements: 
2.  (x,y) =  (y,x); 
3.  (x,  (y,z)) =  (  (x,y),z); 
4.  (x,l) = x; 
5. x' ≥  x ∧  y' ≥  y ⇒   (x', y') ≥  (x, y). 
We also invoke a notion of fuzzy containment r based on necessity, cf., [34]; it relies on a 
many-valued implication  i.e. on a function  : [0, 1]2 ⇒  [0, 1] according to the formula: 

, 

where μA is the fuzzy membership function [38] of the fuzzy set A. 
We replace  with a specific implication, viz., the residuated implication  induced by  
and defined by the formula: . 
We define a predicate  where r ∈  [0, 1], according to the formula: 

 
As proved in a different context in [58],  satisfies (RM1-RM4). 
The rough inclusion  does satisfy a deduction rule of the form, DR. If X is Y and Y 
is Z then X is Z. 
We now propose to synthesize basic topological and geometric constructs applied in 
Qualitative Spatial Reasoning based on connection, e.g., [6], [5], by means of rough 
mereology. 

5. Mereotopology 
As mentioned few lines above, topological structures may be defined within the connection 
framework via the notion of a non— tangential part. Interior entities are formed then by 
means of some fusion operators, see, e.g. [5], [55]. The functor of connection allows also for 
some calculi of topological character based directly on regions, e.g., RCC — calculus, see, 
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[31]. For a different approach where connection may be derived from the axiomatized 
notion of a boundary, see, [72]. 
These topological structures provide a mereotopological environment in which it is possible 
to carry out spatial reasoning. We now demonstrate that in rough mereological framework 
one defines in a natural way Cech topologies. 
We would like to recall that a topology on a given domain U may be introduced by means 
of a closure operator cl satisfying the Kuratowski axioms [43]: 
(cl1) cl ∅  = ∅ ;  
(cl2) clcl X = cl X;  
(cl3) X ⊆ clX;  
(cl4) cl(X ∪  Y) = cl X ∪  cl Y. 
The dual operator int of interior is then defined by means of the formula: int X = U — cl(U — 
X) and it has dual properties: int ∅  = ∅ , intintX = intX, intX ⊆  X, int(X ∩  Y) = intX ∩  
intY. 
The Čech topology [19] is a weaker structure as it is required here only that the closure 
operator satisfies the following:  
(Čcl1) cl ∅  = ∅ ;  
(Čcl2) X ⊆ clX; 
(Čcl3) X ⊆  Y ⇒  dX ⊆  dY. 
so the associated Čech interior operator int should only satisfy the following: int ∅  = ∅ ; 
intX ⊆  X; X ⊆ Y⇒  intX ⊆  intY. 
Čech topologies arise naturally in problems when one considers coverings induced by 
similarity relations [53]. 
In order to define Čech topologies, we first define the class Clr X for any object X and r < 1, 
as the class of objects having the property Mr X of being a part of X to a degree r: Clr X = Cl 
Mr X. 
By means of the rule (DR), sect.4.2, one can establish the properties,  
Mon. For s ≤  r, Clr X is el Cls X.  
Her. Xis el Y ⇒ Clr Xis el Clr Y. 
Following this, we define a new functor int as the class of the property I(X), int X = Cl I(X), 
where Zis I(X) ⇔  exists s < 1 (Cls Z is el X). 
We have the following properties of int, 
I1.  int(X) is el X; 
I2.  X is el Y ⇒  int(X) is el int(Y). 
Properties (I1)-(I2) witness this quasi-topology is a quasi-Čech topology. We denote it by the 
symbol μ. 
We now study the case of mereotopology under functors  in this case, the quasi- Čech 
topology μ turns out to be a quasi-topology. 

5.1 Mereotopology in the case of μT 
We begin with an application of deduction rule (DR). We denote by the symbol X the 
set Clr X in case of the rough inclusion . We assume that  (r, s) < 1 when rs < 1. We have 
a new direct characterization of X : Zis el X ⇔  Zis X. 
This characterization implies that X may be regarded as  “an open ball of radius r 
centered at X”. 
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We assume now, additionally, that the t-norm  has the property that: for every r < 1 there 
exists s < 1 such that  (r, s) > r. With this assumption, we have the following property, 
INC. For Zis el X, if s0 = arg_min{s :  (r, s) ≥  r} then 

Z is el ( X). 

We define a functor of two nominal individual variables AND, AND. Zis el AND(X, Y) ⇔  
Ov(X, Y) ∧  Zis el X ∧  Zis el Y. 
The rough mereotopology  has the properties:  
INTER. AND(int(X),int(Y)) = int(AND(X,Y)) holds whenever 
AND(int(X),int(Y)) is non-empty. 
IDEM. int(int(X)) = int(X). 
It follows by INTER and IDEM that the rough mereological topology induced by the rough 
inclusion  is a quasi-topology. 

6. Connections from Rough Inclusions 
In sect. 3.2, we presented basic notions related to mereological theories based on the notion 
of a connection. We recall that a connection is a functor which satisfies axioms (Conl)-(Con4) 
of sect. 3.2. 
In this section we will investigate some methods for inducing connections from rough 
inclusions. Clearly, the presence of topology induced in the preceding section allows for a 
few approaches to this problem. We begin with a notion of a connection in a strong sense. 

6.1 Strong connection 
We  define a  name-forming  functor  C onT  on  individual  entities as  follows,  CON(T).           
Xis C onT Y ⇔  non(exist r,s < 1.ext(Clr X,Cls Y)). 
Thus, X and Y are connected in the strong sense whenever they cannot be separated by 
means of their open neighborhoods. 
We check whether C onT  thus defined does satisfy (Conl)-(Con4). It may be clear that (Conl), 
(Con2), (Con3) hold irrespective of properties of μ. The status of (Con4) will clearly depend 
on our assumed functor μ. In case non(X = Y), we have, e.g., Z is el X), ext(Z,Y) with some Z. 
Clearly, Z is C onT X; to prove that non(Z is C onT Y), we need some assumptions about the 
form of μ. 
We add a new property of μ, 
RM4. If it is not true that X is Ov Y, then there exists s < 1 such that (if X is μr Y then r < s). 
Assume (RM4) and consider  with a t-norm  which would satisfy the following: given s 
< 1, there exist , β  < 1 with the property that  (, β) > s. Then, C onT induced via  would 
satisfy (Con4). 
In connection framework, the notion of an element is derived from the functor C of 
connection; the resulting functor of an element is denoted here by the symbol elC We will 
find relationships between the original functor el of an element and the functor elC. To this 
end, we have 
ELEM1. For any functor of the form : X is el Y => X is elCT Y.  
ELEM2. For any functor of the form  : X is elCTY =>  Xis el Y. 
A corollary follows, 
For any functor of the form  : elCT and el are equivalent. 
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We may therefore create in the framework of rough mereology an alternative scheme of 
calculus of individuals based on the connection CT inducing the same notion of an element 
as the original mereological one. 

7. Mereogeometry 
Predicates μr may be regarded as weak metrics also in the context of geometry. From this 
point of view, we may apply μ, in order to define basic notions of rough mereological 
geometry. 
In the language of this geometry, we may approximately describe and approach geometry 
of objects described by data tables; a usage for this geometry may be found, e.g., in 
navigation and control tasks of mobile robotics [1], [3], [21], [37], [40], [41]. 
It is well-known (see, [80], [8]) that the geometry of Euclidean spaces may be based on some 
postulates about the basic notions of a point and the ternary equi-distance functor. In [80], 
postulates for Euclidean geometry over a real-closed field were given based on the functor 
of betweenness and the quaternary equi—distance functor. Similarly, in [8], a set of 
postulates aimed at rendering general geometric features of geometry of finite—
dimensional spaces over reals has been discussed, the primitive notion there being that of 
nearness. 
Geometrical notions have been applied in, e. g., studies of semantics of spatial prepositions 
[6] and in inferences via cardinal directions [42]. 

7.1 Rough mereological distance, betweenness 
We first introduce a notion of distance  in our rough mereological universe by letting 

 
We now introduce the notion of betweenness as a functor T(X, Y) of two individual names; 
the statement Zis T(X, Y) reads as 'Z is between X and Y: 

 
Thus, Zis T(X,Y) holds when the rough mereological distance  between Z and any W is in 
the non—oriented interval (i.e. between) [distance of X to W, distance of Y to W] for any W. 
One checks that T satisfies the axioms of Tarski [80] for betweenness. 
Proposition 1   The following properties hold:  
1. Zis T(X, X) => Z = X (identity); 
2. Yis T(X, U) ∧  Zis T(Y, U) ⇒  Yis T(X, Z) (transitivity); 
3. Yis T(X, Z) ∧  Yis T(X, U) ∧  X ≠  Y ⇒  Zis T(X, U) ∨  Uis T(X, Z) (connectivity). 
Proof 1 By means of , the properties of betweenness in our context are translated into properties of 
betweenness in the real line which hold by the Tarski theorem [80], Theorem 1. 

7.2 Nearness 
We may also apply  to define in our context the functor N of nearness proposed in van 
Benthem [8]: 
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Here, nearness means that Z is closer to X than to Y (recall that rough mereological distance 
is defined in an opposite way: the smaller r, the greater distance). 
Then the following hold, i.e., N does satisfy all axioms for nearness in [8], 
Proposition 2       1.    Zis N(X, Y) ∧  Yis N(X, W) ⇒ Zis N(X, W) (transitivity); 
2. Zis N(X, Y) ∧  Xis N(Y, Z) ⇒  Xis N(Z, Y) (triangle inequality); 
3. non(Zis N(X, Z)) (irreflexivity); 
4. Z = X ∨  Zis N(Z, X) (selfishness); 
5. Zis N(X, Y) ⇒  Zis N(X, W) ∨  Wis N(X, Y) (connectedness). 
Proof 2 (4) follows by (RM1); (3) is obvious. In proofs of the remaining properties, we introduce a 
symbol μ(X, Y) as a value of r for which (X, Y). Then, for (l), assume that Z is N(X,Y),Y is 
N(X,W) i.e. μ(Z,X) > μ(X,Y), μ(X,Y) > μ(X, W) hence μ(Z, X) > μ(X, W) i.e. Zis N(X, W). In case 
(2), Zis N(X, Y), Xis N(Y, Z) mean μ(Z, X) > μ(X, Y), μ(X, Y) > μ(Y, Z) so μ(Z, X) > μ(Y, Z) i.e. 
XisN(Z,Y). Concerning (v), Zis N(X,Y) implies that μ(Z,X) > μ(X,Y) hence either μ(Z, X) > μ(X, 
W) meaning Zis N(X, W) or μ(X, W) > μ(X, Y) implying Wis N(X,Y). 
We now may introduce the notion of equi—distance as a functor Eq(X, Y) defined as 
follows: 

 

It follows that  
Proposition 3 Zis Eq(X,Y) ⇔  (for allr (  (X,Z) ⇔   (Y,Z)). 
We may also define a functor of equi—distance following Tarski [80]: 

 

These functors do clearly satisfy the following (see, [8], [80]) 
Proposition 4       1. Zis Eq(X, Y) ∧ Xis Eq(Y, Z) ⇒  Yis Eq(Z, X) (triangle equality); 
2. Zis T(X, Y) ∧  Wis Eq(X, Y) =^> D(Z, W, X, W) (circle property); 
3. D(X,Y,Y,X) (reflexivity); 
4. D(X, Y, Z, Z) ⇒  X = Y (identity); 
5. D(X, Y, Z, U) ∧  D(X, Y, V, W) ⇒  D(Z, U, V, W) (transitwity). 
One may also follow van Benthem's proposal for a betweenness functor defined via the 
nearness functor as follows: 

 

One checks in a straightforward way that 
Proposition 5 The functor TB of betweenness defined according to the above does satisfy the 
Tarski axioms. 

7.3 Points 
The notion of a point may be introduced in a few ways; e.g. following Tarski [78], one may 
introduce points as classes of names forming ultrafilters under the ordering induced by the 
functor of being an element el. Another way, suitable in practical cases, where the universe, 
or more generally, each ultrafilter F as above is finite, i.e., principal (meaning that there 
exists an object X such that F consists of those Y"'s for which Xis el(Y) holds) is to define 



Mobile Robots Motion Planning, New Challenges 

 

442 

points as atoms of our universe under the functor of being an element i.e. we define a 
constant name AT as follows: 

 

We will refer to such points as to atomic points. We adopt here this notion of a point. 
Clearly, restricting ourselves to atomic points, we preserve all properties of functors of 
betweenness, nearness and equi—distance proved above to be valid in the universe V. 

7.4 Mereogeometry: Examples 
We will adopt the notion of betweenness TB based on the nearness functor. 
We give some examples of specific contexts in which this functor can be realized. 
Example 3 With reference to Example 1, we adopt as objects topologically connected unions of 
finitely many cubes in the unit grid on the space Rd (topological connectedness will be defined 
recursively: (1). a single cube is connected; (2) given a connected union C and a cube c, the union 
C∪ c is connected if c is adjacent by the edge or a vertex to a cube in C). We adopt as the rough 

inclusion H the function μ(C,D,r) iff 
C D

r
C

≥
∩

, where |C∩D| is the number of cubes common 

to C and D and |C| is the number of cubes in C. The mereological distance between C and D is then: 
 (C,D) = min{max{r : μ(C,D,r)},max{s : μ(D, C,s)}}. 

Then one checks that: the connected union E is between (in the sense of TB) disjoint cubes c, d 
whenever E contains c and d and E consists of a minimal number of cubes for E being 
connected. 
One can interpret this result as follows: when c,d are obstacles (e.g., of the size of a mobile 
robot) then Z minus c, d gives the space between these obstacles, free for the robot to pass. 
Example 4 In the same frame and with same μ, consider unions of grid cubes (not necessarily 
topologically connected). Then for disjoint cubes c, d: a, union Z of grid cubes is between c,d (in 
the sense of) TB whenever Z is either c, or d, or c ∪  d. 
One can interpret this as: when unit grid is of the size of a mobile robot, Z between c and d, can be 
interpreted as beacons (landmarks) between which a robot may pass safely. 
Example 5 We consider now obstacles modeled as squares on R2 of equal size given by edge length r, 
but not necessarily conforming to any grid, i.e., a square can be centered at any point; we change the 

rough inclusion μ, to the following: μ (C,D,r) iff 
C D

r
C

≥
∩

, where C  is the area of C. In this 

setting, consider disjoint squares C,D whose centers are on the line e.g., x=0. 
Then one checks: any square centered on x=0 with the center on the segment joining centers of 
C and D of edge length r is between C, and D, in the sense of TB. 
One can interpret this as follows: a robot of size of the square of edge length r, should interpret the 
space formed by the rectangular space between C and D minus C,D as the eventual free space for 
bypassing either C or D. 
Example 6 In the setting of Example 5, we replace squares with discs of equal radius r placed 
arbitrarily in the space R2, with μ, defined as therein by means of the area. Then conclusion holds 
with disks as with squares. 
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Example 7 The equi-distance functor Eq may be used to define spheres; for instance, admitting as Z 
the square [0,1] x [0,1], (so the edge length is 1) we have the sphere S(Z;l/2) to contain squares: [0,1] 
x [1/2,3/2], [0,1] x [-1/2,1/2], [1/2,3/2] x [0,1], [-1/2,1/2] x [0,1]}. 
A line segment may be defined via the auxiliary notion of a pattern; we introduce this 
notion as a functor Pt. We let 

 
We will say that a finite sequence X1, X2, ... , Xn of objects belong in a line segment whenever 
Pt(Xi, Xi+1, Xi+2) for i = 1,..., n—2; formally, we introduce the functor Line of finite arity 
defined via 

 
Example 8  With reference to Example 5, consider a sequence of squares C1,...,Ck all centered on x=0, 
and of edge length r.   Then, Line(C1,...,Ck) holds.   One can interpret this as a robot moving along a 
straight line when its consecutive positions are C1,...,Ck. 
The notion of orthogonality may be introduced in a well-known way; we introduce a 
functor Ortho: for two line segments A, B, with an object Z common to sequences A and B, 
we let 

 
∧  

 
Example 9 With reference to Example 8, consider lines A: the sequence [0, 1] x [0,1], {[i/2, i + l/2] 
x [0,1] : i = +/-1,+/-2,...};B: the sequence [0,1] x [0,1], {[0,1] x [i/2, i+ 1/2] : i = +/-!,+/- 2,...}. 
Then Ortho(A, B) holds as witnessed, e.g., by Z = [0,1] x [0,1], X = [-1/2,1/2] x [0,1], Y = 
[1/2,3/2] x [0, 1], U = [0, 1] x [-1/2, 1/2], W = [0, 1] x [1/2, 3/2]. 
Example 10 Finally, we consider a more general context in which objects are rectangles positioned 
regularly, i.e., having edges parallel to axes in R2. The measure μ is the one in Example 5. In this 
setting, given two disjoint rectangles C, D, the only object between C and D is the extent of C, D, 
ext(C,D), i.e., the rectangle which is the minimal rectangle containing the union C ∪  D. To see this, 
one can consider two identical squares C, D as in Example 5 and solve the problem analytically by 
showing that there is no other rectangle nearer to C and D (this requires solving a set of linear 
inequalities); then, the general case follows by observing that linear shrinking or stretching of an edge 
does not change the area relations. 
Rectangles C, D and their extent ext(C, D) form then a line segment. 

8. A.Szmigielski's model for localization and navigation 
In his PhD disssertation [77], A. Szmigielski has proposed an approach to localization and 
navigation of a mobile robot using the mereological geometry. The robot was a Pioneer 
P2DX endowed with sonar emitter in the environment of sonar sensors. 
The control of a robot utilized the parameters, 
• length of route segment d, 
• rotation angle , 
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where the robot first traveled the distance d then rotated by . Low level control means a 
sequence of pairs (d, ). Distance to a nearest obstacle was determined by robot sonars. 
The system of sonar sensors can be exploited towards localization of a robot in the global 
reference frame. The system consists of a sonar emitter positioned on the robot and up to 16 
receivers in the environment of the robot. Simultaneous measurement of times of flight 
between the emitter and receivers gives distances from the robot to receivers. At the same 
time, robot sonars detect the nearest obstacle. 
As the result, two regions are determined in 2D space of the robot plane: the disk centered at 
the receiver with the radius equal to the distance emitter -receiver (the receiver region), and 
the disk centered at the robot with the radius equal to the distance to the nearest obstacle 
(the collision-free region). The robot position is on the boundary of the receiver region. 
A relation between the two regions is expressed by the mereodistance . 
Whereas the Euclidean distance is context—free, the mereological distance depends on the 
environment (which bears on radii of regions). 
The goal - reaching a desired receiver, can be formulated as the requirement that radii of the 
receiver and the collision free regions are equal and the distance  between them is 

maximal
2 3
3 2π

= − . 

The stop criterion can be formulated then as the requirement that radii of two regions be 
equal; then, the receiver is found on the boundary of the collision—free region. 

 
Figure 1. Spatial reasoning in closed loop 

Control in dynamic setting is performed in the closed loop: perception — decision — action 
— perception. The inference engine gives two parameters: 
s = the distance to goal, 
 = the rotation angle of the robot. The input parameters are: 
d = the radius of the collision — free region, 
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l1, l2,..., lk = radii of receiver regions. 
The block diagram of control is shown in Fig. 1. 
Fig. 2 shows the result of the experiment of reaching the goal in an environment with 
obstacles; trajectory is shown for the robot starting at the orientation of 180 degrees with 
respect to obstacle. 

 
Figure 2. Robot reaches the goal 

Further results can be found in [77] and [63]. 

9. Implementation in Player/Stage software system 
Player/Stage is an Open-Source software system designed for many UNIX-compatible 
platforms, widely used in robotics laboratories [57]. Main two parts are Player - message 
passing server (with bunch of drivers for many robotics devices, extendable by plugins) and 
Stage - a plug-in for Players bunch of drivers which simulates existence of real robotics 
devices that operate in simulated 2D world. Player/Stage offers client—server architecture. 
Many clients can connect to one Player server, where clients are programs (robot controllers) 
written by a roboticist who can use Player client—side API. Player itself uses drivers to 
communicate with devices, in this activity it does not make distinction between real and 
simulated hardware. It gives roboticist means for testing programmed robot controller in 
both real and simulated world. 
Among all Player drivers that communicate with devices (real or simulated), there are 
drivers not intended for controlling hardware, instead those drivers offer many facilities for 
sensor data manipulation, for example, camera image compression, retro—reflective 
detection of cylindrical markers in laser scans, path planning. One of the new features 
added to Player version 2.1 is the PostGIS driver: it connects to PostgreSQL database in 
order to obtain and/or update stored vector map layers. 
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Figure 3. Stage simulator in use - two iRobot Roomba robots inside of simulated world 

 
Figure 4. uDig application in use - modification of obstacles layer 

PostGIS itself is an extension to the PostgreSQL object-relational database system which 
allows GIS (Geographies Information Systems) objects to be stored in the database [64]. It 
also offers new SQL functions for spatial reasoning. Maps which to be stored in SQL 
database can be created and edited by graphical tools like uDig or by C/C++ programs 
written using GEOS library of GIS functions. PostGIS, uDig and GEOS library are projects 
maintained by Refractions Research. 
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A map can have many named layers, for each layer a table in SQL database is created. We can 
assume that layer named obstacles is full of objects that a robot cannot walk through. Other 
layers can be created in which we can divide robots workspace in areas with assigned attribute 
which for example tells if the given area is occupied by an obstacle or not. During our 
experimentations, we have created a plug-in for Players bunch of drivers which constantly 
tracks changes of position of every robot and updates obstacles layer such as robots are 
remarked as any other obstacle. As a result, the map stored in SQL database is kept always up 
to date. This feature is also useful in multi-agent environments: at any time a robot controller 
can send a query to SQL database server regarding every other robot position. 
A roboticist can write a robot controller using Player client-side API which obtains 
information about current situation through the vectormap interface. Additionally, to write 
such a program, PostgreSQL client-side API can be used in order to open direct connection 
to the database server on which our mereoge-ometry SQL functions are stored together with 
map database. These functions can be called using this connection, results are sent back to 
the calling program. This gives robot controller program ability to perform spatial reasoning 
based on rough mereology. 
Using PostGIS SQL extensions we have created our mereogeometry SQL functions [44]. 
Rough mereological distance is defined as such: 

CREATE FUNCTION meredist(objectl geometry, object2 geometry) 
RETURNS DOUBLE PRECISION AS 
$$ 

SELECT min(degrees.degree) FROM  
((SELECT 

ST_Area(STJntersection(extent($l), extent($2)))  
/ ST_Area(extent($l))  
AS degree)  

UNION (SELECT 
ST_Area(STJntersection(extent($l), extent($2)))  
/ ST_Area(extent($2))  
AS degree))  

AS degrees; 
$$ LANGUAGE SQL STABLE; 

Having mereological distance function we can derive nearness predicate:  
CREATE FUNCTION merenear(obj geometry, ol geometry, o2 geometry)  
RETURNS BOOLEAN AS  
$$ 

SELECT meredist($l, $2) > meredist($3, $2) 
$$ LANGUAGE SQL STABLE;  
The equi-distance can be derived as such: 
CREATE FUNCTION mereequ(obj geometry, ol geometry, o2 geometry)  
RETURNS BOOLEAN AS  
$$ 

SELECT (NOT merenear($l, $2, $3)) 
AND (NOT merenear($l, $3, $2));  
$$ LANGUAGE SQL STABLE; 



Mobile Robots Motion Planning, New Challenges 

 

448 

Our implementation of the betweenness predicate makes use of a function that produces an 
object which is an extent of given two objects: 

CREATE FUNCTION mereextent(objectl geometry, object2 geometry) 
RETURNS geometry AS 
$$ 

SELECT GeomFromWKB(AsBinary(extent(objects.geom))) FROM  
((SELECT $1 AS geom)  
UNION (SELECT $2 AS geom))  
AS objects; 

$$ LANGUAGE SQL STABLE; 
The betweenness predicate is defined as such: 

CREATE FUNCTION merebetb(obj geometry, ol geometry, o2 geometry) 
RETURNS BOOLEAN AS 
$$ 

SELECT 
meredist($l, $2) = 1  
OR meredist($l, $3) = 1  
OR 

(meredist($l, $2) > 0 
AND meredist($l, $3) > 0 
AND meredist(mereextent($2, $3), 

mereextent(mereextent($l, $2), $3)) = 1);  
$$ LANGUAGE SQL STABLE; 

Using the betweenness predicate we can check if three objects form a pattern:  
CREATE FUNCTION merepattern 

(objectl geometry, object2 geometry, objects geometry)  
RETURNS BOOLEAN AS  
$$ 

SELECT merebetb($3, $2, $1)  
OR merebetb($l, $3, $2)  
OR merebetb($2, $1, $3);  

$$ LANGUAGE SQL STABLE; 
Also having pattern predicate we can check if four objects form a line:  

CREATE FUNCTION mereisline4 
(objl geometry, obj2 geometry, obj3 geometry, obj4 geometry)  
RETURNS BOOLEAN AS  
$$ 

SELECT merepattern($l, $2, $3) AND merepattern($2, $3, $4);  
$$ LANGUAGE SQL STABLE; 

Those predicates can be used in global navigation task. We can create additional map layer 
for navigational marker objects. Whenever the target is set, a robot planner should form a 
path across navigational markers. The path itself can be a group of objects representing 
areas free of obstacles. This group of objects in the path from the robot to the target should 
form a mereological line. A robot should follow this path by going from one area centroid to 
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another until the goal is reached. If the changes in the world are expected (e.g. in multi-robot 
environments) a planner should update the path within some interval. 

 
Figure 5. Playernav - a Player client-side application used to set a goal points for server-side 
planner driver 

 
Figure 6. Show trails is a nice option in Stage which can be used to track robot trajectory. 
Here we can see two Roomba robots avoiding to hit obstacles and each other respectively. 
The robot controller program was using meredist function in order to choose free space area 
as a local target. This method of navigation suffers from local optima problem: a robot can 
start to spin around one place between obstacles 
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1. Introduction  
In common applications, a robot will have no prior knowledge of its environment and must 
use sensory information to build a cognitive model for path and route finding. The process 
of building a good cognitive model from sensory information alone is complex and time 
consuming. Uncertainty of the input data can also cause the resulting paths and routes to be 
suboptimal or erroneous. In many of these applications, however, it is possible to augment a 
robot's sensory information with existing static information about the environment. 
Detailed and accurate digital blueprints of buildings are a fortuitous by-product of the 
prevalence of computer aided design in architectural design today. These data provide some 
information about the layout of the environment, but typically do not include more dynamic 
elements such as furniture, people, or other robots. Additional records may indicate what 
type of furniture is in a given room, but its placement may have changed over time. A robot 
navigating an office building will have to deal with the uncertainties of dynamic and 
unexpected objects in real-time, even if the layout of the building is known. However, the 
situation is vastly improved if the sensory data is used to identify object types, whose 
precise dimensions are already known and can be retrieved as needed. 
The use of existing information of the environment is important to make a robot resource-
efficient, while achieving near optimal path and route finding. However, processing existing 
information in the form of geometric models with hundreds of thousands of polygons can 
be expensive if a robot system is not carefully crafted to deal with such large amounts of 
information. 
An automated system is presented for path and route finding through arbitrary 3D polygonal 
environments. The system can process a polygonal representation of an environment with 
hundreds of thousands of polygons within a few minutes on a small grid of today’s computers. 
The processed information allows a robot to efficiently find routes and paths through the 
environment in real-time. Additionally, when a robot has identified and recognized dynamic 
obstacles in the environment based on sensory information, the system is able to create near 
optimal paths in real-time around arbitrary configurations of dynamic obstacles. 
The system presented here has been battle hardened in several generations of computer 
games, such as the triple-A titles: QUAKE III Arena, DOOM III and Enemy Territory 
QUAKE Wars. These computer games provide virtual environments for a robot (or artificial 
player), which are by no means inferior to real-life environments in that sophisticated 
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physics simulations are used to move the robot and dynamic obstacles. These latest games 
show that the system can be applied to not only indoor but also outdoor environments 
when a polygonal representation of the terrain is available. 

1.1 Previous Work 
The objective of obstacle avoidance is to find collision-free trajectories between a start and a 
goal configuration in static and/or dynamic environments containing obstacles. A rich 
variety of algorithms for obstacle avoidance can be found in literature (Ribeiro, 2005). 
The Certainty Grid method for probabilistic representation of obstacles in a grid-type world 
model has been developed at Carnegie-Mellon University (CMU) (Moravec, Elfes, 1985), 
(Elfes, 1987), (Moravec, 1988). This world model is especially suited to the accommodation 
of inaccurate sensor data such as range measurements from ultrasonic sensors. The work 
area is represented by a two-dimensional array of square elements, denoted as cells. Each 
cell contains a certainty value that indicates the measure of confidence that an obstacle exists 
within the cell area. The environment is scanned to update the certainty grid and local 
movement of the robot may be required for multiple scans. A global path-planning method 
is then employed for off-line calculations of subsequent paths. 
Potential fields were introduced by Khatib (Khatib, 1985) for robot path-planning. Using the 
potential field method, every obstacle exerts a repelling force on the robot while the goal 
exerts an attractive force. Using this method, however, the robot might fall into local minima 
where it achieves a stable configuration before reaching a goal. A similar approach using 
repulsion vectors is used in (Johnson, 2003). A combination of the Certainty Grid method 
and potential fields, named Virtual Force Field, can be found in (Borenstein, Koren, 1989). 
The Vector Field Histogram (VFH) approach was introduced by Borenstein (Borenstein, Koren, 
1991), (Ulrich, Borenstein, 1998), (Ulrich, Borenstein, 2000). The VFH approach generates a polar 
histogram of the space occupancy in the vicinity of a robot. This polar histogram is then checked 
to select the most suitable sector out of all polar histogram sectors which have a low polar 
obstacle density. The steering of the robot is then aligned with that direction. 
Using the Bugs algorithm (Lumelsky, Skewis, 1990), (Lumelsky, Stepanov, 1990), (Choset et 
al., 2005), (Kamon, 1998), also known as edge detection and wall following (Bauzil et al., 
1981), (Iijima et al., 1983), (Giralt, 1984) a robot moves directly towards the goal unless an 
obstacle is found, in which case the obstacle is contoured until motion to the goal is again 
possible. However, it may be necessary to take all static and dynamic obtacles into account 
at the same time to predict optimal paths towards the goal. When groups of objects are 
contoured the path may become jagged and non-optimal. Connolly (Connolly et al., 1990), 
(Connolly, Grupen, 1993) presents methods for planning smooth robot paths using Laplace's 
equation. Techniques such as "string-pulling" also known as "line-of-sight testing" (Snook, 
2000) can also be used to optimize the paths. 
Most of these systems are setup to create a cognitive model from sensory information 
without any prior information about the environment. (Waveren, Rothkrantz, 2006) presents 
a system for automated path and route finding in static polygonal environments. The 
system uses an off-line compilation process to derive a cognitive model of the environment 
that is suitable for efficient route and path finding. However, the system does not deal with 
dynamic obstacles in real-time. 
Many other automated systems that use an off-line compilation process can be found in 
literature such as (Farnstrom, 2006), (McAnlis, Stewart, 2008), (Hamm 2008), (Axelrod, 2008) 
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and (Ratcliff, 2008). Some of these systems use a discrete approach and others an analytical 
approach to create data structures that are suitable for route and path finding. The analytical 
approaches are complex or suffer from floating-point rounding errors on computers. The 
discrete approaches are prone to inaccuracies and errors that are inherent to discretely 
sampling the environment. 

2. Static Obstacle Avoidance 
Static obstacle avoidance deals with obstacles in the environment with a shape and position 
that never changes. Static obstacles may present themselves in many different forms and 
situations. Obvious examples of static obstacles are mountains and fences, on terrain, and 
the walls of a building. However, obstacles may also present themselves as gaps or pits a 
robot can fall into, or perhaps borders between countries that are not even physically 
marked. Unless some serious destruction takes place, it is safe to assume such obstacles 
always stay the same, or at least for an extended period of time. In many applications, pre-
calculated data structures can be constructed based on existing information about the 
environment in order to speed up real-time route and path finding around a variety of 
different static obstacles. 

2.1 Area System 
The system presented here for dealing with static obstacles is similar to the system 
presented in (Waveren, Rothkrantz, 2006). The robot is assumed to live inside a simple  
bounding volume, and the robot has a limited number of degrees of freedom. In particular, 
the robot lives inside an axis-aligned bounding box that only translates through the world. 
This bounding box can be defined by six axis-aligned bounding planes relative to a 
reference point on the robot. The system can be implemented to work with different 
polygonal bounding volumes, but by using an axis-aligned bounding box the complexity is 
kept to a minimum. The system can also be extended to deal with rotations of the bounding 
volume of the robot. However, using more than 3 degrees of freedom significantly increases 
the complexity, where the movement of the robot is bounded by hyper-surfaces that are 
much harder to visualize and conceive. 
During an off-line compilation process, the system automatically derives a cognitive model 
for route and path-finding, from a polygonal representation of a world with static obstacles. 
The first step in this off-line compilation process involves the construction of a boundary 
representation of configuration space (C-Space). The boundary representation of C-Space 
consists of one or more two-manifold triangle meshes that describe the Minkowsky sum of 
the polygonal world geometry and the bounding volume in which the robot resides. This 
boundary representation describes the extents of the complete movement freedom of the 
robot in an environment with only static obstacles. 
The configuration space is calculated using Constructive Solid Geometry (CSG) operations 
on two-manifold triangle meshes, in which meshes are subtracted from each other and 
welded together. The system presented in (Waveren, Rothkrantz, 2006) uses a three-
dimensional (3D) Binary Space Partitioning (BSP) algorithm with portalization to calculate 
the boundaries of configuration space. However, 3D BSP algorithms are prone to floating-
point rounding errors on computers when dealing with many polygons. These rounding 
errors may cause the constructed boundary representation of configuration space to not 
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accurately describe the actual extents of the complete movement freedom of the robot. The 
floating-point rounding errors can be localized and minimized by subdividing polygonal 
environments into smaller blocks that are moved into a well defined floating-point range 
centered about the origin. Nevertheless, 3D BSP algorithms are prone to rounding errors 
when dealing with a mixture of very high and very low density polygonal geometry. 
Before using CSG operations to calculate the boundary representation of configuration 
space, each polygon that is used to describe the environment is turned into a convex 
polytope. Such a convex polytope is described by a two-manifold triangle mesh that 
represents the Minkowsky sum of a single polygon and the bounding volume of the robot. 

     
Figure 1. A triangle in 3D space and the convex polytope that describes the Minkowsky sum 

There are several ways to construct such convex polytopes. One way is to place a copy of the 
axis-aligned bounding box in which the robot resides at each vertex position of a polygon, 
such that, the point of reference on the robot, relative to which the bounding box is defined, 
coincides with a vertex position. The convex polytope for a polygon is then constructed by 
calculating the convex hull of all the corners of all the positioned bounding boxes. This 
approach assumes the point of reference on the robot, relative to which the bounding box is 
defined, is centered inside the bounding box. Once a convex polytope is defined for each 
polygon in the environment, the two-manifold meshes that describe these convex polytopes 
can be welded together using CSG operations in order to construct a complete boundary 
representation of configuration space. 

     
Figure 2. Boundary representation of C-Space for an outdoor environment with buildings 
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In the next step of the off-line compilation process, traversable surfaces are identified on the 
boundary representation of configuration space. First, the slope of each triangle is 
determined. A triangle is considered traversable if the slope is less than 45 degrees. Each 
triangle edge between a traversable and non-traversable triangle can now be classified and 
flagged as either a "wall" edge or a "ledge" edge based on whether the triangles meet at an 
inward or outward angle respectively. The robot is assumed to be able to cover small height 
differences. For instance, a robot may be able to walk up stairs. Whenever a "ledge" edge is 
positioned directly above a "wall" edge, the overlapping part, where the edges are not too 
far apart, can be considered traversable. The "ledge" and "wall" flags are removed from the 
parts of the edges that overlap within the height difference that is considered traversable. As 
such, the overlapping edges of the steps of a staircase are not flagged. By processing all 
edges this way, a lot of geometric detail is ignored which helps to simplify the cognitive 
model used for path and route finding. 
The edges that are flagged as "ledge" and "wall" edges can now be used to subdivide the 
traversable surfaces into the least number of traversable areas, such that a robot can move in a 
straight line between any two points in an area. A two-dimensional (2D) Binary Space 
Partitioning (BSP) algorithm is used to subdivide the traversable surfaces into areas where 
vertical planes through the "ledge" and "wall" edges are used as splitters. This 2D BSP 
algorithm is significantly more robust and numerically stable than a 3D BSP algorithm with 
partalization because only vertical planes are used to split two-manifold meshes. The 2D BSP 
algorithm effectively creates convex vertical columns in space that contain one or more convex 
traversable surface fragments. Within a column each fragment covers the whole area of the 
column from a top-down perspective. However, each fragment within a single column is part 
of a different floor. The different floors are separated in the BSP tree by introducing additional 
split planes between the floors that are approximately level with the floor surface. 

     
Figure 3. Areas for an outdoor environment with buildings 

Because different floors of a building are not first separated, a floor on one level may be split 
by "ledge" or "wall" edges from a floor on a different level. In effect this causes unnecessary 
fragmentation of floors. However, convex traversable surface  fragments from different 
columns can be trivially merged back together if they meet at  an edge and the merged 
fragments also form a convex area in which a robot can move in a straight line between any 
two points. Merging traversable surface fragments together may cause multiple branches of 
the BSP tree to point to the same area. This is, however, not a problem because the BSP "tree" 
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is typically only used to quickly find the area a robot is in. The inner edges of a traversable 
surface fragment can now be discarded so that an area is described by a single polygon. 
The calculation of the configuration space is the most expensive step in the off-line 
compilation process. Fortunately, the polygonal representation of the environment can be 
broken up into small blocks, and the boundary representation of configuration space for 
each block can be calculated separately. A small grid of computers can be used to process 
these blocks in parallel, which significantly reduces the time it takes to complete the off-line 
compilation process. After all the blocks have been processed, the results from the 
individual blocks can be merged to form one or more two-manifold meshes that describe the 
complete boundary representation of configuration space for the whole environment. 

2.2 Avoiding Ledges 
The robot movement is modelled as an axis-aligned bounding box that translates through 
the environment.  Even if most of this bounding box is hanging over a cliff or ledge, and only 
a corner of the box actually rests upon an edge, the box will not tumble as far as the area 
system is concerned. Figure 4 shows a bounding box which is hanging over a ledge. 

 
Figure 4. A robot partly standing over a ledge while the bounding box rests upon the edge 

So called “ledge” areas are introduced to keep the legs of a robot from partly dangling over 
ledges. The robot may travel through such areas if absolutely necessary but when 
calculating routes the robot will try to avoid these areas. The ledge areas are introduced at 
edges that are not traversable because the height difference is too large. A vertical plane is 
constructed through a ledge facing away from the gap. This plane is then moved away from 
the ledge such that if the robot stays in front of the plane, the robot bounding volume cannot 
dangle over the ledge. The areas of the area system are then cut up with this plane to create 
areas on both sides of the plane. Areas that are behind the plane can then be marked as 
ledge areas and the robot can avoid these areas when calculating routes, or knows to 
navigate through such areas with care. 

2.3 Reachability 
Areas describe spaces in which a robot can travel between any two points in a straight line. 
To travel between areas a robot needs additional information. For this purpose  so-called 
reachabilities are introduced that describe how a robot can travel from  one area to the next. 
In particular, a reachability describes how a robot can travel from one area to an adjacent 
area or an area in close proximity. The reachabilities  can then be used to calculate routes 
through the environment. 
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A reachability is stored in the area system as a link between two areas and a point in space 
where the robot can transition from one area to the next. Reachabilities are easy to define 
using the polygons that represent the areas in the area system. Many polygon edges of 
adjacent areas are exactly on top of each other and can be used directly to define 
reachabilities where there is a smooth transition from one area to the next. The robot may, 
however, also be able to cover small height differences such as the steps of a staircase. A lot 
of these small height differences are already filtered and ignored when constructing the 
areas, but the 2D BSP algorithm may have cut up the traversable two-manifold mesh such 
that there are still small height differences between areas. Because the robot is assumed to 
live inside an axis-aligned bounding box, these small steps always present themselves as 
edges from adjacent areas that are directly above each other. Areas in close proximity can be 
tested for edges that overlap when projected onto a horizontal plane. The vertical distance 
between the overlapping parts of such edges can then be calculated to find the places where 
a robot can reasonably be expected to cover the height distance and consequently navigate 
across the edges from one area to the next. 

2.4 Routing 
Routes are calculated between areas by following the reachabilities from one area to another. 
The number of areas, however, can grow quite large when the area system is employed in an 
environment described by hundreds of thousands of polygons. Environments that are mapped 
by ten thousand areas or more are not uncommon. Conventional routing algorithms can be 
time consuming when dealing with such large numbers of areas in real-time. All routes could 
be pre-calculated, but this consumes a lot of storage space and does not allow for adjustments 
to dynamic changes, such as areas that are temporarily disabled. 
A hierarchical routing system is used to calculate routes with the same accuracy as a 
conventional routing algorithm. However, due to the hierarchical nature of the system, it 
takes significantly less time and space to calculate routes. The  calculated routes are 
temporarily saved (cached) to avoid having to recalculate routes repeatedly. The caches can 
be freed and routes are recalculated, when the total size of all cached routes exceeds a 
threshold or when routes need to be adjusted due to dynamic changes in the environment. 
Routes are typically calculated and cached per goal area, because the goal area tends to stay 
the same over a longer period of time than the area the robot is in. 
The hierarchical routing system creates a set of clusters of area. The areas within a cluster 
are connected through reachabilities. The areas are considered nodes of a graph and the 
reachabilities are considered the edges between the nodes. The clusters are separated by 
“cluster portals“. These cluster portals are areas themselves and represent passages from 
one cluster to another. The clusters and portals are setup such that the only way to travel 
from one cluster to another is through a cluster portal. Each cluster portal separates no more 
and no less than two clusters. 
The hierarchical routing system can save a lot of computation time and storage space by 
limiting routing calculations to the areas within clusters. Calculating all distances or travel 
times from all areas in a cluster to a specific goal area in the same cluster is significantly faster 
than performing routing calculations over all areas in the environment, because a cluster 
contains only a subset of all the areas. The upper bound for route calculations in a cluster is the 
square of the number of areas in the cluster; whereas the upper bound for calculating routes 
through the whole environment is square in the total number of areas in the environment. 
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The cluster portals are used to calculate routes through the whole environment. This works 
by interpreting the cluster portals as the nodes of a graph, and the routes through clusters as 
the edges between the nodes. The goal area of a route is also interpreted as a node  of the 
same graph. The goal area is connected to cluster portals with routes through the cluster the 
goal area is in. 
Routes through clusters are calculated with a simple breadth first routing algorithm. The 
breadth first algorithm starts at the goal area and uses the reversed reachabilities to flood to 
other areas. The algorithm never floods to areas outside the cluster, but does flood into 
cluster portals that touch the cluster. While flooding through a cluster, the algorithm 
calculates and temporarily saves travel times to the goal area for each area in the cluster. 
Routes through the whole environment are also calculated with a breadth first routing 
algorithm. The algorithm starts at the goal area and floods to all portals in the environment 
through the routes within clusters. For each portal the algorithm calculates and temporarily 
saves the travel time of the portal to the goal area. 
At any given time the next area along a route can be calculated by first determining the 
portal of the current cluster that is closest to the goal area, and then calculating the route to 
this portal. If the goal area is in the same cluster as the source area, the direct route within 
the cluster is also considered and chosen instead if determined to be shorter.  

2.5 Path Optimization 
A route retrieved from the area system is a sequence of areas connected through 
reachabilities. The reachabilities can be used to define a path as a sequence of points in 
space. These intermediate points along such a path are typically at the centers of edges 
between areas. A line through these centers, however, may not describe the most optimal 
path around static obstacles. The arrows in figure 5 show a path retrieved from the area 
system around two wall sections. Obviously this is not the most optimal path. 

 
Figure 5. Top down view of path optimization around two wall sections 

The path shown by the arrows in figure 5 can be optimized by plotting a line from the start 
position directly to one of the intermediate points that is further away, possibly several 
areas down the path. The robot must be able to travel along this line without being 
obstructed. The polygons that describe the areas from the area system can be used to test 
whether or not the line goes through free space without obstructions. At any given time the 
robot can choose the intermediate point on the path that is furthest away and to which the 
robot can move in a straight line. Instead of only choosing intermediate points that are on 
the edges between areas, the lines between successive intermediate points can be sub-
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sampled. A line from the start position to such a sub-sampled point can also be tested 
against the polygons of areas to determine if the sub-sampled point can be reached by the 
robot without being obstructed. Sub-sampling avoids discontinuities that may arise when a 
robot follows a route through areas with vastly different sizes. Optimizing paths in this 
manner can be done in real-time. By continuously optimizing paths while moving, the robot 
will follow a smooth and close to optimal path to its destination. 

3. Real-Time Dynamic Obstacle Avoidance 
The area system provides a robust solution for static obstacle avoidance. However, there 
may also be many dynamic obstacles in the environment. When the positions and 
dimensions of nearby dynamic obstacles are known, the areas of the area system could be 
recalculated for a particular configuration of such dynamic obstacles. However, 
recalculating the areas is typically too time consuming on today's computers to be done in 
real-time. Instead, the area system only handles the static part of the environment. Another 
system which is built on top of the area system is used to calculate paths around arbitrary 
configurations of dynamic obstacles. The system described here assumes the dynamic 
obstacles have already been identified from sensory information and records. The system is 
similar to the Bugs algorithm or wall following, except that the full path around obstacles 
can be re-calculated and optimized repeatedly. 
The problem of finding paths around dynamic obstacles is simplified by using a projection 
which makes the obstacle avoidance system suitable for real-time use. Furthermore, the 
system only deals with dynamic objects represented by oriented bounding boxes (OBBs). 
This restriction generally does not cause any problems because all dynamic obstacles can be 
contained within one or more tightly fitting OBBs. The wall edges from the area system are 
also considered as obstacles, such that the static obstacles are also taken into account when 
constructing a path around dynamic obstacles. 
A robot may choose to ignore very small obstacles or obstacles that do not extend more than 
a small distance above the floor. The dynamic obstacle avoidance system, however, will 
always try to find a path around dynamic obstacles, and does not try to find a path that 
requires the robot to move over these obstacles. In some situations a pile of stacked obstacles 
may present a smooth top surface that may seem suitable for robot navigation. However, it 
is very hard to determine whether or not a stack of obstacles will collapse if the robot tries to 
move over the obstacles.  

 
Figure 6. Obstacles along the path from the camera position towards the door behind the 
table 
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Figure 6 shows a room with a pile of boxes and a door behind a table. All the boxes, the 
table and the chairs are dynamic and can move through the room. A robot that wants to 
travel from the camera position towards the door will have to navigate around these 
obstacles. The walls and floor of the room are not dynamic and the area system only takes 
these static obstacles into account. As such, the optimized path retrieved from the area 
system is a straight line from the camera position to the door because none of the walls 
block the movement towards the door. 
The dynamic obstacle avoidance system searches for any obstacles in proximity of the 
optimized path retrieved from the area system. If no obstacles are found, the robot can just 
follow the optimized path. If possible obstacles are found, the nearby walls from the area 
system are considered as obstacles as well. Each obstacle is represented by an oriented 
bounding box (OBB) which is projected onto a 2D horizontal navigation plane. With this 
projection a polygon is created that describes the contour of the projected OBB. The polygon 
of a projected obstacle is expanded and beveled to create a polygon that describes the 2D 
Minkowsky sum of the projected OBB of the obstacle, and the axis-aligned bounding box in 
which the robot resides. The polygon used for the obstacle avoidance is the outline of this 
Minkowsky sum.  

3.1 Path Tree 
A path tree is built using clock-wise and counter clock-wise edge walks along the expanded 
polygons. Each node in the tree is a line segment that describes part of a path around obstacles. 
The optimized path from the area system is followed until a polygon is hit. Whenever a 
polygon is hit, the tree branches to follow the edges of the polygon in both a clock-wise and 
counter clock-wise fashion. While following the edges of a polygon, a new node is added to 
tree for each edge of the polygon. While following an edge of a polygon another polygon may 
be hit. When this happens, a new node is added to the tree to follow the polygon that is hit. 
Before extending the tree with a node for a new edge of a polygon, the edge is tested to see if it 
faces the end point of the optimized path from the area system. If an edge faces this end point, 
the polygon is no longer followed and a new node is added to the tree in order to continue the 
path directly to this end point. Any polygons hit along this new path are again used to extend 
the tree. This process continues until all branches of the tree either reach the end point of the 
optimized path from the area system, or loop back to a path already followed closer to the root 
of the tree. When following the edges of polygons in both a clock-wise and counter clock-wise 
fashion, a branch of the tree may loop back onto edges of polygons that have already been 
followed. Whenever that happens the branch is terminated. 

 
Figure 7. Top down view of one of the paths around the obstacles 
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Figure 7 shows a top down view of the room with obstacles that block a direct path from the 
camera position to the door. One of the branches of the tree is shown as a thick black line. 
The tree typically has many more branches, for instance, a branch that goes the opposite 
way around the table. These other branches are not shown for clarity. 
Once the complete tree is built, the tree is traversed in a depth first manner in order to find all 
possible paths that may lead to the destination. Such a path is a sequence of nodes that 
represent line segments. A path that does not lead to the destination is discarded. A path 
which does lead to the destination is optimized by taking shortcuts where possible. Nodes 
and, as such, line segments are skipped if the new line segment that represents the shortcut 
does not intersect any other obstacles. Figure 8 shows the path from figure 8 that has been 
optimized in this way. The shortest path is chosen from all optimized paths that are found 
when traversing the tree. The path shown in figure 8 is the shortest path around the obstacles. 

 
Figure 8. Top down view of optimized path around the obstacles 

The start and/or end point of a path retrieved from the area system may be inside the 
expanded polygons of a dynamic obstacle. This can happen when the robot is standing on 
the edge of an obstacle near the ground, or if an obstacle covers the end point of the path 
from the area system. When this happens, the start and/or end point needs to be pushed out 
of any expanded polygons of obstacles in order to find valid paths around the obstacles. A 
point inside an expanded polygon is first pushed towards the closest edge of the expanded 
polygon. If that point is still inside other expanded polygons the point is pushed towards 
one of the intersection points of the expanded polygons. All intersections of the expanded 
polygons that contain the point are calculated and the first intersection that is outside any 
obstacles is chosen. If no such intersection is found, either the robot or the destination is 
completely surrounded by obstacles and the robot will first have to move obstacles out of 
the way to create a path. 
The obstacle avoidance can be used to calculate paths around dynamic obstacles in real-
time. The robot can recalculate paths around dynamic obstacles repeatedly such that paths 
will be updated in real-time while obstacles are moving. Furthermore, the system can cope 
with arbitrary configurations of dynamic obstacles, allowing a robot to find paths around or 
out of maze like configurations. 
When the optimized path from the area system is recalculated repeatedly and the path 
around dynamic obstacles is also updated in real-time, there are cases where the area system 
and dynamic obstacle avoidance system may fight each other. The dynamic obstacle 
avoidance may change the path from the area system, which in return may cause the path 
from the area system to change as the robot moves along the modified path. In some 
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situations this may lead to confusion where the systems are alternately directing the robot to 
go in a different direction. The solution to this is to follow the path from the area system 
until dynamic obstacles are found that block this path. Once dynamic obstacles are found 
the path from the obstacle avoidance is followed and the optimized path from the area 
system is no longer updated until the destination of this optimized path has been reached or 
there are no longer any obstacles blocking the path. In other words, the path from the area 
system is not updated while avoiding dynamic obstacles. 

4. Results 
The robots (artificial players) in the computer game Enemy Territory QUAKE Wars use the 
described system for real-time route and path finding. This computer game provides a 
variety of challenging environments for robot navigation. The environments are largely 
outdoors but there are also many smaller and larger buildings the robots can enter. Each 
environment in the game covers approximately a square mile. Large parts of the 
environments never change but there are also many dynamic obstacles such as other robots, 
human players and vehicles. 
Table 1 shows statistics for several environments from the computer game Enemy Territory 
QUAKE Wars. For each environment table 1 shows the number of triangles that make up 
the  static obstacles in the environment, the number of blocks the environment is broken up 
into, the number of triangles used to describe the boundary representation of configuration 
space, the number of areas used for robot navigation, and the number of reachabilities 
between areas. 

Name Obstacle 
triangles Blocks C-Space 

triangles Areas Reachabilities 

Sewer 112288 2768 156328 6089 30667 
Valley 120133 4241 167638 9379 47595 
Volcano 217553 2301 237680 7641 36818 

Table 1. Statistics for several environments from Enemy Territory QUAKE Wars 

The above table shows that the number of triangles required to describe the boundary 
representation of configuration space is not significantly higher than the number of triangles 
that are considered static obstacles for robot navigation. This is partly because the robot 
lives inside a simple bounding volume. When a more complex bounding volume is used the 
number of configuration space triangles increases. 
A small grid of 10 to 20 computers was used for the off-line compilation process to construct 
the boundary representation of configuration space. By using this small grid of computers 
the off-line compile time was reduced to just a couple of minutes. 
In Enemy Territory QUAKE Wars 16 or more robots use the described system 
simultaneously. The combined CPU consumption of all robots is no more than 20% on a 
Intel Pentium 2 GHz processor. 

5. Conclusion 
The presented system is fully automated and can be used for path and route finding 
through arbitrary 3D polygonal environments with both static and dynamic obstacles. A 
polygonal representation with hundreds of thousands of polygons describing all static 
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obstacles in the environment can be processed off-line within a few minutes on a small grid 
of today's computers. The off-line compilation process creates data structures that allow a 
robot to efficiently find routes and paths through the environment in real-time. Once 
dynamic obstacles are identified from sensory information, the system is also able to create 
near optimal paths in real-time around arbitrary configurations of dynamic obstacles. 
The system has been successfully implemented and employed in the computer game Enemy 
Territory QUAKE Wars. This implementation shows that the system is resource-efficient. 
Multiple robots can use the system simultaneously for real-time path and route finding 
while only using a small percentage of all available compute power on a modest computer.  

6. Future Work 
For performance reasons the dynamic obstacle avoidance system uses a projection onto a 2D 
navigation plane.  Dynamic obstacles well above a robot, or obstacles that do not extend 
more than a small distance above the floor can be ignored. However, imagine a thin pipe 
against a wall that fell over across a hallway such that it leans against the opposite wall at a 
45 degrees angle. A robot may be able to navigate through the hallway by passing 
underneath the pipe close to the wall the pipe rest against. Unfortunately the dynamic 
obstacle avoidance system is unable to direct the robot through the hallway because it uses a 
projection of the pipe which covers the whole hallway. The pipe could be represented by 
multiple oriented bounding boxes where some are ignored if they are well above the robot. 
However, the dynamic obstacle avoidance could also be implemented as a wall following 
algorithm that follows the contours of 3D convex polytopes as opposed to polygons in the 
plane. This increases the complexity and the required compute power but will allow a robot 
to find paths around or through more complex configurations of dynamic obstacles. 
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1. Introduction 
Motion planning refers to the ability of a system to automatically plan its motions. It is 
considered central to the development of autonomous robots. In the last decade, much 
research effort was done on the application of probabilistic roadmaps methods (PRM) for 
different types of problems (Kavraki et al., 1996; Svestka & Overmars, 1997; Bohlin & 
Kavraki, 2000; Sánchez & Latombe, 2002). 
There are two main classes of PRM planners: multiple-query and single-query planners. A 
multiple-query planner pre-computes a roadmap and then uses it to process many queries 
(Kavraki et al., 1996; Svestka & Overmars, 1997). In general, the query configurations are not 
known in advance and the roadmap must be distributed over the entire free configuration 
space (C-space). On the other hand, a single-query planner computes a new roadmap for 
each query (Bohlin & Kavraki, 2000; Sánchez & Latombe, 2002; Sánchez et al., 2002). Its only 
goal is to find a collision-free path between two query configurations. Looking for the 
smallest space to explore before finding a path. Planners that can answer single queries very 
quickly and with a little preprocessing are of particular interest. Such planners can be used 
to re-plan paths in applications where the configuration space obstacles can change. This 
occurs, for instance, when the robot changes tools, grasps an object, or a new obstacle enters 
in the workspace. These kinds of planners are more suitable in environments with frequent 
changes. The adaptation of PRM planners to environments with both static and moving 
obstacles has been limited so far (Jaillet & Siméon, 2004). 
The planner proposed by Jaillet and Siméon (Jaillet & Siméon, 2004), uses a combination of 
single and multiple queries techniques. The proposed planner builds a roadmap of valid 
paths, considering only the static obstacles, when dynamic changes occurs, the planner uses 
lazy-evaluation mechanisms combined with a single-query technique as local planner to 
rapidly update the roadmap. 
A novel real-time motion planning framework was proposed in (Brock & Kavraki, 2001). It 
is particularly well suited for planning problems and it decomposes the original planning 
into simpler sub-problems. The paradigm addresses the planning problems in which a 
minimum clearance to obstacles can be guaranteed along the solution path. 
A method for generating collision-free paths for robots operating in changing environments 
was presented in (Leven & Hutchinson, 2000). The method begins by constructing a graph 
that represents a roadmap in the configuration space, but this graph is not constructed for a 
specific workspace. Later, the method constructs the graph for an obstacle-free workspace, 
and encodes the mapping from workspace cells to nodes and arcs in the graph. When the 
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environment changes, this mapping are used to make the appropriate modifications to the 
graph, and new plans can be generated by searching the modified graph. 
A dynamic structure to enrich any non-holonomic motion planner for car-like robots with 
the capacity of reactiveness to environment changes was proposed by (Jaouni et al., 1998). 
The main advantage of the star elastic band proposed in their work, is that it allows a better 
reactivity than the ball band (the elastic band approach was proposed by Quinlan and 
Khatib in 1993 (Quinlan & Khatib, 1993)). The elastic band approach is a dynamic trajectory 
modification that maintains a permanent flexible and deformable path between initial and 
final robot configurations. 
This work aims at providing a practical planner that considers reflex actions and planning 
with lazy techniques to account for obstacle changes. A collision-free feasible path for a 
mobile robot is computed using the lazy PRM method. The robot starts moving (under the 
permanent protection of its deformable virtual zone (DVZ)), in a free of dynamic obstacles 
trajectory, it does not require reflex commands and the control is performed by the lazy 
PRM method. If there are dynamic obstacles in its path, the reactive method takes the 
control and generates commands to force the robot to move away from the intruder 
obstacles and gives back its DVZ to the original state. 

2. The DVZ principle 
Artificial reflex actions for mobile robots can be defined as the ability to react when 
unscheduled events occurs, for instance when they move in unknown and dynamic 
environments. For the last seventeen years, we have been interested in the problem of 
reactive behaviours for collision avoidance in the domain of mobile robotics (Zapata, 1991; 
Zapata et al., 1994; Cacitti & Zapata, 2001). This section describes the DVZ principle. We 
assume that the mobile robot has not model of its surrounding space but can measure any 
intrusion of information (proximity-type information) at least in the direction of its own 
motion. The vehicle is protected by a risk zone while the deformations of the latter are 
directly used to trigger a good reaction. 
In what follows, n will denote the dimension of the robot world (Euclidean space), the 
real line,  y  the Euclidean norm of vector y, and ( )/ x∂Ξ ∂  the Jacobian of the vector-valued 
function Ξ. The robot/environment interaction can be described as a deformable virtual 
zone (DVZ) surrounding the robot. The deformations of this risk zone are due to the 
intrusion of proximity information and control the robot interactions. The robot internal state 
is defined to be a couple (Ξ, π), where the first component Ξ is called the interaction 
component, which characterizes the geometry of the deformable zone and the second 
component  π characterizes the robot velocities (its translational and rotational velocities). In 
the absence of intrusion of information, the DVZ, denoted by hΞ  is supposed to be a one-
one function of  π. The internal control, or reactive behavior is a relation  ρ, linking these two 
components, ( )h ρ πΞ = . In short, the risk zone, disturbed by the obstacle intrusion, can be 
reformed by acting on the robot velocities. 
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Let χ
σ
Ξ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 be the vector that represents the internal state of the robot and let ε be the state 

space, which is the set of all the vectors χ . The DVZ is defined by 
1

c

Ξ⎛ ⎞
⎜ ⎟Ξ = ⎜ ⎟
⎜ ⎟Ξ⎝ ⎠

 and the robot 

velocities vector  σ is defined by 
v

σ
θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 , where each component  iΞ  is the norm of the 

vector corresponding to the border’s distance in the DVZ. These vectors belong to the 
straight lines that correspond to the main directions of the c proximity sensors, ci. Generally 
speaking, we assume that we control the derivative  φ of a function  π for the robot velocities 
σ. Therefore, the control vector will be written 

 φ π=  (1) 

Let H be the set of all internal states  hχ  whose DVZ is not deformed. This set induces an 
equivalence relation in ε , defined by 

 
~

1 2 1 2
h hHχ χ χ χ⇔ =  (2) 

where i
hχ  is the internal state corresponding to the state iχ but without any deformation 

due to intrusion. In the equivalence class [ ]χ , the vector hχ  is a one to one function for the 
vector π: 

 ( )hχ ρ π=  (3) 

which can be written as, (by separation of the two sets of variables) 

 
( )
( )

h

σ

ρ π
σ ρ π

ΞΞ =⎧
⎨ =⎩

 (4) 

The derivative of equation (4) provides the state equation when no deformation occurs 
(when the state vector stays on H): 

 '( ) '( )hχ ρ π π ρ π φ= =  (5) 

This equation is the first part of the general state equation. If we now consider deformations 
of the DVZ, due to intrusion, we will obtain the second part of the state equation. To do it, 
we denote the deformation of the state vector by Δ and study the variations of this 
deformation with respect to intrusion. This new vector represents the deformed DVZ, which 
is defined by 

 hΞ = Ξ + Δ  (6) 
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Let 
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 be the c-dimensional intrusion vector, where maxi i iI d d= − . The sensor provides 

the measure maxi id d= , in the absence of obstacles. 

Let 
1

c

Δ⎛ ⎞
⎜ ⎟Δ = ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

 be the c-dimensional deformation vector, where 
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where hid  is an element of the intact DVZ ( hΞ ). Figures 1 and 2 illustrate this function. 

 
Figure 1. The deformation vector 0iΔ =  

 By differentiating equation (6) with respect to time, we get 
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h

I I I
I

α α∂ ∂Δ = Ξ Ξ + Ξ
∂Ξ ∂

 (8) 

By letting Iψ =  and using equations (4), (5), (6) and (8), we obtain the next control equation 
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⎪ =⎩

 (9) 
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with 
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ρ π φ
π φ
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⎪ =⎩

  

 
Figure 2. The obstacle deforms the DVZ 

The inputs of equation (9) are the two control vectors  φ  and ψ . The first comes from the 
control module of the robot and the second from the environment itself.  
We can consider the matrix A with dim(A)= [ ]c n×  (c sensors, k control variables) and the 
matrix B with dim=(B)= [ ]c c×  as follows: 

 
( , ) ' ( )

( , )

h
h

h

A I

B I
I

α ρ π

α

Ξ
∂= Ξ
∂Ξ

∂= Ξ
∂

 (10) 

By replacing equation (9) and (10) in equation (8), we obtain the evolution of the 
deformation 

 A BΔ = Φ + Ψ  (11) 

The DVZ control algorithm consists of choosing the desired evolution desΔ of the 

deformation. Given desΔ , the best control vector φ  in the sense of least-squares that 

minimizes the function  
2

desΔ − Δ  is obtained by inverting equation (11): 

 ( )desA Bφ ψ+= Δ −  (12) 

where  A+ is the pseudo-inverse of A. 
A simple and efficient control law consists of choosing the desired deformation as 
proportional to the real deformation and its derivative: 



Mobile Robots Motion Planning, New Challenges 

 

474 

 des p dK KΔ = − Δ − Δ  (13) 

where the two matrices Kp and Kd are respectively the proportional and derivative gains and 
are tuned in order to carry out the avoidance task. In this work, we define an ellipse as DVZ 
parameterized by the linear velocity and the steering angle of vehicle. 

3. Lazy PRM for non-holonomic mobile robots 
A Lazy PRM approach for non-holonomic motion planning was presented in (Sánchez et al., 
2002). The algorithm is similar to the work presented by Bohlin and Kavraki (Bohlin & 
Kavraki, 2000), in the sense that the aim is to find the shortest path in a roadmap generated 
by randomly distributed configurations. In a later work, Sánchez et al., 2003 showed that the 
use of deterministic sampling improved remarkably the results obtained with random 
sampling. 
Once a start-goal query is given, the planner performs A* search on the roadmap to find a 
solution. If any of the solution edges are in collision, they are removed from the roadmap 
and then A* search is repeated. Eventually, all edges may have to be checked for collisions, 
but often the solution is found before this happens. If no solution is found, more nodes may 
need to be added to the roadmap. The most important advantage of this approach, is that 
the collision checking is only performed when needed. In this case, all edges don't have to 
be collision checked as in the original PRM case (see figure 3). Experiments show that, in 
many cases, only a very small fraction of the graph must be explored to find a feasible path. 
Planners, based on lazy strategy (Bohlin & Kavraki, 2000; Sánchez & Latombe, 2002) always 
use the straight-line segment (Euclidean distance) as steering method. Much research has 
been done on motion planning for nonholonomic car-like robots (see Laumond, 1998 for a 
review). Svestka and Overmars used the RTR paths as a steering method (Svestka & 
Overmars, 1997). An alternative choice is to use steering method that constructs the shortest 
paths connecting two configurations (Reeds & Shepp, 1990; Sanchez et al., 2002). Reeds & 
Shepp have provided a sufficient family of shortest paths for the car-like robots moving 
both forward and backward. Figure 4 shows the Reeds & Shepp paths and an example 
computed with this approach.  

 
Figure 3. High-level description of the lazy PRM approach 
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Figure 4. Shortest paths for car-like robots and a computed path in a polygonal environment 

3. Reactive Lazy PRM 
This section describes the proposed approach, which integrates the lazy PRM planning 
method and the reactive control by DVZ in the following way: a collision-free feasible path 
for a mobile robot is calculated by the lazy PRM method, the robot starts moving (under the 
permanent protection of its DVZ), in the absence of dynamic obstacles, the control is 
performed by the lazy PRM method and does not require reflex commands. If there are 
dynamic obstacles in its path, the reactive method takes the control and generates 
commands to force the robot to move away from the intruder obstacles and gives back its 
DVZ to the original state. 
In this point, the robot has lost its original path, and it is necessary to search for a 
reconnection path to reach its goal. The new path found is a single collision-free curve of 
Reeds & Shepp. If the attempt of reconnection is successful, the robot executes its new path 
towards the goal. The new alternative path is obtained with the lazy PRM method by using 
the information stored in the current robot’s configuration, but if a deformation appears the 
processes are interrupted by reflex actions that force the planner to go back to the previous 
state. 
The algorithm can finish of three forms: i) the robot executes its path successfully, ii) the 
reflex action is not sufficient and a collision occurs, or iii) the robot does not find an 
alternative path to conclude its task. Figure 5 shows a high-level description of the proposed 
approach. 
The lazy PRM planner for non-holonomic mobile robots is detailed in (Sanchez et al., 2000). 
We consider that the other components of this approach are more important and they will 
be detailed in the next subsections. 

3.1 Reactive control by DVZ 
By using the equations discussed in the section II, and the next equation. We can use the 
next DVZ form (see figure 6). 

 2 2 sec
1 1 2cos ( )hi i id K V K dβ θ= + +  (14) 
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where 1K  and 2K  are constants, 1V  and θ  are the robot’s velocities (see equation 14), β  is 
the angle of the sensor ci with respect to the transverse axis of the robot, and sec

id  is a safe 
distance in the direction of the sensor ci. 

 
Figure 5. High-level description of our proposed approach 

 
Figure 6. The obtained form of the DVZ using 20 simulated sensors 

For the first case in equation (7), ( i hid d> ), the DVZ is not deformed by the environment, the 
control is performed by the lazy PRM method and the reflex actions are not required. For 
the second case, when ( i hid d≤ ),  a re flex action is necessary, the executed path by the lazy 
PRM method is suspended and the robot control is taken by the DVZ method. 

3.2 Generation of reflex commands 
When the DVZ takes the control, it has the task of taking the robot to a free state of 
deformations, indicating the kinematics attitudes that should continuously have the robot. 
These attitudes constitute the vector  π described as follows: 

 1V
π

θ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (15) 
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We do not use the equation (12) to implement the control, the control is adapted in the 
following way. 
Let [ ]if n  a vector in the direction of the sensor ci  to be defined as 

 
[ ] [ 1] 0[ ] [ 1]

[ ]
[ ] [ 1] 00

i ii i
i

i i

n nn n if
f n

n nif
Δ − Δ − >Δ − Δ −⎧

= ⎨ Δ − Δ − ≤⎩
 (16) 

Let [ ]F n  be the addition of the vectors [ ]if n  

 
1

[ ] [ ]
c

i
i

F n f n
=

=∑  (17) 

then, the vector [ ]nπ  is given by 

 1 1
ˆ[ ] [ 1] * [ ] * (cos( [ ]))

[ ]
ˆ[ ] [ 1] * (sin( [ ]))

v

t

V n V n K F n sign F n
n

n n K F n
π

θ θ

⎧ = − +⎪= ⎨
= − +⎪⎩

 (18) 

3.3 Kinematics of the robot 
The robot learns the kinematics attitudes that it should constantly adopt through the path 
computed by the lazy PRM method and the reflex actions that should be taken. These 
attitudes are 1V  and θ  are fixed in every tΔ interval. We consider a model of the car-like 
robot as follows: 

 
Figure 7. A car-like robot 

 1 2

cos 0
sin 0

(tan ) / 0
0 1

x
y

V V
l

θ
θ

θ φ
φ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (19) 

Because the change of x, y and θ is constant foe every interval, the steering angle φ in the 
front wheels stays fixed in the interval (V2=0), describing a circular path. 
The last observation is useful to avoid the integration operation that may be required, 
otherwise, to determine the x, y and θ values for the next interval of time. Instead, it is 
enough to use the analytic geometry properties of the circumference.  
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The next equation shows how to obtain a new configuration for the robot, after the 
application of a specific impulse. 

 
2 1 2 1

2 1 2 1

2 1 1

(cos cos )
(sin sin )

* ( / ) *

x x r
y y r

q V r t

γ γ
γ γ

θ θ

= + −
= + −
= + Δ

 (20) 

where 

1 min

1

1 1

2 2

max( ( / ), )
( / )
( / 2)
( / 2)

r abs V R
q sign V

q
q

θ
θ

γ θ π
γ θ π

=
=
= −
= −

 

Rmin is the trajectory’s radius that describes the car-like robot when its front wheels are in its 
maximum steering angle. The figure illustrates the relation between the variables in 
equation (20). 

 
Figure 8. The relation between the variables of equation (20) 

3.4 Reconnection 
After a successful reflex action, the mobile robot recovers the intact state of its DVZ, but the 
initial planned path is lost (Fig. 9b), and the lazy PRM method needs to have a path to push 
the mobile robot to the goal. For this reason it is necessary to provide a path for such aim. 
Since the computational cost of a complete re-planning is high, it is avoided as far as 
possible by executing a process that consists of a reconnection with the planned path by 
using a single collision-free Reeds & Shepp curve (Fig. 9c). 
Initially, the algorithm tries a local path that it is interrupted by a dynamic object. The 
algorithm will execute a reflex action in order to reconnect with the closest point that is 
collision-free in the original path. If it can not reconnect after a certain number of attempts, 
maybe because the possible reconnection paths are blocked with obstacles, the robot will 
remain immovable for a certain time before executing a new attempt (see Fig. 9d).  
The process will be repeated several times, but if the DVZ was deformed by an intrusion, 
the reconnection process will be modified and will execute the reflex commands. 



Reactive Motion Planning for  Mobile Robots 

 

479 

 
Figure 9. Cases of the reconnection process: a) to avoid a dynamic obstacle, b) after a reflex 
action, c) after many previous attempts, d) a successful reconnection 

3.5 Re-planning 
If the reconnection attempts fails, it may happen that paths are blocked by many dynamic 
objects, or a moving object is parked obstructing the planned path. In this case, the planner 
executes the lazy PRM method (the initial configuration is the current configuration in the 
robot). The lazy PRM will be called several times until it returns a collision-free path. If after 
some attempts a collision-free path can not be found, the planner reports failure. 
In the case that the mobile robot is developing in a static environment (or partially static), 
the planned path is enough to avoid a collision. Under this assumption, there is not need to 
generate any reflex action when a fixed obstacle enters the DVZ. 
The model cannot distinguish if an intrusion is caused by a moving or a static obstacle 
because the DVZ method does not use any model of the environment. To solve this 
problem, it is necessary to use an auxiliary image that represents the environment and it is 
updated every time the re-planning or reconnection procedures are called.  When the 
sensors in the robot detect an obstacle that deforms the DVZ, the intruder object coordinates 
are revised to see if there was already an obstacle, registered in the auxiliary image; if this is 
the case, the system assumes the presence of a fixed obstacle and there is no need for a reflex 
action, otherwise, it will certainly assume that the object is in movement. 

4. Simulation results 
Some simulation results are presented in this section. The planner was implemented in 
Builder C++ and the tests were performed on an Intel © Pentium IV 2.4 GHz processor and 
512 MB memory. After having executed our planner in different scenes, in the majority of 
the cases the motion planning problem is solved satisfactorily. Our planner produces a first 
roadmap by sampling configurations spaces uniformly. It computes the shortest path in this 
roadmap between two query configurations and tests it for collision.  
The robot starts moving under the permanent protection of its DVZ. In absence of dynamic 
obstacles, the robot does not require reflex commands and the control is executed with lazy 
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PRM. If there are dynamic obstacles in its path, the reactive method takes the control and 
generates commands to force the robot to move away from the intruder obstacles and gives 
back its DVZ to the original state. 
The moving obstacles have a square form and move at constant velocity in straight line. 
Whenever they collide with another object they assume in their movement a new random 
direction. Figure 10 shows an environment composed of narrow passages and dynamic 
obstacles moving randomly at the same velocity than the mobile robot. 
 
 

 
 

 
Figure 10. An example of a query and the path solution in an environment with 20 moving 
obstacles. The robot starts moving under the permanent protection of its DVZ 

In order to evaluate the performance of the planner, we performed tests on the environment 
of Figure 11 for several roadmap sizes and different number of moving obstacles. The 
different settings are summarized in the tables 1, 2 and 3. In our case, due to the strategy of 
node addition, the time for the roadmap’s construction is proportional to the number of 
nodes. The number of nodes at the beginning is a critical parameter that affects the lazy 
PRM’s performance (Sánchez et al., 2002). To show the methodology proposed, we 
performed 30 trials. 
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Figure 11. Trajectory execution control by the proposed planner. The environment constains 
5 and 30 moving obstacles 

 

Settings 50 nodes 100 nodes 50 nodes 100 nodes 

Steering angle 45 45 70 70 

Graph building 0.007 0.016 0.008 0.028 

Graph searching 0.005 0.016 0.005 0.015 

Coll. checking 980 1299 1093 1712 

Total time (secs) 0.071 0.109 0.074 0.147 

Table 1. Performance data for Lazy PRM 
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Reconnections Time for 
reconnection Replanning Time for 

replanning Collision Success 

43 0.027 0 0 No Ok 
12 0.025 0 0 No Ok 
3 0.025 0 0 No Ok 

65 0.030 0 0 No Ok 
97 0.027 0 0 No Ok 
84 0.031 0 0 No Ok 
12 0.026 0 0 No Ok 
16 0.026 0 0 No Ok 

Table 2. Performance data with 5 moving obstacles 

Reconnections Time for 
reconnection Replanning Time for 

replanning Collision Success 

36 0.029 0 0 No Ok 
90 0.029 1 0.019 No Ok 
3 0.027 0 0 Ok No 
5 0.026 0 0 Ok No 

81 0.032 1 0.115 No Ok 
27 0.032 1 0 No Ok 
4 0.026 0 0 No Ok 
9 0.026 0 0 No Ok 

Table 3. Performance data with 10 moving obstacles 

In fact, the method’s performance can be considered satisfactory if it presents a fast planning 
phase, reflex actions based on sensors that do not require expensive algorithms, an effective 
process of reconnection performed in milliseconds, and a process of re-planning that is 
executed if the Lazy PRM and DVZ’s parameters are appropriate. As mentioned in earlier 
sections, it can be considered that the methodology proposed here, includes these 
characteristics. 
The planning time is reduced due to the incomplete collision detector whose work is 
complemented with the robot’s sensors during the path execution. On the other hand, the 
assignation of direction angles to the nodes that conform the shortest paths obtained by the 
algorithm A*, produces curves that allow the algorithm to omit the optimization process 
(i.e., the smoothing process). With respect to the reconnection process, the paths obtained 
with the planner are conformed by a single Reeds & Shepp curve and based on the 
incomplete collision detector, making short the time and close to optimal the curves 
obtained with the algorithm. Since the reflex actions are provided by the DVZ method, it is 
possible to interrupt the reconnection and re-planning processes if necessary, without 
incurring in bigger problems. 
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If the execution’s parameters for the Lazy PRM and DVZ methods are adapted, the re-
planning process will not be called very often and will be successful in the absence of 
narrow passages. Figure 12 presents a case where the reflex actions were not sufficient. The 
presence of narrow passages is an important problem to being considered. 

5. Experimental results 
We have implemented the approach on the Pionner-3 robot from the ActivMedia Robotics. 
This robot is driven by two independent wheels , it is an agile, versatile intelligent mobile 
robotic platform updated to carry loads more robustly and to traverse sills more surely with 
high-performance current management to provide power when it's needed. It has a ring of 8 
forward sonar and 8 rear sonar ring. 3-DX's powerful motors and 19cm wheels can reach 
speeds of 1.6 meters per second and carry a payload of up to 23 kg. In order to maintain 
accurate dead reckoning data at these speeds, the Pioneer uses 500 tick encoders. Its sensing 
moves far beyond the ordinary with laser-based navigation options, bumpers, gripper, 
vision, stereo rangefinders, compass and a rapidly growing suite of other options. 

 
Figure 12. The reflex actions were not sufficient, the mobile robot collides with a moving 
obstacle 

 
Figure 13. The mobile robot used in the experimental part 
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Figure 14. The mobile robot avoids an obstacle 

The experimental part was done considering that the robot is able to follow a geometric 
trajectory previously calculated by a Lazy PRM planner, we considered a model of the 
environment on scale. In the absence of obstacles, the robot follows the trajectory until 
arriving at the goal region, if there are unknown obstacles, the robot executes reactive 
controls to avoid them and to return to its trajectory. 
Figure 14 illustrates this single experiment, where the robot avoids an unknown obstacle. 
One can see that robot clearly avoids the obstacle and returns to the nominal path. 
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6. Conclusion 
The motion planning for non-holonomic robots in moving environments is a complex 
problem. The results obtained in the evaluation of the reactive lazy PRM method, proposed 
in this work, show the importance of finding a solution for this problem. 
In fact, the method's performance can be considered satisfactory if it presents a fast planning 
phase, reflex actions based on sensors that do not require expensive algorithms, an effective 
process of reconnection performed in milliseconds, and a process of re-planning that is 
executed if the Lazy PRM and DVZ’ s parameters are appropriate. 
The planning time is reduced due to the incomplete collision detector whose work is 
complemented with the robot's sensors during the path execution. On the other hand, the 
assignation of direction angles to the nodes that conform the shortest paths obtained by the 
algorithm A*, produces curves that allow the algorithm to omit the optimization process 
(i.e., the smoothing process). 
With respect to the reconnection process, the paths obtained with the planner are conformed 
by a single Reeds & Shepp curve and based on the incomplete collision detector, making 
short the time and close to optimal the curves obtained with the algorithm. 
Since the reflex actions are provided by the DVZ method, it is possible to interrupt the 
reconnection and re-planning processes if necessary, without incurring in bigger problems. 
If the execution's parameters for the Lazy PRM and DVZ methods are adapted, the re-
planning process will not be called very often and will be successful in the absence of 
narrow passages. 
A reactive lazy PRM planner for dynamically changing environments is presented in this 
chapter. Although some promising results are shown in its present form, the planner could 
be improved in a number of important ways. This approach can be extended to use real 
robots and to solve the problem posed by small static obstacles. Besides, some cases where 
the reflex action was not sufficient to avoid collisions were observed during the evaluation 
tests. Theses cases are difficult because they require a more intelligent behavior in order to 
avoid the robot to be trapped. 
In those cases, it can be necessary to add a process that computes the trajectories of moving 
objects and corrects the path in real time. 
Finally, a very interesting topic in robotics is the study of non-structured environments. This 
methodology can be extended to solve these cases. 
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1. Introduction     
Global path planners for autonomous mobile robots have been demonstrated to map 
optimal routes in structured environments. The search for the optimum path from a given 
starting point to a destination is usually formulated as a graph search problem.  
Over the years, much progress has been made in efficient methods for global motion 
planning in static environments. A number of both exact and approximate approaches in 
this field (see, for example, Latombe, 1991; Hwang & Ahuja, 1992; LaValle, 2006). However, 
real world scenarios are intrinsically dynamic due to the presence of non-modelled 
obstacles, both static and moving. Path planning in such environments is an area of active 
research. Different methods have also been proposed (Heero, 2006; Jaillet & Simeon, 2004). 
Some approaches use robot sensors to build a model of the environment incrementally even 
when the real world is static. In such circumstances, a new path must be calculated every 
time the model is updated. The online integration of this new information in a global map is 
usually complex and time consuming. 
Path planning with dynamic objects can be addressed by using explicit time representation 
to convert the problem into an equivalent static one that can then be solved using an existing 
static planner. However, this increases the dimensionality of the representation and requires 
exact motion models for moving objects (Szczerba & Chen, 1995; Hsu et al., 2002). Note that, 
in many circumstances (such as the presence of people near the robot in a tour-guide 
autonomous application), it is not possible to explicitly model the unpredictable behaviour 
of humans and robot movements with a time-extended representation (Philipsen et al., 
2007). 
In contrast to previous works, our global path planning approach is able to take into account 
the effect of persistent delays caused by unpredictable objects (such as people in corridors or 
lobbies) by considering these delays for future path planner executions. 

2. Problem statement     
Depending on the nature of the problem, different optimality criteria can be used to 
minimize the overall cost of the proposed path. Although the most frequently used cost 
function is based on the branch length between two nodes, in many cases it is more 
attractive to minimize traveling time rather than the distance traveled by the robot. Our 
approach focuses on problems in which this metric is of interest.  
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Due to the presence of non-modeled obstacles (both static and dynamic) in the environment, 
the robot must be able to avoid unexpected obstacles by means of a reactive behavior. This 
causes deviations from the original trajectory and possibly delays accomplishment of 
planned tasks. 
The research on enhancing global path planning described in this chapter is intended for 
mobile robots navigating in partially known indoor environments. The method is based on a 
graph approach that adapts graph weights by integrating traveling time measurements from 
real task executions when the robot repeatedly follows the same paths. 
The technique uses periodic measurements of time and the positions reached by the robot 
while moving towards the goal to modify the costs of the branches (Diéguez et al., 2007). These 
weights are good options for branch costs while the robot moves in the presence of non-
modeled obstacles. Consequently, when trying to minimize the time needed to move from any 
given point to any given destination in dynamic environments, the search for a time-optimal 
path in a static global map produces better quality results than the use of a distance metric. 
Another important aspect of our approach is its independence of the existence of a local motion 
planner or reactive guidance modules in the robot navigation architecture. This is especially 
attractive because it makes it possible to incorporate the time delay caused by non-modeled 
obstacles even in a situation where obstacles cannot be included in the map, such as people 
walking in crowded corridors or in a waiting room. Likewise, it makes the costs of the branches 
more realistic because they represent the time needed to travel in the environment. 
In simulations and real experiments, results are generally better than using only the 
information on the obstacles stored in the global map, while the computational cost is 
significantly lower.  
In order to illustrate the above problem statement, Figure 1 shows a simple test carried out 
with a mobile robot system developed in our Lab (Diéguez et al., 1998). Two possible 
trajectories are available to arrive at point 4 from point 1. Initially, segments 1-3-4 are chosen 
by the path planning algorithm because this is the shortest path, but three static non-
modelled obstacles (grey boxes) found in the environment cause an increase in traveling 
time. Broken lines represent the actual trajectories followed to avoid the obstacles. Table 1 
summarizes the results of two experiments with the robot at a constant speed of 0.5 m/sec. 
These non-modeled obstacles caused an important increase in the time needed to follow 
segment 1-3. Our global path planner recognizes this kind of situation and, as a 
consequence, selects segments 1-2-3-4 in further path planner executions. 

 
Figure 1. Mobile robot real trajectories in an experience with non-modelled obstacles 
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 Segment 
lengths 

Estimated 
time  

Actual 
time 

Deviation 

Segments 1-2-3-4 7.82 m. 15.64 sec. 16.31 sec. 4.28 % 
Segments 1-3-4 6.11 m. 12.22 sec. 17.12 sec. 41.10 % 

Table 1. Experimental time measurement in actual trajectories 

We propose a different approach to dealing with global path planning in the presence of 
non-modelled obstacles that uses an aggregate time-cost function to find an optimal global 
path. The method uses traveling time and position measurements to calculate the time cost 
of each branch. We also propose a geometric method to modify the cost value, for each 
graph branch involved in the paths, to include the traveling time information.  
Although our approach does not eliminate the need for a local motion planner in our mobile 
robot navigation architecture (Diéguez et al., 2003), it enables incorporation of the time 
delay caused by non-modelled obstacles even in the situation where these obstacles cannot 
be included in the map (waiting rooms or crowded corridors). It makes the cost of the 
branches more realistic because the time necessary to travel in the environment is 
represented. In many real experiments, results are generally better than using only the 
information on the obstacles stored in the global map, while the computational cost is 
significantly lower. For this reason, our method is especially attractive for incorporating the 
effects of mobile obstacles to the planning process. 
The rest of the chapter is organized as follows: Section 3 presents the global path planning 
algorithm and briefly describes the skeleton (structure that represents the free space of the 
environment) building algorithm; the cost adaptation algorithm based on traveling time is 
outlined in Section 4; and some simulated results are given in Section 5. The evaluation of a 
real experiment with our mobile robot system is detailed in Section 6. Finally, some 
conclusions are given in Section 7. 

3. Global path planning algorithm     
The global path planning algorithm uses all currently available information about the static 
obstacles in a workspace to find the shortest path. In our approach, two different data 
structures were combined for this purpose: a cell map which containing prior knowledge of 
the workspace, and a path graph which is a topological representation of the free space. The 
cell map was created from a CAD map of the environment, whereas the path graph was 
created from the cell map using a wave front expansion algorithm generating a skeleton 
(Latombe, 1991). The skeleton is a connectivity network representing all possible routes in the 
free space and their intersections. The graph obtained this way allows two points anywhere 
in the workspace to be linked. The search for a feasible path is reduced to a graph search 
problem. In our method, both data structures were combined to accelerate the computation of 
the skeleton and to minimize search time for the optimum path. 
The path resulting from a simple concatenation of the branches selected by the global path 
planner is called the skeleton route (see Table 2 for a summary of definitions). This trajectory 
may contain undesirable bends and detours that are unsuitable for the path. For this reason, 
once the skeleton route is obtained, a segment route is generated removing these 
imperfections and converting the route into a sequence of straight segments. Each segment 
is then linked to its adjacent one using smooth curves. This smoother version of the segment 
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route is passed to the navigation module of the robot, in accordance with the model 
proposed in Diéguez et al. (1995). 

 Definition 

Skeleton Any type of connectivity network representing the free space (e. g. a 
Voronoi diagram) 

Node Intersections in the skeleton 
Branch A portion of the skeleton between two intersections (nodes) 
Optimum path Fastest path between two points in the skeleton 
Segment A straight line composed of any (optimal) trajectory  
Real trajectory Route actually traveled by the robot 
Segment threshold A distance limit to a segment to compute control points 
Control point Point of the real trajectory close to a segment path 

Table 2. Basic term definitions related to the global path planning algorithm 

The segment route is used in our approach to adapt the weighting factors for each branch of 
the skeleton route. These costs are calculated from accumulated statistics of traveling times 
while the robot is moving through the workspace along different routes. These statistics 
were used to make the weights associated with each branch of the skeleton route closer to 
reality. 
The method to calculate the optimum path consists of the following steps: 
Step 1: Creating the cell map. An internal representation based on a cell map is constructed 

from a map of the environment stored in an external file. 
Step 2: Building the skeleton of free space using an obstacle growth algorithm. A distance 

wave-front flows around the obstacles through all the free space in the 
environment. The skeleton is the set of cells where two or more wave-fronts meet 
(Latombe, 1991). The technique developed, unlike that used in similar algorithms, 
does not need to compute or store any values, making it possible to compute the 
skeleton rapidly and easily. 

Step 3: Constructing a graph. This graph is the topological representation of the previously 
calculated skeleton. We have chosen this data structure because it is best suited to 
perform searches. A graph branch is a series of points linking two places in the free 
space. A graph node represents a point where two or more branches meet. Two 
nodes can be connected by one or more branches. A branch cost is initially defined 
as the estimated elapsed time for a robot to move from one node to another. The 
location of a node is represented by its coordinates. The graph is pruned and this 
reduction is transposed to the skeleton, thus eliminating irrelevant branches. 

Step 4: Computing the optimum route using an exhaustive search algorithm on the graph. 
We implemented a breadth-first search strategy without repeating states (Russell & 
Norvig, 1995). Although in comparison with other non-informed methods this 
search strategy often requires a great amount of memory when working with 
cluttered environments, the memory problem does not arise in indoor structured 
environments due to the short number of generated states. 

The path thus computed in the skeleton is called the skeleton route. This path is shortened by 
linking points of maximum visibility in the skeleton route. This is the path used to evaluate 
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the traveling time function described in Section 4. The segments of the shortest path are then 
connected with arcs of circumferences and a velocity reference is assigned to each segment. 

 
Figure 2. Workspace with rooms and corridors, with skeleton (in grey) and segment route 
(thin line) 

Figure 2 shows a workspace describing the components used in our global path planner. 
The skeleton and the shortest path to arrive at the bottom right corner from the top left 
corner generated by the path planner are also depicted. 

3.1 Description of the skeleton building algorithm 
The algorithm developed to build the skeleton avoids the computation of potential field 
values and so dramatically reduces execution time. The algorithm iteratively grows all the 
obstacles (i.e. it thins the free space). The skeleton is the set of cells where these layers meet. 
This can be interpreted as a wave-front expansion, with each cell where two or more wave 
fronts meet set as a skeleton cell. 
For the implementation of this algorithm, we only need the cell map. Each layer (wave 
front) is generated by labeling the neighboring cells of the previous layer with a temporary 
value. Thus, the layers use alternate cell values, it being necessary only two different 
temporary values. Thus, the range of values necessary can be represented by a single byte 
for each cell. 
In order to generate each layer, a mask-based case identification method is used. This 
method functions on the basis of considering each cell and its eight immediate neighbors. 
The 3x3 resulting matrix is compared with the contents of a table with all possible cases to 
decide whether the central cell should be labeled as part of the layer or should be left empty. 
Only free (empty) cells are considered, so the 3x3 case can be represented by an 8-bit 
number (one bit for each cell surrounding the central one). This table only needs, therefore, 
to reflect 255 different cases. 
When no more of the empty cells of the map can be labeled (that is, it cannot be 
incorporated as part of a layer), the algorithm terminates. The remaining empty cells 
constitute the skeleton. Figure 3 shows two examples where the central cell must remain 
empty and another two cases where the central cell should be labeled as part of the current 
growing layer. 
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 F    F    G    G  

               

Figure 3. The first two cases must leave the central cell empty. In the other two situations, 
the central cell must be labeled as part of the current growing layer (G means “grow” and F 
means “free”) 

This algorithm is faster and uses less memory than the usual potential field-based wave 
front expansion methods. Moreover, the skeleton computed in such way is the most distant 
skeleton from the obstacles, leading to a lower probability of collision. 

4. A geometric method for branch weighting factor calculation   
This section describes the improvement incorporated in the global path planning algorithm 
in order to take into account statistical measurement of traveling time. The proposed 
method employs a geometric approach to modifying the weight of each branch according to 
the time spent by a robot navigating along the global path. The algorithm first maps each 
point of the actually performed route on the segment route. Each route segment is then 
associated with its corresponding branches and finally, the results are fused with the 
previous traveling time weights. 

4.1. Mapping a real route on the segment route 
Given a set of coordinate points actually performed by the mobile robot, a group of control 
points are selected. Control points are points common to both trajectories. Moreover, a 
coordinate point in the real route, which is close enough (a fixed distance threshold) to the 
segment path, can be regarded as a control point. Control points are employed as temporal 
references for traveling time assignment to the segments. 

 
Figure 4. Mapping two control points in the same segment 

Let us assume two consecutive control points (pi, pi+1) relating to the same segment whose 
length is lj (Figure 4). The traveling time between the points is ti, and si is a span over this 
segment, and it is assumed that their contribution to the traveling time of the segment is ti * 
si/lj. This means that the contribution to the segment traveling time is the time difference 
between both points weighted by the share of the segment spanned. Therefore, the final 
traveling time of a segment is the accumulation of all the contributions made by each pair of 
points related to the segment. 
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Figure 5. Mapping two control points in different segments 

When a pair of consecutive control points spans more than one segment (or even fractions of 
segments), a similar procedure is implemented (Figure 5). Let us denote again by si the span 
over the segment route. Considering as lj. the portion of the segment affected by the pair of 
points (note that lj differs from the total length only for the first and the last segments), it is 
assumed, once more, that the contribution to the traveling time of the segment j is ti * si / lj . 
In the case of the segment being totally subtended by the pair of control points, lj equals its 
total length. 
Thus, once all the contributions of the control points in the segment have been established, 
the traveling time weight for a segment j is calculated as: 

 Tj = (1/ lj )· Σi ti· si (1) 

where i ranges from 1 to the total number of control points in the segment. 
To summarize, the procedure for this stage is as follows: 

i. Find the corresponding segment for each control point and the related information 
(distance, etc). 

ii. Remove the control points further than a threshold from its corresponding segment. 
iii. Remove all the control points corresponding to the same end of the segment, except 

for the first and last control points. 
iv. Remove intermediate control points until only two control points in each segment 

remain. 
v. Compute and assign the traveling time weighting for each segment. 

4.2. Mapping segment route on branch route 
The aim of the second phase of the algorithm is to transfer the segment traveling time to the 
branches of the graph that make up the skeleton route. 
We only consider the control points that are the ends of segments (except for the first and 
the last one) because they are common points for both routes. Let us denote by sj the span of 
the segment on the skeleton route. The velocity vi for the segment j is defined as Sj/Tj ; and 
Ti is its traveling time weight. Thus, the traveling time weight for each branch is the 
accumulation of the weighted contributions of each segment related to this branch. Calling 
lij the portion of the branch i subtended by segment j, the increase of traveling time for the 
branch due to the segment is vj* lij. The total time weight for a branch j is: 

 Wj = Σi Ti* Si (2) 
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where i ranges from 1 to the total number of segments related to the branch j. 

4.3. Fusion of costs 
The weighting factors so far computed for each branch of the skeleton route are fused with 
the previously existing values using the following formula: 
Wi = α(c) W0 + (1 - α(c)) Wi-1 (3) 
The confidence measure (c) is a function of the confidences computed in the two previous 
phases. The factor α(c) has a value between 0 and 1, and takes into account deviation of the 
new traveling time from the existing one. The cost of each branch is calculated as a weighted 
sum of the costs calculated so far and a constant that is a function of the length of the 
branch. This approach makes the final value more stable. 

5. Simulation results 
This section presents the behavior of the described technique in a series of simulations. 
Figure 6 depicts the simulation environment perceived by the sensors of our robot. This map 
corresponds to a real environment in the Santiago de Compostela Conference Center (Spain) 
(Fernández et al., 2008), with corridors, rooms, lobbies and stands.  

 
Figure 6. Environment used for the simulation 
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 Branch sequence 
Skeleton 

route 
time 

Estimated 
path time 

Simulated 
path time 

Deviation: 
estimated vs. 

simulated 
path time 

Trajectory A 1→8→9→10→11→13 107.44 78.55 86.02 6.9% 

Trajectory B 1→2→7→13 86.22 67.32 95.94 33.2% 

Trajectory C 1→2→3→4→5→6→13 100.97 81.41 112.81 31.1% 

Table 3. Estimated and simulated times (in seconds) for three alternative routes between the 
start and the goal 

Figure 7 shows the initial position as a circle on the left, and the destination as a circle on the 
right. In order to reach the goal, the robot has three candidate routes, summarized in Table 
3. 

 
Figure 7. Simulation: skeleton of the environment, branch labels, and start and destination 
points for the route 

 Skeleton 
time (sec.)

Simulated 
time (sec.)

Deviation: 
theoretical vs. 
simulated time 

branch #1 17.73 16.73 5.6% 

branch #2 16.30 11.94 26.8% 

branch #7 33.02 51.99 -57.5% 

Table 4. Weighting factor values for the simulated experiments 

A series of tests simulating navigation by the robot in the presence of non-modeled obstacles 
was carried out by performing the three trajectories summarized in Table 3 and depicted in 
Figure 8. Each skeleton route was transformed into a segment route (straight segments) 
actually fed to the robot, as can be also seen in Figure 8. However branches 6 and 7 are 
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located in narrow and busy corridors that slow down the robot run. This situation is 
numerically shown in Table 4. The delays are caused by both static and dynamic obstacles. 
The static obstacles make the robot step aside from the desired path, and the dynamic ones 
make the robot slow down or even stop until the obstacle (e.g. a person or another robot) 
has passed. In this case, there is no deviation from the segment route but, even so, a 
significant time delay is caused. 

 
Figure 8. Skeleton and three possible segment routes 
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Figure 9. Branch weight convergence with different fusion ratios 

After several simulations it becomes clear that the deviation from the initial cost differs 
depending on the branch under consideration (see Table 4). The initial weight is a function 
of the length of the branch. It must be pointed out that a constant speed along the whole 
trajectory was used in all the simulated experiments.  
In order to study the relationship between fusion coefficient and branch weight 
convergence, several fusion ratios were used. The results can be seen in Figure 9. As 
expected, conservative fusion coefficients lead to slower and smoother convergence curves. 
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Based on this weight information, the global path planner updates the costs of the involved 
branches. Further executions of the global path planner choose trajectory A instead B or C, 
thus avoiding the aforementioned narrow, crowded corridors.  

6. Experimental results with a real robot 
In this section we summarize the results of a series of real-time experiments carried out with 
our mobile robot in the School of Engineering in the University of Vigo. The robot (called 
Rato) used in these experiments is based on a modified B21 RWI platform. It is equipped 
with a ring of 24 sonar proximity sensors and 24 bumpers on the enclosure connected with 
four CAN slave modules that are attached to the computer through a CAN-USB adapter 
card. The robot is also equipped with a SICK PLS 200 laser range finder. This sensor 
measures the distance to obstacles in the vicinity of the robot. 
A layered software architecture is used, consisting of task scheduling, path planning, 
navigation, and obstacle avoidance components, each of which relies on the abstraction 
provided by the previous level. The robot architecture is implemented as a collection of 
asynchronous processes. IPC (Inter Process Communication), developed at Carnegie 
Mellon's Robotics Institute, is used to integrate the system and interprocess communication 
(Simmons, 1994). The global path planning method described here is included in this 
hierarchical navigation architecture (Figure 10). This navigation system combines a reactive 
part (BEAM module) with a deliberative one represented by the navigator and task planner 
modules. The advantages of both systems are thus obtained; a quick response to events that 
require it, and the effectiveness of the deliberative systems, as actions are regulated by 
references obtained by planning. 
The tasks requested by the user are handled by the task planner that determines the places 
to visit and the order in which to do so. As long as there are tasks to be completed, this 
module is in charge of the selection of new destinations as the previous destinations are 
reached. 
The goal point and the estimated position are used by the path planning module 
(Navigator) to determine how to travel efficiently from one location to another.  
The reactive system will follow this direction avoiding any obstacles that appear. The 
information obtained from the sensors is integrated into a grid that represents the robot's 
environment. This grid is used by the localization module to estimate position. 
Each module in Figure 10 is a Linux process that exchanges information with other modules 
using IPC, which provides a publication-subscription model. Each application registers with 
the the central server and specifies what types of messages it publishes and what types it 
listens for. Any message passed to the central server is immediately copied to all other 
subscribed processes. 
The dynamic path planning algorithm outlined earlier is implemented as a single process. 
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Figure 10. Graphical representation of the navigation architecture 

 
Figure 11. Environment of the experiment with the free space graph 

Figure 11 shows the section of the environment (as perceived by the robot) which basically 
comprises offices, laboratories and corridors. 
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Figure 12. Branch labels, start point (black circle on the left) and destination (grey circle on 
the right) 

Branches  
(route 1) 

A priori cost
Real cost 

(measured)
New cost after fusion 

(fusion α = 0.8) 

a 7.4 14.8 13.3 

b 5.4 10.8 9.7 

c 9.8 19.7 17.7 

d 8.3 16.7 15.1 

e 1.0 2.0 1.8 

f 4.9 9.8 8.9 

g 5.9 11.8 10.6 

h 5.9 11.8 10.6 

i 3.9 7.9 7.1 

j (incomplete) 11.8 23.6 21.3 

Total path cost 64.2 129.0 116.0 

Table 5. Initial, measured and fused branch weights for route 1 

The results under analysis come from different performances of the same global trajectory. 
The area of interest, along with the start and destination points (circles on the left and the 
right, respectively), are shown in Figure 12. To reach the goal from the initial point, two 
routes can be used: route 1, through corridor A, and route 2, through corridors B and C. The 
initial weights of the branches are computed from their lengths as the estimated time to 
travel them. These cost values are computed assuming a constant speed along the whole 
trajectory. 
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Thus, the initial time cost for route 1 is 64.2 seconds and 97.0 seconds for route 2. The 
experiments run without people in the environment led to 68.7 seconds to complete route 1 
and 107.1 seconds to complete route 2. 
Under normal conditions, corridor A is full of people (i. e. moving obstacles), causing a 
significant increase in the time it takes for the robot to traverse it. Thus, the average time 
needed to complete route 1 is 129.0 seconds, while for route 2 it takes 116.0 seconds, which is 
much closer to the a priori forecasted time. 
The fusion of the previous and the new weights is shown in Tables 5 and 6. It can be seen 
that the final costs of the crowded branches increase. The consequence is that further 
planning tasks will choose route 2 over route 1 (116.3 seconds for route 1 vs. 112.6 seconds 
for route 2). 

Branches 
(route 2) 

a-priori cost 
(in secs.) 

real cost 
(measured)

New cost after 
fusion 

(fusion α = 0.8) 

a 7.4 8.8 8.5 

b 5.4 6.4 6.2 

k 26.0 31.1 30.0 

l 49.0 58.6 56.7 

j 
(incomplete) 9.3 11.1 10.8 

Total path 
cost 97.0 116.0 112.2 

Table 6. Initial, measured and fused branch weights for route 2 

In order to limit the influence of rare situations, a conservative fusion strategy is used in 
practice (see Figure 13). The progression of the fusion result for route 2 is shown in Table 7 
using two different fusion ratios: conservative (20% - 80%) and sharp (75%-25%). 
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Figure 13. Graphical comparison between conservative and sharp cost fusion for route 2 
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Route execution #1 #2 #3 #4 #5 #6 #7 #8 #9 

Execution time (sec.) 129.0 135.2 117.4 133.9 132.1 128.7 116.1 133.2 119.5 

Cost after fusion (α=20) 77.2 88.8 94.5 102.4 108.3 112.4 113.1 117.1 117.6 

Cost after fusion (α=75) 112.8 120.7 110.2 124.0 124.7 123.6 115.2 128.2 118.9 

Table 7. Numerical comparison between conservative and sharp cost fusion for route 2 

7. Conclusions and future work 
In this chapter we described a method to improve the best trajectory search for mobile robot 
path planning in structured environments with non-modelled obstacles. Our approach uses 
the experience of performed trajectories without a need to transpose information on 
unknown obstacles to the map for global path planning. 
In the proposed algorithm, the weighting factors of the skeleton branches involved in the 
path are modified as a function of the traveling time. These weights are good estimators of 
the branch costs when the robot is moving in the presence of unknown obstacles. 
Our method is especially attractive in terms of incorporating the effects of the presence of 
moving obstacles in the environment (for example, corridors crowded with people) in the 
planning process, since this obstacle information cannot be included in a map. Our 
approach does not eliminate the need for a local planner and its local map in our mobile 
robot architecture, but it reduces the number of times they will be used. 
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1. Introduction 
Classical approaches to environment modelling of mobile robots consist of geometrical 
space reconstruction using measurements from robot sensors. This approach could be error-
prone due to noise and inaccuracy of the sensors. However, in order to perform path-
planning, a mobile robot still requires some kind of representation or world-model, as 
pointed out in (Tani, 1996) and (Mataric, 1992). 
The alternative approach consists of topological modelling of the environment. It leads to a 
simpler description of the environment, but still preserving essential information. Provided 
that a type of low-level behaviour is provided, a topological map of the space suffices to the 
robot to distinguish among qualitative distinct behaviours. A model of the world may be 
built therefore on top of the reactive behavior. This corresponds to topological navigation. A 
topological map of the space is usually in the form of a graph or a finite state machine 
(FSM). The states are typically distinctive places in the space, also called landmarks. At each 
node, there is a decision to be made as to where to proceed.  
It was argued (Brooks, 1991) that for truly intelligent agents the type of representation must 
not be a designer's choice, because the abstraction is the key part of the intelligence. Human 
designers tend to decompose the problem to the blocks-world, i.e., they do all the 
abstraction and leave a supposedly intelligent agent merely to search in this simplified 
world. Behavior-based robotics (Brooks, 1991) consequently emerged as a paradigm, 
emphasizing direct embodiment of a robot in a surrounding environment, taking as the 
basic level a direct state-action mapping or reactive behavior that enables the robot to 
perform basic tasks in the real world. Further levels are to be built incrementally upon the 
basic level, but always having in mind strong coupling between the robot and the 
environment. In (Mahadevan & Connell, 1992), one of the first successful applications of 
reinforcement learning to a behavior-based robot is described. 
Basic skills of a robot include obstacle avoidance and approaching a goal. While the obstacle 
avoidance skill is a reactive-type behaviour, i.e., it requires no memory, approaching a goal 
usually requires some knowledge about the environment. Unless the goal is observed at a 
given moment, the robot must have a model of the space.  
The symbolic approach is simple, but also has a major drawback, namely, input symbols to 
the finite state machine may occasionally be overlooked or even illegal. Whenever an error 
occurs (due to sensor noise, for example), this symbolical representation can consequently 
break down. 
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(Tani, 1996) applied recurrent neural networks to model the environment. A robot with 
range sensors advances reactively according to the maximum of the smoothed range profile. 
When multiple maxima appear, it decides where to proceed (this is a graph node). This 
approach avoids a serious drawback of the methods that require localization and the 
position of the robot in global coordinates. The robot does not have to perform localization, 
since the position is implicitly contained within the current state information in the 
recurrent neural network (RNN). (Tani, 1996) showed that the robot, whenever it is lost, gets 
“situated” again, i.e., it eventually restores the correct state information (context). On the 
other hand, a RNN tolerates a certain amount of errors, thus overcoming the FSM approach. 
The approach to handle independently low-level or reactive behavior and higher-level or 
planning behavior has become common in mobile robotics. The key difference between the 
two is the usage of memory and different granularity. Reactive behavior (Mahadevan & 
Connell, 1992, Krose & van Dam, 1992a, Krose & van Dam, 1992b) is responsible for reacting 
to current sensory information with appropriate action or motor-control. It requires no 
memory, therefore a purely feed-forward scheme can be applied. The first concern is always 
to avoid collisions with obstacles and thereby to prevent the damage on the robot. Other 
goals typically include approaching objects, maximizing the length of the path, etc.  
The higher-level or planning behavior (Tani & Nolfi, 1999) may be therefore manipulated 
either by a FSM or using a model such as RNN, capable of modeling FSMs. The 
environment as experienced by a moving robot is treated as a dynamical system. Simple 
types of reactive behavior are supplemented with eventual decisions to switch among them. 
Switching criteria in fact define states of the FSM. Since it is embedded in the environment 
and dependent on the sensory flow of the robot, the notion of Embedded flow state machine 
(EFSM) has been introduced (Ster & Dobnikar, 2006). It is a FSM-like model, embedded in 
the environment and symbolically representing the sensory flow experienced by the robot 
when acting according to a certain type of reactive behavior and making decisions in those 
situations that satisfy certain pre-specified conditions or switching criteria. 
An EFSM can be implemented with a RNN which is trained on a sequence of sensory 
contents and actions and subsequently used for planning. The EFSM is applicable to multi-
step prediction of sensory information and the travelled distances between decision points, 
given a sequence of decisions at decision points. One of the main virtues of this approach is 
that no explicit localization is required, since the recurrent neural network holds the state 
implicitly. An important issue regards the ability of this approach to reliably predict the 
sensors and the traversed distance enough steps ahead. 
This chapter is basically divided into two parts. The first considers learning of appropriate 
reactive or low-level behavior. This does not mean that a low-level behavior cannot be 
deterministically programmed, however, but learning is potentially more flexible, due to 
possible changes in the environment. The second part considers the planning behavior by 
building an implicit model of the environment using RNNs. 

2. Learning Reactive Behaviour of a Mobile Robot 
We describe an application of the reinforcement learning paradigm to learning reactive 
behaviour of a simulated mobile robot, equipped with proximity sensors and video color 
information.  The value function is approximated using radial-basis functions, which are 
adaptively allocated in the input space. The presented approach combines multiple goals in 
reinforcement learning using modularity.  
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2.1 Q-learning in continuous space 
Q-learning (Watkins & Dayan, 1992) is a variant of reinforcement learning which is 
appropriate for systems with unknown dynamics. A model of the system is built implicitly 
during learning. Q-learning is proved to converge only for discrete systems. For continuous 
systems it usually works by choosing an appropriate approximation architecture, which 
may be task-dependent. The update equation is 

 ( ) ( ) ( ) ( )⎥⎦
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where s is state, a is action, η is learning step, and γ is discount factor. In our case the state 
space is continuous, while the action space is discrete and consists of three actions: turn left, 
forward and turn right. It must be emphasized, that our system is actually not a Markov 
decision process, since the sensors do not provide the complete state information. 
As a function approximator, the radial-basis function (RBF) neural network is used. As a 
local-basis function, the Gaussian is taken. Its activation on input xt ∈ Rn is 
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where n is the joint dimension of the sensory space, ci ∈ Rn is the center and Mi is the scaling 
matrix of the Gaussian. The basis functions are normalized as 
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which causes the approximator to be a kind of look-up table with soft transitions. The Q-
values are represented as 

 ( ) ( )∑ ==
i
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(Samejima & Omori, 1999) proposed adaptive state space construction method, arguing that 
methods using look-up tables suffer from the curse of dimensionality, while when using 
global-basis functions the convergence can suffer. Their adaptive basis division algorithm 
reportedly solved the collision avoidance problem using a smaller number of basis 
functions. 
A similar method called Adaptive basis addition with fixed size basis (ABA-F) (Samejima & 
Omori, 1999, Anderson, 1993) is applied. It incrementally allocates basis functions in the 
observation space. A new basis function is allocated when the TD error exceeds a threshold 
value, εTD > θe, and there is no basis function near the present location in the observation 
space, φi(xt) < θa, i = 1, …, n. Otherwise, the output weights are updated: 

 ( ) ( ) ( )[ ] ( ) ,,...,1,,,min 1'1 nixbaxQaxQxgw tittattai =−+=Δ ++ γη  (5) 

where a is the selected action. During learning actions are selected randomly (exploration 
phase), while later (exploitation phase) the action with the minimal Q value is chosen at any 
given moment. 
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2.2 Reactive behavior with modular reinforcement learning 
Various modular approaches have been proposed (Karlsson, 1997, Uchibe et al., 1996, 
Kalmar et al., 1998). In our work, two reactive or low-level modules were defined: the 
collision-avoidance module (named module C) and the object-approach module (named 
module A). For each module the activation is defined as a measure of how much a current 
sensory information has to do with the module. In our case the activation of the module C is 
1 everywhere, where proximity sensors (ps) are activated, i.e., where obstacles are near the 
robot, and 0.01 otherwise (in order to prevent the activations of both modules to be zero). 
The module A is disactivated everywhere, where the red color (from “color sensors” cs – 
this is not a video camera) is not sufficiently observed, ∑ =

<NC

i ics
1

1.0 . Otherwise, actA is 

proportional to the above sum. To bring the robot nearer to biological organisms, a function 
called weariness (wr) was defined. 
We know that living beings are naturally interested in exploring the surrounding world. 
They are especially drawn to “interesting” objects or phenomena, i.e., those with higher 
levels of sensorial activation. The (colored) object approach module reflects this natural 
curiosity. The reward the robot gets in the vicinity of a colored object, corresponds to the 
pleasure of a person satisfying its curiosity. The weariness function models eventual 
diminishing of curiosity, due to the so-called stimulus satiation. Ster (2004) describes these 
phenomena using various theories of motivation from psychology. 
The robot, therefore, while wandering around, approaches colored objects, but leaves them 
after a certain period, since it gets weary. When its weariness reaches a certain plateau, its 
activation (or motivation) decreases quite rapidly. Consequently, the collision avoidance 
module overcomes and takes the robot away from the object. Of course, the weariness effect 
requires memory, i.e., module A cannot remain purely reactive. The weariness is modeled as 

 ( ) ∑
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and the activation is a descending function of wr, e.g. 
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We chose ε = 0.1, P1 = 2, and P2 = 3. These values depend on particular activations. How to 
define them, is probably not an easy issue. 
The two modules are combined in the following manner 

 ( ) ( ) ( )asQactasQactasQ aAcC ,,, +=  (8) 

During exploration each module learns independently its action-value function Q. The 
activations are not used at this stage. In the exploitation phase greedy actions are chosen 
w.r.t. Q, the joint Q-values. However, a modular architecture is not meant to be capable in 
principle of achieving better solutions than a monolithic one. The actual reason for 
modularity is merely to facilitate learning. Simpler networks escape local minima easier 
than larger monolithic networks. The drawback is that a modular architecture may yield 
sub-optimal solutions, when modules are not chosen appropriately. 
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Figure 1. A test path in the environment E1, 500 steps long. The numbers indicate time 

2.3 Experiments 
The method was tested in two environments, E1 (Fig. 1) and E2 (Fig. 2). The learning 
(exploration) period lasted 5500 time steps. There was no attempt to minimize this number. 
In the learning period the robot selected random actions between three available actions: 
turn left by 0.5 rad (≈ 28.6°), forward by five units, and turn left by 0.5 rad. The actions 
correspond to the motor commands for the left and the right wheel: left (dl = -5, dr = 5), 
forward (dl = 5, dr = 5), and right (dl = 5, dr = -5). Since the radius of the robot was 10 units, 
angle=arc/radius=5/10 = 0.5 rad. The testing period was 500 steps long. 
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Figure 2. A test path in the environment E2, 500 steps long. Red objects are shaded, others 
(“pure” obstacles) are empty 

The robot is assumed to have eight proximity sensors at angles 90, 45, 0, 0, -45, -90, -180, and 
-180, similar to the well-known miniature robot Khepera (Mondada et al., 1993). The 
nonlinear function of the sensors were approximated by a piecewise linear function 
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where ps is the proximity sensor activation and d is the distance. 
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The color information was extracted from 24 range sensors covering a 160° arc in front of the 
robot, yielding the “intersensorial” angle of about 7°. Each range sensor returns a color, 
specified in the environment file. In the presented environments a color was either default 
(grey) or red. This information was compressed into 8 values, each one covering three 
adjacent range sensors in the following manner: ∑ =

= 3

1

1
3
25

i
id

cs . 

Parameters of the ABA-F method were: σ = 0.5, θe = 0.02, θa = 0.1. The discount factor γ was 
0.85. Each collision was penalized by g = 1 and each turn action by g = 0.1. Seeing the red 
color was rewarded by a negative penalty ( )∑ =

−−−= 8

1
4/1

i i iicsg , where <.> denotes the 

mean operator. The second term (in brackets) was added in order to reward the side color 
sensors less than the frontal color sensors. 
We show here merely the results of the test run on E2 (for E1 see Ster (2003)), which show Q-
values on 200 (out of 500) steps (Qc in Fig. 3, Qa in Fig. 4, and Q in Fig. 5). The actions are 
labeled as 0 for left, 1 for forward, and 2 for right. It can be seen that the Q-function of the 
two turn actions is at least 0.1 (mostly about 0.1), because the “turn penalty” was 0.1. The Q-
values for forward action, Q(s,1), can be lower in an open space, but reach high values in the 
vicinity of obstacles (note that the colored object is also an obstacle besides being an object of 
interest), see steps around 90 and 200. At the same points a reward (g < 0) was delivered 
because of the colored object.  
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Figure 3. The Q-values of module C over 200 testing steps in E2 
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Figure 4. The Q-values of module A over 200 testing steps in E2 
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Figure 5. The joint Q-values over 200 testing steps in E2 

3. Navigation of a Mobile Robot with Recurrent Neural Networks 
When the robot moves according to a specified reactive behavior, a graph node may be 
implied according to fulfillment of a specified condition, based on sensory contents. This 
means that a topological graph may be defined implicitly by given switching criteria. In the 
exploratory or training phase, a random binary action is chosen at such branching point. In 
our case, one type of action will always be connected with the wall (action 0: follow the wall 
or return to the wall), and the other will be connected to colored objects in the environment 
(action 1: approach the object or look for another object). In case of different reactive 
behavior, of course, actions should be defined appropriately. 
The Embedded flow state machine (EFSM) describes the dynamics of this process more 
accurately. The purpose of the EFSM is to represent a higher-level model of the sensory flow of a 
moving robot in an environment. The Embedded flow state machine may be formally defined as 

 { }21,,,,,, λλδDACSEFSM =  (10) 

where S is a vector space [0,1]Ns of the preprocessed sensory information, C is the context 
vector space [0,1]Nc, A is a finite non-empty set of possible decisions, and D is the unit 
interval [0,1], representing normalized distance travelled from the previous to the current 
decision point. Ns is dimensionality of the preprocessed sensory information and Nc is 
dimensionality of the context space (number of context units, as will be seen later). 
Functions δ, λ1 and λ2 provide the context, the sensors, and the travelled distance at the next 
decision point. From the context vector ct ∈ C, the sensory vector st ∈ S, the distance dt-1,t ∈ 
D, and the decision at ∈ A, all at time t, the next values are predicted: 
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Of course, the equalities strictly hold only in the case of perfect prediction. The distance is 
metric information in this otherwise topological approach. It enables optimization of the 
predicted path in the planning phase. The preprocessed sensory information st stems, in our 
case, solely from a video camera. 
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3.1 Recurrent Neural Networks 
It was shown that finite-state automata can be represented by recurrent neural networks. 
There has been a lot of effort to induce FSMs for regular languages with RNNs on the basis 
of shown examples (Cleeremans et al., 1989, Gabrijel & Dobnikar, 2003).  
One of the classic algorithms for training recurrent neural networks (RNN) (Haykin, 1994) is 
described in (Williams & Zipser, 1989). The algorithm is gradient following and is applicable 
for fully connected RNNs, i.e., each unit (neuron) has a feedback connection to each unit in 
the network, see Fig. 6. The outputs of certain units represent outputs of the network, while 
the other units are called context-units, because they provide information relevant to 
sequence-processing problems. 

 
Figure 6. Fully connected recurrent neural network (left) and recurrent neural network with 
a hidden layer (right) 

Inputs to the network are fed to each unit. Thus RNN can be trained to simulate any 
dynamical system, at least conceptually. The batch variant of the algorithm requires a 
sequence of input vectors x(t) and output vectors y(t) for t = 1, ..., N, where N is the length of 
the sequence. RNN is trained to produce the sequence of the desired outputs, if fed with the 
input sequence. A caution must be exercised while training the network; namely, when 
RNN is trained to produce desired outputs at each cycle, the functional ability of the 
network is restricted to a single perceptron layer, that is a linear transformation plus 
sigmoid activation function. To increase the functional ability of the network, inputs and 
outputs may change after two or more cycles of the network processing. Another possibility 
is, however, to apply a recurrent neural network with a hidden layer, which increases the 
functional ability of the network (Fig. 6 right). It is known that the 2-layer perceptron is a 
universal approximator (Hornik et al., 1989). The modified gradient-based algorithm is 
described in (Ster & Dobnikar, 2006). 

3.2 Building an Internal Map of the Environment 
The miniature robot Khepera (Mondada et al., 1993), see Fig. 7, with an additional video 
color camera was applied. Sensory information consists of infrared proximity sensors, 
wheel-encoders and processed image from a video camera. The task was considerably 
simplified using the camera solely for detection of colored objects (red, green and blue in 
this case). The robot is equipped with eight proximity sensors with a nonlinear activation 
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function, which can be approximated by a piecewise-linear one, as shown in Fig. 8. The 
robot is able to perform three distinct actions: turn left, move forward, and turn right (by a 
small angle). 
A video image was thresholded to extract the intensities of red, green and blue colour, 
which subsequently form the sensory vector.  Two images at resolution 80x60, seen by the 
robot before the thresholding operation, are shown in Fig. 9. They correspond to branching 
points or EFSM states with the sensory outputs "Green reached" and "Red observed", 
respectively. 

 
Figure 7. Mobile robot Khepera with an on-board video camera 
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Figure 8. Proximity sensors of mobile robot Khepera 

It should be mentioned here that these labels do not actually represent states, but rather the 
outputs of a finite-state machine, which describes the environmental dynamics. Actual states 
are really not directly accessible via sensors. For example, the same object may be perceived 
from different viewpoints and thus the state is different, despite identical or very similar 
sensorial outputs. Another possibility would be the existence of two identical or very similar 
objects at different spots in the environment. The corresponding states are different, too. 
The low-level or reactive behaviour of the robot consists of following the right wall using 
information from proximity sensors. The low-level behaviour is deterministic and rather 
short to program manually, but a little longer to find experimentally. It turned out that the 
following portion of the low-level program (written in C language) leads to very efficient 
right-wall following: 
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Figure 9. Left: sensory output "Green reached" close to the green object, as seen by the robot. 
Right: sensory output "Red observed", where the red object is observed, as seen by the robot 
(resolution 80x60) 

 
The h represents the speed and proxSen[0..7] is the vector of proximity sensors. Another 
possibility is to learn a reactive behavior by applying reinforcement learning, as described in 
the previous section.  
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Figure 10. Decision or branching points. 

The robot advances following the wall until it observes a colored object. There is a certain, 
experimentally determined threshold for each colour to signify the observation of an object 
(about 100 pixels), as well as vicinity of the object (about 600 pixels). When the robot 
observes a colored object, it has to decide whether to still follow the wall or to approach the 
object. This situation is called branching point. In the vicinity of a colored object, the decision 
is to approach another colored object or to find the wall (Fig. 10). 
Looking for another object, the robot turns left until another object is observed with a specified 
threshold. It subsequently approaches the object. Looking for the wall, the robot turns right for 
approximately 90 degrees, and from then on follows Breitenberg's algorithm for low-level 
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behaviour, which is basically forward-motion, avoiding obstacles. The wheels' velocities are 
linear functions of the proximity sensors plus an offset term (Breitenberg, 1984). 
In this way the whole environment can be represented as an EFSM. EFSMs corresponding to 
typical indoor environments are usually relatively simple (not many branching points). 
Therefore, in practical cases RNNs should not have problems learning the corresponding 
EFSMs. Of course, a complex maze would also produce a complex EFSM. 

3.3 Experiments 
During training the robot traveled around using random decisions at branching points. The 
whole path included 101 branching points. An automatic preprocessing, which dealt with 
situations, where the robot observed the same object again after a short period of time, was 
done. Thus the path with 87 branching points remained. A small part of the path is shown in 
Fig. 11. At the first branching point from the start the robot observes object 1 (red). 
Therefore, the starting sensory output is "Red observed", while the state of the EFSM might 
be referred to as “1 observed from the west” or O1w (Fig. 12). The training trajectory can be 
represented as a motor-program describing the action sequence. The vectors, extracted from 
images, represent the outputs of the EFSM. The outputs do not exactly correspond to the 
states, so there is not a one-to-one mapping from the states to the outputs. Images at distinct 
places may look the same, so there is an obvious need to have internal states, i.e., memory. 

 
Figure 11. The path of the robot during training 

RNN was trained off-line on the sensory-motor sequence for 5000 iterations (RNNs typically 
require large number of iterations). At each iteration the weights were updated following 
the gradient of the mean-squared error (MSE) on the whole training set ("batch" variant). 
The input vector consists of the current sensory vector (red, green and blue intensities), the 
distance from the previous to the current branching point, and the current decision (action). 
Given an input vector, a trained RNN predicts the next sensory vector and distance to the 
next branching point, which can be used in turn as the input at the next branching point, 
and so on. Given a motor sequence, RNN can thus predict the sensory flow of the EFSM. 
We were interested how many steps ahead RNN was able to predict the sensory flow good 
enough in a closed-loop (multistep prediction). Prediction of the RNN was tested applying 
all possible motor programs five steps (branching points) ahead, i.e., 25 = 32 programs: 
00000, 00001, 00010, ..., 11111. Prediction error on the testing set showed that the first four 
predictions are very accurate, while the fifth is a little less reliable. MSE amounted on 
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average from 0.01 to 0.02 on the training set and from 0.01 to 0.25 (RMSE from 0.1 to 0.5) on 
the testing set. However, a few steps correspond to the whole environment, and besides, 
there was no effort to optimize training of the RNN.  
The sense of forward-modeling of the environment is applying it in "mental" planning. The 
term "navigation" stands for finding the (shortest) path to a specified point. For example, we 
would like to find the shortest path from beginning to the green object. It is obvious from Fig. 
13, that using the program 1-1-1 is the best way to do it. This corresponds to decisions: 
‘Approach red’, ‘Find another’ (blue), ‘Find another’ (green). We need to perform a closed-loop 
simulation of all the motor programs, searching for the matching object, specified as the goal, 
and finding the least costly path to it. One possibility is proposed also in Tani (1996). 

4. Conclusion 
The first part of this chapter shows that using reinforcement learning with a modular 
architecture a mobile robot can learn to wander "sensibly", merely by applying known 
psychological concepts as sources of reinforcement. It is motivated by distinguishing objects 
in the environment, unmotivated by weariness, while at the same time avoiding collisions 
with obstacles and trying to maintain its course. Another possibility is to design 
reinforcement signals according to specific requirements. 
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Figure 12. The EFSM, embedded in its environment. There are three landmark objects: 1 
(red), 2 (green) and 3 (blue). EFSM states are denoted by circles and labelled as Oi (for 'object 
i observed') and Ri (for 'object i reached') with additional subscript letters signifying 
directions, e.g. state R2e signifies 'object 2 reached from the East' 

The second part of the chapter shows how recurrent neural networks can be applied to build 
the internal map of the environment in a simple robot navigation task. The robot is able to 
induce the EFSM of a simple environment in the form of RNN and to use it for further 
planning. Because of the simplicity of the environment in the given task, the robot has to 
predict sensory flow for very short motor-programs, and it does it successfully. Further 
work should reveal how this behaviour scales up to larger problems and more realistic 
sensors, i.e., where a lower level of abstraction of sensory information is provided. Also 
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more reliable and possibly on-line training is required. The ultimate goal would be no 
human-designed representation, which seems to be still a very complex task. 
There is a question whether a RNN is able to induce a finite-state automaton only on the 
basis of a limited number of training examples. It is obvious that the network can be trained 
(fitted) to a particular sequence, but it is not clear whether the complete structure of an 
automaton can be induced. This is not a question of functional ability, since a RNN can 
simulate any FSM, in principle. 
There are two possible types of overtraining or overfitting here. Firstly, due to too many 
hidden neurons (standard overfitting in static neural networks), and secondly, due to too 
many context neurons. The latter might be called "dynamic overfitting", namely, the RNN 
uses its context units to "invent" a kind of context to lower the prediction error on the 
particular training sequence, especially when the latter is short. This problem would 
possibly be avoided with an on-line training, long enough to resolve uncertainties. For 
example, when turning to the left near the red object and looking for another object, the 
robot may overlook the blue object. The cause would be probably the video camera. In the 
training sequence there were four occurences of the red object followed by the action "1", i.e., 
looking for another object (after turning to the left.) Three times the robot observed blue and 
once green. In the latter case it overlooked blue, unfortunately. In case of larger sensor errors 
a training sequence should be much longer in order to reliably "collect statistics". 
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Figure 13. A half of the tree, representing motor programs of the length five. Only the programs, 
beginning with 1, are shown. At each arc the motor command (0 or 1) and the distance are 
written. Unclear predictions are labeled with E. Sensory outputs are Ro: red observed, R: red 
reached, Go: green observed, G: green reached, Bo: blue observed, B: blue reached 
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1. Introduction 
The research in environmental robotics, ubiquitous robotics, and network robots aim to 
create intelligent environments for providing various services by gathering, managing, and 
supplying information via distributed communication, sensing, and actuation. Various 
applications of such robotic systems have been proposed and studied, e.g. life support (Sato 
et al., 1996), environmental monitoring and information management (Parker et al., 2003; 
Low, 2004; Tang, 2004), task assignment (Batalin & Sukhtame, 2003), and rescue operation 
(Kurabayashi et al., 2001; Tadokoro et al., 2003; Miyama et al., 2003). These applications 
employ various navigation methods addressed in numerous publications (Borenstein et al., 
1996; Arai et al., 1996b; Li et al., 2003; Parker et al., 2003; Nakamura et al.; 2003).  
This chapter introduces a cooperative navigation method for multiple mobile robots 
operating in indoor environments, as an example of our research work in intelligent 
environmental robotic systems. The method relies on the information management about 
the environment, namely, static global information and local information. The former is 
represented by a topological map (Mataric, 1992) that displays the positional relation from 
any starting point to any goal point and is relevant for planning a route. The latter contains 
a map of the local environment and the traffic information for dynamic navigation.  
The proposed navigation method makes use of an Information Assistant (IA) – a 
communication device embedded into the environment. The IA updates and manages 
information about the local environment and communicates with the robots. The navigation 
also relies on an Optical Pointer (OP) to guide robots at intersections by means of projecting 
a laser light onto the ground. The OP communicates with the robot via the IA, when 
indicating target positions to the robot. The mobile robot detects a laser beacon on the 
ground by means of image processing and moves towards the beacon. When the robot 
reaches the proximity of the beacon, the next sub-goal is indicated, and the laser beacons 
lead the robot along the route. The IA and OP devices assist the robot to navigate in the 
environment, which can be unknown to the robot.    
In contrast with other navigation methods, where the robot attempts to process all the 
information available about the environment, e.g. simultaneous localization and mapping 
(Smith et al., 1990; Choset & Nagatani, 2001) or an improved topological map (Tomono & 
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Yuta, 2001), the IA and OP devices allow us to share the environmental information among 
the robots and obtain more flexibility in navigation and information management.  
Section 2 discusses the information management for navigation with the use of the 
environment-embedded IA and OP devices. The cooperative navigation is presented in 
section 3. Section 4 describes our experiments on robot navigation. The conclusions are 
given in section 5. 

2. Information Management for Navigation 
This section addresses the information management for robot navigation in a structured 
indoor environment, where passages and intersections are constrained by walls. The global 
environmental information is used for planning a coarse route for the robot. The local 
information at intersections serves for accurate navigation along the planned route.   
The global information is represented by a topological map that contains the general 
relational data about the present location, goal, and intermediate locations. For example, the 
environment in Fig. 1 is represented by a topological map in Fig. 2 with the use of a graphic 
expression. In this map, the focus is on the topology of environment. The graphic search is 
used to plan a coarse route on the basis of the global map known in advance.  

 
Figure 1. Example of an indoor environment: intersections are denoted by A, B, C, D, E 

 
Figure 2. Topological map with passages and intersections 

The processing of local information by the robot allows it to obtain a feasible path along the 
planned general route. While the robot can easily move in a passage along the wall, it cannot 
easily navigate at an intersection because the layout of any intersection is not uniform and 
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the path cannot be supplied in advance. The traffic control is also needed at intersections to 
ensure collision-free motion. The information assistance at intersections facilitates the robot 
navigation. The local information is usually specific for each intersection and it depends on 
the actual state of the local environment. By means of embedding the assistance devices into 
the environment, the local information can be efficiently managed and made available to the 
robots for planning their feasible local paths. 

2.1 Environment-Embedded Devices: Information Assistant and Optical Pointer 
The Information Assistant (IA) is a radio device with the following functions: management 
of local information, robot communication, and control of interconnected devices such as 
sensors. The IAs are embedded into the environment at intersections and other areas to 
provide the relevant local information to mobile robots. The robot can retrieve or write 
information from/to an IA. This enables the information sharing among robots, e.g. the data 
written by a robot to the IA becomes available to other robots. The robot requests the local 
information from the nearest IA and, subsequently, plans its local path.  
However, the local information is often insufficient for accurate navigation. Figure 3 shows 
an example of an erroneous arrival point after the robot passed the intersection because 
dead-reckoning was used. The following issues can also cause the navigation problems:   
1. There are time variations in receiving the radio signals from the IA that results in an 

uncertain start position of the robot at intersections. 
2. There are measurement errors of an angle between the robot’s direction of motion and 

the wall during maneuvering. 
3. The navigation errors can occur while the robot moves through intersections. 
4. The presence of obstacles increases the risk of positional uncertainty, especially in the 

proximity of the start position at intersections.    

 
Figure 3. Example of robot navigation based solely on IA 

The Optical Pointer shows a target position to the robot by means of projecting a laser light 
onto the ground (Paromtchik & Asama, 2001). The robot detects the laser beacon by means 
of image processing and moves toward it. When the robot reaches the proximity of the 
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beacon, the OP indicates the next sub-goal along the route at intersections. Fig. 4 illustrates 
the concept of using IA and OP for robot navigation. 

 
Figure 4. Concept of using the IA and OP devices for robot navigation 

2.2 Navigation Algorithm  
The navigation algorithm relies on the IA and OP devices embedded into the environment. 
The algorithm consists of the following steps:   
(1) Provide a global topological map and the robot’s start location.  
(2) An operator specifies a goal, which is transmitted to the robot via a wireless LAN. 
(3) Based on the start and goal locations, the robot plans a coarse route by means of the 

graphic search in the topological map. 
(4) The robot moves along the planned route and monitors the local environment by means 

of infrared sensors to avoid collisions with obstacles. 
(5) When the robot arrives at an intersection, it detects the IA’s radio signal and 

communicates with the IA by requesting guidance at the intersection. Fig. 5 shows the 
communication process between the robot and the IA. 

(6) The IA receives a start and goal positions from the robot, and transmits the information 
about the feasible local path. 

(7) The OP shows a laser beacon as a sub-goal for the robot. 
(8) The robot processes images to detect the laser beacon and moves toward it. The IA and 

OP devices guide the robot by means of the laser beacons. 
(9) When the robot has entered the next passage, it sends a message to the IA to confirm its 

successful passing through the intersection.  
(10) The robot continues its motion along a passage. 
(11) When the robot reaches another intersection, the optical guidance is performed again.  
Finally, when the robot receives the goal information from the IA, this signifies that the 
robot has completed the motion task successfully. If two or more robots arrive at an 
intersection, the priority is given to the robot that first requested guidance from the IA. 
Other robots receive a busy signal from the IA and wait in their current positions until the 
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guidance service becomes available for them. Thus, the same navigation scheme can be used 
for multiple robots in the same local environment. 

  
Figure 5. Communication between the mobile robot and the IA and OP devices 

3. Navigation System 
In order to realize the proposed navigation scheme, we have developed an experimental 
prototype.  This section describes our experimental setup with the omni-directional mobile 
robot, information assistant and optical pointer. 

3.1 Omni-Directional Mobile Robot 
The robot is shown in Fig. 6. It is equipped with a holonomic omni-directional wheeled 
platform with its actuators, sensors, on-board control system and electric batteries (Asama et 
al., 1995). Its infrared sensor system LOCISS (Locally Communicable Infrared Sensory 
System) is capable to distinguish a robot and an obstacle in an environment with multiple 
robots (Arai et al., 1996a). LOCISS allows the robot to detect and avoid obstacles, follow a 
wall, and it also serves for local communication between robots. 



Mobile Robots Motion Planning, New Challenges 

 

522 

 

Figure 6. Mobile robot ZEN 

3.2 Information Assistant and Optical Pointer 
The IA device is based on the Intelligent Data Carrier (IDC) (Arai et al., 1996b) and an IDC 
Reader/Writer. The 4th version of IDC is shown in Fig. 7. The IDC is a device with a radio 
communication unit, a CPU, a memory, and an electric battery. The robot communicates 
with the IDC through the IDC Reader/Writer.  
The OP device consists of a laser pointer mounted onto a pan-tilt mechanism with two step 
motors. The pan-tilt mechanism directs the laser beam onto the desired positions on the 
ground. The Fig. 8 shows an OP which is installed at the ceiling. 

 
Figure 7. The IA device is based on IDC Reader/Writer and Intelligent Data Carrier 
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Figure 8. The OP device is mounted onto a pan-tilt mechanism at the ceiling 

4. Experiments 
The experiments are performed in an indoor environment of RIKEN. The floor map is 
shown in Fig. 9. The robot’s task is to move from its start location to a goal which is set by a 
human operator. The IA and OP devices are placed at the intersections in the environment. 

  
Figure 9. Floor map of our experimental environment 

They contain information about their own positions and environmental conditions at the 
intersection. The circles and letters A, B, C in Fig. 9 denote intersections, where the IA and 
OP devices are placed, and the circles also indicate the communication range for local 
navigation. Given the start position and goal destination, the robot planned a coarse route 
as: START – A – B – C – GOAL by means of a graphic search on the topological map. The 
obstacle detection and avoidance was provided by LOCISS.  After moving along a passage, 
the robot approached an intersection A, where it detected the IA and requested guidance 
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through the intersection. The OP indicated the feasible path by means of laser beacons, as 
shown in Fig.10 and Fig. 11. The motion from START to GOAL is depicted by a dotted line 
in Fig. 9. 

 

 
Figure 10. Location of laser beacons at intersection A, one laser beacon is shown at a time 

 
 
 
 
 
 

 
Figure 11. Navigation by means of IA and OP at an intersection 
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(a) The robot moves from its 
START location along the 
wall 

(b) The robot communicates 
with the IA and OP at 
intersection A 

(c) The IA and OP guide the 
robot at intersection A 

   
(d) The robot enters the 
passage and moves along 
the wall 

(e) The robot communicates 
with the IA and OP at 
intersection B 

(f) The robot is guided by 
the IA and OP at intersection 
B 

   
(g) The robot moves along 
the wall after the guidance 

(h) The robot detects an 
obstacle on its route by 
processing range data 

(i) The collision avoidance is 
performed with the use of 
LOCISS 

   
(j) The robot communicates 
with the IA and OP at 
intersection C 

(k) The robot is guided by 
the IA and OP at intersection 
C 

(l) The robot finally arrives 
at its GOAL destination 

Figure 12. Robot navigation experiment with the IA and OP devices 
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5. Conclusion 
This chapter introduced a cooperative navigation strategy for mobile robots operating in 
indoor environments with the embedded Information Assistant and Optical Pointer devices, 
as an application of an intelligent environmental robotic system. In order to provide a more 
flexible navigation, the management of environmental information was considered. The 
static global information supplies topological details such as the positional relation of any 
starting point to any goal point in order to create an approximate route. The dynamic local 
information includes a local map, obstacles and traffic information for accurate navigation. 
We proposed the information management and navigation algorithm based on the IA and 
OP devices embedded into the environment. The experimental example of navigation was 
described. The robot was initially provided with a coarse route to the goal, and the IA 
devices managed the environmental information in real-time locally. The OP device was 
used for guidance at intersections, and communication with mobile robots was performed 
through the IA device. The OP indicated target positions by means of a laser light projected 
from a laser pointer onto the ground.  The mobile robot detected the laser beacons and 
followed them to reach its goal destination. The experiments have proved the feasibility of 
the proposed method.  
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1. Introduction     
The problem of motion planning and control of mobile robots has attracted the interest of 
researchers in view of its theoretical challenges because of their obvious relevance in 
applications. From a control viewpoint, the peculiar nature of nonholonomic kinematics and 
dynamic complexity of the mobile robot makes that feedback stabilization at a given posture 
cannot be achieved via smooth time-invariant control (Oriolo et al., 2002). This indicates that 
the problem is truly nonlinear; linear control is ineffective, and innovative design techniques 
are needed. 
In recent years, a lot of interest has been devoted to the stabilization and tracking of mobile 
robots. In the field of mobile robotics, it is an accepted practice to work with dynamical 
models to obtain stable motion control laws for trajectory following or goal reaching (Fierro 
& Lewis, 1997). In the case of control of a dynamic model of mobile robots authors usually 
used linear and angular velocities of the robot (Fierro & Lewis, 1997; Fukao et al., 2000) or 
torques (Rajagopalan & Barakat , 1997; Topalov et al., 1998) as an input control vector. The 
central problem in this paper is reduction of control torques during the reference position 
tracking. In the case of dynamic mobile robot model, the position control law ought to be 
nonlinear in order to ensure the stability of the error that is its convergence to zero (Oriollo 
et al., 2002). The most authors solved the problem of mobile robot stability using nonlinear 
backstepping algorithm (Tanner & Kyriakopoulos, 2003) with constant parameters (Fierro & 
Lewis, 1997), or with the known functions (Oriollo et al., 2002). In (Tanner & Kyriakopoulos, 
2003) a combined kinematic/torque controller law is developed using backstepping 
algorithm and stability is guaranteed by Lyapunov theory. In (Oriollo et al., 2002) method 
for solving trajectory tracking as well as posture stabilization problems, based on the 
unifying framework of dynamic feedback linearization was presented.  
The objective of this chapter is to present advanced nonlinear control methods for solving 
trajectory tracking as well as convergence of stability conditions. For these purposes we 
developed a backstepping (Velagic et al., 2006) and fuzzy logic position controllers (Lacevic, 
et al., 2007). It is important to note that optimal parameters of both controllers are adjusted 
using genetic algorithms. The novelty of this evolutionary approach lies in automatic 
obtaining of suboptimal set of control parameters which differs from standard manual 
adjustment presented in (Hu & Yang, 2001; Oriolo et al., 2002). The considered motion 
control system of the mobile robot has two levels. The lower level subsystem deals with the 
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control of linear and angular volocities using a multivariable PI controller described with a 
full matrix. This torque control ensures tracking servo inputs with zero steady state errors 
(Velagic et al., 2005). The position control of the mobile robot is a nonlinear and it is on the 
second level. We have developed a mobile robot position controller based on backstepping 
control algorithm with the extension to rapidly decrease the control torques needed to 
achieve the desired position and orientation of mobile robot (Lacevic & Velagic, 2005). This 
is important in the case if the initial position of reference robot does not belong to the 
straight line, determined with the robot and its initial orientation. Also, we have designed a 
fuzzy logic position controller whose membership functions are tuned by genetic algorithm 
(Lacevic, et al., 2007). The main goals are to ensure both successfully velocity and position 
trajectories tracking between the mobile robot and the reference cart. The proposed fuzzy 
controller has two inputs and two outputs. The first input represents the distance between 
the mobile robot and the reference cart. The second input is the angle formed by the straight 
line defined with the orientation of the robot, and the straight line that connects the robot 
with the reference cart. Outputs represent linear and angular velocity inputs, respectively. 
The performance of proposed systems is investigated using a dynamic model of a 
nonholonomic mobile robot with the friction considered. The quality of the fuzzy controller 
is analyzed through comparison with previously developed a mobile robot position 
controller based on backstepping control algorithm. Simulation results indicated good 
quality of both position tracking and torque capabilities with the proposed fuzzy controller. 
Also, noticeable improvement of torques reduction is achieved in the case of fuzzy 
controller.  

2. Control system topology  
The proposed control system with two-level controls is shown in Fig. 1. The low level 
velocity control system is composed of a multivariable PI controller and dynamic model of 
mobile robots and actuators. The medium level position control system generates a non-
linear control law whose parameters are obtained using a genetic algorithm. 
In the following sections the design of the control system blocks from Fig. 1 is described. 
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Figure 1. Mobile robot position and velocity control 
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2.1 Dynamics of mobile robot 
In this section, a dynamic model of a nonholonomic mobile robot with the viscous friction 
will be derived first. A typical representation of a nonholonomic mobile robot is shown in 
Fig. 2. 

Y

Xx

y

xm 

ym

2R

θ 

2r 

A
d 

O 

C

v

 
Figure 2. The representation of a nonholonomic mobile robot 

The robot has two driving wheels mounted on the same axis and a free front wheel. Two 
driving wheels are independently driven by two actuators to achieve both the transition and 
orientation. The position of the mobile robot in the global frame {X,O,Y} can be defined by 
the position of the mass center of the mobile robot system, denoted by C, or alternatively by 
position A, which is the center of mobile robot gear, and the angle between robot local frame 
{xm,C,ym} and global frame. The kinetic energy of the whole structure is given by the 
following equation: 

 krrl TTTT ++= , (1) 

where Tl is a kinetic energy that is consequence of pure translation of the entire vehicle, Tr is 
a kinetic energy of rotation of the vehicle in XOY plane, and Tkr is the kinetic energy of 
rotation of wheels and rotors of DC motors. The values of introduced energy terms can be 
expressed by Eqs. (2)-(4): 
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2
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2
1 222

cccl yxMMvT +==
, (2)  
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2
1 θAr IT = , (3) 

 2
0

2
0 2

1
2
1

LRkr IIT θθ += , (4) 

where M is the mass of the entire vehicle, vc is linear velocity of the vehicle's center of mass 
C, IA is the moment of inertia of the entire vehicle considering point A, θ is the angle that 
represents the orientation of the vehicle (Fig. 2), I0 is the moment of inertia of the 
rotor/wheel complex and dθR/dt and dθL/dt are angular velocities of the right and left wheel 
respectively. 
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Further, the components of the velocity of the point A, can be expressed in terms of dθR/dt 
and dθL/dt:  

 θθθ cos)(
2 LRA
rx += ,  (5) 

 θθθ sin)(
2 LRA
ry += , (6) 
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Since θθ sindxx AC −=  and θθ cosdyy AC += , where d is distance between points A and C, 
it is obvious that following equations follow: 
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By substituting terms in (1) with expressions in equations (2)-(9), total kinetic energy of the 
vehicle can be calculated in terms of dθR/dt and dθL/dt:  
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Now, the Lagrange equations: 
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are applied. 
Here τR  and τL are right and left actuation torques and KdθR/dt and KdθL/dt are the viscous 
friction torques of right and left wheel-motor systems, respectively.  
Finally, the dynamic equations of motion can be expressed as: 

 RRLR KBA θτθθ −=+ , (13) 

 LLLR KAB θτθθ −=+ , (14) 

where 
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In this chapter we used a mobile robot with the following parameters: M=10kg, IA=1kgm2, 
r=0.035 m, R=0.175 m, d=0.05 m, m0=0.2 kg, I0=0.001 kgm2 and K/A=0.5.  
In the following section a design of both velocity and position controls will be established.   

2.2. Velocity control of mobile robot 
The dynamics of the velocity controller is given by the following equations in Laplace 
domain: 
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where ev(s) is the linear velocity error, and eω(s) is the angular velocity error. This structure 
differs from previously used diagonal structures. Transfer functions gj(s) are chosen to 
represent PI controllers: 
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The particular choice of the adopted multivariable PI controller described by equations (16) 
and (17) is justified with the following theorem.    
Theorem 1. Torque control (16) ensures tracking servo inputs u1 and u2 with zero steady 
state errors. 
Proof: When we substitute Rθ  with ωR, Lθ  with ωL, and consider (16), we can write another 
form of (13) and (14): 
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ωR and ωL  can be expressed in terms of ω and v as: 
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Then, equation (18) can be transformed to: 
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and further to: 
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Following equations could be easily derived from (20): 
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It is obvious that transfer functions G1 and G2 are static with gains equal to "1", which 
completes the proof. 
The velocity control loop structure is shown in Fig. 1, as an inner loop. From the simulation 
results obtained (Figs. 3 and 4), it can be seen that the proposed PI controller successfully 
tracks the given linear and angular velocity profiles. 
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Figure 3. Linear velocity step response 
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Figure 4. Angular velocity step response 
The controller parameters used for this simulation are K1=129.7749, K2=41.0233, Ti1=11.4018, 
Ti2=24.1873, which are tuned using standard GA. 
The design of position controls of mobile robot, backstepping and fuzzy logic controllers, 
will be described in the next section.    
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3. Position control of mobile robot 
The trajectory position tracking problem for a mobile robot is formulated with the 
introduction of a virtual reference robot to be tracked (Egerstedt et al., 2001) (Fig. 5). The 
tracking position error between the reference robot and the actual robot can be expressed in 
the robot frame as: 
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where T
yxq eee ]  [ θ=e .  

The position error dynamics can be obtained from the time derivative of the (23) as: 
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where 13cos uevv r −= and 2ur −= ωω . 
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Figure 5. The concept of tracking of a virtual reference robot 

3.1. Backstepping controller design 

In paper (Lacevic & Velagic, 2006) we proposed the following position control law that 
ensures stability  
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where p and q are positive real constants, and α > 1 and f(x) and g(x) are functions of some 
vector x∈Rm, m∈N, satisfying the condition: ∃L>0:  f(x), g(x)≥L, ∀ x∈ Rm. 
Our theorem which proved this statement is derived as follows. 
Theorem 2. Control law, given in (25), provides stability of the mobile robot model, respect 
to the reference trajectory (i.e., ( ) ),)(lim0)()(lim 3
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Consider the Lyapunov function candidate: 
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Deriving (26), and using the expressions from error dynamics (24), we obtain: 
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Substituting u1 and u2 from (25) we get: 

 
0)()(sin                          

)()(2),,(

3
22

12
2

2
1

2
1

22
321

<⋅−

⋅+−= −

x

x

geq

feeepeeeV αα
. (28) 

Thus, function ),,( 321 eeeV  is uniformly continuous, ),,( 321 eeeV  tends to some positive 

finite value and ||ep(t)|| is bounded. Using Barbalat lemma, ),,( 321 eeeV  tends to zero. 
From (28), it is obvious that ( ) ( ) Ζ∈==
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The “obstacle” for global asymptotical stability of the system is the lack of guarantee that the 
error e3 will converge to zero. In the worst case scenario, the robot will track the reference 
cart by moving backwards. This behaviour however, was not observed in any of case 
studies. 
The parameters of both velocity and position controllers are encoded into binary 
chromosome (here, functions f and g are assumed as constants) is shown in Fig. 6. Each 
parameter is presented with 12 bits. Each individual was assigned an objective value, based 
on the following functional: 
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1,16,1,5,1 321 ====== LRs aataaa . 

It is obvious that the better individual has smaller value of F. The second part of the 
expression represents penalty for the great values of control torques. The objective value for 
each individual is evaluated upon the simulation run that includes the tracking of reference 
trifolium trajectory (Figures in simulation results section). 
Simple GA with population size 51, tournament selection, uniform crossover, bit mutation, 
and elitism has been used. 
Evolution yielded following values: 
p = 1.9934,  q = 0.0530,  f = 9.8615, g = 2.9956,  K1 = 128.444,  Ti1 = 60.9756,  K2 = 29.048, Ti2 = 
31.4465. 
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Figure 6. Mapping the set of tunable parameters into chromosome 

It has been noticed, that, at the beginning of tracking, the control torques increase rapidly if 
the initial position of reference robot does not belong to the straight line, determined with 
the robot and its initial orientation (Lacevic and Velagic, 2005) (Fig. 7). 
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Figure 7. Tracking robot doesn't "see" virtual robot 

3.2. Hybrid backstepping controller design 

For improving the mentioned weakness a hybrid backstepping position controller is 
designed.  For that purpose, the following control law, which provides velocity servo 
inputs, is proposed (Lacevic & Velagic, 2005): 
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Function ωs(t) is produced, as the output of the following system (Fig. 8). 
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Figure 8. Producing ωs(t) 
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The function d(t) is given with: 

 ))())(),((atan2(sgn)( ttetetd xy θ−= . (31) 

Function α(t) is determined with the following differential equation: 
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where z(t) is practically a step function given with: 
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This way, the robot doesn't start tracking virtual robot instantly; it first rotates around its 
own axis with increasing angular velocity ωs(t), until it "sees" the virtual robot (Fig. 9). 
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Figure 9. "Seeking" a virtual robot 

In the next subsection the design procedure of proposed fuzzy position controller will be 
described. 

3.3. Design of fuzzy controller 
In order to reduce the control torques and velocity inputs, fuzzy position controller is 
designed. Fuzzy system based on Sugeno inference model with 2 inputs and 2 outputs is 
used instead of classical backstepping controller (Fig. 10). 
Inputs i1 and i2 are following signals: 
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  where f is given with: 
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Input i1 represents the distance between the mobile robot and the reference cart. Input i2 is 
the angle formed by the straight line defined with the orientation of the robot, and the 
straight line that connects the robot with the reference cart. Function f ensures that variable 
i2 belongs to the interval (-π, π] (Fig. 11). Outputs o1 and o2 represent linear and angular 
velocity inputs respectively.  

 
Figure 10. Fuzzy controller with 2 inputs and 2 outputs 
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Figure 11. Diagram of the function f 

Inputs i1 and i2 will be modeled with two trapezoidal and five triangular shape membership 
functions, respectively. Random initial setups of mentioned variables are shown in Figs. 12 
and 13. The parameters of input variables are (a1) and (b1, b2, b3, b4, b5 i b6). Outputs o1 and o2 
are represented by singleton functions with five and three membership values (Figs. 14 and 
15). These outputs are described with parameters (c1, c2, c3, c4 and c5) and (d1, d2 and d3), 
respectively. Parameters ai, bi, ci and di that determine the membership functions are 
encoded into binary chromosome in Fig 16 (the same as in a previously described 
algorithm), while the rules set remained invariant during the GA run. Parameters of velocity 
controller kept their values, obtained previously. 
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Figure 12. Random initial setup of input variable i1 
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Figure 13. Random initial setup of input variable i2 
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Figure 14. Random initial setup of output variable o1 
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Figure 15. Random initial setup of output variable o2 
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Figure 16. Representation of binary chromosome of parameters 

Finally, the rules that complete the inference model are: 
If (i1 is S) and (i2 is GN) then (o1 is B) (o2 is CW) 

If (i1 is S) and (i2 is SN) then (o1 is F) (o2 is CW) 

If (i1 is S) and (i2 is Z) then (o1 is S) (o2 is ST) 

If (i1 is S) and (i2 is SP) then (o1 is F) (o2 is CCW) 

If (i1 is S) and (i2 is GP) then (o1 is B) (o2 is CCW) 

If (i1 is G) and (i2 is GN) then (o1 is FB) (o2 is CW) 

If (i1 is G) and (i2 is SN) then (o1 is FF) (o2 is CW) 

If (i1 is G) and (i2 is Z) then (o1 is FF) (o2 is ST) 

If (i1 is G) and (i2 is SP) then (o1 is FF) (o2 is CCW) 

If (i1 is G) and (i2 is GP) then (o1 is FB) (o2 is CCW) 

Evolution of membership functions parameters is performed by identical way as in the case 
of backsteping controller design (subsection 3.1). The GA with population size 101, 
tournament selection, uniform crossover, bit mutation, and elitism has been used. Also, the 
objective function is same as in (29). Resulting membership functions for input and output 
variables are shown in Figs. 17-20. 
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Figure 17.  Membership functions for i1 
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Figure 18. Membership functions for i2 

-2 -1 0 1 2
0

0.5

1

o1

de
gr

ee
 o

f m
em

be
rs

hi
p

FB B S F FF

 
Figure 19. Membership functions for o1 (fast backwards, backwards, stop, forward and fast 
forward) 
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Figure 20.  Membership functions for o2 (clockwise, straight, counter clockwise) 

Important characteristic of this controller is that its outputs are inherently limited. 
Disadvantage of this concept lies in its inavility to ensure tracking of the reference cart that 
has velocities which are bigger than those that fuzzy controller can "suggest". Advantage 
lies in the fact that control velocities (and consequently, the control torques) cannot exceed 
certain limits (see simulation results in the next section). Resulting control surfaces are 
shown in Figs. 21 and 22. 

 

 

 

 

 
Figure 21.  Control surface for o1 
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Figure 22. Control surface for o2 

4. Simulation results 
The validation of proposed fuzzy controller will be tested in the comparison with 
backstepping control algorithm. The effectiveness of the both controllers is demonstrated in 
the case of tracking of a lamniscate and trifolium curves. The overall system is designed and 
implemented within Matlab/Simulink environment. We consider the following profiles: 
position, orientation, linear and angular velocities and torques. 

4.1 Simulation results with backstepping controllers 
The control performance of the ordinary and hybrid backstepping controllers will be 
illustrated in this subsection through their comparative analysis. The simulation results 
obtained are shown in Figs. 23-26.  
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Figure 23. Tracking a lemniscate trajectory with (a) hybrid and (b) ordinary controllers 
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Figure 24. X and Y coordinate errors 
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Figure 25. Orientation error 
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Figure 26. Control torques of ordinary (a) and hybrid (b) backstepping controllers 
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Figure 26. Requested power of DC motors: (a) hybrid and (b) ordinary backstepping 
controllers (ordinary controller - the first second of tracking) 

These results demonstrate the good position tracking performance (Figs. 23-25), but with 
unsatisfactory control torques values, in the case of ordinary backstepping controller, 
particularly at the beginning of tracking (Fig. 25). Both torques of ordinary backstepping 
controller, for left and right wheels, exceed 50 Nm and they can produce the unnecessary 
actuators behavior. However, the hybrid controller ensures much less values of the control 
input torques for obtaining the reference position and orientation trajectories (Fig. 25). 
Consequently, the requested power of DC motors is also much less in the case of control by 
using the hybrid controller (Fig. 26).    

4.2 Simulation results with fuzzy logic controller 
The effectiveness of the fuzzy controller is demonstrated in the case of tracking of a more 
complex trajectory then lemniscate, such as trifolium curve. The simulation results obtained 
by fuzzy logic position controller are illustrated in Figs. 27-33. From figures 27-29, it can be 
concluded that satisfactory tracking results are obtained using this controller. Also, the 
fuzzy controller ensures much less values of the control input velocities (Fig. 30) then 
ordinary backstepping controller (Fig. 31) for obtaining the reference position and 
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orientation trajectories in comparison with the backstepping controller. Consequently the 
significant decreasing of wheel torques with fuzzy control is achieved (Figs. 32). The 
absolute torque values of both wheels not exceed 2 Nm. These values are 30-40 times less 
then torque values achieved with backstepping controller. The time response of wheel 
torques of ordinary backstepping controller is shown in Fig. 33. 

 
Figure 27. Tracking the trifolium trajectory 
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Figure 28. Time history of x and y coordinates 
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Figure 29. Orientation of the robot 
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Figure 30. Linear (v) and angular (w) velocity outputs of fuzzy controller 
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Figure 31. Linear (v) and angular (w) velocity outputs of ordinary backstepping controller 
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Figure 32. Right and left wheel torques of fuzzy 
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Figure 33. Right and left wheel torques of ordinary backstepping controller (first five 
seconds) 

5. Conclusions 
The experience of the design of the nonlinear position control confirmed the remarkable 
potential of backstepping and fuzzy logic in the development of effective decision laws 
capable of overcoming the inherent limitations of model-based control strategies. This paper 
focuses on design of hybrid backstepping and fuzzy position logic controls of mobile robot 
that satisfied a good position tracking performance with simultaneously satisfactory control 
of velocities, which has an impact on wheel torques. In our previously designed 
backstepping controller a good tracking performance was obtained. However, its main 
shortcoming is unsatisfactory control velocities values, particularly at the beginning of 
tracking. Control parameters of backstepping controller and membership functions of fuzzy 
controller are adjusted by genetic algorithms. Advantage of the proposed fuzzy controller, 
and also hybrid backstepping controller, lies in the fact that control velocities (and 
consequently, the control torques) cannot exceed certain limits. Consequently, these 
controllers radically decreased the control velocities without major impact on tracking 
performance. Finally, from the simulation results obtained, it can be concluded that the 
proposed hybrid backstepping and fuzzy design achieve the desired results. Future work 
will include the investigation of a fuzzy stability of the proposed fuzzy logic position 
system. 
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1. Introduction  
Deformable linear objects such as tubes, cords, cables, wires, and threads are used widely 
for fixing, fastening, wrapping, packing, suturing, and ligating of objects including 
themselves.  In such manipulative tasks, knotting of linear objects is required.  At the same 
time, their raveling must be avoided.  If unexpected ravel occurs, it takes much time to 
unravel.  For example, raveling of earphone/headphone cord of a portable audio player 
would puzzle you sometimes.  So, efficient unraveling is important as well as avoidance of 
such raveling. 
Knotting manipulation by robots has been studied.  Inoue et al. reported tying a knot in a 
rope with a manipulator utilizing visual feedback (Inoue & Inaba, 1984).  Hopcroft et al. 
devised an abstract language to express various knotting manipulations and performed 
knot-tying tasks with a manipulator (Hopcroft et al., 1991).  Matsuno et al. realized a task 
consisting of tying a cylinder with a rope using a dual manipulator system (Matsuno et al., 
2001).  Takamatsu et al. have been developing a system for knot planning from observation 
of human demonstrations (Takamatsu et al., 2006).  Saha and Isto proposed a motion 
planner for manipulating ropes and realized tying several knots using two cooperating 
robotic arms (Saha & Isto, 2006). Yamakawa et al. proposed a new strategy for making knots 
with one high-speed multifingered robot hand having tactile sensors (Yamakawa et al., 
2007). Unknotting manipulation, i.e., the inverse of knotting manipulation, has been also 
studied.  We have realized automatic planning and execution of knotting/unknotting 
manipulation (Wakamatsu et al., 2006).  Ladd and Kavraki developed an untangling planner 
for mathematical knots represented as closed piecewise linear curves (Ladd & Kavraki, 
2004). 
Unraveling is equivalent to unknotting.  However, the state of a raveled object can become 
more complex than that of a knotted object.  Moreover, it is difficult to recognize the state of 
a reveled object completely because it may twine itself.  Therefore, recognition of the object 
state and manipulation planning are both important for unraveling.  In this paper, we 
propose a planning method for unraveling a linear object when 3D information about the 
object state is unknown.  First, an unknotting process of a linear object, which is equivalent 
to its unraveling process, is represented as a sequence of crossing state transitions.  The 
object state is categorized according to three properties with respect to self-crossings of the 
object.  State transitions are defined by introducing four basic operations.  Then, possible 
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unknotting processes can be generated if the current crossing state is completely identified.  
Second, the crossing sequence of a linear object, which is related to its silhouette, is 
considered.  The crossing sequence can be categorized into two types: unravelable and not-
unravelable.  Third, a procedure to generate efficient unraveling processes based on 
unravelability of the crossing sequence is explained. An object with an unravelable crossing 
sequence can be unraveled by pulling its both endpoints.  Finally, examples of unraveling 
process generation with our developed system are demonstrated. 

2. Unknotting Process Generation 
In this section, we briefly explain a method to generate possible processes for unknotting of 
a linear object, which is equivalent to its unraveling.  First, the state of a linear object can be 
topologically represented using three properties after projecting its shape on a projection 
plane.  The first property is the crossing sequence.  It is determined by numbering a crossing 
met first with tracing along the projected curve from one endpoint to the other.  The i-th 
crossing is represented as symbol iC .  One endpoint where tracing starts is referred to as 
the left endpoint lE  and that where tracing ends as the right endpoint rE .  The second 
property is the location of a pair of points at each crossing, that is, which point is 
upper/lower.  The upper point of i-th crossing is described as symbol u

iC  and the lower 
point of that as symbol l

iC .  The third property is the helix of each crossing.  Let us define a 
crossing where the upper part overlaps first on the right side of the lower part and then 
overlaps on its left side as a left-handed helical crossing.  Conversely, in a right-handed helical 
crossing, the upper part first overlaps on the left side of the lower part and then overlaps on 
its right side.  The symbols −

iC  and +
iC  represent the i-th left- and right-handed helical 

crossing, respectively. 
Next, we introduce basic operations described in Fig.1, corresponding to state transitions.  
Crossing operations COI, COII, and COIV increases the number of crossings, while 
uncrossing operations UOI, UOII, and UOIV decrease the number.  Arranging operation AOIII 
does not change the number of crossings but permutes their sequence. Each basic operation 
can be applied to specific subsequences of crossings.  Let us investigate subsequences to 
which each operation is applicable.  Operation UOI is applicable to a subsequence 
represented as follows: 

 −−− ul
i

lu
i

// CC . (1) 

That is, two crossing points corresponding to one crossing iC , should be adjacent to each 
other in applying UOI.  Operation UOII is applicable to subsequences described as follows: 
 

 −−−−−− ul
j

ul
i

lu
j

lu
i

//// CCCC , (2) 

 −−−−−− ul
i

ul
j

lu
j

lu
i

//// CCCC . (3) 
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Figure 1. Basic operations 

That is, two upper crossing points u
iC  and u

jC , should be adjacent to each other and the 

corresponding lower crossing points l
iC  and l

jC , should also be adjacent to each other.  
Operation UOIV is applicable to subsequences represented as follows: 

 −−−− ul
i

lu
il

// CCE , (4) 

 r
ul

i
lu

i ECC // −−−− . (5) 

That is, a crossing adjacent to an endpoint can be deleted by operation UOIV.  Operation 
AOIII is applicable to a subsequence represented as permutation of the following three 
subsequences: α, β, and γ, e.g., − β − γ − α − : 

 −−− u
ij

u
ji // CC:α , (6) 

 −−− u/l
/

/
/ CC: jk

ul
kjβ , (7) 

 −−− l
ki

l
ki // CC:γ . (8) 

That is, three crossings consisting of three segments one of which overlaps the others can be 
permuted by operation AOIII.  Uncrossing operations UOI, UOII, and UOIV and arranging 
operation AOIII are applicable to their specific crossing subsequences indicated above.  Once 
the initial and the objective crossing states of a linear object are given, we can generate 
possible sequences of crossing state transitions, that, is, possible processes of unknotting 
manipulation by repeating detection of applicable subsequences of individual operations 
and deletion/permutation of relevant crossings. 
Fig.2 shows an example of automatic generation of possible unknotting processes by our 
developed system. Required manipulation corresponds to untying a slipknot. Assuming 
that only uncrossing operations can be used, i.e., without operation AOIII, 14 crossing states 
and 39 state transitions are derived as shown in Fig.2. Including operation AOIII, we can 
derive 21 crossing states and 68 state transitions. 
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Figure 2. Example of state transition graph generation -untying slipknot- 

3. Introduction of Unravelable Crossing Sequence 
Once the current crossing state of a linear object is identified, we can unravel the object 
using the method proposed in the previous section.  To identify the crossing state 
completely, the location at each crossing should be known.  Morita recognized the state of a 
linear object with a 9-eye stereo camera (Morita et al., 2003) and Matsuno identified it 
utilizing variance of  luminance at crossings (Matsuno et al., 2005).  Now, let us assume that 
only silhouette, that is, 2D information about the object state is available.  It means that the 
location and the helix of any crossing can not be identified.  Then, we can perform operation 
UOI even if the location at crossing iC  shown in Fig.1-(a) is unknown.  Operation UOIV can 
also be realized regardless of the location at crossing iC  shown in Fig.1-(d).  Contrary, 
whether operations UOII and AOIII can be applied depends on the location of crossings.  
Fig.3 shows examples of crossings with a subsequence to which operations UOII and AOIII 
are applicable but with locations to which they can not be applied.  Any knot can be 
unknotted by applying operations UOIV alone (Wakamatsu et al., 2006).  Note that the state 
transition graph shown in Fig.2 includes unknotting processes consisting of only UOIV 
operations. This implies that a raveled linear object can be unraveled by applying operations 
UOIV alone regardless of the location at each crossing.  Recall that we often search for an 
endpoint and manipulate it to unravel a self-entwined rope.  However, such manipulation 
may be not efficient when the object is raveled intricately, i.e., it has many crossings.  In this 
section, we propose a method for generating efficient unraveling processes of a linear object 
based on its crossing sequence, i.e., its silhouette. 
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(a) with 2 crossings (b) with 3 crossings  
Figure 3. Crossings not applicable uncrossing operations 
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Figure 4. Crossing sequences 

First, we define a knot in which some crossings remain even if all possible operations UOI, 
UOII, and AOIII are applied as a tightenable knot.  For example, an overhand knot and a 
figure-of-eight knot are tightenable knots.  Contrary, a knot which can be unknotted 
completely by applying operations UOI, UOII, and/or AOIII is defined as an untightenable 
knot.  The untightenable knot is unknotted when its both endpoints are pulled away from 
each other.  We can check whether a knot is tightenable or untightenable from its crossing 
state description (Wakamatsu et al., 2006).  
Fig.4-(a-1) illustrates the silhouette of a knot with 3 crossings.  Its crossing sequence is 
described as follows: 

 rl ECCCCCCE 123321 −−−−−−− . (9) 

Knots shown in Fig.4-(a-2) through (a-4) have the same crossing sequence.  They include 
subsequence −−− 33 CC  to which operation UOI can be applied.  When crossing 3C  is 
deleted, it is found that crossing 2C  can also be deleted by application of operation UOI.  
After deletion of crossing 2C , we can delete crossing 1C  by applying operation UOI once 
more.  This means that knots shown in Fig.4-(a-2) through (a-4) are untightenable.  Any knot 
with the crossing sequence described by eq.(9) can be unraveled by pulling its both 
endpoints regardless of the location at each crossing.  In this paper, we define such crossing 
sequence as an unravelable crossing sequence.  An untighenable knot has an unravelable 
crossing sequence. 
A knot shown in Fig. 4-(b-1) also has 3 crossings, sequence of which is as follows: 
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 rl ECCCCCCE 321321 −−−−−−− . (10) 

It is equivalent to that of knots shown in Fig. 4-(b-2) through (b-4).  Knots in Fig. 4-(b-3) and 
(b-4) are both untightenable, but the knot in Fig. 4-(b-2) corresponds to an overhand knot, 
that is, it is tightenable.  This implies that a tightenable knot with the crossing sequence 
described by eq.(10) exists.  Consequently, such crossing sequence is not unravelable.  Note 
that knots in Fig.4-(b-3) and (b-4) can be unraveled, but they can not be distinguished from 
the knot in Fig.4-(b-2) when 3D information, i.e., the location at each crossing is not given.  
Thus, we can categorize the crossing sequence of a knot into two types: unravelable and not-
unravelable.  The former can be unraveled by pulling its both endpoints regardless of the 
location at each crossing, while the latter may be tightened according to the location when 
its both endpoints are pulled. 
Fig.5 shows looped prime knots in knot theory.  We can not reduce the number of crossings 
of these knots even if any operation corresponding to Reidemister move (Adams, 1994) is 
applied.  They are closely related to tightenable knots.  Let us discuss the relationship 
between looped prime knots and unravelable crossing sequences.  If the looped prime knot 
with 3 crossings is cut as shown in Fig.5-(a), its crossing state is described as follows: 

 r
ululul

l ECCCCCCE 321321 −−−−−−− ++++++ . (11) 

If the crossing state of an unlooped linear object is described by eq.(11), it is equivalent to an 
overhand knot.  If the object has 3 crossings but their sequence differs from eq.(11), it can be 
unknotted by applying operation UOI, UOII, and/or AOIII.  Consequently, a linear object 
with 3 crossings can be unraveled by pulling both endpoints if and only if it does not have a 
not-unravelable crossing sequence: rl ECCCCCCE −−−−−−− 321321 . 
Fig.5-(b) shows the looped prime knot with 4 crossings.  Cutting the knot as shown in Fig.5-
(b-1) and tracing it counterclockwise from one endpoint, the crossing sequence is described 
as follows: 

 rl ECCCCCCCCE −−−−−−−−− 42341321 . (12) 

In the case of Fig.5-(b-2) and (b-3), the crossing sequence is described as follows:  

 rl ECCCCCCCCE 34124321 −−−−−−−−− . (13) 

A figure-of-eight knot has this crossing sequence.  A knot with the crossing sequence 
described by eq.(12) or (13) may be tightened.  This implies that a linear object with 4 
crossings is unraveled if it does not have the above two sequences. 
There are two types of the looped prime knot with 5 crossings as shown in Fig.5-(c).  One 
type illustrated in Fig.5-(c-1) has the crossing sequence as follows: 

 rl ECCCCCCCCCCE 5432154321 −−−−−−−−−−− . (14) 
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Figure 5. Looped prime knots 

This sequence corresponds to that of a double overhand knot.  The other type illustrated in 
Fig.5-(c-2) through (c-5) has the following crossing sequences: 

 rl ECCCCCCCCCCE 5412354321 −−−−−−−−−−− , (15) 

 rl ECCCCCCCCCCE 3452154321 −−−−−−−−−−− , (16) 

 rl ECCCCCCCCCCE 5435124321 −−−−−−−−−−− , (17) 

 rl ECCCCCCCCCCE 4532541321 −−−−−−−−−−− . (18) 

Then, a linear object with 5 crossings but without the crossing sequence described by 
eqs.(14) through (18) is unravelable.  Thus, we can derive not-unravelable crossing 
sequences from looped prime knots in knot theory.  If the crossing sequence of a linear 
object with n crossings does not include not-unravelable sequences with 3 through n 
crossings, it can be unraveled by pulling its both endpoint instead of applying n UOIV 
operations. 
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4. Procedure to Generate Efficient Unraveling Processes 
In this section, we explain a procedure to generate unraveling processes.  Let us assume that 
the silhouette of a linear object shown in Fig.6-(a-1) is given.  Its crossing sequence is 
described as follows: 

(a)

(b)

(a-1) (a-2) (a-3)

(b-1) (b-2) (b-3)

1C
2C 3C

4C
5C

1C 2C
3C

4C

1C
2C

3C

1C
2C 3C

4C
5C

1C
2C 3C

4C
1C

2C 3C

 
Figure 6. Unraveling processes 

 rl ECCCCCCCCCCE 5412354321 −−−−−−−−−−− . (19) 

The above sequence corresponds to a not-unravelable sequence with 5 crossings.  It means 
that the object may be raveled and tightened if its both endpoints are pulled.  Then, let us 
consider application of operation UOIV so that the object does not include any not-
unravelable sequence.  If we apply operation UOIV to the left terminal segment, the object 
state changes into the state shown in Fig.6-(a-2).  Its crossing sequence is described as 
follows: 

 rl ECCCCCCCCE 43124321 −−−−−−−−− . (20) 

A set of closed regions surrounded by a linear object is defined  as the inner region, and the 
other region in the projection plane as the outer region.  Moreover, segments touch the outer 
region are referred to as outer segments, and segments do not touch as inner segments 
(Wakamatsu et al., 2006).  In Fig.6-(a-2), the left terminal segment is an inner segment.  
When one of terminal segments is inner, we can not pull both endpoints sufficiently without 
changing the crossing sequence.  So, we apply another operation UOIV to the left terminal 
segment.  Then, the following sequence is derived: 

 rl ECCCCCCE 321321 −−−−−−− . (21) 

The above sequence is equivalent to the not-unravelable sequence with 3 crossings.  This 
implies that additional UOIV operations are required to unravel the object.  Contrary, if we 
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apply 2 consecutive UOIV operations to the right terminal segment as shown in Fig.6-(b), the 
crossing sequence becomes as follows: 

 rl ECCCCCCE 123321 −−−−−−− . (22) 

As this sequence differs from the not-unravelable sequence, the knot shown in Fig.6-(b-3), 
which is equivalent to that in Fig.4-(a-1), can be unraveled by pulling its both endpoints.  
Consequently, we can conclude that unraveling process shown in Fig.6-(b) is more efficient 
than that shown in Fig.6-(a).  Thus, we can generate efficient unraveling processes of a linear 
object based on only its crossing sequence, i.e., its silhouette.  This indicates that we may 
unravel a linear object without a stereo camera. 
Not-unravelable sequences can be extracted from the list of looped prime knots in knot 
theory (Rolfsen, 1976).  Let us define the following subsequence as a not-unravelable 
subsequence with 3 crossings: 

 ( )kjikjikji <<−−−−−−−−−−−− CCCCCC . (23) 

If the crossing state includes the above subsequence, the object has a part which may be 
tightened.  The not-unravelable sequence described by eq.(10) is a kind of this subsequence.  
We can also define not-unravelable subsequences with n crossings referring to not-
unravelable sequences.  When such not-unravelable subsequence is detected from the 
crossing sequence, we delete a crossing included in the subsequence and nearest to one 
endpoint by applying operations UOIV repeatedly.  Let liC  and rjC  be i-th and j-th crossing 
met first when we trace an object from the left and the right endpoint, respectively.  When 
the object has n crossings, we assume that only operation UOIV is applied to delete k (k=1, 

, n) crossings.  Then, we check the number of remaining not-unravelable subsequences 
after deleting crossings liC (i=k, k-1, , 1, 0) and rjC  (j=k-i).  If the crossing sequence does 
not include any not-unravelable subsequence by n-3 crossings are deleted, the rest can be 
uncrossed by applying one pulling operation instead of some UOIV operations.  This implies 
that the object can be unraveled efficiently.  For example, the crossing sequence described by 
eq.(19) is equivalent to the not-unravelable sequence with 5 crossings and includes three 
not-unravelable subsequences with 3 crossings: 

 −−−−−−−−− 541541 CCCCCC , (24) 

 −−−−−−−−−− 542542 CCCCCC , (25) 

 −−−−−−−− 543543 CCCCCC . (26) 

In this case, crossing 1C l = 1C  or 1Cr = 5C  can be deleted by operation UOIV.  If crossing 5C  
is uncrossed, all these subsequences are deleted.  Then, the object becomes unravelable.  
Contrary, subsequences described by eqs.(25) and (26) remain even if crossing 1C  is deleted.  
Consequently, we select application of operation UOIV to crossing 5C  as the first process for 
unraveling.  After that, the object is completely unraveled by pulling its both endpoints.  
Thus, efficient unraveling processes of a linear object can be derived even if only its crossing 
sequence is identified. 
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5. Case Study 
In this section, we discuss the effectiveness of our proposed method for efficient unraveling 
with some examples.  Fig.7 shows two examples of a raveled object.  They correspond to 
not-unravelable sequences with 8 crossings.  The crossing sequence in case-1 shown in Fig.7-
(a) is described as follows: 

 rl ECCCCCCCCCCCCCCCCE 7834568712654321 −−−−−−−−−−−−−−−−− . (27) 

In case-2, the crossing sequence shown in Fig.7-(b) is  represented as follows: 

(a) case-1 (b) case-2

1C

2C

3C
4C

5C
6C

7C
8C

1C

2C

3C

4C

5C

6C

7C

8C

 
Figure 7. Silhouette of raveled objects 

 rl ECCCCCCCCCCCCCCCCE 5876843765124321 −−−−−−−−−−−−−−−−− . (28) 

We developed a system to detect not-unravelable subsequences from a  given crossing 
sequence.  Using this system, it was found that the crossing sequence in case-1 include 49 
not-unravelable subsequences and that in case-2 includes 19.  Table 1 and 2 show the 
number of remaining not-unravelable subsequences after deleting crossings liC  and rjC  in 

case-1 and case-2, respectively.  As shown in Table 1, when 3 crossings 1C , 2C ,  and 7C  or 

1C , 7C , and 8C  are deleted, the crossing  sequence in case-1 does not include any not-
unravelable subsequences.  So, we can delete the rest crossings, i.e., we can unravel the 
object at once pulling away its both endpoints.  This indicates that we can perform 
unraveling with less operations than unraveling in which all 8 crossings are deleted by 
operation UOIV.  In case-2, 5 crossings 4C , 5C , 6C , 7C , and 8C  must be deleted to exclude 
not-unravelable subsequences from the  crossing sequence as shown in Table 2.  After that, 
we can unravel the object with one pulling operation.  This is a more efficient unraveling 
process than that consisting of 8 UOIV operations.  But, we have to delete more crossings in 
case-2 to change the crossing sequence into the unravelable one than in case-1.  Thus, it is 
found that the effectiveness of our proposed method depends on the crossing sequences.  
Efficient unraveling processes are derived from some crossing sequences but they are not 
from others.  However, we can determine whether 3D information is needed for its efficient 
unraveling from its crossing sequence, i.e., its silhouette. For more efficient unraveling in 
case-2, for example, we have to identify the location of some crossings. If crossings 3C  and 

4C  can be deleted by applying operation UOII, the object can be separated into two parts. 
Moreover, the left part is unravelable and it can be unraveled independently of the right 
part. Consequently, we should indentify the location of these crossings first. If their location 
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satisfies eq.(2) or (3), the object can be separated actually. Thus, we can rank crossings the 
location of which should be identified in order of importance for efficient unraveling. 3D 
information of not all crossings have to be identified when the unravelability, which is 
determined from the silhouette of a linear object, is considered. 

deleted crossings 
remaining 

not-unravelable 
subsequences 

none 49 
C1 
C7 

21 
21 

C1, C2 
C1, C7 
C7, C8 

7 
7 
7 

C1, C2, C3 
C1, C2, C7 
C1, C7, C8 
C3, C7, C8 

3 
0 
0 
3 

Table 1. Unraveling process for case-1 

deleted crossings 
remaining 

not-unravelable 
subsequences 

none 19 
C1 
C5 

11 
11 

C1, C2 
C1, C5 
C5, C8 

7 
7 
8 

C1, C2, C3 
C1, C2, C5 
C1, C5, C8 
C5, C7, C8 

2 
5 
5 
4 

C1, C2, C3, C4 
C1, C2, C3, C5 
C1, C2, C5, C8 
C1, C5, C7, C8 
C5, C6, C7, C8 

1 
2 
4 
2 
2 

C1, C2, C3, C4, C5 
C1, C2, C3, C5, C8 
C1, C2, C5, C7, C8 
C1, C5, C6, C7, C8 
C4, C5, C6, C7, C8 

1 
1 
1 
1 
0 

Table 2. Unraveling process for case-2 



Mobile Robots Motion Planning, New Challenges 

 

562 

6. Conclusions 
A planning method for unraveling deformable linear objects based on their silhouette was 
proposed.  First, an unknotting process of a linear object, which is equivalent to its 
unraveling process, was represented as a sequence of crossing state transitions.  It can be 
generated on a computer if 3D information about the current crossing state is given.  
Second, the crossing sequence of a linear object, which corresponds to its 2D information, 
was categorized into two types: unravelable and not-unravelable.  Third, a procedure to 
generate efficient unraveling processes based on  unravelability of the crossing sequence 
was explained.  An object with an unravelable crossing sequence can be unraveled by 
pulling its both endpoints.  Finally, examples of unraveling process generation with our 
developed system were demonstrated.  The crossing sequence is not sufficient information 
for deriving efficient unraveling processes, but it is useful for that. 
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1. Introduction 
The pointwise traversal of a given path is a popular task in the area of robotics, e.g. in 
mobile, industrial or surgical robotics. The easiest method to describe paths is by a sequence 
of linear segments, and for many tasks the precision of a path approximated by linear 
segments is sufficient. The movements to be accomplished by a mobile robot or the robot’s 
end-effector are described by a sequence of points in space, that have to be traversed by the 
robot. However, in practice, a pre-computed path unfortunately often consists of more path 
points than are necessary for sufficiently accurate execution. An excessive number of path 
points renders the movement jerky if the path points are dispersed around the optimal path, 
leading to unnecessary mechanical stress of both robot and tool. A second problem is that 
many path points lying close to one another can lead to high computational cost when 
traversing the path and can reduce traversal speed. 
Paths described by teach-in methods are one example where the path can consist of too 
many path points. In these methods, the desired movement is recorded while the operator 
moves the robot’s arm, either directly, through a master device or by giving instructions 
through a control panel. Because of the rather intuitive input of the human operator, the 
path suffers from deficiencies and frequent unnecessary changes of direction.  
The taught-in path can be traversed better after smoothing the path. Another example is 
voxel-based path planning. Here, only space points with discrete coordinates can be 
traversed, which may lead to a stair shaped approximation of diagonal paths. Just as with 
smoothed taught-in paths, smoothed voxel-based paths can be traversed more efficiently, 
because there are fewer changes of speed and direction, and the total path length is reduced. 
The remainder of the text first provides a problem description (Section 2), after which the 
state of the art is presented (Section 3). Then, the proposed procedure is described in detail 
(Section 4), and different specializations of the proposed method are shown for points with 
fixed orientation (Section 5) as well as with variable orientation (Section 6). Finally, 
experiments are described (Section 7), and open issues and further enhancements are 
discussed ( Section 8). 

2. Problem description 
The problem of path smoothing can be described as follows. A path P := < p1, p2, ... , pn > of 
n points is given, represented by an ordered list of m-dimensional Cartesian path points 
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pi := ( pi1, pi2, … pim)T. All path points pi have the same dimensionality m := mp + mo, 
depending on the degrees of freedom of the robot or the requirements of the task to be 
performed. The list is sorted in the natural point order, assigning the index 1 to the path’s 
start point and index n to its end point. The parameters mp, mo ∈ N, mp, mo ≥ 0 designate the 

dimension of the two coordinate types position and orientation of a path point. 
The neighbourhood of a path point pi is defined as the sequence of points in P between and 
including the nearest neighbours of that point in the path P to the left and and right of pi. 
The deviation di between a smoothed path P' and the original path P in the neighbourhood of 
the path point pi can be computed according to various error functions, such as the standard 
deviation or the area spanning both paths. The deviation must be computed differently 
depending on which coordinate type, position or orientation, is considered.  
The error function K represents the criterion used to compute di. Its input are the two paths P 
and P' as well as the index i, and its output is the deviation di between them. Finally, we 
need a threshold value dlim indicating the maximum allowed di.  
If the path points consist of both coordinate types, either position or orientation may, but 
need not, be used as a constraint in addition to the optimization criterion which is 
mandatory. If not only an optimization criterion but also a constraint is being used, a second 
threshold value clim is needed. In that case, we compute a second deviation ci for each path 
point which may not exceed clim.  
Thus, we search for a path P' whose deviation di from P does not exceed dlim at each 
individual path point according to K. The number of path points of the path P' is minimized 
under the given optimization criteria and optionally a constraint (Figure 1). 

 
Figure 1. Example of the complete smoothing of a two-dimensional path P with nine path 
points. In each step i, the path point whose removal leads to the smallest possible deviation 
between Pi and the original path P is removed, using as criterion the maximum Euclidean 
distance (see Section 5). A reasonable smoothed path could be e.g. P5 

3. State of the Art 
We can distinguish two main categories of problems where a reduced number of path 
points is required: path planning and path shortening. 
In collision-free motion planning, e.g. for mobile robots, the start and the end points are 
given, and a path connecting them is sought. There may be obstacles and narrow passages 
like doors or corridors. A good path avoids all obstacles and is short. In a first step, e.g. 
using a stochastic approach, in a path planning procedure (Subsection 3.1), a path of possibly 
poor quality is created, containing many superfluous segments and being much longer than 
necessary. It is improved in a second step by a path shortening procedure. There is no need 
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for any similarity between the original and the collision-free shortened path apart from 
having the same start and end point. 
In other approaches, the improved path must remain similar to the original path. Not only 
the start and end point, but also the path between them is given. However, the quality of 
this path may be unsatisfying, the path being jerky or consisting of too many segments. In 
this path smoothing procedure (Subsection 3.2), small deviations from the original path are 
allowed as long as the number of path segments can be reduced noticably and both paths 
stay close enough. Figure 2 shows the difference between path shortening and path 
smoothing. 

 
Figure 2. Left: path shortening procedure where obstacles must be avoided, right: path 
smoothing procedure where a path must stay within a given vicinity of the original path 

3.1. Path planning procedures  
In collision-free motion planning, planning is usually performed in the configuration space. 
The problem of finding a path between a start and an end point is PSPACE-hard in the 
degrees of freedom and in the number of obstacle surface patches. Therefore, most 
algorithms in this category are stochastic. Two main classes can be distinguished. 
Probabilistic roadmap (PRM) approaches (Amato, N.M. & Wu, Y., 1996), (Geraerts, R. & 
Overmars, M. H., 2002) proceed in two steps. First, a collision-free path is constructed as a 
graph in robot configuration space. In a second step, pairs of promising vertices are chosen 
and a simple local planner is used to find a better collision-free connection between them. 
Approaches based on Rapidly-exploring Random Trees (RRTs) (Kuffner, J. J.; LaValle S. M., 
2001), (LaValle, S. M., 1998) use a collision-free path tree that is grown incrementally. In each 
iteration, a random configuration is chosen, and an attempt is made to find a path to it from 
the nearest RRT vertex. 
Other path planning algorithms exist which do not belong to one of these two categories. 
One example are potential field based methods which can be used for path planning if there 
are only few obstacles. Another example is the Randomized Path Planner (RPP) 
(Barraquand, J. & Latombe, J.-C., 1991) where the path is planned according to potential 
fields and random walks are used to escape from local minima. Another group of path 
planning algorithms is based on the elastic-band method (Quinlan, S.; Khatib, Q., 1993), 
where contractive and repulsive forces emanating from obstacles determine the deformation 
of an original path. 
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If path segments are to remain piecewise linear, other strategies can be used. Path 
modifications may be performed by shifting or splitting path segments. Furthermore, path 
segments can be merged by removing their point of connection (Baginski, B., 1998). A 
similar procedure is used in (Berchtold, S. & Glavina, B., 1994), where path points are 
removed based on a heuristic to locally reduce the path length. Another example of 
collision-free paths for robots can be found in (Urbanczik, C., 2003). Here, path points can be 
shifted or removed, and segments can be split. After each step the list is re-sorted by pairs of 
neighbouring segments. Path shortening can be performed using a divide-and-conquer 
algorithm which removes all path points between the first and the last point in one 
recursion step if the direct path between them is allowed, and otherwise bisects the path 
points list (Carpin, S.; Pillonetto G., 2006). However, these approaches are not valid for the 
application we envisage because they do not guarantee a similarity between the original and 
the smoothed path. 

3.2. Path smoothing procedures  
In applications where the shortened path must remain similar to the original path, similar 
strategies can be used, but optimization criteria are different. The simplest form of path 
smoothing is the removal of superfluous collinear path points, i.e. path points lying on a 
straight line between their two immediate neighbours. Here, no deviation from the original 
path arises, but only a few path points can be removed in general. A reduction in the 
number of path points can also be achieved by approximating the path by curves of a higher 
degree consisting of nonlinear path segments (e.g., defined by quadratic or cubic functions) 
(Hein, B., 2003) or non-uniform rational B-Splines (NURBS) (Aleotti, J.; Caselli, S., 2005). 
In (Engel, D., 2003) a smoothing procedure for piecewise linear paths is described that 
removes path points pj not exceeding a given deviation from a path segment <pi, pk> with 
i < j < k. A disadvantage is that the path point list is treated only once and thus some 
smoothing steps are not executed which are only possible when the path was already 
smoothed in a previous step. 
A well-known point reduction method is linear regression (Bronstein, I. N.; Semendjajew, K. 
A; Musiol, G.; Mühlig, H., 2001), but it does not guarantee an upper limit for the deviation. 
Here, a path defined by scattered points is replaced by a path consisting of one straight-line 
segment placed as close as possible to the scattered points. 

3.3. Conclusions 
Although a smoothed path slightly deviates from the original path, it can be better suited for 
a specific application as long as the deviations are not too big. 
A downside of the discussed methods is that they are not able to handle paths with both 
positions and orientations. They are either restricted to one coordinate type (usually 
positions) or they work in the configuration space. In that space, there is no differentiation 
into two coordinate types either. Although algorithms working in the configuration space 
can smooth paths having position and orientation coordinate components, they need a robot 
model and a forward kinematics. 
The path smoothing method we propose offers some advantages which make it particularly 
suited for time-critical applications working either in configuration space or work space. 
Due to the order in which the path points are removed, our method has anytime ability, i.e. 
it can be aborted prematurely and still returns a valid smoothed path, with the result quality 
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increasing monotonically over time. The optimization criterion can be easily exchanged 
(depending on the application), and an upper bound for the deviation between the original 
path and the smoothed one can be guaranteed. Furthermore, the algorithm is efficient, as 
both the computation time and storage space are linear in the number of path points. The 
algorithm is very versatile due to its capability to handle points with both coordinate types. 

4. Path smoothing procedure 
The path points pi are stored in a list ordered by index. Their description (i.e., the Cartesian 
coordinates) is extended by three components: 
• The flag ri ∈ {true, false} indicates whether the path point has been removed while 

smoothing. 
• The variable di ∈R indicates the deviation of the path in the neighbourhood of the path 

point, which will be explained in detail in Section 5. This variable holds the 
optimization value used to decide which point has to be removed next so that the path 
deviation stays as small as possible. 

• The variable ci ∈ R stores the deviation of the path in the neighbourhood of the path 

point according to a second coordinate type. This variable holds the constraint value. 
The use of ci is detailed in Section 6. If the path has only one coordinate type, ci is not 
used 1. 

The path points removed during path smoothing are not deleted from the list, but are 
instead only marked as removed, since the procedure must be able to access the original 
path at any time. When smoothing is complete, all path points not marked as removed are 
copied into a target path point list containing only the path points of the smoothed path. 
The algorithm for removing path points works as follows: 
(1) For all path points pi, set ri = false and ci = 0. 
(2) For all path points pk not yet removed (rk = false), compute the arising deviation dk 

between the smoothed path P' and the original path P, assuming that pk is removed 
from the path (in addition to the path points removed so far). If a constraint is being 
used, compute ck. 

(3) Select among all path points with ck < clim the path point pk with the smallest dk. 
(3a) If the deviation dk is smaller than the specified value dlim, then mark pk as removed 

(rk = true) and go to (2). 
(3b) Otherwise, no further path points can be removed from the path, and the path 

P' := < pi | ri = false, i = 1, …, n > is returned. 
If no constraints are being used, no computations of ci are performed and ci stays zero, being 
without any effect.  
The path point whose elimination leads to the smallest deviation from the original path 
while not violating the constraints is removed during each iteration. In this way, it is 
ensured that a (locally) maximum number of path points can be removed before the 
deviation locally exceeds the threshold dlim and the algorithm terminates. 

                                                                 
1 This is realised by initially setting ci = 0 and not modifying it any more and setting clim to 
an arbitrary value >0. 
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In order to prevent gradual drifting of the path in each iteration, the current path must not 
be compared with the path from the previous iteration step, but with the original path.  
A certain computational speed improvement can be obtained by using an efficient 
implementation. Given a path with n path points, the maximum smoothing of the path 
would require n − 2 iterations, as the first and last path point are not removed. For a given 
iteration step j, the number of local deviation computations is n − 2 − j. This belongs to the 
complexity class O (n2), since the total number of computation steps is 
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The procedure can be accelerated by considering that the path deviation only changes in the 
proximity of a path point that is removed. Thus only in the first iteration step, the deviation 
needs to be computed for all path points, and in the further steps only for the path points in 
the neighbourhood of the last removed path point. 
For this purpose, the component di of all path points pi is required for buffering the 
corresponding deviation. After a path point has been removed, the deviation can change 
only for the two neighbouring path points without considering all path points already 
removed. Therefore, only two instead of n − 2 − i deviations need to be determined per 
iteration step. This results in a complexity of 

 ( )
2

2

2 2 3 3 6
n

j

n n n n
−

=

+ = + − = −∑  (2) 

computation steps, with complexity dropping from O (n2) to O (n). The same holds true for 
the computation of the constraint ci, which, if used, is computed whenever di is computed. 
In the following, we describe how the interval of path points needed for the computation of 
the deviation di is determined. We are looking for two path points pmin and pmax that border 
on the interval in question: I := [pmin ; pmax] = < pmin, ... , pi, ... , pmax >. 
In the first iteration no path points have been removed yet. Trivially, only three path points 
need to be regarded: the path point pi as well as its neighbours pi-1 and pi+1, and the path 
segment < pi-1, pi, pi+1 > must be compared with < pi-1, pi+1 > in order to compute di. The 
manner in which this comparison is performed depends on the error function used and is 
described in Section 5. 
In the subsequent iterations we must consider which path points are removed and must 
extend the path interval of interest beyond the previously removed path points so that its 
borders again consist of the next two non-removed path points pmin and pmax. Thus pmin and 
pmax are the direct neighbours of pi that have not yet been removed. The deviation di is 
computed by comparing a path segment of the original path Pi,o = [ pmin, pmax ] = 
< pmin, ... , pi , ... , pmax > and the corresponding path segment on the smoothed path 
Pi,s = < pmin, pmax >. 
The following table shows exemplarily the deviation computations necessary for smoothing 
a path with six path points P = < p1, p2, p3, p4, p5, p6 > in the order p4, p3, p2 and p5. 
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 p1 p2 p3 p4 p5 p6 
compute d1 d 2 d 3 d 4 d 5 d 6 

remove point    r4=true   
recompute   d 3  d 5  

remove point   r 3=true    
recompute  d 2   d 5  

remove point  r 2=true     
recompute d 1    d 5  

remove point     r 5=true  
recompute d 1     d 6 

Table 1. Steps performed during the smoothing of a path. In each iteration other than the 
first one only two deviations need to be determined 

Prior to each iteration step, the deviation di is known for all remaining path points pi not yet 
removed (thus all path points with ri = false). Based on this information, the path point 
whose removal leads to the least deviation from the original path can reliably be removed.  
Fig. 3 and Fig. 4 illustrate the two steps marked in gray from Table 1 based on a two-
dimensional geometry. For example, the area between a path segment of the smoothed path 
and the appropriate original path is defined as the error function K. Using this K, the 
deviations di are areas, which are shown in gray. 
The path point p4 is already marked as removed (represented by a white dot in Figure 3 (a)). 
p3 is now removed additionally, resulting in the modification of the smoothed path that can 
be seen in Figure 3 (b) and (c).  

 
Figure 3. Example for the removal of a path point. Black dots represent still existing path 
points and white dots represent removed path points. (a) shows the entire path and (b) and 
(c) the smoothed path before and after removal of p3, respectively 

With the removal of p3, the deviations d2 and d5 occurring upon removal of p2 and p5 also 
change and d2 and d5 must therefore be updated. Figure 4 (a) and (b) clarify why the 
deviation must be recomputed for the path point p2. Before the removal of p3, the removal of 
p2 only affected the path segment < p1, p3 >. Now, it affects the path segment < p1, p5 >. In 
the smoothed path, p2 now has p1 and p5 as direct neighbors rather than p1 and p3, thus its 
deviation has changed. 
Similarly, in Figure 4 (c) und (d), the deviation for the path point p5 determined in an earlier 
iteration is now invalid and must be recomputed. No new calculations need to be performed 
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for the other path points, since with linear interpolation the removal of p3 only affects the 
segments that were direct neighbors of that path point before it was removed. 

 
Figure 4. Example of the computational cost reduction. Black dots represent still existing 
path points and white dots represent removed path points. The deviations are shown as 
gray areas. In the upper two figures, the deviation d2 occurring if p2 is removed is shown, 
both before removal of p3 (a) and after its elimination (b). (c) and (e) similarly show the 
deviation d5 before and after removal of p3 

In the following we describe how the interval of path points is determined that is needed for 
the computation of the deviation di. We are looking for two path points pmin and pmax that 
border the interval in question: I = [ pmin ; pmax ] = <pmin, ... , pi, ... , pmax>. 
In the first iteration no path points have been removed yet. Trivially, only three path points 
need to be regarded: the path point pi as well as its neighbors pi-1 and pi+1, and the path 
segment <pi-1, pi, pi+1> must be compared with <pi-1 pi+1 >. The manner in which this 
comparison is performed depends on the error function used and is described in Section 5. 
In the subsequent iterations we must consider which path points are removed and we must, 
as shown in Figure 4, extend the path interval of interest beyond the previously removed 
path points so that its borders again consist of two non-removed path points. Let i be the 
index of the path point for which the deviation of the deletion is to be computed and pi be 
the corresponding path point. Let n be the number of path points in the original path 
<p1, … , pi, … , pn>. 
We obtain the following algorithm: 

 
min := i − 1 
while min > 1 and rmin = true 
 min := min − 1 
 
max := i + 1 
while max < n and rmax = true 
 max := max + 1 

Thus pmin und pmax are the direct neighbors of pi that have not yet been removed. The 
deviation di is computed by comparing a path segment of the original path Pi,o = [ pmin, pmax ] 
= < pmin, ... , pi , ... , pmax > and the corresponding path segment on the smoothed path Pi,s = 
<pmin, pmax >. 
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5. Path deviation functions for a fixed orientation 
In this section, we consider only paths with positional coordinates and no orientation and 
we do not use any constraints (Waringo, M.; Henrich D., 2006). Depending on the 
application, different error functions K can be used. We investigated three error functions: 
• K1: di is the maximum of the Euclidean distances of all path points of the interval Pi,o 

from the corresponding interval Pi,s in the smoothed path. This criterion can be used in 
applications where motion is constrained to a safety corridor, e.g. in a master-slave 
robotic guidance system, car manufacturing, or robotic endoscope holding systems. 

• K2: di is the root-mean-square deviation of the distances (i.e. the square root of the mean 
of the squares of the shortest distances) of all path points of the interval Pi,o from the 
corresponding interval Pi,s in the smoothed path. This criterion is useful mainly for 
theoretical analysis. 

• K3: di is the area between the smoothed paths segment Pi,s and the corresponding 
segment Pi,o on the original path. K3 is the best choice for sweeping applications, e.g. 
bones milling or cleaning robots. 

The first two error functions can be determined quickly and work for path points with any 
dimensionality. Error function K3 is useful and intuitively plausible for paths defined in a 
plane, i.e. two-dimensional paths. However, K3 can also be used for more dimensions.  
The error function K1 guarantees that the smoothed path never deviates by more than the 
distance dlim from the original path. One disadvantage involves the computation of each 
deviation di: Only one path point pi ∈ [ pmin ; pmax ] is used and the distance from the other 
path points in that interval is neglected. Path points far away from Pi,s are rated strongly, 
whereas a constant slight deviation of the path across all path segments under consideration 
leads to a smaller deviation. 
This drawback can be avoided by using the error function K2 as this function uses all path 
points pi ∈ [ pmin ; pmax ] for the computation. Additionally, path points far away from Pi,s are 
considered because the distance to the smoothed path Pi,s is squared. The computation of K2 
is also quite fast. 
The computation of K3 is more costly, however unlike K1 and K2 it also considers the 
distance between path points pi ∈ [ pmin ; pmax ] on the original path, not just the distances 
between paths points from the original path and the smoothed path Pi,s. 
Figure 5  illustrates the three error functions. 
The algorithm uses the heuristic of always removing the point yielding the smallest 
deviation. Although this provides good results in practice, the path obtained is not 
necessarily globally optimal. Because the algorithm does not look ahead to try to remove 
more than one path point at a time and does not allow the deviation to exceed the limit dlim 
in any iteration step, opportunities to shorten the path can be missed. Consider for example 
Figure 6 (a). When using criterion K1 and a maximum allowed deviation dlim = 0.6 ⋅ || p2 p3 || 
the optimal path (b) cannot be obtained. The removal of either p2 or p3 temporarily leads to 
a deviation that is close to 1 ⋅ || p2 p3 ||, whereas by removing p2 and p3 at the same time, dlim  
would not be exceeded. The smoothing procedure aborts without being able to remove p2 or 
p3. 
Nevertheless, the paths created are valid because the deviation does not exceed the 
maximum allowed. An advantage of the proposed method is that the algorithm is anytime 
capable, i.e. it can be aborted prematurely and still delivers a valid result. The quality of the 
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path increases monotonically until termination. This is an important feature for time-critical 
applications, such as sensor-based motion planning. 

 
Figure 5. Sketch describing the determination of path deviation di. The linear path segments 
to be compared are the original path (a) and the smoothed path (b). The error functions K1, 
K2, and K3 are illustrated in (c), (d), and (e) 

 
Figure 6. Example for the non-optimality of the proposed algorithm. (a) A path consisting of 
five points, (b) the optimal path with a maximum allowed deviation of 0.6 ⋅ ||p2 p3 || 
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6. Path deviation functions for variable orientations 
In Section 5 paths with arbitrary dimensionality, but just one coordinate type have been 
treated. However, Cartesian paths whose points contain information on both coordinate 
types (position as well as orientation) cannot be handled reasonably with this approach, as 
positions and orientations can not be treated in the same way. For example, a positional 
value is unique, whereas an orientation is unique in a range of 360°. 
Therefore, we choose to compute position and orientation separately and combine 
positional and orientational deviation in an optimization procedure as optimization 
criterion and/or constraint, respectively. At that point, both are real numbers which are 
comparable again. 
We use quaternions for representing the orientation of a path point, following the 
representation in (Maillot, P., 1990). This representation overcomes severe disadvantages of 
a vector angle representation like e.g. Euler angles. 
Eq. (3) shows the representation of an orientation oi = ϕi as a quaternion. 

 ϕi = ai + bi ⋅ j + ci ⋅ k + di ⋅ l with ai, bi, ci, di ∈ R. (3) 

Just like the distance between two positions p1, p2 can be computed, we can easily obtain the 
distance between two orientations o1, o2. It corresponds to the angle between the 
orientations (Eq. 5): 

 ( ) ( ) ( ) ( )22 2
1 2 2, 1, 2, 1, 2, 1,,p x x y y z zd p p p p p p= − + − + −p p  (4) 

 do(o1, o2) = acos ( a1 · a2 + b1 · b2 + c1 · c2 + d1 · d2 ) (5) 

From Eq. (5), it is obvious that the distance between two orientations can not exceed the 
range [ –180°, +180° ] whereas the distance between two points is unrestricted, Eq. (4). 
The criteria K1 and K2 are directly applicable for orientations if we replace Eq. (4) by Eq. (5) 
in the computation. For criterion K3, we need to obtain the cumulated orientational 
deviation. We solve that problem by numerically integrating the orientational deviation 
along the path between two path points. We need to interpolate orientations. Quaternion 
interpolation can be performed using either LERP or SLERP interpolation (Maillot, P., 1990). 
Although SLERP interpolation is slightly more computationally expensive, we chose to use 
SLERP, as LERP interpolation yields only an approximated result. Not interpolating at all 
but only computing the angle difference between path points pk ∈ Pi,o and the 
corresponding path points of the smoothed path Pi,s would also only give an approximation. 
SLERP interpolation works as follows. Let p = 0, … 1 be a control parameter, q1 and q2 two 
orientations given as quaternions and the angle θ between q1and q2, as computed in Eq. (6), 
(7) and (8). 
We obtain the control variables  

 r1= sin ( (1 – p) · θ ) / sin (θ ) (6) 

 r2= sin ( p · θ ) / sin (θ ) (7) 

and the SLERP-interpolated orientation 

 q’ = r1 · q1 + r2 · q2. (8) 
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By summing the orientational deviations of a smoothed path segment from the 
corresponding unsmoothed segment, we obtain the orientational deviation using criterion 
K3. For this, we do not directly use the unsmoothed path, but the segmentwise projection of 
the unsmoothed path onto the smoothed path. To illustrate this idea, we show the 
interpolation of the orientation for the orientational dimensionality mo = 1 and the obtained 
deviations as well as the sum of the deviation (Figure 7). 
For mo = 2 or mo = 3, the procedure works in exactly the same way, as Eq. (5) and Eq. (8) are 
handling 3D orientations. Orientations of higher dimensionality, although untypical in 
practical applications, can also be easily used if the path deviation functions are adapted 
accordingly, just like positions of higher dimensionality are usable. 

 
Figure 7. Sketch visualizing the computation of the angle sum Δϕ. For simplification, the 
angle is represented only in 1D. Top: Curve progression of the orientation of a smoothed 
path [pmin, pmax] (blue) and the original path [pmin, ... , pi-1, pi, pi+1, ... , pmax] (red). Bottom: 
Curve progression of the angle deviation ϕ between the two paths 

In a simple optimization procedure, the computed positional and orientational deviations pi 
and oi are assigned to the optimization and constraint value ci and di. If not both coordinate 
types are used, all ci stay zero and the algorithm works without any constraint. On the other 
hand, the optimization value di is indispensable. We obtain five different cases, as shown in 
Table 2. 

   Case   

 (a) (b) (c) (d) (e) 

Optimization value di pi oi pi oi 
max max

i ip o
p o

+  

Max. optimization deviation dlim plim olim  plim olim 2  

Constraint value ci /  /  oi pi /  

Max. constraint deviation clim /  / olim plim / 

Table 2. Enumeration of the five possible cases when combining both coordinate types. The 
table entries indicate the assignments of the path points positional and orientational 
deviation pi and oi to the algorithm’s values ci and di, as well as the assignments of the 
indicated positional and orientational deviation limit values plim and olim to the algorithm’s 
values clim and dlim 
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Case (a) is the case seen in Section 5. No orientational information is evaluated, and there is 
no constraint. The computed positional deviation pi is used as di in the path smoothing 
procedure. Similarly, in Case (b), we are smoothing orientations without using constraints. 
The criterion function used to compute di is the version adapted to orientations (Eq. (5)), and 
the deviation di used in the optimization procedure is the orientational deviation oi. 
In Case (c), the positional deviation is used as in (a) as optimization value, but in addition 
we use the orientation as constraint. As long as the limit is not exceeded (ci < clim) in any 
point with the lowest positional deviation, the path is smoothed as in Case (a). Points whose 
orientational deviation oi exceeds olim are not removed, no matter how low pi is. Case (d) is 
analogue to Case (c), the roles of position and orientation being exchanged. 
In Case (e), we have to optimize the position and orientation simultaneously. Because they 
are incompatible, we normalize pi and oi to plim resp. olim, giving an indication on how close 
both deviations are to the limit and bringing them into the same domain. Now, we can 
simply sum up both values to obtain di. The ratio between plim and olim correlates linearly 
with the relation of the influences of position and orientation. As both pi / pmax and oi / omax 
are positive numbers and their sum may not exceed 2, both positional and orientational 
deviations are restricted to twice the maximum indicated. 

7. Experiments and Results 
In this section, we present and analyze a practical surgical application of our algorithm. 
First, we compare the results yielded when applying the three error functions described 
previously. Then, we briefly describe the original paths used in the surgical application and 
their drawbacks. Finally, we describe the improvement achieved by applying the smoothing 
algorithm.  
In the first rather theoretic experiment, a perturbed linear path consisting of 1000 points, 
positioned equidistantly on the x axis in the interval [0; 1000] with increasing x coordinate 
and distributed uniformly on the y axis with y values between –10 and +10, is smoothed 
using criterion K1 (maximum deviation). The y coordinate of the first and the last point is 0 
(Figure 8). 

 
Figure 8. Experimental perturbed path. The units on both axes are millimetres 

The experimental results in Figure 9 demonstrate the anytime property of the algorithm. It 
can be aborted at any time. With a maximum deviation of only 1 mm, reached after 20 ms, 
already one third of the path points could be removed. The correlation of computation time 
and number of path points removed is nearly linear. After less than half of the time needed 
for complete smoothing, half of the path points have been removed.  
However, this experiment also shows the sub-optimality of the algorithm. Because the first 
and the last point have a y coordinate of 0 and the y coordinate of all other points lies in the 
interval [-10; 10], the path could be reduced to its start and end point with a maximum 
deviation dlim =10 mm. Yet, in general the algorithm finds that solution only at dlim =20 mm. 
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Figure 9. Remaining path points, path length and maximum deviation against computation 
time T [ms] for the perturbed linear path segment of Figure 8 

When milling cavities in workpieces, problems with overly fragmented and angulated 
milling paths arise, cf. the RONAF project (Robot-based Navigation for Milling at the 
Lateral Skull Base (Federspil, P. A.; Geisthoff, U. W.; Henrich, D. & Plinkert, P. K., 2003)) 
(Figure 10). The goal of the RONAF project is the development and examination of a system 
for navigation on the lateral skull base with the purpose of an interactive supervision of a 
surgical robot during interventions. Modular navigation and control procedures are being 
used. The operation is planned on a preoperatively acquired 3D dataset, e.g. computed 
tomography (CT) or magnetic resonance tomography (MRT). The robot and its attached tool 
are moved relative to this dataset.  
Milling in the skull bone demands high precision (with tolerances below one millimeter) in 
spite of the high force required to remove larger quantities of bone, a combination that is 
very straining for a surgeon and poses little problem to a robot. Therefore an important 
increase of processing quality is expected. 
In the RONAF system, three-dimensional path planning (Waringo, M.; Henrich D., 2004) is 
used in order to mill a given implant volume with a robot-controlled miller. The paths 
planned in a voxel space are angled and are often represented by an excessive number of 
path points. The robot follows the path points by interpolating linearly between two 
successive path points. By reducing the number of path points, we can significantly reduce 
the milling duration. 
Path smoothing was applied to milling paths planned in a voxel space for milling a hearing 
aid implant volume (Figure 11). The milling time for the non-smoothed path is 
unsatisfactory long. The traversal speed is strongly reduced in regions where the path 
points are close to each other or where the directional change between two consecutive path 
segments is high. This drawback is due to robot dynamics restrictions such as the maximum 
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acceleration in the robot joints and restrictions involving computing time (i.e. the maximum 
number of path segments that can be processed per second). 

 
Figure 10. Experimental setup from the RONAF project 

Part of the robot motions occurs above the workpiece (the long straight segments in Figure 
11), where the tool moves above the bone without touching it. These segments serve to 
change the currently processed region. They segments can not be removed, since otherwise 
the miller would mill bone at forbidden locations. Therefore, even with a maximum allowed 
deviation of infinite in the path smoothing process, such a milling path can not be reduced 
to its start and end point. The path smoothing only applies to the horizontal path segments 
located in the bone. The smoothing algorithm was applied to the entire path, with all 
vertical and horizontal path segments needed for changing a region marked as non-
removable. 
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Figure 11. Milling paths for the hearing aid implant Vibrant Soundbridge 
(Siemens/Symphonix). The circular paths lie in the horizontal plane, and path segments 
perpendicular to that plane are vertical segments which connect these circular paths. Upper 
left: original path planned in a voxel space; Upper right: close-up of the original path (4403 
path points); Bottom left: path with maximum deviation of 0.18 mm (2788 path points); 
Lower right: path with maximum deviation of 0.35 mm (1405 path points) 

While keeping the modification to the path at a non-critical level so that no noticeable 
changes occur in the milled geometry 2, the number of path points can be reduced by more 
than 50%, as shown in Table 3. With an acceptable tolerance of 0.35 mm, it is possible to 
eliminate about 46% of the milling duration, 69% of the path points and 65% of all changes 
normally arising in the non-smoothed path. The computation time for path smoothing was 
measured on an AMD Athlon XP 2600+ PC with 512 MB of RAM. The computation time is 
nearly exactly linear with the number of points removed, in this example about 0.6 ms per 
point.  
Table 4 shows a comparison of paths smoothed using the three error functions and 
evaluated according to the three error functions. As expected, path planned with error 
function Ki, i ∈ {1,2,3} ranked best when the evaluation was performed according to the 
same error function Ki. No clear advantage can be determined and no error function is made 
redundant by the other two. 

                                                                 
2 As the miller’s diameter is 4.5 mm and the robot’s repeatability accuracy is 0.35 mm, a 
maximum deviation in the path of 0.35 mm is acceptable. 
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maximum 
deviation  
dlim [mm] 

# path 
points 

time required for 
path traversal 
[min:sec] 

computation 
time [sec] 

path length 
[mm] 

angular 
integral [°] 

0 4403 12:35 0.00 5545  239,417 

0.10 4355 12:24 0.05 5527 234,048 

0.13 2788 09:22  0.94 5460 150,501 

0.18 2107 08:06 1.32 5427 118,268 

0.25 1629 07:12 1.58 5403 96,645 

0.35 1405 06:44 1.77 5367 82,650 

0.60 1207 06:19 1.80 5334 74,520 

1.00 1098 06:05 1.88 5306 72,273 

2.00 997 05:49 1.90 5232 69,016 

Infinite 832 04:21 2.04 4171 58,320 

Table 3. Number of path points remaining, necessary time requirement for traversal and for 
path smoothing, path length and angular integral in the function of the maximum allowed 
deviation. In order to avoid damage to the patient, areas of the path are not allowed to be 
modified, as described previously. Therefore, the path can not be reduced to its start and 
end point with an infinite maximum deviation. Without this restriction, the effects of the 
path shortening would be even more noticeable 

 

  Error function for path evaluation 

  K1 [mm] K2 [mm2] K3 [mm2] 

  max avg. max. avg. max. avg. 

K1 0.281 0.171 0.078 0.015 2.125 0.257 

K2 0.478 0.216 0.046 0.019 1.531 0.358 
Error function 

 for path  
computation 

K3 0.884 0.197 0.297 0.020 0.393 0.213 

Table 4. Comparison of the three error functions K1, K2 and K3 when reducing the milling 
path of the implant Vibrant Soundbridge from 4403 to 1500 path points. K1: maximum 
deviation, K2: root-mean-square deviation, K3: spanned area. The error function used for 
path planning is noted in the rows and the error function used for evaluation is noted in the 
columns. In the cells, the deviations are noted, with both the maximum and the average 
value per path segment 
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Another example of path smoothing in the RONAF project is shown in Figure 12. In order to 
record an ultrasound image of the patient’s skull, the skull is sampled manually with the tip 
of an infrared marker whose spatial position is sampled at equidistant times. This path is 
then traversed by the robot, an ultrasound head being mounted on the effector. Between 
recording and traversing of the path, smoothing is performed. This way, in addition to 
rendering the path less jerky, there are also agglomerations of path points being removed 
which appear when the surgeon interrupts the movement of the marker. 

  
Figure 12. Scanline path for ultrasound recording of the human skull. Left: original path (307 
path points), right: smoothed path using K1 and dlim = 1 mm (90 path points) 

8. Conclusions 
We have presented a method that smooths paths of any dimensionality consisting of linear 
segments until the deviation between the smoothed path and the original path locally 
exceeds a given threshold. The error function for deviation determination can easily be 
exchanged and adapted for diverse applications. The computational requirement has been 
reduced from quadratic to linear in the number of path points used. Our method is anytime-
capable, i.e. it can be aborted at any time and returns a valid path for which the maximum 
deviation increases monotonically and the number of path points decreases monotonically 
in the allowed computation time. 
Possible extensions of the algorithm include the consideration of forbidden regions that may 
not be crossed by the path and a distance computation that varies depending upon the 
position on the path. Additionally, if applied to motion planning in a cluttered environment, 
the algorithm does not handle collisions with obstacles close to the unsmoothed path. In this 
case, further conditions are required which are evaluated in addition to the error functions 
and which avoid the smoothed path getting too close to the obstacles. In this scenario, the 
geometry of the actuator must be considered too. 
For a path smoothing with using both positions and orientations as optimization criterion 
(Case (e) in Section 7), one could in addition use one of them as constraint, giving even more 
control over the maximum allowed deviation. 
If a globally optimal path has to be found, the presented method is not suitable, as it is a 
local method and can get stuck in local optima, as shown in the first experiment. In order to 
overcome this disadvantage, a global method has to be used. 
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A Novel Feature Extraction Algorithm for  
Outdoor Mobile Robot Localization 

Sen Zhang1,3, Wendong Xiao2,3  and Lihua Xie1 
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1, 2Singapore, 3China 
1. Introduction     
Navigation is one of the basic problems for autonomous mobile robots. Its history can be 
traced back to long time ago. Today, navigation is a well-understood quantitative science, 
used routinely in maritime and aviation applications [Adams, 1999]. Given this, the question 
must be asked as to why robust and reliable autonomous mobile robot navigation remains 
such a difficult problem. The core of the problem is the reliable acquisition or extraction of 
information about navigation beacons from sensor information and the automatic 
correlation or correspondence of these with some navigation map [Guivant et al., 2000].  
Many navigation systems use artificial beacons to realize their navigation task, but the 
approach may not be realistic in applications such as exploration of jungles or other 
unknown environments. In this situation, one needs to utilize naturally occurring structure 
of typical environments to achieve a similar performance. Hence, fast and reliable 
algorithms capable of extracting features from a large set of noisy data are important in such 
applications. Some of the early efforts in this direction have focused on extracting line 
features in an indoor environment based on the information provided by sonar and laser 
sensors. In [Crowley, 1985], a least-squares line fitting technique was applied to extract 
edges from ultrasonic sensor data. In [Taylor & Probert, 1996], a recursive line fitting system 
is used to extract line segments under polar coordinates and an ellipse fitting method is also 
implemented for data from a laser sensor. In [Vandorpe et al., 1996], line segments are 
detected using a regression least-squares parameter estimation method whereas the center 
and radius of a circle feature are estimated based on the average value of the measurements 
of the circle from a 2D range scanner. Later, a two-layer Kalman filter was used to calculate 
the parameters of a line by an on-line method in [Roumeliotis & Bekey, 2000]. Observe that 
the aforementioned articles are focused on indoor applications and are mainly concerned 
with line extraction.  
For an outdoor environment, the problem of feature selection and detection is more 
challenging. In our view, in most typical semi-structured outdoor environments, such as 
campuses, parks and suburbs, tree trunks and tree-like objects, such as pillars, are relatively 
stable, regular and naturally occurring features that can provide very useful information for 
mobile robot navigation. Recently, some research on the use of these kinds of geometrical 
features has been carried out in [Guivant et al., 2002]. Also, [Guivant et al., 2002; Bailey, 
2002] addressed the problem of extracting tree trunks from laser scan data where the centre 
and radius of a circle are estimated by averaging the measurements. This method can be 
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susceptible to outliers which can significantly affect the accuracy of the center and radius 
estimates.  
In this paper, we shall address the problem of extracting edge and circle features for semi-
structured outdoor mobile robot navigation. We classify features into edges, circles and 
random clutter and propose an approach for their extraction. First, a model based data 
segmentation method is applied which divides the collected data into groups that are 
possibly associated with different features of the environment. The extended Kalman filter 
or other filtering techniques can be applied for segmentation. Edges are also detected during 
segmentation. We then give a procedure to identify the type of features with which a given 
group of data is associated. For a circle feature, a modified Gauss-Newton optimization is 
proposed to obtain estimates of its centre and radius. Several experiments are carried out to 
demonstrate the feasibility and effectiveness of the proposed feature extraction method. In 
the experiments, the data association method proposed in [Zhang et al. 2005] is used to 
enhance the robustness of features. The results show that our method for feature extraction 
is implementable in real-time and outperforms existing methods such as that in [Bailey, 
2002].  
The structure of the paper is as follows: Section 2 presents our feature extraction algorithm, 
and section 3 shows the experimental results using the proposed algorithm in several 
outdoor environments. Conclusions are drawn in Section 4.  

2. Feature Extraction Algorithm 
We observe that in many semi-structured outdoor environments, planes such as building 
walls and cylindrical surfaces such as tree trunks or tree-like objects are often encountered. 
We consider two kinds of features for these semi-structured environments. Observe that in 
most outdoor environments, trees or tree trunks can be very useful features for mobile robot 
navigation. In [Guivant et al., 2002; Bailey, 2002], the problem of extracting circle features 
was addressed by averaging their measurements. Here, we shall propose an algorithm 
which is able to extract edges and tree trunks with a higher accuracy. The essential 
components of this algorithm include two parts: the first is the segmentation of the scan data 
and the second is the parameter acquisition.  

2.1. Segmentation and Edge Detection 
Segmentation is a process of aiming to classify a set of scan data into several groups, each of 
which possibly associates with different structures of the surroundings. The segmentation 
process is realized through the EKF [Adams, 1999; Zhang et al. 2003; Zhang et al. 2004a] or 
other filtering techniques. At each time instant the range estimate is compared to the range 
measurement based on their statistics in order to decide if an edge has been detected. When 
the difference between the measured range and the predicted range is beyond a certain 
threshold, we consider that an edge has been detected. This can be achieved by using a 
validation gate during the prediction process with the EKF.  

2.1.1. Planar Model 
Let us first introduce a mathematical framework for a planar surface. Consider a vertical 
plane shown in Fig. 1 and the corresponding sensed data points from a perfect 3D line of the 
sight sensor. Similar to the description in [Adams, 1999], we have:  
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where γ is the constant angle between successive samples of the sensor as it rotates about its 
vertical axis. Note that the relationship given in equation (1) is independent of the elevation 
angle α . 

  
Figure 1.  The relationship between successive range readings when scanning a planar 
surface 

2.1.2. System Model 
Equation (1) is clearly a second order difference equation with respect to time. Define 

1 2( 1) ix k d ++ =  and 2 1 1( 1) ( ) ix k x k d ++ = = , where 
1( )x k  and 

2 ( )x k  are the state variables at time 

instant k . Therefore equation (1) can be fully defined by the state space equations:  

 1( 1) ( ( )) ( )k k k+ = +x f x v  (2) 

where 1 2( 1) [ ( 1) ( 1)]Tk x k x k+ = + +x ,  

1 2

2 11
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⎢ ⎥−= ⎢ ⎥
⎢ ⎥⎣ ⎦

f x  

and ( )kv  is the process noise which reflects possible imperfection of the surface. We assume 
that v  is a white noise with variance ( )kQ . Clearly, a small variance ( )kQ  implies that the 
surface is close to be perfect. In the experiments in this paper, we set 4( ) 10Q k −= . Equation 
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(2) represents a system model which will be used to predict the next range value from the 
sensor before the actual range measurement is recorded.  
Similar to [Adams, 1999], our observation model is:  

 1
1

2

( )
( ) ( )

( )
x k

k k
x k
⎡ ⎤= +⎢ ⎥
⎣ ⎦

z H w  (3) 

where [ ]1 1 0=H  and ( )kw  is a zero mean Gaussian noise with a known variance 2
rσ . The 

EKF is used to realize the prediction and validation process. 
Note that if the degenerate case (almost parallel) is detected, we suggest that these 
measurements can be rejected.  

2.1.3. Extended Kalman Filter and Validation Gate 
Based on the above system model, an extended Kalman filter is used to implement the 
prediction and update. In order to identify if a measurement is associated with a new edge 
(large discontinuity), certain criterion needs to be established. Use the innovation ( 1)kν +  
and the innovation variance ( 1)k +s  to define:  

 1( 1) ( 1) ( 1) ( 1)Td k k k kν ν−+ = + + +s  (4) 

Note that since ν  is a Gaussian random variable, d  is a random variable following the 2χ  
distribution. The smaller the ( 1)d k + , the higher the probability that the measurement 

( 1)z k +  is obtained from the same planar surface. Thus, a validation gate, δ , is used to 
decide whether the measurement ( 1)z k +  is a close enough match to the predicted data 
point to continue the filter update. If the measurement is such that ( 1)d k δ+ > , a 
discontinuity is found. From the 2χ  distribution table, we know that if the observation is 
from the same planar surface, then ( 1) 6 63d k + < .  with a probability of 0 99. . If a small δ  is 
selected, there will be more edges found. Here we set 6 63δ = . .  
After the data segmentation process, we need to decide if each segment of data is associated 
with a line or a circle (note that the laser sensor data points only form an arc which is part of 
a circle, here we call it a circle feature) or a clutter. For a line, the average error between the 
observation and the EKF prediction at each point should be very small. Note that the 
prediction error (innovation) sequence { }ν  of (5) is a Gaussian white noise and its 
covariance is given by ( )ks . Assume that the number of points of the segment is M . Then 
the sequence { }ν  is of the length 2M −  (note that the first two pints are used to initialize the 
filter). The average prediction error and its covariance are then given by  

 3 3
2

( ) ( )

2 ( 2)

M M

k k

k k

M M

ν
ν = == , =

− −

∑ ∑ s
s  (5) 

Hence, 3 0 997P ν⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
| |≤ = .s . A threshold for the average prediction error can be chosen as 

3 s . The threshold is used to distinguish a line from a circle or a clutter. If the average 
prediction error is smaller than the threshold, we consider that this segment of data is 
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associated with a line, otherwise, it is associated with a circle or a clutter. It is noted that if a 
circle shape clutter is detected as a circle feature after several successive scans, the circle 
shape clutter is the same as a circle feature. If after several successive scans, we can’t detect 
the circle feature that is found in the previous scans, the feature detected should be a circle 
shape clutter.  
For a circle, we shall need to estimate its parameters such as the center and the radius of the 
circle so that future measurements of the circle may be used for robot navigation. In the 
following, the modified Gauss-Newton method [Dennis & Schnabel, 1983] is applied.  

2.2. Parameter Acquisition 
A circle can be defined by the equation 2 2 2

0 0( ) ( )x x y y r− + − =  where 
0 0( )x y,  and r  are the 

center and the radius of the circle, respectively. For a circle fitting problem, a data set of 
( )x y,  is known and the circle parameters 0 0( )x y r, ,  need to be estimated. Assume that we 

have obtained M  measurements ( )m mx y, , 1 2 …m M= , , , of the circle. Our objective is to find 

0 0( )p x y r= , ,  that minimizes  

 2 2 2 2
0 0 0 0

1

( ) ( ) [( ) ( ) ]
M

m m
m

E p E x y r x x y y r
=

= , , = − + − −∑  (6) 

This is equivalent to performing the least-squares process using the equations  

 2 2 2
0 0 0 0( ) ( ) ( ) 0 1 2 …m m mg x y r x x y y r m M, , = − + − − = , = , , ,  (7) 

The equation (7) is not linear about the unknown parameters 0x , 0y , and r, therefore it is a 
nonlinear least-squares problem. We propose to use the modified Gauss-Newton 
optimization method [Dennis and Schnabel, 1983] to solve the problem. In our case the 
Jacobian matrix for the modified Gauss-Newton algorithm is  
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2 2 2
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0 0

M M M

g g g
x y r
g g g
x y rA
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x y r

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥

∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂= ⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦

 (8) 

Let g  = 
1(g  

2g  … )T
Mg  with 

mg  as defined in (7).  
At the k -th step, using the modified Gauss-Newton method to search the solution according 
to the following equation:  

 ( )T T
k k k k k kA A I p A gλ+ = −  (9) 

where 
1k k kp p p+= −  and 

kp  is the estimate of [ ]0 0
Tp x y r=  at the k -th iteration. We set the 

initial value 
0 0 01λ = .  and carry out the following iterations for calculating a suboptimal p :  

Step 1: Calculate 
kp  using equation (9);  

Step 2: Calculate the sum error ( )k kE p p+  by equation (6);  
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Step 3: Compare with the sum error of last step ( )kE p . If ( ) ( )k k kE p p E p+ > , increase 
kλ  by a 

factor of 10, and go back to Step 1;  
Step 4: If ( ) ( )k k kE p p E p+ < , decrease 

kλ  by a factor of 10, update the trial solution, i.e. replace 

kp  by 
k kp p+  and go back to Step 1 until the algorithm converges.  

The convergence condition can be defined by the sum of the error square and the number of 
iterations.  
Observe that a starting guess for these parameters is required. We use the first three points 
( ) 1 2 3i ix y i, = , ,  and (7) to compute an estimated initial value of 

0 0( )x y r, , . The more accurate 
the initial value is, the faster the algorithm converges.  
Remark 1. Note that the Hough transform is commonly used for parameter acquisition and 
segmentation [Iocchi & Nardi, 2002]. The transform is implemented by quantizing the 
Hough parameter space into finite accumulator cells. As the algorithm runs, each point is 
transformed into a discretized curve and the number of intersections of the accumulator 
cells is counted. However, the problem of how to decide the number of the cells in the 
parameter space remains unsolved. If the Hough transform is applied for fitting a circle, the 
parameter space is of three dimensions, which makes the problem more difficult. And with 
the increased dimension of the parameter space, the Hough transform method becomes 
more complex and slower. Hence, we use the modified Gauss-Newton method instead of 
the Hough transform for parameter acquisition.  
Remark 2. In our algorithm, since each group of data is formed after data segmentation, any 
outlier of measurements has been removed since an outlier produces a large discontinuity in 
segmentation. On the other hand, in complex outdoor environments, features extracted by 
the above proposed method may become unstable. In order to use these features for 
navigation, the correspondence between a current feature extracted by the above method 
and a feature in the map built thus far has to be established. This is the so-called data 
association problem. In this paper, we apply the data association algorithm proposed in 
[Zhang et al. 2005; Zhang et al. 2004b] where the problem is formulated as a (0,1) integer 
programming one and solved by a combined linear programming and iterative heuristic 
greedy rounding (IHGR) method. The details can be found in [Zhang et al. 2004b] and will 
not be repeated here.  
Remark 3. For the proposed algorithm, if the angular uncertainty is considered, the feature 
detection algorithm results will be improved.  

3. Experimental Results 
The laser sensor used in the following experiments is Sick PLS200. The field of view is 180 
degrees in front of the robot and up to 50 meters of distance. To obtain a 360 degree scene, 
we use 2 back to back Sick sensors. The range samples are spaced every half a degree, all 
within the same plane.  
In the first experiment, data is collected outdoors as shown in Fig. 2 (a) where there are 10 
pillars labeled from a  to j , and the surroundings are building walls and low balusters 
with small shrubs at a long distance. In this figure, the six cross points represent the six 
positions at which the robot scans the surroundings. The laser scanner is placed on the top 
of a mobile robot at approximately 1.2 meters above the ground. At this level, the sensor can 
see the object outside the balusters. In Fig. 2 (b), we show the real data from one scan of the 
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environment. The origin is the place at which the robot is located. Because the distance is 
very near to the sensor around the origin, the points here are not very regularly distributed. 
We have done the feature extraction for all the 6 scans. Here we show the feature extraction 
results at two different positions. The results are given in Fig. 3 to Fig. 4.  
Fig. 3 (a) and Fig. 3 (b) show the feature extraction results at position 2 using the proposed 
method of the last section. Zoomed views of the regions inside the dashed box of Fig. 3(a) 
are given in Fig. 3(b) where the extracted features can be seen clearly. In these figures, the 
detected edges are denoted by crosses. Similarly, the feature detection results at position 4 
are shown in Fig. 4. 

 
Figure 2. (a) The place to be explored by the robot 

 
Figure 2. (b)Data from one whole 



Mobile Robots Motion Planning, New Challenges 

 

590 

 
Figure 3 (a). Circles and edges extracted from data scanned at position 2 (the normal view) 

 

 
Figure 3(b). A zoomed view of the region inside box A in Fig. 3 (a) 
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Figure 4(a). Circles and edges extracted from data scanned at position 4 (the normal view) 

 
Figure 4 (b). A zoomed view of the region inside box C in Fig. 4(a) 
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To give an indication of the accuracy of the algorithm, we compare our method with some 
existing method. In the work by Bailey [Bailey, 2002], navigation methods are presented 
which use circular features from trees. We calculate the relative errors of the estimated 
center coordinates and radius of each pillar as follows:  

 
2 2

2 2

( ) ( )true estimate true estimate

true true

x x y y
CE

x y

− + −
=

+
 (10) 

 true estimate

true

r rRE
r

| − |=  (11) 

where 
true truex y,  and 

turer  are the actual coordinates and the actual center of the circle feature 
which are obtained from hand measurements and 

estimate estimatex y,  and 
estimater  are their estimated 

values. The results are shown in Table 1 and Table 2.  

 pillar 
d  

pillar 
e  

pillar 
f  

pillar 
g  

Proposed method 0.0179 0.01580.0136 0.0137
The method in [4] 0.0251 0.02440.0271 0.0166

Table 1. A comparison of the error CE  of the four circle features between the proposed 
method and the method in [Bailey, 2002]  

 
 

pillar d pillar e pillar f pillar g 

Proposed method 0.0373  0.0011 0.1057 0.0588  
The method in [4] 0.2096  0.2326 0.2626 0.1384  

Table 2. A comparison of the error RE  of the four circle features between the proposed 
method and the method in [Bailey, 2002] 

From the above tables, we can see that the proposed method is more accurate than the 
method in [Bailey, 2002].  
In order to test the feature extraction method for localization, the outdoor experiment has 
also been carried out for simultaneous localization and map building using the proposed 
feature extraction algorithm. The experimental environment is shown in Figure 6. There are 
8 tall trees and building walls and some bushes which constitute the semi-structured 
outdoor environment. For this semi-structured environment, the main features for 
localization are tree trunks. The proposed feature extraction algorithm is applied for 
extracting the features. The vehicle used in the experiment is Cycab, a car-like vehicle, as 
shown in Figure 5. It is equipped with a laser range sensor, Sick LMS 200, with dead 
reckoning capabilities. There are four encoders fixed on the wheels of the vehicle. A DGPS 
with up to 2cm accuracy is used as a reference to give the ground truth of the vehicle pose to 
get the estimation error.  
In the experimental environment, the vehicle moves along the path as shown in Figure 7 
where the stars denote the trees of the environment which are detected, the dashed line 
indicates the real pose of the vehicle and the solid line means the estimated path using the 
simultaneous localization and mapping algorithm with the proposed feature extraction 
method. The data association method in the implementation is the same as that in [Zhang et 
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al. 2005]. Figure 8 shows a typical laser scanner frame. The dashed line box A indicates the 
region whose clearer view is shown in Figure 9. In these two figures, we can find that there 
are lines, arcs and edges (point features). However, in the experiment, we only use circle 
features from the tree trunks for localization. The 8 features are all detected during the 
SLAM process after the continuous observation. It should be noted that there are additional 
features that are detected in some scans, but they haven’t been used for the SLAM more 
than 3 times, we didn’t draw them in the map.  
To make a comparison on feature extraction performance, we also implement the method in 
[Bailey, 2002]. Figure 10 shows the range and bearing innovations of the measurements 
when we apply the feature extraction method in [Bailey, 2002] and our method during the 
SLAM and their 3σ  bounds. The dash-dot line in the middle of each sub-figure is the result 
of the localization using our proposed feature detection method whereas the solid one in the 
middle is the result of the localization by the feature detection method in [Bailey, 2002]. 
Figure 11 shows the vehicle’s position and orientation errors in the prediction and their 3σ  
error bounds. Further, we calculate the average absolute estimation error as defined by  

i i ix yx y
N N N

θθΣ | Δ | Σ | Δ | Σ | Δ |
Δ = ; Δ = ; Δ =  

where ixΔ , iyΔ  and iθΔ  are the vehicle pose errors at each time instant and N  is the time 
horizon of the whole localization process. The comparison of the “average absolute error" 
for the two methods is given in Table 3 below. 

  Proposed method Method in [Bailey, 2002] 
xΔ   0.0575  0.0823   

yΔ  0.0571  0.0732   

θΔ  0.0353  0.0528  

Table 3. The xΔ , yΔ θΔ of the vehicle pose when using different feature detection 
methods 

In the table, the unit for xΔ and yΔ is meter and that for θΔ  is radian.  

 
Figure 5.  The Cycab, a car-like vehicle in our experiment 
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We also test the detectability of the features by these two methods. We calculated 4 different 
scan sets’ feature extraction false detection rate (the ratio of the number of false features to 
the total number of detected  features in a scan) as shown in Table 4. 

 scan 10 to 40 scan 50 to 80 scan 90 to 120 scan 130 to 160  
Proposed method 0.067  0.034  0.067  0.1   
The method in [4] 0.034  0.067  0.034  0.067   

Table 4. A comparison of the false detection rate between the proposed method and the 
method in [Bailey, 2002] 

 

 
Figure 6. The experimental environment (the whole scene) 

 
Figure 7.  The estimated path and the true trajectory of the vehicle during the SLAM 
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Figure 8. A whole scan data of the experiment environment corresponding to figure 5 

 
Figure 9. The circle features (trees) and edges extracted from the environment in figure 5 
using Gauss-Newton algorithm 
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Figure 10. A comparison on range and bearing innovations during the localization when using 
the proposed method (dash-dot line) and the method in [Bailey, 2002] (solid line in the middle) 

 
Fig. 11. The error and 3σ  error bounds of the vehicle when using different feature detection 
methods. The dashed line is the result of the localization using the proposed feature 
detection methods 
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From the table, we know that the detectability of the method in [Bailey, 2002] is a little better 
than our method. However, in both algorithms, the features can be mostly detected for the 
localization purpose. From this point of view, Bailey’s approach is more general than ours 
for the irregular circles’ detection in some cases.  However, the false detection rates of both 
the two algorithms are considered to be low. 
It should be noted that there are false features that are detected in some scans, but they have 
not been used for the SLAM more than 3 times. Hence, we did not draw them in the map. 

4. Conclusions 
In this paper a new algorithm for feature detection in semi-structured outdoor 
environments has been presented. It can be used for the extraction of planar surfaces, tree 
trunks or tree-like objects and edges in semi-structured outdoor environments for mobile 
robot navigation. Experimental results show that the proposed method can extract features 
for navigation purposes successfully.  
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